WorldWideScience

Sample records for design issues reliability

  1. Qualitative Reliability Issues for Solid and Liquid Wall Fusion Design

    Energy Technology Data Exchange (ETDEWEB)

    Cadwallader, Lee Charles

    2001-01-01

    This report is an initial effort to identify issues affecting reliability and availability of solid and liquid wall designs for magnetic fusion power plant designs. A qualitative approach has been used to identify the possible failure modes of major system components and their effects on the systems. A general set of design attributes known to affect the service reliability has been examined for the overview solid and liquid wall designs, and some specific features of good first wall design have been discussed and applied to these designs as well. The two generalized designs compare well in regard to these design attributes. The strengths and weaknesses of each design approach are seen in the comparison of specific features.

  2. Qualitative Reliability Issues for Solid and Liquid Wall Fusion Designs

    Energy Technology Data Exchange (ETDEWEB)

    Cadwallader, L.C.

    2001-01-31

    This report is an initial effort to identify issues affecting reliability and availability of solid and liquid wall designs for magnetic fusion power plant designs. A qualitative approach has been used to identify the possible failure modes of major system components and their effects on the systems. A general set of design attributes known to affect the service reliability has been examined for the overview solid and liquid wall designs, and some specific features of good first wall design have been discussed and applied to these designs as well. The two generalized designs compare well in regard to these design attributes. The strengths and weaknesses of each design approach are seen in the comparison of specific features.

  3. Qualitative Reliability Issues for Solid and Liquid Wall Fusion Designs

    International Nuclear Information System (INIS)

    Cadwallader, L.C.

    2001-01-01

    This report is an initial effort to identify issues affecting reliability and availability of solid and liquid wall designs for magnetic fusion power plant designs. A qualitative approach has been used to identify the possible failure modes of major system components and their effects on the systems. A general set of design attributes known to affect the service reliability has been examined for the overview solid and liquid wall designs, and some specific features of good first wall design have been discussed and applied to these designs as well. The two generalized designs compare well in regard to these design attributes. The strengths and weaknesses of each design approach are seen in the comparison of specific features

  4. Human Reliability Analysis for Design: Using Reliability Methods for Human Factors Issues

    Energy Technology Data Exchange (ETDEWEB)

    Ronald Laurids Boring

    2010-11-01

    This paper reviews the application of human reliability analysis methods to human factors design issues. An application framework is sketched in which aspects of modeling typically found in human reliability analysis are used in a complementary fashion to the existing human factors phases of design and testing. The paper provides best achievable practices for design, testing, and modeling. Such best achievable practices may be used to evaluate and human system interface in the context of design safety certifications.

  5. Human Reliability Analysis for Design: Using Reliability Methods for Human Factors Issues

    International Nuclear Information System (INIS)

    Boring, Ronald Laurids

    2010-01-01

    This paper reviews the application of human reliability analysis methods to human factors design issues. An application framework is sketched in which aspects of modeling typically found in human reliability analysis are used in a complementary fashion to the existing human factors phases of design and testing. The paper provides best achievable practices for design, testing, and modeling. Such best achievable practices may be used to evaluate and human system interface in the context of design safety certifications.

  6. Reliability issues in PACS

    Science.gov (United States)

    Taira, Ricky K.; Chan, Kelby K.; Stewart, Brent K.; Weinberg, Wolfram S.

    1991-07-01

    Reliability is an increasing concern when moving PACS from the experimental laboratory to the clinical environment. Any system downtime may seriously affect patient care. The authors report on the several classes of errors encountered during the pre-clinical release of the PACS during the past several months and present the solutions implemented to handle them. The reliability issues discussed include: (1) environmental precautions, (2) database backups, (3) monitor routines of critical resources and processes, (4) hardware redundancy (networks, archives), and (5) development of a PACS quality control program.

  7. Steam generator thermal hydraulic design & functional architecture features and related operational and reliability issues requiring consideration

    International Nuclear Information System (INIS)

    Klarner, R.G.

    2012-01-01

    Proper thermal hydraulic design and functional architecture are critical to successful steam generator operation and long term reliability. The evolution of steam generators has been a gradual learning process that has benefited from continuous industry operational experience (OPEX). Inadequate thermal hydraulic design can lead to numerous degradation mechanisms such as excessive deposition, corrosion, flow and level instabilities, fluid-elastic instabilities and tube wear. The functional architecture determines the health of the tube bundle and the other internals during manufacturing, handling and operation. It also determines thermal performance as well as establishing global thermal-hydraulic characteristics such as water level shrink and swell response. This paper discusses the range of operational and reliability issues and relates them to the thermal hydraulic attributes and functional architecture of steam generators (many SG reliability issues are further discussed in other presentations at this conference). In pursuing such issues, the paper focuses on the four major features of the equipment, identifying in each case the goals and requirements such features must meet. Typical approaches and the means by which such requirements are addressed in current equipment are discussed. The four features are: 1. Tubing Material and Tube Bundle Heat Transfer Performance; a. Two materials are in current use – Alloy 690 TT and Alloy 800. Both are good materials with excellent performance records which serve their owners very well (the reliability attributes of Alloy 800 and 690 are discussed in other papers at this conference). Caution is advised in the supply of any material: – material quality is only assured by what is specified to material suppliers in procurement specifications – i.e. - all the knowledge and research in the world assures nothing if its findings are not reflected in procurement requirements. b. Heat transfer performance in addition to being

  8. Issues in cognitive reliability

    International Nuclear Information System (INIS)

    Woods, D.D.; Hitchler, M.J.; Rumancik, J.A.

    1984-01-01

    This chapter examines some problems in current methods to assess reactor operator reliability at cognitive tasks and discusses new approaches to solve these problems. The two types of human failures are errors in the execution of an intention and errors in the formation/selection of an intention. Topics considered include the types of description, error correction, cognitive performance and response time, the speed-accuracy tradeoff function, function based task analysis, and cognitive task analysis. One problem of human reliability analysis (HRA) techniques in general is the question of what are the units of behavior whose reliability are to be determined. A second problem for HRA is that people often detect and correct their errors. The use of function based analysis, which maps the problem space for plant control, is recommended

  9. Reliable Design Versus Trust

    Science.gov (United States)

    Berg, Melanie; LaBel, Kenneth A.

    2016-01-01

    This presentation focuses on reliability and trust for the users portion of the FPGA design flow. It is assumed that the manufacturer prior to hand-off to the user tests FPGA internal components. The objective is to present the challenges of creating reliable and trusted designs. The following will be addressed: What makes a design vulnerable to functional flaws (reliability) or attackers (trust)? What are the challenges for verifying a reliable design versus a trusted design?

  10. Reliability issues at the LHC

    CERN Multimedia

    CERN. Geneva. Audiovisual Unit; Gillies, James D

    2002-01-01

    The Lectures on reliability issues at the LHC will be focused on five main Modules on five days. Module 1: Basic Elements in Reliability Engineering Some basic terms, definitions and methods, from components up to the system and the plant, common cause failures and human factor issues. Module 2: Interrelations of Reliability & Safety (R&S) Reliability and risk informed approach, living models, risk monitoring. Module 3: The ideal R&S Process for Large Scale Systems From R&S goals via the implementation into the system to the proof of the compliance. Module 4: Some Applications of R&S on LHC Master logic, anatomy of risk, cause - consequence diagram, decomposition and aggregation of the system. Module 5: Lessons learned from R&S Application in various Technologies Success stories, pitfalls, constrains in data and methods, limitations per se, experienced in aviation, space, process, nuclear, offshore and transport systems and plants. The Lectures will reflect in summary the compromise in...

  11. Accelerator Availability and Reliability Issues

    Energy Technology Data Exchange (ETDEWEB)

    Steve Suhring

    2003-05-01

    Maintaining reliable machine operations for existing machines as well as planning for future machines' operability present significant challenges to those responsible for system performance and improvement. Changes to machine requirements and beam specifications often reduce overall machine availability in an effort to meet user needs. Accelerator reliability issues from around the world will be presented, followed by a discussion of the major factors influencing machine availability.

  12. Reliability issues : a Canadian perspective

    International Nuclear Information System (INIS)

    Konow, H.

    2004-01-01

    A Canadian perspective of power reliability issues was presented. Reliability depends on adequacy of supply and a framework for standards. The challenges facing the electric power industry include new demand, plant replacement and exports. It is expected that demand will by 670 TWh by 2020, with 205 TWh coming from new plants. Canada will require an investment of $150 billion to meet this demand and the need is comparable in the United States. As trade grows, the challenge becomes a continental issue and investment in the bi-national transmission grid will be essential. The 5 point plan of the Canadian Electricity Association is to: (1) establish an investment climate to ensure future electricity supply, (2) move government and industry towards smart and effective regulation, (3) work to ensure a sustainable future for the next generation, (4) foster innovation and accelerate skills development, and (5) build on the strengths of an integrated North American system to maximize opportunity for Canadians. The CEA's 7 measures that enhance North American reliability were listed with emphasis on its support for a self-governing international organization for developing and enforcing mandatory reliability standards. CEA also supports the creation of a binational Electric Reliability Organization (ERO) to identify and solve reliability issues in the context of a bi-national grid. tabs., figs

  13. Design reliability engineering

    International Nuclear Information System (INIS)

    Buden, D.; Hunt, R.N.M.

    1989-01-01

    Improved design techniques are needed to achieve high reliability at minimum cost. This is especially true of space systems where lifetimes of many years without maintenance are needed and severe mass limitations exist. Reliability must be designed into these systems from the start. Techniques are now being explored to structure a formal design process that will be more complete and less expensive. The intent is to integrate the best features of design, reliability analysis, and expert systems to design highly reliable systems to meet stressing needs. Taken into account are the large uncertainties that exist in materials, design models, and fabrication techniques. Expert systems are a convenient method to integrate into the design process a complete definition of all elements that should be considered and an opportunity to integrate the design process with reliability, safety, test engineering, maintenance and operator training. 1 fig

  14. Circuit design for reliability

    CERN Document Server

    Cao, Yu; Wirth, Gilson

    2015-01-01

    This book presents physical understanding, modeling and simulation, on-chip characterization, layout solutions, and design techniques that are effective to enhance the reliability of various circuit units.  The authors provide readers with techniques for state of the art and future technologies, ranging from technology modeling, fault detection and analysis, circuit hardening, and reliability management. Provides comprehensive review on various reliability mechanisms at sub-45nm nodes; Describes practical modeling and characterization techniques for reliability; Includes thorough presentation of robust design techniques for major VLSI design units; Promotes physical understanding with first-principle simulations.

  15. Reliability and mechanical design

    International Nuclear Information System (INIS)

    Lemaire, Maurice

    1997-01-01

    A lot of results in mechanical design are obtained from a modelisation of physical reality and from a numerical solution which would lead to the evaluation of needs and resources. The goal of the reliability analysis is to evaluate the confidence which it is possible to grant to the chosen design through the calculation of a probability of failure linked to the retained scenario. Two types of analysis are proposed: the sensitivity analysis and the reliability analysis. Approximate methods are applicable to problems related to reliability, availability, maintainability and safety (RAMS)

  16. Reliability based structural design

    NARCIS (Netherlands)

    Vrouwenvelder, A.C.W.M.

    2014-01-01

    According to ISO 2394, structures shall be designed, constructed and maintained in such a way that they are suited for their use during the design working life in an economic way. To fulfil this requirement one needs insight into the risk and reliability under expected and non-expected actions. A

  17. Designing reliability into accelerators

    International Nuclear Information System (INIS)

    Hutton, A.

    1992-08-01

    For the next generation of high performance, high average luminosity colliders, the ''factories,'' reliability engineering must be introduced right at the inception of the project and maintained as a central theme throughout the project. There are several aspects which will be addressed separately: Concept; design; motivation; management techniques; and fault diagnosis

  18. Reliability Issues in Stirling Radioisotope Power Systems

    Science.gov (United States)

    Schreiber, Jeffrey; Shah, Ashwin

    2005-01-01

    Stirling power conversion is a potential candidate for use in a Radioisotope Power System (RPS) for space science missions because it offers a multifold increase in the conversion efficiency of heat to electric power and reduced requirement of radioactive material. Reliability of an RPS that utilizes Stirling power conversion technology is important in order to ascertain long term successful performance. Owing to long life time requirement (14 years), it is difficult to perform long-term tests that encompass all the uncertainties involved in the design variables of components and subsystems comprising the RPS. The requirement for uninterrupted performance reliability and related issues are discussed, and some of the critical areas of concern are identified. An overview of the current on-going efforts to understand component life, design variables at the component and system levels, and related sources and nature of uncertainties are also discussed. Current status of the 110 watt Stirling Radioisotope Generator (SRG110) reliability efforts is described. Additionally, an approach showing the use of past experience on other successfully used power systems to develop a reliability plan for the SRG110 design is outlined.

  19. Space Station Engineering Design Issues

    Science.gov (United States)

    Mcruer, Duane T.; Boehm, Barry W.; Debra, Daniel B.; Green, C. Cordell; Henry, Richard C.; Maycock, Paul D.; Mcelroy, John H.; Pierce, Chester M.; Stafford, Thomas P.; Young, Laurence R.

    1989-01-01

    Space Station Freedom topics addressed include: general design issues; issues related to utilization and operations; issues related to systems requirements and design; and management issues relevant to design.

  20. Electronics reliability calculation and design

    CERN Document Server

    Dummer, Geoffrey W A; Hiller, N

    1966-01-01

    Electronics Reliability-Calculation and Design provides an introduction to the fundamental concepts of reliability. The increasing complexity of electronic equipment has made problems in designing and manufacturing a reliable product more and more difficult. Specific techniques have been developed that enable designers to integrate reliability into their products, and reliability has become a science in its own right. The book begins with a discussion of basic mathematical and statistical concepts, including arithmetic mean, frequency distribution, median and mode, scatter or dispersion of mea

  1. Integrating reliability analysis and design

    International Nuclear Information System (INIS)

    Rasmuson, D.M.

    1980-10-01

    This report describes the Interactive Reliability Analysis Project and demonstrates the advantages of using computer-aided design systems (CADS) in reliability analysis. Common cause failure problems require presentations of systems, analysis of fault trees, and evaluation of solutions to these. Results have to be communicated between the reliability analyst and the system designer. Using a computer-aided design system saves time and money in the analysis of design. Computer-aided design systems lend themselves to cable routing, valve and switch lists, pipe routing, and other component studies. At EG and G Idaho, Inc., the Applicon CADS is being applied to the study of water reactor safety systems

  2. Reliable core thermal design

    International Nuclear Information System (INIS)

    Amendola, A.

    1974-01-01

    The hot spot analysis is no longer limited to the calculation of a simple safety factor against overtemperature, but is now integrated in the overall design philosophy. This paper describes the development of a probabilistic method of analysis and compares it with other advanced calculation methods. Feedbacks from the analysis act: - on the nominal temperature distribution in order to satisfy the maximum temperature limit and in the same time to optimize the coolant temperature for maximum plant efficiency, and - on the specifications of manufacturing tolerances and experimental investigations in order to identify and to reduce the most important design uncertainties. Moreover the computer codes SHOSPA and THEDRA are briefly discussed. Both codes deliver the zero hot spot probability as a function of the geometrical size assumed for a ''spot''. THEDRA delivers also the expected hot spot distribution. By means of THEDRA it is possible to evaluate the pins failure expectation if the distribution of pin failures versus operating temperature is known. (author)

  3. Reliability Based Ship Structural Design

    DEFF Research Database (Denmark)

    Dogliani, M.; Østergaard, C.; Parmentier, G.

    1996-01-01

    This paper deals with the development of different methods that allow the reliability-based design of ship structures to be transferred from the area of research to the systematic application in current design. It summarises the achievements of a three-year collaborative research project dealing...... with developments of models of load effects and of structural collapse adopted in reliability formulations which aim at calibrating partial safety factors for ship structural design. New probabilistic models of still-water load effects are developed both for tankers and for containerships. New results are presented...... structure of several tankers and containerships. The results of the reliability analysis were the basis for the definition of a target safety level which was used to asses the partial safety factors suitable for in a new design rules format to be adopted in modern ship structural design. Finally...

  4. Reliability in the design phase

    International Nuclear Information System (INIS)

    Siahpush, A.S.; Hills, S.W.; Pham, H.; Majumdar, D.

    1991-12-01

    A study was performed to determine the common methods and tools that are available to calculated or predict a system's reliability. A literature review and software survey are included. The desired product of this developmental work is a tool for the system designer to use in the early design phase so that the final design will achieve the desired system reliability without lengthy testing and rework. Three computer programs were written which provide the first attempt at fulfilling this need. The programs are described and a case study is presented for each one. This is a continuing effort which will be furthered in FY-1992. 10 refs

  5. Design for reliability: NASA reliability preferred practices for design and test

    Science.gov (United States)

    Lalli, Vincent R.

    1994-01-01

    This tutorial summarizes reliability experience from both NASA and industry and reflects engineering practices that support current and future civil space programs. These practices were collected from various NASA field centers and were reviewed by a committee of senior technical representatives from the participating centers (members are listed at the end). The material for this tutorial was taken from the publication issued by the NASA Reliability and Maintainability Steering Committee (NASA Reliability Preferred Practices for Design and Test. NASA TM-4322, 1991). Reliability must be an integral part of the systems engineering process. Although both disciplines must be weighed equally with other technical and programmatic demands, the application of sound reliability principles will be the key to the effectiveness and affordability of America's space program. Our space programs have shown that reliability efforts must focus on the design characteristics that affect the frequency of failure. Herein, we emphasize that these identified design characteristics must be controlled by applying conservative engineering principles.

  6. Plastic packaged microcircuits: Quality, reliability, and cost issues

    Science.gov (United States)

    Pecht, Michael G.; Agarwal, Rakesh; Quearry, Dan

    1993-12-01

    Plastic encapsulated microcircuits (PEMs) find their main application in commercial and telecommunication electronics. The advantages of PEMs in cost, size, weight, performance, and market lead-time, have attracted 97% of the market share of worldwide microcircuit sales. However, PEMs have always been resisted in US Government and military applications due to the perception that PEM reliability is low. This paper surveys plastic packaging with respect to the issues of reliability, market lead-time, performance, cost, and weight as a means to guide part-selection and system-design.

  7. Reliability analysis techniques in power plant design

    International Nuclear Information System (INIS)

    Chang, N.E.

    1981-01-01

    An overview of reliability analysis techniques is presented as applied to power plant design. The key terms, power plant performance, reliability, availability and maintainability are defined. Reliability modeling, methods of analysis and component reliability data are briefly reviewed. Application of reliability analysis techniques from a design engineering approach to improving power plant productivity is discussed. (author)

  8. Low power and reliable SRAM memory cell and array design

    CERN Document Server

    Ishibashi, Koichiro

    2011-01-01

    Success in the development of recent advanced semiconductor device technologies is due to the success of SRAM memory cells. This book addresses various issues for designing SRAM memory cells for advanced CMOS technology. To study LSI design, SRAM cell design is the best materials subject because issues about variability, leakage and reliability have to be taken into account for the design.

  9. Methodological Issues in Questionnaire Design.

    Science.gov (United States)

    Song, Youngshin; Son, Youn Jung; Oh, Doonam

    2015-06-01

    The process of designing a questionnaire is complicated. Many questionnaires on nursing phenomena have been developed and used by nursing researchers. The purpose of this paper was to discuss questionnaire design and factors that should be considered when using existing scales. Methodological issues were discussed, such as factors in the design of questions, steps in developing questionnaires, wording and formatting methods for items, and administrations methods. How to use existing scales, how to facilitate cultural adaptation, and how to prevent socially desirable responding were discussed. Moreover, the triangulation method in questionnaire development was introduced. Steps were recommended for designing questions such as appropriately operationalizing key concepts for the target population, clearly formatting response options, generating items and confirming final items through face or content validity, sufficiently piloting the questionnaire using item analysis, demonstrating reliability and validity, finalizing the scale, and training the administrator. Psychometric properties and cultural equivalence should be evaluated prior to administration when using an existing questionnaire and performing cultural adaptation. In the context of well-defined nursing phenomena, logical and systematic methods will contribute to the development of simple and precise questionnaires.

  10. Issues in environmental survey design

    International Nuclear Information System (INIS)

    Iachan, R.

    1989-01-01

    Several environmental survey design issues are discussed and illustrated with surveys designed by Research Triangle Institute statisticians. Issues related to sampling and nonsampling errors are illustrated for indoor air quality surveys, radon surveys, pesticide surveys, and occupational and personal exposure surveys. Sample design issues include the use of auxiliary information (e.g. for stratification), and sampling in time. We also discuss the reduction and estimation of nonsampling errors, including nonresponse and measurement bias

  11. MAJOR REPOSITORY DESIGN ISSUES

    International Nuclear Information System (INIS)

    JACK N. BAILEY, DWAYNE CHESTNUT, JAMES COMPTON AND RICHARD D. SNELL

    1997-01-01

    The Yucca Mountain Project is focused on producing a four-part viability assessment in late FY98. Its four components (design, performance assessment, cost estimate, and licensing development plan) must be consistent. As a tool to compare design and performance assessment options, a series of repository pictures were developed for the sequential time phases of a repository. The boundaries of the time phases correspond to evolution in the engineered barrier system (EBS)

  12. Preliminary Human Reliability Issues in Reviewing SMART PSA

    International Nuclear Information System (INIS)

    Lee, Chang Ju; Sheen, Cheol

    2010-01-01

    Human reliability analysis (HRA) identifies the human failure events (HFEs) that can negatively impact normal or emergency plant operations, and systematically estimates probabilities of HFEs using data (when available), models, or expert judgment. In case of newly-conceptualized reactors like SMART (System-integrated Modular Advanced Reactor), HRA results must be provided by first evaluating the applicability of a set of human errors that has been typically applied in PSAs for existing PWRs. Additional human errors should also be identified reflecting its unique design and operational features. The objective of this paper is double-folded: to discuss a direction of HRA used in confirming risk level of SAMRT-type reactors; and to extract preliminarily considerable points or issues for regulatory verification, referred to available safety guides

  13. Design for Reliability of Power Electronic Systems

    DEFF Research Database (Denmark)

    Wang, Huai; Ma, Ke; Blaabjerg, Frede

    2012-01-01

    Advances in power electronics enable efficient and flexible processing of electric power in the application of renewable energy sources, electric vehicles, adjustable-speed drives, etc. More and more efforts are devoted to better power electronic systems in terms of reliability to ensure high......). A collection of methodologies based on Physics-of-Failure (PoF) approach and mission profile analysis are presented in this paper to perform reliability-oriented design of power electronic systems. The corresponding design procedures and reliability prediction models are provided. Further on, a case study...... on a 2.3 MW wind power converter is discussed with emphasis on the reliability critical components IGBTs. Different aspects of improving the reliability of the power converter are mapped. Finally, the challenges and opportunities to achieve more reliable power electronic systems are addressed....

  14. MHTGR thermal performance envelopes: Reliability by design

    International Nuclear Information System (INIS)

    Etzel, K.T.; Howard, W.W.; Zgliczynski, J.B.

    1992-05-01

    This document discusses thermal performance envelopes which are used to specify steady-state design requirements for the systems of the Modular High Temperature Gas-Cooled Reactor to maximize plant performance reliability with optimized design. The thermal performance envelopes are constructed around the expected operating point accounting for uncertainties in actual plant as-built parameters and plant operation. The components are then designed to perform successfully at all points within the envelope. As a result, plant reliability is maximized by accounting for component thermal performance variation in the design. The design is optimized by providing a means to determine required margins in a disciplined and visible fashion

  15. Reliability-Based Design of Coastal Structures

    DEFF Research Database (Denmark)

    Burcharth, H. F.

    1997-01-01

    The objective of this paper is to introduce the application of reliability theory for conceptual design and evaluation of coastal structures. It is without the scope to discuss the validity and quality of the various design formulae available for coastal structures. The contents of the paper is a....... Proceedings Conference of Port and Coastal Engineering in developing countries. Rio de Janeiro, Brazil, 1995....

  16. Application of Reliability in Breakwater Design

    DEFF Research Database (Denmark)

    Christiani, Erik

    methods to design certain types of breakwaters. Reliability analyses of the main armour and toe berm interaction is exemplified to show the effect of a multiple set of failure mechanisms. First the limit state equations of the main armour and toe interaction are derived from laboratory tests performed...... response, but in one area information has been lacking; bearing capacity has not been treated in depth in a probabilistic manner for breakwaters. Reliability analysis of conventional rubble mound breakwaters and conventional vertical breakwaters is exemplified for the purpose of establishing new ways...... by Bologna University. Thereafter a multiple system of failure for the interaction is established. Relevant stochastic parameters are characterized prior to the reliability evaluation. Application of reliability in crown wall design is illustrated by deriving relevant single foundation failure modes...

  17. Design for Reliability in Renewable Energy Systems

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Zhou, Dao; Sangwongwanich, Ariya

    2017-01-01

    Power electronics are widely used in renewable energy systems to achieve lower cost of energy, higher efficiency and high power density. At the same time, the high reliability of the power electronics products is demanded, in order to reduce the failure rates and ensure cost-effective operation...... of the renewable energy systems. This paper thus describes the basic concepts used in reliability engineering, and presents the status and future trends of Design for Reliability (DfR) in power electronics, which is currently undergoing a paradigm shift to a physics-of-failure approach. Two case studies of a 2 MW...

  18. Reliable computer systems design and evaluatuion

    CERN Document Server

    Siewiorek, Daniel

    2014-01-01

    Enhance your hardware/software reliabilityEnhancement of system reliability has been a major concern of computer users and designers ¦ and this major revision of the 1982 classic meets users' continuing need for practical information on this pressing topic. Included are case studies of reliablesystems from manufacturers such as Tandem, Stratus, IBM, and Digital, as well as coverage of special systems such as the Galileo Orbiter fault protection system and AT&T telephone switching processors.

  19. Interactive Reliability-Based Optimal Design

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Thoft-Christensen, Palle; Siemaszko, A.

    1994-01-01

    Interactive design/optimization of large, complex structural systems is considered. The objective function is assumed to model the expected costs. The constraints are reliability-based and/or related to deterministic code requirements. Solution of this optimization problem is divided in four main...... tasks, namely finite element analyses, sensitivity analyses, reliability analyses and application of an optimization algorithm. In the paper it is shown how these four tasks can be linked effectively and how existing information on design variables, Lagrange multipliers and the Hessian matrix can...

  20. Structural reliability codes for probabilistic design

    DEFF Research Database (Denmark)

    Ditlevsen, Ove Dalager

    1997-01-01

    probabilistic code format has not only strong influence on the formal reliability measure, but also on the formal cost of failure to be associated if a design made to the target reliability level is considered to be optimal. In fact, the formal cost of failure can be different by several orders of size for two...... different, but by and large equally justifiable probabilistic code formats. Thus, the consequence is that a code format based on decision theoretical concepts and formulated as an extension of a probabilistic code format must specify formal values to be used as costs of failure. A principle of prudence...... is suggested for guiding the choice of the reference probabilistic code format for constant reliability. In the author's opinion there is an urgent need for establishing a standard probabilistic reliability code. This paper presents some considerations that may be debatable, but nevertheless point...

  1. Reliability of large superconducting magnets through design

    International Nuclear Information System (INIS)

    Henning, C.D.

    1980-01-01

    As superconducting magnet systems grow larger and become the central component of major systems involving fusion, magnetohydrodynamics, and high-energy physics, their reliability must be commensurate with the enormous capital investment in the projects. Although the magnet may represent only 15% of the cost of a large system such as the Mirror Fusion Test Facility, its failure would be catastrophic to the entire investment. Effective quality control during construction is one method of ensuring success. However, if the design is unforgiving, even an inordinate amount of effort expended on quality control may be inadequate. Creative design is the most effective way of ensuring magnet reliability and providing a reasonable limit on the amount of quality control needed. For example, by subjecting the last drawing operation is superconductor manufacture to a stress larger than the magnet design stress, a 100% proof test is achieved; cabled conductors offer mechanical redundancy, as do some methods of conductor joining; ground-plane insulation should be multilayered to prevent arcs, and interturn and interlayer insulation spaced to be compatible with the self-extinguishing of arcs during quench voltages; electrical leads should be thermally protected; and guard vacuum spaces can be incorporated to control helium leaks. Many reliable design options are known to magnet designers. These options need to be documented and organized to produce a design guide. Eventually, standard procedures, safety factors, and design codes can lead to reliability in magnets comparable to that obtained in pressure vessels and other structures. Wihout such reliability, large-scale applications in major systems employing magnetic fusion energy, magnetohydrodynamics, or high-energy physics would present unacceptable economic risks

  2. Reliability Issues and Solutions in Flexible Electronics Under Mechanical Fatigue

    Science.gov (United States)

    Yi, Seol-Min; Choi, In-Suk; Kim, Byoung-Joon; Joo, Young-Chang

    2018-03-01

    Flexible devices are of significant interest due to their potential expansion of the application of smart devices into various fields, such as energy harvesting, biological applications and consumer electronics. Due to the mechanically dynamic operations of flexible electronics, their mechanical reliability must be thoroughly investigated to understand their failure mechanisms and lifetimes. Reliability issue caused by bending fatigue, one of the typical operational limitations of flexible electronics, has been studied using various test methodologies; however, electromechanical evaluations which are essential to assess the reliability of electronic devices for flexible applications had not been investigated because the testing method was not established. By employing the in situ bending fatigue test, we has studied the failure mechanism for various conditions and parameters, such as bending strain, fatigue area, film thickness, and lateral dimensions. Moreover, various methods for improving the bending reliability have been developed based on the failure mechanism. Nanostructures such as holes, pores, wires and composites of nanoparticles and nanotubes have been suggested for better reliability. Flexible devices were also investigated to find the potential failures initiated by complex structures under bending fatigue strain. In this review, the recent advances in test methodology, mechanism studies, and practical applications are introduced. Additionally, perspectives including the future advance to stretchable electronics are discussed based on the current achievements in research.

  3. Reliability And Maintainability Issues for the Next Linear Collider

    International Nuclear Information System (INIS)

    Wilson, Zane J.; Gold, Saul L.; Koontz, Ron F.; Lavine, Ted L.

    2011-01-01

    Large accelerators for high energy physics research traditionally have been designed using informal best design, engineering, and management practices to achieve acceptable levels of operational availability. However, the Next Linear Collider(NLC) project presents a particular challenge for operational availability due to the unprecedented size and complexity of the accelerator systems required to achieve the physics goals of high center-of-mass energy and high luminosity. Formal reliability and maintainability analysis, design, and implementation will be required to achieve acceptable operational availability for the high energy physics research program. This paper introduces some of the basic concepts of reliability analysis and applies them to the 2.6-cm microwave power system of the two 10-km-long, 250-GeV linacs that are currently proposed for the NLC design.

  4. Addressing the reliability issues of intelligent well systems

    International Nuclear Information System (INIS)

    Drakeley, Brian; Douglas, Neil

    2000-01-01

    New Technology receives its fair share of 'risk aversion' both in good and not so good economic times from oil and gas operators evaluating application opportunities. This paper presents details of a strategy developed and implemented to bring to market an Intelligent Well system designed from day one to maximize system reliability, while offering the customer a high degree of choice in system functionality. A team of engineers and scientists skilled in all aspects of Reliability Analysis and Assessment analyzed the Intelligent Well system under development, gathered reliability performance data from other sources and using various analytical techniques developed matrices of system survival probability estimates for various scenarios. Interaction with the system and design engineers has been an on-going process as designs are modified to maximize reliability predictions and extensive qualification test programs developed from the component to the overall system level. The techniques used in the development project will be presented. A comparative model now exists that facilitates the evaluation of future design alternative considerations and also contains databases that can be readily updated with actual field data etc. (author)

  5. Reliability analysis techniques for the design engineer

    International Nuclear Information System (INIS)

    Corran, E.R.; Witt, H.H.

    1980-01-01

    A fault tree analysis package is described that eliminates most of the housekeeping tasks involved in proceeding from the initial construction of a fault tree to the final stage of presenting a reliability analysis in a safety report. It is suitable for designers with relatively little training in reliability analysis and computer operation. Users can rapidly investigate the reliability implications of various options at the design stage, and evolve a system which meets specified reliability objectives. Later independent review is thus unlikely to reveal major shortcomings necessitating modification and projects delays. The package operates interactively allowing the user to concentrate on the creative task of developing the system fault tree, which may be modified and displayed graphically. For preliminary analysis system data can be derived automatically from a generic data bank. As the analysis procedes improved estimates of critical failure rates and test and maintenance schedules can be inserted. The computations are standard, - identification of minimal cut-sets, estimation of reliability parameters, and ranking of the effect of the individual component failure modes and system failure modes on these parameters. The user can vary the fault trees and data on-line, and print selected data for preferred systems in a form suitable for inclusion in safety reports. A case history is given - that of HIFAR containment isolation system. (author)

  6. Reliability analysis techniques for the design engineer

    International Nuclear Information System (INIS)

    Corran, E.R.; Witt, H.H.

    1982-01-01

    This paper describes a fault tree analysis package that eliminates most of the housekeeping tasks involved in proceeding from the initial construction of a fault tree to the final stage of presenting a reliability analysis in a safety report. It is suitable for designers with relatively little training in reliability analysis and computer operation. Users can rapidly investigate the reliability implications of various options at the design stage and evolve a system which meets specified reliability objectives. Later independent review is thus unlikely to reveal major shortcomings necessitating modification and project delays. The package operates interactively, allowing the user to concentrate on the creative task of developing the system fault tree, which may be modified and displayed graphically. For preliminary analysis, system data can be derived automatically from a generic data bank. As the analysis proceeds, improved estimates of critical failure rates and test and maintenance schedules can be inserted. The technique is applied to the reliability analysis of the recently upgraded HIFAR Containment Isolation System. (author)

  7. Reliable avionics design for deep space

    Science.gov (United States)

    Johnson, Stephen B.

    The technical and organizational problems posed by the Space Exploration Initiative (SEI) are discussed, and some possible solutions are examined. It is pointed out that SEI poses a whole new set of challenging problems in the design of reliable systems. These missions and their corresponding systems are far more complex than current systems. The initiative requires a set of vehicles and systems which must have very high levels of autonomy, reliability, and operability for long periods of time. It is emphasized that to achieve these goals in the face of great complexity, new technologies and organizational techniques will be necessary. It is noted that the key to a good design is good people. Not only must good people be found, but they must be placed in positions appropriate to their skills. It is argued that the atomistic and autocratic paradigm of vertical organizations must be replaced with more team-oriented and democratic structures.

  8. Designing Glass Panels for Economy and Reliability

    Science.gov (United States)

    Moore, D. M.

    1983-01-01

    Analytical method determines probability of failure of rectangular glass plates subjected to uniformly distributed loads such as those from wind, earthquake, snow, and deadweight. Developed as aid in design of protective glass covers for solar-cell arrays and solar collectors, method is also useful in estimating the reliability of large windows in buildings exposed to high winds and is adapted to nonlinear stress analysis of simply supported plates of any elastic material.

  9. Ergonomics, design and reliability of body armour

    OpenAIRE

    Watson, Celia H.

    2011-01-01

    The wearing of body amour has become a necessity for many professions and much work has gone into the optimisation of the mechanics of protection. In the present study a broader view of the effects of ergonomics, design, reliability and protection has been taken. Three background topics are examined by reference to the literature. First, as an example of the threats and injury mechanisms that prevail in modern conflicts, the effects of blast injury to the head are investigat...

  10. Information about robustness, reliability and safety in early design phases

    DEFF Research Database (Denmark)

    Marini, Vinicius Kaster

    methods, and an industrial case to assess how the use of information about robustness, reliability and safety as practised by current methods influences concept development. Current methods cannot be used in early design phases due to their dependence on detailed design information for the identification...... alternatives. This prompts designers to reuse working principles that are inherently flawed, as they are liable to disturbances, failures and hazards. To address this issue, an approach based upon individual records of early design issues consists of comparing failures and benefits from prior working...... principles, before making a decision, and improving the more suitable alternatives through this feedback. Workshops were conducted with design practitioners to evaluate the potential of the approach and to simulate decision-making and gain feedback on a proof-of-concept basis. The evaluation has demonstrated...

  11. Power quality and reliability issues in a deregulated energy market

    International Nuclear Information System (INIS)

    Huggins, M.J.

    1999-01-01

    The challenge of maintaining power quality and reliability in Ontario's new competitive electricity market was the focus of this paper. The intention of Ontario's deregulation is to lower costs and give customers more power and choice. However, some fear that costs pressures may lead to poorer quality. This paper reviewed the causes, costs, and responsibilities, and made some suggestions concerning how customers can protect their interests as the market opens. It was suggested that in order to assure power quality, especially during the transition period, customers need to take care to design their systems and equipment to tolerate some quality variations. Conversely, utilities need to strive for at least minimum industry standards under most conditions. Contracts should be carefully crafted, with responsibilities for reliability and quality clearly stated. 2 refs

  12. Issues in benchmarking human reliability analysis methods: A literature review

    International Nuclear Information System (INIS)

    Boring, Ronald L.; Hendrickson, Stacey M.L.; Forester, John A.; Tran, Tuan Q.; Lois, Erasmia

    2010-01-01

    There is a diversity of human reliability analysis (HRA) methods available for use in assessing human performance within probabilistic risk assessments (PRA). Due to the significant differences in the methods, including the scope, approach, and underlying models, there is a need for an empirical comparison investigating the validity and reliability of the methods. To accomplish this empirical comparison, a benchmarking study comparing and evaluating HRA methods in assessing operator performance in simulator experiments is currently underway. In order to account for as many effects as possible in the construction of this benchmarking study, a literature review was conducted, reviewing past benchmarking studies in the areas of psychology and risk assessment. A number of lessons learned through these studies is presented in order to aid in the design of future HRA benchmarking endeavors.

  13. Issues in benchmarking human reliability analysis methods : a literature review.

    Energy Technology Data Exchange (ETDEWEB)

    Lois, Erasmia (US Nuclear Regulatory Commission); Forester, John Alan; Tran, Tuan Q. (Idaho National Laboratory, Idaho Falls, ID); Hendrickson, Stacey M. Langfitt; Boring, Ronald L. (Idaho National Laboratory, Idaho Falls, ID)

    2008-04-01

    There is a diversity of human reliability analysis (HRA) methods available for use in assessing human performance within probabilistic risk assessment (PRA). Due to the significant differences in the methods, including the scope, approach, and underlying models, there is a need for an empirical comparison investigating the validity and reliability of the methods. To accomplish this empirical comparison, a benchmarking study is currently underway that compares HRA methods with each other and against operator performance in simulator studies. In order to account for as many effects as possible in the construction of this benchmarking study, a literature review was conducted, reviewing past benchmarking studies in the areas of psychology and risk assessment. A number of lessons learned through these studies are presented in order to aid in the design of future HRA benchmarking endeavors.

  14. Design for Reliability of Power Electronic Systems

    DEFF Research Database (Denmark)

    Yang, Yongheng; Wang, Huai; Sangwongwanich, Ariya

    2018-01-01

    Power density, efficiency, cost, and reliability are the major challenges when designing a power electronic system. Latest advancements in power semiconductor devices (e.g., silicon carbide devices) and topological innovations have vital contributions to power density and efficiency. Nevertheless......, dedicated heat sink systems for thermal management are required to dissipate the power losses in power electronic systems; otherwise, the power devices will be heated up and eventually fail to operate. In addition, in many mission critical applications (e.g., marine systems), the operating condition (i...

  15. Reliable design of electronic equipment an engineering guide

    CERN Document Server

    Natarajan, Dhanasekharan

    2014-01-01

    This book explains reliability techniques with examples from electronics design for the benefit of engineers. It presents the application of de-rating, FMEA, overstress analyses and reliability improvement tests for designing reliable electronic equipment. Adequate information is provided for designing computerized reliability database system to support the application of the techniques by designers. Pedantic terms and the associated mathematics of reliability engineering discipline are excluded for the benefit of comprehensiveness and practical applications. This book offers excellent support

  16. Designing incentive market mechanisms for improving restructured power system reliabilities

    DEFF Research Database (Denmark)

    Ding, Yi; Østergaard, Jacob; Wu, Qiuwei

    2011-01-01

    state. The reliability management of producers usually cannot be directly controlled by the system operators in a restructured power system. Producers may have no motivation to improve their reliabilities, which can result in serious system unreliability issues in the new environment. Incentive market...... mechanisms for improving the restructured power system reliabilities have been designed in this paper. In the proposed incentive mechanisms, penalty will be implemented on a producer if the failures of its generator(s) result in the variation of electricity prices. Incentive market mechanisms can motivate......In a restructured power system, the monopoly generation utility is replaced by different electricity producers. There exists extreme price volatility caused by random failures by generation or/and transmission systems. In these cases, producers' profits can be much higher than those in the normal...

  17. Open Issues in Design Informatics

    DEFF Research Database (Denmark)

    McMahon, Chris

    2017-01-01

    Design informatics—the use of computers as a means of generating, communicating and sharing data, information and knowledge in design—has been a central theme in design research and practice for many years. This paper reviews the recent progress of research in design informatics, and makes...

  18. Design Issues for Producing Effective Multimedia Presentations.

    Science.gov (United States)

    Mason, Lisa D.

    1997-01-01

    Discusses design issues for interactive multimedia. Notes that technical communication instructors must consider navigational aids, the degree of control a user should have, audio cues, color and typographical elements, visual elements, and copyright issues. (RS)

  19. Issues in holistic system design

    DEFF Research Database (Denmark)

    Lawall, Julia L.; Probst, Christian W.; Schultz, Ulrik Pagh

    2006-01-01

    The coordination of layers in computer and software systems is one of the main challenges in designing such systems today. In this paper we consider Holistic System Design as a way of integrating requirements and facilities of different system layers. We also discuss some of the challenges...

  20. Damping ring designs and issues

    International Nuclear Information System (INIS)

    Wolski, Andrzej; Decking, Winfried

    2003-01-01

    The luminosity performance of a future linear collider (LC) will depend critically on the performance of the damping rings. The design luminosities of the current LC proposals require rings with very short damping times, large acceptance, low equilibrium emittance and high beam intensity. We discuss the design strategies for lattices achieving the goals of dynamical stability, examine the challenges for alignment and coupling correction, and consider a variety of collective effects that threaten to limit beam quality. We put the design goals in context by referring to the experience of operating facilities, and outline the further research and development that is needed

  1. Reliability Analysis and Optimal Design of Monolithic Vertical Wall Breakwaters

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Burcharth, Hans F.; Christiani, E.

    1994-01-01

    Reliability analysis and reliability-based design of monolithic vertical wall breakwaters are considered. Probabilistic models of the most important failure modes, sliding failure, failure of the foundation and overturning failure are described . Relevant design variables are identified...

  2. Reliability-based design of wind turbine blades

    DEFF Research Database (Denmark)

    Toft, Henrik Stensgaard; Sørensen, John Dalsgaard

    2011-01-01

    Reliability-based design of wind turbine blades requires identification of the important failure modes/limit states along with stochastic models for the uncertainties and methods for estimating the reliability. In the present paper it is described how reliability-based design can be applied to wi...

  3. Reliability issues of free-space communications systems and networks

    Science.gov (United States)

    Willebrand, Heinz A.

    2003-04-01

    Free space optics (FSO) is a high-speed point-to-point connectivity solution traditionally used in the enterprise campus networking market for building-to-building LAN connectivity. However, more recently some wire line and wireless carriers started to deploy FSO systems in their networks. The requirements on FSO system reliability, meaing both system availability and component reliability, are far more stringent in the carrier market when compared to the requirements in the enterprise market segment. This paper tries to outline some of the aspects that are important to ensure carrier class system reliability.

  4. Optimal design of water supply networks for enhancing seismic reliability

    International Nuclear Information System (INIS)

    Yoo, Do Guen; Kang, Doosun; Kim, Joong Hoon

    2016-01-01

    The goal of the present study is to construct a reliability evaluation model of a water supply system taking seismic hazards and present techniques to enhance hydraulic reliability of the design into consideration. To maximize seismic reliability with limited budgets, an optimal design model is developed using an optimization technique called harmony search (HS). The model is applied to actual water supply systems to determine pipe diameters that can maximize seismic reliability. The reliabilities between the optimal design and existing designs were compared and analyzed. The optimal design would both enhance reliability by approximately 8.9% and have a construction cost of approximately 1.3% less than current pipe construction cost. In addition, the reinforcement of the durability of individual pipes without considering the system produced ineffective results in terms of both cost and reliability. Therefore, to increase the supply ability of the entire system, optimized pipe diameter combinations should be derived. Systems in which normal status hydraulic stability and abnormal status available demand could be maximally secured if configured through the optimal design. - Highlights: • We construct a seismic reliability evaluation model of water supply system. • We present technique to enhance hydraulic reliability in the aspect of design. • Harmony search algorithm is applied in optimal designs process. • The effects of the proposed optimal design are improved reliability about by 9%. • Optimized pipe diameter combinations should be derived indispensably.

  5. Reliability in maintenance and design of elastomer sealed closures

    International Nuclear Information System (INIS)

    Lake, W.H.

    1978-01-01

    The methods of reliability are considered for maintenance and design of elastomer sealed containment closures. Component reliability is used to establish a replacement schedule for system maintenance. Reliability data on elastomer seals is used to evaluate the common practice of annual replacement, and to calculate component reliability values for several typical shipment time periods. System reliability methods are used to examine the relative merits of typical closure designs. These include single component and redundant seal closure, with and without closure verification testing. The paper presents a general method of quantifying the merits of closure designs through the use of reliability analysis, which is a probabilistic technique. The reference list offers a general source of information in the field of reliability, and should offer the opportunity to extend the procedures discussed in this paper to other design safety applications

  6. Software Reliability Issues Concerning Large and Safety Critical Software Systems

    Science.gov (United States)

    Kamel, Khaled; Brown, Barbara

    1996-01-01

    This research was undertaken to provide NASA with a survey of state-of-the-art techniques using in industrial and academia to provide safe, reliable, and maintainable software to drive large systems. Such systems must match the complexity and strict safety requirements of NASA's shuttle system. In particular, the Launch Processing System (LPS) is being considered for replacement. The LPS is responsible for monitoring and commanding the shuttle during test, repair, and launch phases. NASA built this system in the 1970's using mostly hardware techniques to provide for increased reliability, but it did so often using custom-built equipment, which has not been able to keep up with current technologies. This report surveys the major techniques used in industry and academia to ensure reliability in large and critical computer systems.

  7. Severe accidents and ESFR design issues

    International Nuclear Information System (INIS)

    Rineiski, A.

    2013-01-01

    Current SFR studies in Germany: ⇒ In support of European SFR studies, mainly on safety and safety-related (design optimization) issues; ⇒ ADS and SFR as main options for spent fuel management in studies on the possibility of P&T; ⇒ ESFR-type designs studied recently; ⇒ ASTRID-type designs to be studied in the future; ⇒ Particular area: modeling of severe accidents with SAS4A/SAS-SFR and SIMMER codes

  8. CADRIGS--computer aided design reliability interactive graphics system

    International Nuclear Information System (INIS)

    Kwik, R.J.; Polizzi, L.M.; Sticco, S.; Gerrard, P.B.; Yeater, M.L.; Hockenbury, R.W.; Phillips, M.A.

    1982-01-01

    An integrated reliability analysis program combining graphic representation of fault trees, automated data base loadings and reference, and automated construction of reliability code input files was developed. The functional specifications for CADRIGS, the computer aided design reliability interactive graphics system, are presented. Previously developed fault tree segments used in auxiliary feedwater system safety analysis were constructed on CADRIGS and, when combined, yielded results identical to those resulting from manual input to the same reliability codes

  9. DESIGN ISSUES FOR THE RHIC EBIS

    International Nuclear Information System (INIS)

    Beebe, E.; Alessi, J.; Kponou, A.; Pikin, A.; Prelec, K.; Kuznetzov, G.; Tiunov, M.

    2000-01-01

    Promising results are currently being obtained on the BNL Electron Beam Test Stand (EBTS), which is a prototype for the Relativistic Heavy Ion Collider (RHIC) EBIS. Based on the present-results, a proposal has been made regarding the general design of the RHIC EBIS. During the next year experiments will be made to investigate physics issues and beam properties important to the detailed design of the RHIC EBIS. Below we have outlined some of the physics issues to be explored experimentally, beam diagnostics that will be employed, and hardware modifications that are desired to go from the prototype stage to the RHIC EBIS

  10. Reliability based Design of Coastal Structures

    DEFF Research Database (Denmark)

    Burcharth, H. F.

    2003-01-01

    Conventional design practice for coastal structures is deterministic in nature and is based on the concept of a design load which should not exceed the resistance (carrying capacity) of the structure. The design load is usually defined on a probabilistic basis as a characteristic value of the load......, for example the expectation (mean) value of the 100-year return period event. However, this selection is often made without consideration of the involved uncertainties. In most cases the resistance is defined in terms of the load that causes a certain design impact or damage to the structure...

  11. ITER - TVPS remote handling critical design issues

    International Nuclear Information System (INIS)

    1990-09-01

    This report describes critical design issues concerning remote maintenance of the ITER Torus Vacuum Pumping System (TVPS). The key issues under investigation are the regeneration/isolation valve seal and seal mechanism replacement; impact of inert gas operation; impact of remote handling (RH) on the building configuration and RH equipment requirements. Seal exchange concepts are developed and their impact on the valve design identified. Concerns regarding the design and operation of RH equipment in an inert gas atmosphere are also explored. The report compares preliminary RH equipment options, pumping equipment maintenance frequency and their impact on the building design, and makes recommendations where a conflict exists between pumping equipment and the building layout. (51 figs., 11 refs.)

  12. Reliability issues in active control of large flexible space structures

    Science.gov (United States)

    Vandervelde, W. E.

    1986-01-01

    Efforts in this reporting period were centered on four research tasks: design of failure detection filters for robust performance in the presence of modeling errors, design of generalized parity relations for robust performance in the presence of modeling errors, design of failure sensitive observers using the geometric system theory of Wonham, and computational techniques for evaluation of the performance of control systems with fault tolerance and redundancy management

  13. An integrated reliability-based design optimization of offshore towers

    International Nuclear Information System (INIS)

    Karadeniz, Halil; Togan, Vedat; Vrouwenvelder, Ton

    2009-01-01

    After recognizing the uncertainty in the parameters such as material, loading, geometry and so on in contrast with the conventional optimization, the reliability-based design optimization (RBDO) concept has become more meaningful to perform an economical design implementation, which includes a reliability analysis and an optimization algorithm. RBDO procedures include structural analysis, reliability analysis and sensitivity analysis both for optimization and for reliability. The efficiency of the RBDO system depends on the mentioned numerical algorithms. In this work, an integrated algorithms system is proposed to implement the RBDO of the offshore towers, which are subjected to the extreme wave loading. The numerical strategies interacting with each other to fulfill the RBDO of towers are as follows: (a) a structural analysis program, SAPOS, (b) an optimization program, SQP and (c) a reliability analysis program based on FORM. A demonstration of an example tripod tower under the reliability constraints based on limit states of the critical stress, buckling and the natural frequency is presented.

  14. An integrated reliability-based design optimization of offshore towers

    Energy Technology Data Exchange (ETDEWEB)

    Karadeniz, Halil [Faculty of Civil Engineering and Geosciences, Delft University of Technology, Delft (Netherlands)], E-mail: h.karadeniz@tudelft.nl; Togan, Vedat [Department of Civil Engineering, Karadeniz Technical University, Trabzon (Turkey); Vrouwenvelder, Ton [Faculty of Civil Engineering and Geosciences, Delft University of Technology, Delft (Netherlands)

    2009-10-15

    After recognizing the uncertainty in the parameters such as material, loading, geometry and so on in contrast with the conventional optimization, the reliability-based design optimization (RBDO) concept has become more meaningful to perform an economical design implementation, which includes a reliability analysis and an optimization algorithm. RBDO procedures include structural analysis, reliability analysis and sensitivity analysis both for optimization and for reliability. The efficiency of the RBDO system depends on the mentioned numerical algorithms. In this work, an integrated algorithms system is proposed to implement the RBDO of the offshore towers, which are subjected to the extreme wave loading. The numerical strategies interacting with each other to fulfill the RBDO of towers are as follows: (a) a structural analysis program, SAPOS, (b) an optimization program, SQP and (c) a reliability analysis program based on FORM. A demonstration of an example tripod tower under the reliability constraints based on limit states of the critical stress, buckling and the natural frequency is presented.

  15. Human reliability analysis for probabilistic safety assessments - review of methods and issues

    International Nuclear Information System (INIS)

    Srinivas, G.; Guptan, Rajee; Malhotra, P.K.; Ghadge, S.G.; Chandra, Umesh

    2011-01-01

    It is well known that the two major events in World Nuclear Power Plant Operating history, namely the Three Mile Island and Chernobyl, were Human failure events. Subsequent to these two events, several significant changes have been incorporated in Plant Design, Control Room Design and Operator Training to reduce the possibility of Human errors during plant transients. Still, human error contribution to Risk in Nuclear Power Plant operations has been a topic of continued attention for research, development and analysis. Probabilistic Safety Assessments attempt to capture all potential human errors with a scientifically computed failure probability, through Human Reliability Analysis. Several methods are followed by different countries to quantify the Human error probability. This paper reviews the various popular methods being followed, critically examines them with reference to their criticisms and brings out issues for future research. (author)

  16. NASA reliability preferred practices for design and test

    Science.gov (United States)

    1991-01-01

    Given here is a manual that was produced to communicate within the aerospace community design practices that have contributed to NASA mission success. The information represents the best technical advice that NASA has to offer on reliability design and test practices. Topics covered include reliability practices, including design criteria, test procedures, and analytical techniques that have been applied to previous space flight programs; and reliability guidelines, including techniques currently applied to space flight projects, where sufficient information exists to certify that the technique will contribute to mission success.

  17. Reliability Oriented Design of a Grid-Connected Photovoltaic Microinverter

    DEFF Research Database (Denmark)

    Shen, Yanfeng; Wang, Huai; Blaabjerg, Frede

    2017-01-01

    High reliability performance of microinverters in Photovoltaic (PV) systems is a merit to match lifetime with PV panels, and to reduce the required maintenance efforts and costs. This digest applies a reliability oriented design method for a grid-connected PV microinverter to achieve specific...

  18. B factory rf system design issues

    International Nuclear Information System (INIS)

    Zisman, M.S.

    1992-06-01

    We discuss the issues of relevance to the design of a B factory RF system. First, the general parameter regime is outlined, and the reasons behind certain commonly made choices are indicated. This regime involves high beam currents, and many relatively short bunches. Next, the physics difficulties associated with coupled-bunch instabilities are described briefly. We then describe in general terms the alternative approaches taken by various B factory designers, the motivation for these choices, and the technical issues raised by them. Technical solutions have been proposed for both the room-temperature and the superconducting RF scenarios, and considerable R ampersand D is being carried out worldwide to confirm and optimize these solutions

  19. B factory RF system design issues

    International Nuclear Information System (INIS)

    Zisman, M.S.

