WorldWideScience

Sample records for desert shrub larrea

  1. Ploidy race distributions since the Last Glacial Maximum in the North American desert shrub, Larrea tridentata

    Science.gov (United States)

    Hunter, K.L.; Betancourt, J.L.; Riddle, B.R.; Van Devender, T. R.; Cole, K.L.; Geoffrey, Spaulding W.

    2000-01-01

    1 A classic biogeographic pattern is the alignment of diploid, tetraploid and hexaploid races of creosote bush (Larrea tridentata) across the Chihuahuan, Sonoran and Mohave Deserts of western North America. We used statistically robust differences in guard cell size of modern plants and fossil leaves from packrat middens to map current and past distributions of these ploidy races since the Last Glacial Maximum (LGM). 2 Glacial/early Holocene (26-10 14C kyr BP or thousands of radiocarbon years before present) populations included diploids along the lower Rio Grande of west Texas, 650 km removed from sympatric diploids and tetraploids in the lower Colorado River Basin of south-eastern California/south-western Arizona. Diploids migrated slowly from lower Rio Grande refugia with expansion into the northern Chihuahuan Desert sites forestalled until after ???4.0 14C kyr BP. Tetraploids expanded from the lower Colorado River Basin into the northern limits of the Sonoran Desert in central Arizona by 6.4 14C kyr BP. Hexaploids appeared by 8.5 14C kyr BP in the lower Colorado River Basin, reaching their northernmost limits (???37??N) in the Mohave Desert between 5.6 and 3.9 14C kyr BP. 3 Modern diploid isolates may have resulted from both vicariant and dispersal events. In central Baja California and the lower Colorado River Basin, modern diploids probably originated from relict populations near glacial refugia. Founder events in the middle and late Holocene established diploid outposts on isolated limestone outcrops in areas of central and southern Arizona dominated by tetraploid populations. 4 Geographic alignment of the three ploidy races along the modern gradient of increasingly drier and hotter summers is clearly a postglacial phenomenon, but evolution of both higher ploidy races must have happened before the Holocene. The exact timing and mechanism of polyploidy evolution in creosote bush remains a matter of conjecture. ?? 2001 Blackwell Science Ltd.

  2. Spreaders, igniters, and burning shrubs: plant flammability explains novel fire dynamics in grass-invaded deserts.

    Science.gov (United States)

    Fuentes-Ramirez, Andres; Veldman, Joseph W; Holzapfel, Claus; Moloney, Kirk A

    2016-10-01

    Novel fire regimes are an important cause and consequence of global environmental change that involve interactions among biotic, climatic, and human components of ecosystems. Plant flammability is key to these interactions, yet few studies directly measure flammability or consider how multiple species with different flammabilities interact to produce novel fire regimes. Deserts of the southwestern United States are an ideal system for exploring how novel fire regimes can emerge when fire-promoting species invade ecosystems comprised of species that did not evolve with fire. In these deserts, exotic annual grasses provide fuel continuity across landscapes that did not historically burn. These fires often ignite a keystone desert shrub, the fire-intolerant creosote bush, Larrea tridentata (DC.) Coville. Ignition of Larrea is likely catalyzed by fuels produced by native plants that grow beneath the shrubs. We hypothesize that invasive and native species exhibit distinct flammability characteristics that in combination determine spatial patterns of fire spread and intensity. We measured flammability metrics of Larrea, two invasive grasses, Schismus arabicus and Bromus madritensis, and two native plants, the sub-shrub Ambrosia dumosa and the annual herb Amsinckia menziesii. Results of laboratory experiments show that the grasses carry fire quickly (1.32 cm/s), but burn for short duration (0.5 min) at low temperatures. In contrast, native plants spread fire slowly (0.12 cm/s), but burn up to eight times longer (4 min) and produced hotter fires. Additional experiments on the ignition requirements of Larrea suggest that native plants burn with sufficient temperature and duration to ignite dead Larrea branches (time to ignition, 2 min; temperature at ignition 692°C). Once burning, these dead branches ignite living branches in the upper portions of the shrub. Our study provides support for a conceptual model in which exotic grasses are "spreaders" of fire and native

  3. Identifying multiple timescale rainfall controls on Mojave Desert ecohydrology using an integrated data and modeling approach for Larrea tridentata

    Science.gov (United States)

    Ng, Gene-Hua Crystal; Bedford, David R.; Miller, David M.

    2015-01-01

    The perennial shrub Larrea tridentata is widely successful in North American warm deserts but is also susceptible to climatic perturbations. Understanding its response to rainfall variability requires consideration of multiple timescales. We examine intra-annual to multi-year relationships using model simulations of soil moisture and vegetation growth over 50 years in the Mojave National Preserve in southeastern California (USA). Ecohydrological model parameters are conditioned on field and remote sensing data using an ensemble Kalman filter. Although no specific periodicities were detected in the rainfall record, simulated leaf-area-index exhibits multi-year dynamics that are driven by multi-year (∼3-years) rains, but with up to a 1-year delay in peak response. Within a multi-year period, Larrea tridentata is more sensitive to winter rains than summer. In the most active part of the root zone (above ∼80 cm), >1-year average soil moisture drives vegetation growth, but monthly average soil moisture is controlled by root uptake. Moisture inputs reach the lower part of the root zone (below ∼80 cm) infrequently, but once there they can persist over a year to help sustain plant growth. Parameter estimates highlight efficient plant physiological properties facilitating persistent growth and high soil hydraulic conductivity allowing deep soil moisture stores. We show that soil moisture as an ecological indicator is complicated by bidirectional interactions with vegetation that depend on timescale and depth. Under changing climate, Larrea tridentata will likely be relatively resilient to shorter-term moisture variability but will exhibit higher sensitivity to shifts in seasonal to multi-year moisture inputs.

  4. Maintenance of C sinks sustains enhanced C assimilation during long-term exposure to elevated [CO2] in Mojave Desert shrubs.

    Science.gov (United States)

    Aranjuelo, Iker; Ebbets, Allison L; Evans, R Dave; Tissue, David T; Nogués, Salvador; van Gestel, Natasja; Payton, Paxton; Ebbert, Volker; Adams, Williams W; Nowak, Robert S; Smith, Stanley D

    2011-10-01

    During the first few years of elevated atmospheric [CO(2)] treatment at the Nevada Desert FACE Facility, photosynthetic downregulation was observed in desert shrubs grown under elevated [CO(2)], especially under relatively wet environmental conditions. Nonetheless, those plants maintained increased A (sat) (photosynthetic performance at saturating light and treatment [CO(2)]) under wet conditions, but to a much lesser extent under dry conditions. To determine if plants continued to downregulate during long-term exposure to elevated [CO(2)], responses of photosynthesis to elevated [CO(2)] were examined in two dominant Mojave Desert shrubs, the evergreen Larrea tridentata and the drought-deciduous Ambrosia dumosa, during the eighth full growing season of elevated [CO(2)] treatment at the NDFF. A comprehensive suite of physiological processes were collected. Furthermore, we used C labeling of air to assess carbon allocation and partitioning as measures of C sink activity. Results show that elevated [CO(2)] enhanced photosynthetic performance and plant water status in Larrea, especially during periods of environmental stress, but not in Ambrosia. δ(13)C analyses indicate that Larrea under elevated [CO(2)] allocated a greater proportion of newly assimilated C to C sinks than Ambrosia. Maintenance by Larrea of C sinks during the dry season partially explained the reduced [CO(2)] effect on leaf carbohydrate content during summer, which in turn lessened carbohydrate build-up and feedback inhibition of photosynthesis. δ(13)C results also showed that in a year when plant growth reached the highest rates in 5 years, 4% (Larrea) and 7% (Ambrosia) of C in newly emerging organs were remobilized from C that was assimilated and stored for at least 2 years prior to the current study. Thus, after 8 years of continuous exposure to elevated [CO(2)], both desert perennials maintained their photosynthetic capacities under elevated [CO(2)]. We conclude that C storage, remobilization

  5. Effects of drought on shrub survival and longevity in the northern Sonoran Desert

    Science.gov (United States)

    Bowers, Janice E.

    2005-01-01

    Permanent vegetation plots in the northern Sonoran Desert, USA, provided an opportunity to assess the effects of recent drought on desert shrubs and to examine survival in relation to rainfall variability during the past 76 years. Survival and maximum longevity of six species were determined for eight intercensus periods between 1928 and 2004. Average annual survival was Ambrosia deltoidea, 0.9167 ?? 0.0415; Encelia farinosa, 0.7952 ?? 0.0926; Janusia gracilis, 0.9334 ?? 0.0247; Krameria grayi, 0.9702 ?? 0.0270; Larrea tridentata, 0.9861 ?? 0.0174; and Lycium berlandieri, 0.9910 ?? 0.0077. The longest-lived species were Larrea, Lycium, and Krameria, with average maximum life spans of 330, 211, and 184 years. Janusia, Ambrosia, and Encelia were much shorter lived, with average maximum longevity of 53, 40, and 16 years. Winter rain equalled or exceeded 90% of the long-term average accumulation except during 1948 to 1959 (65% of average) and from 2001 to 2003 (49% of average). Summer rain did not drop below 90% of the average accumulation in any period. The 1950s drought caused modest declines in survival of Ambrosia, Encelia, Janusia, Krameria, and Lycium. The effects of the recent drought were much more pronounced, resulting in sharp declines in survival and maximum longevity of Ambrosia, Encelia, Krameria, and Larrea, and modest declines for Lycium. Despite heightened mortality during the recent severe drought, 72% of the deaths observed between 1928 and 2004 occurred during periods of average or better-than-average rain, providing support for the idea that demography of shrubs in arid regions is influenced by continuous as well as episodic processes.

  6. HIGH FOLIAR NITROGEN IN DESERT SHRUBS: AN IMPORTANT ECOSYSTEM TRAIT OR DEFECTIVE DESERT DOCTRINE?

    Science.gov (United States)

    Nitrogen concentrations in green and senesced leaves of perennial desert shrubs were compiled from a worldwide literature search to test the validity of the doctrine that desert shrubs produce foliage and leaf litter much richer in nitrogen than that in the foliage of plants from...

  7. Bidirectional recovery patterns of Mojave Desert vegetation in an aqueduct pipeline corridor after 36 years: I. Perennial shrubs and grasses

    Science.gov (United States)

    Berry, Kristin H.; Weigand, James F.; Gowan, Timothy A.; Mack, Jeremy S.

    2015-01-01

    We studied recovery of 21 perennial plant species along a severely disturbed aqueduct corridor in a Larrea tridentata-Ambrosia dumosa plant alliance in the Mojave Desert 36 years after construction. The 97-m wide corridor contained a central dirt road and buried aqueduct pipeline. We established transects at 0 m (road verge), 20 m and 40 m into the disturbance corridor, and at 100 m in undisturbed habitat (the control). Although total numbers of shrubs per transect did not vary significantly with distance from the verge, canopy cover of shrubs, species richness, and species diversity were higher in the control than at the verge and other distances. Canopy cover of common shrubs (Ericameria nauseosa, Ambrosia salsola, A. dumosa, L. tridentata, Grayia spinosa) and perennial grasses (Elymus elymoides, Poa secunda) also varied significantly by location. Discriminant analysis clearly separated the four distances based on plant composition. Patterns of recovery were bidirectional: secondary succession from the control into the disturbance corridor and inhibition from the verge in the direction of the control. Time estimated for species composition to resemble the control is dependent on location within the disturbance corridor and could be centuries at the road verge. Our findings have applications to other deserts.

  8. Ecology and utilization of desert shrub rangelands in Iraq

    NARCIS (Netherlands)

    Thalen, Derk Catharinus Peter

    1979-01-01

    When grazing is the accepted land use, vegetation is the key resource. The present study deals with the desert shrub rangelands of lraq, which contain the major characteristics of such an area, having been under grazing for many centuries. Emphasis is given to the ecology and utilization of the

  9. Cytogeography of Larrea tridentata at the Chihuahuan-Sonoran Desert ecotone

    Science.gov (United States)

    Robert G. Laport; Robert L.. Minckley

    2013-01-01

    The long separation of the Chihuahuan and Sonoran Deserts is reflected in the high species richness and endemism of their floras. Although many endemic species from both deserts reach their distributional limits where the Sierra Madre Occidental massif fragments into smaller mountain complexes in northern Mexico and adjoining areas of the United States, indicator...

  10. Copper isotope fractionation by desert shrubs

    International Nuclear Information System (INIS)

    Navarrete, Jesica U.; Viveros, Marian; Ellzey, Joanne T.; Borrok, David M.

    2011-01-01

    Copper has two naturally occurring stable isotopes of masses 63 and 65 which can undergo mass dependent fractionation during various biotic and abiotic chemical reactions. These interactions and their resulting Cu isotope fractionations can be used to determine the mechanisms involved in the cycling of Cu in natural systems. In this study, Cu isotope changes were investigated at the organismal level in the metal-accumulating desert plant, Prosopis pubescens. Initial results suggest that the lighter Cu isotope was preferentially incorporated into the leaves of the plant, which may suggest that Cu was actively transported via intracellular proteins. The roots and stems show a smaller degree of Cu isotope fractionation and the direction and magnitude of the fractionations was dependent upon the levels of Cu exposure. Based on this and previous work with bacteria and yeast, a trend is emerging that suggests the lighter Cu isotope is preferentially incorporated into biological components, while the heavier Cu isotope tends to become enriched in aqueous solutions. In bacteria, plants and animals, intracellular Cu concentrations are strictly regulated via dozens of enzymes that can bind, transport, and store Cu. Many of these enzymes reduce Cu(II) to Cu(I). These initial results seem to fit into a broader picture of Cu isotope cycling in natural systems where oxidation/reduction reactions are fundamental in controlling the distributions of Cu isotopes.

  11. Creosote bush (Larrea tridentata) resin increases water demands and reduces energy availability in desert woodrats (Neotoma lepida).

    Science.gov (United States)

    Mangione, Antonio M; Dearing, M Denise; Karasov, William H

    2004-07-01

    Although many plant secondary compounds are known to have serious consequences for herbivores, the costs of processing them are generally unknown. Two potential costs of ingestion and detoxification of secondary compounds are elevation of the minimum drinking water requirement and excretion of energetically expensive metabolites (i.e., glucuronides) in the urine. To address these impacts, we studied the costs of ingestion of resin from creosote bush (Larrea tridentata) on desert woodrats (Neotoma lepida). The following hypotheses were tested: ingestion of creosote resin by woodrats (1) increases minimum water requirement and (2) reduces energy available by increasing fecal and urinary energy losses. We tested the first hypothesis, by measuring the minimum water requirement of woodrats fed a control diet with and without creosote resin. Drinking water was given in decreasing amounts until woodrats could no longer maintain constant body mass. In two separate experiments, the minimum drinking water requirement of woodrats fed resin was higher than that of controls by 18-30% (about 1-1.7 ml/d). We tested several potential mechanisms of increased water loss associated with the increase in water requirement. The rate of fecal water loss was higher in woodrats consuming resin. Neither urinary water nor evaporative water loss was affected by ingestion of resin. Hypothesis 2 was tested by measuring energy fluxes of woodrats consuming control vs. resin-treated diets. Woodrats on a resin diet had higher urinary energy losses and, thus, metabolized a lower proportion of the dietary energy than did woodrats on control diet. Fecal energy excretion was not affected by resin. The excretion of glucuronic acid represented almost half of the energy lost as a consequence of resin ingestion. The increased water requirement and energy losses of woodrats consuming a diet with resin could have notable ecological consequences.

  12. Pre-treating Seed to Enhance Germination of Desert Shrubs

    Energy Technology Data Exchange (ETDEWEB)

    W. K. Ostler; D. C. Anderson; D. J. Hansen

    2002-06-01

    Creosotebush [Larrea tridentata (D.C.) Cav.] and white bursage [Ambrosia dumosa (A. Gray) W.W. Payne] seeds were subjected to pre-treatments of rinsing and soaking in water and thiourea to enhance germination in laboratory experiments. The effects of darkness, temperature, seed source, and soil moisture were also evaluated in the laboratory. The best pre-treatment from the laboratory experiments, rinsing with water for 36 hours followed by drying, was field-tested at Fort Irwin, California. Two sites and two seeding dates (early March and mid April) were determined for each site. Five mulch treatments (no mulch, straw, gravel, chemical stabilizer, and plastic) were evaluated in combination with the seed pre-treatments. Field emergence was greatly enhanced with the seed pre-treatment for white bursage during the March (18-42% increase in germination) and April seedings (16-23% increase in germination). Creosotebush showed poor germination during March (2-5%) when soil temperatures averaged 15 C, but germination increased during the April trials (6-43%) when soil temperatures averaged 23 C. The seed pre-treatment during the April trials increased germination from 16-23%. The plastic mulch treatment increased germination dramatically during both the March and April trials. The plastic mulch increased soil temperatures (8-10 C)and maintained high humidity during germination. Both the chemical stabilizer and the gravel mulches improved germination over the control while the straw mulch decreased germination. These results suggest that seed pre-treatments combined with irrigation and mulch are effective techniques to establish these two dominant Mojave Desert species from seed.

  13. Influence of shrubs on soil chemical properties in Alxa desert steppe, China

    Science.gov (United States)

    Hua Fu; Shifang Pei; Yaming Chen; Changgui Wan

    2007-01-01

    Alxa desert steppe is one of severely the degraded rangelands in the Northwest China. Shrubs, as the dominant life form in the desert steppe, play an important role in protecting this region from further desertification. Chemical properties of three soil layers (0 to 10, 10 to 20 and 20 to 30 cm) at three locations (the clump center [A], in the periphery of shrub...

  14. Simulating the productivity of desert woody shrubs in southwestern Texas

    Science.gov (United States)

    In the southwestern U.S., many rangelands have converted from native grasslands to woody shrublands dominated by creosotebush (Larrea tridentate) and honey mesquite (Prosopis glandulosa), threatening ecosystem health. Both creosotebush and mesquite have well-developed long root systems that allow t...

  15. Stable Isotopic Analysis on Water Utilization of Two Xerophytic Shrubs in a Revegetated Desert Area: Tengger Desert, China

    OpenAIRE

    Lei Huang; Zhishan Zhang

    2015-01-01

    Stable isotope studies on stable isotope ratios of hydrogen and oxygen in water within plants provide new information on water sources and water use patterns under natural conditions. In this study, the sources of water uptake for two typical xerophytic shrubs, Caragana korshinskii and Artemisia ordosica, were determined at four different-aged revegetated sites (1956, 1964, 1981, and 1987) in the Tengger Desert, a revegetated desert area in China. Samples from precipitation, soil water at dif...

  16. Throughfall and its spatial variability beneath xerophytic shrub canopies within water-limited arid desert ecosystems

    Science.gov (United States)

    Zhang, Ya-feng; Wang, Xin-ping; Hu, Rui; Pan, Yan-xia

    2016-08-01

    Throughfall is known to be a critical component of the hydrological and biogeochemical cycles of forested ecosystems with inherently temporal and spatial variability. Yet little is understood concerning the throughfall variability of shrubs and the associated controlling factors in arid desert ecosystems. Here we systematically investigated the variability of throughfall of two morphological distinct xerophytic shrubs (Caragana korshinskii and Artemisia ordosica) within a re-vegetated arid desert ecosystem, and evaluated the effects of shrub structure and rainfall characteristics on throughfall based on heavily gauged throughfall measurements at the event scale. We found that morphological differences were not sufficient to generate significant difference (P < 0.05) in throughfall between two studied shrub species under the same rainfall and meteorological conditions in our study area, with a throughfall percentage of 69.7% for C. korshinskii and 64.3% for A. ordosica. We also observed a highly variable patchy pattern of throughfall beneath individual shrub canopies, but the spatial patterns appeared to be stable among rainfall events based on time stability analysis. Throughfall linearly increased with the increasing distance from the shrub base for both shrubs, and radial direction beneath shrub canopies had a pronounced impact on throughfall. Throughfall variability, expressed as the coefficient of variation (CV) of throughfall, tended to decline with the increase in rainfall amount, intensity and duration, and stabilized passing a certain threshold. Our findings highlight the great variability of throughfall beneath the canopies of xerophytic shrubs and the time stability of throughfall pattern among rainfall events. The spatially heterogeneous and temporally stable throughfall is expected to generate a dynamic patchy distribution of soil moisture beneath shrub canopies within arid desert ecosystems.

  17. [Rainfall and soil moisture redistribution induced by xerophytic shrubs in an arid desert ecosystem].

    Science.gov (United States)

    Wang, Zheng Ning; Wang, Xin Ping; Liu, Bo

    2016-03-01

    Rainfall partitioning by desert shrub canopy modifies the redistribution of incident rainfall under the canopy, and may affect the distribution pattern of soil moisture around the plant. This study examined the distribution of rainfall and the response of soil moisture beneath the canopy of two dominant desert shrubs, Caragana korshinskii and Artemisia ordosica, in the revegetation area at the southeastern edge of the Tengger Desert. The results showed that throughfall and stemflow ave-ragely occupied 74.4%, 11.3% and 61.8%, 5.5% of the gross precipitation for C. korshinskii and A. ordosica, respectively. The mean coefficients of variation (CV) of throughfall were 0.25 and 0.30, respectively. C. korshinski were more efficient than A. ordosica on stemflow generation. The depth of soil wetting front around the stem area was greater than other areas under shrub canopy for C. korshinski, and it was only significantly greater under bigger rain events for A. ordosica. The shrub canopy could cause the unevenness of soil wetting front under the canopy in consequence of rainfall redistribution induced by xerophytic shrub.

  18. EFFECTS OF PLANT SIZE ON PHOTOSYNTHESIS AND WATER RELATIONS IN THE DESERT SHRUB PROSOPIS GLANDULOSA (FABACEAE)

    Science.gov (United States)

    The Jornada del Muerto basin of the Chihuahuan Desert of southern New Mexico, USA, has undergone a marked transition of plant communities. Shrubs such as mesquite (Prosopis glandulosa) have greatly increased or now dominate in areas that were previously dominated by perennial gra...

  19. Rapid root extension during water pulses enhances establishment of shrub seedlings in the Atacama Desert

    NARCIS (Netherlands)

    Leon, M.F.; Squeo, F.A.; Gutierrez, J.R.; Holmgren, M.

    2011-01-01

    Questions: (1) What is the water threshold for shrub seedling establishment in arid scrubland? (2) How do seedling root growth morphological traits affect the water threshold required for seedling establishment? Location: Arid scrubland, Atacama Desert, north-central Chile. Methods: We conducted a

  20. Soil microbial diversity in the vicinity of desert shrubs.

    Science.gov (United States)

    Saul-Tcherkas, Vered; Unc, Adrian; Steinberger, Yosef

    2013-04-01

    Water and nutrient availability are the major limiting factors of biological activity in arid and semiarid ecosystems. Therefore, perennial plants have developed different ecophysiological adaptations to cope with harsh conditions. The chemical profile of the root exudates varies among plant species and this can induce variability in associated microbial populations. We examined the influence of two shrubs species, Artemisia sieberi and Noaea mucronata, on soil microbial diversity. Soil samples were collected monthly, from December 2006 to November 2007, near canopies of both shrubs (0-10-cm depth). Samples were used for abiotic tests and determination of soil bacterial diversity. No significant differences were found in the abiotic variables (soil moisture, total organic matter, and total soluble nitrogen (TSN)) between soil samples collected from under the two shrubs during the study period. No obvious differences in the Shannon-Weaver index, evenness values, or total phylogenetic distances were found for the soil microbial communities. However, detailed denaturing gradient gel electrophoresis (DGGE) clustering as well as taxonomic diversity analyses indicated clear shifts in the soil microbial community composition. These shifts were governed by seasonal variability in water availability and, significantly, by plant species type.

  1. [Assemblage effect of ground arthropod community in desert steppe shrubs with different ages].

    Science.gov (United States)

    Liu, Ren-Tao; Zhu, Fan; Chai, Yong-Qing

    2014-01-01

    Taking the 6-, 15-, 24- and 36-year-old Caragana intermedia shrubs in desert steppe as a subject, an investigation on soil properties and ground arthropod community was carried out under the shrub and in the open to probe into the assemblage effect of ground arthropod community in desert steppe shrubs with different ages. The results were as follows: 1) In the 6-year-old shrubland, significant differences were only found in soil physical properties (soil texture, soil moisture and electrical conductivity) between the microhabitats under shrub and in the open. Beginning from the 15-year-old shrubland, however, soil organic matter and nutrition (N, P) increased significantly. 2) A total of 27 groups were captured in the studied sites which dominated by Carabidae, Tenebrionidae and Formicidae. From 6- to 15-year-old shrubland, the number of dominant groups decreased while that of common groups increased for the ground arthropod community under the shrub. From 15- to 24- and 36-year-old shrubland, the difference between the microhabitats under the shrub and in the open decreased firstly, and then increased. Some special groups appeared under the shrub in the 36-year-old shrubland, and dung beetles became dominant. 3) In the 6- and 24-year-old shrublands, there were no significant differences in group richness, abundance, and diversity index between the microhabitats under the shrub and in the open. As for the 15- and 36-year-old shrublands, however, significant differences were observed. 4) The shrub age had a stronger effect on the distribution of ground arthropods living under the shrubs compared to that in the open. The changes in soil texture, pH and electrical conductivity could significantly influence on the distribution of ground arthropods under the shrub, also in the open to some degree. It was suggested that the development of shrubland had strong impact on assemblage effect of ground arthropods, which was closely correlated with the stand age and would

  2. Are biological effects of desert shrubs more important than physical effects on soil microorganisms?

    Science.gov (United States)

    Berg, Naama; Steinberger, Yosef

    2010-01-01

    Vegetation cover plays a major role in providing organic matter and in acting as a physical barrier, with both together contributing to the formation of "fertile islands," which play an active role in prolonging biological activity in desert ecosystems. By undertaking this study, a longterm research, we designed an experiment to separate the two components-the physical and biotic parts of the perennial plants-and to identify the factor that contributes the most to the ecosystem. The study site was located in the northern Negev Desert, Israel, where 50 Hammada scoparia shrubs and 50 artificial plants were randomly marked. Soil samples were collected monthly over 3 years of research at three locations: under the canopy of H. scoparia shrubs, in the vicinity of the artificial plants, and between the shrubs (control). The contribution to microbial activity was measured by evaluation of the microbial community functions in soil. The functional aspects of the microbial community that were measured were CO2 evolution, microbial biomass, microbial functional diversity, and the physiological profile of the community. The results of this study are presented in two ways: (1) according to the three locations/treatments; and (2) according to the phenological situation of the vegetation (annual and perennial plants) in the research field: the growing phase, the drying process, and the absence of annual plants. The only parameters that were found to affect microbial activity were the contribution of the organic matter of perennial shrubs and the growth of vegetation (annual and perennial) during the growing seasons. The physical component was found to have no effect on soil microbial functional diversity, which elucidates the important contribution of the desert shrub in enhancing biological multiplicity and activity.

  3. Response of the desert shrub Krameria parvifolia after ten years of chronic gamma irradiation

    International Nuclear Information System (INIS)

    Vollmer, A.T.; Bamberg, S.A.

    1975-01-01

    A northern Mojave Desert shrub community was irradiated by a 137 Cs source for a ten-year period. Leaf and fruit production, cover, and percent live stem of Krameria parvifolia shrubs were found to respond significantly to a radiation gradient with exposure rates ranging from 0.1 to 10 R/day. Fruit and leaf production were greatly reduced at exposures over 6 R/day. Above 7 R/day 16% of the shrubs were dead compared to 1.2% in a non-irradiated area. Reduced cover, density and live stem values indicate a trend toward a lower status of Krameria in the community at cumulative exposures above 25 kR. Observations indicate that an equilibrium in response to irradiation has not yet occurred. Radiosensitivity of K. parvifolia is attributed in part to its phenology. (author)

  4. Response of the desert shrub Krameria parvifolia after ten years of chronic gamma irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Vollmer, A T; Bamberg, S A [California Univ., Los Angeles (USA). Lab. of Nuclear Medicine and Radiation Biology

    1975-12-01

    A northern Mojave Desert shrub community was irradiated by a /sup 137/Cs source for a ten-year period. Leaf and fruit production, cover, and percent live stem of Krameria parvifolia shrubs were found to respond significantly to a radiation gradient with exposure rates ranging from 0.1 to 10 R/day. Fruit and leaf production were greatly reduced at exposures over 6 R/day. Above 7 R/day 16% of the shrubs were dead compared to 1.2% in a non-irradiated area. Reduced cover, density and live stem values indicate a trend toward a lower status of Krameria in the community at cumulative exposures above 25 kR. Observations indicate that an equilibrium in response to irradiation has not yet occurred. Radiosensitivity of K. parvifolia is attributed in part to its phenology.

  5. Moderate irrigation intervals facilitate establishment of two desert shrubs in the Taklimakan Desert Highway Shelterbelt in China.

    Science.gov (United States)

    Li, Congjuan; Shi, Xiang; Mohamad, Osama Abdalla; Gao, Jie; Xu, Xinwen; Xie, Yijun

    2017-01-01

    Water influences various physiological and ecological processes of plants in different ecosystems, especially in desert ecosystems. The purpose of this study is to investigate the response of physiological and morphological acclimation of two shrubs Haloxylon ammodendron and Calligonum mongolicunl to variations in irrigation intervals. The irrigation frequency was set as 1-, 2-, 4-, 8- and 12-week intervals respectively from March to October during 2012-2014 to investigate the response of physiological and morphological acclimation of two desert shrubs Haloxylon ammodendron and Calligonum mongolicunl to variations in the irrigation system. The irrigation interval significantly affected the individual-scale carbon acquisition and biomass allocation pattern of both species. Under good water conditions (1- and 2-week intervals), carbon assimilation was significantly higher than other treatments; while, under water shortage conditions (8- and 12-week intervals), there was much defoliation; and under moderate irrigation intervals (4 weeks), the assimilative organs grew gently with almost no defoliation occurring. Both studied species maintained similar ecophysiologically adaptive strategies, while C. mongolicunl was more sensitive to drought stress because of its shallow root system and preferential belowground allocation of resources. A moderate irrigation interval of 4 weeks was a suitable pattern for both plants since it not only saved water but also met the water demands of the plants.

  6. Seedling establishment in a masting desert shrub parallels the pattern for forest trees

    Science.gov (United States)

    Meyer, Susan E.; Pendleton, Burton K.

    2015-05-01

    The masting phenomenon along with its accompanying suite of seedling adaptive traits has been well studied in forest trees but has rarely been examined in desert shrubs. Blackbrush (Coleogyne ramosissima) is a regionally dominant North American desert shrub whose seeds are produced in mast events and scatter-hoarded by rodents. We followed the fate of seedlings in intact stands vs. small-scale disturbances at four contrasting sites for nine growing seasons following emergence after a mast year. The primary cause of first-year mortality was post-emergence cache excavation and seedling predation, with contrasting impacts at sites with different heteromyid rodent seed predators. Long-term establishment patterns were strongly affected by rodent activity in the weeks following emergence. Survivorship curves generally showed decreased mortality risk with age but differed among sites even after the first year. There were no detectable effects of inter-annual precipitation variability or site climatic differences on survival. Intraspecific competition from conspecific adults had strong impacts on survival and growth, both of which were higher on small-scale disturbances, but similar in openings and under shrub crowns in intact stands. This suggests that adult plants preempted soil resources in the interspaces. Aside from effects on seedling predation, there was little evidence for facilitation or interference beneath adult plant crowns. Plants in intact stands were still small and clearly juvenile after nine years, showing that blackbrush forms cohorts of suppressed plants similar to the seedling banks of closed forests. Seedling banks function in the absence of a persistent seed bank in replacement after adult plant death (gap formation), which is temporally uncoupled from masting and associated recruitment events. This study demonstrates that the seedling establishment syndrome associated with masting has evolved in desert shrublands as well as in forests.

  7. Effects of artificial sand fixing on community characteristics of a rare desert shrub.

    Science.gov (United States)

    Liu, Huiliang; Tao, Ye; Qiu, Dong; Zhang, Daoyuan; Zhang, Yongkuan

    2013-10-01

    Eremosparton songoricum (Fabaceae) is a rare, native, clonal small shrub of the deserts of central Asia. Although human activities have greatly fragmented the distribution of E. songoricum, it occurs in areas where artificial sand fixing (AS) has been implemented. We sought to explore whether AS promotes survival and growth of E. songoricum. In the Gurbantunggut Desert of northwestern China in June 2010, we established 10 plots in an area where sand fixing occurred (5-10 years previously) and 11 plots on original sand substrate on which some plants had settled without fixing sand. Sand fixing changed soil properties and biological characteristics in sand-fixed plots. The soil surface where sand fixing occurred was covered by algal crusts and some lichen, but not bare sand (BS). Soil nutrients; water content of deep soil (30-150 cm); overall plant and herbaceous species richness, diversity, abundance, and cover; above- and belowground biomass; and cover, biomass, and height of E. songoricum in the sand-fixed plots were significantly greater than in plots of BS. However, distribution of E. songoricum individuals in the 2 types of plots did not differ. Our results indicate AS may enhance survival of E. songoricum and increase the overall diversity and stability of the desert plant community. We suggest AS as a way to protect this rare desert plant in situ. © 2013 Society for Conservation Biology.

  8. Desert Perennial Shrubs Shape the Microbial-Community Miscellany in Laimosphere and Phyllosphere Space.

    Science.gov (United States)

    Martirosyan, Varsik; Unc, Adrian; Miller, Gad; Doniger, Tirza; Wachtel, Chaim; Steinberger, Yosef

    2016-10-01

    Microbial function, composition, and distribution play a fundamental role in ecosystem ecology. The interaction between desert plants and their associated microbes is expected to greatly affect their response to changes in this harsh environment. Using comparative analyses, we studied the impact of three desert shrubs, Atriplex halimus (A), Artemisia herba-alba (AHA), and Hammada scoparia (HS), on soil- and leaf-associated microbial communities. DNA extracted from the leaf surface and soil samples collected beneath the shrubs were used to study associated microbial diversity using a sequencing survey of variable regions of bacterial 16S rRNA and fungal ribosomal internal transcribed spacer (ITS1). We found that the composition of bacterial and fungal orders is plant-type-specific, indicating that each plant type provides a suitable and unique microenvironment. The different adaptive ecophysiological properties of the three plant species and the differential effect on their associated microbial composition point to the role of adaptation in the shaping of microbial diversity. Overall, our findings suggest a link between plant ecophysiological adaptation as a "temporary host" and the biotic-community parameters in extreme xeric environments.

  9. Response of dominant grass and shrub species to water manipulation: an ecophysiological basis for shrub invasion in a Chihuahuan Desert grassland.

    Science.gov (United States)

    Throop, Heather L; Reichmann, Lara G; Sala, Osvaldo E; Archer, Steven R

    2012-06-01

    Increases in woody vegetation and declines in grasses in arid and semi-arid ecosystems have occurred globally since the 1800s, but the mechanisms driving this major land-cover change remain uncertain and controversial. Working in a shrub-encroached grassland in the northern Chihuahuan Desert where grasses and shrubs typically differ in leaf-level nitrogen allocation, photosynthetic pathway, and root distribution, we asked if differences in leaf-level ecophysiology could help explain shrub proliferation. We predicted that the relative performance of grasses and shrubs would vary with soil moisture due to the different morphological and physiological characteristics of the two life-forms. In a 2-year experiment with ambient, reduced, and enhanced precipitation during the monsoon season, respectively, the encroaching C(3) shrub (honey mesquite Prosopis glandulosa) consistently and substantially outperformed the historically dominant C(4) grass (black grama Bouteloua eriopoda) in terms of photosynthetic rates while also maintaining a more favorable leaf water status. These differences persisted across a wide range of soil moisture conditions, across which mesquite photosynthesis was decoupled from leaf water status and moisture in the upper 50 cm of the soil profile. Mesquite's ability to maintain physiologically active leaves for a greater fraction of the growing season than black grama potentially amplifies and extends the importance of physiological differences. These physiological and phenological differences may help account for grass displacement by shrubs in drylands. Furthermore, the greater sensitivity of the grass to low soil moisture suggests that grasslands may be increasingly susceptible to shrub encroachment in the face of the predicted increases in drought intensity and frequency in the desert of the southwestern USA.

  10. Impacts of the removal of shrubs on the physiological and biochemical characteristics of Syntrichia caninervis Mitt: in a temperate desert.

    Science.gov (United States)

    Yin, Ben-Feng; Zhang, Yuan-Ming; Lou, An-Ru

    2017-04-04

    Moss crusts play important roles in biological soil crusts biomass and soil surface stabilization. However, because of increasingly intensive human activities, especially grazing, the growth and survival of shrubs are seriously threatened. This study aimed to test whether the presence of shrubs affects the physiological state of the bryophyte Syntrichia caninervis Mitt. in this desert ecosystem. We simulated animal-grazed shrubs at three levels in the Gurbantunggut Desert and compared these simulations to exposed areas, measuring the indicators of growth and stress tolerance exhibited by bryophytes. The results showed that the removal of shrubs significantly decreased chlorophyll fluorescence activity and soluble protein content in S. caninervis, especially under the total shrub removal treatment. The ratio between the total removal of shrubs and other treatments in antioxidative enzymes and in osmotic adjustment substances of S. caninervis exhibited two types of responses. With the exception of malonyldialdehyde (MDA) and superoxide dismutase (SOD), the variables examined fitted as downward parabolic then upward parabolic temporal dynamics. The removal of shrubs is harmful to the survival of S.caninervis. In resource-constrained conditions, SOD is an important antioxidant enzyme that of peroxidase (POD), catalase (CAT) and osmotic adjustment substances, for S. caninervis survival.

  11. The draft genome sequence and annotation of the desert woodrat Neotoma lepida

    Directory of Open Access Journals (Sweden)

    Michael Campbell

    2016-09-01

    Full Text Available We present the de novo draft genome sequence for a vertebrate mammalian herbivore, the desert woodrat (Neotoma lepida. This species is of ecological and evolutionary interest with respect to ingestion, microbial detoxification and hepatic metabolism of toxic plant secondary compounds from the highly toxic creosote bush (Larrea tridentata and the juniper shrub (Juniperus monosperma. The draft genome sequence and annotation have been deposited at GenBank under the accession LZPO01000000.

  12. Regeneration potential and growth of two indigenous shrubs in the desert of Saudi Arabia

    International Nuclear Information System (INIS)

    Al-Abdulqader, A.M.; Nasroun, T.H.; Assnar, S.; Al-Kahlifah, N.S.

    2008-01-01

    Ertaa (Calligonum comosum) and Ghada (Haloxylon persicum) are two important multipurpose indigenous shrubs in the desert of Saudi Arabia, supplying firewood and fodder to the local populations. Their environmental benefits in connection with sand dune fixation and microenvironment improvement are commendable. Due to over-exploitation and habitat destruction, populations of these two shrubs have become severely degraded. This study helps in the development of the appropriate techniques for their regeneration and evaluates their relative growth rate under different irrigation schedules. Productivity in the natural population and biological growth under cultivation were also evaluated. Seeds of Ertaa required no special treatment while the seeds of Ghada showed higher percentage of germination when soaked in cold water for 1 hour. The seeds of Ghada are photoblastic, which require adequate light for germination while those of Ertaa are negatively photoblastic. The growth rate of both species under different irrigation schedule proved that the increase of irrigation frequency may not proportionally influence the growth rate. The estimated productivity of natural stands in Saudi Arabia was much less than the productivity of both species from other parts of the world. The estimated biological growth function under cultivation was found to reasonably match with the natural growth for both species are in their initial growth stage. (author)

  13. Dynamic responses of photosystem II in the Namib Desert shrub, Zygophyllum prismatocarpum, during and after foliar deposition of limestone dust

    International Nuclear Information System (INIS)

    Heerden, P.D.R. van; Krueger, G.H.J.; Kilbourn Louw, M.

    2007-01-01

    The effects of limestone dust deposition on vegetation in desert ecosystems have not yet been reported. We investigated these effects in a succulent shrub from the Namib Desert at a limestone quarry near Skorpion Zinc mine (Namibia). Effects of limestone dust were determined in Zygophyllum prismatocarpum (dollar bush) plants with heavy, moderate and no visible foliar dust cover by means of chlorophyll a fluorescence measurements. Limestone dust deposition decreased overall plant performance through loss of chlorophyll content, inhibition of CO 2 assimilation, uncoupling of the oxygen-evolving complex and decreased electron transport. Importantly, dynamic recovery occurred after termination of limestone extraction at the quarry. Recovery was accelerated by rainfall, mainly because of dust removal from leaves and stimulation of new growth. These results indicate that limestone dust has severe effects on photosynthesis in desert shrubs, but that recovery is possible and that, in arid environments, this process is modulated by rainfall. - Limestone dust deposition reduced photosynthetic capacity in the Namib Desert shrub, Zygophyllum prismatocarpum

  14. Genetic population structure of the desert shrub species lycium ruthenicum inferred from chloroplast dna

    International Nuclear Information System (INIS)

    Chen, H.; Yonezawa, T.

    2014-01-01

    Lycium ruthenicum (Solananeae), a spiny shrub mostly distributed in the desert regions of north and northwest China, has been shown to exhibit high tolerance to the extreme environment. In this study, the phylogeography and evolutionary history of L. ruthenicum were examined, on the basis of 80 individuals from eight populations. Using the sequence variations of two spacer regions of chloroplast DNA (trnH-psbA and rps16-trnK) , the absence of a geographic component in the chloroplast DNA genetic structure was identified (GST = 0.351, NST = 0.304, NST< GST), which was consisted with the result of SAMOVA, suggesting weak phylogeographic structure of this species. Phylogenetic and network analyses showed that a total of 10 haplotypes identified in the present study clustered into two clades, in which clade I harbored the ancestral haplotypes that inferred two independent glacial refugia in the middle of Qaidam Basin and the western Inner Mongolia. The existence of regional evolutionary differences was supported by GENETREE, which revealed that one of the population in Qaidam Basin and the two populations in Tarim Basin had experienced rapid expansion, and the other populations retained relatively stable population size during the Pleistocene . Given the results of long-term gene flow and pairwise differences, strong gene flow was insufficient to reduce the genetic differentiation among populations or within populations, probably due to the genetic composition containing a common haplotype and the high number of private haplotypes fixed for most of the population. The divergence times of different lineages were consistent with the rapid uplift phases of the Qinghai-Tibetan Plateau and the initiation and expansion of deserts in northern China, suggesting that the origin and evolution of L. ruthenicum were strongly influenced by Quaternary environment changes. (author)

  15. Habitat Effect on Allometry of a Xeric Shrub (Artemisia ordosica Krasch in the Mu Us Desert of Northern China

    Directory of Open Access Journals (Sweden)

    Weiwei She

    2015-12-01

    Full Text Available Allometric models are useful for assessment of aboveground net primary productivity (ANPP and aboveground biomass (AGB of forests and shrubs, and are widely implemented in forest inventory and management. Multiple forms of allometric models have been used to estimate vegetation carbon storage for desert shrubland, but their validity for biomass estimation has not been tested at a region scale with different habitats. To verify the validity of habitat-specific models, general models (combining data from all habitats/sites, and previously developed models for biomass prediction, we developed both general models and habitat-specific models for aboveground biomass and ANPP of Artemisia ordosica Krasch, a dominant shrub of the Mu Us Desert. Our results showed that models based on crown area or canopy volume consistently explained large parts of the variations in aboveground biomass and ANPP. Model fitting highlighted that general allometric models were inadequate across different habitats, and habitat-specific models were useful for that specific habitat. Previous models might be inappropriate for other sites because of site quality differences. There was a strong habitat effect on the allometric relationships of A. ordosica. Although our study is a case in point, the results indicate that allometric models for desert shrubs should be used with caution and require robust validation if adopted from other studies or applied to different sites/habitats.

  16. Maternal habitat affects germination requirements of Anabasis setifera, a succulent shrub of the Arabian deserts

    Directory of Open Access Journals (Sweden)

    Ali El-Keblawy

    2016-03-01

    Full Text Available The effects of maternal habitat on light and temperature requirements during germination were assessed for the succulent desert shrub Anabasis setifera. Seeds were collected from the Mediterranean habitats of Egypt and the hyper-arid subtropical habitats of the United Arab Emirates (UAE. Seeds from the two populations were germinated in three temperature treatments in both a light/dark regime and continuous darkness. Seeds from the Egyptian population germinated significantly greater and faster than those of UAE. Seeds stored for four months at room temperatures have little dormancy and germinate at wide range of temperatures and light conditions, but seeds stored four months in the natural habitat lost their ability to germinate and rotted 10 days after incubation. The germination response to temperature depended on the habitat type. Seeds of the Egyptian population attained a significantly greater germination at lower temperatures, compared with seeds from the UAE population, but there was no difference in germination between the two populations at higher temperatures. Germination of A. setifera was very fast; most seeds germinated within four days. These results reflect the adaptive strategy of germination in both populations, and may help explain the wide distribution of this species in different climatic regions.

  17. Water use patterns of co-occurring C3 and C4 shrubs in the Gurbantonggut desert in northwestern China.

    Science.gov (United States)

    Tiemuerbieke, Bahejiayinaer; Min, Xiao-Jun; Zang, Yong-Xin; Xing, Peng; Ma, Jian-Ying; Sun, Wei

    2018-09-01

    In water-limited ecosystems, spatial and temporal partitioning of water sources is an important mechanism that facilitates plant survival and lessens the competition intensity of co-existing plants. Insights into species-specific root functional plasticity and differences in the water sources of co-existing plants under changing water conditions can aid in accurate prediction of the response of desert ecosystems to future climate change. We used stable isotopes of soil water, groundwater and xylem water to determine the seasonal and inter- and intraspecific differences variations in the water sources of six C 3 and C 4 shrubs in the Gurbantonggut desert. We also measured the stem water potentials to determine the water stress levels of each species under varying water conditions. The studied shrubs exhibited similar seasonal water uptake patterns, i.e., all shrubs extracted shallow soil water recharged by snowmelt water during early spring and reverted to deeper water sources during dry summer periods, indicating that all of the studied shrubs have dimorphic root systems that enable them to obtain water sources that differ in space and time. Species in the C 4 shrub community exhibited differences in seasonal water absorption and water status due to differences in topography and rooting depth, demonstrating divergent adaptations to water availability and water stress. Haloxylon ammodendron and T. ramosissima in the C 3 /C 4 mixed community were similar in terms of seasonal water extraction but differed with respect to water potential, which indicated that plant water status is controlled by both root functioning and shoot eco-physiological traits. The two Tamarix species in the C 3 shrub community were similar in terms of water uptake and water status, which suggests functional convergence of the root system and physiological performance under same soil water conditions. In different communities, Haloxylon ammodendron differed in terms of summer water extraction

  18. Diurnal Freeze-Thaw Cycles Modify Winter Soil Respiration in a Desert Shrub-Land Ecosystem

    Directory of Open Access Journals (Sweden)

    Peng Liu

    2016-07-01

    Full Text Available Winter soil respiration (Rs is becoming a significant component of annual carbon budgets with more warming in winter than summer. However, little is known about the controlling mechanisms of winter Rs in dryland. We made continuous measurements of Rs in four microsites (non-crust (BS, lichen (LC, moss (MC, and a mixture of moss and lichen (ML in a desert shrub-land ecosystem northern China, to investigate the causes of Rs dynamics in winter. The mean winter Rs ranged from 0.10 to 0.17 µmol CO2 m−2·s−1 across microsites, with the highest value in BS. Winter Q10 (known as the increase in respiration rate per 10 °C increase in temperature values (2.8–19 were much higher than those from the growing season (1.5. Rs and Q10 were greatly enhanced in freeze-thaw cycles compared to frozen days. Diurnal patterns of Rs between freeze-thaw and frozen days differed. Although the freeze-thaw period was relatively short, its cumulative Rs contributed significantly to winter Rs. The presence of biocrust might induce lower temperature, thus having fewer freeze-thaw cycles relative to bare soil, leading to the lower Rs for microsites with biocrusts. In conclusion, winter Rs in drylands was sensitive to soil temperature (Ts and Ts-induced freeze-thaw cycles. The temperature impact on Rs varied among soil cover types. Winter Rs in drylands may become more important as the climate is continuously getting warmer.

  19. Comparison of respiratory and growth characteristics of two co-occurring shrubs from a cold desert, Coleogyne ramosissima (blackbrush) and Atriplex confertifolia (shadscale)

    Science.gov (United States)

    H. A. Summers; B. N. Smith; L. D. Hansen

    2009-01-01

    Coleogyne ramosissima Torr. (blackbrush) and Atriplex confertifolia [Torr. & Frem.] Wats. (shadscale) are cold desert shrubs from different families. Despite very different life histories they often grow in close geographic proximity in the Great Basin and the Colorado Plateau between 800 and 2000 m elevation. The purpose of...

  20. Environmental Consequences of an Industry Based on Harvesting the Wild Desert Shrub Jojoba.

    Science.gov (United States)

    Foster, Kennith E.

    1980-01-01

    Described are the economic and agricultural issues surrounding the cultivation of desert plants, principally the jojoba, as a source of fuel. The article examines the environmental impacts of an industry based on arid-region cultivation of such plants. (RE)

  1. Prescribed burning to affect a state transition in a shrub-encroached desert grassland

    Science.gov (United States)

    Prescribed burning is a commonly advocated and historical practice for control of woody species encroachment into grasslands on all continents. However, desert grasslands of the southwestern United States often lack needed herbaceous fuel loads for effective prescriptions, dominant perennial gramin...

  2. Natural polyploidization within tetraploid and hexaploid populations of the desert shrub Atriplex confertifolia

    Science.gov (United States)

    Stewart C. Sanderson

    2011-01-01

    Shadscale (Atriplex confertifolia) is a wind-pollinated dioecious shrub of western North America with an unusual development of apparently autoploid races, showing all even ploidy levels from 2x to 12x (base x = 9). Of these, tetraploid races are the most frequently encountered, with octoploids the next most common, and hexaploids being much less common. In this study...

  3. Functional identification of a GORK potassium channel from the ancient desert shrub Ammopiptanthus mongolicus (Maxim.) Cheng f.

    Science.gov (United States)

    Li, Junlin; Zhang, Huanchao; Lei, Han; Jin, Man; Yue, Guangzhen; Su, Yanhua

    2016-04-01

    A GORK homologue K(+) channel from the ancient desert shrub Ammopiptanthus mongolicus (Maxim.) Cheng f. shows the functional conservation of the GORK channels among plant species. Guard cell K(+) release through the outward potassium channels eventually enables the closure of stomata which consequently prevents plant water loss from severe transpiration. Early patch-clamp studies with the guard cells have revealed many details of such outward potassium currents. However, genes coding for these potassium-release channels have not been sufficiently characterized from species other than the model plant Arabidopsis thaliana. We report here the functional identification of a GORK (for Gated or Guard cell Outward Rectifying K(+) channels) homologue from the ancient desert shrub Ammopiptanthus mongolicus (Maxim.) Cheng f. AmGORK was primary expressed in shoots, where the transcripts were regulated by stress factors simulated by PEG, NaCl or ABA treatments. Patch-clamp measurements on isolated guard cell protoplasts revealed typical depolarization voltage gated outward K(+) currents sensitive to the extracelluar K(+) concentration and pH, resembling the fundamental properties previously described in other species. Two-electrode voltage-clamp analysis in Xenopus lavies oocytes with AmGORK reconstituted highly similar characteristics as assessed in the guard cells, supporting that the function of AmGORK is consistent with a crucial role in mediating stomatal closure in Ammopiptanthus mongolicus. Furthermore, a single amino acid mutation D297N of AmGORK eventually abolishes both the voltage-gating and its outward rectification and converts the channel into a leak-like channel, indicating strong involvement of this residue in the gating and voltage dependence of AmGORK. Our results obtained from this anciently originated plant support a strong functional conservation of the GORK channels among plant species and maybe also along the progress of revolution.

  4. Functional groups in North Chilean desert shrub species, based on the water sources used

    International Nuclear Information System (INIS)

    Squeo, Francisco A; Olivares, Nancy; Olivares, Sandra; Jorquera, Carmen; Pollastri, Alberto; Aguirre, Evelyn; Aravena, Ramon; Ehleringer, James R

    1999-01-01

    Primary productivity and vegetation structure in arid ecosystems are determined by water availability. In studies conducted in the coastal dry land of North Central Chile (29 degrees 43'S; 71degrees 14'0, 300m), the mechanisms to use different water sources by shrubs species, in two contrasting rainfall years were compared. Information on pheno logical studies, root architecture and water sources used by shrubs through the use of stable isotopes is are discussed. Six functional groups based on water uptake and water use are recognized. The functional groups were defined based on their habits (deciduous and evergreen), their root systems, (shallow, dimorphic and deep), and their ability to use different water sources (surficial and/or deep). Because of the differential impact of the goat overgrazing on different functional groups, this would result on a lower utilization of surficial waters. A management and/or restoration plan should maximize the use of all water sources available to recover the primary productivity and the system stability

  5. Chapter 22. Rosaceous shrubs

    Science.gov (United States)

    Nancy L. Shaw; Stephen B. Monsen; Richard Stevens

    2004-01-01

    Important shrubs of the Rose Family (Rosaceae) in the Intermountain region are distributed from blackbrush and salt desert shrub communities through high elevation forests and meadows. Growth habits of this group vary from trailing brambles to upright shrubs and small trees. Some species are evergreen while others are deciduous. Many of these species are highly valued...

  6. Extensive summer water pulses do not necessarily lead to canopy growth of Great Basin and northern Mojave Desert shrubs.

    Science.gov (United States)

    Snyder, K A; Donovan, L A; James, J J; Tiller, R L; Richards, J H

    2004-10-01

    Plant species and functionally related species groups from arid and semi-arid habitats vary in their capacity to take up summer precipitation, acquire nitrogen quickly after summer precipitation, and subsequently respond with ecophysiological changes (e.g. water and nitrogen relations, gas exchange). For species that respond ecophysiologically, the use of summer precipitation is generally assumed to affect long-term plant growth and thus alter competitive interactions that structure plant communities and determine potential responses to climate change. We assessed ecophysiological and growth responses to large short-term irrigation pulses over one to three growing seasons for several widespread Great Basin and northern Mojave Desert shrub species: Chrysothamnus nauseosus, Sarcobatus vermiculatus, Atriplex confertifolia, and A. parryi. We compared control and watered plants in nine case studies that encompassed adults of all four species, juveniles for three of the species, and two sites for two of the species. In every comparison, plants used summer water pulses to improve plant water status or increase rates of functioning as indicated by other ecophysiological characters. Species and life history stage responses of ecophysiological parameters (leaf N, delta15N, delta13C, gas exchange, sap flow) were consistent with several previous short-term studies. However, use of summer water pulses did not affect canopy growth in eight out of nine comparisons, despite the range of species, growth stages, and site conditions. Summer water pulses affected canopy growth only for C. nauseosus adults. The general lack of growth effects for these species might be due to close proximity of groundwater at these sites, co-limitation by nutrients, or inability to respond due to phenological canalization. An understanding of the connections between short-term ecophysiological responses and growth, for different habitats and species, is critical for determining the significance of

  7. Seasonal Changes in Photosynthetic Energy Utilization in a Desert Shrub (Artemisia ordosica Krasch. during Its Different Phenophases

    Directory of Open Access Journals (Sweden)

    Cai Ren

    2018-03-01

    Full Text Available Our understanding of the mechanisms of plant response to environment fluctuations during plants’ phenological phases (phenophases remains incomplete. Continuous chlorophyll fluorescence (ChlF measurements were acquired from the field to quantify the responses in a desert shrub species (i.e., Artemesia ordosica Krasch. (A. ordosica to environmental factors by assessing variation in several ChlF-linked parameters and to understand plant acclimation to environmental stresses. Maximal quantum yield of PSII photochemistry (Fv/Fm was shown to be reduced by environmental stressors and to be positively correlated to air temperature (Ta during the early and late plant-growing stages, indicating a low temperature-induced inhibition during the leaf expansion and coloration phases. Effective quantum yield of PSII photochemistry (ΦPSII was negatively correlated to incident photosynthetically active radiation (PAR irrespective of phenophase, suggesting excessive radiation-induced inhibition at all phenophases. The main mechanism for acclimating to environmental stress was the regulatory thermal dissipation (ΦNPQ and the long-term regulation of relative changes in Chl a to Chl b. The relative changes in photosynthetic energy utilization and dissipation in energy partitioning meant A. ordosica could acclimatize dynamically to environmental changes. This mechanism may enable plants in arid and semi-arid environments to acclimatize to increasingly extreme environmental conditions under future projected climate change.

  8. Evolutionary History of a Desert Shrub Ephedra przewalskii (Ephedraceae): Allopatric Divergence and Range Shifts in Northwestern China.

    Science.gov (United States)

    Su, Zhi-Hao; Zhang, Ming-Li

    2016-01-01

    Based on two chloroplast DNA sequences, psbA-trnH and trnT-trnF, phylogeographical patterns of a desert shrub, Ephedra przewalskii, were examined across most of its geographic range in northwestern China. A total of sixteen haplotypes were detected. There was a common haplotype in each basin, that was haplotype A in Tarim Basin, haplotype G in Junggar Basin, and haplotype M in Qaidam Basin. Genetic variance mainly occurred among populations, geographic regions, and eleven geographic groups subdivided by SAMOVA analysis. E. przewalskii likely had a smaller and more fragmented geographic range during the Last Glacial Maximum, which was determined based on ecological niche modelling. Three groups of E. przewalskii populations were detected to have experience range expansion, and this was based on significant values of Fu's FS, Tajima's D, and unimodel mismatch distributions. The cold and dry climate during the glacial period of the Quaternary is postulated to have been a driver for significant genetic isolation and divergence among populations or groups in E. przewalskii, whereas the warmer and wetter climate during the interglacial period is speculated to have provided favourable conditions for range expansion of the species.

  9. The effect of the halophytic shrub Lycium ruthenium (Mutt) on selected soil properties of a desert ecosystem in central Iran

    Science.gov (United States)

    Gholam Ali Jalali; Hossein Akbarian; Charles Rhoades; Hamed Yousefzadeh

    2012-01-01

    We compared soil properties beneath naturally-occurring patches of Lycium ruthenicum Murray (fam. Solanaceae) to evaluate the shrub’s potential to improve the fertility of saline soils. Soil pH, total nitrogen and carbon and extractable potassium, magnesium and phosphorus were respectively significantly higher in the A and B horizons of Lycium shrub patches...

  10. Larrea interspecific hybrids revisited (Zygophyllaceae

    Directory of Open Access Journals (Sweden)

    Juan H. Hunziker

    2002-01-01

    Full Text Available Estudios moleculares recientes nos han inducido a realizar una reinterpretación de las relaciones genómicas entre Larrea ameghinoi y las otras especies sudamericanas del género. Se hicieron nuevos intentos para estudiar el apareamiento de los cromosomas del híbrido L. ameghinoi x L. cuneifolia (2n = 3x = 39. El promedio de bivalentes y univalentes fue de 9.8 y 19.4, respectivamente. Dado que el número básico x es 13 la interpretación más razonable es que L. ameghinoi (2n = 2x = 26 (AA y L. cuneifolia (2n = 4x = 52 (DDCC comparten genomas parcialmente homeólogos (A y C que forman la mayoría de los bivalentes y eso explicaría la producción de semillas (15-19.4 % de estos híbridos triploides. El genoma de L. ameghinoi (A podría haber retenido varias partes de un genoma ancestral que hace posible algún apareamiento con aquellos de las otras especies y que lo capacitaría para funcionar como un genoma pivote que permite alguna fertilidad (desde parcial a completa en todas las posibles combinaciones híbridas con sus tres congéneres sudamericanos. Se incluye un apéndice con las leyendas completas del capítulo 2 del libro de Mabry et al. (1977 que fueran omitidas por error en el proceso editorial y de impresión

  11. Deserts

    Science.gov (United States)

    Belnap, Jayne; Webb, Robert H.; Esque, Todd; Brooks, Matthew L.; DeFalco, Lesley; MacMahon, James A.

    2016-01-01

    The deserts of California (Lead photo, Fig. 1) occupy approximately 38% of California’s landscape (Table 1) and consist of three distinct deserts: the Great Basin Desert, Mojave Desert, and Colorado Desert, the latter of which is a subdivision of the Sonoran Desert (Brown and Lowe 1980). The wide range of climates and geology found within each of these deserts result in very different vegetative communities and ecosystem processes and therefore different ecosystem services. In deserts, extreme conditions such as very high and low temperatures and very low rainfall result in abiotic factors (climate, geology, geomorphology, and soils) controlling the composition and function of ecosystems, including plant and animal distributions. This is in contrast to wetter and milder temperatures found in other ecosystems, where biotic interactions are the dominant driving force. However, despite the harsh conditions in deserts, they are home to a surprisingly large number of plants and animals. Deserts are also places where organisms display a wide array of adaptations to the extremes they encounter, providing some of the best examples of Darwinian selection (MacMahon and Wagner 1985, Ward 2009). Humans have utilized these regions for thousands of years, despite the relatively low productivity and harsh climates of these landscapes. Unlike much of California, most of these desert lands have received little high-intensity use since European settlement, leaving large areas relatively undisturbed. Desert landscapes are being altered, however, by the introduction of fire following the recent invasion of Mediterranean annual grasses. As most native plants are not fire-adapted, they Many do not recover, whereas the non-native grasses flourish. Because desert lands are slow to recover from disturbances, energy exploration and development, recreational use, and urban development will alter these landscapes for many years to come. This chapter provides a brief description of where the

  12. Impact of intra- versus inter-annual snow depth variation on water relations and photosynthesis for two Great Basin Desert shrubs.

    Science.gov (United States)

    Loik, Michael E; Griffith, Alden B; Alpert, Holly; Concilio, Amy L; Wade, Catherine E; Martinson, Sharon J

    2015-06-01

    Snowfall provides the majority of soil water in certain ecosystems of North America. We tested the hypothesis that snow depth variation affects soil water content, which in turn drives water potential (Ψ) and photosynthesis, over 10 years for two widespread shrubs of the western USA. Stem Ψ (Ψ stem) and photosynthetic gas exchange [stomatal conductance to water vapor (g s), and CO2 assimilation (A)] were measured in mid-June each year from 2004 to 2013 for Artemisia tridentata var. vaseyana (Asteraceae) and Purshia tridentata (Rosaceae). Snow fences were used to create increased or decreased snow depth plots. Snow depth on +snow plots was about twice that of ambient plots in most years, and 20 % lower on -snow plots, consistent with several down-scaled climate model projections. Maximal soil water content at 40- and 100-cm depths was correlated with February snow depth. For both species, multivariate ANOVA (MANOVA) showed that Ψ stem, g s, and A were significantly affected by intra-annual variation in snow depth. Within years, MANOVA showed that only A was significantly affected by spatial snow depth treatments for A. tridentata, and Ψ stem was significantly affected by snow depth for P. tridentata. Results show that stem water relations and photosynthetic gas exchange for these two cold desert shrub species in mid-June were more affected by inter-annual variation in snow depth by comparison to within-year spatial variation in snow depth. The results highlight the potential importance of changes in inter-annual variation in snowfall for future shrub photosynthesis in the western Great Basin Desert.

  13. Remote sensing of Sonoran Desert vegetation structure and phenology with ground-based LiDAR

    Science.gov (United States)

    Sankey, Joel B.; Munson, Seth M.; Webb, Robert H.; Wallace, Cynthia S.A.; Duran, Cesar M.

    2015-01-01

    Long-term vegetation monitoring efforts have become increasingly important for understanding ecosystem response to global change. Many traditional methods for monitoring can be infrequent and limited in scope. Ground-based LiDAR is one remote sensing method that offers a clear advancement to monitor vegetation dynamics at high spatial and temporal resolution. We determined the effectiveness of LiDAR to detect intra-annual variability in vegetation structure at a long-term Sonoran Desert monitoring plot dominated by cacti, deciduous and evergreen shrubs. Monthly repeat LiDAR scans of perennial plant canopies over the course of one year had high precision. LiDAR measurements of canopy height and area were accurate with respect to total station survey measurements of individual plants. We found an increase in the number of LiDAR vegetation returns following the wet North American Monsoon season. This intra-annual variability in vegetation structure detected by LiDAR was attributable to a drought deciduous shrub Ambrosia deltoidea, whereas the evergreen shrub Larrea tridentata and cactus Opuntia engelmannii had low variability. Benefits of using LiDAR over traditional methods to census desert plants are more rapid, consistent, and cost-effective data acquisition in a high-resolution, 3-dimensional context. We conclude that repeat LiDAR measurements can be an effective method for documenting ecosystem response to desert climatology and drought over short time intervals and at detailed-local spatial scale.

  14. Remote Sensing of Sonoran Desert Vegetation Structure and Phenology with Ground-Based LiDAR

    Directory of Open Access Journals (Sweden)

    Joel B. Sankey

    2014-12-01

    Full Text Available Long-term vegetation monitoring efforts have become increasingly important for understanding ecosystem response to global change. Many traditional methods for monitoring can be infrequent and limited in scope. Ground-based LiDAR is one remote sensing method that offers a clear advancement to monitor vegetation dynamics at high spatial and temporal resolution. We determined the effectiveness of LiDAR to detect intra-annual variability in vegetation structure at a long-term Sonoran Desert monitoring plot dominated by cacti, deciduous and evergreen shrubs. Monthly repeat LiDAR scans of perennial plant canopies over the course of one year had high precision. LiDAR measurements of canopy height and area were accurate with respect to total station survey measurements of individual plants. We found an increase in the number of LiDAR vegetation returns following the wet North American Monsoon season. This intra-annual variability in vegetation structure detected by LiDAR was attributable to a drought deciduous shrub Ambrosia deltoidea, whereas the evergreen shrub Larrea tridentata and cactus Opuntia engelmannii had low variability. Benefits of using LiDAR over traditional methods to census desert plants are more rapid, consistent, and cost-effective data acquisition in a high-resolution, 3-dimensional context. We conclude that repeat LiDAR measurements can be an effective method for documenting ecosystem response to desert climatology and drought over short time intervals and at detailed-local spatial scale.

