WorldWideScience

Sample records for desiccant cooling systems

  1. Efficient energy storage in liquid desiccant cooling systems

    Energy Technology Data Exchange (ETDEWEB)

    Hublitz, Astrid

    2008-07-18

    Liquid Desiccant Cooling Systems (LDCS) are open loop sorption systems for air conditioning that use a liquid desiccant such as a concentrated salt solution to dehumidify the outside air and cool it by evaporative cooling. Thermochemical energy storage in the concentrated liquid desiccant can bridge power mismatches between demand and supply. Low-flow LDCS provide high energy storage capacities but are not a state-of-the-art technology yet. The key challenge remains the uniform distribution of the liquid desiccant on the heat and mass transfer surfaces. The present research analyzes the factors of influence on the energy storage capacity by simulation of the heat and mass transfer processes and specifies performance goals for the distribution of the process media. Consequently, a distribution device for the liquid desiccant is developed that reliably meets the performance goals. (orig.)

  2. Performance comparison between a solar driven rotary desiccant cooling system and conventional vapor compression system (performance study of desiccant cooling)

    International Nuclear Information System (INIS)

    Ge, T.S.; Ziegler, F.; Wang, R.Z.; Wang, H.

    2010-01-01

    Solar driven rotary desiccant cooling systems have been widely recognized as alternatives to conventional vapor compression systems for their merits of energy-saving and being eco-friendly. In the previous paper, the basic performance features of desiccant wheel have been discussed. In this paper, a solar driven two-stage rotary desiccant cooling system and a vapor compression system are simulated to provide cooling for one floor in a commercial office building in two cities with different climates: Berlin and Shanghai. The model developed in the previous paper is adopted to predict the performance of the desiccant wheel. The objectives of this paper are to evaluate and compare the thermodynamic and economic performance of the two systems and to obtain useful data for practical application. Results show that the desiccant cooling system is able to meet the cooling demand and provide comfortable supply air in both of the two regions. The required regeneration temperatures are 55 deg. C in Berlin and 85 deg. C in Shanghai. As compared to the vapor compression system, the desiccant cooling system has better supply air quality and consumes less electricity. The results of the economic analysis demonstrate that the dynamic investment payback periods are 4.7 years in Berlin and 7.2 years in Shanghai.

  3. Desiccant Dewpoint Cooling System Independent of External Water Sources

    DEFF Research Database (Denmark)

    Bellemo, Lorenzo; Elmegaard, Brian; Markussen, Wiebke B.

    2015-01-01

    the air that regenerates the desiccant dehumidifier, and using it for running the evaporative coolers in the system. A closed regeneration circuit is used for maximizing the amount of condensed water. This solution is applied to a system with a desiccant wheel dehumidifier and a dew point cooler, termed...... desiccant dew-point cooling system, for demonstrating its function and applicability. Simulations are carried out for varying outdoor conditions under constant supply conditions. The results show that the system is independent of external water supply for the majority of simulated conditions. In comparison...... to the desiccant dew-point system without water recovery, the required regeneration temperature increases and the system thermal efficiency decreases....

  4. Modelling and analysis of a desiccant cooling system using the regenerative indirect evaporative cooling process

    DEFF Research Database (Denmark)

    Bellemo, Lorenzo; Elmegaard, Brian; Reinholdt, Lars O.

    2013-01-01

    This paper focuses on the numerical modeling and analysis of a Desiccant Cooling (DEC) system with regenerative indirect evaporative cooling, termed Desiccant Dewpoint Cooling (DDC) system. The DDC system includes a Desiccant Wheel (DW), Dew Point Coolers (DPCs), a heat recovery unit and a heat...... in different climates: temperate in Copenhagen and Mediterranean in Venice. Cheap and clean heat sources (e.g. solar energy) strongly increase the attractiveness of the DDC system. For the Mediterranean climate the DDC system represents a convenient alternative to chiller-based systems in terms of energy costs...... and CO2 emissions. The electricity consumption for auxiliaries in the DDC system is higher than in the chiller-based systems. The number of commercial-size DPC units required to cover the cooling load during the whole period is high: 8 in Copenhagen and 12 in Venice....

  5. Experimental study on solar desiccant cooling system. 2nd Report; Taiyonetsu kudo desiccant cooling system no jikkenteki kento. 2

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, H; Funato, H [Fukuoka Institute of Technology, Fukuoka (Japan); Kuma, T [Seibu Giken Co. Ltd., Fukuoka (Japan)

    1996-10-27

    Study has been made about a desiccant cleaning system using solar heated water for regenerating the dehumidifier. A dehumidifier and evaporation coolers are combined to attain a synergistic effect in dehumidifying and cooling the air in the house. The simultaneous control of humidity and temperature, however, is quite difficult. Under the circumstances, an evaporation cooler was removed from the outdoor air intake side, to leave a humidifier alone for the control of humidity only. In addition, the length of the dehumidifier was reduced into half for saving fan driving power and for downscaling the model. With only one evaporation cooler in operation that is installed at the exhaust side, the cooling effect is diminished by half. For dealing with the situation, ultrasonic atomization is performed at the exhaust side evaporation cooler for the improvement of the air cooling effect for the next sensible heat exchanger (intake side). The return air is heated by the solar heater water (approximately 60{degree}C hot), regenerates the dehumidifier, and then exhausted. The atomization process elevates the cooling effect, and the resultant cooling effect was as high as that expected from a 2-cooler setup. The dehumidification effect, however, lowers a little. Exclusion of the atomization process will enhance the dehumidification effect, but will reduce the cooling effect as well. 3 refs., 8 figs., 3 tabs.

  6. Use of dehumidifiers in desiccant cooling and dehumidification systems

    International Nuclear Information System (INIS)

    Van den Bulck, E.; Mitchell, J.W.; Klein, S.A.

    1986-01-01

    The use of rotary dehumidifiers in gas-fired open-cycle desiccant cooling systems is investigated by analyzing the performance of the rotary heat exchanger-rotary dehumidifier subsystem. For a given cooling load, the required regeneration heat supply can be minimized by choosing appropriate values for the regeneration air mass flow rate and the wheel rotation speed. A map is presented showing optimal values for rotational speed and regeneration flow rate as functions of the regeneration air inlet temperature and the process air inlet humidity ratio. This regeneration temperature is further optimized as a function of the process humidity ratio. In the analysis, the control strategy adjusts the process air mass flow rate to provide the required cooling load. Additional control options are considered and the sensitivity of the regeneration heat required to the wheel speed, regeneration air mass flow rate, and inlet temperature is discussed. Experimental data reported in the literature are compared with the analytical results and indicate good agreement

  7. Applicability of a desiccant dew-point cooling system independent of external water sources

    DEFF Research Database (Denmark)

    Bellemo, Lorenzo; Elmegaard, Brian; Kærn, Martin Ryhl

    2015-01-01

    The applicability of a technical solution for making desiccant cooling systems independent of external water sources is investigated. Water is produced by condensing the desorbed water vapour in a closed regeneration circuit. Desorbed water recovery is applied to a desiccant dew-point cooling...... system, which includes a desiccant wheel and a dew point cooler. The system is simulated during the summer period in the Mediterranean climate of Rome and it results completely independent of external water sources. The seasonal thermal COP drops 8% in comparison to the open regeneration circuit solution...

  8. Analysis of a solid desiccant cooling system with indirect evaporative cooling

    DEFF Research Database (Denmark)

    Bellemo, Lorenzo

    investigates the performance of a solid desiccant cooling system implementing in-direct evaporative cooling processes. The aim is to quantify the system thermal and electrical performance for varying component dimensions and operating conditions, and to identify its range of applicability. This information...... evaporative cooler. Detailed steady state numerical models are developed and implemented in MATLAB. The models need to be accurate and require low computational effort, for analysing the internal heat and mass transfer processes, as well as carrying out repetitive design and optimization simulations......-to-air heat exchanger for enhancing cooling capacity and thermal performance. The system perfor-mance is investigated considering regeneration temperatures between 50 ºC and 90 ºC, which enable low temperature heat sources, such as solar energy or waste heat, to be used. The effects of several geometrical...

  9. Experimental performance of indirect air–liquid membrane contactors for liquid desiccant cooling systems

    International Nuclear Information System (INIS)

    Das, Rajat Subhra; Jain, Sanjeev

    2013-01-01

    Owing to the stringent indoor air quality (IAQ) requirements and high cost of desiccants, one of the major concerns in liquid desiccant technology has been the carryover, which can be eliminated through indirect contact between desiccant and air. Membrane contactors using microporous semipermeable hydrophobic membranes have a great potential in this regard. This communication investigates the performance of semipermeable membrane based indirect contactors as dehumidifiers in liquid desiccant cooling applications. Experiments on different types of membrane contactors are carried out using lithium chloride (LiCl) solution as desiccant. The membrane contactors consist of alternate channels of air and liquid desiccant flowing in cross-flow direction. Hydrophobic membranes form a liquid tight, vapor permeable porous barrier between hygroscopic solution and moist air, thus eliminating carryover of desiccant droplets. In order to provide maximum contact area for air–desiccant interaction, a wicking material is sandwiched between two membranes in the liquid channel. It is observed that vapor flux upto 1300 g/m 2 h can be achieved in a membrane contactor with polypropylene (PP) membranes, although the dehumidification effectiveness remains low. The effect of key parameters on the transmembrane vapor transport is presented in the paper. - Highlights: • Indirect membrane contactors developed to avoid carryover in liquid desiccant system. • Dehumidification effectiveness and vapor flux reported under varying conditions. • Vapor flux upto 1295 g/m 2 h in polypropylene contactor with high area density. • Dehumidification effectiveness with LiCl solution varies within 23% to 45%

  10. Thermal analysis of a direct evaporative cooling system enhancement with desiccant dehumidification for vehicular air conditioning

    International Nuclear Information System (INIS)

    Alahmer, Ali

    2016-01-01

    Highlights: • Thermal analysis was conducted to design a desiccant evaporative cooling system for vehicular air conditioning. • EC is more efficient than the conventional air conditioning when the gasoline price is more than 0.34 $/liter. • Drawbacks of evaporative cooler of increased weight and reduced COP. • A rotary desiccant dehumidifier with generation was combined with evaporative cooling to be more efficient. - Abstract: This manuscript analyzes the sub-systems of evaporative cooler (EC) combined with desiccant dehumidification and regeneration for automotive air conditioning purpose. The thermodynamic and psychometric analysis was conducted to design all evaporative cooling system components in terms of desiccant selection, regeneration process, compact heat exchanger and evaporative cooler. Moreover, the effect of the desiccant, heat exchanger and evaporative performances on the mass flow rate and water sprayed required for evaporative cooling system was investigated. The results show that the theoretical evaporative cooling design will achieve two main objectives: lower fuel consumption and less environmental pollutants. However, it has the two drawbacks in terms of increased weight and reduces the coefficient of performance (COP). The main remark is that evaporating cooling system is more efficient than the conventional air conditioning when the gasoline price is more than 0.34 $/liter.

  11. Modeling of a regenerative indirect evaporative cooler for a desiccant cooling system

    DEFF Research Database (Denmark)

    Bellemo, Lorenzo; Elmegaard, Brian; Reinholdt, Lars O.

    This paper presents a numerical study of a regenerative indirect evaporative cooler, the so-called Dew Point Cooler (DPC), which is part of a Desiccant Cooling system that may both dehumidify and cool humid air. The DPC model is based on first principles using a 1D finite volume scheme...

  12. Simulation Analysis of the Four Configurations of Solar Desiccant Cooling System Using Evaporative Cooling in Tropical Weather in Malaysia

    Directory of Open Access Journals (Sweden)

    M. M. S. Dezfouli

    2014-01-01

    Full Text Available A high demand for air conditioning systems exists in hot and humid regions because of the warm climate during the year. The high energy consumption of conventional air conditioning system is the reason for our investigation of the solar desiccant cooling system as an energy-efficient cooling system. Four model configurations were considered to determine the best configuration of a solar desiccant cooling system: one-stage ventilation, one-stage recirculation, two-stage ventilation, and two-stage recirculation. These models were stimulated for 8,760 hr of operation under hot and humid weather in Malaysia. Several parameters (i.e., coefficient of performance or COP, room temperature and humidity ratio, and the solar fraction of each system were evaluated by detecting the temperature and humidity ratio of the different points of each configuration by TRNSYS simulation. The latent and sensible loads of the test room were 0.875 kW and 2.625 kW, respectively. By investigating the simulation results of the four systems, the ventilation modes were found to be higher than the recirculation modes in the one- and two-stage solar desiccant cooling systems. The isothermal dehumidification COP of the two-stage ventilation was higher than that of the two-stage recirculation. Hence, the two-stage ventilation mode desiccant cooling system in a hot and humid area has higher efficiency than the other configurations.

  13. Solar hybrid cooling system for high-tech offices in subtropical climate - Radiant cooling by absorption refrigeration and desiccant dehumidification

    International Nuclear Information System (INIS)

    Fong, K.F.; Chow, T.T.; Lee, C.K.; Lin, Z.; Chan, L.S.

    2011-01-01

    Highlights: → A solar hybrid cooling system is proposed for high-tech offices in subtropical climate. → An integration of radiant cooling, absorption refrigeration and desiccant dehumidification. → Year-round cooling and energy performances were evaluated through dynamic simulation. → Its annual primary energy consumption was lower than conventional system up to 36.5%. → The passive chilled beams were more energy-efficient than the active chilled beams. - Abstract: A solar hybrid cooling design is proposed for high cooling load demand in hot and humid climate. For the typical building cooling load, the system can handle the zone cooling load (mainly sensible) by radiant cooling with the chilled water from absorption refrigeration, while the ventilation load (largely latent) by desiccant dehumidification. This hybrid system utilizes solar energy for driving the absorption chiller and regenerating the desiccant wheel. Since a high chilled water temperature generated from the absorption chiller is not effective to handle the required latent load, desiccant dehumidification is therefore involved. It is an integration of radiant cooling, absorption refrigeration and desiccant dehumidification, which are powered up by solar energy. In this study, the application potential of the solar hybrid cooling system was evaluated for the high-tech offices in the subtropical climate through dynamic simulation. The high-tech offices are featured with relatively high internal sensible heat gains due to the intensive office electric equipment. The key performance indicators included the solar fraction and the primary energy consumption. Comparative study was also carried out for the solar hybrid cooling system using two common types of chilled ceilings, the passive chilled beams and active chilled beams. It was found that the solar hybrid cooling system was technically feasible for the applications of relatively higher cooling load demand. The annual primary energy

  14. Experimental Investigation of Air Conditioner using the Desiccant Cooling System in Equatorial Climates

    Directory of Open Access Journals (Sweden)

    Abdullah Kamaruddin

    2018-01-01

    Full Text Available Indonesia lies in the tropical climate which requires air conditioning to increase working productivity of the people. Up to now people are still using the compressive cooling system which uses Freon as the refrigerant, which have been known to have a negative environmental impact. Therefore, new cooling system which is environmentally friendly is now needed. Desiccant cooling system manipulates the humidity condition of outside air in such a way so that the final temperature should become at 25 °C and RH of 65 %. Since it does not require refrigerant, a desiccant cooling has the potential to be developed in a tropical country like Indonesia. In this study an experimental desiccant cooling system has been designed and constructed and tested under laboratory condition. Experimental results have shown that the resulting air temperature was 26.1 °C with RH of 55.6 %, and average cooling capacity was 0.425 kW. The COP was found to be 0.44.

  15. Theoretical modelling and experimental study of air thermal conditioning process of a heat pump assisted solid desiccant cooling system

    DEFF Research Database (Denmark)

    Nie, Jinzhe; Li, Zan; Hu, Wenju

    2017-01-01

    purification aimed at improving indoor air quality and reducing building energy consumption. The heat and moisture transfer in adsorption desiccant rotor was theoretical modelled with one-dimensional partial differential equations. The theoretical model was validated with experimental measurements...... system, the energy performance of HP-SDC was more efficient mainly due to high efficient air purification capacity, reduction of cooling load and raised evaporation temperature. The energy performance of HP-SDC was sensitive to outdoor humidity ratio. Further improvements of HP-SDC energy efficiency......Taking the integrated gaseous contaminants and moisture adsorption potential of desiccant material, a new heat pump assisted solid desiccant cooling system (HP-SDC) was proposed based on the combination of desiccant rotor with heat pump. The HP-SDC was designed for dehumidification, cooling and air...

  16. Performance analysis of ventilation systems with desiccant wheel cooling based on exergy destruction

    International Nuclear Information System (INIS)

    Tu, Rang; Liu, Xiao-Hua; Hwang, Yunho; Ma, Fei

    2016-01-01

    Highlights: • Ventilation systems with desiccant wheel were analyzed from exergy destruction. • Main performances influencing factors for ventilation systems are put forward. • Improved ventilation systems with lower exergy destruction are suggested. • Performances of heat pumps driven ventilation systems are greatly increased. - Abstract: This paper investigates the performances of ventilation systems with desiccant wheel cooling from the perspective of exergy destructions. Based on the inherent influencing factors for exergy destructions of heat and mass transfer and heat sources, provide guidelines for efficient system design. First, performances of a basic ventilation system are simulated, which is operated at high regeneration temperature and low coefficient of performance (COP). Then, exergy analysis of the basic ventilation system shows that exergy destructions mainly exist in the heat and mass transfer components and the heat source. The inherent influencing factors for the heat and mass transfer exergy destruction are heat and mass transfer capacities, which are related to over dehumidification of the desiccant wheel, and unmatched coefficients, which represent the uniformity of the temperature or humidity ratio differences fields for heat and mass transfer components. Based on these findings, two improved ventilation systems are suggested. For the first system, over dehumidification is avoided and unmatched coefficients for each component are reduced. With lower heat and mass transfer exergy destructions and lower regeneration temperature, COP and exergy efficiency of the first system are increased compared with the basic ventilation system. For the second system, a heat pump, which recovers heat from the process air to heat the regeneration air, is adopted to replace the electrical heater and cooling devices. The exergy destruction of the heat pump is considerably reduced as compared with heat source exergy destruction of the basic ventilation

  17. Desiccant cooling: State-of-the-art assessment

    Energy Technology Data Exchange (ETDEWEB)

    Pesaran, A.A.; Penney, T.R.; Czanderna, A.W.

    1992-10-01

    The objectives of this document are to present an overview of the work accomplished to date on desiccant cooling to provide assessment of the state of the art of desiccant cooling technology in the field of desiccant material dehumidifier components, desiccant systems, and models. The report also discusses the factors that affect the widespread acceptance of desiccant cooling technology. This report is organized as follows. First, a basic description and historical overview of desiccant cooling technology is provided. Then, the recent research and development (R D) program history (focusing on DOE's funded efforts) is discussed. The status of the technology elements (materials, components, systems) is discussed in detail and a preliminary study on the energy impact of desiccant technology is presented. R D needs for advancing the technology in the market are identified. The National Renewable Energy Laboratory's unique desiccant test facilities and their typical outputs are described briefly. Finally, the results of a comprehensive literature search on desiccant cooling are presented in a bibliography. The bibliography contains approximately 900 citations on desiccant cooling.

  18. Desiccant cooling: State-of-the-art assessment

    Energy Technology Data Exchange (ETDEWEB)

    Pesaran, A.A.; Penney, T.R.; Czanderna, A.W.

    1992-10-01

    The objectives of this document are to present an overview of the work accomplished to date on desiccant cooling to provide assessment of the state of the art of desiccant cooling technology in the field of desiccant material dehumidifier components, desiccant systems, and models. The report also discusses the factors that affect the widespread acceptance of desiccant cooling technology. This report is organized as follows. First, a basic description and historical overview of desiccant cooling technology is provided. Then, the recent research and development (R&D) program history (focusing on DOE`s funded efforts) is discussed. The status of the technology elements (materials, components, systems) is discussed in detail and a preliminary study on the energy impact of desiccant technology is presented. R&D needs for advancing the technology in the market are identified. The National Renewable Energy Laboratory`s unique desiccant test facilities and their typical outputs are described briefly. Finally, the results of a comprehensive literature search on desiccant cooling are presented in a bibliography. The bibliography contains approximately 900 citations on desiccant cooling.

  19. Performance investigation of solid desiccant evaporative cooling system configurations in different climatic zones

    International Nuclear Information System (INIS)

    Ali, Muzaffar; Vukovic, Vladimir; Sheikh, Nadeem Ahmed; Ali, Hafiz M.

    2015-01-01

    Highlights: • Five configurations of a DEC system are analyzed in five climate zones. • DEC system model configurations are developed in Dymola/Modelica. • Performance analysis predicted a suitable DEC system configuration for each climate zone. • Results show that climate of Vienna, Sao Paulo, and Adelaide favors the ventilated-dunkle cycle. • While ventilation cycle configuration suits the climate of Karachi and Shanghai. - Abstract: Performance of desiccant evaporative cooling (DEC) system configurations is strongly influenced by the climate conditions and varies widely in different climate zones. Finding the optimal configuration of DEC systems for a specific climatic zone is tedious and time consuming. This investigation conducts performance analysis of five DEC system configurations under climatic conditions of five cities from different zones: Vienna, Karachi, Sao Paulo, Shanghai, and Adelaide. On the basis of operating cycle, three standard and two modified system configurations (ventilation, recirculation, dunkle cycles; ventilated-recirculation and ventilated-dunkle cycles) are analyzed in these five climate zones. Using an advance equation-based object-oriented (EOO) modeling and simulation approach, optimal configurations of a DEC system are determined for each climate zone. Based on the hourly climate data of each zone for its respective design cooling day, performance of each system configuration is estimated using three performance parameters: cooling capacity, COP, and cooling energy delivered. The results revealed that the continental/micro-thermal climate of Vienna, temperate/mesothermal climate of Sao Paulo, and dry-summer subtropical climate of Adelaide favor the use of ventilated-dunkle cycle configuration with average COP of 0.405, 0.89 and 1.01 respectively. While ventilation cycle based DEC configuration suits arid and semiarid climate of Karachi and another category of temperate/mesothermal climate of Shanghai with average COP of

  20. Assessment of Energy, Environmental and Economic Performance of a Solar Desiccant Cooling System with Different Collector Types

    Directory of Open Access Journals (Sweden)

    Giovanni Angrisani

    2014-10-01

    Full Text Available Desiccant-based air handling units can achieve reductions in greenhouse gas emissions and energy savings with respect to conventional air conditioning systems. Benefits are maximized when they interact with renewable energy technologies, such as solar collectors. In this work, experimental tests and data derived from scientific and technical literature are used to implement a model of a solar desiccant cooling system, considering three different collector technologies (air, flat-plate and evacuated collectors. Simulations were then performed to compare the energy, environmental and economic performance of the system with those of a desiccant-based unit where regeneration thermal energy is supplied by a natural gas boiler, and with those of a conventional air-handling unit. The only solution that allows achieving the economic feasibility of the solar desiccant cooling unit consists of 16 m2 of evacuated solar collectors. This is able to obtain, with respect to the reference system, a reduction of primary energy consumption and of the equivalent CO2 emissions of 50.2% and 49.8%, respectively, but with a payback time of 20 years.

  1. Primary energy savings in desiccant and evaporative cooling-assisted 100% outdoor air system combined with a fuel cell

    International Nuclear Information System (INIS)

    Kim, Min-Hwi; Dong, Hae-Won; Park, Joon-Young; Jeong, Jae-Weon

    2016-01-01

    Highlights: • A LD-IDECOAS integrated with a PEMFC was proposed. • A pilot system was installed and tested during cooling operation. • The proposed system powered by the PEMFC saved 21% of the primary energy consumption during cooling. - Abstract: The main purpose of this study involved investigating the primary energy saving potential of a liquid desiccant and evaporative cooling-assisted 100% outdoor air system (LD-IDECOAS) integrated with a proton exchange membrane fuel cell (PEMFC). During the cooling season, the heat produced by the PEMFC was used to regenerate a weak desiccant solution, and the electricity generated was used to operate the LD-IDECOAS. A pilot LD-IDECOAS powered by a PEMFC was installed and operated in an office space to experimentally verify the annual operating energy savings of the proposed system. The findings indicated that the heat reclaimed from the PEMFC saved 42% of the desiccant solution regenerating energy when compared to that in the case of a conventional gas-fired water heater. The results also suggested that the LD-IDECOAS combined with a PEMFC consumed 21% less primary energy when compared with that of a system powered by grid electricity and a conventional gas-fired water heater.

  2. Parametric Analysis of Design Parameter Effects on the Performance of a Solar Desiccant Evaporative Cooling System in Brisbane, Australia

    Directory of Open Access Journals (Sweden)

    Yunlong Ma

    2017-06-01

    Full Text Available Solar desiccant cooling is widely considered as an attractive replacement for conventional vapor compression air conditioning systems because of its environmental friendliness and energy efficiency advantages. The system performance of solar desiccant cooling strongly depends on the input parameters associated with the system components, such as the solar collector, storage tank and backup heater, etc. In order to understand the implications of different design parameters on the system performance, this study has conducted a parametric analysis on the solar collector area, storage tank volume, and backup heater capacity of a solid solar desiccant cooling system for an office building in Brisbane, Australia climate. In addition, a parametric analysis on the outdoor air humidity ratio control set-point which triggers the operation of the desiccant wheel has also been investigated. The simulation results have shown that either increasing the storage tank volume or increasing solar collector area would result in both increased solar fraction (SF and system coefficient of performance (COP, while at the same time reduce the backup heater energy consumption. However, the storage tank volume is more sensitive to the system performance than the collector area. From the economic aspect, a storage capacity of 30 m3/576 m2 has the lowest life cycle cost (LCC of $405,954 for the solar subsystem. In addition, 100 kW backup heater capacity is preferable for the satisfaction of the design regeneration heating coil hot water inlet temperature set-point with relatively low backup heater energy consumption. Moreover, an outdoor air humidity ratio control set-point of 0.008 kgWater/kgDryAir is more reasonable, as it could both guarantee the indoor design conditions and achieve low backup heater energy consumption.

  3. Thermodynamic analysis of an open cycle solid desiccant cooling system using Artificial Neural Network

    International Nuclear Information System (INIS)

    Koronaki, I.P.; Rogdakis, E.; Kakatsiou, T.

    2012-01-01

    Highlights: ► A neural network model based on experimental data was developed. ► Description of the experimental setup. ► Prediction of the state conditions of air at the process and regeneration stream. ► Sensitivity Analysis performed on these predicted results. ► Predicted output values in line with correlation model based on data from industry. - Abstract: This paper examines the performance of an installed open cycle air-conditioning system with a silica gel desiccant wheel which uses a conventional heat pump and heat exchangers for the improvement of the outlet air of the system. A neural network model based on the training of a black box model with experimental data was developed as a method based on experimental results predicting the state conditions of air at the process and regeneration stream. The model development was followed by a Sensitivity Analysis performed on these predicted results. The key parameters were the thermodynamic condition of process and regeneration air streams, the sensible heat factor of the room, and the mass air flow ratio of the regeneration and process streams. The results of this analysis revealed that all investigated parameters influenced the performance of the desiccant unit. Predicted output values of the proposed Neural Network Model for Desiccant Systems are in line with results from other correlation models based on the interpolation of experimental data obtained from industrial air conditioning installations.

  4. Desiccant-assisted cooling fundamentals and applications

    CERN Document Server

    Brum, Nisio

    2014-01-01

    The increasing concern with indoor air quality has led to air-quality standards with increased ventilation rates. Although increasing the volume flow rate of outside air is advisable from the perspective of air-quality, it is detrimental to energy consumption, since the outside air has to be brought to the comfort condition before it is insufflated to the  conditioned ambient. Moreover, the humidity load carried within outside air has challenging HVAC engineers to design cooling units which are able to satisfactorily handle both sensible and latent contributions to the thermal load. This constitutes a favorable scenario for the use of solid desiccants to assist the cooling units. In fact, desiccant wheels have been increasingly applied by HVAC designers, allowing distinct processes for the air cooling and dehumidification. In fact, the ability of solid desiccants in moisture removal is effective enough to allow the use of evaporative coolers, in opposition to the traditional vapor-compression cycle, resultin...

  5. Solar assisted liquid desiccant cooling using clay based membranes

    Directory of Open Access Journals (Sweden)

    Priya S. Shanmuga

    2018-01-01

    Full Text Available The environmental concerns have led to the urge of the usage of non-conventional energy resources like solar, wind, thermal, geothermal etc. which provide enormous source of energy without causing any further diminution of the environment. Instead of the conventional HVAC systems that cause colossal environmental perils, usage of liquid desiccants in coming in vogue whereby reducing ecological threats. Moreover, solar assisted systems provide further impulse to such systems. This paper discusses about the various comparisons between liquid desiccants: Lithium chloride, Potassium formate and Calcium chloride and concludes that potassium formate is the best desiccant to be used among the three. Potassium formate (HCOOK is used which is cheaper and less corrosive as compared to the other aqueous salts, and has a negative crystallization temperature. Potassium formate is a new liquid desiccant and thus, not much research is available currently. The weather conditions of Manipal provide an appropriate condition for the experimentations of solar aided liquid desiccant evaporative cooling systems due to its humid climate and intense solar radiation obtained. The small scale experimentation also encounters the problem of liquid desiccant carryover by the air flow, with the help of clay based membranes which are again cheap, environmentally benign and obtained in a facile way. The projected system takes complete advantage of pure solar energy aimed at the regeneration of liquid desiccant.

  6. Theoretical study on volatile organic compound removal and energy performance of a novel heat pump assisted solid desiccant cooling system

    DEFF Research Database (Denmark)

    Nie, Jinzhe; Fang, Lei; Zhang, Ge

    2015-01-01

    for cooling, dehumidification and indoor air cleaning in normal office, commercial or residential buildings. The desiccant rotor was used for dehumidification and indoor air cleaning; the heat pump provided sensible cooling and regeneration heat for the desiccant rotor. The theoretical model consisted of two...... and predicted. The theoretical model was validated by experimental data. Validating results showed that the model could be used to predict the performance of HP-SDC. The results also showed that the HP-SDC could clean air borne contaminants effectively and could provide an energy efficient choice...

  7. The use of cooling systems with desiccants in the condition of buildings; El uso de sistemas de enfriamiento con desecantes en el acondicionamiento de edificaciones

    Energy Technology Data Exchange (ETDEWEB)

    Alpuche Cruz, Maria G; Avila Segura, Francisco [Centro de Investigacion en Energia, UNAM, Temixco, Morelos (Mexico)

    2000-07-01

    In this document some papers about the development of solid and liquid desiccant cooling systems and dehumidification are analyzed. In a desiccant cooling cycle, the desiccant reduces the quantity of humidity of the air and temperature is decreases by others components such as heat exchangers, cooling evaporatives or conventional coolers. The main advantage of this systems is the capacity to use a low-grade thermal energy. These systems are being used in residence and commercial constructions to reduce energy and to optimize costs, however the initial cost is significantly higher that the conventional cooling systems. Recent studies have been focused in analyzing desiccant cooling systems, through computer modeling. [Spanish] En este documento se analizan algunas publicaciones sobre el desarrollo de los sistemas de enfriamiento y deshumidificacion con desecantes solidos y liquidos. En el ciclo de enfriamiento en el desecante, el desecante reduce la cantidad de humedad del aire y la temperatura se reduce por medio de otros componentes tales como intercambiadores de calor, enfriadores evaporativos o enfriadores convencionales. La ventaja principal que ofrecen estos sistemas es la capacidad de utilizar una baja cantidad de energia termica. Estos sistemas estan siendo utilizados en edificaciones habitacionales y comerciales para reducir el consumo de energia y optimizar costos, sin embargo el costo inicial es significativamente mas alto que los sistemas de enfriamiento convencionales. Estudios recientes se han enfocado en analizar estos sistemas de enfriamiento con desecantes, a traves de la modelacion por computadora.

  8. Experimental investigation of a building integrated photovoltaic/thermal roof collector combined with a liquid desiccant enhanced indirect evaporative cooling system

    International Nuclear Information System (INIS)

    Buker, Mahmut Sami; Mempouo, Blaise; Riffat, Saffa B.

    2015-01-01

    Highlights: • Novel solar thermal collector for liquid desiccant air conditioning was introduced. • Low cost poly heat exchanger loop underneath the photovoltaic modules was proposed. • The ability of the combined system was experimentally investigated. • Water temperature in the loop could reach up to 35.5 °C during the tests. • This tri-gen system can supply 3 kW heating, 5.2 kW cooling and 10.3 MW h/year power. - Abstract: Large consumption of limited conventional fossil fuel resources, economic and environmental problems associated with the global warming and climate change have emphasized the immediate need to transition to renewable energy resources. Solar thermal applications along with renewable energy based cooling practices have attracted considerable interest towards sustainable solutions promising various technical, economic and environmental benefits. This study introduces a new concept on solar thermal energy driven liquid desiccant based dew point cooling system that integrates several green technologies; including photovoltaic modules, polyethylene heat exchanger loop and a combined liquid desiccant dehumidification-indirect evaporative air conditioning unit. A pilot scale experimental set-up was developed and tested to investigate the performance of the proposed system and influence of the various parameters such as weather condition, air flow and regeneration temperature. A cost effective, easy-to-make polyethylene heat exchanger loop was employed underneath PV panels for heat generation. In addition, a liquid desiccant enhanced dew point cooling unit was utilized to provide air conditioning through dehumidification of humid air and indirect evaporative cooling. The experimental results show that the proposed tri-generation system is capable of providing about 3 kW of heating, 5.2 kW of cooling power and 10.3 MW h/year power generation, respectively. The findings confirm the potential of the examined technology, and elucidate the

  9. Parameter analysis and optimization of the energy and economic performance of solar-assisted liquid desiccant cooling system under different climate conditions

    International Nuclear Information System (INIS)

    Qi, Ronghui; Lu, Lin; Huang, Yu

    2015-01-01

    Highlights: • Operation conditions significantly affect energy & economic performance of SLDCS. • Control parameters in three areas were optimized by Multi-Population Genetic Algorithm. • Solar collector area showed the greatest effect on system performance for humid areas. • Desiccant concentration showed greatest effect on system performance for dry areas. • Requirement of collector area, heating water and desiccant flow rates for humid areas is highest. - Abstract: Operation conditions significantly affect the energy and economic performance of solar-assisted liquid desiccant cooling systems. This study optimized the system control parameters for buildings in different climates, i.e., Singapore (hot and humid), Beijing (moderate) and Boulder (hot and dry), with a multi-parameter optimization based on the Multi-Population Genetic Algorithm to obtain optimal system performance in terms of relatively maximum electricity saving rate with a minimum cost payback period. The results indicated that the selection of operation parameters is significantly influenced by climatic conditions. The solar collector installation area exhibited the greatest effect on both energy and economic performance in humid areas, and the heating water flow rate was also important. For dry areas, a change in desiccant concentration had the largest effect on system performance. Although the effect of the desiccant flow rate was significant in humid cities, it appeared to have little influence over buildings in dry areas. Furthermore, the requirements of the solar collector installation area in humid areas were much higher. The optimized area was up to 70 m"2 in Singapore compared with 27.5 m"2 in Boulder. Similar results were found for the flow rates of heating water and the desiccant solution. Applying the optimization, humid cities could achieve an electricity saving of more than 40% with a six-year payback period. The optimal performance for hot and dry areas of a 38% electricity

  10. Simulation of potential standalone liquid desiccant cooling cycles

    International Nuclear Information System (INIS)

    Das, Rajat Subhra; Jain, Sanjeev

    2015-01-01

    LDCS (Liquid desiccant cooling systems), capable of achieving dehumidification and cooling with low-grade heat input, can be effectively used for treating fresh air in hot and humid regions. These can also be operated using non-concentrating solar collectors. The present study is concerned with the evaluation of various potential liquid desiccant cycles for tropical climatic conditions. Six potential standalone liquid desiccant cycles are identified and analyzed to select the best configuration for achieving thermal comfort. A computer simulation model is developed in EES (Equation Solver) software platform to evaluate the performance of all the cycles at various operating conditions. Aqueous solution of LiCl (lithium chloride) is used as desiccant. Mass and energy balance equations of all the components along with their effectiveness and LiCl property correlation equations are solved simultaneously for given ambient conditions. As the desiccant circuit is a closed loop, no assumptions are made about its concentration and temperature in the algorithm. Supply air conditions, cooling capacity, COP (capacity and coefficient of performance) and CR (circulation rate) per unit cooling capacity and hot water temperature requirement are used as a measure for analyzing the performance of the different cycles. The effect of hot water temperature on the performance of the cycles is evaluated at ARI conditions. The performances of the cycles are also evaluated for cities selected from each of the climatic zone of India that represent typical tropical climates. Although all the cycles are feasible at ARI and hot and dry conditions, only two cycles can achieve the selected indoor conditions in the peak humid conditions. The results would be useful for selecting suitable liquid desiccant cycle for a given climate. - Highlights: • Six potential standalone liquid desiccant cycles identified and analyzed to select best configuration. • A computer simulation model is developed in

  11. Desiccative and evaporative cooling systems in the field of energy change; Planung und Wirtschaftlichkeit von DEC-Anlagen im Umfeld der Energiewende

    Energy Technology Data Exchange (ETDEWEB)

    Mai, Ronny [ILK Dresden gGmbH, Dresden (Germany). Bereich Luft- und Klimatechnik

    2013-06-15

    Desiccative and evaporative cooling systems are established on the market since a few years. They are energy efficient, they can use renewable energy and replace conventional compression cooling systems. Their primary energy demand is up to one-third below the demand of conventional air conditioning systems. Nevertheless there is a big difference on the market. The sales have been stagnating for years, although the energy change requires efficient and sustainable technologies in this Article, the existing prejudices and their thrift are discussed. (orig.)

  12. Analysis on a hybrid desiccant air-conditioning system

    International Nuclear Information System (INIS)

    Jia, C.X.; Dai, Y.J.; Wu, J.Y.; Wang, R.Z.

    2006-01-01

    Hybrid desiccant-assisted preconditioner and split cooling coil system, which combines the merits of moisture removal by desiccant and cooling coil for sensible heat removal, is a potential alternative to conventional vapor compression cooling systems. In this paper, experiments on a hybrid desiccant air-conditioning system, which is actually an integration of a rotary solid desiccant dehumidification and a vapor compression air-conditioning unit, had been carried out. It is found that, compared with the conventional VC (vapor compression) system, the hybrid desiccant cooling system economizes 37.5% electricity powers when the process air temperature and relative humidity are maintained at 30 o C, and 55% respectively. The reason why the hybrid desiccant cooling system features better performance relative to the VC system lies in the improvement brought about in the performance of the evaporator in VC unit due to desiccant dehumidification. A thermodynamic model of the hybrid desiccant system with R-22 as the refrigerant has been developed and the impact of operating parameters on the sensible heat ratio of the evaporator and the electric power saving rate has been analyzed. It is found that a majority of evaporators can operate in the dry condition even if the regeneration temperature is lower (i.e. 80 o C)

  13. The effects of regeneration temperature of the desiccant wheel on the performance of desiccant cooling cycles for greenhouse thermally insulated

    Science.gov (United States)

    Rjibi, Amel; Kooli, Sami; Guizani, Amenaallah

    2018-05-01

    The use of solar energy for cooling greenhouses in the hot period in Mediterranean climate is an important issue. Desiccant evaporative cooling (DEC) system is advantageous because it uses a low grade thermal energy and preserves the merits to be friendly environmentally technology. In this paper, a numerical investigation was carried out on a desiccant cooling system powered by air solar collectors coupled to an insulated greenhouse. The influence of the regeneration temperature on the air stream properties at every system component state point was studied. The performance of the desiccant cooling system was evaluated in terms of thermal and electric coefficient of performance. Results show that the best performance of the system (COPel = 14 and COPth = 0.94) was obtained for a 60 °C regeneration temperature and a supply flow rate ratio of 0.2. An economic analysis shows that the use of the DEC system for greenhouse cooling is attractive and profitable since the payback period is 1 years. The use of the proposed system allows saving 9396 kWh/year of electric energy compared to conventional system.

  14. Effect of inter-cooling on the performance and economics of a solar energy assisted hybrid air conditioning system with six stages one-rotor desiccant wheel

    International Nuclear Information System (INIS)

    Elzahzby, Ali M.; Kabeel, A.E.; Bassuoni, M.M.; Abdelgaied, Mohamed

    2014-01-01

    Highlights: • Development of a mathematical model for predicting the performance of solar energy assisted hybrid air conditioning system. • The model uses a one-rotor six-stage rotary silica gel desiccant wheel. • Theoretical model results are in good agreement with experimental data. • The influences of main operating parameters on optimal rotational speed are discussed. • A life cycle cost analysis of the proposed system has been investigated. - Abstract: In this study, a mathematical model for predicting the performance of solar energy assisted hybrid air conditioning system (SEAHACS) was considered. The desiccant wheels used honeycombed silica gel–haloids composite material. This one-rotor desiccant wheel is divided into six stages, in which two-stage dehumidification process, two-stage pre-cooling process and two-stage regeneration process are realized. Three air streams are involved in the present system. The mathematical model has been validated with the experimental data. As the key operating and design parameter, the range of process air inlet temperature from 27.5 to 45 °C, range of humidity ratio of the inlet process air from 9 to 21 g/kg, process air inlet velocity from 1.5 to 5.5 m/s have been examined for a range of rotation speed from 6 to 20 rev/h. the optimization of this parameters is conducted based on the moisture removal capacity D, relative moisture removal capacity, dehumidification coefficient of performance, thermal coefficient of performance, and supply air temperature and humidity ratio. At last, the influences of these main parameters on optimal rotational speed are discussed. Eventually, the life cycle cost analysis of the solar energy assisted hybrid air conditioning system has been investigated

  15. Study of an optimization of regeneration for an absorbent used in the solar desiccant cooling system; Taiyonetsu riyo desiccant reibo ni mochiirareru kyushuzai saisei tokusei no saitekika ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Saito, Y [Osaka Institute of Technology, Osaka (Japan)

    1997-11-25

    A desiccant cooling system uses concentrated aqueous solution of an absorbent to reduce humidity, hence the resultant absorbent solution becomes dilute. Regeneration of the dilute solution uses solar heat, where the regeneration characteristics are affected by solution temperature, vapor pressure, water content, air-liquid flow rate, and other factors. Therefore, mutual relationship among these different factors were investigated, and an optimum operating condition was discussed. The regeneration characteristics of the absorbent is strongly affected by temperature of triethylene glycol (TEG). This is because vapor pressure, Ps, in the TEG aqueous solution increases as the TEG temperature rises. This means that preheating the solution is effective in regenerating the absorbent. As the regeneration progresses, the water content, Ww, decreases, and the regeneration rate decreases. This is because of reduction in the Ps in association with decrease in the Ww of the TEG. This suggests that it is important in the absorbent regeneration to reduce flow rate of the TEG aqueous solution as low as possible. Raised air temperature reduces difference in vapor partial pressure between the TEG and the air, resulting in reduced regeneration rate. 5 refs., 9 figs.

  16. Adsorption Machine & Desiccant Wheel based SOLAR COOLING in a Second Law perspective

    OpenAIRE

    Bivona, Santo

    2011-01-01

    This thesis work is intended to investigate energy and exergy performance of a low power prototype solar air conditioning system based on sorption materials. Its performance is analyzed in the light of both the First and Second Law of Thermodynamics and compared with conventional HVAC systems as well as with a further solar cooling technology based on desiccant wheels (Solar DEC). The adsorption machine based solar cooling plant was thoroughly designed and its thermal performance analysed ...

  17. Sistema de enfriamiento con desecante para reducir consumo de energía en restaurante caso de estudio; Desiccant cooling system to decrease energy consumption in Restaurant study case

    Directory of Open Access Journals (Sweden)

    Tania Carbonell Morales

    2015-12-01

    Full Text Available Este artículo mostró la posibilidad de emplear un sistema de enfriamiento con rueda desecante para el tratamiento del aire de las diferentes áreas del Restaurante caso de estudio, instalación alta consumidora de energía, de ahí la necesidad de estudiar nuevas alternativas para el acondicionamiento de aire que permitan el control de la humedad y el ahorro de energía. El análisis bibliográfico realizado mostró que actualmente los sistemas de enfriamiento con desecante están siendo estudiados y empleados como una alternativa para el ahorro de energía y el cuidado del medioambiente en el campo del tratamiento del aire. Se propuso un sistema compuesto fundamentalmente por una rueda desecante de gel de sílice, una rueda conservadora de energía y un intercambiador de calor. Con el nuevo sistema de enfriamiento la demanda de energía eléctrica disminuye previéndose ahorros del orden de 1 1802 CUC anualmente solo por concepto de consumo de energía eléctrica.In this paper the possibility of using a cooling system with a desiccant wheel for air treatment of different areas of the case study restaurant is shown. This facility is classified as high consumer of energy, making it necessaryto study new alternatives for air conditioning allowing humidity control and energy saving. The literature review conducted on cooling systems with desiccant wheel technology was currently being studied and used as analternative to saving energy and protecting the environment in the field of air treatment. The desiccant cooling system proposed is fundamentally for a desiccant wheel of silica gel, an energy conservative wheel and a heatexchanger. With the new cooling system electricity demand decreases and significant savings of about 1 1802 CUC are forecasted only in annual electricity consumption.

  18. Experimental performance of a liquid desiccant dehumidification system under tropical climates

    International Nuclear Information System (INIS)

    Jain, Sanjeev; Tripathi, Sagun; Das, Rajat Subhra

    2011-01-01

    Research highlights: → Indirect contact between air and desiccant using a porous surface to avoid carryover. → Humidity effectiveness and moisture removal rate reported under varying conditions. → Humidity effectiveness with LiCl as desiccant in the range 0.36-0.45. → Mass transfer characteristic of contactor surface restricted system performance. -- Abstract: The current energy crisis, climate change and increased air conditioning demands have generated a need for developing technologies based on renewable energy sources. Foremost amongst the cooling technologies are the sorption technologies working on low grade heat that can be supplied by solar energy. Liquid desiccant technologies seem to be a promising option as these tend to have higher thermal COPs, lower regeneration temperatures, facilitate simultaneous cooling and ease of storage of concentrated desiccant that can be used during the nonsunshine hours. But few concerns like carryover of liquid desiccant in air require further investigations. The liquid desiccant system under study incorporates a double channelled exchanger for air to liquid desiccant heat and mass transfer. It provides a large surface area for air/desiccant contact and reduces the carryover as direct contact between desiccant and air is minimized unlike spray towers, packed bed and falling film designs. Desiccant is heated in a plate heat exchanger using hot water and then regenerated in a regenerator. The set-up comprises of a dehumidifier, along with a regenerator, a cooling tower, plate heat exchangers and a control unit. Experiments were conducted on the system using calcium chloride and lithium chloride as desiccants by varying parameters like inlet air conditions, hot water temperature and desiccant concentration in order to evaluate the performance of the system under different operating conditions. The performance of the system is presented in terms of moisture removal rates, dehumidifier and regenerator effectiveness.

  19. Man-portable personal cooling garment based on vacuum desiccant cooling

    International Nuclear Information System (INIS)

    Yang Yifan; Stapleton, Jill; Diagne, Barbara Thiané; Kenny, Glen P.; Lan, Christopher Q.

    2012-01-01

    A man-portable personal cooling garment based on the concept of vacuum desiccant cooling (VDC) was developed. It was demonstrated with cooling pads that a cooling capacity of 373.1 W/m 2 could be achieved in an ambient environment of 37 °C. Tests with human subjects wearing prototype cooling garments consisting of 12 VDC pads with an overall weight of 3.4 kg covering 0.4 m 2 body surface indicate that the garment could maintain a core temperature substantially lower than the control when the workload was walking on a treadmill of 2% inclination at 3 mph. The exercise was carried out in an environment of 40 °C and 50% relative humidity (RH) for 60 min. Tests also showed that the VDC garment could effectively reduce the metabolic heat accumulation in body with subject wearing heavily insulated nuclear, biological and chemical (NBC) suit working in the heat and allow the participant to work safely for 60 min, almost doubling the safe working time of the same participant when he wore NBC suit only. - Highlights: ► Heat stress mitigation is important for workers health, safety, and performance. ► Vacuum desiccant cooling (VDC) a novel concept for personal cooling. ► VDC garment man-portable and more efficient than commercial ice/pad vest. ► VDC garment suitable for personal cooling with NBC suit.

  20. Sistema de enfriamiento con desecante para reducir consumo de energía en restaurante caso de estudio; Desiccant cooling system to decrease energy consumption in Restaurant study case

    Directory of Open Access Journals (Sweden)

    Tania – Carbonell Morales

    2016-02-01

    Full Text Available Este artículo mostró la posibilidad de emplear un sistema de enfriamiento con rueda desecante para el tratamiento del aire de las diferentes áreas del Restaurante caso de estudio, instalación alta consumidora de energía, de ahí la necesidad de es tudiar nuevas alternativas para el acondicionamiento de aire que permitan el control de la humedad y el ahorro de energía. El análisis bibliográfico realizado mostró que actualmente los sistemas de enfriamiento con desecante están siendo estudia dos y empleados como una alternativa para el ahorro de energía y el cuidado del medioambiente en el campo del tratamiento del aire. Se propuso un sistema compuesto fundamentalmente por una rueda desecante de gel de sílice, una rueda conservadora de energía y un intercambiador de calor. Con el nuevo sistema de enfriamiento la demanda de energía eléctrica disminuye previéndose ahorros del orden de 11802 CUC anualmente solo por concepto de consumo de energía eléctrica. In this paper the possibility of using a cooling syst em with a desiccant wheel for air treatment of different areas of the case study restaurant is shown. This facility is classified as high consumer of energy, making it necessary to study new alternatives for air conditioning allowing humidity control and energy saving. The literature review conducted on cooling systems with desiccant wheel technology was currently being studied and used as an alternative to saving energy and protecting the environment in the field of air treatment. The desiccant cooling system proposed is fundamentally for a desiccant wheel of silica gel, an energy conservative wheel and a heat exchanger. With the new cooling system electricit y demand decreases and significant savings of about 11802 CUC are forecasted only in annual electricity consumption

  1. Moving Advanced Desiccant Materials into Mainstream Non-CFC Cooling Products

    Energy Technology Data Exchange (ETDEWEB)

    Sand, J R [ORNL; Grossman, G [ORNL; Rice, C K [ORNL; Fairchild, P D [ORNL; Gross, I L [Engelhard/ICC

    1994-01-01

    Desiccant air-conditioning systems can be used as alternatives for conventional air-conditioning equipment in any commercial or residential building. Recent breakthroughs in desiccant materials technology and the creation of new markets by Indoor Air Quality issues make desiccant-based air-conditioning equipment practical for many space-conditioning applications.

  2. Development of a novel rotary desiccant cooling cycle with isothermal dehumidification and regenerative evaporative cooling using thermodynamic analysis method

    International Nuclear Information System (INIS)

    La, D.; Li, Y.; Dai, Y.J.; Ge, T.S.; Wang, R.Z.

    2012-01-01

    A novel rotary desiccant cooling cycle is proposed and studied using thermodynamic analysis method. The proposed cycle integrates the technologies of isothermal dehumidification and regenerative evaporative cooling, which are beneficial for irreversibility reduction. Thermodynamic investigation on the basic rotary desiccant cooling cycle shows that the exergy efficiency of the basic cycle is only 8.6%. The processes of desiccant dehumidification and evaporative cooling, which are essentially the basis for rotary desiccant cooling, affect the exergy performance of the cycle greatly and account for about one third of the total exergy destruction. The proposed cycle has potential to improve rotary desiccant cooling technology. It is advantageous in terms of both heat source utilization rate and space cooling capacity. The exergy efficiency of the new cycle is enhanced significantly to 29.1%, which is about three times that of the ventilation cycle, and 60% higher than that of the two-stage rotary desiccant cooling cycle. Furthermore, the regeneration temperature is reduced from 80 °C to about 60 °C. The corresponding specific exergy of the supply air is increased by nearly 30% when compared with the conventional cycles. -- Highlights: ► A novel rotary desiccant cooling cycle is developed using thermodynamic analysis method. ► Isothermal dehumidification and regenerative evaporative cooling have been integrated. ► The cycle is advantageous in terms of both heat source utilization rate and space cooling capacity. ► Cascaded energy utilization is beneficial for cycle performance improvement. ► Upper limits, which will be helpful to practical design and optimization, are obtained.

  3. Performance assessment and transient optimization of air precooling in multi-stage solid desiccant air conditioning systems

    International Nuclear Information System (INIS)

    Gadalla, Mohamed; Saghafifar, Mohammad

    2016-01-01

    Highlights: • Studying three two-stage solid desiccant cooling systems using Maisotsenko cooler. • Proposing precooling to improve two-stage desiccant systems’ COP for humid climates. • Performing transient analysis for a two-stage solid desiccant cooler in UAE. • Optimizing daily performance of a two-stage solid desiccant cooler for UAE. - Abstract: Renewable energy is one of the most promising solutions to both energy and global warming crisis. Energy consumption can be minimized considerably by utilizing solar energy in air conditioning systems operation. One of the popular solar air conditioning technologies is desiccant air conditioning. Nonetheless, conventional desiccant air conditioning systems have a relatively low coefficient of performance (COP). In consequence, two-stage desiccant air-conditioning systems are proposed to improve desiccant air conditioning systems’ COP. Moreover, a recently commercialized cooling method named Maisotsenko cooling cycle which is capable of cooling air near to its dew point temperature is considered to be integrated within the proposed multi-stage desiccant cooling systems. In this paper, three new two-stage desiccant air conditioning systems incorporating Maisotsenko cooling cycle are proposed and investigated in details for hot and humid climates such as UAE. Furthermore, air precooling is considered to improve two stage desiccant air conditioning systems’ COP. Moreover, full transient analysis and optimization are carried out in UAE within June–October. The proposed system can minimize the required solar heating during noon time as the ambient air dry bulb temperature rises. Average COP of the system during electricity load peak hours (10:00–14:00) for all five considered and combined months is 1.77. Average rate of heat input required to operate the system and average building cooling load are determined to be 100.3 kW and 46.2 kW, respectively. Therefore, system average COP is computed to be 0.46.

  4. Liquid desiccant dehumidification and regeneration process to meet cooling and freshwater needs of desert greenhouses

    KAUST Repository

    Lefers, Ryan

    2016-04-19

    Agriculture accounts for ~70% of freshwater usage worldwide. Seawater desalination alone cannot meet the growing needs for irrigation and food production, particularly in hot, desert environments. Greenhouse cultivation of high-value crops uses just a fraction of freshwater per unit of food produced when compared with open field cultivation. However, desert greenhouse producers face three main challenges: freshwater supply, plant nutrient supply, and cooling of the greenhouse. The common practice of evaporative cooling for greenhouses consumes large amounts of fresh water. In Saudi Arabia, the most common greenhouse cooling schemes are fresh water-based evaporative cooling, often using fossil groundwater or energy-intensive desalinated water, and traditional refrigeration-based direct expansion cooling, largely powered by the burning of fossil fuels. The coastal deserts have ambient conditions that are seasonally too humid to support adequate evaporative cooling, necessitating additional energy consumption in the dehumidification process of refrigeration-based cooling. This project evaluates the use of a combined-system liquid desiccant dehumidifier and membrane distillation unit that can meet the dual needs of cooling and freshwater supply for a greenhouse in a hot and humid environment. © 2016 Balaban Desalination Publications. All rights reserved.

  5. Feasibility study on an energy-saving desiccant wheel system with CO2 heat pump

    Science.gov (United States)

    Liu, Yefeng; Meng, Deren; Chen, Shen

    2018-02-01

    In traditional desiccant wheel, air regeneration process occurs inside an open loop, and lots of energy is consumed. In this paper, an energy-saving desiccant wheel system with CO2 heat pump and closed loop air regeneration is proposed. The general theory and features of the desiccant wheel are analysed. The main feature of the proposed system is that the air regeneration process occurs inside a closed loop, and a CO2 heat pump is utilized inside this loop for the air regeneration process as well as supplying cooling for the process air. The simulation results show that the proposed system can save significant energy.

  6. Research and development needs for desiccant cooling technology 1992--1997. (Supplement to the NREL report, Desiccant Cooling: State-of-the-Art Assessment)

    Energy Technology Data Exchange (ETDEWEB)

    Pesaran, A A

    1992-12-01

    This report is a supplement to Desiccant Cooling: State-of-the-Art Assessment (NREL/TP-254-4147, DE93000013). In this supplement document we have described a detailed program assuming sufficient funding to implement the R&D activities needed. Desiccant dehumidification is a mature technology for industrial applications, and in recent years the technology has been used for air conditioning a number of institutional and commercial buildings. Our proposal is based on argumentative discussions at various national meetings with leaders of the technology. The goal is the penetration of the broad air conditioning market. This work is funded by the Buildings technology Office of the US Department of Energy.

  7. Developing a Standard Method of Test for Packaged, Solid-Desiccant Based Dehumidification Systems

    International Nuclear Information System (INIS)

    Sand, J.R.

    2001-01-01

    A draft Method of Test (MOT) has been proposed for packaged, air-to-air, desiccant-based dehumidifier systems that incorporate a thermally-regenerated desiccant material for dehumidification. This MOT is intended to function as the ''system'' testing and rating compliment to the desiccant ''component'' (desiccant wheels and/or cassettes) MOT (ASHRAE 1998) and rating standard (ARI 1998) already adopted by industry. This draft standard applies to ''packaged systems'' that: Use desiccants for dehumidification of conditioned air for buildings; Use heated air for regeneration of the desiccant material; Include fans for moving process and regeneration air; May include other system components for filtering, pre-cooling, post-cooling, or heating conditioned air; and May include other components for humidification of conditioned air. The proposed draft applies to four different system operating modes depending on whether outdoor or indoor air is used for process air and regeneration air streams . Only the ''ventilation'' mode which uses outdoor air for both process and regeneration inlets is evaluated in this paper. Performance of the dehumidification system is presented in terms that would be most familiar and useful to designers of building HVAC systems to facilitate integration of desiccant equipment with more conventional hardware. Parametric performance results from a modified, commercial desiccant dehumidifier undergoing laboratory testing were used as data input to evaluate the draft standard. Performance results calculated from this experimental input, results from an error-checking/heat-balance verification test built into the standard, and estimated comparisons between desiccant and similarly performing conventional dehumidification equipment are calculated and presented. Some variations in test procedures are suggested to aid in analytical assessment of individual component performance

  8. Potential Evaluation of Solar Heat Assisted Desiccant Hybrid Air Conditioning System

    Science.gov (United States)

    Tran, Thien Nha; Hamamoto, Yoshinori; Akisawa, Atsushi; Kashiwagi, Takao

    The solar thermal driven desiccant dehumidification-absorption cooling hybrid system has superior advantage in hot-humid climate regions. The reasonable air processing of desiccant hybrid air conditioning system and the utility of clean and free energy make the system environment friendly and energy efficient. The study investigates the performance of the desiccant dehumidification air conditioning systems with solar thermal assistant. The investigation is performed for three cases which are combinations of solar thermal and absorption cooling systems with different heat supply temperature levels. Two solar thermal systems are used in the study: the flat plate collector (FPC) and the vacuum tube with compound parabolic concentrator (CPC). The single-effect and high energy efficient double-, triple-effect LiBr-water absorption cooling cycles are considered for cooling systems. COP of desiccant hybrid air conditioning systems are determined. The evaluation of these systems is subsequently performed. The single effect absorption cooling cycle combined with the flat plate collector solar system is found to be the most energy efficient air conditioning system.

  9. Thermodynamic analysis of an innovative liquid desiccant air conditioning system to supply potable water

    International Nuclear Information System (INIS)

    Ahmed, M.A.; Gandhidasan, P.; Zubair, Syed M.; Bahaidarah, Haitham M.

    2017-01-01

    Highlights: • The study objective is to reduce the energy consumption of desiccant AC system. • Heat and mass losses are recovered in the proposed system using a condenser. • The conventional and the proposed systems are compared in terms of COP. • The proposed system performance is better than the conventional system. • The proposed system produces freshwater in addition to space cooling. - Abstract: Liquid desiccant air conditioning systems are cost-effective, environmentally friendly and energy efficient techniques, especially in coastal areas. In the conventional liquid desiccant air conditioning system, the scavenging air is expelled into the atmosphere carrying a considerable amount of energy and water vapor. Thus, there is plenty of room to improve the system performance by recovering these losses. The proposed system consists of a conventional liquid desiccant air conditioning system plus a condenser. The aim of this study is to reduce the energy consumption by recovering the heat from the scavenging air using the condenser while also producing freshwater in addition to space cooling. Lithium chloride (LiCl) is used as the liquid desiccant for this study. The mathematical formulation for simultaneous heat and mass transfer between the condenser and the regenerator was developed to establish a comparison between the performance of the conventional and modified systems. Using the generated model, it is found that the modified system performance is 11.25% better than the conventional system and that it produces 86.4 kg of freshwater per hour as a by-product under the given conditions.

  10. Study of an aqueous lithium chloride desiccant system Part II: Desiccant regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Fumo, Nelson [Universidad Nacional Experimental del Tachira, San Cristobal (Venezuela); Goswami, Yogi [University of Florida, Gainesville (United States)

    2000-07-01

    Desiccant systems have been proposed as alternative to handle the latent load in vapor compression air conditioning for energy saving. The air dehumidification occurs because of the difference in vapor pressure which let the moisture diffuse from the air to the liquid desiccant. The diffused moisture cause a dilution of the desiccant which must be regenerated to return it to the original conditions. This paper presents the results from a study of the performance of a packed tower regenerator for an aqueous lithium chloride desiccant dehumidification system. The rate of water evaporation, as well as the effectiveness of the regeneration process were assessed under the effects of variables such as air and desiccant flow rates, air temperature and humidity, and desiccant temperature and concentration. A variation of the oeberg and Goswami mathematical model was used to predict the experimental findings given satisfactory results. [Spanish] Se han propuesto sistemas desecantes para hacerse cargo de la carga latente en acondicionamiento de aire por compresion de vapor para el ahorro de energia. La deshumidificacion del aire ocurre en razon de la diferencia de presion de vapor que deja la humedad difusa del aire en el desecante liquido. La humedad difusa del aire origina una dilucion del desecante el cual debe de ser regenerado para regresarlo a sus condiciones originales. Este documento presenta los resultados de un estudio sobre el comportamiento de un regenerador de torre empacada para un sistema de deshumidificacion de solucion desecante de cloruro de litio. El regimen de evaporacion de agua, asi como tambien la efectividad del proceso de regeneracion que se evaluo bajo los efectos de variables tales como los regimenes de flujo de aire y de desecante, temperatura del aire y humedad, y temperatura y concentracion del desecante. Una variacion del modelo matematico de Oberg y Goswami se uso para predecir los resultados experimentales que dieron resultados satisfactorios.

  11. Innovative PCM-desiccant packet to provide dry microclimate and improve performance of cooling vest in hot environment

    International Nuclear Information System (INIS)

    Itani, Mariam; Ghaddar, Nesreen; Ghali, Kamel

    2017-01-01

    Highlights: • A PCM and desiccant packet is proposed for use in personal cooling vest to keep dry air next to skin. • A PCM-Desiccant model for clothed heated wet cylinder is developed and validated experimentally. • The microclimate air temperature was 0.6 °C higher in PCM-Desiccant case compared to PCM-only case. • Microclimate humidity content decreased due to desiccant from 21.23 to 19.74 g/kg dry air. • PCM melted fraction increased due to desiccant from 0.24 to 0.5. - Abstract: A novel combination of phase change material (PCM) and a solid desiccant layer is proposed for the aim of maintaining dry cool microclimate air adjacent to wet warm skin and hence improve PCM performance in cooling vests used in hot humid environment. A fabric-PCM-Desiccant model is developed to predict the temperature and moisture content of the microclimate air layer in the presence of a PCM-Desiccant packet. The developed model is validated through experiments conducted on a wet clothed heated cylinder for the two cases of using (i) a PCM only packet and (ii) a PCM-Desiccant packet. Microclimate air temperatures and humidity content as well as PCM and desiccant temperatures were measured experimentally and were compared with predicted values by the fabric-PCM-Desiccant model. Good agreement was attained with a maximum relative error of 7% in measured temperatures. A decrease is observed in the humidity content of the microclimate air in the presence of the solid desiccant from 21.23 g/kg dry air to 19.74 g/kg dry air and an increase in the melted fraction of the PCM at the end of the experiment from 0.24 to 0.5.