    1992-01-01

    We discuss the issues of relevance to the design of a B factory RF system. First, the general parameter regime is outlined, and the reasons behind certain commonly made choices are indicated. This regime involves high beam currents, and many relatively short bunches. Next, the physics difficulties associated with coupled-bunch instabilities are described briefly. We then describe in general terms the alternative approaches taken by various B factory designers, the motivation for these choices, and the technical issues raised by them. Technical solutions have been proposed for both the room-temperature and the superconducting RF scenarios, and considerable R ampersand D is being carried out worldwide to confirm and optimize these solutions

  20. Smart homes design, implementation and issues

    CERN Document Server

    Suryadevara, Nagender Kumar

    2015-01-01

    The book addresses issues towards the design and development of Wireless Sensor Network based Smart Home and fusion of Real-Time Data for Wellness Determination of an elderly person living alone in a Smart Home. The fundamentals of selection of sensor, fusion of sensor data, system design, modelling, characterizations, experimental investigations and analyses have been covered. This book will be extremely useful for the engineers and researchers especially higher undergraduate, postgraduate students as well as practitioners working on the development of Wireless Sensor Networks, Internet of Things and Data Mining.

  1. Design and reliability of a didactic inphographic rubric assessment

    OpenAIRE

    Guzmán-cedillo, Yunuen Ixchel

    2017-01-01

    The objective of this study is to describe design, validity process and reliability of a rubric assessment to evaluate didactic infographics quality. Participants were fifteen judges who participate in different moments of elaboration rubric process; it was made in three process phases: design, settings and reliability determination. Content validity was obtained by percentage agreement between 3 judges by component of the rubric; likewise a Krippendorff’s alpha were applied (a = .710) in pi...

  2. Designing the optimal bit: balancing energetic cost, speed and reliability.

    Science.gov (United States)

    Deshpande, Abhishek; Gopalkrishnan, Manoj; Ouldridge, Thomas E; Jones, Nick S

    2017-08-01

    We consider the challenge of operating a reliable bit that can be rapidly erased. We find that both erasing and reliability times are non-monotonic in the underlying friction, leading to a trade-off between erasing speed and bit reliability. Fast erasure is possible at the expense of low reliability at moderate friction, and high reliability comes at the expense of slow erasure in the underdamped and overdamped limits. Within a given class of bit parameters and control strategies, we define 'optimal' designs of bits that meet the desired reliability and erasing time requirements with the lowest operational work cost. We find that optimal designs always saturate the bound on the erasing time requirement, but can exceed the required reliability time if critically damped. The non-trivial geometry of the reliability and erasing time scales allows us to exclude large regions of parameter space as suboptimal. We find that optimal designs are either critically damped or close to critical damping under the erasing procedure.

  3. Reliability-based optimal structural design by the decoupling approach

    International Nuclear Information System (INIS)

    Royset, J.O.; Der Kiureghian, A.; Polak, E.

    2001-01-01

    A decoupling approach for solving optimal structural design problems involving reliability terms in the objective function, the constraint set or both is discussed and extended. The approach employs a reformulation of each problem, in which reliability terms are replaced by deterministic functions. The reformulated problems can be solved by existing semi-infinite optimization algorithms and computational reliability methods. It is shown that the reformulated problems produce solutions that are identical to those of the original problems when the limit-state functions defining the reliability problem are affine. For nonaffine limit-state functions, approximate solutions are obtained by solving series of reformulated problems. An important advantage of the approach is that the required reliability and optimization calculations are completely decoupled, thus allowing flexibility in the choice of the optimization algorithm and the reliability computation method

  4. Design for ASIC reliability for low-temperature applications

    Science.gov (United States)

    Chen, Yuan; Mojaradi, Mohammad; Westergard, Lynett; Billman, Curtis; Cozy, Scott; Burke, Gary; Kolawa, Elizabeth

    2005-01-01

    In this paper, we present a methodology to design for reliability for low temperature applications without requiring process improvement. The developed hot carrier aging lifetime projection model takes into account both the transistor substrate current profile and temperature profile to determine the minimum transistor size needed in order to meet reliability requirements. The methodology is applicable for automotive, military, and space applications, where there can be varying temperature ranges. A case study utilizing this methodology is given to design for reliability into a custom application-specific integrated circuit (ASIC) for a Mars exploration mission.

  5. A Review: Passive System Reliability Analysis – Accomplishments and Unresolved Issues

    Energy Technology Data Exchange (ETDEWEB)

    Nayak, Arun Kumar, E-mail: arunths@barc.gov.in [Reactor Engineering Division, Reactor Design and Development Group, Bhabha Atomic Research Centre, Mumbai (India); Chandrakar, Amit [Homi Bhabha National Institute, Mumbai (India); Vinod, Gopika [Reactor Safety Division, Reactor Design and Development Group, Bhabha Atomic Research Centre, Mumbai (India)

    2014-10-10

    Reliability assessment of passive safety systems is one of the important issues, since safety of advanced nuclear reactors rely on several passive features. In this context, a few methodologies such as reliability evaluation of passive safety system (REPAS), reliability methods for passive safety functions (RMPS), and analysis of passive systems reliability (APSRA) have been developed in the past. These methodologies have been used to assess reliability of various passive safety systems. While these methodologies have certain features in common, but they differ in considering certain issues; for example, treatment of model uncertainties, deviation of geometric, and process parameters from their nominal values. This paper presents the state of the art on passive system reliability assessment methodologies, the accomplishments, and remaining issues. In this review, three critical issues pertaining to passive systems performance and reliability have been identified. The first issue is applicability of best estimate codes and model uncertainty. The best estimate codes based phenomenological simulations of natural convection passive systems could have significant amount of uncertainties, these uncertainties must be incorporated in appropriate manner in the performance and reliability analysis of such systems. The second issue is the treatment of dynamic failure characteristics of components of passive systems. REPAS, RMPS, and APSRA methodologies do not consider dynamic failures of components or process, which may have strong influence on the failure of passive systems. The influence of dynamic failure characteristics of components on system failure probability is presented with the help of a dynamic reliability methodology based on Monte Carlo simulation. The analysis of a benchmark problem of Hold-up tank shows the error in failure probability estimation by not considering the dynamism of components. It is thus suggested that dynamic reliability methodologies must be

  6. Ethical Issues in Network System Design

    Directory of Open Access Journals (Sweden)

    Duncan Langford

    1997-05-01

    Full Text Available Today, most desktop computers and PCs are networked that is, they have the ability to link to other machines, usually to access data and other information held remotely. Such machines may sometimes be connected directly to each other, as part of an office or company computer system. More frequently, however, connected machines are at a considerable distance from each other, typically connected through links to global systems such as the Internet, or World Wide Web (WWW. The networked machine itself may be anything from a powerful company computer with direct Internet connections, to a small hobbyist machine, accessing a bulletin board through telephone and modem. It is important to remember that, whatever the type or the location of networked machines, their access to the network, and the network itself, was planned and constructed following deliberate design considerations. In this paper I discuss some ways in which the technical design of computer systems might appropriately be influenced by ethical issues, and examine pressures on computer scientists and others to technically control network related actions perceived as 'unethical'. After examination of the current situation, I draw together the issues, and conclude by suggesting some ethically based recommendations for the future design of networked systems.

  7. Evaluation of Information Requirements of Reliability Methods in Engineering Design

    DEFF Research Database (Denmark)

    Marini, Vinicius Kaster; Restrepo-Giraldo, John Dairo; Ahmed-Kristensen, Saeema

    2010-01-01

    This paper aims to characterize the information needed to perform methods for robustness and reliability, and verify their applicability to early design stages. Several methods were evaluated on their support to synthesis in engineering design. Of those methods, FMEA, FTA and HAZOP were selected...

  8. Ergonomics design and operator training as contributors to human reliability

    International Nuclear Information System (INIS)

    Jackson, A.R.G.; Madden, V.J.; Umbers, I.G.; Williams, J.C.

    1987-01-01

    The safe operation of nuclear reactors depends not only on good physical safety engineering but on the human operators as well. The Central Electricity Generating Board's approach to human reliability includes the following aspects: ergonomics design (task analysis and the development of man-machine interfaces), analysis of human reliability, operational feedback, staff training and assessment, maintenance management, research programmes and management. This paper describes how these combine to achieve the highest practicable level of human reliability, not only for the Sizewell-B pressurized water reactor, but also for the Board's gas-cooled reactors. Examples are used to illustrate the topics considered. (UK)

  9. Optimization and Reliability Problems in Structural Design of Wind Turbines

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard

    2007-01-01

    are discussed. Limit state equations are presented for fatigue limit states and for ultimate limit states with extreme wind load, and illustrated by bending failure. Illustrative examples are presented, and as a part of the results optimal reliability levels are obtained which corresponds to an annual...... reliability index equal to 3. An example with fatigue failure indicates that the reliability level is almost the same for single wind turbines and for wind turbines in wind farms if the wake effects are modeled equivalently in the design equation and the limit state equation....

  10. Use of COMCAN III in system design and reliability analysis

    International Nuclear Information System (INIS)

    Rasmuson, D.M.; Shepherd, J.C.; Marshall, N.H.; Fitch, L.R.

    1982-03-01

    This manual describes the COMCAN III computer program and its use. COMCAN III is a tool that can be used by the reliability analyst performing a probabilistic risk assessment or by the designer of a system desiring improved performance and efficiency. COMCAN III can be used to determine minimal cut sets of a fault tree, to calculate system reliability characteristics, and to perform qualitative common cause failure analysis

  11. Design Protocols and Analytical Strategies that Incorporate Structural Reliability Models

    Science.gov (United States)

    Duffy, Stephen F.

    1997-01-01

    Ceramic matrix composites (CMC) and intermetallic materials (e.g., single crystal nickel aluminide) are high performance materials that exhibit attractive mechanical, thermal and chemical properties. These materials are critically important in advancing certain performance aspects of gas turbine engines. From an aerospace engineer's perspective the new generation of ceramic composites and intermetallics offers a significant potential for raising the thrust/weight ratio and reducing NO(x) emissions of gas turbine engines. These aspects have increased interest in utilizing these materials in the hot sections of turbine engines. However, as these materials evolve and their performance characteristics improve a persistent need exists for state-of-the-art analytical methods that predict the response of components fabricated from CMC and intermetallic material systems. This need provided the motivation for the technology developed under this research effort. Continuous ceramic fiber composites exhibit an increase in work of fracture, which allows for "graceful" rather than catastrophic failure. When loaded in the fiber direction, these composites retain substantial strength capacity beyond the initiation of transverse matrix cracking despite the fact that neither of its constituents would exhibit such behavior if tested alone. As additional load is applied beyond first matrix cracking, the matrix tends to break in a series of cracks bridged by the ceramic fibers. Any additional load is born increasingly by the fibers until the ultimate strength of the composite is reached. Thus modeling efforts supported under this research effort have focused on predicting this sort of behavior. For single crystal intermetallics the issues that motivated the technology development involved questions relating to material behavior and component design. Thus the research effort supported by this grant had to determine the statistical nature and source of fracture in a high strength, Ni

  12. Some approaches to system reliability improvement in engineering design

    International Nuclear Information System (INIS)

    Shen, Kecheng.

    1990-01-01

    In this thesis some approaches to system reliability improvement in engineering design are studied. In particular, the thesis aims at developing alternative methodologies for ranking of component importance which are more related to the design practice and which are more useful in system synthesis than the existing ones. It also aims at developing component reliability models by means of stress-strength interference which will enable both component reliability prediction and design for reliability. A new methodology for ranking of component importance is first developed based on the notion of the increase of the expected system yield. This methodology allows for incorporation of different improvement actions at the component level such as parallel redundancy, standby redundancy, burn-in, minimal repair and perfect replacement. For each of these improvement actions, the increase of system reliability is studied and used as the component importance measure. A possible connection between the commonly known models of component lifetimes and the stress-strength interference models is suggested. Under some general conditions the relationship between component failure rate and the stress and strength distribution characteristics is studied. A heuristic approach for obtaining bounds on failure probability through stress-strength interference is also presented. A case study and a worked example are presented, which illustrate and verify the developed importance measures and their applications in the analytical as well as synthetical work of engineering design. (author)

  13. Material and design considerations of FBGA reliability performance

    International Nuclear Information System (INIS)

    Lee, Teck Kheng; Ng, T.C.; Chai, Y.M.

    2004-01-01

    FBGA package reliability is usually assessed through the conventional approaches of die attach and mold compound material optimization. However, with the rapid changes and fast-moving pace of electronic packaging and the introduction of new soldermask and core materials, substrate design has also become a critical factor in determining overall package reliability. The purpose of this paper is to understand the impact design and soldermask material of a rigid substrate on overall package reliability. Three different soldermask patterns with a matrix of different die attach, mold compound, and soldermask materials are assessed using the moisture sensitivity test (MST). Package reliability is also assessed through the use of temperature cycling (T/C) at conditions 'B' and 'C'. For material optimization, three different mold compounds and die attach materials are used. Material adhesion between different die attach materials and soldermask materials are obtained through die shear performed at various temperatures and preset moisture conditions. A study correlating the different packaging material properties and their relative adhesion strengths with overall package reliability in terms of both MST and T/C performance was performed. Soldermask design under the die pads was found to affect package reliability. For example, locating vias at the edge of the die is not desirable because the vias acts as initiation point for delamination and moisture-induced failure. Through die shear testing, soldermask B demonstrated higher adhesion properties compared to soldermask A across several packaging materials and enhanced the overall package reliability in terms of both MST and T/C performance. Both MST JEDEC level 1 and the T/C of 'B' and 'C' at 1000 cycles have been achieved through design and package material optimization

  14. Material and design considerations of FBGA reliability performance

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Teck Kheng; Ng, T.C.; Chai, Y.M

    2004-09-01

    FBGA package reliability is usually assessed through the conventional approaches of die attach and mold compound material optimization. However, with the rapid changes and fast-moving pace of electronic packaging and the introduction of new soldermask and core materials, substrate design has also become a critical factor in determining overall package reliability. The purpose of this paper is to understand the impact design and soldermask material of a rigid substrate on overall package reliability. Three different soldermask patterns with a matrix of different die attach, mold compound, and soldermask materials are assessed using the moisture sensitivity test (MST). Package reliability is also assessed through the use of temperature cycling (T/C) at conditions 'B' and 'C'. For material optimization, three different mold compounds and die attach materials are used. Material adhesion between different die attach materials and soldermask materials are obtained through die shear performed at various temperatures and preset moisture conditions. A study correlating the different packaging material properties and their relative adhesion strengths with overall package reliability in terms of both MST and T/C performance was performed. Soldermask design under the die pads was found to affect package reliability. For example, locating vias at the edge of the die is not desirable because the vias acts as initiation point for delamination and moisture-induced failure. Through die shear testing, soldermask B demonstrated higher adhesion properties compared to soldermask A across several packaging materials and enhanced the overall package reliability in terms of both MST and T/C performance. Both MST JEDEC level 1 and the T/C of 'B' and 'C' at 1000 cycles have been achieved through design and package material optimization.

  15. Design for reliability information and computer-based systems

    CERN Document Server

    Bauer, Eric

    2010-01-01

    "System reliability, availability and robustness are often not well understood by system architects, engineers and developers. They often don't understand what drives customer's availability expectations, how to frame verifiable availability/robustness requirements, how to manage and budget availability/robustness, how to methodically architect and design systems that meet robustness requirements, and so on. The book takes a very pragmatic approach of framing reliability and robustness as a functional aspect of a system so that architects, designers, developers and testers can address it as a concrete, functional attribute of a system, rather than an abstract, non-functional notion"--Provided by publisher.

  16. Issues in the design of the LHC

    CERN Document Server

    Evans, Lyndon R; CERN. Geneva

    1995-01-01

    The lectures aim is to give an overall view of the project rather than a detailed specialized analysis.The main issues are reviewed in the first lecture. After a brief overall description of the machine as foreseen at the present stage of the dessign,the various problems that the design team has to face and the proposed solutions are detailed.The beam dynamics and beam optics problems are briefly discussed. The superconducting magnet technology is presented together with the first models and prototypes results. Some indications are given on the possible strategy for their manufacture.The required performance of the cryogenics system is given,the utilization of the LEP cryogenics plant in the LHC cryogenics system is explained. The implantation of the LHC equipment in underground caverns and in surface buildings is reviewed. Finally some indications are given on the running in of LHC.

  17. Thermal performance envelopes for MHTGRs - Reliability by design

    International Nuclear Information System (INIS)

    Etzel, K.T.; Howard, W.W.; Zgliczynski, J.

    1992-01-01

    Thermal performance envelopes are used to specify steady-state design requirements for the systems of the modular high-temperature gas-cooled reactor (MHTGR) to maximize plant performance reliability with optimized design. The thermal performance envelopes are constructed around the expected operating point to account for uncertainties in actual plant as-built parameters and plant operation. The components are then designed to perform successfully at all points within the envelope. As a result, plant reliability is maximized by accounting for component thermal performance variation in the design. The design is optimized by providing a means to determine required margins in a disciplined and visible fashion. This is accomplished by coordinating these requirements with the various system and component designers in the early stages of the design, applying the principles of total quality management. The design is challenged by the more complex requirements associated with a range of operating conditions, but in return, high probability of delivering reliable performance throughout the plant life is ensured

  18. Reliability Oriented Circuit Design For Power Electronics Applications

    DEFF Research Database (Denmark)

    Sintamarean, Nicolae Cristian

    is presented. Chapter 3 presents the electro-thermal model validation and the reliability studies performed by the proposed tool. The chapter ends with a detailed lifetime analysis, which emphasizes the mission-profile variation and gate-driver parameters variation impact on the PV-inverter devices lifetime......Highly reliable components are required in order to minimize the downtime during the lifetime of the converter and implicitly the maintenance costs. Therefore, the design of high reliable converters under constrained reliability and cost is a great challenge to be overcome in the future....... Moreover, the impact of the mission-profile sampling time on the lifetime estimation accuracy is also determined. The second part of the thesis introduced in Chapter 4, presents a novel gate-driver concept which reduces the dependency of the device power losses variations on the device loading variations...

  19. Structural Reliability Aspects in Design of Wind Turbines

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard

    2007-01-01

    Reliability assessment, optimal design and optimal operation and maintenance of wind turbines are an area of significant interest for the fast growing wind turbine industry for sustainable production of energy. Offshore wind turbines in wind farms give special problems due to wake effects inside...... the farm. Reliability analysis and optimization of wind turbines require that the special conditions for wind turbine operation are taken into account. Control of the blades implies load reductions for large wind speeds and parking for high wind speeds. In this paper basic structural failure modes for wind...... turbines are described. Further, aspects are presented related to reliability-based optimization of wind turbines, assessment of optimal reliability level and operation and maintenance....

  20. Key issues on safety design basis selection and safety assessment

    International Nuclear Information System (INIS)

    An, S.; Togo, Y.

    1976-01-01

    In current fast reactor design in Japan, four design accident conditions and four design seismic conditions are adopted as the design base classifications. These are classified by the considerations on both likelihood of occurrence and the severeness of the consequences. There are several major problem areas in safety design consideration such as core accident problems which include fuel sodium interaction, fuel failure propagation and residual decay heat removal, and decay heat removal systems problems which is more or less the problem of selection of appropriate system and of assurance of high reliability of the system. In view of licensing, two kinds of accidents are postulated in evaluating the adequacy of a reactor site. The one is the ''major accident'' which is the accident to give most severe radiation hazard to the public from technical point of view. The other is the ''hypothetical accident'', induced public accident of which is severer than that of major accident. While the concept of the former is rather unique to Japanese licensing, the latter is almost equivalent to design base hypothetical accident of the US practice. In this paper, design bases selections, key safety issues and some of the licensing considerations in Japan are described

  1. Integrated Reliability-Based Optimal Design of Structures

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Thoft-Christensen, Palle

    1987-01-01

    In conventional optimal design of structural systems the weight or the initial cost of the structure is usually used as objective function. Further, the constraints require that the stresses and/or strains at some critical points have to be less than some given values. Finally, all variables......-based optimal design is discussed. Next, an optimal inspection and repair strategy for existing structural systems is presented. An optimization problem is formulated , where the objective is to minimize the expected total future cost of inspection and repair subject to the constraint that the reliability...... value. The reliability can be measured from an element and/or a systems point of view. A number of methods to solve reliability-based optimization problems has been suggested, see e.g. Frangopol [I]. Murotsu et al. (2], Thoft-Christensen & Sørensen (3] and Sørensen (4). For structures where...

  2. Design for reliability of solid state lighting systems

    NARCIS (Netherlands)

    Perpiñà, X.; Werkhoven, R.J.; Jakovenko, J.; Formánek, J.; Vellvehi, M.; Jordà, X.; Kunen, J.M.G.; Bancken, P.; Bolt, P.J.

    2012-01-01

    This work presents a methodology to design an SSL system for reliability. An LED lamp is thermally characterised and its model thermally simulated, indicating that the LED board (FR4 board with thermal vias, copper tracks and LED package) is the thermally most stressed part. Therefore, a

  3. Reliability Based Calibration of Fatigue Design Guidelines for Ship Structures

    DEFF Research Database (Denmark)

    Folsø, Rasmus; Otto, S.; Parmentier, G.

    2002-01-01

    A simple reliability based framework is applied to calibrate a new set of fatigue design guidelines. This new guideline considers two different approaches for the assessment of both loads, stresses and local stress raising effects, and partial safety factors must be given for any combination...

  4. New design algorithm and reliability testing of solar powered near ...

    African Journals Online (AJOL)

    New design algorithm and reliability testing of solar powered near-space flight vehicle for defense and security. ... To overcome this problem, we propose a pseudo-satellite system where telecommunication devices are carried on a perpetually flying solar aircraft cruising at stratospheric altitude. Our aircraft will combine ...

  5. Design methodologies for reliability of SSL LED boards

    NARCIS (Netherlands)

    Jakovenko, J.; Formánek, J.; Perpiñà, X.; Jorda, X.; Vellvehi, M.; Werkhoven, R.J.; Husák, M.; Kunen, J.M.G.; Bancken, P.; Bolt, P.J.; Gasse, A.

    2013-01-01

    This work presents a comparison of various LED board technologies from thermal, mechanical and reliability point of view provided by an accurate 3-D modelling. LED boards are proposed as a possible technology replacement of FR4 LED boards used in 400 lumen retrofit SSL lamps. Presented design

  6. OPTIMUM DESIGN OF EXPERIMENTS FOR ACCELERATED RELIABILITY TESTING

    Directory of Open Access Journals (Sweden)

    Sebastian Marian ZAHARIA

    2014-05-01

    Full Text Available In this paper is presented a case study that demonstrates how design to experiments (DOE information can be used to design better accelerated reliability tests. In the case study described in this paper, will be done a comparison and optimization between main accelerated reliability test plans (3 Level Best Standard Plan, 3 Level Best Compromise Plan, 3 Level Best Equal Expected Number Failing Plan, 3 Level 4:2:1 Allocation Plan. Before starting an accelerated reliability test, it is advisable to have a plan that helps in accurately estimating reliability at operating conditions while minimizing test time and costs. A test plan should be used to decide on the appropriate stress levels that should be used (for each stress type and the amount of the test units that need to be allocated to the different stress levels (for each combination of the different stress types' levels. For the case study it used ALTA 7 software what provides a complete analysis for data from accelerated reliability tests

  7. Reliability-based design code calibration for concrete containment structures

    International Nuclear Information System (INIS)

    Han, B.K.; Cho, H.N.; Chang, S.P.

    1991-01-01

    In this study, a load combination criteria for design and a probability-based reliability analysis were proposed on the basis of a FEM-based random vibration analysis. The limit state model defined for the study is a serviceability limit state of the crack failure that causes the emission of radioactive materials, and the results are compared with the case of strength limit state. More accurate reliability analyses under various dynamic loads such as earthquake loads were made possible by incorporating the FEM and random vibration theory, which is different from the conventional reliability analysis method. The uncertainties in loads and resistance available in Korea and the references were adapted to the situation of Korea, and especially in case of earthquake, the design earthquake was assessed based on the available data for the probabilistic description of earthquake ground acceleration in the Korea peninsula. The SAP V-2 is used for a three-dimensional finite element analysis of concrete containment structure, and the reliability analysis is carried out by modifying HRAS reliability analysis program for this study. (orig./GL)

  8. Enhancing product robustness in reliability-based design optimization

    International Nuclear Information System (INIS)

    Zhuang, Xiaotian; Pan, Rong; Du, Xiaoping

    2015-01-01

    Different types of uncertainties need to be addressed in a product design optimization process. In this paper, the uncertainties in both product design variables and environmental noise variables are considered. The reliability-based design optimization (RBDO) is integrated with robust product design (RPD) to concurrently reduce the production cost and the long-term operation cost, including quality loss, in the process of product design. This problem leads to a multi-objective optimization with probabilistic constraints. In addition, the model uncertainties associated with a surrogate model that is derived from numerical computation methods, such as finite element analysis, is addressed. A hierarchical experimental design approach, augmented by a sequential sampling strategy, is proposed to construct the response surface of product performance function for finding optimal design solutions. The proposed method is demonstrated through an engineering example. - Highlights: • A unifying framework for integrating RBDO and RPD is proposed. • Implicit product performance function is considered. • The design problem is solved by sequential optimization and reliability assessment. • A sequential sampling technique is developed for improving design optimization. • The comparison with traditional RBDO is provided

  9. Reliability improvement through alternative designs-A case study

    International Nuclear Information System (INIS)

    Kumar, Saurabh; Chattopadhyay, Gopi; Kumar, Uday

    2007-01-01

    In today's competitive world, reliability of equipment is extremely important to maintain quality and delivery deadlines. This is achieved by using proper maintenance and design changes for unreliable subsystems and components of a complex system. It is significant to develop a strategy for maintenance, replacement and design changes related to those subsystems and components. An analysis of down time along with causes is essential to identify the unreliable components and subsystems. This paper presents an analysis of failure data of solenoid coils of automatic internal grinding machine used in a bearing manufacturing plant. It analyses various replacement and change of design options such as introduction of pneumatic system in place of electromagnetic solenoids for improvement of reliability of the plunger movement mechanism

  10. Power Electronic Packaging Design, Assembly Process, Reliability and Modeling

    CERN Document Server

    Liu, Yong

    2012-01-01

    Power Electronic Packaging presents an in-depth overview of power electronic packaging design, assembly,reliability and modeling. Since there is a drastic difference between IC fabrication and power electronic packaging, the book systematically introduces typical power electronic packaging design, assembly, reliability and failure analysis and material selection so readers can clearly understand each task's unique characteristics. Power electronic packaging is one of the fastest growing segments in the power electronic industry, due to the rapid growth of power integrated circuit (IC) fabrication, especially for applications like portable, consumer, home, computing and automotive electronics. This book also covers how advances in both semiconductor content and power advanced package design have helped cause advances in power device capability in recent years. The author extrapolates the most recent trends in the book's areas of focus to highlight where further improvement in materials and techniques can d...

  11. Design-reliability assurance program application to ACP600

    International Nuclear Information System (INIS)

    Zhichao, Huang; Bo, Zhao

    2012-01-01

    ACP600 is a newly nuclear power plant technology made by CNNC in China and it is based on the Generation III NPPs design experience and general safety goals. The ACP600 Design Reliability Assurance Program (D-RAP) is implemented as an integral part of the ACP600 design process. A RAP is a formal management system which assures the collection of important characteristic information about plant performance throughout each phase of its life and directs the use of this information in the implementation of analytical and management process which are specifically designed to meet two specific objects: confirm the plant goals and cost effective improvements. In general, typical reliability assurance program have 4 broad functional elements: 1) Goals and performance criteria; 2) Management system and implementing procedures; 3) Analytical tools and investigative methods; and 4) Information management. In this paper we will use the D-RAP technical and Risk-Informed requirements, and establish the RAM and PSA model to optimize the ACP600 design. Compared with previous design process, the D-RAP is more competent for the higher design targets and requirements, enjoying more creativity through an easier implementation of technical breakthroughs. By using D-RAP, the plants goals, system goals, performance criteria and safety criteria can be easier to realize, and the design can be optimized and more rational

  12. An information system supporting design for reliability and maintenance

    Energy Technology Data Exchange (ETDEWEB)

    Rit, J.F.; Beraud, M.T

    1997-12-31

    EDF is currently developing a methodology to integrate availability, operating experience and maintenance in the design of power plants. This involves studies that depend closely on the results and assumptions of each other about the reliability and operations of the plant. Therefore a support information system must be carefully designed. Concurrently with development of the methodology, a research oriented information system was designed and built. It is based on the database model of a logistic support repository that we tailored to our needs. (K.A.) 10 refs.

  13. An information system supporting design for reliability and maintenance

    International Nuclear Information System (INIS)

    Rit, J.F.; Beraud, M.T.

    1997-01-01

    EDF is currently developing a methodology to integrate availability, operating experience and maintenance in the design of power plants. This involves studies that depend closely on the results and assumptions of each other about the reliability and operations of the plant. Therefore a support information system must be carefully designed. Concurrently with development of the methodology, a research oriented information system was designed and built. It is based on the database model of a logistic support repository that we tailored to our needs. (K.A.)

  14. Equipment design for reliability testing of protection system

    International Nuclear Information System (INIS)

    Situmorang, Johnny; Tjahjono, H.; Santosa, A. Z.; Tjahjani, S.DT.; Ismu, P.H; Haryanto, D.; Mulyanto, D.; Kusmono, S

    1999-01-01

    The equipment for reliability testing of cable of protection system has been designed as a a furnace with the electric heater have a 4 kW power, and need time 10 minute to reach the designed maximum temperature 3000C. The dimension of furnace is 800 mm diameter and 2000 mm length is isolated use rockwool isolator and coated by aluminium. For the designed maximum temperature the surface temperature is 78 0c. Assemble of specimens is arranged horizontally in the furnace. The failure criteria will be defined based on the behaviour of the load circuit in each line of cable specimens

  15. Device reliability challenges for modern semiconductor circuit design – a review

    Directory of Open Access Journals (Sweden)

    C. Schlünder

    2009-05-01

    Full Text Available Product development based on highly integrated semiconductor circuits faces various challenges. To ensure the function of circuits the electrical parameters of every device must be in a specific window. This window is restricted by competing mechanisms like process variations and device degradation (Fig. 1. Degradation mechanisms like Negative Bias Temperature Instability (NBTI or Hot Carrier Injection (HCI lead to parameter drifts during operation adding on top of the process variations.

    The safety margin between real lifetime of MOSFETs and product lifetime requirements decreases at advanced technologies. The assignment of tasks to ensure the product lifetime has to be changed for the future. Up to now technology development has the main responsibility to adjust the technology processes to achieve the required lifetime. In future, reliability can no longer be the task of technology development only. Device degradation becomes a collective challenge for semiconductor technologist, reliability experts and circuit designers. Reliability issues have to be considered in design as well to achieve reliable and competitive products. For this work, designers require support by smart software tools with built-in reliability know how. Design for reliability will be one of the key requirements for modern product designs.

    An overview will be given of the physical device damage mechanisms, the operation conditions within circuits leading to stress and the impact of the corresponding device parameter degradation on the function of the circuit. Based on this understanding various approaches for Design for Reliability (DfR will be described. The function of aging simulators will be explained and the flow of circuit-simulation will be described. Furthermore, the difference between full custom and semi custom design and therefore, the different required approaches will be discussed.

  16. Design for High Performance, Low Power, and Reliable 3D Integrated Circuits

    CERN Document Server

    Lim, Sung Kyu

    2013-01-01

    This book describes the design of through-silicon-via (TSV) based three-dimensional integrated circuits.  It includes details of numerous “manufacturing-ready” GDSII-level layouts of TSV-based 3D ICs, developed with tools covered in the book. Readers will benefit from the sign-off level analysis of timing, power, signal integrity, and thermo-mechanical reliability for 3D IC designs.  Coverage also includes various design-for-manufacturability (DFM), design-for-reliability (DFR), and design-for-testability (DFT) techniques that are considered critical to the 3D IC design process. Describes design issues and solutions for high performance and low power 3D ICs, such as the pros/cons of regular and irregular placement of TSVs, Steiner routing, buffer insertion, low power 3D clock routing, power delivery network design and clock design for pre-bond testability. Discusses topics in design-for-electrical-reliability for 3D ICs, such as TSV-to-TSV coupling, current crowding at the wire-to-TSV junction and the e...

  17. Reliability Improved Design for a Safety System Channel

    International Nuclear Information System (INIS)

    Oh, Eung Se; Kim, Yun Goo

    2016-01-01

    Nowadays, these systems are implemented with a same platform type, such as a qualified programmable logic controller (PLC). The platform intensively uses digital communication with fiber-optic links to reduce cabling costs and to achieve effective signal isolation. These communication interface and redundancies within a channel increase the complexness of an overall system design. This paper proposes a simpler channel architecture design to reduce the complexity and to enhance overall channel reliability. Simplified safety channel configuration is proposed and the failure probabilities are compared with baseline safety channel configuration using an estimated generic value. The simplified channel configuration achieves 40 percent failure reduction compare to baseline safety channel configuration. If this configuration can be implemented within a processor module, overall safety channel reliability is increase and costs of fabrication and maintenance will be greatly reduced

  18. Reliability Improved Design for a Safety System Channel

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Eung Se; Kim, Yun Goo [KHNP, Daejeon (Korea, Republic of)

    2016-05-15

    Nowadays, these systems are implemented with a same platform type, such as a qualified programmable logic controller (PLC). The platform intensively uses digital communication with fiber-optic links to reduce cabling costs and to achieve effective signal isolation. These communication interface and redundancies within a channel increase the complexness of an overall system design. This paper proposes a simpler channel architecture design to reduce the complexity and to enhance overall channel reliability. Simplified safety channel configuration is proposed and the failure probabilities are compared with baseline safety channel configuration using an estimated generic value. The simplified channel configuration achieves 40 percent failure reduction compare to baseline safety channel configuration. If this configuration can be implemented within a processor module, overall safety channel reliability is increase and costs of fabrication and maintenance will be greatly reduced.

  19. Panel presentation: LDC rate design and transportation issues

    International Nuclear Information System (INIS)

    Patrick, T.M.

    1992-01-01

    This paper covers four general views about local distributing company (LDC) sales rate design, transportation issues, and their implications for policy makers. LDC sales rates often hinder marketing to price sensitive customers. LDC rate design contributes to this problem, but there are other major causes such as add-on revenue taxes and pipeline take-or-pay charges that add to customer costs. State commissions, in varying degrees, are constrained in their ability to respond to a number of the barriers to improved gas marketing. Some problems are simply beyond the power of state commissions to remedy. These include federally imposed pipeline rate structures and take-or-pay costs, as well as various limits imposed by state legislatures (e.g., shut-off prohibitions, add-on taxes). Where they are feasible, LDC transportation services can mitigate marketing barriers that impede sales services. Customers select and pay for only their desired level of supply reliability and flexibility from sellers and pipeline transporters, as well as desired levels of standby service from the LDC. While it greatly benefits markets, the provision of transportation service by an LDC creates important new issues. One is fairness in allocating LDC resources between the sales and transportation functions and in pricing them, to avoid subsidies of one service by the other

  20. Reliability-based design of a retaining wall

    OpenAIRE

    Kim, John Sang

    1995-01-01

    A retaining wall is subject to various limit states such as sliding, overturning and bearing capacity, and it can fail by anyone of them. Since a great deal of uncertainty is involved in the analysis of the limit states~ the use of detenninistic conventional safety factors may produce a misleading result. The main objective of this study is to develop a procedure for the optimum design of a retaining wall by using the reliability theory. Typical gravity retaining walls with fou...

  1. Reliable Thermoelectric Module Design under Opposing Requirements from Structural and Thermoelectric Considerations

    Science.gov (United States)

    Karri, Naveen K.; Mo, Changki

    2018-06-01

    Structural reliability of thermoelectric generation (TEG) systems still remains an issue, especially for applications such as large-scale industrial or automobile exhaust heat recovery, in which TEG systems are subject to dynamic loads and thermal cycling. Traditional thermoelectric (TE) system design and optimization techniques, focused on performance alone, could result in designs that may fail during operation as the geometric requirements for optimal performance (especially the power) are often in conflict with the requirements for mechanical reliability. This study focused on reducing the thermomechanical stresses in a TEG system without compromising the optimized system performance. Finite element simulations were carried out to study the effect of TE element (leg) geometry such as leg length and cross-sectional shape under constrained material volume requirements. Results indicated that the element length has a major influence on the element stresses whereas regular cross-sectional shapes have minor influence. The impact of TE element stresses on the mechanical reliability is evaluated using brittle material failure theory based on Weibull analysis. An alternate couple configuration that relies on the industry practice of redundant element design is investigated. Results showed that the alternate configuration considerably reduced the TE element and metallization stresses, thereby enhancing the structural reliability, with little trade-off in the optimized performance. The proposed alternate configuration could serve as a potential design modification for improving the reliability of systems optimized for thermoelectric performance.

  2. Drone-borne GPR design: Propagation issues

    Science.gov (United States)

    Chandra, Madhu; Tanzi, Tullio Joseph

    2018-01-01

    In this paper, we shall address the electromagnetic wave propagation issues that are critical to determining the feasibility of a drone-borne ground-penetrating radar sensor for humanitarian applications, particularly in the context of disaster management. Frequency- and polarization-dependent scattering, attenuation and dispersion of radar signals penetrating into the sub-surface region will determine the applicability of a drone-mounted radar sensor capable of registering radar echoes for observing and monitoring sub-surface features. The functionality of the radar will thus be assessed depending on key radar parameters that include the central radar frequency, the modulation depth, and the mode of radar operation (pulsed FM, FM-CW), the antenna type, the available power-budget. In the analysis to be presented, the radar equation, together with the aforementioned propagation effects, will be used to simulate the signal strength of radar echoes under different conditions arising from the chosen key-radar parameters and the assumed physical properties of the sub-surface earth medium. The analysis to be presented will indicate whether or not the drone-borne ground-penetrating radar is a feasible system and if it could be constructed with the technologies available today. Taking into account the strict constraints involved to design drone applications for Public Protection and Disaster Relief (PPDR), the ideas developed hereafter are both prospective and exploratory. The objective is to see if a solution can be found in the near future. xml:lang="fr" Dans l'analyse présentée, l'équation radar, ainsi que les effets de propagation susmentionnés, serviront à simuler la puissance du signal des échos radar sous différentes conditions découlant des paramètres clés choisis et les propriétés physiques du milieu sous la surface. L'étude a pour objectif de démontrer si le système est réalisable et s'il peut être construit avec les technologies disponibles

  3. Practical application of reliability engineering in detailed design and maintenance

    International Nuclear Information System (INIS)

    Barden, S.E.

    1975-01-01

    Modern plant systems are closely coupled combinations of sophisticated and expensive equipment, some important parts of which may be in the development stage (high technology sector), and simpler, crude but not necessarily cheap equipment (low technology sector). Manpower resources involved with such plant systems can also be placed in high and low technology categories (i.e. specialist design and construction staff, and production staff, respectively). Neither can operate effectively without the other, and both are equally important. A sophisticated on-line computer controlling plant or analysing fault symptoms is useless, if not unsafe, if the peripheral sensing and control equipment on plant providing input data is poorly designed and inaccurate, and/or unreliable because of inadequate maintenance. Similarly, the designer can be misled and misinformed, and subsequent design evolution can be wrongly directed, if production recors do not accurately reflect what is actually happening on the plant. The application of Reliability Technology can be counter productive if it demands more effort in the collection of data that it save in facilitating quick, correct engineering decisions, and more accurate assessments of resource requirements. Reliability Engineering techniques must be simplified to made their use widely adopted in the important low technology sector, and established in all financial and contractural procedures associated with design specification and production management. This paper develops this theme with practical examples. (author)

  4. Blended e-learning Design: Discussion of Cultural Issues

    OpenAIRE

    Ahmed A Al-Hunaiyyan; Salah AL-Sharhan; Nabeel Al-Huwail

    2008-01-01

    Blended e-learning is becoming an educational issue especially with the new development of e-learning technology and globalization. Educators as the question: can we design these systems to accommodate different cultural groups and various learning strategies. This paper addresses some design issues when selecting a blended e-learning approach; it discusses some cultural elements that affect the design of blended e-learning. The paper also explores issues related to learning design, then emph...

  5. Designing reliable supply chain network with disruption risk

    Directory of Open Access Journals (Sweden)

    Ali Bozorgi Amiri

    2013-01-01

    Full Text Available Although supply chains disruptions rarely occur, their negative effects are prolonged and severe. In this paper, we propose a reliable capacitated supply chain network design (RSCND model by considering random disruptions in both distribution centers and suppliers. The proposed model determines the optimal location of distribution centers (DC with the highest reliability, the best plan to assign customers to opened DCs and assigns opened DCs to suitable suppliers with lowest transportation cost. In this study, random disruption occurs at the location, capacity of the distribution centers (DCs and suppliers. It is assumed that a disrupted DC and a disrupted supplier may lose a portion of their capacities, and the rest of the disrupted DC's demand can be supplied by other DCs. In addition, we consider shortage in DCs, which can occur in either normal or disruption conditions and DCs, can support each other in such circumstances. Unlike other studies in the extent of literature, we use new approach to model the reliability of DCs; we consider a range of reliability instead of using binary variables. In order to solve the proposed model for real-world instances, a Non-dominated Sorting Genetic Algorithm-II (NSGA-II is applied. Preliminary results of testing the proposed model of this paper on several problems with different sizes provide seem to be promising.

  6. System 80+ Design and Licensing : Improving Plant Reliability

    International Nuclear Information System (INIS)

    Newman, Robert E.

    1989-01-01

    The U. S. nuclear industry is striving to improve plant reliability and availability through improved plant design, component designs and plant maintenance. In an effort to improve safety and to demonstrate that commercial nuclear power is economically competitive with other energy sources, the utilities, nuclear vendors, architect engineers and constructors, and component suppliers are all participating in an industry-wide effort to develop improved Light Water Reactor (LWR) designs that are based upon the many years of successful LWR operation. In an age when the world faces the environmental pressures of the greenhouse effect and acid rain, electricity generated from nuclear energy must play an increasing role in the energy picture of Korea, the United States and the rest of the world. This paper discusses the plant availability requirement that has been established by the industry-wide effort mentioned above. After briefly describing Combustion Engineering's program for development of the System 80 Plus standard design and the participation of the Korea Advanced Energy Research Institute (KAERI) in the program, the paper then describes the design features that are being incorporated into System 80+. The industry ALRR Program has established a very ambitious criterion of 87% for the plant availability of future nuclear units. To satisfy such a requirement, the next generation of nuclear plants will include a great many design improvements that reflect the hundreds of years of operating experience that we have accrued. C-ESA's System 80+ will include a number of design changes that improve operating margins and make the plant easier to operate and maintain. Not surprisingly, there is a great deal of overlap between improved safety and improved reliability. In the end, our design will satisfy the future needs of the utilities, the regulators, and the public. C-E is very pleased that KAERI is working with US to achieve these important goals

  7. Design and reliability of a didactic inphographic rubric assessment

    Directory of Open Access Journals (Sweden)

    Yunuen Ixchel GUZMÁN-CEDILLO

    2017-12-01

    Full Text Available The objective of this study is to describe design, validity process and reliability of a rubric assessment to evaluate didactic infographics quality. Participants were fifteen judges who participate in different moments of elaboration rubric process; it was made in three process phases: design, settings and reliability determination. Content validity was obtained by percentage agreement between 3 judges by component of the rubric; likewise a Krippendorff’s alpha were applied (a = .710 in pilot assessment with 5 infographics in order to set possible writings contradictions between components and criteria of performance. The intern consistence was determined by Cronbach’s alpha (? = .806 in 22 infographics gradation. An Intraclass correlation coefficient icc (a = .909 was applied to 6 judges qualifications also a Krippendorff’s alpha (a = .538 both of them in ordinal levels. The rubric is composed by 9 components, 3 performance levels, definitions of each component and assignments how to use the rubric. Results suggest the rubric is valid and reliable to grade quality of didactic infographic.

  8. A Standardized Rubric for Evaluating Webquest Design: Reliability Analysis of ZUNAL Webquest Design Rubric

    Science.gov (United States)

    Unal, Zafer; Bodur, Yasar; Unal, Aslihan

    2012-01-01

    Current literature provides many examples of rubrics that are used to evaluate the quality of web-quest designs. However, reliability of these rubrics has not yet been researched. This is the first study to fully characterize and assess the reliability of a webquest evaluation rubric. The ZUNAL rubric was created to utilize the strengths of the…

  9. High level issues in reliability quantification of safety-critical software

    International Nuclear Information System (INIS)

    Kim, Man Cheol

    2012-01-01

    For the purpose of developing a consensus method for the reliability assessment of safety-critical digital instrumentation and control systems in nuclear power plants, several high level issues in reliability assessment of the safety-critical software based on Bayesian belief network modeling and statistical testing are discussed. Related to the Bayesian belief network modeling, the relation between the assessment approach and the sources of evidence, the relation between qualitative evidence and quantitative evidence, how to consider qualitative evidence, and the cause-consequence relation are discussed. Related to the statistical testing, the need of the consideration of context-specific software failure probabilities and the inability to perform a huge number of tests in the real world are discussed. The discussions in this paper are expected to provide a common basis for future discussions on the reliability assessment of safety-critical software. (author)

  10. Design, Implementation, and Verification of the Reliable Multicast Protocol. Thesis

    Science.gov (United States)

    Montgomery, Todd L.

    1995-01-01

    This document describes the Reliable Multicast Protocol (RMP) design, first implementation, and formal verification. RMP provides a totally ordered, reliable, atomic multicast service on top of an unreliable multicast datagram service. RMP is fully and symmetrically distributed so that no site bears an undue portion of the communications load. RMP provides a wide range of guarantees, from unreliable delivery to totally ordered delivery, to K-resilient, majority resilient, and totally resilient atomic delivery. These guarantees are selectable on a per message basis. RMP provides many communication options, including virtual synchrony, a publisher/subscriber model of message delivery, a client/server model of delivery, mutually exclusive handlers for messages, and mutually exclusive locks. It has been commonly believed that total ordering of messages can only be achieved at great performance expense. RMP discounts this. The first implementation of RMP has been shown to provide high throughput performance on Local Area Networks (LAN). For two or more destinations a single LAN, RMP provides higher throughput than any other protocol that does not use multicast or broadcast technology. The design, implementation, and verification activities of RMP have occurred concurrently. This has allowed the verification to maintain a high fidelity between design model, implementation model, and the verification model. The restrictions of implementation have influenced the design earlier than in normal sequential approaches. The protocol as a whole has matured smoother by the inclusion of several different perspectives into the product development.

  11. Reliability-Based Robust Design Optimization of Structures Considering Uncertainty in Design Variables

    Directory of Open Access Journals (Sweden)

    Shujuan Wang

    2015-01-01

    Full Text Available This paper investigates the structural design optimization to cover both the reliability and robustness under uncertainty in design variables. The main objective is to improve the efficiency of the optimization process. To address this problem, a hybrid reliability-based robust design optimization (RRDO method is proposed. Prior to the design optimization, the Sobol sensitivity analysis is used for selecting key design variables and providing response variance as well, resulting in significantly reduced computational complexity. The single-loop algorithm is employed to guarantee the structural reliability, allowing fast optimization process. In the case of robust design, the weighting factor balances the response performance and variance with respect to the uncertainty in design variables. The main contribution of this paper is that the proposed method applies the RRDO strategy with the usage of global approximation and the Sobol sensitivity analysis, leading to the reduced computational cost. A structural example is given to illustrate the performance of the proposed method.

  12. Designing reliability into high-effectiveness industrial gas turbine regenerators

    International Nuclear Information System (INIS)

    Valentino, S.J.

    1979-01-01

    The paper addresses the measures necessary to achieve a reliable regenerator design that can withstand higher temperatures (1000-1200 F) and many start and stop cycles - conditions encountered in high-efficiency operation in pipeline applications. The discussion is limited to three major areas: (1) structural analysis of the heat exchanger core - the part of the regenerator that must withstand the higher temperatures and cyclic duty (2) materials data and material selection and (3) a comprehensive test program to demonstrate the reliability of the regenerator. This program includes life-cycle tests, pressure containment in fin panels, core-to-core joint structural test, bellows pressure containment test, sliding pad test, core gas-side passage flow distribution test, and production test. Today's regenerators must have high cyclic life capability, stainless steel construction, and long fault-free service life of 120,000 hr

  13. Design for Reliability of Power Electronics in Renewable Energy Systems

    DEFF Research Database (Denmark)

    Ma, Ke; Yang, Yongheng; Wang, Huai

    2014-01-01

    Power electronics is the enabling technology for maximizing the power captured from renewable electrical generation, e.g., the wind and solar technology, and also for an efficient integration into the grid. Therefore, it is important that the power electronics are reliable and do not have too many...... failures during operation which otherwise will increase cost for operation, maintenance and reputation. Typically, power electronics in renewable electrical generation has to be designed for 20–30 years of operation, and in order to do that, it is crucial to know about the mission profile of the power...... electronics technology as well as to know how the power electronics technology is loaded in terms of temperature and other stressors relevant, to reliability. Hence, this chapter will show the basics of power electronics technology for renewable energy systems, describe the mission profile of the technology...

  14. Problems and solutions of reliability issues for external power supply in the coal mines

    Directory of Open Access Journals (Sweden)

    И. Ю. Семыкина

    2017-08-01

    Full Text Available Restructuring of the energy sector  and liberalization of the electricity market resulted in separation of a single industry into a multitude of generating companies, federal and interregional distribution utilities, regional power providers and energy suppliers. For a number of reasons, related to the process of managing separate companies, faults in the laws and regulations, and unsatisfactory technical state of the energy equipment both on the part of distributors and consumers, reliability of energy supply faces increasing negative trends, which potentially can lead to big problems. Up to this day the energy sector does not have a developed database on the state of equipment and results of its maintenance, nor has it defined criteria to actually assess technical conditions of the equipment. The authors propose to develop and implement a mechanism aimed at technical auditing and monitoring of the engineering state of external power supply system, whose results can help in the development of more efficient and economically sound measures to improve reliability of energy supply. In recent years, a lot of attention has been paid to the issues of enhanced security of industrial power supply. However, specific characteristics of underground coal mining and enormous work load of the production process limit the applicability of developed methods and algorithms. Existing research does not address economic issues of reliable energy supply, either direct (economic damage from power interruptions, contractual security of supply, tariff regulation or indirect (charges for utility connection with a required level of reliability. There is no explicit definition for the term «autonomous energy source», nor is there a list of power receivers falling into the first and «special» categories according to their reliability. The paper contains a range of urgent problems and solutions that will increase reliability of external power supply in the coal mines.

  15. Design for low-power and reliable flexible electronics

    Science.gov (United States)

    Huang, Tsung-Ching (Jim)

    Flexible electronics are emerging as an alternative to conventional Si electronics for large-area low-cost applications such as e-paper, smart sensors, and disposable RFID tags. By utilizing inexpensive manufacturing methods such as ink-jet printing and roll-to-roll imprinting, flexible electronics can be made on low-cost plastics just like printing a newspaper. However, the key elements of exible electronics, thin-film transistors (TFTs), have slower operating speeds and less reliability than their Si electronics counterparts. Furthermore, depending on the material property, TFTs are usually mono-type -- either p- or n-type -- devices. Making air-stable complementary TFT circuits is very challenging and not applicable to most TFT technologies. Existing design methodologies for Si electronics, therefore, cannot be directly applied to exible electronics. Other inhibiting factors such as high supply voltage, large process variation, and lack of trustworthy device modeling also make designing larger-scale and robust TFT circuits a significant challenge. The major goal of this dissertation is to provide a viable solution for robust circuit design in exible electronics. I will first introduce a reliability simulation framework that can predict the degraded TFT circuits' performance under bias-stress. This framework has been validated using the amorphous-silicon (a-Si) TFT scan driver for TFT-LCD displays. To reuse the existing CMOS design ow for exible electronics, I propose a Pseudo-CMOS cell library that can make TFT circuits operable under low supply voltage and which has post-fabrication tunability for reliability and performance enhancement. This cell library has been validated using 2V self-assembly-monolayer (SAM) organic TFTs with a low-cost shadow-mask deposition process. I will also demonstrate a 3-bit 1.25KS/s Flash ADC in a-Si TFTs, which is based on the proposed Pseudo-CMOS cell library, and explore more possibilities in display, energy, and sensing

  16. Offshore compression system design for low cost high and reliability

    Energy Technology Data Exchange (ETDEWEB)

    Castro, Carlos J. Rocha de O.; Carrijo Neto, Antonio Dias; Cordeiro, Alexandre Franca [Chemtech Engineering Services and Software Ltd., Rio de Janeiro, RJ (Brazil). Special Projects Div.], Emails: antonio.carrijo@chemtech.com.br, carlos.rocha@chemtech.com.br, alexandre.cordeiro@chemtech.com.br

    2010-07-01

    In the offshore oil fields, the oil streams coming from the wells usually have significant amounts of gas. This gas is separated at low pressure and has to be compressed to the export pipeline pressure, usually at high pressure to reduce the needed diameter of the pipelines. In the past, this gases where flared, but nowadays there are a increasing pressure for the energy efficiency improvement of the oil rigs and the use of this gaseous fraction. The most expensive equipment of this kind of plant are the compression and power generation systems, being the second a strong function of the first, because the most power consuming equipment are the compressors. For this reason, the optimization of the compression system in terms of efficiency and cost are determinant to the plant profit. The availability of the plants also have a strong influence in the plant profit, specially in gas fields where the products have a relatively low aggregated value, compared to oil. Due this, the third design variable of the compression system becomes the reliability. As high the reliability, larger will be the plant production. The main ways to improve the reliability of compression system are the use of multiple compression trains in parallel, in a 2x50% or 3x50% configuration, with one in stand-by. Such configurations are possible and have some advantages and disadvantages, but the main side effect is the increase of the cost. This is the offshore common practice, but that does not always significantly improve the plant availability, depending of the previous process system. A series arrangement and a critical evaluation of the overall system in some cases can provide a cheaper system with equal or better performance. This paper shows a case study of the procedure to evaluate a compression system design to improve the reliability but without extreme cost increase, balancing the number of equipment, the series or parallel arrangement, and the driver selection. Two cases studies will be

  17. NASA preferred reliability-practices for design and test

    Science.gov (United States)

    Lisk, Ronald C.

    1992-01-01

    NASA HQ established the NASA R&M Steering Committee (R&MSC) comprised of membership from each NASA field center. The primary charter of the R&MSC is to obtain, record, and share the best design practices that NASA has applied to successful space flight programs and current design considerations (guidelines) that should enhance flight reliability on emerging programs. The practices and guidelines are being assembled in a living document for distribution to NASA centers and the aerospace community. The document will be updated annually with additional practices and guidelines as contributions from the centers are reviewed and approved by the R&MSC. Practices and guidelines are not requirements, but rather a means of sharing procedures and techniques that a given center and the R&MSC together feel have strong technical merit and application to the design of space-related equipment.