  15. A mechanistic modeling and data assimilation framework for Mojave Desert ecohydrology

    Science.gov (United States)

    Ng, Gene-Hua Crystal.; Bedford, David; Miller, David

    2014-01-01

    This study demonstrates and addresses challenges in coupled ecohydrological modeling in deserts, which arise due to unique plant adaptations, marginal growing conditions, slow net primary production rates, and highly variable rainfall. We consider model uncertainty from both structural and parameter errors and present a mechanistic model for the shrub Larrea tridentata (creosote bush) under conditions found in the Mojave National Preserve in southeastern California (USA). Desert-specific plant and soil features are incorporated into the CLM-CN model by Oleson et al. (2010). We then develop a data assimilation framework using the ensemble Kalman filter (EnKF) to estimate model parameters based on soil moisture and leaf-area index observations. A new implementation procedure, the “multisite loop EnKF,” tackles parameter estimation difficulties found to affect desert ecohydrological applications. Specifically, the procedure iterates through data from various observation sites to alleviate adverse filter impacts from non-Gaussianity in small desert vegetation state values. It also readjusts inconsistent parameters and states through a model spin-up step that accounts for longer dynamical time scales due to infrequent rainfall in deserts. Observation error variance inflation may also be needed to help prevent divergence of estimates from true values. Synthetic test results highlight the importance of adequate observations for reducing model uncertainty, which can be achieved through data quality or quantity.

  16. A mechanistic modeling and data assimilation framework for Mojave Desert ecohydrology

    Science.gov (United States)

    Ng, Gene-Hua Crystal; Bedford, David R.; Miller, David M.

    2014-06-01

    This study demonstrates and addresses challenges in coupled ecohydrological modeling in deserts, which arise due to unique plant adaptations, marginal growing conditions, slow net primary production rates, and highly variable rainfall. We consider model uncertainty from both structural and parameter errors and present a mechanistic model for the shrub Larrea tridentata (creosote bush) under conditions found in the Mojave National Preserve in southeastern California (USA). Desert-specific plant and soil features are incorporated into the CLM-CN model by Oleson et al. (2010). We then develop a data assimilation framework using the ensemble Kalman filter (EnKF) to estimate model parameters based on soil moisture and leaf-area index observations. A new implementation procedure, the "multisite loop EnKF," tackles parameter estimation difficulties found to affect desert ecohydrological applications. Specifically, the procedure iterates through data from various observation sites to alleviate adverse filter impacts from non-Gaussianity in small desert vegetation state values. It also readjusts inconsistent parameters and states through a model spin-up step that accounts for longer dynamical time scales due to infrequent rainfall in deserts. Observation error variance inflation may also be needed to help prevent divergence of estimates from true values. Synthetic test results highlight the importance of adequate observations for reducing model uncertainty, which can be achieved through data quality or quantity.

  17. Does a decade of elevated [CO2] affect a desert perennial plant community?

    Science.gov (United States)

    Newingham, Beth A; Vanier, Cheryl H; Kelly, Lauren J; Charlet, Therese N; Smith, Stanley D

    2014-01-01

    Understanding the effects of elevated [CO2 ] on plant community structure is crucial to predicting ecosystem responses to global change. Early predictions suggested that productivity in deserts would increase via enhanced water-use efficiency under elevated [CO2], but the response of intact arid plant communities to elevated [CO2 ] is largely unknown. We measured changes in perennial plant community characteristics (cover, species richness and diversity) after 10 yr of elevated [CO2] exposure in an intact Mojave Desert community at the Nevada Desert Free-Air CO2 Enrichment (FACE) Facility. Contrary to expectations, total cover, species richness, and diversity were not affected by elevated [CO2]. Over the course of the experiment, elevated [CO2] had no effect on changes in cover of the evergreen C3 shrub, Larrea tridentata; alleviated decreases in cover of the C4 bunchgrass, Pleuraphis rigida; and slightly reduced the cover of C3 drought-deciduous shrubs. Thus, we generally found no effect of elevated [CO2] on plant communities in this arid ecosystem. Extended drought, slow plant growth rates, and highly episodic germination and recruitment of new individuals explain the lack of strong perennial plant community shifts after a decade of elevated [CO2]. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  18. Shrub mound formation and stability on semi-arid slopes in the Northern Negev Desert of Israel: A field and simulation study

    NARCIS (Netherlands)

    Buis, E.; Temme, A.J.A.M.; Veldkamp, A.; Boeken, B.; Jongmans, A.G.; Breemen, van N.; Schoorl, J.M.

    2010-01-01

    In semi-arid areas vegetation is scarce and often dominated by individual shrubs on raised mounds. The processes of formation of these mounds are diverse and still debated. Often, shrub mound formation is directly related to the formation of vegetation patterns, thereby assuming that shrub mound

  19. Volatile organic compound emissions from Larrea tridentata (creosotebush

    Directory of Open Access Journals (Sweden)

    A. Guenther

    2010-12-01

    Full Text Available We present results from the CREosote ATmosphere Interactions through Volatile Emissions (CREATIVE 2009 field study in southern Arizona aimed at quantifying emission rates of VOCs from creosotebush (Larrea tridentata during the summer 2009 monsoon season. This species was chosen because of its vast distribution in North and South American deserts and because its resins have been reported to contain a rich set of volatile organic compounds (VOC. While a variety of ecosystems have been investigated for VOC emissions, deserts remain essentially unstudied, partially because of their low biomass densities and water limitations. However, during the North American monsoon, a pronounced increase in rainfall from an extremely dry June (80 mm occurs over large areas of the Sonoran desert in the southwestern United States and northwestern Mexico. We observed a strong diurnal pattern of branch emissions and ambient concentrations of an extensive suite of VOCs with maxima in early afternoon. These include VOCs typically observed in forest sites (oxygenated VOCs and volatile isoprenoids as well as a large number of other compounds, some of which have not been previously described from any plant including 1-chloro-2-methoxy-benzene and isobutyronitrile. Although generally considered to be derived from anthropogenic sources, we observed emissions of aromatic compounds including benzene, and a broad range of phenolics. Dimethyl sulfide emissions from creosotebush were higher than reported from any previously studied plant suggesting that terrestrial ecosystems should be reconsidered as an important source of this climatically important gas. We also present direct, primary emission measurements of isoprene and its apparent oxidation products methyl vinyl ketone, methacrolein, and 3-methyl furan (the later three compounds are typically assumed to form from secondary reactions within the atmosphere, as well as a group of compounds considered to be fatty acid

  20. CO2 EFFECTS ON MOJAVE DESERT PLANT INTERACTIONS

    Energy Technology Data Exchange (ETDEWEB)

    L. A. DEFALCO; G. C. FERNANDEZ; S. D. SMITH; R. S. NOWAK

    2004-01-01

    Seasonal and interannual droughts characteristic of deserts have the potential to modify plant interactions as atmospheric CO{sub 2} concentrations continue to rise. At the Nevada Desert FACE (free-air CO{sub 2} enrichment) facility in the northern Mojave Desert, the effects of elevated atmospheric C02 (550 vs. ambient {approx}360 {micro}mol mol{sup -1}) on plant interactions were examined during two years of high and low rainfall. Results suggest that CO{sub 2} effects on the interaction between native species and their understory herbs are dependent on the strength of competition when rainfall is plentiful, but are unimportant during annual drought. Seasonal rainfall for 1999 was 23% the long-term average for the area, and neither elevated CO{sub 2} nor the low production of herbaceous neighbors had an effect on relative growth rate (RGR, d{sup -1}) and reproductive effort (RE, number of flowers g{sup -1}) for Achnatherum hymenoides (early season perennial C{sub 3} grass), Pleuraphis rigida (late season perennial C{sub 4} grass), and Larrea tridentata (evergreen C{sub 3} shrub). In contrast, 1998 received 213% the average rainfall. Consequently, the decrease in RGR and increase in RE for Achnatherum, whose period of growth overlaps directly with that of its neighbors, was exaggerated at elevated CO{sub 2}. However, competitive effects of neighbors on Eriogonum trichopes (a winter annual growing in shrub interspaces), Pleuraphis and Larrea were not affected by elevated CO{sub 2}, and possible explanations are discussed. Contrary to expectations, the invasive annual neighbor Bromus madritensis ssp. rubens had little influence on target plant responses because densities in 1998 and 1999 at this site were well below those found in other studies where it has negatively affected perennial plant growth. The extent that elevated CO{sub 2} reduces the performance of Achnatherum in successive years to cause its loss from the plant community depends more on future pressure

  1. Fruit Size Determines the Role of Three Scatter-Hoarding Rodents as Dispersers or Seed Predators of a Fleshy-Fruited Atacama Desert Shrub

    Science.gov (United States)

    Loayza, Andrea P.; Squeo, Francisco A.

    2016-01-01

    Scatter-hoarding rodents can act as both predators and dispersers for many large-seeded plants because they cache seeds for future use, but occasionally forget them in sites with high survival and establishment probabilities. The most important fruit or seed trait influencing rodent foraging behavior is seed size; rodents prefer large seeds because they have higher nutritional content, but this preference can be counterbalanced by the higher costs of handling larger seeds. We designed a cafeteria experiment to assess whether fruit and seed size of Myrcianthes coquimbensis, an endangered desert shrub, influence the decision-making process during foraging by three species of scatter-hoarding rodents differing in body size: Abrothrix olivaceus, Phyllotis darwini and Octodon degus. We found that the size of fruits and seeds influenced foraging behavior in the three rodent species; the probability of a fruit being harvested and hoarded was higher for larger fruits than for smaller ones. Patterns of fruit size preference were not affected by rodent size; all species were able to hoard fruits within the entire range of sizes offered. Finally, fruit and seed size had no effect on the probability of seed predation, rodents typically ate only the fleshy pulp of the fruits offered and discarded whole, intact seeds. In conclusion, our results reveal that larger M. coquimbensis fruits have higher probabilities of being harvested, and ultimately of its seeds being hoarded and dispersed by scatter-hoarding rodents. As this plant has no other dispersers, rodents play an important role in its recruitment dynamics. PMID:27861550

  2. Factors influencing the natural regeneration of the pioneering shrub Calligonum mongolicum in sand dune stabilization plantations in arid deserts of northwest China.

    Science.gov (United States)

    Fan, Baoli; McHugh, Allen David; Guo, Shujiang; Ma, Quanlin; Zhang, Jianhui; Zhang, Xiaojuan; Zhang, Weixing; Du, Juan; Yu, Qiushi; Zhao, Changming

    2018-03-01

    Calligonum mongolicum is a successful pioneer shrub to combat desertification, which is widely used for vegetation restoration in the desert regions of northwest China. In order to reveal the limitations to natural regeneration of C. mongolicum by asexual and sexual reproduction, following the process of sand dune stabilization, we assessed clonal shoots, seedling emergence, soil seed bank density, and soil physical characteristics in mobile and stabilized sand dunes. Controlled field and pot experiments were also conducted to assess germination and seedling emergence in different dune soil types and seed burial depths. The population density of mature C. mongolicum was significantly different after sand dune stabilization. Juvenile density of C. mongolicm was much lower in stabilized sand dunes than mobile sand dune. There was no significant difference in soil seed bank density at three soil depths between mobile and stabilized sand dunes, while the emergence of seedlings in stabilized dunes was much lower than emergence in mobile dunes. There was no clonal propagation found in stabilized dunes, and very few C. mongolicum seedlings were established on stabilized sand dunes. Soil clay and silt content, air-filled porosity, and soil surface compaction were significantly changed from mobile sand dune to stabilized dunes. Seedling emergence of C. mongolicm was highly dependent on soil physical condition. These results indicated that changes in soil physical condition limited clonal propagation and seedling emergence of C. mongolicum in stabilized sand dunes. Seed bank density was not a limiting factor; however, poor seedling establishment limited C. mongolicum's further natural regeneration in stabilized sand dunes. Therefore, clonal propagation may be the most important mode for population expansion in mobile sand dunes. As a pioneer species C. mongolicum is well adapted to propagate in mobile sand dune conditions, it appears unlikely to survive naturally in

  3. Pruning Shrubs

    OpenAIRE

    French, Sue (Sue C.); Appleton, Bonnie Lee, 1948-2012

    2009-01-01

    Understanding the "natural habit" or "shape" of shrubs will help you determine how to prune them. This publication explores how and when to prune, maintenance and rejuvenation pruning, and the growth habit of shrubs.

  4. Gross rainfall amount and maximum rainfall intensity in 60-minute influence on interception loss of shrubs: a 10-year observation in the Tengger Desert.

    Science.gov (United States)

    Zhang, Zhi-Shan; Zhao, Yang; Li, Xin-Rong; Huang, Lei; Tan, Hui-Juan

    2016-05-17

    In water-limited regions, rainfall interception is influenced by rainfall properties and crown characteristics. Rainfall properties, aside from gross rainfall amount and duration (GR and RD), maximum rainfall intensity and rainless gap (RG), within rain events may heavily affect throughfall and interception by plants. From 2004 to 2014 (except for 2007), individual shrubs of Caragana korshinskii and Artemisia ordosica were selected to measure throughfall during 210 rain events. Various rainfall properties were auto-measured and crown characteristics, i.e., height, branch and leaf area index, crown area and volume of two shrubs were also measured. The relative interceptions of C. korshinskii and A. ordosica were 29.1% and 17.1%, respectively. Rainfall properties have more contributions than crown characteristics to throughfall and interception of shrubs. Throughfall and interception of shrubs can be explained by GR, RI60 (maximum rainfall intensities during 60 min), RD and RG in deceasing importance. However, relative throughfall and interception of two shrubs have different responses to rainfall properties and crown characteristics, those of C. korshinskii were closely related to rainfall properties, while those of A. ordosica were more dependent on crown characteristics. We highlight long-term monitoring is very necessary to determine the relationships between throughfall and interception with crown characteristics.

  5. Surviving in Mountain Climate Refugia: New Insights from the Genetic Diversity and Structure of the Relict Shrub Myrtus nivellei (Myrtaceae) in the Sahara Desert

    OpenAIRE

    Migliore , Jérémy; Baumel , Alex; Juin , Marianick; Fady , Bruno; Roig , Anne; Duong , Nathalie; Médail , Frédéric

    2013-01-01

    International audience; The identification of past glacial refugia has become a key topic for conservation under environmental change, since they contribute importantly to shaping current patterns of biodiversity. However, little attention has been paid so far to interglacial refugia despite their key role for the survival of relict species currently occurring in climate refugia. Here, we focus on the genetic consequences of range contraction on the relict populations of the evergreen shrub M...

  6. Shrubs of California's chaparral, timberland, and wood land: area, ownership, and stand characteristics.

    Science.gov (United States)

    Charles L. Boisinger

    1988-01-01

    A statewide inventory of shrubs in chaparral and on timberland and woodland in California is presented, and the relevance of shrubs to resource management is discussed. Shrub types (excluding coastal sage and Great Basin and desert shrubs) cover about 10 million acres, 73 percent of which is chaparral. Chamise is the most widespread type in chaparral (51 percent of...

  7. Common and distinguishing features of the bacterial and fungal communities in biological soil crusts and shrub root zone soils

    Science.gov (United States)

    Steven, Blaire; Gallegos-Graves, La Verne; Yeager, Chris; Belnap, Jayne; Kuske, Cheryl R.

    2013-01-01

    Soil microbial communities in dryland ecosystems play important roles as root associates of the widely spaced plants and as the dominant members of biological soil crusts (biocrusts) colonizing the plant interspaces. We employed rRNA gene sequencing (bacterial 16S/fungal large subunit) and shotgun metagenomic sequencing to compare the microbial communities inhabiting the root zones of the dominant shrub, Larrea tridentata (creosote bush), and the interspace biocrusts in a Mojave desert shrubland within the Nevada Free Air CO2 Enrichment (FACE) experiment. Most of the numerically abundant bacteria and fungi were present in both the biocrusts and root zones, although the proportional abundance of those members differed significantly between habitats. Biocrust bacteria were predominantly Cyanobacteria while root zones harbored significantly more Actinobacteria and Proteobacteria. Pezizomycetes fungi dominated the biocrusts while Dothideomycetes were highest in root zones. Functional gene abundances in metagenome sequence datasets reflected the taxonomic differences noted in the 16S rRNA datasets. For example, functional categories related to photosynthesis, circadian clock proteins, and heterocyst-associated genes were enriched in the biocrusts, where populations of Cyanobacteria were larger. Genes related to potassium metabolism were also more abundant in the biocrusts, suggesting differences in nutrient cycling between biocrusts and root zones. Finally, ten years of elevated atmospheric CO2 did not result in large shifts in taxonomic composition of the bacterial or fungal communities or the functional gene inventories in the shotgun metagenomes.

  8. Soil water availability and microsite mediate fungal and bacterial phospholipid fatty acid biomarker abundances in Mojave Desert soils exposed to elevated atmospheric CO2

    Science.gov (United States)

    Jin, V. L.; Schaeffer, S. M.; Ziegler, S. E.; Evans, R. D.

    2011-06-01

    Changes in the rates of nitrogen (N) cycling, microbial carbon (C) substrate use, and extracellular enzyme activities in a Mojave Desert ecosystem exposed to elevated atmospheric CO2 suggest shifts in the size and/or functional characteristics of microbial assemblages in two dominant soil microsites: plant interspaces and under the dominant shrub Larrea tridentata. We used ester-linked phospholipid fatty acid (PLFA) biomarkers as a proxy for microbial biomass to quantify spatial and temporal differences in soil microbial communities from February 2003 to May 2005. Further, we used the 13C signature of the fossil CO2 source for elevated CO2 plots to trace recent plant C inputs into soil organic matter (SOM) and broad microbial groups using δ13C (‰). Differences between individual δ13CPLFA and δ13CSOM for fungal biomarkers indicated active metabolism of newer C in elevated CO2 soils. Total PLFA-C was greater in shrub microsites compared to plant interspaces, and CO2 treatment differences within microsites increased under higher soil water availability. Total, fungal, and bacterial PLFA-C increased with decreasing soil volumetric water content (VWC) in both microsites, suggesting general adaptations to xeric desert conditions. Increases in fungal-to-bacterial PLFA-C ratio with decreasing VWC reflected functional group-specific responses to changing soil water availability. While temporal and spatial extremes in resource availability in desert ecosystems contribute to the difficulty in identifying common trends or mechanisms driving microbial responses in less extreme environments, we found that soil water availability and soil microsite interacted with elevated CO2 to shift fungal and bacterial biomarker abundances in Mojave Desert soils.

  9. Homeostasis in leaf water potentials on leeward and windward sides of desert shrub crowns: water loss control vs. high hydraulic efficiency.

    Science.gov (United States)

    Iogna, Patricia A; Bucci, Sandra J; Scholz, Fabián G; Goldstein, Guillermo

    2013-11-01

    Phenotypic plasticity in morphophysiological leaf traits in response to wind was studied in two dominant shrub species of the Patagonian steppe, used as model systems for understanding effects of high wind speed on leaf water relations and hydraulic properties of small woody plants. Morpho-anatomical traits, hydraulic conductance and conductivity and water relations in leaves of wind-exposed and protected crown sides were examined during the summer with nearly continuous high winds. Although exposed sides of the crowns were subjected to higher wind speeds and air saturation deficits than the protected sides, leaves throughout the crown had similar minimum leaf water potential (ΨL). The two species were able to maintain homeostasis in minimum ΨL using different physiological mechanisms. Berberis microphylla avoided a decrease in the minimum ΨL in the exposed side of the crown by reducing water loss by stomatal control, loss of cell turgor and low epidermal conductance. Colliguaja integerrima increased leaf water transport efficiency to maintain transpiration rates without increasing the driving force for water loss in the wind-exposed crown side. Leaf physiological changes within the crown help to prevent the decrease of minimum ΨL and thus contribute to the maintenance of homeostasis, assuring the hydraulic integrity of the plant under unfavorable conditions. The responses of leaf traits that contribute to mechanical resistance (leaf mass per area and thickness) differed from those of large physiological traits by exhibiting low phenotypic plasticity. The results of this study help us to understand the unique properties of shrubs which have different hydraulic architecture compared to trees.

  10. Intervessel connectivity and relationship with patterns of lateral water exchange within and between xylem sectors in seven xeric shrubs from the great Sahara desert.

    Science.gov (United States)

    Halis, Youcef; Mayouf, Rabah; Benhaddya, Mohamed Lamine; Belhamra, Mohamed

    2013-03-01

    The main objective of this study was to evaluate the role of intervessel contacts in determining the patterns of hydraulic integration both within and between xylem sectors. The degree of intervessel contacts and the lateral exchange capability within and between sectors were examined and correlated in different xeric shrubs. A dye injection method was used to detect the connections between vessels; an apoplastic dye was sucked through a known number of vessels and its distribution in the xylem network was followed. Hydraulic techniques were used to measure axial and tangential conductivity both within and between xylem sectors. The intra- and inter-sector integration indexes were then determined as the ratio of tangential to axial conductance. Species differed significantly in the degree of intervessel contacts, intra- and inter-sector integration index. In all cases, hydraulic integration was observed to be higher within sector than between sectors. From the correlation analyses, the intervessel contacts showed a very weak relationship with inter-sector integration index and a strong positive relationship with intra-sector integration index. Results suggested that (1) the factors affecting patterns of lateral flow within xylem sectors might be relatively different from those between sectors. (2) The degree of intervessel contacts was a major determinant of hydraulic integration within the same xylem sector. (3) Intervessel connectivity alone was a poor predictor of hydraulic integration between different sectors, implying a significant contribution of other anatomical, physiological and environmental factors in determining the patterns of integrated-sectored transport within woody stems.

  11. Surviving in mountain climate refugia: new insights from the genetic diversity and structure of the relict shrub Myrtus nivellei (Myrtaceae in the Sahara Desert.

    Directory of Open Access Journals (Sweden)

    Jérémy Migliore

    Full Text Available The identification of past glacial refugia has become a key topic for conservation under environmental change, since they contribute importantly to shaping current patterns of biodiversity. However, little attention has been paid so far to interglacial refugia despite their key role for the survival of relict species currently occurring in climate refugia. Here, we focus on the genetic consequences of range contraction on the relict populations of the evergreen shrub Myrtus nivellei, endemic in the Saharan mountains since at least the end of the last Green Sahara period, around 5.5 ka B.P. Multilocus genotypes (nuclear microsatellites and AFLP were obtained from 215 individuals collected from 23 wadis (temporary rivers in the three main mountain ranges in southern Algeria (the Hoggar, Tassili n'Ajjer and Tassili n'Immidir ranges. Identical genotypes were found in several plants growing far apart within the same wadis, a pattern taken as evidence of clonality. Multivariate analyses and Bayesian clustering revealed that genetic diversity was mainly structured among the mountain ranges, while low isolation by distance was observed within each mountain range. The range contraction induced by the last episode of aridification has likely increased the genetic isolation of the populations of M. nivellei, without greatly affecting the genetic diversity of the species as a whole. The pattern of genetic diversity observed here suggests that high connectivity may have prevailed during humid periods, which is consistent with recent paleoenvironmental reconstructions.

  12. Surviving in mountain climate refugia: new insights from the genetic diversity and structure of the relict shrub Myrtus nivellei (Myrtaceae) in the Sahara Desert.

    Science.gov (United States)

    Migliore, Jérémy; Baumel, Alex; Juin, Marianick; Fady, Bruno; Roig, Anne; Duong, Nathalie; Médail, Frédéric

    2013-01-01

    The identification of past glacial refugia has become a key topic for conservation under environmental change, since they contribute importantly to shaping current patterns of biodiversity. However, little attention has been paid so far to interglacial refugia despite their key role for the survival of relict species currently occurring in climate refugia. Here, we focus on the genetic consequences of range contraction on the relict populations of the evergreen shrub Myrtus nivellei, endemic in the Saharan mountains since at least the end of the last Green Sahara period, around 5.5 ka B.P. Multilocus genotypes (nuclear microsatellites and AFLP) were obtained from 215 individuals collected from 23 wadis (temporary rivers) in the three main mountain ranges in southern Algeria (the Hoggar, Tassili n'Ajjer and Tassili n'Immidir ranges). Identical genotypes were found in several plants growing far apart within the same wadis, a pattern taken as evidence of clonality. Multivariate analyses and Bayesian clustering revealed that genetic diversity was mainly structured among the mountain ranges, while low isolation by distance was observed within each mountain range. The range contraction induced by the last episode of aridification has likely increased the genetic isolation of the populations of M. nivellei, without greatly affecting the genetic diversity of the species as a whole. The pattern of genetic diversity observed here suggests that high connectivity may have prevailed during humid periods, which is consistent with recent paleoenvironmental reconstructions.

  13. Lizard community structure across a grassland - creosote bush ecotone in the Chihuahuan Desert

    OpenAIRE

    Menke, Sean B

    2003-01-01

    I investigated the distribution and abundance of lizard species (Aspidoscelis inornatus, Aspidoscelis tesselatus, Aspidoscelis tigris, Aspidoscelis uniparens, Cophosaurus texanus, Crotaphytus collaris, Eumeces obsoletus, Gambelia wislizenii, Holbrookia maculata, Phrynosoma cornutum, Sceloporus magister, and Uta stansburiana) across a desert grassland - creosote bush (Larrea tridentata) ecotone in Dona Ana County, New Mexico. The ecotonal area in the Jomada del Muerto basin has increased drama...

  14. Differences in Water-use Strategies Along an Aridity Gradient Between Two Coexisting Desert Shrubs (Reaumuria soongorica and Nitraria sphaerocarpa): Isotopic Approaches with Physiological Evidence

    Science.gov (United States)

    Zhang, C.; Li, X.; Huawu, W.; Wang, P.; Wang, Y.; WU, X.; Li, W.; Huang, Y.

    2017-12-01

    Understanding of the responses of different plant species to changes in available water source is critical for accurately modeling and predicting species dynamic and the effect of expected climate change on plant distribution. Our study aimed to explore whether there were differences of water use strategies between the two coexisting shrubs (Reaumuria songarica Maxim and Nitraria.sphaerocarpa Maxim ) in response to different amounts of summer precipitation. We conducted a 3-year field observations at three sites along a gradient of precipitation from middle to lower reaches of Heihe River basin (HRB), northwestern China. Stable oxygen composition (δ18O) in plant xylem water, soil water, and groundwater were analyzed concurrently with ecophysiological measurement at monthly intervals during the growing seasons. The results showed that both R. soongorica and N. sphaerocarpa growing in regions with precipitation dominated water supply exhibited distinct seasonal pattern in water source utilization. In contrast, R. soongorica in the most arid site has the consistent water-use strategy relying primarily on groundwater sources regardless seasonality of precipitation. Water source for coexisting R. soongorica and N. sphaerocarpa did not differ at the sites where precipitation amount was high, but they were a significant different in more arid locations. N. sphaerocarpa is more sensitive to summer precipitation than R. soongorica in terms of predawn water potential (Ψpd), stomatal conductance and foliage δ13C. Our findings reveal that plant relying groundwater sources could maintain a consistent water use strategies, but did not for plants took up precipitation-derived water source. Our results demonstrated that N. sphaerocarpa with a shallower rooting system was more responsive for summer rainfall than did for R. soongorica. We also found that the difference in water source uptake between the coexisting species was more apparent in more arid locations. Results of this

  15. Spatial patterns of grasses and shrubs in an arid grassland environment

    Science.gov (United States)

    In the Chihuahuan Desert of Mexico and New Mexico, shrub invasion is a common problem, and once-abundant grassland ecosystems are being replaced by shrub-dominated habitat. The spatial arrangement of grasses and shrubs in these arid grasslands can provide better insight into community dynamics and c...

  16. Jojoba - an oil-yielding desert shrub

    Energy Technology Data Exchange (ETDEWEB)

    Muthana, K.D.

    1981-01-01

    Jojoba is being cultivated in many arid areas including India. Brief descriptions are given of the properties and uses of its oil, nursery and planting techniques, irrigation and fertilization, flowering and fruiting, water requirements, and pests and diseases.

  17. Spatial and temporal patterns of water availability in a grass-shrub ecotone and implications for grassland recovery in arid environments

    Science.gov (United States)

    Encroachment of woody shrubs into historic desert grasslands is a major problem throughout the world. Conversion of grasslands to shrub-dominated systems may result in significant alteration of biogeochemical processes and reduced resource availability in shrub interspaces, making grassland recover...

  18. Juan Larrea Holguín y su visión de la universidad

    OpenAIRE

    Juan Carlos Riofrío Martínez-Villalba

    2015-01-01

    La investigación muestra la visión teórica y práctica que Larrea te- nía de la universidad. Para ello revisa tanto sus escritos, como varias anécdotas de su vida, bajo una metodología histórico-deductiva que compara la teoría con la práctica. El estudio inicia con la visión genérica de la labor académica, para luego abordar el tema vivencial. Como con- clusión se obtienen varios valores universitarios que Larrea supo vivir: el amor y confianza en la verdad, la actitud magnánima ante l...

  19. Organic matter composition and substrate diversity under elevated CO2 in the Mojave Desert

    Science.gov (United States)

    Tfaily, M. M.; Hess, N. J.; Koyama, A.; Evans, R. D.

    2016-12-01

    Little is known about how rising atmospheric CO2 concentration will impact long-term plant biomass or the dynamics of soil organic matter (SOM) in arid ecosystems. In this study, we investigated the change in the molecular composition of SOM by high resolution mass spectrometry after 10 years exposure to elevated atmospheric CO2 concentrations at the Nevada Desert FACE Facility. Samples were collected from soil profiles from 0 to 1m in 0.2m increments under the dominant evergreen shrub (Larrea tridentata). The differences in the composition of SOM were more evident in soils close to the surface and consistent with higher bulk soil organic carbon (C) and total nitrogen (N) concentrations under elevated than ambient CO2, reflecting increased net productivity of shrubs under elevated CO2, which could be attributed to increased litter input from above-ground biomass and/or shallow roots, root exudation and/or microbial residues. This was further supported by the significant increase in the abundance of amino sugars-, protein- and carbohydrate-like compounds. These compounds are involved in diverse pathways ranging from sugars and amino-acid metabolism to lipid biosynthesis. This indicates increased activity and metabolism under elevated CO2 and suggests that elevated CO2 have altered microbial C use patterns, reflecting changes in the quality and quantity of soil C inputs. A significant increase in the mineral-bound soil organic C was also observed in the surface soils under elevated CO2. This was accompanied by increased microbial residues as identified by mass spectrometry that supports microbial lipid analysis, and reflecting accelerated microbial turnover under elevated CO2. Fungal neutral lipid fatty acids (NLFA) abundance doubled under elevated CO2. When provided with excess labile compounds, such as root exudates, and with limited supply of nutrients, fungi assimilate the excess labile C and store it as NLFA likely contributing to increased total N

  20. [Temporal diversity dynamics of the arbuscular mycorrhizal fungi of Larrea tridentata (Sesse & Mocino ex DC) Coville in a semi-arid ecosystem].

    Science.gov (United States)

    Hernández-Zamudio, Genoveva; Sáenz-Mata, Jorge; Moreno-Reséndez, Alejandro; Castañeda-Gaytán, Gamaliel; Ogaz, Alfredo; Carballar-Hernández, Santos; Hernández-Cuevas, Laura

    2017-12-06

    Arbuscular mycorrhizal fungi (AMF) of arid and semiarid ecosystems are important for the development of plants that grow under biotic stress in wild or in agro-ecosystems. There is little information on the temporal diversity of these organisms in perennial plants from arid ecosystems in northern Mexico. On this study, the mycorrhizal colonization and the temporal diversity of AMF in the rhizosphere of Larrea tridentata, perennial plant abundant in the Chihuahuan Desert region were explored. Samples of the rhizosphere and roots of fifteen plants in each of the three sampling dates during the 2015 year were obtained. A total of 17 species of HMA belonging to 12 genera and 7 families within the phylum Glomeromycota in all three sampling dates were found. Funneliformis geosporum was the dominant species belonging to the family Glomeraceae which possess the highest genera number on L. tridentata. The highest mycorrhization percentage was in February with 83.22, followed by September and May with 75.27 and 65.27%, respectively. A maximum of 16 AM fungal species were isolated and identified from L. tridentata rhizosphere in February, 15 species in May and 12 species in September. Statistical analysis showed significant differences between sampling dates in the spores number. Copyright © 2017 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  1. Measuring carbon in shrubs. Chapter 5

    Science.gov (United States)

    David C. Chojnacky; Mikaila Milton

    2008-01-01

    Although shrubs are a small component of the overall carbon budget, shrub lands and shrub cover within forested lands warrant monitoring with consistent procedures to account for carbon in shrubs and to track carbon accumulation as communities change from shrubs to trees and vice versa. Many different procedures have been used to sample and measure shrubs (Bonham 1989...

  2. Shift in soil microbial communities with shrub encroachment in Inner Mongolia grasslands, China

    Science.gov (United States)

    Shen, H.; Li, H.; Zhang, J.; Hu, H.; Chen, L.; Zhu, Y.; Fang, J.

    2017-12-01

    The ongoing expansion of shrub encroachment into grasslands represents a unique form of land cover change. How this process affects soil microbial communities is poorly understood. In this study, we aim to assess the effects of shrub encroachment on soil microbial biomass, abundance and composition by comparing data between shrub patches and neighboring herb patches in shrub-encroached grasslands (SEGs) in Inner Mongolia, China. Fourteen SEG sites from two ecosystem types (typical and desert grasslands) were investigated. The phospholipid fatty acid (PLFA) method was used to analyze the composition and biomass of the soil microbial community. Our results showed that the top-soil microbial biomass and abundances of gram-negative bacteria, arbuscular mycorrhizal fungi, and actinomycetes were significantly higher in shrub patches than in herb patches in both typical and desert grasslands (P fungi to bacteria ratio was significantly higher in shrub patches than in herb patches in desert grassland (P soil microbial communities, which makes the microbial communities toward a fresh organic carbon-based structure. This study highlights the importance of edaphic and climate factors in microbial community shifts in SEGs.

  3. [Water parameters of desert xeric shrubs in west Erdos region].

    Science.gov (United States)

    Li, Xiao; Wang, Ying-chun; Zheng, Rong

    2007-05-01

    By using PV technique, this paper studied the turgor pressure (psi P), cell elastic modulus (epsilon), and relative cell volume (RCV) of super xerophytes Potaninia mongolica, Reaumuria soongorica, Tetraena mongolica and Zygophyllum xanthoxylon in west Alashan, with the relationships among the parameters analyzed. The results showed that R. soongorica had the strongest ability to maintain maximum turgor pressure (a = 2.4593). The four plants maintained their turgor pressure by different ways, i.e., P. mongolica maintained it by elastic adjustment (epsilon max = 8.4005 MPa), R. soongorica by osmotic adjustment (psi pi100 = -3.1302 MPa; psi0 = -3.5074 MPa), T. mongolica by both osmotic and elastic adjustment, and Z. xanthoxylon by osmotic adjustment, which had weak adjustment ability. The cell wall of P. mongolica was soft and highly elastic, benefiting to the water absorption by root and stem and to the fast water transmission. T. mongolica also had relatively soft and high elastic cell wall, and its psi P, and epsilon changed slowly with decreasing RCV, suggesting that this plant had strong ability of holding water and resisting dehydration.

  4. Is climate change mitigation the best use of desert shrublands?

    Science.gov (United States)

    Susan E. Meyer

    2011-01-01

    In a world where the metrics of the carbon economy have become a major issue, it may come as a surprise that intact cold desert shrublands can sequester significant amounts of carbon, both as biomass and in the form of SOC (soil organic carbon). Xerophytic shrubs invest heavily in belowground biomass, placing fixed carbon in an environment where it turns over only very...

  5. Determinismo, analogia e preveggenza in Pierre Mabille. Basi per un raffronto con Juan Larrea

    Directory of Open Access Journals (Sweden)

    A. D’Urso

    2012-08-01

    Full Text Available ENThis text is a brief commentary on Pierre Mabille’s Del nuevo mundo, published in Mexico in 1943 and that we give here in our translation, which is perhaps absolutely the first in Italy concerning one of the writings of this important Surrealist, who is little studied by the French criticism even.Within the limits of the themes of this article and of the space granted here, we preferred to illustrate the implicit – and yet so evident – relations between Mabille’s thought and Dialectical Materialism, particularly by showing those passages of his text which seem to refer to some (even minor Marx and Engels’ works, rather than delay in a bio-bibliographical reconstruction and examine thoroughly the influence of materialist Monism, alchemical Hermetism and revolutionary Freemasonry on the “stylistic” construction of this brief essay.Around the themes of determinism, analogy and clairvoyance, Mabille’s original reading of fundamental thesis of Hegelian Dialectics and Marxist Materialism in their possible synthesis with the principles of cosmic Monism will be put in relief. This is an interpretation which permits to face such matters from inside a fully Surrealist point of view, rather than from outside it (and a little more metaphysically as Juan Larrea pretended to, thus allowing to put the basis for a possible comparison between him and his friend Mabille, who both never failed to influence each other.Keywords: Monism; Surrealism; Materialism; Engels; Marxism.ITQuesto testo è un breve commento dell’articolo Del nuevo mundo di Pierre Mabille, apparso in Messico nel 1943 e che qui forniamo nella nostra traduzione, probabilmente la prima in assoluto in Italia di uno scritto di quest’importante surrealista, poco studiato anche dalla critica francese.Nei limiti dello spazio disponibile e delle tematiche del testo in questione abbiamo preferito esporre le rela¬zioni implicite – eppure così evidenti – del pensiero di Mabille

  6. Seed distribution of four co-occurring grasses around Artemisia halodendron shrubs in a sandy habitat

    Science.gov (United States)

    Li, Feng-Rui; Zhao, Wen-Zhi; Kang, Ling-Fen; Liu, Ji-Liang; Huang, Zhi-Gang; Wang, Qi

    2009-05-01

    In a natural population of the perennial semi-shrub Artemisia halodendron in a shifting sandy habitat in the Horqin Desert of eastern Inner Mongolia, six isolated adult A. halodendron individuals of similar canopy size were chosen as target plants. The density of seeds in the top 5 cm soil depth around shrubs was measured using transects aligned to the four main wind directions and at different distances from the shrub base on both the windward and leeward sides. The effects of shrub presence on seed distribution of four co-occurring grasses were examined by linking seed distribution to seed traits. Of the four species, Setaris viridis and Eragrostis pilosa had small but similar seed mass, while Chloris virgata and Aristida adscensionis had large but similar seed mass. The species were grouped into two cohorts: small-seeded vs. large-seeded cohorts, and shrub presence effects on seed distribution of both cohorts were examined. We found marked difference in the seed distribution pattern among species, especially between the small-seeded and large-seeded cohorts. The small-seeded cohort had significantly higher seed accumulation on the windward than the leeward sides in the most and least prevailing wind directions and much higher seed accumulation on the leeward than the windward sides in the second and third most prevailing wind directions, while opposite patterns occurred in the large-seeded cohort. Four species also showed marked variation in the seed distribution pattern among transects and between windward and leeward sides of each transect. This study provided further evidence that shrubs embedded in a matrix of herbaceous plants is a key cause of spatial heterogeneity in seed availability of herbaceous species. However, seed distribution responses to the presence of shrubs will vary with species as well as with wind direction, sampling position (windward vs. leeward sides of the shrub) and distance from the shrub.

  7. Shrub expansion in SW Greenland

    DEFF Research Database (Denmark)

    Jørgensen, Rasmus Halfdan

    Arctic regions have experienced higher temperatures in recent decades, and the warming trend is projected to continue in the coming years. Arctic ecosystems are considered to be particularly vulnerable to climate change. Expansion of shrubs has been observed widely in tundra areas across the Arctic......, and has a range of ecosystem effects where it occurs. Shrub expansion has to a large extend been attributed to increasing temperatures over the past century, while grazing and human disturbance have received less attention. Alnus viridis ssp. crispa is a common arctic species that contributes...... to increasing shrub cover. Despite this, there is only limited experimental evidence that growth of the species responds to warming. Plant populations in fragmented and isolated locations could face problems adapting to a warming climate due to limited genetic variation and restricted migration from southern...

  8. Root systems of chaparral shrubs.

    Science.gov (United States)

    Kummerow, Jochen; Krause, David; Jow, William

    1977-06-01

    Root systems of chaparral shrubs were excavated from a 70 m 2 plot of a mixed chaparral stand located on a north-facing slope in San Diego County (32°54' N; 900 m above sea level). The main shrub species present were Adenostoma fasciculatum, Arctostaphylos pungens, Ceanothus greggii, Erigonum fasciculatum, and Haplopappus pinifolius. Shrubs were wired into their positions, and the soil was washed out beneath them down to a depth of approximately 60 cm, where impenetrable granite impeded further washing and root growth was severely restricted. Spacing and interweaving of root systems were recorded by an in-scale drawing. The roots were harvested in accordance to their depths, separated into diameter size classes for each species, and their dry weights measured. Roots of shrubs were largely confined to the upper soil levels. The roots of Eriogonum fasciculatum were concentrated in the upper soil layer. Roots of Adenostoma fasciculatum tended to be more superficial than those from Ceanothus greggii. It is hypothesized that the shallow soil at the excavation site impeded a clear depth zonation of the different root systems. The average dry weight root:shoot ratio was 0.6, ranging for the individual shrubs from 0.8 to 0.4. The root area always exceeded the shoot area, with the corresponding ratios ranging from 6 for Arctostaphylos pungens to 40 for Haplopappus pinifolius. The fine root density of 64 g dry weight per m 2 under the canopy was significantly higher than in the unshaded area. However, the corresponding value of 45 g dry weight per m 2 for the open ground is still high enough to make the establishment of other shrubs difficult.

  9. Above- and Belowground Biomass Allocation in Shrub Biomes across the Northeast Tibetan Plateau

    Science.gov (United States)

    Yang, Yuanhe; Yang, Lucun; Zhou, Guoying

    2016-01-01

    Biomass partitioning has been explored across various biomes. However, the strategies of allocation in plants still remain contentious. This study investigated allocation patterns of above- and belowground biomass at the community level, using biomass survey from the Tibetan Plateau. We explored above- and belowground biomass by conducting three consecutive sampling campaigns across shrub biomes on the northeast Tibetan Plateau during 2011–2013. We then documented the above-ground biomass (AGB), below-ground biomass (BGB) and root: shoot ratio (R/S) and the relationships between R/S and environment factors using data from 201 plots surveyed from 67 sites. We further examined relationships between above-ground and below-ground biomass across various shrub types. Our results indicated that the median values of AGB, BGB, and R/S in Tibetan shrub were 1102.55, 874.91 g m-2, and 0.85, respectively. R/S showed significant trend with mean annual precipitation (MAP), while decreased with mean annual temperature (MAT). Reduced major axis analysis indicated that the slope of the log-log relationship between above- and belowground biomass revealed a significant difference from 1.0 over space, supporting the optimal hypothesis. Interestingly, the slopes of the allometric relationship between log AGB and log BGB differed significantly between alpine and desert shrub. Our findings supported the optimal theory of above- and belowground biomass partitioning in Tibetan shrub, while the isometric hypothesis for alpine shrub at the community level. PMID:27119379

  10. Chapter 23. Shrubs of other families

    Science.gov (United States)

    Stephen B. Monsen; Richard Stevens; Nancy L. Shaw

    2004-01-01

    Numerous genera and species of shrubs occur throughout the Intermountain region in addition to those included in the Asteraceae, Chenopodiaceae, and Rosaceae families. Although shrubs are widespread throughout this region and dominate many areas, species richness is low compared to the shrub flora of the Pacific United States, Chile, western Australia, and South Africa...

  11. Origins and ecological consequences of pollen specialization among desert bees.

    Science.gov (United States)

    Minckley, R L; Cane, J H; Kervin, L

    2000-02-07

    An understanding of the evolutionary origins of insect foraging specialization is often hindered by a poor biogeographical and palaeoecological record. The historical biogeography (20,000 years before present to the present) of the desert-limited plant, creosote bush (Larrea tridentata), is remarkably complete. This history coupled with the distribution pattern of its bee fauna suggests pollen specialization for creosote bush pollen has evolved repeatedly among bees in the Lower Sonoran and Mojave deserts. In these highly xeric, floristically depauperate environments, species of specialist bees surpass generalist bees in diversity, biomass and abundance. The ability of specialist bees to facultatively remain in diapause through resource-poor years and to emerge synchronously with host plant bloom in resource-rich years probably explains their ecological dominance and persistence in these areas. Repeated origins of pollen specialization to one host plant where bloom occurs least predictably is a counter-example to prevailing theories that postulate such traits originate where the plant grows best and blooms most reliably Host-plant synchronization, a paucity of alternative floral hosts, or flowering attributes of creosote bush alone or in concert may account for the diversity of bee specialists that depend on this plant instead of nutritional factors or chemical coevolution between floral rewards and the pollinators they have evolved to attract.

  12. Legume Shrubs Are More Nitrogen-Homeostatic than Non-legume Shrubs.

    Science.gov (United States)

    Guo, Yanpei; Yang, Xian; Schöb, Christian; Jiang, Youxu; Tang, Zhiyao

    2017-01-01

    Legumes are characterized as keeping stable nutrient supply under nutrient-limited conditions. However, few studies examined the legumes' stoichiometric advantages over other plants across various taxa in natural ecosystems. We explored differences in nitrogen (N) and phosphorus (P) stoichiometry of different tissue types (leaf, stem, and root) between N 2 -fixing legume shrubs and non-N 2 -fixing shrubs from 299 broadleaved deciduous shrubland sites in northern China. After excluding effects of taxonomy and environmental variables, these two functional groups differed considerably in nutrient regulation. N concentrations and N:P ratios were higher in legume shrubs than in non-N 2 -fixing shrubs. N concentrations were positively correlated between the plants and soil for non-N 2 -fixing shrubs, but not for legume shrubs, indicating a stronger stoichiometric homeostasis in legume shrubs than in non-N 2 -fixing shrubs. N concentrations were positively correlated among three tissue types for non-N 2 -fixing shrubs, but not between leaves and non-leaf tissues for legume shrubs, demonstrating that N concentrations were more dependent among tissues for non-N 2 -fixing shrubs than for legume shrubs. N and P concentrations were correlated within all tissues for both functional groups, but the regression slopes were flatter for legume shrubs than non-N 2 -fixing shrubs, implying that legume shrubs were more P limited than non-N 2 -fixing shrubs. These results address significant differences in stoichiometry between legume shrubs and non-N 2 -fixing shrubs, and indicate the influence of symbiotic nitrogen fixation (SNF) on plant stoichiometry. Overall, N 2 -fixing legume shrubs are higher and more stoichiometrically homeostatic in N concentrations. However, due to excess uptake of N, legumes may suffer from potential P limitation. With their N advantage, legume shrubs could be good nurse plants in restoration sites with degraded soil, but their P supply should be taken care

  13. Enhancing and restoring habitat for the desert tortoise

    Science.gov (United States)

    Abella, Scott R.; Berry, Kristin H.

    2016-01-01

    Habitat has changed unfavorably during the past 150 y for the desert tortoise Gopherus agassizii, a federally threatened species with declining populations in the Mojave Desert and western Sonoran Desert. To support recovery efforts, we synthesized published information on relationships of desert tortoises with three habitat features (cover sites, forage, and soil) and candidate management practices for improving these features for tortoises. In addition to their role in soil health and facilitating recruitment of annual forage plants, shrubs are used by desert tortoises for cover and as sites for burrows. Outplanting greenhouse-grown seedlings, protected from herbivory, has successfully restored (>50% survival) a variety of shrubs on disturbed desert soils. Additionally, salvaging and reapplying topsoil using effective techniques is among the more ecologically beneficial ways to initiate plant recovery after severe disturbance. Through differences in biochemical composition and digestibility, some plant species provide better-quality forage than others. Desert tortoises selectively forage on particular annual and herbaceous perennial species (e.g., legumes), and forage selection shifts during the year as different plants grow or mature. Nonnative grasses provide low-quality forage and contribute fuel to spreading wildfires, which damage or kill shrubs that tortoises use for cover. Maintaining a diverse “menu” of native annual forbs and decreasing nonnative grasses are priorities for restoring most desert tortoise habitats. Reducing herbivory by nonnative animals, carefully timing herbicide applications, and strategically augmenting annual forage plants via seeding show promise for improving tortoise forage quality. Roads, another disturbance, negatively affect habitat in numerous ways (e.g., compacting soil, altering hydrology). Techniques such as recontouring road berms to reestablish drainage patterns, vertical mulching (“planting” dead plant material

  14. Seasonal Distribution and Diversity of Ground Arthropods in Microhabitats Following a Shrub Plantation Age Sequence in Desertified Steppe

    Science.gov (United States)

    Liu, Rentao; Zhu, Fan; Song, Naiping; Yang, Xinguo; Chai, Yongqing

    2013-01-01

    In desertified regions, shrub-dominated patches are important microhabitats for ground arthropod assemblages. As shrub age increases, soil, vegetation and microbiological properties can change remarkably and spontaneously across seasons. However, relatively few studies have analyzed how ground arthropods respond to the microhabitats created by shrubs of different plantation ages across seasons. Using 6, 15, 24 and 36 year-old plantations of re-vegetated shrubs (Caragana koushinskii) in the desert steppe of northwestern China as a model system, we sampled ground arthropod communities using a pitfall trapping method in the microhabitats under shrubs and in the open areas between shrubs, during the spring, summer and autumn. The total ground arthropod assemblage was dominated by Carabidae, Melolonthidae, Curculionidae, Tenebrionidae and Formicidae that were affected by plantation age, seasonal changes, or the interaction between these factors, with the later two groups also influenced by microhabitat. Overall, a facilitative effect was observed, with more arthropods and a greater diversity found under shrubs as compared to open areas, but this was markedly affected by seasonal changes. There was a high degree of similarity in arthropod assemblages and diversity between microhabitats in summer and autumn. Shrub plantation age significantly influenced the distribution of the most abundant groups, and also the diversity indices of the ground arthropods. However, there was not an overall positive relationship between shrub age and arthropod abundance, richness or diversity index. The influence of plantation age on arthropod communities was also affected by seasonal changes. From spring through summer to autumn, community indices of ground arthropods tended to decline, and a high degree of similarity in these indices (with fluctuation) was observed among different ages of shrub plantation in autumn. Altogether the recovery of arthropod communities was markedly affected by

  15. Phenolic compounds as indicators of drought resistance in shrubs from Patagonian shrublands (Argentina).

    Science.gov (United States)

    Varela, M Celeste; Arslan, Idris; Reginato, Mariana A; Cenzano, Ana M; Luna, M Virginia

    2016-07-01

    Plants exposed to drought stress, as usually occurs in Patagonian shrublands, have developed different strategies to avoid or tolerate the lack of water during their development. Production of phenolic compounds (or polyphenols) is one of the strategies used by some native species of adverse environments to avoid the oxidative damage caused by drought. In the present study the relationship between phenolic compounds content, water availability and oxidative damage were evaluated in two native shrubs: Larrea divaricata (evergreen) and Lycium chilense (deciduous) of Patagonian shrublands by their means and/or by multivariate analysis. Samples of both species were collected during the 4 seasons for the term of 1 year. Soil water content, relative water content, total phenols, flavonoids, flavonols, tartaric acid esters, flavan-3-ols, proanthocyanidins, antioxidant capacity and lipid peroxidation were measured. According to statistical univariate analysis, L. divaricata showed high production of polyphenols along the year, with a phenolic compound synthesis enhanced during autumn (season of greatest drought), while L. chilense has lower production of these compounds without variation between seasons. The variation in total phenols along the seasons is proportional to the antioxidant capacity and inversely proportional to lipid peroxidation. Multivariate analysis showed that, regardless their mechanism to face drought (avoidance or tolerance), both shrubs are well adapted to semi-arid regions and the phenolic compounds production is a strategy used by these species living in extreme environments. The identification of polyphenol compounds showed that L. divaricata produces different types of flavonoids, particularly bond with sugars, while L. chilense produces high amount of non-flavonoids compounds. These results suggest that flavonoid production and accumulation could be a useful indicator of drought tolerance in native species. Copyright © 2016 Elsevier Masson

  16. Development of pH-responsive biopolymer-silica composites loaded with Larrea divaricata Cav. extract with antioxidant activity.

    Science.gov (United States)

    Alvarez Echazú, María Inés; Olivetti, Christian Ezequiel; Peralta, Ignacio; Alonso, Maria Rosario; Anesini, Claudia; Perez, Claudio Javier; Alvarez, Gisela Solange; Desimone, Martin Federico

    2018-05-07

    A detailed study of biomaterials is mandatory to comprehend their feasible biomedical applications in terms of drug delivery and tissue regeneration. Particularly, mucoadhesive biopolymers such as chitosan (chi) and carboxymethylcellulose (CMC) have become interesting biomaterials regards to their biocompatibility and non-toxicity for oral mucosal drug delivery. In this work, pH-responsive biopolymer-silica composites (Chi-SiO 2 , Chi-CMC-SiO 2 ) were developed. These two types of composites presented a different swelling behavior due to the environmental pH. Moreover, the nanocomposites were loaded with aqueous Larrea divaricata Cav. extract (Ld), a South American plant which presents antioxidant properties suitable for the treatment of gingivoperiodontal diseases. Chi-CMC-SiO 2 composites showed the highest incorporation and reached the 100% of extract release in almost 4 days while they preserved their antioxidant properties. In this study, thermal and swelling behavior were pointed out to show the distinct water-composite interaction and therefore to evaluate their mucoadhesivity. Furthermore, a cytotoxicity test with 3T3 fibroblasts was assessed, showing that in both composites the addition of Larrea divaricata Cav. extract increased fibroblast proliferation. Lastly, preliminary in vitro studies were performed with simulated body fluids. Indeed, SEM-EDS analysis indicated that only chi-SiO 2 composite may provide an environment for possible biomineralization while the addition of CMC to the composites discouraged calcium accumulation. In conclusion, the development of bioactive composites could promote the regeneration of periodontal tissue damaged throughout periodontal disease and the presence of silica nanoparticles could provide an environment for biomineralization. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Growth responses of five desert plants as influenced by biological soil crusts from a temperate desert, China

    Science.gov (United States)

    Zhang, Yuanming; Belnap, Jayne

    2015-01-01

    In almost all dryland systems, biological soil crusts (biocrusts) coexist alongside herbaceous and woody vegetation, creating landscape mosaics of vegetated and biocrusted patches. Results from past studies on the interaction between biocrusts and vascular plants have been contradictory. In the Gurbantunggut desert, a large temperate desert in northwestern China, well-developed lichen-dominated crusts dominate the areas at the base and between the sand dunes. We examined the influence of these lichen-dominated biocrusts on the germination, growth, biomass accumulation, and elemental content of five common plants in this desert: two shrubs (Haloxylon persicum, Ephedra distachya) and three herbaceous plants (Ceratocarpus arenarius, Malcolmia africana and Lappula semiglabra) under greenhouse conditions. The influence of biocrusts on seed germination was species-specific. Biocrusts did not affect percent germination in plants with smooth seeds, but inhibited germination of seeds with appendages that reduced or eliminated contact with the soil surface or prevented seeds from slipping into soil cracks. Once seeds had germinated, biocrusts had different influences on growth of shrub and herbaceous plants. The presence of biocrusts increased concentrations of nitrogen but did not affect phosphorus or potassium in tissue of all tested species, while the uptake of the other tested nutrients was species-specific. Our study showed that biocrusts can serve as a biological filter during seed germination and also can influence growth and elemental uptake. Therefore, they may be an important trigger for determining desert plant diversity and community composition in deserts.

  18. Chemicals from trees and shrubs

    Energy Technology Data Exchange (ETDEWEB)

    Halloran, G M

    1978-01-01

    The need for finding economically viable alternatives to crude oil is discussed in the context of Australia's uncertain reserves of black coal, from which crude oil derivatives may have to be obtained when oil supplies become depleted. A table is presented showing the major fractions of crude oil and the likely sources (in general terms) of equivalent substances from forest trees, shrubs and agricultural species.

  19. BMDO Raptor/Talon Program

    Science.gov (United States)

    1993-06-01

    has been graded and covered with gravel. Vegetation adjacent to and surrounding the tower consists of low growing desert shrubs (creosote bush (Larrea...lucida) White Sands wood rat (Neotoma micropus leucophaeus) Plants Mosquito plant (Agastache cana) Supreme sage (Sälvia summa) Dune unicorn plant

  20. ON PHYTOCOENOTICAL MAPPING OF CASPIAN DESERT REGION

    Directory of Open Access Journals (Sweden)

    I. SAFRONOVA

    2004-05-01

    Full Text Available The phytoecological map (l :2.500.000 for Desert Region, including the Caspian Lowland and the Mangyshlak. has been compiled. It gives an idea of latitudinal differentiation cf vegetation. Edaphic variants and lithological composition in low mountains. The legend has been constructed according to zonal-typological principle e using an ecological-phytocoenotic classification. Heterogeneity of vegetation is reflected by means of territoria1 units (complex, series, combination and additional marks above the vegetation background. In the northern subzone vegetation is fairly monotonous and characterized by prevalence of wormwood communities (Artemisia of subgenus Seriphidium, joined in three formations: Artemisia lerchiana, A. arenaria. A. pauciflora. Small areas are occupied by shrub deserts of Calligollum aphyllum and Tamarix ramosissima. To southward of 47° N in the middle subzone on the Caspian Lowland the communities of halophyte perennial saltworts essential1y dominate, and to less extent-wormwood communities of hemipsammophytic Artemisia terrae-albae and psammophytic Artemisia arenaria and A. lerchiana. Deserts of Mangyshlak are much diverse. Dwarf semishrubs are presented by species of perennial saltworts (Anabasis salsa, Nanophyton erinaceum,Arthrophytum lehnwnianum, Salsola orientaUs and wonnwood (Artemisia terrae-albae, A. gurganica. A. santolina. To southward of 43° N in the southern subzone dwarf semishrub Salsola gemmascens and Artemisia kemrudica corrnnunities prevail.

  1. ON PHYTOCOENOTICAL MAPPING OF CASPIAN DESERT REGION

    Directory of Open Access Journals (Sweden)

    I. SAFRONOVA

    2004-01-01

    Full Text Available The phytoecological map (l :2.500.000 for Desert Region, including the Caspian Lowland and the Mangyshlak. has been compiled. It gives an idea of latitudinal differentiation cf vegetation. Edaphic variants and lithological composition in low mountains. The legend has been constructed according to zonal-typological principle e using an ecological-phytocoenotic classification. Heterogeneity of vegetation is reflected by means of territoria1 units (complex, series, combination and additional marks above the vegetation background. In the northern subzone vegetation is fairly monotonous and characterized by prevalence of wormwood communities (Artemisia of subgenus Seriphidium, joined in three formations: Artemisia lerchiana, A. arenaria. A. pauciflora. Small areas are occupied by shrub deserts of Calligollum aphyllum and Tamarix ramosissima. To southward of 47° N in the middle subzone on the Caspian Lowland the communities of halophyte perennial saltworts essential1y dominate, and to less extent-wormwood communities of hemipsammophytic Artemisia terrae-albae and psammophytic Artemisia arenaria and A. lerchiana. Deserts of Mangyshlak are much diverse. Dwarf semishrubs are presented by species of perennial saltworts (Anabasis salsa, Nanophyton erinaceum,Arthrophytum lehnwnianum, Salsola orientaUs and wonnwood (Artemisia terrae-albae, A. gurganica. A. santolina. To southward of 43° N in the southern subzone dwarf semishrub Salsola gemmascens and Artemisia kemrudica corrnnunities prevail.

  2. Activity of Larrea tridentata (D.C. Coville L. extracts and chitosan against fungi that affect horticultural crops

    Directory of Open Access Journals (Sweden)

    R. H. Lira-Saldivar

    2006-01-01

    Full Text Available La actividad antifúngica de extracto de resina hidrosoluble de gobernadora [Larrea tridentata (D.C. Coville (L] y soluciones de quitosán (Ch, solos y combinados fueron investigados in vitro por su actividad antifúngica contra Botrytis cinerea, Colletotrichum coccodes y Fusarium oxysporum f. sp. lycopersici que fueron aislados de rosas de invernadero y de lotes comerciales de papa y tomate, respectivamente, mismos que posteriormente fueron purificados. Ambos bioproductos manifestaron su efecto funguicida a 1,000 y 2,000 ì l·litro-1, sin embargo, cuando fueron combinados mostraron una actividad fungicida sinérgica. Estos resultados preliminares indican que el extracto hidrosoluble de L. tridentata o la combinación L-Ch pudiesen ser considerados como agroquímicos potenciales de bajo impacto ambiental para ser usados como fungicidas orgánicos, pero se requiere más trabajo de investigación antes de que esto tenga una aplicación comercial. Hasta lo mejor de nuestro conocimiento esta es la primera vez que se reporta a la mezcla L. tridentata y quitosán actuando como un compuesto antifúngico

  3. Larrea tridentata: A novel source for anti-parasitic agents active against Entamoeba histolytica, Giardia lamblia and Naegleria fowleri.

    Directory of Open Access Journals (Sweden)

    Bharat Bashyal

    2017-08-01

    Full Text Available Protozoan parasites infect and kill millions of people worldwide every year, particularly in developing countries where access to clean fresh water is limited. Among the most common are intestinal parasites, including Giardia lamblia and Entamoeba histolytica. These parasites wreak havoc on the epithelium lining the small intestines (G. lamblia and colon (E. histolytica causing giardiasis and amebiasis, respectively. In addition, there are less common but far more deadly pathogens such as Naegleria fowleri that thrive in warm waters and infect the central nervous systems of their victims via the nasal passages. Despite their prevalence and associated high mortality rates, there remains an unmet need to identify more effective therapeutics for people infected with these opportunistic parasites. To address this unmet need, we have surveyed plants and traditional herbal medicines known throughout the world to identify novel antiparasitic agents with activity against G. lamblia, E. histolytica, and N. fowleri. Herein, we report Larrea tridentata, known as creosote bush, as a novel source for secondary metabolites that display antiparasitic activity against all three pathogens. This report also characterizes the lignan compound classes, nordihydroguairetic acid and demethoxyisoguaiacin, as novel antiparasitic lead agents to further develop more effective drug therapy options for millions of people worldwide.

  4. Larrea tridentata: A novel source for anti-parasitic agents active against Entamoeba histolytica, Giardia lamblia and Naegleria fowleri.

    Science.gov (United States)

    Bashyal, Bharat; Li, Linfeng; Bains, Trpta; Debnath, Anjan; LaBarbera, Daniel V

    2017-08-01

    Protozoan parasites infect and kill millions of people worldwide every year, particularly in developing countries where access to clean fresh water is limited. Among the most common are intestinal parasites, including Giardia lamblia and Entamoeba histolytica. These parasites wreak havoc on the epithelium lining the small intestines (G. lamblia) and colon (E. histolytica) causing giardiasis and amebiasis, respectively. In addition, there are less common but far more deadly pathogens such as Naegleria fowleri that thrive in warm waters and infect the central nervous systems of their victims via the nasal passages. Despite their prevalence and associated high mortality rates, there remains an unmet need to identify more effective therapeutics for people infected with these opportunistic parasites. To address this unmet need, we have surveyed plants and traditional herbal medicines known throughout the world to identify novel antiparasitic agents with activity against G. lamblia, E. histolytica, and N. fowleri. Herein, we report Larrea tridentata, known as creosote bush, as a novel source for secondary metabolites that display antiparasitic activity against all three pathogens. This report also characterizes the lignan compound classes, nordihydroguairetic acid and demethoxyisoguaiacin, as novel antiparasitic lead agents to further develop more effective drug therapy options for millions of people worldwide.

  5. Stem secondary growth of tundra shrubs

    DEFF Research Database (Denmark)

    Campioli, Matteo; Leblans, Niki; Michelsen, Anders

    2012-01-01

    Our knowledge of stem secondary growth of arctic shrubs (a key component of tundra net primary production, NPP) is very limited. Here, we investigated the impact of the physical elements of the environment on shrub secondary growth by comparing annual growth rates of model species from similar...... growth (stem apical growth, stem length, and apical growth of stem plus leaves), in some cases even with opposite responses. Thus caution should be taken when estimating the impact of the environment on shrub growth from apical growth only. Integration of our data set with the (very limited) previously...