  12. Effect of irreversible processes on the thermodynamic performance of open-cycle desiccant cooling cycles

    International Nuclear Information System (INIS)

    La, Dong; Li, Yong; Dai, Yanjun; Ge, Tianshu; Wang, Ruzhu

    2013-01-01

    Highlights: ► Effects of irreversible processes on the performance of desiccant cooling cycle are identified. ► The exergy destructions involved are classified by the properties of the individual processes. ► Appropriate indexes for thermodynamic evaluation are proposed based on thermodynamic analyses. - Abstract: Thermodynamic analyses of desiccant cooling cycle usually focus on the overall cycle performance in previous study. In this paper, the effects of the individual irreversible processes in each component on thermodynamic performance are analyzed in detail. The objective of this paper is to reveal the elemental features of the individual components, and to show their effects on the thermodynamic performance of the whole cycle in a fundamental way. Appropriate indexes for thermodynamic evaluation are derived based on the first and second law analyses. A generalized model independent of the connection of components is developed. The results indicate that as the effectiveness of the desiccant wheel increases, the cycle performance is increased principally due to the significant reduction in exergy carried out by exhaust air. The corresponding exergy destruction coefficient of the cycle with moderate performance desiccant wheel is decreased greatly to 3.9%, which is more than 50% lower than that of the cycle with low performance desiccant wheel. The effect of the heat source is similar. As the temperature of the heat source increases from 60 °C to 90 °C, the percentage of exergy destruction raised by exhaust air increases sharply from 5.3% to 21.8%. High heat exchanger effectiveness improves the cycle performance mainly by lowering the irreversibility of the heat exchanger, using less regeneration heat and pre-cooling the process air effectively

  13. Absorber and regenerator models for liquid desiccant air conditioning systems. Validation and comparison using experimental data

    Energy Technology Data Exchange (ETDEWEB)

    Krause, M.; Heinzen, R.; Jordan, U.; Vajen, K. [Kassel Univ., Inst. of Thermal Engineering, Kassel (Germany); Saman, W.; Halawa, E. [Sustainable Energy Centre, Univ. of South Australia, Mawson Lakes, Adelaide (Australia)

    2008-07-01

    Solar assisted air conditioning systems using liquid desiccants represent a promising option to decrease high summer energy demand caused by electrically driven vapor compression machines. The main components of liquid desiccant systems are absorbers for dehumidifying and cooling of supply air and regenerators for concentrating the desiccant. However, high efficient and validated reliable components are required and the design and operation have to be adjusted to each respective building design, location, and user demand. Simulation tools can help to optimize component and system design. The present paper presents new developed numerical models for absorbers and regenerators, as well as experimental data of a regenerator prototype. The models have been compared with a finite-difference method model as well as experimental data. The data are gained from the regenerator prototype presented and an absorber presented in the literature. (orig.)

  14. Performance investigation on the ultrasonic atomization liquid desiccant regeneration system

    International Nuclear Information System (INIS)

    Yang, Zili; Zhang, Kaisheng; Hwang, Yunho; Lian, Zhiwei

    2016-01-01

    Highlights: • We applied ultrasonic atomization technology to boost liquid desiccant regeneration. • We established a novel UARS and made a thorough study on its performance. • We developed a performance prediction model for UARS and validated its accuracy. • The necessary regeneration temperature dropped significantly (4.4 °C) in UARS. • Energy consumption for regenerating desiccant was reduced greatly (60.4%) in UARS. - Abstract: Liquid desiccant dehumidification systems have accumulated considerable research interest in recent years for their great energy saving potential in buildings. Within the system, the regenerator recovering liquid desiccant plays a major role in its performance. When the ultrasonic atomization technology is applied to atomize the desiccant solution into numerous tiny droplets with diameters around 50 μm, the regeneration process could be greatly enhanced. To validate this approach, a novel ultrasonic atomization liquid desiccant regeneration system (UARS) was studied in this work. An Ideal Regeneration Model (IRM) was developed to predict the regeneration performance of the UARS. Additionally, thorough experiments were carried out to validate the model under different operating conditions of the desiccant solution and air stream. The model predicted values and the experimental results coincided, with the average deviation less than 7.9%. The performance of UARS was compared with other regeneration systems from the open literature, while a case study was conducted for the power consumption and energy saving potential of UARS. It was found that the ultrasonic atomization technology enabled utilization of lower-grade energy for desiccant regeneration with the regeneration temperature lowered as much as 4.4 °C. In addition, a considerable energy saving potential of up to 23.4% could be achieved by the UARS for regenerating per unit mass flow of desiccant solution, while the power consumption of the ultrasonic atomization system

  15. Design of Air Ventilation System for Cargo Hold Vessels Using Solar Desiccant

    Directory of Open Access Journals (Sweden)

    Alam Baheramsyah

    2017-09-01

    Full Text Available One of the facilities and infrastructure of the vessel is the ventilation system in the cargo hold to maintain the quality. One attempt to avoid high moisture ratios is to provide a dry air supply by using desiccants. The purpose of this thesis is to design the system of air ventilation with solar desiccant by analysis the calculation with decrease air humidity ratio after passing desiccant rotor as well as fulfillment needs of heater and cooling system using heat of exhaust gas and seawater as well as fulfillment of electricity need using solar energy. From the result of analysis obtain to provide air supply in the cargo hold of 437.5 m3 / hour, the specification of rotor desiccant has a diameter of 550 mm with thickness 200 mm to decrease ratio of outside air humidity equal to 83.1% become 46.5%. Dehumidification air temperature of 47.7oC will be lowered to 35oC by using the sea water cooling media. As for the reactivation air heater requirement of 24.292 kW would be to fulfilled by utilizing the exhaust power of 498.12 kW. And for the electric power needs of the syetm is 34,488 wp will be supplied from the total solar module is 33 units with 345 wp per-capacity.

  16. Experimental performance study of a proposed desiccant based air conditioning system.

    Science.gov (United States)

    Bassuoni, M M

    2014-01-01

    An experimental investigation on the performance of a proposed hybrid desiccant based air conditioning system referred as HDBAC is introduced in this paper. HDBAC is mainly consisted of a liquid desiccant dehumidification unit integrated with a vapor compression system (VCS). The VCS unit has a cooling capacity of 5.27 kW and uses 134a as refrigerant. Calcium chloride (CaCl2) solution is used as the working desiccant material. HDBAC system is used to serve low sensible heat factor applications. The effect of different parameters such as, process air flow rate, desiccant solution flow rate, evaporator box and condenser box solution temperatures, strong solution concentration and regeneration temperature on the performance of the system is studied. The performance of the system is evaluated using some parameters such as: the coefficient of performance (COPa), specific moisture removal and energy saving percentage. A remarkable increase of about 54% in the coefficient of performance of the proposed system over VCS with reheat is achieved. A maximum overall energy saving of about 46% is observed which emphasizes the use of the proposed system as an energy efficient air conditioning system.

  17. Field Demonstration of Active Desiccant-Based Outdoor Air Preconditioning Systems, Final Report: Phase 3; FINAL

    International Nuclear Information System (INIS)

    Fischer, J.

    2001-01-01

    This report summarizes an investigation of the performance of two active desiccant cooling systems that were installed as pilot systems in two locations-a college dormitory and a research laboratory-during the fall of 1999. The laboratory system was assembled in the field from commercially available Trane air-handling modules combined with a standard total energy recovery module and a customized active desiccant wheel, both produced by SEMCO. The dormitory system was a factory-built, integrated system produced by SEMCO that included both active desiccant and sensible-only recovery wheels, a direct-fired gas regeneration section, and a pre-piped Trane heat pump condensing section. Both systems were equipped with direct digital control systems, complete with full instrumentation and remote monitoring capabilities. This report includes detailed descriptions of these two systems, installation details, samples of actual performance, and estimations of the energy savings realized. These pi lot sites represent a continuation of previous active desiccant product development research (Fischer, Hallstrom, and Sand 2000; Fischer 2000). Both systems performed as anticipated, were reliable, and required minimal maintenance. The dehumidification/total-energy-recovery hybrid approach was particularly effective in all respects. System performance showed remarkable improvement in latent load handling capability and operating efficiency compared with the original conventional cooling system and with the conventional system that remained in another, identical wing of the facility. The dehumidification capacity of the pilot systems was very high, the cost of operation was very low, and the system was cost-effective, offering a simple payback for these retrofit installations of approximately 5 to 6 years. Most important, the dormitory system resolved numerous indoor air quality problems in the dormitory by providing effective humidity control and increased, continuous ventilation air

  18. Performance of desiccant air conditioning system with geothermal energy under different climatic conditions

    International Nuclear Information System (INIS)

    El-Agouz, S.A.; Kabeel, A.E.

    2014-01-01

    Highlights: • The performance of the hybrid air conditioning system is studied. • The influence of important operating parameters are estimated. • The ventilation, makeup and mix cycles are investigated at different climate. • The highest COP of the hybrid air conditioning system is 1.03. • The hybrid system provides a human thermal comfort at different climates. - Abstract: Energy saving still and continue a major seek in our life, due to the continuous increase in energy consumptions. So, a desiccant air conditioning system with geothermal energy is conducted in the current study. The thermal analysis of air conditioning system with its different components desiccant wheel, solar collector, heat exchanger, ground heat exchanger and water spray evaporative cooler is presented. Three different air conditioning cycles are simulated in the current study for different zones like: hot-dry zone, warm-dry zone, hot-humid zone and the warm-humid zone. The results show that the desiccant air conditioning system successfully provides a better thermal comfort condition in different climates. This hybrid system significantly decreases the supplied air temperature from 12.7 to 21.7 °C at different climate zones. When ω in , air and T Reg increasing, COP decreases and the ventilation cycle provides the better COP. The highest COP value of the desiccant air conditioning system is about 1.03 while the lowest value is about 0.15. The SHR of makeup cycle is higher than that ventilation cycle at warm and hot-humid zone and vice versa at warm and hot-dry zone. The highest SHR value of the desiccant air conditioning system is about 0.99 while the lowest value is about 0.2. The T sup,air , ω sup,air , COP and SHR isolines may easily be used for pre-evaluating of various cooling cycles in different climates. The hybrid system provides a human thermal comfort at different climates

  19. Experimental investigation of a novel configuration of desiccant based evaporative air conditioning system

    International Nuclear Information System (INIS)

    Uçkan, İrfan; Yılmaz, Tuncay; Hürdoğan, Ertaç; Büyükalaca, Orhan

    2013-01-01

    Highlights: ► A novel desiccant based evaporative cooling system is developed and tested. ► Cooling capacity, COP and energy consumption of the system are evaluated. ► Indoor air conditions are in the range of thermal comfort zone and expanded comfort zone. ► Designing of the system have considerable effect on the energy consumption. - Abstract: A novel configuration of desiccant based evaporative cooling system for air conditioning application is developed and tested. At the beginning of the design stage of the system, an analysis is carried out in order to maximize the performance of the system. It is found based on configuration that outdoor air must be used for regeneration to increase performance of the system and so three air channels are used. Experiments are carried out to investigate the total performance of the system and performance of the components used during summer season in a hot and humid climate. Effectiveness values for both heat exchangers and evaporative coolers are calculated through this work. In addition to the cooling capacity, coefficient of performance (COP) and energy consumption of the system are also evaluated. Results show that the effectiveness for the heat exchangers and evaporative coolers are very high under different outdoor conditions. It is also shown from the results that indoor air conditions are in the range of thermal comfort zone defined by ASHRAE and expanded comfort zone for evaporative air conditioning applications.

  20. Experimental analysis on performance of high temperature heat pump and desiccant wheel system

    DEFF Research Database (Denmark)

    Sheng, Ying; Zhang, Yufeng; Deng, Na

    2013-01-01

    In order to solve the problem of high energy consumption for regeneration of desiccant wheel in the rotary desiccant system, high temperature heat pump and desiccant wheel (HTHP&DW) system and corresponding air conditioning unit is built and tested in the extensive thermal hygrometric environment...

  1. Simulation and parameter analysis of a two-stage desiccant cooing/heating system driven by solar air collectors

    International Nuclear Information System (INIS)

    Li, H.; Dai, Y.J.; Köhler, M.; Wang, R.Z.

    2013-01-01

    Highlights: ► A solar desiccant cooling/heating system is simulation studied. ► The mean deviation is about 10.5% for temperature and 9.6% for humidity ratio. ► The 51.7% of humidity load and 76% of the total cooling can be handled. ► About 49.0% of heating load can be handled by solar energy. ► An optimization of solar air collector has been investigated. - Abstract: To increase the fraction of solar energy might be used in supplying energy for the operation of a building, a solar desiccant cooling and heating system was modeled in Simulink. First, base case performance models were programmed according to the configuration of the installed solar desiccant system and verified by the experimental data. Then, the year-round performance about the system was simulated. Last, design parameters of solar air collectors were optimized that include collector area, air leakage and thermal insulation. Comparison between numerical and experimental results shows good agreement. During the simulation, the humidity load for 63 days (51.7%) can be totally handled by the two-stage desiccant cooling unit. For seasonal total heating load, about 49.0% can be handled by solar energy. Based on optimized results, the thermal energy subsystem functioned to its expected performance in solar energy collection and thermal storage

  2. Thermodynamic analysis of a novel energy-efficient refrigeration system subcooled by liquid desiccant dehumidification and evaporation

    International Nuclear Information System (INIS)

    She, Xiaohui; Yin, Yonggao; Zhang, Xiaosong

    2014-01-01

    Highlights: • An energy-efficient refrigeration system with a novel subcooling method is proposed. • Thermodynamic analysis is conducted to discuss the effects of operation parameters. • Two different utilization ways of condensation heat are compared. • The system achieves much higher COP, even higher than reverse Carnot cycle. • Suggested mass concentration for LiCl–H 2 O is around 32% at a typical case. - Abstract: A new energy-efficient refrigeration system subcooled by liquid desiccant dehumidification and evaporation was proposed in this paper. In the system, liquid desiccant system could produce very dry air for an indirect evaporative cooler, which would subcool the vapor compression refrigeration system to get higher COP than conventional refrigeration system. The desiccant cooling system can use the condensation heat for the desiccant regeneration. Thermodynamic analysis is made to discuss the effects of operation parameters (condensing temperature, liquid desiccant concentration, ambient air temperature and relative humidity) on the system performance. Results show that the proposed hybrid vapor compression refrigeration system achieves significantly higher COP than conventional vapor compression refrigeration system, and even higher than the reverse Carnot cycle at the same operation conditions. The maximum COPs of the hybrid systems using hot air and ambient air are 18.8% and 16.3% higher than that of the conventional vapor compression refrigeration system under varied conditions, respectively

  3. Investigation on a two-stage solar liquid-desiccant (LiBr) dehumidification system assisted by CaCl2 solution

    International Nuclear Information System (INIS)

    Xiong, Z.Q.; Dai, Y.J.; Wang, R.Z.

    2009-01-01

    A two-stage solar powered liquid-desiccant dehumidification system, for which two kinds of desiccant solution (lithium chloride and calcium bromide) are fed to the two dehumidification stages separately, has been studied. In the studied system air moisture (latent) load is separately removed by a pre-dehumidifier using cheap calcium chloride (CaCl 2 ) and a main dehumidifier using stable lithium bromide (LiBr). Side-effect of mixing heat rejected during dehumidification process is considerably alleviated by an indirect evaporative cooling unit added between the two dehumidification stages. The feasibility of high-desiccant concentration difference achieved by reusing desiccant solution to dehumidify air and regenerating desiccant repeatedly is analyzed. By increasing desiccant concentration difference, desiccant storage capacity is effectively explored. It is found that the pre-dehumidification effect of CaCl 2 solution is significant in high ambient humidity condition. Also seen is that the desiccant investment can be decreased by 53%, though the cost of equipments is somewhat increased, and the Tcop and COP of the proposed system can reach 0.97 and 2.13, respectively

  4. Cooling systems

    International Nuclear Information System (INIS)

    Coutant, C.C.

    1978-01-01

    Progress on the thermal effects project is reported with regard to physiology and distribution of Corbicula; power plant effects studies on burrowing mayfly populations; comparative thermal responses of largemouth bass from northern and southern populations; temperature selection by striped bass in Cherokee Reservoir; fish population studies; and predictive thermoregulation by fishes. Progress is also reported on the following; cause and ecological ramifications of threadfin shad impingement; entrainment project; aquaculture project; pathogenic amoeba project; and cooling tower drift project

  5. Optimization analysis of high temperature heat pump coupling to desiccant wheel air conditioning system

    DEFF Research Database (Denmark)

    Sheng, Ying; Zhang, Yufeng; Fang, Lei

    2014-01-01

    The high temperature heat pump and desiccant wheel (HTHP&DW) system can make full use of heat released from the condenser of heat pump for DW regeneration without additional heat. In this study, DW operation in the HTHP&DW system was investigated experimentally, and the optimization analysis...... of HTHP&DW system was carried out. The performance of DW had influence on the dehumidification (evaluated by dehumidification and regeneration effectiveness) and cooling load (evaluated by thermal and adiabatic effectiveness). The results show that the enthalpy increase occurred in all the experiments...... of the system. When the regeneration temperature is 63°C, the maximal dehumidification effectiveness is 35.4% and the satisfied adiabatic effectiveness is 88%, which contributes to the optimal balance between dehumidification and cooling. © 2014 Tianjin University and Springer-Verlag Berlin Heidelberg....

  6. Simulation and energy efficiency analysis of desiccant wheel systems for drying processes

    International Nuclear Information System (INIS)

    De Antonellis, Stefano; Joppolo, Cesare Maria; Molinaroli, Luca; Pasini, Alberto

    2012-01-01

    In drying processes it is necessary to appropriately control air humidity and temperature in order to enhance water evaporation from product surface. The aim of this work is to investigate several HVAC configurations for product drying based on desiccant wheels, in order to find systems which reach high primary energy savings through the appropriate integration of refrigerating machines, adsorption wheels and cogenerative engines. Simulations are carried out for different values of sensible to latent ambient load ratio and the effect of ambient and outside air conditions is evaluated for each configuration. It is shown that primary energy savings can reach 70–80% compared to the reference technology based on a cooling coil. With respect to works available in literature, the results of this study keep a general approach and they can be used as a simple tool for preliminary assessment in a wide range of applications. -- Highlights: ► Several HVAC systems for product drying based on desiccant wheels are investigated. ► The sensible to latent ambient load ratio influences the choice of the best system. ► Energy savings can reach 80% compared to the technology based on a cooling coil. ► Simulation results can be used for preliminary assessment in many applications.

  7. A very cool cooling system

    CERN Multimedia

    Antonella Del Rosso

    2015-01-01

    The NA62 Gigatracker is a jewel of technology: its sensor, which delivers the time of the crossing particles with a precision of less than 200 picoseconds (better than similar LHC detectors), has a cooling system that might become the precursor to a completely new detector technique.   The 115 metre long vacuum tank of the NA62 experiment. The NA62 Gigatracker (GTK) is composed of a set of three innovative silicon pixel detectors, whose job is to measure the arrival time and the position of the incoming beam particles. Installed in the heart of the NA62 detector, the silicon sensors are cooled down (to about -20 degrees Celsius) by a microfluidic silicon device. “The cooling system is needed to remove the heat produced by the readout chips the silicon sensor is bonded to,” explains Alessandro Mapelli, microsystems engineer working in the Physics department. “For the NA62 Gigatracker we have designed a cooling plate on top of which both the silicon sensor and the...

  8. Development of a desiccated cadaver delivery system to apply entomopathogenic nematodes for control of soil pests

    Science.gov (United States)

    Pentomopathogenic nematodes may be more capable of controlling soil pests when they are harbored by desiccated cadavers. A small-scale system was developed from a modified crop seed planter to effectively deliver desiccated nematode-infected cadavers into the soil. The system mainly consists of a me...

  9. Process fluid cooling system

    International Nuclear Information System (INIS)

    Farquhar, N.G.; Schwab, J.A.

    1977-01-01

    A system of heat exchangers is disclosed for cooling process fluids. The system is particularly applicable to cooling steam generator blowdown fluid in a nuclear plant prior to chemical purification of the fluid in which it minimizes the potential of boiling of the plant cooling water which cools the blowdown fluid

  10. Cooled Water Production System,

    Science.gov (United States)

    The invention refers to the field of air conditioning and regards an apparatus for obtaining cooled water . The purpose of the invention is to develop...such a system for obtaining cooled water which would permit the maximum use of the cooling effect of the water -cooling tower.

  11. Experimental Validation of the Simulation Model of a DOAS Equipped with a Desiccant Wheel and a Vapor Compression Refrigeration System

    Directory of Open Access Journals (Sweden)

    Pedro J. Martínez

    2017-09-01

    Full Text Available A dedicated outdoor air system (DOAS can be designed to supply 100% of the outside air and meet the latent load of the room with dry air. The objectives of this study were to develop a model of a DOAS equipped with a desiccant wheel and a vapor-compression refrigeration system, build a prototype, validate the model with experimental data, and gain knowledge about the system operation. The test facility was designed with the desiccant wheel downstream of the cooling coil to take advantage of the operating principles of cooling coils and desiccants. A model of the DOAS was developed in the TRNSYS environment. The root mean standard error (RMSE was used for model validation by comparing the measured air and refrigerant properties with the corresponding calculated values. The results obtained with the developed model showed that the DOAS was able to maintain an indoor humidity ratio depending on outdoor conditions. Laboratory tests were also used to investigate the effect of changes in the regeneration air temperature and the process airflow rate on the process air humidity ratio at the outlet of the wheel. The results are consistent with the technical literature.

  12. Energy savings potential of a hybrid desiccant dehumidification air conditioning system in Beirut

    International Nuclear Information System (INIS)

    Ghali, Kamel

    2008-01-01

    In this work, the transient performance of a hybrid desiccant vapor compression air conditioning system is numerically simulated for the ambient conditions of Beirut. The main feature of this hybrid system is that the regenerative heat needed by the desiccant wheel is partly supplied by the condenser dissipated heat while the rest is supplied by an auxiliary gas heater. The hybrid air conditioning system of the present study replaces a 23 kW vapor compression unit for a typical office in Beirut characterized by a high latent load. The vapor compression subsystem size in the hybrid air conditioning system is reduced to 15 kW at the peak load when the regeneration temperature was fixed at 75 deg. C. Also the sensible heat ratio of the combined hybrid system increased from 0.47 to 0.73. Based on hour by hour simulation studies for a wide range of recorded ambient conditions of Beirut city, this paper predicts the annual energy consumption of the hybrid system in comparison with the conventional vapor compression system for the entire cooling season. The annual running costs savings for the hybrid system is 418.39 USD for a gas cost price of 0.141 USD/kg. The pay back period of the hybrid system is less than five years when the initial cost of the hybrid air conditioning system priced an additional 1712.00 USD. Hence, for a 20-year life cycle, the life cycle savings of the hybrid air conditioning system are 4295.19 USD

  13. Liquid desiccant dehumidification and regeneration process to meet cooling and freshwater needs of desert greenhouses

    KAUST Repository

    Lefers, Ryan; Bettahalli Narasimha, Murthy Srivatsa; Nunes, Suzana Pereira; Fedoroff, Nina; Davies, Philip A.; Leiknes, TorOve

    2016-01-01

    practice of evaporative cooling for greenhouses consumes large amounts of fresh water. In Saudi Arabia, the most common greenhouse cooling schemes are fresh water-based evaporative cooling, often using fossil groundwater or energy-intensive desalinated

  14. Energy performance of solar-assisted liquid desiccant air-conditioning system for commercial building in main climate zones

    International Nuclear Information System (INIS)

    Qi, Ronghui; Lu, Lin; Huang, Yu

    2014-01-01

    Highlights: • Simulation of solar liquid desiccant AC system in four climate regions was conducted. • System performance was determined by relationship of sensible and latent cooling load. • For humid area, saving amount is large by handling latent load with solar energy. • For dry area, electricity saving rate is considerable due to the high COP of chillers. • For buildings with mild SHR, the system performance was not as good as others. - Abstract: Liquid desiccant air-conditioning (LDAC) system, which consists of a liquid desiccant ventilation system for dehumidification and an air-handling unit for cooling, has become a promising alternative for conventional technology. To evaluate its feasibility and applicability, the simulation of solar-assisted LDAC (SLDAC) in commercial buildings in five cities of four main climate regions were conducted, including Singapore in Tropical, Houston and Beijing in Temperate, Boulder in Arid and Los Angeles in Mediterranean. Results showed that the system’s performance was seriously affected by the ratios of building’s sensible and latent cooling load. For buildings located in humid areas with low sensible-total heat ratio (SHR), the electricity energy reduction of SLDAC was high, about 450 MW h in Houston and Singapore, which accounted for 40% of the total energy consumption in cooling seasons. The cost payback period was as short as approximately 7 years. The main reason is that the energy required for handling the moisture could be saved by liquid desiccant dehumidification, and the regeneration heat could be covered by solar collectors. For buildings in dry climate with high SHR, the total cooling load was low, but up to 45% electricity of AC system could be saved in Boulder because the chiller COP could be significantly improved during more than 70% operation time. The cost payback period was around 22 years, which was acceptable. However, for the buildings with mild SHR, such as those in Beijing and Los

  15. Moving Advanced Desiccant Materials into Mainstream Non-CFC Cooling Products

    Energy Technology Data Exchange (ETDEWEB)

    Sand, J. R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Grossman, T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Rice, C. K. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Fairchild, P. D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Gross, I. L. [Engelhard/ICC, Hatboro, PA (United States). Fresh Air Solutions

    2004-12-30

    Desiccant dehumidification technology is emerging as a technically viable alternative for comfort conditioning in many commercial and institutional buildings. Attempts to improve the indoor air quality of buildings has resulted in increasingly stringent guidelines for occupant outdoor air ventilation rates. Additionally, revised building heating, ventilating, and air-conditioning (HVAC) design criteria based on regional peak dew point data highlight the important of the latent (moisture removal) building load relative to the sensible (temperature) building load.

  16. Radiant Floor Cooling Systems

    DEFF Research Database (Denmark)

    Olesen, Bjarne W.

    2008-01-01

    In many countries, hydronic radiant floor systems are widely used for heating all types of buildings such as residential, churches, gymnasiums, hospitals, hangars, storage buildings, industrial buildings, and smaller offices. However, few systems are used for cooling.This article describes a floor...... cooling system that includes such considerations as thermal comfort of the occupants, which design parameters will influence the cooling capacity and how the system should be controlled. Examples of applications are presented....

  17. Cooling water distribution system

    Science.gov (United States)

    Orr, Richard

    1994-01-01

    A passive containment cooling system for a nuclear reactor containment vessel. Disclosed is a cooling water distribution system for introducing cooling water by gravity uniformly over the outer surface of a steel containment vessel using an interconnected series of radial guide elements, a plurality of circumferential collector elements and collector boxes to collect and feed the cooling water into distribution channels extending along the curved surface of the steel containment vessel. The cooling water is uniformly distributed over the curved surface by a plurality of weirs in the distribution channels.

  18. Energy saving effect of desiccant ventilation system using Wakkanai siliceous shale

    Science.gov (United States)

    Nabeshima, Yuki; Togawa, Jun-ya; Nagano, Katsunori; Kazuyo, Tsuzuki

    2017-10-01

    The nuclear power station accident resulting from the Great East Japan Earthquake disaster has resulted in a constrained electricity supply. However, in this Asian region there is high temperature and high humidity and consequently dehumidification process requires a huge amount of energy. This is the reason for the increasing energy consumption in the residential and commercial sectors. Accordingly, a high efficiency air-conditioning system is needed to be developed. The desiccant ventilation system is effective to reduce energy consumption for the dehumidification process. This system is capable of dehumidifying without dew condensing unlike a conventional air-conditioning system. Then we focused on Wakkanai Siliceous Shale (WSS) as a desiccant material to develop a new desiccant ventilation system. This is low priced, high performance, new type of thing. The aim of this study is to develop a desiccant ventilation unit using the WSS rotor which can be regenerated with low-temperature by numerical calculation. The results of performance prediction of the desiccant unit, indicate that it is possible to regenerate the WSS rotor at low-temperature of between 35 - 45 °C. In addition, we produced an actual measurement for the desiccant unit and air-conditioning unit. This air-conditioning system was capable to reduce roughly 40 % of input energy consumption.

  19. Feasibility study of using agriculture waste as desiccant for air conditioning system

    Energy Technology Data Exchange (ETDEWEB)

    Khedari, J.; Rawangkul, R.; Hirunlabh, J. [King Mongkut' s University of Technology Thonburi, Bangkok (Thailand). Buidling Scientific Research Center; Chimchavee, W. [University of Thai Chamber of Commerce, Bangkok (Thailand); Watanasungsuit, A. [South East Asia Univ., Bangkok (Thailand). Engineering Management

    2003-08-01

    This research was aimed at investigating the feasibility of using dried agricultural waste as desiccant for an open cycle air conditioning system. The natural fibers are, therefore, intended to replace chemical desiccant such as silica gel, molecular sieves etc. The investigation was limited to Coconut coir (Cocos nucifera) and Durian peels (Durio zibethinus). Experimental results confirmed that dry coconut coir and durian peel can absorb 30 g and 17 g H{sub 2}O per 100 g dry product, respectively, from air at the average condition of 32{sup o}C and 75% relative humidity. The optimum airflow rate is about 84 and 98 m{sup 3}/hr-100 g dry product, respectively. Therefore, the dry coconut coir is more suitable than the dry durian peel. Comparison between the dry coconut coir and silica gel showed that the average adsorption rate of coconut coir is less than that of silica gel by about 5 g/h-100 g dry product at an airflow rate of 84 m{sup 3}/h and 60 min operating time. However, it is still an interesting option to replace silica gel in open cycle air conditioning system, as the decrease of average adsorption rate is rather small. The other extremely interesting advantage of coconut coir is that during moisture absorption the heat generated during the process is less important. That means the air leaves the coconut coir bed at a lower temperature compared to that with a silica gel. Therefore, the saving of cooling energy is much more important. (Author)

  20. Performance evaluation of a solar energy assisted hybrid desiccant air conditioner integrated with HDH desalination system

    International Nuclear Information System (INIS)

    Kabeel, A.E.; Abdelgaied, Mohamed; Zakaria, Yehya

    2017-01-01

    Highlights: • The performance of a solar hybrid air conditioner integrated with HDH desalination system is numerically investigated. • For increase the regeneration air from 70 to 130 m 3 /h, the distillate water productivity increases from 2.988 to 4.78 L/h. • For increase the regeneration air from 70 to 130 m 3 /h, COP overall daily decreases from 4.66 to 3.386. • For increases the regeneration air temperature from 75 to 95 °C, the distillate water increases from 3.1752 to 5.011 L/h. • For increases the regeneration air temperature from 75 to 95 °C, COP overall daily decreases from 4.392 to 3.636. - Abstract: In this study, the performances of a solar energy assisted hybrid desiccant air conditioning system integrated with humidification–dehumidification (HDH) desalination system are numerically investigated. The aim of this study is to benefit from the temperature rise of the regeneration air outside of the desiccant conditioning system as well as the water vapor content in this regeneration air by feeding it to the humidification-dehumidification water desalination unit to produce distillate water. The distillate water productivity, human thermal comfort issues, and energy saving represent the main objective of the present numerical study. The simulated results developed for subsystems are validated with the published experimental results. The effects of regeneration air temperature and flow rate on supply cooled air temperature, distillate water productivity, the cooling coefficient of performance and overall daily coefficient of performance of the proposed system are investigated. The results show that (i) the distillate water productivity increases from 3.175 to 5.011 L/h and overall daily coefficient of performance decreases from 4.392 to 3.636 with increasing the regeneration air temperature from 75 to 95 as (ii) the increase in the regeneration air flow rate from 70 to 130 m 3 /h, increases the distillate water productivity from 2.988 to 4

  1. Comparison of desiccant air conditioning systems with different indirect evaporative air coolers

    International Nuclear Information System (INIS)

    Pandelidis, Demis; Anisimov, Sergey; Worek, William M.; Drąg, Paweł

    2016-01-01

    Highlights: • A numerical study of desiccant air conditioning systems is presented. • The ε-NTU model is used for the analysis. • Different arrangements of the desiccant systems were compared. • The systems were compared under different operating conditions. - Abstract: This paper presents a numerical analysis of three desiccant air-conditioning systems equipped with different indirect evaporative air coolers: (1) the cross-flow Maisotsenko cycle heat and mass exchanger (HMX), (2) the regenerative counter-flow Maisotsenko cycle heat and mass exchanger and (3) the standard cross-flow evaporative air cooler. To analyze the desiccant wheel and the indirect evaporative air coolers, the modified ε-NTU-model was used. The simulations were performed under assumption that the desiccant wheel is regenerated with air heated to relatively low temperature values (50–60 °C), which can be produced with solar panels in typical moderate climatic conditions. It was established that the main advantage of the presented solutions is that they can provide comfort conditions even with less effective dehumidification. The different systems were compared under variable selected operational factors (i.e. inlet air temperature, humidity and regeneration air temperature). The analysis allowed establishing the advantages and disadvantages of presented solutions and allowed estimating their application potential.

  2. Fabrication and Properties of Micro-Nanoencapsulated Phase Change Materials for Internally-Cooled Liquid Desiccant Dehumidification.

    Science.gov (United States)

    Niu, Xiaofeng; Xu, Qing; Zhang, Yi; Zhang, Yue; Yan, Yufeng; Liu, Tao

    2017-04-29

    Micro-nanoencapsulated phase change materials (M-NEPCMs) are proposed to be useful in liquid desiccant dehumidification by restraining the temperature rise in the moisture-removal process and improving the dehumidification efficiency. In this paper, the n -octadecane M-NEPCMs with desirable thermal properties for internally-cooled dehumidification were fabricated by using compound emulsifiers through the in-situ polymerization method. Melamine-formaldehyde resin was used as the shell material. The effects of the mixing ratio, emulsification methods and amount of the compound emulsifiers on the morphology, size and thermal properties of the M-NEPCMs were investigated experimentally. The optimum weight mixing ratio of the compound emulsifiers is SDS (sodium dodecyl sulfate):Tween80 (polyoxyethylene sorbitan monooleate):Span80 (sorbitan monooleate) = 0.1:0.6:0.3, which achieves the best stability of the n -octadecane emulsion. When the compound emulsifiers are 10 wt. % of the core material, the melting enthalpy of M-NEPCMs reaches its maximum of 145.26 J/g of capsules, with an encapsulation efficiency of 62.88% and a mean diameter of 636 nm. The sub-cooling of the prepared M-NEPCMs is lower than 3 °C, with an acceptable thermal reliability after the thermal cycling test. A pre-emulsification prior to the addition of deionized water in the emulsification is beneficial to the morphology of the capsules, as the phase change enthalpy can be increased by 123.7%.

  3. A heat pump driven and hollow fiber membrane-based liquid desiccant air dehumidification system: Modeling and experimental validation

    International Nuclear Information System (INIS)

    Zhang, Li-Zhi; Zhang, Ning

    2014-01-01

    A compression heat pump driven and membrane-based liquid desiccant air dehumidification system is presented. The dehumidifier and the regenerator are made of two hollow fiber membrane bundles packed in two shells. Water vapor can permeate through these membranes effectively, while the liquid desiccant droplets are prevented from cross-over. Simultaneous heating and cooling of the salt solution are realized with a heat pump system to improve energy efficiency. In this research, the system is built up and a complete modeling is performed for the system. Heat and mass transfer processes in the membrane modules, as well as in the evaporator, the condenser, and other key components are modeled in detail. The whole model is validated by experiment. The performances of SDP (specific dehumidification power), dehumidification efficiency, EER (energy efficiency ratio) of heat pump, and the COP (coefficient of performance) of the system are investigated numerically and experimentally. The results show that the model can predict the system accurately. The dehumidification capabilities and the energy efficiencies of the system are high. Further, it performs well even under the harsh hot and humid South China weather conditions. - Highlights: • A membrane-based and heat pump driven air dehumidification system is proposed. • A real experimental set up is built and used to validate the model for the whole system. • Performance under design and varying operation conditions is investigated. • The system performs well even under harsh hot and humid conditions

  4. Effect of operating conditions on performance of silica gel-water air-fluidised desiccant cooler

    Directory of Open Access Journals (Sweden)

    Rogala Zbigniew

    2017-01-01

    Full Text Available Fluidised desiccant cooling is reported in the literature as an efficient way to provide cooling for air-conditioning purposes. The performance of this technology can be described by electric and thermal Coefficients of Performance (COP and Specific Cooling Power (SCP. In this paper comprehensive theoretical study was carried out in order to assess the effect of operating conditions such as: superficial air velocity, desiccant particle diameter, bed switching time and desiccant filling height on the performance of fluidised desiccant cooler (FDC. It was concluded that FDC should be filled with as small as possible desiccant particles featuring diameters and should not be operated with shorter switching times than optimum. Moreover in order to efficiently run such systems superficial air velocities during adsorption and desorption should be similar. At last substantial effect of desiccant filling height on performance of FDC was presented.

  5. Comparative analysis of thermally activated, environmentally friendly cooling systems

    International Nuclear Information System (INIS)

    Gupta, Y.; Metchop, L.; Frantzis, A.; Phelan, P.E.

    2008-01-01

    This paper compares the relative performances of three different thermally activated, environmentally friendly cooling systems, e.g. a silica-gel-water adsorption system, a LiBr-H 2 O absorption system and a desiccant air system. The adsorption and absorption systems in the current study employ water as the refrigerant, while the desiccant system cools atmospheric air directly. Each of these systems can be utilized at relatively low heat source temperatures such as achieved by flat plate solar collectors, but it is unclear which of these systems is best suited to what range of heat source temperature. Our study explores answers to this question by generating quantitative results comparing their relative thermal performance, i.e. COP and refrigeration capacity, and a qualitative comparison based on the size, maturity of technology, safe operation etc. In order to provide a fair comparison between the fundamentally different systems, a UA (overall heat transfer coefficient multiplied by the heat transfer area) value of 1.0 kW deg. C -1 is considered for the heat exchanger that transfers heat from the supplied hot water. Furthermore, to compare systems of similar size, the mass of silica-gel in the adsorption and desiccant systems and the mass of LiBr-H 2 O solution in the absorption system were specified such that each system provides the same amount of refrigeration (8.0 kW) at a source temperature of 90 deg. C. It is found that the absorption and adsorption cooling systems have a higher refrigeration capacity at heat source temperatures below 90 deg. C, while the desiccant air system outperforms the others at temperatures above 90 deg. C

  6. Core cooling systems

    International Nuclear Information System (INIS)

    Hoeppner, G.

    1980-01-01

    The reactor cooling system transports the heat liberated in the reactor core to the component - heat exchanger, steam generator or turbine - where the energy is removed. This basic task can be performed with a variety of coolants circulating in appropriately designed cooling systems. The choice of any one system is governed by principles of economics and natural policies, the design is determined by the laws of nuclear physics, thermal-hydraulics and by the requirement of reliability and public safety. PWR- and BWR- reactors today generate the bulk of nuclear energy. Their primary cooling systems are discussed under the following aspects: 1. General design, nuclear physics constraints, energy transfer, hydraulics, thermodynamics. 2. Design and performance under conditions of steady state and mild transients; control systems. 3. Design and performance under conditions of severe transients and loss of coolant accidents; safety systems. (orig./RW)

  7. Monitoring Cray Cooling Systems

    Energy Technology Data Exchange (ETDEWEB)

    Maxwell, Don E [ORNL; Ezell, Matthew A [ORNL; Becklehimer, Jeff [Cray, Inc.; Donovan, Matthew J [ORNL; Layton, Christopher C [ORNL

    2014-01-01

    While sites generally have systems in place to monitor the health of Cray computers themselves, often the cooling systems are ignored until a computer failure requires investigation into the source of the failure. The Liebert XDP units used to cool the Cray XE/XK models as well as the Cray proprietary cooling system used for the Cray XC30 models provide data useful for health monitoring. Unfortunately, this valuable information is often available only to custom solutions not accessible by a center-wide monitoring system or is simply ignored entirely. In this paper, methods and tools used to harvest the monitoring data available are discussed, and the implementation needed to integrate the data into a center-wide monitoring system at the Oak Ridge National Laboratory is provided.

  8. Separate sensible and latent cooling system: A preliminary analysis of a novel approach

    Energy Technology Data Exchange (ETDEWEB)

    Nawaz, Kashif [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-10-01

    Separate sensible and latent cooling systems offer significant increases in the overall performance of cooling/dehumidification systems compared with conventional vapor-compression air-conditioning systems. Key to the energy efficiency of such systems is the performance of the heat and mass exchangers that provide sensible cooling and dehumidification. A novel design is proposed for dehumidification applications, deploying metal foam as a substrate coated with solid desiccants. The current report provides some preliminary information regarding the development of the technology and discusses factors such as manufacturing of desiccants, characterization of desiccants, and development of the metal foam heat exchanger. All three aspects provide the necessary infrastructure for further development and validation of the proposed concept.

  9. Turbine airfoil cooling system with cooling systems using high and low pressure cooling fluids

    Science.gov (United States)

    Marsh, Jan H.; Messmann, Stephen John; Scribner, Carmen Andrew

    2017-10-25

    A turbine airfoil cooling system including a low pressure cooling system and a high pressure cooling system for a turbine airfoil of a gas turbine engine is disclosed. In at least one embodiment, the low pressure cooling system may be an ambient air cooling system, and the high pressure cooling system may be a compressor bleed air cooling system. In at least one embodiment, the compressor bleed air cooling system in communication with a high pressure subsystem that may be a snubber cooling system positioned within a snubber. A delivery system including a movable air supply tube may be used to separate the low and high pressure cooling subsystems. The delivery system may enable high pressure cooling air to be passed to the snubber cooling system separate from low pressure cooling fluid supplied by the low pressure cooling system to other portions of the turbine airfoil cooling system.

  10. Fabrication and Properties of Micro-Nanoencapsulated Phase Change Materials for Internally-Cooled Liquid Desiccant Dehumidification

    Directory of Open Access Journals (Sweden)

    Xiaofeng Niu

    2017-04-01

    Full Text Available Micro-nanoencapsulated phase change materials (M-NEPCMs are proposed to be useful in liquid desiccant dehumidification by restraining the temperature rise in the moisture-removal process and improving the dehumidification efficiency. In this paper, the n-octadecane M-NEPCMs with desirable thermal properties for internally-cooled dehumidification were fabricated by using compound emulsifiers through the in-situ polymerization method. Melamine-formaldehyde resin was used as the shell material. The effects of the mixing ratio, emulsification methods and amount of the compound emulsifiers on the morphology, size and thermal properties of the M-NEPCMs were investigated experimentally. The optimum weight mixing ratio of the compound emulsifiers is SDS (sodium dodecyl sulfate:Tween80 (polyoxyethylene sorbitan monooleate:Span80 (sorbitan monooleate = 0.1:0.6:0.3, which achieves the best stability of the n-octadecane emulsion. When the compound emulsifiers are 10 wt. % of the core material, the melting enthalpy of M-NEPCMs reaches its maximum of 145.26 J/g of capsules, with an encapsulation efficiency of 62.88% and a mean diameter of 636 nm. The sub-cooling of the prepared M-NEPCMs is lower than 3 °C, with an acceptable thermal reliability after the thermal cycling test. A pre-emulsification prior to the addition of deionized water in the emulsification is beneficial to the morphology of the capsules, as the phase change enthalpy can be increased by 123.7%.

  11. Natural convection liquid desiccant loop as an auxiliary air conditioning system: investigating the operational parameters

    Science.gov (United States)

    Fazilati, Mohammad Ali; Alemrajabi, Ali Akbar; Sedaghat, Ahmad

    2018-03-01

    Liquid desiccant air conditioning system with natural convection was presented previously as a new generation of AC systems. The system consists of two three-fluid energy exchangers namely absorber and regenerator in which the action of air dehumidifying and desiccant regeneration is done, respectively. The influence of working parameters on system performance including the heat source and heat sink temperature, concentration of desiccant solution fills the system initially and humidity content of inlet air to regenerator is investigated experimentally. The heat source temperatures of 50 °C and 60 °C, heat sink temperatures of 15 °C and 20 °C and desiccant concentrations of 30% and 34%, are examined here. The inlet air to regenerator has temperature of 38.5 °C and three relative humidity of 14%, 38% and 44%. In all experiments, the inlet air to absorber has temperature of 31 °C and relative humidity of 75%. By inspecting evaluation indexes of system, it is revealed that higher startup desiccant concentration solution is more beneficial for all study cases. It is also observed although the highest/lowest temperature heat source/heat sink is most suitable for best system operation, increasing the heat source temperature should be accompanied with decreasing heat sink temperature. Using drier air stream for regenerator inlet does not necessarily improve system performance; and the air stream with proper value of humidity content should be employed. Finally after running the system in its best working condition, the coefficient of performance (COP) reached 4.66 which verified to be higher than when the same air conditioning task done by a conventional vapor compression system, in which case the COP was 3.38.

  12. Reactor cooling system

    International Nuclear Information System (INIS)

    Kato, Etsuji.

    1979-01-01

    Purpose: To eliminate cleaning steps in the pipelines upon reactor shut-down by connecting a filtrating and desalting device to the cooling system to thereby always clean up the water in the pipelines. Constitution: A filtrating and desalting device is connected to the pipelines in the cooling system by way of drain valves and a check valve. Desalted water is taken out from the exit of the filtrating and desalting device and injected to one end of the cooling system pipelines by way of the drain valve and the check valve and then returned by way of another drain valve to the desalting device. Water in the pipelines is thus always desalted and the cleaning step in the pipelines is no more required in the shut-down. (Kawakami, Y.)

  13. ITER cooling systems

    International Nuclear Information System (INIS)

    Natalizio, A.; Hollies, R.E.; Sochaski, R.O.; Stubley, P.H.

    1992-06-01

    The ITER reference system uses low-temperature water for heat removal and high-temperature helium for bake-out. As these systems share common equipment, bake-out cannot be performed until the cooling system is drained and dried, and the reactor cannot be started until the helium has been purged from the cooling system. This study examines the feasibility of using a single high-temperature fluid to perform both heat removal and bake-out. The high temperature required for bake-out would also be in the range for power production. The study examines cost, operational benefits, and impact on reactor safety of two options: a high-pressure water system, and a low-pressure organic system. It was concluded that the cost savings and operational benefits are significant; there are no significant adverse safety impacts from operating either the water system or the organic system; and the capital costs of both systems are comparable

  14. Emergency core cooling system

    International Nuclear Information System (INIS)

    Ando, Masaki.

    1987-01-01

    Purpose: To actuate an automatic pressure down system (ADS) and a low pressure emergency core cooling system (ECCS) upon water level reduction of a nuclear reactor other than loss of coolant accidents (LOCA). Constitution: ADS in a BWR type reactor is disposed for reducing the pressure in a reactor container thereby enabling coolant injection from a low pressure ECCS upon LOCA. That is, ADS has been actuated by AND signal for a reactor water level low signal and a dry well pressure high signal. In the present invention, ADS can be actuated further also by AND signal of the reactor water level low signal, the high pressure ECCS and not-operation signal of reactor isolation cooling system. In such an emergency core cooling system thus constituted, ADS operates in the same manner as usual upon LOCA and, further, ADS is operated also upon loss of feedwater accident in the reactor pressure vessel in the case where there is a necessity for actuating the low pressure ECCS, although other high pressure ECCS and reactor isolation cooling system are not operated. Accordingly, it is possible to improve the reliability upon reactor core accident and mitigate the operator burden. (Horiuchi, T.)

  15. Emergency core cooling system

    International Nuclear Information System (INIS)

    Abe, Nobuaki.

    1993-01-01

    A reactor comprises a static emergency reactor core cooling system having an automatic depressurization system and a gravitationally dropping type water injection system and a container cooling system by an isolation condenser. A depressurization pipeline of the automatic depressurization system connected to a reactor pressure vessel branches in the midway. The branched depressurizing pipelines are extended into an upper dry well and a lower dry well, in which depressurization valves are disposed at the top end portions of the pipelines respectively. If loss-of-coolant accidents should occur, the depressurization valve of the automatic depressurization system is actuated by lowering of water level in the pressure vessel. This causes nitrogen gases in the upper and the lower dry wells to transfer together with discharged steams effectively to a suppression pool passing through a bent tube. Accordingly, the gravitationally dropping type water injection system can be actuated faster. Further, subsequent cooling for the reactor vessel can be ensured sufficiently by the isolation condenser. (I.N.)

  16. Energy performance of an innovative liquid desiccant dehumidification system with a counter-flow heat and mass exchanger using potassium formate

    DEFF Research Database (Denmark)

    Jradi, Muhyiddine; Riffat, Saffa

    2014-01-01

    An innovative micro-scale liquid desiccant dehumidification system is numerically investigated. The liquid desiccant dehumidification unit employs a counter-flow low-cost and efficient heat and mass exchange core, improving the thermal performance and eliminating desiccant carryover...... that the dehumidifier effectiveness is directly proportional to the intake air temperature, intake air relative humidity and liquid desiccant flow rate where the effectiveness is inversely proportional to the intake air velocity and the heat exchanger air channel height....

  17. Experimental analysis and regression prediction of desiccant wheel behavior in high temperature heat pump and desiccant wheel air-conditioning system

    DEFF Research Database (Denmark)

    Sheng, Ying; Zhang, Yufeng; Sun, Yuexia

    2014-01-01

    The objectives of this study are to evaluate the performance of desiccant wheel (DW) in the running system and obtain the useful data for practical application. The combined influences of multiple variables on the performance of desiccant wheel are investigated based on evaluating the indexes...... of moisture removal capacity, dehumidification effectiveness, dehumidification coefficient of performance and sensible energy ratio. The results show that higher effect on the dehumidification is due to the regeneration temperature and outdoor air humidity ratio rather than the outdoor air temperature...... and the ratio between regeneration and process air flow rates. A simple method based on multiple linear regression theory for predicting the performance of the wheel has been proposed. The predicted values and the experimental data are compared and good agreements are obtained. Regression models are established...

  18. ITER cooling system

    International Nuclear Information System (INIS)

    Kveton, O.K.

    1990-11-01

    The present specification of the ITER cooling system does not permit its operation with water above 150 C. However, the first wall needs to be heated to higher temperatures during conditioning at 250 C and bake-out at 350 C. In order to use the cooling water for these operations the cooling system would have to operate during conditioning at 37 Bar and during bake-out at 164 Bar. This is undesirable from the safety analysis point of view, and alternative heating methods are to be found. This review suggests that superheated steam or gas heating can be used for both baking and conditioning. The blanket design must consider the use of dual heat transfer media, allowing for change from one to another in both directions. Transfer from water to gas or steam is the most intricate and risky part of the entire heating process. Superheated steam conditioning appears unfavorable. The use of inert gas is recommended, although alternative heating fluids such as organic coolant should be investigated

  19. Performance study of desiccant coated heat exchanger air conditioning system in winter

    International Nuclear Information System (INIS)

    Ge, T.S.; Dai, Y.J.; Wang, R.Z.

    2016-01-01

    Highlights: • Performance of desiccant coated heat exchanger AC system is predicted. • Effects of main operation parameters and climatic conditions are discussed. • Regeneration temperature of 30 °C is recommended under simulation condition. • Higher ambient humidity ratio results in increased humidity ratio of supply air. • Temperature of ambient air has neglectable effect on supply air. - Abstract: Conventional air source heat pump system faces several challenges when adopted in winter season. Solid desiccant air conditioning system can provide humidification and heating power simultaneously and can be driven by low grade thermal energy; it provides a good alternative for air source heat pump systems. However, conventional solid desiccant air conditioning system adopts desiccant wheel with high cost as core component, which hinders the development of such system. Recently, desiccant coated heat exchanger (DCHE) with low initial cost and high efficiency was developed and this paper aims to investigate performance of DCHE air conditioning system adopted in Shanghai winter season. Performance of the system is predicted by a developed mathematical model where supply air states, mass of humidification and coefficient of performance (COP) are adopted as performance indices to evaluate the feasibility and energy utilization ratio of the system. Effects of regeneration water temperature on system performance are analyzed. It is found that under the simulation condition, relatively low regeneration temperature (such as 20 °C) cannot meet the designed standard and relatively high regeneration temperature (such as 40 °C) provides too much extra heating power, thus moderate regeneration temperature around 30 °C is recommended. Meanwhile, switch time is a crucial operation parameter for the system to obtain satisfied supply air, switch time from 40 s to 80 s and from 70 s to 240 s are recommended for transient and average supply air states, respectively. Both

  20. Lamination cooling system

    Science.gov (United States)

    Rippel, Wally E.; Kobayashi, Daryl M.

    2005-10-11

    An electric motor, transformer or inductor having a lamination cooling system including a stack of laminations, each defining a plurality of apertures at least partially coincident with apertures of adjacent laminations. The apertures define a plurality of cooling-fluid passageways through the lamination stack, and gaps between the adjacent laminations are sealed to prevent a liquid cooling fluid in the passageways from escaping between the laminations. The gaps are sealed by injecting a heat-cured sealant into the passageways, expelling excess sealant, and heat-curing the lamination stack. The apertures of each lamination can be coincident with the same-sized apertures of adjacent laminations to form straight passageways, or they can vary in size, shape and/or position to form non-axial passageways, angled passageways, bidirectional passageways, and manifold sections of passageways that connect a plurality of different passageway sections. Manifold members adjoin opposite ends of the lamination stack, and each is configured with one or more cavities to act as a manifold to adjacent passageway ends. Complex manifold arrangements can create bidirectional flow in a variety of patterns.

  1. Hybrid radiator cooling system

    Science.gov (United States)

    France, David M.; Smith, David S.; Yu, Wenhua; Routbort, Jules L.

    2016-03-15

    A method and hybrid radiator-cooling apparatus for implementing enhanced radiator-cooling are provided. The hybrid radiator-cooling apparatus includes an air-side finned surface for air cooling; an elongated vertically extending surface extending outwardly from the air-side finned surface on a downstream air-side of the hybrid radiator; and a water supply for selectively providing evaporative cooling with water flow by gravity on the elongated vertically extending surface.

  2. Rotary engine cooling system

    Science.gov (United States)

    Jones, Charles (Inventor); Gigon, Richard M. (Inventor); Blum, Edward J. (Inventor)

    1985-01-01

    A rotary engine has a substantially trochoidal-shaped housing cavity in which a rotor planetates. A cooling system for the engine directs coolant along a single series path consisting of series connected groups of passages. Coolant enters near the intake port, passes downwardly and axially through the cooler regions of the engine, then passes upwardly and axially through the hotter regions. By first flowing through the coolest regions, coolant pressure is reduced, thus reducing the saturation temperature of the coolant and thereby enhancing the nucleate boiling heat transfer mechanism which predominates in the high heat flux region of the engine during high power level operation.

  3. Low-Flow Liquid Desiccant Air-Conditioning: Demonstrated Performance and Cost Implications

    Energy Technology Data Exchange (ETDEWEB)

    Kozubal, E.; Herrmann, L.; Deru, M.; Clark, J.; Lowenstein, A.

    2014-09-01

    Cooling loads must be dramatically reduced when designing net-zero energy buildings or other highly efficient facilities. Advances in this area have focused primarily on reducing a building's sensible cooling loads by improving the envelope, integrating properly sized daylighting systems, adding exterior solar shading devices, and reducing internal heat gains. As sensible loads decrease, however, latent loads remain relatively constant, and thus become a greater fraction of the overall cooling requirement in highly efficient building designs, particularly in humid climates. This shift toward latent cooling is a challenge for heating, ventilation, and air-conditioning (HVAC) systems. Traditional systems typically dehumidify by first overcooling air below the dew-point temperature and then reheating it to an appropriate supply temperature, which requires an excessive amount of energy. Another dehumidification strategy incorporates solid desiccant rotors that remove water from air more efficiently; however, these systems are large and increase fan energy consumption due to the increased airside pressure drop of solid desiccant rotors. A third dehumidification strategy involves high flow liquid desiccant systems. These systems require a high maintenance separator to protect the air distribution system from corrosive desiccant droplet carryover and so are more commonly used in industrial applications and rarely in commercial buildings. Both solid desiccant systems and most high-flow liquid desiccant systems (if not internally cooled) add sensible energy which must later be removed to the air stream during dehumidification, through the release of sensible heat during the sorption process.

  4. Cooling water injection system

    International Nuclear Information System (INIS)

    Inai, Nobuhiko.

    1989-01-01

    In a BWR type reactor, ECCS system is constituted as a so-called stand-by system which is not used during usual operation and there is a significant discontinuity in relation with the usual system. It is extremely important that ECCS operates upon occurrence of accidents just as specified. In view of the above in the present invention, the stand-by system is disposed along the same line with the usual system. That is, a driving water supply pump for supplying driving water to a jet pump is driven by a driving mechanism. The driving mechanism drives continuously the driving water supply pump in a case if an expected accident such as loss of the function of the water supply pump, as well as during normal operation. That is, all of the water supply pump, jet pump, driving water supply pump and driving mechanism therefor are caused to operate also during normal operation. The operation of them are not initiated upon accident. Thus, the cooling water injection system can perform at high reliability to remarkably improve the plant safety. (K.M.)

  5. Modelization of cooling system components

    Energy Technology Data Exchange (ETDEWEB)

    Copete, Monica; Ortega, Silvia; Vaquero, Jose Carlos; Cervantes, Eva [Westinghouse Electric (Spain)

    2010-07-01

    In the site evaluation study for licensing a new nuclear power facility, the criteria involved could be grouped in health and safety, environment, socio-economics, engineering and cost-related. These encompass different aspects such as geology, seismology, cooling system requirements, weather conditions, flooding, population, and so on. The selection of the cooling system is function of different parameters as the gross electrical output, energy consumption, available area for cooling system components, environmental conditions, water consumption, and others. Moreover, in recent years, extreme environmental conditions have been experienced and stringent water availability limits have affected water use permits. Therefore, modifications or alternatives of current cooling system designs and operation are required as well as analyses of the different possibilities of cooling systems to optimize energy production taking into account water consumption among other important variables. There are two basic cooling system configurations: - Once-through or Open-cycle; - Recirculating or Closed-cycle. In a once-through cooling system (or open-cycle), water from an external water sources passes through the steam cycle condenser and is then returned to the source at a higher temperature with some level of contaminants. To minimize the thermal impact to the water source, a cooling tower may be added in a once-through system to allow air cooling of the water (with associated losses on site due to evaporation) prior to returning the water to its source. This system has a high thermal efficiency, and its operating and capital costs are very low. So, from an economical point of view, the open-cycle is preferred to closed-cycle system, especially if there are no water limitations or environmental restrictions. In a recirculating system (or closed-cycle), cooling water exits the condenser, goes through a fixed heat sink, and is then returned to the condenser. This configuration

  6. A trigeneration system based on polymer electrolyte fuel cell and desiccant wheel – Part B: Overall system design and energy performance analysis

    International Nuclear Information System (INIS)

    Intini, M.; De Antonellis, S.; Joppolo, C.M.; Casalegno, A.

    2015-01-01

    Highlights: • Seasonal simulation of a trigeneration system for building air-conditioning. • Effects of technical constraints on trigeneration system power consumption. • Optimal PEMFC unit size for maximizing trigeneration primary energy savings. - Abstract: This paper represents the second part of a major work focusing on a trigeneration system integrating a low temperature polymer electrolyte fuel cell (PEMFC) and a desiccant wheel-based air handling unit. Low temperature PEMFC systems have a significant potential in combined heating, cooling and power applications. However cogenerated heat temperature is relatively low (up to 65–70 °C), resulting in low efficiency of the cooling process, and the fuel processor is far from being flexible, hindering the operation of the system at low load conditions. Therefore a trigeneration system based on PEMFC should be carefully designed through accurate simulation tools. In the current paper a detailed analysis of the energy performance of the trigenerative system is provided, taking into account constraints of real applications, such as PEMFC part load behavior, desiccant wheel effectiveness, heat storage losses and air handling unit electrical consumptions. The methodology adopted to model system components is deeply described. Energy simulations are performed on yearly basis with variable building air conditioning loads and climate conditions, in order to investigate the optimal trigenerative unit size. A sensitivity analysis on crucial design parameters is provided. It is shown that constrains of actual applications have relevant effects on system energy consumption, which is significantly far from expected values based on a simplified analysis. Primary energy savings can be positive in winter time if the ratio of PEMFC heating capacity to air conditioning peak heating load is close to 0.15. Instead on yearly basis primary energy savings cannot be achieved with present components performance. Positive savings

  7. Performance Analysis of a Solar Dryer Equipped with a Recycling Air System and Desiccant Chamber

    Directory of Open Access Journals (Sweden)

    M.H Aghkhani

    2013-09-01

    Full Text Available Drying is a high energy consuming process. Solar drying is one of the most popular methods for dehydration of agricultural products. In the present study, the performance of a forced convection solar dryer equipped with recycling air system and desiccant chamber was investigated. The solar dryer is comprised of solar collector, drying chamber, silica jell desiccant chamber, air ducts, fan and measuring and controlling system. Drying rate and energy consumption in three levels of air temperature (40, 45 and 50 oC and two modes of drying (with recycling air and no-recycling with open duct system were measured and compared. The results showed that increasing the drying air temperature decreased the drying time and increased the energy consumption in the mode of non-recycling air system. The dryer efficiency and drying rate were better in the mode of recycling air system than open duct system. The highest dryer efficiency was obtained from drying air temperature of 50 oC and the mode of recycling air system. In general, the efficiency of solar collector and the highest efficiency of the dryer were 0.34 and 0.41, respectively.

  8. Core cooling system for reactor

    International Nuclear Information System (INIS)

    Kondo, Ryoichi; Amada, Tatsuo.

    1976-01-01

    Purpose: To improve the function of residual heat dissipation from the reactor core in case of emergency by providing a secondary cooling system flow channel, through which fluid having been subjected to heat exchange with the fluid flowing in a primary cooling system flow channel flows, with a core residual heat removal system in parallel with a main cooling system provided with a steam generator. Constitution: Heat generated in the core during normal reactor operation is transferred from a primary cooling system flow channel to a secondary cooling system flow channel through a main heat exchanger and then transferred through a steam generator to a water-steam system flow channel. In the event if removal of heat from the core by the main cooling system becomes impossible due to such cause as breakage of the duct line of the primary cooling system flow channel or a trouble in a primary cooling system pump, a flow control valve is opened, and steam generator inlet and outlet valves are closed, thus increasing the flow rate in the core residual heat removal system. Thereafter, a blower is started to cause dissipation of the core residual heat from the flow channel of a system for heat dissipation to atmosphere. (Seki, T.)

  9. Emergency core cooling system

    International Nuclear Information System (INIS)

    Sato, Akira; Kobayashi, Masahide.

    1983-01-01

    Purpose: To enable a stable operation of an emergency core cooling system by preventing the system from the automatic stopping at an abnormally high level of the reactor water during its operation. Constitution: A pump flow rate signal and a reactor water level signal are used and, when the reactor water level is increased to a predetermined level, the pump flow rate is controlled by the reactor water level signal instead of the flow rate signal. Specifically, when the reactor water level is gradually increased by the water injection from the pump and exceeds a setting signal for the water level, the water level deviation signal acts as a demand signal for the decrease in the flow rate of the pump and the output signal from the water level controller is also decreased depending on the control constant. At a certain point, the output signal from the water level controller becomes smaller than the output signal from the flow rate controller. Thus, the output signal from the water level controller is outputted as the output signal for the lower level preference device. In this way, the reactor water level and the pump flow rate can be controlled within a range not exceeding the predetermined pump flow rate. (Horiuchi, T.)

  10. Performance assessment of adding Cu-ultrafine particles into falling film desiccant

    International Nuclear Information System (INIS)

    Al-Mulla Ali, A.

    2006-01-01

    The concept of dehumidification between air and liquid desiccant for the improvement of the efficiency of heating and cooling fluids in industrial applications was discussed. The use of solid/liquid desiccants has received much attention in recent years because liquid desiccants can take moisture from surrounding air at low temperature and then release the moisture at high temperature to provide a continuous process of dehumidification of air and regeneration of liquid desiccant. This process can be used with conventional vapor compression cycles. This paper presented a comparative numerical study between parallel and counter flow configurations that examined the effects of various parameters on heat and mass transfer for the dehumidification and cooling processes of air and regeneration rate of liquid desiccant. Ultrafine particles were added to the falling film desiccant to investigate heat and mass transfer enhancement for both parallel and counter flow channels. The Cu-volume fraction in the falling film desiccant and dispersion effect were the important parameters. A mathematical model was therefore developed to account for the addition of Cu-ultrafine particles into the film desiccant. The dehumidification and cooling rate processes were found to improve with an increase in the Cu-ultrafine particles and dispersion effect. The new hybrid AC system was shown to improve indoor air quality, reduce energy consumption, and be environmentally safe. It was concluded that although the volume fraction and dispersion factor improve the dehumidification and cooling processes of the air, the improvements are not significant due to the small thickness of the falling-film desiccant. The regeneration process did not improve for either controlling parameter because of the small thickness of the film desiccant. 14 refs., 10 figs

  11. Experimental investigations on performance of liquid desiccant-vapor compression hybrid air conditioner

    International Nuclear Information System (INIS)

    Mohan, B. Shaji; Tiwari, Shaligram; Maiya, M.P.