  18. Design reliability assurance program for Korean next generation reactor

    International Nuclear Information System (INIS)

    Lee, Beom-Su; Han, Jin-Kyu; Na, Jang Hwan; Yoo, Kyung Yeong

    1997-01-01

    The Korean Next Generation Reactor (KNGR) project is to develop standardized nuclear power plant design for the construction of future nuclear power plants in Korea. The main purpose of the KNGR project is to develop the advanced nuclear power plants, which enhance safety and economics significantly through the incorporation of design concepts for severe accident prevention and mitigation, supplementary passive safety concept, simplification and application of modularization and so on. For those, Probabilistic Safety Assessment (PSA) and availability study will be performed at the early stage of the design, and the Design Reliability Assurance Program (D-RAP) is applied in the development of the KNGR to ensure that the safety and availability evaluated in the PSA and availability study at the early phase of the design is maintained through the detailed design, construction, procurement and operation of the plants. This paper presents the D-RAP concept that could be applied at the stage of the basic design of the nuclear power plants, based on the models for the reference plants and/or similar plants. 4 refs., 1 fig

  19. MPprimer: a program for reliable multiplex PCR primer design

    Directory of Open Access Journals (Sweden)

    Wang Xiaolei

    2010-03-01

    Full Text Available Abstract Background Multiplex PCR, defined as the simultaneous amplification of multiple regions of a DNA template or multiple DNA templates using more than one primer set (comprising a forward primer and a reverse primer in one tube, has been widely used in diagnostic applications of clinical and environmental microbiology studies. However, primer design for multiplex PCR is still a challenging problem and several factors need to be considered. These problems include mis-priming due to nonspecific binding to non-target DNA templates, primer dimerization, and the inability to separate and purify DNA amplicons with similar electrophoretic mobility. Results A program named MPprimer was developed to help users for reliable multiplex PCR primer design. It employs the widely used primer design program Primer3 and the primer specificity evaluation program MFEprimer to design and evaluate the candidate primers based on genomic or transcript DNA database, followed by careful examination to avoid primer dimerization. The graph-expanding algorithm derived from the greedy algorithm was used to determine the optimal primer set combinations (PSCs for multiplex PCR assay. In addition, MPprimer provides a virtual electrophotogram to help users choose the best PSC. The experimental validation from 2× to 5× plex PCR demonstrates the reliability of MPprimer. As another example, MPprimer is able to design the multiplex PCR primers for DMD (dystrophin gene which caused Duchenne Muscular Dystrophy, which has 79 exons, for 20×, 20×, 20×, 14×, and 5× plex PCR reactions in five tubes to detect underlying exon deletions. Conclusions MPprimer is a valuable tool for designing specific, non-dimerizing primer set combinations with constrained amplicons size for multiplex PCR assays.

  20. Reliability

    OpenAIRE

    Condon, David; Revelle, William

    2017-01-01

    Separating the signal in a test from the irrelevant noise is a challenge for all measurement. Low test reliability limits test validity, attenuates important relationships, and can lead to regression artifacts. Multiple approaches to the assessment and improvement of reliability are discussed. The advantages and disadvantages of several different approaches to reliability are considered. Practical advice on how to assess reliability using open source software is provided.

  1. Advanced control rooms and crew performance issues: Implications for human reliability

    International Nuclear Information System (INIS)

    O'Hara, J.M.; Hall, R.E.

    1991-01-01

    Recent trends in advanced control room (ACR) design are considered with respect to their impact on human performance. It is concluded that potentially negative influences exist, however, a variety of factors make it difficult to model, analyze, and quantify these effects for human reliability analyses (HRAs)

  2. Production and Reliability Oriented SOFC Cell and Stack Design

    DEFF Research Database (Denmark)

    Hauth, Martin; Lawlor, Vincent; Cartellieri, Peter

    2017-01-01

    The paper presents an innovative development methodology for a production and reliability oriented SOFC cell and stack design aiming at improving the stacks robustness, manufacturability, efficiency and cost. Multi-physics models allowed a probabilistic approach to consider statistical variations...... in production, material and operating parameters for the optimization phase. A methodology for 3D description of spatial distribution of material properties based on a random field models was developed and validated by experiments. Homogenized material models on multiple levels of the SOFC stack were...... and output parameters and to perform a sensitivity analysis were developed and implemented. The capabilities of the methodology is illustrated on two practical cases....

  3. Reliability concerns with logical constants in Xilinx FPGA designs

    Energy Technology Data Exchange (ETDEWEB)

    Quinn, Heather M [Los Alamos National Laboratory; Graham, Paul [Los Alamos National Laboratory; Morgan, Keith [Los Alamos National Laboratory; Ostler, Patrick [Los Alamos National Laboratory; Allen, Greg [JPL; Swift, Gary [XILINX; Tseng, Chen W [XILINX

    2009-01-01

    In Xilinx Field Programmable Gate Arrays logical constants, which ground unused inputs and provide constants for designs, are implemented in SEU-susceptible logic. In the past, these logical constants have been shown to cause the user circuit to output bad data and were not resetable through off-line rcconfiguration. In the more recent devices, logical constants are less problematic, though mitigation should still be considered for high reliability applications. In conclusion, we have presented a number of reliability concerns with logical constants in the Xilinx Virtex family. There are two main categories of logical constants: implicit and explicit logical constants. In all of the Virtex devices, the implicit logical constants are implemented using half latches, which in the most recent devices are several orders of magnitudes smaller than configuration bit cells. Explicit logical constants are implemented exclusively using constant LUTs in the Virtex-I and Virtex-II, and use a combination of constant LUTs and architectural posts to the ground plane in the Virtex-4. We have also presented mitigation methods and options for these devices. While SEUs in implicit and some types of explicit logical constants can cause data corrupt, the chance of failure from these components is now much smaller than it was in the Virtex-I device. Therefore, for many cases, mitigation might not be necessary, except under extremely high reliability situations.

  4. Designation of Issues -- World Color Press

    Science.gov (United States)

    This document may be of assistance in applying the New Source Review (NSR) air permitting regulations including the Prevention of Significant Deterioration (PSD) requirements. This document is part of the NSR Policy and Guidance Database. Some documents in the database are a scanned or retyped version of a paper photocopy of the original. Although we have taken considerable effort to quality assure the documents, some may contain typographical errors. Contact the office that issued the document if you need a copy of the original.

  5. Design, construction, qualification and reliability of main components, from the safety aspect

    International Nuclear Information System (INIS)

    Crette, J.P.

    1982-01-01

    In FRANCE, the design and construction of reliable components, which condition the safe operation and availability of breeder plants, is based on the experience acquired during the operation of RAPSODIE, PHENIX and the various test facilities. The technical progress achieved on all main components is illustrated by examples taken from the CREYS-MALVILLE plant. In parallel with the development of these components, an extensive program covering research, development and the definition of design, construction and inspection rules, together with scheduling and quality assurance methods, prepares the industrialization of this reactor system, in compliance with the rules and recommendations issued by the pertinent safety authorities

  6. Towards a strategy of reliable fusion first-wall design

    International Nuclear Information System (INIS)

    Schultz, J.H.

    1981-05-01

    Fusion first walls are subject to a large number of possible failure mechanisms, including erosion due to sputtering, arcing, blistering and vaporization and crack growth due to thermal and magnetic stresses. Each of these failure mechanisms is poorly characterized and has the potential of being severe. A strategy for designing reliably in the face of great uncertainty is discussed. Topological features beneficial to reactor availability are identified. The integration of limiter pumping with rf wave launching is discussed, as a means of simplifying reactor design. The concept of a sewer limiter is introduced, as a possible long-life limiter topology. The concept of flexible armor is discussed, as a means of extending maximum life

  7. Key issues in european reactor seismic design

    International Nuclear Information System (INIS)

    Cicognani, G.; Martelli, A.

    1984-01-01

    The paper focuses on the main problems which have arisen in FBR design in Europe due to seismic conditions. Its first part, derived from the final report of a CEC-Belgonucleaire study contract, clarifies how ''real'' is the seismic problem for each site. Then, the second and main part deals with the studies carried out in the european countries on the relevant subjects, typical of FBRs or related to specific needs of single FBRs: these studies, for which contributions were provided by ENEA, CEA, NNC and INTERATOM, concern mainly the numerical and experimental analysis of the core, the reactor vessel, the shut-down system and the reactor building of FBRs under construction or in advanced design phase. Attention is also paid to the studies started for future purposes, the feed-backs on the design due to seismic conditions, and the instructions for future reactors

  8. Reliability-Based Optimal Design for Very Large Floating Structure

    Institute of Scientific and Technical Information of China (English)

    ZHANG Shu-hua(张淑华); FUJIKUBO Masahiko

    2003-01-01

    Costs and losses induced by possible future extreme environmental conditions and difficulties in repairing post-yielding damage strongly suggest the need for proper consideration in design rather than just life loss prevention. This can be addressed through the development of design methodology that balances the initial cost of the very large floating structure (VLFS) against the expected potential losses resulting from future extreme wave-induced structural damage. Here, the development of a methodology for determining optimal, cost-effective design will be presented and applied to a VLFS located in the Tokyo bay. Optimal design criteria are determined based on the total expected life-cycle cost and acceptable damage probability and curvature of the structure, and a set of sizes of the structure are obtained. The methodology and applications require expressions of the initial cost and the expected life-cycle damage cost as functions of the optimal design variables. This study includes the methodology, total life-cycle cost function, structural damage modeling, and reliability analysis.

  9. Blended e-learning Design: Discussion of Cultural Issues

    Directory of Open Access Journals (Sweden)

    Ahmed A Al-Hunaiyyan

    2008-06-01

    Full Text Available Blended e-learning is becoming an educational issue especially with the new development of e-learning technology and globalization. Educators as the question: can we design these systems to accommodate different cultural groups and various learning strategies. This paper addresses some design issues when selecting a blended e-learning approach; it discusses some cultural elements that affect the design of blended e-learning. The paper also explores issues related to learning design, then emphasizes on the importance of cultural learning objects (CLO and its role in the design of multimedia-based e-learning systems.

  10. Interior Design 1992 Buyers Guide issue.

    Science.gov (United States)

    1992-01-30

    The Interior Design Magazine Buyers Guide is compiled with you, the designer, in mind. So it's packed with the most comprehensive collection of sources available anyplace--arranged for fast, easy access. First, the Keyword Index presents all the Buyers Guide product categories alphabetically (see the first tab divider). Refer to the page number indicated in the Product Index (second tab divider) to view various manufacturers of products under each category heading. Addresses, phone and fax numbers, regional and international showroom/representatives are located in the A-Z Index (third tab divider) in alphabetical order. Consult the table of contents for trade associations, lighting consultants, marts, and other useful sections.

  11. Introducing Organisational Behaviour: Issues in Course Design.

    Science.gov (United States)

    Costea, Bogdan; Crump, Norman

    1999-01-01

    Design of an introductory organizational behavior course contrasted a Cartesian scientific approach with phenomenological and hermeneutic perspectives intended to overcome limits of traditional approaches. The new course situates management in an historical context and focuses on management, then organizations, then the self. (SK)

  12. Carbon Pricing: Design, Experiences and Issues

    DEFF Research Database (Denmark)

    Carbon Pricing reflects upon and further develops the ongoing and worthwhile global debate into how to design carbon pricing, and how to utilize the financial proceeds in the best possible way for society. The world has recently witnessed a significant downward adjustment in fossil fuel prices...

  13. Design of piezoelectric transducer layer with electromagnetic shielding and high connection reliability

    International Nuclear Information System (INIS)

    Qiu, Lei; Yuan, Shenfang; Shi, Xiaoling; Huang, Tianxiang

    2012-01-01

    Piezoelectric transducer (PZT) and Lamb wave based structural health monitoring (SHM) method have been widely studied for on-line SHM of high-performance structures. To monitor large-scale structures, a dense PZTs array is required. In order to improve the placement efficiency and reduce the wire burden of the PZTs array, the concept of the piezoelectric transducers layer (PSL) was proposed. The PSL consists of PZTs, a flexible interlayer with printed wires and signal input/output interface. For on-line SHM on real aircraft structures, there are two main issues on electromagnetic interference and connection reliability of the PSL. To address the issues, an electromagnetic shielding design method of the PSL to reduce spatial electromagnetic noise and crosstalk is proposed and a combined welding–cementation process based connection reliability design method is proposed to enhance the connection reliability between the PZTs and the flexible interlayer. Two experiments on electromagnetic interference suppression are performed to validate the shielding design of the PSL. The experimental results show that the amplitudes of the spatial electromagnetic noise and crosstalk output from the shielded PSL developed by this paper are − 15 dB and − 25 dB lower than those of the ordinary PSL, respectively. Other two experiments on temperature durability ( − 55 °C–80 °C ) and strength durability (160–1600με, one million load cycles) are applied to the PSL to validate the connection reliability. The low repeatability errors (less than 3% and less than 5%, respectively) indicate that the developed PSL is of high connection reliability and long fatigue life. (paper)

  14. Design of piezoelectric transducer layer with electromagnetic shielding and high connection reliability

    Science.gov (United States)

    Qiu, Lei; Yuan, Shenfang; Shi, Xiaoling; Huang, Tianxiang

    2012-07-01

    Piezoelectric transducer (PZT) and Lamb wave based structural health monitoring (SHM) method have been widely studied for on-line SHM of high-performance structures. To monitor large-scale structures, a dense PZTs array is required. In order to improve the placement efficiency and reduce the wire burden of the PZTs array, the concept of the piezoelectric transducers layer (PSL) was proposed. The PSL consists of PZTs, a flexible interlayer with printed wires and signal input/output interface. For on-line SHM on real aircraft structures, there are two main issues on electromagnetic interference and connection reliability of the PSL. To address the issues, an electromagnetic shielding design method of the PSL to reduce spatial electromagnetic noise and crosstalk is proposed and a combined welding-cementation process based connection reliability design method is proposed to enhance the connection reliability between the PZTs and the flexible interlayer. Two experiments on electromagnetic interference suppression are performed to validate the shielding design of the PSL. The experimental results show that the amplitudes of the spatial electromagnetic noise and crosstalk output from the shielded PSL developed by this paper are - 15 dB and - 25 dB lower than those of the ordinary PSL, respectively. Other two experiments on temperature durability ( - 55 °C-80 °C ) and strength durability (160-1600μɛ, one million load cycles) are applied to the PSL to validate the connection reliability. The low repeatability errors (less than 3% and less than 5%, respectively) indicate that the developed PSL is of high connection reliability and long fatigue life.

  15. Grouping of the design issues for KNGR MMI evaluation

    International Nuclear Information System (INIS)

    Oh, In Seok; Lee, Dong Young; Lee, Jung Woon; Lee, Hyn Chul; Park, Jae Chang

    2001-05-01

    The Korean Next Generation Reactor(KNGR) man-machine interface(MMI) design adopting digital technologies has been developed since 1997. The KNGR MMI consists of CRT-based operator workstations, large display panel(LDP), alarm System, soft control and computerized procedure system. Westinghouse tried to systematically identify and evaluate human factor potential issues of advanced control room. The KNGR MMI design features are very similar with those of the Westinghouse AP-600. The KNGR will try to reflect the evaluation results of 15 issues that the Westinghouse has developed. But it needs much time and costs to evaluate the 15 issues during this design phase. In this study, we analyzed evaluation issues of the AP-600 and classified the 13 issues, which the Westinghouse developed, into 5 groups to simultaneously except 2 issues which can not evaluate in this design phase

  16. Spherical tokamak power plant design issues

    International Nuclear Information System (INIS)

    Hender, T.C.; Bond, A.; Edwards, J.; Karditsas, P.J.; McClements, K.G.; Mustoe, J.; Sherwood, D.V.; Voss, G.M.; Wilson, H.R.

    2000-01-01

    The very high β potential of the spherical tokamak has been demonstrated in the START experiment. Systems code studies show the cost of electricity from spherical tokamak power plants, operating at high β in second ballooning mode stable regime, is comparable with fossil fuels and fission. Outline engineering designs are presented based on two concepts for the central rod of the toroidal field (TF) circuit - a room temperature water cooled copper rod or a helium cooled cryogenic aluminium rod. For the copper rod case the TF return limbs are supported by the vacuum vessel, while for the aluminium rod the TF coils form an independent structure. In both cases thermohydraulic and stress calculations indicate the viability of the design. Two-dimensional neutronics calculations show the feasibility of tritium self-sufficiency without an inboard blanket. The spherical tokamak has unique maintenance possibilities based on lowering major component structures into a hot cell beneath the device and these are discussed

  17. Group 1: Scenario design and development issues

    Science.gov (United States)

    Sherwin, P.

    1981-01-01

    All LOFT scenarios and flight segments should be designed on the basis of a detailed statement of specific objectives. These objectives must state what kind of situation is to be addressed and why. The origin, routing, and destination of a particular scenario should be dictated by the specific objectives for that scenario or leg. Other factors to be considered are the desired weather, climate, etc. Simulator visual system, as well as other capabilities and limitations must be considered at a very early stage of scenario design. The simulator navigation area must be apropriate and must coincide with current Jeppeson charts. Much of the realism of LOFT is destroyed if the crew is unable to use current manuals and other materials.

  18. Reliability Based Geometric Design of Horizontal Circular Curves

    Science.gov (United States)

    Rajbongshi, Pabitra; Kalita, Kuldeep

    2018-06-01

    Geometric design of horizontal circular curve primarily involves with radius of the curve and stopping sight distance at the curve section. Minimum radius is decided based on lateral thrust exerted on the vehicles and the minimum stopping sight distance is provided to maintain the safety in longitudinal direction of vehicles. Available sight distance at site can be regulated by changing the radius and middle ordinate at the curve section. Both radius and sight distance depend on design speed. Speed of vehicles at any road section is a variable parameter and therefore, normally the 98th percentile speed is taken as the design speed. This work presents a probabilistic approach for evaluating stopping sight distance, considering the variability of all input parameters of sight distance. It is observed that the 98th percentile sight distance value is much lower than the sight distance corresponding to 98th percentile speed. The distribution of sight distance parameter is also studied and found to follow a lognormal distribution. Finally, the reliability based design charts are presented for both plain and hill regions, and considering the effect of lateral thrust.

  19. Reliability Based Geometric Design of Horizontal Circular Curves

    Science.gov (United States)

    Rajbongshi, Pabitra; Kalita, Kuldeep

    2018-03-01

    Geometric design of horizontal circular curve primarily involves with radius of the curve and stopping sight distance at the curve section. Minimum radius is decided based on lateral thrust exerted on the vehicles and the minimum stopping sight distance is provided to maintain the safety in longitudinal direction of vehicles. Available sight distance at site can be regulated by changing the radius and middle ordinate at the curve section. Both radius and sight distance depend on design speed. Speed of vehicles at any road section is a variable parameter and therefore, normally the 98th percentile speed is taken as the design speed. This work presents a probabilistic approach for evaluating stopping sight distance, considering the variability of all input parameters of sight distance. It is observed that the 98th percentile sight distance value is much lower than the sight distance corresponding to 98th percentile speed. The distribution of sight distance parameter is also studied and found to follow a lognormal distribution. Finally, the reliability based design charts are presented for both plain and hill regions, and considering the effect of lateral thrust.

  20. Mechanical Integrity Issues at MCM-Cs for High Reliability Applications

    International Nuclear Information System (INIS)

    Morgenstern, H.A.; Tarbutton, T.J.; Becka, G.A.; Uribe, F.; Monroe, S.; Burchett, S.

    1998-01-01

    During the qualification of a new high reliability low-temperature cofired ceramic (LTCC) multichip module (MCM), two issues relating to the electrical and mechanical integrity of the LTCC network were encountered while performing qualification testing. One was electrical opens after aging tests that were caused by cracks in the solder joints. The other was fracturing of the LTCC networks during mechanical testing. Through failure analysis, computer modeling, bend testing, and test samples, changes were identified. Upon implementation of all these changes, the modules passed testing, and the MCM was placed into production

  1. Issues in risk analysis of passive LWR designs

    International Nuclear Information System (INIS)

    Youngblood, R.W.; Pratt, W.T.; Amico, P.J.; Gallagher, D.

    1992-01-01

    This paper discusses issues which bear on the question of how safety is to be demonstrated for ''simplified passive'' light water reactor (LWR) designs. First, a very simplified comparison is made between certain systems in today's plants. comparable systems in evolutionary designs, and comparable systems in the simplified passives. in order to introduce the issues. This discussion is not intended to describe the designs comprehensively, but is offered only to show why certain issues seem to be important in these particular designs. Next, an important class of accident sequences is described; finally, based on this discussion, some priorities in risk analysis are presented and discussed

  2. Reliability-Based Design of Wind Turbine Foundations

    DEFF Research Database (Denmark)

    Firouzianbandpey, Sarah

    reliable, affordable, clean and renewable energy. Wind turbines have gained popularity among other renewable energy generators by having both technically and economically efficient features and by offering competitive production prices compared to other renewable energy sources. Therefore, it is a key...... shorter spatial correlation lengths in the vertical direction as a result of the depositional process. The normalized cone resistance is a better estimator of spatial trends compared to the normalized friction ratio. In geotechnical engineering analysis and design, practitioners ideally would like to know...... the soil properties at many locations, but achieving this goal can be unrealistic and expensive. Therefore, developing ways to determine these parameters using statistical approaches is of great interest. This research employs a random field model to deal with uncertainty in soil properties due to spatial...

  3. RELIABILITY BASED DESIGN OF FIXED FOUNDATION WIND TURBINES

    Energy Technology Data Exchange (ETDEWEB)

    Nichols, R.

    2013-10-14

    Recent analysis of offshore wind turbine foundations using both applicable API and IEC standards show that the total load demand from wind and waves is greatest in wave driven storms. Further, analysis of overturning moment loads (OTM) reveal that impact forces exerted by breaking waves are the largest contributor to OTM in big storms at wind speeds above the operating range of 25 m/s. Currently, no codes or standards for offshore wind power generators have been adopted by the Bureau of Ocean Energy Management Regulation and Enforcement (BOEMRE) for use on the Outer Continental Shelf (OCS). Current design methods based on allowable stress design (ASD) incorporate the uncertainty in the variation of loads transferred to the foundation and geotechnical capacity of the soil and rock to support the loads is incorporated into a factor of safety. Sources of uncertainty include spatial and temporal variation of engineering properties, reliability of property measurements applicability and sufficiency of sampling and testing methods, modeling errors, and variability of estimated load predictions. In ASD these sources of variability are generally given qualitative rather than quantitative consideration. The IEC 61400‐3 design standard for offshore wind turbines is based on ASD methods. Load and resistance factor design (LRFD) methods are being increasingly used in the design of structures. Uncertainties such as those listed above can be included quantitatively into the LRFD process. In LRFD load factors and resistance factors are statistically based. This type of analysis recognizes that there is always some probability of failure and enables the probability of failure to be quantified. This paper presents an integrated approach consisting of field observations and numerical simulation to establish the distribution of loads from breaking waves to support the LRFD of fixed offshore foundations.

  4. Civil Litigation in the UK: сontemporary issues to ensure evidential reliability

    Directory of Open Access Journals (Sweden)

    Koch Hugh

    2016-06-01

    Full Text Available The system for assessing appropriate damages for individuals who have suffered a personal injury, caused by another person or persons is well established in the UK. A claimant, for example, who has been in a road accident, work accident, medical accident or negligent action can make a claim for his/her physical and psychological injuries, time off work and future disability, provided it is proven that another person(s is responsible. The system involves obtaining, medical-legal evidence on the diagnosis, causation, treatment and prognosis of any injuries, physical or psychological. One key aspect of this covers the crucial issue of evidential reliability. This paper explains the key questions facing lawyers and experts alike in the UK; fundamental postulates or beliefs about evidence; ways to improve reliability; the relevance of pre-event history and improving evidential reliability via Part 35 questioning. The UK, along with the USA, has the most advanced and developed system of personal injury litigation process.

  5. A Reliability-Oriented Design Method for Power Electronic Converters

    DEFF Research Database (Denmark)

    Wang, Huai; Zhou, Dao; Blaabjerg, Frede

    2013-01-01

    Reliability is a crucial performance indicator of power electronic systems in terms of availability, mission accomplishment and life cycle cost. A paradigm shift in the research on reliability of power electronics is going on from simple handbook based calculations (e.g. models in MIL-HDBK-217F h...... and reliability prediction models are provided. A case study on a 2.3 MW wind power converter is discussed with emphasis on the reliability critical component IGBT modules....

  6. Validity and reliability of the Family Empowerment Scale for caregivers of adults with mental health issues.

    Science.gov (United States)

    Kageyama, M; Nakamura, Y; Kobayashi, S; Yokoyama, K

    2016-10-01

    WHAT IS KNOWN ON THE SUBJECT?: Empowerment of family caregivers of adults with mental health issues has received increasing attention among mental health nurses in Japan and has been recognized as a new goal of family interventions. The Family Empowerment Scale (FES) was originally developed to measure the empowerment status of parents of children with emotional disorders. However, it was later applied to broader health issues. WHAT THIS PAPER ADDS TO EXISTING KNOWLEDGE?: We developed a Japanese version of the FES for family caregivers of adults with mental health issues (FES-AMJ) and examined the validity and reliability among parents. Results showed that the FES-AMJ had acceptable concurrent validity and reliability; however, insufficient construct validity was found, especially for the subscale regarding the service system. WHAT ARE THE IMPLICATIONS FOR PRACTICE?: Further studies need to modify the scale. Clarification of ideal family empowerment status in the service system through discussion with mental health nurses and family caregivers may be important. Introduction The Family Empowerment Scale (FES) was originally developed for parents of children with emotional disorders. In Japan, family empowerment is gaining increasing attention and may be one goal of nursing interventions. Aim To develop a Japanese version of the FES for family caregivers of adults with mental health issues and to study the validity and reliability of this scale among parents. Method We translated the FES into Japanese and administered this self-report questionnaire to 275 parents. Results The multitrait scaling analysis revealed acceptable convergent validity and insufficient discriminant validity among all subscales. In particular, all items of the Service system subscale had insufficient discriminant and/or convergent validity. Each subscale significantly correlated with the indicator of empowerment. The intraclass correlation coefficients of each subscale were .855-.917. Cronbach

  7. Reliability engineering

    International Nuclear Information System (INIS)

    Lee, Chi Woo; Kim, Sun Jin; Lee, Seung Woo; Jeong, Sang Yeong

    1993-08-01

    This book start what is reliability? such as origin of reliability problems, definition of reliability and reliability and use of reliability. It also deals with probability and calculation of reliability, reliability function and failure rate, probability distribution of reliability, assumption of MTBF, process of probability distribution, down time, maintainability and availability, break down maintenance and preventive maintenance design of reliability, design of reliability for prediction and statistics, reliability test, reliability data and design and management of reliability.

  8. Solving advanced multi-objective robust designs by means of multiple objective evolutionary algorithms (MOEA): A reliability application

    Energy Technology Data Exchange (ETDEWEB)

    Salazar A, Daniel E. [Division de Computacion Evolutiva (CEANI), Instituto de Sistemas Inteligentes y Aplicaciones Numericas en Ingenieria (IUSIANI), Universidad de Las Palmas de Gran Canaria. Canary Islands (Spain)]. E-mail: danielsalazaraponte@gmail.com; Rocco S, Claudio M. [Universidad Central de Venezuela, Facultad de Ingenieria, Caracas (Venezuela)]. E-mail: crocco@reacciun.ve

    2007-06-15

    This paper extends the approach proposed by the second author in [Rocco et al. Robust design using a hybrid-cellular-evolutionary and interval-arithmetic approach: a reliability application. In: Tarantola S, Saltelli A, editors. SAMO 2001: Methodological advances and useful applications of sensitivity analysis. Reliab Eng Syst Saf 2003;79(2):149-59 [special issue

  9. Design Issues and Inference in Experimental L2 Research

    Science.gov (United States)

    Hudson, Thom; Llosa, Lorena

    2015-01-01

    Explicit attention to research design issues is essential in experimental second language (L2) research. Too often, however, such careful attention is not paid. This article examines some of the issues surrounding experimental L2 research and its relationships to causal inferences. It discusses the place of research questions and hypotheses,…

  10. Review of methods for the integration of reliability and design engineering

    International Nuclear Information System (INIS)

    Reilly, J.T.

    1978-03-01

    A review of methods for the integration of reliability and design engineering was carried out to establish a reliability program philosophy, an initial set of methods, and procedures to be used by both the designer and reliability analyst. The report outlines a set of procedures which implements a philosophy that requires increased involvement by the designer in reliability analysis. Discussions of each method reviewed include examples of its application

  11. Mechanical design issues associated with mounting, maintenance, and handling of an ITER divertor

    International Nuclear Information System (INIS)

    Goranson, D.L.; Fogarty, D.J.; Jones, G.H.

    1992-01-01

    Several designs that address plasma-facing plate configurations and thermal-hydraulic design issues have been developed for the ITER divertor. Design criteria growing out of physics requirements, physical constraints, and remote handling requirements impose severe mechanical requirements on the support structure and its attachments. These pose a challenge to the mechanical design of a divertor, which must be addressed before a functional divertor is practical that is, one that can be remotely handled, aligned, and maintained; that functions reliably under thermal loading and disruptions; and that gives the required life in the nuclear environment predicted for ITER. This paper discusses the design criteria for the divertor mounting structure and identifies the mechanical design issues that need to be addressed

  12. An accurate and efficient reliability-based design optimization using the second order reliability method and improved stability transformation method

    Science.gov (United States)

    Meng, Zeng; Yang, Dixiong; Zhou, Huanlin; Yu, Bo

    2018-05-01

    The first order reliability method has been extensively adopted for reliability-based design optimization (RBDO), but it shows inaccuracy in calculating the failure probability with highly nonlinear performance functions. Thus, the second order reliability method is required to evaluate the reliability accurately. However, its application for RBDO is quite challenge owing to the expensive computational cost incurred by the repeated reliability evaluation and Hessian calculation of probabilistic constraints. In this article, a new improved stability transformation method is proposed to search the most probable point efficiently, and the Hessian matrix is calculated by the symmetric rank-one update. The computational capability of the proposed method is illustrated and compared to the existing RBDO approaches through three mathematical and two engineering examples. The comparison results indicate that the proposed method is very efficient and accurate, providing an alternative tool for RBDO of engineering structures.

  13. The design and use of reliability data base with analysis tool

    Energy Technology Data Exchange (ETDEWEB)

    Doorepall, J.; Cooke, R.; Paulsen, J.; Hokstadt, P.

    1996-06-01

    With the advent of sophisticated computer tools, it is possible to give a distributed population of users direct access to reliability component operational histories. This allows the user a greater freedom in defining statistical populations of components and selecting failure modes. However, the reliability data analyst`s current analytical instrumentarium is not adequate for this purpose. The terminology used in organizing and gathering reliability data is standardized, and the statistical methods used in analyzing this data are not always suitably chosen. This report attempts to establish a baseline with regard to terminology and analysis methods, to support the use of a new analysis tool. It builds on results obtained in several projects for the ESTEC and SKI on the design of reliability databases. Starting with component socket time histories, we identify a sequence of questions which should be answered prior to the employment of analytical methods. These questions concern the homogeneity and stationarity of (possible dependent) competing failure modes and the independence of competing failure modes. Statistical tests, some of them new, are proposed for answering these questions. Attention is given to issues of non-identifiability of competing risk and clustering of failure-repair events. These ideas have been implemented in an analysis tool for grazing component socket time histories, and illustrative results are presented. The appendix provides background on statistical tests and competing failure modes. (au) 4 tabs., 17 ills., 61 refs.

  14. The design and use of reliability data base with analysis tool

    International Nuclear Information System (INIS)

    Doorepall, J.; Cooke, R.; Paulsen, J.; Hokstadt, P.

    1996-06-01

    With the advent of sophisticated computer tools, it is possible to give a distributed population of users direct access to reliability component operational histories. This allows the user a greater freedom in defining statistical populations of components and selecting failure modes. However, the reliability data analyst's current analytical instrumentarium is not adequate for this purpose. The terminology used in organizing and gathering reliability data is standardized, and the statistical methods used in analyzing this data are not always suitably chosen. This report attempts to establish a baseline with regard to terminology and analysis methods, to support the use of a new analysis tool. It builds on results obtained in several projects for the ESTEC and SKI on the design of reliability databases. Starting with component socket time histories, we identify a sequence of questions which should be answered prior to the employment of analytical methods. These questions concern the homogeneity and stationarity of (possible dependent) competing failure modes and the independence of competing failure modes. Statistical tests, some of them new, are proposed for answering these questions. Attention is given to issues of non-identifiability of competing risk and clustering of failure-repair events. These ideas have been implemented in an analysis tool for grazing component socket time histories, and illustrative results are presented. The appendix provides background on statistical tests and competing failure modes. (au) 4 tabs., 17 ills., 61 refs

  15. New Brunswick Market Design Committee : Congestion management issues

    International Nuclear Information System (INIS)

    2001-01-01

    The restructuring of the New Brunswick wholesale power market comprises a number of issues that need to be resolved concerning transmission system related policy decisions and detailed design issues. The wholesale market structure, ownership structure, and means of preventing market power abuses all have an impact on the resolution of many of those issues. Some transmission related decisions regarding congestion management must be made, and they are examined in this document. The report includes a discussion of the issues related to congestion on the transmission system, a review of the decisions that remain to be made while proposing a number of alternatives, reviews decisions that other jurisdictions have made in somewhat similar circumstances. Finally, the advantages and disadvantages of each alternative are identified. Several high level transmission tariff design issues requiring to be addressed later in greater detail are listed in this document. 1 tab

  16. Symbolics in control design: prospects and research issues

    DEFF Research Database (Denmark)

    Christensen, Anders

    1994-01-01

    The symbolic processor is targeted as a novel basic service in computer aided control system design. Basic symbolic tools are exemplified. A design process model is formulated for control design, with subsets manipulator, tools, target and goals. It is argued, that symbolic processing will give...... substantial contributions to future design environments, as it provides flexibility of representation not possible with traditional numerics. Based on the design process, views on research issues in the incorporation of symbolic processing into traditional numerical design environments are given...

  17. Sustainable design guidelines to support the Washington State ferries terminal design manual : stormwater and material issues.

    Science.gov (United States)

    2011-08-01

    In an effort to assist the developers of the terminal design manual in potentially addressing : sustainable design issues, the overall goal is to produce Sustainable Design Guidelines that : will specifically address the unique needs and requirements...

  18. Issues in Text Design and Layout for Computer Based Communications.

    Science.gov (United States)

    Andresen, Lee W.

    1991-01-01

    Discussion of computer-based communications (CBC) focuses on issues involved with screen design and layout for electronic text, based on experiences with electronic messaging, conferencing, and publishing within the Australian Open Learning Information Network (AOLIN). Recommendations for research on design and layout for printed text are also…

  19. Participatory Design in an Era of Participation, Special Issue

    DEFF Research Database (Denmark)

    This special issue on participatory design in an era of participation presents emerging topics and discussions from the thirteenth Participatory Design conference (PDC), held at Aarhus University in August 2016. The PDC 2016 marked the twenty-fifth anniversary of the Participatory Design conference...... series, which began in 1990 with the first biannual conference in Seattle. Since then, the PDC conferences have continued to bring together a multidisciplinary, international community of researchers and practitioners around issues of cooperative design. The theme for the 2016 PDC conference...... was ‘Participatory Design in an Era of Participation.’ Critical and constructive discussions were invited on the values, characteristics, politics and future practices of participatory design in an era in which participation has now become pervasive (Bossen, Smith, Kanstrup, McDonnell, et al. 2016, Bossen, Smith...

  20. Commentary: Risk Management and Reliability Design for Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Berry, Dennis L.; Cranwell, Robert M.; Hunter, Regina L.

    1999-05-28

    Where there is a significant actuarial basis for decision making (e.g., the occurrence of fires in single-family dwellings), there is little incentive for formal risk management. Formal risk assessments are most useful in those cases where the value of the structure is high, many people may be affected, the societal perception of risk is high, consequences of a mishap would be severe, and the actuarial uncertainty is large. For these cases, there is little opportunity to obtain the necessary experiential data to make informed decisions, and the consequences in terms of money, lives, and societal confidence are severe enough to warrant a formal risk assessment. Other important factors include the symbolic value of the structure and vulnerability to single point failures. It is unlikely that formal risk management and assessment practices will or should replace the proven institutions of building codes and engineering practices. Nevertheless, formal risk assessment can provide valuable insights into the hazards threatening high-value and high-risk (perceived or actual) buildings and structures, which can in turn be translated into improved public health, safety, and security. The key is to choose and apply the right assessment tool to match the structure in question. Design-for-reliability concepts can be applied to buildings, bridges, transportation sys- tems, dams, and other structures. The use of these concepts could have the dual benefits of lowering life-cycle costs by reducing the necessity for maintenance and repair and of enhancing the saiiety and security of the structure's users.

  1. An argumentation-based method for managing complex issues in design of infrastructural systems

    International Nuclear Information System (INIS)

    Marashi, Emad; Davis, John P.

    2006-01-01

    The many interacting and conflicting requirements of a wide range of stakeholders are the main sources of complexity in the infrastructure and utility systems. We propose a systemic methodology based on negotiation and argumentation to help in the resolution of complex issues and to facilitate options appraisal during design of such systems. A process-based approach is used to assemble and propagate the evidence on performance and reliability of the system and its components, providing a success measure for different scenarios or design alternatives. The reliability of information sources and experts opinions are dealt with through an extension of the mathematical theory of evidence. This framework helps not only in capturing the reasoning behind design decisions, but also enables the decision-makers to assess and compare the evidential support for each design option

  2. Designing remote monitoring systems for long term maintenance and reliability

    International Nuclear Information System (INIS)

    Davis, G.E.; Johnson, G.L.; Schrader, F.D.; Stone, M.A.; Wilson, E.F.

    2001-01-01

    Full text: As part of the effort to modernize safeguards equipment, the IAEA is continuing to acquire and install equipment for upgrading obsolete surveillance systems with digital technology; and providing remote-monitoring capabilities where and when economically justified. Remote monitoring is expected to reduce inspection effort, particularly at storage facilities and reactor sites. Remote monitoring technology will not only involve surveillance, but will also include seals, sensors, and other unattended measurement equipment. LLNL's experience with the Argus Security System offers lessons for the design, deployment, and maintenance of remote monitoring systems. Argus is an integrated security system for protection of high-consequence U.S. Government assets, including nuclear materials. Argus provides secure transmission of sensor data, administrative data, and video information to support intrusion detection and access control functions. LLNL developed and deployed the Argus system on its own site in 1988. Since that time LLNL has installed, maintained, and upgraded Argus systems at several Department of Energy and Department of Defense sites in the US as well as at the original LLNL site. Argus has provided high levels of reliability and integrity, as well as reducing overall lifecycle cost through incremental improvements to hardware and software. This philosophy permits expansion of functional capability, hardware upgrade and software upgrade without system outages and with minimum outage of local functions. This presentation will describe Argus design strategies and lessons learned from the Argus program as they apply to the design, development, and maintenance of a remote monitoring network. Hardware failures, software failures, and communication outages are expected and must be addressed by astute selection of system architecture. A combination of redundancy, diversity, and effective functional allocation between field and system level components should

  3. reliability analysis of a two span floor designed according

    African Journals Online (AJOL)

    user

    deterministic approach, considering both ultimate and serviceability limit states. Reliability analysis of the floor ... loading, strength and stiffness parameters, dimensions .... to show that there is a direct relation between the failure probability (Pf) ...

  4. Addressing the fundamental issues in reliability evaluation of passive safety of AP1000 for a comparison with active safety of PWR

    International Nuclear Information System (INIS)

    Hashim Muhammad; Yoshikawa, Hidekazu; Yang Ming

    2013-01-01

    Passive safety systems adopted in advanced Pressurized Water Reactor (PWR), such as AP1000 and EPR, should attain higher reliability than the existing active safety systems of the conventional PWR. The objective of this study is to discuss the fundamental issues relating to the reliability evaluation of AP1000 passive safety systems for a comparison with the active safety systems of conventional PWR, based on several aspects. First, comparisons between conventional PWR and AP1000 are made from the both aspects of safety design and cost reduction. The main differences between these PWR plants exist in the configurations of safety systems: AP1000 employs the passive safety system while reducing the number of active systems. Second, the safety of AP1000 is discussed from the aspect of severe accident prevention in the event of large break loss of coolant accidents (LOCA). Third, detailed fundamental issues on reliability evaluation of AP1000 passive safety systems are discussed qualitatively by using single loop models of safety systems of both PWRs plants. Lastly, methodology to conduct quantitative estimation of dynamic reliability for AP1000 passive safety systems in LOCA condition is discussed, in order to evaluate the reliability of AP1000 in future by a success-path-based reliability analysis method (i.e., GO-FLOW). (author)

  5. Engineering Design Handbook: Development Guide for Reliability. Part Three. Reliability Prediction

    Science.gov (United States)

    1976-01-01

    to t is pa(t)=l-qa(t) (10-6) This is the reliability of being closed, defined for this interval. 2 The probability that a contact viH be open...Monte Carlo simulation. Few people can know all about all available programs. Special- ists can assist in selecting a few from the avail- able many

  6. Reliability design of mechanical systems a guide for mechanical and civil engineers

    CERN Document Server

    Woo, Seongwoo

    2017-01-01

    This book describes basic reliability concepts – parametric ALT plan, failure mechanism and design, and reliability testing with acceleration factor and sample size equation. A generalized life-stress failure model with a new effort concept has been derived and recommended to calculate the acceleration factor of the mechanical system. The new sample size equation with the acceleration factor has also been derived to carry out the parametric ALT. This new parametric ALT should help a mechanical/civil engineer to uncover the design parameters affecting reliability during the design process of the mechanical system. Consequently, it should help companies to improve product reliability and avoid recalls due to the product/structure failures in the field. As the improper or missing design parameters in the design phase are experimentally identified by this new reliability design method - parametric ALT, the mechanical/civil engineering system might improve in reliability by the increase in lifetime and the reduc...

  7. The design of reliability data bases, part I: review of standard design concepts

    International Nuclear Information System (INIS)

    Cooke, Roger M.

    1996-01-01

    Main styles in the design of reliability data banks (RDB's) are reviewed. The conceptual and mathematical tools underlying these designs are summarized. A key point is the method for assessing failure rates for competing failure modes. The theory of independent competing risk and the relation to colored Poisson processes is explained. The notions of observed and naked failure rates are defined, and their equivalence under the assumption of independence is shown. In conclusion, the needs of different users are compared with the information currently offered

  8. Database reliability engineering designing and operating resilient database systems

    CERN Document Server

    Campbell, Laine

    2018-01-01

    The infrastructure-as-code revolution in IT is also affecting database administration. With this practical book, developers, system administrators, and junior to mid-level DBAs will learn how the modern practice of site reliability engineering applies to the craft of database architecture and operations. Authors Laine Campbell and Charity Majors provide a framework for professionals looking to join the ranks of today’s database reliability engineers (DBRE). You’ll begin by exploring core operational concepts that DBREs need to master. Then you’ll examine a wide range of database persistence options, including how to implement key technologies to provide resilient, scalable, and performant data storage and retrieval. With a firm foundation in database reliability engineering, you’ll be ready to dive into the architecture and operations of any modern database. This book covers: Service-level requirements and risk management Building and evolving an architecture for operational visibility ...

  9. Reliability design of the continuous monitoring system software for an position radiation

    International Nuclear Information System (INIS)

    Kang Yuebing; Li Tiantuo; Di Yuming; Zhang Yanhong

    2004-01-01

    The reliability and stabilization is an important technical target for a continuous monitoring system. After analyzing the position's environment and the system's structure, we put forward some methods of the software's reliability design and put these into the application. The practice shows that it is important to improve the system's stability and reliability. (authors)

  10. Essential issues in SOC design designing complex systems-on-chip

    CERN Document Server

    Lin, Youn-long Steve

    2007-01-01

    Covers issues related to system-on-chip (SoC) design. This book covers IP development, verification, integration, chip implementation, testing and software. It contains valuable academic and industrial examples for those involved with the design of complex SOCs.

  11. Experimental toxicology: Issues of statistics, experimental design, and replication.

    Science.gov (United States)

    Briner, Wayne; Kirwan, Jeral

    2017-01-01

    The difficulty of replicating experiments has drawn considerable attention. Issues with replication occur for a variety of reasons ranging from experimental design to laboratory errors to inappropriate statistical analysis. Here we review a variety of guidelines for statistical analysis, design, and execution of experiments in toxicology. In general, replication can be improved by using hypothesis driven experiments with adequate sample sizes, randomization, and blind data collection techniques. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Regulatory issues resolved through design certification on the System 80+trademark standard plant design

    International Nuclear Information System (INIS)

    Ritterbusch, S.E.; Brinkman, C.B.

    1996-01-01

    The US Nuclear Regulatory Commission (NRC) has completed its review of the System 80+trademark Standard Plant Design, approving advanced design features and closing severe accident licensing issues. Final Design Approval was granted in July 1994. The NRC review was extensive, requiring written responses to over 4,950 questions and formal printing of over 50,000 Safety Analysis Report pages. New safety issues never before addressed in a regulatory atmosphere had to be resolved with detailed analysis and evaluation of design features. the System 80+ review demonstrated that regulatory issues can be firmly resolved only through presentation of a detailed design and completion of a comprehensive regulatory review

  13. Engineering reliability in design phase: An application to AP-600 reactor passive safety system

    International Nuclear Information System (INIS)

    Majumdr, D.; Siahpush, A.S.; Hills, S.W.

    1992-01-01

    A computerized reliability enhancement methodology is described that can be used at the engineering design phase to help the designer achieve a desired reliability of the system. It can take into account the limitation imposed by a constraint such as budget, space, or weight. If the desired reliability of the system is known, it can determine the minimum reliabilities of the components, or how many redundant components are needed to achieve the desired reliability. This methodology is applied to examine the Automatic Depressurization System (ADS) of the new passively safe AP-600 reactor. The safety goal of a nuclear reactor dictates a certain reliability level of its components. It is found that a series parallel valve configuration instead of the parallel-series configuration of the four valves in one stage would improve the reliability of the ADS. Other valve characteristics and arrangements are explored to examine different reliability options for the system

  14. Regulatory analysis for the resolution of Generic Issue 115, enhancement of the reliability of the Westinghouse Solid State Protection System

    International Nuclear Information System (INIS)

    Basdekas, D.L.

    1989-05-01

    Generic Issue 115 addresses a concern related to the reliability of the Westinghouse reactor protection system for plants using the Westinghouse Solid State Protection System (SSPS). Several options for improving the reliability of the Westinghouse reactor trip function for these plants and their effect on core damage frequency (CDF) and overall risk were evaluated. This regulatory analysis includes a quantitative assessment of the costs and benefits associated with the various options for enhancing the reliability of the Westinghouse SSPS and provides insights for consideration and industry initiatives. No new regulatory requirements are proposed. 25 refs., 11 tabs

  15. Design and Development Issues for Educational Robotics Training Camps

    Science.gov (United States)

    Ucgul, Memet; Cagiltay, Kursat

    2014-01-01

    The aim of this study is to explore critical design issues for educational robotics training camps and to describe how these factors should be implemented in the development of such camps. For this purpose, two robotics training camps were organized for elementary school students. The first camp had 30 children attendees, and the second had 22. As…

  16. Some Design Issues for an Online Japanese Textbook

    Science.gov (United States)

    Nagata, Noriko

    2010-01-01

    This paper discusses several design issues in the development of a new online Japanese textbook, called "Robo-Sensei: Japanese Curriculum with Automated Feedback". When it is completed, the new online textbook will present a full Japanese curriculum. It extends a previously published online software program, "Robo-Sensei: Personal Japanese Tutor"…

  17. Protocol and networking design issues for local access WDM networks

    NARCIS (Netherlands)

    Salvador, M.R.; Heemstra de Groot, S.M.; Niemegeers, I.G.M.M.

    This report gives an overview of some of the protocol and networking design issues that have been addressed in Flamingo, a major ongoing project which investigates the use of WDM optical technology in local access networks. Quality of service delivery and wavelength assignment are focused on in this

  18. Peeling the Onion: Okapi System Architecture and Software Design Issues.

    Science.gov (United States)

    Jones, S.; And Others

    1997-01-01

    Discusses software design issues for Okapi, an information retrieval system that incorporates both search engine and user interface and supports weighted searching, relevance feedback, and query expansion. The basic search system, adjacency searching, and moving toward a distributed system are discussed. (Author/LRW)

  19. Observation Likelihood Model Design and Failure Recovery Scheme toward Reliable Localization of Mobile Robots

    Directory of Open Access Journals (Sweden)

    Chang-bae Moon

    2011-01-01

    Full Text Available Although there have been many researches on mobile robot localization, it is still difficult to obtain reliable localization performance in a human co-existing real environment. Reliability of localization is highly dependent upon developer's experiences because uncertainty is caused by a variety of reasons. We have developed a range sensor based integrated localization scheme for various indoor service robots. Through the experience, we found out that there are several significant experimental issues. In this paper, we provide useful solutions for following questions which are frequently faced with in practical applications: 1 How to design an observation likelihood model? 2 How to detect the localization failure? 3 How to recover from the localization failure? We present design guidelines of observation likelihood model. Localization failure detection and recovery schemes are presented by focusing on abrupt wheel slippage. Experiments were carried out in a typical office building environment. The proposed scheme to identify the localizer status is useful in practical environments. Moreover, the semi-global localization is a computationally efficient recovery scheme from localization failure. The results of experiments and analysis clearly present the usefulness of proposed solutions.

  20. Observation Likelihood Model Design and Failure Recovery Scheme Toward Reliable Localization of Mobile Robots

    Directory of Open Access Journals (Sweden)

    Chang-bae Moon

    2010-12-01

    Full Text Available Although there have been many researches on mobile robot localization, it is still difficult to obtain reliable localization performance in a human co-existing real environment. Reliability of localization is highly dependent upon developer's experiences because uncertainty is caused by a variety of reasons. We have developed a range sensor based integrated localization scheme for various indoor service robots. Through the experience, we found out that there are several significant experimental issues. In this paper, we provide useful solutions for following questions which are frequently faced with in practical applications: 1 How to design an observation likelihood model? 2 How to detect the localization failure? 3 How to recover from the localization failure? We present design guidelines of observation likelihood model. Localization failure detection and recovery schemes are presented by focusing on abrupt wheel slippage. Experiments were carried out in a typical office building environment. The proposed scheme to identify the localizer status is useful in practical environments. Moreover, the semi-global localization is a computationally efficient recovery scheme from localization failure. The results of experiments and analysis clearly present the usefulness of proposed solutions.

  1. Derating design for optimizing reliability and cost with an application to liquid rocket engines

    International Nuclear Information System (INIS)

    Kim, Kyungmee O.; Roh, Taeseong; Lee, Jae-Woo; Zuo, Ming J.

    2016-01-01

    Derating is the operation of an item at a stress that is lower than its rated design value. Previous research has indicated that reliability can be increased from operational derating. In order to derate an item in field operation, however, an engineer must rate the design of the item at a stress level higher than the operational stress level, which increases the item's nominal failure rate and development costs. At present, there is no model available to quantify the cost and reliability that considers the design uprating as well as the operational derating. In this paper, we establish the reliability expression in terms of the derating level assuming that the nominal failure rate is constant with time for a fixed rated design value. The total development cost is expressed in terms of the rated design value and the number of tests necessary to demonstrate the reliability requirement. The properties of the optimal derating level are explained for maximizing the reliability or for minimizing the cost. As an example, the proposed model is applied to the design of liquid rocket engines. - Highlights: • Modeled the effect of derating design on the reliability and the development cost. • Discovered that derating design may reduce the cost of reliability demonstration test. • Optimized the derating design parameter for reliability maximization or cost minimization.

  2. Relevant safety issues in designing the HTR-10 reactor

    International Nuclear Information System (INIS)

    Sun Yuliang; Xu Yuanghui

    2001-01-01

    The HTR-10 is a 10 MWth pebble bed high temperature gas cooled reactor being constructed as a research facility at the Institute of Nuclear Energy Technology. This paper discusses design issues of the HTR-10 which are related to safety. It addresses the safety criteria used in the development and assessment of the design, the safety important systems, and the safety classification of components. It also summarises the results of safety analysis, including the approach used for the radioactive source term, as well as the approach to containment design. (author)

  3. Design of a Novel In-Pipe Reliable Leak Detector

    OpenAIRE

    Chatzigeorgiou, Dimitrios; Youcef-Toumi, Kamal; Ben-Mansour, Rached

    2013-01-01

    Leakage is the major factor for unaccounted losses in every pipe network around the world (oil, gas, or water). In most cases, the deleterious effects associated with the occurrence of leaks may present serious economical and health problems. Therefore, leaks must be quickly detected, located, and repaired. Unfortunately, most state-of-the-art leak detection systems have limited applicability, are neither reliable nor robust, while others depend on the user experience. In this paper, we prese...

  4. Monolithic QCL design approaches for improved reliability and affordability

    Science.gov (United States)

    Law, K. K.

    2013-12-01

    Many advances have been made recently in mid-wave infrared and long-wave infrared quantum cascade lasers (QCLs) technologies, and there is an increasing demand for these laser sources for ever expanding Naval, DoD and homeland security applications. We will discuss in this paper a portfolio of various Naval Air Warfare Weapons Division's current and future small business innovative research programs and efforts on significantly improving QCLs' performance, affordability, and reliability.

  5. An overview of reliability methods in mechanical and structural design

    Science.gov (United States)

    Wirsching, P. H.; Ortiz, K.; Lee, S. J.

    1987-01-01

    An evaluation is made of modern methods of fast probability integration and Monte Carlo treatment for the assessment of structural systems' and components' reliability. Fast probability integration methods are noted to be more efficient than Monte Carlo ones. This is judged to be an important consideration when several point probability estimates must be made in order to construct a distribution function. An example illustrating the relative efficiency of the various methods is included.