  6. High Arctic summer warming tracked by increased Cassiope tetragona growth in the world's northernmost polar desert.

    Science.gov (United States)

    Weijers, Stef; Buchwal, Agata; Blok, Daan; Löffler, Jörg; Elberling, Bo

    2017-11-01

    Rapid climate warming has resulted in shrub expansion, mainly of erect deciduous shrubs in the Low Arctic, but the more extreme, sparsely vegetated, cold and dry High Arctic is generally considered to remain resistant to such shrub expansion in the next decades. Dwarf shrub dendrochronology may reveal climatological causes of past changes in growth, but is hindered at many High Arctic sites by short and fragmented instrumental climate records. Moreover, only few High Arctic shrub chronologies cover the recent decade of substantial warming. This study investigated the climatic causes of growth variability of the evergreen dwarf shrub Cassiope tetragona between 1927 and 2012 in the northernmost polar desert at 83°N in North Greenland. We analysed climate-growth relationships over the period with available instrumental data (1950-2012) between a 102-year-long C. tetragona shoot length chronology and instrumental climate records from the three nearest meteorological stations, gridded climate data, and North Atlantic Oscillation (NAO) and Arctic Oscillation (AO) indices. July extreme maximum temperatures (JulT emx ), as measured at Alert, Canada, June NAO, and previous October AO, together explained 41% of the observed variance in annual C. tetragona growth and likely represent in situ summer temperatures. JulT emx explained 27% and was reconstructed back to 1927. The reconstruction showed relatively high growing season temperatures in the early to mid-twentieth century, as well as warming in recent decades. The rapid growth increase in C. tetragona shrubs in response to recent High Arctic summer warming shows that recent and future warming might promote an expansion of this evergreen dwarf shrub, mainly through densification of existing shrub patches, at High Arctic sites with sufficient winter snow cover and ample water supply during summer from melting snow and ice as well as thawing permafrost, contrasting earlier notions of limited shrub growth sensitivity to

  7. Abiotic factors affect the recruitment and biomass of perennial grass and evergreen shrub seedlings in denuded areas of Patagonian Monte rangelands.

    Science.gov (United States)

    Bosco, Tomás; Bertiller, Mónica Beatriz; Carrera, Analía Lorena

    2018-07-15

    Assessing the ability of key species to cope with environmental stresses in disturbed areas is an important issue for recovery of degraded arid ecosystem. Our objective was to evaluate the effect of soil moisture, exposure to UV radiation, and presence/absence of litter with different chemistry on soil N, recruitment and biomass of seedlings of perennial grass (Poa ligularis and Nassella tenuis) and evergreen shrub species (Atriplex lampa and Larrea divaricata) in denuded areas. We carried out a microcosm experiment with soil blocks (28 cm depth) sowed with seeds of the target species, subjected to different levels of litter type (perennial grass-evergreen shrub mixture, evergreen shrub mixture, and no litter), UV radiation (near ambient and reduced UV), and soil water (high: 15-25% and low 5-15%). Periodically, during 6 months, we assessed soil-N (total and inorganic) at two depths and species seedling recruitment at microcosms. Additionally, emerged seedlings of each species were transplanted to individual pots containing soil and subjected to the same previous factors during 12 months. Then, all plants were harvested and biomass assessed. Only inorganic soil-N at the upper soil varied among treatments increasing with the presence of evergreen shrub litter, exposure to ambient UV, and high soil water. Inorganic soil-N, promoted by near ambient UV and high soil water, had a positive effect on recruitment of perennial grasses and A. lampa. Both litter types promoted the recruitment of perennial grasses. Evergreen shrub litter and high soil water promoted the recruitment of L. divaricata. Seedling biomass of perennial grasses increased with high soil water and reduced UV. Ambient UV had positive or null effects on biomass of evergreen shrub seedlings. High soil water increased biomass of L. divaricata seedlings. We concluded that soil water appeared as the most limiting factor for seedling recruitment of all species whereas inorganic soil N limited the

  8. Controls on plant functional surface cover types along a precipitation gradient in the Negev Desert of Israel

    NARCIS (Netherlands)

    Buis, E.; Veldkamp, A.; Boeken, B.; Breemen, van N.

    2009-01-01

    We studied the controls on functional surface cover types in four catchments along a semi-arid to arid precipitation gradient in the northern Negev Desert of Israel. First, we selected four functional types, based on their unique water use and redistribution functionality: shrubs, Asphodelus

  9. Seasonal changes in morphophysiological traits of two native Patagonian shrubs from Argentina with different drought resistance strategies.

    Science.gov (United States)

    Varela, M Celeste; Reinoso, Herminda; Luna, Virginia; Cenzano, Ana M

    2018-06-01

    In semi-arid regions, plants develop various biochemical and physiological strategies to adapt to dry periods. Understanding the resistance mechanisms to dry periods under field conditions is an important topic in ecology. Larrea divaricata and Lycium chilense provide various ecological services. The aim of this work is to elucidate new morpho-histological, biochemical and hormonal traits that contribute to the drought resistance strategies of two native shrubs. Green leaves and fine roots from L. divaricata and L. chilense were collected in each season for one year, and various traits were measured. The hormone (abscisic acid, ABA-glucose ester, gibberellins A 1 and A 3 , and indole acetic acid) contents were determined by liquid chromatography coupled to mass spectrometry. Rainfall data and the soil water content were also measured. A multivariate analysis showed that green leaves from L. divaricata showed high values for the leaf dry weight, blade leaf thickness and ABA content in the summer compared with those from L. chilense. Fine roots from L. divaricata had high RWC and high IAA levels during the autumn-dry period compared with those from L. chilense, but both had similar levels during the winter and spring. Our results support the notion that species with different drought resistance mechanisms (avoidance or tolerance) display different responses to dry periods throughout the year. Larrea divaricata, which exhibits more xerophytic traits, modified its morphology and maintained its physiological parameters (high RWC in leaves and roots, high ABA levels in leaves during summer, high GA 3 in leaves and high IAA in roots during autumn) to tolerate dry periods, whereas Lycium chilense, which displays more mesophytic traits, uses strategies to avoid dry periods (loss of leaves during autumn and winter, high RWC in leaves, high ABA-GE and GA 3 in leaves during summer, high GA 1 and GA 3 in roots during summer, and high IAA in roots during autumn and summer) and

  10. Plants and ventifacts delineate late Holocene wind vectors in the Coachella Valley, USA

    Science.gov (United States)

    Griffiths, P.G.; Webb, R.H.; Fisher, M.; Muth, Allan

    2009-01-01

    Strong westerly winds that emanate from San Gorgonio Pass, the lowest point between Palm Springs and Los Angeles, California, dominate aeolian transport in the Coachella Valley of the western Sonoran Desert. These winds deposit sand in coppice dunes that are critical habitat for several species, including the state and federally listed threatened species Uma inornata, a lizard. Although wind directions are generally defined in this valley, the wind field has complex interactions with local topography and becomes more variable with distance from the pass. Local, dominant wind directions are preserved by growth patterns of Larrea tridentata (creosote bush), a shrub characteristic of the hot North American deserts, and ventifacts. Exceptionally long-lived, Larrea has the potential to preserve wind direction over centuries to millennia, shaped by the abrasive pruning of windward branches and the persistent training of leeward branches. Wind direction preserved in Larrea individuals and clones was mapped at 192 locations. Compared with wind data from three weather stations, Larrea vectors effectively reflect annual prevailing winds. Ventifacts measured at 24 locations record winds 10° more westerly than Larrea and appear to reflect the direction of the most erosive winds. Based on detailed mapping of local wind directions as preserved in Larrea, only the northern half of the Mission-Morongo Creek floodplain is likely to supply sand to protected U. inornata habitat in the Willow Hole ecological reserve.

  11. Lut Desert, Iran

    Science.gov (United States)

    1981-01-01

    Iran is a large country with several desert regions. In the Dasht-E-Lut (Lut Desert) (30.5N, 58.5E) an area known as Namak-Zar, about 100 miles east of the city of Kerman, is at the center of this photograph. Some of the world's most prominent Yardangs (very long, parallel ridges and depressions) have been wind eroded in these desert dry lake bed sediments. At the left of the photo is a large field of sand dunes at right angles to the wind.

  12. Desert Pavement Studies

    National Research Council Canada - National Science Library

    Haff, Peter

    2003-01-01

    Combining plan view information from aerial photography showing details of stream channels on desert pavement surfaces with process-based erosion models, a high-resolution, synthetic topography DEM...

  13. Desert Pavement Studies

    National Research Council Canada - National Science Library

    Haff, P

    2003-01-01

    Combining plan view information from aerial photography showing details of stream channels on desert pavement surfaces with process-based erosion models, a high-resolution, "synthetic topography" DEM...

  14. Seedling responses to water pulses in shrubs with contrasting histories of grassland encroachment.

    Directory of Open Access Journals (Sweden)

    Steven R Woods

    Full Text Available Woody plant encroachment into grasslands has occurred worldwide, but it is unclear why some tree and shrub species have been markedly more successful than others. For example, Prosopis velutina has proliferated in many grasslands of the Sonoran Desert in North America over the past century, while other shrub species with similar growth form and life history, such as Acacia greggii, have not. We conducted a glasshouse experiment to assess whether differences in early seedling development could help explain why one species and not the other came to dominate many Sonoran Desert grasslands. We established eight watering treatments mimicking a range of natural precipitation patterns and harvested seedlings 16 or 17 days after germination. A. greggii had nearly 7 times more seed mass than P. velutina, but P. velutina emerged earlier (by 3.0±0.3 d and grew faster (by 8.7±0.5 mg d⁻¹. Shoot mass at harvest was higher in A. greggii (99±6 mg seedling⁻¹ than in P. velutina (74±2 mg seedling⁻¹, but there was no significant difference in root mass (54±3 and 49±2 mg seedling⁻¹, respectively. Taproot elongation was differentially sensitive to water supply: under the highest initial watering pulse, taproots were 52±19 mm longer in P. velutina than in A. greggii. Enhanced taproot elongation under favorable rainfall conditions could give nascent P. velutina seedlings growth and survivorship advantages by helping reduce competition with grasses and maintain contact with soil water during drought. Conversely, A. greggii's greater investment in mass per seed appeared to provide little return in early seedling growth. We suggest that such differences in recruitment traits and their sensitivities to environmental conditions may help explain ecological differences between species that are highly similar as adults and help identify pivotal drivers of shrub encroachment into grasslands.

  15. Divergent evapotranspiration partition dynamics between shrubs and grasses in a shrub-encroached steppe ecosystem.

    Science.gov (United States)

    Wang, Pei; Li, Xiao-Yan; Wang, Lixin; Wu, Xiuchen; Hu, Xia; Fan, Ying; Tong, Yaqin

    2018-06-04

    Previous evapotranspiration (ET) partitioning studies have usually neglected competitions and interactions between antagonistic plant functional types. This study investigated whether shrubs and grasses have divergent ET partition dynamics impacted by different water-use patterns, canopy structures, and physiological properties in a shrub-encroached steppe ecosystem in Inner Mongolia, China. The soil water-use patterns of shrubs and grasses have been quantified by an isotopic tracing approach and coupled into an improved multisource energy balance model to partition ET fluxes into soil evaporation, grass transpiration, and shrub transpiration. The mean fractional contributions to total ET were 24 ± 13%, 20 ± 4%, and 56 ± 16% for shrub transpiration, grass transpiration, and soil evaporation respectively during the growing season. Difference in ecohydrological connectivity and leaf development both contributed to divergent transpiration partitioning between shrubs and grasses. Shrub-encroachment processes result in larger changes in the ET components than in total ET flux, which could be well explained by changes in canopy resistance, an ecosystem function dominated by the interaction of soil water-use patterns and ecosystem structure. The analyses presented here highlight the crucial effects of vegetation structural changes on the processes of land-atmosphere interaction and climate feedback. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.

  16. Fire Impacts on the Mojave Desert Ecosystem: Literature Review

    Energy Technology Data Exchange (ETDEWEB)

    Fenstermaker Lynn

    2012-01-01

    The Nevada National Security Site (NNSS) is located within the Mojave Desert, which is the driest region in North America. Precipitation on the NNSS varies from an annual average of 130 millimeters (mm; 5.1 inches) with a minimum of 47 mm (1.9 inches) and maximum of 328 mm (12.9 inches) over the past 15 year period to an annual average of 205 mm (8.1 inches) with an annual minimum of 89 mm (3.5 inches) and maximum of 391 mm (15.4 inches) for the same time period; for a Frenchman Flat location at 970 meters (m; 3182 feet) and a Pahute Mesa location at 1986 m (6516 feet), respectively. The combination of aridity and temperature extremes has resulted in sparsely vegetated basins (desert shrub plant communities) to moderately vegetated mountains (mixed coniferous forest plant communities); both plant density and precipitation increase with increasing elevation. Whereas some plant communities have evolved under fire regimes and are dependent upon fire for seed germination, plant communities within the Mojave Desert are not dependent on a fire regime and therefore are highly impacted by fire (Brown and Minnich, 1986; Brooks, 1999). As noted by Johansen (2003) natural range fires are not prevalent in the Mojave and Sonoran Deserts because there is not enough vegetation present (too many shrub interspaces) to sustain a fire. Fire research and hence publications addressing fires in the Southwestern United States (U.S.) have therefore focused on forest, shrub-steppe and grassland fires caused by both natural and anthropogenic ignition sources. In the last few decades, however, invasion of mid-elevation shrublands by non-native Bromus madritensis ssp. rubens and Bromus tectorum (Hunter, 1991) have been highly correlated with increased fire frequency (Brooks and Berry, 2006; Brooks and Matchett, 2006). Coupled with the impact of climate change, which has already been shown to be playing a role in increased forest fires (Westerling et al., 2006), it is likely that the fire

  17. Endemic shrubs in temperate arid and semiarid regions of northern China and their potentials for rangeland restoration.

    Science.gov (United States)

    Chu, Jianmin; Yang, Hongxiao; Lu, Qi; Zhang, Xiaoyan

    2015-06-03

    Some endemic shrubs in arid and semiarid ecosystems are in danger of extinction, and yet they can play useful roles in maintaining or restoring these ecosystems, thus practical efforts are needed to conserve them. The shrubs Amygdalus pedunculata Pall., Amygdalus mongolica (Maxim.) Ricker and Ammopiptanthus mongolicus (Maxim. ex Kom.) Cheng f. are endemic species in arid and semiarid regions of northern China, where rangeland desertification is pronounced due to chronic overgrazing. In this study, we tested the hypothesis that these endemic shrubs have developed adaptations to arid and semiarid environments and could play critical roles as nurse species to initiate the process of rangeland recovery. Based on careful vegetation surveys, we analysed the niches of these species in relation to precipitation, temperature and habitats. All sampling plots were categorized by these endemics and sorted by the non-metric multidimensional scaling method. Species ratios of each life form and species co-occurrence rates with the endemics were also evaluated. Annual average temperature and annual precipitation were found to be the key factors determining vegetation diversity and distributions. Amygdalus pedunculata prefers low hills and sandy land in temperate semiarid regions. Amygdalus mongolica prefers gravel deserts of temperate semiarid regions. Ammopiptanthus mongolicus prefers sandy land of temperate arid regions. Communities of A. pedunculata have the highest diversity and the largest ratios of long-lived grass species, whereas those of A. mongolicus have the lowest diversity but the largest ratios of shrub species. Communities of A. mongolica are a transition between the first two community types. These findings demonstrate that our focal endemic shrubs have evolved adaptations to arid and semiarid conditions, thus they can be nurse plants to stabilize sand ground for vegetation restoration. We suggest that land managers begin using these shrub species to restore

  18. Shrubs and vines for northeastern wildlife

    Science.gov (United States)

    John D. Gill; William M. Healy

    1974-01-01

    A non-technical handbook in which 34 authors discuss management of 97 native and 3 naturalized shrubs or woody vines most important to wildlife in the Northeast,-Kentucky to Maryland to Newfoundland to Ontario. Topics include range, habitat, life history, uses, propagation, and management; but not identification.

  19. Legume Shrubs Are More Nitrogen-Homeostatic than Non-legume Shrubs

    OpenAIRE

    Guo, Yanpei; Yang, Xian; Schöb, Christian; Jiang, Youxu; Tang, Zhiyao

    2017-01-01

    Legumes are characterized as keeping stable nutrient supply under nutrient-limited conditions. However, few studies examined the legumes' stoichiometric advantages over other plants across various taxa in natural ecosystems. We explored differences in nitrogen (N) and phosphorus (P) stoichiometry of different tissue types (leaf, stem, and root) between N2-fixing legume shrubs and non-N2-fixing shrubs from 299 broadleaved deciduous shrubland sites in northern China. After excluding effects of ...

  20. Shrub water use dynamics in arctic Alaska

    Science.gov (United States)

    Clark, J.; Young-Robertson, J. M.; Tape, K. D.

    2016-12-01

    In the Arctic tundra, hydrologic processes influence the majority of ecosystem processes, from soil thermal dynamics to energy balance and trace gas exchange to vegetation community distributions. The tundra biome is experiencing a broad spectrum of ecosystem changes spurred by 20th century warming, including deciduous shrub expansion. Deciduous woody vegetation typically has high water use rates compared to evergreen and herbaceous species, and is projected to have a greater impact on energy balance than altered albedo from changes in snowpack. However, the impact of greater shrub cover on water balance has been overlooked. Shrubs have the potential to significantly dry the soil, accessing stored soil moisture in the organic layers, while increasing atmospheric moisture. The goal of this study is to quantify the water use dynamics (sap flux and stem water content) of three common arctic shrub species (Salix alexensis, S. pulchra, Betula nana) over two growing seasons. Stem water content was measured through a novel application of time domain reflectometry (TDR). Maximum sap flow rates varied by species: S. alexensis-600g/hr, S. pulchra-60g/hr, and B. nana-40g/hr. We found daily sap flow rates are highly correlated with atmospheric moisture demand (VPD) and not limited by soil moisture or antecedent precipitation. Stem water content varied between 20% and 60%, was correlated with soil moisture, and showed weak diurnal variation. This is one of the first studies to provide a detailed look at arctic tundra shrub water balance and explore the environmental controls on water flux. Planned future work will expand on these results for estimates of evapotranspiration over larger landscape areas.

  1. Minerals in deserts

    International Nuclear Information System (INIS)

    Smith, G.I.

    1982-01-01

    Almost any kind of mineral deposit can occur in desert areas, and the lack of vegetation and soil cover makes finding them easier. Some kinds of deposits, though, are more likely to occur in deserts than elsewhere. Some of these result from processes genetically related to the present desert climate that improved lower grade deposits of ore. One such process, termed secondary enrichment, is most effective in areas with deep water tables, and many low-grade copper, silver, and uranium deposits have been converted into mineable ore by the downward migration and redeposition of soluble metals. In a desert terrane, placer processes are effective whenever running water flowing over steep slopes erodes outcropping ore bodies and transports and concentrates the heavier ore minerals at lower levels, thus converting low-grade or hard-to-mine bedrock deposits into economically workable concentrations. Other kinds of deposits are better preserved in deserts because the lower rainfall at the surface, and the lower volume of flow and the greater depths to groundwater, result in less destruction of soluble ores; deposits of salines and phosphates are the most notable ores affected by these factors. Still other ore deposits are created as a consequence of the arid climate, mostly because the high evaporation rates operating on standing bodies of water produce brines that can lead directly to concentrations of salts and indirectly to secondary minerals, such as zeolites, that are produced by reaction of silicate minerals with saline waters

  2. Root distribution of Nitraria sibirica with seasonally varying water sources in a desert habitat.

    Science.gov (United States)

    Zhou, Hai; Zhao, Wenzhi; Zheng, Xinjun; Li, Shoujuan

    2015-07-01

    In water-limited environments, the water sources used by desert shrubs are critical to understanding hydrological processes. Here we studied the oxygen stable isotope ratios (δ (18)O) of stem water of Nitraria sibirica as well as those of precipitation, groundwater and soil water from different layers to identify the possible water sources for the shrub. The results showed that the shrub used a mixture of soil water, recent precipitation and groundwater, with shallow lateral roots and deeply penetrating tap (sinker) roots, in different seasons. During the wet period (in spring), a large proportion of stem water in N. sibirica was from snow melt and recent precipitation, but use of these sources declined sharply with the decreasing summer rain at the site. At the height of summer, N. sibirica mainly utilized deep soil water from its tap roots, not only supporting the growth of shoots but also keeping the shallow lateral roots well-hydrated. This flexibility allowed the plants to maintain normal metabolic processes during prolonged periods when little precipitation occurs and upper soil layers become extremely dry. With the increase in precipitation that occurs as winter approaches, the percentage of water in the stem base of a plant derived from the tap roots (deep soil water or ground water) decreased again. These results suggested that the shrub's root distribution and morphology were the most important determinants of its ability to utilize different water sources, and that its adjustment to water availability was significant for acclimation to the desert habitat.

  3. [Succession pattern of artificial vegetation community and its ecological mechanism in an arid desert region].

    Science.gov (United States)

    Xu, Cailin; Li, Zizhen

    2003-09-01

    Focusing on the artificial vegetation protection system of the Shapotou section of Baotou-Lanzhou railway in the arid desert region of China, this paper examined the dynamics of dominant plant species and the succession pattern of artificial plant community in the process of establishing and developing regional artificial vegetation. It also studied the driving force and the ecologically intrinsic mechanism of the community succession. The results demonstrated that the species composition of the artificial vegetation dramatically changed after 40 years of succession, from original artificial plant community of shrub and semi-shrub to artificial-natural desert plant community with annual herb dominated. During the process of succession, the importance values of artificial shrubs, such as Caragana korshinskii and Hedysarum scoparius, decreased and gradually retreated from the artificial plant community, while the naturally multiplied annual herb, such as Eragrostis poaeoides, Bassia dasyphylla, Salsola ruthenica, Chloris virgata and etc., were presented one after another and gradually became dominant. Besides, Artemisia ordosica always played a key role in the community due to its ability of naturally sowing and self-replacement. This type of succession pattern was closely related to the shortage of precipitation resource in this region and the formation of soil crust which inhibited the reproduction of shrub and perennial herb with deep root systems. This study provided a theoretical ground for realizing persistent development of artificial plant community.

  4. Ecological implications and environment dependence of the seed germination of common species in cold deserts

    International Nuclear Information System (INIS)

    Yuan, S.Y.; Tong, L.; Chi, L.Z.

    2016-01-01

    Vegetation is increasingly affected by climate change in cold deserts. Nonetheless, research is limited regarding the natural environmental demands of seed germination in such deserts. This study was conducted in Gurbantunggut Desert as a research base and 17 common species as subjects to investigate the moisture and temperature needs of seed germination in artificial settings, as well as the relationship between characteristics of seed germination and the local distribution of dune and shrubs. Results showed:(1) all tested species generally display low germination percentages that range between 2.9% and 79.6%. Winter snow melt dictates seed germination in cold deserts. Moreover, the subsequent spring rainfall can increase the survival rate of seedlings and significantly affect the process of seed germination. (2) seeds start to germinate only two days after snow melts at the average daily temperature (day/night) of 3.5 degree C (6.7 degree C/-0.5 degree C) and at a soil volumetric water content of 24.2%. Fifteen days after snow melt, all species germinate when the soil volumetric water content is 6.0% and the average daily temperature is 12.9 degree C (18.3 degree C/7.1 degree C). (3) The seed germination of the tested species can be divided into four patterns: rapid, transitional, slow, and low. Low-pattern plants mainly grow on upper dunes and are significantly associated with shrubs. Rapid- and slow-pattern plants distribute in middle and lower dunes. A few of these plants are significantly associated with shrubs. Transitional-pattern plants generally develop in the low land between hills and middle dunes. This study provides a reference for the actual environmental needs of seed germination in cold deserts and for the temperature and moisture requirements of this process in future experimental settings. (author)

  5. IN VITRO BIOACTIVITY OF CREOSOTE BUSH EXTRACTS (LARREA TRIDENTATA ON THE INHIBITION OF POSTHARVEST FUNGI: PENICILLIUM POLONICUM, ASPERGILLUS NIGER, RHIZOPUS ORYZAE Y ALTERNARIA TENUISSIMA

    Directory of Open Access Journals (Sweden)

    O. Peñuelas-Rubio

    2015-11-01

    Full Text Available En el presente estudio se evaluó la eficiencia de extractos vegetales deLarrea tridentataobtenidos con diclorometano, etanol, metanol y agua, sobre el crecimiento radial in vitro de cuatro hongos fitopatógenos, los cuales primeramente fueron identificados en género y especie empleando claves taxonómicas y técnicas moleculares. Para los bioensayosin vitrose aplicaron diseños completamente al azar con cuatro tratamientos y tres repeticiones en cada hongo, utilizando las concentraciones: 0, 250, 500 y 750 ppm paraAlternaria sp.; 0, 2000, 2500 y 3000 paraAspergillus sp.; 0, 1500, 1750 y 2000 paraPenicillium sp. y 0, 150, 200 y 250 ppm paraRhizopus sp. Cada tratamiento tuvo tres repeticiones. El análisis molecular determinó la especie tenuissima paraAlternaria,nigerparaApergillus,polonicumparaPenicilliumyoryzaeparaRhizopus. En cuanto a las pruebasin vitro, se determinaron inhibiciones del 100% para tres de los hongos en estudio:Alternaria tenuissimacon extracto EtOH a 750 ppm;Aspergillus nigercon extracto DCM a 3000 ppm yRhizopus oryzaea partir de 150 ppm y 250 ppm de los extractos DCM y EtOH respectivamente. Se presentó una inhibición del 82% a 2000 ppm paraPenicillium polonicum. Se concluye que a pesar de las diferencias en susceptibilidad entre las especies fúngicas, los extractos deLarrea tridentataobtenidos con etanol y dicloromentano son efectivos para el control de los hongos fitopatógenos bajo estudioin vitro.

  6. SEASONALITY OF ANNUAL PLANT ESTABLISHMENT INFLUENCES THE INTERACTIONBETWEEN THE NON-NATIVE ANNUAL GRASS BROMUS MADRITENSIS SSP. RUBENS AND MOJAVE DESERT PERENNIALS

    Energy Technology Data Exchange (ETDEWEB)

    L A. DEFALCO; G. C. FERNANDEZ; R. S. NOWAK

    2004-01-01

    Competition between native and non-native species can change the composition and structure of plant communities, but in deserts the timing of non-native plant establishment can modulate their impacts to native species. In a field experiment, we varied densities of the non-native annual grass Bromus madritensis ssp. rubens around individuals of three native perennials--Larrea iridentata, Achnatherum hymenoides, and Pleuraphis rigida--in either winter or spring. Additional plots were prepared for the Same perennial species and seasons, but with a mixture of native annual species. Relative growth rates of perennial shoots (RGRs) declined with increasing Bromus biomass when Bromus that was established in winter had 2-3 mo of growth and high water use before perennial growth began. However, this high water use did not significantly reduce water potentials for the perennials, suggesting Bromus that established earlier depleted other soil resources, such as N, otherwise used by perennial plants. Spring-established Bromus had low biomass even at higher densities and did not effectively reduce RGRs, resulting in an overall lower impact to perennials than when Bromus was established in winter. Similarly, growth and reproduction of perennials with mixed annuals as neighbors did not differ from those with Bromus neighbors of equivalent biomass, but densities of these annuals did not support the high biomass necessary to reduce perennial growth. Thus, impacts of native Mojave Desert annuals to perennials are expected to be lower than those of Bromus because seed dormancy and narrow requirements for seedling survivorship produce densities and biomass lower than those achieved by Bromus. In comparing the effects of Bromus among perennial species, the impact of increased Bromus biomass on RGR was lower for Larrea than for the two perennial grasses, probably because Lurrea maintains low growth rates throughout the year, even after Bromus has completed its life cycle. This contrasts

  7. Gopherus agassizii: Desert tortoise

    Science.gov (United States)

    Berry, Kristen H.; Swingland, Ian Richard; Klemens, Michael W.

    1989-01-01

    The desert tortoise is one of four allopatric North American tortoises. It occurs in the Mojave and Sonoran deserts of the southwestern United States and Mexico.Auffenberg (1976) divided the genus Gopherus (consisting of four species, G. agassizi, G. berlandieri, G.flavomarginatus, and G. polyphemus) in two osteological groups. Bramble (1982), using morphological and palaeontological data, divided the genus Gopherus into two separate complexes, each with two species. He established a new genus, Scaptochelys, for agassizi and berlandieri, retaining Gopherus for polyphemus and flavomarginatus. Bour and Dubois (1984) noted that Xerobates Agassiz had priority over Scaptochelys Bramble. Using mitochondrial DNA (mtDNA), Lamb et al. (1989) evaluated the evolutionary relationships of the North American tortoises, particularly the desert tortoise. They concluded that the mtDNA analysis provides strong support for generic recognition of the two distinct species groups described by Bramble (1982).Until a few decades ago, the desert tortoise was widespread at lower elevations throughout the Mojave and Sonoran deserts of the U.S.A. In the northern and western parts of the geographic range, large and relatively homogeneous populations with densities exceeding 1,000/sq km extended throughout parts of California, and probably into Nevada and Utah. In terms of biomass, the tortoise played an important role in the ecosystems. In most areas, numbers have declined dramatically and the extent of populations has been reduced. Most populations are now isolated and low in numbers. Conservation of the desert tortoise is a highly visible and political issue in the U.S.A., but not in Mexico.

  8. Effects of sub-Arctic shrub canopies on snowmelt energetics

    Science.gov (United States)

    Bewley, D.; Essery, R.; Pomeroy, J.

    2006-12-01

    Much of the low Arctic is covered with shrub tundra, and there is increasing evidence that snowmelt rates are substantially different between shrub tundra and poorly vegetated sites. The cause of this remains uncertain, however, and extends beyond simple differences in albedo. Results are presented in this study from a detailed field investigation at Wolf Creek Research Basin in 2004 to determine the effect of two different shrub canopy structures on both melt rates and the partitioning of melt energy. The low shrub site (LSS) was essentially an unvegetated snowfield prior to melt (mean albedo ~0.85), and shrubs only became exposed during the last few days of melt reaching a mean height of 0.31 m and mean Plant Area Index (PAI) of 0.32. Shrubs at the tall shrub site (TSS) were partially buried initially (shrub fraction, mean height and PAI of 0.2, 0.9 m and 0.41) but dominated the landscape by the end of melt (corresponding values of 0.71, 1.6 m and 0.6). Melt rates were higher at TSS up until the exposure of shrubs and bare ground at LSS, after which the rates converged. A Shrub-Snow Canopy Model (SSCM) is developed to improve snowmelt simulations for shrub canopies by parameterizing the key shrub effects on surface fluxes, including the extinction of shortwave irradiance beneath shrubs and in canopy gaps, and the enhancement of snow surface fluxes of longwave radiation and sensible heat. SSCM was run for LSS assuming no shrubs were present above the variable snow and bare ground tiles, whereas for TSS an increasing shrub fraction above each tile was prescribed from observations. Results from both sites suggest that sensible heat fluxes contributed more melt energy than net radiation, and were greater during early melt at TSS due to the warming of exposed shrubs. SWE was accurately predicted against transect measurements at TSS (rms error 4 mm), but was overestimated at LSS (rms error 13 mm) since both air temperatures and turbulent transport were underestimated

  9. Estimating shrub biomass from basal stem diameters

    Energy Technology Data Exchange (ETDEWEB)

    Brown, J K

    1976-01-01

    Stem lengths and oven dry wt of stemwood and foilage were determined for shrubs in dia classes of 0 to 0.5 cm, 0.5 to 2 cm and 2 to 5 cm in various habitat types in Idaho and Montana. The logarithm of basal stem dia was closely correlated with the logarithm of wt. Regression components are presented for estimating leaf wt and total above-ground wt of 25 woody shrub species using a linear equation relating these 2 variables. Percentage stemwood wt is given for the 3 dia classes. Dia distributions for the smallest dia class were normal except for a few species with fine twigs; distributions for the other classes were positively skewed. Applications to forest fuel studies are briefly discussed.

  10. Estimating shrub biomass from basal stem diameters

    Energy Technology Data Exchange (ETDEWEB)

    Brown, J K

    1976-01-01

    Stem lengths and oven dry wt of stemwood and foilage were determined for shrubs in dia classes of 0 to 0.5 cm, 0.5 to 2 cm and 2 to 5 cm in various habitat types in Idaho and Montana. The logarithm of basal stem dia was closely correlated with the logarithm of wt. Regression components are presented for estimating leaf wt and total above-ground wt of 25 woody shrub species using a linear equation relating these 2 variables. Percentage stemwood wt is given for the 3 dia classes. Dia distributions for the smallest dia class were normal except for a few species with fine twigs: distributions for the other classes were positively skewed. Applications to forest fuel studies are briefly discussed.

  11. How desert varnish forms?

    Science.gov (United States)

    Perry, Randall S.; Kolb, Vera M.; Lynne, Bridget Y.; Sephton, Mark A.; Mcloughlin, Nicola; Engel, Michael H.; Olendzenski, Lorraine; Brasier, Martin; Staley, James T., Jr.

    2005-09-01

    Desert varnish is a black, manganese-rich rock coating that is widespread on Earth. The mechanism underlying its formation, however, has remained unresolved. We present here new data and an associated model for how desert varnish forms, which substantively challenges previously accepted models. We tested both inorganic processes (e.g. clays and oxides cementing coatings) and microbial methods of formation. Techniques used in this preliminary study include SEM-EDAX with backscatter, HRTEM of focused ion beam prepared (FIB) wafers and several other methods including XRPD, Raman spectroscopy, XPS and Tof-SIMS. The only hypothesis capable of explaining a high water content, the presence of organic compounds, an amorphous silica phase (opal-A) and lesser quantities of clays than previously reported, is a mechanism involving the mobilization and redistribution of silica. The discovery of silica in desert varnish suggests labile organics are preserved by interaction with condensing silicic acid. Organisms are not needed for desert varnish formation but Bacteria, Archaea, Eukarya, and other organic compounds are passively incorporated and preserved as organominerals. The rock coatings thus provide useful records of past environments on Earth and possibly other planets. Additionally this model also helps to explain the origin of key varnish and rock glaze features, including their hardness, the nature of the "glue" that binds heterogeneous components together, its layered botryoidal morphology, and its slow rate of formation.

  12. From Fireproof Desert to Flammable Grassland: Buffelgrass Invasion in the Sonoran Desert

    Science.gov (United States)

    Betancourt, J. L.

    2007-12-01

    Only a few decades ago, the Sonoran Desert of northwestern Mexico and southern Arizona was considered mostly fireproof, a case of not enough fine fuel to connect the dominant shrubs and cacti. This has changed with invasions by non-native, winter annual and summer-flower perennial grasses that are rapidly transforming fireproof desert into flammable grassland. Of particular concern is buffelgrass, Pennisetum ciliare, a fire-prone and invasive African perennial grass that has already converted millions of hectares across Sonora since the mid-1960s and has made quick headway in southern and central Arizona beginning in the 1980s. Near Tucson and Phoenix, AZ, buffelgrass invasion is proceeding exponentially, with population expansion (and the costs of mitigation) more than doubling every year. As this conversion progresses, there will be increased fire risks, lost tourist revenue, diminished property values, insurmountable setbacks to conservation efforts, and the threat of large ignition fronts in desert valleys routinely spreading into the mountains. Although somewhat belated, an integrated, multi-jurisdictional effort is being organized to reduce ecological and economic impacts. My presentation will summarize the history and context of buffelgrass introduction and invasion, the disconnect in attitudes and policies across state and international boundaries, ongoing management efforts, the role of science and responsibilities of scientists, accelerated spread with changing climate, and impacts to regional ecosystems and economies. This narrative may serve as a template for other semi-arid lands where buffelgrass and similar grasses have become invasive, including Australia, South America, and many islands in the Pacific Ocean (including Hawaii), Indian Ocean, and Caribbean Sea.

  13. Contrasting shrub species respond to early summer temperatures leading to correspondence of shrub growth patterns

    Science.gov (United States)

    Weijers, Stef; Pape, Roland; Löffler, Jörg; Myers-Smith, Isla H.

    2018-03-01

    The Arctic-alpine biome is warming rapidly, resulting in a gradual replacement of low statured species by taller woody species in many tundra ecosystems. In northwest North America, the remotely sensed normalized difference vegetation index (NDVI), suggests an increase in productivity of the Arctic and alpine tundra and a decrease in productivity of boreal forests. However, the responses of contrasting shrub species growing at the same sites to climate drivers remain largely unexplored. Here, we test growth, climate, and NDVI relationships of two contrasting species: the expanding tall deciduous shrub Salix pulchra and the circumarctic evergreen dwarf shrub Cassiope tetragona from an alpine tundra site in the Pika valley in the Kluane Region, southwest Yukon Territories, Canada. We found that annual growth variability of both species at this site is strongly driven by early summer temperatures, despite their contrasting traits and habitats. Shrub growth chronologies for both species were correlated with the regional climate signal and showed spatial correspondence with interannual variation in NDVI in surrounding alpine and Arctic regions. Our results suggest that early summer warming represents a common driver of vegetation change for contrasting shrub species growing in different habitats in the same alpine environments.

  14. GOPHERUS AGASSIZII (Desert Tortoise)

    International Nuclear Information System (INIS)

    JAMES L. BOONE, DANNY L. RAKESTRAW, AND KURT R. RAUTENSTRAUCH

    1997-01-01

    GOPHERLTS AGAISSIZII (Desert Tortoise). Predation. A variety of predators, most notably coyotes (Canis Iatrans) and Common Ravens (Corvis corau) have been reported to prey on hatchling desert tortoises (Emst et al. 1994). Turtles of the United States and Canada (Smithsonian Institution Press, Washington, D.C. 578 pp.). Here, we report an observation of a hatchling tortoise, fitted with a radiotransmitter, that was preyed upon by native fire ants (Solenopsis sp.) in the eastern Mojave Desert at Yucca Mountain, Nevada (36 degrees 50 minutes N, 116 degree 25 minutes E). On 8/27/94, tortoise No.9315 (carapace length = 45 mm, age = 5 d) was found alive with eyes, chin, and parts of the head and legs being eaten by ants. The tortoise was alive, but lethargic, and responded little when touched. Eight of 74 other radiomarked hatchlings monitored at Yucca Mountain during 1992-1994 were found dead with fire ants on their carcass 3-7 days after the hatchlings emerged from their nests. It is not known whether those tortoises were killed by ants or were being scavenged when found. While imported fire ants (S. invicta) have long been known to kill hatchling gopher tortoises (G. polyphemus; Mount 1981. J. Alabama Acad. Sci. 52: 71-78), native fire ants have previously not been implicated as predators of desert tortoises. However, only 1 of 75 (or at worst 9 of 75) was killed by fire ants, suggesting that although fire ants do kill hatchlings, they were not important predators on desert tortoises during this study. Tortoise specimens were deposited at the University of California at Berkeley

  15. Expansion of deciduous tall shrubs but not evergreen dwarf shrubs inhibited by reindeer in Scandes mountain range.

    Science.gov (United States)

    Vowles, Tage; Gunnarsson, Bengt; Molau, Ulf; Hickler, Thomas; Klemedtsson, Leif; Björk, Robert G

    2017-11-01

    One of the most palpable effects of warming in Arctic ecosystems is shrub expansion above the tree line. However, previous studies have found that reindeer can influence plant community responses to warming and inhibit shrubification of the tundra.We revisited grazed (ambient) and ungrazed study plots (exclosures), at the southern as well as the northern limits of the Swedish alpine region, to study long-term grazing effects and vegetation changes in response to increasing temperatures between 1995 and 2011, in two vegetation types (shrub heath and mountain birch forest).In the field layer at the shrub heath sites, evergreen dwarf shrubs had increased in cover from 26% to 49% but were unaffected by grazing. Deciduous dwarf and tall shrubs also showed significant, though smaller, increases over time. At the birch forest sites, the increase was similar for evergreen dwarf shrubs (20-48%) but deciduous tall shrubs did not show the same consistent increase over time as in the shrub heath.The cover and height of the shrub layer were significantly greater in exclosures at the shrub heath sites, but no significant treatment effects were found on species richness or diversity.July soil temperatures and growing season thawing degree days (TDD) were higher in exclosures at all but one site, and there was a significant negative correlation between mean shrub layer height and soil TDD at the shrub heath sites. Synthesis . This study shows that shrub expansion is occurring rapidly in the Scandes mountain range, both above and below the tree line. Tall, deciduous shrubs had benefitted significantly from grazing exclosure, both in terms of cover and height, which in turn lowered summer soil temperatures. However, the overriding vegetation shift across our sites was the striking increase in evergreen dwarf shrubs, which were not influenced by grazing. As the effects of an increase in evergreen dwarf shrubs and more recalcitrant plant litter may to some degree counteract some of

  16. Medicinal flora of the Cholistan desert: a review

    International Nuclear Information System (INIS)

    Hmeed, M.; Ashraf, M.; Nawaz, T.; Naz, N.; Ahmad, M.S.A.; Al-Quriany, F.; Younis, A.

    2011-01-01

    The Cholistan desert can be divided into two distinct regions on the basis of topography, soil type and texture, and vegetation structure: the northern Lesser Cholistan and southern Greater Cholistan. The desert is characterized by large saline compacted areas with alluvial clay, sandy ridges and dunes, and semi-stabilized to frequently shifting dunes. The climate is subtropical, harsh, hot and arid, and influenced by seasonal monsoons. Vegetation cover on the sand dunes is comprised by a few tussock-forming grasses including Cenchrus ciliaris, Panicum turgidum and Lasiurus scindicus, along with perennial shrubs Calligonum polygonoides, Leptadenia pyrotechnica and Aerva javanica. Interdunal flats are dominated by grasses, mainly Cymbopogon jwarancusa, Sporobolus ioclados, Panicum antidotale, and Ochthochloa compressa, and tall shrubs Calligonum polygonoides and Capparis decidua. Vegetation of saline patches is specific, dominated by halophytes mainly belonging to family Chenopodiaceae (Amaranthaceae). Many plants of the Cholistan desert, including Neurada procumbens, Aerva javanica, Capparis decidua, Cleome brachycarpa, Dipterygium glaucum, Gisekia pharnacioides, Suaeda fruticosa, Achyranthes aspera, Aerva javanica, Alhagi maurorum, Calotropis procera, Capparis decidua, Zaleya pentandra, Mollugo cerviana, Ziziphus mauritiana, Boerhavia procumbens, Cressa cretica and Crotalaria burhia, are frequently used by the local inhabitants to cure chronic and acute diseases. A variety of medicinally important chemical compounds have been extracted and identified from the plants of the Cholistan desert, including terpenes and triterpenoids, sterols and steroids, phenolics, flavonoids, gums and resins, quinones, anthocyanidines, saponins, antioxidants and fatty acids. Habitat degradation, intensive agricultural practices and over exploitation of resources pose a serious threat to the diversity of ethno botanically important plant species. Allopathic medicines are generally

  17. Climate sensitivity of shrub growth across the tundra biome

    DEFF Research Database (Denmark)

    Myers-Smith, Isla H.; Elmendorf, Sarah C.; Beck, Pieter S.A.

    2015-01-01

    Rapid climate warming in the tundra biome has been linked to increasing shrub dominance1–4. Shrub expansion can modify climate by altering surface albedo, energy and water balance, and permafrost2,5–8, yet the drivers of shrub growth remain poorly understood. Dendroecological data consisting...... of multi-decadal time series of annual shrub growth provide an underused resource to explore climate–growth relationships. Here, we analyse circumpolar data from 37 Arctic and alpine sites in 9 countries, including 25 species, and 42,000 annual growth records from 1,821 individuals. Our analyses...... demonstrate that the sensitivity of shrub growth to climate was: (1) heterogeneous, with European sites showing greater summer temperature sensitivity than North American sites, and (2) higher at sites with greater soil moisture and for taller shrubs (for example, alders and willows) growing at their northern...

  18. Functionally relevant climate variables for arid lands: Aclimatic water deficit approach for modelling desert shrub distributions

    Science.gov (United States)

    Thomas E. Dilts; Peter J. Weisberg; Camie M. Dencker; Jeanne C. Chambers

    2015-01-01

    We have three goals. (1) To develop a suite of functionally relevant climate variables for modelling vegetation distribution on arid and semi-arid landscapes of the Great Basin, USA. (2) To compare the predictive power of vegetation distribution models based on mechanistically proximate factors (water deficit variables) and factors that are more mechanistically removed...

  19. Shrubs of the Field Irradiator - Gamma area in eastern Manitoba

    International Nuclear Information System (INIS)

    Dugle, J.R.; Mayoh, K.R.; Barclay, P.J.

    1979-11-01

    Detailed descriptions and line drawings are given of over 100 shrub taxa (including semi-woody shrubs and vines) which are common in Manitoba; most of them are found within the Field Irradiator - Gamma (FIG) area or its immediate surroundings. Ecological and morphological notes are included along with a few general remarks on the effects of exposure to long-term gamma radiation. Keys are given for certain genera, small family groups or other critical species groups. This document is intended to facilitate identification of shrubs for experimental purposes in the FIG projects, and it should also be useful to those who are generally interested in the shrubs of Manitoba. (auth)

  20. Comparative wood anatomy of some shrubs native to the Northern Rocky Mountains

    Science.gov (United States)

    Arlene Dale

    1968-01-01

    This paper describes some xylem characteristics of the more important shrub species of the Northern Rockies and presents a key for identifying shrub-wood specimens by microscopic characters. The paper contains photomicrographs of 55 shrub woods.

  1. Population, desert expanding.

    Science.gov (United States)

    1992-01-01

    The conditions of desert expansion in the Sahara are highlighted. On the southern border the desert is growing at a rate of 3-6 miles/year. This growth is encroaching on arable land in Ethiopia and Mauritania. The region loses up to 28,000 sq miles/year of farmland. 33% of Africa's fertile land is threatened. Land-use patterns are responsible for the deterioration of the soil. Traditional practices are not effective because the practices are not suitable for permanent farming. Farmers also have stopped environmentally sound practices such as letting the fields remain fallow in order to renew soil fertility. Nomads overgraze areas before moving on. A recent study by the World Bank's Africa Region Office was released; the report details some of the links between rapid population growth, poor agricultural performance, and environmental degradation. Soil conditions are such that valuable topsoil is blow away by the wind because the layer is too thin. Vegetation at the desert's edge is used for cooking purposes or for heating fuel. Tropical and savannah areas are depleted when tree replacement is inadequate. Only 9 trees are planted for every 100 removed. The report emphasized the role of women and children in contributing to population pressure by increased fertility. Women's work load is heavy and children are a help in alleviating some of the burden of domestic and agricultural work. There is hope in meeting demographic, agricultural, food security, and environmental objectives over the next 30 years if the needs of women are met. The needs include access to education for young women, lessening the work loads of women, and decreasing child mortality through improved health care and access to safe water.

  2. Patterns of seed production and shrub association in two palatable ...

    African Journals Online (AJOL)

    Seed production and shrub association patterns of the twopalatable shrubs. Tripteris sinuatum and Tetragoma froticosa were investigated on heavily grazed communal and lightly grazed commercial rangeland in the succulent karoo. Namaqualand. Seed production in both these species was substantially reduced on the ...

  3. Shrub expansion may reduce summer permafrost thaw in Siberian tundra

    NARCIS (Netherlands)

    Blok, D.; Heijmans, M.M.P.D.; Schaepman-Strub, G.; Kononov, A.V.; Maximov, T.C.; Berendse, F.

    2010-01-01

    Climate change is expected to cause extensive vegetation changes in the Arctic: deciduous shrubs are already expanding, in response to climate warming. The results from transect studies suggest that increasing shrub cover will impact significantly on the surface energy balance. However, little is

  4. Relationships between Arctic shrub dynamics and topographically derived hydrologic characteristics

    International Nuclear Information System (INIS)

    Naito, Adam T; Cairns, David M

    2011-01-01

    Shrub expansion is a global phenomenon that is gaining increased attention in the Arctic. Recent work employing the use of oblique aerial photographs suggested a consistent pattern of positive change in shrub cover across the North Slope of Alaska. The greatest amounts of change occurred in valley slopes and floodplains. We studied the association between shrub cover change and topographically derived hydrologic characteristics in five areas in northern Alaska between the 1970s and 2000s. Change in total shrub cover ranged from − 0.65% to 46.56%. Change in floodplain shrub cover ranged from 3.38% to 76.22%. Shrubs are preferentially expanding into areas of higher topographic wetness index (TWI) values where the potential for moisture accumulation or drainage is greater. In addition, we found that floodplain shrub development was strongly associated with high TWI values and a decreasing average distance between shrubs and the river bank. This suggests an interacting influence of substrate removal and stabilization as a consequence of increased vegetation cover.

  5. Methods for measuring arctic and alpine shrub growth: A review

    NARCIS (Netherlands)

    Myers-Smith, I.H.; Hallinger, M.; Blok, D.; Sass-Klaassen, U.G.W.; Rayback, S.A.

    2015-01-01

    Shrubs have increased in abundance and dominance in arctic and alpine regions in recent decades. This often dramatic change, likely due to climate warming, has the potential to alter both the structure and function of tundra ecosystems. The analysis of shrub growth is improving our understanding of

  6. Physiological adaptation in desert birds

    NARCIS (Netherlands)

    Williams, JB; Tieleman, BI; Williams, Joseph B.

    We call into question the idea that birds have not evolved unique physiological adaptations to desert environments. The rate at which desert larks metabolize energy is lower than in mesic species within the same family, and this lower rate of living translates into a lower overall energy requirement

  7. The changing role of shrubs in rangeland-based livestock production systems: Can shrubs increase our forage supply?

    Science.gov (United States)

    Projected global increases in ruminant numbers and loss of native grasslands will present a number of challenges for livestock agriculture. Escalated demand for livestock products may stimulate interest in using shrubs on western rangelands. A paradigm shift is needed to change the role of shrubs in...

  8. Supersymmetry without the Desert

    International Nuclear Information System (INIS)

    Nomura, Yasunori; Poland, David

    2006-01-01

    Naturalness of electroweak symmetry breaking in weak scale supersymmetric theories may suggest the absence of the conventional supersymmetric desert. We present a simple, realistic framework for supersymmetry in which (most of) the virtues of the supersymmetric desert are naturally reproduced without having a large energy interval above the weak scale. The successful supersymmetric prediction for the low-energy gauge couplings is reproduced due to a gauged R symmetry present in the effective theory at the weak scale. The observable sector superpotential naturally takes the form of the next-to-minimal supersymmetric standard model, but without being subject to the Landau pole constraints up to the conventional unification scale. Supersymmetry breaking masses are generated by the F-term and D-term VEVs of singlet and U(1) R gauge fields, as well as by anomaly mediation, at a scale not far above the weak scale. We study the resulting pattern of supersymmetry breaking masses in detail, and find that it can be quite distinct. We construct classes of explicit models within this framework, based on higher dimensional unified theories with TeV-sized extra dimensions. A similar model based on a non-R symmetry is also presented. These models have a rich phenomenology at the TeV scale, and allow for detailed analyses of, e.g., electroweak symmetry breaking

  9. Evapotranspiration partitioning, stomatal conductance, and components of the water balance: A special case of a desert ecosystem in China

    Science.gov (United States)

    Zhao, Wenzhi; Liu, Bing; Chang, Xuexiang; Yang, Qiyue; Yang, Yuting; Liu, Zhiling; Cleverly, James; Eamus, Derek

    2016-07-01

    Partitioning evapotranspiration (ET) into its components reveals details of the processes that underlie ecosystem hydrologic budgets and their feedback to the water cycle. We measured rates of actual evapotranspiration (ETa), canopy transpiration (Tc), soil evaporation (Eg), canopy-intercepted precipitation (EI), and patterns of stomatal conductance of the desert shrub Calligonum mongolicum in northern China to determine the water balance of this ecosystem. The ETa was 251 ± 8 mm during the growing period, while EI, Tc, and Eg accounted for 3.2%, 63.9%, and 31.3%, respectively, of total water use (256 ± 4 mm) during the growing period. In this unique ecosystem, groundwater was the main water source for plant transpiration and soil evaporation, Tc and exceeded 60% of the total annual water used by desert plants. ET was not sensitive to air temperature in this unique desert ecosystem. Partitioning ET into its components improves our understanding of the mechanisms that underlie adaptation of desert shrubs, especially the role of stomatal regulation of Tc as a determinant of ecosystem water balance.

  10. Livestock grazing and the desert tortoise in the Mojave Desert

    Science.gov (United States)

    Oldemeyer, John L.

    1994-01-01

    A large part of the Mojave Desert is not in pristine condition, and some current conditions can be related to past grazing-management practices. No information could be found on densities of the desert tortoise (Gopherus agassizii) or on vegetative conditions of areas that had not been grazed to allow managers a comparison of range conditions with data on tortoises. Experimental information to assess the effect of livestock grazing on tortoises is lacking, and researchers have not yet examined whether the forage that remains after grazing is sufficient to meet the nutritional needs of desert tortoises.

  11. Does browsing reduce shrub survival and vigor following summer fires?

    Science.gov (United States)

    Fulbright, Timothy E.; Dacy, Emily C.; Drawe, D. Lynn

    2011-01-01

    Periodic fire is widely hypothesized to limit woody plant encroachment in semiarid grasslands. In southern Texas, however, most of the woody plants that have invaded grasslands during the past two centuries are resistant to fire. We hypothesized that browsing by Odocoileus virginianus increases mortality of palatable shrubs and reduces vigor of shrubs following fire. We randomly selected ten pairs of each of three shrub species -Condalia hookeri, Acacia farnesiana, and Celtis ehrenbergiana - in each of three locations before prescribed burns during summer 2001. Following burns, we used a wire fence to protect one shrub of each pair from browsing. We estimated intensity of O. virginianus browsing and number and height of sprouts 4, 12, 20, 30, 38, and 47 weeks post-fire. We determined shrub height, survival, and biomass one year post-fire. Averaged across species, browsing intensity on unfenced shrubs was greater (LS Means, P 0.05) one year post-burn. Browsing by O. virginianus at the intensity in our study does not increase mortality or reduce vigor of C. hookeri, A. farnesiana, and Condalia ehrenbergiana producing new growth following destruction of aboveground tissues by a single fire compared to shrubs that are not browsed following fire.

  12. Spatial analysis of root hemiparasitic shrubs and their hosts

    DEFF Research Database (Denmark)

    Dueholm, Bjørn; Bruce, David; Weinstein, Philip

    2017-01-01

    to as spatial signatures of the root hemiparasites. In order to search for such spatial signatures, we investigated a population of a predominant Acacia species in Australia co-occurring with established root hemiparasitic shrubs, using intensity estimates of the Acacia and dead shrubs to be indicators...... of parasite populations. We find evidence that the root hemiparasitic shrubs, like herbaceous root hemiparasites, prefer growing at distances from neighbouring plants that fulfil resource requirements both below-ground and above-ground. Assuming that root hemiparasites are limited by their hosts, we present...

  13. A 22,000-Year Record of Monsoonal Precipitation from Northern Chile's Atacama Desert.

    Science.gov (United States)

    Betancourt; Latorre; Rech; Quade; Rylander

    2000-09-01

    Fossil rodent middens and wetland deposits from the central Atacama Desert (22 degrees to 24 degrees S) indicate increasing summer precipitation, grass cover, and groundwater levels from 16.2 to 10.5 calendar kiloyears before present (ky B.P.). Higher elevation shrubs and summer-flowering grasses expanded downslope across what is now the edge of Absolute Desert, a broad expanse now largely devoid of rainfall and vegetation. Paradoxically, this pluvial period coincided with the summer insolation minimum and reduced adiabatic heating over the central Andes. Summer precipitation over the central Andes and central Atacama may depend on remote teleconnections between seasonal insolation forcing in both hemispheres, the Asian monsoon, and Pacific sea surface temperature gradients. A less pronounced episode of higher groundwater levels in the central Atacama from 8 to 3 ky B.P. conflicts with an extreme lowstand of Lake Titicaca, indicating either different climatic forcing or different response times and sensitivities to climatic change.

  14. Population characteristics of haloxylon ammodendron (c.a.mey) bunge in gurbantunggut desert, china

    International Nuclear Information System (INIS)

    Abino, A.

    2014-01-01

    Haloxylon ammodendron (C.A. Mey) Bunge is a desert shrub with ecological and economic importance. Because of the severe drought and the over-exploitation for firewood and livestock, the species is threatened. The survivor and mortality were studied in six populations distributed along the margin of Gurbantunggut desert. The size structures, life tables and survivor curves were constructed for the studied populations. Populations were dominated by juvenile individuals and the seedling recruitment was extremely limited. Size distributions were skewed towards larger size classes in all populations. The survivorship curves approached Deevey type III in which the highest mortality occurs in the early life stages. The results indicated that the populations of H. ammodendron are threatened and efforts are required to minimize uncontrolled exploitation. Due to the very limited seedling recruitment, conservation efforts are required to protect and develop the extant populations. For this purpose, in situ and ex situ conservation of H. ammodendron populations are strongly recommended. (author)

  15. Remote Sensing Field Guide - Desert

    Science.gov (United States)

    1991-09-01

    experienced boatmen. Most river water, even in deserts, contains Giardia micro -organisms that can cause serious diarrhea. Sich water should be boiled...water. The solutes and suspended micro -matter can be moved up and down by an oscillating water table and redeposited or precipitated at differ- ent...McCauley, U.S. Geological Survey, Desert Studies Group, Flagstaff, AZ, Nov 1973. B. Servicio Aerofotografia Nacional del Peru (on back). / ...... CONN:MFI

  16. Mean species cover: a harmonized indicator of shrub cover for forest inventories

    Science.gov (United States)

    Iciar Alberdi; Sonia Condés; Ronald E. Mcroberts; Susanne Winter

    2018-01-01

    Because shrub cover is related to many forest ecosystem functions, it is one of the most relevant variables for describing these communities. Nevertheless, a harmonized indicator of shrub cover for large-scale reporting is lacking. The aims of the study were threefold: to define a shrub indicator that can be used by European countries for harmonized shrub cover...

  17. IMPACTS ON FLOODPLAINS BY AN INVASIVE SHRUB, BUDDLEJA DAVIDII

    Science.gov (United States)

    Despite its popularity, the ornamental, Buddleja davidii, a woody shrub of Asian origin, is considered problematic because of its ability to rapidly colonize and dominate floodplain and riparian ecosystems. Dominance during early succession may influence community dynamics and ec...

  18. Methods for measuring arctic and alpine shrub growth

    DEFF Research Database (Denmark)

    Myers-Smith, Isla; Hallinger, Martin; Blok, Daan

    2015-01-01

    Shrubs have increased in abundance and dominance in arctic and alpine regions in recent decades. This often dramatic change, likely due to climate warming, has the potential to alter both the structure and function of tundra ecosystems. The analysis of shrub growth is improving our understanding...... of tundra vegetation dynamics and environmental changes. However, dendrochronological methods developed for trees, need to be adapted for the morphology and growth eccentricity of shrubs. Here, we review current and developing methods to measure radial and axial growth, estimate age, and assess growth...... dynamics in relation to environmental variables. Recent advances in sampling methods, analysis and applications have improved our ability to investigate growth and recruitment dynamics of shrubs. However, to extrapolate findings to the biome scale, future dendroecologicalwork will require improved...

  19. Shrub expansion in SW Greenland under modest regional warming

    DEFF Research Database (Denmark)

    Jørgensen, Rasmus Halfdan; Meilby, Henrik; Kollmann, Johannes

    2013-01-01

    Shrub expansion has been observed widely in tundra areas across the Arctic. This phenomenon has been partially attributed to increasing temperatures over the past century. However, relationships among shrub expansion, grazing, and human disturbance have been studied little. SW Greenland...... is a subarctic to low-arctic region with a long and complex land-use history and only modest temperature increases over the past 50 years (0.2 °C decade-1), but changes in shrub cover have not previously been studied in this region. We compiled historical photographs of vegetation in SW Greenland (1898......–1974) and repeated the photos in 2010 and 2011. Sixty-four photo pairs were cropped into 133 smaller units and classified by aspect, substrate stability, muskoxen grazing, and human disturbance. The photo material was evaluated by 22 experts with respect to changes in shrub cover, revealing a general increase across...

  20. Pedological and geological relationships with soil lichen and moss distribution in the eastern Mojave Desert, CA, USA

    Science.gov (United States)

    Belnap, Jayne; Miller, David M.; Bedford, David R.; Phillips, Susan L.

    2014-01-01

    Biological soil crusts (biocrusts) are ubiquitous in drylands globally. Lichens and mosses are essential biocrust components and provide a variety of ecosystem services, making their conservation and management of interest. Accordingly, understanding what factors are correlated with their distribution is important to land managers. We hypothesized that cover would be related to geologic and pedologic factors. We sampled 32 sites throughout the eastern Mojave Desert, stratifying by parent material and the age of the geomorphic surfaces. The cover of lichens and mosses on ‘available ground’ (L + Mav; available ground excludes ground covered by rocks or plant stems) was higher on limestone and quartzite-derived soils than granite-derived soils. Cover was also higher on moderately younger-aged geomorphic surfaces (Qya2, Qya3, Qya4) and cutbanks than on very young (Qya1), older-aged surfaces (Qia1, Qia2), or soils associated with coppice mounds or animal burrowing under Larrea tridentata. When all sites and parent materials were combined, soil texture was the most important factor predicting the occurrence of L + Mav, with cover positively associated with higher silt, very fine sand, and fine sand fractions and negatively associated with the very coarse sand fraction. When parent materials were examined separately, nutrients such as available potassium, iron, and calcium became the most important predictors of L + Mav cover.

  1. Regional signatures of plant response to drought and elevated temperature across a desert ecosystem

    Science.gov (United States)

    Munson, Seth M.; Muldavin, Esteban H.; Belnap, Jayne; Peters, Debra P.C.; Anderson, John P.; Reiser, M. Hildegard; Gallo, Kirsten; Melgoza-Castillo, Alicia; Herrick, Jeffrey E.; Christiansen, Tim A.

    2013-01-01

    The performance of many desert plant species in North America may decline with the warmer and drier conditions predicted by climate change models, thereby accelerating land degradation and reducing ecosystem productivity. We paired repeat measurements of plant canopy cover with climate at multiple sites across the Chihuahuan Desert over the last century to determine which plant species and functional types may be the most sensitive to climate change. We found that the dominant perennial grass, Bouteloua eriopoda, and species richness had nonlinear responses to summer precipitation, decreasing more in dry summers than increasing with wet summers. Dominant shrub species responded differently to the seasonality of precipitation and drought, but winter precipitation best explained changes in the cover of woody vegetation in upland grasslands and may contribute to woody-plant encroachment that is widespread throughout the southwestern United States and northern Mexico. Temperature explained additional variability of changes in cover of dominant and subdominant plant species. Using a novel empirically based approach we identified ‘‘climate pivot points’’ that were indicative of shifts from increasing to decreasing plant cover over a range of climatic conditions. Reductions in cover of annual and several perennial plant species, in addition to declines in species richness below the long-term summer precipitation mean across plant communities, indicate a decrease in the productivity for all but the most drought-tolerant perennial grasses and shrubs in the Chihuahuan Desert. Overall, our regional synthesis of long-term data provides a robust foundation for forecasting future shifts in the composition and structure of plant assemblages in the largest North American warm desert.

  2. Changes in Nitrogen Cycling in a Shrub-Encroached Dryland

    Science.gov (United States)

    Turpin-Jelfs, T. C.; Michaelides, K.; Biederman, J. A.; Evershed, R. P.; Anesio, A. M.

    2017-12-01

    Land degradation is estimated to have occurred in 10-20% of Earth's drylands, where the environmental and socioeconomic consequences have affected 250 million people. The prevailing form of land degradation in drylands over the past ca. 150 years has been the encroachment of woody plants into arid and semi-arid grasslands. The density of mesquite (Prosopis spp.), a significant nitrogen (N)-fixing woody encroacher, has increased within the arid and semi-arid grasslands of the southwestern US by >400% over the past 30 years to occupy an area of >38 Mha. However, the impacts of an increasing density of N-fixing shrubs on the cycling and spatial variability of N within these ecosystems remains poorly understood. Here, we quantify how concentrations of N (ammonium-N, nitrate-N, organic N), as well as carbon (C; total C and organic C) and phosphorous (P; loosely-bound P, iron- and aluminium-bound P, apatite P and calcite-bound P, and residual P), and the structure of the microbial community (phospholipid fatty acids), change in the soils underneath and between shrub canopies along a gradient of shrub-encroachment for a semiarid grassland in the Santa Rita Experimental Range (SRER) Arizona, US. This gradient of encroachment was comprised of five sites that ranged from a grass dominated state to a shrub-dominated state characterised by mosaics of shrub patches and bare-soil interspaces. Our results show that the organic C and total N content of soils between shrubs decreased by >50% between grass dominant and shrub dominant end-member sites. Conversely, the organic C and total N content of soils beneath shrub canopies remained relatively constant along the encroachment gradient.

  3. Enhanced precipitation variability decreases grass- and increases shrub-productivity

    Science.gov (United States)

    Gherardi, Laureano A.; Sala, Osvaldo E.