    2015-01-01

    A coupled desiccant column is integrated with a conventional room air conditioner (AC) to enhance dehumidification of the room air. One desiccant column (absorber) is placed after the evaporator the other (regenerator) after the condenser of the AC unit. Such a novel liquid desiccant vapour compression hybrid air conditioning system has been fabricated and tested in a balanced ambient room type calorimeter for very low flow rates of liquid desiccant (lithium bromide solution). The moisture from the cold supply air is transferred to the hot condenser air by the desiccant flowing in the loop, thereby complimenting the dehumidification of the room air at the evaporator. The supply air is also sensibly heated during the dehumidification process by liquid desiccant in the absorber, which together enables the hybrid system to maintain low humidity in the room. Whereas the liquid desiccant is regenerated by the condenser waste heat, the entire cooling is derived only by the AC unit. The experimental results show that an increase of room temperature reduces both dehumidification of process air and regeneration of liquid desiccant, whereas an increase of room specific humidity enhances both these for the flow rate of the liquid desiccant in the range of 0.2–1.6% of the air flow rate through the absorber. - Highlights: • A liquid desiccant vapor compression hybrid system is fabricated and tested. • The liquid desiccant reduces latent load but equally increases sensible load. • Hybrid system performance is studied for varying room temperature and humidity. • Higher room temperature lowers air dehumidification and desiccant regeneration. • Increase of room specific humidity enhances dehumidification and also regeneration

  12. Active Desiccant-Based Preconditioning Market Analysis and Product Development

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, J.

    2001-01-11

    The Phase 1 report (ORNL/Sub/94-SVO44/1), completed earlier in this program, involved a comprehensive field survey and market analysis comparing various specialized outdoor air handling units. This initial investigation included conventional cooling and reheat, conventional cooling with sensible recovery, total energy recovery systems (passive desiccant technology) and various active desiccant systems. The report concluded that several markets do promise a significant sales opportunity for a Climate Changer-based active desiccant system offering. (Climate Changer is a registered trademark of Trane Company.) This initial market analysis defined the wants and needs of the end customers (design engineers and building owners), which, along with subsequent information included in this report, have been used to guide the determination of the most promising active desiccant system configurations. This Phase 2 report begins with a summary of a more thorough investigation of those specific markets identified as most promising for active desiccant systems. Table 1 estimates the annual sales potential for a cost-effective product line of active desiccant systems, such as that built from Climate Changer modules. The Product Development Strategy section describes the active desiccant system configurations chosen to best fit the needs of the marketplace while minimizing system options. Key design objectives based on market research are listed in this report for these active desiccant systems. Corresponding performance goals for the dehumidification wheel required to meet the overall system design objectives are also defined. The Performance Modeling section describes the strategy used by SEMCO to design the dehumidification wheels integrated into the prototype systems currently being tested as part of the U.S. Department of Energy's Advanced Desiccant Technology Program. Actual performance data from wheel testing was used to revise the system performance and energy analysis

  13. COOLING STAGES OF CRYOGENIC SYSTEMS

    OpenAIRE

    Троценко, А. В.

    2011-01-01

    The formalized definition for cooling stage of low temperature system is done. Based on existing information about the known cryogenic unit cycles the possible types of cooling stages are single out. From analyses of these stages their classification by various characteristics is suggested. The results of thermodynamic optimization of final throttle stage of cooling, which are used as working fluids helium, hydrogen and nitrogen, are shown.

  14. Energy and exergy performance analysis of a marine rotary desiccant air-conditioning system based on orthogonal experiment

    International Nuclear Information System (INIS)

    Zhu, Jun; Chen, Wu

    2014-01-01

    A novel marine rotary desiccant A/C (air-conditioning) system was developed and studied to improve energy utilization efficiency of ship A/C. The orthogonal experiment was first carried out to investigate the influence of various parameters of the marine rotary desiccant A/C system. During the orthogonal experiment the analysis of variance was used to exclude interference from the secondary influencing factor on system performance. The significant influencing factors of system were studied in great detail using the first and second laws of thermodynamics to find optimal setting parameters for best system performance. It is suggested from the analysis results that as regeneration temperature increases, the COP th (thermal coefficient of performance) and exergy efficiency of system (η e ) decreases by 46.9% and 38.8% respectively. They decrease in proportion to the increase of the temperature. η e reaches its maximum value of about 23.5% when the inlet humidity ratio of process air is 22 g/kg. Besides, the exergy loss of system concentrates on the regeneration air heater, the desiccant wheel and the regeneration air leaving the desiccant wheel, which account for 68.4%–81% of the total exergy loss. It can be concluded that applying the marine rotary desiccant A/C in high-temperature and high-humidity marine environment is advantageous. - Highlights: • Significant influencing factors of the system are found by the analysis of variance. • The change trends of the COP th and the η e are nearly proportional with the regeneration temperature. • The η e reaches its maximum value (about 23.5%) when the inlet humidity ratio of process air is 22 g/kg. • The contribution rate of the dry-bulb temperature of fresh air is up to 73.91% for the COP th . • Applying the marine rotary desiccant A/C in high-temperature and high-humidity marine environment is advantageous

  15. Emergency core cooling system

    International Nuclear Information System (INIS)

    Arai, Kenji; Oikawa, Hirohide.

    1990-01-01

    The device according to this invention can ensure cooling water required for emerency core cooling upon emergence such as abnormally, for example, loss of coolant accident, without using dynamic equipments such as a centrifugal pump or large-scaled tank. The device comprises a pressure accumulation tank containing a high pressure nitrogen gas and cooling water inside, a condensate storage tank, a pressure suppression pool and a jet stream pump. In this device there are disposed a pipeline for guiding cooling water in the pressure accumulation tank as a jetting water to a jetting stream pump, a pipeline for guiding cooling water stored in the condensate storage tank and the pressure suppression pool as pumped water to the jetting pump and, further, a pipeline for guiding the discharged water from the jet stream pump which is a mixed stream of pumped water and jetting water into the reactor pressure vessel. In this constitution, a sufficient amount of water ranging from relatively high pressure to low pressure can be supplied into the reactor pressure vessel, without increasing the size of the pressure accumulation tank. (I.S.)

  16. 46 CFR 153.432 - Cooling systems.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Cooling systems. 153.432 Section 153.432 Shipping COAST... Control Systems § 153.432 Cooling systems. (a) Each cargo cooling system must have an equivalent standby... cooling system. (b) Each tankship that has a cargo tank with a required cooling system must have a manual...

  17. Low-Flow Liquid Desiccant Air Conditioning: General Guidance and Site Considerations

    Energy Technology Data Exchange (ETDEWEB)

    Kozubal, E.; Herrmann, L.; Deru, M.; Clark, J.

    2014-09-01

    Dehumidification or latent cooling in buildings is an area of growing interest that has been identified as needing more research and improved technologies for higher performance. Heating, ventilating, and air-conditioning (HVAC) systems typically expend excessive energy by using overcool-and-reheat strategies to dehumidify buildings. These systems first overcool ventilation air to remove moisture and then reheat the air to meet comfort requirements. Another common strategy incorporates solid desiccant rotors that remove moisture from the air more efficiently; however, these systems increase fan energy consumption because of the high airside pressure drop of solid desiccant rotors and can add heat of absorption to the ventilation air. Alternatively, liquid desiccant air-conditioning (LDAC) technology provides an innovative dehumidification solution that: (1) eliminates the need for overcooling and reheating from traditional cooling systems; and (2) avoids the increased fan energy and air heating from solid desiccant rotor systems.

  18. Triple-bore hollow fiber membrane contactor for liquid desiccant based air dehumidification

    KAUST Repository

    Bettahalli Narasimha, Murthy Srivatsa

    2016-04-26

    Dehumidification is responsible for a large part of the energy consumption in cooling systems in high humidity environments worldwide. Improving efficiency is therefore essential. Liquid desiccants offer a promising solution for dehumidification, as desired levels of humidity removal could be easily regulated. The use of membrane contactors in combination with liquid desiccant is attractive for dehumidification because they prevent direct contact between the humid air and the desiccant, removing both the potential for desiccant carryover to the air and the potential for contamination of the liquid desiccant by dust and other airborne materials, as well as minimizing corrosion. However, the expected additional mass transport barrier of the membrane surface can lower the expected desiccation rate per unit of desiccant surface area. In this context, hollow fiber membranes present an attractive option for membrane liquid desiccant contactors because of their high surface area per unit volume. We demonstrate in this work the performance of polyvinylidene fluoride (PVDF) based triple-bore hollow fiber membranes as liquid desiccant contactors, which are permeable to water vapor but impermeable to liquid water, for dehumidification of hot and humid air.

  19. Cooling water systems design using process integration

    CSIR Research Space (South Africa)

    Gololo, KV

    2010-09-01

    Full Text Available Cooling water systems are generally designed with a set of heat exchangers arranged in parallel. This arrangement results in higher cooling water flowrate and low cooling water return temperature thus reducing cooling tower efficiency. Previous...

  20. Emergency core cooling system

    International Nuclear Information System (INIS)

    Kato, Ken.

    1989-01-01

    In PWR type reactors, a cooling water spray portion of emergency core cooling pipelines incorporated into pipelines on high temperature side is protruded to the inside of an upper plenum. Upon rupture of primary pipelines, pressure in a pressure vessel is abruptly reduced to generate a great amount of steams in the reactor core, which are discharged at a high flow rate into the primary pipelines on high temperature side. However, since the inside of the upper plenum has a larger area and the steam flow is slow, as compared with that of the pipelines on the high temperature side, ECCS water can surely be supplied into the reactor core to promote the re-flooding of the reactor core and effectively cool the reactor. Since the nuclear reactor can effectively be cooled to enable the promotion of pressure reduction and effective supply of coolants during the period of pressure reduction upon LOCA, the capacity of the pressure accumulation vessel can be decreased. Further, the re-flooding time for the reactor is shortened to provide an effect contributing to the improvement of the safety and the reduction of the cost. (N.H.)

  1. Superconducting magnet cooling system

    Science.gov (United States)

    Vander Arend, Peter C.; Fowler, William B.

    1977-01-01

    A device is provided for cooling a conductor to the superconducting state. The conductor is positioned within an inner conduit through which is flowing a supercooled liquid coolant in physical contact with the conductor. The inner conduit is positioned within an outer conduit so that an annular open space is formed therebetween. Through the annular space is flowing coolant in the boiling liquid state. Heat generated by the conductor is transferred by convection within the supercooled liquid coolant to the inner wall of the inner conduit and then is removed by the boiling liquid coolant, making the heat removal from the conductor relatively independent of conductor length.

  2. Cryogenic cooling system for HTS cable

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Shigeru [Taiyo Nippon Sanso, Tsukuba (Japan)

    2017-06-15

    Recently, Research and development activity of HTS (High Temperature Superconducting) power application is very progressive worldwide. Especially, HTS cable system and HTSFCL (HTS Fault current limiter) system are proceeding to practical stages. In such system and equipment, cryogenic cooling system, which makes HTS equipment cooled lower than critical temperature, is one of crucial components. In this article, cryogenic cooling system for HTS application, mainly cable, is reviewed. Cryogenic cooling system can be categorized into conduction cooling system and immersion cooling system. In practical HTS power application area, immersion cooling system with sub-cooled liquid nitrogen is preferred. The immersion cooling system is besides grouped into open cycle system and closed cycle system. Turbo-Brayton refrigerator is a key component for closed cycle system. Those two cooling systems are focused in this article. And, each design and component of the cooling system is explained.

  3. Emergency core cooling systems

    International Nuclear Information System (INIS)

    Kubokoya, Takashi; Okataku, Yasukuni.

    1984-01-01

    Purpose: To maintain the fuel soundness upon loss of primary coolant accidents in a pressure tube type nuclear reactor by injecting cooling heavy water at an early stage, to suppress the temperature of fuel cans at a lower level. Constitution: When a thermometer detects the temperature rise and a pressure gauge detects that the pressure for the primary coolants is reduced slightly from that in the normal operation upon loss of coolant accidents in the vicinity of the primary coolant circuit, heavy water is caused to flow in the heavy water feed pipeway by a controller. This enables to inject the heavy water into the reactor core in a short time upon loss of the primary coolant accidents to suppress the temperature rise in the fuel can thereby maintain the fuel soundness. (Moriyama, K.)

  4. Heat Driven Cooling in District Energy Systems; Vaermedriven Kyla

    Energy Technology Data Exchange (ETDEWEB)

    Rydstrand, Magnus; Martin, Viktoria; Westermark, Mats [Royal Inst. of Technology, Stockholm (Sweden). Dept. of Chemical Engineering and Technology

    2004-07-01

    high costs. However heat sinks are unavoidable from a system perspective and there are potential cost savings since a low-pressure steam turbines will not be required if heat driven cooling is implemented. The fuel utilization for some technologies (not necessarily the best technology) was evaluated in two different scenarios: 1) with electricity production from coal; and 2) with electricity production from natural gas. It is shown in the scenarios that the heat driven cooling technologies give lower fuel consumption as compared producing electricity as an intermediate product before cooling is produced. Further it should be noted that electricity is produced, not consumed, if heat is used directly for the production of cooling. We claim that cost effective solutions for district heat driven chillers and/or combined production of electricity and district cooling can be found in all climates with high enough density of heating and cooling demands. It was found that district heat driven chillers can be very energy efficient in warm and humid climates since desiccant systems are an effective way of handling latent cooling loads. In dry climates, with low latent loads, water distributed cooling has a large potential and absorption cooling will give high fuel utilization seen from a system perspective. In climates where water shortage is a problem it is possible that the temperature lift of the conventional absorption chiller has to be increased in order to be able to use dry cooling towers. The temperature lift can be increased by changing the chiller design or by using a different working pair. Heat driven cooling can be integrated into an energy system in different ways. In USA and Japan, district heating is not well developed. Instead small, distributed combined heat and power (CHP) plants with high exhaust temperatures are widespread. Cooling is often produced, in these regions, through absorption cooling (using heat from CHP) or compression chillers depending on

  5. Proceedings: Cooling tower and advanced cooling systems conference

    International Nuclear Information System (INIS)

    1995-02-01

    This Cooling Tower and Advanced Cooling Systems Conference was held August 30 through September 1, 1994, in St. Petersburg, Florida. The conference was sponsored by the Electric Power Research Institute (EPRI) and hosted by Florida Power Corporation to bring together utility representatives, manufacturers, researchers, and consultants. Nineteen technical papers were presented in four sessions. These sessions were devoted to the following topics: cooling tower upgrades and retrofits, cooling tower performance, cooling tower fouling, and dry and hybrid systems. On the final day, panel discussions addressed current issues in cooling tower operation and maintenance as well as research and technology needs for power plant cooling. More than 100 people attended the conference. This report contains the technical papers presented at the conference. Of the 19 papers, five concern cooling tower upgrades and retrofits, five to cooling tower performance, four discuss cooling tower fouling, and five describe dry and hybrid cooling systems. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database

  6. Forced draft wet cooling systems

    International Nuclear Information System (INIS)

    Daubert, A.; Caudron, L.; Viollet, P.L.

    1975-01-01

    The disposal of the heat released from a 1000MW power plant needs a natural draft tower of about 130m of diameter at the base, and 170m height, or a cooling system with a draft forced by about forty vans, a hundred meters in diameter, and thirty meters height. The plumes from atmospheric cooling systems form, in terms of fluid mechanics, hot jets in a cross current. They consist in complex flows that must be finely investigated with experimental and computer means. The study, currently being performed at the National Hydraulics Laboratory, shows that as far as the length and height of visible plumes are concerned, the comparison is favorable to some types of forced draft cooling system, for low and medium velocities, (below 5 or 6m/s at 10m height. Beyond these velocities, the forced draft sends the plume up to smaller heights, but the plume is generally more dilute [fr

  7. TPX heating and cooling system

    International Nuclear Information System (INIS)

    Kungl, D.J.; Knutson, D.S.; Costello, J.; Stoenescu, S.; Yemin, L.

    1995-01-01

    TPX, while having primarily super-conducting coils that do not require water cooling, still has very significant water cooling requirements for the plasma heating systems, vacuum vessel, plasma facing components, diagnostics, and ancillary equipment. This is accentuated by the 1000-second pulse requirement. Two major design changes, which have significantly affected the TPX Heating and Cooling System, have been made since the conceptual design review in March of 1993. This paper will discuss these changes and review the current status of the conceptual design. The first change involves replacing the vacuum vessel neutron shielding configuration of lead/glass composite tile by a much simpler and more reliable borated water shield. The second change reduces the operating temperature of the vacuum vessel from 150 C to ≥50 C. With this temperature reduction, all in-vessel components and the vessel will be supplied by coolant at a common ≥50 C inlet temperature. In all, six different heating and cooling supply requirements (temperature, pressure, water quality) for the various TPX components must be met. This paper will detail these requirements and provide an overview of the Heating and Cooling System design while focusing on the ramifications of the TPX changes described above

  8. Cooling system for auxiliary reactor component

    International Nuclear Information System (INIS)

    Fujihira, Tomoko.

    1991-01-01

    A cooling system for auxiliary reactor components comprises three systems, that is, two systems of reactor component cooling water systems (RCCW systems) and a high pressure component cooling water system (HPCCW system). Connecting pipelines having partition valves are intervened each in a cooling water supply pipeline to an emmergency component of each of the RCCW systems, a cooling water return pipeline from the emmergency component of each of the RCCW systems, a cooling water supply pipeline to each of the emmergency components of one of the RCCW system and the HPCCW system and a cooling water return pipeline from each of the emmergency components of one of the RCCW system and the HPCCW system. With such constitution, cooling water can be supplied also to the emmergency components in the stand-by system upon periodical inspection or ISI, thereby enabling to improve the backup performance of the emmergency cooling system. (I.N.)

  9. System for cooling a cabinet

    DEFF Research Database (Denmark)

    2015-01-01

    The present disclosure relates to a cooling system comprising an active magnetic regenerator having a cold side and a hot side, a hot side heat exchanger connected to the hot side of the magnetic regenerator, one or more cold side heat exchangers, and a cold store reservoir comprising a volume...

  10. Lamination cooling system formation method

    Science.gov (United States)

    Rippel, Wally E [Altadena, CA; Kobayashi, Daryl M [Monrovia, CA

    2009-05-12

    An electric motor, transformer or inductor having a cooling system. A stack of laminations have apertures at least partially coincident with apertures of adjacent laminations. The apertures define straight or angled cooling-fluid passageways through the lamination stack. Gaps between the adjacent laminations are sealed by injecting a heat-cured sealant into the passageways, expelling excess sealant, and heat-curing the lamination stack. Manifold members adjoin opposite ends of the lamination stack, and each is configured with one or more cavities to act as a manifold to adjacent passageway ends. Complex manifold arrangements can create bidirectional flow in a variety of patterns.

  11. Gas hydrate cool storage system

    Science.gov (United States)

    Ternes, M.P.; Kedl, R.J.

    1984-09-12

    The invention presented relates to the development of a process utilizing a gas hydrate as a cool storage medium for alleviating electric load demands during peak usage periods. Several objectives of the invention are mentioned concerning the formation of the gas hydrate as storage material in a thermal energy storage system within a heat pump cycle system. The gas hydrate was formed using a refrigerant in water and an example with R-12 refrigerant is included. (BCS)

  12. Cooling Tower Overhaul of Secondary Cooling System in HANARO

    Energy Technology Data Exchange (ETDEWEB)

    Park, Young Chul; Lee, Young Sub; Jung, Hoan Sung; Lim, In Chul [KAERI, Daejeon (Korea, Republic of)

    2007-07-01

    HANARO, an open-tank-in-pool type research reactor of 30 MWth power in Korea, has been operating normally since its initial criticality in February, 1995. For the last about ten years, A cooling tower of a secondary cooling system has been operated normally in HANARO. Last year, the cooling tower has been overhauled for preservative maintenance including fills, eliminators, wood support, water distribution system, motors, driving shafts, gear reducers, basements, blades and etc. This paper describes the results of the overhaul. As results, it is confirmed that the cooling tower maintains a good operability through a filed test. And a cooling capability will be tested when a wet bulb temperature is maintained about 28 .deg. C in summer and the reactor is operated with the full power.

  13. Information technology equipment cooling system

    Science.gov (United States)

    Schultz, Mark D.

    2014-06-10

    According to one embodiment, a system for removing heat from a rack of information technology equipment may include a sidecar indoor air to liquid heat exchanger that cools warm air generated by the rack of information technology equipment. The system may also include a liquid to liquid heat exchanger and an outdoor heat exchanger. The system may further include configurable pathways to connect and control fluid flow through the sidecar heat exchanger, the liquid to liquid heat exchanger, the rack of information technology equipment, and the outdoor heat exchanger based upon ambient temperature and/or ambient humidity to remove heat from the rack of information technology equipment.

  14. Cooling system for superconducting magnet

    Science.gov (United States)

    Gamble, Bruce B.; Sidi-Yekhlef, Ahmed

    1998-01-01

    A cooling system is configured to control the flow of a refrigerant by controlling the rate at which the refrigerant is heated, thereby providing an efficient and reliable approach to cooling a load (e.g., magnets, rotors). The cooling system includes a conduit circuit connected to the load and within which a refrigerant circulates; a heat exchanger, connected within the conduit circuit and disposed remotely from the load; a first and a second reservoir, each connected within the conduit, each holding at least a portion of the refrigerant; a heater configured to independently heat the first and second reservoirs. In a first mode, the heater heats the first reservoir, thereby causing the refrigerant to flow from the first reservoir through the load and heat exchanger, via the conduit circuit and into the second reservoir. In a second mode, the heater heats the second reservoir to cause the refrigerant to flow from the second reservoir through the load and heat exchanger via the conduit circuit and into the first reservoir.

  15. Turbine airfoil with ambient cooling system

    Science.gov (United States)

    Campbell, Jr, Christian X.; Marra, John J.; Marsh, Jan H.

    2016-06-07

    A turbine airfoil usable in a turbine engine and having at least one ambient air cooling system is disclosed. At least a portion of the cooling system may include one or more cooling channels configured to receive ambient air at about atmospheric pressure. The ambient air cooling system may have a tip static pressure to ambient pressure ratio of at least 0.5, and in at least one embodiment, may include a tip static pressure to ambient pressure ratio of between about 0.5 and about 3.0. The cooling system may also be configured such that an under root slot chamber in the root is large to minimize supply air velocity. One or more cooling channels of the ambient air cooling system may terminate at an outlet at the tip such that the outlet is aligned with inner surfaces forming the at least one cooling channel in the airfoil to facilitate high mass flow.

  16. Emergency cooling system for a gas-cooled nuclear reactor

    International Nuclear Information System (INIS)

    Cook, R.K.; Burylo, P.S.

    1975-01-01

    The site of the gas-cooled reactor with direct-circuit gas turbine is preferably the sea coast. An emergency cooling system with safety valve and emergency feed-water addition is designed which affects at least a part of the reactor core coolant after leaving the core. The emergency cooling system includes a water emergency cooling circuit with heat exchanger for the core coolant. The safety valve releases water or steam from the emergency coolant circuit when a certain temperature is exceeded; this is, however, replaced by the emergency feed-water. If the gas turbine exhibits a high and low pressure turbine stage, which are flowed through by coolant one behind another, a part of the coolant can be removed in front of each part turbine by two valves and be added to the haet exchanger. (RW/LH) [de

  17. Simulations of floor cooling system capacity

    International Nuclear Information System (INIS)

    Odyjas, Andrzej; Górka, Andrzej

    2013-01-01

    Floor cooling system capacity depends on its physical and operative parameters. Using numerical simulations, it appears that cooling capacity of the system largely depends on the type of cooling loads occurring in the room. In the case of convective cooling loads capacity of the system is small. However, when radiation flux falls directly on the floor the system significantly increases productivity. The article describes the results of numerical simulations which allow to determine system capacity in steady thermal conditions, depending on the type of physical parameters of the system and the type of cooling load occurring in the room. Moreover, the paper sets out the limits of system capacity while maintaining a minimum temperature of the floor surface equal to 20 °C. The results are helpful for designing system capacity in different type of cooling loads and show maximum system capacity in acceptable thermal comfort condition. -- Highlights: ► We have developed numerical model for simulation of floor cooling system. ► We have described floor system capacity depending on its physical parameters. ► We have described floor system capacity depending on type of cooling loads. ► The most important in the obtained cooling capacities is the type of cooling loads. ► The paper sets out the possible maximum cooling floor system capacity

  18. A solar cooling system for greenhouse food production in hot climates

    Energy Technology Data Exchange (ETDEWEB)

    Davies, P.A. [School of Engineering, University of Warwick, Coventry CV4 7AL (United Kingdom)

    2005-12-01

    This study is motivated by the difficulty of cultivating crops in very hot countries and by the tendency for some such countries to become dependent on imported food. Liquid desiccation with solar regeneration is considered as maintained at or above room temperature, and this was confirgreenhouses. Previous studies demonstrated the technical feasibility of the desiccation-evaporation process, but mainly in the context of human dwellings. In the proposed cycle, the air is dried prior to entering the evaporative cooler. This lowers the wet-bulb temperature of the air. The cooling is assisted by using the regenerator to partially shade the greenhouse. The heat of desiccation is transferred and rejected at the outlet of the greenhouse. The cycle is analysed and results given for the climate of the The Gulf, based on weather data from Abu Dhabi. Taking examples of a temperate crop (lettuce), a tropical crop (tomato) and a tropical crop resistant to high temperatures (cucumber) we estimate the extension in growing seasons relative to (i) a greenhouse with simple fan ventilation (ii) a greenhouse with conventional evaporative cooling. Compared to option (ii), the proposed system lowers summers maximum temperatures by 5{sup o}C. This will extend the optimum season for lettuce cultivation from 3 to 6 months of the year and, for tomato and cucumber, from 7 months to the whole year. (author)

  19. Environmental effects of cooling systems

    International Nuclear Information System (INIS)

    1980-01-01

    Since the International Atomic Energy Agency published in 1974 Thermal Discharges at Nuclear Power Stations (Technical Reports Series No.155), much progress has been made in the understanding of phenomena related to thermal discharges. Many studies have been performed in Member States and from 1973 to 1978 the IAEA sponsored a co-ordinated research programme on 'Physical and Biological Effects on the Environment of Cooling Systems and Thermal Discharges from Nuclear Power Stations'. Seven laboratories from Canada, the Federal Republic of Germany, India and the United States of America were involved in this programme, and a lot of new information has been obtained during the five years' collaboration. The progress of the work was discussed at annual co-ordination meetings and the results are presented in the present report. It complements the previous report mentioned above as it deals with several questions that were not answered in 1974. With the conclusion of this co-ordinated programme, it is obvious that some problems have not yet been resolved and that more work is necessary to assess completely the impact of cooling systems on the environment. It is felt, however, that the data gathered here will bring a substantial contribution to the understanding of the subject

  20. Evaporative cooling enhanced cold storage system

    Science.gov (United States)

    Carr, P.

    1991-10-15

    The invention provides an evaporatively enhanced cold storage system wherein a warm air stream is cooled and the cooled air stream is thereafter passed into contact with a cold storage unit. Moisture is added to the cooled air stream prior to or during contact of the cooled air stream with the cold storage unit to effect enhanced cooling of the cold storage unit due to evaporation of all or a portion of the added moisture. Preferably at least a portion of the added moisture comprises water condensed during the cooling of the warm air stream. 3 figures.

  1. Solar-powered cooling system

    Science.gov (United States)

    Farmer, Joseph C.

    2015-07-28

    A solar-powered adsorption-desorption refrigeration and air conditioning system that uses nanostructural materials such as aerogels, zeolites, and sol gels as the adsorptive media. Refrigerant molecules are adsorbed on the high surface area of the nanostructural material while the material is at a relatively low temperature, perhaps at night. During daylight hours, when the nanostructural materials is heated by the sun, the refrigerant are thermally desorbed from the surface of the aerogel, thereby creating a pressurized gas phase in the vessel that contains the aerogel. This solar-driven pressurization forces the heated gaseous refrigerant through a condenser, followed by an expansion valve. In the condenser, heat is removed from the refrigerant, first by circulating air or water. Eventually, the cooled gaseous refrigerant expands isenthalpically through a throttle valve into an evaporator, in a fashion similar to that in more conventional vapor recompression systems.

  2. Dust Generation Resulting from Desiccation of Playa Systems: Studies on Mono and Owens Lakes, California

    Science.gov (United States)

    Gill, Thomas Edward

    1995-01-01

    Playas, evaporites, and aeolian sediments frequently are linked components within the Earth system. Anthropogenic water diversions from terminal lakes form playas that release fugitive dust. These actions, documented worldwide, simulate aeolian processes activated during palaeoclimatic pluvial/interpluvial transitions, and have significant environmental impacts. Pluvial lakes Russell and Owens in North America's Great Basin preceded historic Mono and Owens Lakes, now desiccated by water diversions into dust-generating, evaporite -encrusted playas. Geochemical and hydrologic cycles acting on the Owens (Dry) Lake playa form three distinct crust types each year. Although initial dust production results from deflation of surface efflorescences after the playa dries, most aerosols are created by saltation abrasion of salt/silt/clay crusts at crust/ sand sheet contacts. The warm-season, clastic "cemented" crust is slowest to degrade into dust. If the playa surface is stabilized by an unbroken, non-efflorescent crust, dust formation is discouraged. When Mono Lake's surFace elevation does not exceed 1951 meters (6400 feet), similar processes will also generate dust from its saline lower playa. Six factors--related to wind, topography, groundwater, and sediments--control dust formation at both playas. These factors were combined into a statistical model relating suspended dust concentrations to playa/lake morphometry. The model shows the extent and severity of Mono Lake dust storms expands significantly below the surface level 6376 feet (1943.5 meters). X-ray diffraction analysis of Mono Basin soils, playa sediments, and aerosols demonstrates geochemical cycling of materials through land, air and water during Mono Lake's 1982 low stand. Soils and clastic playa sediments contain silicate minerals and tephra. Saline groundwater deposited calcite, halite, thenardite, gaylussite, burkeite and glauberite onto the lower playa. Aerosols contained silicate minerals (especially

  3. Dry and mixed air cooling systems

    International Nuclear Information System (INIS)

    Gutner, Gidali.

    1975-01-01

    The various dry air cooling systems now in use or being developed are classified. The main dimensioning parameters are specified and the main systems already built are given with their characteristics. The available data allow dry air cooling to be situated against the other cooling modes and so specify the aim of the research or currently developed works. Some systems at development stages are briefly described. The interest in mixed cooling (assisted draft) and the principal available systems is analyzed. A program of research is outlined [fr

  4. Desiccant-Based Preconditioning Market Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, J.

    2001-01-11

    A number of important conclusions can be drawn as a result of this broad, first-phase market evaluation. The more important conclusions include the following: (1) A very significant market opportunity will exist for specialized outdoor air-handling units (SOAHUs) as more construction and renovation projects are designed to incorporate the recommendations made by the ASHRAE 62-1989 standard. Based on this investigation, the total potential market is currently $725,000,000 annually (see Table 6, Sect. 3). Based on the market evaluations completed, it is estimated that approximately $398,000,000 (55%) of this total market could be served by DBC systems if they were made cost-effective through mass production. Approximately $306,000,000 (42%) of the total can be served by a non-regenerated, desiccant-based total recovery approach, based on the information provided by this investigation. Approximately $92,000,000 (13%) can be served by a regenerated desiccant-based cooling approach (see Table 7, Sect. 3). (2) A projection of the market selling price of various desiccant-based SOAHU systems was prepared using prices provided by Trane for central-station, air-handling modules currently manufactured. The wheel-component pricing was added to these components by SEMCO. This resulted in projected pricing for these systems that is significantly less than that currently offered by custom suppliers (see Table 4, Sect. 2). Estimated payback periods for all SOAHU approaches were quite short when compared with conventional over-cooling and reheat systems. Actual paybacks may vary significantly depending on site-specific considerations. (3) In comparing cost vs benefit of each SOAHU approach, it is critical that the total system design be evaluated. For example, the cost premium of a DBC system is very significant when compared to a conventional air handling system, yet the reduced chiller, boiler, cooling tower, and other expense often equals or exceeds this premium, resulting in a

  5. A combined capillary cooling system for cooling fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Ana Paula; Pelizza, Pablo Rodrigo; Galante, Renan Manozzo; Bazzo, Edson [Universidade Federal de Santa Catarina (LabCET/UFSC), Florianopolis, SC (Brazil). Dept. de Engenharia Mecanica. Lab. de Combustao e Engenharia de Sistemas Termicos], Emails: ana@labcet.ufsc.br, pablo@labcet.ufsc.br, renan@labcet.ufsc.br, ebazzo@emc.ufsc.br

    2010-07-01

    The operation temperature control has an important influence over the PEMFC (Proton Exchange Membrane Fuel Cell) performance. A two-phase heat transfer system is proposed as an alternative for cooling and thermal control of PEMFC. The proposed system consists of a CPL (Capillary Pumped Loop) connected to a set of constant conductance heat pipes. In this work ceramic wick and stainless mesh wicks have been used as capillary structure of the CPL and heat pipes, respectively. Acetone has been used as the working fluid for CPL and deionized water for the heat pipes. Experimental results of three 1/4 inch stainless steel outlet diameter heats pipes and one CPL have been carried out and presented in this paper. Further experiments are planned coupling the proposed cooling system to a module which simulates the fuel cell. (author)

  6. Developments in power plant cooling systems

    International Nuclear Information System (INIS)

    Agarwal, N.K.

    1993-01-01

    A number of cooling systems are used in the power plants. The condenser cooling water system is one of the most important cooling systems in the plant. The system comprises a number of equipment. Plants using sea water for cooling are designed for the very high corrosion effects due to sea water. Developments are taking place in the design, materials of construction as well as protection philosophies for the various equipment. Power optimisation of the cycle needs to be done in order to design an economical system. Environmental (Protection) Act places certain limitations on the effluents from the plant. An attempt has been made in this paper to outline the developing trends in the various equipment in the condenser cooling water systems used at the inland as well as coastal locations. (author). 5 refs., 6 refs

  7. Conduction cooling systems for linear accelerator cavities

    Science.gov (United States)

    Kephart, Robert

    2017-05-02

    A conduction cooling system for linear accelerator cavities. The system conducts heat from the cavities to a refrigeration unit using at least one cavity cooler interconnected with a cooling connector. The cavity cooler and cooling connector are both made from solid material having a very high thermal conductivity of approximately 1.times.10.sup.4 W m.sup.-1 K.sup.-1 at temperatures of approximately 4 degrees K. This allows for very simple and effective conduction of waste heat from the linear accelerator cavities to the cavity cooler, along the cooling connector, and thence to the refrigeration unit.

  8. Hot gas path component cooling system

    Science.gov (United States)

    Lacy, Benjamin Paul; Bunker, Ronald Scott; Itzel, Gary Michael

    2014-02-18

    A cooling system for a hot gas path component is disclosed. The cooling system may include a component layer and a cover layer. The component layer may include a first inner surface and a second outer surface. The second outer surface may define a plurality of channels. The component layer may further define a plurality of passages extending generally between the first inner surface and the second outer surface. Each of the plurality of channels may be fluidly connected to at least one of the plurality of passages. The cover layer may be situated adjacent the second outer surface of the component layer. The plurality of passages may be configured to flow a cooling medium to the plurality of channels and provide impingement cooling to the cover layer. The plurality of channels may be configured to flow cooling medium therethrough, cooling the cover layer.

  9. The development of air cooled condensation systems

    International Nuclear Information System (INIS)

    Bodas, J.

    1990-01-01

    EGI - Contracting/Engineering has had experience with the development of air cooled condensing systems since the 1950's. There are two accepted types of dry cooling systems,the direct and the indirect ones. Due to the fact that the indirect system has several advantages over the direct one, EGI's purpose was to develop an economic, reliable and efficient type of indirect cooling system, both for industrial and power station applications. Apart from system development, the main components of dry cooling plant have been developed as well. These are: the water-to-air heat exchangers; the direct contact (DC, or jet) condenser; the cooling water circulating pumps and recovery turbines; and the peak cooling/preheating units. As a result of this broad development work which was connected with intensive market activity, EGI has supplied about 50% of the dry cooling plants employed for large power stations all over the world. This means that today the cumulated capacity of power units using Heller type dry cooling systems supplied and contracted by EGI is over 6000 MW

  10. Cooling system upon reactor isolation

    International Nuclear Information System (INIS)

    Yamamoto, Kohei; Oda, Shingo; Miura, Satoshi

    1992-01-01

    A water level indicator for detecting the upper limit value for a range of using a suppression pool and a thermometer for detecting the temperature of water at the cooling water inlet of an auxiliary device are disposed. When a detection signal is intaken and the water level in the suppression pool reach the upper limit value for the range of use, a secondary flow rate control value is opened and a primary flow rate control valve is closed. When the temperature of the water at the cooling water inlet of the auxiliary device reaches the upper limit value, the primary and the secondary flow rate control valves are opened. During a stand-by state, the first flow rate control valve is set open and the secondary flow rate control valve is set closed respectively. After reactor isolation, if a reactor water low level signal is received, an RCIC pump is actuated and cooling water is sent automatically under pressure from a condensate storage tank to the reactor and the auxiliary device requiring coolants by way of the primary flow rate control valve. Rated flow rate is ensured in the reactor and cooling water of an appropriate temperature can be supplied to the auxiliary device. (N.H.)

  11. Elastocaloric cooling materials and systems

    Science.gov (United States)

    Takeuchi, Ichiro

    2015-03-01

    We are actively pursuing applications of thermoelastic (elastocaloric) cooling using shape memory alloys. Latent heat associated with martensitic transformation of shape memory alloys can be used to run cooling cycles with stress-inducing mechanical drives. The coefficient of performance of thermoelastic cooling materials can be as high as 11 with the directly measured DT of around 17 °C. Depending on the stress application mode, the number of cycles to fatigue can be as large as of the order of 105. Efforts to design and develop thermoelastic alloys with long fatigue life will be discussed. The current project at the University of Maryland is focused on development of building air-conditioners, and at Maryland Energy and Sensor Technologies, smaller scale commercial applications are being pursued. This work is carried out in collaboration with Jun Cui, Yiming Wu, Suxin Qian, Yunho Hwang, Jan Muehlbauer, and Reinhard Radermacher, and it is funded by the ARPA-E BEETIT program and the State of Maryland.

  12. Comfortable, high-efficiency heat pump with desiccant-coated, water-sorbing heat exchangers.

    Science.gov (United States)

    Tu, Y D; Wang, R Z; Ge, T S; Zheng, X

    2017-01-12

    Comfortable, efficient, and affordable heating, ventilation, and air conditioning systems in buildings are highly desirable due to the demands of energy efficiency and environmental friendliness. Traditional vapor-compression air conditioners exhibit a lower coefficient of performance (COP) (typically 2.8-3.8) owing to the cooling-based dehumidification methods that handle both sensible and latent loads together. Temperature- and humidity-independent control or desiccant systems have been proposed to overcome these challenges; however, the COP of current desiccant systems is quite small and additional heat sources are usually needed. Here, we report on a desiccant-enhanced, direct expansion heat pump based on a water-sorbing heat exchanger with a desiccant coating that exhibits an ultrahigh COP value of more than 7 without sacrificing any comfort or compactness. The pump's efficiency is doubled compared to that of pumps currently used in conventional room air conditioners, which is a revolutionary HVAC breakthrough. Our proposed water-sorbing heat exchanger can independently handle sensible and latent loads at the same time. The desiccants adsorb moisture almost isothermally and can be regenerated by condensation heat. This new approach opens up the possibility of achieving ultrahigh efficiency for a broad range of temperature- and humidity-control applications.

  13. Cooling Grapple System for FMEF hot cell

    International Nuclear Information System (INIS)

    Semmens, L.S.; Frandsen, G.B.; Tome, R.

    1983-01-01

    A Cooling Grapple System was designed and built to handle fuel assemblies within the FMEF hot cell. The variety of functions for which it is designed makes it unique from grapples presently in use. The Cooling Grapple can positively grip and transport assemblies vertically, retrieve assemblies from molten sodium where six inches of grapple tip is submerged, cool 7 kw assemblies in argon, and service an in-cell area of 372 m 2 (4000 ft 2 ). Novel and improved operating and maintenance features were incorporated in the design including a shear pin and mechanical catcher system to prevent overloading the grapple while allowing additional reaction time for crane shutdown

  14. The ATLAS IBL CO2 Cooling System

    CERN Document Server

    Verlaat, Bartholomeus; The ATLAS collaboration

    2016-01-01

    The Atlas Pixel detector has been equipped with an extra B-layer in the space obtained by a reduced beam pipe. This new pixel detector called the ATLAS Insertable B-Layer (IBL) is installed in 2014 and is operational in the current ATLAS data taking. The IBL detector is cooled with evaporative CO2 and is the first of its kind in ATLAS. The ATLAS IBL CO2 cooling system is designed for lower temperature operation (<-35⁰C) than the previous developed CO2 cooling systems in High Energy Physics experiments. The cold temperatures are required to protect the pixel sensors for the high expected radiation dose up to 550 fb^-1 integrated luminosity. This paper describes the design, development, construction and commissioning of the IBL CO2 cooling system. It describes the challenges overcome and the important lessons learned for the development of future systems which are now under design for the Phase-II upgrade detectors.

  15. Dry cooling systems with plastic surfaces

    International Nuclear Information System (INIS)

    Roma, Carlo; Leonelli, Vincenzo

    1975-01-01

    Research and experiments made on dry cooling systems with plastic surfaces are described. The demonstration program planned in Italy for a 100Gcal/h dry cooling system is exposed, and an installation intended for a large 1300Mwe nuclear power station is described with reference to the assembly (exploitation and maintenance included). The performance and economic data relating to this installation are also exposed [fr

  16. Field Test and Performance Verification: Integrated Active Desiccant Rooftop Hybrid System Installed in a School - Final Report: Phase 4A

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, J

    2005-12-21

    This report summarizes the results of a field verification pilot site investigation that involved the installation of a hybrid integrated active desiccant/vapor-compression rooftop heating, ventilation, and air-conditioning (HVAC) unit at an elementary school in the Atlanta Georgia area. For years, the school had experienced serious humidity and indoor air quality (IAQ) problems that had resulted in occupant complaints and microbial (mold) remediation. The outdoor air louvers of the original HVAC units had been closed in an attempt to improve humidity control within the space. The existing vapor compression variable air volume system was replaced by the integrated active desiccant rooftop (IADR) system that was described in detail in an Oak Ridge National Laboratory (ORNL) report published in 2004 (Fischer and Sand 2004). The IADR system and all space conditions have been monitored remotely for more than a year. The hybrid system was able to maintain both the space temperature and humidity as desired while delivering the outdoor air ventilation rate required by American Society of Heating, Refrigerating and Air-Conditioning Engineers Standard 62. The performance level of the IADR unit and the overall system energy efficiency was measured and found to be very high. A comprehensive IAQ investigation was completed by the Georgia Tech Research Institute before and after the system retrofit. Before-and-after data resulting from this investigation confirmed a significant improvement in IAQ, humidity control, and occupant comfort. These observations were reported by building occupants and are echoed in a letter to ORNL from the school district energy manager. The IADR system was easily retrofitted in place of the original rooftop system using a custom curb adapter. All work was completed in-house by the school's maintenance staff over one weekend. A subsequent cost analysis completed for the school district by the design engineer of record concluded that the IADR

  17. Solar-Powered, Liquid-Desiccant Air Conditioner for Low-Electricity Humidity Control: Report and Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    Dean, J.; Kozubal, E.; Herrmann, L.; Miller, J.; Lowenstein, A.; Barker, G.; Slayzak, S.

    2012-11-01

    The primary objective of this project was to demonstrate the capabilities of a new high-performance, liquid-desiccant dedicated outdoor air system (DOAS) to enhance cooling efficiency and comfort in humid climates while substantially reducing electric peak demand at Tyndall Air Force Base (AFB), which is 12 miles east of Panama City, Florida.

  18. Core test reactor shield cooling system analysis

    International Nuclear Information System (INIS)

    Larson, E.M.; Elliott, R.D.

    1971-01-01

    System requirements for cooling the shield within the vacuum vessel for the core test reactor are analyzed. The total heat to be removed by the coolant system is less than 22,700 Btu/hr, with an additional 4600 Btu/hr to be removed by the 2-inch thick steel plate below the shield. The maximum temperature of the concrete in the shield can be kept below 200 0 F if the shield plug walls are kept below 160 0 F. The walls of the two ''donut'' shaped shield segments, which are cooled by the water from the shield and vessel cooling system, should operate below 95 0 F. The walls of the center plug, which are cooled with nitrogen, should operate below 100 0 F. (U.S.)

  19. Field Study on Humidification Performance of a Desiccant Air-Conditioning System Combined with a Heat Pump

    Directory of Open Access Journals (Sweden)

    Koichi Kawamoto

    2016-01-01

    Full Text Available A desiccant air-conditioning system was developed as a latent-load-processing air conditioner in a dedicated outdoor air system during the summer. This study investigated the application of this air-conditioning system to humidification during the winter without using make-up water, thereby eliminating the cause of microbial contamination in air-conditioning systems. The experiments were conducted with a system used for summer applications to determine the feasibility of adsorbing vapor from outdoor air and supplying it to an indoor space. The humidification performance, energy efficiency, and operating conditions were examined. Although the conditions were subpar because the experiments were performed with an actual dedicated outdoor air system, the results showed that it is possible to supply air with a minimum humidity ratio of 5.8 g/kg dry air (DA when the humidity ratio of outdoor air ranges from 1.8 to 2.3 g/kg DA. The minimum humidification performance required for a dedicated outdoor air system was achieved by increasing the airflow rate of the moisture-adsorption side to 2–3 times that of the humidification side. In addition, air leaking from the moisture-adsorption side to the humidification side, improving the mechanical structure, such as by the insulation of the moisture-adsorption side, and an efficient operating method were examined for humidification during the winter.

  20. Understanding aging in containment cooling systems

    International Nuclear Information System (INIS)

    Lofaro, R.J.

    1993-01-01

    A study has been performed to assess the effects of aging in nuclear power plant containment cooling systems. Failure records from national databases, as well as plant specific data were reviewed and analyzed to identify aging characteristics for this system. The predominant aging mechanisms were determined, along with the most frequently failed components and their associated failure modes. This paper discusses the aging mechanisms present in the containment spray system and the containment fan cooler system, which are two systems used to provide the containment cooling function. The failure modes, along with the relative frequency of each is also discussed

  1. New Protective Measures for Cooling Systems

    International Nuclear Information System (INIS)

    Carter, D. Anthony; Nonohue, Jonh M.

    1974-01-01

    Cooling water treatments have been updated and improved during the last few years. Particularly important are the nontoxic programs which conform plant cooling water effluents to local water quality standards without expenditures for capital equipment. The relationship between scaling and corrosion in natural waters has been recognized for many years. This relationship is the basis for the Langelier Saturation Index control method which was once widely applied to reduce corrosion in cooling water systems. It used solubility characteristics to maintain a very thin deposit on metal surfaces for preventing corrosion. This technique was rarely successful. That is, the solubility of calcium carbonate and most other inorganic salts depends on temperature. If good control exists on cold surfaces, excessive deposition results on the heat transfer tubes. Also, because water characteristic normally vary in a typical cooling system, precise control of scaling at both hot and cold surfaces is virtually impossible

  2. Cooling system with automated seasonal freeze protection

    Science.gov (United States)

    Campbell, Levi A.; Chu, Richard C.; David, Milnes P.; Ellsworth, Jr., Michael J.; Iyengar, Madhusudan K.; Simons, Robert E.; Singh, Prabjit; Zhang, Jing

    2016-05-24

    An automated multi-fluid cooling system and method are provided for cooling an electronic component(s). The cooling system includes a coolant loop, a coolant tank, multiple valves, and a controller. The coolant loop is at least partially exposed to outdoor ambient air temperature(s) during normal operation, and the coolant tank includes first and second reservoirs containing first and second fluids, respectively. The first fluid freezes at a lower temperature than the second, the second fluid has superior cooling properties compared with the first, and the two fluids are soluble. The multiple valves are controllable to selectively couple the first or second fluid into the coolant in the coolant loop, wherein the coolant includes at least the second fluid. The controller automatically controls the valves to vary first fluid concentration level in the coolant loop based on historical, current, or anticipated outdoor air ambient temperature(s) for a time of year.

  3. Rust Inhibitor And Fungicide For Cooling Systems

    Science.gov (United States)

    Adams, James F.; Greer, D. Clay

    1988-01-01

    Mixture of benzotriazole, benzoic acid, and fungicide prevents growth of rust and fungus. Water-based cooling mixture made from readily available materials prevents formation of metallic oxides and growth of fungi in metallic pipes. Coolant remains clear and does not develop thick sludge tending to collect in low points in cooling systems with many commercial rust inhibitors. Coolant compatible with iron, copper, aluminum, and stainless steel. Cannot be used with cadmium or cadmium-plated pipes.

  4. Sugars and Desiccation Tolerance in Seeds 1

    Science.gov (United States)

    Koster, Karen L.; Leopold, A. Carl

    1988-01-01

    Soluble sugars have been shown to protect liposomes and lobster microsomes from desiccation damage, and a protective role has been proposed for them in several anhydrous systems. We have studied the relationship between soluble sugar content and the loss of desiccation tolerance in the axes of germinating soybean (Glycine max L. Merr. cv Williams), pea (Pisum sativum L. cv Alaska), and corn (Zea mays L. cv Merit) axes. The loss of desiccation tolerance during imbibition was monitored by following the ability of seeds to germinate after desiccation following various periods of preimbibition and by following the rates of electrolyte leakage from dried, then rehydrated axes. Finally, we analyzed the soluble sugar contents of the axes throughout the transition from desiccation tolerance to intolerance. These analyses show that sucrose and larger oligosaccharides were consistently present during the tolerant stage, and that desiccation tolerance disappeared as the oligosaccharides were lost. The results support the idea that sucrose may serve as the principal agent of desiccation tolerance in these seeds, with the larger oligosaccharides serving to keep the sucrose from crystallizing. PMID:16666392

  5. Performance study of a heat pump driven and hollow fiber membrane-based two-stage liquid desiccant air dehumidification system

    International Nuclear Information System (INIS)

    Zhang, Ning; Yin, Shao-You; Zhang, Li-Zhi

    2016-01-01

    Graphical abstract: A heat pump driven, hollow fiber membrane-based two-stage liquid desiccant air dehumidification system. - Highlights: • A two-stage hollow fiber membrane based air dehumidification is proposed. • It is heat pump driven liquid desiccant system. • Performance is improved 20% upon single stage system. • The optimal first to second stage dehumidification area ratio is 1.4. - Abstract: A novel compression heat pump driven and hollow fiber membrane-based two-stage liquid desiccant air dehumidification system is presented. The liquid desiccant droplets are prevented from crossing over into the process air by the semi-permeable membranes. The isoenthalpic processes are changed to quasi-isothermal processes by the two-stage dehumidification processes. The system is set up and a model is proposed for simulation. Heat and mass capacities in the system, including the membrane modules, the condenser, the evaporator and the heat exchangers are modeled in detail. The model is also validated experimentally. Compared with a single-stage dehumidification system, the two-stage system has a lower solution concentration exiting from the dehumidifier and a lower condensing temperature. Thus, a better thermodynamic system performance is realized and the COP can be increased by about 20% under the typical hot and humid conditions in Southern China. The allocations of heat and mass transfer areas in the system are also investigated. It is found that the optimal regeneration to dehumidification area ratio is 1.33. The optimal first to second stage dehumidification area ratio is 1.4; and the optimal first to second stage regeneration area ratio is 1.286.

  6. Controlled cooling of an electronic system for reduced energy consumption

    Science.gov (United States)

    David, Milnes P.; Iyengar, Madhusudan K.; Schmidt, Roger R.

    2016-08-09

    Energy efficient control of a cooling system cooling an electronic system is provided. The control includes automatically determining at least one adjusted control setting for at least one adjustable cooling component of a cooling system cooling the electronic system. The automatically determining is based, at least in part, on power being consumed by the cooling system and temperature of a heat sink to which heat extracted by the cooling system is rejected. The automatically determining operates to reduce power consumption of the cooling system and/or the electronic system while ensuring that at least one targeted temperature associated with the cooling system or the electronic system is within a desired range. The automatically determining may be based, at least in part, on one or more experimentally obtained models relating the targeted temperature and power consumption of the one or more adjustable cooling components of the cooling system.

  7. Controlled cooling of an electronic system for reduced energy consumption

    Energy Technology Data Exchange (ETDEWEB)

    David, Milnes P.; Iyengar, Madhusudan K.; Schmidt, Roger R.

    2018-01-30

    Energy efficient control of a cooling system cooling an electronic system is provided. The control includes automatically determining at least one adjusted control setting for at least one adjustable cooling component of a cooling system cooling the electronic system. The automatically determining is based, at least in part, on power being consumed by the cooling system and temperature of a heat sink to which heat extracted by the cooling system is rejected. The automatically determining operates to reduce power consumption of the cooling system and/or the electronic system while ensuring that at least one targeted temperature associated with the cooling system or the electronic system is within a desired range. The automatically determining may be based, at least in part, on one or more experimentally obtained models relating the targeted temperature and power consumption of the one or more adjustable cooling components of the cooling system.

  8. Handling zone dividing method in packed bed liquid desiccant dehumidification/regeneration process

    International Nuclear Information System (INIS)

    Liu, X.H.; Jiang, Y.

    2009-01-01

    Dehumidifier and regenerator are the most significant components in liquid desiccant air-conditioning systems, in which air directly contacts liquid desiccant and heat and mass transfer process occurs between the two fluids. Heat transfer process and mass transfer process within dehumidifier/regenerator influence each other and should not be separately considered. Based on the previous reachable handling region analysis, a zonal method is proposed in present study. Four zones are divided in the psychrometric chart according to the relative position of inlet air to inlet desiccant including two dehumidification zones, zone A and zone D, and two regeneration zones, zone B and zone C. In zone A or C, mass transfer is key process, and counter-flow configuration has the best mass transfer performance and parallel-flow is the poorest in the same operating conditions. In zone B or D, heat transfer is governing process, parallel-flow has the best mass transfer performance and counter-flow is the poorest. In order to obtain better mass transfer performance, liquid desiccant should be cooled (in zone A) rather than air (in zone D) in dehumidifier, and liquid desiccant should be heated (in zone C) rather than air (in zone B) in regenerator. The divided zones and the corresponding zonal properties will be helpful to the design and optimization of dehumidifiers and regenerators.

  9. Preoperational test report, recirculation condenser cooling systems

    International Nuclear Information System (INIS)

    Clifton, F.T.

    1997-01-01

    This represents a preoperational test report for Recirculation Condenser Systems, Project W-030. Project W-030 provides a ventilation upgrade for the four Aging Waste Facility tanks. The four system provide condenser cooling water for vapor space cooling of tanks AY1O1, AY102, AZ1O1, AZ102. Each system consists of a valved piping loop, a pair of redundant recirculation pumps, a closed-loop evaporative cooling tower, and supporting instrumentation; equipment is located outside the farm on concrete slabs. Piping is routed to the each ventilation condenser inside the farm via below-grade concrete trenches. The tests verify correct system operation and correct indications displayed by the central Monitor and Control System

  10. Preoperational test report, recirculation condenser cooling systems

    Energy Technology Data Exchange (ETDEWEB)

    Clifton, F.T.

    1997-11-04

    This represents a preoperational test report for Recirculation Condenser Systems, Project W-030. Project W-030 provides a ventilation upgrade for the four Aging Waste Facility tanks. The four system provide condenser cooling water for vapor space cooling of tanks AY1O1, AY102, AZ1O1, AZ102. Each system consists of a valved piping loop, a pair of redundant recirculation pumps, a closed-loop evaporative cooling tower, and supporting instrumentation; equipment is located outside the farm on concrete slabs. Piping is routed to the each ventilation condenser inside the farm via below-grade concrete trenches. The tests verify correct system operation and correct indications displayed by the central Monitor and Control System.

  11. System for Cooling of Electronic Components

    Science.gov (United States)

    Vasil'ev, L. L.; Grakovich, L. P.; Dragun, L. A.; Zhuravlev, A. S.; Olekhnovich, V. A.; Rabetskii, M. I.

    2017-01-01

    Results of computational and experimental investigations of heat pipes having a predetermined thermal resistance and a system based on these pipes for air cooling of electronic components and diode assemblies of lasers are presented. An efficient compact cooling system comprising heat pipes with an evaporator having a capillary coating of a caked copper powder and a condenser having a developed outer finning, has been deviced. This system makes it possible to remove, to the ambient air, a heat flow of power more than 300 W at a temperature of 40-50°C.

  12. MULTIFUNCTIONAL SOLAR SYSTEMS FOR HEATING AND COOLING

    Directory of Open Access Journals (Sweden)

    Doroshenko A.V.

    2010-12-01

    Full Text Available The basic circuits of multifunctional solar systems of air drainage, heating (hot water supply and heating, cooling and air conditioning are developed on the basis of open absorption cycle with a direct absorbent regeneration. Basic decisions for new generation of gas-liquid solar collectors are developed. Heat-mass-transfer apparatus included in evaporative cooling system, are based on film interaction of flows of gas and liquid and in them, for the creation of nozzle, multi-channel structures from polymeric materials and porous ceramics are used. Preliminary analysis of multifunctional systems possibilities is implemented.

  13. Slab cooling system design using computer simulation

    NARCIS (Netherlands)

    Lain, M.; Zmrhal, V.; Drkal, F.; Hensen, J.L.M.

    2007-01-01

    For a new technical library building in Prague computer simulations were carried out to help design of slab cooling system and optimize capacity of chillers. In the paper is presented concept of new technical library HVAC system, the model of the building, results of the energy simulations for

  14. Radiant Heating and Cooling Systems. Part two

    DEFF Research Database (Denmark)

    Kim, Kwan Woo; Olesen, Bjarne W.

    2015-01-01

    Control of the heating and cooling system needs to be able to maintain the indoor temperatures within the comfort range under the varying internal loads and external climates. To maintain a stable thermal environment, the control system needs to maintain the balance between the heat gain...

  15. Annual DOE active solar heating and cooling contractors' review meeting. Premeeting proceedings and project summaries

    Energy Technology Data Exchange (ETDEWEB)

    None,

    1981-09-01

    Ninety-three project summaries are presented which discuss the following aspects of active solar heating and cooling: Rankine solar cooling systems; absorption solar cooling systems; desiccant solar cooling systems; solar heat pump systems; solar hot water systems; special projects (such as the National Solar Data Network, hybrid solar thermal/photovoltaic applications, and heat transfer and water migration in soils); administrative/management support; and solar collector, storage, controls, analysis, and materials technology. (LEW)

  16. Smart Cooling Controlled System Exploiting Photovoltaic Renewable Energy Systems

    Directory of Open Access Journals (Sweden)

    Ahmad Atieh

    2018-03-01

    Full Text Available A smart cooling system to control the ambient temperature of a premise in Amman, Jordan, is investigated and implemented. The premise holds 650 people and has 14 air conditioners with the cooling capacity ranging from 3 to 5 ton refrigerant (TR each. The control of the cooling system includes implementing different electronics circuits that are used to sense the ambient temperature and humidity, count the number of people in the premise and then turn ON/OFF certain air conditioner(s. The data collected by different electronic circuits are fed wirelessly to a microcontroller, which decides which air conditioner will be turned ON/OFF, its location and its desired set cooling temperature. The cooling system is integrated with an on-grid solar photovoltaic energy system to minimize the operational cost of the overall cooling system.

  17. Passive cooling systems in power reactors

    International Nuclear Information System (INIS)

    Aharon, J.; Harrari, R.; Weiss, Y.; Barnea, Y.; Katz, M.; Szanto, M.

    1996-01-01

    This paper reviews several R and D activities associated with the subject of passive cooling systems, conducted by the N.R.C.Negev thermohydraulic group. A short introduction considering different types of thermosyphons and their applications is followed by a detailed description of the experimental work, its results and conclusions. An ongoing research project is focused on the evaluation of the external dry air passive containment cooling system (PCCS) in the AP-600 (Westinghouse advanced pressurized water reactor). In this context some preliminary theoretical results and planned experimental research are for the fature described

  18. Power plant cooling systems: trends and challenges

    International Nuclear Information System (INIS)

    Rittenhouse, R.C.

    1979-01-01

    A novel design for an intake and discharge system at the Belle River plant is described followed by a general discussion of water intake screens and porous dikes for screening fish and zooplankton. The intake system for the San Onofre PWR plant is described and the state regulations controlling the use of water for power plants is discussed. The use of sewage effluent as a source of cooling water is mentioned with reference to the Palo Verde plant. Progress in dry cooling and a new wet/dry tower due to be installed at the San Juan plant towards the end of this year, complete the survey

  19. Stochastic cooling system in COSY

    International Nuclear Information System (INIS)

    Brittner, P.; Hacker, H.U.; Prasuhn, D.; Schug, G.; Singer, H.; Spiess, W.; Stassen, R.

    1994-01-01

    The stochastic cooler system in COSY is designed for proton kinetic energies between 0.8 and 2.5 GeV. Fabrication of the mechanical parts of the system is going on. Test results of the prototype measurements as well as data of the active RF-compontens are presented. (orig.)

  20. Stochastic cooling system in COSY

    Energy Technology Data Exchange (ETDEWEB)

    Brittner, P [Forschungszentrum Juelich GmbH (Germany); Hacker, H U [Forschungszentrum Juelich GmbH (Germany); Prasuhn, D [Forschungszentrum Juelich GmbH (Germany); Schug, G [Forschungszentrum Juelich GmbH (Germany); Singer, H [Forschungszentrum Juelich GmbH (Germany); Spiess, W [Forschungszentrum Juelich GmbH (Germany); Stassen, R [Forschungszentrum Juelich GmbH (Germany)

    1994-09-01

    The stochastic cooler system in COSY is designed for proton kinetic energies between 0.8 and 2.5 GeV. Fabrication of the mechanical parts of the system is going on. Test results of the prototype measurements as well as data of the active RF-compontens are presented. (orig.)

  1. Atmospheric impacts of evaporative cooling systems

    International Nuclear Information System (INIS)

    Carson, J.E.

    1976-10-01

    The report summarizes available information on the effects of various power plant cooling systems on the atmosphere. While evaporative cooling systems sharply reduce the biological impacts of thermal discharges in water bodies, they create (at least, for heat-release rates comparable to those of two-unit nuclear generating stations) atmospheric changes. For an isolated site such as required for a nuclear power plant, these changes are rather small and local, and usually environmentally acceptable. However, one cannot say with certainty that these effects will remain small as the number of reactors on a given site increases. There must exist a critical heat load for a specific site which, if exceeded, can create its own weather patterns, and thus create inadvertent weather changes such as rain and snow, severe thunderstorms, and tornadoes. Because proven mathematical models are not available, it is not now possible to forecast precisely the extent and frequency of the atmospheric effects of a particular heat-dissipation system at a particular site. Field research on many aspects of cooling system operation is needed in order to document and quantify the actual atmospheric changes caused by a given cooling system and to provide the data needed to develop and verify mathematical and physical models. The more important topics requiring field study are plume rise, fogging and icing (from certain systems), drift emission and deposition rates, chemical interactions, cloud and precipitation formation and critical heat-release rates

  2. The ATLAS IBL CO2 Cooling System

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00237783; The ATLAS collaboration; Zwalinski, L.; Bortolin, C.; Vogt, S.; Godlewski, J.; Crespo-Lopez, O.; Van Overbeek, M.; Blaszcyk, T.

    2017-01-01

    The ATLAS Pixel detector has been equipped with an extra B-layer in the space obtained by a reduced beam pipe. This new pixel detector called the ATLAS Insertable B-Layer (IBL) is installed in 2014 and is operational in the current ATLAS data taking. The IBL detector is cooled with evaporative CO2 and is the first of its kind in ATLAS. The ATLAS IBL CO2 cooling system is designed for lower temperature operation (<-35⁰C) than the previous developed CO2 cooling systems in High Energy Physics experiments. The cold temperatures are required to protect the pixel sensors for the high expected radiation dose up to 550 fb^-1 integrated luminosity.