  6. Cross Layer Design for Optimizing Transmission Reliability, Energy Efficiency, and Lifetime in Body Sensor Networks.

    Science.gov (United States)

    Chen, Xi; Xu, Yixuan; Liu, Anfeng

    2017-04-19

    High transmission reliability, energy efficiency, and long lifetime are pivotal issues for wireless body area networks (WBANs. However, these performance metrics are not independent of each other, making it hard to obtain overall improvements through optimizing one single aspect. Therefore, a Cross Layer Design Optimal (CLDO) scheme is proposed to simultaneously optimize transmission reliability, energy efficiency, and lifetime of WBANs from several layers. Firstly, due to the fact that the transmission power of nodes directly influences the reliability of links, the optimized transmission power of different nodes is deduced, which is able to maximize energy efficiency in theory under the premise that requirements on delay and jitter are fulfilled. Secondly, a relay decision algorithm is proposed to choose optimized relay nodes. Using this algorithm, nodes will choose relay nodes that ensure a balance of network energy consumption, provided that all nodes transmit with optimized transmission power and the same packet size. Thirdly, the energy consumption of nodes is still unbalanced even with optimized transmission power because of their different locations in the topology of the network. In addition, packet size also has an impact on final performance metrics. Therefore, a synthesized cross layer method for optimization is proposed. With this method, the transmission power of nodes with more residual energy will be enhanced while suitable packet size is determined for different links in the network, leading to further improvements in the WBAN system. Both our comprehensive theoretical analysis and experimental results indicate that the performance of our proposed scheme is better than reported in previous studies. Relative to the relay selection and power control game (RSPCG) scheme, the CLDO scheme can enhance transmission reliability by more than 44.6% and prolong the lifetime by as much as 33.2%.

  7. Study of Fuze Structure and Reliability Design Based on the Direct Search Method

    Science.gov (United States)

    Lin, Zhang; Ning, Wang

    2017-03-01

    Redundant design is one of the important methods to improve the reliability of the system, but mutual coupling of multiple factors is often involved in the design. In my study, Direct Search Method is introduced into the optimum redundancy configuration for design optimization, in which, the reliability, cost, structural weight and other factors can be taken into account simultaneously, and the redundant allocation and reliability design of aircraft critical system are computed. The results show that this method is convenient and workable, and applicable to the redundancy configurations and optimization of various designs upon appropriate modifications. And this method has a good practical value.

  8. Design issues for numerical libraries on scalable multicore architectures

    International Nuclear Information System (INIS)

    Heroux, M A

    2008-01-01

    Future generations of scalable computers will rely on multicore nodes for a significant portion of overall system performance. At present, most applications and libraries cannot exploit multiple cores beyond running addition MPI processes per node. In this paper we discuss important multicore architecture issues, programming models, algorithms requirements and software design related to effective use of scalable multicore computers. In particular, we focus on important issues for library research and development, making recommendations for how to effectively develop libraries for future scalable computer systems

  9. Russian standards and design practice of ensuring NPP reliability under severe external loading conditions

    Energy Technology Data Exchange (ETDEWEB)

    Birbraer, A N [St. Petersburg Research and Design Institute Atomenergoproject, St. Petersburt (Russian Federation)

    1993-07-01

    Russian Standards and design practice of ensuring NPP reliability under severe external loading conditions are described. The main attention is paid to the seismic design requirements. Explosions, aircraft impact, and tornado are briefly examined too (author)

  10. Russian standards and design practice of ensuring NPP reliability under severe external loading conditions

    International Nuclear Information System (INIS)

    Birbraer, A.N.

    1993-01-01

    Russian Standards and design practice of ensuring NPP reliability under severe external loading conditions are described. The main attention is paid to the seismic design requirements. Explosions, aircraft impact, and tornado are briefly examined too (author)

  11. Application of Reliability Analysis for Optimal Design of Monolithic Vertical Wall Breakwaters

    DEFF Research Database (Denmark)

    Burcharth, H. F.; Sørensen, John Dalsgaard; Christiani, E.

    1995-01-01

    Reliability analysis and reliability-based design of monolithic vertical wall breakwaters are considered. Probabilistic models of some of the most important failure modes are described. The failures are sliding and slip surface failure of a rubble mound and a clay foundation. Relevant design...

  12. Reliability Based Optimal Design of Vertical Breakwaters Modelled as a Series System Failure

    DEFF Research Database (Denmark)

    Christiani, E.; Burcharth, H. F.; Sørensen, John Dalsgaard

    1996-01-01

    Reliability based design of monolithic vertical breakwaters is considered. Probabilistic models of important failure modes such as sliding and rupture failure in the rubble mound and the subsoil are described. Characterisation of the relevant stochastic parameters are presented, and relevant design...... variables are identified and an optimal system reliability formulation is presented. An illustrative example is given....

  13. Executive-style briefings on selected repository design issues

    International Nuclear Information System (INIS)

    1978-01-01

    This document is a collection of executive-style briefings on selected repository design issues. Most of the briefings discuss differences between the US repository design bases presented in US Working Draft on Repository Physical Descriptions in a Salt Formation, prepared in support of INFCE discussions of May 1978 and the FRG-Netherlands design bases, presented in Design Study of a Radioactive Waste Repository to be Mined in a Medium-Size Salt Dome by Hamstra and Velzeboer, Netherlands Energy Research Foundation, January 1978. Advantages and disadvantages of the two sets of design bases are discussed, and the impacts of adopting either of these bases on the other's programs and positions are identified

  14. A technical survey on issues of the quantitative evaluation of software reliability

    International Nuclear Information System (INIS)

    Park, J. K; Sung, T. Y.; Eom, H. S.; Jeong, H. S.; Park, J. H.; Kang, H. G.; Lee, K. Y.; Park, J. K.

    2000-04-01

    To develop the methodology for evaluating the software reliability included in digital instrumentation and control system (I and C), many kinds of methodologies/techniques that have been proposed from the software reliability engineering fuel are analyzed to identify the strong and week points of them. According to analysis results, methodologies/techniques that can be directly applied for the evaluation of the software reliability are not exist. Thus additional researches to combine the most appropriate methodologies/techniques from existing ones would be needed to evaluate the software reliability. (author)

  15. Market system infrastructure: a major issue for the power system reliability

    International Nuclear Information System (INIS)

    Passelergue, J.Ch.

    2005-01-01

    The restructuring and opening of the electricity market made more complex the power system operation. While the system operator does not own anymore the generation assets, a perfect coordination with the market players is critical to guarantee the power system operation reliability. The market platforms, which are the main links between the system operator and the market players, must include communication means guaranteeing an uninterrupted service. The data-processing infrastructure must thus be designed to ensure the market system accessibility, as well as the effective exchange of data. Moreover, the market systems must facilitate the market operation and monitoring. They must allow the definition of a business process that, on the one hand, allows sequencing the users' actions, and that, on the other hand, provides the errors detected during the data-processing. Lastly, the market systems must facilitate the putting in place and follow-up by the market operator of operational procedures covering all the situations the operator can have to face. (author)

  16. Designing reliable wireless sensor network for nuclear power plant

    International Nuclear Information System (INIS)

    Fujiwara, Takeshi; Takahashi, Hiroyuki

    2007-01-01

    This study proposes an innovative method for the monitoring the nuclear power plant. In this field, false detection of the trouble, both 'false negative' and 'false positive' will become a serious problem. In the other hand, since nuclear power plant is such a complicated system, wireless is required for implementing into real field. Considering these backgrounds, we propose a new reliable health monitoring system for nuclear power plant. This is based on an idea, 'a network on a network', such as 'wireless global network' on 'local network with self-maintenance function.' (author)

  17. Improved FTA methodology and application to subsea pipeline reliability design.

    Science.gov (United States)

    Lin, Jing; Yuan, Yongbo; Zhang, Mingyuan

    2014-01-01

    An innovative logic tree, Failure Expansion Tree (FET), is proposed in this paper, which improves on traditional Fault Tree Analysis (FTA). It describes a different thinking approach for risk factor identification and reliability risk assessment. By providing a more comprehensive and objective methodology, the rather subjective nature of FTA node discovery is significantly reduced and the resulting mathematical calculations for quantitative analysis are greatly simplified. Applied to the Useful Life phase of a subsea pipeline engineering project, the approach provides a more structured analysis by constructing a tree following the laws of physics and geometry. Resulting improvements are summarized in comparison table form.

  18. A G-function-based reliability-based design methodology applied to a cam roller system

    International Nuclear Information System (INIS)

    Wang, W.; Sui, P.; Wu, Y.T.

    1996-01-01

    Conventional reliability-based design optimization methods treats the reliability function as an ordinary function and applies existing mathematical programming techniques to solve the design problem. As a result, the conventional approach requires nested loops with respect to g-function, and is very time consuming. A new reliability-based design method is proposed in this paper that deals with the g-function directly instead of the reliability function. This approach has the potential of significantly reducing the number of calls for g-function calculations since it requires only one full reliability analysis in a design iteration. A cam roller system in a typical high pressure fuel injection diesel engine is designed using both the proposed and the conventional approach. The proposed method is much more efficient for this application

  19. Reliability Evaluation and Probabilistic Design of Coastal Structures

    DEFF Research Database (Denmark)

    Burcharth, H. F.

    1993-01-01

    Conventional design practice for coastal structures is deterministic in nature and is based on the concept of a design load, which should not exceed the resistance (carrying capacity) of the structure. The design load is usually defined on a probabilistic basis as a characteristic value of the load......, e.g. the expectation (mean) value of the lOO-year return period event, however, often without consideration of the involved uncertainties. The resistance is in most cases defined in terms of the load which causes a certain design impact or damage to the structure and is not given as an ultimate...... force or deformation. This is because most of the available design formulae only give the relationship between wave characteristics and structural response, e.g. in terms of run-up, overtopping, armour layer damage etc. An example is the Hudson formula for armour layer stability. Almost all such design...

  20. Design and reliability analysis of a novel laser acupuncture device

    Science.gov (United States)

    Pan, Boan; Zhong, Fulin; Zhao, Ke; Li, Ting

    2018-02-01

    Acupuncture has a long history of more than 2000 years in China. However, traditional acupuncture adopts metallic needles which may bring discomfort and pricking to patients. Laser acupuncture (LA) is a non-invasive and painless way to achieve some therapeutic effects. And compared to traditional acupuncture, LA is free from infection. Taking these advantages of LA into consideration, we innovatively developed a portable laser acupuncture device with therapy part and detection part together. Therapy part sends out laser at the wavelength of 650 nm onto special acupoints of patients. And detection part includes integrated light-emitting diode (LED, 735/805/850 nm) and photodiode (OPT101). The detection part is used for the data collection for calculation of hemodynamic parameters based on near-infrared spectroscopy (NIRS). In this work, we carried out current-power test for sensitivity of therapy part. And we also conducted liquid-model optical experiment and arm blocking test for the sensitivity and effectiveness of detection part. The final results demonstrated great potential and reliability of the novel laser acupuncture device. In the future, we will apply this device in clinical applications to verify the effectiveness of the device and improve the reliability for more treatment of diseases.

  1. Supporting change processes in design: Complexity, prediction and reliability

    Energy Technology Data Exchange (ETDEWEB)

    Eckert, Claudia M. [Engineering Design Centre, University of Cambridge, Trumpington Street, Cambridge, CB2 1PZ (United Kingdom)]. E-mail: cme26@cam.ac.uk; Keller, Rene [Engineering Design Centre, University of Cambridge, Trumpington Street, Cambridge, CB2 1PZ (United Kingdom)]. E-mail: rk313@cam.ac.uk; Earl, Chris [Open University, Department of Design and Innovation, Walton Hall, Milton Keynes MK7 6AA (United Kingdom)]. E-mail: C.F.Earl@open.ac.uk; Clarkson, P. John [Engineering Design Centre, University of Cambridge, Trumpington Street, Cambridge, CB2 1PZ (United Kingdom)]. E-mail: pjc10@cam.ac.uk

    2006-12-15

    Change to existing products is fundamental to design processes. New products are often designed through change or modification to existing products. Specific parts or subsystems are changed to similar ones whilst others are directly reused. Design by modification applies particularly to safety critical products where the reuse of existing working parts and subsystems can reduce cost and risk. However change is rarely a matter of just reusing or modifying parts. Changing one part can propagate through the entire design leading to costly rework or jeopardising the integrity of the whole product. This paper characterises product change based on studies in the aerospace and automotive industry and introduces tools to aid designers in understanding the potential effects of change. Two ways of supporting designers are described: probabilistic prediction of the effects of change and visualisation of change propagation through product connectivities. Change propagation has uncertainties which are amplified by the choices designers make in practice as they implement change. Change prediction and visualisation is discussed with reference to complexity in three areas of product development: the structural backcloth of connectivities in the existing product (and its processes), the descriptions of the product used in design and the actions taken to carry out changes.

  2. Design of Accelerated Reliability Test for CNC Motorized Spindle Based on Vibration Signal

    Directory of Open Access Journals (Sweden)

    Chen Chao

    2016-01-01

    Full Text Available Motorized spindle is the key functional component of CNC machining centers which is a mechatronics system with long life and high reliability. The reliability test cycle of motorized spindle is too long and infeasible. This paper proposes a new accelerated test for reliability evaluation of motorized spindle. By field reliability test, authors collect and calculate the load data including rotational speed, cutting force and torque. Load spectrum distribution law is analyzed. And authors design a test platform to apply the load spectrum. A new method to define the fuzzy acceleration factor based on the vibration signal is proposed. Then the whole test plan of accelerated reliability test is done.

  3. Recent results relevant to ignition physics and machine design issues

    International Nuclear Information System (INIS)

    Coppi, B.; Airoldi, A.; Bombarda, F.

    2001-01-01

    The plasma regimes under which ignition can be achieved involve a characteristic range of parameters and issues on which information has been provided by recent experiments. In particular, these results have motivated a new, in-depth analysis of the expected performance of the Ignitor machine as well as of the plasma processes that it can investigate. The main results and recent advances in the design of key systems of the machine are reported. (author)

  4. Recent results relevant to ignition physics and machine design issues

    International Nuclear Information System (INIS)

    Coppi, B.; Airoldi, A.; Bombarda, F.

    1999-01-01

    The plasma regimes under which ignition can be achieved involve a characteristic range of parameters and issues on which information has been provided by recent experiments. In particular, these results have motivated a new, in-depth analysis of the expected performance of the Ignitor machine as well as of the plasma processes that it can investigate. The main results and recent advances in the design of key systems of the machine are reported. (author)

  5. Design issues for a laboratory high gain fusion facility

    International Nuclear Information System (INIS)

    Hogan, W.J.

    1987-01-01

    In an inertial fusion laboratory high gain facility, experiments will be carried out with up to 1000 MJ of thermonuclear yield. The experiment area of such a facility will include many systems and structures that will have to operate successfully in the difficult environment created by the sudden large energy release. This paper estimates many of the nuclear effects that will occur, discusses the implied design issues and suggests possible solutions so that a useful experimental facility can be built. 4 figs

  6. Protocol and networking design issues for local access WDM networks

    OpenAIRE

    Salvador, M.R.; Heemstra de Groot, S.M.; Niemegeers, I.G.M.M.

    1999-01-01

    This report gives an overview of some of the protocol and networking design issues that have been addressed in Flamingo, a major ongoing project which investigates the use of WDM optical technology in local access networks. Quality of service delivery and wavelength assignment are focused on in this report. A brief introduction to optical networks and WDM as well as a brief description of Flamingo are also included in this report.

  7. Critical plasma-materials issues for fusion reactor designs

    International Nuclear Information System (INIS)

    Wilson, K.L.; Bauer, W.

    1983-01-01

    Plasma-materials interactions are a dominant driving force in the design of fusion power reactors. This paper presents a summary of plasma-materials interactions research. Emphasis is placed on critical aspects related to reactor design. Particular issues to be addressed are plasma edge characterization, hydrogen recycle, impurity introduction, and coating development. Typical wall fluxes in operating magnetically confined devices are summarized. Recent calculations of tritium inventory and first wall permeation, based on laboratory measurements of hydrogen recycling, are given for various reactor operating scenarios. Impurity introduction/wall erosion mechanisms considered include sputtering, chemical erosion, and evaporation (melting). Finally, the advanced material development for in-vessel components is discussed. (author)

  8. Design of experiments for test of fuel element reliability

    International Nuclear Information System (INIS)

    Boehmert, J.; Juettner, C.; Linek, J.

    1989-01-01

    Changes of fuel element design and modifications of the operational conditions have to be tested in experiments and pilot projects for nuclear safety. Experimental design is an useful statistical method minimizing costs and risks for this procedure. The main problem of our work was to investigate the connection between failure rate of fuel elements, sample size, confidence interval, and error probability. Using the statistic model of the binomial distribution appropriate relations were derived and discussed. A stepwise procedure based on a modified sequential analysis according to Wald was developed as a strategy of introduction for modifications of the fuel element design and of the operational conditions. (author)

  9. Multidisciplinary Design Optimization for High Reliability and Robustness

    National Research Council Canada - National Science Library

    Grandhi, Ramana

    2005-01-01

    .... Over the last 3 years Wright State University has been applying analysis tools to predict the behavior of critical disciplines to produce highly robust torpedo designs using robust multi-disciplinary...

  10. Consortium for Electric Reliability Technology Solutions Grid of the Future White Paper on Review of Recent Reliability Issues and Systems Events

    Energy Technology Data Exchange (ETDEWEB)

    Hauer, John F.; Dagle, Jeffery E.

    1999-12-01

    This report is one of six reports developed under the U.S. Department of Energy (DOE) program in Power System Integration and Reliability (PSIR). The objective of this report is to review, analyze, and evaluate critical reliability issues demonstrated by recent disturbance events in the North America power system. Eleven major disturbances are examined, most occurring in this decade. The strategic challenge is that the pattern of technical need has persisted for a long period of time. For more than a decade, anticipation of market deregulation has been a major disincentive to new investments in system capacity. It has also inspired reduced maintenance of existing assets. A massive infusion of better technology is emerging as the final option to continue reliable electrical services. If an investment in better technology will not be made in a timely manner, then North America should plan its adjustments to a very different level of electrical service. It is apparent that technical operations staff among the utilities can be very effective at marshaling their forces in the immediate aftermath of a system emergency, and that serious disturbances often lead to improved mechanisms for coordinated operation. It is not at all apparent that such efforts can be sustained through voluntary reliability organizations in which utility personnel external to those organizations do most of the technical work. The eastern interconnection shows several situations in which much of the technical support has migrated from the utilities to the Independent System Operator (ISO), and the ISO staffs or shares staff with the regional reliability council. This process may be a natural and very positive consequence of utility restructuring. If so, the process should be expedited in regions where it is less advanced.

  11. Some reliability issues for incomplete two-dimensional warranty claims data

    International Nuclear Information System (INIS)

    Kumar Gupta, Sanjib; De, Soumen; Chatterjee, Aditya

    2017-01-01

    Bivariate reliability and vector bivariate hazard rate or hazard gradient functions are expected to have a role for meaningful assessment of the field performance for items under two-dimensional warranty coverage. In this paper a usage rate based simple class of bivariate reliability function is proposed and various bivariate reliability characteristics are studied for warranty claims data. The utilities of such study are explored with the help of a real life synthetic data. - Highlights: • Independence between age and usage rate is established. • Conditional reliability and hazard gradient along age and usage are determined. • The change point of the hazard gradients is estimated. • The concepts of layered renewal process and NHPP are introduced. • Expected number of renewals and failures at different age-usage cut-offs are obtained.

  12. System 80+ instrumentation and controls - certification of a reliable design

    International Nuclear Information System (INIS)

    Matzie, R.A.; Scarola, K.; Turk, R.S.

    1993-01-01

    ABB Combustion Engineering's (ABB) System 80+ advanced light water plant design includes a modern, fully digitized instrumentation and controls complex, Nuplex 80+. This complex incorporates an evolutionary advanced control room, replacing conventional analog instruments with more capable computer driven components. As a result, Nuplex 80+ results in significant improvements in operator information handling and control to enhance plant safety and availability. The design implements features which the U.S. NRC has determined to be acceptable for addressing the potential for common mode failure in software implemented for protective functions. (author)

  13. Philosophy of design for low cost and high reliability

    DEFF Research Database (Denmark)

    Jørgensen, John Leif; Liebe, Carl Christian

    1996-01-01

    robust error rejection and fault recovery, as well as graceful radiation induced, false object and thermal load degradation. The instrument was developed from concept to flight model within 3 years. The instrument surpasses the initial specifications for all design parameters. For Precision...

  14. Custom high-reliability radiation-hard CMOS-LSI circuit design

    International Nuclear Information System (INIS)

    Barnard, W.J.

    1981-01-01

    Sandia has developed a custom CMOS-LSI design capability to provide high reliability radiation-hardened circuits. This capability relies on (1) proven design practices to enhance reliability, (2) use of well characterized cells and logic modules, (3) computer-aided design tools to reduce design time and errors and to standardize design definition, and (4) close working relationships with the system designer and technology fabrication personnel. Trade-offs are made during the design between circuit complexity/performance and technology/producibility for high reliability and radiation-hardened designs to result. Sandia has developed and is maintaining a radiation-hardened bulk CMOS technology fabrication line for production of prototype and small production volume parts

  15. Final design and construction issues of the TAPIRO epithermal column

    International Nuclear Information System (INIS)

    Burn, K.W.; Casalini, L.; Nava, E.; Tinti, R.; Martini, S.; Mondini, D.; Rosi, G.

    2006-01-01

    The construction of the epithermal column for clinical trials at the 5 kW fast reactor TAPIRO (ENEA, Casaccia, Italy) has been completed, the experimental bunker in the reactor hall has been designed and the beam characterisation will shortly be underway. As has been reviewed at the last two ICNCT conferences, the low power of the neuron source and the relatively distant patient position outside the reactor shield led to a column design with certain characteristics. One consequence is the employment of a collimator containing lead of high purity with the resultant problems of mechanical construction. Another is the substantial neutron leakage from the column outside the aperture into the experimental bunker. Furthermore the absence of a gamma shield has led to an electron dose to the skin. This is resolved with an electron shield of aluminium. Here the construction and final design issues are discussed and the state of the project is presented. (author)

  16. A novel ontology approach to support design for reliability considering environmental effects.

    Science.gov (United States)

    Sun, Bo; Li, Yu; Ye, Tianyuan; Ren, Yi

    2015-01-01

    Environmental effects are not considered sufficiently in product design. Reliability problems caused by environmental effects are very prominent. This paper proposes a method to apply ontology approach in product design. During product reliability design and analysis, environmental effects knowledge reusing is achieved. First, the relationship of environmental effects and product reliability is analyzed. Then environmental effects ontology to describe environmental effects domain knowledge is designed. Related concepts of environmental effects are formally defined by using the ontology approach. This model can be applied to arrange environmental effects knowledge in different environments. Finally, rubber seals used in the subhumid acid rain environment are taken as an example to illustrate ontological model application on reliability design and analysis.

  17. Integrating rock mechanics issues with repository design through design process principles and methodology

    International Nuclear Information System (INIS)

    Bieniawski, Z.T.

    1996-01-01

    A good designer needs not only knowledge for designing (technical know-how that is used to generate alternative design solutions) but also must have knowledge about designing (appropriate principles and systematic methodology to follow). Concepts such as open-quotes design for manufactureclose quotes or open-quotes concurrent engineeringclose quotes are widely used in the industry. In the field of rock engineering, only limited attention has been paid to the design process because design of structures in rock masses presents unique challenges to the designers as a result of the uncertainties inherent in characterization of geologic media. However, a stage has now been reached where we are be able to sufficiently characterize rock masses for engineering purposes and identify the rock mechanics issues involved but are still lacking engineering design principles and methodology to maximize our design performance. This paper discusses the principles and methodology of the engineering design process directed to integrating site characterization activities with design, construction and performance of an underground repository. Using the latest information from the Yucca Mountain Project on geology, rock mechanics and starter tunnel design, the current lack of integration is pointed out and it is shown how rock mechanics issues can be effectively interwoven with repository design through a systematic design process methodology leading to improved repository performance. In essence, the design process is seen as the use of design principles within an integrating design methodology, leading to innovative problem solving. In particular, a new concept of open-quotes Design for Constructibility and Performanceclose quotes is introduced. This is discussed with respect to ten rock mechanics issues identified for repository design and performance

  18. Optimal Design, Reliability And Sensitivity Analysis Of Foundation Plate

    Directory of Open Access Journals (Sweden)

    Tvrdá Katarína

    2015-12-01

    Full Text Available This paper deals with the optimal design of thickness of a plate rested on Winkler’s foundation. First order method was used for the optimization, while maintaining different restrictive conditions. The aim is to obtain a minimum volume of the foundation plate. At the end some probabilistic and safety analysis of the deflection of the foundation using LHS Monte Carlo method are presented.

  19. Reliability issues and solutions for coding social communication performance in classroom settings.

    Science.gov (United States)

    Olswang, Lesley B; Svensson, Liselotte; Coggins, Truman E; Beilinson, Jill S; Donaldson, Amy L

    2006-10-01

    To explore the utility of time-interval analysis for documenting the reliability of coding social communication performance of children in classroom settings. Of particular interest was finding a method for determining whether independent observers could reliably judge both occurrence and duration of ongoing behavioral dimensions for describing social communication performance. Four coders participated in this study. They observed and independently coded 6 social communication behavioral dimensions using handheld computers. The dimensions were mutually exclusive and accounted for all verbal and nonverbal productions during a specified time frame. The technology allowed for coding frequency and duration for each entered code. Data were collected from 20 different 2-min video segments of children in kindergarten through 3rd-grade classrooms. Data were analyzed for interobserver and intraobserver agreements using time-interval sorting and Cohen's kappa. Further, interval size and total observation length were manipulated to determine their influence on reliability. The data revealed interval sorting and kappa to be a suitable method for examining reliability of occurrence and duration of ongoing social communication behavioral dimensions. Nearly all comparisons yielded medium to large kappa values; interval size and length of observation minimally affected results. Implications The analysis procedure described in this research solves a challenge in reliability: comparing coding by independent observers of both occurrence and duration of behaviors. Results indicate the utility of a new coding taxonomy and technology for application in online observations of social communication in a classroom setting.

  20. Reliability and validity of the rey visual design learning test in primary school children

    NARCIS (Netherlands)

    Wilhelm, P.

    2004-01-01

    The Rey Visual Design Learning Test (Rey, 1964, in Spreen & Strauss, 1991) assesses immediate memory span, new learning and recognition for non-verbal material. Three studies are presented that focused on the reliability and validity of the RVDLT in primary school children. Test-retest reliability

  1. Design and Analysis of Transport Protocols for Reliable High-Speed Communications

    NARCIS (Netherlands)

    Oláh, A.

    1997-01-01

    The design and analysis of transport protocols for reliable communications constitutes the topic of this dissertation. These transport protocols guarantee the sequenced and complete delivery of user data over networks which may lose, duplicate and reorder packets. Reliable transport services are

  2. Design issues for cryogenic cooling of short period superconducting undulators

    International Nuclear Information System (INIS)

    Green, M.A.; Dietderich, D.R.; Marks, S.; Prestemon, S.O.; Schlueter, R.D.

    2003-01-01

    Superconducting insertion devices, which produce periodic magnetic fields, have been built and installed in a number of synchrotron-light source storage-rings. For the most part, these devices have been wigglers, which have relatively long period lengths. This report concerns itself with the special cryogenic issues associated with short period undulators. The motivation for considering the incorporation of superconducting technology in insertion device designs is to achieve higher magnetic fields than can be achieved with more conventional permanent magnet technology. Since the peak field decreases sharply with increased magnet gap to period ratio, the cryogenic design of the magnet system is crucial. In particular, the insulation required for a warm vacuum bore device is impractical for short period undulators. This report describes the issues that are related to a cold bore (∼4 K) and an intermediate temperature bore (30 to 70 K) designs. The criteria for the use of small cryocoolers for cooling a short period undulator are presented. The problems associated with connecting small coolers to an undulator at 4.2 K are discussed

  3. Telemedicine for Developing Countries. A Survey and Some Design Issues.

    Science.gov (United States)

    Combi, Carlo; Pozzani, Gabriele; Pozzi, Giuseppe

    2016-11-02

    Developing countries need telemedicine applications that help in many situations, when physicians are a small number with respect to the population, when specialized physicians are not available, when patients and physicians in rural villages need assistance in the delivery of health care. Moreover, the requirements of telemedicine applications for developing countries are somewhat more demanding than for developed countries. Indeed, further social, organizational, and technical aspects need to be considered for successful telemedicine applications in developing countries. We consider all the major projects in telemedicine, devoted to developing countries, as described by the proper scientific literature. On the basis of such literature, we want to define a specific taxonomy that allows a proper classification and a fast overview of telemedicine projects in developing countries. Moreover, by considering both the literature and some recent direct experiences, we want to complete such overview by discussing some design issues to be taken into consideration when developing telemedicine software systems. We considered and reviewed the major conferences and journals in depth, and looked for reports on the telemedicine projects. We provide the reader with a survey of the main projects and systems, from which we derived a taxonomy of features of telemedicine systems for developing countries. We also propose and discuss some classification criteria for design issues, based on the lessons learned in this research area. We highlight some challenges and recommendations to be considered when designing a telemedicine system for developing countries.

  4. Optimizing the design and operation of reactor emergency systems using reliability analysis techniques

    International Nuclear Information System (INIS)

    Snaith, E.R.

    1975-01-01

    Following a reactor trip various reactor emergency systems, e.g. essential power supplies, emergency core cooling and boiler feed water arrangements are required to operate with a high degree of reliability. These systems must therefore be critically assessed to confirm their capability of operation and determine their reliability of performance. The use of probability analysis techniques enables the potential operating reliability of the systems to be calculated and this can then be compared with the overall reliability requirements. However, a system reliability analysis does much more than calculate an overall reliability value for the system. It establishes the reliability of all parts of the system and thus identifies the most sensitive areas of unreliability. This indicates the areas where any required improvements should be made and enables the overall systems' designs and modes of operation to be optimized, to meet the system and hence the overall reactor safety criteria. This paper gives specific examples of sensitive areas of unreliability that were identified as a result of a reliability analysis that was carried out on a reactor emergency core cooling system. Details are given of modifications to design and operation that were implemented with a resulting improvement in reliability of various reactor sub-systems. The report concludes that an initial calculation of system reliability should represent only the beginning of continuing process of system assessment. Data on equipment and system performance, particularly in those areas shown to be sensitive in their effect on the overall nuclear power plant reliability, should be collected and processed to give reliability data. These data should then be applied in further probabilistic analyses and the results correlated with the original analysis. This will demonstrate whether the required and the originally predicted system reliability is likely to be achieved, in the light of the actual history to date of

  5. Meeting Human Reliability Requirements through Human Factors Design, Testing, and Modeling

    Energy Technology Data Exchange (ETDEWEB)

    R. L. Boring

    2007-06-01

    In the design of novel systems, it is important for the human factors engineer to work in parallel with the human reliability analyst to arrive at the safest achievable design that meets design team safety goals and certification or regulatory requirements. This paper introduces the System Development Safety Triptych, a checklist of considerations for the interplay of human factors and human reliability through design, testing, and modeling in product development. This paper also explores three phases of safe system development, corresponding to the conception, design, and implementation of a system.

  6. Sensors advancements in modeling, design issues, fabrication and practical applications

    CERN Document Server

    Mukhopadhyay, Subhash Chandra

    2008-01-01

    Sensors are the most important component in any system and engineers in any field need to understand the fundamentals of how these components work, how to select them properly and how to integrate them into an overall system. This book has outlined the fundamentals, analytical concepts, modelling and design issues, technical details and practical applications of different types of sensors, electromagnetic, capacitive, ultrasonic, vision, Terahertz, displacement, fibre-optic and so on. The book: addresses the identification, modeling, selection, operation and integration of a wide variety of se

  7. Robustness Issues for Design of Innovative Timber Structures

    DEFF Research Database (Denmark)

    Hald, Frederik; Kirkegaard, Poul Henning; Sørensen, John Dalsgaard

    2013-01-01

    Robustness of structural systems has obtained a renewed interest due to a much more frequent use of advanced types of structures with limited redundancy and serious conse-quences in case of failure. The present paper summaries issues with respect to robustness of timber structures. Two different...... large span timber structures are analyzed and based on these analyses the paper presents guidelines for the future development of innovative timber struc-tures which are robust with respect to design and execution errors, unforeseen degradation and other potential hazards....

  8. Design and implementation of reliability data system of emergency diesel generator for YGN 3,4

    International Nuclear Information System (INIS)

    Kim, S. H.; Jang, S. D.; Kim, G. Y.; Kim, T. W.; Kim, Y. H.; Jeong, H. J.; Choi, G. H.

    1998-01-01

    This paper describes the design and implementation of D 2 REAMS that supports management and monitoring of the reliability data of emergency diesel generator of YGN 3,4 nuclear power plant. D2REAMS is the computerized reliability database management system to control the reliability of the emergency diesel generator of nuclear power plant and consists of seven sub-modules. Also, it was developed with intranet technology to eliminate the common problems of conventional client-server architecture. As the result of this implementation, the reliability and unavailability can be automatically computed by D2REAMS with the stored test and operation data of YGN 3,4 nuclear power plant

  9. Standardization of domestic human reliability analysis and experience of human reliability analysis in probabilistic safety assessment for NPPs under design

    International Nuclear Information System (INIS)

    Kang, D. I.; Jung, W. D.

    2002-01-01

    This paper introduces the background and development activities of domestic standardization of procedure and method for Human Reliability Analysis (HRA) to avoid the intervention of subjectivity by HRA analyst in Probabilistic Safety Assessment (PSA) as possible, and the review of the HRA results for domestic nuclear power plants under design studied by Korea Atomic Energy Research Institute. We identify the HRA methods used for PSA for domestic NPPs and discuss the subjectivity of HRA analyst shown in performing a HRA. Also, we introduce the PSA guidelines published in USA and review the HRA results based on them. We propose the system of a standard procedure and method for HRA to be developed

  10. Isaiah 36–39: Rethinking the issues of priority and historical reliability

    African Journals Online (AJOL)

    20 and refl ects a historically reliable interpretation of the events surrounding Sennacherib's invasion. On a literary level, Isaiah 36–39 shows itself to be a vital piece of the overall literary structure of Proto- Isaiah in that it highlights the fulfi lment ...

  11. 75 FR 76997 - Public Consultation on Personnel Reliability and Culture of Responsibility Issues

    Science.gov (United States)

    2010-12-10

    ... recommendations in this regard and to develop specific guidance that reflects broad input from the scientific... institutional leadership for promoting biosecurity, personnel reliability, and a culture of responsibility; (2... on the meeting agenda, which can be accessed at http://www.biosecurityboard.gov . The meeting is open...

  12. Reliability-Related Issues in the Context of Student Evaluations of Teaching in Higher Education

    Science.gov (United States)

    Kalender, Ilker

    2015-01-01

    Student evaluations of teaching (SET) have been the principal instrument to elicit students' opinions in higher education institutions. Many decisions, including high-stake ones, are made based on SET scores reported by students. In this respect, reliability of SET scores is of considerable importance. This paper has an argument that there are…

  13. 75 FR 68780 - Reliability Monitoring, Enforcement and Compliance Issues; Agenda for the Technical Conference

    Science.gov (United States)

    2010-11-09

    ... Commissioner-led Technical Conference on November 18, 2010 in the above-referenced proceeding to explore issues...://www.ferc.gov . Anyone with Internet access who desires to listen to this event can do so by navigating...

  14. Review of Reliability-Based Design Optimization Approach and Its Integration with Bayesian Method

    Science.gov (United States)

    Zhang, Xiangnan

    2018-03-01

    A lot of uncertain factors lie in practical engineering, such as external load environment, material property, geometrical shape, initial condition, boundary condition, etc. Reliability method measures the structural safety condition and determine the optimal design parameter combination based on the probabilistic theory. Reliability-based design optimization (RBDO) is the most commonly used approach to minimize the structural cost or other performance under uncertainty variables which combines the reliability theory and optimization. However, it cannot handle the various incomplete information. The Bayesian approach is utilized to incorporate this kind of incomplete information in its uncertainty quantification. In this paper, the RBDO approach and its integration with Bayesian method are introduced.

  15. Reliability optimization design of the gear modification coefficient based on the meshing stiffness

    Science.gov (United States)

    Wang, Qianqian; Wang, Hui

    2018-04-01

    Since the time varying meshing stiffness of gear system is the key factor affecting gear vibration, it is important to design the meshing stiffness to reduce vibration. Based on the effect of gear modification coefficient on the meshing stiffness, considering the random parameters, reliability optimization design of the gear modification is researched. The dimension reduction and point estimation method is used to estimate the moment of the limit state function, and the reliability is obtained by the forth moment method. The cooperation of the dynamic amplitude results before and after optimization indicates that the research is useful for the reduction of vibration and noise and the improvement of the reliability.

  16. Reliability Coupled Sensitivity Based Design Approach for Gravity Retaining Walls

    Science.gov (United States)

    Guha Ray, A.; Baidya, D. K.

    2012-09-01

    Sensitivity analysis involving different random variables and different potential failure modes of a gravity retaining wall focuses on the fact that high sensitivity of a particular variable on a particular mode of failure does not necessarily imply a remarkable contribution to the overall failure probability. The present paper aims at identifying a probabilistic risk factor ( R f ) for each random variable based on the combined effects of failure probability ( P f ) of each mode of failure of a gravity retaining wall and sensitivity of each of the random variables on these failure modes. P f is calculated by Monte Carlo simulation and sensitivity analysis of each random variable is carried out by F-test analysis. The structure, redesigned by modifying the original random variables with the risk factors, is safe against all the variations of random variables. It is observed that R f for friction angle of backfill soil ( φ 1 ) increases and cohesion of foundation soil ( c 2 ) decreases with an increase of variation of φ 1 , while R f for unit weights ( γ 1 and γ 2 ) for both soil and friction angle of foundation soil ( φ 2 ) remains almost constant for variation of soil properties. The results compared well with some of the existing deterministic and probabilistic methods and found to be cost-effective. It is seen that if variation of φ 1 remains within 5 %, significant reduction in cross-sectional area can be achieved. But if the variation is more than 7-8 %, the structure needs to be modified. Finally design guidelines for different wall dimensions, based on the present approach, are proposed.

  17. Design of fuel cell powered data centers for sufficient reliability and availability

    Science.gov (United States)

    Ritchie, Alexa J.; Brouwer, Jacob

    2018-04-01

    It is challenging to design a sufficiently reliable fuel cell electrical system for use in data centers, which require 99.9999% uptime. Such a system could lower emissions and increase data center efficiency, but the reliability and availability of such a system must be analyzed and understood. Currently, extensive backup equipment is used to ensure electricity availability. The proposed design alternative uses multiple fuel cell systems each supporting a small number of servers to eliminate backup power equipment provided the fuel cell design has sufficient reliability and availability. Potential system designs are explored for the entire data center and for individual fuel cells. Reliability block diagram analysis of the fuel cell systems was accomplished to understand the reliability of the systems without repair or redundant technologies. From this analysis, it was apparent that redundant components would be necessary. A program was written in MATLAB to show that the desired system reliability could be achieved by a combination of parallel components, regardless of the number of additional components needed. Having shown that the desired reliability was achievable through some combination of components, a dynamic programming analysis was undertaken to assess the ideal allocation of parallel components.

  18. Crucial design issues for special access technology; a Delphi study.

    Science.gov (United States)

    O'Rourke, Pearl; Ekins, Ray; Timmins, Bernard; Timmins, Fiona; Long, Siobhan; Coyle, Eugene

    2014-01-01

    To develop and demonstrate a method to involve professional users of assistive technology (AT) in the development process of customisable products. Employing the ideas of user participation and mass customisation, this research addresses the need for reduced product costs and optimised product flexibility. An adaptable six-question Delphi study was developed to establish consensus among AT professionals on design issues relating to a specified AT domain requiring innovation. The study is demonstrated for the special access technology (SAT) domain. A modified morphological matrix structures the application of the study results to the product design process. Fourteen professionals from the Republic of Ireland and the UK participated. Consensus was reached on prevalent parts of SAT that malfunction, primary reasons for SAT malfunction, characteristics of clients associated with SAT selection, client needs regarding SAT use and training, desirable traits of SAT and clinicians' frustrations with SAT. The study revealed a range of problems related to SAT, highlighting the complexities of successful SAT adoption. The questions led to differentiated insights and enabled design solution conceptualisation from various perspectives. The approach was found to help facilitate efficient generation and application of professional users' knowledge during the design process of customisable AT.

  19. Reliability of impingement sampling designs: An example from the Indian Point station

    International Nuclear Information System (INIS)

    Mattson, M.T.; Waxman, J.B.; Watson, D.A.

    1988-01-01

    A 4-year data base (1976-1979) of daily fish impingement counts at the Indian Point electric power station on the Hudson River was used to compare the precision and reliability of three random-sampling designs: (1) simple random, (2) seasonally stratified, and (3) empirically stratified. The precision of daily impingement estimates improved logarithmically for each design as more days in the year were sampled. Simple random sampling was the least, and empirically stratified sampling was the most precise design, and the difference in precision between the two stratified designs was small. Computer-simulated sampling was used to estimate the reliability of the two stratified-random-sampling designs. A seasonally stratified sampling design was selected as the most appropriate reduced-sampling program for Indian Point station because: (1) reasonably precise and reliable impingement estimates were obtained using this design for all species combined and for eight common Hudson River fish by sampling only 30% of the days in a year (110 d); and (2) seasonal strata may be more precise and reliable than empirical strata if future changes in annual impingement patterns occur. The seasonally stratified design applied to the 1976-1983 Indian Point impingement data showed that selection of sampling dates based on daily species-specific impingement variability gave results that were more precise, but not more consistently reliable, than sampling allocations based on the variability of all fish species combined. 14 refs., 1 fig., 6 tabs

  20. Balance of plant design issues for small reactors in Canada

    International Nuclear Information System (INIS)

    Harvel, G.; Meneley, D.

    2014-01-01

    Internationally, several companies are exploring design and development of Small Modular Reactors (SMR) ranging in power from 10 MWe to 300 MWe. While the designs are proceeding, the main issue at hand is finding a site for deployment of the first unit. Connection to existing well established grids is currently not competitive in part due to First of a Kind (FOAK) costs. As such, many vendors are exploring unique and remote applications where FOAK costs are not as significant a concern. One of the major assumptions in the design process usually followed is that the major effort needs to concentrate on reactor core development. While the reactor core is important, costs associated with the balance of plant and operations of the unit are likely to play an important role in the final decision of purchase. In this work, a series of conceptual designs is performed for the support systems of a small modular reactor by successive teams of undergraduate students working over semester long periods during a 3 year period. The goal of this process is to determine to what extent current technology for the balance of plant supports the development of a cost effective SMR. Each system is given to a team with an open set of criteria for design. At the completion of the design exercise, an open discussion with the teams is held regarding the staffing requirements for an SMR. The results are preliminary and reflect the open nature of the exercise. That said, the results indicate that for an SMR to be truly competitive, significant innovation is required in addressing the supporting systems of the plant. (author)

  1. Balance of plant design issues for small reactors in Canada

    Energy Technology Data Exchange (ETDEWEB)

    Harvel, G.; Meneley, D., E-mail: Glenn.Harvel@uoit.ca, E-mail: dan.meneley@sympatico.ca [Univ. of Ontario Inst. of Tech.y, Oshawa, ON (Canada)

    2014-07-01

    Internationally, several companies are exploring design and development of Small Modular Reactors (SMR) ranging in power from 10 MWe to 300 MWe. While the designs are proceeding, the main issue at hand is finding a site for deployment of the first unit. Connection to existing well established grids is currently not competitive in part due to First of a Kind (FOAK) costs. As such, many vendors are exploring unique and remote applications where FOAK costs are not as significant a concern. One of the major assumptions in the design process usually followed is that the major effort needs to concentrate on reactor core development. While the reactor core is important, costs associated with the balance of plant and operations of the unit are likely to play an important role in the final decision of purchase. In this work, a series of conceptual designs is performed for the support systems of a small modular reactor by successive teams of undergraduate students working over semester long periods during a 3 year period. The goal of this process is to determine to what extent current technology for the balance of plant supports the development of a cost effective SMR. Each system is given to a team with an open set of criteria for design. At the completion of the design exercise, an open discussion with the teams is held regarding the staffing requirements for an SMR. The results are preliminary and reflect the open nature of the exercise. That said, the results indicate that for an SMR to be truly competitive, significant innovation is required in addressing the supporting systems of the plant. (author)

  2. Reliability-Based Design Optimization of Trusses with Linked-Discrete Design Variables using the Improved Firefly Algorithm

    Directory of Open Access Journals (Sweden)

    N. M. Okasha

    2016-04-01

    Full Text Available In this paper, an approach for conducting a Reliability-Based Design Optimization (RBDO of truss structures with linked-discrete design variables is proposed. The sections of the truss members are selected from the AISC standard tables and thus the design variables that represent the properties of each section are linked. Latin hypercube sampling is used in the evaluation of the structural reliability. The improved firefly algorithm is used for the optimization solution process. It was found that in order to use the improved firefly algorithm for efficiently solving problems of reliability-based design optimization with linked-discrete design variables; it needs to be modified as proposed in this paper to accelerate its convergence.

  3. Designing high availability systems DFSS and classical reliability techniques with practical real life examples

    CERN Document Server

    Taylor, Zachary

    2014-01-01

    A practical, step-by-step guide to designing world-class, high availability systems using both classical and DFSS reliability techniques Whether designing telecom, aerospace, automotive, medical, financial, or public safety systems, every engineer aims for the utmost reliability and availability in the systems he, or she, designs. But between the dream of world-class performance and reality falls the shadow of complexities that can bedevil even the most rigorous design process. While there are an array of robust predictive engineering tools, there has been no single-source guide to understan

  4. Pitfalls and important issues in testing reliability using intraclass correlation coefficients in orthopaedic research.

    Science.gov (United States)

    Lee, Kyoung Min; Lee, Jaebong; Chung, Chin Youb; Ahn, Soyeon; Sung, Ki Hyuk; Kim, Tae Won; Lee, Hui Jong; Park, Moon Seok

    2012-06-01

    Intra-class correlation coefficients (ICCs) provide a statistical means of testing the reliability. However, their interpretation is not well documented in the orthopedic field. The purpose of this study was to investigate the use of ICCs in the orthopedic literature and to demonstrate pitfalls regarding their use. First, orthopedic articles that used ICCs were retrieved from the Pubmed database, and journal demography, ICC models and concurrent statistics used were evaluated. Second, reliability test was performed on three common physical examinations in cerebral palsy, namely, the Thomas test, the Staheli test, and popliteal angle measurement. Thirty patients were assessed by three orthopedic surgeons to explore the statistical methods testing reliability. Third, the factors affecting the ICC values were examined by simulating the data sets based on the physical examination data where the ranges, slopes, and interobserver variability were modified. Of the 92 orthopedic articles identified, 58 articles (63%) did not clarify the ICC model used, and only 5 articles (5%) described all models, types, and measures. In reliability testing, although the popliteal angle showed a larger mean absolute difference than the Thomas test and the Staheli test, the ICC of popliteal angle was higher, which was believed to be contrary to the context of measurement. In addition, the ICC values were affected by the model, type, and measures used. In simulated data sets, the ICC showed higher values when the range of data sets were larger, the slopes of the data sets were parallel, and the interobserver variability was smaller. Care should be taken when interpreting the absolute ICC values, i.e., a higher ICC does not necessarily mean less variability because the ICC values can also be affected by various factors. The authors recommend that researchers clarify ICC models used and ICC values are interpreted in the context of measurement.

  5. Reliability issues related to the usage of Cloud Computing in Critical Infrastructures

    OpenAIRE

    Diez Gonzalez, Oscar Manuel; Silva Vazquez, Andrés

    2011-01-01

    The use of cloud computing is extending to all kind of systems, including the ones that are part of Critical Infrastructures, and measuring the reliability is becoming more difficult. Computing is becoming the 5th utility, in part thanks to the use of cloud services. Cloud computing is used now by all types of systems and organizations, including critical infrastructure, creating hidden inter-dependencies on both public and private cloud models. This paper investigates the use of cloud co...

  6. The reliability and validity of fatigue measures during multiple-sprint work: an issue revisited.

    Science.gov (United States)

    Glaister, Mark; Howatson, Glyn; Pattison, John R; McInnes, Gill

    2008-09-01

    The ability to repeatedly produce a high-power output or sprint speed is a key fitness component of most field and court sports. The aim of this study was to evaluate the validity and reliability of eight different approaches to quantify this parameter in tests of multiple-sprint performance. Ten physically active men completed two trials of each of two multiple-sprint running protocols with contrasting recovery periods. Protocol 1 consisted of 12 x 30-m sprints repeated every 35 seconds; protocol 2 consisted of 12 x 30-m sprints repeated every 65 seconds. All testing was performed in an indoor sports facility, and sprint times were recorded using twin-beam photocells. All but one of the formulae showed good construct validity, as evidenced by similar within-protocol fatigue scores. However, the assumptions on which many of the formulae were based, combined with poor or inconsistent test-retest reliability (coefficient of variation range: 0.8-145.7%; intraclass correlation coefficient range: 0.09-0.75), suggested many problems regarding logical validity. In line with previous research, the results support the percentage decrement calculation as the most valid and reliable method of quantifying fatigue in tests of multiple-sprint performance.

  7. Development of reliability-based load and resistance factor design methods for piping

    International Nuclear Information System (INIS)

    Ayyub, Bilal M.; Hill, Ralph S. III; Balkey, Kenneth R.

    2003-01-01

    Current American Society of Mechanical Engineers (ASME) nuclear codes and standards rely primarily on deterministic and mechanistic approaches to design. The American Institute of Steel Construction and the American Concrete Institute, among other organizations, have incorporated probabilistic methodologies into their design codes. ASME nuclear codes and standards could benefit from developing a probabilistic, reliability-based, design methodology. This paper provides a plan to develop the technical basis for reliability-based, load and resistance factor design of ASME Section III, Class 2/3 piping for primary loading, i.e., pressure, deadweight and seismic. The plan provides a proof of concept in that LRFD can be used in the design of piping, and could achieve consistent reliability levels. Also, the results from future projects in this area could form the basis for code cases, and additional research for piping secondary loads. (author)

  8. Social Issues: Making Them Relevant and Appropriate to Undergraduate Student Designers

    Science.gov (United States)

    Lofthouse, Vicky

    2013-01-01

    Sustainable design education is now considered a core issue for industrial/product design courses, however research has shown that the predominant focus tends to be on environmental issues, as social issues are much harder to tackle. Similarly, social issues are rarely considered in industrial practice. If student designers are to become…

  9. Fault-tolerant embedded system design and optimization considering reliability estimation uncertainty

    International Nuclear Information System (INIS)

    Wattanapongskorn, Naruemon; Coit, David W.

    2007-01-01

    In this paper, we model embedded system design and optimization, considering component redundancy and uncertainty in the component reliability estimates. The systems being studied consist of software embedded in associated hardware components. Very often, component reliability values are not known exactly. Therefore, for reliability analysis studies and system optimization, it is meaningful to consider component reliability estimates as random variables with associated estimation uncertainty. In this new research, the system design process is formulated as a multiple-objective optimization problem to maximize an estimate of system reliability, and also, to minimize the variance of the reliability estimate. The two objectives are combined by penalizing the variance for prospective solutions. The two most common fault-tolerant embedded system architectures, N-Version Programming and Recovery Block, are considered as strategies to improve system reliability by providing system redundancy. Four distinct models are presented to demonstrate the proposed optimization techniques with or without redundancy. For many design problems, multiple functionally equivalent software versions have failure correlation even if they have been independently developed. The failure correlation may result from faults in the software specification, faults from a voting algorithm, and/or related faults from any two software versions. Our approach considers this correlation in formulating practical optimization models. Genetic algorithms with a dynamic penalty function are applied in solving this optimization problem, and reasonable and interesting results are obtained and discussed

  10. Critical safety issues in the design of fusion machines

    International Nuclear Information System (INIS)

    Kramer, W.

    1991-01-01

    In the course of developing fusion machines both general safety considerations and safety assessments for the various components and systems of actual machines increase in number and become more and more coherent. This is particularly true for the NET/ITER projects where safety analysis plays an increasing role for the design of the machine. Since in a D/T tokamak the radiological hazards will be dominant basic radiological safety objectives are discussed. Critical safety issues as identified in particular by the NET/ITER community are reviewed. Subsequently, issues of major concern are considered both for normal operation and for conceivable accidents. The following accidents are considered to be crucial: Loss of cooling in plasma facing components, loss of vacuum, tritium system failure, and magnet system failure. To mitigate accident consequences a confinement concept based on passive features and multiple barriers including detritiation and filtering has to be applied. The reactor building as final barrier needs special attention to cope with both internal and external hazards. (orig.)

  11. Design issues for semi-passive optical communication devices

    Science.gov (United States)

    Glaser, I.

    2007-09-01

    Optical smart cards are devices containing a retro-reflector, light modulator, and some computing and data storage capabilities to affect semi-passive communication. They do not produce light; instead they modulate and send back light received from a stationary unit. These devices can replace contact-based smart cards as well as RF based ones for applications ranging from identification to transmitting and validating data. Since their transmission is essentially focused on the receiving unit, they are harder to eavesdrop than RF devices, yet need no physical contact or alignment. In this paper we explore optical design issues of these devices and estimate their optical behavior. Specifically, we analyze how these compact devices can be optimized for selected application profiles. Some of the key parameters addressed are effective light efficiency (how much modulated signal can be received by the stationary unit given the amount of light it transmits), range of tilt angles (angle between device surface normal to the line connecting the optical smart card with the stationary unit) through which the device would be effective, and power requirements of the semi-passive unit. In addition, issues concerning compact packaging of this device are discussed. Finally, results of the analysis are employed to produce a comparison of achievable capabilities of these optical smart cards, as opposed to alternative devices, and discuss potential applications were they can be best utilized.

  12. The Reliability and Validity of Fatigue Measures During Multiple-Sprint Work: An Issue Revisited

    OpenAIRE

    Glaister, Mark; Howatson, Glyn; Pattison, John R.; McInnes, Gill

    2008-01-01

    The ability to repeatedly produce a high-power output or sprint speed is a key fitness component of most field and court sports. The aim of this study was to evaluate the validity and reliability of eight different approaches to quantify this parameter in tests of multiple-sprint performance. Ten physically active men completed two trials of each of two multiple-sprint running protocols with contrasting recovery periods. Protocol 1 consisted of 12 × 30-m sprints repeated every 35 seconds; pro...

  13. Safety issues relating to the design of fusion power facilities

    International Nuclear Information System (INIS)

    Stasko, R.R.; Wong, K.Y.; Russell, S.B.

    1986-06-01

    In order to make fusion power a viable future source of energy, it will be necessary to ensure that the cost of power for fusion electric generation is competitive with advanced fission concepts. In addition, fusion power will have to live up to its original promise of being a more radiologically benign technology than fission, and be able to demonstrate excellent operational safety performance. These two requirements are interrelated, since the selection of an appropriate safety philosophy early in the design phase could greatly reduce or eliminate the capital costs of elaborate safety related and protective sytems. This paper will briefly overview a few of the key safety issues presently recognized as critical to the ultimate achievement of licensable, environmentally safe and socially acceptable fusion power facilities. 12 refs

  14. A Buffer Management Issue in Designing SSDs for LFSs

    Science.gov (United States)

    Kim, Jaegeuk; Seol, Jinho; Maeng, Seungryoul

    This letter introduces a buffer management issue in designing SSDs for log-structured file systems (LFSs). We implemented a novel trace-driven SSD simulator in SystemC language, and simulated several SSD architectures with the NILFS2 trace. From the results, we give two major considerations related to the buffer management as follows. (1) The write buffer is used as a buffer not a cache, since all write requests are sequential in NILFS2. (2) For better performance, the main architectural factor is the bus bandwidth, but 332MHz is enough. Instead, the read buffer makes a key role in performance improvement while caching data. To enhance SSDs, accordingly, it is an effective way to make efficient read buffer management policies, and one of the examples is tracking the valid data zone in NILFS2, which can increase the data hit ratio in read buffers significantly.