    2015-01-01

    Although projections of precipitation change indicate increases in variability, most studies of impacts of climate change on ecosystems focused on effects of changes in amount of precipitation, overlooking precipitation variability effects, especially at the interannual scale. Here, we present results from a 6-y field experiment, where we applied sequences of wet and dry years, increasing interannual precipitation coefficient of variation while maintaining a precipitation amount constant. Increased precipitation variability significantly reduced ecosystem primary production. Dominant plant-functional types showed opposite responses: perennial-grass productivity decreased by 81%, whereas shrub productivity increased by 67%. This pattern was explained by different nonlinear responses to precipitation. Grass productivity presented a saturating response to precipitation where dry years had a larger negative effect than the positive effects of wet years. In contrast, shrubs showed an increasing response to precipitation that resulted in an increase in average productivity with increasing precipitation variability. In addition, the effects of precipitation variation increased through time. We argue that the differential responses of grasses and shrubs to precipitation variability and the amplification of this phenomenon through time result from contrasting root distributions of grasses and shrubs and competitive interactions among plant types, confirmed by structural equation analysis. Under drought conditions, grasses reduce their abundance and their ability to absorb water that then is transferred to deep soil layers that are exclusively explored by shrubs. Our work addresses an understudied dimension of climate change that might lead to widespread shrub encroachment reducing the provisioning of ecosystem services to society. PMID:26417095

  4. Patterned-ground facilitates shrub expansion in Low Arctic tundra

    International Nuclear Information System (INIS)

    Frost, Gerald V; Epstein, Howard E; Walker, Donald A; Matyshak, Georgiy; Ermokhina, Ksenia

    2013-01-01

    Recent expansion of tall shrubs in Low Arctic tundra is widely seen as a response to climate warming, but shrubification is not occurring as a simple function of regional climate trends. We show that establishment of tall alder (Alnus) is strongly facilitated by small, widely distributed cryogenic disturbances associated with patterned-ground landscapes. We identified expanding and newly established shrub stands at two northwest Siberian sites and observed that virtually all new shrubs occurred on bare microsites (‘circles’) that were disturbed by frost-heave. Frost-heave associated with circles is a widespread, annual phenomenon that maintains mosaics of mineral seedbeds with warm soils and few competitors that are immediately available to shrubs during favorable climatic periods. Circle facilitation of alder recruitment also plausibly explains the development of shrublands in which alders are regularly spaced. We conclude that alder abundance and extent have increased rapidly in the northwest Siberian Low Arctic since at least the mid-20th century, despite a lack of summer warming in recent decades. Our results are consistent with findings in the North American Arctic which emphasize that the responsiveness of Low Arctic landscapes to climate change is largely determined by the frequency and extent of disturbance processes that create mineral-rich seedbeds favorable for tall shrub recruitment. Northwest Siberia has high potential for continued expansion of tall shrubs and concomitant changes to ecosystem function, due to the widespread distribution of patterned-ground landscapes. (letter)

  5. Do changes in grazing pressure and the degree of shrub encroachment alter the effects of individual shrubs on understorey plant communities and soil function?

    Science.gov (United States)

    Soliveres, Santiago; Eldridge, David J

    2014-04-01

    Shrub canopies in semi-arid environments often produce positive effects on soil fertility, and on the richness and biomass of understorey plant communities. However, both positive and negative effects of shrub encroachment on plant and soil attributes have been reported at the landscape-level. The contrasting results between patch- and landscape-level effects in shrublands could be caused by differences in the degree of shrub encroachment or grazing pressure, both of which are likely to reduce the ability of individual shrubs to ameliorate their understorey environment.We examined how grazing and shrub encroachment (measured as landscape-level shrub cover) influence patch-level effects of shrubs on plant density, biomass and similarity in species composition between shrub understories and open areas, and on soil stability, nutrient cycling, and infiltration in two semi-arid Australian woodlands.Individual shrubs had consistently positive effects on all plant and soil variables (average increase of 23% for all variables). These positive patch-level effects persisted with increasing shrub cover up to our maximum of 50% cover. Heavy grazing negatively affected most of the variables studied (average decline of 11%). It also altered, for some variables, how individual shrubs affected their sub-canopy environment with increasing shrub cover. Thus for species density, biomass and soil infiltration, the positive effect of individual shrubs with increasing shrub cover diminished under heavy grazing. Our study refines predictions of the effects of woody encroachment on ecosystem structure and functioning by showing that heavy grazing, rather than differences in shrub cover, explains the contrasting effects on ecosystem structure and function between individual shrubs and those in dense aggregations. We also discuss how species-specific traits of the encroaching species, such as their height or its ability to fix N, might influence the relationship between their patch

  6. Contrasting water use pattern of introduced and native plants in an alpine desert ecosystem, Northeast Qinghai–Tibet Plateau, China

    International Nuclear Information System (INIS)

    Wu, Huawu; Li, Xiao-Yan; Jiang, Zhiyun; Chen, Huiying; Zhang, Cicheng; Xiao, Xiong

    2016-01-01

    Plant water use patterns reflect the complex interactions between different functional types and environmental conditions in water-limited ecosystems. However, the mechanisms underlying the water use patterns of plants in the alpine desert of the Qinghai–Tibet Plateau remain poorly understood. This study investigated seasonal variations in the water sources of herbs (Carex moorcroftii, Astragalus adsurgens) and shrubs (Artemisia oxycephala, Hippophae rhamnoides) using stable oxygen-18 isotope methods. The results indicated that the native herbs (C. moorcroftii, A. adsurgens) and one of the shrubs (A. oxycephala) mainly relied on water from the shallow layer (0–30 cm) throughout the growing season, while the introduced shrub (H. rhamnoides) showed plasticity in switching between water from shallow and deep soil layers depending on soil water availability. All studied plants primarily depended on water from shallow soil layers early in the season. The differences of water use patterns between the introduced and native plants are closely linked with the range of active root zones when competing for water. Our findings will facilitate the mechanistic understanding of plant–soil–water relations in alpine desert ecosystems and provide information for screening introduced species for sand fixation. - Highlights: • Stable oxygen-18 in soil water experienced great evaporation enrichment. • H. rhamnoides experiences a flexible plasticity to switch between shallow and deep soil water. • Native plants mostly relied on shallow and middle soil water. • Water-use patterns by introduced-native plants are controlled by root characteristics.

  7. [Effects of cutting and reseeding on the ground-dwelling arthropod community in Caragana intermedia forest in desert steppe].

    Science.gov (United States)

    Liu, Ren-Tao; Chai, Yong-Qing; Yang, Xin-Guo; Song, Nai-Ping; Wang, Xin-Yun; Wang, Lei

    2013-01-01

    Taking a 25-year-old Caragana intermedia forest in desert steppe as test object, an investigation was conducted on the ground-dwelling arthropod community in cutting and no-cutting stands with and without reseeding, aimed to understand the effects of cutting, reseeding and their interaction on the individual number and group richness of ground-dwelling arthropod in C. intermedia forest. There were significantly lower number and richness of ground-dwelling arthropod in the open spaces than under the shrubs in the no-cutting and no-reseeding stands. Cutting, reseeding and both of them could significantly increase the number and richness of ground-dwelling arthropod in the open spaces, but not under the shrubs, compared with no cutting or reseeding. Consequently, there were no significant differences in the distribution of ground-dwelling arthropod in the open spaces and under the shrubs in the cutting, reseeding, or cutting and reseeding stands. Further, there was a similar buffer effect between cutting and reseeding on the ground-dwelling arthropod. No significant differences were observed in the ground-dwelling arthropod distribution, between cutting stand and reseeding stand, between cutting stand and cutting and reseeding stand, and between reseeding stand and cutting and reseeding stand. It was suggested that cutting, reseeding, or both of them could significantly improve the ground-dwelling arthropod diversity especially in the open spaces, being beneficial for the restoration of degraded grassland ecosystem and the rational management on artificial C. intermedia forest in desert steppe.

  8. Synergistic mutual potentiation of antifungal activity of Zuccagnia punctata Cav. and Larrea nitida Cav. extracts in clinical isolates of Candida albicans and Candida glabrata.

    Science.gov (United States)

    Butassi, Estefanía; Svetaz, Laura A; Ivancovich, Juan J; Feresin, Gabriela E; Tapia, Alejandro; Zacchino, Susana A

    2015-06-01

    Zuccagnia punctata Cav. (Fabaceae) and Larrea nitida Cav. (Zygophyllaceae) are indistinctly or jointly used in traditional medicine for the treatment of fungal-related infections. Although their dichloromethane (DCM) extract have demonstrated moderate antifungal activities when tested on their own, antifungal properties of combinations of both plants have not been assessed previously. The aim of this study was to establish with statistical rigor whether Z. punctata (ZpE) and L. nitida DCM extract (LnE) interact synergistically against the clinically important fungi Candida albicans and Candida glabrata and to characterize the most synergistic combinations. For synergism assessment, the statistical-based Boik's design was applied. Eight ZpE-LnE fixed-ratio mixtures were prepared from four different months of 1 year and tested against Candida strains. Lϕ (Loewe index) of each mixture at different fractions affected (ϕ) allowed for the finding of the most synergistic combinations, which were characterized by HPLC fingerprint and by the quantitation of the selected marker compounds. Lϕ and confidence intervals were determined in vitro with the MixLow method, once the estimated parameters from the dose-response curves of independent extracts and mixtures, were obtained. Markers (four flavonoids for ZpE and three lignans for LnE) were quantified in each extract and their combinations, with a valid HPLC-UV method. The 3D-HPLC profiles of the most synergistic mixtures were obtained by HPLC-DAD. Three over four IC50ZpE/IC50LnE fixed-ratio mixtures displayed synergistic interactions at effect levels ϕ > 0.5 against C. albicans. The dosis of the most synergistic (Lϕ = 0.62) mixture was 65.96 µg/ml (ZpE = 28%; LnE = 72%) containing 8 and 36% of flavonoids and lignans respectively. On the other hand, one over four IC50ZpE/IC50LnE mixtures displays synergistic interactions at ϕ > 0.5 against C. glabrata. The dosis of the most synergistic (Lϕ = 0.67) mixture was 168

  9. Composición química y efecto antibacteriano in vitro de extractos de larrea tridentata, origanum vulgare, artemisa ludoviciana y ruta graveolens

    Directory of Open Access Journals (Sweden)

    Lucía Delgadillo Ruíz

    2017-01-01

    Full Text Available Introducción . Los extractos de algunas plantas han demostrado tener propiedades antimicr o bianas relacionadas a ciertos compuestos químicos como son el timol, carvacrol, limoneno, linalol y terpineno. El objetivo del presente trabajo fue determinar la concentración de estos compue s tos en los extractos de Larrea tridentata , Origanum vulgare , Artemisa ludoviciana y Ruta graveolens ; así como evaluar su efecto antimicrobiano en Escherichia coli , Acinetoba c ter baumanii , Pseudomona sp y Staphyloc o ccus aureus . Método . Los extractos se obtuvieron por destilación simple empleando alcohol etílico como solvente, la composición química se evaluó mediante cromatografía de gases. La actividad antimicrobia na de cada uno de los extractos de plantas se realizó por los métodos difusión en pozo y difusión en disco. Resultados . Las bacterias mostraron diferentes grados de sensibilidad a los extractos, prese n tando inhibición de crecimiento S. aureus con el extra cto de O. vulgare y R. graveolens , mientras que la bacteria Pseudomona sp. , con los extracto s de A. ludoviciana, L. tridentata y O. vulgare . Discusión . La mayor concentración de timol y carvacrol se encontró en los extractos de O. vulgare y L. tridentata . El compuesto linalol se encontró en una proporción mayor en O. vulgare y en menor proporción en A. ludoviciana . Limoneno se encontró en los extractos de O. vulgare y R. graveolens . De las cuatro plantas evaluadas, el extracto de L. tridentata fue mejor , de bido a que presenta la mayor inhibición en comparación con los otros extractos; y con un efecto similar a los aceites empleados como control. La técnica de dif u sión en disco, permitió observar mejor los efectos inhibitorios de los extra c tos y los aceites s obre cada una de las bacterias empleadas en comparación con el método de difusión en pozo.

  10. Permafrost response to increasing Arctic shrub abundance depends on the relative influence of shrubs on local soil cooling versus large-scale climate warming

    International Nuclear Information System (INIS)

    Lawrence, David M; Swenson, Sean C

    2011-01-01

    Deciduous shrub abundance is increasing across the Arctic in response to climatic warming. In a recent field manipulation experiment in which shrubs were removed from a plot and compared to a control plot with shrubs, Blok et al (2010 Glob. Change Biol. 16 1296–305) found that shrubs protect the ground through shading, resulting in a ∼ 9% shallower active layer thickness (ALT) under shrubs compared to grassy-tundra, which led them to argue that continued Arctic shrub expansion could mitigate future permafrost thaw. We utilize the Community Land Model (CLM4) coupled to the Community Atmosphere Model (CAM4) to evaluate this hypothesis. CLM4 simulates shallower ALT (∼− 11 cm) under shrubs, consistent with the field manipulation study. However, in an idealized pan-Arctic + 20% shrub area experiment, atmospheric heating, driven mainly by surface albedo changes related to protrusion of shrub stems above the spring snowpack, leads to soil warming and deeper ALT (∼+ 10 cm). Therefore, if climate feedbacks are considered, shrub expansion may actually increase rather than decrease permafrost vulnerability. When we account for blowing-snow redistribution from grassy-tundra to shrubs, shifts in snowpack distribution in low versus high shrub area simulations counter the climate warming impact, resulting in a grid cell mean ALT that is unchanged. These results reinforce the need to consider vegetation dynamics and blowing-snow processes in the permafrost thaw model projections.

  11. Effects of prolonged drought on the vegetation cover of sand dunes in the NW Negev Desert: Field survey, remote sensing and conceptual modeling

    Science.gov (United States)

    Siegal, Z.; Tsoar, H.; Karnieli, A.

    2013-06-01

    Luminescence dating of stable sand dunes in the large deserts of the world has shown several episodes of mobility during the last 30 k years. The logical explanation for the mobility of fixed dunes is severe drought. Though drought length can be estimated, the level of precipitation drop is unknown. The stabilized sand dunes of the northwestern Negev Desert, Israel have been under an unprecedented prolonged drought since 1995. This has resulted in a vast decrease of shrubs cover on the fixed sand dunes, which changes along the rainfall gradient. In the north, an average of 27% of the shrubs had wilted by 2009, and in the drier southern area, 68% of the shrubs had withered. This loss of shrubbery is not expected to induce dune remobilization because the existing bio-crust cover is not negatively affected by the drought. Eleven aerial photographs taken over the drier southern area from 1956 to 2005 show the change in shrub cover due to human impact and the recent severe drought.

  12. Water storage capacity, stemflow and water funneling in Mediterranean shrubs

    Science.gov (United States)

    Garcia-Estringana, P.; Alonso-Blázquez, N.; Alegre, J.

    2010-08-01

    SummaryTo predict water losses and other hydrological and ecological features of a given vegetation, its water storage capacity and stemflow need to be accurately determined. Vast areas of the Mediterranean region are occupied by shrublands yet there is scarce data available on their rainwater interception capacity. In this study, simulated rainfall tests were conducted in controlled conditions on nine Mediterranean shrubs of varying anatomic and morphological features to determine water storage capacity, stemflow and the funneling ratio. After assessing correlations between these hydrological variables and the biometric characteristics of the shrubs, we compared two methods of determining storage capacity: rainfall simulation and immersion. Mean water storage capacity was 1.02 mm (0.35-3.24 mm), stemflow was 16% (3.8-26.4%) and the funneling ratio was 104 (30-260). Per unit biomass, mean storage capacity was 0.66 ml g -1 and ranged from 0.23 ml g -1 for Cistus ladanifer to 2.26 ml g -1 for Lavandula latifolia. Despite their small size, shrubs may generate high water losses to the atmosphere when they form dense communities and this can have a significant impact in regions where water is scarce. When considered the whole shrubs in absolute terms (ml per plant), water storage capacity and stemflow were correlated to biomass and the dendrometric characteristics of the shrubs, yet in relative terms (expressed per surface area unit or as %), anatomic features such as pubescence, branch rigidity or leaf insertion angle emerged as determining factors. The use of a simple procedure to assess storage capacity was inefficient. The immersion method underestimated storage capacity to a different extent for each species. Some shrubs returned high stemflow values typical of their adaptation to the semiarid climate. In contrast, other shrubs seem to have structures that promote stemflow yet have developed other drought-adaptation mechanisms. In this report, we discuss the

  13. Facilitating the afforestation of Mediterranean polluted soils by nurse shrubs.

    Science.gov (United States)

    Domínguez, María T; Pérez-Ramos, Ignacio M; Murillo, José M; Marañón, Teodoro

    2015-09-15

    The revegetation of polluted sites and abandoned agricultural soils is critical to reduce soil losses and to control the spread of soil pollution in the Mediterranean region, which is currently exposed to the greatest soil erosion risk in Europe. However, events of massive plant mortality usually occur during the first years after planting, mainly due to the adverse conditions of high irradiance and drought stress. Here, we evaluated the usefulness of considering the positive plant-plant interactions (facilitation effect) in the afforestation of polluted agricultural sites, using pre-existing shrubs as nurse plants. We used nurse shrubs as planting microsites for acorns of Quercus ilex (Holm oak) along a gradient of soil pollution in southwestern Spain, and monitored seedling growth, survival, and chemical composition during three consecutive years. Seedling survival greatly increased (from 20% to more than 50%) when acorns were sown under shrub, in comparison to the open, unprotected matrix. Facilitation of seedling growth by shrubs increased along the gradient of soil pollution, in agreement with the stress gradient hypothesis that predicts higher intensity of the facilitation effects with increasing abiotic stress. Although the accumulation of trace elements in seedling leaves was higher underneath shrub, the shading conditions provided by the shrub canopy allowed seedlings to cope with the toxicity provoked by the concurrence of low pH and high trace element concentrations in the most polluted sites. Our results show that the use of shrubs as nurse plants is a promising tool for the cost-effective afforestation of polluted lands under Mediterranean conditions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Groundwater discharge by evapotranspiration, flow of water in unsaturated soil, and stable isotope water sourcing in areas of sparse vegetation, Amargosa Desert, Nye County, Nevada

    Science.gov (United States)

    Moreo, Michael T.; Andraski, Brian J.; Garcia, C. Amanda

    2017-08-29

    This report documents methodology and results of a study to evaluate groundwater discharge by evapotranspiration (GWET) in sparsely vegetated areas of Amargosa Desert and improve understanding of hydrologic-continuum processes controlling groundwater discharge. Evapotranspiration and GWET rates were computed and characterized at three sites over 2 years using a combination of micrometeorological, unsaturated zone, and stable-isotope measurements. One site (Amargosa Flat Shallow [AFS]) was in a sparse and isolated area of saltgrass (Distichlis spicata) where the depth to groundwater was 3.8 meters (m). The second site (Amargosa Flat Deep [AFD]) was in a sparse cover of predominantly shadscale (Atriplex confertifolia) where the depth to groundwater was 5.3 m. The third site (Amargosa Desert Research Site [ADRS]), selected as a control site where GWET is assumed to be zero, was located in sparse vegetation dominated by creosote bush (Larrea tridentata) where the depth to groundwater was 110 m.Results indicated that capillary rise brought groundwater to within 0.9 m (at AFS) and 3 m (at AFD) of land surface, and that GWET rates were largely controlled by the slow but relatively persistent upward flow of water through the unsaturated zone in response to atmospheric-evaporative demands. Greater GWET at AFS (50 ± 20 millimeters per year [mm/yr]) than at AFD (16 ± 15 mm/yr) corresponded with its shallower depth to the capillary fringe and constantly higher soil-water content. The stable-isotope dataset for hydrogen (δ2H) and oxygen (δ18O) illustrated a broad range of plant-water-uptake scenarios. The AFS saltgrass and AFD shadscale responded to changing environmental conditions and their opportunistic water use included the time- and depth-variable uptake of unsaturated-zone water derived from a combination of groundwater and precipitation. These results can be used to estimate GWET in other areas of Amargosa Desert where hydrologic conditions are similar.

  15. Aborigines of the nuclear desert

    International Nuclear Information System (INIS)

    Rujula, A. de

    1985-01-01

    The chart of 'stable nuclides' extends from Hydrogen, to Z proportional 98, A proportional 263. It contains another island of stability - neutron stars - in a narrow range around Z proportional 10 56 , A proportional 10 57 . In between lies a supposedly barren region encompassing more than 50 orders of magnitude. This desert may be populated by strange quark balls: Stable single bags containing similar proportions of u, d and s quarks. These balls are candidates for the constituency of the 'dark mass' in galaxies and in the Universe. We describe seven ways to search for these possible inhabitants of the nuclear desert. (orig.)

  16. Impact of Precipitation Fluctuation on Desert-Grassland ANPP

    Directory of Open Access Journals (Sweden)

    Liangxu Liu

    2016-11-01

    Full Text Available Precipitation change has significantly influenced annual net primary productivity (ANPP at either annual or seasonal scales in desert steppes in arid and semi-arid regions. In order to reveal the process of precipitation driving ANPP at different time scales, responses of different ANPP levels to the inter-annual and intra-annual precipitation fluctuations were analyzed. ANPP was reversed by building a ground reflectance spectrum model, from 2000 to 2015, using the normalized differential vegetation index of the Moderate-Resolution Imaging Spectroradiometer (MODIS-NDVI data at 250 m × 250 m spatial resolution. Since the description of the differently expressing forms of precipitation are not sufficient in former studies in order to overcome the deficiency of former studies, in this study, intra-annual precipitation fluctuations were analyzed not only with precipitation of May–August, June–August, July–August, and August, respectively, which have direct influence on vegetation productivity within the year, but quantitative description, vector precipitation (R, concentration ratio (Cd, and concentration period (D, were also used to describe the overall characteristics of intra-annual precipitation fluctuations. The concentration ratio and the maximum precipitation period of the intra-annual precipitation were represented by using monthly precipitation. The results showed that: (1 in the period from 1971 to 2015, the maximum annual precipitation is 3.76 times that of the minimum in the Urat desert steppe; (2 vector precipitation is more significantly related to ANPP (r = 0.7724, p = 0.000 compared to meteorological annual precipitation and real annual precipitation influence; and (3 annual precipitation is almost concentrated in 5–8 months and monthly precipitation accumulation has significantly effected ANPP, especially in the period of June–August, since the vegetation composition in the study area was mainly sub-shrubs and perennial

  17. Predictive Mapping of Dwarf Shrub Vegetation in an Arid High Mountain Ecosystem Using Remote Sensing and Random Forests

    Directory of Open Access Journals (Sweden)

    Kim André Vanselow

    2014-07-01

    Full Text Available In many arid mountains, dwarf shrubs represent the most important fodder and firewood resources; therefore, they are intensely used. For the Eastern Pamirs (Tajikistan, they are assumed to be overused. However, empirical evidence on this issue is lacking. We aim to provide a method capable of mapping vegetation in this mountain desert. We used random forest models based on remote sensing data (RapidEye, ASTER GDEM and 359 plots to predictively map total vegetative cover and the distribution of the most important firewood plants, K. ceratoides and A. leucotricha. These species were mapped as present in 33.8% of the study area (accuracy 90.6%. The total cover of the dwarf shrub communities ranged from 0.5% to 51% (per pixel. Areas with very low cover were limited to the vicinity of roads and settlements. The model could explain 80.2% of the total variance. The most important predictor across the models was MSAVI2 (a spectral vegetation index particularly invented for low-cover areas. We conclude that the combination of statistical models and remote sensing data worked well to map vegetation in an arid mountainous environment. With this approach, we were able to provide tangible data on dwarf shrub resources in the Eastern Pamirs and to relativize previous reports about their extensive depletion.

  18. Effects of Mediterranean shrub species on rainfall interception

    International Nuclear Information System (INIS)

    Garcia-Estringana, P.; Alonso-Blazquez, N.; Marques, M. J.; Bienes, R.; Alegre, J.

    2009-01-01

    Rainfall is intercepted by vegetation. Water intercepted could be evaporated, or it could drip from the leaves and stems to the soil or it could run down the stems to the base of the plant. In the Mediterranean, where water is a scant resource, interception loss could have an influence on hydrology. Water storage capacity depends on vegetation type. In the Mediterranean, there are many types of shrubs, and many of them are able to intercept large volumes of water depending on the shrub type. many lands of the Mediterranean basin of Europea Union have been abandoned in the last decades and consequently vegetation type changes too. This modifies hydrologic processes, changing the volume and the way in which the rainfall reaches the soil. The aim of this study was to characterize water storage capacity in 9 Mediterranean shrub species, working with the whole plant and comparing results obtained by two methods, rainfall simulation and submersion method in laboratory conditions. (Author) 12 refs.

  19. Can shrubs help to reconstruct historical glacier retreats?

    International Nuclear Information System (INIS)

    Buras, Allan; Hallinger, Martin; Wilmking, Martin

    2012-01-01

    In the 21st century, most of the world’s glaciers are expected to retreat due to further global warming. The range of this predicted retreat varies widely as a result of uncertainties in climate and glacier models. To calibrate and validate glacier models, past records of glacier mass balance are necessary, which often only span several decades. Long-term reconstructions of glacier mass balance could increase the precision of glacier models by providing the required calibration data. Here we show the possibility of applying shrub growth increments as an on-site proxy for glacier summer mass balance, exemplified by Salix shrubs in Finse, Norway. We further discuss the challenges which this method needs to meet and address the high potential of shrub growth increments for reconstructing glacier summer mass balance in remote areas. (letter)

  20. Russian deserters of World War I

    OpenAIRE

    Os'kin Maksim

    2014-01-01

    Desertion is one of the most active forms of ordinary resistance of the people to the state pressure during the low-popular war which is conducting for the purposes unclear for the people. At the same time, mass desertion is a manifestation of «total» war in the world conflicts of the XX century. During World War I in all armies of the world there was the desertion often accepting mass character. In the Russian army, as well as in other, deserters appeared from the war beginning. Desertion sca...

  1. Environmental Limits of Tall Shrubs in Alaska's Arctic National Parks.

    Science.gov (United States)

    Swanson, David K

    2015-01-01

    We sampled shrub canopy volume (height times area) and environmental factors (soil wetness, soil depth of thaw, soil pH, mean July air temperature, and typical date of spring snow loss) on 471 plots across five National Park Service units in northern Alaska. Our goal was to determine the environments where tall shrubs thrive and use this information to predict the location of future shrub expansion. The study area covers over 80,000 km2 and has mostly tundra vegetation. Large canopy volumes were uncommon, with volumes over 0.5 m3/m2 present on just 8% of plots. Shrub canopy volumes were highest where mean July temperatures were above 10.5°C and on weakly acid to neutral soils (pH of 6 to 7) with deep summer thaw (>80 cm) and good drainage. On many sites, flooding helped maintain favorable soil conditions for shrub growth. Canopy volumes were highest where the typical snow loss date was near 20 May; these represent sites that are neither strongly wind-scoured in the winter nor late to melt from deep snowdrifts. Individual species varied widely in the canopy volumes they attained and their response to the environmental factors. Betula sp. shrubs were the most common and quite tolerant of soil acidity, cold July temperatures, and shallow thaw depths, but they did not form high-volume canopies under these conditions. Alnus viridis formed the largest canopies and was tolerant of soil acidity down to about pH 5, but required more summer warmth (over 12°C) than the other species. The Salix species varied widely from S. pulchra, tolerant of wet and moderately acid soils, to S. alaxensis, requiring well-drained soils with near neutral pH. Nearly half of the land area in ARCN has mean July temperatures of 10.5 to 12.5°C, where 2°C of warming would bring temperatures into the range needed for all of the potential tall shrub species to form large canopies. However, limitations in the other environmental factors would probably prevent the formation of large shrub canopies

  2. Environmental Limits of Tall Shrubs in Alaska's Arctic National Parks.

    Directory of Open Access Journals (Sweden)

    David K Swanson

    Full Text Available We sampled shrub canopy volume (height times area and environmental factors (soil wetness, soil depth of thaw, soil pH, mean July air temperature, and typical date of spring snow loss on 471 plots across five National Park Service units in northern Alaska. Our goal was to determine the environments where tall shrubs thrive and use this information to predict the location of future shrub expansion. The study area covers over 80,000 km2 and has mostly tundra vegetation. Large canopy volumes were uncommon, with volumes over 0.5 m3/m2 present on just 8% of plots. Shrub canopy volumes were highest where mean July temperatures were above 10.5°C and on weakly acid to neutral soils (pH of 6 to 7 with deep summer thaw (>80 cm and good drainage. On many sites, flooding helped maintain favorable soil conditions for shrub growth. Canopy volumes were highest where the typical snow loss date was near 20 May; these represent sites that are neither strongly wind-scoured in the winter nor late to melt from deep snowdrifts. Individual species varied widely in the canopy volumes they attained and their response to the environmental factors. Betula sp. shrubs were the most common and quite tolerant of soil acidity, cold July temperatures, and shallow thaw depths, but they did not form high-volume canopies under these conditions. Alnus viridis formed the largest canopies and was tolerant of soil acidity down to about pH 5, but required more summer warmth (over 12°C than the other species. The Salix species varied widely from S. pulchra, tolerant of wet and moderately acid soils, to S. alaxensis, requiring well-drained soils with near neutral pH. Nearly half of the land area in ARCN has mean July temperatures of 10.5 to 12.5°C, where 2°C of warming would bring temperatures into the range needed for all of the potential tall shrub species to form large canopies. However, limitations in the other environmental factors would probably prevent the formation of large

  3. Desert Pathfinder at Work

    Science.gov (United States)

    2005-09-01

    The Atacama Pathfinder Experiment (APEX) project celebrates the inauguration of its outstanding 12-m telescope, located on the 5100m high Chajnantor plateau in the Atacama Desert (Chile). The APEX telescope, designed to work at sub-millimetre wavelengths, in the 0.2 to 1.5 mm range, passed successfully its Science Verification phase in July, and since then is performing regular science observations. This new front-line facility provides access to the "Cold Universe" with unprecedented sensitivity and image quality. After months of careful efforts to set up the telescope to work at the best possible technical level, those involved in the project are looking with satisfaction at the fruit of their labour: APEX is not only fully operational, it has already provided important scientific results. "The superb sensitivity of our detectors together with the excellence of the site allow fantastic observations that would not be possible with any other telescope in the world," said Karl Menten, Director of the group for Millimeter and Sub-Millimeter Astronomy at the Max-Planck-Institute for Radio Astronomy (MPIfR) and Principal Investigator of the APEX project. ESO PR Photo 30/05 ESO PR Photo 30/05 Sub-Millimetre Image of a Stellar Cradle [Preview - JPEG: 400 x 627 pix - 200k] [Normal - JPEG: 800 x 1254 pix - 503k] [Full Res - JPEG: 1539 x 2413 pix - 1.3M] Caption: ESO PR Photo 30/05 is an image of the giant molecular cloud G327 taken with APEX. More than 5000 spectra were taken in the J=3-2 line of the carbon monoxide molecule (CO), one of the best tracers of molecular clouds, in which star formation takes place. The bright peak in the north of the cloud is an evolved star forming region, where the gas is heated by a cluster of new stars. The most interesting region in the image is totally inconspicuous in CO: the G327 hot core, as seen in methanol contours. It is a truly exceptional source, and is one of the richest sources of emission from complex organic molecules in the

  4. Uptake of Radium by Grass and Shrubs Grown on Mineral Heaps: A Preliminary Study

    International Nuclear Information System (INIS)

    Laili, Z.; Omar, M.; Yusof, M.A. Wahab; Ibrahim, M.Z.

    2015-01-01

    A preliminary study of the uptake of 226 Ra and 228 Ra by grass and shrubs grown on mineral heaps was carried out. Activity concentrations of 226 Ra and 228 Ra in grass and shrubs were measured using gamma spectrometry. The result showed that grass and shrubs grown on mineral heaps contained elevated levels of radium compared to grass and shrubs grown on normal soils. Thus, these plants might be used for phytoremediation of radium contaminated soil. (author)

  5. GROWTH-RATES OF SHRUBS ON DIFFERENT SOILS IN TANZANIA

    NARCIS (Netherlands)

    PRINS, HHT; VANDERJEUGD, HP

    1992-01-01

    Because little is known of growth rates of shrubs in East Africa, the growth rates of Acalypha fructicosa, Gardenia jovis-tonantis, Justicia cordata, Maerua triphylla, and Ocimum suave were measured in Lake Manyara National Park, northern Tanzania. Branch diameter increments and branch length

  6. Growth rates of shrubs on different soils in Tanzania.

    NARCIS (Netherlands)

    Prins, H.H.T.; Jeugd, van der H.P.

    1992-01-01

    Because little is known of growth rates of shrubs in East Africa, the growth rates of Acalypha fructicosa, Gardenia jovis-tonantis, Justicia cordata, Maerua triphylla, and Ocimum suave were measured in Lake Manyara National Park, northern Tanzania. Branch diameter increments and branch length

  7. Micropropagation of the endangered shrub pondberry (Lindera melissifolia [Walt.] Blume)

    Science.gov (United States)

    Tracy S. Hawkins; Nathan M. Schiff; Emile s. Gardiner; Theodore Leininger; Margaret S. Devall; A. Dan Wilson; Paul Hamel; Deborah D. McCown; Kristina Connor

    2007-01-01

    A micropropagation protocol using shoot cultures is described for Lindera melissifolia, a federally listed endangered shrub endemic to the southeastern United States. Stock plants were harvested from native L. melissifolia populations growing in the lower Mississippi Alluvial Valley. In vitro proliferation was on woody plant medium...

  8. Experimental and numerical modeling of shrub crown fire initiation

    Science.gov (United States)

    Watcharapong Tachajapong; Jesse Lozano; Shakar Mahalingam; Xiangyang Zhou; David Weise

    2009-01-01

    The transition of fire from dry surface fuels to wet shrub crown fuels was studied using laboratory experiments and a simple physical model to gain a better understanding of the transition process. In the experiments, we investigated the effects of varying vertical distances between surface and crown fuels (crown base height), and of the wind speed on crown fire...

  9. Drought damage to bushveld trees and large shrubs | JJP | African ...

    African Journals Online (AJOL)

    An intensive survey was carried out in Sweet Bushveld (savanna) to study drought damage to the trees and large shrubs in a Combretum apiculatum community. In general, the severity of damage was less than was expected and its pattern differed markedly between the 21 different species encountered. Keywords: ...

  10. Seeds of Puerto Rican Trees and Shrubs: Second Installment

    Science.gov (United States)

    John K. Francis; Alberto Rodríguez

    1993-01-01

    Seed weights and germination information were obtained for 119 native Puerto Rican and naturalized exotic trees and shrubs. Fruit was collected from 34 of these species, and the weights were recorded. The data are presented in tables that list the species alphabetically by scientific names.

  11. Use and availability of tree and shrub resources on Maasai ...

    African Journals Online (AJOL)

    Twenty-four tree and shrub species were utilised for four main purposes: medicinal, fencing, firewood and shelter. These uses were mainly confined to four key species: Acacia mellifera, Acacia xanthophloea , Acacia tortilisand Balanites glabra. Ethno-medicine was the most common use and required smaller quantities of ...

  12. Recent emissions research in southwestern shrub and grassland fuels

    Science.gov (United States)

    David R. Weise; Wayne Miller; David R. Cocker; Heejung Jung; Seyedehsan Hosseini; Marko Princevac; Robert J. Yokelson; Ian Burling; Sheryl Akagi; Shawn Urbanski; WeiMin Hao

    2015-01-01

    While it is currently challenging to use prescribed burning in chaparral and other southwestern shrub fuel types due to many constraints, any such activities require smoke management planning. Information on fuels and emissions from chaparral were limited and based on older sampling systems. The DoD SERDP program funded a project to measure fuels and smoke emissions in...

  13. The Invasive Shrub, Buddleja davidii (Butterfl y Bush)

    Science.gov (United States)

    Buddleja davidii Franchet (Synonym. Buddleia davidii; common name Butterfly bush) is a perennial, semi-deciduous shrub or small multi-stemmed tree that is resident in gardens and disturbed areas in temperate locations worldwide. Since its introduction to the United Kingdom from c...

  14. Siliceous Shrubs in Yellowstone's Hot Springs: Implications for Exobiological Investigations

    Science.gov (United States)

    Guidry, S. A.; Chafetz, H. S.

    2003-01-01

    Potential relict hot springs have been identified on Mars and, using the Earth as an analog, Martian hot springs are postulated to be an optimal locality for recognizing preserved evidence of extraterrestrial life. Distinctive organic and inorganic biomarkers are necessary to recognize preserved evidence of life in terrestrial and extraterrestrial hot spring accumulations. Hot springs in Yellowstone National Park, Wyoming, U.S.A., contain a wealth of information about primitive microbial life and associated biosignatures that may be useful for future exobiological investigations. Numerous siliceous hot springs in Yellowstone contain abundant, centimeter-scale, spinose precipitates of opaline silica (opal-A). Although areally extensive in siliceous hot spring discharge channel facies, these spinose forms have largely escaped attention. These precipitates referred to as shrubs, consist of porous aggregates of spinose opaline silica that superficially resemble miniature woody plants, i.e., the term shrubs. Shrubs in carbonate precipitating systems have received considerable attention, and represent naturally occurring biotically induced precipitates. As such, shrubs have great potential as hot spring environmental indicators and, more importantly, proxies for pre-existing microbial life.

  15. Plant Identification Characteristics for Deciduous Trees & Shrubs. Lesson Plans.

    Science.gov (United States)

    Burkholder, Kathy

    This manual contains a group of lesson plans designed for use with a slide series (not included here). Its purpose is to introduce students to the basic concepts and terminology used in the identification of deciduous trees and shrubs. The manual is composed of 12 lesson plans. The first lesson is an introduction to plant identification. The…

  16. Environmental indices for common Michigan trees and shrubs.

    Science.gov (United States)

    Gary J. Brand

    1985-01-01

    Plants are indicators of environmental factors like moisture, nutrients, heat, and light. Semi-quantitative indices for these four factors were developed for 90 Michigan trees and shrubs. The indices and a tally of species present provide a simple evaluation of the environment of a forest stand and a useful management aid.

  17. Metabolomic response of Calotropis procera growing in the desert to changes in water availability.

    Science.gov (United States)

    Ramadan, Ahmed; Sabir, Jamal S M; Alakilli, Saleha Y M; Shokry, Ahmed M; Gadalla, Nour O; Edris, Sherif; Al-Kordy, Magdy A; Al-Zahrani, Hassan S; El-Domyati, Fotouh M; Bahieldin, Ahmed; Baker, Neil R; Willmitzer, Lothar; Irgang, Susann

    2014-01-01

    Water availability is a major limitation for agricultural productivity. Plants growing in severe arid climates such as deserts provide tools for studying plant growth and performance under extreme drought conditions. The perennial species Calotropis procera used in this study is a shrub growing in many arid areas which has an exceptional ability to adapt and be productive in severe arid conditions. We describe the results of studying the metabolomic response of wild C procera plants growing in the desert to a one time water supply. Leaves of C. procera plants were taken at three time points before and 1 hour, 6 hours and 12 hours after watering and subjected to a metabolomics and lipidomics analysis. Analysis of the data reveals that within one hour after watering C. procera has already responded on the metabolic level to the sudden water availability as evidenced by major changes such as increased levels of most amino acids, a decrease in sucrose, raffinose and maltitol, a decrease in storage lipids (triacylglycerols) and an increase in membrane lipids including photosynthetic membranes. These changes still prevail at the 6 hour time point after watering however 12 hours after watering the metabolomics data are essentially indistinguishable from the prewatering state thus demonstrating not only a rapid response to water availability but also a rapid response to loss of water. Taken together these data suggest that the ability of C. procera to survive under the very harsh drought conditions prevailing in the desert might be associated with its rapid adjustments to water availability and losses.

  18. Food habits and radionuclide tissue concentrations of Nevada desert bighorn sheep, 1972--1973

    International Nuclear Information System (INIS)

    Brown, K.W.; Smith, D.D.; Bernhardt, D.E.; Giles, K.R.; Helvie, J.B.

    1976-06-01

    The botanical composition of the diet and radionuclide content of selected tissues of desert bighorn sheep (Ovis canadensis nelsoni) collected during the 1972 and 1973 hunting seasons were determined by analyzing rumen contents, and lung, liver, kidney, and bone tissues. Botanical examination of the rumen contents showed that grass exceeded 50 percent of the diet of 10 to 14 animals collected in 1972 and 12 of 18 animals collected in 1973. Desert needlegrass (Stipa speciosa), Indian rice grass (Oryzopsis hymenoides), and squirrel tail (Sitanion hystrix) were the major grasses utilized. The dominant shrub species consumed included the joint firs (Ephedra viridis) and (Ephedra nevadensis), Mohave yucca (Yucca schidigera), and cliff rose (Cowania mexicana). With the exception of potassium-40, gamma-emitting radionuclides were not detected in desert bighorn sheep tissue. The tritium levels reported were within environmental levels. Strontium-90 levels averaged 4.9 and 4.1 pCi/gram of bone ash for 1972 and 1973, respectively, continuing the downward trend observed in recent years. Uranium levels were similar to those reported from cattle grazing the same general geographic areas. The daily consumption for one year of 500 grams of liver containing the highest levels of plutonium and uranium would result in a dose to the human bone, the tissue expected to receive the highest dose, of approximately 1 mrem/year. This is less than 1% of the radiation protection guides for the general population

  19. tree and shrub species integration in the crop-livestock farming ...

    African Journals Online (AJOL)

    Prof. Adipala Ekwamu

    cash for investment in the required activities, easy land certification and market opportunity for tree and shrub products. The tree and shrub .... for its consistency, logical flow, coding and length were amended. .... TABLE 2. List of shrub species identified in the watershed of highlands of central Ethiopia. Scientific name.

  20. Assessing effect of rainfall on rate of alien shrub expansion in a southern African savanna

    NARCIS (Netherlands)

    Masocha, Mhosisi; Dube, Timothy; Skidmore, A.K.; Holmgren, Milena; Prins, Herbert

    2017-01-01

    Understanding the environmental factors governing the spread of alien shrubs is crucial for conserving biodiversity. In the semi-arid savannas of Africa, alien shrub invasion often occurs simultaneously with native shrub encroachment but climate-dependent differences in encroachments of native and

  1. Shrubs as ecosystem engineers across an environmental gradient: effects on species richness and exotic plant invasion.

    Science.gov (United States)

    Kleinhesselink, Andrew R; Magnoli, Susan M; Cushman, J Hall

    2014-08-01

    Ecosystem-engineering plants modify the physical environment and can increase species diversity and exotic species invasion. At the individual level, the effects of ecosystem engineers on other plants often become more positive in stressful environments. In this study, we investigated whether the community-level effects of ecosystem engineers also become stronger in more stressful environments. Using comparative and experimental approaches, we assessed the ability of a native shrub (Ericameria ericoides) to act as an ecosystem engineer across a stress gradient in a coastal dune in northern California, USA. We found increased coarse organic matter and lower wind speeds within shrub patches. Growth of a dominant invasive grass (Bromus diandrus) was facilitated both by aboveground shrub biomass and by growing in soil taken from shrub patches. Experimental removal of shrubs negatively affected species most associated with shrubs and positively affected species most often found outside of shrubs. Counter to the stress-gradient hypothesis, the effects of shrubs on the physical environment and individual plant growth did not increase across the established stress gradient at this site. At the community level, shrub patches increased beta diversity, and contained greater rarified richness and exotic plant cover than shrub-free patches. Shrub effects on rarified richness increased with environmental stress, but effects on exotic cover and beta diversity did not. Our study provides evidence for the community-level effects of shrubs as ecosystem engineers in this system, but shows that these effects do not necessarily become stronger in more stressful environments.

  2. Influence of surface roughness of a desert

    Science.gov (United States)

    Sud, Y. C.; Smith, W. E.

    1984-01-01

    A numerical simulation study, using the current GLAS climate GCM, was carried out to examine the influence of low bulk aerodynamic drag parameter in the deserts. The results illustrate the importance of yet another feedback effect of a desert on itself, that is produced by the reduction in surface roughness height of land once the vegetation dies and desert forms. Apart from affecting the moisture convergence, low bulk transport coefficients of a desert lead to enhanced longwave cooling and sinking which together reduce precipitation by Charney's (1975) mechanism. Thus, this effect, together with albedo and soil moisture influence, perpetuate a desert condition through its geophysical feedback effect. The study further suggests that man made deserts is a viable hypothesis.

  3. How much Carbon is Stored in Deserts? AN Approach for the Chilean Atacama Desert Using LANDSAT-8 Products

    Science.gov (United States)

    Hernández, H. J.; Acuña, T.; Reyes, P.; Torres, M.; Figueroa, E.

    2016-06-01

    The Atacama Desert in northern Chile is known as the driest place on Earth, with an average rainfall of about 15 mm per year. Despite these conditions, it contains a rich variety of flora with hundreds of species characterised by their extraordinary ability to adapt to this extreme environment. These biotic components have a direct link to important ecosystem services, especially those related to carbon storage and sequestration. No quantitative assessment is currently available for these services and the role of the desert in this matter remains unclear. We propose an approach to estimate above-ground biomass (AGB) using Landsat-8 data, which we tested in the Taparacá region, located in the northern section of the desert. To calibrate and validate the models, we used field data from 86 plots and several spectral indexes (NDVI, EVI and SAVI) obtained from the provisional Landsat-8 Surface-reflectance products. We applied randomised branch sampling and allometry principles (non-destructive methods) to collect biomass samples for all plant biological types: wetlands, steppes, shrubs and trees. All samples were dried in an oven until they reached constant weight and the final values were used to extrapolate dry matter content (AGB) to each plot in terms of kg m-2. We used all available scenes from September 2014 to August 2015 to calculate the maximum, minimum and average value for each index in each pixel within this period. For modeling, we used the method based on classification and regression trees called random forest (RF), available in the statistical software R-Project. The explained variance obtained by the RF algorithm was around 80-85%, and it improved when a wetland vector layer was used as the predictive factor in the model to reach the range 85-90%. The mean error was 1.45 kg m-2 of dry matter. The best model was obtained using the maximum and mean values of SAVI and EVI indexes. We were able to estimate total biomass storage of around 8 million tons

  4. HOW MUCH CARBON IS STORED IN DESERTS? AN APPROACH FOR THE CHILEAN ATACAMA DESERT USING LANDSAT-8 PRODUCTS

    Directory of Open Access Journals (Sweden)

    H. J. Hernández

    2016-06-01

    Full Text Available The Atacama Desert in northern Chile is known as the driest place on Earth, with an average rainfall of about 15 mm per year. Despite these conditions, it contains a rich variety of flora with hundreds of species characterised by their extraordinary ability to adapt to this extreme environment. These biotic components have a direct link to important ecosystem services, especially those related to carbon storage and sequestration. No quantitative assessment is currently available for these services and the role of the desert in this matter remains unclear. We propose an approach to estimate above-ground biomass (AGB using Landsat-8 data, which we tested in the Taparacá region, located in the northern section of the desert. To calibrate and validate the models, we used field data from 86 plots and several spectral indexes (NDVI, EVI and SAVI obtained from the provisional Landsat-8 Surface-reflectance products. We applied randomised branch sampling and allometry principles (non-destructive methods to collect biomass samples for all plant biological types: wetlands, steppes, shrubs and trees. All samples were dried in an oven until they reached constant weight and the final values were used to extrapolate dry matter content (AGB to each plot in terms of kg m-2. We used all available scenes from September 2014 to August 2015 to calculate the maximum, minimum and average value for each index in each pixel within this period. For modeling, we used the method based on classification and regression trees called random forest (RF, available in the statistical software R-Project. The explained variance obtained by the RF algorithm was around 80-85%, and it improved when a wetland vector layer was used as the predictive factor in the model to reach the range 85-90%. The mean error was 1.45 kg m-2 of dry matter. The best model was obtained using the maximum and mean values of SAVI and EVI indexes. We were able to estimate total biomass storage of around 8

  5. A 30-year chronosequence of burned areas in Arizona: effects of wildfires on vegetation in Sonoran Desert Tortoise (Gopherus morafkai) habitats

    Science.gov (United States)

    Shryock, Daniel F.; Esque, Todd C.; Chen, Felicia C.

    2015-01-01

    Fire is widely regarded as a key evolutionary force in fire-prone ecosystems, with effects spanning multiple levels of organization, from species and functional group composition through landscape-scale vegetation structure, biomass, and diversity (Pausas and others, 2004; Bond and Keeley 2005; Pausas and Verdu, 2008). Ecosystems subjected to novel fire regimes may experience profound changes that are difficult to predict, including persistent losses of vegetation cover and diversity (McLaughlin and Bowers, 1982; Brown and Minnich, 1986; Brooks, 2012), losses to seed banks (Esque and others, 2010a), changes in demographic processes (Esque and others, 2004; DeFalco and others, 2010), increased erosion (Soulard and others, 2013), changes in nutrient availability (Esque and others, 2010b), increased dominance of invasive species (Esque and others, 2002; Brooks and others, 2004), and transitions to alternative community states (Davies and others, 2012). In the deserts of the Southwestern United States, fire size and frequency have increased substantially over the last several decades because of an invasive grass/fire feedback cycle (Schmid and Rogers, 1988; D’Antonio and Vitousek, 1992; Swantek and others, 1999; Brooks and Matchett, 2006; Esque and others, 2010a), in which invasive annual species are able to establish fuel loads capable of sustaining large-scale wildfires following years of high rainfall (Esque and Schwalbe, 2002). Native perennial vegetation is not well-adapted to fire in these environments, and widespread, physiognomically dominant species such as creosote bush (Larrea tridentata), Joshua tree (Yucca brevifolia), giant saguaro cactus (Carnegiea gigantea), and paloverde (Parkinsonia spp.) may be reduced or eliminated (Brown and Minnich, 1986; Esque and others, 2006; DeFalco and others, 2010), potentially affecting wildlife populations including the Sonoran and federally threatened Mojave Desert Tortoises (Gopherus morafkai and Gopherus agassizii

  6. Analysis of Desert Shrubs along First-Order Channels on the Desert Piedmonts: Possible Indicators of Ecosystem Health and Historic Variation - (SEED Project)

    Science.gov (United States)

    2005-06-06

    sapwood area is usually consistent (Pataki et al., 2000; Smith et al., 1995 missing). This relation suggests that larger trees may be susceptible to... area , since leaf- area to sapwood areas are usually consistent. Larger trees along higher order channels, therefore, may prove to be more sensitive to...measurements of bulk soil electrical conductivity to measure soil moisture and possible anthropogenic effects over large areas as long as

  7. The effect of polyethylene glycol on intake of Mediterranean shrubs by sheep and goats.

    Science.gov (United States)

    Rogosic, J; Pfister, J A; Provenza, F D; Pavlicevic, J

    2008-12-01

    Poor nutritional quality and increased content of secondary compounds can reduce consumption of Mediterranean shrubs by herbivores. In 2 sequential trials, we examined the effect of polyethylene glycol (PEG) and number of shrub species offered on daily intake of Mediterranean shrubs by 12 sheep and 12 goats. The PEG (25 g) was fed to experimental animals with barley. In trial 1 (6 shrubs), goats ate more (P = 0.0008) daily total shrub biomass than did sheep (60.7 vs. 45.9 +/- 2.6 g/kg of BW). There was a trend (P = 0.08) toward a positive PEG effect on total shrub intake, with PEG-supplemented animals consuming more total shrubs than controls (56.7 vs. 50.0 +/- 2.6 g/kg of BW). Trial 2 (using 3 shrubs) was a continuation of trial 1, except that animals were given less barley and treatment animals were given more PEG (50 g). Both sheep and goats showed a numerical decrease in total shrub intake from trial 1 to trial 2. Sheep receiving PEG ate more (P = 0.002) total shrubs than did controls, but no PEG effect was found for goats. Thus, PEG had a greater influence on sheep than goats when only 3 shrubs were offered, a result that may be related to the fact that fewer shrubs with complementary secondary compounds were offered and that goats appear to have a greater ability to consume and detoxify secondary compounds from Mediterranean shrubs. Overall, as the number and diversity of shrubs offered increased, supplemental PEG had less effect on increasing intake for both goats and sheep.

  8. Role of species diversity and secondary compound complementarity on diet selection of Mediterranean shrubs by goats.

    Science.gov (United States)

    Rogosic, Jozo; Estell, Richard E; Skobic, Dragan; Martinovic, Anita; Maric, Stanislava

    2006-06-01

    Goats foraging on Mediterranean shrubs containing secondary compounds (toxins) may consume a variety of shrubs that contain different phytotoxins, thereby increasing shrub intake and avoiding toxicosis. We conducted eight experiments to examine whether goats offered different mixtures of shrubs containing different phytotoxins (tannins and saponins) would consume more shrub biomass than goats offered one shrub a single phytotoxin (tannin or saponin). In the first three experiments, goats fed a mixture of three tannin-rich shrubs (Quercus ilex, Arbutus unedo, and Pistacia lentiscus) ate more foliage than goats offered only one shrub (23.2 vs. 10.7 g/kg BW; 25.2 vs. 13.4 g/kg BW, and 27.9 vs. 7.9 g/kg BW), regardless of tannin concentration in individual shrub species. Goats also consumed more foliage when offered the same three tannin-rich shrubs than when offered the saponin-rich shrub Hedera helix (25.4 vs. 8.0 g/kg BW). However, goats offered a mixture of the same three tannin-rich shrubs consumed less foliage than goats offered a mixture of two shrubs containing tannins and saponins: Quercus and Hedera (21.6 vs. 27.1 g/kg BW), Arbutus and Hedera (21.8 vs. 27.1 g/kg BW), and Pistacia and Hedera (19.7 vs. 22.0 g/kg BW). Comparison of intake of shrubs containing only tannins or saponins to intake of shrubs containing both tannins and saponins indicated that goats consumed more total biomass when fed with shrubs with both classes of compounds than with either tannins or saponins alone. Our results suggest that goats can increase intake of Mediterranean shrubs high in secondary compounds by selecting those with different classes of phytotoxins. Simultaneous ingestion of shrubs containing tannins and saponins may promote chemical interactions that inhibit toxic effects of these phytotoxins in the intestinal tract. In addition to complementary interactions between tannins and saponins, biological diversity within Mediterranean maquis vegetation also plays a positive

  9. Generating new varieties of shrubs for landscapes in Malaysia

    International Nuclear Information System (INIS)

    Zaiton Ahmad; Affrida Abu Hassan; Shuhaimi Shamsudin; Norimah Yusof; Shakinah Salleh

    2012-01-01

    This project which was funded by National Landscape Department was aimed at generating new varieties of shrubs suitable for landscapes in Malaysia. Three species of shrubs commonly used in Malaysian landscapes (hibiscus, canna and turnera) were selected for generating new varieties through mutagenesis techniques using gamma rays and ion beams. The main objective was to produce new varieties with desired characters, such as longer bloom period, unique and prominent petal colors and larger flower size. Through this project, several potential mutants have been identified such as turnera with longer bloom period, canna with new flower colors and hibiscus with different flower form. These mutants are currently undergoing field screening at Serdang to analyze their genetic stability, and will be registered as new varieties with Department of Agriculture before being transferred to end-users. (author)

  10. Shrub Abundance Mapping in Arctic Tundra with Misr

    Science.gov (United States)

    Duchesne, R.; Chopping, M. J.; Wang, Z.; Schaaf, C.; Tape, K. D.

    2013-12-01

    Over the last 60 years an increase in shrub abundance has been observed in the Arctic tundra in connection with a rapid surface warming trend. Rapid shrub expansion may have consequences in terms of ecosystem structure and function, albedo, and feedbacks to climate; however, its rate is not yet known. The goal of this research effort is thus to map large scale changes in Arctic tundra vegetation by exploiting the structural signal in moderate resolution satellite remote sensing images from NASA's Multiangle Imaging SpectroRadiometer (MISR), mapped onto a 250m Albers Conic Equal Area grid. We present here large area shrub mapping supported by reference data collated using extensive field inventory data and high resolution panchromatic imagery. MISR Level 1B2 Terrain radiance scenes from the Terra satellite from 15 June-31 July, 2000 - 2010 were converted to surface bidirectional reflectance factors (BRF) using MISR Toolkit routines and the MISR 1 km LAND product BRFs. The red band data in all available cameras were used to invert the RossThick-LiSparse-Reciprocal BRDF model to retrieve kernel weights, model-fitting RMSE, and Weights of Determination. The reference database was constructed using aerial survey, three field campaigns (field inventory for shrub count, cover, mean radius and height), and high resolution imagery. Tall shrub number, mean crown radius, cover, and mean height estimates were obtained from QuickBird and GeoEye panchromatic image chips using the CANAPI algorithm, and calibrated using field-based estimates, thus extending the database to over eight hundred locations. Tall shrub fractional cover maps for the North Slope of Alaska were constructed using the bootstrap forest machine learning algorithm that exploits the surface information provided by MISR. The reference database was divided into two datasets for training and validation. The model derived used a set of 19 independent variables(the three kernel weights, ratios and interaction terms

  11. Técnicas De Comprensión Lectora En El Área De Lengua Y Literatura, Y Su Influencia En Los Procesos De Aprendizaje De Los Estudiantes De Educación Básica Elemental En La Escuela Dr. Oswaldo Hurtado Larrea Del Cantón Milagro

    OpenAIRE

    Astudillo Erazo, Patricia

    2015-01-01

    This research is a didactic-pedagogical compendium prepared to implement in the learning process of students SCHOOL DR. OSWALDO HURTADO LARREA CANTON MIRACLE, confident that the implementation of these strategies will develop significant learning basic skills specified in the Upgrading and Strengthening Curriculum of General Basic Education, and thinking that it is inscribed within the broader criterion of recreational endeavor Good Live. The methodological strategies are teaching guidel...

  12. Increased spring freezing vulnerability for alpine shrubs under early snowmelt.

    Science.gov (United States)

    Wheeler, J A; Hoch, G; Cortés, A J; Sedlacek, J; Wipf, S; Rixen, C

    2014-05-01

    Alpine dwarf shrub communities are phenologically linked with snowmelt timing, so early spring exposure may increase risk of freezing damage during early development, and consequently reduce seasonal growth. We examined whether environmental factors (duration of snow cover, elevation) influenced size and the vulnerability of shrubs to spring freezing along elevational gradients and snow microhabitats by modelling the past frequency of spring freezing events. We sampled biomass and measured the size of Salix herbacea, Vaccinium myrtillus, Vaccinium uliginosum and Loiseleuria procumbens in late spring. Leaves were exposed to freezing temperatures to determine the temperature at which 50% of specimens are killed for each species and sampling site. By linking site snowmelt and temperatures to long-term climate measurements, we extrapolated the frequency of spring freezing events at each elevation, snow microhabitat and per species over 37 years. Snowmelt timing was significantly driven by microhabitat effects, but was independent of elevation. Shrub growth was neither enhanced nor reduced by earlier snowmelt, but decreased with elevation. Freezing resistance was strongly species dependent, and did not differ along the elevation or snowmelt gradient. Microclimate extrapolation suggested that potentially lethal freezing events (in May and June) occurred for three of the four species examined. Freezing events never occurred on late snow beds, and increased in frequency with earlier snowmelt and higher elevation. Extrapolated freezing events showed a slight, non-significant increase over the 37-year record. We suggest that earlier snowmelt does not enhance growth in four dominant alpine shrubs, but increases the risk of lethal spring freezing exposure for less freezing-resistant species.

  13. Fire tolerance of a resprouting Artemisia (Asteraceae) shrub

    Science.gov (United States)

    Winter, S.L.; Fuhlendorf, S.D.; Goad, C.L.; Davis, C.A.; Hickman, K.R.; Leslie, David M.

    2011-01-01

    In North America, most Artemisia (Asteraceae) shrub species lack the ability to resprout after disturbances that remove aboveground biomass. We studied the response of one of the few resprouting Artemisia shrubs, Artemisia filifolia (sand sagebrush), to the effects of prescribed fires. We collected data on A. filifolia density and structural characteristics (height, canopy area, and canopy volume) in an A. filifolia shrubland in the southern Great Plains of North America. Our study sites included areas that had not been treated with prescribed fire, areas that had been treated with only one prescribed fire within the previous 5 years, and areas that had been treated with two prescribed fires within the previous 10 years. Our data were collected at time periods ranging from 1/2 to 5 years after the prescribed fires. Density of A. filifolia was not affected by one or two fires. Structural characteristics, although initially altered by prescribed fire, recovered to levels characteristic of unburned areas in 3-4 years after those fires. In contrast to most non-sprouting North American Artemisia shrub species, our research suggested that the resprouting A. filifolia is highly tolerant to the effects of fire. ?? 2011 Springer Science+Business Media B.V.

  14. The Riparianness of a Desert Herpetofauna

    Science.gov (United States)

    Charles H. Lowe

    1989-01-01

    Within the Mojave, Sonoran, and Chihuahuan Desert subdivisions of the North American Desert in the U.S., more than half of 143 total amphibian and reptilian species perform as riparian and/or wetland taxa. For the reptiles, but not the amphibians, there is a significant inverse relationship between riparianness (obligate through preferential and facultative to...

  15. [Dynamics of sap flow density in stems of typical desert shrub Calligonum mongolicum and its responses to environmental variables].

    Science.gov (United States)

    Xu, Shi-qin; Ji, Xi-bin; Jin, Bo-wen

    2016-02-01

    Independent measurements of stem sap flow in stems of Calligonum mongolicum and environmental variables using commercial sap flow gauges and a micrometeorological monitoring system, respectively, were made to simulate the variation of sap flow density in the middle range of Hexi Corridor, Northwest China during June to September, 2014. The results showed that the diurnal process of sap flow density in C. mongolicum showed a broad unimodal change, and the maximum sap flow density reached about 30 minutes after the maximum of photosynthetically active radiation (PAR) , while about 120 minutes before the maximum of temperature and vapor pressure deficit (VPD). During the studying period, sap flow density closely related with atmosphere evapor-transpiration demand, and mainly affected by PAR, temperature and VPD. The model was developed which directly linked the sap flow density with climatic variables, and good correlation between measured and simulated sap flow density was observed in different climate conditions. The accuracy of simulation was significantly improved if the time-lag effect was taken into consideration, while this model underestimated low and nighttime sap flow densities, which was probably caused by plant physiological characteristics.

  16. The Influence of an Invasive Shrub, Buddleja Davidii on a Native Shrub, Griselinia Littoralis Transplanted into a New Zealand Floodplain Chronosequence

    Science.gov (United States)

    Griselinia littoralis, a native New Zealand shrub, was planted into a chronosequence (0 to 8 yrs since flooding) dominated by the non-indigenous shrub, Buddleja davidii in three New Zealand floodplains to determine to what extent facilitation and competitive inhibition may influe...

  17. Rural childhoods in Egypt's desert lands

    DEFF Research Database (Denmark)

    Adriansen, Hanne Kirstine

    Based on fieldwork in Egypt’s desert lands, this paper discusses rural childhoods in an area experiencing rapid social and cultural change. Since 1987, the Egyptian Government has made new villages in the desert as a means to increase agricultural production and solving problems of unemployment....... Many settlers move to the Mubarak villages in order to give their children a good start in life. The desert villages are associated with a type of ‘rural idyll’. The process of settling in the desert impacts upon the children’s possible pathways to adulthood and their identities and social......’s new roles impact upon the children’s lives. The social contexts shaping the desert childhoods are in some ways more similar to contexts in ‘developed’ countries than in other parts of rural Egypt. The paper ends up by contrasting ideas of rural childhoods in Egypt with those found in ‘developed...

  18. Independent Effects of Invasive Shrubs and Deer Herbivory on Plant Community Dynamics

    Directory of Open Access Journals (Sweden)

    Jeffrey S. Ward

    2016-12-01

    Full Text Available Both invasive species and deer herbivory are recognized as locally important drivers of plant community dynamics. However, few studies have examined whether their effects are synergistic, additive, or antagonistic. At three study areas in southern New England, we examined the interaction of white-tailed deer (Odocoileus virginianus Zimmermann herbivory and three levels of invasive shrub control over seven growing seasons on the dynamics of nine herbaceous and shrub guilds. Although evidence of synergistic interactions was minimal, the separate effects of invasive shrub control and deer herbivory on plant community composition and dynamics were profound. Plant communities remained relatively unchanged where invasive shrubs were not treated, regardless if deer herbivory was excluded or not. With increasing intensity of invasive shrub control, native shrubs and forbs became more dominant where deer herbivory was excluded, and native graminoids became progressively more dominant where deer herbivory remained severe. While deer exclusion and intensive invasive shrub control increased native shrubs and forbs, it also increased invasive vines. Restoring native plant communities in areas with both established invasive shrub thickets and severe deer browsing will require an integrated management plan to eliminate recalcitrant invasive shrubs, reduce deer browsing intensity, and quickly treat other opportunistic invasive species.

  19. Spatio-temporal patterns of ptarmigan occupancy relative to shrub cover in the Arctic

    Science.gov (United States)

    Schmutz, Joel A.

    2014-01-01

    Rock and willow ptarmigan are abundant herbivores that require shrub habitats in arctic and alpine areas. Shrub expansion is likely to increase winter habitat availability for ptarmigan, which in turn influence shrub architecture and growth through browsing. Despite their ecological role in the Arctic, the distribution and movement patterns of ptarmigan are not well known, particularly in northern Alaska where shrub expansion is occurring. We used multi-season occupancy models to test whether ptarmigan occupancy varied within and among years, and the degree to which colonization and extinction probabilities were related to shrub cover and latitude. Aerial surveys were conducted from March to May in 2011 and April to May 2012 in a 21,230 km2 area in northeastern Alaska. In areas with at least 30 % shrub cover, the probability of colonization by ptarmigan was >0.90, indicating that moderate to extensive patches of shrubs (typically associated with riparian areas) had a high probability of becoming occupied by ptarmigan. Occupancy increased throughout the spring in both years, providing evidence that ptarmigan migrated from southern wintering areas to breeding areas north of the Brooks Range. Occupancy was higher in the moderate snow year than the high snow year, and this was likely due to higher shrub cover in the moderate snow year. Ptarmigan distribution and migration in the Arctic are linked to expanding shrub communities on a wide geographic scale, and these relationships may be shaping ptarmigan population dynamics, as well as rates and patterns of shrub expansion.