  3. Open absorption system for cooling and air conditioning using membrane contactors. 2006 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Conde-Petit, M. [M. Conde Engineering, Zuerich (Switzerland); Weber, R. [Materials Science and Technology (EMPA), Abteilung Bautechnologien, Duebendorf (Switzerland)

    2006-11-15

    This illustrated annual report for 2006 for the Swiss Federal Office of Energy (SFOE) reports on work being done on the development of an open absorption system for cooling and air-conditioning. The report reviews the construction of a first prototype and the manufacture of its components. The conceptual design of this new type of air handling unit (AHU), operating with a liquid desiccant, is discussed. The AHU is to be autonomous and the system will not require additional mechanical refrigeration. It is to be thermally driven at temperatures below 80 {sup o}C. Waste heat sources, solar collectors, district heating plants and co-generation systems are targeted as providers of thermal energy at this temperature level. Work carried out is reported on, including that on two-stream membrane contactors.

  4. The performance of a temperature cascaded cogeneration system producing steam, cooling and dehumidification

    KAUST Repository

    Myat, Aung

    2013-02-01

    This paper discusses the performance of a temperature-cascaded cogeneration plant (TCCP), equipped with an efficient waste heat recovery system. The TCCP, also called a cogeneration system, produces four types of useful energy-namely, (i) electricity, (ii) steam, (iii) cooling and (iv) dehumidification-by utilizing single fuel source. The TCCP comprises a Capstone C-30 micro-turbine that generates nominal capacity of 26 kW of electricity, a compact and efficient waste heat recovery system and a host of waste-heat-activated devices, namely (i) a steam generator, (ii) an absorption chiller, (iii) an adsorption chiller and (iv) a multi-bed desiccant dehumidifier. The performance analysis was conducted under different operation conditions such as different exhaust gas temperatures. It was observed that energy utilization factor could be as high as 70% while fuel energy saving ratio was found to be 28%. © 2013 Desalination Publications.

  5. Operational cost minimization in cooling water systems

    Directory of Open Access Journals (Sweden)

    Castro M.M.

    2000-01-01

    Full Text Available In this work, an optimization model that considers thermal and hydraulic interactions is developed for a cooling water system. It is a closed loop consisting of a cooling tower unit, circulation pump, blower and heat exchanger-pipe network. Aside from process disturbances, climatic fluctuations are considered. Model constraints include relations concerning tower performance, air flowrate requirement, make-up flowrate, circulating pump performance, heat load in each cooler, pressure drop constraints and climatic conditions. The objective function is operating cost minimization. Optimization variables are air flowrate, forced water withdrawal upstream the tower, and valve adjustment in each branch. It is found that the most significant operating cost is related to electricity. However, for cooled water temperatures lower than a specific target, there must be a forced withdrawal of circulating water and further makeup to enhance the cooling tower capacity. Additionally, the system is optimized along the months. The results corroborate the fact that the most important variable on cooling tower performance is not the air temperature itself, but its humidity.

  6. Decontamination of primary cooling system

    International Nuclear Information System (INIS)

    Morikawa, Yoshitake.

    1985-01-01

    Purpose: To effectively eliminate radioactivity accumulated in pipeways, equipments, etc in primary coolant circuits of BWR type power plants by utilizing ion displacement reactions. Method: The reactor pressure vessel is connected with a feedwater pipeway, steam pipeway and a recycling pipeway. The recycling pipeway is disposed with a recycling pump. A recycling by-pass line is branched from the recycling pipeway and disposed with a recycling system heat exchanger and chemical injection point. Water is filled in the primary coolant and heated 280 0 C. Then, while maintaining water at that temperature, non-radioactive cobalt ions are injected and circulated within the system, by which radioactivity accumulated in pipeways, equipments or the likes can effectively be removed. (Horiuchi, T.)

  7. Method of fabricating a cooled electronic system

    Science.gov (United States)

    Chainer, Timothy J; Gaynes, Michael A; Graybill, David P; Iyengar, Madhusudan K; Kamath, Vinod; Kochuparambil, Bejoy J; Schmidt, Roger R; Schultz, Mark D; Simco, Daniel P; Steinke, Mark E

    2014-02-11

    A method of fabricating a liquid-cooled electronic system is provided which includes an electronic assembly having an electronics card and a socket with a latch at one end. The latch facilitates securing of the card within the socket. The method includes providing a liquid-cooled cold rail at the one end of the socket, and a thermal spreader to couple the electronics card to the cold rail. The thermal spreader includes first and second thermal transfer plates coupled to first and second surfaces on opposite sides of the card, and thermally conductive extensions extending from end edges of the plates, which couple the respective transfer plates to the liquid-cooled cold rail. The extensions are disposed to the sides of the latch, and the card is securable within or removable from the socket using the latch without removing the cold rail or the thermal spreader.

  8. Turbine airfoil with laterally extending snubber having internal cooling system

    Science.gov (United States)

    Scribner, Carmen Andrew; Messmann, Stephen John; Marsh, Jan H.

    2016-09-06

    A turbine airfoil usable in a turbine engine and having at least one snubber with a snubber cooling system positioned therein and in communication with an airfoil cooling system is disclosed. The snubber may extend from the outer housing of the airfoil toward an adjacent turbine airfoil positioned within a row of airfoils. The snubber cooling system may include an inner cooling channel separated from an outer cooling channel by an inner wall. The inner wall may include a plurality of impingement cooling orifices that direct impingement fluid against an outer wall defining the outer cooling channel. In one embodiment, the cooling fluids may be exhausted from the snubber, and in another embodiment, the cooling fluids may be returned to the airfoil cooling system. Flow guides may be positioned in the outer cooling channel, which may reduce cross-flow by the impingement orifices, thereby increasing effectiveness.

  9. On synthesis and optimization of cooling water systems with multiple cooling towers

    CSIR Research Space (South Africa)

    Gololo, KV

    2011-01-01

    Full Text Available -1 On Synthesis and Optimization of Cooling Water Systems with Multiple Cooling Towers Khunedi Vincent Gololo?? and Thokozani Majozi*? ? Department of Chemical Engineering, University of Pretoria, Lynnwood Road, Pretoria, 0002, South Africa ? Modelling...

  10. Emergency cooling system for a liquid metal cooled reactor

    International Nuclear Information System (INIS)

    Murata, Ryoichi; Fujiwara, Toshikatsu.

    1980-01-01

    Purpose: To suitably cool liquid metal as coolant in emergency in a liquid metal cooled reactor by providing a detector for the pressure loss of the liquid metal passing through a cooling device in a loop in which the liquid metal is flowed and communicating the detector with a coolant flow regulator. Constitution: A nuclear reactor is stopped in nuclear reaction by control element or the like in emergency. If decay heat is continuously generated for a while and secondary coolant is insufficiently cooled with water or steam flowed through a steam and water loop, a cooler is started. That is, low temperature air is supplied by a blower through an inlet damper to the cooler to cool the secondary coolant flowed into the cooler through a bypass pipe so as to finally safely stop an entire plant. Since the liquid metal is altered in its physical properties by the temperature at this time, it is detected to regulate the opening of the valve of the damper according to the detected value. (Sekiya, K.)

  11. Stochastic cooling with a double rf system

    International Nuclear Information System (INIS)

    Wei, Jie.

    1992-01-01

    Stochastic cooling for a bunched beam of hadrons stored in an accelerator with a double rf system of two different frequencies has been investigated. The double rf system broadens the spread in synchrotron-oscillation frequency of the particles when they mostly oscillate near the center of the rf bucket. Compared with the ease of a single rf system, the reduction rates of the bunch dimensions are significantly increased. When the rf voltage is raised, the reduction rate, instead of decreasing linearly, now is independent of the ratio of the bunch area to the bucket area. On the other hand, the spread in synchrotron-oscillation frequency becomes small with the double rf system, if the longitudinal oscillation amplitudes of the particles are comparable to the dimension of the rf bucket. Consequently, stochastic cooling is less effective when the bunch area is close to the bucket area

  12. Design of a novel geothermal heating and cooling system: Energy and economic analysis

    International Nuclear Information System (INIS)

    Angrisani, G.; Diglio, G.; Sasso, M.; Calise, F.; Dentice d’Accadia, M.

    2016-01-01

    Highlights: • A desiccant-based air handling unit is coupled with a geothermal source. • A TRNSYS model is developed to simulate both winter and summer period. • Sensitivity analysis is carried out in order to evaluate the effects of the design parameters. • Pay back period about 1.2 years and Primary Energy Savings higher than 90% were founded. • Economic and energetic performance increase with to the use of Domestic Hot Water. - Abstract: A dynamic simulation study in TRNSYS environment has been carried out to evaluate energy and economic performance of a novel heating and cooling system based on the coupling between a low or medium-enthalpy geothermal source and an Air Handling Unit, including a Desiccant Wheel. During summer season, a Downhole Heat Exchanger supplies heat to regenerate the desiccant material, while a certain amount of geothermal fluid is continuously extracted by the well in order to maintain high operating temperatures. Simultaneously, the extracted geothermal fluid drives an absorption chiller, producing chilled water to the cooling coil of the Air Handling Unit. Conversely, during the winter season, geothermal energy is used to cover a certain amount of the space heating demand. In both summer and winter operation modes, a geothermal energy is also used to supply Domestic Hot Water. A case study was analyzed, in which an existing low-enthalpy geothermal well (96 °C), located in Ischia (an island close to Naples, Southern Italy), is used to drive the geothermal system. Results showed that the performance of the proposed system is significantly affected by the utilization factor of Domestic Hot Water. In fact, considering a range of variation of such parameter between 5% and 100%, Primary Energy Saving increase from 77% to 95% and Pay-Back Period decreases from 14 years to 1.2 years, respectively. The simulations proved the technical and economic viability of the proposed system. In fact, a comparison with similar systems available

  13. Optimizing cooling systems in Egyptian arid urbans

    International Nuclear Information System (INIS)

    Medhat, Ahmed A.; Khalil, Essam E.

    2006-01-01

    Present study is devoted to climatic and site oriented investigations that were carried out in a new rural development in the Upper-Egypt. Bioclimatic classifications considered Upper Egypt region, near Sudan border, as a Hot and Dry climatic region. [1]. that is affected by solar heat intensities that can reach 900 W/m2 for a period ranged from 5-to-7 hours per day with the presence of study storms. Cooling season extends up to eight months per year having Upper-day-bulb temperature ranged from 400 degree centigrade - to - 470 degree centigrade while Lower-dry-bulb-temperature ranged from 280 degree centigrade - to - 320 degree centigrade with the relative humidity ranged from 10%-to-37% RH. [2]. Site surveys and field experimental and analyses of the commonly used cooling systems were investigated, evaluated and optimized for optimum indoor comfort conditions at efficient energy efficiency. [3]. Extensive analyses were performed based on Psychrometric formulae to evaluate the impact of energy consumptions related to different cooling systems such as direct expansion, chilled water, and evaporative systems. the present study enables the critical investigations of the influence of arid outdoor conditions and the required indoor thermal parameters on the energy efficiencies of HVAC-system. This work; focuses on the suggestion of suitable system that should be implemented by local energy codes in these arid urban.(Author)

  14. An active cooling system for photovoltaic modules

    International Nuclear Information System (INIS)

    Teo, H.G.; Lee, P.S.; Hawlader, M.N.A.

    2012-01-01

    The electrical efficiency of photovoltaic (PV) cell is adversely affected by the significant increase of cell operating temperature during absorption of solar radiation. A hybrid photovoltaic/thermal (PV/T) solar system was designed, fabricated and experimentally investigated in this work. To actively cool the PV cells, a parallel array of ducts with inlet/outlet manifold designed for uniform airflow distribution was attached to the back of the PV panel. Experiments were performed with and without active cooling. A linear trend between the efficiency and temperature was found. Without active cooling, the temperature of the module was high and solar cells can only achieve an efficiency of 8–9%. However, when the module was operated under active cooling condition, the temperature dropped significantly leading to an increase in efficiency of solar cells to between 12% and 14%. A heat transfer simulation model was developed to compare to the actual temperature profile of PV module and good agreement between the simulation and experimental results is obtained.

  15. Emergency cooling system for the PHENIX reactor

    International Nuclear Information System (INIS)

    Megy, J.M.; Giudicelli, A.G.; Robert, E.A.; Crette, J.P.

    Among various engineered safeguards of the reactor plant, the authors describe the protective system designed to remove the decay heat in emergency, in case of complete loss of all normal decay heat removal systems. First the normal decay heat rejection systems are presented. Incidents leading to the loss of these normal means are then analyzed. The protective system and its constructive characteristics designed for emergency cooling and based on two independent and highly reliable circuits entirely installed outside the primary containment vessel are described

  16. Cooling system for auxiliary systems of a nuclear power plant

    International Nuclear Information System (INIS)

    Maerker, W.; Mueller, K.; Roller, W.

    1981-01-01

    From the reactor auxiliary and ancillary systems of a nuclear facility heat has to be removed without the hazard arising that radioactive liquids or gases may escape from the safe area of the nuclear facility. A cooling system is described allowing at every moment to make available cooling fluid at a temperature sufficiently low for heat exchangers to be able to remove the heat from such auxiliary systems without needing fresh water supply or water reservoirs. For this purpose a dry cooling tower is connected in series with a heat exchanger that is cooled on the secondary side by means of a refrigerating machine. The cooling pipes are filled with a nonfreezable fluid. By means of a bypass a minimum temperature is guaranteed at cold weather. (orig.) [de

  17. Low pressure cooling seal system for a gas turbine engine

    Science.gov (United States)

    Marra, John J

    2014-04-01

    A low pressure cooling system for a turbine engine for directing cooling fluids at low pressure, such as at ambient pressure, through at least one cooling fluid supply channel and into a cooling fluid mixing chamber positioned immediately downstream from a row of turbine blades extending radially outward from a rotor assembly to prevent ingestion of hot gases into internal aspects of the rotor assembly. The low pressure cooling system may also include at least one bleed channel that may extend through the rotor assembly and exhaust cooling fluids into the cooling fluid mixing chamber to seal a gap between rotational turbine blades and a downstream, stationary turbine component. Use of ambient pressure cooling fluids by the low pressure cooling system results in tremendous efficiencies by eliminating the need for pressurized cooling fluids for sealing this gap.

  18. Open absorption system for cooling and air conditioning using membrane contactors - Final report

    Energy Technology Data Exchange (ETDEWEB)

    Conde-Petit, M. [M. Conde Engineering, Zuerich (Switzerland); Weber, R.; Dorer, V. [Swiss Federal Laboratories for Materials Testing and Research (EMPA), Duebendorf (Switzerland)

    2008-07-01

    Air conditioning systems based upon the open absorption principle, essentially an absorption device operating at atmospheric pressure, have been proposed and investigated at many instances in the past eighty years. Their potential for improving energy efficiency is clearly recognized in the earliest research reports. By the mid 1950ies, solar thermal energy was being applied to drive open absorption-based air conditioning systems. For several reasons, however, the open absorption technology was not mature enough to take place in the mainstream. In the past two decades, vigorous efforts have been undertaken to reverse this situation, but success continued to elude, despite the fact that the main problems, such as corrosion, aerosols in the supply air, etc., have been identified. This report details the work and the main results from the MemProDEC Project. In this project innovative solutions were proposed, and successfully investigated, for the corrosion problem and the improvement of efficiency of the absorption process, in particular a new method to cool a very compact absorber. The practically uniform flow distribution for all three streams in the absorber (air, water and desiccant) warrants the contact of the air to be dehumidified with the desiccant over the whole surface of exchange (across a porous membrane). This, together with the cooling with water in counter flow to the air, are the key factors for the excellent effectiveness of the absorber. As the results show, the dehydration effectiveness of the prototype absorber is up to 150 % higher than that previously obtained by others. The solutions developed for compactness and modularity represent an important step in the way to flexible manufacturing, i.e. using a single element size to assemble autonomous air handling units of various nominal capacities. And although the manufacturing methods of the individual elements require improvement, namely by avoiding adhesive bonding, the choice of materials and the

  19. Controlled cooling of an electronic system based on projected conditions

    Science.gov (United States)

    David, Milnes P.; Iyengar, Madhusudan K.; Schmidt, Roger R.

    2015-08-18

    Energy efficient control of a cooling system cooling an electronic system is provided based, in part, on projected conditions. The control includes automatically determining an adjusted control setting(s) for an adjustable cooling component(s) of the cooling system. The automatically determining is based, at least in part, on projected power consumed by the electronic system at a future time and projected temperature at the future time of a heat sink to which heat extracted is rejected. The automatically determining operates to reduce power consumption of the cooling system and/or the electronic system while ensuring that at least one targeted temperature associated with the cooling system or the electronic system is within a desired range. The automatically determining may be based, at least in part, on an experimentally obtained model(s) relating the targeted temperature and power consumption of the adjustable cooling component(s) of the cooling system.

  20. Emergency reactor cooling systems for the experimental VHTR

    International Nuclear Information System (INIS)

    Mitake, Susumu; Suzuki, Katsuo; Miyamoto, Yoshiaki; Tamura, Kazuo; Ezaki, Masahiro.

    1983-03-01

    Performances and design of the panel cooling system which has been proposed to be equipped as an emergency reactor cooling system for the experimental multi purpose very high temperature gas-cooled reactor are explained. Effects of natural circulation flow which would develop in the core and temperature transients of the panel in starting have been precisely investigated. Conditions and procedures for settling accidents with the proposed panel cooling system have been also studied. Based on these studies, it has been shown that the panel cooling system is effective and useful for the emergency reactor cooling of the experimental VHTR. (author)

  1. Electromechanically cooled germanium radiation detector system

    International Nuclear Information System (INIS)

    Lavietes, Anthony D.; Joseph Mauger, G.; Anderson, Eric H.

    1999-01-01

    We have successfully developed and fielded an electromechanically cooled germanium radiation detector (EMC-HPGe) at Lawrence Livermore National Laboratory (LLNL). This detector system was designed to provide optimum energy resolution, long lifetime, and extremely reliable operation for unattended and portable applications. For most analytical applications, high purity germanium (HPGe) detectors are the standard detectors of choice, providing an unsurpassed combination of high energy resolution performance and exceptional detection efficiency. Logistical difficulties associated with providing the required liquid nitrogen (LN) for cooling is the primary reason that these systems are found mainly in laboratories. The EMC-HPGe detector system described in this paper successfully provides HPGe detector performance in a portable instrument that allows for isotopic analysis in the field. It incorporates a unique active vibration control system that allows the use of a Sunpower Stirling cycle cryocooler unit without significant spectral degradation from microphonics. All standard isotopic analysis codes, including MGA and MGA++, GAMANL, GRPANL and MGAU, typically used with HPGe detectors can be used with this system with excellent results. Several national and international Safeguards organisations including the International Atomic Energy Agency (IAEA) and U.S. Department of Energy (DOE) have expressed interest in this system. The detector was combined with custom software and demonstrated as a rapid Field Radiometric Identification System (FRIS) for the U.S. Customs Service . The European Communities' Safeguards Directorate (EURATOM) is field-testing the first Safeguards prototype in their applications. The EMC-HPGe detector system design, recent applications, and results will be highlighted

  2. Modelling aerosol behavior in reactor cooling systems

    International Nuclear Information System (INIS)

    McDonald, B.H.

    1990-01-01

    This paper presents an overview of some of the areas of concern in using computer codes to model fission-product aerosol behavior in the reactor cooling system (RCS) of a water-cooled nuclear reactor during a loss-of-coolant accident. The basic physical processes that require modelling include: fission product release and aerosol formation in the reactor core, aerosol transport and deposition in the reactor core and throughout the rest of the RCS, and the interaction between aerosol transport processes and the thermalhydraulics. In addition to these basic physical processes, chemical reactions can have a large influence on the nature of the aerosol and its behavior in the RCS. The focus is on the physics and the implications of numerical methods used in the computer codes to model aerosol behavior in the RCS

  3. Cooling Tower (Evaporative Cooling System) Measurement and Verification Protocol

    Energy Technology Data Exchange (ETDEWEB)

    Kurnik, Charles W. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Boyd, Brian [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Stoughton, Kate M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lewis, Taylor [Colorado Energy Office, Denver, CO (United States)

    2017-12-05

    This measurement and verification (M and V) protocol provides procedures for energy service companies (ESCOs) and water efficiency service companies (WESCOs) to determine water savings resulting from water conservation measures (WCMs) in energy performance contracts associated with cooling tower efficiency projects. The water savings are determined by comparing the baseline water use to the water use after the WCM has been implemented. This protocol outlines the basic structure of the M and V plan, and details the procedures to use to determine water savings.

  4. Cooling system for the IFMIF-EVEDA radiofrequency system

    International Nuclear Information System (INIS)

    Perez Pichel, G. D.

    2012-01-01

    The IFMIF-EVEDA project consists on an accelerator prototype that will be installed at Rokkasho (Japan). Through CIEMAT, that is responsible of the development of many systems and components. Empresarios Agrupados get the responsibility of the detailed design of the cooling system for the radiofrequency system (RF system) that must feed the accelerator. the RF water cooling systems is the water primary circuit that provides the required water flow (with a certain temperature, pressure and water quality) and also dissipates the necessary thermal power of all the radiofrequency system equipment. (Author) 4 refs.

  5. Development of the interactive model between Component Cooling Water System and Containment Cooling System using GOTHIC

    International Nuclear Information System (INIS)

    Byun, Choong Sup; Song, Dong Soo; Jun, Hwang Yong

    2006-01-01

    In a design point of view, component cooling water (CCW) system is not full-interactively designed with its heat loads. Heat loads are calculated from the CCW design flow and temperature condition which is determined with conservatism. Then the CCW heat exchanger is sized by using total maximized heat loads from above calculation. This approach does not give the optimized performance results and the exact trends of CCW system and the loads during transient. Therefore a combined model for performance analysis of containment and the component cooling water(CCW) system is developed by using GOTHIC software code. The model is verified by using the design parameters of component cooling water heat exchanger and the heat loads during the recirculation mode of loss of coolant accident scenario. This model may be used for calculating the realistic containment response and CCW performance, and increasing the ultimate heat sink temperature limits

  6. Evaluation of heat exchange performance for the auxiliary component cooling water system cooling tower in HTTR

    International Nuclear Information System (INIS)

    Tochio, Daisuke; Kameyama, Yasuhiko; Shimizu, Atsushi; Inoi, Hiroyuki; Yamazaki, Kazunori; Shimizu, Yasunori; Aragaki, Etsushi; Ota, Yukimaru; Fujimoto, Nozomu

    2006-09-01

    The auxiliary component cooling water system (ACCWS) is one of the cooling system in High Temperature Engineering Test Reactor (HTTR). The ACCWS has main two features, many facilities cooling, and heat sink of the vessel cooling system which is one of the engineering safety features. Therefore, the ACCWS is required to satisfy the design criteria of heat removal performance. In this report, heat exchange performance data of the rise-to-power-up test and the in-service operation for the ACCWS cooling tower was evaluated. Moreover, the evaluated values were compared with the design values, and it is confirmed that ACCWS cooling tower has the required heat exchange performance in the design. (author)

  7. Misting-cooling systems for microclimatic control in public space

    OpenAIRE

    Nunes, Joao; Zoilo, Inaki; Jacinto, Nuno; Nunes, Ana; Torres-Campos, Tiago; Pacheco, Manuel; Fonseca, David

    2011-01-01

    Misting-cooling systems have been used in outdoor spaces mainly for aesthetic purposes, and punctual cooling achievement. However, they can be highly effective in outdoor spaces’ bioclimatic comfort, in terms of microclimatic control, as an evaporative cooling system. Recent concerns in increasing bioclimatic standards in public outdoor spaces, along with more sustainable practices, gave origin to reasoning where plastic principles are combined with the study of cooling efficacy, in order to ...

  8. Investigations of combined used of cooling ponds with cooling towers or spraying systems

    International Nuclear Information System (INIS)

    Farforovsky, V.B.

    1990-01-01

    Based on a brief analysis of the methods of investigating cooling ponds, spraying systems and cooling towers, a conclusion is made that the direct modelling of the combined use of cooling systems listed cannot be realized. An approach to scale modelling of cooling ponds is proposed enabling all problems posed by the combined use of coolers to be solved. Emphasized is the importance of a proper choice of a scheme of including a cooler in a general water circulation system of thermal and nuclear power plants. A sequence of selecting a cooling tower of the type and spraying system of the size ensuring the specified temperature regime in a water circulation system is exemplified by the water system of the Ghorasal thermal power plant in Bangladesh

  9. Cooling Performance Analysis of ThePrimary Cooling System ReactorTRIGA-2000Bandung

    Science.gov (United States)

    Irianto, I. D.; Dibyo, S.; Bakhri, S.; Sunaryo, G. R.

    2018-02-01

    The conversion of reactor fuel type will affect the heat transfer process resulting from the reactor core to the cooling system. This conversion resulted in changes to the cooling system performance and parameters of operation and design of key components of the reactor coolant system, especially the primary cooling system. The calculation of the operating parameters of the primary cooling system of the reactor TRIGA 2000 Bandung is done using ChemCad Package 6.1.4. The calculation of the operating parameters of the cooling system is based on mass and energy balance in each coolant flow path and unit components. Output calculation is the temperature, pressure and flow rate of the coolant used in the cooling process. The results of a simulation of the performance of the primary cooling system indicate that if the primary cooling system operates with a single pump or coolant mass flow rate of 60 kg/s, it will obtain the reactor inlet and outlet temperature respectively 32.2 °C and 40.2 °C. But if it operates with two pumps with a capacity of 75% or coolant mass flow rate of 90 kg/s, the obtained reactor inlet, and outlet temperature respectively 32.9 °C and 38.2 °C. Both models are qualified as a primary coolant for the primary coolant temperature is still below the permitted limit is 49.0 °C.

  10. Proteomics of desiccation tolerance during development and germination of maize embryos

    DEFF Research Database (Denmark)

    Huang, Hui; Møller, Ian Max; Song, Song-Quan

    2012-01-01

    Maize seeds were used to identify the key embryo proteins involved in desiccation tolerance during development and germination. Immature maize embryos (28N) during development and mature embryos imbibed for 72 h (72HN) are desiccation sensitive. Mature maize embryos (52N) during development...... pattern. We infer that these eleven proteins are involved in seed desiccation tolerance. We conclude that desiccation-tolerant embryos make more economical use of their resources to accumulate protective molecules and antioxidant systems to deal with maturation drying and desiccation treatment........ are desiccation tolerant. Thiobarbituric acid reactive substance and hydrogen peroxide contents decreased and increased with acquisition and loss of desiccation tolerance, respectively. A total of 111 protein spots changed significantly (1.5 fold increase/decrease) in desiccation-tolerant and -sensitive embryos...

  11. Performance characteristic of hybrid cooling system based on cooling pad and evaporator

    Science.gov (United States)

    Yoon, J. I.; Son, C. H.; Choi, K. H.; Kim, Y. B.; Sung, Y. H.; Roh, S. J.; Kim, Y. M.; Seol, S. H.

    2018-01-01

    In South Korea, most of domestic animals such as pigs and chickens might die due to thermal diseases if they are exposed to the high temperature consistently. In order to save them from the heat wave, numerous efforts have been carried out: installing a shade net, adjusting time of feeding, spraying mist and setting up a circulation fan. However, these methods have not shown significant improvements. Thus, this study proposes a hybrid cooling system combining evaporative cooler and air-conditioner in order to resolve the conventional problems caused by the high temperature in the livestock industry. The problem of cooling systems using evaporative cooling pads is that they are not effective for eliminating huge heat load due to their limited capacity. And, temperature of the supplied air cannot be low enough compared to conventional air-conditioning systems. On the other hand, conventional air-conditioning systems require relatively expensive installation cost, and high operating cost compared to evaporative cooling system. The hybrid cooling system makes up for the lack of cooling capacity of the evaporative cooler by employing the conventional air-conditioner. Additionally, temperature of supplied air can be lowered enough. In the hybrid cooling system, induced air by a fan is cooled by the evaporation of water in the cooling pad, and it is cooled again by an evaporator in the air-conditioner. Therefore, the more economical operation is possible due to additionally obtained cooling capacity from the cooling pads. Major results of experimental analysis of hybrid cooling system are as follows. The compressor power consumption of the hybrid cooling system is about 23% lower, and its COP is 17% higher than that of the conventional air-conditioners. Regarding the condition of changing ambient temperature, the total power consumption decreased by about 5% as the ambient temperature changed from 28.7°C to 31.7°C. Cooling capacity and COP also presented about 3% and 1

  12. Desiccant Enhanced Evaporative Air-Conditioning (DEVap): Evaluation of a New Concept in Ultra Efficient Air Conditioning

    Energy Technology Data Exchange (ETDEWEB)

    Kozubal, E.; Woods, J.; Burch, J.; Boranian, A.; Merrigan, T.

    2011-01-01

    NREL has developed the novel concept of a desiccant enhanced evaporative air conditioner (DEVap) with the objective of combining the benefits of liquid desiccant and evaporative cooling technologies into an innovative 'cooling core.' Liquid desiccant technologies have extraordinary dehumidification potential, but require an efficient cooling sink. DEVap's thermodynamic potential overcomes many shortcomings of standard refrigeration-based direct expansion cooling. DEVap decouples cooling and dehumidification performance, which results in independent temperature and humidity control. The energy input is largely switched away from electricity to low-grade thermal energy that can be sourced from fuels such as natural gas, waste heat, solar, or biofuels.

  13. Phasing of Debuncher Stochastic Cooling Transverse Systems

    International Nuclear Information System (INIS)

    Pasquinelli, Ralph

    2000-01-01

    With the higher frequency of the cooling systems in the Debuncher, a modified method of making transfer functions has been developed for transverse systems. (Measuring of the momentum systems is unchanged.) Speed in making the measurements is critical, as the beam tends to decelerate due to vacuum lifetime. In the 4-8 GHz band, the harmonics in the Debuncher are 6,700 to 13,400 times the revolution frequency. Every Hertz change in revolution frequency is multiplied by this harmonic number and becomes a frequency measurement error, which is an appreciable percent of the momentum width of the beam. It was originally thought that a momentum cooling system would be phased first so that the beam could be kept from drifting in revolution frequency. As it turned out, the momentum cooling was so effective (even with the gain turned down) that the momentum width normalized to fo became less than one Hertz on the Schottky pickup. A beam this narrow requires very precise measurement of tune and revolution frequency. It was difficult to get repeatable results. For initial measuring of the transverse arrays, relative phase and delay is all that is required, so the measurement settings outlined below will suffice. Once all input and output arrays are phased, a more precise measurement of all pickups to all kickers can be done with more points and both upper and lower side bands, as in figure 1. Settings on the network analyzer were adjusted for maximum measurement speed. Data is not analyzed until a complete set of measurements is taken. Start and stop frequencies should be chosen to be just slightly wider than the band being measured. For transverse systems, select betatron USB for the measurement type. This will make the measurement two times faster. Select 101 for the number of points, sweep time of 5 seconds, IF bandwidth 30 Hz, averages = 1. It is important during the phasing to continually measure the revolution frequency and beam width of the beam for transverse systems

  14. Deposit control in process cooling water systems

    International Nuclear Information System (INIS)

    Venkataramani, B.

    1981-01-01

    In order to achieve efficient heat transfer in cooling water systems, it is essential to control the fouling of heat exchanger surfaces. Solubilities of scale forming salts, their growth into crystals, and the nature of the surfaces play important roles in the deposition phenomenon. Condensed phosphates, organic polymers and compounds like phosphates are effective in controlling deposition of scale forming salts. The surface active agents inhibit crystal growth and modify the crystals of the scale forming salts, and thus prevent deposition of dense, uniformly structured crystalline mass on the heat transfer surface. Understanding the mechanism of biofouling is essential to control it by surface active agents. Certain measures taken in the plant, such as back flushing, to control scaling, sometimes may not be effective and can be detrimental to the system itself. (author)

  15. Thermal Sizing of Heat Exchanger Tubes for Air Natural Convective Cooling System of Emergency Cooling Tank

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Myoung Jun; Lee, Hee Joon [Kookmin Univ., Seoul (Korea, Republic of); Moon, Joo Hyung; Bae, Youngmin; Kim, Youngin [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    For the long operation of secondary passive cooling system, however, water level goes down by evaporation in succession at emergency cooling tank. At the end there would be no place to dissipate heat from condensation heat exchanger. Therefore, steam cooling heat exchanger is put on the top of emergency cooling tank to maintain appropriate water level by collecting evaporating steam. Steam cooling heat exchanger is installed inside an air chimney and evaporated steam is cooled down by air natural convection. In this study, thermal sizing of steam cooling heat exchanger under air natural convection was conducted by TSCON program for the design of experimental setup as shown in Fig. 2. Thermal sizing of steam cooling heat exchanger tube under air natural convection was conducted by TSCON program for the design of experimental setup. 25 - 1' tubes which has a length 1687 mm was determined as steam cooling heat exchanger at 2 kW heat load and 100 liter water pool in emergency cooling tank (experimental limit condition). The corresponding width of two tubes is 50 mm and has 5 by 5 tube array for heat exchanger.

  16. Thermal Sizing of Heat Exchanger Tubes for Air Natural Convective Cooling System of Emergency Cooling Tank

    International Nuclear Information System (INIS)

    Kim, Myoung Jun; Lee, Hee Joon; Moon, Joo Hyung; Bae, Youngmin; Kim, Youngin

    2014-01-01

    For the long operation of secondary passive cooling system, however, water level goes down by evaporation in succession at emergency cooling tank. At the end there would be no place to dissipate heat from condensation heat exchanger. Therefore, steam cooling heat exchanger is put on the top of emergency cooling tank to maintain appropriate water level by collecting evaporating steam. Steam cooling heat exchanger is installed inside an air chimney and evaporated steam is cooled down by air natural convection. In this study, thermal sizing of steam cooling heat exchanger under air natural convection was conducted by TSCON program for the design of experimental setup as shown in Fig. 2. Thermal sizing of steam cooling heat exchanger tube under air natural convection was conducted by TSCON program for the design of experimental setup. 25 - 1' tubes which has a length 1687 mm was determined as steam cooling heat exchanger at 2 kW heat load and 100 liter water pool in emergency cooling tank (experimental limit condition). The corresponding width of two tubes is 50 mm and has 5 by 5 tube array for heat exchanger

  17. Documenting the Effectiveness of Cosorption of Airborne Contaminants by a Field-Installed Active Desiccant System: Final Report - Phase 2D

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, J

    2003-01-23

    The final report for Phase 1 of this research effort (ORNL/SUB/94-SV004/1) concluded that a significant market opportunity would exist for active desiccant systems if it could be demonstrated that they can remove a significant proportion of common airborne contaminants while simultaneously performing the primary function of dehumidifying a stream of outdoor air or recirculated building air. If the engineering community begins to follow the intent of ASHRAE Standard 62, now part of all major building codes, the outdoor air in many major cities may need to be pre-cleaned before it is introduced into occupied spaces. Common air contaminant cosorption capability would provide a solution to three important aspects of the ASHRAE 62-89 standard that have yet to be effectively addressed by heating, ventilation, and air-conditioning (HVAC) equipment manufacturers: (1) The ASHRAE standard defines acceptable outdoor air quality. If the outdoor air contains unacceptable levels of certain common outdoor air contaminants (e.g., sulfur dioxide, ozone), then the standard requires that these contaminants be removed from the outdoor air stream to reach compliance with the acceptable outdoor air quality guidelines. (2) Some engineers prefer to apply a filtration or prescriptive approach rather than a ventilation approach to solving indoor air quality problems. The ASHRAE standard recognizes this approach provided that the filtration technology exists to remove the gaseous contaminants encountered. The performance of current gaseous filtration technologies is not well documented, and they can be costly to maintain because the life of the filter is limited and the cost is high. Moreover, it is not easy to determine when the filters need changing. In such applications, an additional advantage provided by the active desiccant system would be that the same piece of equipment could control space humidity and provide filtration, even during unoccupied periods, if the active desiccant system

  18. CoolPack – Simulation tools for refrigeration systems

    DEFF Research Database (Denmark)

    Jakobsen, Arne; Rasmussen, Bjarne D.; Andersen, Simon Engedal

    1999-01-01

    CoolPack is a collection of programs used for energy analysis and optimisation of refrigeration systems. CoolPack is developed at the Department of Energy Engineering at the Technical University of Denmark. The Danish Energy Agency finances the project. CoolPack is freeware and can be downloaded...

  19. Renewal of cooling system of JMTR

    International Nuclear Information System (INIS)

    Onoue, Ryuji; Kawamata, Takanori; Otsuka, Kaoru; Koike, Sumio; Nishiyama, Yutaka; Fukasaku, Akitomi

    2011-06-01

    The Japan Materials Testing Reactor (JMTR) is a light water moderated and cooled tank-type reactor, and its thermal power is 50 MW. The JMTR is categorized as high flux testing reactors in the world. The JMTR has been utilized for irradiation experiments of nuclear fuels and materials, as well as for radioisotope productions since the first criticality in March 1968 until August 2006. JAEA decided to refurbish the JMTR as an important fundamental infrastructure to promote the nuclear research and development. The refurbishment work was started from 2007, and restart is planned in 2011. Renewal facilities were selected from evaluation on their damage and wear in terms of aging. Facilities whose replacement parts are no longer manufactured or not likely to be manufactured continuously in near future, are selected as renewal ones. Replacement priority was decided with special attention to safety concerns. A monitoring of aging condition by the regular maintenance activity is an important factor in selection of continuous using after the restart. In this report, renewal of the cooling system within refurbishment facilities in the JMTR is summarized. (author)

  20. Vacuum membrane distillation of liquid desiccants Utilizing Hollow Fiber Membranes

    KAUST Repository

    Lefers, Ryan; Srivatsa Bettahalli, N.M.; Fedoroff, Nina V.; Nunes, Suzana Pereira; Leiknes, TorOve

    2018-01-01

    This paper documents the testing of a vacuum membrane distillation system intended for use with liquid desiccants. Liquid desiccants offer the possibility for low-energy, ambient temperature dehumidification. Effective desalination and purification of diluted desiccants outputs two important products: a concentrated desiccant for reuse in dehumidification and fresh water. In this study, vacuum membrane distillation was used in the laboratory to purify diluted liquid desiccants. Calcium chloride and magnesium chloride were the desiccants selected for testing. Desiccant solutions were pumped through the lumens of poly(vinylidene fluoride) (PVDF) hollow fiber membranes at varying feed inlet temperatures, solution velocity rates and vacuum set points during membrane distillation. An average flux of 8 kg m-2 h-1 was obtained using 30 wt% magnesium chloride solution at a temperature of 50 °C while applying vacuum to achieve 25 mbar absolute pressure on the air side of the membrane. The results are promising for the development of a full-scale vacuum membrane distillation process for desiccant solution regeneration and fresh water recovery. In addition, the recovered condensate was of sufficient quality for use in agricultural irrigation or drinking water.

  1. Vacuum membrane distillation of liquid desiccants Utilizing Hollow Fiber Membranes

    KAUST Repository

    Lefers, Ryan

    2018-01-31

    This paper documents the testing of a vacuum membrane distillation system intended for use with liquid desiccants. Liquid desiccants offer the possibility for low-energy, ambient temperature dehumidification. Effective desalination and purification of diluted desiccants outputs two important products: a concentrated desiccant for reuse in dehumidification and fresh water. In this study, vacuum membrane distillation was used in the laboratory to purify diluted liquid desiccants. Calcium chloride and magnesium chloride were the desiccants selected for testing. Desiccant solutions were pumped through the lumens of poly(vinylidene fluoride) (PVDF) hollow fiber membranes at varying feed inlet temperatures, solution velocity rates and vacuum set points during membrane distillation. An average flux of 8 kg m-2 h-1 was obtained using 30 wt% magnesium chloride solution at a temperature of 50 °C while applying vacuum to achieve 25 mbar absolute pressure on the air side of the membrane. The results are promising for the development of a full-scale vacuum membrane distillation process for desiccant solution regeneration and fresh water recovery. In addition, the recovered condensate was of sufficient quality for use in agricultural irrigation or drinking water.

  2. SNS Resonance Control Cooling Systems and Quadrupole Magnet Cooling Systems DIW Chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Magda, Karoly [ORNL

    2018-01-01

    This report focuses on control of the water chemistry for the Spallation Neutron Source (SNS) Resonance Control Cooling System (RCCS)/Quadrupole Magnet Cooling System (QMCS) deionized water (DIW) cooling loops. Data collected from spring 2013 through spring 2016 are discussed, and an operations regime is recommended.It was found that the RCCS operates with an average pH of 7.24 for all lines (from 7.0 to 7.5, slightly alkaline), the average low dissolved oxygen is in the area of < 36 ppb, and the main loop average resistivity of is > 14 MΩ-cm. The QMCS was found to be operating in a similar regime, with a slightly alkaline pH of 7.5 , low dissolved oxygen in the area of < 45 ppb, and main loop resistivity of 10 to 15 MΩ-cm. During data reading, operational corrections were done on the polishing loops to improve the water chemistry regime. Therefore some trends changed over time.It is recommended that the cooling loops operate in a regime in which the water has a resistivity that is as high as achievable, a dissolved oxygen concentration that is as low as achievable, and a neutral or slightly alkaline pH.

  3. Natural circulating passive cooling system for nuclear reactor containment structure

    Science.gov (United States)

    Gou, Perng-Fei; Wade, Gentry E.

    1990-01-01

    A passive cooling system for the contaminant structure of a nuclear reactor plant providing protection against overpressure within the containment attributable to inadvertent leakage or rupture of the system components. The cooling system utilizes natural convection for transferring heat imbalances and enables the discharge of irradiation free thermal energy to the atmosphere for heat disposal from the system.

  4. Passive cooling system for nuclear reactor containment structure

    Science.gov (United States)

    Gou, Perng-Fei; Wade, Gentry E.

    1989-01-01

    A passive cooling system for the contaminant structure of a nuclear reactor plant providing protection against overpressure within the containment attributable to inadvertent leakage or rupture of the system components. The cooling system utilizes natural convection for transferring heat imbalances and enables the discharge of irradiation free thermal energy to the atmosphere for heat disposal from the system.

  5. PEP cooling water systems and underground piped utilities design criteria report

    International Nuclear Information System (INIS)

    Hall, F.; Robbins, D.

    1975-10-01

    This paper discusses the cooling systems required by the PEP Storage Ring. Particular topics discussed are: Cooling tower systems, RF cavity and vacuum chamber LCW cooling systems, klystron and ring magnet LLW cooling systems, Injection magnet LCW Cooling Systems; PEP interaction area detector LCW Cooling Systems; and underground piped utilities. 1 ref., 20 figs

  6. Cooling systems research at Argonne National Laboratory

    International Nuclear Information System (INIS)

    Spigarelli, S.A.

    1977-01-01

    Studies of the thermal plumes resulting from discharges from once-through cooling systems of electric generating stations are reviewed. The collection of large amounts of water temperature data for definition of the three-dimensional structure of a thermal plume, of current data, and related ambient data for model evaluation purposes required the development of an integrated data collection system. The Argonne system employs measurements of water temperature over the water column from a moving small boat. Temperatures are measured with thermistors attached to a rigid strut for surface plumes and to a flexible, faired cable for submerged plumes. Water temperatures and boat location, determined by a microwave ranging system, are recorded on magnetic tape while the boat is underway and prove a quasi-synoptic map of plume temperatures. Automated data handling and processing procedures provide for the production of isotherm maps of the plume at several elevations and in cross section. Mathematical model evaluation for surface discharges of waste heat included the consideration of over 40 different models and detailed evaluation of 11 models. Most models were run on Argonne's computers, and all models were evaluated in terms of their limitations and capabilities as well as their predictive performance against prototype data. Measurements were made of thermal plumes at the discharges of nuclear power plants located on the shores of Lake Michigan

  7. Simulation of an adsorption solar cooling system

    International Nuclear Information System (INIS)

    Hassan, H.Z.; Mohamad, A.A.; Bennacer, R.

    2011-01-01

    A more realistic theoretical simulation model for a tubular solar adsorption refrigerating system using activated carbon-methanol (AC/M) pair has been introduced. The mathematical model represents the heat and mass transfer inside the adsorption bed, the condenser, and the evaporator. The simulation technique takes into account the variations of ambient temperature and solar radiation along the day. Furthermore, the local pressure, and local thermal conductivity variations in space and time inside the tubular reactor are investigated as well. A C++ computer program is written to solve the proposed numerical model using the finite difference method. The developed program covers the operations of all the system components along the cycle time. The performance of the tubular reactor, the condenser, and the evaporator has been discussed. Time allocation chart and switching operations for the solar refrigeration system processes are illustrated as well. The case studied has a 1 m 2 surface area solar flat plate collector integrated with a 20 stainless steel tubes containing the AC/M pair and each tube has a 5 cm outer diameter. In addition, the condenser pressure is set to 54.2 kpa. It has been found that, the solar coefficient of performance and the specific cooling power of the system are 0.211 and 2.326 respectively. In addition, the pressure distribution inside the adsorption bed has been found nearly uniform and varying only with time. Furthermore, the AC/M thermal conductivity is shown to be constant in both space and time.

  8. GOTHIC Simulation of Passive Containment Cooling System

    International Nuclear Information System (INIS)

    Ha, Huiun; Kim, Hangon

    2013-01-01

    The performance of this system depends on the condensation of steam moving downward inside externally cooled vertical tubes. AES-2006: During a DBA, heat is removed by internally cooled vertical tubes, which are located in containment. We are currently developing the conceptual design of Innovative PWR, which is will be equipped with various passive safety features, including PCCS. We have plan to use internal heat exchanger (HX) type PCCS with concrete containment. In this case, the elevation of HXs is important to ensure the heat removal during accidents. In general, steam is lighter than air mixture in containment. So, steam may be collected at the upper side of containment. It means that higher elevation of HXs, larger heat removal efficiency of those. So, the aim of the present paper is to give preliminary study on variation of heat removal performance according to elevation of HXs. With reference to the design specification of the current reactors including APR+, we had determined conceptual design of PCCS. Using it, we developed a GOTHIC model of the APR1400 containment was adopted PCCS. This calculation model is described herein and representative results of calculation are presented. APR 1400 GOTHIC model was developed for PCCS performance calculation and sensitivity test according to installation elevation of PCCXs. Calculation results confirm that PCCS is working properly. It is found that the difference due to the installation elevation of PCCXs is insignificant at this preliminary analysis, however, further studies should be performed to confirm final performance of PCCS according to the installation elevation. These insights are important for developing the PCCS of Innovative PWR

  9. GOTHIC Simulation of Passive Containment Cooling System

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Huiun; Kim, Hangon [Korea Hydro and Nuclear Power Co. Ltd., Daejeon (Korea, Republic of)

    2013-05-15

    The performance of this system depends on the condensation of steam moving downward inside externally cooled vertical tubes. AES-2006: During a DBA, heat is removed by internally cooled vertical tubes, which are located in containment. We are currently developing the conceptual design of Innovative PWR, which is will be equipped with various passive safety features, including PCCS. We have plan to use internal heat exchanger (HX) type PCCS with concrete containment. In this case, the elevation of HXs is important to ensure the heat removal during accidents. In general, steam is lighter than air mixture in containment. So, steam may be collected at the upper side of containment. It means that higher elevation of HXs, larger heat removal efficiency of those. So, the aim of the present paper is to give preliminary study on variation of heat removal performance according to elevation of HXs. With reference to the design specification of the current reactors including APR+, we had determined conceptual design of PCCS. Using it, we developed a GOTHIC model of the APR1400 containment was adopted PCCS. This calculation model is described herein and representative results of calculation are presented. APR 1400 GOTHIC model was developed for PCCS performance calculation and sensitivity test according to installation elevation of PCCXs. Calculation results confirm that PCCS is working properly. It is found that the difference due to the installation elevation of PCCXs is insignificant at this preliminary analysis, however, further studies should be performed to confirm final performance of PCCS according to the installation elevation. These insights are important for developing the PCCS of Innovative PWR.

  10. Load calculations of radiant cooling systems for sizing the plant

    DEFF Research Database (Denmark)

    Bourdakis, Eleftherios; Kazanci, Ongun Berk; Olesen, Bjarne W.

    2015-01-01

    The aim of this study was, by using a building simulation software, to prove that a radiant cooling system should not be sized based on the maximum cooling load but at a lower value. For that reason six radiant cooling models were simulated with two control principles using 100%, 70% and 50......% of the maximum cooling load. It was concluded that all tested systems were able to provide an acceptable thermal environment even when the 50% of the maximum cooling load was used. From all the simulated systems the one that performed the best under both control principles was the ESCS ceiling system. Finally...... it was proved that ventilation systems should be sized based on the maximum cooling load....

  11. Integrated cooling system for the Mirror Fusion Test Facility

    International Nuclear Information System (INIS)

    Johnson, B.; Chang, Y.

    1979-01-01

    The MFTF components that require water cooling include the neutral beam dumps, ion dumps, plasma dumps, baffle plates, magnet liners, gas boxes, streaming guns, and the neutral beam injectors. A total heat load of nearly 500 MW for 0.5 s dissipates over 4-min intervals. A steady-flow, closed-loop system is utilized. The design of the cooling system assumes that all components require cooling simultaneously. The cooling system contains process instrumentation for loop control. Alarms and safety interlocks are incorporated for the safe operation of the system

  12. Modern cooling systems in thermal power plants relieve environmental pollution. Pt. 2

    International Nuclear Information System (INIS)

    Brosche, D.

    1983-01-01

    Direct and indirect dry recirculation cooling, wet cooling tower, natural-draught wet cooling tower, combined cooling processes, hybrid cooling systems, cell cooling systems, auxiliary water preparation, cooling process design, afterheat removal in nuclear power plants, environmental effects, visible plumes as a function of weather conditions, environmental protection and energy supply assurance. (orig.) [de

  13. Behavior of ruthenium in the case of shutdown of the cooling system of HLLW storage tanks

    International Nuclear Information System (INIS)

    Philippe, M.; Mercier, J.P.; Gue, J.P.

    1990-01-01

    The consequences of the failure of the cooling system of fission product storage tanks over a variable period were investigated as part of the safety analysis of the La Hague spent fuel reprocessing plant. Due to the considerable heat release, induced by the fission products, a prolonged shutdown of the tank cooling system could cause the progressive evaporation of the solutions to dryness, and culminate in the formation of volatile species of ruthenium and their release in the tank venting circuit. To determine the fraction of ruthenium likely to be transferred from the storage tanks in volatile or aerosol form during the failure, evaporation tests were conducted by evaporating samples of actual nitric acid solutions of fission products, obtained on the laboratory scale after the reprocessing of several kilograms of MOX fuels irradiated to 30,000 MWday.t -1 . A distillation apparatus was designed to operate with small volume solution samples, reproducing the heating conditions existing in the reprocessing plant within a storage tank for fission products. The main conclusions drawn from these experiments are as follows: - ruthenium is only volatilized in the final phase of evaporation, just before desiccation, - for a final temperature limited to 160 0 C, the total fraction of volatilized ruthenium reaches 12%, in the presence of H 2 0, HN0 3 , N0 x and 0 2 , the volatilized ruthenium recombines mainly in the form of ruthenium nitrosyl nitrates, or decomposes into ruthenium oxide on the walls of the apparatus. Assuming a heating power density of 10 W/liter of concentrate, and a perfectly adiabatic storage system, the minimum time required to reach dryness can be estimated at 90 h, allowing substantial time to take action to restore a cooling source

  14. Behavior of ruthenium in the case of shutdown of the cooling system of HLLW storage tanks

    International Nuclear Information System (INIS)

    Philippe, M.; Mercier, J.P.; Gue, J.P.

    1991-01-01

    The consequences of the failure of the cooling system of fission product storage tanks over a variable period were investigated as part of the safety analysis of the La Hague spent fuel reprocessing plant. Due to the considerable heat release, induced by the fission products, a prolonged shutdown of the tank cooling system could cause the progressive evaporation of the solutions to dryness, and culminate in the formation of volatile species of ruthenium and their release in the tank venting circuit. To determine the fraction of ruthenium likely to be transferred from the storage tanks in volatile or aerosol form during the failure, evaporation tests were conducted by evaporating samples of actual nitric acid solutions of fission products, obtained on the laboratory scale after the reprocessing of several kilograms of MOX fuels irradiated to 30,000 MW day·t -1 . A distillation apparatus was designed to operate with small-volume solution samples, reproducing the heating conditions existing in the reprocessing plant within a storage tank for fission products. The main conclusions drawn from these experiments are as follows: ruthenium is only volatilized in the final phase of evaporation, just before desiccation; for a final temperature limited to 160 degree C, the total fraction of volatilized ruthenium reaches 12%; in the presence of H 2 O, HNO 3 , NO x and O 2 , the volatilized ruthenium recombines mainly in the form of ruthenium nitrosyl nitrates, or decomposes into ruthenium oxide (probably RuO 2 ) on the walls of the apparatus. Assuming a heating power density of 10 W/liter of concentrate, and a perfectly adiabatic storage system, the minimum time required to reach dryness can be estimated at 90 h, allowing substantial time to take action to restore a cooling source

  15. Method of injecting cooling water in emergency core cooling system (ECCS) of PWR type reactor

    International Nuclear Information System (INIS)

    Sobajima, Makoto; Adachi, Michihiro; Tasaka, Kanji; Suzuki, Mitsuhiro.

    1979-01-01

    Purpose: To provide a cooling water injection method in an ECCS, which can perform effective cooling of the reactor core. Method: In a method of injecting cooling water in an ECCS as a countermeasure against a rupture accident of a pwr type reactor, cooling water in the first pressure storage injection system is injected into the upper plenum of the reactor pressure vessel at a set pressure of from 50 to 90 atg. and a set temperature of from 80 to 200 0 C, cooling water in the second pressure storage injection system is injected into the lower plenum of the reactor pressure vessel at a pressure of from 25 to 60 atg. which is lower than the set pressure and a temperature less than 60 0 C, and further in combination with these procedures, cooling water of less than 60 0 C is injected into a high-temperature side piping, in the high-pressure injection system of upstroke of 100 atg. by means of a pump and the low-pressure injection system of upstroke of 20 atg. also by means of a pump, thereby cooling the reactor core. (Aizawa, K.)

  16. Electric drive systems including smoothing capacitor cooling devices and systems

    Energy Technology Data Exchange (ETDEWEB)

    Dede, Ercan Mehmet; Zhou, Feng

    2017-02-28

    An electric drive system includes a smoothing capacitor including at least one terminal, a bus bar electrically coupled to the at least one terminal, a thermoelectric device including a first side and a second side positioned opposite the first side, where the first side is thermally coupled to at least one of the at least one terminal and the bus bar, and a cooling element thermally coupled to the second side of the thermoelectric device, where the cooling element dissipates heat from the thermoelectric device.

  17. The Role of Absorption Cooling for Reaching Sustainable Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Lindmark, Susanne

    2005-07-01

    This thesis focuses on the role and potential of absorption cooling in future energy systems. Two types of energy systems are investigated: a district energy system based on waste incineration and a distributed energy system with natural gas as fuel. In both cases, low temperature waste heat is used as driving energy for the absorption cooling. The main focus is to evaluate the absorption technology in an environmental perspective, in terms of reduced CO{sub 2} emissions. Economic evaluations are also performed. The reduced electricity when using absorption cooling instead of compression cooling is quantified and expressed as an increased net electrical yield. The results show that absorption cooling is an environmentally friendly way to produce cooling as it reduces the use of electrically driven cooling in the energy system and therefore also reduces global CO{sub 2} emissions. In the small-scale trigeneration system the electricity use is lowered with 84 % as compared to cooling production with compression chillers only. The CO{sub 2} emissions can be lowered to 45 CO{sub 2}/MWh{sub c} by using recoverable waste heat as driving heat for absorption chillers. However, the most cost effective cooling solution in a district energy system is a combination between absorption and compression cooling technologies according to the study. Absorption chillers have the potential to be suitable bottoming cycles for power production in distributed systems. Net electrical yields over 55 % may be reached in some cases with gas motors and absorption chillers. This small-scale system for cogeneration of power and cooling shows electrical efficiencies comparable to large-scale power plants and may contribute to reducing peak electricity demand associated with the cooling demand.

  18. Cryogenic system with the sub-cooled liquid nitrogen for cooling HTS power cable

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Y.F. [Chinese Academy of Sciences, Beijing (China). Technical Institute of Physics and Chemistry; Graduate School of Chinese Academy of Sciences, Beijing (China); Gong, L.H.; Xu, X.D.; Li, L.F.; Zhang, L. [Chinese Academy of Sciences, Beijing (China). Technical Institute of Physics and Chemistry; Xiao, L.Y. [Chinese Academy of Sciences, Beijing (China). Institute of Electrical Engineering

    2005-04-01

    A 10 m long, three-phase AC high-temperature superconducting (HTS) power cable had been fabricated and tested in China August 2003. The sub-cooled liquid nitrogen (LN{sub 2}) was used to cool the HTS cable. The sub-cooled LN{sub 2} circulation was built by means of a centrifugal pump through a heat exchanger in the sub-cooler, the three-phase HTS cable cryostats and a LN{sub 2} gas-liquid separator. The LN{sub 2} was cooled down to 65 K by means of decompressing, and the maximum cooling capacity was about 3.3 kW and the amount of consumed LN{sub 2} was about 72 L/h at 1500 A. Cryogenic system design, test and some experimental results would be presented in this paper. (author)

  19. ELECTRONIC CIRCUIT BOARDS NON-UNIFORM COOLING SYSTEM MODEL

    Directory of Open Access Journals (Sweden)

    D. V. Yevdulov

    2016-01-01

    Full Text Available Abstract. The paper considers a mathematical model of non-uniform cooling of electronic circuit boards. The block diagram of the system implementing this approach, the method of calculation of the electronic board temperature field, as well as the principle of its thermal performance optimizing are presented. In the considered scheme the main heat elimination from electronic board is produced by the radiator system, and additional cooling of the most temperature-sensitive components is produced by thermoelectric batteries. Are given the two-dimensional temperature fields of the electronic board during its uniform and non-uniform cooling, is carried out their comparison. As follows from the calculations results, when using a uniform overall cooling of electronic unit there is a waste of energy for the cooling 0f electronic board parts which temperature is within acceptable temperature range without the cooling system. This approach leads to the increase in the cooling capacity of used thermoelectric batteries in comparison with the desired values. This largely reduces the efficiency of heat elimination system. The use for electronic boards cooling of non-uniform local heat elimination removes this disadvantage. The obtained dependences show that in this case, the energy required to create a given temperature is smaller than when using a common uniform cooling. In this approach the temperature field of the electronic board is more uniform and the cooling is more efficient. 

  20. Biofouling problems in freshwater cooling systems

    International Nuclear Information System (INIS)

    Rao, T.S.

    2007-01-01

    In aqueous environments, microorganisms (bacteria, algae, fungi etc.,) are attracted towards surfaces, which they readily colonise resulting in the formation of biofilms. The implications of biofouling are energy losses due to increased fluid frictional resistance and increased heat transfer resistance. The temperatures prevalent inside the condenser system provide a favorable environment for the rapid growth of microorganisms. This results in thick slime deposit, which is responsible for heat transfer losses, thereby enhancing aggregation of deposits on the material surface and induces localised corrosion. There have been instances of increased capital costs due to premature replacement of equipment caused by severe under deposit corrosion due to biofouling. Moreover, fouling of service water systems of nuclear power plants is of concern, because it reduces the heat transfer capacity during an emergency or an accident. The growth of microbial films (slimes) a few tens of microns thick, in a condenser tube is sufficient to induce microbiologically influenced corrosion and cause irreparable damage to the condenser tubes and other structural materials. The down time costs to power plant due to condenser fouling and corrosion are quite large. This paper presents the author's experience in biofouling and corrosion problems in various power plants cooled by freshwater. (author)

  1. Tolerance to environmental desiccation in moss sperm.

    Science.gov (United States)

    Shortlidge, Erin E; Rosenstiel, Todd N; Eppley, Sarah M

    2012-05-01

    • Sexual reproduction in mosses requires that sperm be released freely into the environment before finding and fertilizing a receptive female. After release from the male plant, moss sperm may experience a range of abiotic stresses; however, few data are available examining stress tolerance of moss sperm and whether there is genetic variation for stress tolerance in this important life stage. • Here, we investigated the effects of environmental desiccation and recovery on the sperm cells of three moss species (Bryum argenteum, Campylopus introflexus, and Ceratodon purpureus). • We found that a fraction of sperm cells were tolerant to environmental desiccation for extended periods (d) and that tolerance did not vary among species. We found that this tolerance occurs irrespective of ambient dehydration conditions, and that the addition of sucrose during dry-down improved cell recovery. Although we observed no interspecific variation, significant variation among individuals within species in sperm cell tolerance to environmental desiccation was observed, suggesting selection could potentially act on this basic reproductive trait. • The observation of desiccation-tolerant sperm in multiple moss species has important implications for understanding bryophyte reproduction, suggesting the presence of a significant, uncharacterized complexity in the ecology of moss mating systems. © 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.

  2. Density and vapour pressure of mixed-solvent desiccant systems (propylene glycol or dipropylene glycol or tripropylene glycol + magnesium chloride + water)

    International Nuclear Information System (INIS)

    Chen, Shang-Yi; Soriano, Allan N.; Leron, Rhoda B.; Li, Meng-Hui

    2014-01-01

    In this present work, new experimental data for density and vapour pressure of the mixed-solvent desiccant systems containing {40 wt% glycol (propylene or dipropylene or tripropylene) + (4 or 9 or 16 wt%) magnesium chloride salt + water} were reported for temperatures up to 343.15 K at normal atmospheric condition. The density and vapour pressure data obtained are presented as a function of temperature and composition. An empirical equation was used to correlate the temperature and compositional dependence of the density values. A model based on the mean spherical approximation for aqueous electrolyte solutions incorporating the pseudo-solvent approach was used to represent the vapour pressure as a function of temperature and composition. Satisfactory results were obtained for both density and vapour pressure calculations

  3. Computational Fluid Dynamics Analysis of an Evaporative Cooling System

    Directory of Open Access Journals (Sweden)

    Kapilan N.

    2016-11-01

    Full Text Available The use of chlorofluorocarbon based refrigerants in the air-conditioning system increases the global warming and causes the climate change. The climate change is expected to present a number of challenges for the built environment and an evaporative cooling system is one of the simplest and environmentally friendly cooling system. The evaporative cooling system is most widely used in summer and in rural and urban areas of India for human comfort. In evaporative cooling system, the addition of water into air reduces the temperature of the air as the energy needed to evaporate the water is taken from the air. Computational fluid dynamics is a numerical analysis and was used to analyse the evaporative cooling system. The CFD results are matches with the experimental results.

  4. Modeling of Nonlinear Marine Cooling Systems with Closed Circuit Flow

    DEFF Research Database (Denmark)

    Hansen, Michael; Stoustrup, Jakob; Bendtsen, Jan Dimon

    2011-01-01

    We consider the problem of constructing a mathematical model for a specific type of marine cooling system. The system in question is used for cooling the main engine and main engine auxiliary components, such as diesel generators, turbo chargers and main engine air coolers for certain classes...

  5. Heat pump system with selective space cooling

    Science.gov (United States)

    Pendergrass, J.C.

    1997-05-13

    A reversible heat pump provides multiple heating and cooling modes and includes a compressor, an evaporator and heat exchanger all interconnected and charged with refrigerant fluid. The heat exchanger includes tanks connected in series to the water supply and a condenser feed line with heat transfer sections connected in counterflow relationship. The heat pump has an accumulator and suction line for the refrigerant fluid upstream of the compressor. Sub-cool transfer tubes associated with the accumulator/suction line reclaim a portion of the heat from the heat exchanger. A reversing valve switches between heating/cooling modes. A first bypass is operative to direct the refrigerant fluid around the sub-cool transfer tubes in the space cooling only mode and during which an expansion valve is utilized upstream of the evaporator/indoor coil. A second bypass is provided around the expansion valve. A programmable microprocessor activates the first bypass in the cooling only mode and deactivates the second bypass, and vice-versa in the multiple heating modes for said heat exchanger. In the heating modes, the evaporator may include an auxiliary outdoor coil for direct supplemental heat dissipation into ambient air. In the multiple heating modes, the condensed refrigerant fluid is regulated by a flow control valve. 4 figs.

  6. The stochastic-cooling system for COSY-Juelich

    International Nuclear Information System (INIS)

    Brittner, P.; Danzglock, R.; Hacker, H.U.; Maier, R.; Pfister, U.; Prasuhn, D.; Singer, H.; Spiess, W.; Stockhorst, H.