  15. Reliability based code calibration of fatigue design criteria of nuclear Class-1 piping

    International Nuclear Information System (INIS)

    Mishra, J.; Balasubramaniyan, V.; Chellapandi, P.

    2016-01-01

    Fatigue design of Class-l piping of NPP is carried out using Section-III of American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel code. The fatigue design criteria of ASME are based on the concept of safety factor, which does not provide means for the management of uncertainties for consistently reliable and economical designs. In this regards, a work is taken up to estimate the implicit reliability level associated with fatigue design criteria of Class-l piping specified by ASME Section III, NB-3650. As ASME fatigue curve is not in the form of analytical expression, the reliability level of pipeline fittings and joints is evaluated using the mean fatigue curve developed by Argonne National Laboratory (ANL). The methodology employed for reliability evaluation is FORM, HORSM and MCS. The limit state function for fatigue damage is found to be sensitive to eight parameters, which are systematically modelled as stochastic variables during reliability estimation. In conclusion a number of important aspects related to reliability of various piping product and joints are discussed. A computational example illustrates the developed procedure for a typical pipeline. (author)

  16. Review on Laryngeal Palpation Methods in Muscle Tension Dysphonia: Validity and Reliability Issues.

    Science.gov (United States)

    Khoddami, Seyyedeh Maryam; Ansari, Noureddin Nakhostin; Jalaie, Shohreh

    2015-07-01

    Laryngeal palpation is a common clinical method for the assessment of neck and laryngeal muscles in muscle tension dysphonia (MTD). To review the available laryngeal palpation methods used in patients with MTD for the assessment, diagnosis, or document of treatment outcomes. A systematic review of the literature concerning palpatory methods in MTD was conducted using the databases MEDLINE (PubMed), ScienceDirect, Scopus, Web of science, Web of knowledge and Cochrane Library between July and October 2013. Relevant studies were identified by one reviewer based on screened titles/abstracts and full texts. Manual searching was also used to track the source literature. There were five main as well as miscellaneous palpation methods that were different according to target anatomical structures, judgment or grading system, and using tasks. There were only a few scales available, and the majority of the palpatory methods were qualitative. Most of the palpatory methods evaluate the tension at both static and dynamic tasks. There was little information about the validity and reliability of the available methods. The literature on the scientific evidence of muscle tension indicators perceived by laryngeal palpation in MTD is scarce. Future studies should be conducted to investigate the validity and reliability of palpation methods. Copyright © 2015 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  17. Track 2- major components reliability and materials issues. Some performance indicators of PWR steam generators

    International Nuclear Information System (INIS)

    Milivojevic, S.; Spasojevic, D.; Riznic, J.

    2001-01-01

    The monitoring of operational performance is a crucial aspect of the management of equipment operation and maintenance in many industries, including nuclear and thermal power plants. Monitoring involves the collection and analysis of data on the operation. In these paper an analysis was made of steam generators in operation, i.e., their malfunctions during the plant life cycle with the aim of studying the characteristics of failure rate and repair rate. These values are necessary parameters if we are to determine the reliability and availability of the steam generator as a basis for the analysis of its effect on the safety and efficiency of the nuclear power plant. We analyzed IAEA available data for period from 1971 to 1998. Each steam generator was monitored individually during plants' lifetime. The data on steam generator failures were presented in uniform format, allowing the consistency in failure classification and data reporting. Operational presence of the analyzed steam generators is given for each calendar year and each lifetime year: the failure rate l and repair rate m with associated boundaries are calculated. The general trends in calendar years performance indicators (μ) of steam generators is investigated. The distributions of lifetime l and m are formed, as a complement to the analysis of calendar years performance indicators. With aspect of steam generators influence on reliability and availability of nuclear power plants, the empirical probability distribution for failure rates and repair rates are also constructed. (author)

  18. State-of-art report on digital I and C system reliability issues for nuclear power plants

    International Nuclear Information System (INIS)

    Hwang, In Koo; Lee, Dong Gyoung; Cha, Kyung Ho; Kwon, Kee Choon; Wood, Richard T.

    2000-01-01

    As the instrumentation and control (Iand C) equipment suppliers tend to provide digital components rather than conventional analog type components for instrument and control systems of nuclear power plants(NPPs), it is unavoidable to adopt digital equipment for safety I and C systems as well as non-safety systems. However, the full introduction of digital equipment to I and C systems of nuclear power plants raises several concerns which have not been considered for conventional analog I and C systems. The two major examples of the issues of digital systems are electromagnetic compatibility (EMC) and software reliability. KAERI invited a technical expert, Dr. Richard T. Wood, from Oak Ridge National Laboratory (ORNL) in Unites States and held seminars to recognize the state-of-art of the above issues and to share the information on techniques dealing with the problems. Dr. Wood has been working on the development of EMC guidelines and technical basis in using digital equipment for safety systems in nuclear power plants on the sponsorship of US Nuclear Regulatory Commission (NRC). Being based on his statements and discussions during his visit, this report describes technical considerations and issues on digital safety I and C system application in NPPs, EMC methods, environmental effects vulnerable to digital components, reliability assurance methods, etc. (author)

  19. A Simple and Reliable Method of Design for Standalone Photovoltaic Systems

    Science.gov (United States)

    Srinivasarao, Mantri; Sudha, K. Rama; Bhanu, C. V. K.

    2017-06-01

    Standalone photovoltaic (SAPV) systems are seen as a promoting method of electrifying areas of developing world that lack power grid infrastructure. Proliferations of these systems require a design procedure that is simple, reliable and exhibit good performance over its life time. The proposed methodology uses simple empirical formulae and easily available parameters to design SAPV systems, that is, array size with energy storage. After arriving at the different array size (area), performance curves are obtained for optimal design of SAPV system with high amount of reliability in terms of autonomy at a specified value of loss of load probability (LOLP). Based on the array to load ratio (ALR) and levelized energy cost (LEC) through life cycle cost (LCC) analysis, it is shown that the proposed methodology gives better performance, requires simple data and is more reliable when compared with conventional design using monthly average daily load and insolation.

  20. Reliable CPS design for mitigating semiconductor and battery aging in electric vehicles

    NARCIS (Netherlands)

    Chang, W.; Proebstl, A.; Goswami, D.; Zamani, M.; Chakraborty, S.

    2015-01-01

    Reliability and performance of cyber-physical systems (CPS) in electric vehicles (EVs) are influenced by three design aspects: (i) controller design, (ii) battery usage, i.e., Battery rate capacity and aging effects, (iii) processor aging of the in-vehicle embedded platform. In this paper, we

  1. Review report: safety and reliability issues on digital instrumentation and control systems in nuclear power plants and United States Nuclear Regulatory Commission`s dispositions

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Norio; Suzudo, Tomoaki [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-09-01

    Recently, digital instrumentation and control (I and C) systems have been applied to nuclear power plants (NPPs) in various countries. Introduction of digital I and C systems, however, raises special issues on design, implementation, safety and licensing. Since FY 1997, the Japan Atomic Energy Research Institute (JAERI) has been carrying out a project, Study on Reliability of Digital I and C Systems, which includes extensive reviews of design approaches, technical standards, regulatory processes, especially, in the United States. This report summarizes the results from the study of National Research Council (NRC) and the U.S. Nuclear Regulatory Commission`s (USNRC`s) responses to the recommendations made by the NRC`s study. That study identified six technical key issues (system aspects of digital I and C technology, software quality assurance, common-mode software failure potential, safety and reliability assessment methods, human factors and man-machine interface, dedication of commercial off-the-shelf hardware and software) and two strategic key issues (case-by-case licensing process, adequacy of technical infrastructure) that arise from the introduction of digital I and C technology and then, made recommendations to the USNRC for coping with digital I and C applications. The USNRC responded to each recommendation and showed their own dispositions in which the USNRC agreed with most of the recommendations. In Japan, it is expected that introduction of digital I and C technology is inevitable in NPPs because the vendors are gradually discontinuing support and stocking of analog components. To cope with such situations, there is a need to develop and update the standards and guidelines applicable to digital I and C technology. The key issues and the USNRC`s dispositions provided in this report is believed to be useful for developing and updating them. (J.P.N.)

  2. Review report: safety and reliability issues on digital instrumentation and control systems in nuclear power plants and United States Nuclear Regulatory Commission's dispositions

    International Nuclear Information System (INIS)

    Watanabe, Norio; Suzudo, Tomoaki

    1998-09-01

    Recently, digital instrumentation and control (I and C) systems have been applied to nuclear power plants (NPPs) in various countries. Introduction of digital I and C systems, however, raises special issues on design, implementation, safety and licensing. Since FY 1997, the Japan Atomic Energy Research Institute (JAERI) has been carrying out a project, Study on Reliability of Digital I and C Systems, which includes extensive reviews of design approaches, technical standards, regulatory processes, especially, in the United States. This report summarizes the results from the study of National Research Council (NRC) and the U.S. Nuclear Regulatory Commission's (USNRC's) responses to the recommendations made by the NRC's study. That study identified six technical key issues (system aspects of digital I and C technology, software quality assurance, common-mode software failure potential, safety and reliability assessment methods, human factors and man-machine interface, dedication of commercial off-the-shelf hardware and software) and two strategic key issues (case-by-case licensing process, adequacy of technical infrastructure) that arise from the introduction of digital I and C technology and then, made recommendations to the USNRC for coping with digital I and C applications. The USNRC responded to each recommendation and showed their own dispositions in which the USNRC agreed with most of the recommendations. In Japan, it is expected that introduction of digital I and C technology is inevitable in NPPs because the vendors are gradually discontinuing support and stocking of analog components. To cope with such situations, there is a need to develop and update the standards and guidelines applicable to digital I and C technology. The key issues and the USNRC's dispositions provided in this report is believed to be useful for developing and updating them. (J.P.N.)

  3. Major design issues of molten carbonate fuel cell power generation unit

    Energy Technology Data Exchange (ETDEWEB)

    Chen, T.P.

    1996-04-01

    In addition to the stack, a fuel cell power generation unit requires fuel desulfurization and reforming, fuel and oxidant preheating, process heat removal, waste heat recovery, steam generation, oxidant supply, power conditioning, water supply and treatment, purge gas supply, instrument air supply, and system control. These support facilities add considerable cost and system complexity. Bechtel, as a system integrator of M-C Power`s molten carbonate fuel cell development team, has spent substantial effort to simplify and minimize these supporting facilities to meet cost and reliability goals for commercialization. Similiar to other fuels cells, MCFC faces design challenge of how to comply with codes and standards, achieve high efficiency and part load performance, and meanwhile minimize utility requirements, weight, plot area, and cost. However, MCFC has several unique design issues due to its high operating temperature, use of molten electrolyte, and the requirement of CO2 recycle.

  4. Principle of maximum entropy for reliability analysis in the design of machine components

    Science.gov (United States)

    Zhang, Yimin

    2018-03-01

    We studied the reliability of machine components with parameters that follow an arbitrary statistical distribution using the principle of maximum entropy (PME). We used PME to select the statistical distribution that best fits the available information. We also established a probability density function (PDF) and a failure probability model for the parameters of mechanical components using the concept of entropy and the PME. We obtained the first four moments of the state function for reliability analysis and design. Furthermore, we attained an estimate of the PDF with the fewest human bias factors using the PME. This function was used to calculate the reliability of the machine components, including a connecting rod, a vehicle half-shaft, a front axle, a rear axle housing, and a leaf spring, which have parameters that typically follow a non-normal distribution. Simulations were conducted for comparison. This study provides a design methodology for the reliability of mechanical components for practical engineering projects.

  5. Design of an integrated operator support system for advanced NPP MCRs. Issues and perspectives

    International Nuclear Information System (INIS)

    Lee, Seung Jun; Seong Poong-Hyun

    2010-01-01

    Recently, human error has been highlighted as one of the main causes of accidents in nuclear power plants (NPPs). In order to prevent human errors during the main control room (MCR) operations, which are highly complex and mentally taxing activities, improved interfaces and operator support systems have been developed for advanced MCRs. Although operator support systems have the capability to improve the safety and reliability of an NPP, inappropriate designs can have adverse effects on the system safety. Designs based on systematic development frames and validation/verification of the systems are pivotal strategies to circumvent the negative effects of operator support systems. In this paper, an integrated operator support system designed to aid the cognitive activities of operators as well as theoretical and experimental evaluation methods of operator support systems are reviewed. From this review, it was concluded that not only issues about systems (e.g., the accuracy of the system outputs), but also issues about human operators who use the systems (for instance, information quality, the operator's trust and dependency on support systems) should be considered in the design of efficient operator support systems. (author)

  6. Improved Reliability-Based Optimization with Support Vector Machines and Its Application in Aircraft Wing Design

    Directory of Open Access Journals (Sweden)

    Yu Wang

    2015-01-01

    Full Text Available A new reliability-based design optimization (RBDO method based on support vector machines (SVM and the Most Probable Point (MPP is proposed in this work. SVM is used to create a surrogate model of the limit-state function at the MPP with the gradient information in the reliability analysis. This guarantees that the surrogate model not only passes through the MPP but also is tangent to the limit-state function at the MPP. Then, importance sampling (IS is used to calculate the probability of failure based on the surrogate model. This treatment significantly improves the accuracy of reliability analysis. For RBDO, the Sequential Optimization and Reliability Assessment (SORA is employed as well, which decouples deterministic optimization from the reliability analysis. The improved SVM-based reliability analysis is used to amend the error from linear approximation for limit-state function in SORA. A mathematical example and a simplified aircraft wing design demonstrate that the improved SVM-based reliability analysis is more accurate than FORM and needs less training points than the Monte Carlo simulation and that the proposed optimization strategy is efficient.

  7. Design choices and issues in fixed-target B experiments

    International Nuclear Information System (INIS)

    Camilleri, L.

    1993-01-01

    The main priority of any experiment on B physics in the years to come will be an endeavour to observe CP violation in the B sector. Such measurements imply the following requirements of the experiment. Trigger: a muon trigger will be sensitive to J/ψ reactions and muon tags; an electron trigger will double the number of lepton events; in order to include kaon tags and self-tagging reactions, the experiment must not rely entirely on lepton triggers. Secondary Vertex triggers and hadron p T triggers should be included in order to have the maximum flexibility. Detector: vertex detector; particle identification; good momentum resolution; electromagnetic and hadronic calorimeters; muon detector. In addition the following issues have to be addressed: Collider or fixed-target mode? If fixed target, extracted beam or internal target? If internal target, gas jet or wire target? If a gas jet, hydrogen or a heavy gas? Beam pipe design. Silicon microvertex design and radiation damage. K s 0 decay path. Particle identification. Momentum resolution. Order of detectors. No single method stands out as the open-quotes obvious one.close quotes An extracted beam yields better vertex resolution and an internal target easier triggering. A flexible and diverse triggering scheme is of prime importance in order to be sensitive to as many reactions as possible, the experiment should not be limited to lepton triggers only. Proposed experiments (P867, HERA B) at existing machines will be invaluable for testing new devices and strategies for the LHC and SSC experiments

  8. Establishment of quality, reliability and design standards for low, medium, and high power microwave hybrid microcircuits

    Science.gov (United States)

    Robinson, E. A.

    1973-01-01

    Quality, reliability, and design standards for microwave hybrid microcircuits were established. The MSFC Standard 85M03926 for hybrid microcircuits was reviewed and modifications were generated for use with microwave hybrid microcircuits. The results for reliability tests of microwave thin film capacitors, transistors, and microwave circuits are presented. Twenty-two microwave receivers were tested for 13,500 unit hours. The result of 111,121 module burn-in and operating hours for an integrated solid state transceiver module is reported.

  9. State-of-art Report on reliability assessment issue of the digital I and C equipment

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dong Young; Hwang, In Koo; Cha, Kyung Ho; Kwon, Kee Choon; Ham, Chang Shik; Lee, Ki Young; Park, Jong Kyun

    2000-03-01

    As the operational life-time of nuclear power plants being currently developed is increasing with technology improvements, the life-time of instrumentation and control systems is also required to be met to this plant operational period. The electronic devices are usually expected to be available less than for 10 years. Therefore, an appropriate S and PM (surveillance and preventive maintenance) strategy should be established to secure the reliability and availability of the plants. EPRI-URD requires that the mean time between failures caused by any I and C system failure shall be more than 50 operating years. The methodology to access of the mean time between failures of I and C system is included in this report. (author)

  10. Insights from the interim reliability evaluation program pertinent to reactor safety issues

    International Nuclear Information System (INIS)

    Carlson, D.D.

    1983-01-01

    The Interim Reliability Evaluation Program (IREP) consisted of concurrent probabilistic analyses of four operating nuclear power plants. This paper presents and integrated view of the results of the analyses drawing insights pertinent to reactor safety. The importance to risk of accident sequences initiated by transients and small loss-of-coolant accidents was confirmed. Support systems were found to contribute significantly to the sets of dominant accident sequences, either due to single failures which could disable one or more mitigating systems or due to their initiating plant transients. Human errors in response to accidents also were important risk contributors. Consideration of operator recovery actions influences accident sequence frequency estimates, the list of accident sequences dominating core melt, and the set of dominant risk contributors. Accidents involving station blackout, reactor coolant pump seal leaks and ruptures, and loss-of-coolant accidents requiring manual initiation of coolant injection were found to be risk significant

  11. Reliability-Based Topology Optimization Using Stochastic Response Surface Method with Sparse Grid Design

    Directory of Open Access Journals (Sweden)

    Qinghai Zhao

    2015-01-01

    Full Text Available A mathematical framework is developed which integrates the reliability concept into topology optimization to solve reliability-based topology optimization (RBTO problems under uncertainty. Two typical methodologies have been presented and implemented, including the performance measure approach (PMA and the sequential optimization and reliability assessment (SORA. To enhance the computational efficiency of reliability analysis, stochastic response surface method (SRSM is applied to approximate the true limit state function with respect to the normalized random variables, combined with the reasonable design of experiments generated by sparse grid design, which was proven to be an effective and special discretization technique. The uncertainties such as material property and external loads are considered on three numerical examples: a cantilever beam, a loaded knee structure, and a heat conduction problem. Monte-Carlo simulations are also performed to verify the accuracy of the failure probabilities computed by the proposed approach. Based on the results, it is demonstrated that application of SRSM with SGD can produce an efficient reliability analysis in RBTO which enables a more reliable design than that obtained by DTO. It is also found that, under identical accuracy, SORA is superior to PMA in view of computational efficiency.

  12. Design for a Crane Metallic Structure Based on Imperialist Competitive Algorithm and Inverse Reliability Strategy

    Science.gov (United States)

    Fan, Xiao-Ning; Zhi, Bo

    2017-07-01

    Uncertainties in parameters such as materials, loading, and geometry are inevitable in designing metallic structures for cranes. When considering these uncertainty factors, reliability-based design optimization (RBDO) offers a more reasonable design approach. However, existing RBDO methods for crane metallic structures are prone to low convergence speed and high computational cost. A unilevel RBDO method, combining a discrete imperialist competitive algorithm with an inverse reliability strategy based on the performance measure approach, is developed. Application of the imperialist competitive algorithm at the optimization level significantly improves the convergence speed of this RBDO method. At the reliability analysis level, the inverse reliability strategy is used to determine the feasibility of each probabilistic constraint at each design point by calculating its α-percentile performance, thereby avoiding convergence failure, calculation error, and disproportionate computational effort encountered using conventional moment and simulation methods. Application of the RBDO method to an actual crane structure shows that the developed RBDO realizes a design with the best tradeoff between economy and safety together with about one-third of the convergence speed and the computational cost of the existing method. This paper provides a scientific and effective design approach for the design of metallic structures of cranes.

  13. Embedded Sensors and Controls to Improve Component Performance and Reliability Conceptual Design Report

    Energy Technology Data Exchange (ETDEWEB)

    Kisner, R.; Melin, A.; Burress, T.; Fugate, D.; Holcomb, D.; Wilgen, J.; Miller, J.; Wilson, D.; Silva, P.; Whitlow, L.; Peretz, F.

    2012-09-15

    The objective of this project is to demonstrate improved reliability and increased performance made possible by deeply embedding instrumentation and controls (I&C) in nuclear power plant (NPP) components and systems. The project is employing a highly instrumented canned rotor, magnetic bearing, fluoride salt pump as its I&C technology demonstration platform. I&C is intimately part of the basic millisecond-by-millisecond functioning of the system; treating I&C as an integral part of the system design is innovative and will allow significant improvement in capabilities and performance. As systems become more complex and greater performance is required, traditional I&C design techniques become inadequate and more advanced I&C needs to be applied. New I&C techniques enable optimal and reliable performance and tolerance of noise and uncertainties in the system rather than merely monitoring quasistable performance. Traditionally, I&C has been incorporated in NPP components after the design is nearly complete; adequate performance was obtained through over-design. By incorporating I&C at the beginning of the design phase, the control system can provide superior performance and reliability and enable designs that are otherwise impossible. This report describes the progress and status of the project and provides a conceptual design overview for the platform to demonstrate the performance and reliability improvements enabled by advanced embedded I&C.

  14. Design issues in toxicogenomics using DNA microarray experiment

    International Nuclear Information System (INIS)

    Lee, Kyoung-Mu; Kim, Ju-Han; Kang, Daehee

    2005-01-01

    The methods of toxicogenomics might be classified into omics study (e.g., genomics, proteomics, and metabolomics) and population study focusing on risk assessment and gene-environment interaction. In omics study, microarray is the most popular approach. Genes falling into several categories (e.g., xenobiotics metabolism, cell cycle control, DNA repair etc.) can be selected up to 20,000 according to a priori hypothesis. The appropriate type of samples and species should be selected in advance. Multiple doses and varied exposure durations are suggested to identify those genes clearly linked to toxic response. Microarray experiments can be affected by numerous nuisance variables including experimental designs, sample extraction, type of scanners, etc. The number of slides might be determined from the magnitude and variance of expression change, false-positive rate, and desired power. Instead, pooling samples is an alternative. Online databases on chemicals with known exposure-disease outcomes and genetic information can aid the interpretation of the normalized results. Gene function can be inferred from microarray data analyzed by bioinformatics methods such as cluster analysis. The population study often adopts hospital-based or nested case-control design. Biases in subject selection and exposure assessment should be minimized, and confounding bias should also be controlled for in stratified or multiple regression analysis. Optimal sample sizes are dependent on the statistical test for gene-to-environment or gene-to-gene interaction. The design issues addressed in this mini-review are crucial in conducting toxicogenomics study. In addition, integrative approach of exposure assessment, epidemiology, and clinical trial is required

  15. Increasing the reliability, availability, and maintainability of the AP600 by design

    International Nuclear Information System (INIS)

    Trombola, D.; Meyer, C.

    1993-01-01

    The AP600 design is based on providing a safe, simple, standardized, and economically competitive design with a high degree of operability and ease of maintenance. Design features such as component selection, layout, and standardization increase the probability that targeted repair times are achieved. Design requirements from the utility industry and industry design practices have established criteria for: layout, changeout and replacement of parts and components; access for major pieces of equipment; and vehicle passage. These features coupled with a solid reliability assurance and maintenance program will help the AP600 meet its objectives for operation and maintenance. The AP600 draws on the operating experience and lessons learned from the utility community through design workshops and design review interaction, as well as operating plant data from sources several sources. Internally, the AP600 program incorporates the resources of Westinghouse NSD (Nuclear Service Division), which for decades has provided refueling, steam generator, reactor coolant pump, and other operating plant services. Since the early phases of the design process, the AP600 Program has executed a comprehensive reliability, availability, and maintainability program (RAM) which dealt primarily with assessing and improving plant availability. In conjunction with this program a Probabilistic Risk Assessment (PRA) was performed and submitted to the NRC with the Standard Safety Analysis Report (SSAR) in June 1992. This paper describes how AP600 ensures that the plant has design features to enhance reliability, availability, and maintainability. The RAM program that brings the plant through the design certification phase is described

  16. Methodology for risk assessment and reliability applied for pipeline engineering design and industrial valves operation

    Energy Technology Data Exchange (ETDEWEB)

    Silveira, Dierci [Universidade Federal Fluminense (UFF), Volta Redonda, RJ (Brazil). Escola de Engenharia Industrial e Metalurgia. Lab. de Sistemas de Producao e Petroleo e Gas], e-mail: dsilveira@metal.eeimvr.uff.br; Batista, Fabiano [CICERO, Rio das Ostras, RJ (Brazil)

    2009-07-01

    Two kinds of situations may be distinguished for estimating the operating reliability when maneuvering industrial valves and the probability of undesired events in pipelines and industrial plants: situations in which the risk is identified in repetitive cycles of operations and situations in which there is a permanent hazard due to project configurations introduced by decisions during the engineering design definition stage. The estimation of reliability based on the influence of design options requires the choice of a numerical index, which may include a composite of human operating parameters based on biomechanics and ergonomics data. We first consider the design conditions under which the plant or pipeline operator reliability concepts can be applied when operating industrial valves, and then describe in details the ergonomics and biomechanics risks that would lend itself to engineering design database development and human reliability modeling and assessment. This engineering design database development and reliability modeling is based on a group of engineering design and biomechanics parameters likely to lead to over-exertion forces and working postures, which are themselves associated with the functioning of a particular plant or pipeline. This approach to construct based on ergonomics and biomechanics for a more common industrial valve positioning in the plant layout is proposed through the development of a methodology to assess physical efforts and operator reach, combining various elementary operations situations. These procedures can be combined with the genetic algorithm modeling and four elements of the man-machine systems: the individual, the task, the machinery and the environment. The proposed methodology should be viewed not as competing to traditional reliability and risk assessment bur rather as complementary, since it provides parameters related to physical efforts values for valves operation and workspace design and usability. (author)

  17. Solution-verified reliability analysis and design of bistable MEMS using error estimation and adaptivity.

    Energy Technology Data Exchange (ETDEWEB)

    Eldred, Michael Scott; Subia, Samuel Ramirez; Neckels, David; Hopkins, Matthew Morgan; Notz, Patrick K.; Adams, Brian M.; Carnes, Brian; Wittwer, Jonathan W.; Bichon, Barron J.; Copps, Kevin D.

    2006-10-01

    This report documents the results for an FY06 ASC Algorithms Level 2 milestone combining error estimation and adaptivity, uncertainty quantification, and probabilistic design capabilities applied to the analysis and design of bistable MEMS. Through the use of error estimation and adaptive mesh refinement, solution verification can be performed in an automated and parameter-adaptive manner. The resulting uncertainty analysis and probabilistic design studies are shown to be more accurate, efficient, reliable, and convenient.

  18. Reliability design of a critical facility: An application of PRA methods

    International Nuclear Information System (INIS)

    Souza Vieira Neto, A.; Souza Borges, W. de

    1987-01-01

    Although a general agreement concerning the enforcement of reliability (probabilistic) design criteria for nuclear utilities is yet to be achieved. PRA methodology can still be used successfully as a project design and review tool, aimed at improving system's prospective performance or minimizing expected accident consequences. In this paper, the potential of such an application of PRA methods is examined in the special case of a critical design project currently being developed in Brazil. (orig.)

  19. Reliability considerations in long-life outer planet spacecraft system design

    Science.gov (United States)

    Casani, E. K.

    1975-01-01

    A Mariner Jupiter/Saturn mission has been planned for 1977. System reliability questions are discussed, taking into account the actual and design lifetime, causes of mission termination, in-flight failures and their consequences for the mission, and the use of redundancy to avoid failures. The design process employed optimizes the use of proven subsystem and system designs and then makes the necessary improvements to increase the lifetime as required.

  20. Design, validation, and reliability of survey to measure female athlete triad knowledge among coaches

    Directory of Open Access Journals (Sweden)

    Jillian E. Frideres

    2015-06-01

    Full Text Available The purpose of this study was to design and to test the validity and reliability of an instrument to evaluate coaches' knowledge about the female athlete triad syndrome and their confidence in this knowledge. The instrument collects information regarding: knowledge of the syndrome, components, prevention and intervention; confidence of the coaches in their answers; and coach's characteristics (gender, degree held, years of experience in coaching females, continuing education participation specific to the syndrome and its components, and sport coached. The process of designing the questionnaire and testing the validity and reliability of it was done in four phases: a design and development of the instrument, b content validity, c instrument reliability, and d concurrent validity. The results show that the instrument is suitable for measuring coaches' female athlete triad knowledge. The instrument can contribute to assessing the coaches' knowledge level in relation to this topic.

  1. Design Optimization Method for Composite Components Based on Moment Reliability-Sensitivity Criteria

    Science.gov (United States)

    Sun, Zhigang; Wang, Changxi; Niu, Xuming; Song, Yingdong

    2017-08-01

    In this paper, a Reliability-Sensitivity Based Design Optimization (RSBDO) methodology for the design of the ceramic matrix composites (CMCs) components has been proposed. A practical and efficient method for reliability analysis and sensitivity analysis of complex components with arbitrary distribution parameters are investigated by using the perturbation method, the respond surface method, the Edgeworth series and the sensitivity analysis approach. The RSBDO methodology is then established by incorporating sensitivity calculation model into RBDO methodology. Finally, the proposed RSBDO methodology is applied to the design of the CMCs components. By comparing with Monte Carlo simulation, the numerical results demonstrate that the proposed methodology provides an accurate, convergent and computationally efficient method for reliability-analysis based finite element modeling engineering practice.

  2. Special design issues. Ion beam driver-reaction chamber interfaces

    International Nuclear Information System (INIS)

    Moir, R.W.; Peterson, R.R.; Kessler, G.

    1995-01-01

    Design issues of the interface between ion beam drivers and the reaction chamber for heavy ion beam and light ion beam inertial fusion drivers are discussed. The interface must provide for radiation protection of final focusing magnets, pumping of evaporated material and non-condensable gas that enter the beam ports, thermal insulation, heat removal, a.o.. Beam ports and focal magnets must be protected by neutronically thick shielding between the beam path and the magnet conductor. The required thickness of the shielding determines the minimum spacing between individual beams in a cluster of beams. The cone angle of this cluster can affect target performance. The beamlines are subjected to evaporated material, debris, and rapidly moving droplets. The reaction chambers used here are HYLIFE-II for indirect, HIBALL-II for direct drive. The light ion beam interface is based on the LIBRA and LIBRA-LiTE studies. In the case of HYLIFE-II, liquid jets must be demonstrated with a thickness of 0.5 m and with an edge that comes to within 10 mm of the beam edges to protect the ports. Design of compact focal arrays with enough shielding to give magnets an adequate lifetime must be achieved. As shielding is added the size of the beam array will grow and the target will drop. For HIBALL neutron shielding of the focal magnets provides an adequate lifetime. Replaceable special INPORT units will have to be developed in the region of the beam ports. For light ions transport issues have led to structures being placed close enough to the target that they experience a higher neutron damage rate and must be replaced once or twice a year, which would require remote maintenance. Light ion concepts could greatly benefit from a self-pinched transport scheme, though the details are unclear and the effect on availability is uncertain. Light and heavy ions have similar problems in keeping the gas in the drivers at a low density. Both will require active means to preserve this low density, while

  3. Implantable electronics: emerging design issues and an ultra light-weight security solution.

    Science.gov (United States)

    Narasimhan, Seetharam; Wang, Xinmu; Bhunia, Swarup

    2010-01-01

    Implantable systems that monitor biological signals require increasingly complex digital signal processing (DSP) electronics for real-time in-situ analysis and compression of the recorded signals. While it is well-known that such signal processing hardware needs to be implemented under tight area and power constraints, new design requirements emerge with their increasing complexity. Use of nanoscale technology shows tremendous benefits in implementing these advanced circuits due to dramatic improvement in integration density and power dissipation per operation. However, it also brings in new challenges such as reliability and large idle power (due to higher leakage current). Besides, programmability of the device as well as security of the recorded information are rapidly becoming major design considerations of such systems. In this paper, we analyze the emerging issues associated with the design of the DSP unit in an implantable system. Next, we propose a novel ultra light-weight solution to address the information security issue. Unlike the conventional information security approaches like data encryption, which come at large area and power overhead and hence are not amenable for resource-constrained implantable systems, we propose a multilevel key-based scrambling algorithm, which exploits the nature of the biological signal to effectively obfuscate it. Analysis of the proposed algorithm in the context of neural signal processing and its hardware implementation shows that we can achieve high level of security with ∼ 13X lower power and ∼ 5X lower area overhead than conventional cryptographic solutions.

  4. Reliability-Based Design and Planning of Inspection and Monitoring of Offshore Wind Turbines

    DEFF Research Database (Denmark)

    Marquez-Dominguez, Sergio

    Maintaining and developing a sustainable wind industry is the main motivation of this PhD thesis entitled “Reliability-based design and planning of inspection and monitoring of offshore wind turbines”. In this thesis, statistical methods and probability theory are important mathematical tools used...... and offshore wind turbine foundations with the aim of improving the design, decreasing structural costs and increasing benefits. Recently, wind energy technology has started to adopt risk and reliability based inspection planning (RBI) as a methodology based on Bayesian decision theories together...

  5. Design of power converter in DFIG wind turbine with enhanced system-level reliability

    DEFF Research Database (Denmark)

    Zhou, Dao; Zhang, Guanguan; Blaabjerg, Frede

    2017-01-01

    With the increasing penetration of wind power, reliable and cost-effective wind energy production are of more and more importance. As one of the promising configurations, the doubly-fed induction generator based partial-scale wind power converter is still dominating in the existing wind farms...... margin. It can be seen that the B1 lifetime of the grid-side converter and the rotor-side converter deviates a lot by considering the electrical stresses, while they become more balanced by using an optimized reliable design. The system-level lifetime significantly increases with an appropriate design...

  6. Reliability-oriented Design of a Cost-effective Active Capacitor

    DEFF Research Database (Denmark)

    Wang, Haoran; Wang, Huai

    2017-01-01

    This paper presents the reliability-oriented design of a two-terminal active capacitor proposed recently. The two-terminal active capacitor has the same level of convenience as a passive capacitor with reduced requirement of overall energy storage. In order to fully explore the potential...... of the proposed concept, a comprehensive design procedure is necessary to optimally sizing the key components of the active capacitor in terms of cost and reliability. Moreover, the inherent condition monitoring capability of the active capacitor is discussed by utilizing the existing feedback signals. A 500 W...

  7. Design Issues for MEMS-Based Pedestrian Inertial Navigation Systems

    Directory of Open Access Journals (Sweden)

    P. S. Marinushkin

    2015-01-01

    Full Text Available The paper describes design issues for MEMS-based pedestrian inertial navigation systems. By now the algorithms to estimate navigation parameters for strap-down inertial navigation systems on the basis of plural observations have been already well developed. At the same time mathematical and software processing of information in the case of pedestrian inertial navigation systems has its specificity, due to the peculiarities of their functioning and exploitation. Therefore, there is an urgent task to enhance existing fusion algorithms for use in pedestrian navigation systems. For this purpose the article analyzes the characteristics of the hardware composition and configuration of existing systems of this class. The paper shows advantages of various technical solutions. Relying on their main features it justifies a choice of the navigation system architecture and hardware composition enabling improvement of the estimation accuracy of user position as compared to the systems using only inertial sensors. The next point concerns the development of algorithms for complex processing of heterogeneous information. To increase an accuracy of the free running pedestrian inertial navigation system we propose an adaptive algorithm for joint processing of heterogeneous information based on the fusion of inertial info rmation with magnetometer measurements using EKF approach. Modeling of the algorithm was carried out using a specially developed functional prototype of pedestrian inertial navigation system, implemented as a hardware/software complex in Matlab environment. The functional prototype tests of the developed system demonstrated an improvement of the navigation parameters estimation compared to the systems based on inertial sensors only. It enables to draw a conclusion that the synthesized algorithm provides satisfactory accuracy for calculating the trajectory of motion even when using low-grade inertial MEMS sensors. The developed algorithm can be

  8. Reliability Engineering

    International Nuclear Information System (INIS)

    Lee, Sang Yong

    1992-07-01

    This book is about reliability engineering, which describes definition and importance of reliability, development of reliability engineering, failure rate and failure probability density function about types of it, CFR and index distribution, IFR and normal distribution and Weibull distribution, maintainability and movability, reliability test and reliability assumption in index distribution type, normal distribution type and Weibull distribution type, reliability sampling test, reliability of system, design of reliability and functionality failure analysis by FTA.

  9. On the design of high-rise buildings with a specified level of reliability

    Science.gov (United States)

    Dolganov, Andrey; Kagan, Pavel

    2018-03-01

    High-rise buildings have a specificity, which significantly distinguishes them from traditional buildings of high-rise and multi-storey buildings. Steel structures in high-rise buildings are advisable to be used in earthquake-proof regions, since steel, due to its plasticity, provides damping of the kinetic energy of seismic impacts. These aspects should be taken into account when choosing a structural scheme of a high-rise building and designing load-bearing structures. Currently, modern regulatory documents do not quantify the reliability of structures. Although the problem of assigning an optimal level of reliability has existed for a long time. The article shows the possibility of designing metal structures of high-rise buildings with specified reliability. Currently, modern regulatory documents do not quantify the reliability of high-rise buildings. Although the problem of assigning an optimal level of reliability has existed for a long time. It is proposed to establish the value of reliability 0.99865 (3σ) for constructions of buildings and structures of a normal level of responsibility in calculations for the first group of limiting states. For increased (construction of high-rise buildings) and reduced levels of responsibility for the provision of load-bearing capacity, it is proposed to assign respectively 0.99997 (4σ) and 0.97725 (2σ). The coefficients of the use of the cross section of a metal beam for different levels of security are given.

  10. Accounting for Proof Test Data in a Reliability Based Design Optimization Framework

    Science.gov (United States)

    Ventor, Gerharad; Scotti, Stephen J.

    2012-01-01

    This paper investigates the use of proof (or acceptance) test data during the reliability based design optimization of structural components. It is assumed that every component will be proof tested and that the component will only enter into service if it passes the proof test. The goal is to reduce the component weight, while maintaining high reliability, by exploiting the proof test results during the design process. The proposed procedure results in the simultaneous design of the structural component and the proof test itself and provides the designer with direct control over the probability of failing the proof test. The procedure is illustrated using two analytical example problems and the results indicate that significant weight savings are possible when exploiting the proof test results during the design process.

  11. Reliability Oriented Design Tool For the New Generation of Grid Connected PV-Inverters

    DEFF Research Database (Denmark)

    Sintamarean, Nicolae Cristian; Blaabjerg, Frede; Wang, Huai

    2015-01-01

    is achieved and is further used as an input to the lifetime model. The proposed reliability-oriented design tool is used to study the impact of mission profile (MP) variation and device degradation (aging) in the PV inverter lifetime. The obtained results indicate that the MP of the field where the PV...... inverter is operating has an important impact (up to 70%) on the converter lifetime expectation, and it should be considered in the design stage to better optimize the converter design margin. In order to have correct lifetime estimation, it is crucial to consider also the device degradation feedback (in......This paper introduces a reliability-oriented design tool for a new generation of grid-connected photovoltaic (PV) inverters. The proposed design tool consists of a real field mission profile (RFMP) model (for two operating regions: USA and Denmark), a PV panel model, a grid-connected PV inverter...

  12. Optimal design of a system containing mixed redundancies with respect to reliability and cost

    International Nuclear Information System (INIS)

    Misra, K.B.

    1975-01-01

    A nuclear system generally consists of subsystems that may employ any of the partial, standby, and active redundancies, and is, therefore, a system with mixed type of redundancies. Optimization of reliability or availability of such systems at the design stage is a difficult problem. There appears to be no published work on the optimal design of maintained systems consisting of mixed redundancies. An attempt is therefore made, to present the basis of design and the solution technique to achieve this. An algorithm is described which makes the solution of this mathematically difficult problem possible. Some examples are demonstrated. To achieve further efficiency a study was organized and the recommendations for obtaining a minimum solution time are provided. Although, in the illustration, only the linear constraints and reliability, as the only design parameter, have been considered, the algorithm works well with the nonlinear type of constraints and can be used with other design parameters also. (author)

  13. reliability reliability

    African Journals Online (AJOL)

    eobe

    Corresponding author, Tel: +234-703. RELIABILITY .... V , , given by the code of practice. However, checks must .... an optimization procedure over the failure domain F corresponding .... of Concrete Members based on Utility Theory,. Technical ...

  14. TFTR materials issues and problems during design and construction

    International Nuclear Information System (INIS)

    Sabado, M.; Little, R.

    1984-01-01

    TFTR as well as its contemporaries, T15, JT60, and JET, have important contributions to make towards our understanding of plasma conditions in the thermonuclear regime. One of the main objectives of TFTR is to produce fusion power densities approaching those in a fusion reactor, approx.= 1 Wcm -3 at Q approx.= 1-2. TFTR will be the first tokamak to routinely use deuterium tritium, and produce approx.= 10 19 fusion neutrons per pulse. With startup of TFTR on December 24, 1982, the demonstration of physics feasibility of 'breakeven' is close at hand. Since TFTR performance will be reactor relevant, the capability of materials/components to withstand the hostile effects of a plasma environment will be presented. It is intended that designers of future fusion devices benefit from the materials technology developments and applications on TFTR. In an attempt to comply with this mandate, this paper will describe TFTR issues on materials, their developments, selections, problems, and solutions. Special emphasis will be given, in particular, to the impurity control devices in TFTR, namely, the limiter and surface pumping system located inside the vacuum vessel. The plasma will interact with these components and they will be subjected to disruptions, a vacuum of 10 -6 to 10 -8 torr and a nominal temperatures of 0 C. 'Painful' materials development problems encountered will be reviewed, as well as important 'lessons learned'. A briefing on the materials of construction will be given, with some comments on the problems that developed and their solutions. (orig.)

  15. Applying reliability analysis to design electric power systems for More-electric aircraft

    Science.gov (United States)

    Zhang, Baozhu

    The More-Electric Aircraft (MEA) is a type of aircraft that replaces conventional hydraulic and pneumatic systems with electrically powered components. These changes have significantly challenged the aircraft electric power system design. This thesis investigates how reliability analysis can be applied to automatically generate system topologies for the MEA electric power system. We first use a traditional method of reliability block diagrams to analyze the reliability level on different system topologies. We next propose a new methodology in which system topologies, constrained by a set reliability level, are automatically generated. The path-set method is used for analysis. Finally, we interface these sets of system topologies with control synthesis tools to automatically create correct-by-construction control logic for the electric power system.

  16. Reliability-based design optimization via high order response surface method

    International Nuclear Information System (INIS)

    Li, Hong Shuang

    2013-01-01

    To reduce the computational effort of reliability-based design optimization (RBDO), the response surface method (RSM) has been widely used to evaluate reliability constraints. We propose an efficient methodology for solving RBDO problems based on an improved high order response surface method (HORSM) that takes advantage of an efficient sampling method, Hermite polynomials and uncertainty contribution concept to construct a high order response surface function with cross terms for reliability analysis. The sampling method generates supporting points from Gauss-Hermite quadrature points, which can be used to approximate response surface function without cross terms, to identify the highest order of each random variable and to determine the significant variables connected with point estimate method. The cross terms between two significant random variables are added to the response surface function to improve the approximation accuracy. Integrating the nested strategy, the improved HORSM is explored in solving RBDO problems. Additionally, a sampling based reliability sensitivity analysis method is employed to reduce the computational effort further when design variables are distributional parameters of input random variables. The proposed methodology is applied on two test problems to validate its accuracy and efficiency. The proposed methodology is more efficient than first order reliability method based RBDO and Monte Carlo simulation based RBDO, and enables the use of RBDO as a practical design tool.

  17. Electrical system design and reliability at Ontario Hydro nuclear generating stations

    Energy Technology Data Exchange (ETDEWEB)

    Royce, C. J. [Ontario Hydro, 700 University Avenue, Toronto, Ontario M5G 1X6 (Canada)

    1986-02-15

    This paper provides an overview of design practice and the predicted and actual reliability of electrical station service Systems at Ontario Nuclear Generating Stations. Operational experience and licensing changes have indicated the desirability of improving reliability in certain instances. For example, the requirement to start large emergency coolant injection pumps resulted in the turbine generator units in a multi-unit station being used as a back-up power supply. Results of reliability analyses are discussed. To mitigate the effects of common mode events Ontario Hydro adopted a 'two group' approach to the design of safety related Systems. This 'two group' approach is reviewed and a single fully environmentally qualified standby power supply is proposed for future use. (author)

  18. Comparative availability and reliability assessment of design options for the secondary sodium loops of the EFR

    International Nuclear Information System (INIS)

    Pamme, H.

    1989-01-01

    The EFR (European Fast Reactor) project has entered a conceptual study period where different design alternatives are compared concerning feasibility, safety and economic aspects. This paper describes a comparative probabilistic availability and reliability assessment of alternative design options for the secondary sodium loops. These loops will provide heat transfer from the reactor pool to the water-steam (power generating) side. So a high operational availability of the secondary loops during plant lifetime is essential for economic power generation. Additionally a high reliability is required to fulfill the operational decay heat removal function in case of a reactor trip. Availabilities and reliabilities of the different options were assessed using failure mode and effect analysis and the fault tree method. (orig.)

  19. Design of thermoelectric modules for both mechanical reliability and performance using FE simulation

    DEFF Research Database (Denmark)

    Sarhadi, Ali; Bjørk, Rasmus; Pryds, Nini

    for these two objectives. The current study deals with FE simulation of the TE modules to optimize their geometrical dimension in terms of mechanical reliability and performance. First, FE simulation of a TE module consisting of bismuth telluride alloys is carried out and the induced thermal stresses, output......, the geometrical dimensions of the TE elements for both mechanical reliability and performance are optimized to obtain a compromise design. The present work provides a basis for optimizing the TE modules in terms of their life time and performance.......Thermo-mechanical modeling of the TE modules provides an efficient tool for assessing the mechanical strength of the modules against the induced thermal stresses and subsequently optimizing them in terms of the mechanical reliability. However, the design of TE modules in terms of mechanical...

  20. Reliability-based load and resistance factor design for piping: an exploratory case study

    International Nuclear Information System (INIS)

    Gupta, Abhinav; Choi, Byounghoan

    2003-01-01

    This paper presents an exploratory case study on the application of Load and Resistance Factor Design (LRFD) approach to the Section III of ASME Boiler and Pressure Vessel code for piping design. The failure criterion for defining the performance function is considered as plastic instability. Presently used design equation is calibrated by evaluating the minimum reliability levels associated with it. If the target reliability in the LRFD approach is same as that evaluated for the presently used design equation, it is shown that the total safety factors for the two design equations are identical. It is observed that the load and resistance factors are not dependent upon the diameter to thickness ratio. A sensitivity analysis is also conducted to study the variations in the load and resistance factors due to changes in (a) coefficients of variation for pressure, moment, and ultimate stress, (b) ratio of mean design pressure to mean design moment, (c) distribution types used for characterizing the random variables, and (d) statistical correlation between random variables. It is observed that characterization of random variables by log-normal distribution is reasonable. Consideration of statistical correlation between the ultimate stress and section modulus gives higher values of the load factor for pressure but lower value for the moment than the corresponding values obtained by considering the variables to be uncorrelated. Since the effect of statistical correlation on the load and resistance factors is relatively insignificant for target reliability values of practical interest, the effect of correlated variables may be neglected

  1. Dosimetry issues for an ultra-high flux beam and multipurpose research reactor design

    International Nuclear Information System (INIS)

    West, C.D.

    1993-01-01

    The Advanced Neutron Source is a new user facility for all fields of neutron research, including neutron beam experiments, materials analysis, materials testing, and isotope production. The complement and layout of the experimental facilities have been determined sufficiently, at a conceptual design level, to make reliable cost and schedule estimates. The source of neutrons will be a heavy water reactor, constructed largely of aluminum, with an available thermal neutron flux 5--10 times higher than existing research reactors. Among the dosimetry issues to be faced are damage prediction and surveillance for component life attainment; measurement of fluence and spectra in regions where both change substantially over a distance of a few centimeters; and characterization and measurement of the radiation field in the research areas around the neutron beam experiments

  2. Inducement of Design Parameters for Reliability Improvement of Servo Actuator for Hydraulic Valve Operation

    Energy Technology Data Exchange (ETDEWEB)

    Sung, Baek Ju; Kim, Do Sik [Korea Institute of Machinery and Materials, Daejeon (Korea, Republic of)

    2014-05-15

    The precision hydraulic valve is widely used in various industrial field like aircraft, automobile, and general machinery. Servo actuator is the most important device for driving the precise hydraulic valve. The reliable operation of servo actuator effects on the overall hydraulic system. The performance of servo actuator relies on frequency response and step response according to arbitrary input signal. In this paper, we performed the analysis for the components of servo actuator to satisfy the reliable operation and response characteristics through the reliability analysis, and also induced the design parameters to realize the reliable operation and fast response characteristics of servo actuator for hydraulic valve operation through the empirical knowledge of experts and electromagnetic theories. We suggested the design equations to determine the values of design parameters of servo actuator as like bobbin size, length of yoke and plunger and turn number of coil, and verified the achieved design values through FEM analysis and performance tests using some prototypes of servo actuators adapted in hydraulic valve.

  3. Evaluation and Design Tools for the Reliability of Wind Power Converter System

    DEFF Research Database (Denmark)

    Ma, Ke; Zhou, Dao; Blaabjerg, Frede

    2015-01-01

    grid. As a result, the correct assessment of reliable performance for power electronics is a crucial and emerging need; the assessment is essential for design improvement, as well as for the extension of converter lifetime and reduction of energy cost. Unfortunately, there still exists a lack...

  4. Reliability optimization for series systems under uncertain component failure rates in the design phase

    NARCIS (Netherlands)

    Ge, Q.; Peng, H.; van Houtum, G.J.J.A.N.; Adan, I.J.B.F.

    2018-01-01

    We develop an optimization model to determine the reliability design of critical components in a serial system. The system is under a service contract, and a penalty cost has to be paid by the OEM when the total system down time exceeds a predetermined level, which complicates the evaluation of the

  5. System design and equipment reliability for wide web working at Hem Heath Colliery

    Energy Technology Data Exchange (ETDEWEB)

    Hall, L

    1982-02-01

    This paper outlines the challenge to mining engineers on system design and reliability of equipment and how Hem Heath Colliery in the UK, is meeting this challenge, by describing current systems of work and equipment on the faces, summarising experience gained with succeeding faces, the results achieved, and posing considerations for the future.

  6. Steel Sheet Piles - Applications and Elementary Design Issues

    Science.gov (United States)

    Sobala, Dariusz; Rybak, Jarosław

    2017-10-01

    High-intensity housing having been carried out in town’s centres causes that many complex issues related to earthworks and foundations must be resolved. Project owners are required to ensure respective number of parking bays, which in turn demands 2-3 storeys of underground car parks. It is especially difficult to fulfil in dense buildings of old town areas where apart from engineering problems, very stringent requirements of heritage conservator supervision are also raised. The problems with ensuring stability of excavation sidewalls need to be, at the same time, dealt with analysis of foundations of neighbouring structures, and possible strengthening them at the stages of installing the excavation protection walls, progressing the excavations and constructing basement storeys. A separate problem refers to necessity of constructing underground storeys below the level of local groundwater. This requires long-term lowering of water table inside excavation while at possibly limited intervention in hydrological regime beyond the project in progress. In river valleys such “hoarding off” the excavation and cutting off groundwater leads to temporary or permanent disturbances of groundwater run-off and local swellings. Traditional way to protect vertical fault and simultaneously to cut-off groundwater inflow consists in application of steel sheet pilings. They enable to construct monolithic reinforced concrete structures of underground storeys thus ensuring both their tightness and high rigidity of foundation. Depending on situation, steel sheet pilings can be in retrieving or staying-in-place versions. This study deals with some selected aspects of engineering design and fabrication of sheet piling for deep excavations and underground parts of buildings.

  7. Design issues for grid-connected photovoltaic systems

    Science.gov (United States)

    Ropp, Michael Eugene

    1998-08-01

    Photovoltaics (PV) is the direct conversion of sunlight to electrical energy. In areas without centralized utility grids, the benefits of PV easily overshadow the present shortcomings of the technology. However, in locations with centralized utility systems, significant technical challenges remain before utility-interactive PV (UIPV) systems can be integrated into the mix of electricity sources. One challenge is that the needed computer design tools for optimal design of PV systems with curved PV arrays are not available, and even those that are available do not facilitate monitoring of the system once it is built. Another arises from the issue of islanding. Islanding occurs when a UIPV system continues to energize a section of a utility system after that section has been isolated from the utility voltage source. Islanding, which is potentially dangerous to both personnel and equipment, is difficult to prevent completely. The work contained within this thesis targets both of these technical challenges. In Task 1, a method for modeling a PV system with a curved PV array using only existing computer software is developed. This methodology also facilitates comparison of measured and modeled data for use in system monitoring. The procedure is applied to the Georgia Tech Aquatic Center (GTAC) FV system. In the work contained under Task 2, islanding prevention is considered. The existing state-of-the- art is thoroughly reviewed. In Subtask 2.1, an analysis is performed which suggests that standard protective relays are in fact insufficient to guarantee protection against islanding. In Subtask 2.2. several existing islanding prevention methods are compared in a novel way. The superiority of this new comparison over those used previously is demonstrated. A new islanding prevention method is the subject under Subtask 2.3. It is shown that it does not compare favorably with other existing techniques. However, in Subtask 2.4, a novel method for dramatically improving this new

  8. Methodological issues concerning the application of reliable laser particle sizing in soils

    Science.gov (United States)

    de Mascellis, R.; Impagliazzo, A.; Basile, A.; Minieri, L.; Orefice, N.; Terribile, F.