  20. SUPPLEMENTAL ACTIVATED CHARCOAL AND ENERGY INCREASE INTAKE OF MEDITERRANEAN SHRUBS BY SHEEP AND GOATS

    Directory of Open Access Journals (Sweden)

    Jozo Rogošić

    2008-07-01

    Full Text Available Utilization of the Mediterranean shrubby vegetation is often limited by secondary compounds, such as terpenes, which at too high concentrations can adversely affect forage intake and animal health. Ingesting compounds such as activated charcoal and energy can ameliorate the negative effects of secondary compounds and enable animals to eat more shrubs. Thus, our objectives were to determine if supplemental charcoal, energy and numbers of shrub species offered influenced intake of shrubs by sheep and goats. We conducted three experiments each with 12 lambs and 12 kids (6 activated charcoal vs. 6 controls. In the first experiment, we initially offered three shrubs (Juniperus phoenicea, Helichrysum italicum and Juniperus oxicedrus, then in the second one, two shrubs (Juniperus phoenicea and Helichrysum italicum, and finally one shrub (Juniperus phoenicea in the third experiment. In all three experiments (Exp. 1, P<0.001; Exp. 2, P < 0.0003 and Exp. 3, P < 0.03, supplemental charcoal and energy had a positive effect on total shrub intake for both lambs and kids. Kids ate more shrubs than lambs did in all three experiments (P<0.01. Regardless of experiment, both species of animals showed a numerical decrease in total shrub intake, with or without supplemental charcoal and energy, as the number of shrub species on offer decreased. Our findings support the hypothesis that biochemical diversity plays an important role in diet selection, thus enabling animals to better meet their nutritional needs and avoid toxicity.

  1. Natural recovery of different areas of a deserted quarry in South China

    Institute of Scientific and Technical Information of China (English)

    DUAN Wenjun; REN Hai; FU Shenglei; WANG Jun; YANG Long; ZHANG Jinping

    2008-01-01

    A quarry is a surface mining operated place, which produces enormous quantities of gravel, limestone, and other materials for industrial and construction applications. Restoration and revegetation of deserted quarries are becoming increasingly important. Three areas of a typical quarry in South China: terrace for crushed materials (terrace), spoiled mound, and remaining side slope, were investigated, to compare the existing plant species and to study the relationship between environmental factors and revegetation. The plant species composition of these three areas was found to differ significantly after eight years of natural recovery. The typical plant communities found over them were composed of gramineous herbs, fems, and shrubs. Soil organic matter, soil moisture, and soil bulk density were considered to be the major determining factors for vegetation succession. There existed abiotic and biotic thresholds during quarrying restoration. Suggestions had been presented that could have accelerated the process of natural recovery in quarries.

  2. Russian deserters of World War I

    Directory of Open Access Journals (Sweden)

    Os'kin Maksim

    2014-10-01

    Full Text Available Desertion is one of the most active forms of ordinary resistance of the people to the state pressure during the low-popular war which is conducting for the purposes unclear for the people. At the same time, mass desertion is a manifestation of «total» war in the world conflicts of the XX century. During World War I in all armies of the world there was the desertion often accepting mass character. In the Russian army, as well as in other, deserters appeared from the war beginning. Desertion scales in the Russian army explained as objective factors - diffi cult fights, shortage of supply, defeat at the front, and subjective - unwillingness to participate in war, melancholy for the house, desire to help a family the work. Desertion in different years of war had various forms. If at the beginning of war there were mainly «self-arrows», in 1915, during defeats at the front - evasion from entrenchments. By the end of 1916, because of the general fatigue from war, desertion takes the real form - flight from the front to the back. After February revolution desertion becomes mass in which hundreds thousands military personnel take part already. Disorder of army and development of revolutionary process extremely strengthen desertion scales that is explained by the actual lack of punishment for this crime. Destruction of the Russian state during revolution became the main reason of coming to power of Bolsheviks, an exit of Russia from war and the army demobilization which essential part in 1917 already deserted from the front.

  3. Estimating vegetation biomass and cover across large plots in shrub and grass dominated drylands using terrestrial lidar and machine learning

    Science.gov (United States)

    Anderson, Kyle E.; Glenn, Nancy F.; Spaete, Lucas P.; Shinneman, Douglas; Pilliod, David S.; Arkle, Robert; McIlroy, Susan; Derryberry, DeWayne R.

    2018-01-01

    Terrestrial laser scanning (TLS) has been shown to enable an efficient, precise, and non-destructive inventory of vegetation structure at ranges up to hundreds of meters. We developed a method that leverages TLS collections with machine learning techniques to model and map canopy cover and biomass of several classes of short-stature vegetation across large plots. We collected high-definition TLS scans of 26 1-ha plots in desert grasslands and big sagebrush shrublands in southwest Idaho, USA. We used the Random Forests machine learning algorithm to develop decision tree models predicting the biomass and canopy cover of several vegetation classes from statistical descriptors of the aboveground heights of TLS points. Manual measurements of vegetation characteristics collected within each plot served as training and validation data. Models based on five or fewer TLS descriptors of vegetation heights were developed to predict the canopy cover fraction of shrubs (R2 = 0.77, RMSE = 7%), annual grasses (R2 = 0.70, RMSE = 21%), perennial grasses (R2 = 0.36, RMSE = 12%), forbs (R2 = 0.52, RMSE = 6%), bare earth or litter (R2 = 0.49, RMSE = 19%), and the biomass of shrubs (R2 = 0.71, RMSE = 175 g) and herbaceous vegetation (R2 = 0.61, RMSE = 99 g) (all values reported are out-of-bag). Our models explained much of the variability between predictions and manual measurements, and yet we expect that future applications could produce even better results by reducing some of the methodological sources of error that we encountered. Our work demonstrates how TLS can be used efficiently to extend manual measurement of vegetation characteristics from small to large plots in grasslands and shrublands, with potential application to other similarly structured ecosystems. Our method shows that vegetation structural characteristics can be modeled without classifying and delineating individual plants, a challenging and time-consuming step common in previous

  4. Soil Fertility, Salinity and Nematode Diversity Influenced by Tamarix ramosissima in Different Habitats in an Arid Desert Oasis

    Science.gov (United States)

    Yong-zhong, Su; Xue-fen, Wang; Rong, Yang; Xiao, Yang; Wen-jie, Liu

    2012-08-01

    The aim of this paper was to assess the influence of tamarisk shrubs on soil fertility, salinity and nematode communities in various habitats located in an arid desert-oasis region in northwest China. Three habitats were studied: sand dune, riparian zone and saline meadow, where tamarisk shrubs have been established in recent decades in order to vegetation restoration used as desertification control and saline land rehabilitation projects and become the dominant plant community. The parameters measured include soil organic carbon (SOC), total nitrogen, available phosphorus (P) and potassium (K), pH, salt component, and nematode community characteristics. Enrichment ratios (a comparison of the soil measurements between soils under canopy and in the open interspaces) for soil nutrients and salinity were used to evaluate fertility and salinity islands underneath the tamarisk shrubs. The soil nematode community was used as a biological indicator of soil condition. SOC and available P and K were higher beneath the plant canopy than in the open interspaces outside that canopy. The enrichment ratios for SOC and nutrients were highest for the sand dune habitat and tamarisk shrubs clearly created islands of greater salinity under the canopies. Nematode abundance per 100 g dry soil varied considerably between the locations and habitats, with the highest abundance found in sand dune and the lowest in saline meadow. A significantly higher nematode abundance and a lower trophic diversity were found in soils under the canopy compared to the soils in the open interspaces. With the exception of saline meadow, the abundance of bacterivores increased and fungivores decreased under the canopy relative to the open interspaces, and bacterivores dominated under the canopies in the sand dune and riparian habitats. The enrichment ratios for salinity were higher than for fertility, suggesting that improved soil fertility can not limit the impact of salinization beneath tamarisk shrubs. The

  5. Carbon sequestration capacity of shifting sand dune after establishing new vegetation in the Tengger Desert, northern China.

    Science.gov (United States)

    Yang, Haotian; Li, Xinrong; Wang, Zengru; Jia, Rongliang; Liu, Lichao; Chen, Yongle; Wei, Yongping; Gao, Yanhong; Li, Gang

    2014-04-15

    Reconstructing vegetation in arid and semiarid areas has become an increasingly important management strategy to realize habitat recovery, mitigate desertification and global climate change. To assess the carbon sequestration potential in areas where sand-binding vegetation has been established on shifting sand dunes by planting xeric shrubs located near the southeastern edge of the Tengger Desert in northern China, we conducted a field investigation of restored dune regions that were established at different times (20, 30, 47, and 55 years ago) in the same area. We quantified the total organic carbon (TOC) in each ecosystem by summing the individual carbon contributions from the soil (soil organic carbon; SOC), shrubs, and grasses in each system. We found that the TOC, as well as the amount of organic carbon in the soil, shrubs, and grasses, significantly increased over time in the restored areas. The average annual rate of carbon sequestration was highest in the first 20 years after restoration (3.26 × 10(-2)kg·m(-2) ·year(-1)), and reached a stable rate (2.14 × 10(-2) kg·m(-2) ·year(-1)) after 47 years. Organic carbon storage in soil represented the largest carbon pool for both restored systems and a system containing native vegetation, accounting for 67.6%-85.0% of the TOC. Carbon in grass root biomass, aboveground grass biomass, litter, aboveground shrub biomass, and shrub root biomass account for 10.0%-21.0%, 0.2%-0.6%, 0.1%-0.2%, 1.7%-12.1% and 0.9%-6.2% of the TOC, respectively. Furthermore, we found that the 55-year-old restored system has the capacity to accumulate more TOC (1.02 kg·m(-2) more) to reach the TOC level found in the natural vegetation system. These results suggest that restoring desert ecosystems may be a cost-effective and environmentally friendly way to sequester CO2 from the atmosphere and mitigate the effects of global climate change. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. [Quality level assessment of lowly efficient Tamarix chinensis secondary shrubs in Laizhou Bay of Yellow River Delta].

    Science.gov (United States)

    Xia, Jiang-Bao; Liu, Yu-Ting; Zhu, Jin-Fang; Xu, Jing-Wei; Lu, Zhao-Hua; Liu, Jing-Tao; Liu, Qing

    2013-06-01

    Taking the Tamarix chinensis secondary shrubs in Laizhou Bay of Yellow River Delta as test objects, and by using synthetic factor method, this paper studied the main factors causing the lowly efficiency of T. chinensis secondary shrubs as well as the main parameters for the classification of lowly efficient T. chinensis secondary shrubs. A total of 24 indices including shrubs growth and soil physical and chemical properties were selected to determine the main affecting factors and parameters in evaluating and classifying the lowly efficient shrubs. There were no obvious correlations between the indices reflecting the shrubs growth and soil quality, and thus, only using shrub growth index to reflect the lowly efficiency level of T. chinensis was not enough, and it would be necessary to combine with soil quality factors to make a comprehensive evaluation. The principal factors reflecting the quality level of lowly efficient T. chinensis shrubs included soil salt content and moisture content, stand age, single tree's aboveground stem, leaf biomass, and basal diameter, followed by soil density, porosity, and soil nutrient status. The lowly efficient T. chinensis shrubs in the Bay could be classified into five types, namely, shrub with growth potential, slightly low quality shrub, moderately lowly efficient shrub, moderately low quality and lowly efficient shrub, and seriously low quality and lowly efficient shrub. The main features, low efficiency causes, and management measures of these shrubs were discussed based on the mean cluster value.

  7. Air-Surface-Ground Water Cycling in an Agricultural Desert Valley of Southern Colorado

    Science.gov (United States)

    Lanzoni, M.

    2017-12-01

    In dryland areas around the world, vegetation plays an important role in stabilizing soil and encouraging recharge. In the Colorado high desert of the San Luis Valley, windstorms strip away topsoil and deposit dust on the surrounding mountain snowpack. Dust-on-snow lowers albedo and hastens melting, which in turn lowers infiltration and aquifer recharge. Since the 1990s, the San Luis Valley has experienced a sharp decline in aquifer levels due to over-development of its water resources. Where agricultural abstraction is significant, the unconfined aquifer has experienced a 9 m (30 ft) drop. Over the course of three years, this dryland hydrology study analyzed rain, snow, surface and ground water across a 20,000 km2 high desert area to establish a baseline of water inputs. δ18O and δ2H were analyzed to develop a LMWL specific to this region of the southern Rockies and isotopic differences were examined in relation to chemistry to understand environmental influences on meteoric waters. This work identifies a repeating pattern of acid rainfall with trace element contaminants, including actinides.To better understand how the area's dominant vegetation responds to a lowered water table, 76 stem water samples were collected from the facultative phreatophyte shrubs E. nauseosa and S. vermiculatus over the summer, fall, spring, and summer of 2015 and 2016 from study plots chosen for increasing depths to groundwater. This research shows distinct patterns of water capture strategy and seasonal shifts among the E. nauseosa and S. vermiculatus shrubs. These differences are most apparent where groundwater is most accessible. However, where the water table has dropped 6 m (20 feet) over the last decade, both E. nauseosa and S. vermiculatus survive only on near-surface snowmelt and rain.

  8. A Systematic Review of Wild Burro Grazing Effects on Mojave Desert Vegetation, USA

    Science.gov (United States)

    Abella, Scott R.

    2008-06-01

    Wild burros ( Equus asinus), protected by the 1971 Wild Free-Roaming Horse and Burro Act on some federal lands but exotic animals many ecologists and resource mangers view as damaging to native ecosystems, represent one of the most contentious environmental management problems in American Southwest arid lands. This review synthesizes the scattered literature about burro effects on plant communities of the Mojave Desert, a center of burro management contentions. I classified 24 documents meeting selection criteria for this review into five categories of research: (i) diet analyses directly determining which plant species burros consume, (ii) utilization studies of individual species, (iii) control-impact comparisons, (iv) exclosure studies, and (v) forage analyses examining chemical characteristics of forage plants. Ten diet studies recorded 175 total species that burros consumed. However, these studies and two exclosure studies suggested that burros preferentially eat graminoid and forb groups over shrubs. One study in Death Valley National Park, for example, found that Achnatherum hymenoides (Indian ricegrass) was 11 times more abundant in burro diets than expected based on its availability. Utilization studies revealed that burros also exhibit preferences within the shrub group. Eighty-three percent of reviewed documents were produced in a 12-year period, from 1972 to 1983, with the most recent document produced in 1988. Because burros remain abundant on many federal lands and grazing may interact with other management concerns (e.g., desert wildfires fueled by exotic grasses), rejuvenating grazing research to better understand both past and present burro effects could help guide revegetation and grazing management scenarios.

  9. The impact of desert solar power utilization on sustainable development

    International Nuclear Information System (INIS)

    Sadiq Ali Shah; Yang Zhang

    2011-01-01

    This paper evaluates the prospects of developing a solar based desert economy in the deserts of solar-rich countries. The potential deserts are analysed to study their positive impact on the sustainable development processes in these regions. The sustainability of the processes is established on the basis of self-contained nature of energy generation, environmental emission reduction and desert land reclamation. (authors)

  10. Co-occurring nonnative woody shrubs have additive and non-additive soil legacies

    DEFF Research Database (Denmark)

    Kuebbing, Sara E.; Patterson, Courtney M.; Classen, Aimee Taylor

    2016-01-01

    shrubs, Lonicera maackii and Ligustrum sinense, in deciduous forests of the southeastern United States. We measured the performance of each nonnative shrub, a native herbaceous community, and a nonnative woody vine in soils conditioned by each shrub singly or together in polyculture. Soils conditioned...... by both nonnative shrubs had non-additive impacts on native and nonnative performance. Root mass of the native herbaceous community was 1.5 times lower and the root mass of the nonnative L. sinense was 1.8 times higher in soils conditioned by both L. maackii and L. sinense than expected based upon growth...... in soils conditioned by either shrub singly. This result indicates that when these two nonnative shrubs co-occur, their influence on soils disproportionally favors persistence of the nonnative L. sinense relative to this native herbaceous community, and could provide an explanation of why native species...

  11. Effects of elevated root zone CO2 on xerophytic shrubs in re-vegetated sandy dunes at smaller spatial and temporal scales.

    Science.gov (United States)

    Lei, Huang; Zhishan, Zhang

    2015-01-01

    The below-ground CO2 concentration in some crusted soils or flooded fields is usually ten or hundred times larger than the normal levels. Recently, a large number of studies have focused on elevated CO2 in the atmosphere; however, only few have examined the influence of elevated root zone CO2 on plant growth and vegetation succession. In the present study, a closed-air CO2 enrichment (CACE) system was designed to simulate elevated CO2 concentrations in the root zones. The physio-ecological characteristics of two typical xerophytic shrubs C. korshinskii and A. ordosica in re-vegetated desert areas were investigated at different soil CO2 concentrations from March 2011 to October 2013. Results showed that plant growth, phenophase, photosynthetic rate, stomatal conductance, transpiration rate, and water use efficiency for the two xerophytic shrubs were all increased at first and then decreased with increasing soil CO2 concentrations, and the optimal soil CO2 concentration thresholds for C. korshinskii and A. ordosica were 0.554 and 0.317%, respectively. And A. ordosica was more tolerate to root zone CO2 variation when compared with C. korshinskii, possible reasons and vegetation succession were also discussed.

  12. Tundra plant above-ground biomass and shrub dominance mapped across the North Slope of Alaska

    Science.gov (United States)

    Berner, Logan T.; Jantz, Patrick; Tape, Ken D.; Goetz, Scott J.

    2018-03-01

    Arctic tundra is becoming greener and shrubbier due to recent warming. This is impacting climate feedbacks and wildlife, yet the spatial distribution of plant biomass in tundra ecosystems is uncertain. In this study, we mapped plant and shrub above-ground biomass (AGB; kg m-2) and shrub dominance (%; shrub AGB/plant AGB) across the North Slope of Alaska by linking biomass harvests at 28 field sites with 30 m resolution Landsat satellite imagery. We first developed regression models (p plant AGB (r 2 = 0.79) and shrub AGB (r 2 = 0.82) based on the normalized difference vegetation index (NDVI) derived from imagery acquired by Landsat 5 and 7. We then predicted regional plant and shrub AGB by combining these regression models with a regional Landsat NDVI mosaic built from 1721 summer scenes acquired between 2007 and 2016. Our approach employed a Monte Carlo uncertainty analysis that propagated sampling and sensor calibration errors. We estimated that plant AGB averaged 0.74 (0.60, 0.88) kg m-2 (95% CI) and totaled 112 (91, 135) Tg across the region, with shrub AGB accounting for ~43% of regional plant AGB. The new maps capture landscape variation in plant AGB visible in high resolution satellite and aerial imagery, notably shrubby riparian corridors. Modeled shrub AGB was strongly correlated with field measurements of shrub canopy height at 25 sites (rs  = 0.88) and with a regional map of shrub cover (rs  = 0.76). Modeled plant AGB and shrub dominance were higher in shrub tundra than graminoid tundra and increased between areas with the coldest and warmest summer air temperatures, underscoring the fact that future warming has the potential to greatly increase plant AGB and shrub dominance in this region. These new biomass maps provide a unique source of ecological information for a region undergoing rapid environmental change.

  13. Deserts

    DEFF Research Database (Denmark)

    Graulund, Rune

    2016-01-01

    , comic sketches and lyrical reveries; travel writing is now a crucial focus for discussion across many subjects within the humanities and social sciences. An ideal starting point for beginners, but also offering new perspectives for those familiar with the field, The Routledge Companion to Travel Writing...

  14. Gopherus Agassizii (Desert Tortoise). Predation/Mountain Lions (Pre-Print)

    Energy Technology Data Exchange (ETDEWEB)

    Paul D. Greger and Philip A. Medica

    2009-01-01

    During a long-term study on tortoise growth within 3 fenced 9-ha enclosures in Rock Valley, Nevada Test Site (NTS), Nye County, Nevada, USA, tortoises have been captured annually since 1964 (Medica et al. 1975. Copeia 1975:630-643; Turner et al. 1987. Copeia 1987:974-979). Between early August and mid October 2003 we observed a significant mortality event. The Rock Valley enclosures were constructed of 6 x 6 mm mesh 1.2 m wide hardware cloth, buried 0.3 m in the soil with deflective flashing on both sides on the top to restrict the movement of small mammals and lizards from entering or leaving the enclosures (Rundel and Gibson 1996, Ecological communities and process in a Mojave Desert ecosystem: Rock Valley, Nevada, Cambridge University Press, Great Britain. 369 pp.). On August 6, 2003, the carcass of an adult female Desert Tortoise No.1411 (carapace length 234 mm when alive) was collected while adult male tortoise No.4414 (carapace length 269 mm) was observed alive and in good health on the same day. Subsequently the carcass of No.4414 was found on October 16, 2003. Between October 16-17, 2003, the remains of 6 (5 adult and 1 juvenile) Desert Tortoises were found, some within each of the 3 enclosures in Rock Valley. A seventh adult tortoise was found on September 26, 2006, its death also attributed to the 2003 mortality event based upon the forensic evidence. Each of the 7 adult Desert Tortoises had the central portion of their carapace broken open approximately to the dorsal portion of the marginal scutes while the plastron was still intact (Figure 1A). Adjacent to 7 of the 8 remains we located numerous bone fragments including parts of the carapace and limbs as well as dried intestines in a nearby Range Rhatany (Krameria parvifolia) shrub. The significance of the frequent use of this shrub is puzzling. Three of the Desert Tortoise shell remains possessed distinctive intercanine punctures measuring 55-60 mm center to center indicating that this was an adult

  15. Effects of desert wildfires on desert tortoise (Gopherus agassizii) and other small vertebrates

    Science.gov (United States)

    Esque, T.C.; Schwalbe, C.R.; DeFalco, L.A.; Duncan, R.B.; Hughes, T.J.

    2003-01-01

    We report the results of standardized surveys to determine the effects of wildfires on desert tortoises (Gopherus agassizii) and their habitats in the northeastern Mojave Desert and northeastern Sonoran Desert. Portions of 6 burned areas (118 to 1,750 ha) were examined for signs of mortality of vertebrates. Direct effects of fire in desert habitats included animal mortality and loss of vegetation cover. A range of 0 to 7 tortoises was encountered during surveys, and live tortoises were found on all transects. In addition to desert tortoises, only small (reptiles (11 taxa) were found dead on the study areas. We hypothesize that indirect effects of fire on desert habitats might result in changes in the composition of diets and loss of vegetation cover, resulting in an increase in predation and loss of protection from temperature extremes. These changes in habitat also might cause changes in vertebrate communities in burned areas.

  16. Response of aboveground carbon balance to long-term, experimental shifts in precipitation seasonality is contingent on plant community type in cold-desert rangelands

    Science.gov (United States)

    Reinhardt, K.; McAbee, K.; Germino, M. J.; Bosworth, A.

    2016-12-01

    Semi-arid rangelands have been identified as potential carbon (C) sinks. However, the degree of net C storage or release in water-limited systems is a function of precipitation amount and timing, as well as plant community composition. In northern latitudes of western North America, climate models predict increases in wintertime precipitation and decreases in summertime precipitation. In theory, this should boost C storage in cold-desert ecosystems that have deep-rooted woody plants due to greater wintertime soil water storage that enhances summertime productivity. However, there are few long-term, manipulative field-based studies investigating how shrub- and grass-dominated rangelands will respond to changing precipitation patterns. We measured aboveground C pools and fluxes at leaf, soil, and ecosystem scales over the 2014 growing season on plots that had supplemental precipitation added in either winter or summer for 21 years, in shrub- and exotic-bunchgrass-dominated plots. We hypothesized that increased winter precipitation would stimulate aboveground C uptake and storage relative to ambient conditions, in our cold-desert-adapted plant species. We further hypothesized that long-term gains in aboveground C storage due to precipitation manipulations would be greater in plots containing shrubs. Our hypotheses were generally supported: ecosystem C uptake and long-term biomass accumulation were greater in winter- and summer-irrigated plots compared to control plots in both vegetation communities. However, substantial increases in aboveground biomass occurred only in winter-irrigated plots that contained shrubs. Our findings suggest that increases in winter precipitation will enhance C storage of this widespread ecosystem, provided that the ecosystems have resisted conversion to exotic grassland.

  17. Desertions in nineteenth-century shipping: modelling quit behaviour

    OpenAIRE

    Jari Ojala; Jaakko Pehkonen; Jari Eloranta

    2013-01-01

    Ship jumping in foreign ports was widespread throughout the age of sail. Desertion by seamen was illegal, it occurred abroad, and men who deserted only seldom returned home. We analyse desertion quantitatively and link it to the broader question of quit behaviour and labour turnover. Though the better wages paid at the foreign ports were the main reason for desertion, the regression model of the determinants of desertion indicates that outside opportunities, such as migration, and monetary in...

  18. Range Expansion of Moose in Arctic Alaska Linked to Warming and Increased Shrub Habitat.

    Directory of Open Access Journals (Sweden)

    Ken D Tape

    Full Text Available Twentieth century warming has increased vegetation productivity and shrub cover across northern tundra and treeline regions, but effects on terrestrial wildlife have not been demonstrated on a comparable scale. During this period, Alaskan moose (Alces alces gigas extended their range from the boreal forest into tundra riparian shrub habitat; similar extensions have been observed in Canada (A. a. andersoni and Eurasia (A. a. alces. Northern moose distribution is thought to be limited by forage availability above the snow in late winter, so the observed increase in shrub habitat could be causing the northward moose establishment, but a previous hypothesis suggested that hunting cessation triggered moose establishment. Here, we use recent changes in shrub cover and empirical relationships between shrub height and growing season temperature to estimate available moose habitat in Arctic Alaska c. 1860. We estimate that riparian shrubs were approximately 1.1 m tall c. 1860, greatly reducing the available forage above the snowpack, compared to 2 m tall in 2009. We believe that increases in riparian shrub habitat after 1860 allowed moose to colonize tundra regions of Alaska hundreds of kilometers north and west of previous distribution limits. The northern shift in the distribution of moose, like that of snowshoe hares, has been in response to the spread of their shrub habitat in the Arctic, but at the same time, herbivores have likely had pronounced impacts on the structure and function of these shrub communities. These northward range shifts are a bellwether for other boreal species and their associated predators.

  19. Hydraulic lift through transpiration suppression in shrubs from two arid ecosystems: patterns and control mechanisms.

    Science.gov (United States)

    Prieto, Iván; Martínez-Tillería, Karina; Martínez-Manchego, Luis; Montecinos, Sonia; Pugnaire, Francisco I; Squeo, Francisco A

    2010-08-01

    Hydraulic lift (HL) is the passive movement of water through the roots from deep wet to dry shallow soil layers when stomata are closed. HL has been shown in different ecosystems and species, and it depends on plant physiology and soil properties. In this study we explored HL patterns in several arid land shrubs, and developed a simple model to simulate the temporal evolution and magnitude of HL during a soil drying cycle under relatively stable climatic conditions. This model was then used to evaluate the influence of soil texture on the quantity of water lifted by shrubs in different soil types. We conducted transpiration suppression experiments during spring 2005 in Chile and spring 2008 in Spain on five shrub species that performed HL, Flourensia thurifera, Senna cumingii and Pleocarphus revolutus (Chile), Retama sphaerocarpa and Artemisia barrelieri (Spain). Shrubs were covered with a black, opaque plastic fabric for a period of 48-72 h, and soil water potential was recorded at different depths under the shrubs. While the shrubs remained covered, water potential continuously increased in shallow soil layers until the cover was removed. The model output indicated that the amount of water lifted by shrubs is heavily dependent on soil texture, as shrubs growing in loamy soils redistributed up to 3.6 times more water than shrubs growing on sandy soils. This could be an important consideration for species growing in soils with different textures, as their ability to perform HL would be context dependent.

  20. Disentangling the effects of shrubs and herbivores on tree regeneration in a dry Chaco forest (Argentina).

    Science.gov (United States)

    Tálamo, Andrés; Barchuk, Alicia H; Garibaldi, Lucas A; Trucco, Carlos E; Cardozo, Silvana; Mohr, Federico

    2015-07-01

    Successful persistence of dry forests depends on tree regeneration, which depends on a balance of complex biotic interactions. In particular, the relative importance and interactive effects of shrubs and herbivores on tree regeneration are unclear. In a manipulative study, we investigated if thornless shrubs have a direct net effect, an indirect positive effect mediated by livestock, and/or an indirect negative effect mediated by small vertebrates on tree regeneration of two key species of Chaco forest (Argentina). In a spatial association study, we also explored the existence of net positive interactions from thorny and thornless shrubs. The number of Schinopsis lorentzii seedlings was highest under artificial shade with native herbivores and livestock excluded. Even excluding livestock, no seedlings were found with natural conditions (native herbivores present with natural shade or direct sunlight) at the end of the experiment. Surprisingly, seedling recruitment was not enhanced under thornless shrubs, because there was a complementary positive effect of shade and interference. Moreover, thornless shrubs had neither positive nor negative effects on regeneration of S. lorentzii. Regeneration of Aspidosperma quebracho-blanco was minimal in all treatments. In agreement with the experiment, spatial distributions of saplings of both tree species were independent of thornless shrubs, but positively associated with thorny shrubs. Our results suggest that in general thornless shrubs may have a negligible effect and thorny shrubs a net positive effect on tree regeneration in dry forests. These findings provide a conceptual framework for testing the impact of biotic interactions on seedling recruitment in other dry forests.

  1. Polymorphic microsatellite markers in the invasive shrub Buddleja davidii (Scrophulariaceae).

    Science.gov (United States)

    Schreiter, Susanne; Ebeling, Susan K; Durka, Walter

    2011-02-01

    Microsatellite primers were developed for the invasive plant Buddleja davidii, a Chinese shrub that is an invader in most other continents. An invasive population was analyzed using eight di- and tetranucleotide microsatellite loci. The number of alleles per locus ranged from 5 to 14. Due to polyploidy, exact genotypes could not be determined. Progeny arrays were used to study the outcrossing rate using presence/absence data of alleles resulting in an estimate of multilocus outcrossing rate of 93%. The markers were successfully tested in five congeneric species. The results indicate the utility of these loci in future studies of population genetics and breeding systems in B. davidii and in congeneric species.

  2. Temperature-induced recruitment pulses of Arctic dwarf shrub communities

    Czech Academy of Sciences Publication Activity Database

    Büntgen, Ulf; Hellmann, L.; Tegel, W.; Normand, S.; Myers-Smith, I.; Kirdyanov, A. V.; Nievergelt, D.; Schweingruber, F. H.

    2015-01-01

    Roč. 103, č. 2 (2015), s. 489-501 ISSN 0022-0477 R&D Projects: GA MŠk(CZ) EE2.3.20.0248 Institutional support: RVO:67179843 Keywords : recent climate-change * tree-line * environmental-change * forest limit * northern siberia * pinus-sylvestris * kola-peninsula * carbon-cycle * picea-abies * polar urals * Arctic tundra * cambial activity * climate change * dendroecology * dwarf shrubs * East Greenland * plant longevity * plant population and community dynamics * vegetation dynamics * wood anatomy Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 6.180, year: 2015

  3. Desert potholes: Ephemeral aquatic microsystems

    Science.gov (United States)

    Chan, M.A.; Moser, K.; Davis, J.M.; Southam, G.; Hughes, K.; Graham, T.

    2005-01-01

    An enigma of the Colorado Plateau high desert is the "pothole", which ranges from shallow ephemeral puddles to deeply carved pools. The existence of prokaryotic to eukaryotic organisms within these pools is largely controlled by the presence of collected rainwater. Multivariate statistical analysis of physical and chemical limnologic data variables measured from potholes indicates spatial and temporal variations, particularly in water depth, manganese, iron, nitrate and sulfate concentrations and salinity. Variation in water depth and salinity are likely related to the amount of time since the last precipitation, whereas the other variables may be related to redox potential. The spatial and temporal variations in water chemistry affect the distribution of organisms, which must adapt to daily and seasonal extremes of fluctuating temperature (0-60 ??C), pH changes of as much as 5 units over 12 days, and desiccation. For example, many species become dormant when potholes dry, in order to endure intense heat, UV radiation, desiccation and freezing, only to flourish again upon rehydration. But the pothole organisms also have a profound impact on the potholes. Through photosynthesis and respiration, pothole organisms affect redox potential, and indirectly alter the water chemistry. Laboratory examination of dried biofilm from the potholes revealed that within 2 weeks of hydration, the surface of the desiccated, black biofilm became green from cyanobacterial growth, which supported significant growth in heterotrophic bacterial populations. This complex biofilm is persumably responsible for dissolving the cement between the sandstone grains, allowing the potholes to enlarge, and for sealing the potholes, enabling them to retain water longer than the surrounding sandstone. Despite the remarkable ability of life in potholes to persist, desert potholes may be extremely sensitive to anthropogenic effects. The unique limnology and ecology of Utah potholes holds great scientific

  4. Diet of desert tortoises at Yucca Mountain, Nevada, and implications for habitat reclamation

    International Nuclear Information System (INIS)

    Rakestraw, D.L.; Holt, E.A.; Rautenstrauch, K.R.

    1995-12-01

    The diet of desert tortoises at Yucca Mountain was assessed during 1992 to 1995 using a combination of feeding observations and scat analysis. Feeding observation data (1993 through 1995) showed that tortoises fed on a wide variety of items. The most frequently eaten items were forbs and annual grasses. These two forage groups comprised more than 90% of all bites taken. Analysis of scat (1992 and 1993) also showed that grasses and forbs were the most common groups, making up more than 80% of the composition of scat. Yearly differences between proportions of species in the diet were observed and were most likely attributable to differences in plant productivity, which is linked to rainfall patterns. Non-native species were an important component of the diet in all years, accounting for 13 to 50% of all bites observed and 6 to 24% of scat contents. A list of all items encountered in the diet is provided. To facilitate reclamation of desert tortoise habitat disturbed by the Yucca Mountain Site Characterization Project, native forage species that should be included in reclamation seed mixes, when feasible, were identified. Although shrubs make up only a small proportion of the diet, they should also be included in reclamation efforts because they provide habitat structure. Tortoise cover sites, and microhabitats amenable to seed germination and seedling establishment. In addition, non-native species should not be planted on reclaimed sites and, if necessary, sites should be recontoured and soil compaction reduced prior to planting

  5. Vegetation - Central Mojave Desert [ds166

    Data.gov (United States)

    California Natural Resource Agency — The Department of Defense and the other desert managers are developing and organizing scientific information needed to better manage the natural resources of the...

  6. Microbial ecology of hot desert edaphic systems.

    Science.gov (United States)

    Makhalanyane, Thulani P; Valverde, Angel; Gunnigle, Eoin; Frossard, Aline; Ramond, Jean-Baptiste; Cowan, Don A

    2015-03-01

    A significant proportion of the Earth's surface is desert or in the process of desertification. The extreme environmental conditions that characterize these areas result in a surface that is essentially barren, with a limited range of higher plants and animals. Microbial communities are probably the dominant drivers of these systems, mediating key ecosystem processes. In this review, we examine the microbial communities of hot desert terrestrial biotopes (including soils, cryptic and refuge niches and plant-root-associated microbes) and the processes that govern their assembly. We also assess the possible effects of global climate change on hot desert microbial communities and the resulting feedback mechanisms. We conclude by discussing current gaps in our understanding of the microbiology of hot deserts and suggest fruitful avenues for future research. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  7. Deciduous shrubs for ozone bioindication: Hibiscus syriacus as an example

    Energy Technology Data Exchange (ETDEWEB)

    Paoletti, Elena [Institut Plant Protection (IPP), National Council Research (CNR), Via Madonna del Piano 10, 50019 Sesto Fiorentino, Florence (Italy)], E-mail: e.paoletti@ipp.cnr.it; Ferrara, Anna Maria [Istituto per le Piante da Legno e l' Ambiente (IPLA), Corso Casale 476, 10132 Turin (Italy); Calatayud, Vicent; Cervero, Julia [Fundacion C.E.A.M., Charles R. Darwin 14, Parc Tecnologic, 46980 Paterna, Valencia (Spain); Giannetti, Fabio [Istituto per le Piante da Legno e l' Ambiente (IPLA), Corso Casale 476, 10132 Turin (Italy); Sanz, Maria Jose [Fundacion C.E.A.M., Charles R. Darwin 14, Parc Tecnologic, 46980 Paterna, Valencia (Spain); Manning, William J. [Department of Plant, Soil and Insect Sciences, University of Massachusetts, Amherst, MA 01003-9320 (United States)

    2009-03-15

    Ozone-like visible injury was detected on Hibiscus syriacus plants used as ornamental hedges. Weekly spray of the antiozonant ethylenediurea (EDU, 300 ppm) confirmed that the injury was induced by ambient ozone. EDU induced a 75% reduction in visible injury. Injury was more severe on the western than on the eastern exposure of the hedge. This factor of variability should be considered in ozone biomonitoring programmes. Seeds were collected and seedlings were artificially exposed to ozone in filtered vs. not-filtered (+30 ppb) Open-Top Chambers. The level of exposure inducing visible injury in the OTC seedlings was lower than that in the ambient-grown hedge. The occurrence of visible injury in the OTC confirmed that the ozone sensitivity was heritable and suggested that symptomatic plants of this deciduous shrub population can be successfully used as ozone bioindicators. EDU is recommended as a simple tool for diagnosing ambient ozone visible injury on field vegetation. - An Italian population of the deciduous shrub Hibiscus syriacus, a common ornamental species in temperate zones, is recommended as ozone bioindicator.

  8. Deciduous shrubs for ozone bioindication: Hibiscus syriacus as an example

    International Nuclear Information System (INIS)

    Paoletti, Elena; Ferrara, Anna Maria; Calatayud, Vicent; Cervero, Julia; Giannetti, Fabio; Sanz, Maria Jose; Manning, William J.

    2009-01-01

    Ozone-like visible injury was detected on Hibiscus syriacus plants used as ornamental hedges. Weekly spray of the antiozonant ethylenediurea (EDU, 300 ppm) confirmed that the injury was induced by ambient ozone. EDU induced a 75% reduction in visible injury. Injury was more severe on the western than on the eastern exposure of the hedge. This factor of variability should be considered in ozone biomonitoring programmes. Seeds were collected and seedlings were artificially exposed to ozone in filtered vs. not-filtered (+30 ppb) Open-Top Chambers. The level of exposure inducing visible injury in the OTC seedlings was lower than that in the ambient-grown hedge. The occurrence of visible injury in the OTC confirmed that the ozone sensitivity was heritable and suggested that symptomatic plants of this deciduous shrub population can be successfully used as ozone bioindicators. EDU is recommended as a simple tool for diagnosing ambient ozone visible injury on field vegetation. - An Italian population of the deciduous shrub Hibiscus syriacus, a common ornamental species in temperate zones, is recommended as ozone bioindicator

  9. Does NDVI reflect variation in the structural attributes associated with increasing shrub dominance in arctic tundra?

    International Nuclear Information System (INIS)

    Boelman, Natalie T; Gough, Laura; McLaren, Jennie R; Greaves, Heather

    2011-01-01

    This study explores relationships between the normalized difference vegetation index (NDVI) and structural characteristics associated with deciduous shrub dominance in arctic tundra. Our structural measures of shrub dominance are stature, branch abundance, aerial per cent woody stem cover (deciduous and evergreen species), and per cent deciduous shrub canopy cover. All measurements were taken across a suite of transects that together represent a gradient of deciduous shrub height. The transects include tussock tundra shrub and riparian shrub tundra communities located in the northern foothills of the Brooks Range, in northern Alaska. Plot-level NDVI measurements were made in 2010 during the snow-free period prior to deciduous shrub leaf-out (early June, NDVI pre-leaf ), at the point in the growing season when canopy NDVI has reached half of its maximum growing season value (mid-June, NDVI demi-leaf ) and during the period of maximum leaf-out (late July, NDVI peak-leaf ). We found that: (1) NDVI pre-leaf is best suited to capturing variation in the per cent woody stem cover, maximum shrub height, and branch abundance, particularly between 10 and 50 cm height in the canopy; (2) NDVI peak-leaf is best suited to capturing variation in deciduous canopy cover; and (3) NDVI demi-leaf does not capture variability in any of our measures of shrub dominance. These findings suggest that in situ NDVI measurements made prior to deciduous canopy leaf-out could be used to identify small differences in maximum shrub height, woody stem cover, and branch abundance (particularly between 10 and 50 cm height in the canopy). Because shrubs are increasing in size and regional extent in several regions of the Arctic, investigation into spectrally based tools for monitoring these changes are worthwhile as they provide a first step towards development of remotely sensed techniques for quantifying associated changes in regional carbon cycling, albedo, radiative energy balance, and wildlife

  10. Tundra shrub effects on growing season energy and carbon dioxide exchange

    Science.gov (United States)

    Lafleur, Peter M.; Humphreys, Elyn R.

    2018-05-01

    Increased shrub cover on the Arctic tundra is expected to impact ecosystem-atmosphere exchanges of carbon and energy resulting in feedbacks to the climate system, yet few direct measurements of shrub tundra-atmosphere exchanges are available to corroborate expectations. Here we present energy and carbon dioxide (CO2) fluxes measured using the eddy covariance technique over six growing seasons at three closely located tundra sites in Canada’s Low Arctic. The sites are dominated by the tundra shrub Betula glandulosa, but percent cover varies from 17%–60% and average shrub height ranges from 18–59 cm among sites. The site with greatest percent cover and height had greater snow accumulation, but contrary to some expectations, it had similar late-winter albedo and snow melt dates compared to the other two sites. Immediately after snowmelt latent heat fluxes increased more slowly at this site compared to the others. Yet by the end of the growing season there was little difference in cumulative latent heat flux among the sites, suggesting evapotranspiration was not increased with greater shrub cover. In contrast, lower albedo and less soil thaw contributed to greater summer sensible heat flux at the site with greatest shrub cover, resulting in greater total atmospheric heating. Net ecosystem exchange of CO2 revealed the potential for enhanced carbon cycling rates under greater shrub cover. Spring CO2 emissions were greatest at the site with greatest percent cover of shrubs, as was summer net uptake of CO2. The seasonal net sink for CO2 was ~2 times larger at the site with the greatest shrub cover compared to the site with the least shrub cover. These results largely agree with expectations that the growing season feedback to the atmosphere arising from shrub expansion in the Arctic has the potential to be negative for CO2 fluxes but positive for turbulent energy fluxes.

  11. In vitro germination of desert rose varieties(

    OpenAIRE

    Tatiane Lemos Varella; Gizelly Mendes Silva; Kaliane Zaira Camacho Maximiliano da Cruz; Andréia Izabel Mikovski; Josué Ribeiro da Silva Nunes; Ilio Fealho Carvalho; Maurecilne Lemes Silva

    2015-01-01

    The drought stress resistance is a characteristic of the desert rose and its estimable beauty flowers, which gave it great relevance in the ornamental market. However, the desert rose production and germination is hampered by possible sterility of their male and female flowers and frequent problems in pollination, so the tissue culture is a promising alternative to the propagation of these plants. This study aimed to evaluate the effect of gibberellic acid on four commercial varieties of dese...

  12. Late Quaternary history of the Atacama Desert

    Science.gov (United States)

    Latorre, Claudio; Betancourt, Julio L.; Rech, Jason A.; Quade, Jay; Holmgren, Camille; Placzek, Christa; Maldonado, Antonio; Vuille, Mathias; Rylander, Kate A.; Smith, Mike; Hesse, Paul

    2005-01-01

    Of the major subtropical deserts found in the Southern Hemisphere, the Atacama Desert is the driest. Throughout the Quaternary, the most pervasive climatic influence on the desert has been millennial-scale changes in the frequency and seasonality of the scant rainfall, and associated shifts in plant and animal distributions with elevation along the eastern margin of the desert. Over the past six years, we have mapped modern vegetation gradients and developed a number of palaeoenvironmental records, including vegetation histories from fossil rodent middens, groundwater levels from wetland (spring) deposits, and lake levels from shoreline evidence, along a 1200-kilometre transect (16–26°S) in the Atacama Desert. A strength of this palaeoclimate transect has been the ability to apply the same methodologies across broad elevational, latitudinal, climatic, vegetation and hydrological gradients. We are using this transect to reconstruct the histories of key components of the South American tropical (summer) and extratropical (winter) rainfall belts, precisely at those elevations where average annual rainfall wanes to zero. The focus has been on the transition from sparse, shrubby vegetation (known as the prepuna) into absolute desert, an expansive hyperarid terrain that extends from just above the coastal fog zone (approximately 800 metres) to more than 3500 metres in the most arid sectors in the southern Atacama.

  13. Gulf-Wide Information System, Environmental Sensitivity Index Scrub-Shrub and Wetlands, Geographic NAD83, LDWF (2001) [esi_scrub-shrub_wetland_LDWF_2001

    Data.gov (United States)

    Louisiana Geographic Information Center — This data set contains Environmental Sensitivity Index (ESI) scrub-shrub and wetlands data of coastal Louisiana. The ESI is a classification and ranking system,...

  14. The invasive shrub Piper aduncum in Papua New Guinea: a review

    NARCIS (Netherlands)

    Hartemink, A.E.

    2010-01-01

    HARTEMINK AE. 2010. The invasive shrub Piper aduneum in Papua New Guinea: a review. Piper aduncum is a shrub native to Central America. It is found in most Central and South American countries and also in the Caribbean and southern Florida (USA). In Asia and the Pacific, P aduncum occurs in

  15. Shrubs in the cold : interactions between vegetation, permafrost and climate in Siberian tundra

    NARCIS (Netherlands)

    Blok, D.

    2011-01-01

    The Arctic is experiencing strong increases in air temperature during the last decades. High-latitude tundra regions are very responsive to changes in temperature and may cause a shift in tundra vegetation composition towards greater dominance of deciduous shrubs. With increasing deciduous shrub

  16. Shrub encroachment alters sensitivity of soil respiration to temperature and moisture 2115

    Science.gov (United States)

    Shrub encroachment into grasslands creates a mosaic of different soil microsites ranging from open spaces to well-developed shrub canopies, and it is unclear how this affects the spatial variability in soil respiration characteristics, such as the sensitivity to soil temperature and moisture. This i...

  17. Food for early succession birds: relationships among arthropods, shrub vegetation, and soil

    Science.gov (United States)

    Richard N. Conner; Daniel Saenz; D. Brent Burt

    2006-01-01

    During spring and early summer, shrub- and herbaceous-level vegetation provides nesting and foraging habitat for many shrub-habitat birds. We examined relationships among arthropod biomass and abundance, foliage leaf surface area and weight, vegetation ground cover, soil characteristics, relative humidity, and temperature to evaluate what factors may influence...

  18. Degree of susceptibility of industrial gases of tree and shrub species

    Energy Technology Data Exchange (ETDEWEB)

    Dobrovoljskii, I A

    1952-01-01

    The trees and shrubs of the iron smelting region of Krivoi Rog, in the Ukraine, were surveyed to determine susceptibility to air pollution damage. Most of the observations were made in parks and green belts in industrial areas. A classification of tree and shrub species is presented; they are separated into three classes according to their susceptibility to air pollutant injury.

  19. First-order fire effects on herbs and Shrubs: present knowledge and process modeling needs

    Science.gov (United States)

    Kirsten Stephan; Melanie Miller; Matthew B. Dickinson

    2010-01-01

    Herbaceous plants and shrubs have received little attention in terms of fire effects modeling despite their critical role in ecosystem integrity and resilience after wildfires and prescribed burns. In this paper, we summarize current knowledge of direct effects of fire on herb and shrub (including cacti) vegetative tissues and seed banks, propose key components for...

  20. On the influence of shrub height and expansion on northern high latitude climate

    International Nuclear Information System (INIS)

    Bonfils, C J W; Phillips, T J; Cameron-Smith, P; Lawrence, D M; Riley, W J; Subin, Z M

    2012-01-01

    There is a growing body of empirical evidence documenting the expansion of shrub vegetation in the circumpolar Arctic in response to climate change. Here, we conduct a series of idealized experiments with the Community Climate System Model to analyze the potential impact on boreal climate of a large-scale tundra-to-shrub conversion. The model responds to an increase in shrub abundance with substantial atmospheric heating arising from two seasonal land–atmosphere feedbacks: a decrease in surface albedo and an evapotranspiration-induced increase in atmospheric moisture content. We demonstrate that the strength and timing of these feedbacks are sensitive to shrub height and the time at which branches and leaves protrude above the snow. Taller and aerodynamically rougher shrubs lower the albedo earlier in the spring and transpire more efficiently than shorter shrubs. These mechanisms increase, in turn, the strength of the indirect sea-ice albedo and ocean evaporation feedbacks contributing to additional regional warming. Finally, we find that an invasion of tall shrubs tends to systematically warm the soil, deepen the active layer, and destabilize the permafrost (with increased formation of taliks under a future scenario) more substantially than an invasion of short shrubs. (letter)

  1. Mapping snags and understory shrubs for LiDAR based assessment of wildlife habitat suitability

    Science.gov (United States)

    Sebastian Martinuzzi; Lee A. Vierling; William A. Gould; Michael J. Falkowski; Jeffrey S. Evans; Andrew T. Hudak; Kerri T. Vierling

    2009-01-01

    The lack of maps depicting forest three-dimensional structure, particularly as pertaining to snags and understory shrub species distribution, is a major limitation for managing wildlife habitat in forests. Developing new techniques to remotely map snags and understory shrubs is therefore an important need. To address this, we first evaluated the use of LiDAR data for...

  2. Effects of cattle and rabbit grazing on clonal expansion of spiny shrubs in wood-pastures

    NARCIS (Netherlands)

    Smit, Christian; Bakker, Elisabeth S.; Apol, M. Emile F.; Olff, Han

    2010-01-01

    Spiny shrubs protect non-defended plants against herbivores. Therefore, they play a role for the diversity in grazed ecosystems. While the importance of these keystone nurse shrubs is presently recognized, little is known about the factors controlling them. This knowledge is required to understand

  3. Resilience of arctic mycorrhizal fungal communities after wildfire facilitated by resprouting shrubs

    Science.gov (United States)

    Rebecca E. Hewitt; Elizabeth Bent; Teresa N. Hollingsworth; F. Stuart Chapin; D. Lee Taylor

    2013-01-01

    Climate-induced changes in the tundra fire regime are expected to alter shrub abundance and distribution across the Arctic. However, little is known about how fire may indirectly impact shrub performance by altering mycorrhizal symbionts. We used molecular tools, including ARISA and ITS sequencing, to characterize the mycorrhizal communities on resprouting ...

  4. Atlas of United States Trees, Volume 2: Alaska Trees and Common Shrubs.

    Science.gov (United States)

    Viereck, Leslie A.; Little, Elbert L., Jr.

    This volume is the second in a series of atlases describing the natural distribution or range of native tree species in the United States. The 82 species maps include 32 of trees in Alaska, 6 of shrubs rarely reaching tree size, and 44 more of common shrubs. More than 20 additional maps summarize environmental factors and furnish general…

  5. The Relationship between an Invasive Shrub and Soil Moisture: Seasonal Interactions and Spatially Covarying Relations

    Directory of Open Access Journals (Sweden)

    Yuhong He

    2014-09-01

    Full Text Available Recent studies indicate that positive relationships between invasive plants and soil can contribute to further plant invasions. However, it remains unclear whether these relations remain unchanged throughout the growing season. In this study, spatial sequences of field observations along a transect were used to reveal seasonal interactions and spatially covarying relations between one common invasive shrub (Tartarian Honeysuckle, Lonicera tatarica and soil moisture in a tall grassland habitat. Statistical analysis over the transect shows that the contrast between soil moisture in shrub and herbaceous patches vary with season and precipitation. Overall, a negatively covarying relationship between shrub and soil moisture (i.e., drier surface soils at shrub microsites exists during the very early growing period (e.g., May, while in summer a positively covarying phenomenon (i.e., wetter soils under shrubs is usually evident, but could be weakened or vanish during long precipitation-free periods. If there is sufficient rainfall, surface soil moisture and leaf area index (LAI often spatially covary with significant spatial oscillations at an invariant scale (which is governed by the shrub spatial pattern and is about 8 m, but their phase relation in space varies with season, consistent with the seasonal variability of the co-varying phenomena between shrub invasion and soil water content. The findings are important for establishing a more complete picture of how shrub invasion affects soil moisture.

  6. Phenotypic sex ratios of Atriplex canescens shrubs in relation to cattle browsing

    Science.gov (United States)

    Andres F. Cibils; David M. Swift; Richard H. Hart

    2001-01-01

    Previous studies conducted at our research site on the shortgrass steppe in Colorado showed that phenotypic sex ratios of tetraploid fourwing saltbush (Atriplex canescens Pursh [Nutt]) shrubs were less female biased in grazed pastures than in adjacent exclosures. The potential effects of cattle browsing on shrub sex ratios were studied both in the field and in a...

  7. High precipitation and seeded species competition reduce seeded shrub establishment during dryland restoration.

    Science.gov (United States)

    Rinella, Matthew J; Hammond, Darcy H; Bryant, Ana-Elisa M; Kozar, Brian J

    2015-06-01

    Drylands comprise 40% of Earth's land mass and are critical to food security, carbon sequestration, and threatened and endangered wildlife. Exotic weed invasions, overgrazing, energy extraction, and other factors have degraded many drylands, and this has placed an increased emphasis on dryland restoration. The increased restoration focus has generated a wealth of experience, innovations and empirical data, yet the goal of restoring diverse, native, dryland plant assemblages composed of grasses, forbs, and shrubs has generally proven beyond reach. Of particular concern are shrubs, which often fail to establish or establish at trivially low densities. We used data from two Great Plains, USA coal mines to explore factors regulating shrub establishment. Our predictor data related to weather and restoration (e.g., seed rates, rock cover) variables, and our response data described shrub abundances on fields of the mines. We found that seeded non-shrubs, especially grasses, formed an important competitive barrier to shrub establishment: With every one standard deviation increase in non-shrub seed rate, the probability shrubs were present decreased ~0.1 and shrub cover decreased ~35%. Since new fields were seeded almost every year for > 20 years, the data also provided a unique opportunity to explore effects of stochastic drivers (i.e., precipitation, year effects). With every one standard deviation increase in precipitation the first growing season following seeding, the probability shrubs were present decreased ~0.07 and shrub cover decreased ~47%. High precipitation appeared to harm shrubs by increasing grass growth/competition. Also, weak evidence suggested shrub establishment was better in rockier fields where grass abundance/competition was lower. Multiple lines of evidence suggest reducing grass seed rates below levels typically used in Great Plains restoration would benefit shrubs without substantially impacting grass stand development over the long term. We used

  8. Shrub expansion at the forest–tundra ecotone: spatial heterogeneity linked to local topography

    International Nuclear Information System (INIS)

    Ropars, P; Boudreau, S

    2012-01-01

    Recent densification of shrub cover is now documented in many Arctic regions. However, most studies focus on global scale responses, yielding very little information on the local patterns. This research aims to quantify shrub cover increase at northern treeline (Québec, Canada) in two important types of environment, sandy terraces and hilltops (which cover about 70% of the landscape), and to identify the species involved. The comparison of a mosaic of two aerial photographs from 1957 (137 km 2 ) and one satellite image taken in 2008 (151 km 2 ) revealed that both hilltops and terraces recorded an increase in shrub cover. However, the increase was significantly greater on terraces than on hilltops (21.6% versus 11.6%). According to ground truthing, the shrub cover densification is associated mainly with an increase of Betula glandulosa Michx. The numerous seedlings observed during the ground truthing suggest that shrub densification should continue in the future. (letter)

  9. H -Supermagic Labeling on Shrubs Graph and Lm ⨀ Pn

    International Nuclear Information System (INIS)

    Ulfatimah, Risala; Roswitha, Mania; Kusmayadi, Tri Atmojo

    2017-01-01

    A nite simple graph G admits an H -covering if every edge of E ( G ) belongs to a subgraph of G isomorphic to H . We said the graph G = ( V , E ) that admits H -covering to be H -magic if there exists a bijection function f : V ( G ) ∪ E ( G ) → {1, 2, …, | V ( G )| + | E ( G )|} such that for each subgraph H ′ of G isomorphic to H , f ( H ′) = ∑ υ ∈ V ′ f ( υ ) + ∑ e ∈ E ′ f ( e ) = m ( f ) is constant. Furthermore, if f ( V ) = 1, 2, …, | V ( G )| then G is called H -supermagic. In this research we de ned S 2,2 -supermagic labeling on shrub graph Š ( m 1 , m 2 , …, m n ) and fish-supermagic labeling on L m ⨀ P n for m , n ≥ 2. (paper)

  10. Volatile diterpene emission by two Mediterranean Cistaceae shrubs.

    Science.gov (United States)

    Yáñez-Serrano, A M; Fasbender, L; Kreuzwieser, J; Dubbert, D; Haberstroh, S; Lobo-do-Vale, R; Caldeira, M C; Werner, C

    2018-05-01

    Mediterranean vegetation emits a wide range of biogenic volatile organic compounds (BVOCs) among which isoprenoids present quantitatively the most important compound class. Here, we investigated the isoprenoid emission from two Mediterranean Cistaceae shrubs, Halimium halimifolium and Cistus ladanifer, under controlled and natural conditions, respectively. For the first time, diurnal emission patterns of the diterpene kaurene were detected in real-time by Proton-Transfer-Reaction-Time-of-Flight-Mass-Spectrometer. Kaurene emissions were strongly variable among H. halimifolium plants, ranging from 0.01 ± 0.003 to 0.06 ± 0.01 nmol m -2 s -1 in low and high emitting individuals, respectively. They were in the same order of magnitude as monoterpene (0.01 ± 0.01 to 0.11 ± 0.04 nmol m -2 s -1 ) and sesquiterpene (0.01 ± 0.01 to 0.52 nmol m -2 s -1 ) emission rates. Comparable range and variability was found for C. ladanifer under natural conditions. Labelling with 13 C-pyruvate suggested that emitted kaurene was not derived from de novo biosynthesis. The high kaurene content in leaves, the weak relationship with ecophysiological parameters and the tendency of higher emissions with increasing temperatures in the field indicate an emission from storage pools. This study highlights significant emissions of kaurene from two Mediterranean shrub species, indicating that the release of diterpenes into the atmosphere should probably deserve more attention in the future.

  11. Local biotic adaptation of trees and shrubs to plant neighbors

    Science.gov (United States)

    Grady, Kevin C.; Wood, Troy E.; Kolb, Thomas E.; Hersch-Green, Erika; Shuster, Stephen M.; Gehring, Catherine A.; Hart, Stephen C.; Allan, Gerard J.; Whitham, Thomas G.

    2017-01-01

    Natural selection as a result of plant–plant interactions can lead to local biotic adaptation. This may occur where species frequently interact and compete intensely for resources limiting growth, survival, and reproduction. Selection is demonstrated by comparing a genotype interacting with con- or hetero-specific sympatric neighbor genotypes with a shared site-level history (derived from the same source location), to the same genotype interacting with foreign neighbor genotypes (from different sources). Better genotype performance in sympatric than allopatric neighborhoods provides evidence of local biotic adaptation. This pattern might be explained by selection to avoid competition by shifting resource niches (differentiation) or by interactions benefitting one or more members (facilitation). We tested for local biotic adaptation among two riparian trees, Populus fremontii and Salix gooddingii, and the shrub Salix exigua by transplanting replicated genotypes from multiple source locations to a 17 000 tree common garden with sympatric and allopatric treatments along the Colorado River in California. Three major patterns were observed: 1) across species, 62 of 88 genotypes grew faster with sympatric neighbors than allopatric neighbors; 2) these growth rates, on an individual tree basis, were 44, 15 and 33% higher in sympatric than allopatric treatments for P. fremontii, S. exigua and S. gooddingii, respectively, and; 3) survivorship was higher in sympatric treatments for P. fremontiiand S. exigua. These results support the view that fitness of foundation species supporting diverse communities and dominating ecosystem processes is determined by adaptive interactions among multiple plant species with the outcome that performance depends on the genetic identity of plant neighbors. The occurrence of evolution in a plant-community context for trees and shrubs builds on ecological evolutionary research that has demonstrated co-evolution among herbaceous taxa, and

  12. Does fire severity influence shrub resprouting after spring prescribed burning?

    Science.gov (United States)

    Fernández, Cristina; Vega, José A.; Fonturbel, Teresa

    2013-04-01

    Prescribed burning is commonly used to reduce the risk of severe wildfire. However, further information about the associated environmental effects is required to help forest managers select the most appropriate treatment. To address this question, we evaluated if fire severity during spring prescribed burning significantly affects the resprouting ability of two common shrub species in shrubland under a Mediterranean climate in NW Spain. Fire behaviour and temperatures were recorded in tagged individuals of Erica australis and Pterospartum tridentatum during prescribed burning. The number and length of resprouted shoots were measured three times (6, 12 and 18 months) after the prescribed burning. The influence of a series of fire severity indicators on some plant resprouting vigour parameters was tested by canonical correlation analysis. Six months and one year after prescribed burning, soil burn severity (measured by the absolute reduction in depth of the organic soil layer, maximum temperatures in the organic soil layer and the mineral soil surface during burning and the post-fire depth of the organic soil layer) reduced the resprouting vigour of E. australis and P. tridentatum. In contrast, direct measurements of fire effects on plants (minimum branch diameter, duration of temperatures above 300 °C in the shrub crown and fireline intensity) did not affect the post-fire plant vigour. Soil burn severity during spring prescribed burning significantly affected the short-term resprouting vigour in a mixed heathland in Galicia. The lack of effects eighteen months after prescribed burning indicates the high resilience of these species and illustrates the need to conciliate fire prevention and conservation goals.

  13. Arctic Tundra Soils: A Microbial Feast That Shrubs Will Cease

    Science.gov (United States)

    Machmuller, M.; Calderon, F.; Cotrufo, M. F.; Lynch, L.; Paul, E. A.; Wallenstein, M. D.

    2016-12-01

    Rapid climate warming may already be driving rapid decomposition of the vast stocks of carbon in Arctic tundra soils. However, stimulated decomposition may also release nitrogen and support increased plant productivity, potentially counteracting soil carbon losses. At the same time, these two processes interact, with plant derived carbon potentially fueling soil microbes to attack soil organic matter (SOM) to acquire nitrogen- a process known as priming. Thus, differences in the physiology, stoichiometry and microbial interactions among plant species could affect climate-carbon feedbacks. To reconcile these interactive mechanisms, we examined how vegetation type (Betula nana and Eriophorum vaginatum) and fertilization (short-term and long-term) influenced the decomposition of native SOM after labile carbon and nutrient addition. We hypothesized that labile carbon inputs would stimulate the loss of native SOM, but the magnitude of this effect would be indirectly related to soil nitrogen concentrations (e.g. SOM priming would be highest in N-limited soils). We added isotopically enriched (13C) glucose and ammonium nitrate to soils under shrub (B. nana) and tussock (E. vaginatum) vegetation. We found that nitrogen additions stimulated priming only in tussock soils, characterized by lower nutrient concentrations and microbial biomass (p20yrs. Rather, we found that long-term fertilization shifted SOM chemistry towards a greater abundance of recalcitrant SOM, lower microbial biomass, and decreased SOM respiration (p<0.05). Our results suggest that, in the short-term, the magnitude of SOM priming is dependent on vegetation and soil nitrogen concentrations, but this effect may not persist if shrubs increase in abundance under climate warming. Therefore, including nitrogen as a control on SOM decomposition and priming is critical to accurately model the effects of climate change on arctic carbon storage.

  14. Shrub growth rate and bark responses to soil warming and nutrient addition – A dendroecological approach in a field experiment

    NARCIS (Netherlands)

    Iturrate-Garcia, Maitane; Heijmans, Monique M.P.D.; Schweingruber, Fritz H.; Maximov, Trofim C.; Niklaus, Pascal A.; Schaepman-Strub, Gabriela

    2017-01-01

    Tundra shrubs are slow-growing species limited by low air temperature and scarce nutrient availability. However, shrub expansion has been widely observed in the Arctic during the last decades and attributed to climate warming. Shift in shrub growth, wood structure and abundance affects the

  15. Arid oil-field restoration: native perennial grasses suppress weeds and erosion, but also suppress native shrubs

    Science.gov (United States)

    1. Long-lived, drought-tolerant shrubs are dominant components of many arid ecosystems, and shrubs provide multiple ecosystem services (e.g., soil stabilization, herbaceous plant facilitation, carbon storage and wildlife habitat). On denuded sites, shrub restoration is hindered by abiotic (erosion ...

  16. Changes in epiphyte communities as the shrub, Acer circinatum, develops and ages

    Science.gov (United States)

    Ruchty, A.M.; Rosso, A.L.