    1991-01-01

    The cooling in the Cooler Synchrotron COSY will work in the ranges: Band 1: 1 to 1.8 GHz, Band 2: 1.8 to 3 GHz. The system allows cooling in the energy range of 0.8 to 2.5 GeV. The stochastic-cooling system is under development. Cooling characteristics have been calculated. The tanks are similar to those of the CERN-AC. But the COSY parameters have required changes of the tank design. Active RF components have been developed for COSY. Measured results are presented

  7. Integrated systems for power plant cooling and wastewater management

    International Nuclear Information System (INIS)

    Haith, D.A.

    1975-01-01

    The concept of integrated management of energy and water resources, demonstrated in hydropower development, may be applicable to steam-generated power, also. For steam plants water is a means of disposing of a waste product, which is unutilized energy in the form of heat. One framework for the evolution of integrated systems is the consideration of possible technical linkages between power plant cooling and municipal wastewater management. Such linkages include the use of waste heat as a mechanism for enhancing wastewater treatment, the use of treated wastewater as make-up for evaporative cooling structures, and the use of a pond or reservoir for both cooling and waste stabilization. This chapter reports the results of a systematic evaluation of possible integrated systems for power plant cooling and waste water management. Alternatives were analyzed for each of three components of the system--power plant cooling (condenser heat rejection), thermally enhanced waste water treatment, and waste water disposal. Four cooling options considered were evaporative tower, open cycle, spray pond, and cooling pond. Three treatment alternatives considered were barometric condenser-activated sludge, sectionalized condenser-activated sludge, and cooling/stabilization pond. Three disposal alternatives considered were ocean discharge, land application (spray irrigation), and make-up (for evaporative cooling). To facilitate system comparisons, an 1100-MW nuclear power plant was selected. 31 references

  8. Experiments on novel solar heating and cooling system

    International Nuclear Information System (INIS)

    Wang Yiping; Cui Yong; Zhu Li; Han Lijun

    2008-01-01

    Solar heating and nocturnal radiant cooling techniques are united to produce a novel solar heating and cooling system. The radiant panel with both heating and cooling functions can be used as structural materials for the building envelope, which realizes true building integrated utilization of solar energy. Based on the natural circulation principle, the operation status can be changed automatically between the heating cycle and the cooling cycle. System performances under different climate conditions using different covers on the radiant panel are studied. The results show that the novel solar heating and cooling system has good performance of heating and cooling. For the no cover system, the daily average heat collecting efficiency is 52% with the maximum efficiency of 73%, while at night, the cooling capacity is about 47 W/m 2 on a sunny day. On a cloudy day, the daily average heat collecting efficiency is 47% with the maximum of 84%, while the cooling capacity is about 33 W/m 2 . As a polycarbonate (PC) panel or polyethylene film are used as covers, the maximum heat collecting efficiencies are 75% and 72% and the daily average heat collecting efficiencies are 61% and 58%, while the cooling capacities are 50 W/m 2 and 36 W/m 2 , respectively

  9. Application of fuzzy control in cooling systems save energy design

    Energy Technology Data Exchange (ETDEWEB)

    Chen, M.L.; Liang, H.Y. [Chienkuo Technology Univ., Changhua, Taiwan (China). Dept. of Electrical Engineering

    2005-07-01

    A fuzzy logic programmable logic controller (PLC) was used to control the cooling systems of frigorific equipment. Frigorific equipment is used to move unwanted heat outside of building in order to control indoor temperatures. The aim of the fuzzy logic PLC was to improve the energy efficiency of the cooling system. Control of the cooling pump and cooling tower in the system was based on the water temperature of the condenser during frigorific system operation. A human computer design for the cooling system control was used to set speeds and to automate and adjust the motor according to the fuzzy logic controller. It was concluded that if fuzzy logic controllers are used with all components of frigorific equipment, energy efficiency will be significantly increased. 5 refs., 3 tabs., 9 figs.

  10. Fundamental research on the cooling characteristic of passive containment cooling system

    International Nuclear Information System (INIS)

    Kawakubo, M.; Kikura, H.; Aritomi, M.; Inaba, N.; Yamauchi, T.

    2004-01-01

    The objective of this experimental study is to clarify the heat transfer characteristics of the Passive Containment Cooling System (PCCS) with vertical heat transfer tubes for investigating the influence of non-condensable gas on condensation. Furthermore, hence we obtained new experimental correlation formula to calculate the transients in system temperature and pressure using the simulation program of the PCCS. The research was carried out using a forced circulation experimental loop, which simulates atmosphere inside PCCS with vertical heat transfer tubes if a loss of coolant accident (LOCA) occurs. The experimental facility consists of cooling water supply systems, an orifice flowmeter, and a tank equipped with the heat transfer pipe inside. Cooling water at a constant temperature is injected to the test part of heat transfer pipe vertically installed in the tank by forced circulation. At that time, the temperature of the cooling water between inlet and outlet of the pipe was measured to calculate the overall heat transfer coefficient between the cooling water and atmosphere in the tank. Thus, the heat transfer coefficient between heat transfer surface and the atmosphere in the tank considering the influence of the non-condensable gas was clarified. An important finding of this study is that the amount of condensation in the steamy atmosphere including non-condensable gas depends on the cooling water Reynolds number, especially the concentration of non-condensable gas that has great influence on the amount of condensation. (authors)

  11. Post-accident cooling capacity analysis of the AP1000 passive spent fuel pool cooling system

    International Nuclear Information System (INIS)

    Su Xia

    2013-01-01

    The passive design is used in AP1000 spent fuel pool cooling system. The decay heat of the spent fuel is removed by heating-boiling method, and makeup water is provided passively and continuously to ensure the safety of the spent fuel. Based on the analysis of the post-accident cooling capacity of the spent fuel cooling system, it is found that post-accident first 72-hour cooling under normal refueling condition and emergency full-core offload condition can be maintained by passive makeup from safety water source; 56 hours have to be waited under full core refueling condition to ensure the safety of the core and the spent fuel pool. Long-term cooling could be conducted through reserved safety interface. Makeup measure is available after accident and limited operation is needed. Makeup under control could maintain the spent fuel at sub-critical condition. Compared with traditional spent fuel pool cooling system design, the AP1000 design respond more effectively to LOCA accidents. (authors)

  12. Percutaneous radiofrequency ablation of osteoid osteoma using cool-tip electrodes without the cooling system

    International Nuclear Information System (INIS)

    Miyazaki, Masaya; Miyazaki, Akiko; Nakajima, Takahito; Koyama, Yoshinori; Shinozaki, Tetsuya; Endo, Keigo; Aoki, Jun

    2011-01-01

    The aim of this study was to evaluate the efficacy of percutaneous radiofrequency ablation (RFA) for osteoid osteoma (OO) using cool-tip electrodes without the cooling system. A total of 17 patients (13 males, 4 females; mean age 19.1 years; range 7-49 years) with OO (tibia, n=7; femur, n=5; acetabulum, n=2; radius, n=1; talus, n=1; lumbar spine, n=1) underwent RFA. Using a cool-tip electrode without the cooling system, the lesion was heated to 90degC for 4 or 5 min. Procedures were considered technically successful if the electrode was placed into the nidus and the target temperature was reached and maintained for at least 4 min. Clinical success of the treatment was defined as complete or partial pain relief after RFA. All procedures were considered technically successful, although two patients encountered complications (pes equinus contracture, skin burn). Altogether, 16 of the 17 patients (94.1%) achieved complete or partial pain relief after primary RFA. Two patients had pain recurrence, with one of them treated successfully with a second RFA. The overall clinical success rate was 88.2%. Histological findings confirmed the presence of OO in 13 patients (76.5%). Percutaneous RFA of OO using cool-tip electrodes without the cooling system is a safe, effective procedure. (author)

  13. PERFORMANCE EVALUATION OF CEILING RADIANT COOLING SYSTEM IN COMPOSITE CLIMATE

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Anuj [Malaviya National Institute of Technology (MNIT), Jaipur, India; Mathur, Jyotirmay [Malaviya National Institute of Technology (MNIT), Jaipur, India; Bhandari, Mahabir S [ORNL

    2015-01-01

    Radiant cooling systems are proving to be an energy efficient solution due to higher thermal capacity of cooling fluid especially for the buildings that require individual zone controls and where the latent loads are moderate. The Conventional air conditioners work at very low temperature i.e.5-8 c (refrigerant evaporator inlet) while the radiant cooling systems, also referred as high temperature cooling system, work at high temperatures i.e. 14-18 c. The radiant cooling systems can maintain lower MRT (Mean Radiant Temperature) as ceiling panels maintain uniform temperature gradient inside room and provide higher human comfort. The radiant cooling systems are relatively new systems and their operation and energy savings potential are not quantified for a large number of buildings and operational parameters. Moreover, there are only limited numbers of whole building simulation studies have been carried out for these systems to have a full confidence in the capability of modelling tools to simulate these systems and predict the impact of various operating parameters. Theoretically, savings achieve due to higher temperature set point of chilled water, which reduces chiller-running time. However, conventional air conditioner runs continuously to maintain requisite temperature. In this paper, experimental study for performance evaluation of radiant cooling system carried out on system installed at Malaviya National Institute of Technology Jaipur. This paper quantifies the energy savings opportunities and effective temperature by radiant cooling system at different chilled water flow rates and temperature range. The data collected/ analysed through experimental study will used for calibration and validation of system model of building prepared in building performance simulation software. This validated model used for exploring optimized combinations of key parameters for composite climate. These optimized combinations will used in formulation of radiant cooling system

  14. Improvement of Cooling Performance of a Compact Thermoelectric Air Conditioner Using a Direct Evaporative Cooling System

    Science.gov (United States)

    Tipsaenporm, W.; Lertsatitthanakorn, C.; Bubphachot, B.; Rungsiyopas, M.; Soponronnarit, S.

    2012-06-01

    This paper presents the results of tests carried out to investigate the potential application of a direct evaporative cooling (DEC) system for improving the performance of a compact thermoelectric (TE) air conditioner. The compact TE air conditioner is composed of three TE modules. The cold and hot sides of the TE modules were fixed to rectangular fin heat sinks. The DEC system produced cooling air that was used to assist the release of heat from the heat sinks at the hot side of the TE modules. The results showed that the cooling air dry bulb temperature from the DEC system achieved drops of about 5.9°C in parallel with about a 33.4% rise in relative humidity. The cooling efficiency of the DEC system varies between 72.1% and 81.5%. It increases the cooling capacity of the compact TE air conditioner from 53.0 W to 74.5 W. The 21.5 W (40.6%) increase represents the difference between the compact air conditioner operating with ambient air flowing through the TE module's heat sinks, and the compact air conditioner operating with the cooler air from the DEC system flowing through the TE module's heat sinks. In both scenarios, electric current of 4.5 A was supplied to the TE modules. It also has been experimentally proven that the coefficient of performance (COP) of the compact TE air conditioner can be improved by up to 20.9% by incorporating the DEC system.

  15. Cooling systems for waste heat. Cooling systems, review and selection criteria. Kuehlsysteme fuer Abwaerme. Kuehlsysteme, Ueberblick und Auswahlkriterien

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, W. (Jaeggi, Wallisellen (Switzerland))

    1990-05-01

    In many areas of ventilation, air-conditioning and refrigeration engineering, chemical and process engineering and energy production waste heat occurs. If a reduction in energy losses or heat recovery is not possible waste heat has to be drawn off through cooling systems. For this the following systems can be used: dry cooling systems, dry cooler with spray system, open-cycle wet cooler, hybrid dry cooler, and closed-cycle wet cooler. Particularly hybrid cooling systems can give acceptable solutions when the results with other systems are only unsatisfactory. (BWI).

  16. Huge opportunity for solar cooling

    International Nuclear Information System (INIS)

    Rowe, Daniel

    2014-01-01

    In Europe more than 400 solar cooling systems have been installed. By contrast, only a small number of solar cooling installations exist in Australia - primarily adsorption and absorption systems for commercial and hospitals - although these systems are growing. As with other renewable energy technologies, cost is a challenge. However solar cooling is currently competitive with other technologies, with some suggesting that system costs have been decreasing by about 20% per annum in recent times. Australia is also leading efforts in the development of residential solar desiccant technology, currently commercialising Australian-developed technology. Commercial and industrial enterprises are increasingly aware of the impact of demand charges, the potential to install technology as a hedge against future energy price rises and opportunities associated with increased on-site generation and reduced reliance on the grid, often necessitating on-site demand reduction and management. They are also driven by environmental and corporate social responsibility objectives as well as the opportunity for energy independence and uninterruptible operation. Interestingly, many of these interests are mirrdred at residential level, inspiring CSIRO's commercialisation of a domestic scale solar air conditioner with Australian manufacturer Brevis Climate Systems. Australia and other countries are increasingly aware of solar cooling as technology which can reduce or replace grid-powered cooling, particularly in applications where large building thermal energy requirements exist. In these applications, heating, cooling and hot water are generated and used in large amounts and the relative amounts of each can be varied dynamically, depending on building requirements. Recent demonstrations of solar cooling technology in Australia include Hunter TAFE's Solar Desiccant Cooling System - which provides heating, cooling and hot water to commercial training kitchens and classrooms - GPT

  17. Numerical study of a novel dew point evaporative cooling system

    Energy Technology Data Exchange (ETDEWEB)

    Riangvilaikul, B.; Kumar, S. [Energy Field of Study, School of Environment, Resources and Development, Asian Institute of Technology, P.O. Box 4, Klong Luang, Pathumthani 12120 (Thailand)

    2010-11-15

    Dew point evaporative cooling system is an alternative to vapor compression air conditioning system for sensible cooling of ventilation air. This paper presents the theoretical performance of a novel dew point evaporative cooling system operating under various inlet air conditions (covering dry, moderate and humid climate) and influence of major operating parameters (namely, velocity, system dimension and the ratio of working air to intake air). A model of the dew point evaporative cooling system has been developed to simulate the heat and mass transfer processes. The outlet air conditions and system effectiveness predicted by the model using numerical method for known inlet parameters have been validated with experimental findings and with recent literature. The model was used to optimize the system parameters and to investigate the system effectiveness operating under various inlet air conditions. (author)

  18. Closed-cycle cooling systems for nuclear power plants

    International Nuclear Information System (INIS)

    Santini, Lorenzo

    2006-01-01

    The long experience in the field of closed-cycle cooling systems and high technological level of turbo machines and heat exchangers concurs to believe in the industrial realizability of nuclear systems of high thermodynamic efficiency and intrinsic safety [it

  19. Solar heating and cooling technical data and systems analysis

    Science.gov (United States)

    Christensen, D. L.

    1977-01-01

    The research activities described herein were concentrated on the areas of economics, heating and cooling systems, architectural design, materials characteristics, climatic conditions, educational information packages, and evaluation of solar energy systems and components.

  20. RAMI analysis for DEMO HCPB blanket concept cooling system

    Energy Technology Data Exchange (ETDEWEB)

    Dongiovanni, Danilo N., E-mail: danilo.dongiovanni@enea.it [ENEA, Unità Tecnica Fusione, ENEA C. R. Frascati (Italy); Pinna, Tonio [ENEA, Unità Tecnica Fusione, ENEA C. R. Frascati (Italy); Carloni, Dario [KIT, Institute of Neutron Physics and Reactor Technology (INR) – KIT (Germany)

    2015-10-15

    Highlights: • RAMI (reliability, availability, maintainability and inspectability) preliminary assessment for HCPB blanket concept cooling system. • Reliability block diagram (RBD) modeling and analysis for HCPB primary heat transfer system (PHTS), coolant purification system (CPS), pressure control system (PCS), and secondary cooling system. • Sensitivity analysis on system availability performance. • Failure models and repair models estimated on the base of data from the ENEA fusion component failure rate database (FCFRDB). - Abstract: A preliminary RAMI (reliability, availability, maintainability and inspectability) assessment for the HCPB (helium cooled pebble bed) blanket cooling system based on currently available design for DEMO fusion power plant is presented. The following sub-systems were considered in the analysis: blanket modules, primary cooling loop including pipework and steam generators lines, pressure control system (PCS), coolant purification system (CPS) and secondary cooling system. For PCS and CPS systems an extrapolation from ITER Test Blanket Module corresponding systems was used as reference design in the analysis. Helium cooled pebble bed (HCPB) system reliability block diagrams (RBD) models were implemented taking into account: system reliability-wise configuration, operating schedule currently foreseen for DEMO, maintenance schedule and plant evolution schedule as well as failure and corrective maintenance models. A simulation of plant activity was then performed on implemented RBDs to estimate plant availability performance on a mission time of 30 calendar years. The resulting availability performance was finally compared to availability goals previously proposed for DEMO plant by a panel of experts. The study suggests that inherent availability goals proposed for DEMO PHTS system and Tokamak auxiliaries are potentially achievable for the primary loop of the HCPB concept cooling system, but not for the secondary loop. A

  1. Design Requirements of an Advanced HANARO Reactor Core Cooling System

    International Nuclear Information System (INIS)

    Park, Yong Chul; Ryu, Jeong Soo

    2007-12-01

    An advanced HANARO Reactor (AHR) is an open-tank-type and generates thermal power of 20 MW and is under conceptual design phase for developing it. The thermal power is including a core fission heat, a temporary stored fuel heat in the pool, a pump heat and a neutron reflecting heat in the reflector vessel of the reactor. In order to remove the heat load, the reactor core cooling system is composed of a primary cooling system, a primary cooling water purification system and a reflector cooling system. The primary cooling system must remove the heat load including the core fission heat, the temporary stored fuel heat in the pool and the pump heat. The purification system must maintain the quality of the primary cooling water. And the reflector cooling system must remove the neutron reflecting heat in the reflector vessel of the reactor and maintain the quality of the reflector. In this study, the design requirement of each system has been carried out using a design methodology of the HANARO within a permissible range of safety. And those requirements are written by english intend to use design data for exporting the research reactor

  2. Replacement of the cooling system of the TRIGA Mainz reactor

    International Nuclear Information System (INIS)

    Menke, H.

    1988-01-01

    The inspection of the reactor facility resulted in a recommendation to install a new heat exchanger and at the same time to separate the primary cooling circuit and the water purification system. Due to possible the deposition of lime and organic matter on the tubes, the heat transfer rate has decreased. In the meantime a rule has been introduced, according to which the pressure in the secondary cooling circuit must be permanently higher than in the primary cooling circuit which prompted the design of a new cooling system. The detail planning was completed in December 1987. In response to the regulatory requirements a motion for a replacement of the cooling system was submitted to the authorities. The start of the procedure is possible a year after the obtaining of the licenses. In the planning of the changes an upgrading of the steady state power to 300 kW is envisioned

  3. Thermal Hydraulic Analysis of RPV Support Cooling System for HTGR

    International Nuclear Information System (INIS)

    Min Qi; Wu Xinxin; Li Xiaowei; Zhang Li; He Shuyan

    2014-01-01

    Passive safety is now of great interest for future generation reactors because of its reduction of human interaction and avoidance of failures of active components. reactor pressure vessel (RPV) support cooling system (SCS) for high temperature gas-cooled reactor (HTGR) is a passive safety system and is used to cool the concrete seats for the four RPV supports at its bottom. The SCS should have enough cooling capacity to ensure the temperature of the concrete seats for the supports not exceeding the limit temperature. The SCS system is composed of a natural circulation water loop and an air cooling tower. In the water loop, there is a heat exchanger embedded in the concrete seat, heat is transferred by thermal conduction and convection to the cooling water. Then the water is cooled by the air cooler mounted in the air cooling tower. The driving forces for water and air are offered by the density differences caused by the temperature differences. In this paper, the thermal hydraulic analysis for this system was presented. Methods for decoupling the natural circulation and heat transfer between the water loop and air flow were introduced. The operating parameters for different working conditions and environment temperatures were calculated. (author)

  4. Evaluation of two cooling systems under a firefighter coverall

    NARCIS (Netherlands)

    Teunissen, L.P.J.; Wang, L.C.; Chou, S.N.; Huang, C.; Jou, G.T.; Daanen, H.A.M.

    2014-01-01

    Firemen often suffer from heat strain. This study investigated two chest cooling systems for use under a firefighting suit. In nine male subjects, a vest with water soaked cooling pads and a vest with water perfused tubes were compared to a control condition. Subjects performed 30 min walking and 10

  5. Conceptual design study on simplified and safer cooling systems for sodium cooled FBRs

    International Nuclear Information System (INIS)

    Hayafune, Hiroki; Shimakawa, Yoshio; Ishikawa, Hiroyasu; Kubota, Kenichi; Kobayashi, Jun; Kasai, Shigeo

    2000-06-01

    The objective of this study is to create the FBR plant concepts increasing economy and safety for the Phase-I 'Feasibility Studies on Commercialized Fast Reactor System'. In this study, various concepts of simplified 2ry cooling system for sodium cooled FBRs are considered and evaluated from the view points of technological feasibility, economy, and safety. The concepts in the study are considered on the basis of the following points of view. 1. To simplify 2ry cooling system by moderating and localizing the sodium-water reaction in the steam generator of the FBRs. 2. To simplify 2ry cooling system by eliminating the sodium-water reaction using integrated IHX-SG unit. 3. To simplify 2ry cooling system by eliminating the sodium-water reaction using a power generating system other than the steam generator. As the result of the study, 12 concepts and 3 innovative concepts are proposed. The evaluation study for those concepts shows the following technical prospects. 1. 2 concepts of integrated IHX-SG unit can eliminate the sodium-water reaction. Separated IHX and SG tubes unit using Lead-Bismuth as the heat transfer medium. Integrated IHX-SG unit using copper as the heat transfer medium. 2. Cost reduction effect by simplified 2ry cooling system using integrated IHX-SG unit is estimated 0 to 5%. 3. All of the integrated IHX-SG unit concepts have more weight and larger size than conventional steam generator unit. The weight of the unit during transporting and lifting would limit capacity of heat transfer system. These evaluation results will be compared with the results in JFY 2000 and used for the Phase-II study. (author)

  6. A tri-generation system based on polymer electrolyte fuel cell and desiccant wheel – Part A: Fuel cell system modelling and partial load analysis

    International Nuclear Information System (INIS)

    Najafi, Behzad; De Antonellis, Stefano; Intini, Manuel; Zago, Matteo; Rinaldi, Fabio; Casalegno, Andrea

    2015-01-01

    Highlights: • A mathematical model for a PEMFC based cogeneration system is developed. • Developed model is validated using the available experimental data. • Performance of the plant at full load conditions is investigated. • Performance indices while applying two different modifications are determined. • System’s performance with and without modifications at partial loads is investigated. - Abstract: Polymer Electrolyte Membrane Fuel Cell (PEMFC) based systems have recently received increasing attention as a viable alternative for meeting the residential electrical and thermal demands. However, as the intermittent demand profiles of a building can only be addressed by a tri-generative unit which can operate at partial loads, the variation of performance of the system at partial loads might affect its corresponding potential benefits significantly. Nonetheless, no previous study has been carried out on assessing the performance of this type of tri-generative systems in such conditions. The present paper is the first of a two part study dedicated to the investigation of the performance of a tri-generative system in which a PEMFC based system is coupled with a desiccant wheel unit. This study is focused on evaluating the performance of the PEMFC subsystem while operating at partial loads. Accordingly, a detailed mathematical model of the fuel cell subsystem is first developed and validated using the experimental data obtained from the plant’s and the fuel cell stack’s manufacturer. Next, in order to increase the performance of the plant, two modifications have been proposed and the resulting performance at partial load have been determined. The obtained results demonstrate that applying both modifications results in increasing the electrical efficiency of the plant by 5.5%. It is also shown that, while operating at partial loads, the electrical efficiency of the plant does not significantly change; the fact which corresponds to the trade-off between

  7. Review of Desiccant Dehumidification Technology

    Energy Technology Data Exchange (ETDEWEB)

    Pesaran, A. A.

    1994-10-01

    This paper overviews applications of desiccant technology for dehumidifying commercial and institutional buildings. Because of various market, policy, and regulatory factors, this technology is especially attractive for dehumidification applications in the I990s.

  8. Exergy analysis of a gas-hydrate cool storage system

    International Nuclear Information System (INIS)

    Bi, Yuehong; Liu, Xiao; Jiang, Minghe

    2014-01-01

    Based on exergy analysis of charging and discharging processes in a gas-hydrate cool storage system, the formulas for exergy efficiency at the sensible heat transfer stage and the phase change stage corresponding to gas-hydrate charging and discharging processes are obtained. Furthermore, the overall exergy efficiency expressions of charging, discharging processes and the thermodynamic cycle of the gas-hydrate cool storage system are obtained. By using the above expressions, the effects of number of transfer units, the inlet temperatures of the cooling medium and the heating medium on exergy efficiencies of the gas-hydrate cool storage system are emphatically analyzed. The research results can be directly used to evaluate the performance of gas-hydrate cool storage systems and design more efficient energy systems by reducing the sources of inefficiency in gas-hydrate cool storage systems. - Highlights: • Formulas for exergy efficiency at four stages are obtained. • Exergy efficiency expressions of two processes and one cycle are obtained. • Three mainly influencing factors on exergy efficiencies are analyzed. • With increasing the inlet temperature of cooling medium, exergy efficiency increases. • With decreasing the inlet temperature of heating medium, exergy efficiency increases

  9. Experimental Analysis on Solar Desiccant Air Conditioner

    OpenAIRE

    Dr. U. V. Kongre, C. M. Singh, A. B. Biswas

    2014-01-01

    The experiment investigated and evaluated the feasibility of an solar desiccant air conditioner. Its effectiveness as a possible air conditioner option used in household air conditioner or as an energy efficient and environmentally friendly alternative to conventional air conditioning units used in houses are evaluated. A solar water heater was used as heat gain. The model utilizes the technology of solar air conditioner system. The purpose in the long term wou...

  10. Thermodynamic analysis of cooling systems for nuclear power stations condenser

    International Nuclear Information System (INIS)

    Beck, A.

    1985-06-01

    This work is an attempt to concentrate on the thermodynamic theory, the engineering solution and the quantities of water needed for the operation of a wet as well as a wet/dry cooling towers coupled to a nuclear turbine condenser,. About two hundred variables are needed for the design of a condenser - cooling tower system. In order to make the solution fast and handy, a computer model was developed. The amount of water evaporation from cooling towers is a function of the climate conditions prevailing around the site. To achieve an authentic analysis, the meteorological data of the northern Negev was used. The total amount of water necessary to add to the system in a year time of operation is large and is a function of both the blow-down rate and the evaporation. First estimations show that the use of a combined system, wet/dry cooling tower, is beneficial in the northern Negev area. Such a system can reduce significantly the amount of wasted fresh water. Lack of international experience is the major problem in the acceptability of wet/dry cooling towers. The technology of a wet cooling tower using sea water is also discussed where no technical or engineering limitations were found. This work is an attempt to give some handy tools for making the choice of cooling systems for nuclear power plants easier

  11. Preoperational test report, primary ventilation condenser cooling system

    Energy Technology Data Exchange (ETDEWEB)

    Clifton, F.T.

    1997-10-29

    This represents the preoperational test report for the Primary Ventilation Condenser Cooling System, Project W-030. Project W-030 provides a ventilation upgrade for the four Aging Waste Facility tanks. The system uses a closed chilled water piping loop to provide offgas effluent cooling for tanks AY101, AY102, AZ1O1, AZ102; the offgas is cooled from a nominal 100 F to 40 F. Resulting condensation removes tritiated vapor from the exhaust stack stream. The piping system includes a package outdoor air-cooled water chiller with parallel redundant circulating pumps; the condenser coil is located inside a shielded ventilation equipment cell. The tests verify correct system operation and correct indications displayed by the central Monitor and Control System.

  12. Preoperational test report, primary ventilation condenser cooling system

    International Nuclear Information System (INIS)

    Clifton, F.T.

    1997-01-01

    This represents the preoperational test report for the Primary Ventilation Condenser Cooling System, Project W-030. Project W-030 provides a ventilation upgrade for the four Aging Waste Facility tanks. The system uses a closed chilled water piping loop to provide offgas effluent cooling for tanks AY101, AY102, AZ1O1, AZ102; the offgas is cooled from a nominal 100 F to 40 F. Resulting condensation removes tritiated vapor from the exhaust stack stream. The piping system includes a package outdoor air-cooled water chiller with parallel redundant circulating pumps; the condenser coil is located inside a shielded ventilation equipment cell. The tests verify correct system operation and correct indications displayed by the central Monitor and Control System

  13. Containment atmosphere cooling system for experimental fast reactor 'JOYO'

    International Nuclear Information System (INIS)

    Sasaki, Mikio; Hoshi, Akio; Sato, Morihiko; Takeuchi, Kaoru

    1979-01-01

    The experimental fast reactor ''JOYO'', the first sodium-cooled fast reactor in Japan, achieved the initially licensed full power operation (50 MW) in July 1978 and is now under steady operation. Toshiba has participated in the construction of this reactor as a leading manufacturer and supplied various systems. This article outlines the design philosophy, system concepts and the operating experience of the containment atmosphere cooling system which has many design interfaces throughout the whole plant and requires especially high reliability. The successful performance of this system during the reactor full-power operation owes to the spot cooling design philosophy and to the preoperational adjustment of heat load during the preheating period of reactor cooling system peculiar to FBR. (author)

  14. CAREM 25: Suppression pool cooling and purification system

    International Nuclear Information System (INIS)

    Carlevaris, Rodolfo; Patrignani, Alberto; Vindrola, Carlos; Palmerio, Hector D.; Quiroz, Horacio; Ramilo, Lucia B.

    2000-01-01

    The suppression pool cooling and purification system has the following main functions: purify and cool water from the suppression pool, cool and send water to the residual heat extraction system, and transfer water to the fuel element transference channel. In case of Loss of Coolant Accident (LOCA), the system sends water from the suppression pool to the spray network, thus cooling and reducing pressure in the primary containment. The system has been designed in accordance with the requirements of the following standards: ANSI/ANS 52.1; ANSI/ANS 57.2; ANSI/ANS 56.2; ANSI/ANS 59.1; ANSI/ANS 58.3; ANSI/ANS 58.9; and ANSI/ANS 56.5. The design of the system fulfils all the assigned functions. (author)

  15. CAREM-25. Suppression Pool Cooling and Purification System

    International Nuclear Information System (INIS)

    Carlevaris, Rodolfo; Palmerio, D.; Patrignani, A.; Quiroz, H.; Ramilo, L.; Vindrola, C.

    2000-01-01

    The Suppression Pool Cooling and Purification System has the following main functions: purify and cool water from the Suppression Pool, cool and send water to the Residual Heat Extraction System, and transfer water to the Fuel Element Transference Channel. In case of Loss of Coolant Accident (LOCA), the system sends water from the Suppression Pool to the spray network, thus cooling and reducing pressure in the primary containment.The system has been designed in accordance with the requirements of the following standards ANSI/ANS 52.1 [1], ANSI/ANS 57.2 [2], ANSI/ANS 56.2 [3], ANSI/ANS 59.1 [4] ANSI/ANS 58.3 [5], ANSI/ANS 58.9 [6], and ANSI/ANS 56.5 [7]. The design of the system fulfils all the assigned functions

  16. Cooling System Design Options for a Fusion Reactor

    Science.gov (United States)

    Natalizio, Antonio; Collén, Jan; Vieider, Gottfried

    1997-06-01

    The objective of a fusion power reactor is to produce electricity safely and reliably. Accordingly, the design, objective of the heat transport system is to optimize power production, safety, and reliability. Such an optimization process, however, is constrained by many factors, including, among others: public safety, worker safety, steam cycle efficiency, reliability, and cost. As these factors impose conflicting requirements, there is a need to find an optimum design solution, i.e., one that satisfies all requirements, but not necessarily each requirement optimally. The SEAFP reactor study developed helium-cooled and water-cooled models for assessment purposes. Among other things, the current study demonstrates that neither model offers an optimum solution. Helium cooling offers a high steam cycle efficiency but poor reliability for the cooling of high heat flux components (divertor and first wall). Alternatively, water cooling offers a low steam cycle efficiency, but reasonable reliability for the cooling of such components. It is concluded that an optimum solution includes helium cooling of low heat flux components and water cooling of high heat flux components. Relative to the SEAFP helium model, this hybrid system enhances safety and reliability, while retaining the high steam cycle efficiency of that model.

  17. Experimental study of regenerative desiccant integrated solar dryer with and without reflective mirror

    Energy Technology Data Exchange (ETDEWEB)

    Shanmugam, V. [Department of Mechanical Engineering, Sathyabama University, Chennai, 600 119 (India); Natarajan, E. [Institute for Energy Studies, College of Engineering, Anna University, Chennai, 600 025 (India)

    2007-06-15

    An indirect forced convection with desiccant integrated solar dryer has been built and tested. The main parts are: a flat plate solar air collector, a drying chamber, desiccant bed and a centrifugal blower. The system is operated in two modes, sunshine hours and off sunshine hours. During sun shine hours the hot air from the flat plate collector is forced to the drying chamber for drying the product and simultaneously the desiccant bed receives solar radiation directly and through the reflected mirror. In the off sunshine hours, the dryer is operated by circulating the air inside the drying chamber through the desiccant bed by a reversible fan. The dryer is used to dry 20 kg of green peas and pineapple slices. Drying experiments were conducted with and without the integration of desiccant unit. The effect of reflective mirror on the drying potential of desiccant unit was also investigated. With the inclusion of reflective mirror, the drying potential of the desiccant material is increased by 20% and the drying time is reduced. The drying efficiency of the system varies between 43% and 55% and the pick-up efficiency varies between 20% and 60%, respectively. Approximately in all the drying experiments 60% of moisture is removed by air heated using solar energy and the remainder by the desiccant. The inclusion of reflective mirror on the desiccant bed makes faster regeneration of the desiccant material. (author)

  18. Active cooling system for Tokamak in-vessel operation manipulator

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Jianjun, E-mail: yuanjj@sjtu.edu.cn; Chen, Tan; Li, Fashe; Zhang, Weijun; Du, Liang

    2015-10-15

    Highlights: • We summarized most of the challenges of fusion devices to robot systems. • Propose an active cooling system to protect all of the necessary components. • Trial design test and theoretical analysis were conducted. • Overall implementation of the active cooling system was demonstrated. - Abstract: In-vessel operation/inspection is an indispensable task for Tokamak experimental reactor, for a robot/manipulator is more capable in doing this than human being with more precise motion and less risk of damaging the ambient equipment. Considering the demanding conditions of Tokamak, the manipulator should be adaptable to rapid response in the extreme conditions such as high temperature, vacuum and so on. In this paper, we propose an active cooling system embedded into such manipulator. Cameras, motors, gearboxes, sensors, and other mechanical/electrical components could then be designed under ordinary conditions. The cooling system cannot only be a thermal shield since the components are also heat sources in dynamics. We carry out a trial test to verify our proposal, and analyze the active cooling system theoretically, which gives a direction on the optimization by varying design parameters, components and distribution. And based on thermal sensors monitoring and water flow adjusting a closed-loop feedback control of temperature is added to the system. With the preliminary results, we believe that the proposal gives a way to robust and inexpensive design in extreme environment. Further work will concentrate on overall implementation and evaluation of this cooling system with the whole inspection manipulator.

  19. Evaluation of Active Cooling Systems for Non-Residential Buildings

    Directory of Open Access Journals (Sweden)

    M.A. Othuman Mydin

    2014-05-01

    Full Text Available Cooling systems are an essential element in many facets of modern society including cars, computers and buildings. Cooling systems are usually divided into two types: passive and active. Passive cooling transfers heat without using any additional energy while active cooling is a type of heat transfer that uses powered devices such as fans or pumps. This paper will focus on one particular type of passive cooling: air-conditioning systems. An air-conditioning system is defined as controlled air movement, temperature, humidity and cleanliness of a building area. Air conditioning consists of cooling and heating. Therefore, the air-conditioning system should be able to add and remove heat from the area. An air-conditioning system is defined as a control or treatment of air in a confined space. The process that occurs is the air-conditioning system absorbs heat and dust while, at the same time, cleaning the air breathed into a closed space. The purpose of air-conditioning is to maintain a comfortable atmosphere for human life and to meet user requirements. In this paper, air-conditioning systems for non-residential buildings will be presented and discussed.

  20. A model for radionuclide transport in the Cooling Water System

    International Nuclear Information System (INIS)

    Kahook, S.D.

    1992-08-01

    A radionuclide transport model developed to assess radiological levels in the K-reactor Cooling Water System (CWS) in the event of an inadvertent process water (PW) leakage to the cooling water (CW) in the heat exchangers (HX) is described. During and following a process water leak, the radionuclide transport model determines the time-dependent release rates of radionuclide from the cooling water system to the environment via evaporation to the atmosphere and blow-down to the Savannah River. The developed model allows for delay times associated with the transport of the cooling water radioactivity through cooling water system components. Additionally, this model simulates the time-dependent behavior of radionuclides levels in various CWS components. The developed model is incorporated into the K-reactor Cooling Tower Activity (KCTA) code. KCTA allows the accident (heat exchanger leak rate) and the cooling tower blow-down and evaporation rates to be described as time-dependent functions. Thus, the postulated leak and the consequence of the assumed leak can be modelled realistically. This model is the first of three models to be ultimately assembled to form a comprehensive Liquid Pathway Activity System (LPAS). LPAS will offer integrated formation, transport, deposition, and release estimates for radionuclides formed in a SRS facility. Process water and river water modules are forthcoming as input and downstream components, respectively, for KCTA

  1. System and method for pre-cooling of buildings

    Science.gov (United States)

    Springer, David A.; Rainer, Leo I.

    2011-08-09

    A method for nighttime pre-cooling of a building comprising inputting one or more user settings, lowering the indoor temperature reading of the building during nighttime by operating an outside air ventilation system followed, if necessary, by a vapor compression cooling system. The method provides for nighttime pre-cooling of a building that maintains indoor temperatures within a comfort range based on the user input settings, calculated operational settings, and predictions of indoor and outdoor temperature trends for a future period of time such as the next day.

  2. System for cooling the containment vessel of a nuclear reactor

    International Nuclear Information System (INIS)

    Costes, Didier.

    1982-01-01

    The invention concerns a post-accidental cooling system for a nuclear reactor containment vessel. This system includes in series a turbine fed by the moist air contained in the vessel, a condenser in which the air is dried and cooled, a compressor actuated by the turbine and a cooling exchanger. The cold water flowing through the condenser and in the exchanger is taken from a tank outside the vessel and injected by a pump actuated by the turbine. The application is for nuclear reactors under pressure [fr

  3. Hybrid Cooling System for Industrial Application | Ezekwe | Nigerian ...

    African Journals Online (AJOL)

    Hybrid Cooling System for Industrial Application. ... PROMOTING ACCESS TO AFRICAN RESEARCH ... more than five times over that achieved by using the gas (air) phase alone. ... EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT

  4. Augmented cooling vest system subassembly: Design and analysis

    International Nuclear Information System (INIS)

    D’Angelo, Maurissa; D’Angelo, Joseph; Almajali, Mohammad; Lafdi, Khalid; Delort, Antoine; Elmansori, Mohamed

    2014-01-01

    Highlights: • Thermoelectric cooler (TEC) was employed to provide cooling air to cooling vest. • Aluminum cooling fins were used to exchange heat for hot and cold sides of TEC. • Performance of the system was determined and the experimental technique was described. • Heat sink is capable to remove additional heat and heat exchanger provides cooling air. • Future work is proposed to optimize the efficiency of the system. - Abstract: A prototype cooling engine consisting of thermoelectric coolers (TECs) was developed and designed. In this prototype, aluminum cooling fins were employed as the heat exchange method for both the hot and cold sides of the TEC. Aluminum fins were used to cool the ambient air through a heat exchanger and dissipate heat build up from the heat sink. This system was modeled and performance capabilities were determined. The experimental technique used to monitor parameters affecting the efficiency of the designed system was described. These parameters include the temperatures of the inlets and outlets of both heat exchanger and heat sink and the flow rate of the cooled air. The experiment was run under three input DC powers; 15 V, 18 V, and 21 V. As the power increased, both the flow rate and the temperature difference between the hot and cold side of thermoelectric cooler increased, demonstrating the heat sink capability to remove the additional heat. However, the temperature difference between the inlet and outlet of the heat exchanger decreases as the power increase. The findings demonstrated the effectiveness of this cooling system and future work is proposed to optimize the heat

  5. Upgrade of the cooling water temperature measures system for HLS

    International Nuclear Information System (INIS)

    Guo Weiqun; Liu Gongfa; Bao Xun; Jiang Siyuan; Li Weimin; He Duohui

    2007-01-01

    The cooling water temperature measures system for HLS (Hefei Light Source) adopts EPICS to the developing platform and takes the intelligence temperature cruise instrument for the front control instrument. Data of temperatures are required by IOCs through Serial Port Communication, archived and searched by Channel Archiver. The system can monitor the real-time temperatures of many channels cooling water and has the function of history data storage, and data network search. (authors)

  6. Process integration: Cooling water systems design

    CSIR Research Space (South Africa)

    Gololo, KV

    2010-10-01

    Full Text Available stream_source_info Gololo2_2010.pdf.txt stream_content_type text/plain stream_size 17891 Content-Encoding UTF-8 stream_name Gololo2_2010.pdf.txt Content-Type text/plain; charset=UTF-8 The 13th Asia Pacific Confederation... results in a nonlinear program (NLP) formulation and the second case yields mixed integer nonlinear program (MINLP). In both cases the cooling towers operating capacity were debottlenecked without compromising the heat duties. The 13th Asia...

  7. Desiccants for retrospective dosimetry using optically stimulated luminescence (OSL)

    International Nuclear Information System (INIS)

    Geber-Bergstrand, Therése; Bernhardsson, Christian; Christiansson, Maria; Mattsson, Sören; Rääf, Christopher L.

    2015-01-01

    Optically stimulated luminescence (OSL) was used to test different kinds of desiccants for their potential use in retrospective dosimetry. Desiccants are used for the purpose of absorbing liquids and can be found in a number of items which may be found in the immediate environment of a person, including hand bags, drug packages, and the vehicles of rescue service teams. Any material exhibiting OSL properties suitable for retrospective dosimetry is a useful addition to the existing dosimetry system available in emergency preparedness. Eleven kinds of desiccants were investigated in order to obtain an overview of the fundamental OSL properties necessary for retrospective dosimetry. Measurements were made using a Risø TL/OSL reader and irradiations were achieved with the 90 Sr/ 90 Y source incorporated in the reader. Several of the desiccants exhibited promising properties as retrospective dosemeters. Some of the materials exhibited a strong as-received signal, i.e. without any laboratory irradiation, but the origin of this signal has not yet been established. The minimum detectable dose ranged from 8 to 450 mGy for ten of the materials and for one material (consisting of natural clay) the minimum detectable dose was 1.8 Gy. - Highlights: • Desiccants can be used as fortuitous dosemeters using OSL. • The minimum detectable dose for processed desiccants range from 8 to 450 mGy. • The minimum detectable dose for natural clay was 1.8 Gy

  8. Water cooling system for sintering furnaces of nuclear fuel pellets

    International Nuclear Information System (INIS)

    1996-01-01

    This work has as a main objective to develop a continuous cooling water system, which is necessary for the cooling of the sintering furnaces. This system is used to protect them as well as for reducing the water consumption, ejecting the heat generated into this furnaces and scattering it into the atmosphere in a fast and continuous way. The problem was defined and the reference parameters established, making the adequate research. The materials were selected as well as the length of the pipeline which will carry the secondary refrigerant fluid (water). Three possible solutions were tried,and evaluated, and from these, the thermal and economically most efficient option was selected. The layout of the solution was established and the theoretical construction of a cooling system for liquids using dichlorofluoromethane (R-22), as a refrigerant and a air cooled condenser, was accomplished. (Author)

  9. Adsorption Cooling System Using Metal-Impregnated Zeolite-4A

    Directory of Open Access Journals (Sweden)

    Somsuk Trisupakitti

    2016-01-01

    Full Text Available The adsorption cooling systems have been developed to replace vapor compression due to their benefits of being environmentally friendly and energy saving. We prepared zeolite-4A and experimental cooling performance test of zeolite-water adsorption system. The adsorption cooling test-rig includes adsorber, evaporator, and condenser which perform in vacuum atmosphere. The maximum and minimum water adsorption capacity of different zeolites and COP were used to assess the performance of the adsorption cooling system. We found that loading zeolite-4A with higher levels of silver and copper increased COP. The Cu6%/zeolite-4A had the highest COP at 0.56 while COP of zeolite-4A alone was 0.38. Calculating the acceleration rate of zeolite-4A when adding 6% of copper would accelerate the COP at 46%.

  10. Unlimited cooling capacity of the passive-type emergency core cooling system of the MARS reactor

    International Nuclear Information System (INIS)

    Bandini, G.; Caira, M.; Naviglio, A.; Sorabella, L.

    1995-01-01

    The MARS nuclear plant is equipped with a 600 MWth PWR type nuclear steam supply system, with completely innovative engineered core safeguards. The most relevant innovative safety system of this plant is its Emergency Core Cooling System, which is completely passive (with only one non static component). The Emergency Core Cooling System (ECCS) of the MARS reactor is natural-circulation, passive-type, and its intervention follows a core flow decrease, whatever was the cause. The operation of the system is based on a cascade of three fluid systems, functionally interfacing through heat exchangers; the first fluid system is connected to the reactor vessel and the last one includes an atmospheric-pressure condenser, cooled by external air. The infinite thermal capacity of the final heat sink provides the system an unlimited autonomy. The capability and operability of the system are based on its integrity and on the integrity of the primary coolant boundary (both of them are permanently enclosed in a pressurized containment; 100% redundancy is also foreseen) and on the operation of only one non static component (a check valve), with 400% redundancy. In the paper, all main thermal hydraulic transients occurring as a consequence of postulated accidents are analysed, to verify the capability of the passive-type ECCS to intervene always in time, without causing undue conditions of reduced coolability of the core (DNB, etc.), and to verify its capability to guarantee a long-term (indefinite) coolability of the core without the need of any external intervention. (author)

  11. Zero Energy Communities with Central Solar Plants using Liquid Desiccants and Local Storage: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Burch, J.; Woods, J.; Kozubal, E.; Boranian, A.

    2012-08-01

    The zero energy community considered here consists of tens to tens-of-thousands of residences coupled to a central solar plant that produces all the community's electrical and thermal needs. A distribution network carries fluids to meet the heating and cooling loads. Large central solar systems can significantly reduce cost of energy vs. single family systems, and they enable economical seasonal heat storage. However, the thermal distribution system is costly. Conventional district heating/cooling systems use a water/glycol solution to deliver sensible energy. Piping is sized to meet the peak instantaneous load. A new district system introduced here differs in two key ways: (i) it continuously distributes a hot liquid desiccant (LD) solution to LD-based heating and cooling equipment in each home; and (ii) it uses central and local storage of both LD and heat to reduce flow rates to meet average loads. Results for piping sizes in conventional and LD thermal communities show that the LD zero energy community reduces distribution piping diameters meeting heating loads by {approx}5X and meeting cooling loads by {approx}8X for cooling, depending on climate.

  12. Development of adsorption cooling system. 3

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J.N.; Cho, S.H.; Chue, K.T.; You, Y.J.; Lee, K.H.; Eun, T.H. [Korea Inst. of Energy Research, Taejon (Korea, Republic of)

    1995-12-01

    This report describes the third year study to develop adsorption chiller using silica gel/water pair for the recovery of low level waste heat. A pilot plant was fabricated and tested. In a typical run, the cooling capacity of 1.66 USRT and COP of 0.38 was obtained under the following operating conditions; chilled water temperature of 12{yields}8.9 degree C, hot water temperature of 72.7 degree C, cooling water temperature of 23.2 degree C, and half cycle time of 600(s). The COP of the pilot plant is comparable to 0.4 of Nishiyodo pilot plant having 3.68 USRT. In order to enhance the thermal conductivity of adsorbent layer, consolidated silica gel and graphite block was prepared and its characteristics was analyzed. A slurry method using water was appropriate of silica gel and graphite in the block, in which adsorbed amount of water is not much smaller than that on silica gel, was 6:1. The thermal conductivity of this block was 6.53 W/mk which was 37 times larger than that of silica gel. (author). 12 refs., 37 figs., 8 tabs.

  13. Simulation of an active cooling system for photovoltaic modules

    International Nuclear Information System (INIS)

    Abdelhakim, Lotfi

    2016-01-01

    Photovoltaic cells are devices that convert solar radiation directly into electricity. However, solar radiation increases the photovoltaic cells temperature [1] [2]. The temperature has an influence on the degradation of the cell efficiency and the lifetime of a PV cell. This work reports on a water cooling technique for photovoltaic panel, whereby the cooling system was placed at the front surface of the cells to dissipate excess heat away and to block unwanted radiation. By using water as a cooling medium for the photovoltaic solar cells, the overheating of closed panel is greatly reduced without prejudicing luminosity. The water also acts as a filter to remove a portion of solar spectrum in the infrared band but allows transmission of the visible spectrum most useful for the PV operation. To improve the cooling system efficiency and electrical efficiency, uniform flow rate among the cooling system is required to ensure uniform distribution of the operating temperature of the PV cells. The aims of this study are to develop a 3D thermal model to simulate the cooling and heat transfer in Photovoltaic panel and to recommend a cooling technique for the PV panel. The velocity, pressure and temperature distribution of the three-dimensional flow across the cooling block were determined using the commercial package, Fluent. The second objective of this work is to study the influence of the geometrical dimensions of the panel, water mass flow rate and water inlet temperature on the flow distribution and the solar panel temperature. The results obtained by the model are compared with experimental results from testing the prototype of the cooling device.

  14. Simulation of an active cooling system for photovoltaic modules

    Energy Technology Data Exchange (ETDEWEB)

    Abdelhakim, Lotfi [Széchenyi István University of Applied Sciences, Department of Mathematics, P.O.Box 701, H-9007 Győr (Hungary)

    2016-06-08

    Photovoltaic cells are devices that convert solar radiation directly into electricity. However, solar radiation increases the photovoltaic cells temperature [1] [2]. The temperature has an influence on the degradation of the cell efficiency and the lifetime of a PV cell. This work reports on a water cooling technique for photovoltaic panel, whereby the cooling system was placed at the front surface of the cells to dissipate excess heat away and to block unwanted radiation. By using water as a cooling medium for the photovoltaic solar cells, the overheating of closed panel is greatly reduced without prejudicing luminosity. The water also acts as a filter to remove a portion of solar spectrum in the infrared band but allows transmission of the visible spectrum most useful for the PV operation. To improve the cooling system efficiency and electrical efficiency, uniform flow rate among the cooling system is required to ensure uniform distribution of the operating temperature of the PV cells. The aims of this study are to develop a 3D thermal model to simulate the cooling and heat transfer in Photovoltaic panel and to recommend a cooling technique for the PV panel. The velocity, pressure and temperature distribution of the three-dimensional flow across the cooling block were determined using the commercial package, Fluent. The second objective of this work is to study the influence of the geometrical dimensions of the panel, water mass flow rate and water inlet temperature on the flow distribution and the solar panel temperature. The results obtained by the model are compared with experimental results from testing the prototype of the cooling device.

  15. Active noise canceling system for mechanically cooled germanium radiation detectors

    Science.gov (United States)

    Nelson, Karl Einar; Burks, Morgan T

    2014-04-22

    A microphonics noise cancellation system and method for improving the energy resolution for mechanically cooled high-purity Germanium (HPGe) detector systems. A classical adaptive noise canceling digital processing system using an adaptive predictor is used in an MCA to attenuate the microphonics noise source making the system more deployable.

  16. System performance and economic analysis of solar-assisted cooling/heating system

    KAUST Repository

    Huang, B.J.; Wu, J.H.; Yen, R.H.; Wang, J.H.; Hsu, H.Y.; Hsia, C.J.; Yen, C.W.; Chang, J.M.

    2011-01-01

    The long-term system simulation and economic analysis of solar-assisted cooling/heating system (SACH-2) was carried out in order to find an economical design. The solar heat driven ejector cooling system (ECS) is used to provide part of the cooling

  17. A parametric study of solar operated cooling system

    International Nuclear Information System (INIS)

    Zagalei, Abdullatif Salin

    2006-01-01

    Because of energy for air conditioning has been the fastest-growing segment of energy of consumption market in Libya and generally in north Africa, and with the realization depleting nature of fossil fuel, solar cooling of buildings which leads to the improvement of human comfort represents a potentially significant application of solar energy where the availability of solar radiation meets with the cooling load demand. This application has been shown to be technically feasible but the equipment needs further investigative research to improve its performance and feasibility. A solar operated absorption cooling system with energy storage is selected. A latent heat storage would be a space saver for such application for solar energy. A system modeling is an essential activity in order to go for system simulation. A complete solar cooling system to be modeled through the thermodynamic analysis of each system components. Resulting a package of equations used directly to the system simulation in order to predict the system performance to obtain the optimum working conditions for the selected cooling system. A computer code which is used to simulate a series of calculations was written in Fortran language according to the constructed information flow diagram and simulation program flow char. For a typical input data a set of results are reported and discussed and shows that the selected system promises to be a good choice for air conditioning application in Libya specially for large building as storehouses, shopping centers, public administrative.(Author)

  18. Air-cooled recirculation cooling systems. Technical and economic comparison; Luftgekuehlte Rueckkuehlsysteme. Technisch wirtschaftlicher Vergleich

    Energy Technology Data Exchange (ETDEWEB)

    Dierks, G. [Fa. Jaeggi/Guentner (Schweiz) AG, Trimbach (Switzerland)

    2000-03-01

    There are several air-cooled forced-circulation cooling systems for heat removal from refrigeration systems. Optimum solutions should not be selected on the basis of the cost factor alone; an integrative approach should be used instead. An exemplary investigation is presented. [German] Fuer die Waermeabfuhr aus kaeltetechnischen Anlagen stehen verschiedene luftgekuehlte, zwangsbelueftete Rueckkuehlsysteme zur Verfuegung. Die Auswahl des Systems ist oft von kurzfristigem Kostendenken gepraegt, was in technischer und wirtschaftlicher Hinsicht aber nicht immer der optimalen Loesung entspricht. Erst die genauere Kenntnis der verschiedenen Systeme und eine ganzheitliche Betrachtungsweise ermoeglichen die optimale Wahl fuer den einzelnen Fall. Die hier praesentierte Untersuchung wird anhand eines konkreten Falls dargestellt, wobei Preise und technische Produktdaten auf realen Anfragen beruhen. Der Autor ist um objetive Bewertung bemueht, der Leser moege aber selbst urteilen. (orig./AKF)

  19. Passive ventilation systems with heat recovery and night cooling

    DEFF Research Database (Denmark)

    Hviid, Christian Anker; Svendsen, Svend

    2008-01-01

    with little energy consumption and with satisfying indoor climate. The concept is based on using passive measures like stack and wind driven ventilation, effective night cooling and low pressure loss heat recovery using two fluid coupled water-to-air heat exchangers developed at the Technical University......In building design the requirements for energy consumption for ventilation, heating and cooling and the requirements for increasingly better indoor climate are two opposing factors. This paper presents the schematic layout and simulation results of an innovative multifunc-tional ventilation concept...... of Denmark. Through building integration in high performance offices the system is optimized to incorporate multiple functions like heating, cooling and ventilation, thus saving the expenses of separate cooling and heating systems. The simulation results are derived using the state-of-the-art building...

  20. Instrumentation for NBI SST-1 cooling water system

    International Nuclear Information System (INIS)

    Qureshi, Karishma; Patel, Paresh; Jana, M.R.

    2015-01-01

    Neutral Beam Injector (NBI) System is one of the heating systems for Steady state Superconducting Tokamak (SST-1). It is capable of generating a neutral hydrogen beam of power 0.5 MW at 30 kV. NBI system consists of following sub-systems: Ion source, Neutralizer, Deflection Magnet and Magnet Liner (ML), Ion Dump (ID), V-Target (VT), Pre Duct Scraper (PDS), Beam Transmission Duct (BTD) and Shine Through (ST). For better heat removal management purpose all the above sub-systems shall be equipped with Heat Transfer Elements (THE). During beam operation these sub-systems gets heated due to the received heat load which requires to be removed by efficient supplying water. The cooling water system along with the other systems (External Vacuum System, Gas Feed System, Cryogenics System, etc.) will be controlled by NBI Programmable Logic Control (PLC). In this paper instrumentation and its related design for cooling water system is discussed. The work involves flow control valves, transmitters (pressure, temperature and water flow), pH and conductivity meter signals and its interface with the NBI PLC. All the analog input, analog output, digital input and digital output signals from the cooling water system will be isolated and then fed to the NBI PLC. Graphical Users Interface (GUI) needed in the Wonderware SCADA for the cooling water system shall also be discussed. (author)

  1. Supplementary report: cooling water systems for Darlington G.S

    International Nuclear Information System (INIS)

    1975-08-01

    This report summarizes Ontario Hydro's existing aquatic environmental programs, presents results of these investigations, and outlines plans and activities for expanded aquatic environment studies including the evaluation of alternative cooling systems. This report outlines specific considerations regarding possible alternative cooling arrangements for the Darlington station. It concludes with a recommendation that a study be initiated to examine the potential benefits of using the heated discharge water in a warm water recreational centre. (author)

  2. Application of cooling with solid dissecants in solar heating and heating water systems; Aplicacion de la refrigeracion con desecantes solidos en sistemas solares de calefaccion y agua caliente sanitaria

    Energy Technology Data Exchange (ETDEWEB)

    Carrillo Andres, A.; Cejudo Lopez, J. M.; Dominguez Munoz, F.; Serrano Casares, F.

    2004-07-01

    Solar thermal systems designed for domestic hot water and space heating, must be dimensioned on a larger scale than for purely domestic hot water. In summer, when there are many days when no heating is required, the oversized collector area leads to frequent stagnancy situations. In order to use the excess of collector area in summer, a solar desiccant cooling system can be integrated in the solar thermal system. This paper study such combination, using computer simulations with the program TRNSYS, Klein(2000). (Author)

  3. Performance improvement of a hybrid air conditioning system using the indirect evaporative cooler with internal baffles as a pre-cooling unit

    Directory of Open Access Journals (Sweden)

    A.E. Kabeel

    2017-12-01

    Full Text Available In the present paper, the effects of the indirect evaporative cooler with internal baffle on the performance of the hybrid air conditioning system are numerically investigated. The hybrid air conditioning system contains two indirect evaporative coolers with internal baffle, one is utilized to pre-cool the air inlet to the desiccant wheel and the other is utilized to pre-cool the supply air inlet to the room. The effects of the inlet conditions of the process and reactivation air and working air ratio on the thermal performance of the hybrid air conditioning system have been analyzed. The results of this study show that in the hybrid air conditioning system for using the indirect evaporative cooler with internal baffle as a pre-cooling unit, the supply air temperature reduced by 21% and the coefficient of performance improved by 71% as compared to previous designs of the hybrid air conditioning system at the same inlet conditions. For increasing process air inlet temperature from 25 °C to 45 °C, supply air temperature increases from 12.7 °C to 14.2 °C, thermal COP increases from 1.87 to 2.84, and supply air relative humidity increases from 76.7% to 77.4%. Also, for increasing the reactivation air inlet temperature from 70 °C to 110 °C, supply air temperature dropped from 15.9 °C to 10.9 °C, supply air relative humidity dropped from 82.7% to 71.8%, and thermal COP dropped from 4.5 to 1.7. The recommended optimal air working ratio in the indirect evaporative cooler with internal baffle should be 0.15. Keywords: Desiccant material, Solar air collector, Evaporative cooler, Internal baffles, Air conditioning

  4. Use of a temperature-initiated passive cooling system (TIPACS) for the modular high-temperature gas-cooled reactor cavity cooling system (RCCS)

    International Nuclear Information System (INIS)

    Forsberg, C.W.; Conklin, J.; Reich, W.J.

    1994-04-01

    A new type of passive cooling system has been invented (Forsberg 1993): the Temperature-Initiated Passive Cooling System (TIPACS). The characteristics of the TIPACS potentially match requirements for an improved reactor-cavity-cooling system (RCCS) for the modular high-temperature gas-cooled reactor (MHTGR). This report is an initial evaluation of the TIPACS for the MHTGR with a Rankines (steam) power conversion cycle. Limited evaluations were made of applying the TIPACS to MHTGRs with reactor pressure vessel temperatures up to 450 C. These temperatures may occur in designs of Brayton cycle (gas turbine) and process heat MHTGRs. The report is structured as follows. Section 2 describes the containment cooling issues associated with the MHTGR and the requirements for such a cooling system. Section 3 describes TIPACS in nonmathematical terms. Section 4 describes TIPACS's heat-removal capabilities. Section 5 analyzes the operation of the temperature-control mechanism that determines under what conditions the TIPACS rejects heat to the environment. Section 6 addresses other design and operational issues. Section 7 identifies uncertainties, and Section 8 provides conclusions. The appendixes provide the detailed data and models used in the analysis

  5. Use of a temperature-initiated passive cooling system (TIPACS) for the modular high-temperature gas-cooled reactor cavity cooling system (RCCS)

    Energy Technology Data Exchange (ETDEWEB)

    Forsberg, C.W.; Conklin, J.; Reich, W.J.

    1994-04-01

    A new type of passive cooling system has been invented (Forsberg 1993): the Temperature-Initiated Passive Cooling System (TIPACS). The characteristics of the TIPACS potentially match requirements for an improved reactor-cavity-cooling system (RCCS) for the modular high-temperature gas-cooled reactor (MHTGR). This report is an initial evaluation of the TIPACS for the MHTGR with a Rankines (steam) power conversion cycle. Limited evaluations were made of applying the TIPACS to MHTGRs with reactor pressure vessel temperatures up to 450 C. These temperatures may occur in designs of Brayton cycle (gas turbine) and process heat MHTGRs. The report is structured as follows. Section 2 describes the containment cooling issues associated with the MHTGR and the requirements for such a cooling system. Section 3 describes TIPACS in nonmathematical terms. Section 4 describes TIPACS`s heat-removal capabilities. Section 5 analyzes the operation of the temperature-control mechanism that determines under what conditions the TIPACS rejects heat to the environment. Section 6 addresses other design and operational issues. Section 7 identifies uncertainties, and Section 8 provides conclusions. The appendixes provide the detailed data and models used in the analysis.

  6. Behaviour of ruthenium in the case of shutdown of the cooling system of HLLW storage tanks

    International Nuclear Information System (INIS)

    Philippe, M.; Gue, J.P.; Mercier, J.P.

    1990-12-01

    The consequences of the failure of the cooling system of fission product storage tanks over a variable period were investigated as part of the safety analysis of the La Hague spent fuel reprocessing plant. Due to the considerable heat release, induced by the fission products, a prolonged shutdown of the tank cooling system could cause the progressive evaporation of the solutions to dryness, and culminate in the formation of volatile species of ruthenium and their release in the tank venting circuit. To determine the fraction of ruthenium likely to be transferred from the storage tanks in volatile or aerosol form during the failure, evaporation tests were conducted by evaporating samples of actual nitric acid solutions of fission products, obtained on the laboratory scale after the reprocessing of several kilograms of MOX fuels irradiated to 30.000 MW day ·t -1 . A distillation apparatus was designed to operate with small-volume solution samples, reproducing the heating conditions existing in the reprocessing plant within a storage tank for fission products. The main conclusions drawn from these experiments are as follows: - ruthenium is only volatilized in the final phase of evaporation, just before desiccation, - for a final temperature limited to 160 deg. C, the total fraction of volatilized ruthenium reaches 12%, - in the presence of H 2 O, HNO 3 , NO x and O 2 , the volatilized ruthenium recombines mainly in the form of ruthenium nitrosyl nitrates, or decomposes into ruthenium oxide (probably RuO 2 ) on the walls of the apparatus. Assuming a heating power density of 10 W/liter of concentrate, and a perfectly adiabatic storage system, the minimum time required to reach dryness can be estimated at 90 h, allowing substantial time to take action to restore a cooling source. It is probable that, in an industrial storage tank, the heat losses from the tank and the offgas discharge ducts will cause recondensation and internal reflux, which will commensurately delay

  7. The regeneration of a liquid desiccant using direct contact membrane distillation to unlock the potential of coastal desert agriculture

    KAUST Repository

    Cribbs, Kimberly

    2018-04-01

    In Gulf Cooperation Council (GCC) countries, a lack of freshwater, poor soil quality, and ambient temperatures unsuitable for cultivation for parts of the year hinders domestic agriculture. The result is a reliance on a fluctuating supply of imported fresh produce which may have high costs and compromised quality. There are agricultural technologies available such as hydroponics and controlled environment agriculture (CEA) that can allow GCC countries to overcome poor soil quality and ambient temperatures unsuitable for cultivation, respectively. Evaporative cooling is the most common form of cooling for CEA and requires a significant amount of water. In water-scarce regions, it is desirable for sea or brackish water to be used for evaporative cooling. Unfortunately, in many coastal desert regions, evaporative cooling does not provide enough cooling due to the high wet-bulb temperature of the ambient air during hot and humid months of the year. A liquid desiccant dehumidification system has been proven to lower the wet-bulb temperature of ambient air in the coastal city of Jeddah, Saudi Arabia to a level that allows for evaporative cooling to meet the needs of heat-sensitive crops. Much of the past research on the regeneration of the liquid desiccant solution has been on configurations that release water vapor back to the atmosphere. Studies have shown that the amount of water captured by the liquid desiccant when used to dehumidify a greenhouse can supply a significant amount of the water needed for irrigation. This thesis studied the regeneration of a magnesium chloride (MgCl2) liquid desiccant solution from approximately 20 to 31wt% by direct contact membrane distillation and explored the possibility of using the recovered water for irrigation. Two microporous hydrophobic PTFE membranes were experimentally tested and modeled when the bulk feed and coolant temperature difference was between 10 and 60°C. In eight experiments, the salt rejection was higher than 99

  8. Dry-type cooling systems in electric power production

    International Nuclear Information System (INIS)

    Li, K.W.