    2009-04-01

    During the past decade, the evolution of technologies has enabled laser diffraction (LD) to become a much widespread means of particle size distribution (PSD), replacing sedimentation and sieve analysis in many scientific fields mainly due to its advantages of versatility, fast measurement and high reproducibility. Despite such developments of the last decade, the soil scientist community has been quite reluctant to replace the good old sedimentation techniques (ST); possibly because of (i) the large complexity of the soil matrix inducing different types of artefacts (aggregates, deflocculating dynamics, etc.), (ii) the difficulties in relating LD results with results obtained through sedimentation techniques and (iii) the limited size range of most LD equipments. More recently LD granulometry is slowly gaining appreciation in soil science also because of some innovations including an enlarged size dynamic range (0,01-2000 m) and the ability to implement more powerful algorithms (e.g. Mie theory). Furthermore, LD PSD can be successfully used in the application of physically based pedo-transfer functions (i.e., Arya and Paris model) for investigations of soil hydraulic properties, due to the direct determination of PSD in terms of volume percentage rather than in terms of mass percentage, thus eliminating the need to adopt the rough approximation of a single value for soil particle density in the prediction process. Most of the recent LD work performed in soil science deals with the comparison with sedimentation techniques and show the general overestimation of the silt fraction following a general underestimation of the clay fraction; these well known results must be related with the different physical principles behind the two techniques. Despite these efforts, it is indeed surprising that little if any work is devoted to more basic methodological issues related to the high sensitivity of LD to the quantity and the quality of the soil samples. Our work aims to

  9. Design of etch holes to compensate spring width loss for reliable resonant frequencies

    International Nuclear Information System (INIS)

    Jang, Yun-Ho; Kim, Jong-Wan; Kim, Yong-Kweon; Kim, Jung-Mu

    2012-01-01

    A pattern width loss during the fabrication of lateral silicon resonators degrades resonant frequency reliability since such a width loss causes the significant deviation of spring stiffness. Here we present a design guide for etch holes to obtain reliable resonant frequencies by controlling etch holes geometries. The new function of an etch hole is to generate the comparable amount of the width loss between springs and etch holes, in turn to minimize the effect of the spring width loss on resonant frequency shift and deviation. An analytic expression reveals that a compensation factor (CF), defined by the circumference (C u ) of a unit etch hole divided by its silicon area (A u ), is a key parameter for reliable frequencies. The protrusive etch holes were proposed and compared with square etch holes to demonstrate the frequency reliability according to CF values and etch hole shapes. The normalized resonant frequency shift and deviation of the protrusive etch hole (−13.0% ± 6.9%) were significantly improved compared to those of a square etch hole with a small CF value (−42.8% ± 14.8%). The proposed design guide based on the CF value and protrusive shapes can be used to achieve reliable resonant frequencies for high performance silicon resonators. (technical note)

  10. An overall methodology for reliability prediction of mechatronic systems design with industrial application

    International Nuclear Information System (INIS)

    Habchi, Georges; Barthod, Christine

    2016-01-01

    We propose in this paper an overall ten-step methodology dedicated to the analysis and quantification of reliability during the design phase of a mechatronic system, considered as a complex system. The ten steps of the methodology are detailed according to the downward side of the V-development cycle usually used for the design of complex systems. Two main phases of analysis are complementary and cover the ten steps, qualitative analysis and quantitative analysis. The qualitative phase proposes to analyze the functional and dysfunctional behavior of the system and then determine its different failure modes and degradation states, based on external and internal functional analysis, organic and physical implementation, and dependencies between components, with consideration of customer specifications and mission profile. The quantitative phase is used to calculate the reliability of the system and its components, based on the qualitative behavior patterns, and considering data gathering and processing and reliability targets. Systemic approach is used to calculate the reliability of the system taking into account: the different technologies of a mechatronic system (mechanics, electronics, electrical .), dependencies and interactions between components and external influencing factors. To validate the methodology, the ten steps are applied to an industrial system, the smart actuator of Pack'Aero Company. - Highlights: • A ten-step methodology for reliability prediction of mechatronic systems design. • Qualitative and quantitative analysis for reliability evaluation using PN and RBD. • A dependency matrix proposal, based on the collateral and functional interactions. • Models consider mission profile, deterioration, interactions and influent factors. • Application and validation of the methodology on the “Smart Actuator” of PACK’AERO.

  11. Design for reliability in power electronics in renewable energy systems – status and future

    DEFF Research Database (Denmark)

    Wang, Huai; Blaabjerg, Frede; Ma, Ke

    2013-01-01

    Advances in power electronics enable efficient and flexible interconnection of renewable sources, loads and electric grids. While targets concerning efficiency of power converters are within reach, recent research endeavors to predict and improve their reliability to ensure high availability, low...... maintenance costs, and herefore, low Levelized-Cost-of-Energy (LCOE) of renewable energy systems. This paper presents the prior-art Design for Reliability (DFR) process for power converters and addresses the paradigm shift to Physics-of-Failure (PoF) approach and mission profile based analysis. Moreover...

  12. Multi-objective optimization of generalized reliability design problems using feature models-A concept for early design stages

    International Nuclear Information System (INIS)

    Limbourg, Philipp; Kochs, Hans-Dieter

    2008-01-01

    Reliability optimization problems such as the redundancy allocation problem (RAP) have been of considerable interest in the past. However, due to the restrictions of the design space formulation, they may not be applicable in all practical design problems. A method with high modelling freedom for rapid design screening is desirable, especially in early design stages. This work presents a novel approach to reliability optimization. Feature modelling, a specification method originating from software engineering, is applied for the fast specification and enumeration of complex design spaces. It is shown how feature models can not only describe arbitrary RAPs but also much more complex design problems. The design screening is accomplished by a multi-objective evolutionary algorithm for probabilistic objectives. Comparing averages or medians may hide the true characteristics of this distributions. Therefore the algorithm uses solely the probability of a system dominating another to achieve the Pareto optimal set. We illustrate the approach by specifying a RAP and a more complex design space and screening them with the evolutionary algorithm

  13. Special issue: Logistics systems design in Latin America

    Directory of Open Access Journals (Sweden)

    Miguel Gaston Cedillo Campos

    2017-10-01

    Under this context, this Special Issue of the Journal of Industrial Engineering and Management (JIEM gathers nine significant contributions, which from a Latin American approach, enhance the logistics systems body of knowledge focused on emerging markets.

  14. Reliability assessment and probability based design of reinforced concrete containments and shear walls

    International Nuclear Information System (INIS)

    Hwang, H.; Reich, M.; Ellingwood, B.; Shinozuka, M.

    1986-03-01

    This report summarizes work completed under the program entitled, ''Probability-Based Load Combinations for Design of Category I Structures.'' Under this program, the probabilistic models for various static and dynamic loads were formulated. The randomness and uncertainties in material strengths and structural resistance were established. Several limit states of concrete containments and shear walls were identified and analytically formulated. Furthermore, the reliability analysis methods for estimating limit state probabilities were established. These reliability analysis methods can be used to evaluate the safety levels of nuclear structures under various combinations of static and dynamic loads. They can also be used to generate analytically the fragility data for PRA studies. In addition to the development of reliability analysis methods, probability-based design criteria for concrete containments and shear wall structures have also been developed. The proposed design criteria are in the load and resistance factor design (LRFD) format. The load and resistance factors are determined for several limit states and target limit state probabilities. Thus, the proposed design criteria are risk-consistent and have a well-established rationale. 73 refs., 18 figs., 16 tabs

  15. Current Therapeutic Cannabis Controversies and Clinical Trial Design Issues

    OpenAIRE

    Russo, Ethan B.

    2016-01-01

    This overview covers a wide range of cannabis topics, initially examining issues in dispensaries and self-administration, plus regulatory requirements for production of cannabis-based medicines, particularly the Food and Drug Administration “Botanical Guidance.” The remainder pertains to various cannabis controversies that certainly require closer examination if the scientific, consumer, and governmental stakeholders are ever to reach consensus on safety issues, specifically: whether botanica...

  16. Current Therapeutic Cannabis Controversies and Clinical Trial Design Issues.

    Directory of Open Access Journals (Sweden)

    Ethan Budd Russo

    2016-09-01

    Full Text Available This overview covers a wide range of cannabis topics, initially examining issue in dispensaries and self-administration, plus regulatory requirement for production of cannabis-based medicines, particularly the Food and Drug Administration Botanical Guidance. The remainder pertains to various cannabis controversies that certainly require closer examination if the scientific, consumer and governmental stakeholders are ever to reach consensus on safety issues, specifically: whether botanical cannabis displays herbal synergy of its components, pharmacokinetics of cannabis and dose titration, whether cannabis medicines produce cyclo-oxygenase inhibition, cannabis-drug interactions and cytochrome P450 issues, whether cannabis randomized clinical trials are properly blinded, combatting the placebo effect in those trials via new approaches, the drug abuse liability of cannabis-based medicines and their regulatory scheduling, their effects on cognitive function and psychiatric sequelae, immunological effects, cannabis and driving safety, youth usage, issues related to cannabis smoking and vaporization, cannabis concentrates and vape-pens, and laboratory analysis for contamination with bacteria and heavy metals. Finally, the issue of pesticide usage on cannabis crops is addressed. New and disturbing data on pesticide residues in legal cannabis products in Washington State are presented with the observation of an 84.6% contamination rate including potentially neurotoxic and carcinogenic agents. With ongoing developments in legalization of cannabis in medical and recreational settings, numerous scientific, safety and public health issues remain.

  17. Current Therapeutic Cannabis Controversies and Clinical Trial Design Issues

    Science.gov (United States)

    Russo, Ethan B.

    2016-01-01

    This overview covers a wide range of cannabis topics, initially examining issues in dispensaries and self-administration, plus regulatory requirements for production of cannabis-based medicines, particularly the Food and Drug Administration “Botanical Guidance.” The remainder pertains to various cannabis controversies that certainly require closer examination if the scientific, consumer, and governmental stakeholders are ever to reach consensus on safety issues, specifically: whether botanical cannabis displays herbal synergy of its components, pharmacokinetics of cannabis and dose titration, whether cannabis medicines produce cyclo-oxygenase inhibition, cannabis-drug interactions, and cytochrome P450 issues, whether cannabis randomized clinical trials are properly blinded, combatting the placebo effect in those trials via new approaches, the drug abuse liability (DAL) of cannabis-based medicines and their regulatory scheduling, their effects on cognitive function and psychiatric sequelae, immunological effects, cannabis and driving safety, youth usage, issues related to cannabis smoking and vaporization, cannabis concentrates and vape-pens, and laboratory analysis for contamination with bacteria and heavy metals. Finally, the issue of pesticide usage on cannabis crops is addressed. New and disturbing data on pesticide residues in legal cannabis products in Washington State are presented with the observation of an 84.6% contamination rate including potentially neurotoxic and carcinogenic agents. With ongoing developments in legalization of cannabis in medical and recreational settings, numerous scientific, safety, and public health issues remain. PMID:27683558

  18. Reliability of COPVs Accounting for Margin of Safety on Design Burst

    Science.gov (United States)

    Murthy, Pappu L.N.

    2012-01-01

    In this paper, the stress rupture reliability of Carbon/Epoxy Composite Overwrapped Pressure Vessels (COPVs) is examined utilizing the classic Phoenix model and accounting for the differences between the design and the actual burst pressure, and the liner contribution effects. Stress rupture life primarily depends upon the fiber stress ratio which is defined as the ratio of stress in fibers at the maximum expected operating pressure to actual delivered fiber strength. The actual delivered fiber strength is calculated using the actual burst pressures of vessels established through burst tests. However, during the design phase the actual burst pressure is generally not known and to estimate the reliability of the vessels calculations are usually performed based upon the design burst pressure only. Since the design burst is lower than the actual burst, this process yields a much higher value for the stress ratio and consequently a conservative estimate for the reliability. Other complications arise due to the fact that the actual burst pressure and the liner contributions have inherent variability and therefore must be treated as random variables in order to compute the stress rupture reliability. Furthermore, the model parameters, which have to be established based on stress rupture tests of subscale vessels or coupons, have significant variability as well due to limited available data and hence must be properly accounted for. In this work an assessment of reliability of COPVs including both parameter uncertainties and physical variability inherent in liner and overwrap material behavior is made and estimates are provided in terms of degree of uncertainty in the actual burst pressure and the liner load sharing.

  19. Balancing human and technical reliability in the design of advanced nuclear reactors

    International Nuclear Information System (INIS)

    Papin, Bernard

    2011-01-01

    Highlights: ► Human factors exigencies are often overseen during the early design phases of NPP. ► Optimization of reactors safety is only based on technical reliability considerations. ► The search for more technical reliability often leads to more system complexity. ► System complexity is a major contributor to the operator's poor performance. ► Our method enables to assess plant complexity and it's impact on human performance. - Abstract: The strong influence of human factors (HF) on the safety of nuclear facilities is nowadays recognised and the designers are now enforced to consider HF requirements in the design of new facilities. Yet, this consideration of human factors requirements is still more or less restricted to the latest phases of the projects, essentially for the design of human-system interfaces (HSI's) and control rooms, although the design options influencing at most the human performance in operation are indeed fixed during the very early phases of the new reactors projects. The main reason of this late consideration of HF is that there exist few methods and models for anticipating the influence of fundamental design options on the future performance of operation teams. This paper describes a set of new tools permitting (i) determination of the impact of the fundamental process design options on the future activity of the operation teams and (ii) assessment of the influence of these operational constraints on teams performance. These tools are intended to guide the design of future 4th generation (GEN4) reactors, within the frame of a global risk-informed design approach, considering technical and human reliability exigencies in a balanced way.

  20. Reliability- and performance-based robust design optimization of MEMS structures considering technological uncertainties

    Science.gov (United States)

    Martowicz, Adam; Uhl, Tadeusz

    2012-10-01

    The paper discusses the applicability of a reliability- and performance-based multi-criteria robust design optimization technique for micro-electromechanical systems, considering their technological uncertainties. Nowadays, micro-devices are commonly applied systems, especially in the automotive industry, taking advantage of utilizing both the mechanical structure and electronic control circuit on one board. Their frequent use motivates the elaboration of virtual prototyping tools that can be applied in design optimization with the introduction of technological uncertainties and reliability. The authors present a procedure for the optimization of micro-devices, which is based on the theory of reliability-based robust design optimization. This takes into consideration the performance of a micro-device and its reliability assessed by means of uncertainty analysis. The procedure assumes that, for each checked design configuration, the assessment of uncertainty propagation is performed with the meta-modeling technique. The described procedure is illustrated with an example of the optimization carried out for a finite element model of a micro-mirror. The multi-physics approach allowed the introduction of several physical phenomena to correctly model the electrostatic actuation and the squeezing effect present between electrodes. The optimization was preceded by sensitivity analysis to establish the design and uncertain domains. The genetic algorithms fulfilled the defined optimization task effectively. The best discovered individuals are characterized by a minimized value of the multi-criteria objective function, simultaneously satisfying the constraint on material strength. The restriction of the maximum equivalent stresses was introduced with the conditionally formulated objective function with a penalty component. The yielded results were successfully verified with a global uniform search through the input design domain.

  1. Improving Reliability of a fire-fighting pump set with Axiomatic Design

    Directory of Open Access Journals (Sweden)

    Arcidiacono Gabriele

    2017-01-01

    Full Text Available This paper introduces a case study featuring Axiomatic Design and Multi-Level Hierarchical model (MLH applied to redesign a fire-fighting pump set. In particular, two different design concepts are presented to be applied to the supporting frame of the system to limit a vibration problem that can arise during potential malfunctioning of the fire-fighting pump. The selection of the best design has been carried out through reliability evaluation process and through the cost of failure based on the MLH model.

  2. Human reliability analysis in the man-machine interface design review

    International Nuclear Information System (INIS)

    Kim, I.S.

    2001-01-01

    Advanced, computer-based man-machine interface (MMI) is emerging as part of the new design of nuclear power plants. The impact of advanced MMI on the operator performance, and as a result, on plant safety should be thoroughly evaluated before such technology is actually adopted in the plants. This paper discusses the applicability of human reliability analysis (HRA) to support the design review process. Both the first-generation and the second-generation HRA methods are considered focusing on a couple of promising HRA methods, i.e. ATHEANA and CREAM, with the potential to assist the design review process

  3. Materials and design issues for military helmets - Chapter 6

    OpenAIRE

    Hamouda, A.M.S.; Sohaimi, R.M.; Zaidi, A.M.A.; Abdullah, S.

    2012-01-01

    Abstract: As weaponry technology has advanced, the ballistic threat to humans has increased significantly. As well as the military, civilians who are exposed to these threats as part of their everyday work require adequate protective equipment. This increasing demand for body armour and ballistic helmets is driving the protective equipment industry to create lightweight, reliable protection adapted for specific applications and marketable to a wide range of consumers. This chapter focuses on ...

  4. Reliability and standard market design : a square plug and a round socket, the fundamental flaw of the market design

    International Nuclear Information System (INIS)

    Bekman, K.

    2003-01-01

    A electricity power system is designed and built to deliver reliable power supplies. A failure of a single component should not lead to the failure of the entire system. Oversupply results in prices at marginal cost of production, inadequate return on capital investment and economic failure of supplies. Uneconomic sources of supply would pull out in cases of oversupply. Competitive markets need flexible supply and demand and scarcity pricing in order to promote new investment. The problem with such a scenario is that scarcity reduces the level of reliability. An oversupply, while ensuring reliability, offers an inadequate return on capital. This presentation included several graphs depicting results of market failure with reference to NYMEX analysis of credit quality, NEPOOL summer capacity 2001, NYS summer capacity 2001, and PJM summer capacity 2001. A graph illustrating a New England 2002 load duration curve and its analysis was also included. According to the author, the market design is flawed because it does not pay for reliability. It fails to compensate generation for capital at risk, and it fails to address the fact that nearly half of the capacity supplies less than 10 per cent energy. He notes that the liquidity crisis will continue and grow unless changes are made and new entrants come into the market. 8 figs

  5. Designing the database for a reliability aware Model-Based System Engineering process

    International Nuclear Information System (INIS)

    Cressent, Robin; David, Pierre; Idasiak, Vincent; Kratz, Frederic

    2013-01-01

    This article outlines the need for a reliability database to implement model-based description of components failure modes and dysfunctional behaviors. We detail the requirements such a database should honor and describe our own solution: the Dysfunctional Behavior Database (DBD). Through the description of its meta-model, the benefits of integrating the DBD in the system design process is highlighted. The main advantages depicted are the possibility to manage feedback knowledge at various granularity and semantic levels and to ease drastically the interactions between system engineering activities and reliability studies. The compliance of the DBD with other reliability database such as FIDES is presented and illustrated. - Highlights: ► Model-Based System Engineering is more and more used in the industry. ► It results in a need for a reliability database able to deal with model-based description of dysfunctional behavior. ► The Dysfunctional Behavior Database aims to fulfill that need. ► It helps dealing with feedback management thanks to its structured meta-model. ► The DBD can profit from other reliability database such as FIDES.

  6. Low Carbon-Oriented Optimal Reliability Design with Interval Product Failure Analysis and Grey Correlation Analysis

    Directory of Open Access Journals (Sweden)

    Yixiong Feng

    2017-03-01

    Full Text Available The problem of large amounts of carbon emissions causes wide concern across the world, and it has become a serious threat to the sustainable development of the manufacturing industry. The intensive research into technologies and methodologies for green product design has significant theoretical meaning and practical value in reducing the emissions of the manufacturing industry. Therefore, a low carbon-oriented product reliability optimal design model is proposed in this paper: (1 The related expert evaluation information was prepared in interval numbers; (2 An improved product failure analysis considering the uncertain carbon emissions of the subsystem was performed to obtain the subsystem weight taking the carbon emissions into consideration. The interval grey correlation analysis was conducted to obtain the subsystem weight taking the uncertain correlations inside the product into consideration. Using the above two kinds of subsystem weights and different caution indicators of the decision maker, a series of product reliability design schemes is available; (3 The interval-valued intuitionistic fuzzy sets (IVIFSs were employed to select the optimal reliability and optimal design scheme based on three attributes, namely, low carbon, correlation and functions, and economic cost. The case study of a vertical CNC lathe proves the superiority and rationality of the proposed method.

  7. Some Practical Issues in the Design and Implementation of Group Communication Services

    National Research Council Canada - National Science Library

    Mishra, Shivakant

    2000-01-01

    The main objective of the proposed research was to investigate four important practical issues in the understanding, design, and implementation of group communication services. These issues were (1) Performance...

  8. Design of a composite structure to achieve a specified reliability level

    International Nuclear Information System (INIS)

    Boyer, C.; Beakou, A.; Lemaire, M.

    1997-01-01

    Safety factors are widely used in structural design. For composite material structures, however, the lack of experimental feed-back does not allow the use of safety factors optimized from cost and reliability point of view. Reliability methods are one way to achieve the calibration of partial safety factors using a more rational method than judgement alone. First we present the calibration process. The reliability methods FORM, SORM, simulation, are initially applied to a laminate plate under uniform pressure. In this example, we compare three design criteria; the different reliability methods agree with the reference method for all criteria used. We chose the Tsai-Hill criteria and the FORM method to calculate safety factors. Then, a calibration process is undertaken on a composite pipe and this serves to illustrate the different steps in the calculation. Finally, we present a calibration of a general plate structure. The partial safety factors and their sensitivities to the different parameters of the stochastic variables are given according to load type

  9. SPECIAL ISSUE - “COMMUNICATION, DESIGN AND LEARNING”

    Directory of Open Access Journals (Sweden)

    Per Hetland

    2016-11-01

    Full Text Available This special issue of seminar.net is the result of a collaboration between teachers at the two master programmes, “Communication, Design and Learning” at the University of Oslo and “ICT Supported Learning” at the Oslo and Akershus University College of Applied Sciences. For 2013-2015, we received a grant from Norgesuniversitetet to develop partnership, flexible teaching and study methods, and to increase learning outcomes among students. The four papers represent the first research results from our project. We are grateful to Norgesuniversitetet for its support.Per HetlandGeneral editorThe first paper, by Per Hetland and Anders I. Mørch, both from the University of Oslo has a title called “Ethnography for Investigating the Internet”. They describe the field by giving an overview of the competing concepts, and argue for their chosen path. They point at important crossing roads and selections that needs to be taken for future research.Jan Erik Dahl, also of The University of Oslo, presents the paper “Supporting learning through epistemic scaffolds embedded in a highlighter tool”. It explores how the use of the tool was used to support students’ readings and discussions of research articles. He argues that the use of annotation technologies in education is increasing, and that annotations can play a wide variety of epistemic roles; e.g., they can facilitate a deeper level of engagement, support critical thinking, develop cognitive and metacognitive skills and introduce practices that can support knowledge building and independent learning. Dahl criticises some of the underlying assumption of present research in the field and suggest that one needs to look for the active co-construction that students do in collaboration with others.Monica Johannesen and Leikny Øgrim, of the Oslo and Akershus University College of Applied Sciences, has collaborated with Ole Smørdal of the University of Oslo on the paper “Facebook as an actor

  10. The Concept of Human Error and the Design of Reliable Human-Machine Systems

    DEFF Research Database (Denmark)

    Rasmussen, Jens

    1995-01-01

    The concept of human error is unreliable as a basis for design of reliable human-machine systems. Humans are basically highly adaptive and 'errors' are closely related to the process of adaptation and learning. Therefore, reliability of system operation depends on an interface that is not designed...... so as to support a pre-conceived operating procedure, but, instead, makes visible the deep, functional structure of the system together with the boundaries of acceptable operation in away that allows operators to 'touch' the boundaries and to learn to cope with the effects of errors in a reversible...... way. The concepts behind such 'ecological' interfaces are discussed, an it is argued that a 'typology' of visualization concepts is a pressing research need....

  11. Multiple-Robot Systems for USAR: Key Design Attributes and Deployment Issues

    Directory of Open Access Journals (Sweden)

    Choon Yue Wong

    2011-03-01

    Full Text Available The interaction between humans and robots is undergoing an evolution. Progress in this evolution means that humans are close to robustly deploying multiple robots. Urban search and rescue (USAR can benefit greatly from such capability. The review shows that with state of the art artificial intelligence, robots can work autonomously but still require human supervision. It also shows that multiple robot deployment (MRD is more economical, shortens mission durations, adds reliability as well as addresses missions impossible with one robot and payload constraints. By combining robot autonomy and human supervision, the benefits of MRD can be applied to USAR while at the same time minimizing human exposure to danger. This is achieved with a single-human multiple-robot system (SHMRS. However, designers of the SHMRS must consider key attributes such as the size, composition and organizational structure of the robot collective. Variations in these attributes also induce fluctuations in issues within SHMRS deployment such as robot communication and computational load as well as human cognitive workload and situation awareness (SA. Research is essential to determine how the attributes can be manipulated to mitigate these issues while meeting the requirements of the USAR mission.

  12. Multiple-Robot Systems for USAR: Key Design Attributes and Deployment Issues

    Directory of Open Access Journals (Sweden)

    Choon Yue Wong

    2011-03-01

    Full Text Available The interaction between humans and robots is undergoing an evolution. Progress in this evolution means that humans are close to robustly deploying multiple robots. Urban search and rescue (USAR can benefit greatly from such capability. The review shows that with state of the art artificial intelligence, robots can work autonomously but still require human supervision. It also shows that multiple robot deployment (MRD is more economical, shortens mission durations, adds reliability as well as addresses missions impossible with one robot and payload constraints. By combining robot autonomy and human supervision, the benefits of MRD can be applied to USAR while at the same time minimizing human exposure to danger. This is achieved with a single-human multiple-robot system (SHMRS. However, designers of the SHMRS must consider key attributes such as the size, composition and organizational structure of the robot collective. Variations in these attributes also induce fluctuations in issues within SHMRS deployment such as robot communication and computational load as well as human cognitive workload and situation awareness (SA.Research is essential to determine how the attributes can be manipulated to mitigate these issues while meeting the requirements of the USAR mission.

  13. Critical Issues in Research Design in Action Research in an SME Development Context

    Science.gov (United States)

    McGrath, Helen; O'Toole, Thomas

    2012-01-01

    Purpose: The main aim of this paper is to develop guidelines on the critical issues to consider in research design in an action research (AR) environment for SME network capability development. Design/methodology/approach: The issues in research design for AR studies are developed from the authors' experience in running learning sets but, in…

  14. Design Committed to the Issues of Teaching and Learning

    Directory of Open Access Journals (Sweden)

    Cristina Portugal*

    2012-12-01

    Full Text Available Design in Education is the object of in-depth study and it has opened many doors for action by the designer, reaffirming the interdisciplinary vocation of this area of knowledge. This study intends to present Design as a field that can contribute effectively towards the creation of educational artifacts and cultural inventions, important aspects in human's cognitive development. This topic is one of the main objects of study at the Interdisciplinary Laboratory for Design/Education - lide, in operation since 1997, within the scope of the Graduate Studies Program in Design at Pontifical Catholic University of Rio de Janeiro, Brazil, This paper refers to the study, research and theoretical line of research Design in Teaching and Learning Situations through an interdisciplinary dialogue between Design and Education. Through methods and techniques of Design it was sought to identify how this area of knowledge can participate in the processes of teaching and learning at the setting of didactic materials and enhance the process of acquiring knowledge. The study was guided by the Multi-Tracks, which is a game to help the acquisition of a second language by deaf children. This game was developed in the light of methods and techniques of Design, under the lide, in partnership with the National Institute of Education for the Deaf in Rio de Janeiro - ines / rj.

  15. Design Optimization of Transformerless Grid-Connected PV Inverters Including Reliability

    OpenAIRE

    Koutroulis, Eftichios; Blaabjerg, Frede

    2013-01-01

    This paper presents a new methodology for optimal design of transformerless photovoltaic (PV) inverters targeting a cost-effective deployment of grid-connected PV systems. The optimal switching frequency as well as the optimal values and types of the PV inverter components is calculated such that the PV inverter LCOE generated during the PV system lifetime period is minimized. The LCOE is also calculated considering the failure rates of the components, which affect the reliability performance...

  16. Reliable Memory Feedback Design for a Class of Nonlinear Fuzzy Systems with Time-varying Delay

    Institute of Scientific and Technical Information of China (English)

    You-Qing Wang; Dong-Hua Zhou; Li-Heng Liu

    2007-01-01

    This paper is concerned with the robust reliable memory controller design for a class of fuzzy uncertain systems with time-varying delay. The system under consideration is more general than those in other existent works. The controller, which is dependent on the magnitudes and derivative of the delay, is proposed in terms of linear matrix inequality (LMI). The closed-loop system is asymptotically stable for all admissible uncertainties as well as actuator faults. A numerical example is presented for illustration.

  17. Design for Six Sigma: Approach for reliability and low-cost manufacturing.

    Directory of Open Access Journals (Sweden)

    Jesus Gerardo Cruz Alvarez

    2012-07-01

    Full Text Available The aim of this study is to discuss new product development based on a traditional stage-gate process and to examine how new product development [NPD] tools, such as lean design for Six Sigma, can accelerate the achievement of the main goals of NPD: reliable product quality, cost-effective implementation, and desired time-to-market. These new tools must be incorporated into a new approach to NPD based on the Advanced Product and Quality Planning methodology.

  18. Design and reliability, availability, maintainability, and safety analysis of a high availability quadruple vital computer system

    Institute of Scientific and Technical Information of China (English)

    Ping TAN; Wei-ting HE; Jia LIN; Hong-ming ZHAO; Jian CHU

    2011-01-01

    With the development of high-speed railways in China,more than 2000 high-speed trains will be put into use.Safety and efficiency of railway transportation is increasingly important.We have designed a high availability quadruple vital computer (HAQVC) system based on the analysis of the architecture of the traditional double 2-out-of-2 system and 2-out-of-3 system.The HAQVC system is a system with high availability and safety,with prominent characteristics such as fire-new internal architecture,high efficiency,reliable data interaction mechanism,and operation state change mechanism.The hardware of the vital CPU is based on ARM7 with the real-time embedded safe operation system (ES-OS).The Markov modeling method is designed to evaluate the reliability,availability,maintainability,and safety (RAMS) of the system.In this paper,we demonstrate that the HAQVC system is more reliable than the all voting triple modular redundancy (AVTMR) system and double 2-out-of-2 system.Thus,the design can be used for a specific application system,such as an airplane or high-speed railway system.

  19. Reliability modeling and analysis for a novel design of modular converter system of wind turbines

    International Nuclear Information System (INIS)

    Zhang, Cai Wen; Zhang, Tieling; Chen, Nan; Jin, Tongdan

    2013-01-01

    Converters play a vital role in wind turbines. The concept of modularity is gaining in popularity in converter design for modern wind turbines in order to achieve high reliability as well as cost-effectiveness. In this study, we are concerned with a novel topology of modular converter invented by Hjort, Modular converter system with interchangeable converter modules. World Intellectual Property Organization, Pub. No. WO29027520 A2; 5 March 2009, in this architecture, the converter comprises a number of identical and interchangeable basic modules. Each module can operate in either AC/DC or DC/AC mode, depending on whether it functions on the generator or the grid side. Moreover, each module can be reconfigured from one side to the other, depending on the system’s operational requirements. This is a shining example of full-modular design. This paper aims to model and analyze the reliability of such a modular converter. A Markov modeling approach is applied to the system reliability analysis. In particular, six feasible converter system models based on Hjort’s architecture are investigated. Through numerical analyses and comparison, we provide insights and guidance for converter designers in their decision-making.

  20. Neutronics issues in fusion-fission hybrid reactor design

    International Nuclear Information System (INIS)

    Liu Chengan

    1995-01-01

    The coupled neutron and γ-ray transport equations and nuclear number density equations, and its computer program systems concerned in fusion-fission hybrid reactor design are briefly described. The current status and focal point for coming work of nuclear data used in fusion reactor design are explained

  1. Architecture Design Approaches and Issues in Cross Layer Systems

    DEFF Research Database (Denmark)

    Cattoni, Andrea Fabio; Sørensen, Troels Bundgaard; Mogensen, Preben

    2012-01-01

    the traditional protocol stack design methodology. However, Cross Layer also carries a risk due to possibly unexpected and undesired effects. In this chapter we want to provide architecture designers with a set of tools and recommendations synthesized from an analysis of the state of art, but enriched...

  2. Design considerations for wet flue gas desulfurization systems - wet scrubber hardware issues

    Energy Technology Data Exchange (ETDEWEB)

    Hurwitz, H.

    1994-12-31

    About 20 years ago the first wet flue gas desulfurization systems installed on coal fired utility boilers in the United States were experiencing extreme operating problems. In addition to their failure to achieve the necessary SO{sub 2} removal efficiencies, these FGD systems required a major investment in maintenance, both material and labor, just to remain operational. These first generation systems demonstrated that a lack of understanding of the chemistry and operating conditions of wet flue gas desulfurization can lead to diastrous results. As the air pollution control industry developed, both in the United States and in Japan, a second generation of FGD systems was introduced. These designs incorporated major improvements in both system chemistry control and in the equipment utilized in the process. Indeed, the successful introduction of utility gas desulfurization systems in Germany was possible only through the transfer of the technology improvements developed in the US and in Japan. Today, technology has evolved to a third generation of wet flue gas desulfurication systems and these systems are now offered worldwide through a series of international licensing agreements. The rapid economic growth and development in Asia and the Pacific Rim combined with existing problems in ambient air quality in these same geographic areas, has resulted in the use of advanced air pollution control systems; including flue gas desulfurization both for new utility units and for many retrofit projects. To meet the requirements of the utility industry, FGD systems must meet high standards of reliability, operability and performance. Key components in achieving these objectives are: FGD System reliability/operability/performance; FGD system supplier qualifications; process design; equipment selection. This paper will discuss each of the essential factors with a concentration on the equipment selection and wet scrubber hardware issues.

  3. Design of power auto-regulating system's high reliability controller for 200 MW nuclear heating reactor

    International Nuclear Information System (INIS)

    An Zhencai; Liu Longzhi; Chen Yuan

    1996-01-01

    The paper mainly introduces power auto-regulating system's high reliability controller for 200 MW Nuclear Heating Reactor. The controller is implemented with excellent performance 16 bit single chip microcomputer 8097. Master controller and 10 digit samplers are blocked. Each and every block's hardware is identical. These blocks communicate each other through 8 bit BUS and operate synchronously by united clock and reset signal and are designed with three redundancies. The identity comparison principle through two-out-of three is also introduced. The test proves that designing scheme is feasible

  4. Some aspects of the reliability-based design of reactor containment structures

    International Nuclear Information System (INIS)

    Schueller, G.I.

    1975-01-01

    It is generally recognized that the load which a structure is likely to experience during its design life as well as its resistance are to be represented by random variables. A rational design procedure for reactor containment structures can therefore only be carried out within a probabilistic framework. Internal load conditions caused by system failure such as loss-of-coolant accident, pressure loads etc., and external load conditions caused for instance by impact due to aircraft crashes, external pressure waves and natural hazards such as earthquakes, floods, hurricanes are described by extreme value distributions of the Fisher-Tippett types. Statistical and physical arguments are given to support their application. The occurrence of these rare events with respect to time is modeled by a Poisson process. The yield strength of the containment structure for both steel (liner) and reinforced concrete shells is also modeled by extreme value distributions (of the smallest values). The failure criterion considered here is that of collapse determined by plastic yieldline formation. A failure mechanism as considered here describes a particular regime of plastic line formation. The probability of failure of a structure under a single load application of load types likely to occur during the design life of the structure is to be determined by integrating over all possible mechanisms. Finally Freudenthal's reliability function is utilized to combine the information derived above so that a containment design for given design lifes and reliabilities is possible. (orig.) [de

  5. Fatigue Reliability and Calibration of Fatigue Design Factors for Offshore Wind Turbines

    Directory of Open Access Journals (Sweden)

    Sergio Márquez-Domínguez

    2012-06-01

    Full Text Available Consequences of failure of offshore wind turbines (OWTs is in general lower than consequences of failure of, e.g., oil & gas platforms. It is reasonable that lower fatigue design factors can be applied for fatigue design of OWTs when compared to other fixed offshore structures. Calibration of appropriate partial safety factors/Fatigue Design Factors (FDF for steel substructures for OWTs is the scope of this paper. A reliability-based approach is used and a probabilistic model has been developed, where design and limit state equations are established for fatigue failure. The strength and load uncertainties are described by stochastic variables. SN and fracture mechanics approaches are considered for to model the fatigue life. Further, both linear and bi-linear SN-curves are formulated and various approximations are investigated. The acceptable reliability level for fatigue failure of OWTs is discussed and results are presented for calibrated optimal fatigue design factors. Further, the influence of inspections is considered in order to extend and maintain a given target safety level.

  6. Design and reliability analysis of DP-3 dynamic positioning control architecture

    Science.gov (United States)

    Wang, Fang; Wan, Lei; Jiang, Da-Peng; Xu, Yu-Ru

    2011-12-01

    As the exploration and exploitation of oil and gas proliferate throughout deepwater area, the requirements on the reliability of dynamic positioning system become increasingly stringent. The control objective ensuring safety operation at deep water will not be met by a single controller for dynamic positioning. In order to increase the availability and reliability of dynamic positioning control system, the triple redundancy hardware and software control architectures were designed and developed according to the safe specifications of DP-3 classification notation for dynamically positioned ships and rigs. The hardware redundant configuration takes the form of triple-redundant hot standby configuration including three identical operator stations and three real-time control computers which connect each other through dual networks. The function of motion control and redundancy management of control computers were implemented by software on the real-time operating system VxWorks. The software realization of task loose synchronization, majority voting and fault detection were presented in details. A hierarchical software architecture was planed during the development of software, consisting of application layer, real-time layer and physical layer. The behavior of the DP-3 dynamic positioning control system was modeled by a Markov model to analyze its reliability. The effects of variation in parameters on the reliability measures were investigated. The time domain dynamic simulation was carried out on a deepwater drilling rig to prove the feasibility of the proposed control architecture.

  7. Design standard issues for ITER in-vessel components

    International Nuclear Information System (INIS)

    Majumdar, S.

    1994-01-01

    Unique requirements that must be addressed by a structural design code for the ITER have been summarized. Existing codes such as ASME Section III, or the French RCC-MR were developed primarily for fission reactor out-of-core components and are not directly applicable to the ITER. They may be used either as a guide for developing a design code for the ITER or as interim standards. However, new rules will be needed for handling the irradiation-induced embrittlement problems faced by the ITER blanket components. Design standards developed in the past for the design of fission reactor core components in the United States can be used as guides in this area

  8. Design issues for a Dexter-based hypermedia system

    DEFF Research Database (Denmark)

    Grønbæk, Kaj; Trigg, Randall H.

    1992-01-01

    This paper discusses experiences and lessons learned from the design of an openhypermedia system, one that integrates applications and data not "owned" bythe hypermedia. The Dexter Hypertext Reference Model [8] was used as thebasis for the design. Though our experiences were generally positive, we...... foundthe model constraining in certain ways and underdeveloped in others. Forinstance, Dexter argues against dangling links, but we found several situationswhere permitting and supporting...

  9. Physics-based process modeling, reliability prediction, and design guidelines for flip-chip devices

    Science.gov (United States)

    Michaelides, Stylianos

    Flip Chip on Board (FCOB) and Chip-Scale Packages (CSPs) are relatively new technologies that are being increasingly used in the electronic packaging industry. Compared to the more widely used face-up wirebonding and TAB technologies, flip-chips and most CSPs provide the shortest possible leads, lower inductance, higher frequency, better noise control, higher density, greater input/output (I/O), smaller device footprint and lower profile. However, due to the short history and due to the introduction of several new electronic materials, designs, and processing conditions, very limited work has been done to understand the role of material, geometry, and processing parameters on the reliability of flip-chip devices. Also, with the ever-increasing complexity of semiconductor packages and with the continued reduction in time to market, it is too costly to wait until the later stages of design and testing to discover that the reliability is not satisfactory. The objective of the research is to develop integrated process-reliability models that will take into consideration the mechanics of assembly processes to be able to determine the reliability of face-down devices under thermal cycling and long-term temperature dwelling. The models incorporate the time and temperature-dependent constitutive behavior of various materials in the assembly to be able to predict failure modes such as die cracking and solder cracking. In addition, the models account for process-induced defects and macro-micro features of the assembly. Creep-fatigue and continuum-damage mechanics models for the solder interconnects and fracture-mechanics models for the die have been used to determine the reliability of the devices. The results predicted by the models have been successfully validated against experimental data. The validated models have been used to develop qualification and test procedures for implantable medical devices. In addition, the research has helped develop innovative face

  10. Reliability-based design optimization using a generalized subset simulation method and posterior approximation

    Science.gov (United States)

    Ma, Yuan-Zhuo; Li, Hong-Shuang; Yao, Wei-Xing

    2018-05-01

    The evaluation of the probabilistic constraints in reliability-based design optimization (RBDO) problems has always been significant and challenging work, which strongly affects the performance of RBDO methods. This article deals with RBDO problems using a recently developed generalized subset simulation (GSS) method and a posterior approximation approach. The posterior approximation approach is used to transform all the probabilistic constraints into ordinary constraints as in deterministic optimization. The assessment of multiple failure probabilities required by the posterior approximation approach is achieved by GSS in a single run at all supporting points, which are selected by a proper experimental design scheme combining Sobol' sequences and Bucher's design. Sequentially, the transformed deterministic design optimization problem can be solved by optimization algorithms, for example, the sequential quadratic programming method. Three optimization problems are used to demonstrate the efficiency and accuracy of the proposed method.

  11. High-power FEL design issues - a critical review

    Energy Technology Data Exchange (ETDEWEB)

    Litvinenko, V.N.; Madey, J.M.J.; O`Shea, P.G. [Duke Univ., Durham, NC (United States)

    1995-12-31

    The high-average power capability of FELs has been much advertised but little realized. In this paper we provide a critical analysis of the technological and economic issues associated with high-average power FEL operation from the UV to near IR. The project of IR FEL for the Siberian Center of photochemical researches is described. The distinguished features of this project are the use of the race-track microtron-recuperator and the {open_quotes}electron output of radiation{close_quotes}. The building for the machine is under reconstruction now. About half of hardware has been manufactured. The assembly of installation began.

  12. Human factors issues in digital system design and implementation

    International Nuclear Information System (INIS)

    Galletti, Greg S.

    1998-01-01

    A goal of the U.S. Nuclear Regulatory Commission (NRC) is to ensure safety in the application of digital equipment upgrades to nuclear power plant control rooms and local control stations. One of the areas of specific interest is the integration of digital technology into existing analog control, display, and information systems and the implications of such integration for operators in regard to their use of this new equipment to safely operate the plant. This paper is a discussion of human performance issues related to the introduction of such digital equipment into operating nuclear power plants. (author)

  13. Design and recognition of artificial landmarks for reliable indoor self-localization of mobile robots

    Directory of Open Access Journals (Sweden)

    Xu Zhong

    2017-02-01

    Full Text Available This article presents a self-localization scheme for indoor mobile robot navigation based on reliable design and recognition of artificial visual landmarks. Each landmark is patterned with a set of concentric circular rings in black and white, which reliably encodes the landmark’s identity under environmental illumination. A mobile robot in navigation uses an onboard camera to capture landmarks in the environment. The landmarks in an image are detected and identified using a bilayer recognition algorithm: A global recognition process initially extracts candidate landmark regions across the whole image and tries to identify enough landmarks; if necessary, a local recognition process locally enhances those unidentified regions of interest influenced by illumination and incompleteness and reidentifies them. The recognized landmarks are used to estimate the position and orientation of the onboard camera in the environment, based on the geometric relationship between the image and environmental frames. The experiments carried out in a real indoor environment show high robustness of the proposed landmark design and recognition scheme to the illumination condition, which leads to reliable and accurate mobile robot localization.

  14. Designing Fault-Injection Experiments for the Reliability of Embedded Systems

    Science.gov (United States)

    White, Allan L.

    2012-01-01

    This paper considers the long-standing problem of conducting fault-injections experiments to establish the ultra-reliability of embedded systems. There have been extensive efforts in fault injection, and this paper offers a partial summary of the efforts, but these previous efforts have focused on realism and efficiency. Fault injections have been used to examine diagnostics and to test algorithms, but the literature does not contain any framework that says how to conduct fault-injection experiments to establish ultra-reliability. A solution to this problem integrates field-data, arguments-from-design, and fault-injection into a seamless whole. The solution in this paper is to derive a model reduction theorem for a class of semi-Markov models suitable for describing ultra-reliable embedded systems. The derivation shows that a tight upper bound on the probability of system failure can be obtained using only the means of system-recovery times, thus reducing the experimental effort to estimating a reasonable number of easily-observed parameters. The paper includes an example of a system subject to both permanent and transient faults. There is a discussion of integrating fault-injection with field-data and arguments-from-design.

  15. ITER divertor, design issues and research and development

    International Nuclear Information System (INIS)

    Tivey, R.; Ando, T.; Antipenkov, A.; Barabash, V.; Chiocchio, S.; Federici, G.; Ibbott, C.; Jakeman, R.; Janeschitz, G.; Raffray, R.; Mazul, I.; Pacher, H.; Ulrickson, M.; Vieider, G.

    1999-01-01

    Over the period of the ITER Engineering Design Activity (EDA) the results from physics experiments, modelling, engineering analyses and R and D, have been brought together to provide a design for an ITER divertor. The design satisfies all necessary requirements for steady state and transient heat flux, nuclear shielding, pumping, tritium inventory, impurity control, armour lifetime, electromagnetic loads, diagnostics, and remote maintenance. The design consists of 60 cassettes each comprising a cassette body onto which the plasma facing components (PFCs) are mounted. Each cassette is supported by toroidal rails which are attached to the vacuum vessel. For the PFCs the final armour choice is carbon-fibre-composite (CfC) for the strike point regions and tungsten in all remaining areas. R and D has demonstrated that CfC monoblocks can routinely withstand heat loads up to 20 MW m -2 10 MW m -2 . Analysis and experiment show that a CfC armour thickness of ∝20 mm will provide sufficient lifetime for at least 1000 full power pulses. The thickness of the cassette body is sufficient to shield the vacuum vessel, so that, if necessary, rewelding is possible, and also provides sufficient stiffness against electromagnetically generated loads. The cassette design provides efficient and proven remote maintenance which should allow exchange of a complete divertor within ∝6 months. (orig.)

  16. ITER divertor, design issues and research and development

    Energy Technology Data Exchange (ETDEWEB)

    Tivey, R.; Ando, T.; Antipenkov, A.; Barabash, V.; Chiocchio, S.; Federici, G.; Ibbott, C.; Jakeman, R.; Janeschitz, G.; Raffray, R. [ITER Joint Central Team, Garching (Germany). Joint Central Work Site; Akiba, M. [Japan Atomic Energy Research Institute, Naka-machi, Ibaraki-ken (Japan); Mazul, I. [Efremov Institute, St Petersburg (Russian Federation); Pacher, H. [NET Team, Boltzmannstr. 2, D-85748, Garching (Germany); Ulrickson, M. [Sandia National Laboratories, Albuquerque, NM (United States); Vieider, G. [NET Team, Boltzmannstr. 2, D-85748, Garching (Germany)

    1999-11-01

    Over the period of the ITER Engineering Design Activity (EDA) the results from physics experiments, modelling, engineering analyses and R and D, have been brought together to provide a design for an ITER divertor. The design satisfies all necessary requirements for steady state and transient heat flux, nuclear shielding, pumping, tritium inventory, impurity control, armour lifetime, electromagnetic loads, diagnostics, and remote maintenance. The design consists of 60 cassettes each comprising a cassette body onto which the plasma facing components (PFCs) are mounted. Each cassette is supported by toroidal rails which are attached to the vacuum vessel. For the PFCs the final armour choice is carbon-fibre-composite (CfC) for the strike point regions and tungsten in all remaining areas. R and D has demonstrated that CfC monoblocks can routinely withstand heat loads up to 20 MW m{sup -2}10 MW m{sup -2}. Analysis and experiment show that a CfC armour thickness of {proportional_to}20 mm will provide sufficient lifetime for at least 1000 full power pulses. The thickness of the cassette body is sufficient to shield the vacuum vessel, so that, if necessary, rewelding is possible, and also provides sufficient stiffness against electromagnetically generated loads. The cassette design provides efficient and proven remote maintenance which should allow exchange of a complete divertor within {proportional_to}6 months. (orig.)

  17. Reliability high cycle fatigue design of gas turbine blading system using probabilistic goodman diagram

    Energy Technology Data Exchange (ETDEWEB)

    Herman Shen, M.-H. [Ohio State Univ., Columbus, OH (United States). Dept. of Aerospace Engineering and Aviation; Nicholas, T. [MLLN, Wright-Patterson AFB, OH (United States). Air Force Research Lab.

    2001-07-01

    A framework for the probabilistic analysis of high cycle fatigue is developed. The framework will be useful to U.S. Air Force and aeroengine manufacturers in the design of high cycle fatigue in disk or compressor components fabricated from Ti-6Al-4V under a range of loading conditions that might be encountered during service. The main idea of the framework is to characterize vibratory stresses from random input variables due to uncertainties such as crack location, loading, material properties, and manufacturing variability. The characteristics of such vibratory stresses are portrayed graphically as histograms, or probability density function (PDF). The outcome of the probability measures associated with all the values of a random variable exceeding the material capability is achieved by a failure function g(X) defined by the difference between the vibratory stress and Goodman line or surface such that the probability of HCF failure is P{sub f} =P(g(X<0)). Design can then be based on a go-no go criterion based on an assumed risk. The framework can be used to facilitate the development of design tools for the prediction of inspection schedules and reliability in aeroengine components. Such tools could lead ultimately to improved life extension schemes in aging aircraft, and more reliable methods for the design and inspection of critical components. (orig.)

  18. Application of reliability based design concepts to transmission line structure foundations. Part 2

    International Nuclear Information System (INIS)

    DiGioia, A.M. Jr.; Rojas-Gonzalez, L.F.

    1991-01-01

    The application of reliability based design (RBD) methods to transmission line structure foundations has developed somewhat more slowly than that for the other structural components in line systems. In a previous paper, a procedure was proposed for the design of transmission line structures foundations using a probability based load and resistance factor design (LRFD) format. This procedure involved the determination of a foundation strength factor, φ F , which was used as a multiplier of the calculated nominal design strength to estimate the five percent exclusion limit strength required in the calculated nominal design strength to estimate the five percent exclusion limit strength required in the LRFD equation. Statistical analyses of results from full-scale load tests were used to obtain φ F values applicable to various nominal design strength equations and for drilled shafts subjected to uplift loads. These results clearly illustrated the significant economic benefits of conducting more detailed subsurface investigations for the design of transmission line structure foundations. A design example was also presented. In this paper the proposed procedure is extended to laterally load drilled shafts

  19. Substation design improvement with a probabilistic reliability approach using the TOPASE program

    Energy Technology Data Exchange (ETDEWEB)

    Bulot, M.; Heroin, G.; Bergerot, J-L.; Le Du, M. [Electricite de France (France)

    1997-12-31

    TOPASE, (the French acronym for Probabilistic Tools and Data Processing for the Analysis of Electric Systems), developed by Electricite de France (EDF) to perform reliability studies on transmission substations, was described. TOPASE serves a dual objective of assisting in the automation of HV substation studies, as well as enabling electrical systems experts who are not necessarily specialists in reliability studies to perform such studies. The program is capable of quantifying the occurrence rate of undesirable events and of identifying critical equipment and the main incident scenarios. The program can be used to improve an existing substation, to choose an HV structure during the design stage, or to choose a system of protective devices. Data collected during 1996 and 1997 will be analyzed to identify useful experiences and to validate the basic concepts of the program. 4 figs.

  20. Design for Reliability of Power Electronics for Grid-Connected Photovoltaic Systems

    DEFF Research Database (Denmark)

    Yang, Yongheng; Sangwongwanich, Ariya; Blaabjerg, Frede

    2016-01-01

    Power electronics is the enabling technology for optimizing energy harvesting from renewable systems like Photovoltaic (PV) and wind power systems, and also for interfacing grid-friendly energy systems. Advancements in the power semiconductor technology (e.g., wide band-gap devices) have pushed...... the conversion efficiency of power electronics to above 98%, where however te reliability of power electronics is becoming of high concern. Therefore, it is important to design for reliable power electronic systems to lower the risks of many failures during operation; otherwise will increase the cost...... for maintenance and reputation, thus affecting the cost of PV energy. Today's PV power conversion applications require the power electronic systems with low failure rates during a service life of 20 years or even more. To achieve so, it is vital to know the main life-limiting factors of power electronic systems...

  1. A view on the ways design of reliability criteria in structural mechanics

    International Nuclear Information System (INIS)

    Kopecky, M.

    2005-01-01

    Contemporary intensive development of technology puts ever-increasing demands on the reliability of products. The increase in the reliability level is emphasised also in transport machines and equipment. This all requires a further improvement of the method of designing and strength checking of a construction. The methods described in this paper are the ways to reach the solution goals with the maximum use of computer technology. A practical example of loading system analysis in presented which demonstrates use the special instrument to measurement of distribution the force and torsion moment in card an-joint for control purposes and uses the special instrument to generally measurement of distribution random loading parameter. The application of this methodology shortens knowledge of the time to failure of mobile machine components and contributes to the safety and economy of mechanical systems. The results of its application would be presented to mobile facility elements. (authors)

  2. Issues in Software Engineering of Relevance to Instructional Design

    Science.gov (United States)

    Douglas, Ian

    2006-01-01

    Software engineering is popularly misconceived as being an upmarket term for programming. In a way, this is akin to characterizing instructional design as the process of creating PowerPoint slides. In both these areas, the construction of systems, whether they are learning or computer systems, is only one part of a systematic process. The most…

  3. Design issues and applications of wireless sensor networks ...

    African Journals Online (AJOL)

    ... using tiny wireless sensor motes known as “smart dusts”, which have been made possible by advances in micro-electromechanical systems (MEMS) technology, wireless communications and digital electronics. Design considerations for the hardware and the topology necessary to realize these networks were evaluated.

  4. Overview of design issues in product-integrated Photovoltaics

    NARCIS (Netherlands)

    Apostolou, G.; Reinders, Angelina H.M.E.

    2014-01-01

    This paper presents an overview of the design features and characteristics of photovoltaic (PV)-powered products based on a literature study on product-integrated PV and an analysis of 90 PV-powered products executed during 2011–2013. The aim of this paper is to provide insight into the current

  5. Design issues for block-oriented reflective memory system

    Energy Technology Data Exchange (ETDEWEB)

    Jovanovic, M; Tomasevic, M; Milutinovic, V

    1996-12-31

    The block-oriented reflective memory (BORM) system represents a modular bus-based system architecture that belongs to the class of distributed shared memory systems. The results of the evaluation study of the BORM implementation strategies and design decisions in regard to the different values of input parameters are presented. 5 refs.

  6. Design Issues of the Pre-Compression Rings of Iter

    Science.gov (United States)

    Knaster, J.; Baker, W.; Bettinali, L.; Jong, C.; Mallick, K.; Nardi, C.; Rajainmaki, H.; Rossi, P.; Semeraro, L.

    2010-04-01

    The pre-compression system is the keystone of ITER. A centripetal force of ˜30 MN will be applied at cryogenic conditions on top and bottom of each TF coil. It will prevent the `breathing effect' caused by the bursting forces occurring during plasma operation that would affect the machine design life of 30000 cycles. Different alternatives have been studied throughout the years. There are two major design requirements limiting the engineering possibilities: 1) the limited available space and 2) the need to hamper eddy currents flowing in the structures. Six unidirectionally wound glass-fibre composite rings (˜5 m diameter and ˜300 mm cross section) are the final design choice. The rings will withstand the maximum hoop stresses machine operation. The present paper summarizes the pre-compression ring R&D carried out during several years. In particular, we will address the composite choice and mechanical characterization, assessment of creep or stress relaxation phenomena, sub-sized rings testing and the optimal ring fabrication processes that have led to the present final design.