    2001-01-01

    The Pacific Northwest tall shrub Acer circinatum (vine maple) can host diverse and abundant epiphyte communities. A chronosequence approach revealed that these communities gradually shift in composition as the shrub progresses through its life cycle. Different epiphytic life forms occupy different spatial and temporal niches on shrub stems. These life forms generally shift upwards along the shrub stem as the stem ages and develops, in accordance with the similar gradient hypothesis. We postulate the following sequence of events. An initial wave of colonization occurs as new substrate is laid down. Over time, superior competitors gradually engulf and overgrow competitively inferior primary colonizers. Concurrently, shrub stem microclimate changes as shrub stems grow, age, and layer, causing the processes of competition and colonization to shift in favor of different epiphytic life forms during different life stages of the shrub stem. We define four separate shrub stem life stages: life classes 1a??4 describe, respectively, young upright a??whipsa??; vigorous, upright, mature stems; declining stems beginning to bend towards the forest floor; and horizontal, decadent stems. As space on the shrub stem is filled through growth and colonization, interspecific competition intensifies. Successful competitors persist and spread, while poor competitors are increasingly restricted to the stem tips, where interspecific competition is less intense. In these forests, Usnea, green-algal foliose lichens, and moss tufts excel as the primary colonizers and become common on the outer portions of shrub stems over time, as long as the overstory is not too dense. Moss mats are also good primary colonizers, but excel as secondary colonizers, often coming to dominate decadent shrub stems. Although all life forms can be primary colonizers, the remaining forms (cyanolichens, liverworts, and Antitrichia curtipendula) are effective secondary colonizers. Liverworts are also effective

  17. Mediterranean shrub vegetation: soil protection vs. water availability

    Science.gov (United States)

    García Estringana, Pablo; Nieves Alonso-Blázquez, M.; Alegre, Alegre; Cerdà, Artemi

    2014-05-01

    Soil Erosion and Land Degradation are closely related to the changes in the vegetation cover (Zhao et al., 2013). Although other factors such as rainfall intensiy or slope (Ziadat and Taimeh, 2013) the plant covers is the main factor that controls the soil erosion (Haregeweyn, 2013). Plant cover is the main factor of soil erosion processes as the vegetation control the infiltration and runoff generation (Cerdà, 1998a; Kargar Chigani et al., 2012). Vegetation cover acts in a complex way in influencing on the one hand on runoff and soil loss and on the other hand on the amount and the way that rainfall reaches the soil surface. In arid and semiarid regions, where erosion is one of the main degradation processes and water is a scant resource, a minimum percentage of vegetation coverage is necessary to protect the soil from erosion, but without compromising the availability of water (Belmonte Serrato and Romero Diaz, 1998). This is mainly controlled by the vegetation distribution (Cerdà, 1997a; Cammeraat et al., 2010; Kakembo et al., 2012). Land abandonment is common in Mediterranean region under extensive land use (Cerdà, 1997b; García-Ruiz, 2010). Abandoned lands typically have a rolling landscape with steep slopes, and are dominated by herbaceous communities that grow on pasture land interspersed by shrubs. Land abandonment use to trigger an increase in soil erosion, but the vegetation recovery reduces the impact of the vegetation. The goal of this work is to assess the effects of different Mediterranean shrub species (Dorycnium pentaphyllum Scop., Medicago strasseri, Colutea arborescens L., Retama sphaerocarpa, L., Pistacia Lentiscus L. and Quercus coccifera L.) on soil protection (runoff and soil losses) and on rainfall reaching soil surface (rainfall partitioning fluxes). To characterize the effects of shrub vegetation and to evaluate their effects on soil protection, two field experiments were carried out. The presence of shrub vegetation reduced runoff by

  18. Desert basins of the Southwest

    Science.gov (United States)

    Leake, Stanley A.; Konieczki, Alice D.; Rees, Julie A.H.

    2000-01-01

    Ground water is among the Nation’s most important natural resources. It provides drinking water to urban and rural communities, supports irrigation and industry, sustains the flow of streams and rivers, and maintains riparian and wetland ecosystems. In many areas of the Nation, the future sustainability of ground-water resources is at risk from overuse and contamination. Because ground-water systems typically respond slowly to human actions, a long-term perspective is needed to manage this valuable resource. This publication is one in a series of fact sheets that describe ground-water-resource issues across the United States, as well as some of the activities of the U.S. Geological Survey that provide information to help others develop, manage, and protect ground-water resources in a sustainable manner. Ground-water resources in the Southwest are among the most overused in the United States. Natural recharge to aquifers is low and pumping in many areas has resulted in lowering of water tables. The consequences of large-scale removal of water from storage are becoming increasingly evident. These consequences include land subsidence; loss of springs, streams, wetlands and associated habitat; and degradation of water quality. Water managers are now seeking better ways of managing ground-water resources while looking for supplemental sources of water. This fact sheet reviews basic information on ground water in the desert basins of the Southwest. Also described are some activities of the U.S. Geological Survey (USGS) that are providing scientific information for sustainable management of ground-water resources in the Southwest. Ground-water sustainability is defined as developing and using ground water in a way that can be maintained for an indefinite time without causing unacceptable environmental, economic, or social consequences.

  19. Trends in soil erosion and woody shrub encroachment in Ngqushwa district, Eastern Cape Province, South Africa.

    Science.gov (United States)

    Manjoro, Munyaradzi; Kakembo, Vincent; Rowntree, Kate M

    2012-03-01

    Woody shrub encroachment severely impacts on the hydrological and erosion response of rangelands and abandoned cultivated lands. These processes have been widely investigated at various spatial scales, using mostly field experimentation. The present study used remote sensing to investigate spatial and temporal patterns of soil erosion and encroachment by a woody shrub species, Pteronia incana, in a catchment in Ngqushwa district, Eastern Cape Province, South Africa between 1998 and 2008. The extreme categories of soil erosion and shrub encroachment were mapped with higher accuracy than the intermediate ones, particularly where lower spatial resolution data were used. The results showed that soil erosion in the worst category increased simultaneously with dense woody shrub encroachment on the hill slopes. This trend is related to the spatial patterning of woody shrub vegetation that increases bare soil patches--leading to runoff connectivity and concentration of overland flow. The major changes in soil erosion and shrub encroachment analysed during the 10-year period took place in the 5-9° slope category and on the concave slope form. Multi-temporal analyses, based on remote sensing, can extend our understanding of the dynamics of soil erosion and woody shrub encroachment. They may help benchmark the processes and assist in upscaling field studies.

  20. Dynamics of Understory Shrub Biomass in Six Young Plantations of Southern Subtropical China

    Directory of Open Access Journals (Sweden)

    Yuanqi Chen

    2017-11-01

    Full Text Available Understory shrubs are an important component of forest ecosystems and drive ecosystem processes, such as ecosystem carbon cycling. However, shrub biomass carbon stocks have rarely been reported, which limits our understanding of ecosystem C stock and cycling. In this study, we evaluated carbon accumulation of shrub species using allometric equations based on height and basal diameter in six subtropical plantations at the age of 1, 3, 4 and 6 years. The results showed that plantation type did not significantly affect the total biomass of shrubs, but it significantly affected the biomass of Rhodomyrtus tomentosa, Ilex asprella, Clerodendrum fortunatum and Baeckea frutescens. The biomass of dominant shrub species R. tomentosa, I. asprella, Gardenia jasminoides and Melastoma candidum increased with stand age, while the biomass of C. fortunatum and B. frutescens decreased. The inconsistent biomass-time patterns of different shrub species may be the primary reason for the altered total shrub biomass in each plantation. Consequently, we proposed that R. tomentosa, I. asprella, G. jasminoides and M. candidum could be preferable for understory carbon accumulation and should be maintained or planted because of their important functions in carbon accumulation and high economic values in the young plantations of southern subtropical China.

  1. Mapping the ecological dimensions and potential distributions of endangered relic shrubs in western Ordos biodiversity center.

    Science.gov (United States)

    Zhu, Geng-Ping; Li, Hui-Qi; Zhao, Li; Man, Liang; Liu, Qiang

    2016-05-20

    Potential distributions of endemic relic shrubs in western Ordos were poorly mapped, which hindered our implementation of proper conservation. Here we investigated the applicability of ecological niche modeling for endangered relic shrubs to detect areas of priority for biodiversity conservation and analyze differences in ecological niche spaces used by relic shrubs. We applied ordination and niche modeling techniques to assess main environmental drivers of five endemic relic shrubs in western Ordos, namely, Ammopiptanthus mongolicus, Amygdalus mongolica, Helianthemum songaricum, Potaninia mongolica, and Tetraena mongolica. We calculated niche overlap metrics in gridded environmental spaces and compared geographical projections of ecological niches to determine similarities and differences of niches occupied by relic shrubs. All studied taxa presented different responses to environmental factors, which resulted in a unique combination of niche conditions. Precipitation availability and soil quality characteristics play important roles in the distributions of most shrubs. Each relic shrub is constrained by a unique set of environmental conditions, the distribution of one species cannot be implied by the distribution of another, highlighting the inadequacy of one-fits-all type of conservation measure. Our stacked habitat suitability maps revealed regions around Yellow River, which are highly suitable for most species, thereby providing high conservation value.

  2. Climatic warming strengthens a positive feedback between alpine shrubs and fire.

    Science.gov (United States)

    Camac, James S; Williams, Richard J; Wahren, Carl-Henrik; Hoffmann, Ary A; Vesk, Peter A

    2017-08-01

    Climate change is expected to increase fire activity and woody plant encroachment in arctic and alpine landscapes. However, the extent to which these increases interact to affect the structure, function and composition of alpine ecosystems is largely unknown. Here we use field surveys and experimental manipulations to examine how warming and fire affect recruitment, seedling growth and seedling survival in four dominant Australian alpine shrubs. We found that fire increased establishment of shrub seedlings by as much as 33-fold. Experimental warming also doubled growth rates of tall shrub seedlings and could potentially increase their survival. By contrast, warming had no effect on shrub recruitment, postfire tussock regeneration, or how tussock grass affected shrub seedling growth and survival. These findings indicate that warming, coupled with more frequent or severe fires, will likely result in an increase in the cover and abundance of evergreen shrubs. Given that shrubs are one of the most flammable components in alpine and tundra environments, warming is likely to strengthen an existing feedback between woody species abundance and fire in these ecosystems. © 2017 John Wiley & Sons Ltd.

  3. [Soil moisture dynamics of artificial Caragana microphylla shrubs at different topographical sites in Horqin sandy land].

    Science.gov (United States)

    Huang, Gang; Zhao, Xue-yong; Huang, Ying-xin; Su, Yan-gui

    2009-03-01

    Based on the investigation data of vegetation and soil moisture regime of Caragana microphylla shrubs widely distributed in Horqin sandy land, the spatiotemporal variations of soil moisture regime and soil water storage of artificial sand-fixing C. microphylla shrubs at different topographical sites in the sandy land were studied, and the evapotranspiration was measured by water balance method. The results showed that the soil moisture content of the shrubs was the highest in the lowland of dunes, followed by in the middle, and in the crest of the dunes, and increased with increasing depth. No water stress occurred during the growth season of the shrubs. Soil moisture content of the shrubs was highly related to precipitation event, and the relationship of soil moisture content with precipitation was higher in deep soil layer (50-180 cm) than in shallow soil layer (0-50 cm). The variation coefficient of soil moisture content was also higher in deep layer than in shallow layer. Soil water storage was increasing in the whole growth season of the shrubs, which meant that the accumulation of soil water occurred in this area. The evapotranspiriation of the shrubs occupied above 64% of the precipitation.

  4. [Spatial distribution of aboveground biomass of shrubs in Tianlaochi catchment of the Qilian Mountains].

    Science.gov (United States)

    Liang, Bei; Di, Li; Zhao, Chuan-Yan; Peng, Shou-Zhang; Peng, Huan-Hua; Wang, Chao

    2014-02-01

    This study estimated the spatial distribution of the aboveground biomass of shrubs in the Tianlaochi catchment of Qilian Mountains based on the field survey and remote sensing data. A relationship model of the aboveground biomass and its feasibly measured factors (i. e. , canopy perimeter and plant height) was built. The land use was classified by object-oriented technique with the high resolution image (GeoEye-1) of the study area, and the distribution of shrub coverage was extracted. Then the total aboveground biomass of shrubs in the study area was estimated by the relationship model with the distribution of shrub coverage. The results showed that the aboveground biomass of shrubs in the study area was 1.8 x 10(3) t and the aboveground biomass per unit area was 1598.45 kg x m(-2). The distribution of shrubs mainly was at altitudes of 3000-3700 m, and the aboveground biomass of shrubs on the sunny slope (1.15 x 10(3) t) was higher than that on the shady slope (0.65 x 10(3) t).

  5. Mammalian herbivores confer resilience of Arctic shrub-dominated ecosystems to changing climate.

    Science.gov (United States)

    Kaarlejärvi, Elina; Hoset, Katrine S; Olofsson, Johan

    2015-09-01

    Climate change is resulting in a rapid expansion of shrubs in the Arctic. This expansion has been shown to be reinforced by positive feedbacks, and it could thus set the ecosystem on a trajectory toward an alternate, more productive regime. Herbivores, on the other hand, are known to counteract the effects of simultaneous climate warming on shrub biomass. However, little is known about the impact of herbivores on resilience of these ecosystems, that is, the capacity of a system to absorb disturbance and still remain in the same regime, retaining the same function, structure, and feedbacks. Here, we investigated how herbivores affect resilience of shrub-dominated systems to warming by studying the change of shrub biomass after a cessation of long-term experimental warming in a forest-tundra ecotone. As predicted, warming increased the biomass of shrubs, and in the absence of herbivores, shrub biomass in tundra continued to increase 4 years after cessation of the artificial warming, indicating that positive effects of warming on plant growth may persist even over a subsequent colder period. Herbivores contributed to the resilience of these systems by returning them back to the original low-biomass regime in both forest and tundra habitats. These results support the prediction that higher shrub biomass triggers positive feedbacks on soil processes and microclimate, which enable maintaining the rapid shrub growth even in colder climates. Furthermore, the results show that in our system, herbivores facilitate the resilience of shrub-dominated ecosystems to climate warming. © 2015 John Wiley & Sons Ltd.

  6. Range expansion of moose in arctic Alaska linked to warming and increased shrub habitat

    Science.gov (United States)

    Tape, Ken D.; Gustine, David D.; Reuss, Roger W.; Adams, Layne G.; Clark, Jason A.

    2016-01-01

    Twentieth century warming has increased vegetation productivity and shrub cover across northern tundra and treeline regions, but effects on terrestrial wildlife have not been demonstrated on a comparable scale. During this period, Alaskan moose (Alces alces gigas) extended their range from the boreal forest into tundra riparian shrub habitat; similar extensions have been observed in Canada (A. a. andersoni) and Eurasia (A. a. alces). Northern moose distribution is thought to be limited by forage availability above the snow in late winter, so the observed increase in shrub habitat could be causing the northward moose establishment, but a previous hypothesis suggested that hunting cessation triggered moose establishment. Here, we use recent changes in shrub cover and empirical relationships between shrub height and growing season temperature to estimate available moose habitat in Arctic Alaska c. 1860. We estimate that riparian shrubs were approximately 1.1 m tall c. 1860, greatly reducing the available forage above the snowpack, compared to 2 m tall in 2009. We believe that increases in riparian shrub habitat after 1860 allowed moose to colonize tundra regions of Alaska hundreds of kilometers north and west of previous distribution limits. The northern shift in the distribution of moose, like that of snowshoe hares, has been in response to the spread of their shrub habitat in the Arctic, but at the same time, herbivores have likely had pronounced impacts on the structure and function of these shrub communities. These northward range shifts are a bellwether for other boreal species and their associated predators.

  7. Oxalosis in wild desert tortoises, Gopherus agassizii

    Science.gov (United States)

    Jacobson, Elliott R.; Berry, Kristin H.; Stacy, Brian; Huzella, Louis M.; Kalasinsky, Victor F.; Fleetwood, Michelle L.; Mense, Mark G.

    2009-01-01

    We necropsied a moribund, wild adult male desert tortoise (Gopherus agassizii) with clinical signs of respiratory disease and elevated plasma biochemical analytes indicative of renal disease (blood urea nitrogen [415 mg/dl], uric acid [11.8 mg/dl], sodium >180 mmol/l] and chloride [139 mmol/l]). Moderate numbers of birefringent oxalate crystals, based on infrared and electron microscopy, were present within renal tubules; small numbers were seen in colloid within thyroid follicles. A retrospective analysis of 66 additional cases of wild desert tortoises was conducted to determine whether similar crystals were present in thyroid and kidney. The tortoises, from the Mojave and Sonoran deserts, were necropsied between 1992 and 2003 and included juveniles and adults. Tortoises were classified as healthy (those that died due to trauma and where no disease was identified after necropsy and evaluation by standard laboratory tests used for other tortoises) or not healthy (having one or more diseases or lesions). For all 67 necropsied tortoises, small numbers of crystals of similar appearance were present in thyroid glands from 44 of 54 cases (81%) and in kidneys from three of 65 cases (5%). Presence of oxalates did not differ significantly between healthy and unhealthy tortoises, between age classes, or between desert region, and their presence was considered an incidental finding. Small numbers of oxalate crystals seen within the kidney of two additional tortoises also were considered an incidental finding. Although the source of the calcium oxalate could not be determined, desert tortoises are herbivores, and a plant origin seems most likely. Studies are needed to evaluate the oxalate content of plants consumed by desert tortoises, and particularly those in the area where the tortoise in renal failure was found.

  8. Purpose of Introduction as a Predictor of Invasiveness among Introduced Shrubs in Rwanda

    Directory of Open Access Journals (Sweden)

    Jean Leonard Seburanga

    2015-01-01

    Full Text Available The introduced shrub flora in Rwanda was analyzed and the risk of invasion was assessed based on the species’ purposes of introduction. The results showed that more than half of invasive alien shrubs in Rwanda were introduced as ornamentals. They include Agave americana L., Bryophyllum proliferum Bowie ex Hook., Caesalpinia decapetala (Roth Alston, Lantana camara L., and Tithonia diversifolia (Hemsley A. Gray. However, these represented only 3.16% of the total number of introduced ornamental shrubs. At the time when the study was conducted, no introduced food crop had become invasive. Species introduced for purposes other than food or culinary use showed higher likelihood of becoming invasive.

  9. The SMOS Mediterranean Ecosystem L-Band characterisation EXperiment (MELBEX-I) over natural shrubs

    DEFF Research Database (Denmark)

    Cano, Aurelio; Saleh, Kauzar; Wigneron, Jean-Pierre

    2010-01-01

    shrub land, as no data were available over this biome. For that purpose, multi-angular and dual polarimetric measurements (H, V) were obtained by the EMIRAD L-band radiometer from a 14-m tower. Results of this study indicate a small and constant impact of vegetation on the microwave emission of shrub...... land, and L-MEB parameters for shrub land were obtained. In addition, the study highlights the need for calibrating microwave soil roughness, which was found to be constant at the site. Depending on the number of retrieved parameters, soil moisture (SM) near the surface could be estimated with errors...

  10. Jojoba could stop the desert creep

    Energy Technology Data Exchange (ETDEWEB)

    1982-03-25

    The Sahara desert is estimated to be expanding at a rate of 5km a year. The Sudanese government is experimenting with jojoba in six different regions as the bush has the potential to stop this ''desert creep''. The plant, a native to Mexico, is long known for its resistance to drought and for the versatile liquid wax that can be extracted from its seeds. It is estimated that one hectare of mature plants could produce 3000 kg of oil, currently selling at $50 per litre, and so earn valuable foreign currency.

  11. CAMEL REARING IN CHOLISTAN DESERT OF PAKISTAN

    OpenAIRE

    I. ALI, M. SHAFIQ CHAUDHRY1 AND U. FAROOQ

    2009-01-01

    The camel is one of the typical and the best adopted animals of the desert, capable of enduring thirst and hunger for days and is the most patient of land animals. For desert nomads of Pakistani Cholistan, it is a beloved companion, a source of milk and meat, transport facility provider and a racing/dancing animal, thus, playing an important role in the socioeconomic uplift of the local community. Camels of Marrecha or Mahra breed are mainly used for riding and load carrying but may be traine...

  12. Biological soil crust as a bio-mediator alters hydrological processes in stabilized dune system of the Tengger Desert, China

    Science.gov (United States)

    Li, Xinrong

    2016-04-01

    Biological soil crust (BSC) is a vital component in the stabilized sand dunes with a living cover up to more than 70% of the total, which has been considered as a bio-mediator that directly influences and regulates the sand dune ecosystem processes. However, its influences on soil hydrological processes have been long neglected in Chinese deserts. In this study, BSCs of different successional stages were chose to test their influence on the hydrological processes of stabilized dune, where the groundwater deep exceeds 30m, further to explore why occur the sand-binding vegetation replacement between shrubs and herbs. Our long-term observation (60 years) shows that cyanobacteria crust has been colonized and developed after 3 years since the sand-binding vegetation has been established and dune fixation using planted xerophytic shrubs and made sand barrier (straw-checkerboard) on shifting dune surface, lichen and moss crust occurred after 20 years, and the cover of moss dominated crust could reach 70 % after 50 years. The colonization and development of BSC altered the initial soil water balance of revegetated areas by influencing rainfall infiltration, soil evaporation and dew water entrapment. The results show that BSC obviously reduced the infiltration that occurred during most rainfall events (80%), when rainfall was greater than 5 mm or less than 20 mm. The presence of BSC reduced evaporation of topsoil after small rainfall (<5 mm) because its high proportion of finer particles slowed the evaporation rate, thus keeping the water in the soil surface longer, and crust facilitated topsoil evaporation when rainfall reached 10 mm. The amount of dew entrapment increases with the succession of BSC. Moreover, the effect of the later successional BSC to dew entrapment, rainfall infiltration and evaporation was more obvious than the early successional BSC on stabilized dunes. In general, BSC reduced the amount of rainfall water that reached deeper soil (0.4-3m), which is

  13. Soil water regulates the control of photosynthesis on diel hysteresis between soil respiration and temperature in a desert shrubland

    Science.gov (United States)

    Wang, Ben; Zha, Tian Shan; Jia, Xin; Gong, Jin Nan; Bourque, Charles; Feng, Wei; Tian, Yun; Wu, Bin; Qing Zhang, Yu; Peltola, Heli

    2017-09-01

    Explanations for the occurrence of hysteresis (asynchronicity) between diel soil respiration (Rs) and soil temperature (Ts) have evoked both biological and physical mechanisms. The specifics of these explanations, however, tend to vary with the particular ecosystem or biome being investigated. So far, the relative degree of control of biological and physical processes on hysteresis is not clear for drylands. This study examined the seasonal variation in diel hysteresis and its biological control in a desert-shrub ecosystem in northwest (NW) China. The study was based on continuous measurements of Rs, air temperature (Ta), temperature at the soil surface and below (Tsurf and Ts), volumetric soil water content (SWC), and photosynthesis in a dominant desert shrub (i.e., Artemisia ordosica) over an entire year in 2013. Trends in diel Rs were observed to vary with SWC over the growing season (April to October). Diel variations in Rs were more closely associated with variations in Tsurf than with photosynthesis as SWC increased, leading to Rs being in phase with Tsurf, particularly when SWC > 0.08 m3 m-3 (ratio of SWC to soil porosity = 0.26). However, as SWC decreased below 0.08 m3 m-3, diel variations in Rs were more closely related to variations in photosynthesis, leading to pronounced hysteresis between Rs and Tsurf. Incorporating photosynthesis into a Q10-function eliminated 84.2 % of the observed hysteresis, increasing the overall descriptive capability of the function. Our findings highlight a high degree of control by photosynthesis and SWC in regulating seasonal variation in diel hysteresis between Rs and temperature.

  14. Watch Out for Your Neighbor: Climbing onto Shrubs Is Related to Risk of Cannibalism in the Scorpion Buthus cf. occitanus.

    Science.gov (United States)

    Sánchez-Piñero, Francisco; Urbano-Tenorio, Fernando

    The distribution and behavior of foraging animals usually imply a balance between resource availability and predation risk. In some predators such as scorpions, cannibalism constitutes an important mortality factor determining their ecology and behavior. Climbing on vegetation by scorpions has been related both to prey availability and to predation (cannibalism) risk. We tested different hypotheses proposed to explain climbing on vegetation by scorpions. We analyzed shrub climbing in Buthus cf. occitanus with regard to the following: a) better suitability of prey size for scorpions foraging on shrubs than on the ground, b) selection of shrub species with higher prey load, c) seasonal variations in prey availability on shrubs, and d) whether or not cannibalism risk on the ground increases the frequency of shrub climbing. Prey availability on shrubs was compared by estimating prey abundance in sticky traps placed in shrubs. A prey sample from shrubs was measured to compare prey size. Scorpions were sampled in six plots (50 m x 10 m) to estimate the proportion of individuals climbing on shrubs. Size difference and distance between individuals and their closest scorpion neighbor were measured to assess cannibalism risk. The results showed that mean prey size was two-fold larger on the ground. Selection of particular shrub species was not related to prey availability. Seasonal variations in the number of scorpions on shrubs were related to the number of active scorpions, but not with fluctuations in prey availability. Size differences between a scorpion and its nearest neighbor were positively related with a higher probability for a scorpion to climb onto a shrub when at a disadvantage, but distance was not significantly related. These results do not support hypotheses explaining shrub climbing based on resource availability. By contrast, our results provide evidence that shrub climbing is related to cannibalism risk.

  15. Assessing effect of rainfall on rate of alien shrub expansion in a ...

    African Journals Online (AJOL)

    Assessing effect of rainfall on rate of alien shrub expansion in a southern African savanna. ... Keywords: aerial photography, invasion, Kyle Game Reserve, Lantana camara, patch dynamics, rainfall variability ... AJOL African Journals Online.

  16. Trees, Shrubs, and Woody Vines of the Bluff Experimental Forest, Warren County, Mississippi

    Science.gov (United States)

    Robert L. Johnson; Elbert L. Little

    1967-01-01

    Nearly 100 species of trees, shrubs, and woody vines grow naturally on the 450-acre Bluff Experimental Forest in west-central Mississippi. This publication lists the plants and provides information on silvical characteristics of the tree species.

  17. Trees and shrubs of the Bartlett Experimental Forest, Carroll County, New Hampshire

    Science.gov (United States)

    Stanley M. Filip; Elbert L., Jr. Little; Elbert L. Little

    1971-01-01

    Sixty-five species of trees and shrubs have been identified as native on the Bartlett Experimental Forest. These species are listed in this paper to provide a record of the woody vegetation of the area.

  18. Permafrost collapse after shrub removal shifts tundra ecosystem to a methane source

    DEFF Research Database (Denmark)

    Nauta, Ake L.; Heijmans, Monique P.D.; Blok, Daan

    2015-01-01

    , including expansion of woody vegetation5,6, in response to changing climate conditions. How such vegetation changes contribute to stabilization or destabilization of the permafrost is unknown. Here we present six years of field observations in a shrub removal experiment at a Siberian tundra site. Removing...... the shrub part of the vegetation initiated thawing of ice-rich permafrost, resulting in collapse of the originally elevated shrub patches into waterlogged depressions within five years. This thaw pond development shifted the plots from a methane sink into a methane source. The results of our field......-emitting wet depressions could become more abundant in the lowland tundra landscape, at the cost of permafrost-stabilizing low shrub vegetation....

  19. The initiation of a tropic shrub specia Psidium guajava

    Directory of Open Access Journals (Sweden)

    Julieta Emilia ROMOCEA

    2008-05-01

    Full Text Available Because this tropical fruit is not so popular in Europe, we sis try he initiation of an tropic shrub of Psidium guajava it was possible to make, using them seeds from the matured fruit of guava. The fruit is originally from Egypt – Alexandria. Those seeds were dry and before using them, they were kept in sterile water few hours, after that it was performed the sterilization process, and they were inoculated in 4 different experimental variants.Because them germination process was start late, after 2 months from inoculation, observations were made to the level of the germinated seeds, didn’t shown any infections, but the best results were noticed only on variant V1 (BM basic medium - MS with BA (1 mg/l + IBA (1 mg/l, where the germination capacity it was more bigger.Finally, we did noticed that after the end of this experiment, the best medium culture for the generation of stemlets with many leaves is V1 and V3, but for the root development only V2 showed a very good result. Kept in good light intensity, humidity and optimal temperature conditions, the experiment showed good results, what made this research possible.

  20. Contrasting ozone sensitivity in related evergreen and deciduous shrubs

    International Nuclear Information System (INIS)

    Calatayud, Vicent; Marco, Francisco; Cervero, Julia; Sanchez-Pena, Gerardo; Sanz, Maria Jose

    2010-01-01

    Plant responses to enhanced ozone levels have been studied in two pairs of evergreen-deciduous species (Pistacia terebinthus vs. P. lentiscus; Viburnum lantana vs. V. tinus) in Open Top Chambers. Ozone induced widespread visible injury, significantly reduced CO 2 assimilation and stomatal conductance (g s ), impaired Rubisco efficiency and regeneration capacity (V c,max, J max ) and altered fluorescence parameters only in the deciduous species. Differences in stomatal conductance could not explain the observed differences in sensitivity. In control plants, deciduous species showed higher superoxide dismutase (SOD) activity than their evergreen counterparts, suggesting metabolic differences that could make them more prone to redox imbalances. Ozone induced increases in SOD and/or peroxidase activities in all the species, but only evergreens were able to cope with the oxidative stress. The relevancy of these results for the effective ozone flux approach and for the current ozone Critical Levels is also discussed. - Mediterranean evergreen shrubs have a constitutively higher capacity to tolerate ozone stress than their deciduous relatives.

  1. Contrasting ozone sensitivity in related evergreen and deciduous shrubs

    Energy Technology Data Exchange (ETDEWEB)

    Calatayud, Vicent, E-mail: vicent@ceam.e [Fundacion CEAM, c/ Charles R. Darwin 14, Parque Tecnologico, 46980 Paterna, Valencia (Spain); Marco, Francisco; Cervero, Julia [Fundacion CEAM, c/ Charles R. Darwin 14, Parque Tecnologico, 46980 Paterna, Valencia (Spain); Sanchez-Pena, Gerardo [SPCAN, Dir. Gral. de Medio Natural y Politica Forestal, Ministerio de Medio Ambiente, y Medio Rural y Marino, Rios Rosas 24, 28003 Madrid (Spain); Sanz, Maria Jose [Fundacion CEAM, c/ Charles R. Darwin 14, Parque Tecnologico, 46980 Paterna, Valencia (Spain)

    2010-12-15

    Plant responses to enhanced ozone levels have been studied in two pairs of evergreen-deciduous species (Pistacia terebinthus vs. P. lentiscus; Viburnum lantana vs. V. tinus) in Open Top Chambers. Ozone induced widespread visible injury, significantly reduced CO{sub 2} assimilation and stomatal conductance (g{sub s}), impaired Rubisco efficiency and regeneration capacity (V{sub c,max,}J{sub max}) and altered fluorescence parameters only in the deciduous species. Differences in stomatal conductance could not explain the observed differences in sensitivity. In control plants, deciduous species showed higher superoxide dismutase (SOD) activity than their evergreen counterparts, suggesting metabolic differences that could make them more prone to redox imbalances. Ozone induced increases in SOD and/or peroxidase activities in all the species, but only evergreens were able to cope with the oxidative stress. The relevancy of these results for the effective ozone flux approach and for the current ozone Critical Levels is also discussed. - Mediterranean evergreen shrubs have a constitutively higher capacity to tolerate ozone stress than their deciduous relatives.

  2. Vegetative propagation of the Azorean endemic shrub Viburnum treleasei Gand

    Directory of Open Access Journals (Sweden)

    MÓNICA MOURA

    2009-01-01

    Full Text Available Viburnum treleasei Gand. is a threatened hermaphroditic shrub or small tree endemic to the Azores islands. In this study we aimed at defining a fast, simple and cost-efficient propagation methodology that could be used by non-skilled workers in conservation actionplans. Our objective was also to produce cleaner material for initiation of in vitro cultures and to determine the effects of season, placement of cuttings in the branch, placement of vegetative buds in cuttings and forcing solutions in shoot development. It was possible to produce clean shoots from cuttings using a forcing solution with 8-hydroxyquinoline sulphate (8-HQS, 2% sucrose and no growth regulators addition. Shoot development results obtained with apical and sub-apical cuttings indicate that V. treleasei possessesapical dominance and deep endodormancy. Apical semihardwood cuttings in autumn or airlayered branches in autumn and winter with 2 or 5% (w/w of IBA produced excellent rooting results which will allow reinforcing depleted populations of V. treleasei efficientlyand at reduced costs.

  3. Divining Jordan's desert waters | IDRC - International Development ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    ... in the area have a long history of being water-conservers, and the idea of using the ... Dr Abu-Jaber examined is covered by an ancient, volcanic rock called basalt. ... When a desert cloudburst drops rain on the area, the raindrops quickly roll ...

  4. Liquid Water Restricts Habitability in Extreme Deserts.

    Science.gov (United States)

    Cockell, Charles S; Brown, Sarah; Landenmark, Hanna; Samuels, Toby; Siddall, Rebecca; Wadsworth, Jennifer

    2017-04-01

    Liquid water is a requirement for biochemistry, yet under some circumstances it is deleterious to life. Here, we show that liquid water reduces the upper temperature survival limit for two extremophilic photosynthetic microorganisms (Gloeocapsa and Chroococcidiopsis spp.) by greater than 40°C under hydrated conditions compared to desiccated conditions. Under hydrated conditions, thermal stress causes protein inactivation as shown by the fluorescein diacetate assay. The presence of water was also found to enhance the deleterious effects of freeze-thaw in Chroococcidiopsis sp. In the presence of water, short-wavelength UV radiation more effectively kills Gloeocapsa sp. colonies, which we hypothesize is caused by factors including the greater penetration of UV radiation into hydrated colonies compared to desiccated colonies. The data predict that deserts where maximum thermal stress or irradiation occurs in conjunction with the presence of liquid water may be less habitable to some organisms than more extreme arid deserts where organisms can dehydrate prior to being exposed to these extremes, thus minimizing thermal and radiation damage. Life in extreme deserts is poised between the deleterious effects of the presence and the lack of liquid water. Key Words: Deserts-Extremophiles-Stress-High temperatures-UV radiation-Desiccation. Astrobiology 17, 309-318.

  5. Preventing desert locust plagues: optimizing management interventions

    NARCIS (Netherlands)

    Huis, van A.; Cressman, K.; Magor, J.I.

    2007-01-01

    Solitarious desert locusts, Schistocerca gregaria (Forskål) (Orthoptera: Acrididae), inhabit the central, arid, and semi-arid parts of the species¿ invasion area in Africa, the Middle East, and South-West Asia. Their annual migration circuit takes them downwind to breed sequentially where winter,

  6. Abiotic drivers of Chihuahuan Desert plant communities

    Science.gov (United States)

    Laura Marie Ladwig

    2014-01-01

    Within grasslands, precipitation, fire, nitrogen (N) addition, and extreme temperatures influence community composition and ecosystem function. The differential influences of these abiotic factors on Chihuahuan Desert grassland communities was examined within the Sevilleta National Wildlife Refuge, located in central New Mexico, U.S.A. Although fire is a natural...

  7. Reclaiming freshwater sustainability in the Cadillac Desert

    Science.gov (United States)

    Sabo, John L.; Sinha, Tushar; Bowling, Laura C.; Schoups, Gerrit H.W.; Wallender, Wesley W.; Campana, Michael E.; Cherkauer, Keith A.; Fuller, Pam L.; Graf, William L.; Hopmans, Jan W.; Kominoski, John S.; Taylor, Carissa; Trimble, Stanley W.; Webb, Robert H.; Wohl, Ellen E.

    2010-01-01

    Increasing human appropriation of freshwater resources presents a tangible limit to the sustainability of cities, agriculture, and ecosystems in the western United States. Marc Reisner tackles this theme in his 1986 classic Cadillac Desert: The American West and Its Disappearing Water. Reisner's analysis paints a portrait of region-wide hydrologic dysfunction in the western United States, suggesting that the storage capacity of reservoirs will be impaired by sediment infilling, croplands will be rendered infertile by salt, and water scarcity will pit growing desert cities against agribusiness in the face of dwindling water resources. Here we evaluate these claims using the best available data and scientific tools. Our analysis provides strong scientific support for many of Reisner's claims, except the notion that reservoir storage is imminently threatened by sediment. More broadly, we estimate that the equivalent of nearly 76% of streamflow in the Cadillac Desert region is currently appropriated by humans, and this figure could rise to nearly 86% under a doubling of the region's population. Thus, Reisner's incisive journalism led him to the same conclusions as those rendered by copious data, modern scientific tools, and the application of a more genuine scientific method. We close with a prospectus for reclaiming freshwater sustainability in the Cadillac Desert, including a suite of recommendations for reducing region-wide human appropriation of streamflow to a target level of 60%.

  8. Does NDVI reflect variation in the structural attributes associated with increasing shrub dominance in arctic tundra?

    Energy Technology Data Exchange (ETDEWEB)

    Boelman, Natalie T [Lamont-Doherty Earth Observatory, Columbia University, 61 Route 9W, Palisades, NY 10964 (United States); Gough, Laura; McLaren, Jennie R [Department of Biology, University of Texas at Arlington, Arlington, TX 76019 (United States); Greaves, Heather, E-mail: nboelman@ldeo.columbia.edu [Department of Forest Ecosystems and Society, Oregon State University, 321 Richardson Hall, Corvallis, OR 97331 (United States)

    2011-07-15

    This study explores relationships between the normalized difference vegetation index (NDVI) and structural characteristics associated with deciduous shrub dominance in arctic tundra. Our structural measures of shrub dominance are stature, branch abundance, aerial per cent woody stem cover (deciduous and evergreen species), and per cent deciduous shrub canopy cover. All measurements were taken across a suite of transects that together represent a gradient of deciduous shrub height. The transects include tussock tundra shrub and riparian shrub tundra communities located in the northern foothills of the Brooks Range, in northern Alaska. Plot-level NDVI measurements were made in 2010 during the snow-free period prior to deciduous shrub leaf-out (early June, NDVI{sub pre-leaf}), at the point in the growing season when canopy NDVI has reached half of its maximum growing season value (mid-June, NDVI{sub demi-leaf}) and during the period of maximum leaf-out (late July, NDVI{sub peak-leaf}). We found that: (1) NDVI{sub pre-leaf} is best suited to capturing variation in the per cent woody stem cover, maximum shrub height, and branch abundance, particularly between 10 and 50 cm height in the canopy; (2) NDVI{sub peak-leaf} is best suited to capturing variation in deciduous canopy cover; and (3) NDVI{sub demi-leaf} does not capture variability in any of our measures of shrub dominance. These findings suggest that in situ NDVI measurements made prior to deciduous canopy leaf-out could be used to identify small differences in maximum shrub height, woody stem cover, and branch abundance (particularly between 10 and 50 cm height in the canopy). Because shrubs are increasing in size and regional extent in several regions of the Arctic, investigation into spectrally based tools for monitoring these changes are worthwhile as they provide a first step towards development of remotely sensed techniques for quantifying associated changes in regional carbon cycling, albedo, radiative

  9. Variations in the Sensitivity of Shrub Growth to Climate Change along Arctic Environmental and Biotic Gradients

    Science.gov (United States)

    Beck, P. S. A.; Myers-Smith, I. H.; Elmendorf, S.; Georges, D.

    2015-12-01

    Despite evidence of rapid shrub expansion at many Arctic sites and the profound effects this has on ecosystem structure, biogeochemical cycling, and land-atmosphere feedbacks in the Arctic, the drivers of shrub growth remain poorly understood. The compilation of 41,576 annual shrub growth measurements made around the Arctic, allowed for the first systematic evaluation of the climate sensitivity of Arctic shrub growth, i.e. the strength of the relationship between annual shrub growth and monthly climate variables. The growth measurements were taken on 1821 plants of 25 species at 37 arctic and alpine sites, either as annual ring widths or as stem increments. We evaluated climate sensitivity of shrub growth for each genus-by-site combination in this data set based on the performance and parameters of linear mixed models that used CRU TS3.21 climate data as predictors of shrub growth between 1950 and 2010. 76% of genus-by-site combinations showed climate sensitive growth, but climate-growth relationships varied with soil moisture, species canopy height, and geographic position within the species ranges. Shrubs growing at sites with more soil moisture showed greater climate sensitivity, suggesting that water availability might limit shrub growth if continued warming isn't matched by a steady increase in soil moisture. Tall shrub species growing at their northern range limit were particularly climate sensitive causing climate sensitivity of shrubs to peak at the transition between Low and High Arctic, where carbon storage in permafrost is greatest. Local and regional studies have documented matching spatial and temporal patterns in dendrochronological measurements and satellite observations of vegetation indices both in boreal and Arctic regions. Yet the circumarctic comparison of patterns in dendrochronological and remote sensing data sets yielded poor levels of agreement. In much of the Arctic, steep environmental gradients generate fine spatial patterns of vegetation

  10. Linking snake habitat use to nest predation risk in grassland birds: the dangers of shrub cover.

    Science.gov (United States)

    Klug, Page E; Jackrel, Sara L; With, Kimberly A

    2010-03-01

    Extremes in rangeland management, varying from too-frequent fire and intensive grazing to the suppression of both, threaten rangeland ecosystems worldwide. Intensive fire and grazing denude and homogenize vegetation whereas their suppression increases woody cover. Although habitat loss is implicated in grassland bird declines, degradation through intensive management or neglect also decreases breeding habitat and may reduce nesting success through increased rates of nest predation. Snakes are important nest predators, but little is known about how habitat use in snakes relates to predation risk for grassland birds nesting within tallgrass prairie subjected to different grazing and fire frequencies. We evaluated nest survival in the context of habitat used by nesting songbirds and two bird-eating snakes, the eastern yellowbelly racer Coluber constrictor flaviventris and Great Plains ratsnake Pantherophis emoryi. Daily nest survival rates decreased with increasing shrub cover and decreasing vegetation height, which characterize grasslands that have been neglected or intensively managed, respectively. Discriminant function analysis revealed that snake habitats were characterized by higher shrub cover, whereas successful nests were more likely to occur in areas with tall grass and forbs but reduced shrub cover. Because snakes often use shrub habitat, birds nesting in areas with increased shrub cover may be at higher risk of nest predation by snakes in addition to other predators known to use shrub habitat (e.g., mid-sized carnivores and avian predators). Depredated nests also occurred outside the discriminant space of the snakes, indicating that other predators (e.g., ground squirrels Spermophilus spp. and bullsnakes Pituophis catenifer) may be important in areas with denuded cover. Targeted removal of shrubs may increase nest success by minimizing the activity of nest predators attracted to shrub cover.

  11. Scrub-shrub bird habitat associations at multiple spatial scales in beaver meadows in Massachusetts

    Science.gov (United States)

    Chandler, R.B.; King, D.I.; DeStefano, S.

    2009-01-01

    Most scrub-shrub bird species are declining in the northeastern United States, and these declines are largely attributed to regional declines in habitat availability. American Beaver (Castor canadensis; hereafter “beaver”) populations have been increasing in the Northeast in recent decades, and beavers create scrub-shrub habitat through their dam-building and foraging activities. Few systematic studies have been conducted on the value of beaver-modified habitats for scrub-shrub birds, and these data are important for understanding habitat selection of scrub-shrub birds as well as for assessing regional habitat availability for these species. We conducted surveys in 37 beaver meadows in a 2,800-km2 study area in western Massachusetts during 2005 and 2006 to determine the extent to which these beaver-modified habitats are used by scrub-shrub birds, as well as the characteristics of beaver meadows most closely related to bird use. We modeled bird abundance in relation to microhabitat-, patch-, and landscape-context variables while adjusting for survey-specific covariates affecting detectability using N-mixture models. We found that scrub-shrub birds of regional conservation concern occupied these sites and that birds responded differently to microhabitat, patch, and landscape characteristics of beaver meadows. Generally, scrub-shrub birds increased in abundance along a gradient of increasing vegetation complexity, and three species were positively related to patch size. We conclude that these habitats can potentially play an important role in regional conservation of scrub-shrub birds and recommend that conservation priority be given to larger beaver meadows with diverse vegetation structure and composition.

  12. Evaluation for breeding purposes of SO/sub 2/-induced damage to trees and shrubs

    Energy Technology Data Exchange (ETDEWEB)

    Bartkowiak, S; Bialobok, S; Rachwal, L

    1975-01-01

    Experiments were performed to determine the response of trees and shrubs to sulfur dioxide in the vicinity of industrial plants. Studies were carried out in the neighborhood of the factories as well as in exposure chambers in the laboratory. Species investigated were Larix liptolepis, Larix potaninii, Populus simonii, Forsythia intermedia, Ligustrum vulgare, Syringa amurensis and Syringa pekinensis. Injuries ranged from virually undamaged to severe, and there was considerable variation within each genus as well as between individual trees and shrubs.

  13. Interactions between Shrubs and Permafrost in the Torngat Mountains, Northern Labrador, Canada

    Science.gov (United States)

    Lewkowicz, A.; Way, R. G.; Hermanutz, L.; Trant, A.; Siegwart Collier, L.; Whitaker, D.

    2017-12-01

    Discontinuous permafrost is acutely sensitive to climate warming and vegetation dynamics. Shrub height is positively correlated with accumulation of snow in the tundra resulting in warming of the ground in winter, and greater shading and lower surface temperatures in summer. Rapid greening due to climate warming has been observed throughout northeastern Canada and particularly in the coastal mountainous terrain of the Torngat Mountains National Park. Our research examines how this shrubification in the Torngat Mountains is modifying permafrost characteristics using observations which extend over a 100 km south-north transect from the sporadic zone (Saglek, Torr Bay) to where permafrost is widespread (Nakvak Brook, Kangalaksiorvik Lake) and potentially continuous (Komaktorvik River). We use air and ground temperature monitoring, vegetation surveys, dendrochronology, frost probing and electrical resistivity tomography (ERT) to describe the complex interactions between shrub growth, geomorphology, climate and permafrost in a region where climate warming is rapidly altering the landscape. Preliminary analysis of field data shows low resistivity anomalies in the ERT profiles at some sites with thin permafrost, interpreted as unfrozen zones correlated with areas of tall shrubs (Alnus spp., Salix spp. and Betula glandulosa; ranging from prostrate to 2 m). Elsewhere, high resistivities extend to the base of the ERT profiles, indicating thicker permafrost, and no obvious impact of medium to low-prostrate shrubs (Salix spp., Betula glandulosa, Rhododendron spp., and Vaccinium spp.; up to 50 cm). Permafrost is interpreted to be present at most sites with low or prostrate shrubs, except where hydrological conditions favour warmer ground temperatures. We infer that the net impact of increasing shrub heights on the active layer and permafrost depends on antecedent ground temperatures and surficial geology. Increasing shrub heights may cause permafrost degradation at sites where

  14. Uniform shrub growth response to June temperature across the North Slope of Alaska

    Science.gov (United States)

    Ackerman, Daniel E.; Griffin, Daniel; Hobbie, Sarah E.; Popham, Kelly; Jones, Erin; Finlay, Jacques C.

    2018-04-01

    The expansion of woody shrubs in arctic tundra alters many aspects of high-latitude ecosystems, including carbon cycling and wildlife habitat. Dendroecology, the study of annual growth increments in woody plants, has shown promise in revealing how climate and environmental conditions interact with shrub growth to affect these key ecosystem properties. However, a predictive understanding of how shrub growth response to climate varies across the heterogeneous landscape remains elusive. Here we use individual-based mixed effects modeling to analyze 19 624 annual growth ring measurements in the stems of Salix pulchra (Cham.), a rapidly expanding deciduous shrub. Stem samples were collected at six sites throughout the North Slope of Alaska. Sites spanned four landscapes that varied in time since glaciation and hence in soil properties, such as nutrient availability, that we expected would modulate shrub growth response to climate. Ring growth was remarkably coherent among sites and responded positively to mean June temperature. The strength of this climate response varied slightly among glacial landscapes, but in contrast to expectations, this variability was not systematically correlated with landscape age. Additionally, shrubs at all sites exhibited diminishing marginal growth gains in response to increasing temperatures, indicative of alternative growth limiting mechanisms in particularly warm years, such as temperature-induced moisture limitation. Our results reveal a regionally-coherent and robust shrub growth response to early season growing temperature, with local soil properties contributing only a minor influence on shrub growth. Our conclusions strengthen predictions of changes to wildlife habitat and improve the representation of tundra vegetation dynamics in earth systems models in response to future arctic warming.

  15. Shrub encroachment alters sensitivity of soil respiration to temperature and moisture

    Science.gov (United States)

    Cable, Jessica M.; Barron-Gafford, Greg A.; Ogle, Kiona; Pavao-Zuckerman, Mitchell; Scott, Russell L.; Williams, David G.; Huxman, Travis E.

    2012-03-01

    A greater abundance of shrubs in semiarid grasslands affects the spatial patterns of soil temperature, moisture, and litter, resulting in fertile islands with potentially enhanced soil metabolic activity. The goal of this study was to quantify the microsite specificity of soil respiration in a semiarid riparian ecosystem experiencing shrub encroachment. We quantified the response of soil respiration to different microsite conditions created by big mesquite shrubs (near the trunk and the canopy edge), medium-sized mesquite, sacaton bunchgrasses, and open spaces. We hypothesized that soil respiration would be more temperature sensitive and less moisture sensitive and have a greater magnitude in shrub microsites compared with grass and open microsites. Field and incubation soil respiration data were simultaneously analyzed in a Bayesian framework to quantify the microsite-specific temperature and moisture sensitivities and magnitude of respiration. The analysis showed that shrub expansion increases the heterogeneity of respiration. Respiration has greater temperature sensitivity near the shrub canopy edge, and respiration rates are higher overall under big mesquite compared with those of the other microsites. Respiration in the microsites beneath medium-sized mesquites does not behave like a downscaled version of big mesquite microsites. The grass microsites show more similarity to big mesquite microsites than medium-sized shrubs. This study shows there can be a great deal of fine-scale spatial heterogeneity that accompanies shifts in vegetation structure. Such complexity presents a challenge in scaling soil respiration fluxes to the landscape for systems experiencing shrub encroachment, but quantifying this complexity is significantly important in determining overall ecosystem metabolic behavior.

  16. Age distributions of Greenlandic dwarf shrubs support concept of negligible actuarial senescence

    Czech Academy of Sciences Publication Activity Database

    Dahlgren, J. P.; Rizzi, S.; Schweingruber, F. H.; Hellmann, L.; Büntgen, Ulf

    2016-01-01

    Roč. 7, č. 10 (2016), č. článku e01521. ISSN 2150-8925 R&D Projects: GA MŠk(CZ) EE2.3.20.0248 Institutional support: RVO:67179843 Keywords : actuarial senescence * age distribution * age structure * Arctic dwarf shrubs * dendroecology * individual survival * mortality * penalized composite link model * plant aging * shrub demography Subject RIV: EH - Ecology, Behaviour Impact factor: 2.490, year: 2016

  17. Geology and geochemistry of the Atacama Desert.

    Science.gov (United States)

    Tapia, J; González, R; Townley, B; Oliveros, V; Álvarez, F; Aguilar, G; Menzies, A; Calderón, M

    2018-02-14

    The Atacama Desert, the driest of its kind on Earth, hosts a number of unique geological and geochemical features that make it unlike any other environment on the planet. Considering its location on the western border of South America, between 17 and 28 °S, its climate has been characterized as arid to hyperarid for at least the past 10 million years. Notably dry climatic conditions of the Atacama Desert have been related to uplift of the Andes and are believed to have played an important role in the development of the most distinctive features of this desert, including: (i) nitrates and iodine deposits in the Central Depression, (ii) secondary enrichment in porphyry copper deposits in the Precordillera, (iii) Li enrichment in salt flats of the Altiplano, and (iv) life in extreme habitats. The geology and physiography of the Atacama Desert have been largely shaped by the convergent margin present since the Mesozoic era. The geochemistry of surface materials is related to rock geochemistry (Co, Cr, Fe, Mn, V, and Zn), salt flats, and evaporite compositions in endorheic basins (As, B, and Li), in addition to anthropogenic activities (Cu, Mo, and Pb). The composition of surface water is highly variable, nonetheless in general it presents a circumneutral pH with higher conductivity and total dissolved solids in brines. Major water constituents, with the exception of HCO 3 - , are generally related to the increase of salinity, and despite the fact that trace elements are not well-documented, surface waters of the Atacama Desert are enriched in As, B, and Li when compared to the average respective concentrations in rivers worldwide.

  18. Mediterranean shrub diversity and its effect on food intake in goats

    Directory of Open Access Journals (Sweden)

    Tomislav Šarić

    2014-07-01

    Full Text Available Mediterranean ecosystem offers a variety of shrubs that were over long periods of time involved in the evolution of complex plant-animal interactions. Biochemical components of these plants enter different metabolic pathways after digestion and absorption, resulting in development of dietary preferences in browsing animals. Herbivores in general were found to perform better when grazing in a mixed plant community composed of diverse species, and show preferential feeding behaviours for mixed vs single species diet. Our findings demonstrate an asymptotic relationship among Mediterranean shrubs species diversity and their voluntary intake by goats. Shrub biomass intake showed linear increase when number of different shrubs in diet increased from one to three. However, goats did not further increase intake when the number of shrub species increased from four to eight. As the number of shrub species offered increased, goats exhibited more preferential feeding behaviour for Quercus pubescens, Fraxinus ornus, Rubus heteromorphus and Arbutus unedo and decreased the intake of Hedera helix, Juniperus oxycedrus and Helichrysum italicum. This asymptotic relationship indicates that the maintenance of plant species richness in Mediterranean shrublands can overall benefit domestic goat farming, goat’s productive performance, and the conservation of plant biodiversity.

  19. Integration of vessel traits, wood density, and height in angiosperm shrubs and trees.

    Science.gov (United States)

    Martínez-Cabrera, Hugo I; Schenk, H Jochen; Cevallos-Ferriz, Sergio R S; Jones, Cynthia S

    2011-05-01

    Trees and shrubs tend to occupy different niches within and across ecosystems; therefore, traits related to their resource use and life history are expected to differ. Here we analyzed how growth form is related to variation in integration among vessel traits, wood density, and height. We also considered the ecological and evolutionary consequences of such differences. In a sample of 200 woody plant species (65 shrubs and 135 trees) from Argentina, Mexico, and the United States, standardized major axis (SMA) regression, correlation analyses, and ANOVA were used to determine whether relationships among traits differed between growth forms. The influence of phylogenetic relationships was examined with a phylogenetic ANOVA and phylogenetically independent contrasts (PICs). A principal component analysis was conducted to determine whether trees and shrubs occupy different portions of multivariate trait space. Wood density did not differ between shrubs and trees, but there were significant differences in vessel diameter, vessel density, theoretical conductivity, and as expected, height. In addition, relationships between vessel traits and wood density differed between growth forms. Trees showed coordination among vessel traits, wood density, and height, but in shrubs, wood density and vessel traits were independent. These results hold when phylogenetic relationships were considered. In the multivariate analyses, these differences translated as significantly different positions in multivariate trait space occupied by shrubs and trees. Differences in trait integration between growth forms suggest that evolution of growth form in some lineages might be associated with the degree of trait interrelation.

  20. Biodiversity of Myxomycetes from the Monte Desert of Argentina

    Directory of Open Access Journals (Sweden)

    Lado, C.

    2011-06-01

    Full Text Available A biodiversity survey for myxomycetes was carried out in the Monte Desert (Argentina and surrounding areas in November 2006 and late February and March 2007. Specimens were collected in seven different provinces (Catamarca, Jujuy, La Rioja, Salta, San Juan, San Luis and Tucumán, between 23º and 33º S latitude, and a total of 105 localities were sampled. Cacti and succulent plants were the most common type of substrate investigated, but shrubs and herbs characteristic of this biome were also included in the survey. Almost six hundred specimens of myxomycetes from 72 different species in 22 genera were collected either in the field, or from moist chamber cultures prepared with samples of plant material obtained from the same collecting sites. The results include 1 species new to science, Macbrideola andina three more species recently described based on material from this survey, 5 species cited for the first time for the Neotropics, 11 new records for South America and 38 new records for Argentina. Taxonomic comments on rare or unusual species are included and illustrated with photographs by LM and SEM. Data are presented on the development of some species and microenvironmental factors are discussed. An analysis of the biodiversity of myxomycetes in this area, and a comparison with other desert areas, are included.

    Con el objetivo de estudiar la biodiversidad de Myxomycetes en el Desierto de Monte (Argentina y áreas circundantes, se realizó un muestreo en los meses de noviembre de 2006 y febrero y marzo de 2007. Se recolectaron especímenes en un total de 105 localidades pertenecientes a siete provincias (Catamarca, Jujuy, La Rioja, Salta, San Juan, San Luis y Tucumán, situadas entre los paralelos 23º y 33º de latitud sur. Los cactus y plantas suculentas fueron los tipos de sustratos más estudiados, pero también se analizaron arbustos y plantas herbáceas características de este bioma. Casi 600 especímenes de mixomicetes

  1. One hundred and six years of population and community dynamics of Sonoran Desert Laboratory perennials

    Science.gov (United States)

    Rodriguez-Buritica, Susana; Raichle, Helen; Webb, Robert H.; Turner, Raymond M.; Venable, Larry

    2013-01-01

    This data set constitutes all information associated with the Spalding-Shreve permanent vegetation plots from 1906 through 2012, which is the longest-running plant monitoring program in the world. The program consists of detailed maps of all Sonoran Desert perennial plants in 30 permanent plots located on Tumamoc Hill, near Tucson, Arizona, USA. Most of these plots are 10 m × 10 m quadrats that were established by Volney Spalding and Forrest Shreve between 1906 and 1928. Analyses derived from these data have been pivotal in testing early theories on plant community succession, plant life history traits, plant longevity, and population dynamics. One of the major contributions of this data set is the species-specific demographic traits that derived from estimating individual plant trajectories for more than 106 years. Further use of these data might shed light on spatially explicit population and community dynamics, as well as long-term changes attributable to global change. Data presented here consist of digital versions of original maps created between 1906 and 1984 and digital data from recent censuses between 1993 and 2012. Attributes associated with these maps include location and coverage of all shrubs, and in some cases, plant height. In addition, we present plot-specific summaries of plant cover and density for each census year and all other information collected, including seedling counts, grass coverage, and annual species enumerations. We reference the repeat photography of these plots, which began in 1906; these images are stored at the Desert Laboratory Collection of Repeat Photography in Tucson. Initial data collection consisted of grid-mapping the plots manually on graph paper; starting in 1993, Total Stations (which allow a direct digitalization, and more accurate mapping) were used to survey root crowns and canopies.

  2. Analysis of Seasonal and Annual Change of Vegetation in the Indian Thar Desert Using Modis Data

    Science.gov (United States)

    Santra, P.; Chkraborty, A.

    2011-09-01

    The western part of India, specifically the dry region, will play an important role in determining the Indian monsoon and even global climate patterns. Drastically change in land use pattern of the region has been observed during last few decades. In this paper, an effort was made to track the seasonal as well as annual changes of vegetation pattern in Jaisalmer district using MODIS normalized difference vegetation index (NDVI) products. Apart from this, ground data on vegetation were also collected under vegetation carbon pool assessment programme of ISRO-IGBP. It was found that during the hot summer month of May, the area under NDVI class 0-0.1 is reduced from 98% during 2003 to 95% during 2009 with a simultaneous increase in area under NDVI class 0.1-0.2 from 2 to 5%. During the month of September, area under NDVI class 0.2-0.3 increased from almost negligible during May to 34-39% during normal or surplus rainfall year but only to 3% during a deficit year. From the ground data on vegetation biomass, it was found that Prosopis juliflora and Acacia senegal are the most abundant trees in Jaisalmer region of the desert. The sites with NDVI value ≥ 0.2 were mostly found with Prosopis juliflora tree. Among shrubs, the most abundant species was Calotropis procera and Zizyphus numularia. From this study, it has been found that MODIS NDVI products may be used to quickly assess the vegetation changes in response to rainfall as well as due to anthroprogenic interventions in desert.

  3. Phenological observations on shrubs to predict weed emergence in turf

    Science.gov (United States)

    Masin, Roberta; Zuin, Maria Clara; Zanin, Giuseppe

    2005-09-01

    Phenology is the study of periodic biological events. If we can find easily recognizable events in common plants that precede or coincide with weed emergences, these plants could be used as indicators. Weed seedlings are usually difficult to detect in turf, so the use of phenological indicators may provide an alternative approach to predict the time when a weed appears and consequently guide management decisions. A study was undertaken to determine whether the phenological phases of some plants could serve as reliable indicators of time of weed emergence in turf. The phenology of six shrubs (Crataegus monogyna Jacq., Forsythia viridissima Lindl., Sambucus nigra L., Syringa vulgaris L., Rosa multiflora Thunb., Ziziphus jujuba Miller) and a perennial herbaceous plant [Cynodon dactylon (L.) Pers.] was observed and the emergence dynamics of four annual weed species [Digitaria sanguinalis (L.) Scop., Eleusine indica (L.) Gaertner, Setaria glauca (L.) Beauv., Setaria viridis (L.) Beauv.] were studied from 1999 to 2004 in northern Italy. A correlation between certain events and weed emergence was verified. S. vulgaris and F. viridissima appear to be the best indicators: there is a quite close correspondence between the appearance of D. sanguinalis and lilac flowering and between the beginning of emergence of E. indica and the end of lilac flowering; emergences of S. glauca and S. viridis were predicted well in relation to the end of forsythia flowering. Base temperatures and starting dates required to calculate the heat unit sums to reach and complete the flowering phase of the indicators were calculated using two different methods and the resultant cumulative growing degree days were compared.

  4. Understanding the erosion of semi-arid landscapes subject to vegetation change: a combined approach using monitoring, isotope and {sup 1}4c analysis

    Energy Technology Data Exchange (ETDEWEB)

    Brazier, R. E.; Turbull, L.; Bol, R.; Dixon, L.; Wainwright, J.

    2009-07-01

    The degradation of grasslands is a common problem across semi-arid areas worldwide.over the last 150 years much of the south-Western USA has experienced significant land degradation, with desert grasslands becoming dominated by shrubs and concurrent changes in runoff and erosion which are thought to propagate further the process of degradation. Field-based experiments were carried out to determine how runoff and erosion vary at stages over a transition from a black grama (Bouteloua eriopoda) grassland to creosote bush (Larrea tridentata) shrub land at the Sevilleta NWR LTER site in New Mexico. {delta}{sup 1}3 C and {delta}{sup 1}5 N analyses were carried out to investigate the age and potential provenance of eroded sediment. (Author) 4 refs.

  5. Understanding the erosion of semi-arid landscapes subject to vegetation change: a combined approach using monitoring, isotope and 14c analysis

    International Nuclear Information System (INIS)

    Brazier, R. E.; Turbull, L.; Bol, R.; Dixon, L.; Wainwright, J.

    2009-01-01

    The degradation of grasslands is a common problem across semi-arid areas worldwide.over the last 150 years much of the south-Western USA has experienced significant land degradation, with desert grasslands becoming dominated by shrubs and concurrent changes in runoff and erosion which are thought to propagate further the process of degradation. Field-based experiments were carried out to determine how runoff and erosion vary at stages over a transition from a black grama (Bouteloua eriopoda) grassland to creosote bush (Larrea tridentata) shrub land at the Sevilleta NWR LTER site in New Mexico. δ 1 3 C and δ 1 5 N analyses were carried out to investigate the age and potential provenance of eroded sediment. (Author) 4 refs.

  6. Ground biomass assessment of shrub species in tehsil takht-e-nasrati, pakistan

    International Nuclear Information System (INIS)

    Khan, M.; Hussain, F.; Musharaf, S.; Musharaf, S.

    2014-01-01

    The shrub biomass of different species of Tehsil Takht-e-Nasrati was different at different altitude. In the present study it was found that the average shrub biomass was decreasing with increasing altitude. Result confirms that the biomass of Saccharum bengalense was high 5020.38 Kg.hec/sup -1/ in phase 1 and phase 2 (4331.58 Kg.hec/sup -1/). The highest ground biomass 1125.1 Kg.hec/sup -1/ of Zizyphus nummularia was found in Phase 3. Furthermore in Phase 4 the biomass of Capparis deciduas was high 437.79 Kg.hec/sup -1/. Along with shrubs average biomass of Saccharum bengalense was high 2665.12 Kg.hec/sup -1/ and low 13.47 Kg.hec/sup -1/ of Cassia angustifolia. With seasons the biomass of Saccharum bengalense (13800 Kg.hec/sup -1/) was greater during winter at Phase 1 and Periploc aaphylla (12.35 Kg.hec-1) biomass was lowers during spring at Phase 4. In comparison in season the biomass was high in winter due to the dormant stage of shrubs in phase 1 while it was low in summer in phase 4. In winter the grazing process was stop due to agriculture point of view while in hilly area the grazing was high and the low percentage of rain fall consequently the biomass was high in plain area as contrast to hilly area. The biomass of shrubs is high in winter while it was low in summer as the grazing and palatability rate was high in summer as well as low in winter. The assessment of shrub biomass in research area is a requirement for successful management at the same time as it gives a complete documentation for the area in complexity and work out unpredictable resources to help imagine shrubs potency and behavior. (author)

  7. Desert wetlands in the geologic record

    Science.gov (United States)

    Pigati, Jeff S.; Rech, Jason A.; Quade, Jay; Bright, Jordon; Edwards, L.; Springer, A.

    2014-01-01

    Desert wetlands support flora and fauna in a variety of hydrologic settings, including seeps, springs, marshes, wet meadows, ponds, and spring pools. Over time, eolian, alluvial, and fluvial sediments become trapped in these settings by a combination of wet ground conditions and dense plant cover. The result is a unique combination of clastic sediments, chemical precipitates, and organic matter that is preserved in the geologic record as ground-water discharge (GWD) deposits. GWD deposits contain information on the timing and magnitude of past changes in water-table levels and, therefore, are a potential source of paleohydrologic and paleoclimatic information. In addition, they can be important archeological and paleontological archives because desert wetlands provide reliable sources of fresh water, and thus act as focal points for human and faunal activities, in some of the world's harshest and driest lands. Here, we review some of the physical, sedimentological, and geochemical characteristics common to GWD deposits, and provide a contextual framework that researchers can use to identify and interpret geologic deposits associated with desert wetlands. We discuss several lines of evidence used to differentiate GWD deposits from lake deposits (they are commonly confused), and examine how various types of microbiota and depositional facies aid in reconstructing past environmental and hydrologic conditions. We also review how late Quaternary GWD deposits are dated, as well as methods used to investigate desert wetlands deeper in geologic time. We end by evaluating the strengths and limitations of hydrologic and climatic records derived from GWD deposits, and suggest several avenues of potential future research to further develop and utilize these unique and complex systems.