    1973-01-01

    This study indicates that the dry-type cooling tower could be adopted in this country as an alternative method for removing waste heat from power plants. The use of dry cooling towers would not only lead to a change of cooling system design, but also to a change of overall thermal design in a power generating system. The principal drawbacks to using dry cooling towers in a large steam-turbine plant are the generating capacity loss, increased fuel consumption and the high capital cost of the dry cooling towers. These economic penalties must be evaluated in each specific case against the benefits that may result from the use of dry cooling towers. The benefits are principally these: (1) Fewer constraints in the selection of power plant sites, (2) No thermal discharge to the natural water bodies, (3) Elimination of vapor plumes and water evaporation loss, and (4) Freedom of adding new units to an existing facility where inadequate water supply may otherwise rule out this possibility

  9. Emergency cooling system for nuclear reactors

    International Nuclear Information System (INIS)

    Frisch, E.; Andrews, H.N.

    1976-01-01

    Upon the occasion of loss of coolant in a nuclear reactor as when a coolant supply or return line breaks, or both lines break, borated liquid coolant from an emergency source is supplied in an amount to absorb heat being generated in the reactor even after the control rods have been inserted. The liquid coolant flows from pressurized storage vessels outside the reactor to an internal manifold from which it is distributed to unused control rod guide thimbles in the reactor fuel assemblies. Since the guide thimbles are mounted at predetermined positions relative to heat generating fuel elements in the fuel assemblies, holes bored at selected locations in the guide thimble walls, sprays the coolant against the reactor fuel elements which continue to dissipate heat but at a reduced level. The cooling water evaporates upon contacting the fuel rods thereby removing the maximum amount of heat (970 BTU per pound of water) and after heat absorption will leave the reactor in the form of steam through the break which is the cause of the accident to help assure immediate core cooldown

  10. Replacement inhibitors for tank farm cooling coil systems

    International Nuclear Information System (INIS)

    Hsu, T.C.

    1995-01-01

    Sodium chromate has been an effective corrosion inhibitor for the cooling coil systems in Savannah River Site (SRS) waste tanks for over 40 years. Due to their age and operating history, cooling coils occasionally fail allowing chromate water to leak into the environment. When the leaks spill 10 lbs. or more of sodium chromate over a 24-hr period, the leak incidents are classified as Unusual Occurrences (UO) per CERCLA (Comprehensive Environmental Response, Compensation and Liability Act). The cost of reporting and cleaning up chromate spills prompted High Level Waste Engineering (HLWE) to initiate a study to investigate alternative tank cooling water inhibitor systems and the associated cost of replacement. Several inhibitor systems were investigated as potential alternatives to sodium chromate. All would have a lesser regulatory impact, if a spill occurred. However, the conversion cost is estimated to be $8.5 million over a period of 8 to 12 months to convert all 5 cooling systems. Although each of the alternative inhibitors examined is effective in preventing corrosion, there is no inhibitor identified that is as effective as chromate. Assuming 3 major leaks a year (the average over the past several years), the cost of maintaining the existing inhibitor was estimated at $0.5 million per year. Since there is no economic or regulatory incentive to replace the sodium chromate with an alternate inhibitor, HLWE recommends that sodium chromate continue to be used as the inhibitor for the waste tank cooling systems

  11. Development of a higher power cooling system for lithium targets.

    Science.gov (United States)

    Phoenix, B; Green, S; Scott, M C; Bennett, J R J; Edgecock, T R

    2015-12-01

    The accelerator based Boron Neutron Capture Therapy beam at the University of Birmingham is based around a solid thick lithium target cooled by heavy water. Significant upgrades to Birmingham's Dynamitron accelerator are planned prior to commencing a clinical trial. These upgrades will result in an increase in maximum achievable beam current to at least 3 mA. Various upgrades to the target cooling system to cope with this increased power have been investigated. Tests of a phase change coolant known as "binary ice" have been carried out using an induction heater to provide a comparable power input to the Dynamitron beam. The experimental data shows no improvement over chilled water in the submerged jet system, with both systems exhibiting the same heat input to target temperature relation for a given flow rate. The relationship between the cooling circuit pumping rate and the target temperature in the submerged jet system has also been tested. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Development and application of online Stelmor Controlled Cooling System

    International Nuclear Information System (INIS)

    Yu Wanhua; Chen Shaohui; Kuang Yonghai; Cao Kaichao

    2009-01-01

    An online Stelmor Controlled Cooling System (SCCS) has been developed successfully for the Stelmor production line, which can communicate with the material flow management system and Program Logic Control System (PLCs) automatically through local network. This online model adopts Implicit Finite Difference Time Domain (FDTD) method to calculate temperature evolution and phase transformation during the production process and predicts final properties. As Continuous Cooling Temperature (CCT) curves of various steels can be coupled in the model, it can predict the latent heat rise and range of phase transformation for various steels, which can provide direct guidance for new steel development and optimization of present Stelmor cooling process. This unique online system has been installed in three Stelmor production lines at present with good results.

  13. Control of Non-linear Marine Cooling System

    DEFF Research Database (Denmark)

    Hansen, Michael; Stoustrup, Jakob; Bendtsen, Jan Dimon

    2011-01-01

    We consider the problem of designing control laws for a marine cooling system used for cooling the main engine and auxiliary components aboard several classes of container vessels. We focus on achieving simple set point control for the system and do not consider compensation of the non-linearitie......-linearities, closed circuit flow dynamics or transport delays that are present in the system. Control laws are therefore designed using classical control theory and the performance of the design is illustrated through two simulation examples....

  14. COMMIX analysis of AP-600 Passive Containment Cooling System

    International Nuclear Information System (INIS)

    Chang, J.F.C.; Chien, T.H.; Ding, J.; Sun, J.G.; Sha, W.T.

    1992-01-01

    COMMIX modeling and basic concepts that relate components, i.e., containment, water film cooling, and natural draft air flow systems. of the AP-600 Passive Containment Cooling System are discussed. The critical safety issues during a postulated accident have been identified as (1) maintaining the liquid film outside the steel containment vessel, (2) ensuring the natural convection in the air annulus. and (3) quantifying both heat and mass transfer accurately for the system. The lack of appropriate heat and mass transfer models in the present analysis is addressed. and additional assessment and validation of the proposed models is proposed

  15. System for cooling hybrid vehicle electronics, method for cooling hybrid vehicle electronics

    Science.gov (United States)

    France, David M.; Yu, Wenhua; Singh, Dileep; Zhao, Weihuan

    2017-11-21

    The invention provides a single radiator cooling system for use in hybrid electric vehicles, the system comprising a surface in thermal communication with electronics, and subcooled boiling fluid contacting the surface. The invention also provides a single radiator method for simultaneously cooling electronics and an internal combustion engine in a hybrid electric vehicle, the method comprising separating a coolant fluid into a first portion and a second portion; directing the first portion to the electronics and the second portion to the internal combustion engine for a time sufficient to maintain the temperature of the electronics at or below 175.degree. C.; combining the first and second portion to reestablish the coolant fluid; and treating the reestablished coolant fluid to the single radiator for a time sufficient to decrease the temperature of the reestablished coolant fluid to the temperature it had before separation.

  16. Transient Performance of Air-cooled Condensing Heat Exchanger in Long-term Passive Cooling System during Decay Heat Load

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Myoung Jun; Lee, Hee Joon [Kookmin University, Seoul (Korea, Republic of); Moon, Joo Hyung; Bae, Youngmin; Kim, Young-In [KAERI, Daejeon (Korea, Republic of)

    2015-05-15

    In the event of a 'loss of coolant accident'(LOCA) and a non-LOCA, the secondary passive cooling system would be activated to cool the steam in a condensing heat exchanger that is immersed in an emergency cooldown tank (ECT). Currently, the capacities of these ECTs are designed to be sufficient to remove the sensible and residual heat from the reactor coolant system for 72 hours after the occurrence of an accident. After the operation of a conventional passive cooling system for an extended period, however, the water level falls as a result of the evaporation from the ECT, as steam is emitted from the open top of the tank. Therefore, the tank should be refilled regularly from an auxiliary water supply system when the system is used for more than 72 hours. Otherwise, the system would fail to dissipate heat from the condensing heat exchanger due to the loss of the cooling water. Ultimately, the functionality of the passive cooling system would be seriously compromised. As a passive means of overcoming the water depletion in the tank, Kim et al. applied for a Korean patent covering the concept of a long-term passive cooling system for an ECT even after 72 hours. This study presents transient performance of ECT with installing air-cooled condensing heat exchanger under decay heat load. The cooling capacity of an air-cooled condensing heat exchanger was evaluated to determine its practicality.

  17. Safety analysis of reactor's cooling system

    International Nuclear Information System (INIS)

    1999-01-01

    Results of the analysis of reactor's RBMK-1500 coolant system during normal operation mode, hydrodynamic testing and in the case of earthquake are presented. Analysis was performed using RELAP5 code. Calculations showed the most vulnerable place in the reactor's coolant system. It was found that in the case of earthquake the horizontal support system of drum separator could be damaged

  18. Rapid reactivation of cyanobacterial photosynthesis and migration upon rehydration of desiccated marine microbial mats

    NARCIS (Netherlands)

    Chennu, Arjun; Grinham, Alistair; Polerecky, Lubos; de Beer, Dirk; Al-Najjar, Mohammad A.A.

    2015-01-01

    Desiccated cyanobacterial mats are the dominant biological feature in the Earth's arid zones. While the response of desiccated cyanobacteria to rehydration is well-documented for terrestrial systems, information about the response in marine systems is lacking. We used high temporal resolution

  19. Emergency core cooling systems in CANDU nuclear power plants

    International Nuclear Information System (INIS)

    1981-12-01

    This report contains the responses by the Advisory Committee on Nuclear Safety to three questions posed by the Atomic Energy Control Board concerning the need for Emergency Core Cooling Systems (ECCS) in CANDU nuclear power plants, the effectiveness requirement for such systems, and the extent to which experimental evidence should be available to demonstrate compliance with effectiveness standards

  20. Prototype solar heating and cooling systems including potable hot water

    Science.gov (United States)

    1978-01-01

    Progress is reviewed in the development, delivery, and support of two prototype solar heating and cooling systems including potable hot water. The system consisted of the following subsystems: collector, auxiliary heating, potable hot water, storage, control, transport, and government-furnished site data acquisition.

  1. A System for Cooling inside a Glove Box

    Science.gov (United States)

    Sanz, Martial

    2010-01-01

    An easy, efficient, reliable, and low-cost method of constructing a cooling system using a simple circulating pump is described. The system is employed in conjunction with an inert atmosphere glove box to achieve the synthesis of air- and moisture-sensitive compounds inside the glove box at controlled, low temperatures without contaminating the…

  2. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT IV, MAINTAINING THE COOLING SYSTEM--DETROIT DIESEL ENGINES.

    Science.gov (United States)

    Human Engineering Inst., Cleveland, OH.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE OPERATION AND MAINTENANCE OF THE DIESEL ENGINE COOLING SYSTEM. TOPICS ARE PURPOSE OF THE COOLING SYSTEM, CARE MAINTENANCE OF THE COOLING SYSTEM, COOLING SYSTEM COMPONENTS, AND TROUBLESHOOTING TIPS. THE MODULE CONSISTS OF A SELF-INSTRUCTIONAL BRANCH PROGRAMED TRAINING…

  3. Adiabatic cooling processes in frustrated magnetic systems with pyrochlore structure

    Science.gov (United States)

    Jurčišinová, E.; Jurčišin, M.

    2017-11-01

    We investigate in detail the process of adiabatic cooling in the framework of the exactly solvable antiferromagnetic spin-1/2 Ising model in the presence of the external magnetic field on an approximate lattice with pyrochlore structure. The behavior of the entropy of the model is studied and exact values of the residual entropies of all ground states are found. The temperature variation of the system under adiabatic (de)magnetization is investigated and the central role of the macroscopically degenerated ground states in cooling processes is explicitly demonstrated. It is shown that the model parameter space of the studied geometrically frustrated system is divided into five disjunct regions with qualitatively different processes of the adiabatic cooling. The effectiveness of the adiabatic (de)magnetization cooling in the studied model is compared to the corresponding processes in paramagnetic salts. It is shown that the processes of the adiabatic cooling in the antiferromagnetic frustrated systems are much more effective especially in nonzero external magnetic fields. It means that the frustrated magnetic materials with pyrochlore structure can be considered as very promising refrigerants mainly in the situations with nonzero final values of the magnetic field.

  4. A systemic approach for optimal cooling tower operation

    International Nuclear Information System (INIS)

    Cortinovis, Giorgia F.; Paiva, Jose L.; Song, Tah W.; Pinto, Jose M.

    2009-01-01

    The thermal performance of a cooling tower and its cooling water system is critical for industrial plants, and small deviations from the design conditions may cause severe instability in the operation and economics of the process. External disturbances such as variation in the thermal demand of the process or oscillations in atmospheric conditions may be suppressed in multiple ways. Nevertheless, such alternatives are hardly ever implemented in the industrial operation due to the poor coordination between the utility and process sectors. The complexity of the operation increases because of the strong interaction among the process variables. In the present work, an integrated model for the minimization of the operating costs of a cooling water system is developed. The system is composed of a cooling tower as well as a network of heat exchangers. After the model is verified, several cases are studied with the objective of determining the optimal operation. It is observed that the most important operational resources to mitigate disturbances in the thermal demand of the process are, in this order: the increase in recycle water flow rate, the increase in air flow rate and finally the forced removal of a portion of the water flow rate that enters the cooling tower with the corresponding make-up flow rate.

  5. Stiffness of desiccating insect wings

    International Nuclear Information System (INIS)

    Mengesha, T E; Vallance, R R; Mittal, R

    2011-01-01

    The stiffness of insect wings is typically determined through experimental measurements. Such experiments are performed on wings removed from insects. However, the wings are subject to desiccation which typically leads to an increase in their stiffness. Although this effect of desiccation is well known, a comprehensive study of the rate of change in stiffness of desiccating insect wings would be a significant aid in planning experiments as well as interpreting data from such experiments. This communication presents a comprehensive experimental analysis of the change in mass and stiffness of gradually desiccating forewings of Painted Lady butterflies (Vanessa cardui). Mass and stiffness of the forewings of five butterflies were simultaneously measured every 10 min over a 24 h period. The averaged results show that wing mass declined exponentially by 21.1% over this time period with a time constant of 9.8 h, while wing stiffness increased linearly by 46.2% at a rate of 23.4 μN mm -1 h -1 . For the forewings of a single butterfly, the experiment was performed over a period of 1 week, and the results show that wing mass declined exponentially by 52.2% with a time constant of 30.2 h until it reached a steady-state level of 2.00 mg, while wing stiffness increased exponentially by 90.7% until it reached a steady-state level of 1.70 mN mm -1 . (communication)

  6. Stiffness of desiccating insect wings

    Energy Technology Data Exchange (ETDEWEB)

    Mengesha, T E; Vallance, R R [Department of Mechanical Engineering, The George Washington University, 738 Phillips Hall, 801 22nd St NW, Washington, DC 20052 (United States); Mittal, R, E-mail: vallance@gwu.edu [Department of Mechanical Engineering, Johns Hopkins University, 126 Latrobe Hall, 3400 N Charles Street, Baltimore, MD 21218 (United States)

    2011-03-15

    The stiffness of insect wings is typically determined through experimental measurements. Such experiments are performed on wings removed from insects. However, the wings are subject to desiccation which typically leads to an increase in their stiffness. Although this effect of desiccation is well known, a comprehensive study of the rate of change in stiffness of desiccating insect wings would be a significant aid in planning experiments as well as interpreting data from such experiments. This communication presents a comprehensive experimental analysis of the change in mass and stiffness of gradually desiccating forewings of Painted Lady butterflies (Vanessa cardui). Mass and stiffness of the forewings of five butterflies were simultaneously measured every 10 min over a 24 h period. The averaged results show that wing mass declined exponentially by 21.1% over this time period with a time constant of 9.8 h, while wing stiffness increased linearly by 46.2% at a rate of 23.4 {mu}N mm{sup -1} h{sup -1}. For the forewings of a single butterfly, the experiment was performed over a period of 1 week, and the results show that wing mass declined exponentially by 52.2% with a time constant of 30.2 h until it reached a steady-state level of 2.00 mg, while wing stiffness increased exponentially by 90.7% until it reached a steady-state level of 1.70 mN mm{sup -1}. (communication)

  7. The development of a solar residential heating and cooling system

    Science.gov (United States)

    1975-01-01

    The MSFC solar heating and cooling facility was assembled to demonstrate the engineering feasibility of utilizing solar energy for heating and cooling buildings, to provide an engineering evaluation of the total system and the key subsystems, and to investigate areas of possible improvement in design and efficiency. The basic solar heating and cooling system utilizes a flat plate solar energy collector, a large water tank for thermal energy storage, heat exchangers for space heating, and an absorption cycle air conditioner for space cooling. A complete description of all systems is given. Development activities for this test system included assembly, checkout, operation, modification, and data analysis, all of which are discussed. Selected data analyses for the first 15 weeks of testing are included, findings associated with energy storage and the energy storage system are outlined, and conclusions resulting from test findings are provided. An evaluation of the data for summer operation indicates that the current system is capable of supplying an average of 50 percent of the thermal energy required to drive the air conditioner. Preliminary evaluation of data collected for operation in the heating mode during the winter indicates that nearly 100 percent of the thermal energy required for heating can be supplied by the system.

  8. Energy saving potential of an indirect evaporative cooler as a pre-cooling unit for mechanical cooling systems in Iran

    Energy Technology Data Exchange (ETDEWEB)

    Delfani, Shahram; Esmaeelian, Jafar; Karami, Maryam [Department of Installation, Building and Housing Research Center (BHRC), PO Box 13145-1696, Tehran (Iran, Islamic Republic of); Pasdarshahri, Hadi [Department of Mechanical Engineering, Tarbiat Modares University, PO Box 14115-143, Tehran (Iran, Islamic Republic of)

    2010-11-15

    The performance of indirect evaporative cooling system (IEC) to pre-cool air for a conventional mechanical cooling system has been investigated for four cities of Iran. For this purpose, a combined experimental setup consisting of an IEC unit followed by a packaged unit air conditioner (PUA) was designed, constructed and tested. Two air simulators were designed and used to simulate indoor heating load and outdoor design conditions. Using of experimental data and an appropriate analytical method, the performance and energy reduction capability of combined system has been evaluated through the cooling season. The results indicate IEC can reduce cooling load up to 75% during cooling seasons. Also, 55% reduction in electrical energy consumption of PUA can be obtained. (author)

  9. Ab-sorption machines for heating and cooling in future energy systems - Final report

    Energy Technology Data Exchange (ETDEWEB)

    Tozer, R.; Gustafsson, M.

    2000-12-15

    After the Executive Summary and a brief introductory chapter, Chapter 2, Sorption Technologies for Heating and Cooling in Future Energy Systems, reviews the main types of sorption systems. Chapter 3, Market Segmentation, then considers the major segments of the market including residential, commercial/institutional and industrial, and the types of sorption hardware most suitable to each. The highly important residential and commercial/institutional markets are mostly concerned with air-conditioning of buildings. More applications are identified and discussed for the industrial market, including refrigeration, food-storage cooling, process cooling, and process heating at various temperature ranges from hot water for hand-washing to high-temperature (greater than 130C). Other interesting industrial applications are absorption cooling or heating combined with co-generation, desiccant cooling, gas turbine inlet air cooling, combining absorption chillers with district heating systems, direct-fired absorption heat pumps (AHPs), and a closed greenhouse concept being developed for that economically important sector in the Netherlands. Most of the sorption market at this time comprises direct-fired absorption chillers, or hot water or steam absorption chillers indirectly driven by direct-fired boilers. Throughout the report, this category of absorption chillers is referred to generically as 'direct-fired'. In addition, this report covers absorption (reversible) heat pumps, absorption heat transformers, compression-absorption heat pumps, and adsorption chillers and heat pumps. Adsorption systems together with desiccant systems are also addressed. Chapter 4, Factors Affecting the Market, considers economic, environmental and policy issues. The geographical make-up of the world sorption market is then reviewed, followed by a number of practical operating and control considerations. These include vacuum requirements, crystallisation, corrosion, maintenance, health and

  10. Radiation detector system having heat pipe based cooling

    Science.gov (United States)

    Iwanczyk, Jan S.; Saveliev, Valeri D.; Barkan, Shaul

    2006-10-31

    A radiation detector system having a heat pipe based cooling. The radiation detector system includes a radiation detector thermally coupled to a thermo electric cooler (TEC). The TEC cools down the radiation detector, whereby heat is generated by the TEC. A heat removal device dissipates the heat generated by the TEC to surrounding environment. A heat pipe has a first end thermally coupled to the TEC to receive the heat generated by the TEC, and a second end thermally coupled to the heat removal device. The heat pipe transfers the heat generated by the TEC from the first end to the second end to be removed by the heat removal device.

  11. Environmental aspects of the district cooling system application

    International Nuclear Information System (INIS)

    Bitrakovski, Dragan

    2006-01-01

    The use of air-conditioning equipment based on CFC and HCFC fluids has a direct influence on the occurrence of the greenhouse effect and damage of the ozone layer. Besides the obligatory shift og HCF cooling fluids, the reduction of such negative influences may also be achieved by the application of the district cooling system to the air-conditioning plants in the area. The paper includes example of the application of the district system, with positive effect regarding the ozone layer protection and greenhouse effect prevention. (Author)

  12. Radiant Heating and Cooling Systems. Part one

    DEFF Research Database (Denmark)

    Kim, Kwan Woo; Olesen, Bjarne W.

    2015-01-01

    The use of radiant heating systems has several thousand years of history.1,2 The early stage of radiant system application was for heating purposes, where hot air from flue gas (cooking, fires) was circulated under floors or in walls. After the introduction of plastic piping water-based radiant...

  13. Desiccation of sludges as instruments for solid radioactive wastes reduction

    International Nuclear Information System (INIS)

    Perez, C.

    2003-01-01

    In order to maintain as well as possible and optimize use of the radioactive waste storage capacity of El Carbil ENRESA and the Electric Sector put a series of actions into motion in 1994 to reduce and optimize radioactive waste processing. As a result of this strategy, a moist waste desiccation system has been developed with Spanish technology by ENSA. This system was installed in Trillo NPP in 2001 and has operated satisfactorily for the past year, having significantly reduced the volume of waste generated by evaporator concentrates. This article describes the objectives, design and implementation of the desiccation system installed in Trillo NPP. (Author)

  14. A simpler, safer, higher performance cooling system arrangement for water cooled divertors

    International Nuclear Information System (INIS)

    Carelli, M.D.; Kothmann, R.E.; Green, L.; Zhan, N.J.; Stefani, F.; Roidt, R.M.

    1994-01-01

    A cooling system arrangement is presented which is specifically designed for high heat flux water cooled divertors. The motivation behind the proposed open-quotes unichannelclose quotes configuration is to provide maximum safety; this design eliminates flow instabilities liable to occur in parallel channel designs, it eliminates total blockage, it promotes cross flow to counteract the effects of partial blockage and/or local hot spots, and it is much more tolerant to the effects of debonding between the beryllium armor and the copper substrate. Added degrees of freedom allow optimization of the design, including the possibility of operating at very high heat transfer coefficients associated with nucleate boiling, while at the same time providing ample margin against departure from nucleate boiling. Projected pressure drop, pumping power, and maximum operating temperatures are lower than for conventional parallel channel designs

  15. Wind turbine generators having wind assisted cooling systems and cooling methods

    Science.gov (United States)

    Bagepalli, Bharat [Niskayuna, NY; Barnes, Gary R [Delanson, NY; Gadre, Aniruddha D [Rexford, NY; Jansen, Patrick L [Scotia, NY; Bouchard, Jr., Charles G.; Jarczynski, Emil D [Scotia, NY; Garg, Jivtesh [Cambridge, MA

    2008-09-23

    A wind generator includes: a nacelle; a hub carried by the nacelle and including at least a pair of wind turbine blades; and an electricity producing generator including a stator and a rotor carried by the nacelle. The rotor is connected to the hub and rotatable in response to wind acting on the blades to rotate the rotor relative to the stator to generate electricity. A cooling system is carried by the nacelle and includes at least one ambient air inlet port opening through a surface of the nacelle downstream of the hub and blades, and a duct for flowing air from the inlet port in a generally upstream direction toward the hub and in cooling relation to the stator.

  16. Systems Evaluation at the Cool Energy House

    Energy Technology Data Exchange (ETDEWEB)

    Williamson, J. [Steven Winter Associates, Inc., Norwalk, CT (United States); Puttagunta, S. [Steven Winter Associates, Inc., Norwalk, CT (United States)

    2013-09-01

    Steven Winter Associates, Inc. (SWA) monitored several advanced mechanical systems within a 2012 deep energy retrofitted home in the small Orlando suburb of Windermere, FL. This report provides performance results of one of the home's heat pump water heaters (HPWH) and the whole-house dehumidifier (WHD) over a six month period. In addition to assessing the energy performance of these systems,this study sought to quantify potential comfort improvements over traditional systems. This information is applicable to researchers, designers, plumbers, and HVAC contractors. Though builders and homeowners can find useful information within this report, the corresponding case studies are a likely better reference for this audience.

  17. Systems Evaluation at the Cool Energy House

    Energy Technology Data Exchange (ETDEWEB)

    J. Williamson and S. Puttagunta

    2013-09-01

    Steven Winter Associates, Inc. (SWA) monitored several advanced mechanical systems within a 2012 deep energy retrofitted home in the small Orlando suburb of Windermere, FL. This report provides performance results of one of the home's heat pump water heaters (HPWH) and the whole-house dehumidifier (WHD) over a six month period. In addition to assessing the energy performance of these systems, this study sought to quantify potential comfort improvements over traditional systems. This information is applicable to researchers, designers, plumbers, and HVAC contractors. Though builders and homeowners can find useful information within this report, the corresponding case studies are a likely better reference for this audience.

  18. Passive cooling system for liquid metal cooled nuclear reactors with backup coolant flow path

    International Nuclear Information System (INIS)

    Hunsbedt, A.; Boardman, C.E.

    1993-01-01

    A dual passive cooling system for liquid metal cooled nuclear fission reactors is described, comprising the combination of: a reactor vessel for containing a pool of liquid metal coolant with a core of heat generating fissionable fuel substantially submerged therein, a side wall of the reactor vessel forming an innermost first partition; a containment vessel substantially surrounding the reactor vessel in spaced apart relation having a side wall forming a second partition; a first baffle cylinder substantially encircling the containment vessel in spaced apart relation having an encircling wall forming a third partition; a guard vessel substantially surrounding the containment vessel and first baffle cylinder in spaced apart relation having a side wall forming a forth partition; a sliding seal at the top of the guard vessel edge to isolate the dual cooling system air streams; a second baffle cylinder substantially encircling the guard vessel in spaced part relationship having an encircling wan forming a fifth partition; a concrete silo substantially surrounding the guard vessel and the second baffle cylinder in spaced apart relation providing a sixth partition; a first fluid coolant circulating flow course open to the ambient atmosphere for circulating air coolant comprising at lent one down comer duct having an opening to the atmosphere in an upper area thereof and making fluid communication with the space between the guard vessel and the first baffle cylinder and at least one riser duct having an opening to the atmosphere in the upper area thereof and making fluid communication with the space between the first baffle cylinder and the containment vessel whereby cooling fluid air can flow from the atmosphere down through the down comer duct and space between the forth and third partitions and up through the space between the third and second partition and the riser duct then out into the atmosphere; and a second fluid coolant circulating flow

  19. Liquid Cooling System for CPU by Electroconjugate Fluid

    Directory of Open Access Journals (Sweden)

    Yasuo Sakurai

    2014-06-01

    Full Text Available The dissipated power of CPU for personal computer has been increased because the performance of personal computer becomes higher. Therefore, a liquid cooling system has been employed in some personal computers in order to improve their cooling performance. Electroconjugate fluid (ECF is one of the functional fluids. ECF has a remarkable property that a strong jet flow is generated between electrodes when a high voltage is applied to ECF through the electrodes. By using this strong jet flow, an ECF-pump with simple structure, no sliding portion, no noise, and no vibration seems to be able to be developed. And then, by the use of the ECF-pump, a new liquid cooling system by ECF seems to be realized. In this study, to realize this system, an ECF-pump is proposed and fabricated to investigate the basic characteristics of the ECF-pump experimentally. Next, by utilizing the ECF-pump, a model of a liquid cooling system by ECF is manufactured and some experiments are carried out to investigate the performance of this system. As a result, by using this system, the temperature of heat source of 50 W is kept at 60°C or less. In general, CPU is usually used at this temperature or less.

  20. Dry storage systems with free convection air cooling

    International Nuclear Information System (INIS)

    Kioes, S.R.

    1980-01-01

    Several design principles to remove heat from the spent fuel by free air convection are illustrated and described. The key safety considerations were felt to be: loss of coolant is impossible as the passive system uses air as a coolant; overheating is precluded because as the temperatures of the containers rises the coolant flow rate increases; mass of the storage building provides a large heat sink and therefore a rapid temperature rise is impossible; and lack of any active external support requirements makes the cooling process less likely to equipment or operator failures. An example of this type of storage already exists. The German HTGR is operated with spherical graphite fuel elements which are stored in canister and in storage cells. The concept is a double cooling system with free convection inside the cells and heat exchange via two side walls of the cell to the ambient air in the cooling ducts. Technical description of the TN 1300 cask is also presented

  1. Status of helium-cooled nuclear power systems. [Development potential

    Energy Technology Data Exchange (ETDEWEB)

    Melese-d' Hospital, G.; Simnad, M

    1977-09-01

    Helium-cooled nuclear power systems offer a great potential for electricity generation when their long-term economic, environmental, conservation and energy self-sufficiency features are examined. The high-temperature gas-cooled reactor (HTGR) has the unique capability of providing high-temperature steam for electric power and process heat uses and/or high-temperature heat for endothermic chemical reactions. A variation of the standard steam cycle HTGR is one in which the helium coolant flows directly from the core to one or more closed cycle gas turbines. The effective use of nuclear fuel resources for electric power and nuclear process heat will be greatly enhanced by the gas-cooled fast breeder reactor (GCFR) currently being developed. A GCFR using thorium in the radial blanket could generate sufficient U-233 to supply the fuel for three HTGRs, or enough plutonium from a depleted uranium blanket to fuel a breeder economy expanding at about 10% per year. The feasibility of utilizing helium to cool a fusion reactor is also discussed. The status of helium-cooled nuclear energy systems is summarized as a basis for assessing their prospects. 50 references.

  2. Development of hybrid solar-assisted cooling/heating system

    KAUST Repository

    Huang, B.J.; Wu, J.H.; Hsu, H.Y.; Wang, J.H.

    2010-01-01

    A solar-assisted ejector cooling/heating system (SACH) was developed in this study. The SACH combines a pump-less ejector cooling system (ECS) with an inverter-type heat pump (R22) and is able to provide a stable capacity for space cooling. The ECS is driven by solar heat and is used to cool the condenser of the R22 heat pump to increase its COP and reduce the energy consumption of the compressor by regulating the rotational speed of the compressor through a control system. In a complete SACH system test run at outdoor temperature 35 °C, indoor temperature 25 °C and compressor speed 20-80 Hz, and the ECS operating at generator temperature 90 °C and condensing temperature 37 °C, the corresponding condensing temperature of the heat pump in the SACH is 24.5-42 °C, cooling capacity 1.02-2.44 kW, input power 0.20-0.98 kW, and cooling COPc 5.11-2.50. This indicates that the use of ECS in SACH can effectively reduce the condensing temperature of the heat pump by 12.6-7.3 °C and reduce the power consumption by 81.2-34.5%. The SACH can also supply heat from the heat pump. At ambient temperature from 5 °C to 35 °C, the heating COPh is in the range 2.0-3.3. © 2010 Elsevier Ltd. All rights reserved.

  3. Development of hybrid solar-assisted cooling/heating system

    KAUST Repository

    Huang, B.J.

    2010-08-01

    A solar-assisted ejector cooling/heating system (SACH) was developed in this study. The SACH combines a pump-less ejector cooling system (ECS) with an inverter-type heat pump (R22) and is able to provide a stable capacity for space cooling. The ECS is driven by solar heat and is used to cool the condenser of the R22 heat pump to increase its COP and reduce the energy consumption of the compressor by regulating the rotational speed of the compressor through a control system. In a complete SACH system test run at outdoor temperature 35 °C, indoor temperature 25 °C and compressor speed 20-80 Hz, and the ECS operating at generator temperature 90 °C and condensing temperature 37 °C, the corresponding condensing temperature of the heat pump in the SACH is 24.5-42 °C, cooling capacity 1.02-2.44 kW, input power 0.20-0.98 kW, and cooling COPc 5.11-2.50. This indicates that the use of ECS in SACH can effectively reduce the condensing temperature of the heat pump by 12.6-7.3 °C and reduce the power consumption by 81.2-34.5%. The SACH can also supply heat from the heat pump. At ambient temperature from 5 °C to 35 °C, the heating COPh is in the range 2.0-3.3. © 2010 Elsevier Ltd. All rights reserved.

  4. Kinetic model for predicting the composition of chlorinated water discharged from power plant cooling systems

    International Nuclear Information System (INIS)

    Lietzke, M.H.

    1977-01-01

    The results of applying a kinetic model to the chlorination data supplied by Commonwealth Edison on the once-through cooling system at the Quad Cities Nuclear Station provide a validation of the model. The two examples given demonstrate that the model may be applied to either once-through cooling systems or to cooling systems involving cooling towers

  5. France uses the sun to cool its wine: the Banyuls winery solar cooling system

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2003-12-01

    The engineering consultancy Tecsol was asked to design a cooling system for a winery that would limit the variations in temperature during the year. Tecsol proposed a solar system. The total investment cost amounted to nearly two million French Francs (300,000 euros), almost double the cost of a conventional air-conditioning system. However, because the solar system reduced the conventional energy needs of the warehouse by about 40%, the French Agency for Environment and Energy Management (ADEME) provided a 37% subsidy for its rational use of energy. The 'Solarclim' solar installation has three functions: it produces hot water via 693 vacuum tube collectors with a useful surface of 130 m{sup 2}. The collectors are fixed to the roof of the wine cellar, which has an angle of 15 deg. Heat from the collectors is transferred to a 1000-litre hot water storage tank; it produces chilled water using a lithium bromide absorption plant with a nominal cooling capacity of 52 kW. This is housed in the technical premises on the lowest level and is used in conjunction with a 180 kW open-circuit cooling tower on the north facade; and the third function combines air-conditioning and, when necessary, space heating. The installation has been operating for 12 years with no particular problems. The equipment is environmentally friendly. The solar heat source avoids CO{sub 2} emissions, the absorption machine does not use CFCs or HCFCs, and the system is totally silent. (UK)

  6. Cool gas micropropulsion system for cubesats

    NARCIS (Netherlands)

    Breukelen, E. van; Sanders, B.H.; Schuurbiers, C.A.H.

    2009-01-01

    CubeSats are becoming more mature and many capabilities previously associated with microsatellites and bigger platforms are coming to the CubeSat. Moreover, they are becoming available as commercial off the shelf systems with standardized interfaces. TNO Defence and Security of the Netherlands is in

  7. Variation of structures of ingredients of desiccated coconut during hydrolysis by hydrochloric acid at low temperature

    Directory of Open Access Journals (Sweden)

    Jian XIONG

    2017-10-01

    Full Text Available Abstract Owing to the high content of lignocellulose, desiccated coconut become a healthy material for dietary fiber supplementation. In this study, the changes in solubility of the fibers of desiccated coconut were evaluated. The changes of the pHs and weight losses were studied. Furthermore, variations of the ingredient structures of desiccated coconut by hydrolysis by hydrochloric acid were characterized by Fourier transform infrared spectroscopy (FTIR, X-ray diffraction (XRD and scanning electron microscopy (SEM. After hydrolysis 30 s, the pHs of all systems increased, while six hours later, the pH of only system with initial pH = 1.00 decreased. The decline of pH only existed in hydrolysis systems with initial pH = 1.00, there is no relevant with the quantities of desiccated coconut. The lower initial pH of hydrolysis system was, the less the intrinsic viscosity of the desiccated coconut after hydrolysis was, the small the crystallinity was. After hydrolysis, the microstructure of the desiccated coconut become looser, and the secondary structure of the coconut protein became more stable and ordered. The results suggest that the hydrolysis of desiccated coconut mainly occurred in the branched chain and the non-crystalline region of lignocellulose, which transforms some insoluble dietary fiber into soluble dietary fiber. This improves the nutritional value of desiccated coconut.

  8. BETTER DUCT SYSTEMS FOR HOME HEATING AND COOLING.

    Energy Technology Data Exchange (ETDEWEB)

    ANDREWS,J.

    2001-01-01

    This is a series of six guides intended to provide a working knowledge of residential heating and cooling duct systems, an understanding of the major issues concerning efficiency, comfort, health, and safety, and practical tips on installation and repair of duct systems. These guides are intended for use by contractors, system designers, advanced technicians, and other HVAC professionals. The first two guides are also intended to be accessible to the general reader.

  9. Mathematical Model for Direct Evaporative Space Cooling Systems ...

    African Journals Online (AJOL)

    This paper deals with the development of a simple mathematical model for experimental validation of the performance of a small evaporative cooling system in a tropical climate. It also presents the coefficient of convective heat transfer of wide range of temperatures based on existing model. Extensive experiments have ...

  10. Combined system of solar heating and cooling using heat pump

    International Nuclear Information System (INIS)

    Zakhidov, R.A.; Anarbaev, A.I.

    2014-01-01

    The heating and cooling systems of apartment buildings based on combined solar heat-pump equipment has been considered and the procedure of calculating its parameters has been worked out. A technical-economic analysis has been performed and compared with the boiler-setting version. (author)

  11. Alternativini zpusoby chlazeni budov (Alternative cooling systems for buildings)

    NARCIS (Netherlands)

    Lain, M.; Hensen, J.L.M.

    2003-01-01

    in the Czech Republic, low energy in buildings and systems usually refers to low energy consumption for heating. However in modern office buildings cooling is becoming more and more important, therefore the associated energy consumption should also be considered. This paper introduces low energy

  12. Cooling System: Automotive Mechanics Instructional Program. Block 6.

    Science.gov (United States)

    O'Brien, Ralph D.

    The last of six instructional blocks in automotive mechanics, the lessons and supportive information in the document provide a guide for teachers in planning an instructional program in the automotive cooling system at the secondary and post secondary level. The material, as organized, is a suggested sequence of instruction within each block. Each…

  13. Simulation of solar-powered absorption cooling system

    Energy Technology Data Exchange (ETDEWEB)

    Atmaca, I.; Yigit, A. [Uludag Univ., Bursa (Turkey). Dept. of Mechanical Engineering

    2003-07-01

    With developing technology and the rapid increase in world population, the demand for energy is ever increasing. Conventional energy will not be enough to meet the continuously increasing need for energy in the future. In this case, renewable energy sources will become important. Solar energy is a very important energy source because of its advantages. Instead of a compressor system, which uses electricity, an absorption cooling system, using renewable energy and kinds of waste heat energy, may be used for cooling. In this study, a solar-powered, single stage, absorption cooling system, using a water-lithium bromide solution, is simulated. A modular computer program has been developed for the absorption system to simulate various cycle configurations and solar energy parameters for Antalya, Turkey. So, the effects of hot water inlet temperatures on the coefficient of performance (COP) and the surface area of the absorption cooling components are studied. In addition, reference temperatures which are the minimum allowable hot water inlet temperatures are determined and their effect on the fraction of the total load met by non-purchased energy (FNP) and the coefficient of performance are researched. Also, the effects of the collector type and storage tank mass are investigated in detail. (author)

  14. Cooling Water System Monitoring by Means of Mossbauer Spectroscopy

    International Nuclear Information System (INIS)

    Novakova, A.A.; Pargamotnikas, S.A.; Taseva, V.; Dobbrevsky, I.; Nenov, V.; Bonev, B.

    1998-01-01

    Mossbauer spectroscopy have been applied to the analysis of corrosion sediments formed on mild steel coupons, which were placed in the different points of the Bourgas Petrochemical Plant Recilculating Cooling Water System. It was shown that the created corrosion products can successfully reflect the ambient water medium pollution to which the coupons were exposed

  15. Development of cooling and cleaning systems for enhanced gas ...

    African Journals Online (AJOL)

    In order to address these tar related problems a cleaning and cooling system has been developed in house that facilitates tar removal to acceptable levels tolerated by the internal combustion (IC) engine and meets emission standards as well. The main objective of the present work is to reduce tar level and develop control ...

  16. Performance test of solar-assisted ejector cooling system

    KAUST Repository

    Huang, Bin-Juine

    2014-03-01

    A solar-assisted ejector cooling/heating system (SACH-2k) is built and test result is reported. The solar-driven ejector cooling system (ECS) is connected in series with an inverter-type air conditioner (IAC). Several advanced technologies are developed in SACH-k2, including generator liquid level control in ECS, the ECS evaporator temperature control, and optimal control of fan power in cooling tower of ECS. From the field test results, the generator liquid level control performs quite well and keeps stable performance of ejector. The ECS evaporator temperature control also performs satisfactorily to keep ejector performance normally under low or fluctuating solar radiation. The fan power control system cooling tower performs stably and reduces the power consumption dramatically without affecting the ECS performance. The test results show that the overall system COPo including power consumptions of peripheral increases from 2.94-3.3 (IAC alone) to 4.06-4.5 (SACH-k2), about 33-43%. The highest COPo is 4.5. © 2013 Elsevier Ltd and IIR. All rights reserved.

  17. A Thermal Test System for Helmet Cooling Studies

    Directory of Open Access Journals (Sweden)

    Shaun Fitzgerald

    2018-02-01

    Full Text Available One of the primary causes of discomfort to both irregular and elite cyclists is heat entrapment by a helmet resulting in overheating and excessive sweating of the head. To accurately assess the cooling effectiveness of bicycle helmets, a heated plastic thermal headform has been developed. The construction consists of a 3D-printed headform of low thermal conductivity with an internal layer of high thermal mass that is heated to a constant uniform temperature by an electrical heating element. Testing is conducted in a wind tunnel where the heater power remains constant and the resulting surface temperature distribution is directly measured by 36 K-type thermocouples embedded within the surface of the head in conjunction with a thermal imaging camera. Using this new test system, four bicycle helmets were studied in order to measure their cooling abilities and to identify ‘hot spots’ where cooling performance is poor.

  18. Reactor-core isolation cooling system with dedicated generator

    International Nuclear Information System (INIS)

    Nazareno, E.V.; Dillmann, C.W.

    1992-01-01

    This patent describes a nuclear reactor complex. It comprises a dual-phase nuclear reactor; a main turbine for converting phase-conversion energy stored by vapor into mechanical energy for driving a generator; a main generator for converting the mechanical energy into electricity; a fluid reservoir external to the reactor; a reactor core isolation cooling system with several components at least some of which require electrical power. It also comprises an auxiliary pump for pumping fluid from the reservoir into the reactor pressure vessel; an auxiliary turbine for driving the pump; control means for regulating the rotation rate of the auxiliary turbine; cooling means for cooling the control means; and an auxiliary generator coupled to the auxiliary turbine for providing at least a portion of the electrical power required by the components during a blackout condition

  19. Solar heating and cooling system installed at Leavenworth, Kansas

    Science.gov (United States)

    1980-01-01

    A solar heating and cooling is described which is designed to furnish 90 percent of the overall heating load, 70 percent of the cooling load and 100 percent of the domestic hot water load. The building has two floors with a total of 12,000 square feet gross area. The system has 120 flat-plate liquid solar panels with a net area of 2,200 square feet. Five 3 ton Arkla solar assisted absorption units provide the cooling, in conjunction with a 3,000 gallon chilled water storage tank. Two 3,000 gallon storage tanks are provided with one designated for summer use, whereas both tanks are utilized during winter.

  20. Accelerator-based cold neutron sources and their cooling system

    International Nuclear Information System (INIS)

    Inoue, Kazuhiko; Yanai, Masayoshi; Ishikawa, Yoshikazu.

    1985-01-01

    We have developed and installed two accelerator-based cold neutron sources within a electron linac at Hokkaido University and a proton synchrotoron at National Laboratory for High Energy Physics. Solid methane at 20K was adopted as the cold moderator. The methane condensing heat exchangers attached directly to the moderator chambers were cooled by helium gas, which was kept cooled in refrigerators and circulated by ventilation fans. Two cold neutron sources have operated smoothly and safely for the past several years. In this paper we describe some of the results obtained in the preliminary experiments by using a modest capacity refrigerator, the design philosophy of the cooling system for the pulsed cold neutron sources, and outline of two facilities. (author)

  1. Turbine airfoil with an internal cooling system having vortex forming turbulators

    Science.gov (United States)

    Lee, Ching-Pang

    2014-12-30

    A turbine airfoil usable in a turbine engine and having at least one cooling system is disclosed. At least a portion of the cooling system may include one or more cooling channels having a plurality of turbulators protruding from an inner surface and positioned generally nonorthogonal and nonparallel to a longitudinal axis of the airfoil cooling channel. The configuration of turbulators may create a higher internal convective cooling potential for the blade cooling passage, thereby generating a high rate of internal convective heat transfer and attendant improvement in overall cooling performance. This translates into a reduction in cooling fluid demand and better turbine performance.

  2. Primary cooling system for BWR type reactor

    International Nuclear Information System (INIS)

    Ibe, Eishi; Takahashi, Masanori; Aoki, Yasuko

    1993-01-01

    The present invention effectively uses information from a plurality of sensors in order to suppress corrosion circumstance of a nuclear reactor. That is, a predetermined general water quality factor at a predetermined position is determined as a standard index. A concentration of a water quality improver is controlled such that the index is within an aimed range. For this purpose, the entire sensor groups disposed in a primary coolant system of a nuclear reactor are divided into a plural systems of sensor groups each disposed on every different positions. Then, a predetermined sensor group (standard sensor group) is connected to a computing device and a data base so that it is always monitored for calculating and estimating the standard index. Only oxidative ingredient in water at the measuring point is noted, and a concentration distribution which agrees with an actually measured value of oxidative ingredients is extracted from data base and used as a correct concentration distribution. With such procedures, reactor water quality can be estimated accurately while compensating erroneous factors of individual sensors. Even when a new sensor is used, it is not necessary to greatly change control logic. (I.S.)

  3. Air conditioning system with supplemental ice storing and cooling capacity

    Science.gov (United States)

    Weng, Kuo-Lianq; Weng, Kuo-Liang

    1998-01-01

    The present air conditioning system with ice storing and cooling capacity can generate and store ice in its pipe assembly or in an ice storage tank particularly equipped for the system, depending on the type of the air conditioning system. The system is characterized in particular in that ice can be produced and stored in the air conditioning system whereby the time of supplying cooled air can be effectively extended with the merit that the operation cycle of the on and off of the compressor can be prolonged, extending the operation lifespan of the compressor in one aspect. In another aspect, ice production and storage in great amount can be performed in an off-peak period of the electrical power consumption and the stored ice can be utilized in the peak period of the power consumption so as to provide supplemental cooling capacity for the compressor of the air conditioning system whereby the shift of peak and off-peak power consumption can be effected with ease. The present air conditioning system can lower the installation expense for an ice-storing air conditioning system and can also be applied to an old conventional air conditioning system.

  4. Experimental Studies of NGNP Reactor Cavity Cooling System With Water

    Energy Technology Data Exchange (ETDEWEB)

    Corradini, Michael; Anderson, Mark; Hassan, Yassin; Tokuhiro, Akira

    2013-01-16

    This project will investigate the flow behavior that can occur in the reactor cavity cooling system (RCCS) with water coolant under the passive cooling-mode of operation. The team will conduct separate-effects tests and develop associated scaling analyses, and provide system-level phenomenological and computational models that describe key flow phenomena during RCCS operation, from forced to natural circulation, single-phase flow and two-phase flow and flashing. The project consists of the following tasks: Task 1. Conduct separate-effects, single-phase flow experiments and develop scaling analyses for comparison to system-level computational modeling for the RCCS standpipe design. A transition from forced to natural convection cooling occurs in the standpipe under accident conditions. These tests will measure global flow behavior and local flow velocities, as well as develop instrumentation for use in larger scale tests, thereby providing proper flow distribution among standpipes for decay heat removal. Task 2. Conduct separate-effects experiments for the RCCS standpipe design as two-phase flashing occurs and flow develops. As natural circulation cooling continues without an ultimate heat sink, water within the system will heat to temperatures approaching saturation , at which point two-phase flashing and flow will begin. The focus is to develop a phenomenological model from these tests that will describe the flashing and flow stability phenomena. In addition, one could determine the efficiency of phase separation in the RCCS storage tank as the two-phase flashing phenomena ensues and the storage tank vents the steam produced. Task 3. Develop a system-level computational model that will describe the overall RCCS behavior as it transitions from forced flow to natural circulation and eventual two-phase flow in the passive cooling-mode of operation. This modeling can then be used to test the phenomenological models developed as a function of scale.

  5. Investigation on flow stability of supercritical water cooled systems

    International Nuclear Information System (INIS)

    Cheng, X.; Kuang, B.

    2006-01-01

    Research activities are ongoing worldwide to develop nuclear power plants with supercritical water cooled reactor (SCWR) with the purpose to achieve a high thermal efficiency and to improve their economical competitiveness. However, the strong variation of the thermal-physical properties of water in the vicinity of the pseudo-critical line results in challenging tasks in various fields, e.g. thermal-hydraulic design of a SCWR. One of the challenging tasks is to understand and to predict the dynamic behavior of supercritical water cooled systems. Although many thermal-hydraulic research activities were carried out worldwide in the past as well as in the near present, studies on dynamic behavior and flow stability of SC water cooled systems are scare. Due to the strong density variation, flow stability is expected to be one of the key items which need to be taken into account in the design of a SCWR. In the present work, the dynamic behavior and flow stability of SC water cooled systems are investigated using both numerical and theoretical approaches. For this purpose a new computer code SASC was developed, which can be applied to analysis the dynamic behavior of systems cooled by supercritical fluids. In addition, based on the assumptions of a simplified system, a theoretical model was derived for the prediction of the onset of flow instability. A comparison was made between the results obtained using the theoretical model and those from the SASC code. A good agreement was achieved. This gives the first evidence of the reliability of both the SASC code and the theoretical model

  6. The integration of cryogenic cooling systems with superconducting electronic systems

    International Nuclear Information System (INIS)

    Green, Michael A.

    2003-01-01

    The need for cryogenic cooling has been critical issue that has kept superconducting electronic devices from reaching the market place. Even though the performance of the superconducting circuit is superior to silicon electronics, the requirement for cryogenic cooling has put the superconducting devices at a disadvantage. This report will talk about the various methods for refrigerating superconducting devices. Cryocooler types will be compared for vibration, efficiency, and cost. Some solutions to specific problems of integrating cryocoolers to superconducting devices are presented.

  7. Benchmark ultra-cool dwarfs in widely separated binary systems

    Directory of Open Access Journals (Sweden)

    Jones H.R.A.

    2011-07-01

    Full Text Available Ultra-cool dwarfs as wide companions to subgiants, giants, white dwarfs and main sequence stars can be very good benchmark objects, for which we can infer physical properties with minimal reference to theoretical models, through association with the primary stars. We have searched for benchmark ultra-cool dwarfs in widely separated binary systems using SDSS, UKIDSS, and 2MASS. We then estimate spectral types using SDSS spectroscopy and multi-band colors, place constraints on distance, and perform proper motions calculations for all candidates which have sufficient epoch baseline coverage. Analysis of the proper motion and distance constraints show that eight of our ultra-cool dwarfs are members of widely separated binary systems. Another L3.5 dwarf, SDSS 0832, is shown to be a companion to the bright K3 giant η Cancri. Such primaries can provide age and metallicity constraints for any companion objects, yielding excellent benchmark objects. This is the first wide ultra-cool dwarf + giant binary system identified.

  8. Numerical and experimental analysis of a solid desiccant wheel

    Directory of Open Access Journals (Sweden)

    Koronaki Irene P.

    2016-01-01

    Full Text Available The rotary desiccant dehumidifier is an important component which can be used in air conditioning systems in order to reduce the electrical energy consumption and introduce renewable energy sources. In this study a one dimensional gas side resistance model is presented for predicting the performance of the desiccant wheel. Measurements from two real sorption wheels are used in order to validate the model. One wheel uses silica gel as desiccant material and the other lithium chloride. The simulation results are in good agreement with the experimental data. The model is used to compare the counter flow with the co-current wheel arrangements and to explain why the counter flow one is more efficient for air dehumidification.

  9. Dry air preservation and corrosion prevention using desiccant dehumidification

    International Nuclear Information System (INIS)

    Tykesson, M.; Ashworth, C.

    1991-01-01

    The preservation and longevity of power station plants is a significant problem, particularly in cold shut down situations for prolonged periods of time, and also in storage of parts prior to installation. Power station protection and equipment preservation using the desiccant method is not new. For many years dehumidification machinery has been employed as a barrier to moisture related degradation. The first rotary desiccant dehumidifiers were installed within the power plant industry in the mid 1960s. Many of these first installations remain in operation today. In order to understand the functioning of a desiccant unit as compared with other air handling systems, it is essential to understand the fundamentals of a psychrometric chart. This article will attempt to give the reader an understanding of the subject. (author)

  10. CFD Model Development and validation for High Temperature Gas Cooled Reactor Cavity Cooling System (RCCS) Applications

    International Nuclear Information System (INIS)

    Hassan, Yassin; Corradini, Michael; Tokuhiro, Akira; Wei, Thomas Y.C.

    2014-01-01

    The Reactor Cavity Cooling Systems (RCCS) is a passive safety system that will be incorporated in the VTHR design. The system was designed to remove the heat from the reactor cavity and maintain the temperature of structures and concrete walls under desired limits during normal operation (steady-state) and accident scenarios. A small scale (1:23) water-cooled experimental facility was scaled, designed, and constructed in order to study the complex thermohydraulic phenomena taking place in the RCCS during steady-state and transient conditions. The facility represents a portion of the reactor vessel with nine stainless steel coolant risers and utilizes water as coolant. The facility was equipped with instrumentation to measure temperatures and flow rates and a general verification was completed during the shakedown. A model of the experimental facility was prepared using RELAP5-3D and simulations were performed to validate the scaling procedure. The experimental data produced during the steady-state run were compared with the simulation results obtained using RELAP5-3D. The overall behavior of the facility met the expectations. The facility capabilities were confirmed to be very promising in performing additional experimental tests, including flow visualization, and produce data for code validation.

  11. CFD Model Development and validation for High Temperature Gas Cooled Reactor Cavity Cooling System (RCCS) Applications

    Energy Technology Data Exchange (ETDEWEB)

    Hassan, Yassin [Univ. of Wisconsin, Madison, WI (United Texas A & M Univ., College Station, TX (United States); Corradini, Michael; Tokuhiro, Akira; Wei, Thomas Y.C.

    2014-07-14

    The Reactor Cavity Cooling Systems (RCCS) is a passive safety system that will be incorporated in the VTHR design. The system was designed to remove the heat from the reactor cavity and maintain the temperature of structures and concrete walls under desired limits during normal operation (steady-state) and accident scenarios. A small scale (1:23) water-cooled experimental facility was scaled, designed, and constructed in order to study the complex thermohydraulic phenomena taking place in the RCCS during steady-state and transient conditions. The facility represents a portion of the reactor vessel with nine stainless steel coolant risers and utilizes water as coolant. The facility was equipped with instrumentation to measure temperatures and flow rates and a general verification was completed during the shakedown. A model of the experimental facility was prepared using RELAP5-3D and simulations were performed to validate the scaling procedure. The experimental data produced during the steady-state run were compared with the simulation results obtained using RELAP5-3D. The overall behavior of the facility met the expectations. The facility capabilities were confirmed to be very promising in performing additional experimental tests, including flow visualization, and produce data for code validation.

  12. Energy management techniques: SRP cooling water distribution system

    International Nuclear Information System (INIS)

    Edenfield, A.B.

    1979-10-01

    Cooling water for the nuclear reactors at the Savannah River Plant is supplied by a pumping and distribution system that includes about 50 miles of underground pipeline. The energy management program at SRP has thus far achieved a savings of about 5% (186 x 10 9 Btu) of the energy consumed by the electrically powered cooling water pumps; additional savings of about 14% (535 x 10 9 Btu) can be achieved by capital expenditures totaling about $3.7 million. The present cost of electricity for operation of this system is about $25 million per year. A computer model of the system was adapted and field test data were used to normalize the program to accurately represent pipeline physical characteristics. Alternate pumping schemes are analyzed to determine projected energy costs and impact on system safety and reliability

  13. What can go wrong in stochastic cooling systems

    CERN Document Server

    AUTHOR|(CDS)2108502

    2016-01-01

    This paper discusses very practical aspects of stochastic cooling systems both during construction, running-in, operation and trouble shooting. Due to the high electronic gain, high sensitivity and large bandwidth of such systems, precautions have to be taken to avoid all sorts of EMI/EMC related problems as well as crosstalk and self-oscillations. Since un-intended beam heating is always much more efficient than the desired cooling the overall performance depends critically on avoiding this heating which often takes places outside the nominal frequency band of operation. Another important aspect is “cross heating”, i.e., unavoidable crosstalk from longitudinal to transverse systems and vice versa. Obviously adequate measurement procedures with beam for gain phase and optimum delay are mandatory and certain caveats and hints are given. The paper concludes with a listing of unusual and unexpected problems found during many years of operation of such systems at CERN.

  14. Preliminary Study of Solar Chimney Assisted Cooling System for SMART

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Byung Il; Park, Seong Jun; Lee, Young Hyeon; Park, Hyo Chan; Park, Youn Won [BEES Inc., KAIST, Daejeon (Korea, Republic of)

    2016-05-15

    In this paper, the possibility of application for a complete passive final heat removal system using a solar chimney power plant for SMART NPP was estimated. Additionally the size of the cooling system was approximately calculated under the some assumptions. In order to estimate the applicability of SCPP as a complete passive secondary cooling system for SMART, we try to calculate the size of heat exchanger and simulate SCPP performance. As a result, it was found that SCPP could be coupled with SMART and some of waste heat could be recovered into electricity without any change in SCPP size. The related all parameters satisfying the constraint of the final heat removal system for SMART were calculated. Using the constraint of the amount of heat to be removed from SMART, two kinds of SCPP performances were analyzed; one for a stand alone SCPP in Fig 8(a) and second for SCPP with SMART in Fig 8(b)

  15. Alkali Metal Backup Cooling for Stirling Systems - Experimental Results

    Science.gov (United States)

    Schwendeman, Carl; Tarau, Calin; Anderson, William G.; Cornell, Peggy A.

    2013-01-01

    In a Stirling Radioisotope Power System (RPS), heat must be continuously removed from the General Purpose Heat Source (GPHS) modules to maintain the modules and surrounding insulation at acceptable temperatures. The Stirling convertor normally provides this cooling. If the Stirling convertor stops in the current system, the insulation is designed to spoil, preventing damage to the GPHS at the cost of an early termination of the mission. An alkali-metal Variable Conductance Heat Pipe (VCHP) can be used to passively allow multiple stops and restarts of the Stirling convertor. In a previous NASA SBIR Program, Advanced Cooling Technologies, Inc. (ACT) developed a series of sodium VCHPs as backup cooling systems for Stirling RPS. The operation of these VCHPs was demonstrated using Stirling heater head simulators and GPHS simulators. In the most recent effort, a sodium VCHP with a stainless steel envelope was designed, fabricated and tested at NASA Glenn Research Center (GRC) with a Stirling convertor for two concepts; one for the Advanced Stirling Radioisotope Generator (ASRG) back up cooling system and one for the Long-lived Venus Lander thermal management system. The VCHP is designed to activate and remove heat from the stopped convertor at a 19 degC temperature increase from the nominal vapor temperature. The 19 degC temperature increase from nominal is low enough to avoid risking standard ASRG operation and spoiling of the Multi-Layer Insulation (MLI). In addition, the same backup cooling system can be applied to the Stirling convertor used for the refrigeration system of the Long-lived Venus Lander. The VCHP will allow the refrigeration system to: 1) rest during transit at a lower temperature than nominal; 2) pre-cool the modules to an even lower temperature before the entry in Venus atmosphere; 3) work at nominal temperature on Venus surface; 4) briefly stop multiple times on the Venus surface to allow scientific measurements. This paper presents the experimental

  16. Cooling the intact loop of primary heat transport system using shut down cooling system after events such as LOCA

    International Nuclear Information System (INIS)

    Icleanu, D.L.

    2015-01-01

    The purpose of this paper is to model the Shutdown Cooling System operation for CANDU 6 NPP in case of LOCA accident, using Flowmaster calculation code by delimiting models and setting calculation assumptions and input data for hydraulic analysis, and and assumptions for the calculation and input data for calculating thermal performance check heat exchangers that are part of this system. The Flowmaster V7.8 code provides system engineers with a powerful tool to investigate pressure surge, pressure drop, flow rate, temperature and system response times - removing the uncertainty from fluid flow systems. Flowmaster is a one-dimensional thermal-hydraulic calculation code for dimensioning, analyzing and verifying the pipeline systems operation. Each component of Flowmaster is a mathematical model for an equipment that is included in a facility. Selected components are connected via nodes in order to form a network, which constitutes a computerized model of the system. Analyzing the parameters of the cooling system for all cooling processes considered it was found that the values obtained for thermal-hydraulic parameters, as well as the duration up to reaching specified limits fall within the design values of the system. This document is made up of an abstract and the slides of the presentation

  17. Feasibility and economic analysis of solid desiccant wheel used for dehumidification and preheating in blast furnace: A case study of steel plant, Nanjing, China

    International Nuclear Information System (INIS)

    Guan, Yipeng; Zhang, Yufeng; Sheng, Ying; Kong, Xiangrui; Du, Song

    2015-01-01

    To overcome the shortcomings of huge energy consumption from conventional dehumidification using lithium bromide adsorption refrigerating (LBARD) system, a novel desiccant wheel dehumidification and preheating (DWDP) system using two-stage desiccant wheel for blast furnace is brought forward. The DWDP system was designed for dehumidification and preheating in blast furnace of steel plant. It takes waste heat in the slag flushing water as desiccant regeneration and preheating energy. To validate the feasibility of the new DWDP system, experimental studies were conducted based on a steel plant in Nanjing, China. The experiment was designed to use DWDP system in humid outdoor climates e.g. summer seasons. The experimental results indicate that the moisture removal capacity of DWDP system can reach 8.7 g/kg which will lead to the improvement of steel production by 0.9% and the coal is saved of about 2100 tons per year. With the DWDP system, the energy consumed by cooling tower of slag flushing water can decrease 7.3%. All of these energy saved equates to 10.3 million CNY annually. A comparison of initial investment and operating cost between DWDP system and LBRAD system was then carried out. The results show that the initial investment and operating cost of DWDP system is 37% and 57% of present LBARD system, and the payback period is shortened 66%. - Highlights: • A novel two-stage desiccant wheel dehumidification system for blast furnace is proposed. • Average moisture removal of 8.7 g/kg is achieved and dehumidification efficiency is 47%. • Outlet humidity ratio is less than 10 g/kg that satisfies the requirement of blast air. • Waste heat in slag flushing water is utilized and 61.4 million kJ is saved annually. • The investment and operating cost is 37% and 57% of former dehumidification system

  18. Ten questions about radiant heating and cooling systems

    DEFF Research Database (Denmark)

    Rhee, Kyu-Nam; Olesen, Bjarne W.; Kim, Kwang Woo

    2017-01-01

    studies on RHC systems in terms of comfort, heat transfer analysis, energy simulation, control strategy, system configurations and so on. Many studies have demonstrated that the RHC system is a good solution to improve indoor environmental quality while reducing building energy consumption for heating......Radiant heating and cooling (RHC) systems are being increasingly applied not only in residential but also in non-residential buildings such as commercial buildings, education facilities, and even large scale buildings such as airport terminals. Furthermore, with the combined ventilation system used...