  7. Analgesia and anesthesia for neonates : Study design and ethical issues

    NARCIS (Netherlands)

    Anand, KJS; Aranda, JV; Berde, CB; Buckman, S; Capparelli, EV; Carlo, WA; Hummel, P; Lantos, P; Johnston, CC; Lehr, VT; Lynn, AM; Oberlander, TF; Raju, TNK; Soriano, SG; Taddio, A; Walco, GA; Maxwell, L.G.

    Objective: The purpose of this article is to summarize the clinical, methodologic, and ethical considerations for researchers interested in designing future trials in neonatal analgesia and anesthesia, hopefully stimulating additional research in this field. Methods: The MEDLINE, PubMed, EMBASE, and

  8. Smart grid as a service: a discussion on design issues.

    Science.gov (United States)

    Chao, Hung-Lin; Tsai, Chen-Chou; Hsiung, Pao-Ann; Chou, I-Hsin

    2014-01-01

    Smart grid allows the integration of distributed renewable energy resources into the conventional electricity distribution power grid such that the goals of reduction in power cost and in environment pollution can be met through an intelligent and efficient matching between power generators and power loads. Currently, this rapidly developing infrastructure is not as "smart" as it should be because of the lack of a flexible, scalable, and adaptive structure. As a solution, this work proposes smart grid as a service (SGaaS), which not only allows a smart grid to be composed out of basic services, but also allows power users to choose between different services based on their own requirements. The two important issues of service-level agreements and composition of services are also addressed in this work. Finally, we give the details of how SGaaS can be implemented using a FIPA-compliant JADE multiagent system.

  9. 14 CFR 21.617 - Issue of letters of TSO design approval: import appliances.

    Science.gov (United States)

    2010-01-01

    ...: import appliances. 21.617 Section 21.617 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... Order Authorizations § 21.617 Issue of letters of TSO design approval: import appliances. (a) A letter of TSO design approval may be issued for an appliance that is manufactured in a foreign country with...

  10. Application of high efficiency and reliable 3D-designed integral shrouded blades to nuclear turbines

    International Nuclear Information System (INIS)

    Watanabe, Eiichiro; Ohyama, Hiroharu; Tashiro, Hikaru; Sugitani, Toshiro; Kurosawa, Masaru

    1998-01-01

    Mitsubishi Heavy Industries, Ltd. has recently developed new blades for nuclear turbines, in order to achieve higher efficiency and higher reliability. The 3D aerodynamic design for 41 inch and 46 inch blades, their one piece structural design (integral-shrouded blades: ISB), and the verification test results using a model steam turbine are described in this paper. The predicted efficiency and lower vibratory stress have been verified. Based on these 60Hz ISB, 50Hz ISB series are under development using 'the law of similarity' without changing their thermodynamic performance and mechanical stress levels. Our 3D-designed reaction blades which are used for the high pressure and low pressure upstream stages, are also briefly mentioned. (author)

  11. Design optimization of transformerless grid-connected PV inverters including reliability

    DEFF Research Database (Denmark)

    Koutroulis, Eftichios; Blaabjerg, Frede

    2012-01-01

    Of the Electricity (LCOE) generated during the PV system lifetime period is minimized. The LCOE is calculated also considering the failure rates of the components, which affect the reliability performance and lifetime maintenance cost of the PV inverter. A design example is presented, demonstrating that compared...... to the non-optimized PV inverter structures, the PV inverters designed using the proposed optimization methodology exhibit lower total manufacturing and lifetime maintenance cost and inject more energy into the electric-grid and by that minimizing LCOE.......This paper presents a new methodology for optimal design of transformerless Photovoltaic (PV) inverters targeting a cost-effective deployment of grid-connected PV systems. The optimal values and types of the PV inverter components are calculated such that the PV inverter Levelized Cost...

  12. Design Optimization of Transformerless Grid-Connected PV Inverters Including Reliability

    DEFF Research Database (Denmark)

    Koutroulis, Eftichios; Blaabjerg, Frede

    2013-01-01

    such that the PV inverter LCOE generated during the PV system lifetime period is minimized. The LCOE is also calculated considering the failure rates of the components, which affect the reliability performance and lifetime maintenance cost of the PV inverter. A design example is presented, demonstrating...... that compared to the nonoptimized PV inverter structures, the PV inverters designed using the proposed optimization methodology exhibit lower total manufacturing and lifetime maintenance cost and inject more energy into the electric-grid and by that minimizing LCOE.......This paper presents a new methodology for optimal design of transformerless photovoltaic (PV) inverters targeting a cost-effective deployment of grid-connected PV systems. The optimal switching frequency as well as the optimal values and types of the PV inverter components is calculated...

  13. Priority issues, study designs and geographical distribution in nutrition journals.

    Science.gov (United States)

    Ortiz-Moncada, R; González-Zapata, L; Ruiz-Cantero, M T; Clemente-Gómez, V

    2011-01-01

    The increased number of articles published in nutrition is a reflection of the relevance to scientific community. The characteristics and quality of nutritional studies determine whether readers can obtain valid conclusions from them, as well as their usefulness for evidence-based strategic policies. To determine the characteristics of papers published in nutrition journals. Descriptive study design. We reviewed 330 original papers published between January-June 2007. From: American Journal of Clinical Nutrition (AJCN), Journal of Nutrition, European Journal Nutrition, European Journal of Clinical Nutrition and Public Health Nutrition. We classified them according to the subjects studied; risk factors, study design and country of origin. Almost half the papers studied healthy people (53.3%). The most frequent illness was obesity (13.9%). Food consumption is the most frequent risk factor (63.3%). Social factors appear exclusively only in 3.6% of the papers. Clinical trials were the most common analytical design (31.8%), mainly in the AJCN (45.6%). Cross-sectional studies were the most frequent type of observational design (37.9%). Ten countries produced over half of the papers (51.3%). The US publishes the highest number of papers (20.6%), whilst developing countries make only scarce contributions to scientific literature on nutrition. Most of the papers had inferential power. They generally studied both healthy and sick subjects, coinciding with the aims of international scientific policies. However, the topics covered reflect a clear bias, prioritizing problems pertaining to developed countries. Social determinants of health should also be considered, along with behavioral and biological risk factors.

  14. Usability Issues in the Design of Novice Programming Systems,

    Science.gov (United States)

    1996-08-01

    lists this as a design principle for novice programming environments. In traditional compiled languages, beginners are also confused by the need to...programming task external knowledge that might interfere with correct under- standing of the language. Most beginner programming errors can be...language for text editing, but [Curtis 1988] found that a textual pseudocode and graphical flowcharts were both bet- ter than natural language in program

  15. A study on technical issues of materials and design bases in ASME section III subsection NH code

    International Nuclear Information System (INIS)

    Lee, Hyeong Yeon; Kim, Jong Bum; Yoo, Bong

    2000-12-01

    In this study, an analysis of evaluation report by ORNL on the technical issues of elevated temperatures design guide line, ASME Code Section III Subsection NH was conducted and a brief evaluation procedure of the creep-fatigue damage was presented. ORNL published the report in 1993 and reviewed the issue areas where code rules or regulatory guides may be lacking or inadequate to ensure safe operation over the expected life cycles for liquid metal reactor systems. From historical viewpoint of the ASME NH code development, ASME Code Case 47 was changed much in 1989 edition, which includes the stress relaxation behavior in creep damage evaluation. Afterwards the 1992 version of CC N-47 was upgraded to Subsection NH in 1995 edition, which is the same with that of CC N-47 1992 edition except few material data. This report brings up the technical and regulatory issues that can not guarantee the safe and reliable operation of the ALMR which got the conceptual design certification from NRC. Twenty three technical issues were raised and settlement methodology were proposed. Additionally, the status of items approved by ASME code subgroup of elevated temperature design committee for the revision of the most recent 1998 edition of ASME NH was described

  16. A survey on the human reliability analysis methods for the design of Korean next generation reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yong Hee; Lee, J. W.; Park, J. C.; Kwack, H. Y.; Lee, K. Y.; Park, J. K.; Kim, I. S.; Jung, K. W

    2000-03-01

    Enhanced features through applying recent domestic technologies may characterize the safety and efficiency of KNGR(Korea Next Generation Reactor). Human engineered interface and control room environment are expected to be beneficial to the human aspects of KNGR design. However, since the current method for human reliability analysis is not up to date after THERP/SHARP, it becomes hard to assess the potential of human errors due to both of the positive and negative effect of the design changes in KNGR. This is a state of the art report on the human reliability analysis methods that are potentially available for the application to the KNGR design. We surveyed every technical aspects of existing HRA methods, and compared them in order to obtain the requirements for the assessment of human error potentials within KNGR design. We categorized the more than 10 methods into the first and the second generation according to the suggestion of Dr. Hollnagel. THERP was revisited in detail. ATHEANA proposed by US NRC for an advanced design and CREAM proposed by Dr. Hollnagel were reviewed and compared. We conclude that the key requirements might include the enhancement in the early steps for human error identification and the quantification steps with considerations of more extended error shaping factors over PSFs(performance shaping factors). The utilization of the steps and approaches of ATHEANA and CREAM will be beneficial to the attainment of an appropriate HRA method for KNGR. However, the steps and data from THERP will be still maintained because of the continuity with previous PSA activities in KNGR design.

  17. A survey on the human reliability analysis methods for the design of Korean next generation reactor

    International Nuclear Information System (INIS)

    Lee, Yong Hee; Lee, J. W.; Park, J. C.; Kwack, H. Y.; Lee, K. Y.; Park, J. K.; Kim, I. S.; Jung, K. W.

    2000-03-01

    Enhanced features through applying recent domestic technologies may characterize the safety and efficiency of KNGR(Korea Next Generation Reactor). Human engineered interface and control room environment are expected to be beneficial to the human aspects of KNGR design. However, since the current method for human reliability analysis is not up to date after THERP/SHARP, it becomes hard to assess the potential of human errors due to both of the positive and negative effect of the design changes in KNGR. This is a state of the art report on the human reliability analysis methods that are potentially available for the application to the KNGR design. We surveyed every technical aspects of existing HRA methods, and compared them in order to obtain the requirements for the assessment of human error potentials within KNGR design. We categorized the more than 10 methods into the first and the second generation according to the suggestion of Dr. Hollnagel. THERP was revisited in detail. ATHEANA proposed by US NRC for an advanced design and CREAM proposed by Dr. Hollnagel were reviewed and compared. We conclude that the key requirements might include the enhancement in the early steps for human error identification and the quantification steps with considerations of more extended error shaping factors over PSFs(performance shaping factors). The utilization of the steps and approaches of ATHEANA and CREAM will be beneficial to the attainment of an appropriate HRA method for KNGR. However, the steps and data from THERP will be still maintained because of the continuity with previous PSA activities in KNGR design

  18. Designing a reliable leak bio-detection system for natural gas pipelines

    International Nuclear Information System (INIS)

    Batzias, F.A.; Siontorou, C.G.; Spanidis, P.-M.P.

    2011-01-01

    Monitoring of natural gas (NG) pipelines is an important task for economical/safety operation, loss prevention and environmental protection. Timely and reliable leak detection of gas pipeline, therefore, plays a key role in the overall integrity management for the pipeline system. Owing to the various limitations of the currently available techniques and the surveillance area that needs to be covered, the research on new detector systems is still thriving. Biosensors are worldwide considered as a niche technology in the environmental market, since they afford the desired detector capabilities at low cost, provided they have been properly designed/developed and rationally placed/networked/maintained by the aid of operational research techniques. This paper addresses NG leakage surveillance through a robust cooperative/synergistic scheme between biosensors and conventional detector systems; the network is validated in situ and optimized in order to provide reliable information at the required granularity level. The proposed scheme is substantiated through a knowledge based approach and relies on Fuzzy Multicriteria Analysis (FMCA), for selecting the best biosensor design that suits both, the target analyte and the operational micro-environment. This approach is illustrated in the design of leak surveying over a pipeline network in Greece.

  19. Study on Feasibility of Applying Function Approximation Moment Method to Achieve Reliability-Based Design Optimization

    International Nuclear Information System (INIS)

    Huh, Jae Sung; Kwak, Byung Man

    2011-01-01

    Robust optimization or reliability-based design optimization are some of the methodologies that are employed to take into account the uncertainties of a system at the design stage. For applying such methodologies to solve industrial problems, accurate and efficient methods for estimating statistical moments and failure probability are required, and further, the results of sensitivity analysis, which is needed for searching direction during the optimization process, should also be accurate. The aim of this study is to employ the function approximation moment method into the sensitivity analysis formulation, which is expressed as an integral form, to verify the accuracy of the sensitivity results, and to solve a typical problem of reliability-based design optimization. These results are compared with those of other moment methods, and the feasibility of the function approximation moment method is verified. The sensitivity analysis formula with integral form is the efficient formulation for evaluating sensitivity because any additional function calculation is not needed provided the failure probability or statistical moments are calculated

  20. Improving human reliability through better nuclear power plant system design. Progress report

    International Nuclear Information System (INIS)

    Golay, M.W.

    1995-01-01

    The project on open-quotes Development of a Theory of the Dependence of Human Reliability upon System Designs as a Means of Improving Nuclear Power Plant Performanceclose quotes has been undertaken in order to address the important problem of human error in advanced nuclear power plant designs. Most of the creativity in formulating such concepts has focused upon improving the mechanical reliability of safety related plant systems. However, the lack of a mature theory has retarded similar progress in reducing the likely frequencies of human errors. The main design mechanism used to address this class of concerns has been to reduce or eliminate the human role in plant operations and accident response. The plan of work being pursued in this project is to perform a set of experiments involving human subject who are required to operate, diagnose and respond to changes in computer-simulated systems, relevant to those encountered in nuclear power plants. In the tests the systems are made to differ in complexity in a systematic manner. The computer program used to present the problems to be solved also records the response of the operator as it unfolds. Ultimately this computer is also to be used in compiling the results of the project. The work of this project is focused upon nuclear power plant applications. However, the persuasiveness of human errors in using all sorts of electromechanical machines gives it a much greater potential importance. Because of this we are attempting to pursue our work in a fashion permitting broad generalizations

  1. Designing a reliable leak bio-detection system for natural gas pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Batzias, F.A., E-mail: fbatzi@unipi.gr [Univ. Piraeus, Dept. Industrial Management and Technology, Karaoli and Dimitriou 80, 18534 Piraeus (Greece); Siontorou, C.G., E-mail: csiontor@unipi.gr [Univ. Piraeus, Dept. Industrial Management and Technology, Karaoli and Dimitriou 80, 18534 Piraeus (Greece); Spanidis, P.-M.P., E-mail: pspani@asprofos.gr [Asprofos Engineering S.A, El. Venizelos 284, 17675 Kallithea (Greece)

    2011-02-15

    Monitoring of natural gas (NG) pipelines is an important task for economical/safety operation, loss prevention and environmental protection. Timely and reliable leak detection of gas pipeline, therefore, plays a key role in the overall integrity management for the pipeline system. Owing to the various limitations of the currently available techniques and the surveillance area that needs to be covered, the research on new detector systems is still thriving. Biosensors are worldwide considered as a niche technology in the environmental market, since they afford the desired detector capabilities at low cost, provided they have been properly designed/developed and rationally placed/networked/maintained by the aid of operational research techniques. This paper addresses NG leakage surveillance through a robust cooperative/synergistic scheme between biosensors and conventional detector systems; the network is validated in situ and optimized in order to provide reliable information at the required granularity level. The proposed scheme is substantiated through a knowledge based approach and relies on Fuzzy Multicriteria Analysis (FMCA), for selecting the best biosensor design that suits both, the target analyte and the operational micro-environment. This approach is illustrated in the design of leak surveying over a pipeline network in Greece.

  2. Designing a reliable leak bio-detection system for natural gas pipelines.

    Science.gov (United States)

    Batzias, F A; Siontorou, C G; Spanidis, P-M P

    2011-02-15

    Monitoring of natural gas (NG) pipelines is an important task for economical/safety operation, loss prevention and environmental protection. Timely and reliable leak detection of gas pipeline, therefore, plays a key role in the overall integrity management for the pipeline system. Owing to the various limitations of the currently available techniques and the surveillance area that needs to be covered, the research on new detector systems is still thriving. Biosensors are worldwide considered as a niche technology in the environmental market, since they afford the desired detector capabilities at low cost, provided they have been properly designed/developed and rationally placed/networked/maintained by the aid of operational research techniques. This paper addresses NG leakage surveillance through a robust cooperative/synergistic scheme between biosensors and conventional detector systems; the network is validated in situ and optimized in order to provide reliable information at the required granularity level. The proposed scheme is substantiated through a knowledge based approach and relies on Fuzzy Multicriteria Analysis (FMCA), for selecting the best biosensor design that suits both, the target analyte and the operational micro-environment. This approach is illustrated in the design of leak surveying over a pipeline network in Greece. Copyright © 2010 Elsevier B.V. All rights reserved.

  3. Designed for wartime needs, but never actually issued

    Directory of Open Access Journals (Sweden)

    Pantelić Svetlana

    2014-01-01

    Full Text Available Seeking funds to finance the war against the Turks which it entered in July 1876, Serbia, ruled by Prince Milan Obrenović, passed the decision on issuing paper banknotes with no backing in precious metals. They were printed at the national printing house in Belgrade. About 1500 pieces of banknotes of the Main National Treasury of the Principality of Serbia were printed in different denominations: 1, 5, 10, 50, and 100 dinars. These banknotes were never actually in circulation, being the test prints only, used to check whether the machines and technology for their future printing were working properly. They are extremely rare and popular with collectors. The most interesting ones are the 1-dinar banknotes because they have no reverse side, the 5-dinar banknotes because they were painted by the poet and painter Đura Jakšić, and the 10-dinar ones because they feature the drawings of the painter Đorđe Krstić.

  4. Microgrid Design Analysis Using Technology Management Optimization and the Performance Reliability Model

    Energy Technology Data Exchange (ETDEWEB)

    Stamp, Jason E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Eddy, John P. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jensen, Richard P. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Munoz-Ramos, Karina [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-01-01

    Microgrids are a focus of localized energy production that support resiliency, security, local con- trol, and increased access to renewable resources (among other potential benefits). The Smart Power Infrastructure Demonstration for Energy Reliability and Security (SPIDERS) Joint Capa- bility Technology Demonstration (JCTD) program between the Department of Defense (DOD), Department of Energy (DOE), and Department of Homeland Security (DHS) resulted in the pre- liminary design and deployment of three microgrids at military installations. This paper is focused on the analysis process and supporting software used to determine optimal designs for energy surety microgrids (ESMs) in the SPIDERS project. There are two key pieces of software, an ex- isting software application developed by Sandia National Laboratories (SNL) called Technology Management Optimization (TMO) and a new simulation developed for SPIDERS called the per- formance reliability model (PRM). TMO is a decision support tool that performs multi-objective optimization over a mixed discrete/continuous search space for which the performance measures are unrestricted in form. The PRM is able to statistically quantify the performance and reliability of a microgrid operating in islanded mode (disconnected from any utility power source). Together, these two software applications were used as part of the ESM process to generate the preliminary designs presented by SNL-led DOE team to the DOD. Acknowledgements Sandia National Laboratories and the SPIDERS technical team would like to acknowledge the following for help in the project: * Mike Hightower, who has been the key driving force for Energy Surety Microgrids * Juan Torres and Abbas Akhil, who developed the concept of microgrids for military instal- lations * Merrill Smith, U.S. Department of Energy SPIDERS Program Manager * Ross Roley and Rich Trundy from U.S. Pacific Command * Bill Waugaman and Bill Beary from U.S. Northern Command * Tarek Abdallah, Melanie

  5. Ethical issues in engineering design processes ; regulative frameworks for safety and sustainability

    NARCIS (Netherlands)

    Gorp, A. van

    2007-01-01

    The ways designers deal with ethical issues that arise in their consideration of safety and sustainability in engineering design processes are described. In the case studies, upon which this article is based, a difference can be seen between normal and radical design. Designers refer to regulative

  6. Intrinsic information Security: Embedding security issues in the design process of telematics systems

    NARCIS (Netherlands)

    Tettero, Olaf; Tettero, O.

    This book presents a systematic approach to embed information security issues in the design process of telematics systems. The approach supports both designers and user organisations. We elaborate on the activities that designers should perform to design telematics systems in which information

  7. Design issues in the semantics and scheduling of asynchronous tasks.

    Energy Technology Data Exchange (ETDEWEB)

    Olivier, Stephen L.

    2013-07-01

    The asynchronous task model serves as a useful vehicle for shared memory parallel programming, particularly on multicore and manycore processors. As adoption of model among programmers has increased, support has emerged for the integration of task parallel language constructs into mainstream programming languages, e.g., C and C++. This paper examines some of the design decisions in Cilk and OpenMP concerning semantics and scheduling of asynchronous tasks with the aim of informing the efforts of committees considering language integration, as well as developers of new task parallel languages and libraries.

  8. Spatial issues in user interface design from a graphic design perspective

    Science.gov (United States)

    Marcus, Aaron

    1989-01-01

    The user interface of a computer system is a visual display that provides information about the status of operations on data within the computer and control options to the user that enable adjustments to these operations. From the very beginning of computer technology the user interface was a spatial display, although its spatial features were not necessarily complex or explicitly recognized by the users. All text and nonverbal signs appeared in a virtual space generally thought of as a single flat plane of symbols. Current technology of high performance workstations permits any element of the display to appear as dynamic, multicolor, 3-D signs in a virtual 3-D space. The complexity of appearance and the user's interaction with the display provide significant challenges to the graphic designer of current and future user interfaces. In particular, spatial depiction provides many opportunities for effective communication of objects, structures, processes, navigation, selection, and manipulation. Issues are presented that are relevant to the graphic designer seeking to optimize the user interface's spatial attributes for effective visual communication.

  9. Optimization of Casting Design Parameters on Fabrication of Reliable Semi-Solid Aluminum Suspension Control Arm

    Science.gov (United States)

    Ragab, Kh. A.; Bouaicha, A.; Bouazara, M.

    2017-09-01

    The semi-solid casting process has the advantage of providing reliable mechanical aluminum parts that work continuously in dynamic as control arm of the suspension system in automotive vehicles. The quality performance of dynamic control arm is related to casting mold and gating system designs that affect the fluidity of semi-solid metal during filling the mold. Therefore, this study focuses on improvement in mechanical performance, depending on material characterization, and casting design optimization, of suspension control arms made of A357 aluminum semi-solid alloys. Mechanical and design analyses, applied on the suspension arm, showed the occurrence of mechanical failures at unexpected weak points. Metallurgical analysis showed that the main reason lies in the difficult flow of semi-solid paste through the thin thicknesses of a complex geometry. A design modification procedure is applied to the geometry of the suspension arm to avoid this problem and to improve its quality performance. The design modification of parts was carried out by using SolidWorks design software, evaluation of constraints with ABAQUS, and simulation of flow with ProCast software. The proposed designs showed that the modified suspension arm, without ribs and with a central canvas designed as Z, is considered as a perfect casting design showing an increase in the structural strength of the component. In this case, maximum von Mises stress is 199 MPa that is below the yield strength of the material. The modified casting mold design shows a high uniformity and minim turbulence of molten metal flow during semi-solid casting process.

  10. Key issues in theoretical and functional pneumatic design

    Science.gov (United States)

    Xu, Z. G.; Yang, D. Y.; Liu, W. M.; Liu, T. T.

    2017-10-01

    This paper studies the energy release of the pneumatic engine in different thermodynamic processes, the isothermal process is the highest power output process, while adiabatic process is the lowest energy output process, and the energy release of the pneumatic engine is a multi-state thermodynamic process between them. Therefore heat exchanging should be increased between the pneumatic engine and the outer space, the gas expansion process in the cylinder should be as close as possible to the isothermal process. Heat exchange should be increased between the cylinder and the external spaces. Secondly, the fin structure is studied to increase the heat exchanging between the cylinder body and the outside space. The upper part has fin structures and the lower cylinder has no fin structure, this structure improved the working efficiency of pneumatic engine. Finally the cam and the hydraulic bottle of pneumatic engines are designed. Simulation and theoretical calculation are used to the analysis of the whole structure, which lay the foundation for the manufacturing and design of the pneumatic engines.

  11. A hybrid press system: Motion design and inverse kinematics issues

    Directory of Open Access Journals (Sweden)

    M. Erkan Kütük

    2016-06-01

    Full Text Available A hybrid machine (HM is a system integrating two types of motor; servo and constant velocity with a mechanism. The purpose is to make use of the energy in the system efficiently with a flexible system having more than one degree of freedom (DOF. A review is included on hybrid press systems. This study is included as a part of an industrial project used for metal forming. The system given here includes a 7 link mechanism, one of link is driven by a constant velocity motor (CV and the other is driven by a servo motor (SM. Kinematics analysis of the hybrid driven mechanism is presented here as inverse kinematics analysis. Motion design is very crucial step when using a hybrid machine. So motion design procedure is given with motion curve examples needed. Curve Fitting Toolbox (CFT in Matlab® is offered as an auxiliary method which can be successfully applied. Motion characteristics are chosen by looking at requirements taken from metal forming industry. Results are then presented herein.

  12. Bootstrap analysis of designed experiments for reliability improvement with a non-constant scale parameter

    International Nuclear Information System (INIS)

    Wang, Guodong; He, Zhen; Xue, Li; Cui, Qingan; Lv, Shanshan; Zhou, Panpan

    2017-01-01

    Factors which significantly affect product reliability are of great interest to reliability practitioners. This paper proposes a bootstrap-based methodology for identifying significant factors when both location and scale parameters of the smallest extreme value distribution vary over experimental factors. An industrial thermostat experiment is presented, analyzed, and discussed as an illustrative example. The analysis results show that 1) the misspecification of a constant scale parameter may lead to misidentify spurious effects; 2) the important factors identified by different bootstrap methods (i.e., percentile bootstrapping, bias-corrected percentile bootstrapping, and bias-corrected and accelerated percentile bootstrapping) are different; 3) the number of factors affecting 10th percentile lifetime significantly is less than the number of important factors identified at 63.21th percentile. - Highlights: • Product reliability is improved by design of experiments under both scale and location parameters of smallest extreme value distribution vary with experimental factors. • A bootstrap-based methodology is proposed to identify important factors which affect 100pth lifetime percentile significantly. • Bootstrapping confidence intervals associating experimental factors are obtained by using three bootstrap methods (i.e., percentile bootstrapping, bias-corrected percentile bootstrapping, and bias-corrected and accelerated percentile bootstrapping). • The important factors identified by different bootstrap methods are different. • The number of factors affecting 10th percentile significantly is less than the number of important factors identified at 63.21th percentile.

  13. Design for Reliability and Robustness Tool Platform for Power Electronic Systems – Study Case on Motor Drive Applications

    DEFF Research Database (Denmark)

    Vernica, Ionut; Wang, Huai; Blaabjerg, Frede

    2018-01-01

    conventional approach, mainly based on failure statistics from the field, the reliability evaluation of the power devices is still a challenging task. In order to address the given problem, a MATLAB based reliability assessment tool has been developed. The Design for Reliability and Robustness (DfR2) tool...... allows the user to easily investigate the reliability performance of the power electronic components (or sub-systems) under given input mission profiles and operating conditions. The main concept of the tool and its framework are introduced, highlighting the reliability assessment procedure for power...... semiconductor devices. Finally, a motor drive application is implemented and the reliability performance of the power devices is investigated with the help of the DfR2 tool, and the resulting reliability metrics are presented....

  14. Embedded Sensors and Controls to Improve Component Performance and Reliability: Conceptual Design Report

    Energy Technology Data Exchange (ETDEWEB)

    Kisner, Roger A [ORNL; Melin, Alexander M [ORNL; Burress, Timothy A [ORNL; Fugate, David L [ORNL; Holcomb, David Eugene [ORNL; Wilgen, John B [ORNL; Miller, John M [ORNL; Wilson, Dane F [ORNL; Silva, Pamela C [ORNL; Whitlow, Lynsie J [ORNL; Peretz, Fred J [ORNL

    2012-10-01

    The overall project objective is to demonstrate improved reliability and increased performance made possible by deeply embedding instrumentation and controls (I&C) in nuclear power plant components. The project is employing a highly instrumented canned rotor, magnetic bearing, fluoride salt pump as its I&C technology demonstration vehicle. The project s focus is not primarily on pump design, but instead is on methods to deeply embed I&C within a pump system. However, because the I&C is intimately part of the basic millisecond-by-millisecond functioning of the pump, the I&C design cannot proceed in isolation from the other aspects of the pump. The pump will not function if the characteristics of the I&C are not embedded within the design because the I&C enables performance of the basic function rather than merely monitoring quasi-stable performance. Traditionally, I&C has been incorporated in nuclear power plant (NPP) components after their design is nearly complete; adequate performance was obtained through over-design. This report describes the progress and status of the project and provides a conceptual design overview for the embedded I&C pump.

  15. Monkeys on the Screen?: Multicultural Issues in Instructional Message Design

    Directory of Open Access Journals (Sweden)

    Debbie McAnany

    2009-09-01

    Full Text Available With the shift in numbers between Canadian-born students in the university classroom and the increased number of international students, it is a primary concern for instructors and instructional designers to know and understand learner characteristics in order to create effective instructional messages and materials. Recognizing how culture might shape cognition and learning, we can value and design for the diversity of students and maximize their learning while improving the learning environment for all students. To celebrate cultural diversity and meet the challenges associated with designing for diverse learning styles and educational experiences, this paper offers a review of the literature and proposes a systematic three-fold approach to the creation and evaluation of multicultural instructional messages and materials: first, “Do no harm”; second, “Know your learner”; and third, “Incorporate global concepts and images into instructional messages.” Résumé Avec le renversement des proportions d’étudiants nés au Canada et d’étudiants internationaux qui sont de plus en plus nombreux dans nos universités, connaître et comprendre les caractéristiques des apprenants constitue maintenant une préoccupation majeure pour les instructeurs et les concepteurs pédagogiques afin de créer des messages et du matériel pédagogiques efficaces. En prenant en considération la façon dont la culture peut influencer la cognition et l’apprentissage, nous pouvons tenir compte de la diversité des étudiants lors de la conception et ainsi maximiser leur apprentissage tout en améliorant l’environnement d’apprentissage pour tous les étudiants. Dans le but de célébrer la diversité culturelle tout en relevant les défis associés à la conception pour divers styles d’apprentissage et d’expériences éducatives, le présent article présente un examen de la documentation et propose une approche systématique en trois volets pour

  16. Panel discussion on rock mechanics issues in repository design

    International Nuclear Information System (INIS)

    Bieniawski, Z.T.; Kim, K.S.; Nataraja, M.

    1996-01-01

    The panel discussion was introduced by Mr. Z.T.(Richard) Bieniawski and then continued with five additional speakers. The topics covered in the discussion included rock mechanics pertaining to the design of underground facilities for the disposal of radioactive wastes and the safety of such facilities. The speakers included: Mr. Kun-Soo Kim who is a specialist in the area of rock mechanics testing during the Basalt Waste Isolation Project; Dr. Mysore Nataraja who is the senior project manager with the NRC; Dr. Michael Voegele who is the project manager for Science Applications International Corporation (SAIC) on the Yucca Mountain Project; Dr. Edward Cording who is a member of the Nuclear Waste Technical Review Board; and Dr. Hemendra Kalia who is employed by Los Alamos National Laboratory and coordinates various activities of testing programs at the Yucca Mountain Site

  17. Generating project value through design for reliability: on the development and implementation of a potential value framework

    OpenAIRE

    Woods, K. B. W.

    2007-01-01

    The current trend to economically exploit deepwater hydrocarbon reserves is to reduce the capital expenditure; accomplished by deploying subsea equipment. The financial benefit afforded is offset by the risk of high operational costs associated with failure. Recognition of the life cycle cost implications of subsea reliability have led to the development of the reliability strategy. This strategy adopts a risk based approach to design for reliability where only analyses (and th...

  18. Reliability and maintainability

    International Nuclear Information System (INIS)

    1994-01-01

    Several communications in this conference are concerned with nuclear plant reliability and maintainability; their titles are: maintenance optimization of stand-by Diesels of 900 MW nuclear power plants; CLAIRE: an event-based simulation tool for software testing; reliability as one important issue within the periodic safety review of nuclear power plants; design of nuclear building ventilation by the means of functional analysis; operation characteristic analysis for a power industry plant park, as a function of influence parameters

  19. Study design issues in trials among children with MAM

    International Nuclear Information System (INIS)

    Friis, Henrik

    2014-01-01

    There is a need for acceptable and affordable food aid products for children with moderate acute malnutrition (MAM), which effectively restore body tissues and functions. The effects of potential products need to be assessed through randomised controlled trials (RCT). However, nutritional RCTs pose ethical and scientific challenges. Control groups are usually given “standard of care”, but recommendations for treatment do not exist in all settings or supplements are not always available. In places where treatment is nonexistent, not giving any food to children in the control group is not without ethical concerns. However, from public health and scientific perspectives, it is problematic to compare with supplements which are not recommended or the effect of which is unknown. Firstly, it is of questionable value for a low-income country that a trial is conducted to compare an experimental supplement to a supplement that is not already standard of care, and national ethics committees may not grant permission for such a trial. Secondly, it is difficult to interpret findings from a trial comparing an experimental supplement to one that has not been properly tested. Hence, where supplementation is not standard of care, it may be ethically justifiable to have an unsupplemented control group. In such cases, mothers should receive health education and the children should receive medical attention, be monitored closely, and referred for further medical examination and treatment if not recovering. Delayed supplementation may also be considered. Food interventions are complex, since supplements with the same energy content may be based on different ingredients, and nutrients in different forms and amounts. Consequently, there are an infinite number of potential food supplements, yet only a few can be tested in trials. Some components may be potentially important, but costly. If several factors are of interest, then a factorial design may be needed. E.g. the treatFOOD trial

  20. International institutions for nuclear energy: issues of assessment and design

    International Nuclear Information System (INIS)

    Harris, W.R.

    1978-01-01

    Among the more attractive of candidate institutions and rules-of-trade for advanced fuel cycles are: extension of full-scope International Atomic Energy Agency (IAEA) safeguards as a condition of fuel assurances or technology transfer; international jurisdiction over spent fuel (custody or ownership); an IAEA remote near-real-time verification system for spent fuel remaining under national management; a convention on uniform nuclear fuel identification (tagging) designed to assist safeguards planners, trace diversionary pathways, assign liability, and enhance the credibility of fuel-cycle sanctions; international nuclear service centers for bulk processing operations (heavy water production, enrichment and reprocessing); and fuel-cycle specific regulations. Some risk-reduction measures, for example on internationally managed, remote shutdown and restart-delay system for bulk processing facilities, raise questions of acceptability. Despite uncertainties about international acceptability and hazards of enrichment technology transfer later in this century, it appears feasible to reduce proliferation risks associated with nuclear fuel cycles - existing ones and those under review within the International Nuclear Fuel Cycle Evaluation (INFCE). 6 refereces

  1. Improving human reliability through better nuclear power plant system design: Program for advanced nuclear power studies

    International Nuclear Information System (INIS)

    Golay, M.W.

    1993-01-01

    The project on ''Development of a Theory of the Dependence of Human Reliability upon System Designs as a Means of Improving Nuclear Power Plant Performance'' was been undertaken in order to address the problem of human error in advanced nuclear power plant designs. Lack of a mature theory has retarded progress in reducing likely frequencies of human errors. Work being pursued in this project is to perform a set of experiments involving human subjects who are required to operate, diagnose and respond to changes in computer-simulated systems, relevant to those encountered in nuclear power plants, which are made to differ in complexity in a systematic manner. The computer program used to present the problems to be solved also records the response of the operator as it unfolds

  2. Development of reliability-based design and assessment standards for onshore gas transmission pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Joe; Rothwell, Brian [TransCanada PipeLines Ltd., Calgary, AB (Canada); Nessim, Maher; Zhou, Wenxing [C-FER Technologies, Edmonton, AB (Canada)

    2005-07-01

    Onshore pipelines have traditionally been designed with a deterministic stress based methodology. The changing operating environment has however imposed many challenges to the pipeline industry, including heightened public awareness of risk, more challenging natural hazards and increased economic competitiveness. To meet the societal expectation of pipeline safety and enhance the competitiveness of the pipeline industry, significant efforts have been spent for the development of reliability-based design and assessment (RBDA) methodology. This paper will briefly review the technology development in the RBDA area and the focus will be on the progresses in the past years in standard development within the American Society of Mechanical Engineers (ASME) and the Canadian Standard Association (CSA) organizations. (author)

  3. Functional components for a design strategy: Hot cell shielding in the high reliability safeguards methodology

    Energy Technology Data Exchange (ETDEWEB)

    Borrelli, R.A., E-mail: rborrelli@uidaho.edu

    2016-08-15

    The high reliability safeguards (HRS) methodology has been established for the safeguardability of advanced nuclear energy systems (NESs). HRS is being developed in order to integrate safety, security, and safeguards concerns, while also optimizing these with operational goals for facilities that handle special nuclear material (SNM). Currently, a commercial pyroprocessing facility is used as an example system. One of the goals in the HRS methodology is to apply intrinsic features of the system to a design strategy. This current study investigates the thickness of the hot cell walls that could adequately shield processed materials. This is an important design consideration that carries implications regarding the formation of material balance areas, the location of key measurement points, and material flow in the facility.

  4. Design, construction and testing of replacement nuclear coolant pump stators to meet today's equipment reliability expectations

    International Nuclear Information System (INIS)

    Fostier, L.; Howell, D.

    2005-01-01

    The reliability expectations of equipment and components in today's nuclear power plant are much greater than three or more decades ago when nuclear plants were first constructed due to economic impact of a failure. Very few components in a pressurized water reactor plant can have as much impact of the plants capacity factor as a catastrophic failure of a reactor coolant pump winding. This paper describes the maintenance approach taken by one North American utility in attempt to preclude such failures. The paper will discuss the challenges of the reactor coolant pump application and the enhancements made in the winding design and construction by the supplier to address failure mechanisms so as to better meet present reliability expectations in accordance with dedicated specifications. The paper will also present the in-process and final testing requirements and limits imposed in an attempt to ensure quality of the machine windings, along with selected test results from the stators that have been designed and constructed to these specifications to date. (author)

  5. Serviceability design load factors and reliability assessments for reinforced concrete containment structures

    International Nuclear Information System (INIS)

    Han Bong Koo

    1998-01-01

    A reinforced concrete nuclear power plant containment structure is subjected to various random static and stochastic loads during its lifetime. Since these loads involve inherent randomness and other uncertainties, an appropriate probabilistic model for each load must be established in order to perform reliability analysis. The current ASME code for reinforced concrete containment structures are not based on probability concepts. The stochastic nature of natural hazard or accidental loads and the variations of material properties require a probabilistic approach for a rational assessment of structural safety and performance. The paper develops probability-based load factors for the limit state design of reinforced concrete containment structures. The purpose of constructing reinforced concrete containment structure is to protect against radioactive release, and so the use of a serviceability limit state against crack failure that can cause the emission of radioactive materials is suggested as a critical limit state for reinforced concrete containment structures. Load factors for the design of reinforced concrete containment structures are proposed and carried out the reliability assessments. (orig.)

  6. Examining Design and Inter-Rater Reliability of a Rubric Measuring Research Quality across Multiple Disciplines

    Directory of Open Access Journals (Sweden)

    Marilee J. Bresciani

    2009-05-01

    Full Text Available The paper presents a rubric to help evaluate the quality of research projects. The rubric was applied in a competition across a variety of disciplines during a two-day research symposium at one institution in the southwest region of the United States of America. It was collaboratively designed by a faculty committee at the institution and was administered to 204 undergraduate, master, and doctoral oral presentations by approximately 167 different evaluators. No training or norming of the rubric was given to 147 of the evaluators prior to the competition. The findings of the inter-rater reliability analysis reveal substantial agreement among the judges, which contradicts literature describing the fact that formal norming must occur prior to seeing substantial levels of inter-rater reliability. By presenting the rubric along with the methodology used in its design and evaluation, it is hoped that others will find this to be a useful tool for evaluating documents and for teaching research methods.

  7. Optimal design issues of a gas-to-liquid process

    Energy Technology Data Exchange (ETDEWEB)

    Rafiee, Ahmad

    2012-07-01

    Interests in Fischer-Tropsch (FT) synthesis is increasing rapidly due to the recent improvements of the technology, clean-burning fuels (low sulphur, low aromatics) derived from the FT process and the realization that the process can be used to monetize stranded natural gas resources. The economy of GTL plants depends very much on the natural gas price and there is a strong incentive to reduce the investment cost and in addition there is a need to improve energy efficiency and carbon efficiency. A model is constructed based on the available information in open literature. This model is used to simulate the GTL process with UNISIM DESIGN process simulator. In the FT reactor with cobalt based catalyst, Co2 is inert and will accumulate in the system. Five placements of Co2 removal unit in the GTL process are evaluated from an economical point of view. For each alternative, the process is optimized with respect to steam to carbon ratio, purge ratio of light ends, amount of tail gas recycled to syngas and FT units, reactor volume, and Co2 recovery. The results show that carbon and energy efficiencies and the annual net cash flow of the process with or without Co2 removal unit are not significantly different and there is not much to gain by removing Co2 from the process. It is optimal to recycle about 97 % of the light ends to the process (mainly to the FT unit) to obtain higher conversion of CO and H2 in the reactor. Different syngas configurations in a gas-to-liquid (GTL) plant are studied including auto-thermal reformer (ATR), combined reformer, and series arrangement of Gas Heated Reformer (GHR) and ATR. The Fischer-Tropsch (FT) reactor is based on cobalt catalyst and the degrees of freedom are; steam to carbon ratio, purge ratio of light ends, amount of tail gas recycled to synthesis gas (syngas) and Fischer-Tropsch (FT) synthesis units, and reactor volume. The production rate of liquid hydrocarbons is maximized for each syngas configuration. Installing a steam

  8. Using the eating disorder examination in the assessment of bulimia and anorexia: issues of reliability and validity.

    Science.gov (United States)

    Guest, T

    2000-01-01

    The Eating Disorder Examination will be assessed according to its reliability and validity in the assessment of anorexia nervosa and bulimia nervosa. A thorough review of the literature was conducted to judge the reliability and validity of the Eating Disorder Examination and its subscales. The review shows that the EDE and its subscales have good interrater reliability and internal consistency reliability. Similarly, high levels of discriminant validity, construct validity, and treatment validity in the assessment of eating disorders were also found. A summary of each study concerning the various types of reliability and validity will be provided. The EDE is considered to be the "gold standard" by which to identify eating disorders, so this tool used in conjunction with other behavioral measures will be imperative for clinical social work practice.

  9. Materials and design bases issues in ASME Code Case N-47

    International Nuclear Information System (INIS)

    Huddleston, R.L.; Swindeman, R.W.

    1993-04-01

    A preliminary evaluation of the design bases (principally ASME Code Case N-47) was conducted for design and operation of reactors at elevated temperatures where the time-dependent effects of creep, creep-fatigue, and creep ratcheting are significant. Areas where Code rules or regulatory guides may be lacking or inadequate to ensure the operation over the expected life cycles for the next-generation advanced high-temperature reactor systems, with designs to be certified by the US Nuclear Regulatory Commission, have been identified as unresolved issues. Twenty-two unresolved issues were identified and brief scoping plans developed for resolving these issues

  10. The National Long Term Care Demonstration: operational issues encountered in developing the research design.

    Science.gov (United States)

    Carcagno, G J; Kemper, P

    1983-01-01

    This paper describes the design of the National Long Term Care Demonstration and its evaluation and discusses a number of operational issues encountered in the design process: simultaneous design of research and operations, identification of the target population, randomization, collection of comparable data, development of an assessment instrument, potential changes in existing programs, and termination planning.

  11. Relevance of control theory to design and maintenance problems in time-variant reliability: The case of stochastic viability

    International Nuclear Information System (INIS)

    Rougé, Charles; Mathias, Jean-Denis; Deffuant, Guillaume

    2014-01-01

    The goal of this paper is twofold: (1) to show that time-variant reliability and a branch of control theory called stochastic viability address similar problems with different points of view, and (2) to demonstrate the relevance of concepts and methods from stochastic viability in reliability problems. On the one hand, reliability aims at evaluating the probability of failure of a system subjected to uncertainty and stochasticity. On the other hand, viability aims at maintaining a controlled dynamical system within a survival set. When the dynamical system is stochastic, this work shows that a viability problem belongs to a specific class of design and maintenance problems in time-variant reliability. Dynamic programming, which is used for solving Markovian stochastic viability problems, then yields the set of design states for which there exists a maintenance strategy which guarantees reliability with a confidence level β for a given period of time T. Besides, it leads to a straightforward computation of the date of the first outcrossing, informing on when the system is most likely to fail. We illustrate this approach with a simple example of population dynamics, including a case where load increases with time. - Highlights: • Time-variant reliability tools cannot devise complex maintenance strategies. • Stochastic viability is a control theory that computes a probability of failure. • Some design and maintenance problems are stochastic viability problems. • Used in viability, dynamic programming can find reliable maintenance actions. • Confronting reliability and control theories such as viability is promising

  12. Resolution of thermal-hydraulic safety and licensing issues for the system 80+trademark design

    International Nuclear Information System (INIS)

    Carpentino, S.E.; Ritterbusch, S.E.; Schneider, R.E.

    1995-01-01

    The System 80+ trademark Standard Design is an evolutionary Advanced Light Water Reactor (ALWR) with a generating capacity of 3931 MWt (1350 MWe). The Final Design Approval (FDA) for this design was issued by the Nuclear Regulatory Commission (NRC) in July 1994. The design certification by the NRC is anticipated by the end of 1995 or early 1996. NRC review of the System 80+ design has involved several new safety issues never before addressed in a regulatory atmosphere. In addition, conformance with the Electric Power Research Institute (EPRI) ALWR Utility Requirements Document (URD) required that the System 80+ plant address nuclear industry concerns with regard to design, construction, operation and maintenance of nuclear power plants. A large number of these issues/concerns deals with previously unresolved generic thermal-hydraulic safety issues and severe accident prevention and mitigation. This paper discusses the thermal-hydraulic analyses and evaluations performed for the System 80+ design to resolve safety and licensing issues relevant to both the Nuclear Stream Supply System (NSSS) and containment designs. For the NSSS design, the Safety Depressurization System mitigation capability and resolution of the boron dilution concern are described. Examples of containment design issues dealing with containment shell strength, robustness of the reactor cavity walls and hydrogen mixing under severe accident conditions are also provided. Finally, the overall approach used in the application of NRC's new (NUREG-1465) radiological source term for System 80+ evaluation is described. The robustness of the System 80+ containment design to withstand severe accident consequences was demonstrated through detailed thermal-hydraulic analyses and evaluations. This advanced design to shown to meet NRC severe accident policy goals and ALWR URD requirements without any special design features and unnecessary costs

  13. Resolution of thermal-hydraulic safety and licensing issues for the system 80+{sup {trademark}} design

    Energy Technology Data Exchange (ETDEWEB)

    Carpentino, S.E.; Ritterbusch, S.E.; Schneider, R.E. [ABB-Combustion Engineering, Windsor, CT (United States)] [and others

    1995-09-01

    The System 80+{sup {trademark}} Standard Design is an evolutionary Advanced Light Water Reactor (ALWR) with a generating capacity of 3931 MWt (1350 MWe). The Final Design Approval (FDA) for this design was issued by the Nuclear Regulatory Commission (NRC) in July 1994. The design certification by the NRC is anticipated by the end of 1995 or early 1996. NRC review of the System 80+ design has involved several new safety issues never before addressed in a regulatory atmosphere. In addition, conformance with the Electric Power Research Institute (EPRI) ALWR Utility Requirements Document (URD) required that the System 80+ plant address nuclear industry concerns with regard to design, construction, operation and maintenance of nuclear power plants. A large number of these issues/concerns deals with previously unresolved generic thermal-hydraulic safety issues and severe accident prevention and mitigation. This paper discusses the thermal-hydraulic analyses and evaluations performed for the System 80+ design to resolve safety and licensing issues relevant to both the Nuclear Stream Supply System (NSSS) and containment designs. For the NSSS design, the Safety Depressurization System mitigation capability and resolution of the boron dilution concern are described. Examples of containment design issues dealing with containment shell strength, robustness of the reactor cavity walls and hydrogen mixing under severe accident conditions are also provided. Finally, the overall approach used in the application of NRC`s new (NUREG-1465) radiological source term for System 80+ evaluation is described. The robustness of the System 80+ containment design to withstand severe accident consequences was demonstrated through detailed thermal-hydraulic analyses and evaluations. This advanced design to shown to meet NRC severe accident policy goals and ALWR URD requirements without any special design features and unnecessary costs.

  14. Materials issues in the design of the ITER first wall, blanket, and divertor

    International Nuclear Information System (INIS)

    Mattas, R.F.; Smith, D.L.; Wu, C.H.; Shatalov, G.

    1992-01-01

    During the ITER conceptual design study, a property data base was assembled, the key issues were identified, and a comprehensive R ampersand D plan was formulated to resolve these issues. The desired properties of candidate ITER divertor, first wall, and blanket materials are briefly reviewed, and the major materials issues are presented. Estimates of the influence of materials properties on the performance limits of the first wall, blanket, and divertor are presented

  15. Designing time-of-use program based on stochastic security constrained unit commitment considering reliability index

    International Nuclear Information System (INIS)

    Nikzad, Mehdi; Mozafari, Babak; Bashirvand, Mahdi; Solaymani, Soodabeh; Ranjbar, Ali Mohamad

    2012-01-01

    Recently in electricity markets, a massive focus has been made on setting up opportunities for participating demand side. Such opportunities, also known as demand response (DR) options, are triggered by either a grid reliability problem or high electricity prices. Two important challenges that market operators are facing are appropriate designing and reasonable pricing of DR options. In this paper, time-of-use program (TOU) as a prevalent time-varying program is modeled linearly based on own and cross elasticity definition. In order to decide on TOU rates, a stochastic model is proposed in which the optimum TOU rates are determined based on grid reliability index set by the operator. Expected Load Not Supplied (ELNS) is used to evaluate reliability of the power system in each hour. The proposed stochastic model is formulated as a two-stage stochastic mixed-integer linear programming (SMILP) problem and solved using CPLEX solver. The validity of the method is tested over the IEEE 24-bus test system. In this regard, the impact of the proposed pricing method on system load profile; operational costs and required capacity of up- and down-spinning reserve as well as improvement of load factor is demonstrated. Also the sensitivity of the results to elasticity coefficients is investigated. -- Highlights: ► Time-of-use demand response program is linearly modeled. ► A stochastic model is proposed to determine the optimum TOU rates based on ELNS index set by the operator. ► The model is formulated as a short-term two-stage stochastic mixed-integer linear programming problem.

  16. The Design of High Reliability Magnetic Bearing Systems for Helium Cooled Reactor Machinery

    International Nuclear Information System (INIS)

    Swann, M.; Davies, N.; Jayawant, R.; Leung, R.; Shultz, R.; Gao, R.; Guo, Z.

    2014-01-01

    The requirements for magnetic bearing equipped machinery used in high temperature, helium cooled, graphite moderated reactor applications present a set of design considerations that are unlike most other applications of magnetic bearing technology in large industrial rotating equipment, for example as used in the oil and gas or other power generation applications. In particular, the bearings are typically immersed directly in the process gas in order to take advantage of the design simplicity that comes about from the elimination of ancillary lubrication and cooling systems for bearings and seals. Such duty means that the bearings will usually see high temperatures and pressures in service and will also typically be subject to graphite particulate and attendant radioactive contamination over time. In addition, unlike most industrial applications, seismic loading events become of paramount importance for the magnetic bearings system, both for actuators and controls. The auxiliary bearing design requirements, in particular, become especially demanding when one considers that the whole mechanical structure of the magnetic bearing system is located inside an inaccessible pressure vessel that should be rarely, if ever, disassembled over the service life of the power plant. Lastly, many machinery designs for gas cooled nuclear power plants utilize vertical orientation. This circumstance presents its own unique requirements for the machinery dynamics and bearing loads. Based on the authors’ experience with machine design and supply on several helium cooled reactor projects including Ft. St. Vrain (US), GT-MHR (Russia), PBMR (South Africa), GTHTR (Japan), and most recently HTR-PM (China), this paper addresses many of the design considerations for such machinery and how the application of magnetic bearings directly affects machinery reliability and availability, operability, and maintainability. Remote inspection and diagnostics are a key focus of this paper. (author)

  17. Girls' and Women's Issues in Counseling: A Theory-Based Course Design

    Science.gov (United States)

    Choate, Laura Hensley

    2009-01-01

    In this article, the development of a master's-level course regarding girls' and women's issues in counseling is described. First, the pedagogical foundation for the course design is highlighted. Second, the learning goals for the course are outlined: (a) knowledge of counseling issues pertinent to girls and women in contemporary society, (b)…

  18. Design and experimentation of an empirical multistructure framework for accurate, sharp and reliable hydrological ensembles

    Science.gov (United States)

    Seiller, G.; Anctil, F.; Roy, R.

    2017-09-01

    This paper outlines the design and experimentation of an Empirical Multistructure Framework (EMF) for lumped conceptual hydrological modeling. This concept is inspired from modular frameworks, empirical model development, and multimodel applications, and encompasses the overproduce and select paradigm. The EMF concept aims to reduce subjectivity in conceptual hydrological modeling practice and includes model selection in the optimisation steps, reducing initial assumptions on the prior perception of the dominant rainfall-runoff transformation processes. EMF generates thousands of new modeling options from, for now, twelve parent models that share their functional components and parameters. Optimisation resorts to ensemble calibration, ranking and selection of individual child time series based on optimal bias and reliability trade-offs, as well as accuracy and sharpness improvement of the ensemble. Results on 37 snow-dominated Canadian catchments and 20 climatically-diversified American catchments reveal the excellent potential of the EMF in generating new individual model alternatives, with high respective performance values, that may be pooled efficiently into ensembles of seven to sixty constitutive members, with low bias and high accuracy, sharpness, and reliability. A group of 1446 new models is highlighted to offer good potential on other catchments or applications, based on their individual and collective interests. An analysis of the preferred functional components reveals the importance of the production and total flow elements. Overall, results from this research confirm the added value of ensemble and flexible approaches for hydrological applications, especially in uncertain contexts, and open up new modeling possibilities.