  8. Biology of the Central Desert of Oman

    OpenAIRE

    GHAZANFAR, Shahina A

    2004-01-01

    A biological survey of the central desert of Oman was done using long distance transects. Vegetation was sparse and consisted of 200+ plant species, 22 species of mammals, 17 species of reptiles and amphibians, and more than 50 species of birds (migratory and resident). Three main vegetation types were identified based on ground substrate and the dominance of species. These were communities with Acacia Willd., Zygophyllum L., and open woodlands of Prosopis cineraria (L.) Druce. Over-grazing a...

  9. Joint by Design: The Western Desert Campaign

    Science.gov (United States)

    2015-05-21

    Introduction Seated in a dusty tent, finally cooling in the Egyptian night, the “Desert Fox” had a serious problem. German Lieutenant General Erwin...Complexity: A Platform for Designing Business Architecture , 2nd ed. (Amsterdam: Elsevier, 2006), 30-32. 65 Lewin, Montgomery, 121. 29 Allies...Benghazi and Tobruk, and the Egyptian port of Matruh were operating at 60 percent of their potential capacity. By the end of August, the Axis loss rate of

  10. Extrafloral nectar fuels ant life in deserts

    OpenAIRE

    Aranda-Rickert, Adriana; Diez, Patricia; Marazzi, Brigitte

    2014-01-01

    Interactions mediated by extrafloral nectary (EFN)-bearing plants that reward ants with a sweet liquid secretion are well documented in temperate and tropical habitats. However, their distribution and abundance in deserts are poorly known. In this study, we test the predictions that biotic interactions between EFN plants and ants are abundant and common also in arid communities and that EFNs are only functional when new vegetative and reproductive structures are developing. In a seasonal dese...

  11. Liquid Water Restricts Habitability in Extreme Deserts

    Science.gov (United States)

    Cockell, Charles S.; Brown, Sarah; Landenmark, Hanna; Samuels, Toby; Siddall, Rebecca; Wadsworth, Jennifer

    2017-04-01

    Liquid water is a requirement for biochemistry, yet under some circumstances it is deleterious to life. Here, we show that liquid water reduces the upper temperature survival limit for two extremophilic photosynthetic microorganisms (Gloeocapsa and Chroococcidiopsis spp.) by greater than 40°C under hydrated conditions compared to desiccated conditions. Under hydrated conditions, thermal stress causes protein inactivation as shown by the fluorescein diacetate assay. The presence of water was also found to enhance the deleterious effects of freeze-thaw in Chroococcidiopsis sp. In the presence of water, short-wavelength UV radiation more effectively kills Gloeocapsa sp. colonies, which we hypothesize is caused by factors including the greater penetration of UV radiation into hydrated colonies compared to desiccated colonies. The data predict that deserts where maximum thermal stress or irradiation occurs in conjunction with the presence of liquid water may be less habitable to some organisms than more extreme arid deserts where organisms can dehydrate prior to being exposed to these extremes, thus minimizing thermal and radiation damage. Life in extreme deserts is poised between the deleterious effects of the presence and the lack of liquid water.

  12. The Palm Desert renewable [hydrogen] transportation system

    Energy Technology Data Exchange (ETDEWEB)

    Chamberlin, C.E.; Lehman, P. [Humboldt State Univ., Arcata, CA (United States). Schatz Energy Research Center

    1998-08-01

    This paper describes the Schatz Energy Research Center (SERC) progress on the Palm Desert Renewable Hydrogen Transportation System Project for the period June 1997 through May 1998. The project began in March 1996. The goal of the Palm Desert Project is to develop a clean and sustainable transportation system for a community. The project demonstrates the practical utility of hydrogen as a transportation fuel and the proton exchange membrane (PEM) fuel cell as a vehicle power system. The project includes designing and building 4 fuel cell powered vehicles, a solar hydrogen generating and refueling station, and a fuel cell vehicle diagnostic center. Over this last year, SERC has built a fuel cell powered neighborhood electric vehicle and delivered it to the City of Palm Desert. The design of the hydrogen refueling station is near completion and it is anticipated that construction will be complete in the fall of 1998. The vehicles are currently being refueled at a temporary refueling station. The diagnostic center is being designed and maintenance procedures as well as computer diagnostic programs for the fuel cell vehicles are being developed. City employees are driving the vehicles daily and monitoring data are being collected. The drivers are pleased with the performance of the vehicles.

  13. CAMEL REARING IN CHOLISTAN DESERT OF PAKISTAN

    Directory of Open Access Journals (Sweden)

    I. ALI, M. SHAFIQ CHAUDHRY1 AND U. FAROOQ

    2009-05-01

    Full Text Available The camel is one of the typical and the best adopted animals of the desert, capable of enduring thirst and hunger for days and is the most patient of land animals. For desert nomads of Pakistani Cholistan, it is a beloved companion, a source of milk and meat, transport facility provider and a racing/dancing animal, thus, playing an important role in the socioeconomic uplift of the local community. Camels of Marrecha or Mahra breed are mainly used for riding and load carrying but may be trained for dancing or racing. Berella is another heavy and milch breed of camel famous for milk production and can produce upto 10-15 liters of milk per day. This breed is also suitable for draught purpose, though comparatively slow due to heavy body. The present paper also describes the traditional camel rearing system used by nomads of Cholistan desert. Some aspects of camel health, production, feeding, socio-economic values, marketing and some constraints and suggestions are also given so that the policy makers may consider them for the welfare of this animal.

  14. Effect of supplementation with barley and calcium hydroxide on intake of Mediterranean shrubs

    Directory of Open Access Journals (Sweden)

    Dragan Skobic

    2011-04-01

    Full Text Available Maquis plant communities are one of the most varied vegetation types in the Mediterranean region and an important habitat for wild and domestic herbivores. Although the majority of these shrubs are nutritious, the secondary compounds are main impediments that reduce their forage value. In five experiments we determined the effect of supplementing goats with calcium hydroxide plus barley, and barley alone on intake of five dominant shrubs (Quercus ilex, Erica multiflora, Arbutus unedo, Viburnum tinus and Pistacia lentiscus of the Mediterranean maquis community. The combination of calcium hydroxide plus barley and barley alone increased utilization of all five investigated Mediterranean shrubs; therewith that intake of Arbutus unedo and Viburnum tinus was not statistically significant. Supplemented goats with calcium hydroxide plus barley or barley alone could be effective in controlling secondary compounds-rich Mediterranean shrubs where their abundance threatens biodiversity. This control can be facilitated by browsing dominant Mediterranean shrubs, which has been shown to be effective in managing Mediterranean maquis density. Calcium hydroxide and barley (energy enhance use of secondary compounds-containing plants, which may increase production of alternate forages and create a more diverse mix of plant species in the Mediterranean maquis plant community.

  15. Electrostatic Interactions between Elongated Monomers Drive Filamentation of Drosophila Shrub, a Metazoan ESCRT-III Protein

    Directory of Open Access Journals (Sweden)

    Brian J. McMillan

    2016-08-01

    Full Text Available The endosomal sorting complex required for transport (ESCRT is a conserved protein complex that facilitates budding and fission of membranes. It executes a key step in many cellular events, including cytokinesis and multi-vesicular body formation. The ESCRT-III protein Shrub in flies, or its homologs in yeast (Snf7 or humans (CHMP4B, is a critical polymerizing component of ESCRT-III needed to effect membrane fission. We report the structural basis for polymerization of Shrub and define a minimal region required for filament formation. The X-ray structure of the Shrub core shows that individual monomers in the lattice interact in a staggered arrangement using complementary electrostatic surfaces. Mutations that disrupt interface salt bridges interfere with Shrub polymerization and function. Despite substantial sequence divergence and differences in packing interactions, the arrangement of Shrub subunits in the polymer resembles that of Snf7 and other family homologs, suggesting that this intermolecular packing mechanism is shared among ESCRT-III proteins.

  16. [Effects of target tree tending on community structure and diversity in subtropical natural secondary shrubs].

    Science.gov (United States)

    Zhang, Hui; Zhou, Guo Mo; Bai, Shang Bin; Wang, Yi Xiang; You, Yu Jie; Zhu, Ting Ting; Zhang, Hua Feng

    2017-05-18

    The typical natural secondary shrub community was chosen in Lin'an of Zhejiang Pro-vince to discover its possibility of restoration to arbor forest with three kinds of forest management models being taken, i.e., no care as control, closed forest management and target tree tending. Over four years growth, compared with control, closed forest management significantly increased average DBH and height by 130% and 50%, respectively, while 260% and 110% for target tree tending. In target tree tending plots, larger trees had been emerging with 4.5-8.5 cm diameter class and 4.5-8.5 m height class and formed a new storey of 4 m compared with control. The species biodiversity indexes at shrub layer were significantly increased in closed management plots, and did not decrease in target tree tending plots. Closed forest management did not change the tree species composition, following its previous succession direction. However, target tree tending increased the importance value of target species with the high potential succession direction of mixed coniferous-broadleaved forest. The results revealed that the secondary shrub community with target tree tending achieved more desired goals on DBH and height growth of dominant trees and species composition improvement compared with closed management. If the secondary shrub community could be managed when the operational conditions existed, target tree tending model should be selected to accelerate the restoration of shrub toward arbor forest.

  17. 77 FR 65133 - Revisions to the California State Implementation Plan, Mojave Desert Air Quality Management District

    Science.gov (United States)

    2012-10-25

    ... the California State Implementation Plan, Mojave Desert Air Quality Management District AGENCY... limited disapproval of revisions to the Mojave Desert Air Quality Management District (MDAQMD) portion of.... * * * * * (c) * * * (379) * * * (i) * * * (E) Mojave Desert Air Quality Management District. (1) Rule 1159...

  18. Nationwide desert highway assessment: a case study in China.

    Science.gov (United States)

    Mao, Xuesong; Wang, Fuchun; Wang, Binggang

    2011-07-01

    The natural environment affects the construction of desert highways. Conversely, highway construction affects the natural environment and puts the ecological environment at a disadvantage. To satisfy the variety and hierarchy of desert highway construction and discover the spatio-temporal distribution of the natural environment and its effect on highway construction engineering, an assessment of the natural regional divisions of desert highways in China is carried out for the first time. Based on the general principles and method for the natural region division, the principles, method and index system for desert highway assessment is put forward by combining the desert highway construction features and the azonal differentiation law. The index system combines the dominant indicator and four auxiliary indicators. The dominant indicator is defined by the desert's comprehensive state index and the auxiliary indicators include the sand dune height, the blown sand strength, the vegetation coverage ratio and the annual average temperature difference. First the region is divided according to the dominant indicator. Then the region boundaries are amended according to the four auxiliary indicators. Finally the natural region division map for desert highway assessment is presented. The Chinese desert highways can be divided into three sections: the east medium effect region, the middle medium-severe effect region, and the west slight-medium effect region. The natural region division map effectively paves the way for the route planning, design, construction, maintenance and ongoing management of desert highways, and further helps environmental protection.

  19. The provenance of Taklamakan desert sand

    Science.gov (United States)

    Rittner, Martin; Vermeesch, Pieter; Carter, Andrew; Bird, Anna; Stevens, Thomas; Garzanti, Eduardo; Andò, Sergio; Vezzoli, Giovanni; Dutt, Ripul; Xu, Zhiwei; Lu, Huayu

    2016-03-01

    Sand migration in the vast Taklamakan desert within the Tarim Basin (Xinjiang Uyghur Autonomous region, PR China) is governed by two competing transport agents: wind and water, which work in diametrically opposed directions. Net aeolian transport is from northeast to south, while fluvial transport occurs from the south to the north and then west to east at the northern rim, due to a gradual northward slope of the underlying topography. We here present the first comprehensive provenance study of Taklamakan desert sand with the aim to characterise the interplay of these two transport mechanisms and their roles in the formation of the sand sea, and to consider the potential of the Tarim Basin as a contributing source to the Chinese Loess Plateau (CLP). Our dataset comprises 39 aeolian and fluvial samples, which were characterised by detrital-zircon U-Pb geochronology, heavy-mineral, and bulk-petrography analyses. Although the inter-sample differences of all three datasets are subtle, a multivariate statistical analysis using multidimensional scaling (MDS) clearly shows that Tarim desert sand is most similar in composition to rivers draining the Kunlun Shan (south) and the Pamirs (west), and is distinctly different from sediment sources in the Tian Shan (north). A small set of samples from the Junggar Basin (north of the Tian Shan) yields different detrital compositions and age spectra than anywhere in the Tarim Basin, indicating that aeolian sediment exchange between the two basins is minimal. Although river transport dominates delivery of sand into the Tarim Basin, wind remobilises and reworks the sediment in the central sand sea. Characteristic signatures of main rivers can be traced from entrance into the basin to the terminus of the Tarim River, and those crossing the desert from the south to north can seasonally bypass sediment through the sand sea. Smaller ephemeral rivers from the Kunlun Shan end in the desert and discharge their sediment there. Both river run

  20. The Use of Water During the Crew 144, Mars Desert Research Station, Utah Desert

    Science.gov (United States)

    De Morais Mendonca Teles, Antonio

    2016-07-01

    Well. from November 29th to December 14th, 2014, the author conducted astrobiological and geological surveys, as analog astronaut member of the international Crew 144, at the site of the Mars Society's Mars Desert Research Station, located at a remote location in the Utah desert, United States. The use of water for drinking, bathing, cleaning, etc., in the crew was a major issue for consideration for a human expedition to the planet Mars in the future. The author would like to tell about the factors of the rationalized use of water.

  1. Cost estimates for Operation Desert Shield/Desert Storm: a budgetary analysis

    OpenAIRE

    Johnson, J. Andrew.

    1991-01-01

    Operation Desert Shield/Desert Storm (DS/DS) presented unique challenges for estimating the cost of that conflict. This analysis reviews the cost estimates and methodologies developed for that purpose by DoD, CBO and GAO. It considers the budget climate and the role of foreign cash and in-kind contributions. Finally, it reviews the budgeting innovations used to provide and monitor DS/DS defense spending. At the outset of the crisis, costs were estimated to determine the defense funding requir...

  2. Evaluation of shrub and tree species used for revegetating copper mine wastes in the south-western United States. [Dodonea viscosa (L. ) Jacq. , Baccharis sarothroides Gray, Cerdicium microphyllum Torr. , and Nicotiana glauca Grah

    Energy Technology Data Exchange (ETDEWEB)

    Norem, M A; Day, A D; Ludeke, K L

    1982-12-01

    The revegetation work begun in 1970 at Cyprus Pima Mine, an open pit copper mine south-west of Tucson, Arizona, was evaluated to determine the effects of slope aspect and mining waste material on plant survival and growth. Only one shrub, Dodonea viscosa (L.) Jacq. (hopbush), survived on the east slope. Baccharis sarothroides Gray (desert broom) was prolific on the north aspect. Cerdicium microphyllum Torr. (palo verde) survived best on the east slope and Nicotiana glauca Grah. (desert tobacco) survived only on the north slope. The survival of the other tree species was not affected by slope aspect. Slope exposure did not affect tree size, except for Eucalyptus microtheca Muell. (tiny capsule eucalyptus) which grew larger on the north slope. E. rostrata Schlechtend (red gum eucalyptus) grew taller in overburden than in tailing on the east slope. Differences in soil material within each slope exposure did not significantly affect growth of the other tree species. In semi-arid regions, such as south-western Arizona, even slight differences in available moisture may determine the survival of a plant species in the area. (Refs. 11).

  3. Are Wildlife Detector Dogs or People Better at Finding Desert Tortoises (Gopherus Agassizii)?

    National Research Council Canada - National Science Library

    Nussear, Kenneth E; Esque, Todd C; Heaton, Jill S; Cablk, Mary E; Drake, Kristina K; Valentin, Cindee; Yee, Julie L; Medica, Philip A

    2008-01-01

    .... Recent studies highlight the effectiveness of trained detector dogs to locate wildlife during field surveys, including Desert Tortoises in a semi-natural setting. Desert Tortoises (Gopherus agassizii...

  4. Role of nurse shrubs for restoration planting of two conifers in southeast of Mu Us Sandland, China.

    Science.gov (United States)

    Tian, Li; Wang, Xiaoan

    2015-01-01

    Two-year-old pine seedlings, Pinus tabulaeformis and Pinus sylvestris were planted under the canopies of three shrub species and in open areas to test for facilitation during seedling establishment in southeast of Mu Us Sandland in northern part of Shaanxi, China. Pine seedlings establishment were assessed three times within three consecutive growing seasons. Height, area and volume of shrubs were measured. Microclimate conditions (light intensity, air temperature and soil temperature and moisture) were recorded in four microhabitats. Near surface light intensity, air temperature and soil temperature were lower under shrubs, which led to higher soil moisture and pine seedlings under the canopy of shrub species. Pine seedlings survival was remarkably higher when planted under the canopy of shrub species (65.7% for P. tabulaeformis and 60.6% for P. sylvestris) as compared with open areas (22.4% for P. tabulaeformis and 38% for P. sylvestris). P. tabulaeformis with shade-tolerance trait expressed high survival of seedlings as compared to that of P. sylvestris seedlings under the canopy of shrub species (Tukey test, P shrub (Caragana korshinskii and Amorpha fruticosa) showed continuously facilitation during moderate drought stress (summer 2012, 2013 and 2014), but dense and small shrub (Caragana korshinskii) reduced the establishment of seedlings possibly for light competition. Salix cheilophila showed a facilitation effect in growing seasons, but the effect of allelopathy led to high mortality of seedlings under their canopy. in addition, two pine growths were not inhibited when planted under three shrubs. In conclusions, nurse-shrub facilitation can be used as an effective restoration strategy in this sandland. However, use of shrubs as nurse plants depends on their canopy structure and ecological impacts; the selection of target species depends on their shade tolerance traits.

  5. Shrub type dominates the vertical distribution of leaf C : N : P stoichiometry across an extensive altitudinal gradient

    Science.gov (United States)

    Zhao, Wenqiang; Reich, Peter B.; Yu, Qiannan; Zhao, Ning; Yin, Chunying; Zhao, Chunzhang; Li, Dandan; Hu, Jun; Li, Ting; Yin, Huajun; Liu, Qing

    2018-04-01

    Understanding leaf stoichiometric patterns is crucial for improving predictions of plant responses to environmental changes. Leaf stoichiometry of terrestrial ecosystems has been widely investigated along latitudinal and longitudinal gradients. However, very little is known about the vertical distribution of leaf C : N : P and the relative effects of environmental parameters, especially for shrubs. Here, we analyzed the shrub leaf C, N and P patterns in 125 mountainous sites over an extensive altitudinal gradient (523-4685 m) on the Tibetan Plateau. Results showed that the shrub leaf C and C : N were 7.3-47.5 % higher than those of other regional and global flora, whereas the leaf N and N : P were 10.2-75.8 % lower. Leaf C increased with rising altitude and decreasing temperature, supporting the physiological acclimation mechanism that high leaf C (e.g., alpine or evergreen shrub) could balance the cell osmotic pressure and resist freezing. The largest leaf N and high leaf P occurred in valley region (altitude 1500 m), likely due to the large nutrient leaching from higher elevations, faster litter decomposition and nutrient resorption ability of deciduous broadleaf shrub. Leaf N : P ratio further indicated increasing N limitation at higher altitudes. Interestingly, drought severity was the only climatic factor positively correlated with leaf N and P, which was more appropriate for evaluating the impact of water status than precipitation. Among the shrub ecosystem and functional types (alpine, subalpine, montane, valley, evergreen, deciduous, broadleaf, and conifer), their leaf element contents and responses to environments were remarkably different. Shrub type was the largest contributor to the total variations in leaf stoichiometry, while climate indirectly affected the leaf C : N : P via its interactive effects on shrub type or soil. Collectively, the large heterogeneity in shrub type was the most important factor explaining the overall leaf C : N : P variations

  6. Cellular-automata model of the dwarf shrubs populations and communities dynamics

    Directory of Open Access Journals (Sweden)

    A. S. Komarov

    2015-06-01

    Full Text Available The probabilistic cellular-automata model of development and long-time dynamics of dwarf shrub populations and communities is developed. It is based on the concept of discrete description of the plant ontogenesis and joint model approaches in terms of probabilistic cellular automata and L-systems by Lindenmayer. Short representation of the basic model allows evaluation of the approach and software implementation. The main variables of the model are a number of partial bushes in clones or area projective cover. The model allows us to investigate the conditions of self-maintenance and sustainability population under different environmental conditions (inaccessibility of the territory for settlement, mosaic moisture conditions of soil and wealth. The model provides a forecast of the total biomass dynamics shrubs and their fractions (stems, leaves, roots, fine roots, fruits on the basis of the data obtained in the discrete description of ontogenesis and further information on the productivity of the plant fractions. The inclusion of the joint dynamics of biomass of shrubs and soil in EFIMOD models cycle of carbon and nitrogen to evaluate the role of shrubs in these circulations, especially at high impact, such as forest fires and clear cutting, allow forecasting of the dynamics of populations and ecosystem functions of shrubs (regulation of biogeochemical cycles maintaining biodiversity, participation in the creation of non-wood products with changing climatic conditions and strong damaging effects (logging, fires; and application of the models developed to investigate the stability and productivity of shrubs and their participation in the cycle of carbon and nitrogen in different climatic and edaphic conditions.

  7. Effects of shrub and tree cover increase on the near-surface atmosphere in northern Fennoscandia

    Directory of Open Access Journals (Sweden)

    J. H. Rydsaa

    2017-09-01

    Full Text Available Increased shrub and tree cover in high latitudes is a widely observed response to climate change that can lead to positive feedbacks to the regional climate. In this study we evaluate the sensitivity of the near-surface atmosphere to a potential increase in shrub and tree cover in the northern Fennoscandia region. We have applied the Weather Research and Forecasting (WRF model with the Noah-UA land surface module in evaluating biophysical effects of increased shrub cover on the near-surface atmosphere at a fine resolution (5.4 km  ×  5.4 km. Perturbation experiments are performed in which we prescribe a gradual increase in taller vegetation in the alpine shrub and tree cover according to empirically established bioclimatic zones within the study region. We focus on the spring and summer atmospheric response. To evaluate the sensitivity of the atmospheric response to inter-annual variability in climate, simulations were conducted for two contrasting years, one warm and one cold. We find that shrub and tree cover increase leads to a general increase in near-surface temperatures, with the highest influence seen during the snowmelt season and a more moderate effect during summer. We find that the warming effect is stronger in taller vegetation types, with more complex canopies leading to decreases in the surface albedo. Counteracting effects include increased evapotranspiration, which can lead to increased cloud cover, precipitation, and snow cover. We find that the strength of the atmospheric feedback is sensitive to snow cover variations and to a lesser extent to summer temperatures. Our results show that the positive feedback to high-latitude warming induced by increased shrub and tree cover is a robust feature across inter-annual differences in meteorological conditions and will likely play an important role in land–atmosphere feedback processes in the future.

  8. Sparse trees and shrubs confers a high biodiversity to pastures: Case study on spiders from Transylvania.

    Science.gov (United States)

    Gallé, Róbert; Urák, István; Nikolett, Gallé-Szpisjak; Hartel, Tibor

    2017-01-01

    The integration of food production and biodiversity conservation represents a key challenge for sustainability. Several studies suggest that even small structural elements in the landscape can make a substantial contribution to the overall biodiversity value of the agricultural landscapes. Pastures can have high biodiversity potential. However, their intensive and monofunctional use typically erodes its natural capital, including biodiversity. Here we address the ecological value of fine scale structural elements represented by sparsely scattered trees and shrubs for the spider communities in a moderately intensively grazed pasture in Transylvania, Eastern Europe. The pasture was grazed with sheep, cattle and buffalo (ca 1 Livestock Unit ha-1) and no chemical fertilizers were applied. Sampling sites covered the open pasture as well as the existing fine-scale heterogeneity created by scattered trees and shrub. 40 sampling locations each being represented by three 1 m2 quadrats were situated in a stratified design while assuring spatial independency of sampling locations. We identified 140 species of spiders, out of which 18 were red listed and four were new for the Romanian fauna. Spider species assemblages of open pasture, scattered trees, trees and shrubs and the forest edge were statistically distinct. Our study shows that sparsely scattered mature woody vegetation and shrubs substantially increases the ecological value of managed pastures. The structural complexity provided by scattered trees and shrubs makes possible the co-occurrence of high spider diversity with a moderately high intensity grazing possible in this wood-pasture. Our results are in line with recent empirical research showing that sparse trees and shrubs increases the biodiversity potential of pastures managed for commodity production.

  9. Recent expansion of erect shrubs in the Low Arctic: evidence from Eastern Nunavik

    International Nuclear Information System (INIS)

    Tremblay, Benoît; Lévesque, Esther; Boudreau, Stéphane

    2012-01-01

    In order to characterize shrub response near the treeline in Eastern Nunavik (Québec), a region under extensive warming since the 1990s, we compared two series (1964 and 2003) of vertical aerial photos from the vicinity of Kangiqsualujjuaq. Our study revealed a widespread increase in erect woody vegetation cover. During the 40 years spanning the two photo series, erect shrub and tree cover increased markedly on more than half of the land surface available for new colonization or infilling. Within the 7.2 km 2 analysed, areas with dense shrub and tree cover (>90%) increased from 34% to 44% whereas areas with low cover (<10%) shrank from 45% to 29%. This increase in cover of trees and shrubs occurred throughout the landscape regardless of altitude, slope angle and exposure, although to varying extents. The main shrub species involved in this increase was Betula glandulosa Michx. (dwarf birch), which was present in 98% and dominant in 85% of the 345 plots. In addition, numerous seedlings and saplings of Larix laricina (Du Roi) K Koch (eastern larch) were found above the treeline (25% of the plots), suggesting that the altitudinal treeline might shift upslope in the near future. Sites that remained devoid of erect woody vegetation in 2003 were either characterized by the absence of a suitable seedbed or by harsh local microclimatic conditions (wind exposure or excessive drainage). Our results indicate dramatic increases in shrub and tree cover at a Low Arctic site in Eastern Nunavik, contributing to a growing number of observations of woody vegetation change from various areas around the North. (letter)

  10. Age distributions of Greenlandic dwarf shrubs support concept of negligible actuarial senescence

    DEFF Research Database (Denmark)

    Dahlgren, Johan; Rizzi, Silvia; Schweingruber, Fritz

    2016-01-01

    shrub species from 863 taproot samples collected in coastal east Greenland. Penalized composite link models (pclm) were used to fill gaps in the observed age ranges, caused by low species-specific sample sizes in relation to life span. Resulting distributions indicate that mortality patterns...... are independent of age. Actuarial senescence is thus negligible in these dwarf shrub populations. We suggest that smoothing techniques such as pclm enable consideration of noisy age data for determining age distributions. These distributions may, in turn, reveal age effects on demographic rates. Moreover, age...

  11. Environmental Limits of Tall Shrubs in Alaska’s Arctic National Parks

    Science.gov (United States)

    Swanson, David K.

    2015-01-01

    We sampled shrub canopy volume (height times area) and environmental factors (soil wetness, soil depth of thaw, soil pH, mean July air temperature, and typical date of spring snow loss) on 471 plots across five National Park Service units in northern Alaska. Our goal was to determine the environments where tall shrubs thrive and use this information to predict the location of future shrub expansion. The study area covers over 80,000 km2 and has mostly tundra vegetation. Large canopy volumes were uncommon, with volumes over 0.5 m3/m2 present on just 8% of plots. Shrub canopy volumes were highest where mean July temperatures were above 10.5°C and on weakly acid to neutral soils (pH of 6 to 7) with deep summer thaw (>80 cm) and good drainage. On many sites, flooding helped maintain favorable soil conditions for shrub growth. Canopy volumes were highest where the typical snow loss date was near 20 May; these represent sites that are neither strongly wind-scoured in the winter nor late to melt from deep snowdrifts. Individual species varied widely in the canopy volumes they attained and their response to the environmental factors. Betula sp. shrubs were the most common and quite tolerant of soil acidity, cold July temperatures, and shallow thaw depths, but they did not form high-volume canopies under these conditions. Alnus viridis formed the largest canopies and was tolerant of soil acidity down to about pH 5, but required more summer warmth (over 12°C) than the other species. The Salix species varied widely from S. pulchra, tolerant of wet and moderately acid soils, to S. alaxensis, requiring well-drained soils with near neutral pH. Nearly half of the land area in ARCN has mean July temperatures of 10.5 to 12.5°C, where 2°C of warming would bring temperatures into the range needed for all of the potential tall shrub species to form large canopies. However, limitations in the other environmental factors would probably prevent the formation of large shrub canopies

  12. Soil surface temperatures reveal moderation of the urban heat island effect by trees and shrubs

    DEFF Research Database (Denmark)

    Edmondson, Jill L; Stott, Iain; Davies, Zoe G

    2016-01-01

    months increased by 0.6 °C over the 5 km from the city outskirts to the centre. Trees and shrubs in non-domestic greenspace reduced mean maximum daily soil surface temperatures in the summer by 5.7 °C compared to herbaceous vegetation, but tended to maintain slightly higher temperatures in winter. Trees...... in domestic gardens, which tend to be smaller, were less effective at reducing summer soil surface temperatures. Our findings reveal that the UHI effects soil temperatures at a city-wide scale, and that in their moderating urban soil surface temperature extremes, trees and shrubs may help to reduce...

  13. Behavior of pyrophite shrubs in mediterranean terrestrial ecosystems (i): Population and reproductive model.

    Science.gov (United States)

    Usó-Doménech, Josep-Lluis; Nescolarde-Selva, Josué-Antonio; Lloret-Climent, Miguel; González-Franco, Lucía

    2018-03-01

    The mathematical submodel ULEX is used to study the dynamic behavior of the green, floral and woody biomass of the main pyrophite shrub species, the gorse (Ulex parviflorus Pourret), and its relationship with other shrub species, typical of a Mediterranean ecosystem. The focus are the ecological conditions of post-fire stage growth, and its efficacy as a protective cover against erosion processes in the short, medium and long term, both in normal conditions and at the limits of desertification conditions. The model sets a target to observe the behavior and to anticipate and consequently intervene with adequate protection, restoration and management measures. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. Plant species effects on soil nutrients and chemistry in arid ecological zones.

    Science.gov (United States)

    Johnson, Brittany G; Verburg, Paul S J; Arnone, John A

    2016-09-01

    The presence of vegetation strongly influences ecosystem function by controlling the distribution and transformation of nutrients across the landscape. The magnitude of vegetation effects on soil chemistry is largely dependent on the plant species and the background soil chemical properties of the site, but has not been well quantified along vegetation transects in the Great Basin. We studied the effects of plant canopy cover on soil chemistry within five different ecological zones, subalpine, montane, pinyon-juniper, sage/Mojave transition, and desert shrub, in the Great Basin of Nevada all with similar underlying geology. Although plant species differed in their effects on soil chemistry, the desert shrubs Sarcobatus vermiculatus, Atriplex spp., Coleogyne ramosissima, and Larrea tridentata typically exerted the most influence on soil chemistry, especially amounts of K(+) and total nitrogen, beneath their canopies. However, the extent to which vegetation affected soil nutrient status in any given location was not only highly dependent on the species present, and presumably the nutrient requirements and cycling patterns of the plant species, but also on the background soil characteristics (e.g., parent material, weathering rates, leaching) where plant species occurred. The results of this study indicate that the presence or absence of a plant species, especially desert shrubs, could significantly alter soil chemistry and subsequently ecosystem biogeochemistry and function.

  15. Does sex matter? Gender-specificity and its influence on site-chronologies in the common dioecious shrub Juniperus communis

    NARCIS (Netherlands)

    Shetti, Rohan; Buras, Allan; Smiljanic, Marko; Hallinger, Martin; Grigoriev, Andrey A.; Wilmking, Martin

    2018-01-01

    In recent years an increasing number of studies have shown shrubs to be reliable proxies of environmental conditions in regions where Trees − due to harsh climate conditions − are absent. Although many shrubs are monoecious, some are dioecious, which poses certain questions related to

  16. Effects of Width, Edge and Habitat on the Abundance and Nesting Success of Scrub-shrub Birds in Powerline Corridors

    Science.gov (United States)

    David I. King; Richard B. Chandler; Jeffrey M. Collins; Wayne R. Petersen; Thomas E. Lautzenheiser

    2009-01-01

    Concern about declines in scrub–shrub bird populations has resulted in efforts to create and maintain habitat for these species. Vegetation within powerline corridors is managed to prevent contact of vegetation with transmission lines, and comprises approximately 2% of all of habitat for scrub–shrub birds in southern New England. Although previous studies have...

  17. Dwarf shrub and grass vegetation resistant to long-term experimental warming while microarthropod abundance declines on the Falkland Islands

    NARCIS (Netherlands)

    Bokhorst, S.; Convey, P.; Huiskes, A.; Aerts, R.; Huiskes, A.

    2017-01-01

    Dwarf shrubs are a dominant plant type across many regions of the Earth and have hence a large impact on carbon and nutrient cycling rates. Climate change impacts on dwarf shrubs have been extensively studied in the Northern Hemisphere, and there appears to be large variability in response between

  18. Force of habit: shrubs, trees and contingent evolution of wood anatomical diversity using Croton (Euphorbiaceae) as a model system

    Science.gov (United States)

    Rafael Arévalo; Benjamin W. van Ee; Ricarda Riina; Paul E. Berry; Alex C. Wiedenhoeft

    2017-01-01

    Background and Aims Wood is a major innovation of land plants, and is usually a central component of the body plan for two major plant habits: shrubs and trees. Wood anatomical syndromes vary between shrubs and trees, but no prior work has explicitly evaluated the contingent evolution of wood anatomical diversity in the context...

  19. The role of rodents in the seed fate of a thorny shrub in an ancient wood pasture

    NARCIS (Netherlands)

    Scheper, Jeroen; Smit, Christian

    2011-01-01

    Thorny shrubs play a crucial role for the diversity and dynamics in wood pastures: they protect non-defended plants from large herbivores and thus facilitate tree establishment in the landscape through associational resistance. How thorny shrubs themselves establish in wood pastures - the main

  20. Effect of industrial air pollution on decorative trees and shrubs in the area of the Nitrogen Fertilizer Factory at Pulawy

    Energy Technology Data Exchange (ETDEWEB)

    Kawecka, A

    1973-01-01

    This paper discusses the effects that the gaseous wastes from a nitrogen fertilizer plant have on decorative trees and shrubs. It lists 28 species of broadleaved trees and shrubs, and assigns them to four groups according to their resistance or susceptibility to the pollution. 6 references.

  1. Growing Shrubs at the George O. White State Forest Nursery: What Has Worked and What Has Not

    Science.gov (United States)

    Gregory Hoss

    2006-01-01

    At the George O. White State Forest Nursery in Licking, MO, we annually grow about 20 species of shrubs. That number has been larger in some years. For most species, we purchase seeds locally and process them at our nursery. Our shrubs are used for wetland restoration, windbreaks, visual screens, riparian buffers, and wildlife plantings.

  2. Physiological conjunction of allelochemicals and desert plants.

    Science.gov (United States)

    Yosef Friedjung, Avital; Choudhary, Sikander Pal; Dudai, Nativ; Rachmilevitch, Shimon

    2013-01-01

    Plants exchange signals with other physical and biological entities in their habitat, a form of communication termed allelopathy. The underlying principles of allelopathy and secondary-metabolite production are still poorly understood, especially in desert plants. The coordination and role of secondary metabolites were examined as a cause of allelopathy in plants thriving under arid and semiarid soil conditions. Desert plant species, Origanum dayi, Artemisia sieberi and Artemisia judaica from two different sources (cultivar cuttings and wild seeds) were studied in their natural habitats. Growth rate, relative water content, osmotic potential, photochemical efficiency, volatile composition and vital factors of allelopathy were analyzed at regular intervals along four seasons with winter showing optimum soil water content and summer showing water deficit conditions. A comprehensive analysis of the volatile composition of the leaves, ambient air and soil in the biological niche of the plants under study was carried out to determine the effects of soil water conditions and sample plants on the surrounding flora. Significant morpho-physiological changes were observed across the seasons and along different soil water content. Metabolic analysis showed that water deficit was the key for driving selective metabolomic shifts. A. judaica showed the least metabolic shifts, while A. sieberi showed the highest shifts. All the species exhibited high allelopathic effects; A. judaica displayed relatively higher growth-inhibition effects, while O. dayi showed comparatively higher germination-inhibition effects in germination assays. The current study may help in understanding plant behavior, mechanisms underlying secondary-metabolite production in water deficit conditions and metabolite-physiological interrelationship with allelopathy in desert plants, and can help cull economic benefits from the produced volatiles.

  3. Physiological conjunction of allelochemicals and desert plants.

    Directory of Open Access Journals (Sweden)

    Avital Yosef Friedjung

    Full Text Available Plants exchange signals with other physical and biological entities in their habitat, a form of communication termed allelopathy. The underlying principles of allelopathy and secondary-metabolite production are still poorly understood, especially in desert plants. The coordination and role of secondary metabolites were examined as a cause of allelopathy in plants thriving under arid and semiarid soil conditions. Desert plant species, Origanum dayi, Artemisia sieberi and Artemisia judaica from two different sources (cultivar cuttings and wild seeds were studied in their natural habitats. Growth rate, relative water content, osmotic potential, photochemical efficiency, volatile composition and vital factors of allelopathy were analyzed at regular intervals along four seasons with winter showing optimum soil water content and summer showing water deficit conditions. A comprehensive analysis of the volatile composition of the leaves, ambient air and soil in the biological niche of the plants under study was carried out to determine the effects of soil water conditions and sample plants on the surrounding flora. Significant morpho-physiological changes were observed across the seasons and along different soil water content. Metabolic analysis showed that water deficit was the key for driving selective metabolomic shifts. A. judaica showed the least metabolic shifts, while A. sieberi showed the highest shifts. All the species exhibited high allelopathic effects; A. judaica displayed relatively higher growth-inhibition effects, while O. dayi showed comparatively higher germination-inhibition effects in germination assays. The current study may help in understanding plant behavior, mechanisms underlying secondary-metabolite production in water deficit conditions and metabolite-physiological interrelationship with allelopathy in desert plants, and can help cull economic benefits from the produced volatiles.

  4. Birds and conservation significance of the Namib Desert's least ...

    African Journals Online (AJOL)

    -long Namib Desert and it remains the least known coastal wetland on a desert coast rich in shorebirds. Two surveys of the Baia dos Tigres region in 1999 and 2001 indicated a rich wetland bird diversity consisting of 25 species, with a total of ...

  5. Screening the Egyptian desert actinomycetes as candidates for new ...

    African Journals Online (AJOL)

    In a screening program to study the antimicrobial activities of desert actinomycetes as potential producers of active metabolites, 75 actinomycete strains were isolated from the Egyptian desert habitats and tested. Out of the isolated 75 organisms, 32 (42.67%) showed activity against the used test organisms.

  6. Pastoralist rock art in the Black Desert of Jordan

    NARCIS (Netherlands)

    Brusgaard, N.O.

    2015-01-01

    This paper discusses the current problems that exist with the rock art research of the Black Desert in Jordan and presents some preliminary field results of the author’s research on the petroglyphs. It also explore the possibilities that the rock art affords to learn more about the elusive desert

  7. Pastoralist rock art in the Black Desert of Jordan

    OpenAIRE

    Brusgaard, N.O.

    2015-01-01

    This paper discusses the current problems that exist with the rock art research of the Black Desert in Jordan and presents some preliminary field results of the author’s research on the petroglyphs. It also explore the possibilities that the rock art affords to learn more about the elusive desert societies and the limitations about studying rock art in archaeologically unfamiliar territories.

  8. The politics of accessing desert land in Jordan

    NARCIS (Netherlands)

    Naber, Al Majd; Molle, Francois

    2016-01-01

    With the dramatic increase of the population in Jordan, the value of land has rocketed up. Urban sprawl into semi-desert or desert areas, initially not surveyed or settled by the British and considered as state land, has brought to the surface the problematic status of those lands. Likewise, the

  9. Aeromycobiota of Western Desert of Egypt | Ismail | African Journal ...

    African Journals Online (AJOL)

    The prevalence of airborne mycobiota at six different regions of Western desert (5 regions) and Eastern desert (1) of Egypt was determined using the exposed-plate method. A total of 44 genera, 102 species and one variety in addition to some unidentified yeasts and dark sterile mycelia were collected. Of the above, only 5 ...

  10. The Desert and the Sown Project in Northern Jordan

    DEFF Research Database (Denmark)

    Kerner, Susanne

    2014-01-01

    The desert and sown project, which started in 1999 and continued in 2008-2009, studied the region between the settled areas east of Irbid and Ramtha and the surrounding desert at Mafraq (northern Jordan). Large parts of the material comes from the Palaeolithic period, while some smaller tells date...

  11. Desert tortoise use of burned habitat in the Eastern Mojave desert

    Science.gov (United States)

    Drake, Karla K.; Esque, Todd C.; Nussear, Kenneth E.; DeFalco, Lesley; Scoles, Sara; Modlin, Andrew T.; Medica, Philip A.

    2015-01-01

    Wildfires burned 24,254 ha of critical habitat designated for the recovery of the threatened Mojave desert tortoise (Gopherus agassizii) in southern Nevada during 2005. The proliferation of non-native annual grasses has increased wildfire frequency and extent in recent decades and continues to accelerate the conversion of tortoise habitat across the Mojave Desert. Immediate changes to vegetation are expected to reduce quality of critical habitat, yet whether tortoises will use burned and recovering habitat differently from intact unburned habitat is unknown. We compared movement patterns, home-range size, behavior, microhabitat use, reproduction, and survival for adult desert tortoises located in, and adjacent to, burned habitat to understand how tortoises respond to recovering burned habitat. Approximately 45% of home ranges in the post-fire environment contained burned habitat, and numerous observations (n = 12,223) corroborated tortoise use of both habitat types (52% unburned, 48% burned). Tortoises moved progressively deeper into burned habitat during the first 5 years following the fire, frequently foraging in burned habitats that had abundant annual plants, and returning to adjacent unburned habitat for cover provided by intact perennial vegetation. However, by years 6 and 7, the live cover of the short-lived herbaceous perennial desert globemallow (Sphaeralcea ambigua) that typically re-colonizes burned areas declined, resulting in a contraction of tortoise movements from the burned areas. Health and egg production were similar between burned and unburned areas indicating that tortoises were able to acquire necessary resources using both areas. This study documents that adult Mojave desert tortoises continue to use habitat burned once by wildfire. Thus, continued management of this burned habitat may contribute toward the recovery of the species in the face of many sources of habitat loss.

  12. Algae-production in the desert

    Energy Technology Data Exchange (ETDEWEB)

    Hildebrand, H.

    1988-11-01

    The company Koor Food Ltd. (Israel) developed in co-operation with the Weizmann-Institute (Israel) a production-plant for the industrial cultivation of algae in the desert area of Elat. For almost a year now, they succeed in harvesting large amounts of algae material with the help of the intensive sun and the Red Sea water. The alga Dunaliella with the natural US -carotine, as well as the alga Spirulina with the high content of protein find their market in the food-, cosmetic- and pharma-industry. This article will give a survey of a yet here unusual project.

  13. Background aerosol composition in the Namib desert

    International Nuclear Information System (INIS)

    Annegarn, H.J.; Sellschop, J.P.F.; Van Grieken, R.E.; Winchester, J.W.

    The sulfur content of atmospheric particulate matter in non-urban areas is apparently rising above natural levels in the Northern Hemisphere. Sulfur emissions to the atmosphere are also increasing with increasing combustion of fossil fuels. Current research is being focussed not only on gaseous sulfur dioxide, but also on particulate forms, including sulfates and sulfuric acid. A global network of non urban studies using proton induced X-ray emission (PIXE) of which the sampling site at Gobabeb in the Namib desert is one, are developing a data base on which questions of natural levels of sulfur can be answered

  14. Tree and shrub expansion over the past 34 years at the tree-line near Abisko, Sweden.

    Science.gov (United States)

    Rundqvist, Sara; Hedenås, Henrik; Sandström, Anneli; Emanuelsson, Urban; Eriksson, Håkan; Jonasson, Christer; Callaghan, Terry V

    2011-09-01

    Shrubs and trees are expected to expand in the sub-Arctic due to global warming. Our study was conducted in Abisko, sub-arctic Sweden. We recorded the change in coverage of shrub and tree species over a 32- to 34-year period, in three 50 x 50 m plots; in the alpine-tree-line ecotone. The cover of shrubs and trees (tree stems (> or =3.5 cm) were noted and positions determined. There has been a substantial increase of cover of shrubs and trees, particularly dwarf birch (Betula nana), and mountain birch (Betula pubescens ssp. czerepanovii), and an establishment of aspen (Populus tremula). The other species willows (Salix spp.), juniper (Juniperus communis), and rowan (Sorbus aucuparia) revealed inconsistent changes among the plots. Although this study was unable to identify the causes for the change in shrubs and small trees, they are consistent with anticipated changes due to climate change and reduced herbivory.

  15. Fog water chemistry in the Namib desert, Namibia

    Science.gov (United States)

    Eckardt, Frank D.; Schemenauer, Robert S.

    This study documents the ion concentrations and ion enrichment relative to sea water, in Namib Desert fog water, with the purpose of establishing its suitability for future fogwater collection schemes, while also examining claims that Namib Desert fog water carries exceptionally high concentrations of sulphate, which may be responsible for the formation of gypsum deposits in the desert. The work suggests that Namibian fog water is at least as clean as has been reported from other coastal deserts in South America and Arabia, and provides a source of very clean water for the coastal desert region of south-western Africa. It does not appear that fog is an efficient sulphur source for the formation of the gypsum deposits, unless rare events with high concentrations of marine sulphur compounds occur.

  16. The response of Arctic vegetation to the summer climate: relation between shrub cover, NDVI, surface albedo and temperature

    Energy Technology Data Exchange (ETDEWEB)

    Blok, Daan; Heijmans, Monique M P D; Berendse, Frank [Nature Conservation and Plant Ecology Group, Wageningen University, PO Box 47, 6700 AA, Wageningen (Netherlands); Schaepman-Strub, Gabriela [Institute of Evolutionary Biology and Environmental Studies, University of Zuerich, Winterthurerstrasse 190, 8057 Zuerich (Switzerland); Bartholomeus, Harm [Centre for Geo-Information, Wageningen University, PO Box 47, 6700 AA, Wageningen (Netherlands); Maximov, Trofim C, E-mail: daan.blok@wur.nl [Biological Problems of the Cryolithozone, Russian Academy of Sciences, Siberian Division, 41, Lenin Prospekt, Yakutsk, The Republic of Sakha, Yakutia 677980 (Russian Federation)

    2011-07-15

    Recently observed Arctic greening trends from normalized difference vegetation index (NDVI) data suggest that shrub growth is increasing in response to increasing summer temperature. An increase in shrub cover is expected to decrease summer albedo and thus positively feed back to climate warming. However, it is unknown how albedo and NDVI are affected by shrub cover and inter-annual variations in the summer climate. Here, we examine the relationship between deciduous shrub fractional cover, NDVI and albedo using field data collected at a tundra site in NE Siberia. Field data showed that NDVI increased and albedo decreased with increasing deciduous shrub cover. We then selected four Arctic tundra study areas and compiled annual growing season maximum NDVI and minimum albedo maps from MODIS satellite data (2000-10) and related these satellite products to tundra vegetation types (shrub, graminoid, barren and wetland tundra) and regional summer temperature. We observed that maximum NDVI was greatest in shrub tundra and that inter-annual variation was negatively related to summer minimum albedo but showed no consistent relationship with summer temperature. Shrub tundra showed higher albedo than wetland and barren tundra in all four study areas. These results suggest that a northwards shift of shrub tundra might not lead to a decrease in summer minimum albedo during the snow-free season when replacing wetland tundra. A fully integrative study is however needed to link results from satellite data with in situ observations across the Arctic to test the effect of increasing shrub cover on summer albedo in different tundra vegetation types.

  17. Why Be a Shrub? A Basic Model and Hypotheses for the Adaptive Values of a Common Growth Form

    Science.gov (United States)

    Götmark, Frank; Götmark, Elin; Jensen, Anna M.

    2016-01-01

    Shrubs are multi-stemmed short woody plants, more widespread than trees, important in many ecosystems, neglected in ecology compared to herbs and trees, but currently in focus due to their global expansion. We present a novel model based on scaling relationships and four hypotheses to explain the adaptive significance of shrubs, including a review of the literature with a test of one hypothesis. Our model describes advantages for a small shrub compared to a small tree with the same above-ground woody volume, based on larger cross-sectional stem area, larger area of photosynthetic tissue in bark and stem, larger vascular cambium area, larger epidermis (bark) area, and larger area for sprouting, and faster production of twigs and canopy. These components form our Hypothesis 1 that predicts higher growth rate for a small shrub than a small tree. This prediction was supported by available relevant empirical studies (14 publications). Further, a shrub will produce seeds faster than a tree (Hypothesis 2), multiple stems in shrubs insure future survival and growth if one or more stems die (Hypothesis 3), and three structural traits of short shrub stems improve survival compared to tall tree stems (Hypothesis 4)—all hypotheses have some empirical support. Multi-stemmed trees may be distinguished from shrubs by more upright stems, reducing bending moment. Improved understanding of shrubs can clarify their recent expansion on savannas, grasslands, and alpine heaths. More experiments and other empirical studies, followed by more elaborate models, are needed to understand why the shrub growth form is successful in many habitats. PMID:27507981

  18. The response of Arctic vegetation to the summer climate: relation between shrub cover, NDVI, surface albedo and temperature

    International Nuclear Information System (INIS)

    Blok, Daan; Heijmans, Monique M P D; Berendse, Frank; Schaepman-Strub, Gabriela; Bartholomeus, Harm; Maximov, Trofim C

    2011-01-01

    Recently observed Arctic greening trends from normalized difference vegetation index (NDVI) data suggest that shrub growth is increasing in response to increasing summer temperature. An increase in shrub cover is expected to decrease summer albedo and thus positively feed back to climate warming. However, it is unknown how albedo and NDVI are affected by shrub cover and inter-annual variations in the summer climate. Here, we examine the relationship between deciduous shrub fractional cover, NDVI and albedo using field data collected at a tundra site in NE Siberia. Field data showed that NDVI increased and albedo decreased with increasing deciduous shrub cover. We then selected four Arctic tundra study areas and compiled annual growing season maximum NDVI and minimum albedo maps from MODIS satellite data (2000-10) and related these satellite products to tundra vegetation types (shrub, graminoid, barren and wetland tundra) and regional summer temperature. We observed that maximum NDVI was greatest in shrub tundra and that inter-annual variation was negatively related to summer minimum albedo but showed no consistent relationship with summer temperature. Shrub tundra showed higher albedo than wetland and barren tundra in all four study areas. These results suggest that a northwards shift of shrub tundra might not lead to a decrease in summer minimum albedo during the snow-free season when replacing wetland tundra. A fully integrative study is however needed to link results from satellite data with in situ observations across the Arctic to test the effect of increasing shrub cover on summer albedo in different tundra vegetation types.

  19. Plant responses to an edaphic gradient across an active sand dune/desert boundary in the great basin desert.

    NARCIS (Netherlands)

    Rosenthal, D.M.; Ludwig, F.; Donovan, L.A.

    2005-01-01

    In arid ecosystems, variation in precipitation causes broad-scale spatial heterogeneity in soil moisture, but differences in soil texture, development, and plant cover can also create substantial local soil moisture heterogeneity. The boundary between inland desert sand dunes and adjacent desert

  20. Physical characteristics of shrub and conifer fuels for fire behavior models

    Science.gov (United States)

    Jonathan R. Gallacher; Thomas H. Fletcher; Victoria Lansinger; Sydney Hansen; Taylor Ellsworth; David R. Weise

    2017-01-01

    The physical properties and dimensions of foliage are necessary inputs for some fire spread models. Currently, almost no data exist on these plant characteristics to fill this need. In this report, we measured the physical properties and dimensions of the foliage from 10 live shrub and conifer fuels throughout a 1-year period. We developed models to predict relative...

  1. Establishment of trees and shrubs on lands disturbed by mining in the West

    Science.gov (United States)

    Ardell J. Bjugstad

    1984-01-01

    Increased research and development of cultural practices and species has assured success of establishment of trees and shrubs on lands disturbed by surface mining. Trickle irrigation and water harvesting techniques have increased survival of planted stock by 250 percent for some species.

  2. Bayesian estimation of shrubs diversity in rangelands under two management systems in northern Syria

    NARCIS (Netherlands)

    Niane, A.A.; Singh, M.; Struik, P.C.

    2014-01-01

    The diversity of shrubs in rangelands of northern Syria is affected by the grazing management systems restricted by the increase in human and livestock populations. To describe and estimate diversity and compare the rangeland grazing management treatments, two popular indices for diversity, the

  3. Interacting effects of grass height and herbivores on the establishment of an encroaching savanna shrub

    NARCIS (Netherlands)

    Hagenah, N.; Munkert, H.; Gerhardt, K.; Olff, H.

    2009-01-01

    Shrub encroachment is a widely observed problem in Southern African savannas. Although the effects of herbivory and grass height on woody species recruitment have been studied individually, little information exists about how these factors interact. In this study seeds and seedlings of the

  4. Diversity, composition and density of trees and shrubs in agroforestry homegardens in Southern Ethiopia

    NARCIS (Netherlands)

    Abebe, T.; Sterck, F.J.; Wiersum, K.F.; Bongers, F.

    2013-01-01

    Diversity of trees and shrubs in agricultural systems contributes to provision of wood and non-wood products, and protects the environment, thereby, enhancing socioeconomic and ecological sustainability of the systems. This study characterizes the diversity, density and composition of trees in the

  5. Efficacy of exclosures in conserving local shrub biodiversity in xeric sandy grassland, Inner Mongolia, China

    Science.gov (United States)

    Feng-Rui Li; Zhi-Yu Zhou; Li-Ya Zhao; Ai-Sheng Zhang; Ling-Fen Kang

    2007-01-01

    This study investigated the abundance and frequency of occurrence of all shrub species present in the standing vegetation at four sites, including a 5-year exclosure (protected grassland) and three adjacent unprotected grazing sites that had been subjected to different levels of degradation (light, moderate and severe), in xeric sandy grassland of Inner Mongolia for...

  6. Similar tree seedling responses to shrubs and to simulated environmental changes at Pyrenean and subarctic treelines.

    NARCIS (Netherlands)

    Grau, O.; Ninot, J.M.; Cornelissen, J.H.C.; Callaghan, T.V.

    2013-01-01

    Background: Climate, land-use and disturbance regimes are key drivers of treeline dynamics worldwide, but local and regional spatio-temporal patterns indicate that additional factors play an important role. Some studies suggest that shrub-tree interactions control tree seedling recruitment patterns

  7. Age and distribution of an evergreen clonal shrub in the Coweeta basin: Rhododendron maximum L

    Science.gov (United States)

    Katherine J. Elliott; James M. Vose

    2012-01-01

    Rhododendron maximum L. is an evergreen, clonal shrub that forms a dominant sub-canopy layer and is a key species in southern Appalachian forests. We investigated the age and distribution of R. maximum across the Coweeta Basin, a 1626 ha watershed in western North Carolina. We selected 16 perennial, second-order streams and used a Global Positioning System to establish...

  8. Targeted grazing for the restoration of sub-alpine shrub-encroached grasslands

    Directory of Open Access Journals (Sweden)

    Massimiliano Probo

    2016-12-01

    Full Text Available The decline of agro-pastoral activities has led to a widespread tree and shrub-encroachment of former semi-natural meso-eutrophic grasslands in many European mountain regions. Temporary night camp areas (TNCA and mineral mix supplements for targeted cattle were arranged over shrub-encroached areas to restore grassland vegetation within the Val Troncea Natural Park (Italy. From 2011 to 2015, their effects on vegetation structure and pastoral value of forage were assessed along permanent transects. Four years after treatments, both practices were effective in reducing the shrub cover and increasing the cover and average height of the herbaceous layer, but changes were more remarkable within TNCA. Moreover, the arrangement of TNCA decreased the cover of nanophanerophytes and increased the cover of graminoids and high quality species, as well as the overall forage pastoral value. In conclusion, TNCA were the most effective pastoral practice to contrast shrub-encroachment and increase herbage mass and forage quality of sub-alpine grasslands.

  9. Removing an exotic shrub from riparian forests increases butterfly abundance and diversity

    Science.gov (United States)

    James Hanula; Scott Horn

    2011-01-01

    Invasive plants are one of the greatest threats to endangered insect species and a major threat to Lepidoptera in eastern North America. We investigated the effects of the invasive shrub Chinese privet (Ligustrum sinense) and two methods (mulching or hand-felling) of removing it from riparian forests on butterfly communities and compared them to untreated, heavily...

  10. Possibilities of cultivating ornamental trees and shrubs under conditions of air pollution with oxides of sulfur

    Energy Technology Data Exchange (ETDEWEB)

    Bialobok, S.; Bartkowiak, S.; Rachwal, L.

    1974-01-01

    The field work conducted has shown that high concentrations of SO/sub 2/ in the air can be withstood by the following trees and shrubs. Trees: Acer campestris, A. platanoides, Ailanthus altissima, Aesculus hippocastanum, Morus alba, Platanus acerifolia, Pinus strobur, P. nigra, Populus Berolinensis, P. candicans, P. Hybr. 27, P. Marilandica, P. simonii, P. Serotina, Quercus robus, Robinia pseudoacacia. Shrubs: Caragana arborescens, Crataegus oxyacantha, C. monogyna, Cerasus mehaleb, Forsythia/most of the species and varieties/, Ligustrum vulgare, Philadelphus coronaria, Ptelea trifoliata, Sambucus nigra, Salix caprea, Sorbaria sorbifolia, Sorbus aucuparia, Taxus baccata. For the selection of trees and shrubs in the laboratory, high concentrations of SO/sub 2/ were used (60-150 ppm for a period of 10 minutes). Experiments were conducted on cut shrubs kept in the gas chambers. In order to estimate the degree of their injury, they were transferred to a shaded greenhouse. A concentration of 65 ppm of SO/sub 2/ could be withstood by the following Forsythias: Forsythia intermedia Primulina, F. Densiflora, F. Spectabilis, F. giraldina, F. suspensa, F. koreana, F. ovata, F. japonica and Hippophae rhamnoides. A concentration of 130 ppm could be withstood only by F. intermedia Vitelina. A similarly high concentration of SO/sub 2/ could be withstood by shoots and leaves of Ailanthus girladii Duclouxii and by Platanus acerifolia. From among the lilacs Syringa pekinensis and S. amurensis proved resistant to high concentrations of SO/sub 2/.

  11. Trophic cascades: linking ungulates to shrub-dependent birds and butterflies.

    Science.gov (United States)

    J Teichman, Kristine; Nielsen, Scott E; Roland, Jens

    2013-11-01

    1. Studies demonstrating trophic cascades through the loss of top-down regulatory processes in productive and biologically diverse terrestrial ecosystems are limited. 2. Elk Island National Park, Alberta and surrounding protected areas have a wide range of ungulate density due to the functional loss of top predators, management for high ungulate numbers and variable hunting pressure. This provides an ideal setting for studying the effects of hyper-abundant ungulates on vegetation and shrub-dependent bird and butterfly species. 3. To examine the cascading effects of high ungulate density, we quantified vegetation characteristics and abundances of yellow warbler Dendroica petechia and Canadian tiger swallowtail Papilio canadensis under different ungulate density in and around Elk Island National Park. 4. Using Structural Equation Models we found that ungulate density was inversely related to shrub cover, whereas shrub cover was positively related to yellow warbler abundance. In addition, chokecherry Prunus virginiana abundance was inversely related to browse impact but positively related to P. canadensis abundance. 5. These results demonstrate a cascade resulting from hyper-abundant ungulates on yellow warblers and Canadian tiger swallowtails through reductions in shrub cover and larval host plant density. The combined effect of the functional loss of top predators and management strategies that maintain high ungulate numbers can decouple top-down regulation of productive temperate ecosystems. © 2013 The Authors. Journal of Animal Ecology © 2013 British Ecological Society.

  12. Soil carbon dioxide (CO 2 ) efflux of two shrubs in response to plant ...

    African Journals Online (AJOL)

    Although plant density should affect soil carbon dioxide (CO2) efflux and carbon cycling in semi-arid regions, the effects of plant density on soil CO2 efflux are not well known. This study was performed to investigate the responses of soil CO2 efflux of two dominant shrubs (Caragana korshinkii and Salix psammophila) to ...

  13. Antecedent conditions influence soil respiration differences in shrub and grass patches

    Science.gov (United States)

    Quantifying the response of soil respiration to past environmental conditions is critical for predicting how future climate and vegetation change will impact ecosystem carbon balance. Increased shrub dominance in semiarid grasslands has potentially large effects on soil carbon cycling. The goal of t...

  14. Evaluation and prediction of shrub cover in coastal Oregon forests (USA)

    Science.gov (United States)

    Becky K. Kerns; Janet L. Ohmann

    2004-01-01

    We used data from regional forest inventories and research programs, coupled with mapped climatic and topographic information, to explore relationships and develop multiple linear regression (MLR) and regression tree models for total and deciduous shrub cover in the Oregon coastal province. Results from both types of models indicate that forest structure variables were...

  15. State-space modeling indicates rapid invasion of an alien shrub in coastal dunes

    DEFF Research Database (Denmark)

    Damgaard, Christian Frølund; Nygaard, Bettina; Ejrnæs, Rasmus

    2011-01-01

    allows separation of process and sampling variance, thus enabling ecological predictions with a known degree of uncertainty. The method is applied for the invasive shrub Rosa rugosa (Japanese rose) in Danish fixed dunes. The probability of observing R. rugosa increased significantly from 0.18 to 0...

  16. Influence of shrub cover vegetal and slope length on soil bulk density

    International Nuclear Information System (INIS)

    Bienes, R.; Jimenez, R.; Ruiz, M.; Garcia-Estringana, P.; Marques, M. J.

    2009-01-01

    In arid and semiarid environments of the Mediterranean climate, the shrub species play an important role in the revegetation of abandoned lands, which enables to control the soil losses, organic material and water. In this article are compared the results obtained under different revegetation in abandoned lands in the central area of Spain. In these revegetation has been used two native shrubs: A triplex halimus (Ah) and Retama sphaerocarpa (Rs), and were analyzed the influence of these revegetation in the contents of organic material of soil and apparent density in 5 years time after planting. As control, have been considered the pieces of ground with spontaneous vegetation abandoned in the same date that the shrubs revegetation. Atriplex halimus gives to the soil a covering capable to intercept a big amount of water drops absorbing a great amount part of the kinetic energy of the rain, while provides a microclimates as a result of be able to soften the wind, the temperature and the evaporation-transpiration, which makes it efficient to control the erosion and the desertification (Le Houerou, 2000). Retama sphaerocarpa was chosen because it is a native shrub very characteristic, and, due to its symbiosis with the Bradyrhizobium, enriches the soil in nitrogen, which is taken by the nitrophilous species enhancing the spontaneous vegetal covering. (Author) 9 refs.

  17. Guide to insect borers in North American broadleaf trees and shrubs

    Science.gov (United States)

    J.D. Solomon

    1995-01-01

    This book is an illustrated guide to 300 species of inset borers that attack hardwood trees, shrubs, and other woody angiosperms in North America. The major purposes of this guide are to identify insect borers and theri damage to provide information for controlling them. Readers most likely to find this guide useful are practiving foresters, entomologists, and others...

  18. Shrub removal in reforested post-fire areas increases native plant species richness

    Science.gov (United States)

    Gabrielle N. Bohlman; Malcolm North; Hugh D. Safford

    2016-01-01

    Large, high severity fires are becoming more prevalent in Sierra Nevada mixed-conifer forests, largely due to heavy fuel loading and forest densification caused by past and current management practices. In post-fire areas distant from seed trees, conifers are often planted to re-establish a forest and to prevent a potential type-conversion to shrub fields. Typical...

  19. Insects and Related Pests of Trees, Shrubs, and Lawns. MP-25R.

    Science.gov (United States)

    Spackman, Everett W.; Lawson, Fred A.

    This document discusses identification and control of the pests of trees and shrubs. The insects are grouped according to feeding habits and the type of damage caused to plants. Categories include the sucking insects and mites, leaf eating insects, pests attacking trunks and branches, and gall causing insects. (CS)

  20. Which shrubs and trees can conserve natural enemies of aphids in spring?

    NARCIS (Netherlands)

    van Rijn, P.C.J.

    2014-01-01

    Habitats with shrubs and trees within the agricultural landscape may contribute to the maintenance of natural enemies of pests. Aphids and flowers are important resources for beneficial natural enemies such as ladybeetles, hoverflies and lacewings. Woody plants are the most likely candidates to

  1. Nitrogen-addition effects on leaf traits and photosynthetic carbon gain of boreal forest understory shrubs.

    Science.gov (United States)

    Palmroth, Sari; Bach, Lisbet Holm; Nordin, Annika; Palmqvist, Kristin

    2014-06-01

    Boreal coniferous forests are characterized by fairly open canopies where understory vegetation is an important component of ecosystem C and N cycling. We used an ecophysiological approach to study the effects of N additions on uptake and partitioning of C and N in two dominant understory shrubs: deciduous Vaccinium myrtillus in a Picea abies stand and evergreen Vaccinium vitis-idaea in a Pinus sylvestris stand in northern Sweden. N was added to these stands for 16 and 8 years, respectively, at rates of 0, 12.5, and 50 kg N ha(-1) year(-1). N addition at the highest rate increased foliar N and chlorophyll concentrations in both understory species. Canopy cover of P. abies also increased, decreasing light availability and leaf mass per area of V. myrtillus. Among leaves of either shrub, foliar N content did not explain variation in light-saturated CO2 exchange rates. Instead photosynthetic capacity varied with stomatal conductance possibly reflecting plant hydraulic properties and within-site variation in water availability. Moreover, likely due to increased shading under P. abies and due to water limitations in the sandy soil under P. sylvestris, individuals of the two shrubs did not increase their biomass or shift their allocation between above- and belowground parts in response to N additions. Altogether, our results indicate that the understory shrubs in these systems show little response to N additions in terms of photosynthetic physiology or growth and that changes in their performance are mostly associated with responses of the tree canopy.