  19. Structural optimization of a microjet based cooling system for high power LEDs

    Energy Technology Data Exchange (ETDEWEB)

    Sheng Liu; Zhiyin Gan [Institute for Microsystems, School of Mechanical Engineering, Huazhong University of Science and Technology, Wuhan (China); Wuhan National Lab of Optoelectronics, Huazhong University of Science and Technology, Wuhan (China); Jianghui Yang [School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan (China); Xiaobing Luo [Wuhan National Lab of Optoelectronics, Huazhong University of Science and Technology, Wuhan (China); School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan (China)

    2008-08-15

    Based on the previous experiments and simulations reported by the present authors, it was found the cooling system could be optimized to obtain better performance. In this paper, the microjet cooling systems with three different microjet structures were numerically investigated. The numerical model was proven by the experiments. The optimization results demonstrate that the microjet structure with one single inlet but two outlets can achieve better cooling performance. The simulation results show that the maximum temperature of the LED substrate cooled by the optimized microjet cooling device was 23 K lower than that of the LED substrate cooled by the present experimental cooling system. (author)

  20. A desiccant-enhanced evaporative air conditioner: Numerical model and experiments

    International Nuclear Information System (INIS)

    Woods, Jason; Kozubal, Eric

    2013-01-01

    Highlights: ► We studied a new process combining liquid desiccants and evaporative cooling. ► We modeled the process using a finite-difference numerical model. ► We measured the performance of the process with experimental prototypes. ► Results show agreement between model and experiment of ±10%. ► Results add confidence to previous modeled energy savings estimates of 40–85%. - Abstract: This article presents modeling and experimental results on a recently proposed liquid desiccant air conditioner, which consists of two stages: a liquid desiccant dehumidifier and an indirect evaporative cooler. Each stage is a stack of channel pairs, where a channel pair is a process air channel separated from an exhaust air channel with a thin plastic plate. In the first stage, a liquid desiccant film, which lines the process air channels, removes moisture from the air through a porous hydrophobic membrane. An evaporating water film wets the surface of the exhaust channels and transfers the enthalpy of vaporization from the liquid desiccant into an exhaust airstream, cooling the desiccant and enabling lower outlet humidity. The second stage is a counterflow indirect evaporative cooler that siphons off and uses a portion of the cool-dry air exiting the second stage as the evaporative sink. The objectives of this article are to (1) present fluid-thermal numerical models for each stage, (2) present experimental results of prototypes for each stage, and (3) compare the modeled and experimental results. Several experiments were performed on the prototypes over a range of inlet temperatures and humidities, process and exhaust air flow rates, and desiccant concentrations and flow rates. The model predicts the experiments within ±10%.

  1. Desiccant wheels for air humidification: An experimental and numerical analysis

    International Nuclear Information System (INIS)

    De Antonellis, Stefano; Intini, Manuel; Joppolo, Cesare Maria; Molinaroli, Luca; Romano, Francesco

    2015-01-01

    Highlights: • The use of desiccant wheel to humidify an air stream is investigated. • Air humidification is obtained by extracting water vapour from outdoor air. • Experimental tests in winter humidification conditions are performed. • The design of the proposed humidification system is numerically analyzed. • Effects of boundary conditions on humidification capacity are investigated. - Abstract: In this work the use of a desiccant wheel for air humidification is investigated through a numerical and experimental approach. In the proposed humidification system, water vapour is adsorbed from outdoor environment and it is released directly to the air stream supplied to the building. Such a system can be an interesting alternative to steam humidifiers in hospitals or, more generally, in applications where air contamination is a critical issue and therefore adiabatic humidifiers are not allowed. Performance of the proposed system is deeply investigated and optimal values of desiccant wheel configuration parameters are discussed. It is shown that in the investigated conditions, which are representative of Southern Europe winter climate, the system can properly match the latent load of the building. Finally, power consumption referred to the primary source of the proposed humidification system is compared to the one of steam humidifiers. The present analysis is carried out through experimental tests of a desiccant wheel in winter humidification conditions and through a phenomenological model of the device, based on heat and mass transfer equations.

  2. Operational aspects of the VELO cooling system of LHCb

    CERN Document Server

    Jans, E

    2014-01-01

    The VELO is a silicon strip detector that is positioned around the interaction region of LHCb. It is placed inside a secondary vacuum with respect to that of the LHC. The cooling system of the VELO is based on the bi-phase accumulator controlled method, using CO$_2$ as coolant. The main objective is the removal of the heat produced by the front-end electronics. Moreover, the leakage currents of the sensors are strongly reduced and thermal runaway is prevented. Since the sensors have been irradiated in Run 1 they should always be cooled to below $^-$5 $^{\\rm{o}}$C. The operational principle and main characteristics of the system are described, as well as the warning and safety systems that guarantee the safe operation of the detector. The few problems that have been encountered during the four years of continuous operation are discussed together with the solutions that have been implemented.

  3. Balancing passive and active systems for evolutionary water cooled reactors

    International Nuclear Information System (INIS)

    Fil, N.S.; Allen, P.J.; Kirmse, R.E.; Kurihara, M.; Oh, S.J.; Sinha, R.K.

    1999-01-01

    Advanced concepts of the water-cooled reactors are intended to improve safety, economics and public perception of nuclear power. The potential inclusion of new passive means in addition or instead of traditional active systems is being considered by nuclear plant designers to reach these goals. With respect to plant safety, application of the passive means is mainly intended to simplify the safety systems and to improve their reliability, to mitigate the effect of human errors and equipment malfunction. However, some clear drawbacks and the limited experience and testing of passive systems may raise additional questions that have to be addressed in the design process for each advanced reactor. Therefore the plant designer should find a reasonable balance of active and passive means to effectively use their advantages and compensate their drawbacks. Some considerations that have to be taken into account when balancing active/passive means in advanced water-cooled reactors are discussed in this paper. (author)

  4. Heat pipe as a cooling mechanism in an aeroponic system

    Energy Technology Data Exchange (ETDEWEB)

    Srihajong, N.; Terdtoon, P.; Kamonpet, P. [Department of Mechanical Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai 50200 (Thailand); Ruamrungsri, S. [Department of Horticulture, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200 (Thailand); Ohyama, T. [Department of Applied Biological Chemistry, Faculty of Agriculture, Niigata University (Japan)

    2006-02-01

    This paper presents an establishment of a mathematical model explaining the operation of an aeroponic system for agricultural products. The purpose is to study the rate of energy consumption in a conventional aeroponic system and the feasibility of employing a heat pipe as an energy saver in such a system. A heat pipe can be theoretically employed to remove heat from the liquid nutrient that flows through the growing chamber of an aeroponic system. When the evaporator of the heat pipe receives heat from the nutrient, the inside working fluid evaporates into vapor and flows to condense at the condenser section. The outlet temperature of the nutrient from the evaporator section is, therefore, decreased by the heat removal mechanism. The heat pipe can also be used to remove heat from the greenhouse by applying it on the greenhouse wall. By doing this, the nutrient temperature before entering into the nutrient tank decreases and the cooling load of evaporative cooling will subsequently be decreased. To justify the heat pipe application as an energy saver, numerical computations have been done on typical days in the month of April from which maximum heating load occurs and an appropriate heat pipe set was theoretically designed. It can be seen from the simulation that the heat pipe can reduce the electric energy consumption of an evaporative cooling and a refrigeration systems in a day by 17.19% and 10.34% respectively. (author)

  5. Gas-cooled reactor power systems for space

    International Nuclear Information System (INIS)

    Walter, C.E.

    1987-01-01

    Efficiency and mass characteristics for four gas-cooled reactor power system configurations in the 2- to 20-MWe power range are modeled. The configurations use direct and indirect Brayton cycles with and without regeneration in the power conversion loop. The prismatic ceramic core of the reactor consists of several thousand pencil-shaped tubes made from a homogeneous mixture of moderator and fuel. The heat rejection system is found to be the major contributor to system mass, particularly at high power levels. A direct, regenerated Brayton cycle with helium working fluid permits high efficiency and low specific mass for a 10-MWe system

  6. Convective Performance of Nanofluids in Commercial Electronics Cooling Systems

    International Nuclear Information System (INIS)

    Roberts, N.A.; Walker, D.G.

    2010-01-01

    Nanofluids are stable engineered colloidal suspensions of a small fraction of nanoparticles in a base fluid. Nanofluids have shown great promise as heat transfer fluids over typically used base fluids and fluids with micron sized particles. Suspensions with micron sized particles are known to settle rapidly and cause clogging and damage to the surfaces of pumping and flow equipment. These problems are dramatically reduced in nanofluids. In the current work we investigate the performance of different volume loadings of water-based alumina nanofluids in a commercially available electronics cooling system. The commercially available system is a water block used for liquid cooling of a computational processing unit. The size of the nanoparticles in the study is 20-30 nm. Results show an enhancement in convective heat transfer due to the addition of nanoparticles in the commercial cooling system with volume loadings of nanoparticles up to 1.5% by volume. The enhancement in the convective performance observed is similar to what has been reported in well controlled and understood systems and is commensurate with bulk models. The current nanoparticle suspensions showed visible signs of settling which varied from hours to weeks depending on the size of the particles used.

  7. Analysis and simulation of mobile air conditioning system coupled with engine cooling system

    International Nuclear Information System (INIS)

    Qi, Zhao-gang; Chen, Jiang-ping; Chen, Zhi-jiu

    2007-01-01

    Many components of the mobile air conditioning system and engine cooling system are closely interrelated and make up the vehicle climate control system. In the present paper, a vehicle climate control system model including air conditioning system and engine cooling system has been proposed under different operational conditions. All the components have been modeled on the basis of experimental data. Based on the commercial software, a computer simulation procedure of the vehicle climate control system has been developed. The performance of the vehicle climate control system is simulated, and the calculational data have good agreement with experimental data. Furthermore, the vehicle climate control simulation results have been compared with an individual air conditioning system and engine cooling system. The influences between the mobile air conditioning system and the engine cooling system are discussed

  8. Inspection of secondary cooling system piping of JMTR

    International Nuclear Information System (INIS)

    Hanawa, Yoshio; Izumo, Hironobu; Fukasaku, Akitomi; Nagao, Yoshiharu; Kawamura, Hiroshi

    2008-06-01

    Piping condition was inspected form the view point of long term utilization before the renewal work of the secondary cooling system in the JMTR on FY 2008. As the result, it was confirmed that cracks, swellings and exfoliations in inner lining of the piping could be observed, and corrosion, which was reached by piping ingot, or decrease of piping thickness could hardly be observed. It was therefore confirmed that the strength or the functionality of the piping had been maintained by usual operation and maintenance. Repair of inner lining of the piping during the refurbishment of the JMTR is necessary to long term utilization of the secondary cooling system after restart of the JMTR from the view point of preventive maintenance. In addition, a periodic inspection of inner lining condition is necessary after repair of the piping. (author)

  9. Performance Assessment of a Solar-Assisted Desiccant-Based Air Handling Unit Considering Different Scenarios

    Directory of Open Access Journals (Sweden)

    Giovanni Angrisani

    2016-09-01

    Full Text Available In this paper, three alternative layouts (scenarios of an innovative solar-assisted hybrid desiccant-based air handling unit (AHU are investigated through dynamic simulations. Performance is evaluated with respect to a reference system and compared to those of the innovative plant without modifications. For each scenario, different collector types, surfaces and tilt angles are considered. The effect of the solar thermal energy surplus exploitation for other low-temperature uses is also investigated. The first alternative scenario consists of the recovery of the heat rejected by the condenser of the chiller to pre-heat the regeneration air. The second scenario considers the pre-heating of regeneration air with the warmer regeneration air exiting the desiccant wheel (DW. The last scenario provides pre-cooling of the process air before entering the DW. Results reveal that the plants with evacuated solar collectors (SC can ensure primary energy savings (15%–24% and avoid equivalent CO2 emissions (14%–22%, about 10 percentage points more than those with flat-plate collectors, when the solar thermal energy is used only for air conditioning and the collectors have the best tilt angle. If all of the solar thermal energy is considered, the best results with evacuated tube collectors are approximately 73% in terms of primary energy saving, 71% in terms of avoided equivalent CO2 emissions and a payback period of six years.

  10. Verification on reliability of heat exchanger for primary cooling system

    International Nuclear Information System (INIS)

    Koike, Sumio; Gorai, Shigeru; Onoue, Ryuji; Ohtsuka, Kaoru

    2010-07-01

    Prior to the JMTR refurbishment, verification on reliability of the heat exchangers for primary cooling system was carried out to investigate an integrity of continuously use component. From a result of the significant corrosion, decrease of tube thickness, crack were not observed on the heat exchangers, and integrity of heat exchangers were confirmed. In the long terms usage of the heat exchangers, the maintenance based on periodical inspection and a long-term maintenance plan is scheduled. (author)

  11. Combination of air-source heat pumps with liquid desiccant dehumidification of air

    International Nuclear Information System (INIS)

    Zhang Li; Hihara, Eiji; Saikawa, Michiyuki

    2012-01-01

    Highlights: ► We propose a frost-free air-source heat pump system with integrated desiccant. ► The system can provide heating load continuously and humidify room. ► The coefficient of performance of the system is 2.6 at T a = −7 °C and RH = 80%. ► The heating load of solution is 3–4 times larger than cooling load of solution. - Abstract: This paper proposes a frost-free air source heat pump system with integrated liquid desiccant dehumidification, in which frosting can be retarded by dehumidifying air before entering an outdoor heat exchanger. And the water removed from the air is used to humidify a room. Simulation is carried out at a dry-bulb temperature of −7 to 5.5 °C and a relative humidity of 80% depending on the frosting conditions. The results show that the coefficient of performance (COP) is in the range of 2.6–2.9, which is 30–40% higher than that of heat pump heating integrated with an electric heater humidifying system. And it is found that the optimum value of the concentration of lithium chloride aqueous solution is 37% for the frost-free operation mode. Experiments are conducted for liquid desiccant system under low air temperature and high relative humidity conditions. Experimental results show that the dew point of the dehumidified air is decreased by 8 °C and the humidity ratio of the humidified air is kept at 8.1 g kg −1 , which ensures the frost-free operation of the heat pump evaporator and the comfortable level of room humidity simultaneously. The heating load of solution is 3–4.5 times larger than cooling load of solution, which agrees with the assumption given at the part of the simulation. Furthermore, the deviations between the calculated COP LHRU and the experimental results are within 33%.

  12. Thermal dimensioning of wet natural draft cooling systems

    International Nuclear Information System (INIS)

    Bourillot, Claudine.

    1975-01-01

    The conventional models of calculating wet natural draft cooling systems include two different parts. First, the thermal calculation of the dispersion is made either with an ''exact'' method of separating convection and evaporation phenomena and taking account for the steam in exces in the saturated air, or with a ''simplified'' method considering the heat transfer in the whole as resulting of a difference in enthalpies. (The latter is the Merkel theory). Secondly, the draft equation is solved for calculating air flow rate. Values of the mass transfer coefficients and pressure drops of the dispersion being needed for the computation, test bench measurements are made by the designers. As for counter-current cooling systems the models of the dispersion calculation are one-dimensional models not allowing the radial flow and air temperature distributions to be simulated; exchanges inside the rain zone are also neglected. As for crossed-current cooling systems the flow geometry entails a more complicated two-dimensional model to be used for the dispersion. In both cases, the dependence on meteorological factors such as wind, height gradients of temperature, or sunny features are disregarded [fr

  13. A water-cooled 13-kG magnet system

    International Nuclear Information System (INIS)

    Rossi, J.O.; Goncalves, J.A.N.; Barroso, J.J.; Patire Junior, H.; Spassovsky, I.P.; Castro, P.J.

    1993-01-01

    The construction, performance, and reliability of a high field magnet system are reported. The magnet is designed to generate a flat top 13 kG magnetic induction required for the operation of a 35 GHz, 100 k W gyrotron under development at INPE. The system comprises three solenoids, located in the gun, cavity, and collector regions, consisting of split pair magnets with the field direction vertical. The magnets are wound from insulated copper tube whose rectangular cross section has 5.0 mm-diameter hole leading the cooling water. On account of the high power (∼ 100 k W) supplied to the cavity coils, it turned out necessary to employ a cooling system which includes hydraulic pump a heat exchanger. The collector and gun magnets operate at lower DC current (∼ 150 A), and, in this case, flowing water provided by wall pipes is far enough to cool down the coils. In addition, a 250 k V A high power AC/DC Nutek converser is used to supply power to the cavity magnet. For the collector and gun magnets, 30 V/600 A DC power supplies are used. (author)

  14. Emergency core cooling system in BWR type reactors

    International Nuclear Information System (INIS)

    Takizawa, Yoji

    1981-01-01

    Purpose: To rapidly recover the water level in the reactor upon occurrence of slight leakages in the reactor coolant pressure boundary, by promoting the depressurization in the reactor to thereby rapidly increase the high pressure core spray flow rate. Constitution: Upon occurrence of reactor water level reduction, a reactor isolation cooling system and a high pressure core spray system are actuated to start the injection of coolants into a reactor pressure vessel. In this case, if the isolation cooling system is failed to decrease the flow rate in a return pipeway, flow rate indicators show a lower value as compared with a predetermined value. The control device detects it and further confirms the rotation of a high pressure spray pump to open a valve. By the above operation, coolants pumped by the high pressure spray pump is flown by way of a communication pipeway to the return pipeway and sprayed from the top of the pressure vessel. This allows the vapors on the water surface in the pressure vessel to be cooled rapidly and increases the depressurization effects. (Horiuchi, T.)

  15. Emission operational strategy for combined cooling, heating, and power systems

    International Nuclear Information System (INIS)

    Fumo, Nelson; Mago, Pedro J.; Chamra, Louay M.

    2009-01-01

    Integrated Energy Systems (IES), as technology that use thermal activated components to recover waste heat, are energy systems that offer key solution to global warming and energy security through high overall energy efficiency and better fuel use. Combined Cooling, Heating, and Power (CCHP) Systems are IES that use recovered thermal energy from the prime mover to produce heating and cooling for the building. The CCHP operational strategy is critical and it has to be considered in a well designed system since it defines the ultimate goal for the benefits expected from the system. One of the most common operational strategies is the cost-oriented strategy, which allows the system to operate at the lowest cost. A primary energy strategy (PES) optimizes energy consumption instead of cost. However, as a result of the worldwide concern about global warming, projects that target reduction of greenhouse gas (GHG) emissions have gained a lot of interest. Therefore, for a CCHP system, an emission strategy (ES) would be an operational strategy oriented to minimize emission of pollutants. In this study, the use of an ES is proposed for CCHP systems targeted to reduce emission of pollutants. The primary energy consumption (PEC) reduction and carbon dioxide (CO 2 ) emission reduction obtained using the proposed ES are compared with results obtained from the use of a PES. Results show that lower emission of CO 2 is achieved with the ES when compared with the PES, which prove the advantage of the ES for the design of CCHP systems targeted to emissions reduction.

  16. Impact of Desiccation of Aral Sea on the Regional Climate of Central Asia Using WRF Model

    Science.gov (United States)

    Sharma, Ashish; Huang, Huei-Ping; Zavialov, Peter; Khan, Valentina

    2018-01-01

    This study explores the impacts of the desiccation of the Aral Sea and large-scale climate change on the regional climate of Central Asia in the post-1960 era. A series of climate downscaling experiments for the 1960's and 2000's decades were performed using the Weather Research and Forecast model at 12-km horizontal resolution. To quantify the impacts of the changing surface boundary condition, a set of simulations with an identical lateral boundary condition but different extents of the Aral Sea were performed. It was found that the desiccation of the Aral Sea leads to more snow (and less rain) as desiccated winter surface is relatively much colder than water surface. In summer, desiccation led to substantial warming over the Aral Sea. These impacts were largely confined to within the area covered by the former Aral Sea and its immediate vicinity, although desiccation of the Sea also led to minor cooling over the greater Central Asia in winter. A contrasting set of simulations with an identical surface boundary condition but different lateral boundary conditions produced more identifiable changes in regional climate over the greater Central Asia which was characterized by a warming trend in both winter and summer. Simulations also showed that while the desiccation of the Aral Sea has significant impacts on the local climate over the Sea, the climate over the greater Central Asia on inter-decadal time scale was more strongly influenced by the continental or global-scale climate change on that time scale.

  17. Sensitivity of energy and exergy performances of heating and cooling systems to auxiliary components

    DEFF Research Database (Denmark)

    Kazanci, Ongun Berk; Shukuya, Masanori; Olesen, Bjarne W.

    2017-01-01

    . Different forms of energy (electricity and heat) are used in heating and cooling systems, and therefore, a holistic approach to system design and analysis is needed. In particular, distribution systems use electricity as a direct input to pumps and fans, and to other components. Therefore, exergy concept......Heating and cooling systems in buildings consist of three main subsystems: heating/cooling plant, distribution system, and indoor terminal unit. The choice of indoor terminal unit determines the characteristics of the distribution system and the heating and cooling plants that can be used...... should be used in design and analysis of the whole heating and cooling systems, in addition to the energy analysis. In this study, water-based (floor heating and cooling, and radiator heating) and air-based (air heating and cooling) heating and cooling systems were compared in terms of their energy use...

  18. Parametric study on the advantages of weather-predicted control algorithm of free cooling ventilation system

    International Nuclear Information System (INIS)

    Medved, Sašo; Babnik, Miha; Vidrih, Boris; Arkar, Ciril

    2014-01-01

    Predicted climate changes and the increased intensity of urban heat islands, as well as population aging, will increase the energy demand for the cooling of buildings in the future. However, the energy demand for cooling can be efficiently reduced by low-exergy free-cooling systems, which use natural processes, like evaporative cooling or the environmental cold of ambient air during night-time ventilation for the cooling of buildings. Unlike mechanical cooling systems, the energy for the operation of free-cooling system is needed only for the transport of the cold from the environment into the building. Because the natural cold potential is time dependent, the efficiency of free-cooling systems could be improved by introducing a weather forecast into the algorithm for the controlling. In the article, a numerical algorithm for the optimization of the operation of free-cooling systems with night-time ventilation is presented and validated on a test cell with different thermal storage capacities and during different ambient conditions. As a case study, the advantage of weather-predicted controlling is presented for a summer week for typical office room. The results show the necessity of the weather-predicted controlling of free-cooling ventilation systems for achieving the highest overall energy efficiency of such systems in comparison to mechanical cooling, better indoor comfort conditions and a decrease in the primary energy needed for cooling of the buildings. - Highlights: • Energy demand for cooling will increase due to climate changes and urban heat island • Free cooling could significantly reduce energy demand for cooling of the buildings. • Free cooling is more effective if weather prediction is included in operation control. • Weather predicted free cooling operation algorithm was validated on test cell. • Advantages of free-cooling on mechanical cooling is shown with different indicators

  19. System design study of small lead-bismuth cooled reactor

    International Nuclear Information System (INIS)

    Chikazawa, Yoshitaka; Hori, Toru; Konomura, Mamoru

    2003-07-01

    In phase II of the feasibility study of JNC, we will make a concept of a dispersion power source reactor with various requirements, such as economical competitiveness and safety. In the study of a small lead-bismuth cooled reactor, a concept whose features are long life core, inherent safety, natural convection of cooling system and steam generators in the reactor vessel has been designed since 2000. The investigations which have been done in 2002 are shown as follows; Safety analysis of UTOP considering uncertainty of reactivity. Possibility of reduction of number of control rods. Estimation of construction cost. Transient analyses of UTOP have been done in considering uncertainty of reactivity in order to show the inherent safety in the probabilistic method. And the inherent safety in UTOP is realized under the condition of considering uncertainty. Transient analyses of UTOP with various numbers of control rods have been done and it is suggested that there is possibility of reduction of the number of control rods considering accident managements. The method of cost estimation is a little modified. The cost of reactor vessel is estimated from that of medium sized lead-bismuth cooled reactor and the estimation of a purity control system is by coolant volume flow rate. The construction cost is estimated 850,000yen/kWe. (author)

  20. Exergy analysis of refrigerators for large scale cooling systems

    Energy Technology Data Exchange (ETDEWEB)

    Loehlein, K [Sulzer Cryogenics, Winterthur (Switzerland); Fukano, T [Nippon Sanso Corp., Kawasaki (Japan)

    1993-01-01

    Facilities with superconducting magnets require cooling capacity at different temperature levels and of different types (refrigeration or liquefaction). The bigger the demand for refrigeration, the more investment for improved efficiency of the refrigeration plant is justified and desired. Refrigeration cycles are built with discrete components like expansion turbines, cold compressors, etc. Therefore the exergetic efficiency for producing refrigeration on a distinct temperature level is significantly dependent on the 'thermodynamic arrangement' of these components. Among a variety of possibilities, limited by the range of applicability of the components, one has to choose the best design for higher efficiency on every level. Some influences are being quantified and aspects are given for a optimal integration of the refrigerator into the whole cooling system. (orig.).

  1. The Cold Mass Support System and the Helium Cooling System for the MICE Focusing Solenoid

    International Nuclear Information System (INIS)

    Yang, Stephanie Q.; Green, Michael A.; Lau, Wing W.; Senanayake, Rohan S.; Witte, Holger

    2006-01-01

    The heart of the absorber focus coil (AFC) module for the muon ionization cooling experiment (MICE) is the two-coil superconducting solenoid that surrounds the muon absorber. The superconducting magnet focuses the muons that are cooled using ionization cooling, in order to improve the efficiency of cooling. The coils of the magnet may either be run in the solenoid mode (both coils operate at the same polarity) or the gradient (the coils operate at opposite polarity). The AFC magnet cold mass support system is designed to carry a longitudinal force up to 700 kN. The AFC module will be cooled using three pulse tube coolers that produce 1.5 W of cooling at 4.2 K. One of the coolers will be used to cool the liquid (hydrogen or helium) absorber used for ionization cooling. The other two coolers will cool the superconducting solenoid. This report will describe the MICE AFC magnet. The cold mass supports will be discussed. The reasons for using a pulsed tube cooler to cool this superconducting magnet will also be discussed

  2. Open air-vapor compression refrigeration system for air conditioning and hot water cooled by cool water

    International Nuclear Information System (INIS)

    Hou Shaobo; Li Huacong; Zhang Hefei

    2007-01-01

    This paper presents an open air-vapor compression refrigeration system for air conditioning and hot water cooled by cool water and proves its feasibility through performance simulation. Pinch technology is used in analysis of heat exchange in the surface heat exchanger, and the temperature difference at the pinch point is selected as 6 o C. Its refrigeration depends mainly on both air and vapor, more efficient than a conventional air cycle, and the use of turbo-machinery makes this possible. This system could use the cool in the cool water, which could not be used to cool air directly. Also, the heat rejected from this system could be used to heat cool water to 33-40 o C. The sensitivity analysis of COP to η c and η t and the simulated results T 4 , T 7 , T 8 , q 1 , q 2 and W m of the cycle are given. The simulations show that the COP of this system depends mainly on T 7 , η c and η t and varies with T 3 or T wet and that this cycle is feasible in some regions, although the COP is sensitive to the efficiencies of the axial compressor and turbine. The optimum pressure ratio in this system could be lower, and this results in a fewer number of stages of the axial compressor. Adjusting the rotation speed of the axial compressor can easily control the pressure ratio, mass flow rate and the refrigerating capacity. The adoption of this cycle will make the air conditioned room more comfortable and reduce the initial investment cost because of the obtained very low temperature air. Humid air is a perfect working fluid for central air conditioning and no cost to the user. The system is more efficient because of using cool water to cool the air before the turbine. In addition, pinch technology is a good method to analyze the wet air heat exchange with water

  3. Performance of cold compressors in a cooling system of an R and D superconducting coil cooled with subcooled helium

    International Nuclear Information System (INIS)

    Hamaguchi, S.; Imagawa, S.; Yanagi, N.; Takahata, K.; Maekawa, R.; Mito, T.

    2006-01-01

    The helical coils of large helical device (LHD) have been operated in saturated helium at 4.4 K and plasma experiments have been carried out at magnetic fields lower than 3 T for 8 years. Now, it is considered that the cooling system of helical coils will be improved to enhance magnetic fields in 2006. In the improvement, the helical coils will be cooled with subcooled helium and the operating temperature of helical coils will be lowered to achieve the designed field of 3 T and enhance cryogenic stabilities. Two cold compressors will be used in the cooling system of helical coils to generate subcooled helium. In the present study, the performance of cold compressors has been investigated, using a cooling system of R and D coil, to apply cold compressors to the cooling system of helical coils. Actual surge lines of cold compressors were observed and the stable operation area was obtained. Automatic operations were also performed within the area. In the automatic operations, the suitable pressure of a saturated helium bath, calculated from the rotation speed of the 1st cold compressor, was regulated by bypass valve. From these results, stable operations will be expected in the cooling system of helical coils

  4. Debuncher Momentum Cooling Systems Signal to Noise Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Pasquinelli, Ralph J.; /Fermilab

    2001-12-18

    The Debuncher Momentum cooling systems were carefully measured for signal to noise. It was observed that cooling performance was not optimum. Closer inspection shows that the installed front-end bandpass filters are wider than the pickup response. (The original filters were specified to be wider so that none of the available bandwidth would be clipped.) The end result is excess noise is amplified and passed onto the kickers unimpeded, hence, reducing the achievable system gain. From this data, new filters should be designed to improve performance. New system bandwidths are specified on the data figures. Also included are the transfer function measurements that clearly show adjacent band response. In band 4 upper, the adjacent lobes are strong and out of phase. This is also degrading the system performance. The correlation between spectrum analyzer signal to noise and network analyzer system transfer functions is very strong. The table below has a calculation of expected improvement of front noise reduction by means of building new front-end bandpass filters. The calculation is based on a flat input noise spectrum and is a linear estimation of improvement. The listed 3dB bandwidths of the original filters are from measured data. The expected bandwidth is taken from the linear spectrum analyzer plots and is closer to a 10 dB bandwidth making the percentage improvement conservative. The signal to noise measurements are taken with circulating pbars in the Debuncher. One cooling system was measured at a time with all others off. Beam currents are below ten microamperes.

  5. Debuncher Momentum Cooling Systems Signal to Noise Measurements

    International Nuclear Information System (INIS)

    Pasquinelli, Ralph J.

    2001-01-01

    The Debuncher Momentum cooling systems were carefully measured for signal to noise. It was observed that cooling performance was not optimum. Closer inspection shows that the installed front-end bandpass filters are wider than the pickup response. (The original filters were specified to be wider so that none of the available bandwidth would be clipped.) The end result is excess noise is amplified and passed onto the kickers unimpeded, hence, reducing the achievable system gain. From this data, new filters should be designed to improve performance. New system bandwidths are specified on the data figures. Also included are the transfer function measurements that clearly show adjacent band response. In band 4 upper, the adjacent lobes are strong and out of phase. This is also degrading the system performance. The correlation between spectrum analyzer signal to noise and network analyzer system transfer functions is very strong. The table below has a calculation of expected improvement of front noise reduction by means of building new front-end bandpass filters. The calculation is based on a flat input noise spectrum and is a linear estimation of improvement. The listed 3dB bandwidths of the original filters are from measured data. The expected bandwidth is taken from the linear spectrum analyzer plots and is closer to a 10 dB bandwidth making the percentage improvement conservative. The signal to noise measurements are taken with circulating pbars in the Debuncher. One cooling system was measured at a time with all others off. Beam currents are below ten microamperes.

  6. POOL WATER TREATMENT AND COOLING SYSTEM DESCRIPTION DOCUMENT

    International Nuclear Information System (INIS)

    King, V.

    2000-01-01

    The Pool Water Treatment and Cooling System is located in the Waste Handling Building (WHB), and is comprised of various process subsystems designed to support waste handling operations. This system maintains the pool water temperature within an acceptable range, maintains water quality standards that support remote underwater operations and prevent corrosion, detects leakage from the pool liner, provides the capability to remove debris from the pool, controls the pool water level, and helps limit radiological exposure to personnel. The pool structure and liner, pool lighting, and the fuel staging racks in the pool are not within the scope of the Pool Water Treatment and Cooling System. Pool water temperature control is accomplished by circulating the pool water through heat exchangers. Adequate circulation and mixing of the pool water is provided to prevent localized thermal hotspots in the pool. Treatment of the pool water is accomplished by a water treatment system that circulates the pool water through filters, and ion exchange units. These water treatment units remove radioactive and non-radioactive particulate and dissolved solids from the water, thereby providing the water clarity needed to conduct waste handling operations. The system also controls pool water chemistry to prevent advanced corrosion of the pool liner, pool components, and fuel assemblies. Removal of radioactivity from the pool water contributes to the project ALARA (as low as is reasonably achievable) goals. A leak detection system is provided to detect and alarm leaks through the pool liner. The pool level control system monitors the water level to ensure that the minimum water level required for adequate radiological shielding is maintained. Through interface with a demineralized water system, adequate makeup is provided to compensate for loss of water inventory through evaporation and waste handling operations. Interface with the Site Radiological Monitoring System provides continuous

  7. Design Of Pump Monitoring Of Primary Cooling System

    International Nuclear Information System (INIS)

    Indrakoesoema, Koes; Sujarwono

    2000-01-01

    Monitoring of 3 primary cooling pumps done visually by operator on the spot. The operator must be check oil in a sight glass, oil leakage during pump operation and water leakage. If reaktor power increase about more than 3 MW, the radiation exposure also increase in the primary cell and that's way the operator can not check the pumps. To continuing monitor all pump without delay, one system has been added I.e Closed Circuit Television (CCTV). This system using 3 video camera to monitor 3 pumps and connected to one receiver video monitor by coaxial cable located in Main Control Room. The sequence monitoring can be done by sequential switcher

  8. Refueling system for the gas-cooled fast breeder reactor

    International Nuclear Information System (INIS)

    Hawke, B.C.

    1980-05-01

    Criteria specifically related to the handling of Gas-Cooled Fast Breeder Reactor (GCFR) fuel are briefly reviewed, and the most significant requirements with which the refueling system must comply are discussed. Each component of the refueling system is identified, and a functional description of the fuel handling machine is presented. An illustrated operating sequence describing the various functions involved in a typical refueling cycle is presented. The design status of components and subsystems selected for conceptual development is reviewed, and anticipated refueling time frames are given

  9. Emergency core cooling system for a fast reactor

    International Nuclear Information System (INIS)

    Johnson, H.G.; Madsen, R.N.

    1976-01-01

    The main heat transport system for a liquid-metal-cooled nuclear reactor is constructed with elevated piping and guard vessels or pipes around all components of the system below the elevation of the elevated piping so the head developed by the pumps at emergency motor speed will be unsufficient to lift the liquid-metal-coolant over the top of the guard tanks or pipes or out of the elevated piping in the event of a loss-of-coolant accident. In addition, inlet downcomers to the reactor vessel are contained within guard standpipes having a clearance volume as small as practicable. 4 claims, 2 drawing figures

  10. Passive-solar directional-radiating cooling system

    Science.gov (United States)

    Hull, J.R.; Schertz, W.W.

    1985-06-27

    A radiative cooling system for use with an ice-making system having a radiating surface aimed at the sky for radiating energy at one or more wavelength bands for which the atmosphere is transparent and a cover thermally isolated from the radiating surface and transparent at least to the selected wavelength or wavelengths, the thermal isolation reducing the formation of condensation on the radiating surface and/or cover and permitting the radiation to continue when the radiating surface is below the dewpoint of the atmosphere, and a housing supporting the radiating surface, cover and heat transfer means to an ice storage reservoir.

  11. Computer Simulation Performed for Columbia Project Cooling System

    Science.gov (United States)

    Ahmad, Jasim

    2005-01-01

    This demo shows a high-fidelity simulation of the air flow in the main computer room housing the Columbia (10,024 intel titanium processors) system. The simulation asseses the performance of the cooling system and identified deficiencies, and recommended modifications to eliminate them. It used two in house software packages on NAS supercomputers: Chimera Grid tools to generate a geometric model of the computer room, OVERFLOW-2 code for fluid and thermal simulation. This state-of-the-art technology can be easily extended to provide a general capability for air flow analyses on any modern computer room. Columbia_CFD_black.tiff

  12. Optimum gain and phase for stochastic cooling systems

    International Nuclear Information System (INIS)

    Meer, S. van der.

    1984-01-01

    A detailed analysis of optimum gain and phase adjustment in stochastic cooling systems reveals that the result is strongly influenced by the beam feedback effect and that for optimum performance the system phase should change appreciably across each Schottky band. It is shown that the performance is not greatly diminished if a constant phase is adopted instead. On the other hand, the effect of mixing between pick-up and kicker (which produces a phase change similar to the optimum one) is shown to be less perturbing than is usually assumed, provided that the absolute value of the gain is not too far from the optimum value. (orig.)

  13. Seismic Design of ITER Component Cooling Water System-1 Piping

    Science.gov (United States)

    Singh, Aditya P.; Jadhav, Mahesh; Sharma, Lalit K.; Gupta, Dinesh K.; Patel, Nirav; Ranjan, Rakesh; Gohil, Guman; Patel, Hiren; Dangi, Jinendra; Kumar, Mohit; Kumar, A. G. A.

    2017-04-01

    The successful performance of ITER machine very much depends upon the effective removal of heat from the in-vessel components and other auxiliary systems during Tokamak operation. This objective will be accomplished by the design of an effective Cooling Water System (CWS). The optimized piping layout design is an important element in CWS design and is one of the major design challenges owing to the factors of large thermal expansion and seismic accelerations; considering safety, accessibility and maintainability aspects. An important sub-system of ITER CWS, Component Cooling Water System-1 (CCWS-1) has very large diameter of pipes up to DN1600 with many intersections to fulfill the process flow requirements of clients for heat removal. Pipe intersection is the weakest link in the layout due to high stress intensification factor. CCWS-1 piping up to secondary confinement isolation valves as well as in-between these isolation valves need to survive a Seismic Level-2 (SL-2) earthquake during the Tokamak operation period to ensure structural stability of the system in the Safe Shutdown Earthquake (SSE) event. This paper presents the design, qualification and optimization of layout of ITER CCWS-1 loop to withstand SSE event combined with sustained and thermal loads as per the load combinations defined by ITER and allowable limits as per ASME B31.3, This paper also highlights the Modal and Response Spectrum Analyses done to find out the natural frequency and system behavior during the seismic event.

  14. Active cooling for downhole instrumentation: Preliminary analysis and system selection

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, G.A.

    1988-03-01

    A feasibility study and a series of preliminary designs and analyses were done to identify candidate processes or cycles for use in active cooling systems for downhole electronic instruments. A matrix of energy types and their possible combinations was developed and the energy conversion process for each pari was identified. The feasibility study revealed conventional as well as unconventional processes and possible refrigerants and identified parameters needing further clarifications. A conceptual design or series od oesigns for each system was formulated and a preliminary analysis of each design was completed. The resulting coefficient of performance for each system was compared with the Carnot COP and all systems were ranked by decreasing COP. The system showing the best combination of COP, exchangeability to other operating conditions, failure mode, and system serviceability is chosen for use as a downhole refrigerator. 85 refs., 48 figs., 33 tabs.

  15. A gas-cooled reactor surface power system

    International Nuclear Information System (INIS)

    Lipinski, R.J.; Wright, S.A.; Lenard, R.X.; Harms, G.A.

    1999-01-01

    A human outpost on Mars requires plentiful power to assure survival of the astronauts. Anywhere from 50 to 500 kW of electric power (kWe) will be needed, depending on the number of astronauts, level of scientific activity, and life-cycle closure desired. This paper describes a 250-kWe power system based on a gas-cooled nuclear reactor with a recuperated closed Brayton cycle conversion system. The design draws upon the extensive data and engineering experience developed under the various high-temperature gas cooled reactor programs and under the SP-100 program. The reactor core is similar in power and size to the research reactors found on numerous university campuses. The fuel is uranium nitride clad in Nb1%Zr, which has been extensively tested under the SP-100 program. The fuel rods are arranged in a hexagonal array within a BeO block. The BeO softens the spectrum, allowing better use of the fuel and stabilizing the geometry against deformation during impact or other loadings. The system has a negative temperature feedback coefficient so that the power level will automatically follow a variable load without the need for continuous adjustment of control elements. Waste heat is removed by an air-cooled heat exchanger using cold Martian air. The amount of radioactivity in the reactor at launch is very small (less than a Curie, and about equal to a truckload of uranium ore). The system will need to be engineered so that criticality can not occur for any launch accident. This system is also adaptable for electric propulsion or life-support during transit to and from Mars. copyright 1999 American Institute of Physics

  16. A gas-cooled reactor surface power system

    International Nuclear Information System (INIS)

    Lipinski, Ronald J.; Wright, Steven A.; Lenard, Roger X.; Harms, Gary A.

    1999-01-01

    A human outpost on Mars requires plentiful power to assure survival of the astronauts. Anywhere from 50 to 500 kW of electric power (kWe) will be needed, depending on the number of astronauts, level of scientific activity, and life-cycle closure desired. This paper describes a 250-kWe power system based on a gas-cooled nuclear reactor with a recuperated closed Brayton cycle conversion system. The design draws upon the extensive data and engineering experience developed under the various high-temperature gas cooled reactor programs and under the SP-100 program. The reactor core is similar in power and size to the research reactors found on numerous university campuses. The fuel is uranium nitride clad in Nb1%Zr, which has been extensively tested under the SP-100 program. The fuel rods are arranged in a hexagonal array within a BeO block. The BeO softens the spectrum, allowing better use of the fuel and stabilizing the geometry against deformation during impact or other loadings. The system has a negative temperature feedback coefficient so that the power level will automatically follow a variable load without the need for continuous adjustment of control elements. Waste heat is removed by an air-cooled heat exchanger using cold Martian air. The amount of radioactivity in the reactor at launch is very small (less than a Curie, and about equal to a truckload of uranium ore). The system will need to be engineered so that criticality can not occur for any launch accident. This system is also adaptable for electric propulsion or life-support during transit to and from Mars

  17. A Gas-Cooled Reactor Surface Power System

    Energy Technology Data Exchange (ETDEWEB)

    Harms, G.A.; Lenard, R.X.; Lipinski, R.J.; Wright, S.A.

    1998-11-09

    A human outpost on Mars requires plentiful power to assure survival of the astronauts. Anywhere from 50 to 500 kW of electric power (kWe) will be needed, depending on the number of astronauts, level of scientific activity, and life- cycle closure desired. This paper describes a 250-kWe power system based on a gas-cooled nuclear reactor with a recuperated closed Brayton cycle conversion system. The design draws upon the extensive data and engineering experience developed under the various high-temperature gas cooled reactor programs and under the SP-100 program. The reactor core is similar in power and size to the research reactors found on numerous university campuses. The fuel is uranium nitide clad in Nb 1 %Zr, which has been extensively tested under the SP-I 00 program The fiel rods are arranged in a hexagonal array within a BeO block. The BeO softens the spectrum, allowing better use of the fbel and stabilizing the geometty against deformation during impact or other loadings. The system has a negative temperature feedback coefficient so that the power level will automatically follow a variable load without the need for continuous adjustment of control elements. Waste heat is removed by an air-cooled heat exchanger using cold Martian air. The amount of radioactivity in the reactor at launch is very small (less than a Curie, and about equal to a truckload of uranium ore). The system will need to be engineered so that criticality cannot occur for any launch accident. This system is also adaptable for electric propulsion or life-support during transit to and from Mars.

  18. System performance and economic analysis of solar-assisted cooling/heating system

    KAUST Repository

    Huang, B.J.

    2011-11-01

    The long-term system simulation and economic analysis of solar-assisted cooling/heating system (SACH-2) was carried out in order to find an economical design. The solar heat driven ejector cooling system (ECS) is used to provide part of the cooling load to reduce the energy consumption of the air conditioner installed as the base-load cooler. A standard SACH-2 system for cooling load 3.5. kW (1. RT) and daily cooling time 10 h is used for case study. The cooling performance is assumed only in summer seasons from May to October. In winter season from November to April, only heat is supplied. Two installation locations (Taipei and Tainan) were examined.It was found from the cooling performance simulation that in order to save 50% energy of the air conditioner, the required solar collector area is 40m2 in Taipei and 31m2 in Tainan, for COPj=0.2. If the solar collector area is designed as 20m2, the solar ejector cooling system will supply about 17-26% cooling load in Taipei in summer season and about 21-27% cooling load in Tainan. Simulation for long-term performance including cooling in summer (May-October) and hot water supply in winter (November-April) was carried out to determine the monthly-average energy savings. The corresponding daily hot water supply (with 40°C temperature rise of water) for 20m2 solar collector area is 616-858L/day in Tainan and 304-533L/day in Taipei.The economic analysis shows that the payback time of SACH-2 decreases with increasing cooling capacity. The payback time is 4.8. years in Tainan and 6.2. years in Taipei when the cooling capacity >10. RT. If the ECS is treated as an additional device used as a protective equipment to avoid overheating of solar collectors and to convert the excess solar heat in summer into cooling to reduce the energy consumption of air conditioner, the payback time is less than 3 years for cooling capacity larger than 3. RT. © 2011 Elsevier Ltd.

  19. Desiccation stress induces developmental heterochrony in ...

    Indian Academy of Sciences (India)

    Stressful environments are known to perturb developmental patterns in insects. In the purview of desiccation as astressor, relatively little is known about the developmental consequences linked with desiccation tolerance. In thisstudy, we have particularly focused on the exploration of the temporal profile of postembryonic ...

  20. Steady state modeling of desiccant wheels

    DEFF Research Database (Denmark)

    Bellemo, Lorenzo; Elmegaard, Brian; Kærn, Martin Ryhl

    2014-01-01

    Desiccant wheels are rotary desiccant dehumidifiers used in air conditioning and drying applications. The modeling of simultaneous heat and mass transfer in these components is crucial for estimating their performances, as well as for simulating and optimizing their implementation in complete...

  1. Unravelling desiccation tolerance in germinated Arabidopsis seeds

    NARCIS (Netherlands)

    Maia de Oliveira, J.

    2014-01-01

    How different organisms survive in the absence or under very limited amounts of water is still an open question. The aim of the research presented in this thesis is to explore the molecular basis of desiccation tolerance in seeds. We investigated the possibilities of using germinated desiccation

  2. Electron gun design study for the IUCF beam cooling system

    International Nuclear Information System (INIS)

    Friesel, D.L.; Ellison, T.; Jones, W.P.

    1985-01-01

    The design of a low temperature electron beam cooling system for the Indiana University electron-cooled storage ring is in progress. The storage ring, which will accept the light ion beams from the existing k=200, multi-stage cyclotron facility, requires an electron beam variable in energy from about 7 to 275 keV. The electron beam system consists of a high perveance electron gun with Pierce geometry and a flat cathode. The gun and a 28 element accelerating column are immersed in a uniform longitudinal magnetic guide field. A computer modeling study of the system was conducted to determine electron beam density and transverse temperature variations as a function of anode region and accelerator column design parameters. Transverse electron beam temperatures (E /SUB t/ = mc 2 β 2 γ(/theta/ /SUB H/ +/theta/ /SUB v/ )) of less than a few tenths of an electron volt at a maximum current density of 0.4 A/cm 2 are desired over the full energy range. This was achieved in the calculations without the use of resonant focusing for a 2 Amp, 275 keV electron beam. Some systematics of the electron beam temperature variations with system design parameters are presented. A short discussion of the mechanical design of the proposed electron beam system is also given

  3. Soil desiccation cracks as a suction–contraction process

    KAUST Repository

    Cordero, J. A.; Useche, G.; Prat, P. C.; Ledesma, A.; Santamarina, Carlos

    2017-01-01

    Recent macro- and particle-scale advances in unsaturated soil behaviour have led to an enhanced understanding of the effects of moisture changes on soil response. This research examines desiccation cracks as a suction–contraction-coupled process using sand–clay mixtures. Suction–moisture measurements highlight the role of fines on suction potential even at low fines content; on the other hand, oedometer tests exhibit a marked transition from sand-controlled to clay-controlled compressibility. Time-lapse photography of desiccation tests in flat trays show the onset of crack initiation and the subsequent evolution in horizontal strains; concurrent gravimetric water content measurements relate crack nucleation to suction at air entry. Suction and compressibility increase with the soil-specific surface and have a compounded effect on desiccation-driven lateral contraction. Both layer thickness and its lateral extent affect the development of desiccation cracks. The recently proposed revised soil classification system properly anticipates the transitions in compressibility and capillary phenomena observed in this study (between 15 and 35% fines content).

  4. Soil desiccation cracks as a suction–contraction process

    KAUST Repository

    Cordero, J. A.

    2017-10-05

    Recent macro- and particle-scale advances in unsaturated soil behaviour have led to an enhanced understanding of the effects of moisture changes on soil response. This research examines desiccation cracks as a suction–contraction-coupled process using sand–clay mixtures. Suction–moisture measurements highlight the role of fines on suction potential even at low fines content; on the other hand, oedometer tests exhibit a marked transition from sand-controlled to clay-controlled compressibility. Time-lapse photography of desiccation tests in flat trays show the onset of crack initiation and the subsequent evolution in horizontal strains; concurrent gravimetric water content measurements relate crack nucleation to suction at air entry. Suction and compressibility increase with the soil-specific surface and have a compounded effect on desiccation-driven lateral contraction. Both layer thickness and its lateral extent affect the development of desiccation cracks. The recently proposed revised soil classification system properly anticipates the transitions in compressibility and capillary phenomena observed in this study (between 15 and 35% fines content).

  5. Pilot-scale cooling tower to evaluate corrosion, scaling, and biofouling control strategies for cooling system makeup water.

    Science.gov (United States)

    Chien, S H; Hsieh, M K; Li, H; Monnell, J; Dzombak, D; Vidic, R

    2012-02-01

    Pilot-scale cooling towers can be used to evaluate corrosion, scaling, and biofouling control strategies when using particular cooling system makeup water and particular operating conditions. To study the potential for using a number of different impaired waters as makeup water, a pilot-scale system capable of generating 27,000 kJ∕h heat load and maintaining recirculating water flow with a Reynolds number of 1.92 × 10(4) was designed to study these critical processes under conditions that are similar to full-scale systems. The pilot-scale cooling tower was equipped with an automatic makeup water control system, automatic blowdown control system, semi-automatic biocide feeding system, and corrosion, scaling, and biofouling monitoring systems. Observed operational data revealed that the major operating parameters, including temperature change (6.6 °C), cycles of concentration (N = 4.6), water flow velocity (0.66 m∕s), and air mass velocity (3660 kg∕h m(2)), were controlled quite well for an extended period of time (up to 2 months). Overall, the performance of the pilot-scale cooling towers using treated municipal wastewater was shown to be suitable to study critical processes (corrosion, scaling, biofouling) and evaluate cooling water management strategies for makeup waters of complex quality.

  6. System design package for the solar heating and cooling central data processing system

    Science.gov (United States)

    1978-01-01

    The central data processing system provides the resources required to assess the performance of solar heating and cooling systems installed at remote sites. These sites consist of residential, commercial, government, and educational types of buildings, and the solar heating and cooling systems can be hot-water, space heating, cooling, and combinations of these. The instrumentation data associated with these systems will vary according to the application and must be collected, processed, and presented in a form which supports continuity of performance evaluation across all applications. Overall software system requirements were established for use in the central integration facility which transforms raw data collected at remote sites into performance evaluation information for assessing the performance of solar heating and cooling systems.

  7. Economic performance optimization of an absorption cooling system under uncertainty

    International Nuclear Information System (INIS)

    Gebreslassie, Berhane H.; Guillen-Gosalbez, Gonzalo; Jimenez, Laureano; Boer, Dieter

    2009-01-01

    Many of the strategies devised so far to address the optimization of energy systems are deterministic approaches that rely on estimated data. However, in real world applications there are many sources of uncertainty that introduce variability into the decision-making problem. Within this general context, we propose a novel approach to address the design of absorption cooling systems under uncertainty in the energy cost. As opposed to other approaches that optimize the expected performance of the system as a single objective, in our method the design task is formulated as a stochastic bi-criteria non-linear optimization problem that simultaneously accounts for the minimization of the expected total cost and the financial risk associated with the investment. The latter criterion is measured by the downside risk, which avoids the need to define binary variables thus improving the computational performance of the model. The capabilities of the proposed modeling framework and solution strategy are illustrated in a case study problem that addresses the design of a typical absorption cooling system. Numerical results demonstrate that the method presented allows to manage the risk level effectively by varying the area of the heat exchangers of the absorption cycle. Specifically, our strategy allows identifying the optimal values of the operating and design variables of the cycle that make it less sensitive to fluctuations in the energy price, thus improving its robustness in the face of uncertainty.

  8. Heat transfer calculations on the KNK II emergency cooling system

    International Nuclear Information System (INIS)

    Vossebrecker, H.; Groenefeld, G.

    1976-12-01

    The Licensing Authority had demanded that in case of the change of the KNK thermal core into a fast core the decay heat removal system must be improved by a diverse and spatially separated emergency cooling system. In order to meet this requirement an existing nitrogen system of the facility is extended in such a manner that the decay heat will be removed by a nitrogen flow passing through the gap between reactor vessel and guard vessel. The heat transport from the core to the vessel is accomplished by natural convection flow rates which are generated by density differences between the hot core subassemblies, the reflector subassemblies and other passages between the upper and the lower plenum. The calculations show that the maximum temperatures in the core do not reach the sodium boiling-point. The maximum vessel temperature is 673 deg. C. In this report the function of the emergency cooling system and the methods of calculation are described, the input data and the results are stated and it is shown that the calculated temperatures are conservative [de

  9. Heating up the gas cooling market

    International Nuclear Information System (INIS)

    Watt, G.

    2001-01-01

    Gas cooling is an exciting technology with a potentially bright future. It comprises the production of cooling (and heating) in buildings and industry, by substituting environmentally-friendlier natural gas or LPG over predominantly coal-fired electricity in air conditioning equipment. There are currently four established technologies using gas to provide cooling energy or conditioned air. These are: absorption, both direct gas-fired and utilising hot water or steam; gas engine driven vapour compression (GED); cogeneration, with absorption cooling driven by recovered heat; and desiccant systems. The emergence of gas cooling technologies has been, and remains, one of evolution rather than revolution. However, further development of the technology has had a revolutionary effect on the performance, reliability and consumer acceptability of gas cooling products. Developments from world-renowned manufacturers such as York, Hitachi, Robur and Thermax have produced a range of absorption equipment variously offering: the use of 100 percent environmentally-friendly refrigerants, with zero global warming potential; the ideal utilisation of waste heat from cogeneration systems; a reduction in electrical distribution and stand-by generation capacity; long product life expectancy; far less noise and vibration; performance efficiency maintained down to about 20 percent of load capacity; and highly automated and low-cost maintenance. It is expected that hybrid systems, that is a mixture of gas and electric cooling technologies, will dominate the future market, reflecting the uncertainty in the electricity market and the prospects of stable future gas prices

  10. Cooling system with compressor bleed and ambient air for gas turbine engine

    Science.gov (United States)

    Marsh, Jan H.; Marra, John J.

    2017-11-21

    A cooling system for a turbine engine for directing cooling fluids from a compressor to a turbine blade cooling fluid supply and from an ambient air source to the turbine blade cooling fluid supply to supply cooling fluids to one or more airfoils of a rotor assembly is disclosed. The cooling system may include a compressor bleed conduit extending from a compressor to the turbine blade cooling fluid supply that provides cooling fluid to at least one turbine blade. The compressor bleed conduit may include an upstream section and a downstream section whereby the upstream section exhausts compressed bleed air through an outlet into the downstream section through which ambient air passes. The outlet of the upstream section may be generally aligned with a flow of ambient air flowing in the downstream section. As such, the compressed air increases the flow of ambient air to the turbine blade cooling fluid supply.

  11. Shock and vibration protection of submerged jet impingement cooling systems: Theory and experiment

    International Nuclear Information System (INIS)

    Haji Hosseinloo, Ashkan; Tan, Siow Pin; Yap, Fook Fah; Toh, Kok Chuan

    2014-01-01

    In the recent years, advances in high power density electronics and computing systems have pushed towards more advanced thermal management technologies and higher-capacity cooling systems. Among different types of cooling systems, jet impingement technology has gained attention and been widely used in different industries for its adaptability, cooling uniformity, large heat capacity, and ease of its localization. However, these cooling systems may not function properly in dynamically harsh environment inherent in many applications such as land, sea and air transportation. In this research article, a novel double-chamber jet impingement cooling system is fabricated and its performance is studied in harsh environment. Using the authors' previous studies, isolators with optimum properties are selected to ruggedize the chassis containing the cooling chamber against shock and random vibration. Experiments are conducted on both hard-mounted and isolated chassis and the cooling performance of the system is assessed using the inlet, and impingement surface temperatures of the cooling chamber. The experimental results show the isolation system prevents any failure that otherwise would occur, and also does not compromise the thermal performance of the system. - Highlights: • A novel double-chamber jet impingement cooling system was designed and fabricated. • Comprehensive set of random vibration and shock tests are conducted. • The isolation system proved to protect the cooling system properly against mechanical failure. • Cooling system performance was not significantly affected by the input random vibration and shock

  12. Emergency cooling method and system for gas-cooled nuclear reactors

    International Nuclear Information System (INIS)

    Kumpf, H.

    1982-01-01

    For emergency cooling of gas-cooled fast breeder reactors (GSB), which have a core consisting of a fission zone and a breeding zone, water is sprayed out of nozzles on to the core from above in the case of an incident. The water which is not treated with boron is taken out of a reservoir in the form of a storage tank in such a maximum quantity that the cooling water gathering in the space below the core rises at most up to the lower edge of the fission zone. (orig./GL) [de

  13. Performance analysis of solar air cooled double effect LiBr/H2O absorption cooling system in subtropical city

    International Nuclear Information System (INIS)

    Li, Zeyu; Ye, Xiangyang; Liu, Jinping

    2014-01-01

    Highlights: • The meteorological data during the working period of air conditioning was measured. • The suitable working range of collector temperature of system was gotten. • The characteristic of hourly and monthly total efficiency of system were obtained. • The yearly performance of system was calculated. - Abstract: Due to the absence of cooling tower and independent on water, the air cooled solar double effect LiBr/H 2 O absorption cooling system is more convenient to be used in commercial building and household use. The performance with collector temperature is an important field for such system. The paper mainly deals with the performance with collector temperature for the solar air cooled double effect LiBr/H 2 O absorption cooling system in subtropical city. The parameters of system are: aperture area of collector array is 27 m 2 , tilted angle of collector with respect to the horizontal plane is 20 toward to south evaporator temperature is 5 °C and the cooling capacity is 20 kW. The simulation is based on the meteorological data of monthly typical day which was summarized from a year round measured data. A corresponding parametric model was developed. The hourly and average performance with the collector temperature for monthly typical day was obtained and discussed. It was found that the suitable working range of inlet temperature of collector is 110–130 °C to improve performance and lower the risk of crystallization. The difference of hourly total efficiency in 9:00–16:00 is less, and the monthly total efficiency from May to October is approximate. The yearly performance of system including total efficiency, cooling capacity per area of collector and solar fraction was given. Furthermore, the effect of effectiveness of heat exchanger and pressure drop on total efficiency and solar fraction was studied and compared. The paper can serve as a preliminary investigation of solar air cooled double effect LiBr/H 2 O absorption cooling system in

  14. Performance of a compact solar absorption cooling system

    International Nuclear Information System (INIS)

    Mulyanef; Kamaruzzaman Sopian

    2006-01-01

    This paper describes the performance of a compact solar absorption system. Purpose of compact solar is collector, generator and condenser in one unit. At present, two types of absorption cooling systems are marketed: the lithium bromide-water system and the ammonia-water system. In the lithium bromide-water system, water vapor is the refrigerant and ammonia water system where ammonia is the refrigerant. In addition, the ammonia-water system requires higher generator temperature 120 o C to 150 o C than a flat-plate solar collector can provide without special techniques. The lithium bromide-water system operates satisfactorily at a generator temperature of 75 o C to 100 o C, achievable by a flat-plate collector. The lithium bromide-water system also has a higher COP than the ammonia-water system. The disadvantage of the lithium bromide-water systems is that the evaporators cannot operate at temperature below 0 o C since the refrigerant is water. The Coefficient of Performance (COP) system is 0.62 and the concentration of LiBr-H 2 O is 50%

  15. Feasibility study on novel hybrid ground coupled heat pump system with nocturnal cooling radiator for cooling load dominated buildings

    International Nuclear Information System (INIS)

    Man, Yi; Yang, Hongxing; Spitler, Jeffrey D.; Fang, Zhaohong

    2011-01-01

    Highlights: → Propose a novel HGCHP system with NCR works as supplemental heat rejecter. → Establish the analytical model and computer program of NCR and novel HGCHP system to simulate their operation performance. → Design the novel HGCHP system for a sample building located in Hong Kong. → It is found to be feasible to use NCR serves as supplemental heat rejecter of the novel HGCHP system. → The novel HGCHP system provides a new valuable choice for air conditioning in cooling load dominated buildings. -- Abstract: When the ground coupled heat pump (GCHP) system is utilized for air conditioning in cooling load dominated buildings, the heat rejected into ground will accumulate around the ground heat exchangers (GHE) and results in system performance degradation. A novel hybrid ground coupled heat pump (HGCHP) system with nocturnal cooling radiator (NCR) works as supplemental heat rejecter is proposed in this paper to resolve this problem. The practical analytical model of NCR and novel HGCHP system are established. The computer program based on established model is developed to simulate the system operation performance. The novel HGCHP system is designed and simulated for a sample building located in Hong Kong, and a simple life cycle cost comparisons are carried out between this system and conventional GCHP system. The results indicate that it is feasible to use NCR serves as supplemental heat rejecter of the novel HGCHP system for cooling load dominated buildings even those located in humid subtropical climate areas. This novel HGCHP system provides a new valuable choice for air conditioning in cooling load dominated buildings, and it is especially suitable for buildings with limited surface land areas.

  16. Aquatic insects dealing with dehydration: do desiccation resistance traits differ in species with contrasting habitat preferences?

    Directory of Open Access Journals (Sweden)

    Susana Pallarés

    2016-08-01

    Full Text Available Background Desiccation resistance shapes the distribution of terrestrial insects at multiple spatial scales. However, responses to drying stress have been poorly studied in aquatic groups, despite their potential role in constraining their distribution and diversification, particularly in arid and semi-arid regions. Methods We examined desiccation resistance in adults of four congeneric water beetle species (Enochrus, family Hydrophilidae with contrasting habitat specificity (lentic vs. lotic systems and different salinity optima from fresh- to hypersaline waters. We measured survival, recovery capacity and key traits related to desiccation resistance (fresh mass, % water content, % cuticle content and water loss rate under controlled exposure to desiccation, and explored their variability within and between species. Results Meso- and hypersaline species were more resistant to desiccation than freshwater and hyposaline ones, showing significantly lower water loss rates and higher water content. No clear patterns in desiccation resistance traits were observed between lotic and lentic species. Intraspecifically, water loss rate was positively related to specimens’ initial % water content, but not to fresh mass or % cuticle content, suggesting that the dynamic mechanism controlling water loss is mainly regulated by the amount of body water available. Discussion Our results support previous hypotheses suggesting that the evolution of desiccation resistance is associated with the colonization of saline habitats by aquatic beetles. The interespecific patterns observed in Enochrus also suggest that freshwater species may be more vulnerable than saline ones to drought intensification expected under climate change in semi-arid regions such as the Mediterranean Basin.