  19. Fault-tolerant design approach for reliable offshore multi-megawatt variable frequency converters

    Directory of Open Access Journals (Sweden)

    N. Vedachalam

    2016-09-01

    Full Text Available Inverters play a key role in realizing reliable multi-megawatt power electronic converters used in offshore applications, as their failure leads to production losses and impairs safety. The performance of high power handing semiconductor devices with high speed control capabilities and redundant configurations helps in realizing a fault-tolerant design. This paper describes the reliability modeling done for an industry standard, 3-level neutral point clamped multi-megawatt inverter, the significance of semiconductor redundancy in reducing inverter failure rates, and proposes methods for achieving static and dynamic redundancy in series connected press pack type insulated gate bipolar transistors (IGBT. It is identified that, with the multi megawatt inverter having 3+2 IGBT in each half leg with dynamic redundancy incorporated, it is possible to reduce the failure rate of the inverter from 53.8% to 15% in 5 years of continuous operation. The simulation results indicate that with dynamic redundancy, it is possible to force an untriggered press pack IGBT to short circuit in <1s, when operated with a pulse width modulation frequency of 1kHz.

  20. Reliable and redundant FPGA based read-out design in the ATLAS TileCal Demonstrator

    CERN Document Server

    Åkerstedt, Henrik; The ATLAS collaboration; Drake, Gary; Anderson, Kelby; Bohm, Christian; Oreglia, Mark; Tang, Fukun

    2015-01-01

    The Tile Calorimeter at ATLAS is a hadron calorimeter based on steel plates and scintillating tiles read out by PMTs. The current read-out system uses standard ADCs and custom ASICs to digitize and temporarily store the data on the detector. However, only a subset of the data is actually read out to the counting room. The on-detector electronics will be replaced around 2023. To achieve the required reliability the upgraded system will be highly redundant. Here the ASICs will be replaced with Kintex-7 FPGAs from Xilinx. This, in addition to the use of multiple 10 Gbps optical read-out links, will allow a full read-out of all detector data. Due to the higher radiation levels expected when the beam luminosity is increased, opportunities for repairs will be less frequent. The circuitry and firmware must therefore be designed for sufficiently high reliability using redundancy and radiation tolerant components. Within a year, a hybrid demonstrator including the new read-out system will be installed in one slice of ...

  1. Reliable Biomass Supply Chain Design under Feedstock Seasonality and Probabilistic Facility Disruptions

    Directory of Open Access Journals (Sweden)

    Zhixue Liu

    2017-11-01

    Full Text Available While biomass has been recognized as an important renewable energy source which has a range of positive impacts on the economy, environment, and society, the existence of feedstock seasonality and risk of service disruptions at collection facilities potentially compromises the efficiency and reliability of the energy supply system. In this paper, we consider reliable supply chain design for biomass collection against feedstock seasonality and time-varying disruption risks. We optimize facility location, inventory, biomass quantity, and shipment decisions in a multi-period planning horizon setting. A real-world case in Hubei, China is studied to offer managerial insights. Our computational results show that: (1 the disruption risk significantly affects both the optimal facility locations and the supply chain cost; (2 no matter how the failure probability changes, setting backup facilities can significantly decrease the total cost; and (3 the feedstock seasonality does not affect locations of the collection facilities, but it affects the allocations of collection facilities and brings higher inventory cost for the biomass supply chain.

  2. DEFENSE-ATTACK INTERACTION OVER OPTIMALLY DESIGNED DEFENSE SYSTEMS VIA GAMES AND RELIABILITY

    Directory of Open Access Journals (Sweden)

    Isis Didier Lins

    2014-05-01

    Full Text Available This paper analyzes defense systems taking into account the strategic interactions between two rational agents; one of them is interested in designing a defense system against purposeful attacks of the other. The interaction is characterized by a sequential game with perfect and complete information. Reliability plays a fundamental role in both defining agents' actions and in measuring performance of the defense system for which a series-parallel configuration is set up by the defender. The attacker, in turn, focuses on only one defense subsystem in order to maximize her efficiency in attacking. An algorithm involving backward induction is developed to determine the equilibrium paths of the game. Application examples are also provided.

  3. Human Reliability and the Current Dilemma in Human-Machine Interface Design Strategies

    International Nuclear Information System (INIS)

    Passalacqua, Roberto; Yamada, Fumiaki

    2002-01-01

    Since human error dominates the probability of failures of still-existing human-requiring systems (as the Monju reactor), the human-machine interface needs to be improved. Several rationales may lead to the conclusion that 'humans' should limit themselves to monitor the 'machine'. For example, this is the trend in the aviation industry: newest aircrafts are designed to be able to return to a safe state by the use of control systems, which do not need human intervention. Thus, the dilemma whether we really need operators (for example in the nuclear industry) might arise. However, social-technical approaches in recent human error analyses are pointing out the so-called 'organizational errors' and the importance of a human-machine interface harmonization. Typically plant's operators are a 'redundant' safety system with a much lower reliability (than the machine): organizational factors and harmonization requirements suggest designing the human-machine interface in a way that allows improvement of operator's reliability. In addition, taxonomy studies of accident databases have also proved that operators' training should promote processes of decision-making. This is accomplished in the latest trends of PSA technology by introducing the concept of a 'Safety Monitor' that is a computer-based tool that uses a level 1 PSA model of the plant. Operators and maintenance schedulers of the Monju FBR will be able to perform real-time estimations of the plant risk level. The main benefits are risk awareness and improvements in decision-making by operators. Also scheduled maintenance can be approached in a more rational (safe and economic) way. (authors)

  4. Software reliability

    CERN Document Server

    Bendell, A

    1986-01-01

    Software Reliability reviews some fundamental issues of software reliability as well as the techniques, models, and metrics used to predict the reliability of software. Topics covered include fault avoidance, fault removal, and fault tolerance, along with statistical methods for the objective assessment of predictive accuracy. Development cost models and life-cycle cost models are also discussed. This book is divided into eight sections and begins with a chapter on adaptive modeling used to predict software reliability, followed by a discussion on failure rate in software reliability growth mo

  5. Uses of human reliability analysis probabilistic risk assessment results to resolve personnel performance issues that could affect safety

    International Nuclear Information System (INIS)

    O'Brien, J.N.; Spettell, C.M.

    1985-10-01

    This report is the first in a series which documents research aimed at improving the usefulness of Probabilistic Risk Assessment (PRA) results in addressing human risk issues. This first report describes the results of an assessment of how well currently available PRA data addresses human risk issues of current concern to NRC. Findings indicate that PRA data could be far more useful in addressing human risk issues with modification of the development process and documentation structure of PRAs. In addition, information from non-PRA sources could be integrated with PRA data to address many other issues. 12 tabs

  6. An analysis of operational experience during low power and shutdown and a plan for addressing human reliability assessment issues

    International Nuclear Information System (INIS)

    Barriere, M.; Luckas, W.; Whitehead, D.; Ramey-Smith, A.

    1994-06-01

    Recent nuclear power plant events (e.g. Chernobyl, Diablo Canyon, and Vogtle) and US Nuclear Regulatory Commission (NRC) reports (e.g. NUREG-1449) have led to concerns regarding human reliability during low power and shutdown (LP ampersand S) conditions and limitations of human reliability analysis (HRA) methodologies in adequately representing the LP ampersand S environment. As a result of these concerns, the NRC initiated two parallel research projects to assess the influence of LP ampersand S conditions on human reliability through an analysis of operational experience at pressurized water reactors (PWRs) an boiling water reactors (BWRs). These research projects, performed by Brookhaven National Laboratory for PWRS, and Sandia National Laboratories for BWRs, identified unique aspects of human performance during LP ampersand S conditions and provided a program plan for research and development necessary to improve existing HRA methodologies. This report documents the results of the analysis of LP ampersand S operating experience and describes the improved HRA program plan

  7. Use of standard reliability levels in design and safety assessment of in-pile loops

    International Nuclear Information System (INIS)

    Bogani, G.; Verre, A.; Balestreri, S.; Colombo, A.G.; Luisi, T.

    1975-01-01

    This paper describes a logic-probabilistic analysis technique for a critical design review and safety assessment of in-pile loops. The examples in this paper refer to the analysis performed for the experimental loops already constructed or under construction in the ESSOR reactor of the Joint Research Centre of Ispra, as irradiation facilities for fuel element research and development tests. The proposed technique is based on the classification into categories of components and protective device malfunctions. Such subdivision into categories was agreed upon by the Italian Safety Authority and Euratom JRC, and adopted for the safety assessment of the ESSOR reactor in-pile loops. For each category, the method makes a link with a corresponding malfunction probability range (probability level). This probability level is defined taking into account design, construction, inspection and maintenance criteria as well as periodic controls; therefore the quality level and consequently the reliability level are thus also defined. The analysis is developed in the following stages: (1) definition of the analysis object (top event) and drawing of the relative fault-tree; (2) loop design analysis and preliminary optimization based on logic criteria; (3) classification into categories of the fault-tree primary events; (4) final loop design analysis and optimization based on defined component quality requirements. Stages 2 and 4 are quite different since stage 2 mainly consists of a redundance optimization, while stage 4 acts on the component quality level in such a way that each minimum cut-set leading to the top has an acceptable probability level. During analysis development, use is made of computer codes which, among other things enable the verification of fault-tree logic makeup, the listing of the minimum cut-sets with and without event categorization, and the evaluation of each cut-set order. (author)

  8. New design of engineered safety features-component control system to improve performance and reliability

    International Nuclear Information System (INIS)

    Kim, S.T.; Jung, H.W.; Lee, S.J.; Cho, C.H.; Kim, D.H.; Kim, H.

    2006-01-01

    Full text: Full text: The Engineered Safety Features-Component Control System (ESF-CCS) controls the engineered safety features of a Nuclear Power Plant such as Solenoid Operated Valves (SOV), Motor Operated Valves (MOV), pumps, dampers, etc. to mitigate the effects of a Design Basis Accident (DBA) or an abnormal operation. ESF-CCS serves as an interface system between the Plant Protection System (PPS) and remote actuation devices. ESF-CCS is composed of fault tolerant Group Controllers GC, Loop Controllers (LC), ESF-CCS Test and Interface Processor (ETIP) and Cabinet Operator Module (COM) and Control Channel Gateway (CCG) etc. GCs in each division are designed to be fully independent triple configuration, which perform system level NSSS and BOP ESFAS logic (2-out-of-4 logic and l-out-of-2 logic, respectively) making it possible to test each GC individually during normal operation. In the existing configuration, the safety-related plant component control is part of the Plant Control System (PCS) non-safety system. For increased safety and reliability, this design change incorporates this part into the LCs, and is therefore designed according to the safety-critical system procedures. The test and diagnosis capabilities of ETIP and COM are reinforced. By means of an automatic periodic test for all main functions of the system, it is possible to quickly determine an abnormal status of the system, and to decrease the elapsed time for tests, thus effectively increasing availability. ESF-CCS consists of four independent divisions (A, B, C, and D) in the Advanced Power Reactor 1400 (APR1400). One prototype division is being manufactured and will be tested

  9. Embodied Making and Design Learning - Special Issue from the Learn X Design-conference DRS/CUMULUS, Chicago 2015

    Directory of Open Access Journals (Sweden)

    Marte Sørebø Gulliksen

    2016-06-01

    Full Text Available This issue of FORMakademisk features selected articles developed from papers presented at the symposium Embodied Making and Design Learning at the DRS/CUMULUS-conference LearnXDesign in Chicago, Illinois, June 28–30, 2015. This special issue was developed as an initiative by the symposium conveners. The symposium was developed by researchers from research groups in Norway, Finland and Canada to explore various aspects of embodied making in relation to design learning. The symposium was a full-day event with four sessions, seven paper presentations, a roundtable discussion, a plenary discussion and a workshop. The symposium received positive feedback, attracting many participants and stimulating engaged discussions throughout the conference. This indicates a growing awareness of the topic of embodied making and design learning. This special issue features five articles that together highlight a variety of approaches and examples of current research endeavours in relation to the theme. 

  10. Resilience and reliability of compact vertical-flow treatment wetlands designed for tropical climates.

    Science.gov (United States)

    Lombard-Latune, R; Pelus, L; Fina, N; L'Etang, F; Le Guennec, B; Molle, P

    2018-06-10

    Most of the tropical areas have sanitation problems to contend with. The French system of vertical-flow treatment wetlands (FS-VFTW) fed with raw wastewater could be a good water and sludge management solution. The purpose-adapted tropical design can reduce area requirement to below 1 m 2 /population equivalents (p.e.). The Taupinière FS-VFTW on Martinique Island was built according to this design, with one stage but with a saturated layer at the bottom of the filter and a simplified trickling filter (TF) added for further treatment to meet the high performances targeted. Unsaturated/saturated vertical-flow filters (US/S FS-VFTW) have shown improved performances on total nitrogen, carbon and suspended solids removal in temperate climates, but the performances in tropical conditions remain unknown. Here, we report on real-world-operation in the French Overseas Territories (FOT), the reliability and performances of this VFCW tropical-design. The system experienced loading conditions ranging from 30% to 165% of nominal carbonaceous biological oxygen demand (BOD 5 ), as well as tropical rainstorms that brought over 7 times the nominal hydraulic load. Over a period of 3 years, 29 campaigns collected 24-h flow-proportional samples at each treatment stage (raw wastewater, FS-VFTW outlet, TF outlet). When applied loads were close to nominal values, the US/S FS-VFTW itself guarantees 85/90/60/50% removal and 125/25/40/50 mg/L at the outlet for chemical oxygen demand (COD)/total suspended solids (TSS)/total Kjeldahl nitrogen (TKN)/total nitrogen (TN), respectively. By comparison with US/S systems in mainland France, it appears that the warmer tropical-climate temperatures facilitate both nitrification and denitrification kinetics. Performances in overload conditions confirm that the US/S FS-VFTW remains robust and reliable although COD and TKN removal are impacted, especially after strong tropical rain events. By adding a simple compact trickling filter to a US/S FS

  11. Status of Siemens steam generator design and measures to assure continuous long-term reliable operation

    International Nuclear Information System (INIS)

    Hoch, G.

    1999-01-01

    Operating pressurized water reactors with U-tube steam generators have encountered difficulties with either one or a combination of inadequate material selection, poor design or manufacturing and an insufficient water chemistry control which resulted in excessive tube degradation. In contrast to the above mentioned problems, steam generators from Siemens/KWU are proving by operating experience that all measures undertaken at the design stage as well as during the operating and maintenance phase were effective enough to counteract any tube corrosion phenomena or other steam generator related problem. An Integrated Service Concept has been developed, applied and wherever necessary improved in order to ensure reliable steam generator operation. The performance of the steam generators is updated continuously, evaluated and implemented in lifetime databases. The main indicator for steam generator integrity are the results of the eddy current testing of the steam generator tubes. Tubes with indications are rated with lifetime threshold values and if necessary plugged, based on individual assessment criteria.(author)

  12. NKA/KRU project on operator training, control room designing and human reliability. Summary report

    International Nuclear Information System (INIS)

    1981-06-01

    A Nordic integrated project on human reliability in the conditions of new advanced technology seeks to establish: - The actual repertoire of activities and tasks performed by the operating staff of a nuclear power plant and its dependence on the present and future levels of automation. - The knowledge required for these activities and appropriate means for training plant operators and for competence evaluation and retraining in coping with the rare events. - Models of human operator performance; how do operators read information and make decisions under normal and abnormal plant conditions and how does their performance depend upon control room design. - The typical limits of human capabilities and mechanisms of human errors as they are represented in existing records of incidents and accidents in industrial plants. - The use of process computers for improved design of data presentation and operator support systems, especially for disturbance analysis and diagnosis during infrequent plant disturbance. - Development of experimental techniques to validate research results and proposals for improved man/machine interfaces and other computer-based support systems. (EG)

  13. Information Retrieval System Design Issues in a Microcomputer-Based Relational DBMS Environment.

    Science.gov (United States)

    Wolfram, Dietmar

    1992-01-01

    Outlines the file structure requirements for a microcomputer-based information retrieval system using FoxPro, a relational database management system (DBMS). Issues relating to the design and implementation of such systems are discussed, and two possible designs are examined in terms of space economy and practicality of implementation. (15…

  14. Development and Implementation of an Instructional Design for Effective Teaching of Ecosystem, Biodiversity, and Environmental Issues

    Science.gov (United States)

    Yucel, Elif Ozata; Ozkan, Muhlis

    2015-01-01

    This study aims to develop an instructional design whereby ecosystem, biodiversity, and environmental issues are addressed with a holistic approach that provides more efficient teaching as well as to test the effectiveness of this design. A literature review was carried out and need-assessment was firstly made using the Readiness Test. This review…

  15. Analysis of the Current Technical Issues on ASME Code and Standard for Nuclear Mechanical Design(2009)

    International Nuclear Information System (INIS)

    Koo, Gyeong Hoi; Lee, B. S.; Yoo, S. H.

    2009-11-01

    This report describes the analysis on the current revision movement related to the mechanical design issues of the U.S ASME nuclear code and standard. ASME nuclear mechanical design in this report is composed of the nuclear material, primary system, secondary system and high temperature reactor. This report includes the countermeasures based on the ASME Code meeting for current issues of each major field. KAMC(ASME Mirror Committee) of this project is willing to reflect a standpoint of the domestic nuclear industry on ASME nuclear mechanical design and play a technical bridge role for the domestic nuclear industry in ASME Codes application

  16. Analysis of the Current Technical Issues on ASME Code and Standard for Nuclear Mechanical Design(2009)

    Energy Technology Data Exchange (ETDEWEB)

    Koo, Gyeong Hoi; Lee, B. S.; Yoo, S. H.

    2009-11-15

    This report describes the analysis on the current revision movement related to the mechanical design issues of the U.S ASME nuclear code and standard. ASME nuclear mechanical design in this report is composed of the nuclear material, primary system, secondary system and high temperature reactor. This report includes the countermeasures based on the ASME Code meeting for current issues of each major field. KAMC(ASME Mirror Committee) of this project is willing to reflect a standpoint of the domestic nuclear industry on ASME nuclear mechanical design and play a technical bridge role for the domestic nuclear industry in ASME Codes application

  17. Instructional Design Issues in a Distributed Collaborative Engineering Design (CED) Instructional Environment

    Science.gov (United States)

    Koszalka, Tiffany A.; Wu, Yiyan

    2010-01-01

    Changes in engineering practices have spawned changes in engineering education and prompted the use of distributed learning environments. A distributed collaborative engineering design (CED) course was designed to engage engineering students in learning about and solving engineering design problems. The CED incorporated an advanced interactive…

  18. Results of the reliability investigations for the design basis accident 'Rupture of a cold primary coolant system'

    International Nuclear Information System (INIS)

    Hoertner, H.; Nieckau, E.; Spindler, H.

    1976-12-01

    This report gives a comprehensive presentation of the detailed reliability investigation carried out for the engineered safety features installed to cope with the design basis accident 'Large LOCA' of a German nuclear power plant with pressurized water reactor. The investigation is based on the engineered safety features of the Biblis Nuclear Power Plant, Unit A. The reliability investigation is carried out by means of a fault tree analysis. The influence of common-mode failures is assessed. (orig.) [de

  19. A reliability design method for a lithium-ion battery pack considering the thermal disequilibrium in electric vehicles

    Science.gov (United States)

    Xia, Quan; Wang, Zili; Ren, Yi; Sun, Bo; Yang, Dezhen; Feng, Qiang

    2018-05-01

    With the rapid development of lithium-ion battery technology in the electric vehicle (EV) industry, the lifetime of the battery cell increases substantially; however, the reliability of the battery pack is still inadequate. Because of the complexity of the battery pack, a reliability design method for a lithium-ion battery pack considering the thermal disequilibrium is proposed in this paper based on cell redundancy. Based on this method, a three-dimensional electric-thermal-flow-coupled model, a stochastic degradation model of cells under field dynamic conditions and a multi-state system reliability model of a battery pack are established. The relationships between the multi-physics coupling model, the degradation model and the system reliability model are first constructed to analyze the reliability of the battery pack and followed by analysis examples with different redundancy strategies. By comparing the reliability of battery packs of different redundant cell numbers and configurations, several conclusions for the redundancy strategy are obtained. More notably, the reliability does not monotonically increase with the number of redundant cells for the thermal disequilibrium effects. In this work, the reliability of a 6 × 5 parallel-series configuration is the optimal system structure. In addition, the effect of the cell arrangement and cooling conditions are investigated.

  20. An Introduction To Reliability

    International Nuclear Information System (INIS)

    Park, Kyoung Su

    1993-08-01

    This book introduces reliability with definition of reliability, requirement of reliability, system of life cycle and reliability, reliability and failure rate such as summary, reliability characteristic, chance failure, failure rate which changes over time, failure mode, replacement, reliability in engineering design, reliability test over assumption of failure rate, and drawing of reliability data, prediction of system reliability, conservation of system, failure such as summary and failure relay and analysis of system safety.

  1. Prospective Elementary School Teachers’ Views about Socioscientific Issues: A Concurrent Parallel Design Study

    OpenAIRE

    Muhammet ÖZDEN

    2015-01-01

    The purpose of this research is to examine the prospective elementary school teachers’ perceptions on socioscientific issues. The research was conducted on prospective elementary school teachers studying at a university located in western Turkey. The researcher first taught the subjects of global warming and nuclear power plants from a perspective of socioscientific issues in the science and technology education course and then conducted the research. Concurrent parallel design, one of the mi...

  2. KrF amplifier design issues and application to inertial confinement fusion system design

    International Nuclear Information System (INIS)

    Sullivan, J.A.; Allen, G.R.; Berggren, R.R.

    1993-01-01

    Los Alamos National Laboratory has assembled an array of experimental and theoretical tools to optimize amplifier design for future single-pulse KrF lasers. The next opportunity to exercise these tools is with the design of the second-generation NIKE system under construction at the Naval Research Laboratory with the collaboration of Los Alamos National Laboratory. Los Alamos has applied these amplifier design tools to the conceptual design of a 100-kJ Laser Target Test Facility and a 3-MJ Laboratory Microfusion Facility. (author)

  3. Balancing low cost with reliable operation in the rotordynamic design of the ALS Liquid Hydrogen Fuel Turbopump

    Science.gov (United States)

    Greenhill, L. M.

    1990-01-01

    The Air Force/NASA Advanced Launch System (ALS) Liquid Hydrogen Fuel Turbopump (FTP) has primary design goals of low cost and high reliability, with performance and weight having less importance. This approach is atypical compared with other rocket engine turbopump design efforts, such as on the Space Shuttle Main Engine (SSME), which emphasized high performance and low weight. Similar to the SSME turbopumps, the ALS FTP operates supercritically, which implies that stability and bearing loads strongly influence the design. In addition, the use of low cost/high reliability features in the ALS FTP such as hydrostatic bearings, relaxed seal clearances, and unshrouded turbine blades also have a negative influence on rotordynamics. This paper discusses the analysis conducted to achieve a balance between low cost and acceptable rotordynamic behavior, to ensure that the ALS FTP will operate reliably without subsynchronous instabilities or excessive bearing loads.

  4. Design and implementation of component reliability database management system for NPP

    International Nuclear Information System (INIS)

    Kim, S. H.; Jung, J. K.; Choi, S. Y.; Lee, Y. H.; Han, S. H.

    1999-01-01

    KAERI is constructing the component reliability database for Korean nuclear power plant. This paper describes the development of data management tool, which runs for component reliability database. This is running under intranet environment and is used to analyze the failure mode and failure severity to compute the component failure rate. Now we are developing the additional modules to manage operation history, test history and algorithms for calculation of component failure history and reliability

  5. DESIGN OF WATER-COOLED PACKAGED AIR-CONDITIONING SYSTEMS BASED ON RELIABILITY ASSESSMENT

    OpenAIRE

    関口, 圭輔; 中尾, 正喜; 藁谷, 至誠; 植草, 常雄; 羽山, 広文

    2007-01-01

    Water-cooled packaged air-conditioning systems are reevaluated in terms of alleviating the heat island phenomenon in cities and effectively utilizing building rooftops. Up to now, such reliability assessment has been insufficient, and this has limited the use of this kind of air-conditioning system in the information and communications sectors that demand a high reliability. This work has led to the development of a model for evaluating the reliability of water-cooled package air-conditioning...

  6. Selection, design, qualification, testing, and reliability of emergency diesel generator units used as Class 1E onsite electric power systems at nuclear power plants

    International Nuclear Information System (INIS)

    1992-04-01

    This guide has been prepared for the resolution of Generic Safety Issue B-56, ''Diesel Generator Reliability,'' and is related to Unresolved Safety Issue (USI) A-44, ''Station Blackout.'' The resolution of USI A-44 established a need for an emergency diesel generator (EDG) reliability program that has the capability to achieve and maintain the emergency diesel generator reliability levels in the range of 0.95 per demand or better to cope with station blackout

  7. Design of Korean nuclear reliability data-base network using a two-stage Bayesian concept

    International Nuclear Information System (INIS)

    Kim, T.W.; Jeong, K.S.; Chae, S.K.

    1987-01-01

    In an analysis of probabilistic risk, safety, and reliability of a nuclear power plant, the reliability data base (DB) must be established first. As the importance of the reliability data base increases, event reporting systems such as the US Nuclear Regulatory Commission's Licensee Event Report and the International Atomic Energy Agency's Incident Reporting System have been developed. In Korea, however, the systematic reliability data base is not yet available. Therefore, foreign data bases have been directly quoted in reliability analyses of Korean plants. In order to develop a reliability data base for Korean plants, the problem is which methodology is to be used, and the application limits of the selected method must be solved and clarified. After starting the commercial operation of Korea Nuclear Unit-1 (KNU-1) in 1978, six nuclear power plants have begun operation. Of these, only KNU-3 is a Canada Deuterium Uranium pressurized heavy-water reactor, and the others are all pressurized water reactors. This paper describes the proposed reliability data-base network (KNRDS) for Korean nuclear power plants in the context of two-stage Bayesian (TSB) procedure of Kaplan. It describes the concept of TSB to obtain the Korean-specific plant reliability data base, which is updated with the incorporation of both the reported generic reliability data and the operation experiences of similar plants

  8. How to use an optimization-based method capable of balancing safety, reliability, and weight in an aircraft design process

    Energy Technology Data Exchange (ETDEWEB)

    Johansson, Cristina [Mendeley, Broderna Ugglasgatan, Linkoping (Sweden); Derelov, Micael; Olvander, Johan [Linkoping University, IEI, Dept. of Machine Design, Linkoping (Sweden)

    2017-03-15

    In order to help decision-makers in the early design phase to improve and make more cost-efficient system safety and reliability baselines of aircraft design concepts, a method (Multi-objective Optimization for Safety and Reliability Trade-off) that is able to handle trade-offs such as system safety, system reliability, and other characteristics, for instance weight and cost, is used. Multi-objective Optimization for Safety and Reliability Trade-off has been developed and implemented at SAAB Aeronautics. The aim of this paper is to demonstrate how the implemented method might work to aid the selection of optimal design alternatives. The method is a three-step method: step 1 involves the modelling of each considered target, step 2 is optimization, and step 3 is the visualization and selection of results (results processing). The analysis is performed within Architecture Design and Preliminary Design steps, according to the company's Product Development Process. The lessons learned regarding the use of the implemented trade-off method in the three cases are presented. The results are a handful of solutions, a basis to aid in the selection of a design alternative. While the implementation of the trade-off method is performed for companies, there is nothing to prevent adapting this method, with minimal modifications, for use in other industrial applications.

  9. How to use an optimization-based method capable of balancing safety, reliability, and weight in an aircraft design process

    International Nuclear Information System (INIS)

    Johansson, Cristina; Derelov, Micael; Olvander, Johan

    2017-01-01

    In order to help decision-makers in the early design phase to improve and make more cost-efficient system safety and reliability baselines of aircraft design concepts, a method (Multi-objective Optimization for Safety and Reliability Trade-off) that is able to handle trade-offs such as system safety, system reliability, and other characteristics, for instance weight and cost, is used. Multi-objective Optimization for Safety and Reliability Trade-off has been developed and implemented at SAAB Aeronautics. The aim of this paper is to demonstrate how the implemented method might work to aid the selection of optimal design alternatives. The method is a three-step method: step 1 involves the modelling of each considered target, step 2 is optimization, and step 3 is the visualization and selection of results (results processing). The analysis is performed within Architecture Design and Preliminary Design steps, according to the company's Product Development Process. The lessons learned regarding the use of the implemented trade-off method in the three cases are presented. The results are a handful of solutions, a basis to aid in the selection of a design alternative. While the implementation of the trade-off method is performed for companies, there is nothing to prevent adapting this method, with minimal modifications, for use in other industrial applications

  10. Tumor Heterogeneity: Mechanisms and Bases for a Reliable Application of Molecular Marker Design

    Science.gov (United States)

    Diaz-Cano, Salvador J.

    2012-01-01

    Tumor heterogeneity is a confusing finding in the assessment of neoplasms, potentially resulting in inaccurate diagnostic, prognostic and predictive tests. This tumor heterogeneity is not always a random and unpredictable phenomenon, whose knowledge helps designing better tests. The biologic reasons for this intratumoral heterogeneity would then be important to understand both the natural history of neoplasms and the selection of test samples for reliable analysis. The main factors contributing to intratumoral heterogeneity inducing gene abnormalities or modifying its expression include: the gradient ischemic level within neoplasms, the action of tumor microenvironment (bidirectional interaction between tumor cells and stroma), mechanisms of intercellular transference of genetic information (exosomes), and differential mechanisms of sequence-independent modifications of genetic material and proteins. The intratumoral heterogeneity is at the origin of tumor progression and it is also the byproduct of the selection process during progression. Any analysis of heterogeneity mechanisms must be integrated within the process of segregation of genetic changes in tumor cells during the clonal expansion and progression of neoplasms. The evaluation of these mechanisms must also consider the redundancy and pleiotropism of molecular pathways, for which appropriate surrogate markers would support the presence or not of heterogeneous genetics and the main mechanisms responsible. This knowledge would constitute a solid scientific background for future therapeutic planning. PMID:22408433

  11. Practical solutions for multi-objective optimization: An application to system reliability design problems

    International Nuclear Information System (INIS)

    Taboada, Heidi A.; Baheranwala, Fatema; Coit, David W.; Wattanapongsakorn, Naruemon

    2007-01-01

    For multiple-objective optimization problems, a common solution methodology is to determine a Pareto optimal set. Unfortunately, these sets are often large and can become difficult to comprehend and consider. Two methods are presented as practical approaches to reduce the size of the Pareto optimal set for multiple-objective system reliability design problems. The first method is a pseudo-ranking scheme that helps the decision maker select solutions that reflect his/her objective function priorities. In the second approach, we used data mining clustering techniques to group the data by using the k-means algorithm to find clusters of similar solutions. This provides the decision maker with just k general solutions to choose from. With this second method, from the clustered Pareto optimal set, we attempted to find solutions which are likely to be more relevant to the decision maker. These are solutions where a small improvement in one objective would lead to a large deterioration in at least one other objective. To demonstrate how these methods work, the well-known redundancy allocation problem was solved as a multiple objective problem by using the NSGA genetic algorithm to initially find the Pareto optimal solutions, and then, the two proposed methods are applied to prune the Pareto set

  12. Tumor Heterogeneity: Mechanisms and Bases for a Reliable Application of Molecular Marker Design

    Directory of Open Access Journals (Sweden)

    Salvador J. Diaz-Cano

    2012-02-01

    Full Text Available Tumor heterogeneity is a confusing finding in the assessment of neoplasms, potentially resulting in inaccurate diagnostic, prognostic and predictive tests. This tumor heterogeneity is not always a random and unpredictable phenomenon, whose knowledge helps designing better tests. The biologic reasons for this intratumoral heterogeneity would then be important to understand both the natural history of neoplasms and the selection of test samples for reliable analysis. The main factors contributing to intratumoral heterogeneity inducing gene abnormalities or modifying its expression include: the gradient ischemic level within neoplasms, the action of tumor microenvironment (bidirectional interaction between tumor cells and stroma, mechanisms of intercellular transference of genetic information (exosomes, and differential mechanisms of sequence-independent modifications of genetic material and proteins. The intratumoral heterogeneity is at the origin of tumor progression and it is also the byproduct of the selection process during progression. Any analysis of heterogeneity mechanisms must be integrated within the process of segregation of genetic changes in tumor cells during the clonal expansion and progression of neoplasms. The evaluation of these mechanisms must also consider the redundancy and pleiotropism of molecular pathways, for which appropriate surrogate markers would support the presence or not of heterogeneous genetics and the main mechanisms responsible. This knowledge would constitute a solid scientific background for future therapeutic planning.

  13. A unified approach to validation, reliability, and education study design for surgical technical skills training.

    Science.gov (United States)

    Sweet, Robert M; Hananel, David; Lawrenz, Frances

    2010-02-01

    To present modern educational psychology theory and apply these concepts to validity and reliability of surgical skills training and assessment. In a series of cross-disciplinary meetings, we applied a unified approach of behavioral science principles and theory to medical technical skills education given the recent advances in the theories in the field of behavioral psychology and statistics. While validation of the individual simulation tools is important, it is only one piece of a multimodal curriculum that in and of itself deserves examination and study. We propose concurrent validation throughout the design of simulation-based curriculum rather than once it is complete. We embrace the concept that validity and curriculum development are interdependent, ongoing processes that are never truly complete. Individual predictive, construct, content, and face validity aspects should not be considered separately but as interdependent and complementary toward an end application. Such an approach could help guide our acceptance and appropriate application of these exciting new training and assessment tools for technical skills training in medicine.

  14. Reliability of computer designed surgical guides in six implant rehabilitations with two years follow-up.

    Science.gov (United States)

    Giordano, Mauro; Ausiello, Pietro; Martorelli, Massimo; Sorrentino, Roberto

    2012-09-01

    To evaluate the reliability and accuracy of computer-designed surgical guides in osseointegrated oral implant rehabilitation. Six implant rehabilitations, with a total of 17 implants, were completed with computer-designed surgical guides, performed with the master model developed by muco-compressive and muco-static impressions. In the first case, the surgical guide had exclusively mucosal support, in the second case exclusively dental support. For all six cases computer-aided surgical planning was performed by virtual analyses with 3D models obtained by dental scan DICOM data. The accuracy and stability of implant osseointegration over two years post surgery was then evaluated with clinical and radiographic examinations. Radiographic examination, performed with digital acquisitions (RVG - Radio Video graph) and parallel techniques, allowed two-dimensional feedback with a margin of linear error of 10%. Implant osseointegration was recorded for all the examined rehabilitations. During the clinical and radiographic post-surgical assessments, over the following two years, the peri-implant bone level was found to be stable and without appearance of any complications. The margin of error recorded between pre-operative positions assigned by virtual analysis and the post-surgical digital radiographic observations was as low as 0.2mm. Computer-guided implant surgery can be very effective in oral rehabilitations, providing an opportunity for the surgeon: (a) to avoid the necessity of muco-periosteal detachments and then (b) to perform minimally invasive interventions, whenever appropriate, with a flapless approach. Copyright © 2012 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  15. Food chain design using multi criteria decision making, an approach to complex design issues

    NARCIS (Netherlands)

    Linnemann, A.R.; Hendrix, E.M.T.; Apaiah, R.K.; Boekel, van M.A.J.S.

    2015-01-01

    Designing a food supply chain for a completely new product involves many stakeholders and knowledge from disciplines in natural and social sciences. This paper describes how Multi Criteria Decision Making (MCDM) facilitated designing a food supply chain in a case of Novel Protein Foods. It made the

  16. Technical basis for the ITER-FEAT outline design. Progress in resolving open design issues from the outline design report

    International Nuclear Information System (INIS)

    2000-01-01

    In this publication the technical basis for the ITER-FEAT outline design is presented. It comprises the Plant Design Specifications, the Safety Principles and Environmental Criteria, the Site Requirements and Site Design Assumptions. The outline of the key features of the ITER-FEAT design includes main physical parameters and assessment, design overview and preliminary safety assessment, cost and schedule

  17. 75 FR 50853 - Special Conditions: Cirrus Design Corporation Model SF50 Airplane; Function and Reliability Testing

    Science.gov (United States)

    2010-08-18

    ... airplanes. 1. Function and Reliability Testing. Flight tests: In place of 14 CFR 21.35(b)(2), the following...; Function and Reliability Testing AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final special... to CAR part 3 became effective January 15, 1951, and deleted the service test requirements in Section...

  18. 75 FR 29962 - Special Conditions: Cirrus Design Corporation Model SF50 Airplane; Function and Reliability Testing

    Science.gov (United States)

    2010-05-28

    ... SF50 airplanes. 1. Function and Reliability Testing Flight tests: In place of 14 CFR part 21.35(b)(2... Reliability Testing AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of proposed special..., 1951, and deleted the service test requirements in Section 3.19 for airplanes of 6,000 pounds maximum...

  19. Reliability-based design and planning of inspection and monitoring of offshore wind turbines

    DEFF Research Database (Denmark)

    Dominguez, Sergio Marquez

    When the wind is blowing fiercely, wind turbines must resist. Wind turbines have to withstand the rough environmental conditions in the most reliable manner and start to produce renewable energy when the wind becomes friendly again. Never give up ‘wind turbine’ face the winds and be proud of cont...... of probability and statistics for application in structural reliability-based risk inspections....

  20. Reliability of a Test Battery Designed for Quickly and Safely Assessing Diverse Indices of Neuromuscular Function

    Science.gov (United States)

    Spiering, Barry A.; Lee, Stuart M. C.; Mulavara, Ajitkumar P.; Bentley, Jason, R.; Buxton, Roxanne E.; Lawrence, Emily L.; Sinka, Joseph; Guilliams, Mark E.; Ploutz-Snyder, Lori L.; Bloomberg, Jacob J.

    2010-01-01

    Spaceflight affects nearly every physiological system. Spaceflight-induced alterations in physiological function translate to decrements in functional performance. Purpose: To develop a test battery for quickly and safely assessing diverse indices of neuromuscular performance. I. Quickly: Battery of tests can be completed in approx.30-40 min. II. Safely: a) No eccentric muscle actions or impact forces. b) Tests present little challenge to postural stability. III. Diverse indices: a) Strength: Excellent reliability (ICC = 0.99) b) Central activation: Very good reliability (ICC = 0.87) c) Power: Excellent reliability (ICC = 0.99) d) Endurance: Total work has excellent reliability (ICC = 0.99) e) Force steadiness: Poor reliability (ICC = 0.20 - 0.60) National

  1. Characterizing reliability in a product/process design-assurance program

    Energy Technology Data Exchange (ETDEWEB)

    Kerscher, W.J. III [Delphi Energy and Engine Management Systems, Flint, MI (United States); Booker, J.M.; Bement, T.R.; Meyer, M.A. [Los Alamos National Lab., NM (United States)

    1997-10-01

    Over the years many advancing techniques in the area of reliability engineering have surfaced in the military sphere of influence, and one of these techniques is Reliability Growth Testing (RGT). Private industry has reviewed RGT as part of the solution to their reliability concerns, but many practical considerations have slowed its implementation. It`s objective is to demonstrate the reliability requirement of a new product with a specified confidence. This paper speaks directly to that objective but discusses a somewhat different approach to achieving it. Rather than conducting testing as a continuum and developing statistical confidence bands around the results, this Bayesian updating approach starts with a reliability estimate characterized by large uncertainty and then proceeds to reduce the uncertainty by folding in fresh information in a Bayesian framework.

  2. Breeding blanket design for ITER and prototype (DEMO) fusion reactors and breeding materials issues

    Energy Technology Data Exchange (ETDEWEB)

    Takatsu, H; Enoeda, M [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment

    1998-03-01

    Current status of the designs of the ITER breeding blanket and DEMO blankets is introduced placing emphasis on the breeding materials selection and related issues. The former design is based on the up-to-date design activities, as of October 1997, being performed jointly by Joint Central Team (JCT) and Home Teams (HT`s), while the latter is based on the DEMO blanket test module designs being proposed by each Party at the TBWG (Test Blanket Working Group) meetings. (J.P.N.)

  3. Design issues and cost implications of RTO/RC-ITER divertor

    International Nuclear Information System (INIS)

    Ibbott, C.; Antipenkov, A.; Chiocchio, S.; Federici, G.; Heidl, H.; Janeschitz, G.; Martin, E.; Tivey, R.

    2000-01-01

    This paper reports on the conceptual divertor design developed for the reduced technical objectives/reduced cost-international thermonuclear experimental reactor (RTO/RC-ITER). The cost drivers are discussed and a number of cost-reducing measures identified. Scaled costs, based on industrial estimates of the 1998 ITER design (Technical Basis for the ITER Final Design Report, Cost Review and Safety Analysis (FDR). ITER EDA Documentation Series No. 16. IAEA, Vienna, 1998), give for the RTO/RC-ITER ∼60% of the FDR costs. Plasma facing components (PFCs) account for 75% of the total divertor costs. Hence, PFC design simplifications are outlined in the paper showing the possibility of achieving a cost reduction of 50%. The design proposals, outlined in the paper, focus on minimising the number of sub-components and simplifying the manufacturing cycle. These changes contribute to improved reliability based on a more robust coolant design layout. The reduced space allocated to the divertor (G. Janeschitz, A. Antipenkov, V. Barabash, S. Chiocchio, G. Federici, C. Ibbott, E. Martin, R. Tivey, Overview of the Divertor Design and its Integration into RTO/RC-ITER, this conference) requires changes to the design that minimise the cassette body thickness, relocate the cassette attachments and revise the remote handling philosophy. Results of supporting electro-magnetic, neutron shielding, thermo-hydraulic and pumping conductance analyses are reported, qualifying the cassette design. A reduction in the coolant inlet temperature to 100-120 deg. C is discussed in terms of thermal-hydraulic performance and fatigue life of the heat sink. Finally, an R and D plan sets out the work needed: (1) to develop the cost saving measures of the new design; and (2) to demonstrate the reliability of the chosen technologies

  4. Human reliability

    International Nuclear Information System (INIS)

    Embrey, D.E.

    1987-01-01

    Concepts and techniques of human reliability have been developed and are used mostly in probabilistic risk assessment. For this, the major application of human reliability assessment has been to identify the human errors which have a significant effect on the overall safety of the system and to quantify the probability of their occurrence. Some of the major issues within human reliability studies are reviewed and it is shown how these are applied to the assessment of human failures in systems. This is done under the following headings; models of human performance used in human reliability assessment, the nature of human error, classification of errors in man-machine systems, practical aspects, human reliability modelling in complex situations, quantification and examination of human reliability, judgement based approaches, holistic techniques and decision analytic approaches. (UK)

  5. Critical Design Issues of Tokamak Cooling Water System of ITER's Fusion Reactor

    International Nuclear Information System (INIS)

    Kim, Seokho H.; Berry, Jan

    2011-01-01

    U.S. ITER is responsible for the design, engineering, and procurement of the Tokamak Cooling Water System (TCWS). The TCWS transfers heat generated in the Tokamak to cooling water during nominal pulsed operation 850 MW at up to 150 C and 4.2 MPa water pressure. This water contains radionuclides because impurities (e.g., tritium) diffuse from in-vessel components and the vacuum vessel by water baking at 200 240 C at up to 4.4MPa, and corrosion products become activated by neutron bombardment. The system is designated as safety important class (SIC) and will be fabricated to comply with the French Order concerning nuclear pressure equipment (December 2005) and the EU Pressure Equipment Directive using ASME Section VIII, Div 2 design codes. The complexity of the TCWS design and fabrication presents unique challenges. Conceptual design of this one-of-a-kind cooling system has been completed with several issues that need to be resolved to move to next stage of the design. Those issues include flow balancing between over hundreds of branch pipelines in parallel to supply cooling water to blankets, determination of optimum flow velocity while minimizing the potential for cavitation damage, design for freezing protection for cooling water flowing through cryostat (freezing) environment, requirements for high-energy piping design, and electromagnetic impact to piping and components. Although the TCWS consists of standard commercial components such as piping with valves and fittings, heat exchangers, and pumps, complex requirements present interesting design challenges. This paper presents a brief description of TCWS conceptual design and critical design issues that need to be resolved.

  6. Key technological issues in LMFBR high-temperature structural design - the US perspective

    International Nuclear Information System (INIS)

    Corum, J.M.

    1984-01-01

    The purpose of this paper is: (1) to review the key technological issues in LMFBR high-temperature structural design, particularly as they relate to cost reduction; and (2) to provide an overview of activities sponsored by the US Department of Energy to resolve the issues and to establish stable, standardized, and defensible structural design methods and criteria. Specific areas of discussion include: weldments, structural validation tests, simplified design analysis procedures, design procedures for piping, validation of the methodology for notch-like geometries, improved life assessment procedures, thermal striping, extension of the methodology to new materials, and ASME high-temperature Code reform needs. The perceived problems and needs in each area are discussed, and the current status of related US activities is given

  7. Client Server design and implementation issues in the Accelerator Control System environment

    International Nuclear Information System (INIS)

    Sathe, S.; Hoff, L.; Clifford, T.

    1995-01-01

    In distributed system communication software design, the Client Server model has been widely used. This paper addresses the design and implementation issues of such a model, particularly when used in Accelerator Control Systems. in designing the Client Server model one needs to decide how the services will be defined for a server, what types of messages the server will respond to, which data formats will be used for the network transactions and how the server will be located by the client. Special consideration needs to be given to error handling both on the server and client side. Since the server usually is located on a machine other than the client, easy and informative server diagnostic capability is required. The higher level abstraction provided by the Client Server model simplifies the application writing, however fine control over network parameters is essential to improve the performance. Above mentioned design issues and implementation trade-offs are discussed in this paper

  8. Technical reliability of geological disposal for high-level radioactive wastes in Japan. The second progress report. An extra issue: background of the geological disposal

    International Nuclear Information System (INIS)

    1999-11-01

    Based on the Advisory Committee Report on Nuclear Fuel Cycle Backend Policy submitted to the Japanese Government in 1997, JNC documents the progress of research and development program in the form of the second progress report (the first one published in 1992). It summarizes an evaluation of the technical reliability and safety of the geological disposal concept for high-level radioactive wastes (HLW) in Japan. The present document, an extra issue of the progress report, was prepared for the expected readers of the report to have background information on the geological disposal. Thus it gives information about (1) generation of high-level radioactive wastes, (2) history of plans proposed for HLW disposal in Japan, and (3) procedure until the geological disposal plan is finally adopted and basic future schedules. It further discusses on such problems in HLW treatment and disposal, as for example a problem of reliable safety for a very long period. (Ohno, S.)

  9. Physics issues in the design of a high β quasi-axisymmetric stellarator

    International Nuclear Information System (INIS)

    Reiman, A.; Ku, L.; Monticello, D.

    2001-01-01

    Present days stellarators have aspect ratios large compared to those of tokamaks. We have been pursuing the design of compact stellarator configurations with aspect ratios comparable to those of tokamaks and good transport and stability properties. To provide good drift trajectories, we focus on configurations that are close to quasi-symmetric (QA), an approach that is well suited to lower aspect ratios. In this paper the physics issues and configuration design of QA stellarators are presented

  10. Vuosaari Harbour Road Tunnel Traffic Management and Incident Detection System Design Issues

    Directory of Open Access Journals (Sweden)

    Caj Holm

    2006-11-01

    Full Text Available Helsinki is constructing in Vuosaari a new modem and effectivecargo harbour. All cargo harbour activities will be concentratedthere. The total project includes the harbour, a logisticsarea, traffic connections (road, railway and fairway and aBusiness Park. The road connection goes through the Porvarinlahtiroad tunnel. The harbour will commence operatingin 2008. This paper gives an oveTView of the tunnel design phasefunctional studies and risk analysis tunnel incident detectionsystem design issues and some specific environmental featuresof the tunnel.

  11. Behavioral issues in operations management new trends in design, management, and methodologies

    CERN Document Server

    2013-01-01

    Behavioral Operations Management  has been identified in the last years as one of the most promising emerging fields in Operations Management. Behavioral Issues in Operations Management  explains and examines up-to-date research in this field, which works to analyze the impact of human behavior on the management of complex operating systems.   A collection of studies from leading scholars presents different methodologies and approaches, supported by real data and case studies. Issues such as building trust and strong cooperative relationships with suppliers, enhancing motivation and designing proper incentives for stimulating more effective decision maker behaviours are considered. The main decision-making processes affected by behavioral issues are also analyzed with a focus on new product development, logistics, and supply chain integration.   The broad coverage of methodologies and practical implications makes Behavioral Issues in Operations Management an ideal reference for both researchers developing...

  12. Design-based research – issues in connecting theory, research and practice

    DEFF Research Database (Denmark)

    Kolmos, Anette

    2015-01-01

    the gap. But is this as easy as it sounds? The purpose of the article is to identify and discuss issues involved in applying DBR. The article is based on methodology chapters and essays from three PhD studies applying the DBR framework to implement problem and project based learning (PBL). The findings......During the last 20 years, design-based research (DBR) has become a popular methodology for connecting educational theory, research and practice. The missing link between educational theory, research and educational practice is an ongoing issue and DBR is seen as an integrated methodology to bridge...... indicate several key issues at both the scientific and personal level. Scientifically, the main issues are contribution to theory and the role of the researcher. At the personal level, it is an investment beyond normal research procedures to involve yourself as a researcher in curriculum change....

  13. Workshop on rock mechanics issues in repository design and performance assessment

    International Nuclear Information System (INIS)

    1996-04-01

    The Center for Nuclear Waste Regulatory Analyses organized and hosted a workshop on ''Rock Mechanics Issues in Repository Design and Performance Assessment'' on behalf its sponsor the U.S. Nuclear Regulatory Commission (NRC). This workshop was held on September 19- 20, 1994 at the Holiday Inn Crowne Plaza, Rockville, Maryland. The objectives of the workshop were to stimulate exchange of technical information among parties actively investigating rock mechanics issues relevant to the proposed high-level waste repository at Yucca Mountain and identify/confirm rock mechanics issues important to repository design and performance assessment The workshop contained three technical sessions and two panel discussions. The participants included technical and research staffs representing the NRC and the Department of Energy and their contractors, as well as researchers from the academic, commercial, and international technical communities. These proceedings include most of the technical papers presented in the technical sessions and the transcripts for the two panel discussions

  14. Special Issue: Design and Engineering of Microreactor and Smart-Scaled Flow Processes

    Directory of Open Access Journals (Sweden)

    Volker Hessel

    2014-12-01

    Full Text Available Reaction-oriented research in flow chemistry and microreactor has been extensively focused upon in special journal issues and books. On a process level, this resembled the “drop-in” (retrofit concept with the microreactor replacing a conventional (batch reactor. Meanwhile, with the introduction of the mobile, compact, modular container technology, the focus is more on the process side, including also providing an end-to-end vision of intensified process design. Exactly this is the focus of the current special issueDesign and Engineering of Microreactor and Smart-Scaled Flow Processes” of the journal “Processes”. This special issue comprises three review papers, five research articles and two communications. [...

  15. Control circuits in power electronics practical issues in design and implementation

    CERN Document Server

    Castilla, Miguel

    2016-01-01

    Control circuits are a key element in the operation and performance of power electronics converters. This book describes practical issues related to the design and implementation of these control circuits, and is divided into three parts - analogue control circuits, digital control circuits, and new trends in control circuits.

  16. Website design: technical, social and medical issues for self-reporting by elderly patients.

    Science.gov (United States)

    Taylor, Mark J; Stables, Rod; Matata, Bashir; Lisboa, Paulo J G; Laws, Andy; Almond, Peter

    2014-06-01

    There is growing interest in the use of the Internet for interacting with patients, both in terms of healthcare information provision and information gathering. In this article, we examine the issues in designing healthcare websites for elderly users. In particular, this article uses a year-long case study of the development of a web-based system for self-reporting of symptoms and quality of life with a view to examine the issues relating to website design for elderly users. The issues identified included the technical, social and medical aspects of website design for elderly users. The web-based system developed was based on the European Quality of Life 5-Dimensions health-status questionnaire, a commonly used tool for patient self-reporting of quality of life, and the more specific coronary revascularisation outcome questionnaire. Currently, self-reporting is generally administered in the form of paper-based questionnaires to be completed in the outpatient clinic or at home. There are a variety of issues relating to elderly users, which imply that websites for elderly patients may involve different design considerations to other types of websites.

  17. Issues in Designing a Hypermedia Document System: The Intermedia Case Study.

    Science.gov (United States)

    Yankelovich, Nicole; And Others

    1986-01-01

    Intermedia, a hypermedia system developed at Brown University's Institute for Research (Rhode Island) in Information and Scholarship, is first described, and then used as a case study to explore a number of key issues that software designers must consider in the development of hypermedia document systems. A hypermedia document system is defined as…

  18. A Study of Current Trends and Issues Related to Technical/Engineering Design Graphics.

    Science.gov (United States)

    Clark, Aaron C.; Scales Alice

    2000-01-01

    Presents results from a survey of engineering design graphics educators who responded to questions related to current trends and issues in the profession of graphics education. Concludes that there is a clear trend in institutions towards the teaching of constraint-based modeling and computer-aided manufacturing. (Author/YDS)

  19. Psychometrics of the Iowa and Berlin Gambling Tasks: Unresolved Issues With Reliability and Validity for Risk Taking.

    Science.gov (United States)

    Schmitz, Florian; Kunina-Habenicht, Olga; Hildebrandt, Andrea; Oberauer, Klaus; Wilhelm, Oliver

    2018-01-01

    The Iowa Gambling Task (IGT) is one of the most prominent paradigms employed for the assessment of risk taking in the laboratory, and it was shown to distinguish between various patient groups and controls. The present study was conducted to test the psychometric characteristics of the original IGT and of a new gambling task variant for assessing individual differences. Two studies were conducted with adults of the general population ( n = 220) and with adolescents ( n = 389). Participants were also tested on multiple measures of working memory capacity, fluid intelligence, personality traits associated with risk-taking behavior, and self-reported risk taking in various domains. Both gambling tasks had only moderate retest reliability within the same session. Moderate relations were obtained with cognitive ability. However, card selections in the gambling tasks were not correlated with personality or risk taking. These findings point to limitations of IGT type gambling tasks for the assessment of individual differences in risky decision making.

  20. Pilot opinions on high level flight deck automation issues: Toward the development of a design philosophy

    Science.gov (United States)

    Tenney, Yvette J.; Rogers, William H.; Pew, Richard W.

    1995-01-01

    There has been much concern in recent years about the rapid increase in automation on commercial flight decks. The survey was composed of three major sections. The first section asked pilots to rate different automation components that exist on the latest commercial aircraft regarding their obtrusiveness and the attention and effort required in using them. The second section addressed general 'automation philosophy' issues. The third section focused on issues related to levels and amount of automation. The results indicate that pilots of advanced aircraft like their automation, use it, and would welcome more automation. However, they also believe that automation has many disadvantages, especially fully autonomous automation. They want their automation to be simple and reliable and to produce predictable results. The biggest needs for higher levels of automation were in pre-flight, communication, systems management, and task management functions, planning as well as response tasks, and high workload situations. There is an irony and a challenge in the implications of these findings. On the one hand pilots would like new automation to be simple and reliable, but they need it to support the most complex part of the job--managing and planning tasks in high workload situations.