  17. Operation method and operation control device for emergency core cooling system

    Energy Technology Data Exchange (ETDEWEB)

    Kinoshita, Shoichiro; Takahashi, Toshiyuki; Fujii, Tadashi [Hitachi Ltd., Tokyo (Japan); Mizutani, Akira

    1996-05-07

    The present invention provides a method of reducing continuous load capacity of an emergency cooling system of a BWR type reactor and a device reducing a rated capacity of an emergency power source facility. Namely, the emergency core cooling system comprises a first cooling system having a plurality of power source systems based on a plurality of emergency power sources and a second cooling system having a remaining heat removing function. In this case, when the first cooling system is operated the manual starting under a predetermined condition that an external power source loss event should occur, a power source division different from the first cooling system shares the operation to operate the secondary cooling system simultaneously. Further, the first cooling system is constituted as a high pressure reactor core water injection system and the second cooling system is constituted as a remaining heat removing system. With such a constitution, a high pressure reactor core water injection system for manual starting and a remaining heat removing system of different power source division can be operated simultaneously before automatic operation of the emergency core cooling system upon loss of external power source of a nuclear power plant. (I.S.)

  18. Cooled electronic system with liquid-cooled cold plate and thermal spreader coupled to electronic component

    Science.gov (United States)

    Chainer, Timothy J.; Graybill, David P.; Iyengar, Madhusudan K.; Kamath, Vinod; Kochuparambil, Bejoy J.; Schmidt, Roger R.; Steinke, Mark E.

    2018-03-27

    Apparatus and method are provided for facilitating cooling of an electronic component. The apparatus includes a liquid-cooled cold plate and a thermal spreader associated with the cold plate. The cold plate includes multiple coolant-carrying channel sections extending within the cold plate, and a thermal conduction surface with a larger surface area than a surface area of the component to be cooled. The thermal spreader includes one or more heat pipes including multiple heat pipe sections. One or more heat pipe sections are partially aligned to a first region of the cold plate, that is, where aligned to the surface to be cooled, and partially aligned to a second region of the cold plate, which is outside the first region. The one or more heat pipes facilitate distribution of heat from the electronic component to coolant-carrying channel sections of the cold plate located in the second region of the cold plate.

  19. Fabricating cooled electronic system with liquid-cooled cold plate and thermal spreader

    Science.gov (United States)

    Chainer, Timothy J.; Graybill, David P.; Iyengar, Madhusudan K.; Kamath, Vinod; Kochuparambil, Bejoy J.; Schmidt, Roger R.; Steinke, Mark E.

    2018-03-27

    Methods are provided for facilitating cooling of an electronic component. The method includes providing a liquid-cooled cold plate and a thermal spreader associated with the cold plate. The cold plate includes multiple coolant-carrying channel sections extending within the cold plate, and a thermal conduction surface with a larger surface area than a surface area of the component to be cooled. The thermal spreader includes one or more heat pipes including multiple heat pipe sections. One or more heat pipe sections are partially aligned to a first region of the cold plate, that is, where aligned to the surface to be cooled, and partially aligned to a second region of the cold plate, which is outside the first region. The one or more heat pipes facilitate distribution of heat from the electronic component to coolant-carrying channel sections of the cold plate located in the second region of the cold plate.

  20. Fabricating cooled electronic system with liquid-cooled cold plate and thermal spreader

    Energy Technology Data Exchange (ETDEWEB)

    Chainer, Timothy J.; Graybill, David P.; Iyengar, Madhusudan K.; Kamath, Vinod; Kochuparambil, Bejoy J.; Schmidt, Roger R.; Steinke, Mark E.

    2018-04-03

    Methods are provided for facilitating cooling of an electronic component. The methods include providing a liquid-cooled cold plate and a thermal spreader associated with the cold plate. The cold plate includes multiple coolant-carrying channel sections extending within the cold plate, and a thermal conduction surface with a larger surface area than a surface area of the component to be cooled. The thermal spreader includes one or more heat pipes including multiple heat pipe sections. One or more heat pipe sections are partially aligned to a first region of the cold plate, that is, where aligned to the surface to be cooled, and partially aligned to a second region of the cold plate, which is outside the first region. The one or more heat pipes facilitate distribution of heat from the electronic component to coolant-carrying channel sections of the cold plate located in the second region of the cold plate.

  1. The optimal operation of cooling tower systems with variable-frequency control

    Science.gov (United States)

    Cao, Yong; Huang, Liqing; Cui, Zhiguo; Liu, Jing

    2018-02-01

    This study investigates the energy performance of chiller and cooling tower systems integrated with variable-frequency control for cooling tower fans and condenser water pumps. With regard to an example chiller system serving an office building, Chiller and cooling towers models were developed to assess how different variable-frequency control methods of cooling towers fans and condenser water pumps influence the trade-off between the chiller power, pump power and fan power under various operating conditions. The matching relationship between the cooling tower fans frequency and condenser water pumps frequency at optimal energy consumption of the system is introduced to achieve optimum system performance.

  2. Performance improvement of air-cooled refrigeration system by using evaporatively cooled air condenser

    Energy Technology Data Exchange (ETDEWEB)

    Hajidavalloo, E.; Eghtedari, H. [Mechanical Engineering Department, Shahid Chamran University, Golestan St., Ahvaz (Iran)

    2010-08-15

    Increasing the coefficient of performance of air conditioner with air-cooled condenser is a challenging problem especially in area with very hot weather conditions. Application of evaporatively cooled air condenser instead of air-cooled condenser is proposed in this paper as an efficient way to solve the problem. An evaporative cooler was built and coupled to the existing air-cooled condenser of a split-air-conditioner in order to measure its effect on the cycle performance under various ambient air temperatures up to 49 C. Experimental results show that application of evaporatively cooled air condenser has significant effect on the performance improvement of the cycle and the rate of improvement is increased as ambient air temperature increases. It is also found that by using evaporatively cooled air condenser in hot weather conditions, the power consumption can be reduced up to 20% and the coefficient of performance can be improved around 50%. More improvements can be expected if a more efficient evaporative cooler is used. (author)

  3. Detecting and mitigating aging in component cooling water systems

    International Nuclear Information System (INIS)

    Lofaro, R.J.

    1991-01-01

    The time-dependent effects of aging on component cooling water (CCW) systems in nuclear power plants has been studied and documented as part of a research program sponsored by the US Nuclear Regulatory Commission. It was found that age related degradation leads to failures in the CCW system which can result in an increase in system unavailability, if not properly detected and mitigated. To identify effective methods of managing this degradation, information on inspection, monitoring, and maintenance practices currently available was obtained from various operating plants and reviewed. The findings were correlated with the most common aging mechanisms and failure modes and a compilation of aging detection and mitigation practices was formulated. This paper discusses the results of this work

  4. Detecting and mitigating aging in component cooling water systems

    International Nuclear Information System (INIS)

    Lofaro, R.J.; Aggarwal, S.

    1992-01-01

    The time-dependent effects of aging on component cooling water (CCW) systems in nuclear power plants has been studied and documented as part of a research program sponsored by the US Nuclear Regulatory Commission. It was found that age related degradation leads to failures in the CCW system which can result in an increase in system unavailability, if not properly detected and mitigated. To identify effective methods of managing this degradation, information on inspection, monitoring, and maintenance practices currently available was obtained from various operating plants and reviewed. The findings were correlated with the most common aging mechanisms and failure modes, and a compilation of aging detection and mitigation practices was formulated. This paper discusses the results of this work

  5. Experimental study on mass transfer performances of cross flow dehumidifier using liquid desiccant

    International Nuclear Information System (INIS)

    Liu, X.H.; Zhang, Y.; Qu, K.Y.; Jiang, Y.

    2006-01-01

    The liquid desiccant air conditioning system is drawing more and more attention due to its advantages in energy saving and environmental friendliness. The dehumidifier is one of the essential parts of the system, which affects the whole system performance severely. This paper experimentally studies the performance of the cross flow dehumidifier, which has been less studied than the counter flow dehumidifier, although it is more applicable in practice. Celdek structured packings were used in the dehumidifier, and a LiBr aqueous solution was used as the liquid desiccant. The moisture removal rate and dehumidifier effectiveness were adopted as the dehumidifier performance indices. The effects of the dehumidifier inlet parameters, including air and desiccant flow rates, air inlet temperature and humidity ratio and desiccant inlet temperature and concentration, on the two indices were investigated. Correlations are proposed to predict the cross flow dehumidifier performance, which give results in good agreement with the present experimental findings

  6. Application of Hastelloy X in gas-cooled reactor systems

    International Nuclear Information System (INIS)

    Brinkman, C.R.; Rittenhouse, P.L.; Corwin, W.R.; Strizak, J.P.; Lystrup, A.; DiStefano, J.R.

    1976-10-01

    Hastelloy X, an Ni--Cr--Fe--Mo alloy, may be an important structural alloy for components of gas-cooled reactor systems. Expected applications of this alloy in the High-Temperature Gas-Cooled Reactor (HTGR) are discussed, and the development of interim mechanical properties and supporting data are reported. Properties of concern include tensile, creep, creep-rupture, fatigue, creep-fatigue interaction, subcritical crack growth, thermal stability, and the influence of helium environments with controlled amounts of impurities on these properties. In order to develop these properties in helium environments that are expected to be prototypic of HTGR operating conditions, it was necessary to construct special environmental test systems. Details of construction and operating parameters are described. Interim results from tests designed to determine the above properties are presented. To date a fairly extensive amount of information has been generated on this material at Oak Ridge National Laboratory and elsewhere concerning behavior in air, which is reviewed. However, only limited data are available from tests conducted in helium. Comparisons of the fatigue and subcritical growth behavior in air between Hastelloy X and a number of other structural alloys are given

  7. Polymeric Materials For Scale Inhibition In Cooling Water Systems

    Directory of Open Access Journals (Sweden)

    Najwa S.Majeed

    2013-04-01

    Full Text Available Calcium carbonate deposition is generally predominant in cooling water-circulating system. For the control of calcium carbonate scale formation two types of polymeric scale inhibitors were used Polyamino polyether methylene phosphonate  (PAPEMPand polyacrylaminde(PAA.Model of cooling tower system have been built up in laboratory scale. Experiments were carried out using different inhibitor concentrations(0.5,1,1.5,2,3ppm ,at water temperature of  40oC and flow rate of 150 l/hr. It was found that Polyamino polyether methylene phosphonate    more effective than polyacryle amide'  as scale inhibitor in all used concentrations and the best inhibition efficiency (95% was at (2.5ppm of Polyamino polyether methylene phosphonate  and (85% with poly acryle amide at concentrations of (3 ppm. The performance of the polymeric scale inhibitors was compared with a method used to control heavy calcium carbonate scale forming by the deposition of sufficiently thin protective calcium carbonate scale using sulfuric acid and depending on Ryznar stability index controlling method. 

  8. Development of CCD Imaging System Using Thermoelectric Cooling Method

    Directory of Open Access Journals (Sweden)

    Youngsik Park

    2000-06-01

    Full Text Available We developed low light CCD imaging system using thermoelectric cooling method collaboration with a company to design a commercial model. It consists of Kodak KAF-0401E (768x512 pixels CCD chip,thermoelectric module manufactured by Thermotek. This TEC system can reach an operative temperature of -25deg. We employed an Uniblitz VS25S shutter and it has capability a minimum exposure time 80ms. The system components are an interface card using a Korea Astronomy Observatory (hereafter KAO ISA bus controller, image acquisition with AD9816 chip, that is 12bit video processor. The performance test with this imaging system showed good operation within the initial specification of our design. It shows a dark current less than 0.4e-/pixel/sec at a temperature of -10deg, a linearity 99.9+/-0.1%, gain 4.24e-adu, and system noise is 25.3e- (rms. For low temperature CCD operation, we designed a TEC, which uses a one-stage peltier module and forced air heat exchanger. This TEC imaging system enables accurate photometry (+/-0.01mag even though the CCD is not at 'conventional' cryogenic temperatures (140K. The system can be a useful instrument for any other imaging applications. Finally, with this system, we obtained several images of astronomical objects for system performance tests.

  9. A cooling concept of spent fuels in lag storage system

    International Nuclear Information System (INIS)

    Park, Jeong-Hwa; Yoo, Jae-Hyung; Park, Hyun-Soo

    1991-01-01

    A cooling concept of spent fuels by natural convection of hot cell air in storage pits was developed. Each storage pit was considered to be located below the hot cell floor and to accommodate only one spent fuel assembly. The aim of this study is to apply an appropriate cooling system to the design of a hot cell where considerable heat-generating fuels are handled. In such operations as disassembling, rod consolidation and packaging of spent fuels, a number of assemblies are on stand-by in the cell before and/or after the operations. A lag storage system can be used for temporary storage of spent fuels in nuclear facilities. Since the air in contact with bare fuel assemblies is potentially contaminated, it must be exhausted through high-efficiency particulate air (HEPA) filters. If the storage pit is completely isolated from the hot cell space, then it will require another separate ventilation system by forced convection of air, which will result in additional cost for the construction. In this work, however, a cooling system was proposed where natural convection of hot cell air itself is achieved by thermo-syphon. The cold air from the hot cell is supplied to the inlet provided at the bottom of each pit through the gap between the concrete pit wall and the interior thermal shield. This thermal shield is needed to form flow channels for cold and heated air, and to prevent the concrete from over-heating. The heated air exhausts from the outlet located at the top of cell wall. No additional HEPA filters are needed in this system because the heated air is routed back to the hot cell due to buoyancy-induced flow. The technical feasibility of this concept was validated by thermal analyses. As the key design constraints are the surface temperature of fuel cladding and the concrete temperature of the storage pit, the thermal analyses were focused on these parameters whether they follow within allowable limits or not. (author)

  10. Justification of the evaluation indicators and the criteria of the technical systems of air cooling

    International Nuclear Information System (INIS)

    Saibov, A.A.

    2008-01-01

    This article is dedicated to then issues of optimal evaluation of the air cooling systems of diesel motors. The scholars are proposing the major lack of then diesel motors that are cooling with the air of their big size, the high level of the noise, their low thermal heat capacity of the cooling air and low effectiveness of cooling system. On the basis of the various analysis and discussions the author is looking at the reasons of these lack in not having the indicators that could be the actual and optimal systems of the cooling air criteria

  11. Cooling System for the Merit High-Power Target Experiment

    CERN Document Server

    Haug, F; Silva, P; Pezzeti, M; Pavlov, O; Pirotte, O; Metselaar, J; Efthymiopoulos, I; Fabich, A; Lettry, J; Kirk, H G; McDonald, K T; Titus, P; Bennett, J R J

    2010-01-01

    MERIT is a proof-of-principle experiment of a target station suitable as source for future muon colliders or neutrino factories. When installed at the CERN (European Organization for Nuclear Research) PS (Proton Synchrotron)complex fast-extracted high-intensity proton beams intercepted a free mercury jet inside a normal-conducting, pulsed 15-T capture solenoid magnet cooled with liquid nitrogen. Up to 25 MJ of Joule heat was dissipated in the magnet during a pulse. The fully automated, remotely controlled cryogenic system of novel design permitted the transfer of nitrogen by the sole means of differential pressures inside the vessels. This fast cycling system permitted several hundred tests in less than three weeks during the 2007 data taking campaign.

  12. Unravelling the core microbiome of biofilms in cooling tower systems.

    Science.gov (United States)

    Di Gregorio, L; Tandoi, V; Congestri, R; Rossetti, S; Di Pippo, F

    2017-11-01

    In this study, next generation sequencing and catalyzed reporter deposition fluorescence in situ hybridization, combined with confocal microscopy, were used to provide insights into the biodiversity and structure of biofilms collected from four full-scale European cooling systems. Water samples were also analyzed to evaluate the impact of suspended microbes on biofilm formation. A common core microbiome, containing members of the families Sphingomonadaceae, Comamonadaceae and Hyphomicrobiaceae, was found in all four biofilms, despite the water of each coming from different sources (river and groundwater). This suggests that selection of the pioneer community was influenced by abiotic factors (temperature, pH) and tolerances to biocides. Members of the Sphingomonadaceae were assumed to play a key role in initial biofilm formation. Subsequent biofilm development was driven primarily by light availability, since biofilms were dominated by phototrophs in the two studied 'open' systems. Their interactions with other microbial populations then shaped the structure of the mature biofilm communities analyzed.

  13. Thermoelectric generator cooling system and method of control

    Science.gov (United States)

    Prior, Gregory P; Meisner, Gregory P; Glassford, Daniel B

    2012-10-16

    An apparatus is provided that includes a thermoelectric generator and an exhaust gas system operatively connected to the thermoelectric generator to heat a portion of the thermoelectric generator with exhaust gas flow through the thermoelectric generator. A coolant system is operatively connected to the thermoelectric generator to cool another portion of the thermoelectric generator with coolant flow through the thermoelectric generator. At least one valve is controllable to cause the coolant flow through the thermoelectric generator in a direction that opposes a direction of the exhaust gas flow under a first set of operating conditions and to cause the coolant flow through the thermoelectric generator in the direction of exhaust gas flow under a second set of operating conditions.

  14. The SNS Resonance Control Cooling System Control Valve Upgrade Performance

    International Nuclear Information System (INIS)

    Williams, Derrick C.; Schubert, James Phillip; Tang, Johnny Y.

    2008-01-01

    The normal-conducting linac of the Spallation Neutron Source (SNS) uses 10 separate Resonance Control Cooling System (RCCS) water skids to control the resonance of 6 Drift Tube Linac (DTL) and 4 Coupled Cavity Linac (CCL) accelerating structures. The RCCS water skids use 2 control valves; one to regulate the chilled water flow and the other to bypass water to a chilled water heat exchanger. These valves have hydraulic actuators that provide position and feedback to the control system. Frequency oscillations occur using these hydraulic actuators due to their coarse movement and control of the valves. New pneumatic actuator and control positioners have been installed on the DTL3 RCCS water skid to give finer control and regulation of DTL3 cavity temperature. This paper shows a comparison of resonance control performance for the two valve configurations.

  15. Development of failure detection system for gas-cooled reactor

    International Nuclear Information System (INIS)

    Feirreira, M.P.

    1990-01-01

    This work presents several kinds of Failure Detection Systems for Fuel Elements, stressing their functional principles and major applications. A comparative study indicates that the method of electrostatic precipitation of the fission gases Kr and Xe is the most efficient for fuel failure detection in gas-cooled reactors. A detailed study of the physical phenomena involved in electrostatic precipitation led to the derivation of an equation for the measured counting rate. The emission of fission products from the fuel and the ion recombination inside the chamber are evaluated. A computer program, developed to simulate the complete operation of the system, relates the counting rate to the concentration of Kr and Xe isotopes. The project of a mock-up is then presented. Finally, the program calculations are compared to experimental data, available from the literature, yielding a close agreement. (author)

  16. 78 FR 64027 - Preoperational Testing of Emergency Core Cooling Systems for Pressurized-Water Reactors

    Science.gov (United States)

    2013-10-25

    ... comments were received. A companion guide, DG-1277, ``Initial Test Program of Emergency Core Cooling... NUCLEAR REGULATORY COMMISSION [NRC-2011-0129] Preoperational Testing of Emergency Core Cooling... (RG), 1.79, ``Preoperational Testing of Emergency Core Cooling Systems for Pressurized-Water Reactors...

  17. Optimal design of passive containment cooling system for innovative PWR

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Huiun; Lee, Sang Won; Kim, Hangon [Central Research Institute, Korea Hydro and Nuclear Power, Ltd., Daejeon (Korea, Republic of)

    2017-08-15

    Using the Generation of Thermal-Hydraulic Information for Containments (GOTHIC) code, thermal-hydraulic phenomena that occur inside the containment have been investigated, along with the preliminary design of the passive containment cooling system (PCCS) of an innovative pressurized water reactor (PWR). A GOTHIC containment model was constructed with reference to the design data of the Advanced Power Reactor 1400, and report related PCCS. The effects of the design parameters were evaluated for passive containment cooling tank (PCCT) geometry, PCCS heat exchanger (PCCX) location, and surface area. The analyzed results, obtained using the single PCCT, showed that repressurization and reheating phenomena had occurred. To resolve these problems, a coupled PCCT concept was suggested and was found to continually decrease the containment pressure and temperature without repressurization and reheating. If the installation level of the PCCX is higher than that of the PCCT, it may affect the PCCS performance. Additionally, it was confirmed that various means of increasing the external surface area of the PCCX, such as fins, could help improve the energy removal performance of the PCCS. To improve the PCCS design and investigate its performance, further studies are needed.

  18. Optimal design of passive containment cooling system for innovative PWR

    Directory of Open Access Journals (Sweden)

    Huiun Ha

    2017-08-01

    Full Text Available Using the Generation of Thermal-Hydraulic Information for Containments (GOTHIC code, thermal-hydraulic phenomena that occur inside the containment have been investigated, along with the preliminary design of the passive containment cooling system (PCCS of an innovative pressurized water reactor (PWR. A GOTHIC containment model was constructed with reference to the design data of the Advanced Power Reactor 1400, and report related PCCS. The effects of the design parameters were evaluated for passive containment cooling tank (PCCT geometry, PCCS heat exchanger (PCCX location, and surface area. The analyzed results, obtained using the single PCCT, showed that repressurization and reheating phenomena had occurred. To resolve these problems, a coupled PCCT concept was suggested and was found to continually decrease the containment pressure and temperature without repressurization and reheating. If the installation level of the PCCX is higher than that of the PCCT, it may affect the PCCS performance. Additionally, it was confirmed that various means of increasing the external surface area of the PCCX, such as fins, could help improve the energy removal performance of the PCCS. To improve the PCCS design and investigate its performance, further studies are needed.

  19. High perveance electron gun for the electron cooling system

    International Nuclear Information System (INIS)

    Korotaev, Yu.; Meshkov, I.; Petrov, A.; Sidorin, A.; Smirnov, A.; Syresin, E.; Titkova, I.

    2000-01-01

    The cooling time in the electron cooling system is inversely proportional to the beam current. To obtain high current of the electron beam the control electrode of the gun is provided with a positive potential and an electrostatic trap for secondary electrons appears inside the electron gun. This leads to a decrease in the gun perveance. To avoid this problem, the adiabatic high perveance electron gun with the clearing control electrode is designed in JINR (J. Bosser, Y. Korotaev, I. Meshkov, E. Syresin et al., Nucl. Instr. and Meth. A 391 (1996) 103. Yu. Korotaev, I. Meshkov, A. Sidorin, A. Smirnov, E. Syresin, The generation of electron beams with perveance of 3-6 μA/V 3/2 , Proceedings of SCHEF'99). The clearing control electrode has a transverse electric field, which clears secondary electrons. Computer simulations of the potential map were made with RELAX3D computer code (C.J. Kost, F.W. Jones, RELAX3D User's Guide and References Manual)

  20. Green roofs: roof system reducing heating and cooling costs

    Directory of Open Access Journals (Sweden)

    Konasova, Sarka

    2016-06-01

    Full Text Available Green roofs are among the passive building systems that contribute to the thermal stability of the rooms under the roof in both summer and winter. Green roofs can provide a significant contribution to the thermal balance of the protected space. Over the past ten years, many studies have been carried out to investigate the energy benefits of green roofs in terms of the energy performance of buildings. These studies show that the installation of vegetated cover can achieve energy savings for both winter heating and summer cooling. The green roof, as a thermal insulation, reduces the amount of building operating energy costs and reduces heat losses. This article summarizes current literature and points to situations in which green roofs can play an important role in saving energy for heating and cooling due to improved thermal insulating function of the roof, in case of extensive vegetation coverage without significant overloading of the roof structure and associated over-dimensioning. It is important to note that these energy savings always depend on the particular climate, the type of building and the availability and the type of roof structure.

  1. Optimal design of passive containment cooling system for innovative PWR

    International Nuclear Information System (INIS)

    Ha, Huiun; Lee, Sang Won; Kim, Hangon

    2017-01-01

    Using the Generation of Thermal-Hydraulic Information for Containments (GOTHIC) code, thermal-hydraulic phenomena that occur inside the containment have been investigated, along with the preliminary design of the passive containment cooling system (PCCS) of an innovative pressurized water reactor (PWR). A GOTHIC containment model was constructed with reference to the design data of the Advanced Power Reactor 1400, and report related PCCS. The effects of the design parameters were evaluated for passive containment cooling tank (PCCT) geometry, PCCS heat exchanger (PCCX) location, and surface area. The analyzed results, obtained using the single PCCT, showed that repressurization and reheating phenomena had occurred. To resolve these problems, a coupled PCCT concept was suggested and was found to continually decrease the containment pressure and temperature without repressurization and reheating. If the installation level of the PCCX is higher than that of the PCCT, it may affect the PCCS performance. Additionally, it was confirmed that various means of increasing the external surface area of the PCCX, such as fins, could help improve the energy removal performance of the PCCS. To improve the PCCS design and investigate its performance, further studies are needed

  2. Renewal of reactor cooling system of JMTR. Reactor building site

    International Nuclear Information System (INIS)

    Onoue, Ryuji; Kawamata, Takanori; Otsuka, Kaoru; Sekine, Katsunori; Koike, Sumio; Gorai, Shigeru; Nishiyama, Yutaka; Fukasaku, Akitomi

    2012-03-01

    The Japan Materials Testing Reactor (JMTR) is a light water moderated and cooled tank-type reactor, and its thermal power is 50 MW. The JMTR is categorized as high flux testing reactors in the world. The JMTR has been utilized for irradiation experiments of nuclear fuels and materials, as well as for radioisotope productions since the first criticality in March 1968 until August 2006. JAEA is decided to refurbish the JMTR as an important fundamental infrastructure to promote the nuclear research and development. And The JMTR refurbishment work is carried out for 4 years from 2007. Before refurbishment work, from August 2006 to March 2007, all concerned renewal facilities were selected from evaluation on their damage and wear in terms of aging. Facilities which replacement parts are no longer manufactured or not likely to be manufactured continuously in near future, are selected as renewal ones. Replace priority was decided with special attention to safety concerns. A monitoring of aging condition by the regular maintenance activity is an important factor in selection of continuous using after the restart. In this report, renewal of the cooling system within refurbishment facilities in the JMTR is summarized. (author)

  3. The cryogenic helium cooling system for the Tokamak physics experiment

    International Nuclear Information System (INIS)

    Felker, B.; Slack, D.S.; Wendland, C.R.

    1995-01-01

    The Tokamak Physics Experiment (TPX) will use supercritical helium to cool all the magnets and supply helium to the Vacuum cryopumping subsystem. The heat loads will come from the standard steady state conduction and thermal radiation sources and from the pulsed loads of the nuclear and eddy currents caused by the Central Solenoid Coils and the plasma positioning coils. The operations of the TPX will begin with pulses of up to 1000 seconds in duration every 75 minutes. The helium system utilizes a pulse load leveling scheme to buffer out the effects of the pulse load and maintain a constant cryogenic plant operation. The pulse load leveling scheme utilizes the thermal mass of liquid and gaseous helium stored in a remote dewar to absorb the pulses of the tokamak loads. The mass of the stored helium will buffer out the temperature pulses allowing 5 K helium to be delivered to the magnets throughout the length of the pulse. The temperature of the dewar will remain below 5 K with all the energy of the pulse absorbed. This paper will present the details of the heat load sources, of the pulse load leveling scheme operations, a partial helium schematic, dewar temperature as a function of time, the heat load sources as a function of time and the helium temperature as a function of length along the various components that will be cooled

  4. High perveance electron gun for the electron cooling system

    CERN Document Server

    Korotaev, Yu V; Petrov, A; Sidorin, A; Smirnov, A; Syresin, E M; Titkova, I

    2000-01-01

    The cooling time in the electron cooling system is inversely proportional to the beam current. To obtain high current of the electron beam the control electrode of the gun is provided with a positive potential and an electrostatic trap for secondary electrons appears inside the electron gun. This leads to a decrease in the gun perveance. To avoid this problem, the adiabatic high perveance electron gun with the clearing control electrode is designed in JINR (J. Bosser, Y. Korotaev, I. Meshkov, E. Syresin et al., Nucl. Instr. and Meth. A 391 (1996) 103. Yu. Korotaev, I. Meshkov, A. Sidorin, A. Smirnov, E. Syresin, The generation of electron beams with perveance of 3-6 mu A/V sup 3 sup / sup 2 , Proceedings of SCHEF'99). The clearing control electrode has a transverse electric field, which clears secondary electrons. Computer simulations of the potential map were made with RELAX3D computer code (C.J. Kost, F.W. Jones, RELAX3D User's Guide and References Manual).

  5. Solar thermally driven cooling systems: Some investigation results and perspectives

    International Nuclear Information System (INIS)

    Ajib, Salman; Günther, Wolfgang

    2013-01-01

    Highlights: ► Two types of solar thermally driven absorption refrigeration machines (ARMs) have been investigated. ► We investigated the influence of the operating conditions on the effectiveness of the ARMs. ► The influence of the flow rate of the work solution on the effectiveness of the ARMs has been tested. ► Two laboratory test plants have been built and tested under different operating conditions. - Abstract: A big increase in the number of solar thermal cooling installations and research efforts could be seen over the last years worldwide. Especially the producers of solar thermal collectors and systems have been looking for thermal chillers in the small capacity range to provide air conditioning for one or two family houses. Furthermore, many developments aim to increase the efficiency of the system and to decrease the specific costs of the produced refrigeration capacity. The growth in the use of solar thermal cooling systems amounted about 860% from 52 units in 2004 to 450 units in 2009 [1]. This tendency is expected to be continuously in the next years. The practical examinations on solar thermally driven absorption machines with refrigeration capacity of 15, 10 and 5 kW have shown that this technology has a good chance to be standardized and to replace partly the conventional one. These systems can save more primary energy at high fraction of solar thermally driving by suitable control and regulation of the system. The investing costs still higher as the conventional one, however, the operating costs are less than the conventional one. The Coefficient of Performance (COP) depends on the kind of the system, work temperatures and conditions as well as the refrigeration capacity of the systems. It lies between 0.4 and 1.2. In the framework of the research on this field, we built, tested and measured two prototypes. After measuring the first prototype, the chillers were redesigned to reduce internal heat losses and make the heat and mass transfer

  6. Material System Engineering for Advanced Electrocaloric Cooling Technology

    Science.gov (United States)

    Qian, Xiaoshi

    Electrocaloric effect refers to the entropy change and/or temperature change in dielectrics caused by the electric field induced polarization change. Recent discovery of giant ECE provides an opportunity to realize highly efficient cooling devices for a broad range of applications ranging from household appliances to industrial applications, from large-scale building thermal management to micro-scale cooling devices. The advances of electrocaloric (EC) based cooling device prototypes suggest that highly efficient cooling devices with compact size are achievable, which could lead to revolution in next generation refrigeration technology. This dissertation focuses on both EC based materials and cooling devices with their recent advances that address practical issues. Based on better understandings in designing an EC device, several EC material systems are studied and improved to promote the performances of EC based cooling devices. In principle, applying an electric field to a dielectric would cause change of dipolar ordering states and thus a change of dipolar entropy. Giant ECE observed in ferroelectrics near ferroelectric-paraelectric (FE-PE) transition temperature is owing to the large dipolar orientation change, between random-oriented dipolar states in paraelectric phase and spontaneous-ordered dipolar states in ferroelectric phases, which is induced by external electric fields. Besides pursuing large ECE, studies on EC cooling devices indicated that EC materials are required to possess wide operational temperature window, in which large ECE can be maintained for efficient operations. Although giant ECE was first predicted in ferroelectric polymers, where the large effect exhibits near FEPE phase transition, the narrow operation temperature window poses obstacles for these normal ferroelectrics to be conveniently perform in wide range of applications. In this dissertation, we demonstrated that the normal ferroelectric polymers can be converted to relaxor

  7. Analysis of the evaporative towers cooling system of a coal-fired power plant

    Directory of Open Access Journals (Sweden)

    Laković Mirjana S.

    2012-01-01

    Full Text Available The paper presents a theoretical analysis of the cooling system of a 110 MW coal-fired power plant located in central Serbia, where eight evaporative towers cool down the plant. An updated research on the evaporative tower cooling system has been carried out to show the theoretical analysis of the tower heat and mass balance, taking into account the sensible and latent heat exchanged during the processes which occur inside these towers. Power plants which are using wet cooling towers for cooling condenser cooling water have higher design temperature of cooling water, thus the designed condensing pressure is higher compared to plants with a once-through cooling system. Daily and seasonal changes further deteriorate energy efficiency of these plants, so it can be concluded that these plants have up to 5% less efficiency compared to systems with once-through cooling. The whole analysis permitted to evaluate the optimal conditions, as far as the operation of the towers is concerned, and to suggest an improvement of the plant. Since plant energy efficiency improvement has become a quite common issue today, the evaluation of the cooling system operation was conducted under the hypothesis of an increase in the plant overall energy efficiency due to low cost improvement in cooling tower system.

  8. Effect of façade systems on the performance of cooling ceilings: In situ measurements

    Directory of Open Access Journals (Sweden)

    Katharina Eder

    2015-03-01

    Full Text Available This article presents an innovative façade system designed to increase the thermal comfort inside an office room and to enhance the cooling capacity of the suspended cooling ceiling. A series of measurements is conducted in an existing office building with different façade systems (i.e., a combination of glazing and shading. An innovative façade system is developed based on this intensive set of measurements. The new system enhances the thermal comfort and cooling capacity of the suspended cooling ceiling. The main usage of the new system is the refurbishment and improvement of existing façade systems.

  9. Energetic and economic evaluation of solar thermal and photovoltaic cooling system in Cuban hotel

    International Nuclear Information System (INIS)

    Díaz Torres, Yamile; Valdivia Nodal, Yarelis; Castellanos Molina, Luis Miguel; Torres del Toro, Migdalia; Monteagudo Llanes, José

    2015-01-01

    The present paper discusses the energetic and economic feasibility of using two configurations of solar cooling in a Cuban Hotel. The air conditioning hybrid system schemes are: conventional system (Chiller) interconnected in parallel with a solar- powered absorption cooling system (SACS); and a photovoltaic cooling system (PCS). There were analyzed by methodologies and thermodynamic principles governing these technologies. The results show that their uses are alternatives for reducing energy consumption and environmental impact. (full text)

  10. Experimental Analysis of Variable Capacity Heat Pump Systems equipped with a liquid-cooled frequency inverter

    OpenAIRE

    Ebraheem, Thair

    2013-01-01

    Using an inverter-driven compressor in variable capacity heat pump systems has a main drawback, which is the extra loss in the inverter. The present experimental study aims to recover the inverter losses by using brine-cooled and water-cooled inverters, thereby improving the total efficiency of the heat pump system. In order to achieve this goal, a test rig with the air-cooled, water-cooled and brine-cooled inverters is designed and built, and a comparative analysis of the recovered heat, inv...

  11. Feasibility test of the concept of long-term passive cooling system of emergency cooldown tank

    International Nuclear Information System (INIS)

    Kim, Myoung Jun; Moon, Joo Hyung; Bae, Youngmin; Kim, Young In; Lee, Hee Joon

    2015-01-01

    Highlights: • The concept of long-term passive cooling system of emergency cooldown tank (ECT). • Existing natural circulation of steam from ECT and measurement of its condensing flow. • Evaluation of cooling capacity and heat transfer of air-cooled condensing heat exchanger. - Abstract: When a passive cooling system is activated in the accident of a nuclear reactor, the water in the emergency cooldown tank of that system will eventually be fully depleted by evaporation. If, however, the evaporating water could be returned to the tank through an air-cooled condensing heat exchanger mounted on top of the tank, the passive cooling system could provide cooling for an extended period. This feasibility of new concept of long-term passive cooling with an emergency cooldown tank was tested by performing an energy balance test with a scaled-down experimental setup. As a result, it was determined that a naturally circulating steam flow can be used to refill the tank. For an air-cooled heat exchanger, the cooling capacity and air-side natural convective heat transfer coefficient were obtained to be 37% of the heat load and between 9 and 10.2 W/m 2 /K depending on the heat load, respectively. Moreover, it was clearly verified that the water level in the emergency cooldown tank could be maintained over the long-term operation of the passive cooling system

  12. Impact of the use of a hybrid turbine inlet air cooling system in arid climates

    International Nuclear Information System (INIS)

    Al-Ansary, Hany A.; Orfi, Jamel A.; Ali, Mohamed E.

    2013-01-01

    Graphical abstract: Cooling the air entering the compressor section of a gas turbine is a proven method of increasing turbine power output, especially during peak summer demand, and it is increasingly being used in powerplants worldwide. Two turbine inlet air cooling (TIAC) systems are widely used: evaporative cooling and mechanical chilling. In this work, the prospects of using a hybrid turbine inlet air cooling (TIAC) system are investigated. The hybrid system consists of mechanical chilling followed by evaporative cooling. Such a system is capable of achieving a significant reduction in inlet air temperature that satisfies desired power output levels, while consuming less power than conventional mechanical chilling and less water than conventional evaporative cooling, thus combining the benefits of both approaches. Two hybrid system configurations are studied. In the first configuration, the first stage of the system uses water-cooled chillers that are coupled with dry coolers such that the condenser cooling water remains in a closed loop. In the second configuration, the first stage of the system uses water-cooled chillers but with conventional cooling towers. An assessment of the performance and economics of those two configurations is made by comparing them to conventional mechanical chilling and using realistic data. It was found that the TIAC systems are capable of boosting the power output of the gas turbine by 10% or more (of the power output of the ISO conditions). The cost operation analysis shows clearly the hybrid TIAC method with wet cooling has the advantage over the other methods and It would be profitable to install it in the new gas turbine power plants. The figure below shows a comparison of the water consumption for the three different cases. - Highlights: • New hybrid system for the turbine inlet air cooling is studied. • Hybrid system of mechanical chilling followed by evaporative cooling is used. • Hybrid turbine inlet air cooling

  13. System technology improves the chances of solar cooling

    International Nuclear Information System (INIS)

    Schmid, W.

    2008-01-01

    This article takes a look at the increasing range of products on offer in the solar cooling area. Such an increase applies in particular to products in the low and medium power ranges under 30 kilowatts. Several hindrances to the expansion of the solar air-conditioning (SAC) market are named, both in the technological as well as in the operational area. The author states that a considerable amount of optimisation work is still to be done. Market offerings using absorption and adsorption techniques are examined, as are silica gel-based systems. Companies in the German-speaking parts of Europe active in the area are listed and their work is reviewed. The opinions of various experts that were presented at a congress on the subject are noted. Planning tools made available by the International Energy Agency's Task 38 'Solar air-conditioning and refrigeration' are mentioned.

  14. RF System for the MICE Demonstration of Ionisation Cooling

    Energy Technology Data Exchange (ETDEWEB)

    Ronald, K.; et al.

    2017-04-01

    Muon accelerators offer an attractive option for a range of future particle physics experiments. They can enable high energy (TeV+) high energy lepton colliders whilst mitigating the difficulty of synchrotron losses, and can provide intense beams of neutrinos for fundamental physics experiments investigating the physics of flavor. The method of production of muon beams results in high beam emittance which must be reduced for efficient acceleration. Conventional emittance control schemes take too long, given the very short (2.2 microsecond) rest lifetime of the muon. Ionisation cooling offers a much faster approach to reducing particle emittance, and the international MICE collaboration aims to demonstrate this technique for the first time. This paper will present the MICE RF system and its role in the context of the overall experiment.

  15. Impact of cooling systems on Lake Michigan fishes

    International Nuclear Information System (INIS)

    Spigarelli, S.A.; Romberg, G.P.

    1976-01-01

    A comparison of data on fish mortalities due to impingement at thermal power plant water intakes on Lake Michigan with available estimates of standing crop biomass, commercial and sport fishery catches, and estimated predation mortality is presented. The striking features of these data are the proportions of total mortality due to predation and the lack of accurate basic population statistics such as standing crop biomass and natural mortality for important forage and human food fishes in Lake Michigan. Although this preliminary assessment would indicate that power plant and total impingement losses constitute an insignificant fraction of total forage biomass, the potentially unstable forage-predator ratios and the apparent high degree of annual fluctuations (year-classes) in alewife, smelt, and perch indicate the need for a more detailed assessment of cooling-system related impact on selected populations

  16. Performance assesment of solar heating and cooling systems

    Energy Technology Data Exchange (ETDEWEB)

    Shesho, Igor; Armenski, Slave [Faculty of Mechanical Engineering, ' Ss. Cyril and Methodius' University, Skopje (Macedonia, The Former Yugoslav Republic of); others, and

    2014-07-01

    Thermal performance of the solar thermal systems are estimated using numerical methods and software since the solar processes are transitient in nature been driven by time dependent forcing functions and loads. The system components are defined with mathematical relationships that describe how components function. They are based on the first principles (energy balances, mass balances, rate equations and equilibrium relationships) at one extreme or empirical curve fits to operating data from specific machines such as absorption chillers. The component models are programed, i.e. they represent written subroutines which are simultaneously solved with the executive program. In this paper for executive program is chosen TRNSYS containing library with solar thermal system component models. Validation of the TRNSYS components models is performed, i.e. the simulation results are compared with experimental measurements. Analysis is performed for solar assisted cooling system in order to determine the solar fractions and efficiencies for different collector types, areas and storage tanks. Specific indicators are derived in order to facilitate the techno-economic analysis and design of solar air-conditioning systems. (Author)

  17. Ground Source Geothermal District Heating and Cooling System

    Energy Technology Data Exchange (ETDEWEB)

    Lowe, James William [Ball State Univ., Muncie, IN (United States)

    2016-10-21

    Ball State University converted its campus from a coal-fired steam boiler district heating system to a ground source heat pump geothermal district system that produces simultaneously hot water for heating and chilled water for cooling. This system will include the installation of 3,600 four hundred feet deep vertical closed loop boreholes making it the largest ground source geothermal district system in the country. The boreholes will act as heat exchangers and transfer heat by virtue of the earth’s ability to maintain an average temperature of 55 degree Fahrenheit. With growing international concern for global warming and the need to reduce worldwide carbon dioxide loading of the atmosphere geothermal is poised to provide the means to help reduce carbon dioxide emissions. The shift from burning coal to utilizing ground source geothermal will increase electrical consumption but an overall decrease in energy use and reduction in carbon dioxide output will be achieved. This achievement is a result of coupling the ground source geothermal boreholes with large heat pump chiller technology. The system provides the thermodynamic means to move large amounts of energy with limited energy input. Ball State University: http://cms.bsu.edu/About/Geothermal.aspx

  18. SWR 1000 related containment cooling system tests in PANDA

    International Nuclear Information System (INIS)

    Dreier, J.; Aubert, C.; Huggenberger, M.; Strassberger, H.J.; Yadigaroglu, G.

    2000-01-01

    Since 1991 the Paul Scherrer Institute has participated in the investigations of several of the new passive Advanced Light Water Reactor designs proposed world-wide. The current phase of the project, ALPHA-II, is focused on both the boiling water and the pressurized water reactor passive designs and consists of three projects under the sponsorship of the European Commission. The paper describes the performed PANDA transient system tests related to one of these projects, called 'BWR R and D Cluster for Innovative Passive Safety Systems (IPSS)', and details the PSI contribution to the experimental investigation of passive containment cooling by a Building Condenser system which is part of the advanced Boiling Water Reactor SWR 1000 designed by Siemens. First, a short description of the relevant systems of the SWR 1000 design and its simulation in the PANDA facility are presented. After the description of the experimental programme for the large-scale integral system test investigations in the PANDA facility, the main results of the performed tests are also given. Finally, the main conclusions, based on the to date available experimental results and their analysis, are summarised. (author)

  19. Experimental and Numerical Investigations of Soil Desiccation for Vadose Zone Remediation: Report for Fiscal Year 2007

    Energy Technology Data Exchange (ETDEWEB)

    Ward, Andy L.; Oostrom, Mart; Bacon, Diana H.

    2008-02-04

    Apart from source excavation, the options available for the remediation of vadose zone metal and radionuclide contaminants beyond the practical excavation depth (0 to 15 m) are quite limited. Of the available technologies, very few are applicable to the deep vadose zone with the top-ranked candidate being soil desiccation. An expert panel review of the work on infiltration control and supplemental technologies identified a number of knowledge gaps that would need to be overcome before soil desiccation could be deployed. The report documents some of the research conducted in the last year to fill these knowledge gaps. This work included 1) performing intermediate-scale laboratory flow cell experiments to demonstrate the desiccation process, 2) implementing a scalable version of Subsurface Transport Over Multiple Phases–Water-Air-Energy (STOMP-WAE), and 3) performing numerical experiments to identify the factors controlling the performance of a desiccation system.

  20. Thermoeconomic optimization of Solar Heating and Cooling systems

    International Nuclear Information System (INIS)

    Calise, F.; D'Accadia, M. Dentice; Vanoli, L.

    2011-01-01

    In the paper, the optimal thermoeconomic configuration of Solar Heating and Cooling systems (SHC) is investigated. In particular, a case study is presented, referred to an office building located in Naples (south Italy); for such building, three different SHC configurations were analyzed: the first one is based on the coupling of evacuated solar collectors with a single-stage LiBr-H 2 O absorption chiller equipped with a water-to-water electrical heat pump, to be used in case of insufficient solar radiation; in the second case, a similar layout is considered, but the capacities of the absorption chiller and the solar field are smaller, since they are requested to balance just a fraction of the total cooling load of the building selected for the case study; finally, in the third case, the electric heat pump is replaced by an auxiliary gas-fired heater. A zero-dimensional transient simulation model, developed in TRNSYS, was used to analyze each layout from both thermodynamic and economic points of view. In particular, a cost model was developed in order to assess the owning and operating costs for each plant layout. Furthermore, a mixed heuristic-deterministic optimization algorithm was implemented in order to determine the set of the synthesis/design variables able to maximize the overall thermo-economic performance of the systems under analysis. For this purpose, two different objective functions were selected: the Pay-Back Period and the overall annual cost. Possible public funding, in terms of Capital Cost Contributions and/or feed-in tariff, were also considered. The results are presented on monthly and weekly basis, paying special attention to the energy and monetary flows in the optimal configurations. In particular, the thermoeconomic analysis and optimization showed that a good funding policy for the promotion of such technologies should combine a feed-in tariff with a slight Capital Cost Contribution, allowing to achieve satisfactory Pay-Back Periods.

  1. Materials for innovative lead alloy cooled nuclear systems: Overview

    International Nuclear Information System (INIS)

    Mueller, Georg; Weisenburger, Alfons; Fetzer, Renate; Heinzel, Annette; Jianu, Adrian

    2015-01-01

    One of the most challenging issues for all future innovative nuclear systems including Gen IV reactors are materials. The selection of the structural materials determines the design which has to consider the properties and the availability of the materials. Beside general requirements for material properties that are common for all fast reactor types specific issues arise from coolant compatibility. The high solubility of steel alloying elements in liquid Pb-alloys at reactor relevant temperatures is clearly detrimental. Therefore, all steels that are considered as structural materials have to be protected by dissolution barriers. The most common barriers for steels under consideration are oxide scales that form in situ during operation. However, increasing the temperature above 500 deg. C will result either in dissolution attack or in enhanced oxidation. For higher temperatures additional barriers like alumina forming surface alloys are discussed and investigated. Mechanical loads like creep stress and fretting will act on the steels. These mechanical loads will interact with the coolant and can increase the negative effects. For a LFR (Lead Fast Reactor) Demonstrator and MYHRRA (ADS) austenitic steels (316L) are selected for most in core components. The 15-15Ti is the choice for the fuel cladding of MYHRRA and a Pb cooled demonstrator. For an industrial LFR (Lead Fast Reactor) the ferritic martensitic steel T91 was selected as fuel clad material due to its improved irradiation resistance. T91 is in both designs the material to be used for the heat exchanger. Surface alloying with alumina forming alloys is considered to assure material functionality at higher temperatures and is therefore selected for fuel cladding of the ELFR and the heat exchanger tubes. This presentation will give an overview on the selected materials for innovative Pb alloy cooled nuclear systems considering, beside pure compatibility, the influence of mechanical interaction like creep and

  2. Heat removal performance of auxiliary cooling system for the high temperature engineering test reactor during scrams

    International Nuclear Information System (INIS)

    Takeda, Takeshi; Tachibana, Yukio; Iyoku, Tatsuo; Takenaka, Satsuki

    2003-01-01

    The auxiliary cooling system of the high temperature engineering test reactor (HTTR) is employed for heat removal as an engineered safety feature when the reactor scrams in an accident when forced circulation can cool the core. The HTTR is the first high temperature gas-cooled reactor in Japan with reactor outlet gas temperature of 950 degree sign C and thermal power of 30 MW. The auxiliary cooling system should cool the core continuously avoiding excessive cold shock to core graphite components and water boiling of itself. Simulation tests on manual trip from 9 MW operation and on loss of off-site electric power from 15 MW operation were carried out in the rise-to-power test up to 20 MW of the HTTR. Heat removal characteristics of the auxiliary cooling system were examined by the tests. Empirical correlations of overall heat transfer coefficients were acquired for a helium/water heat exchanger and air cooler for the auxiliary cooling system. Temperatures of fluids in the auxiliary cooling system were predicted on a scram event from 30 MW operation at 950 degree sign C of the reactor outlet coolant temperature. Under the predicted helium condition of the auxiliary cooling system, integrity of fuel blocks among the core graphite components was investigated by stress analysis. Evaluation results showed that overcooling to the core graphite components and boiling of water in the auxiliary cooling system should be prevented where open area condition of louvers in the air cooler is the full open

  3. Solar heating cooling. Preparation of possible participation in IEA, Solar Heating Cooling Task 25

    International Nuclear Information System (INIS)

    2001-03-01

    For the Danish solar heating industries it is interesting to discuss the domestic market possibilities and the export possibilities for solar heating cooling systems. The Danish solar heating sector also wants to participate in the international collaboration within IEA Solar Heating and Cooling Task 25 'Solar Assisted Air Conditioning of Buildings'. The Danish Energy Agency therefore has granted means for this project to discuss: The price of cooling for 3 different solar cooling methods (absorption cooling, desiccant cooling and ejector cooling); Market possibilities in Denmark and abroad; The advantages by Danish participation in IEA Task 25. The task has been solved through literature studies to establish status for the 3 technologies. It turned out that ejector cooling by low temperatures (85 deg. C from the solar collector) exists as pilot plants in relation to district heating, but is still not commercial accessible. Desiccant cooling, where the supplied heat has temperatures down to 55 deg. C is a well-developed technology. However only a handful of pilot plants with solar heating exists, and thus optimization relating to operation strategy and economy is on the experimental stage. Absorption cooling plants driven by solar heating are found in a large number in Japan and are also demonstrated in several other countries. The combination of absorption heating pump and solar heating is considered to be commercial accessible. Solar heating is interesting as heat source of to the extent that it can replace other sources of heat without the economy being depreciated. This can be the case in South Europe if: 1) oil or natural gas is used for heating; 2) a solar heating system already exists, e.g. for domestic water supply, and is installed so that the marginal costs by solar heating supply of the ventilation plant is reduced. All in all the above conditions mean that the market for solar heating for cooling is very limited in Europe, where almost everybody are

  4. Thermal analysis of the conduction cooling system for HTS SMES system of 600 kJ class

    International Nuclear Information System (INIS)

    Hong, Yong Ju; Yeom, Han Kil; Park, Seong Je; Kim, Hyo Bong; Koh, Deuk Yong

    2007-01-01

    SMES systems need cryogenic cooling systems. Conduction cooling system has more effective, compact structure than cryogen. In general, 2 stage GM cryocoolers are used for conduction cooling of HTS SMES system. 1st stages of cryocoolers are used for the cooling of current leads and radiation shields, and 2nd stages of cryocoolers for HTS coil. For the effective conduction cooling of the HTS SMES system, the temperature difference between the cryocooler and HTS coil should be minimized. In this paper, a cryogenic conduction cooling system for HTS SMES is analyzed to evaluate the performance of the cooling system. The analysis is carried out for the steady state with the heat generation of the HTS coil and effects of the thermal contact resistance. The results show the effects of the heat generation and thermal contact resistance on the temperature distribution

  5. Clay with Desiccation Cracks is an Advection Dominated Environment

    Science.gov (United States)

    Baram, S.; Kurtzman, D.; Sher, Y.; Ronen, Z.; Dahan, O.

    2012-04-01

    Heavy clay sediments are regarded "safe" from the hydrological point of view due to their low hydraulic conductivities. However, the formation of desiccation cracks in dispersive clays may dramatically change their bulk hydraulic properties. The impact of desiccation cracks on water percolation, dissolved salts and contaminants transport and redox related reactions (microbial ammonium oxidation and denitrification) were investigated in 6 -12 m clay layer near a diary farm waste lagoon. The study implemented unique vadose-zone monitoring systems that enable in-situ measurements of the temporal variation of the sediment's water content along with frequent sampling of the sediment's pore water along the entire vadose zone (> 30 m). Results from four years of continuous measurements showed quick rises in sediment water content following rain events and temporal wastewater overflows. The percolation pattern indicated dominance of preferential flow through a desiccation-cracks network crossing the entire clay sediment layer. High water-propagation velocities (0.4 - 23.6 m h-1) were observed, indicating that the desiccation-crack network remains open and serves as a preferential flow pathway year-round, even at high sediment water content (~0.50 m3 m-3). The rapid percolation bypassed the most bio-geo-active parts of the soil, transporting even highly sorptive contaminants (testosterone and estrogen) in to the deep sections of the vadose zone, accelerating the underlying groundwater contamination. The ammonium and nitrate concentrations in the vadose zone and the high number of nitrifying and denitrifying bacteria (~108 gene copies gdry-sediemt-1, each) found in the sediment indicated that the entire vadose zone is aerated even at high water content conditions (~0.55 m3 m-3). The dissolved salts concentration in the pore-water and the δ2H-H2O and δ18O-H2O values of the pore-water substantially increased with depth (becoming less depleted) in the clay sediment

  6. Spent fuel pool cooling system upgrade for Kori Unit 1

    International Nuclear Information System (INIS)

    Sun Park, Jong; In Shin, Kyung

    2014-01-01

    Following Fukushima nuclear power plant accident, the needs for reliable performance of its own safety functions of Spent Fuel Pool Cooling System (SFPCS) has risen significantly to maintain the plant in a safe condition. Regulatory Guide 1.13 of United States Nuclear Regulatory Commission (USNRC) requires the SFPCS shall be designed safety related as Quality Group C and Seismic Category 1. However, the existing Spent Fuel Pool (SFP) of KORI Unit 1 was not designed as a safety system. In order to comply with the above licensing requirement for the extended operational life of KORI Unit 1, it has been decided to add a safety related Seismic Category 1 Makeup System to KORI Unit 1 and the existing SFPCS to be modified in dedicated channels with safety related equipment to enhance system's reliability as a means of providing diversity. This paper focuses on describing the relevant design requirements, applications, and supplemental facilities to the SFPCS of KORI Unit 1. (authors)

  7. Overpower transient in the first wall cooling system of NET/ITER

    International Nuclear Information System (INIS)

    Komen, E.M.J.; Koning, H.

    1993-09-01

    The overpower transient from a plasma power excursion. The overpower transient considered in this report results from a postulated linear increase of the plasma power from the nominal generated power to four times this nominal power in 30 s. The Next European Torus (NET) design or the International Thermonuclear Experimental Reactor (ITER) design will be cooled by a number of separate cooling systems. The most important cooling systems are: The first wall cooling system, the blanket cooling system, the divertor cooling system, and the shield cooling system. In this report, the thermal-hydraulic analysis of the above-mentioned overpower transient will be presented for the first wall cooling system of NET/ITER. During overpower transients, the fusion power will increase to less than four times the nominal power. For this reason, the overpower transient considered in this report is the worst case scenario. The analysis of the thermal-hydraulic system behaviour during the considered overpower transient has been performed for a coolant temperature of 333 K (60 C) in the first wall inlet manifolds and 433 K (160 C) in the first wall outlet manifolds. The analysis has been performed using the thermal-hydraulic system analysis code RELAP5/MOD3. In the analysis, special attention has been paid to the transient thermal-hydraulic behaviour of the cooling system and the temperature development in the first wall. (orig.)

  8. Preliminary design of the cooling system for a gas-cooled, high-fluence fast pulsed reactor (HFFPR)

    International Nuclear Information System (INIS)

    Monteith, H.C.

    1978-10-01

    The High-Fluence Fast Pulsed Reactor (HFFPR) is a research reactor concept currently being evaluated as a source for weapon effects experimentation and advanced reactor safety experiments. One of the designs under consideration is a gas-cooled design for testing large-scale weapon hardware or large bundles of full-length, fast reactor fuel pins. This report describes a conceptual cooling system design for such a reactor. The primary coolant would be helium and the secondary coolant would be water. The size of the helium-to-water heat exchanger and the water-to-water heat exchanger will be on the order of 0.9 metre (3 feet) in diameter and 3 metres (10 feet) in length. Analysis indicates that the entire cooling system will easily fit into the existing Sandia Engineering Reactor Facility (SERF) building. The alloy Incoloy 800H appears to be the best candidate for the tube material in the helium-to-water heat exchanger. Type 316 stainless steel has been recommended for the shell of this heat exchanger. Estimates place the cost of the helium-to-water heat exchanger at approximately $100,000, the water-to-water heat exchanger at approximately $25,000, and the helium pump at approximately $450,000. The overall cost of the cooling system will approach $2 million

  9. Radiant floor cooling coupled with dehumidification systems in residential buildings: A simulation-based analysis

    International Nuclear Information System (INIS)

    Zarrella, Angelo; De Carli, Michele; Peretti, Clara

    2014-01-01

    Highlights: • The floor radiant cooling in a typical apartment is analyzed. • Dehumidification devices, fan-coil and mechanical ventilation are compared. • The results are analyzed in terms of both thermal comfort and energy consumption. • The energy consumption of the dehumidifiers is higher than that of other systems. • The mechanical ventilation decreases the moisture level better than other systems. - Abstract: The development of radiant cooling has stimulated an interest in new systems based on coupling ventilation with radiant cooling. However, radiant cooling systems may cause condensation to form on an active surface under warm and humid conditions during the cooling season. This phenomenon occurs when surface temperature falls below dew point. To prevent condensation, air humidity needs to be reduced with a dehumidification device or a mechanical ventilation system. There are two main options to achieve this. The first is to use dehumidification devices that reduce humidity, but are not coupled with ventilation, i.e. devices that handle room air and leave air change to infiltrations. The second is to combine a mechanical ventilation system with dehumidifying finned coils. This study analyzes the floor radiant cooling of a typical residential apartment within a multi-storey building in three Italian climate zones by means of a detailed simulation tool. Five systems were compared in terms of both indoor thermal comfort and energy consumption: radiant cooling without dehumidification; radiant cooling with a soft dehumidification device; radiant cooling with a dehumidification device which also supplies sensible cooling; radiant cooling coupled with fan coils; and radiant cooling with a mechanical ventilation system which dehumidifies and cools

  10. Absorption solar cooling systems using optimal driving temperatures

    International Nuclear Information System (INIS)

    Lecuona, Antonio; Ventas, Rubén; Vereda, Ciro; López, Ricardo

    2015-01-01

    The optimum instantaneous driving temperature of a solar cooling facility is determined along a day. The chillers compared use single effect cycles working with NH 3 /LiNO 3 , either conventional or hybridised by incorporating a low pressure booster compressor. Their performances are compared with a H 2 O/LiBr single effect absorption chiller as part of the same solar system. The results of a detailed thermodynamic cycle for the absorption chillers allow synthesizing them in a modified characteristic temperature difference model. The day accumulated solar cold production is determined using this optimum temperature during two sunny days in mid-July and mid-September, located in Madrid, Spain. The work shows the influences of operational variables and a striking result: selection of a time-constant temperature during all the day does not necessarily imply a substantial loss, being the temperature chosen a key parameter. The results indicate that the NH 3 /LiNO 3 option with no boosting offers a smaller production above-zero Celsius degrees temperatures, but does not require higher hot water driving temperatures than H 2 O/LiBr. The boosted cycle offers superior performance. Some operational details are discussed. - Highlights: • Instantaneous optimum driving temperature t g,op for solar cooling in Madrid. • 3 absorption cycles tested: H 2 O/LiBr and NH 3 /LiNO 3 single effect and hybrid. • The t g,op of the hybrid cycle is 16 °C lower than both single effect cycles. • The best fixed driving temperature can reach almost the same behaviour than t g,op

  11. Novel dry cryotherapy system for cooling the equine digit

    Science.gov (United States)

    Stefanovski, Darko; Lenfest, Margret; Chatterjee, Sraboni; Orsini, James

    2018-01-01

    Objectives Digital cryotherapy is commonly used for laminitis prophylaxis and treatment. Currently validated methods for distal limb cryotherapy involve wet application or compression technology. There is a need for a practical, affordable, dry cryotherapy method that effectively cools the digit. The objective of this study was to evaluate the hoof wall surface temperatures (HWSTs) achieved with a novel dry cryotherapy technology. Design Repeated-measures in vivo experimental study. Setting Experimental intervention at a single site. Participants 6 systemically healthy horses (3 mares, 3 geldings). Interventions Cryotherapy was applied to six horses for eight hours with a commercially available rubber and rubber and welded fabricice boot, which extended proximally to include the foot and pastern. Reusable malleable cold therapy packs were secured against the foot and pastern with the three built-in hook-and-loop fastener panels. Primary and secondary outcome measures HWST and pastern surface temperature of the cryotherapy-treated limb, HWST of the control limb and ambient temperature were recorded every five minutes throughout the study period. Results Results were analysed with mixed-effects multivariable regression analysis. The HWST (median 11.1°C, interquartile range 8.6°C–14.7°C) in the cryotherapy-treated limb was significantly decreased compared with the control limb (median 29.7°C, interquartile range 28.9°C–30.4°C) (P≤0.001). Cryotherapy limb HWST reached a minimum of 6.75°C (median) with an interquartile range of 4.1°C–9.3°C. Minimum HWST was achieved 68 minutes after cryotherapy pack application. Conclusions Dry application of cryotherapy significantly reduced HWST and reached minimums below the therapeutic target of 10°C. This cryotherapy method might offer an effective alternative for digital cooling. PMID:29344364

  12. Evaluation of conceptual Heat Exchanger Design for passive containment cooling system of SMART

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Min-Ki; Hong, Soon Joon [FNC Tech., Yongin (Korea, Republic of); Kim, Young In; Kim, Seok [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    PCCS(Passive containment cooling system) is the passive safety system which ultimately removes the reactor decay heat. Cooling performance of the air-cooled type and water-circulation cooling type of PCCS were analyzed using CAP version 2.21. The analysis results show the water-circulation cooling PCCS is more effective in lowering the peak pressure and temperature in the containment building. However, the air-cooled PCCS is more effective to the long-term cooling. From this study, the efficiency evaluation results for the two PCCS designs are obtained. These results may be applied in the PCCS design improvement. Moreover, these results will be used as a reference for the later PCCS design and analysis.

  13. Design considerations and experimental observations for the TAMU air-cooled reactor cavity cooling system for the VHTR

    Energy Technology Data Exchange (ETDEWEB)

    Sulaiman, S. A., E-mail: shamsulamri@tamu.edu; Dominguez-Ontiveros, E. E., E-mail: elvisdom@tamu.edu; Alhashimi, T., E-mail: jbudd123@tamu.edu; Budd, J. L., E-mail: dubaiboy@tamu.edu; Matos, M. D., E-mail: mailgoeshere@gmail.com; Hassan, Y. A., E-mail: yhasssan@tamu.edu [Department of Nuclear Engineering, Texas A and M University, College Station, TX, 77843-3133 (United States)

    2015-04-29

    The Reactor Cavity Cooling System (RCCS) is a promising passive decay heat removal system for the Very High Temperature Reactor (VHTR) to ensure reliability of the transfer of the core residual and decay heat to the environment under all off-normal circumstances. A small scale experimental test facility was constructed at Texas A and M University (TAMU) to study pertinent multifaceted thermal hydraulic phenomena in the air-cooled reactor cavity cooling system (RCCS) design based on the General Atomics (GA) concept for the Modular High Temperature Gas-Cooled Reactor (MHTGR). The TAMU Air-Cooled Experimental Test Facility is ⅛ scale from the proposed GA-MHTGR design. Groundwork for experimental investigations focusing into the complex turbulence mixing flow behavior inside the upper plenum is currently underway. The following paper illustrates some of the chief design considerations used in construction of the experimental test facility, complete with an outline of the planned instrumentation and data acquisition methods. Computational Fluid Dynamics (CFD) simulations were carried out to furnish some insights on the overall behavior of the air flow in the system. CFD simulations assisted the placement of the flow measurement sensors location. Preliminary experimental observations of experiments at 120oC inlet temperature suggested the presence of flow reversal for cases involving single active riser at both 5 m/s and 2.25 m/s, respectively and four active risers at 2.25 m/s. Flow reversal may lead to thermal stratification inside the upper plenum by means of steady state temperature measurements. A Particle Image Velocimetry (PIV) experiment was carried out to furnish some insight on flow patterns and directions.

  14. Mass transfer performance comparison of two commonly used liquid desiccants: LiBr and LiCl