  2. Seed germination methods for native Caribbean trees and shrubs : with emphasis on species relevant for Bonaire

    NARCIS (Netherlands)

    Burg, van der W.J.; Freitas, J.; Debrot, A.O.

    2014-01-01

    This paper is intended as a basis for nature restoration activities using seeds of trees and (larger) shrubs native to Bonaire with the aim of reforestation. It describes the main seed biology issues relevant for species from this region, to facilitate decisions on time and stage of harvesting, safe

  3. Facilitation of Quercus ilex recruitment by shrubs in Mediterranean open woodlands

    NARCIS (Netherlands)

    Smit, Christian; den Ouden, Jan; Diaz, Mario

    Question: Insufficient tree regeneration threatens the long-term persistence of biodiverse Mediterranean open oak woodlands. Could shrubs, scarce due to decades of management ( clearing and ploughing), facilitate holm oak recruitment at both acorn and seedling stages? Location: Open oak woodlands in

  4. Facilitation of Quercus ilex recruitment by shrubs in Mediterranean open woodlands

    NARCIS (Netherlands)

    Smit, C.; Ouden, den J.; Diaz, M.

    2008-01-01

    Question: Insufficient tree regeneration threatens the long-term persistence of biodiverse Mediterranean open oak woodlands. Could shrubs, scarce due to decades of management (clearing and ploughing), facilitate holm oak recruitment at both acorn and seedling stages? Location: Open oak woodlands in

  5. Diseases of Ornamental and Shade Trees, Shrubs, Vines, and Ground Covers.

    Science.gov (United States)

    Nichols, Lester P.

    This agriculture extension service publication from Pennsylvania State University covers the identification and control of common ornamental trees, shrubs, and ground cover diseases. The publication is divided into sections. The first section discusses the diseases of ornamental and shade trees, including general diseases and diseases of specific…

  6. Community structure affects annual grass weed invasion during restoration of a shrub-steppe ecosystem

    Science.gov (United States)

    Phil S. Allen; Susan E. Meyer

    2014-01-01

    Ecological restoration of shrub-steppe communities in the western United States is often hampered by invasion of exotic annual grasses during the process. An important question is how to create restored communities that can better resist reinvasion by these weeds. One hypothesis is that communities comprised of species that are functionally similar to the invader will...

  7. Spacing and shrub competition influence 20-year development of planted ponderosa pine

    Science.gov (United States)

    William W. Oliver

    1990-01-01

    Growth and stand development of ponderosa pine (Pinus ponderosa) were monitored for 20 years after planting at five different square spacings (6, 9, 12, 15, and 18 ft) in the presence or absence of competing shrubs on the westside Sierra Nevada. Mean tree size was positively correlated and stand values negatively correlated with spacing in the...

  8. Tree and shrub species integration in the crop-livestock farming ...

    African Journals Online (AJOL)

    Tree and shrub integration has been promoted as a means of enhancing rural livelihoods through sustaining watershed provision of services and products, especially in Ethiopia. However, research to support this effort has been limited. This study was conducted in Borodo watershed in central Ethiopia, to identify ...

  9. Evolutionary hotspots in the Mojave Desert

    Science.gov (United States)

    Vandergast, Amy G.; Inman, Richard D.; Barr, Kelly R.; Nussear, Kenneth E.; Esque, Todd C.; Hathaway, Stacie A.; Wood, Dustin A.; Medica, Philip A.; Breinholt, Jesse W.; Stephen, Catherine L.; Gottscho, Andrew D.; Marks, Sharyn B.; Jennings, W. Bryan; Fisher, Robert N.

    2013-01-01

    Genetic diversity within species provides the raw material for adaptation and evolution. Just as regions of high species diversity are conservation targets, identifying regions containing high genetic diversity and divergence within and among populations may be important to protect future evolutionary potential. When multiple co-distributed species show spatial overlap in high genetic diversity and divergence, these regions can be considered evolutionary hotspots. We mapped spatial population genetic structure for 17 animal species across the Mojave Desert, USA. We analyzed these in concurrence and located 10 regions of high genetic diversity, divergence or both among species. These were mainly concentrated along the western and southern boundaries where ecotones between mountain, grassland and desert habitat are prevalent, and along the Colorado River. We evaluated the extent to which these hotspots overlapped protected lands and utility-scale renewable energy development projects of the Bureau of Land Management. While 30–40% of the total hotspot area was categorized as protected, between 3–7% overlapped with proposed renewable energy project footprints, and up to 17% overlapped with project footprints combined with transmission corridors. Overlap of evolutionary hotspots with renewable energy development mainly occurred in 6 of the 10 identified hotspots. Resulting GIS-based maps can be incorporated into ongoing landscape planning efforts and highlight specific regions where further investigation of impacts to population persistence and genetic connectivity may be warranted.

  10. Landscape Sustainability in a Sonoran Desert City

    Directory of Open Access Journals (Sweden)

    Chris A. Martin

    2008-01-01

    Full Text Available The objective of this paper is to discuss concepts of landscape sustainability in the Phoenix metropolitan area. Phoenix is situated in the greater Salt River Valley of the lower Sonoran Desert in the southwest United States. In this paper I use the ecological frameworks of ecosystem services and resiliency as a metric for understanding landscape sustainability. An assessment of landscape sustainability performance benchmarks were made by surveying research findings of scientists affiliated with the Central Arizona Phoenix Long Term Ecological Research Project (CAP LTER. In Phoenix, present day emphases on cultural, aesthetic, and habitat formation ecosystem services within an arid ecoregion of low natural resilience coupled to a complex matrix of socioeconomic stratification, excessive landscape water use and pruning practices has had the undesired effect of degrading landscape sustainability. This has been measured as mixed patterns of plant diversity and human-altered patterns of carbon regulation, microclimate control, and trophic dynamics. In the future, sustainable residential landscaping in desert cities such as Phoenix may be fostered through use of water-conserving irrigation technologies, oasis-style landscape design motifs, recycling of landscape green waste, and conservative plant pruning strategies.

  11. Automated classification of tropical shrub species: a hybrid of leaf shape and machine learning approach.

    Science.gov (United States)

    Murat, Miraemiliana; Chang, Siow-Wee; Abu, Arpah; Yap, Hwa Jen; Yong, Kien-Thai

    2017-01-01

    Plants play a crucial role in foodstuff, medicine, industry, and environmental protection. The skill of recognising plants is very important in some applications, including conservation of endangered species and rehabilitation of lands after mining activities. However, it is a difficult task to identify plant species because it requires specialized knowledge. Developing an automated classification system for plant species is necessary and valuable since it can help specialists as well as the public in identifying plant species easily. Shape descriptors were applied on the myDAUN dataset that contains 45 tropical shrub species collected from the University of Malaya (UM), Malaysia. Based on literature review, this is the first study in the development of tropical shrub species image dataset and classification using a hybrid of leaf shape and machine learning approach. Four types of shape descriptors were used in this study namely morphological shape descriptors (MSD), Histogram of Oriented Gradients (HOG), Hu invariant moments (Hu) and Zernike moments (ZM). Single descriptor, as well as the combination of hybrid descriptors were tested and compared. The tropical shrub species are classified using six different classifiers, which are artificial neural network (ANN), random forest (RF), support vector machine (SVM), k-nearest neighbour (k-NN), linear discriminant analysis (LDA) and directed acyclic graph multiclass least squares twin support vector machine (DAG MLSTSVM). In addition, three types of feature selection methods were tested in the myDAUN dataset, Relief, Correlation-based feature selection (CFS) and Pearson's coefficient correlation (PCC). The well-known Flavia dataset and Swedish Leaf dataset were used as the validation dataset on the proposed methods. The results showed that the hybrid of all descriptors of ANN outperformed the other classifiers with an average classification accuracy of 98.23% for the myDAUN dataset, 95.25% for the Flavia dataset and 99

  12. Responses of nocturnal rodents to shrub encroachment in Banni grasslands, Gujarat, India

    Science.gov (United States)

    Jayadevan, A.

    2016-12-01

    Shrub encroachment is one of the greatest threats to grasslands globally. These woodlands can strongly influence the behaviour of small mammals adapted to more open habitats, which rely on high visibility for early detection of predators. In semi-arid grasslands, rodents are considered keystone species. Although shrub encroachment is known to negatively affect rodent assemblages, its impact on the foraging behaviour of rodents, which is known to vary in response to risky situations, is unknown. Understanding whether shrub encroachment alters such antipredator behaviour is important as antipredator behaviour can alter the distribution, abundance and ultimately, survival of prey species. In this study, I explored the effects of shrub encroachment on the foraging behaviour of nocturnal rodent communities in the Banni grasslands, India. I examined foraging behaviour, quantified using the giving-up density (GUD) framework and the number of rodent crossings around food patches, in two habitats that differed in the extent of shrub encroachment. Under the GUD framework, the amount of food left behind by a forager in a food patch reflects the costs of feeding at the patch. Higher GUDs imply higher foraging costs. I also investigated how removal of an invasive woody plant, Prosopis juliflora would affect foraging behaviour of nocturnal rodents. High shrub encroachment was associated with higher foraging costs (higher GUDs) and lower activity than the sparsely wooded habitat, likely due to low visibility in the densely wooded habitat. The dense habitat also supported a higher richness and relative abundance of generalist rodents than the sparse habitat, likely due to the increased heterogeneity of the habitat. The tree removal experiment revealed that rodents had lower GUDs (i.e., low foraging costs) after the event of tree cutting. This may be due to the reduction of cover in the habitat, leading to higher visibility and lower predation risk. My results suggest that shrub

  13. Resource-use efficiencies of three indigenous tree species planted in resource islands created by shrubs: implications for reforestation of subtropical degraded shrublands

    Science.gov (United States)

    Nan Liu; Qinfeng Guo

    2012-01-01

    Shrub resource islands are characterized by resources accumulated shrubby areas surrounded by relative barren soils. This research aims to determine resource-use efficiency of native trees species planted on shrub resource islands, and to determine how the planted trees may influence the resource islands in degraded shrublands in South China. Shrub (Rhodomyrtus...

  14. Living with aliens: effects of invasive shrub honeysuckles on avian nesting.

    Directory of Open Access Journals (Sweden)

    Jason M Gleditsch

    Full Text Available Invasive species have come to the forefront of conservation biology as a major threat to native biodiversity. Habitats dominated by shrub honeysuckles (Lonicera spp. in the United States have been characterized as "ecological traps" by ecologists. Here we tested this hypothesis by investigating the effects of shrub honeysuckles on the nesting ecology of native birds in seven study sites in central Pennsylvania, USA. We examined how the abundance of shrub honeysuckles influenced the selection of nesting substrates and habitat for a community of common songbirds, and the parental-care behavior and nestling development of gray catbirds (Dumetella carolinensis. We found that birds had a strong bias towards nesting in honeysuckle shrubs, but not necessarily for nesting in honeysuckle-dominated habitats. Nest predation rates were affected by the density of nests in a habitat, but not by the overall abundance of honeysuckles in such habitats. Honeysuckle abundance in the habitat did show significant effects on some parental-care behavioral parameters: catbirds had higher nest visitation rates and shorter visit lengths in areas of high honeysuckle density. On average, Gray catbirds fed fruit 12%±0.31 s.e. of their nestling-feeding bouts, mostly fruits of shrub honeysuckles. Nestlings in sites with high honeysuckle density also showed higher mass:tarsus ratios, suggesting a good (possibly better physiological condition of catbird nestlings at the time of fledging. Our study shows that honeysuckle-dominated habitats could have equivocal effects on nesting parameters of common species of native birds. We advise more caution in the widespread denomination of novel plant communities with high densities of honeysuckle as "ecological traps" as effects can be null or positive on native birds in certain localities.

  15. Plant-soil interactions promote co-occurrence of three nonnative woody shrubs.

    Science.gov (United States)

    Kuebbing, Sara E; Classen, Aimée T; Call, Jaime J; Henning, Jeremiah A; Simberloff, Daniel

    2015-08-01

    Ecosystems containing multiple nonnative plant species are common, but mechanisms promoting their co-occurrence are understudied. Plant-soil interactions contribute to the dominance of singleton species in nonnative ranges because many nonnatives experience stronger positive feedbacks relative to co-occurring natives. Plant-soil interactions could impede other nonnatives if an individual nonnative benefits from its soil community to a greater extent than its neighboring nonnatives, as is seen with natives. However, plant-soil interactions could promote nonnative co-occurrence if a nonnative accumulates beneficial soil mutualists that also assist other nonnatives. Here, we use greenhouse and field experiments to ask whether plant-soil interactions (1) promote the codominance of two common nonnative shrubs (Ligustrum sinense and Lonicera maackii) and (2) facilitate the invasion of a less-common nonnative shrub (Rhamnus davurica) in deciduous forests of the southeastern United States. In the greenhouse, we found that two of the nonnatives, L. maackii and R. davurica, performed better in soils conditioned by nonnative shrubs compared to uninvaded forest soils, which. suggests that positive feedbacks among co-occurring nonnative shrubs can promote continued invasion of a site. In both greenhouse and field experiments, we found consistent signals that the codominance of the nonnatives L. sinense and L. maackii may be at least partially explained by the increased growth of L. sinense in L. maackii soils. Overall, significant effects of plant-soil interactions on shrub performance indicate that plant-soil interactions can potentially structure the co-occurrence patterns of these nonnatives.

  16. Is the WBE model appropriate for semi-arid shrubs subjected to clear cutting?

    Science.gov (United States)

    Issoufou, Hassane Bil-Assanou; Rambal, Serge; Le Dantec, Valérie; Oï, Monique; Laurent, Jean-Paul; Saadou, Mahamane; Seghieri, Josiane

    2015-02-01

    It is crucial to understand the adaptive mechanisms of woody plants facing periodic drought to assess their vulnerability to the increasing climate variability predicted in the Sahel. Guiera senegalensis J.F.Gmel is a semi-evergreen Combretaceae commonly found in Sahelian rangelands, fallows and crop fields because of its value as an agroforestry species. We compared canopy leafing, and allometric measurements of leaf area, stem area and stem length and their relationships with leaf water potential, stomatal conductance (gs) and soil-to-leaf hydraulic conductance (KS-L), in mature and current-year resprouts of G. senegalensis in Sahelian Niger. In mature shrubs, seasonal drought reduced the ratio of leaf area to cross-sectional stem area (AL : AS), mainly due to leaf shedding. The canopy of the current-year resprouts remained permanently leafed as the shrubs produced leaves and stems continuously, and their AL : AS ratio increased throughout the dry season. Their KS-L increased, whereas gs decreased. West, Brown and Enquist's (WBE) model can thus describe allometric trends in the seasonal life cycle of undisturbed mature shrubs, but not that of resprouts. Annual clear cutting drives allometric scaling relationships away from theoretical WBE predictions in the current-year resprouts, with scaling exponents 2.5 times greater than those of mature shrubs. High KS-L (twice that of mature shrubs) supports this intensive regeneration process. The adaptive strategy described here is probably common to many woody species that have to cope with both severe seasonal drought and regular disturbance over the long term. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. The evolution of dwarf shrubs in alpine environments: a case study of Alchemilla in Africa.

    Science.gov (United States)

    Gehrke, Berit; Kandziora, Martha; Pirie, Michael D

    2016-01-01

    Alpine and arctic environments worldwide, including high mountains, are dominated by short-stature woody plants (dwarf shrubs). This conspicuous life form asserts considerable influence on local environmental conditions above the treeline, creating its own microhabitat. This study reconstructs the evolution of dwarf shrubs in Alchemilla in the African tropical alpine environment, where they represent one of the largest clades and are among the most common and abundant plants. Different phylogenetic inference methods were used with plastid and nuclear DNA sequence markers, molecular dating (BEAST and RelTime), analyses of diversification rate shifts (MEDUSA and BAMM) and ancestral character and area reconstructions (Mesquite). It is inferred that African Alchemilla species originated following long-distance dispersal to tropical East Africa, but that the evolution of dwarf shrubs occurred in Ethiopia and in tropical East Africa independently. Establishing a timeframe is challenging given inconsistencies in age estimates, but it seems likely that they originated in the Pleistocene, or at the earliest in the late Miocene. The adaptation to alpine-like environments in the form of dwarf shrubs has apparently not led to enhanced diversification rates. Ancestral reconstructions indicate reversals in Alchemilla from plants with a woody base to entirely herbaceous forms, a transition that is rarely reported in angiosperms. Alchemilla is a clear example of in situ tropical alpine speciation. The dwarf shrub life form typical of African Alchemilla has evolved twice independently, further indicating its selective advantage in these harsh environments. However, it has not influenced diversification, which, although recent, was not rapid. © The Author 2015. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. Summer warming and changes in snow depth is reflected in the growth rings of Alaskan tundra shrubs (Toolik Lake)

    Science.gov (United States)

    Buchwal, A.; Welker, J. M.

    2016-12-01

    Arctic change is being manifested by shifts in the vegetation composition and abundance throughout many regions of the Arctic. These changes are primarily reflected by increases in shrub growth and density, but the extent to which shrub growth is expressed in greater shrub ring width and the degree to which natural and experimental warming correspond and or whether the secondary effect of deeper snow in winter acts to alter shrub ring growh and or shrub biomass is yet to be determined for Arctic Alaska. In order to explore growth response of arctic shrubs to on-going and predicted temperature and snow depth increase we investigated shrubs' annual growth rings using dendrochronological methods applied to plants growing under control and experimental treatments in Toolik Lake, Northern Alaska. Specifically we evaluated the effects of a 20-year experimental warming (due to open top chambers, OTC's) and snow depth increases on the growth rings pattern of two common shrub species of Northern Alaska, i.e. Betula nana and Salix pulchra. By applying a serial sectioning method patterns of annual growth were investigated across the entire plant including below-ground parts. Moreover this procedure allowed for a complete cross-dating and a detection of irregular radial growth, including common missing and partially missing rings. We found that the natural warming in Alaska occurring over the past 20 years is stimulating shrub ring growth, more so for Betula than for Salix. Experimental warming (simulating conditions in approximately 2030) stimulated the secondary growth ratio; however the allocation pattern between below-ground and above-ground is quite variable between individual shrubs. In addition, annual growth rings analyses were supplemented by quantitative wood anatomy properties, such as vessel size and density. Our findings indicate that there can be differential growth ring responses of deciduous shrubs to natural climate warming, that growth ring increases reflect

  19. Airborne particle accumulation and composition at different locations in the northern Negev desert.

    NARCIS (Netherlands)

    Offer, Z.Y.; Goossens, D.

    2001-01-01

    Atmospheric desert dust was collected over 36 months in ground-level collectors at four stations in the northern Negev desert, Israel. Three stations (Shivta, Sede Boqer and Avdat) are located in the desert itself whereas the fourth station (Sayeret Shaked) is situated at the desert fringe, in the

  20. Gopherus agassizii (Desert Tortoise). Non-native seed dispersal

    Science.gov (United States)

    Ennen, J.R.; Loughran, Caleb L.; Lovich, Jeffrey E.

    2011-01-01

    Sahara Mustard (Brassica tournefortii) is a non-native, highly invasive weed species of southwestern U.S. deserts. Sahara Mustard is a hardy species, which flourishes under many conditions including drought and in both disturbed and undisturbed habitats (West and Nabhan 2002. In B. Tellman [ed.], Invasive Plants: Their Occurrence and Possible Impact on the Central Gulf Coast of Sonora and the Midriff Islands in the Sea of Cortes, pp. 91–111. University of Arizona Press, Tucson). Because of this species’ ability to thrive in these habitats, B. tournefortii has been able to propagate throughout the southwestern United States establishing itself in the Mojave and Sonoran Deserts in Arizona, California, Nevada, and Utah. Unfortunately, naturally disturbed areas created by native species, such as the Desert Tortoise (Gopherus agassizii), within these deserts could have facilitated the propagation of B. tournefortii. (Lovich 1998. In R. G. Westbrooks [ed.], Invasive Plants, Changing the Landscape of America: Fact Book, p. 77. Federal Interagency Committee for the Management of Noxious and Exotic Weeds [FICMNEW], Washington, DC). However, Desert Tortoises have never been directly observed dispersing Sahara Mustard seeds. Here we present observations of two Desert Tortoises dispersing Sahara Mustard seeds at the interface between the Mojave and Sonoran deserts in California.

  1. Water sources for cyanobacteria below desert rocks in the Negev Desert determined by conductivity

    OpenAIRE

    McKay, Christopher P.

    2016-01-01

    We present year round meteorological and conductivity measurements of colonized hypolithic rocks in the Arava Valley, Negev Desert, Israel. The data indicate that while dew is common in the Negev it is not an important source of moisture for hypolithic organisms at this site. The dominance of cyanobacteria in the hypolithic community is consistent with predictions that cyanobacteria are confined to habitats supplied by rain. To monitor the presence of liquid water under the small Negev rocks ...

  2. Integrating Army Aviation into the Combined Arms Team: Operational Art in Desert Shield and Desert Storm

    Science.gov (United States)

    2017-05-25

    King of Saudi Arabia. The conversation took place prior to an Organization of the Petroleum Exporting Countries (OPEC) meeting of Arab Gulf members...Blumberg and Christopher C. French, eds., The Persian Gulf War: Views from the Social and Behavioral Sciences (Lanham, MD: University Press of America...1994), 17. 72 Blumberg and French, The Persian Gulf War, 29. 20 building up forces in northeast Saudi Arabia during Operation Desert Shield, in

  3. In vitro germination of desert rose varieties(

    Directory of Open Access Journals (Sweden)

    Tatiane Lemos Varella

    2015-08-01

    Full Text Available The drought stress resistance is a characteristic of the desert rose and its estimable beauty flowers, which gave it great relevance in the ornamental market. However, the desert rose production and germination is hampered by possible sterility of their male and female flowers and frequent problems in pollination, so the tissue culture is a promising alternative to the propagation of these plants. This study aimed to evaluate the effect of gibberellic acid on four commercial varieties of desert rose (Adenium obesum cultivated in vitro. The seeds of the varieties ‘Orange Pallet’, ‘Carnation violet’, ‘Diamond ring’ and ‘Vermiliont’ were sterilized and inoculated on Water + Agar (T0, medium MS (T1, ½ MS (T2, MS + 0.25 mg L-1 GA3 (T3, MS + 0.5 mg L-1 GA3 (T4, ½ MS + 0.25 mg L-1 GA3 (T5, ½ MS 0.5 mg L-1 GA3 (T6. The seeds germination of A. obesum was initiated on the fourth day of cultivation and on the tenth day was possible to observe the expansion of the cotyledons and leaf expansion with subsequent development of early secondary root. The ‘Orange pallet’ variety germinated 100% of seeds on water + agar and MS ½ + 0.5 mg L-1 of GA3. For ‘Diamond Ring’ and ‘Carnation violet’ the highest rate of germination occurred in treatments MS ½; 0.25 mg L-1 GA3; MS + 0.5 mg L-1 GA3 MS ½ + 0.5 mg L-1 GA3 averaging 80% and 70%, respectively. For ‘Vermiliont’ the best response was in MS and MS ½ + 0.5 mg L-1 GA3 ranging between 70-90% germinated embryos. It was registered different malformations in all treatments like absence of roots and apexes during seedling development. The concentrations of GA3 did not affect significantly the seed germination.

  4. Properties of Desert Sand and CMAS Glass

    Science.gov (United States)

    Bansal, Narottam P.; Choi, Sung R.

    2014-01-01

    As-received desert sand from a Middle East country has been characterized for its phase composition and thermal stability. X-ray diffraction analysis showed the presence of quartz (SiO2), calcite (CaCO3), gypsum (CaSO4.2H2O), and NaAlSi3O8 phases in as-received desert sand and showed weight loss of approx. 35 percent due to decomposition of CaCO3 and CaSO4.2H2O when heated to 1400 C. A batch of as-received desert sand was melted into calcium magnesium aluminosilicate (CMAS) glass at approx. 1500 C. From inductively coupled plasma-atomic emission spectrometry, chemical composition of the CMAS glass was analyzed to be 27.8CaO-4MgO-5Al2O3-61.6SiO2-0.6Fe2O3-1K2O (mole percent). Various physical, thermal and mechanical properties of the glass have been evaluated. Bulk density of CMAS glass was 2.69 g/cc, Young's modulus 92 GPa, Shear modulus 36 GPa, Poisson's ratio 0.28, dilatometric glass transition temperature (T (sub g)) 706 C, softening point (T (sub d)) 764 C, Vickers microhardness 6.3 +/- 0.4 GPa, indentation fracture toughness 0.75 +/- 0.15 MPa.m (sup 1/2), and coefficient of thermal expansion (CTE) 9.8 x 10 (exp -6)/degC in the temperature range 25 to 700 C. Temperature dependence of viscosity has also been estimated from various reference points of the CMAS glass using the Vogel-Fulcher-Tamman (VFT) equation. The glass remained amorphous after heat treating at 850 C for 10 hr but crystallized into CaSiO3 and Ca-Mg-Al silicate phases at 900 C or higher temperatures. Crystallization kinetics of the CMAS glass has also been investigated by differential thermal analysis (DTA). Activation energies for the crystallization of two different phases in the glass were calculated to be 403 and 483 kJ/mol, respectively.

  5. Phytochemical profile and biological activities of Deverra tortuosa (Desf.)DC.: a desert aromatic shrub widespread in Northern Region of Saudi Arabia.

    Science.gov (United States)

    Guetat, Arbi; Boulila, Abdennacer; Boussaid, Mohamed

    2018-04-16

    The present study describes the chemical composition of the essential oil of different plant parts of Devrra tortuosa; in vivo and in vitro biological activities of plant extract and essential oils. Apiol was found to be the major component of the oil (between 65.73% and 74.41%). The best antioxidant activities were observed for the oil of flowers (IC50 = 175 μg/ml). The samples of stems and roots exhibit lower antioxidant activity (IC50 = 201 μg/ml and 182 μg/ml, respectively). The values of IC50 showed that the extracts of methanol exhibit the highest antioxidants activities (IC50 = 64.8 102 μg/ml). EOs showed excellent antifungal activity against yeasts with low azole susceptibilities (i.e. Malassezia spp. and Candida krusei). The MIC values of oils varied between 2.85 mg/mL and 27 mg/mL. The obtained results also showed that the plant extracts inhibited the germination and the shoot and root growth of Triticum æstivum seedlings.

  6. Precision of LVIS and MISR canopy height estimates for desert grassland shrub canopies assessed with field and UAV estimates in multiscale approach

    Science.gov (United States)

    Many science questions in large-scale terrestrial ecology are concerned with changes in the Earth’s carbon cycle and ecosystems and the consequences for the Earth's carbon budget, ecosystem sustainability, and biodiversity [1]. To address these questions, we must know the distribution of aboveground...

  7. Chemical constituents of Cenchrus ciliaris L. from the Cholistan desert, Pakistan

    OpenAIRE

    Ashraf Muhammad Aqeel; Mahmood Karamat; Yusoff Ismail; Qureshi Ahmad Kaleem

    2013-01-01

    The Cholistan Desert is an extension of the Great Indian Desert, covering an area of 26,330 km2. The desert can be divided into two main geomorphic regions: the northern region, known as Lesser Cholistan, constituting the desert margin and consisting of a series of saline alluvial flats alternating with low sand ridges/dunes; and the southern region, known as Greater Cholistan, a wind-resorted sandy desert comprised of a number of old Hakra River terraces w...

  8. Rapid carbon turnover beneath shrub and tree vegetation is associated with low soil carbon stocks at a subarctic treeline.

    Science.gov (United States)

    Parker, Thomas C; Subke, Jens-Arne; Wookey, Philip A

    2015-05-01

    Climate warming at high northern latitudes has caused substantial increases in plant productivity of tundra vegetation and an expansion of the range of deciduous shrub species. However significant the increase in carbon (C) contained within above-ground shrub biomass, it is modest in comparison with the amount of C stored in the soil in tundra ecosystems. Here, we use a 'space-for-time' approach to test the hypothesis that a shift from lower-productivity tundra heath to higher-productivity deciduous shrub vegetation in the sub-Arctic may lead to a loss of soil C that out-weighs the increase in above-ground shrub biomass. We further hypothesize that a shift from ericoid to ectomycorrhizal systems coincident with this vegetation change provides a mechanism for the loss of soil C. We sampled soil C stocks, soil surface CO2 flux rates and fungal growth rates along replicated natural transitions from birch forest (Betula pubescens), through deciduous shrub tundra (Betula nana) to tundra heaths (Empetrum nigrum) near Abisko, Swedish Lapland. We demonstrate that organic horizon soil organic C (SOCorg ) is significantly lower at shrub (2.98 ± 0.48 kg m(-2) ) and forest (2.04 ± 0.25 kg m(-2) ) plots than at heath plots (7.03 ± 0.79 kg m(-2) ). Shrub vegetation had the highest respiration rates, suggesting that despite higher rates of C assimilation, C turnover was also very high and less C is sequestered in the ecosystem. Growth rates of fungal hyphae increased across the transition from heath to shrub, suggesting that the action of ectomycorrhizal symbionts in the scavenging of organically bound nutrients is an important pathway by which soil C is made available to microbial degradation. The expansion of deciduous shrubs onto potentially vulnerable arctic soils with large stores of C could therefore represent a significant positive feedback to the climate system. © 2014 John Wiley & Sons Ltd.

  9. Detecting the differences in responses of stomatal conductance to moisture stresses between deciduous shrubs and Artemisia subshrubs.

    Science.gov (United States)

    Gao, Qiong; Yu, Mei; Zhou, Chan

    2013-01-01

    Shrubs and subshrubs can tolerate wider ranges of moisture stresses in both soil and air than other plant life forms, and thus represent greater nonlinearity and uncertainty in ecosystem physiology. The objectives of this paper are to model shrub/subshrub stomatal conductance by synthesizing the field leaf gas exchanges data of 24 species in China, in order to detect the differences between deciduous shrubs and Artemisia subshrubs in their responses of stomatal conductance to changes in the moisture stresses. We revised a model of stomatal conductance by incorporating the tradeoff between xylem hydraulic efficiency and cavitation loss risk. We then fit the model at the three hierarchical levels: global (pooling all data as a single group), three functional groups (deciduous non-legume shrubs, deciduous legume shrubs, and subshrubs in Artemisia genus), and individual observations (species × sites). Bayesian inference with Markov Chain Monte Carlo method was applied to obtain the model parameters at the three levels. We found that the model at the level of functional groups is a significant improvement over that at the global level, indicating the significant differences in the stomatal behavior among the three functional groups. The differences in tolerance and sensitivities to changes in moisture stresses are the most evident between the shrubs and the subshrubs: The two shrub groups can tolerate much higher soil water stress than the subshrubs. The analysis at the observation level is also a significant improvement over that at the functional group level, indicating great variations within each group. Our analysis offered a clue for the equivocal issue of shrub encroachment into grasslands: While the invasion by the shrubs may be irreversible, the dominance of subshrubs, due to their lower resistance and tolerance to moisture stresses, may be put down by appropriate grassland management.

  10. Vegetation ecology and carbon sequestration potential of shrubs in tropics of Chhattisgarh, India.

    Science.gov (United States)

    Jhariya, Manoj Kumar

    2017-09-25

    Tropical forests are well known to have great species diversity and contribute substantial share in terrestrial carbon (C) stocks worldwide. Shrubs are long-neglected life form in the forest ecosystem, playing many roles in the forest and human life. Shrub has great impact on vegetation attributes which in turn modify the C storage and capture. In the present investigation, an attempt has been made to explore the dynamics of shrub species in four fire regimes, viz. high, medium, low, and no fire zones of Bhoramdeo Wildlife Sanctuary of Kawardha forest division (Chhattisgarh), India. The variations in structure, diversity, biomass, productivity, and C sequestration potential in all the sites were quantified. The density and basal area of shrub varied from 1250 to 3750 individuals ha -1 and 2.79 to 4.92 m 2  ha -1 , respectively. The diversity indices showed that the value of Shannon index was highest in medium fire zone (3.77) followed by high, low, and no fire zones as 3.25, 3.12, and 2.32, respectively. The value of Simpson's index or concentration of dominance (Cd) ranged from 0.08 to 0.20, species richness from 0.56 to 1.58, equitability from 1.41 to 1.44, and beta diversity from 1.50 to 4.20, respectively. The total biomass and C storage ranged from 6.82 to 15.71 and from 2.93 to 6.76 t ha -1 , respectively. The shrub density, importance value index (IVI), and abundance to frequency ratio (A/F) significantly correlated between high fire and medium fire zone. The basal area was found to be significantly positively correlated between high fire and medium fire, and low and no fire zones, respectively. Two-way cluster analysis reflected various patterns of clustering due to influence of the forest fire which showed that some species have distant clustering while some have smaller cluster. Principal component analysis (PCA) reflects variable scenario with respect to shrub layer. Ventilago calyculata and Zizyphus rotundifolia showed higher correlation between

  11. Fog deposition to the Atacama desert

    Science.gov (United States)

    Westbeld, A.; Klemm, O.; Griessbaum, F.; Sträter, E.; Larrain, H.; Osses, P.; Cereceda, P.

    2010-07-01

    In the Atacama Desert, one of the driest places on earth, fog deposition plays an important role for the water balance and for the survival of vulnerable ecosystems. The eddy covariance method, previously applied for the quantification of fog deposition to forests in various parts of the world, was used for the first time to measure deposition of fog water to a desert. We estimated the amount of water available for the ecosystem by deposition and determined the relevant processes driving fog deposition. This is especially important for the species Tillandsia landbecki living in coastal Atacama at the limit of plant existence with fog and dew being the only sources of liquid water. Between 31 July and 19 August, 2008, measurements were realized in a 31 ha large Tillandsia carpet at Cerro Guanaco, located 15 km south of Iquique, northern Chile. Several data quality assurance procedures were applied. For the values in compliance with the applied criteria, the mean total deposition per hour was determined (0.04 L per m2) for foggy periods. This number was applied to estimate the amount of water deposited during the measuring period, during the entire month of August 2008, and throughout a whole year. For August 2008, a frequency of fog of 16 %, as established during the measuring period, was assumed. The frequency for a whole year was estimated from the differences of the collected amount of water obtained with standard fog collectors installed at Cerro Guanaco in an earlier study. Calculations resulted in an amount of 2.5 L per m2 of deposited fog water for the measuring period. During the entire August, 4.4 L per m2 have likely been available, and for a whole year, a total of 25 L per m2 was estimated to have reached the surface. Inaccuracies could have been caused by the low amount of data applied, and by a possible underestimation of the deposition due to additional formation of radiation fog during the fog events. Three days were used for further analysis because

  12. Desert ants learn vibration and magnetic landmarks.

    Directory of Open Access Journals (Sweden)

    Cornelia Buehlmann

    Full Text Available The desert ants Cataglyphis navigate not only by path integration but also by using visual and olfactory landmarks to pinpoint the nest entrance. Here we show that Cataglyphis noda can additionally use magnetic and vibrational landmarks as nest-defining cues. The magnetic field may typically provide directional rather than positional information, and vibrational signals so far have been shown to be involved in social behavior. Thus it remains questionable if magnetic and vibration landmarks are usually provided by the ants' habitat as nest-defining cues. However, our results point to the flexibility of the ants' navigational system, which even makes use of cues that are probably most often sensed in a different context.

  13. Co-occurring nonnative woody shrubs have additive and non-additive soil legacies.

    Science.gov (United States)

    Kuebbing, Sara E; Patterson, Courtney M; Classen, Aimée T; Simberloff, Daniel

    2016-09-01

    To maximize limited conservation funds and prioritize management projects that are likely to succeed, accurate assessment of invasive nonnative species impacts is essential. A common challenge to prioritization is a limited knowledge of the difference between the impacts of a single nonnative species compared to the impacts of nonnative species when they co-occur, and in particular predicting when impacts of co-occurring nonnative species will be non-additive. Understanding non-additivity is important for management decisions because the management of only one co-occurring invader will not necessarily lead to a predictable reduction in the impact or growth of the other nonnative plant. Nonnative plants are frequently associated with changes in soil biotic and abiotic characteristics, which lead to plant-soil interactions that influence the performance of other species grown in those soils. Whether co-occurring nonnative plants alter soil properties additively or non-additively relative to their effects on soils when they grow in monoculture is rarely addressed. We use a greenhouse plant-soil feedback experiment to test for non-additive soil impacts of two common invasive nonnative woody shrubs, Lonicera maackii and Ligustrum sinense, in deciduous forests of the southeastern United States. We measured the performance of each nonnative shrub, a native herbaceous community, and a nonnative woody vine in soils conditioned by each shrub singly or together in polyculture. Soils conditioned by both nonnative shrubs had non-additive impacts on native and nonnative performance. Root mass of the native herbaceous community was 1.5 times lower and the root mass of the nonnative L. sinense was 1.8 times higher in soils conditioned by both L. maackii and L. sinense than expected based upon growth in soils conditioned by either shrub singly. This result indicates that when these two nonnative shrubs co-occur, their influence on soils disproportionally favors persistence

  14. Minimal watering regime impacts on desert adapted green roof plant performance

    Science.gov (United States)

    Kovachich, S.; Pavao-Zuckerman, M.; Templer, S.; Livingston, M.; Stoltz, R.; Smith, S.

    2011-12-01

    Roof tops can cover one-fifth of urban areas and can greatly alter the movement of matter and energy in cities. With traditional roofing methods and materials, roof tops readily absorb heat and as a result, buildings and the surrounding urban area heat to unnaturally high temperatures. It is hypothesized that extensive green roofs would have wide-ranging benefits for arid environments. However, little is known about the cost of water use associated with green roof installations and how to balance energy reduction needs with water costs in this water limited environment. We are conducting a pilot study to test whether a) green roofs with native plants and environmentally-responsible watering regimes will prove successful in arid environments and if b) green roofs provide ecosystem services with responsible water application. Three species of Sonoran Desert natives, Dyssodia pentachaeta (groundcover), Calliandra eriophylla (shrub), and Hesperaloe parviflora (succulent) have been planted in experimental plots [1 m2 model houses and roofs, replicated in triplicate] with two sandy, rocky desert soil mixtures (light mix: 60% expanded shale and heavy mix: organic and sandy mix with 50% shale) at the Biosphere 2 campus near Oracle, Az. The green roofs are watered by two different techniques. The first technique provides "smart watering", the minimal amount of water needed by green roof plants based on precipitation and historical data. The second watering technique is considered heavy and does not take into account environmental conditions. Preliminary data from the experimental plots shows a 30% decrease in daytime roof top temperatures on green roofs and a 10% decrease in interior temperatures in buildings with green roofs. This trend occurs with both watering regimes (heavy and light). This finding suggests that additional irrigation yields no extra heat reduction and energy savings. In order to explain this phenomenon more clearly, we use co-located temperature and

  15. Variations in Vegetation Structure, Species Dominance and Plant Communities in South of the Eastern Desert-Egypt

    Directory of Open Access Journals (Sweden)

    Fawzy SALAMA

    2014-03-01

    Full Text Available For two successive years, the floristic diversity and vegetation composition in the southern part of the Eastern Desert ofEgypt were investigated through four transects (3 crossing the Eastern Desert and one along the Red Sea. The data collected from 142 stands covering the study area included the species composition, functional groups, chorology and occurrences (Qvalues. A total of 94 plant species belonging to 33 different families were recorded, with Asteracea, Zygophyllaceae, Fabaceae,Poaceae, Chenopodiaceae and Brassicaceae as the largest families. Shrubs represented the largest functional group (39.4%, while perennial herbs represented the smallest ones (12.8%. Species occurrence (Q-value revealed that Zilla spinosa, Acacia tortilis subsp raddiana, Morettia philaeana, Caroxylon imbricatum, Zygophyllum coccineum and Citrullus colocynthis had wide ecological range of distribution (dominant species, Q-values 0.2. Saharo-Arabian chorotype was highly represented (72.6 % in the flora of this area, eventually as mono, bi or pluriregional. Classification of the data set yielded 7 vegetation groups included: (A Zilla spinosa-Morettia philaeana, (B1 Zilla spinosa-Citrullus colocynthis-Morettia philaeana, (B2 Zilla spinosa, (C1Zygophyllum album-Tamarix nilotica, (C2 Zygophyllum coccineum-Tamarix nilotica, (D1 Zilla spinosa-Zygophyllum coccineum and (D2 Zilla spinosa-Acacia tortilis subsp. raddiana-Tamarix aphylla-Balanites aegyptiaca. Certain vegetation groups were assigned to one or more transects. Detrended Correspondence Analysis (DCA revealed that electrical conductivity, sodium, potassium, calcium, magnesium, chlorides, moisture content, sulphates, pH, organic matter and gravel were the soil variables that affect the species distribution in this study.

  16. Egg laying site selection by a host plant specialist leaf miner moth at two intra-plant levels in the northern Chilean Atacama Desert

    Directory of Open Access Journals (Sweden)

    José Storey-Palma

    2014-09-01

    Full Text Available Egg laying site selection by a host plant specialist leaf miner moth at two intra-plant levels in the northern Chilean Atacama Desert. The spatial distribution of the immature stages of the leaf miner Angelabella tecomae Vargas & Parra, 2005 was determined at two intra-plant levels (shoot and leaflet on the shrub Tecoma fulva fulva (Cav. D. Don (Bignoniaceae in the Azapa valley, northern Chilean Atacama Desert. An aggregated spatial pattern was detected for all the immature stages along the shoot, with an age dependent relative position: eggs and first instar larvae were clumped at apex; second, third and fourth instar larvae were mostly found at intermediate positions; meanwhile the spinning larva and pupa were clumped at basis. This pattern suggests that the females select new, actively growing leaflets for egg laying. At the leaflet level, the immature stages were found more frequently at underside. Furthermore, survivorship was higher for larvae from underside mines. All these results highlight the importance of an accurate selection of egg laying site in the life history of this highly specialized leaf miner. By contrast, eventual wrong choices in the egg laying site selection may be associated with diminished larval survivorship. The importance of the continuous availability of new plant tissue in this highly human modified arid environment is discussed in relation with the observed patterns.

  17. Investigating water resources of the desert: How isotopes can help

    International Nuclear Information System (INIS)

    Gonfiantini, R.

    1992-01-01

    Newspapers and magazines from time to time write about the enormous reserves of water stored underground in the Sahara, whose rational exploitation would allow the agricultural development of the desert. Although the practical implementation of such projects is rather problematic, it is true that groundwater is relatively abundant under most of the Sahara (as well as in other deserts in the world), but it is seldom easily accessible. What do we really know about these resources of groundwater and how they have accumulated in areas where rainfall is so scarce. What do we know of the hydrological history of the desert. These problems are important for the correct evaluation and use of the groundwater in the desert. Isotope techniques help in their solution, and are described in this document. 6 figs

  18. Investigating water resources of the desert: how isotopes can help

    International Nuclear Information System (INIS)

    Gonfiantini, R.

    1981-01-01

    Newspapers and magazines from time to time write about the enormous reserves of water stored underground in the Sahara, whose rational exploitation would allow the agricultural development of the desert. Although the practical implementation of such projects is rather problematic, it is true that groundwater is relatively abundant under most of the Sahara (as well as in other deserts in the world), but it is seldom easily accessible. What do we really know about these resources of groundwater and how they have accumulated in areas where rainfall is so scarce. What do we know of the hydrological history of the desert. These problems are important for the correct evaluation and use of the groundwater in the desert. Isotope techniques help in their solution, and are described in this document

  19. Vegetation - Anza-Borrego Desert State Park [ds165

    Data.gov (United States)

    California Natural Resource Agency — The Anza Borrego Desert State Park (ABDSP) Vegetation Map depicts vegetation within the Park and its surrounding environment. The map was prepared by the Department...

  20. The potential of energy farming in the southeastern California desert

    Science.gov (United States)

    Lew, V.

    1980-04-01

    The use of energy forms to provide future sources of energy for California is considered. Marginal desert lands in southeastern California are proposed for the siting of energy farms using acacia, eucalyptus, euphorbia, guayule, jojoba, mesquite, or tamarisk.

  1. Modeling Agassiz's Desert Tortoise Population Response to Anthropogenic Stressors

    Science.gov (United States)

    Mojave Desert tortoise (Gopherus agassizii) populations are exposed to a variety of anthropogenic threats, which vary in nature, severity, and frequency. Tortoise management in conservation areas can be compromised when the relative importance of these threats is not well underst...

  2. Camelid genomes reveal evolution and adaptation to desert environments.

    Science.gov (United States)

    Wu, Huiguang; Guang, Xuanmin; Al-Fageeh, Mohamed B; Cao, Junwei; Pan, Shengkai; Zhou, Huanmin; Zhang, Li; Abutarboush, Mohammed H; Xing, Yanping; Xie, Zhiyuan; Alshanqeeti, Ali S; Zhang, Yanru; Yao, Qiulin; Al-Shomrani, Badr M; Zhang, Dong; Li, Jiang; Manee, Manee M; Yang, Zili; Yang, Linfeng; Liu, Yiyi; Zhang, Jilin; Altammami, Musaad A; Wang, Shenyuan; Yu, Lili; Zhang, Wenbin; Liu, Sanyang; Ba, La; Liu, Chunxia; Yang, Xukui; Meng, Fanhua; Wang, Shaowei; Li, Lu; Li, Erli; Li, Xueqiong; Wu, Kaifeng; Zhang, Shu; Wang, Junyi; Yin, Ye; Yang, Huanming; Al-Swailem, Abdulaziz M; Wang, Jun

    2014-10-21

    Bactrian camel (Camelus bactrianus), dromedary (Camelus dromedarius) and alpaca (Vicugna pacos) are economically important livestock. Although the Bactrian camel and dromedary are large, typically arid-desert-adapted mammals, alpacas are adapted to plateaus. Here we present high-quality genome sequences of these three species. Our analysis reveals the demographic history of these species since the Tortonian Stage of the Miocene and uncovers a striking correlation between large fluctuations in population size and geological time boundaries. Comparative genomic analysis reveals complex features related to desert adaptations, including fat and water metabolism, stress responses to heat, aridity, intense ultraviolet radiation and choking dust. Transcriptomic analysis of Bactrian camels further reveals unique osmoregulation, osmoprotection and compensatory mechanisms for water reservation underpinned by high blood glucose levels. We hypothesize that these physiological mechanisms represent kidney evolutionary adaptations to the desert environment. This study advances our understanding of camelid evolution and the adaptation of camels to arid-desert environments.

  3. Desert Peak East Enhanced Geothermal Systems (EGS) Project

    Energy Technology Data Exchange (ETDEWEB)

    Zemach, Ezra [Ormat Technologies Inc., Reno, NV (United States); Drakos, Peter [Ormat Technologies Inc., Reno, NV (United States); Spielman, Paul [Ormat Technologies Inc., Reno, NV (United States); Akerley, John [Ormat Technologies Inc., Reno, NV (United States)

    2013-09-30

    This manuscript is a draft to replaced with a final version at a later date TBD. A summary of activities pertaining to the Desert Peak EGS project including the planning and resulting stimulation activities.

  4. Water appropriation and ecosystem stewardship in the Baja desert

    OpenAIRE

    de las Heras Alejandro; Rodriguez Mario A.; Islas-Espinoza Marina

    2014-01-01

    The UNESCO San Francisco Rock Paintings polygon within El Vizcaino Biosphere Reserve in the Baja California Peninsula derives its moisture from the North American monsoon. There, ranchers have depended on the desert since the 18th century. More recently, the desert has depended on the environmental stewardship of the ranchers who have allayed mining exploitation and archaeological looting. Using a Rapid Assessment Procedure (RAP), climate data, and geographical informa...

  5. MX Siting Investigation. Gravity Survey - Sevier Desert Valley, Utah.

    Science.gov (United States)

    1981-01-24

    Cheyenne, Wyoming. DMAHTC reduces the data to Simple Bouguer Anomaly (see Section A1.4, Appendix Al.0). The Defense Mapping Agency Aerospace Center...Desert Valley, Utah ......... 2 2 Topographic Setting - Sevier Desert Valley, Utah . 3 LIST OF DRAWINGS Drawing Number 1 Complete Bouguer Anomaly...gravity stations were distributed throughout the valley at an approxi- mate interval of 1.4 miles (2.3 km). Drawing 1 is a Complete Bouguer Anomaly

  6. Rapidly restoring biological soil crusts and ecosystem functions in a severely disturbed desert ecosystem.

    Science.gov (United States)

    Chiquoine, Lindsay P; Abella, Scott R; Bowker, Matthew A

    2016-06-01

    Restoring biological soil crusts (biocrusts) in degraded drylands can contribute to recovery of ecosystem functions that have global implications, including erosion resistance and nutrient cycling. To examine techniques for restoring biocrusts, we conducted a replicated, factorial experiment on recently abandoned road surfaces by applying biocrust inoculation (salvaged and stored dry for two years), salvaged topsoil, an abiotic soil amendment (wood shavings), and planting of a dominant perennial shrub (Ambrosia dumosa). Eighteen months after treatments, we measured biocrust abundance and species composition, soil chlorophyll a content and fertility, and soil resistance to erosion. Biocrust addition significantly accelerated biocrust recovery on disturbed soils, including increasing lichen and moss cover and cyanobacteria colonization. Compared to undisturbed controls, inoculated plots had similar lichen and moss composition, recovered 43% of total cyanobacteria density, had similar soil chlorophyll content, and exhibited recovery of soil fertility and soil stability. Inoculation was the only treatment that generated lichen and moss cover. Topsoil application resulted in partial recovery of the cyanobacteria community and soil properties. Compared to untreated disturbed plots, topsoil application without inoculum increased cyanobacteria density by 186% and moderately improved soil chlorophyll and ammonium content and soil stability. Topsoil application produced 22% and 51% of the cyanobacteria density g⁻¹ soil compared to undisturbed and inoculated plots, respectively. Plots not treated with either topsoil or inoculum had significantly lower cyanobacteria density, soil chlorophyll and ammonium concentrations, and significantly higher soil nitrate concentration. Wood shavings and Ambrosia had no influence on biocrust lichen and moss species recovery but did affect cyanobacteria composition and soil fertility. Inoculation of severely disturbed soil with native

  7. Contrasting long-term survival of two outplanted Mojave Desert perennials for post-fire revegetation

    Science.gov (United States)

    Scoles-Sciulla, Sara J.; Defalco, Lesley A.; Esque, Todd C.

    2015-01-01

    Post-fire recovery of arid shrublands is typically slow, and planting greenhouse-raised seedlings may be a means of jump-starting this process. Recovery can be further accelerated by understanding the factors controlling post-planting survival. In fall 2007 and 2009, we outplanted seedlings of two contrasting native evergreen shrubs—fast-growing Nevada jointfir and slow-growing blackbrush—across five burned sites in the Mojave Desert. To increase soil moisture and optimize seedling survival, we experimentally applied and evaluated soil amendments and supplemental watering. We also evaluated two herbicides that reduce competitive invasive annual grasses and two types of herbivore protection. Survival of jointfir outplanted in 2007 was 61% after 43 months, and site largely influenced survival, while herbicide containing imazapic applied more than one year after outplanting reduced survival. Reduced survival of jointfir outplanted in 2009 coincided with delayed seasonal precipitation that intensified foliar damage by small mammals. In contrast, blackbrush survival was 4% after 43 months, and was influenced by site, type of herbivore protection, and greenhouse during the 2007 outplanting, and soil amendment during 2009. Counter to expectations, we found that supplemental watering and soil amendments did not influence long-term survival of either blackbrush or jointfir. Shrub species with rapid growth rates and broad environmental tolerances, such as jointfir, make ideal candidates for outplanting, provided that seedlings are protected from herbivores. Re-introduction of species with slow growth rates and narrow environmental tolerances, such as blackbrush, requires careful consideration to optimize pre- and post-planting conditions.

  8. Low habitat overlap at landscape scale between wild camelids and feral donkeys in the Chilean desert

    Science.gov (United States)

    Malo, Juan E.; González, Benito A.; Mata, Cristina; Vielma, André; Donoso, Denise S.; Fuentes, Nicolás; Estades, Cristián F.

    2016-01-01

    Feral domestic ungulates may compete with the populations of wild herbivores with which they coexist, particularly so in arid regions. The potential competition between wild camelids and feral donkeys at the eastern sector of the Atacama Desert is evaluated in terms of their coincidence or segregation in habitat use and complemented with a comparison of reproductive output (yearling/adult ratio) of vicuña family groups in the proximity vs. distant from donkey observations. Habitat use of wild camelids and donkeys was sampled driving some 1250 km of roads and tracks at the dry and wet seasons. There were 221 vicuñas (Vicugna vicugna) sightings, 77 for donkeys (Equus asinus), 25 for guanacos (Lama guanicoe) and 8 for hybrids between guanacos and domestic llamas (Lama glama), as well as 174 randomly selected control locations. By means of Generalised Discriminant Analysis and Analysis of Variance we show that all ungulates actively select their habitat, with significant differences between use and availability in the area. Donkeys are relatively abundant in comparison with camelids and coincide broadly with both of them across the altitudinal gradient, but they fall between them in local scale habitat selection and do not seem to force their displacement from their preferred habitats. Thus donkeys occur preferentially on slopes with a high cover of tall shrubs, whereas vicuñas use valley bottoms with grass and guanacos the upper slope zones with grass. The potential for competition between donkeys and wild camelids is thus limited and it does not affect the reproductive output of vicuña in this region. Therefore, with the present knowledge we suggest that population control is not currently merited for feral donkeys.

  9. Grassland to shrubland state transitions enhance carbon sequestration in the northern Chihuahuan Desert.

    Science.gov (United States)

    Petrie, M D; Collins, S L; Swann, A M; Ford, P L; Litvak, M E

    2015-03-01

    The replacement of native C4 -dominated grassland by C3 -dominated shrubland is considered an ecological state transition where different ecological communities can exist under similar environmental conditions. These state transitions are occurring globally, and may be exacerbated by climate change. One consequence of the global increase in woody vegetation may be enhanced ecosystem carbon sequestration, although the responses of arid and semiarid ecosystems may be highly variable. During a drier than average period from 2007 to 2011 in the northern Chihuahuan Desert, we found established shrubland to sequester 49 g C m(-2) yr(-1) on average, while nearby native C4 grassland was a net source of 31 g C m(-2) yr(-1) over this same period. Differences in C exchange between these ecosystems were pronounced--grassland had similar productivity compared to shrubland but experienced higher C efflux via ecosystem respiration, while shrubland was a consistent C sink because of a longer growing season and lower ecosystem respiration. At daily timescales, rates of carbon exchange were more sensitive to soil moisture variation in grassland than shrubland, such that grassland had a net uptake of C when wet but lost C when dry. Thus, even under unfavorable, drier than average climate conditions, the state transition from grassland to shrubland resulted in a substantial increase in terrestrial C sequestration. These results illustrate the inherent tradeoffs in quantifying ecosystem services that result from ecological state transitions, such as shrub encroachment. In this case, the deleterious changes to ecosystem services often linked to grassland to shrubland state transitions may at least be partially offset by increased ecosystem carbon sequestration. © 2014 John Wiley & Sons Ltd.

  10. Examining the role of shrub expansion and fire in Arctic plant silica cycling

    Science.gov (United States)

    Carey, J.; Fetcher, N.; Parker, T.; Rocha, A. V.; Tang, J.

    2017-12-01

    All terrestrial plants accumulate silica (SiO2) to some degree, although the amount varies by species type, functional group, and environmental conditions. Silica improves overall plant fitness, providing protection from a variety of biotic and abiotic stressors. Plant silica uptake serves to retain silica in terrestrial landscapes, influencing silica export rates from terrestrial to marine systems. These export rates are important because silica is often the limiting nutrient for primary production by phytoplankton in coastal waters. Understanding how terrestrial plant processes influence silica export rates to oceanic systems is of interest on the global scale, but nowhere is this issue more important than in the Arctic, where marine diatoms rely on silica for production in large numbers and terrestrial runoff largely influences marine biogeochemistry. Moreover, the rapid rate of change occurring in the Arctic makes understanding plant silica dynamics timely, although knowledge of plant silica cycling in the region is in its infancy. This work specifically examines how shrub expansion, permafrost thaw, and fire regimes influence plant silica behavior in the Alaskan Arctic. We quantified silica accumulation in above and belowground portions of three main tundra types found in the Arctic (wet sedge, moist acidic, moist non-acidic tundra) and scaled these values to estimate how shrub expansion alters plant silica accumulation rates. Results indicate that shrub expansion via warming will increase silica storage in Arctic land plants due to the higher biomass associated with shrub tundra, whereas conversion of tussock to wet sedge tundra via permafrost thaw would produce the opposite effect in the terrestrial plant BSi pool. We also examined silica behavior in plants exposed to fire, finding that post-fire growth results in elevated plant silica uptake. Such changes in the size of the terrestrial vegetation silica reservoir could have direct consequences for the rates

  11. Ecosystem response to removal of exotic riparian shrubs and a transition to upland vegetation

    Science.gov (United States)

    Reynolds, Lindsay V.; Cooper, David J.

    2011-01-01

    Understanding plant community change over time is essential for managing important ecosystems such as riparian areas. This study analyzed historic vegetation using soil seed banks and the effects of riparian shrub removal treatments and channel incision on ecosystem and plant community dynamics in Canyon de Chelly National Monument, Arizona. We focused on how seeds, nutrients, and ground water influence the floristic composition of post-treatment vegetation and addressed three questions: (1) How does pre-treatment soil seed bank composition reflect post-treatment vegetation composition? (2) How does shrub removal affect post-treatment riparian vegetation composition, seed rain inputs, and ground water dynamics? and (3) Is available soil nitrogen increased near dead Russian olive plants following removal and does this influence post-treatment vegetation? We analyzed seed bank composition across the study area, analyzed differences in vegetation, ground water levels, and seed rain between control, cut-stump and whole-plant removal areas, and compared soil nitrogen and vegetation near removed Russian olive to areas lacking Russian olive. The soil seed bank contained more riparian plants, more native and fewer exotic plants than the extant vegetation. Both shrub removal methods decreased exotic plant cover, decreased tamarisk and Russian olive seed inputs, and increased native plant cover after 2 years. Neither method increased ground water levels. Soil near dead Russian olive trees indicated a short-term increase in soil nitrogen following plant removal but did not influence vegetation composition compared to areas without Russian olive. Following tamarisk and Russian olive removal, our study sites were colonized by upland plant species. Many western North American rivers have tamarisk and Russian olive on floodplains abandoned by channel incision, river regulation or both. Our results are widely applicable to sites where drying has occurred and vegetation

  12. Nutrient foraging strategies are associated with productivity and population growth in forest shrubs

    Science.gov (United States)

    Stone, Bram W. G.; Faillace, Cara A.; Lafond, Jonathan J.; Baumgarten, Joni M.; Mozdzer, Thomas J.; Dighton, John; Meiners, Scott J.; Grabosky, Jason C.; Ehrenfeld, Joan G.

    2017-01-01

    Background and Aims Temperate deciduous forest understoreys are experiencing widespread changes in community composition, concurrent with increases in rates of nitrogen supply. These shifts in plant abundance may be driven by interspecific differences in nutrient foraging (i.e. conservative vs. acquisitive strategies) and, thus, adaptation to contemporary nutrient loading conditions. This study sought to determine if interspecific differences in nutrient foraging could help explain patterns of shrub success and decline in eastern North American forests. Methods Using plants grown in a common garden, fine root traits associated with nutrient foraging were measured for six shrub species. Traits included the mean and skewness of the root diameter distribution, specific root length (SRL), C:N ratio, root tissue density, arbuscular mycorrhizal colonization and foraging precision. Above- and below-ground productivity were also determined for the same plants, and population growth rates were estimated using data from a long-term study of community dynamics. Root traits were compared among species and associations among root traits, measures of productivity and rates of population growth were evaluated. Key Results Species fell into groups having thick or thin root forms, which correspond to conservative vs. acquisitive nutrient foraging strategies. Interspecific variation in root morphology and tissue construction correlated with measures of productivity and rates of cover expansion. Of the four species with acquisitive traits, three were introduced species that have become invasive in recent decades, and the fourth was a weedy native. In contrast, the two species with conservative traits were historically dominant shrubs that have declined in abundance in eastern North American forests. Conclusions In forest understoreys of eastern North America, elevated nutrient availability may impose a filter on species success in addition to above-ground processes such as herbivory

  13. Reproduction and vegetative growth in the dioecious shrub Acer barbinerve in temperate forests of Northeast China.

    Science.gov (United States)

    Wang, Juan; Zhang, Chunyu; Gadow, Klaus V; Cheng, Yanxia; Zhao, Xiuhai

    2015-06-01

    Trade-off in dioecious plant. The trade-off between reproduction, vegetative growth and maintenance is a major issue in the life history of an organism and a record of the process which is producing the largest possible number of living offspring by natural selection. Dioecious species afford an excellent opportunity for detecting such possible trade-offs in resource allocation. In this study, we selected the dioecious shrub Acer barbinerve to examine possible trade-offs between reproduction and vegetative growth in both genders at different modular levels during three successive years. Reproductive and vegetative biomass values were assessed during successive years to evaluate their intra-annual and inter-annual trade-offs. These trade-offs were examined at shoot, branch and shrub modular levels in Acer barbinerve shrubs. An intra-annual trade-off was detected at the shoot level for both genders in 2011 and 2012. Both males and females showed a negative correlation between reproduction and vegetative growth, but this was more prominent in males. For the females of the species, inter-annual trade-offs were only found at branch and shrub levels. Slightly negative correlations in females were detected between the reproduction in 2012 and the reproduction in the two previous years. The gender ratio was significantly male biased during the three successive years of our investigation. Females had higher mortality rates in the larger diameter classes, both in 2011 and 2012. This study revealed a clear trade-off between reproduction and vegetative growth in Acer barbinerve, but results varied between males and females. The degree of autonomy of the different modular levels may affect the ability to detect such trade-offs.

  14. Seasonal Dynamics of Water Use Strategy of Two Salix Shrubs in Alpine Sandy Land, Tibetan Plateau.

    Science.gov (United States)

    Zhu, Yajuan; Wang, Guojie; Li, Renqiang

    2016-01-01

    Water is a limiting factor for plant growth and vegetation dynamics in alpine sandy land of the Tibetan Plateau, especially with the increasing frequency of extreme precipitation events and drought caused by climate change. Therefore, a relatively stable water source from either deeper soil profiles or ground water is necessary for plant growth. Understanding the water use strategy of dominant species in the alpine sandy land ecosystem is important for vegetative rehabilitation and ecological restoration. The stable isotope methodology of δD, δ18O, and δ13C was used to determine main water source and long-term water use efficiency of Salix psammophila and S. cheilophila, two dominant shrubs on interdune of alpine sandy land in northeastern Tibetan Plateau. The root systems of two Salix shrubs were investigated to determine their distribution pattern. The results showed that S. psammophila and S. cheilophila absorbed soil water at different soil depths or ground water in different seasons, depending on water availability and water use strategy. Salix psammophila used ground water during the growing season and relied on shallow soil water recharged by rain in summer. Salix cheilophila used ground water in spring and summer, but relied on shallow soil water recharged by rain in spring and deep soil water recharged by ground water in fall. The two shrubs had dimorphic root systems, which is coincident with their water use strategy. Higher biomass of fine roots in S. psammophila and longer fine roots in S. cheilophila facilitated to absorb water in deeper soil layers. The long-term water use efficiency of two Salix shrubs increased during the dry season in spring. The long-term water use efficiency was higher in S. psammophila than in S. cheilophila, as the former species is better adapted to semiarid climate of alpine sandy land.

  15. Tolerance of an expanding subarctic shrub, Betula glandulosa, to simulated caribou browsing.

    Directory of Open Access Journals (Sweden)

    Emilie Champagne

    Full Text Available Densification of the shrub layer has been reported in many subarctic regions, raising questions about the implication for large herbivores and their resources. Shrubs can tolerate browsing and their level of tolerance could be affected by browsing and soils productivity, eventually modifying resource availability for the caribou. Our objective was to assess the compensatory growth potential of a subarctic shrub, Betula glandulosa Michx., in relation with caribou browsing and nutriment availability for the plants. We used a simulated browsing (0, 25 and 75% of available shoots and nitrogen-fertilisation (0 and 10 g m(-2 experiment to test two main hypotheses linking tolerance to resource availability, the Compensatory Continuum Hypothesis and the Growth Rate Hypothesis as well as the predictions from the Limiting Resource Model. We seek to explicitly integrate the relative browsing pressure in our predictions since the amount of tissues removed could affect the capacity of long-lived plants to compensate. Birches fully compensated for moderate browsing with an overall leaf biomass similar to unbrowsed birches but undercompensated under heavy browsing pressure. The main mechanism explaining compensation appears to be the conversion of short shoots into long shoots. The leaf area increased under heavy browsing pressure but only led to undercompensation. Fertilisation for two consecutive years did not influence the response of birch, thus we conclude that our results support the LRM hypothesis of equal tolerance under both high and low nitrogen availability. Our results highlight that the potential for compensatory growth in dwarf birch is surpassed under heavy browsing pressure independently of the fertilisation regime. In the context of the worldwide decline in caribou herds, the reduction in browsing pressure could act synergistically with global climate change to promote the current shrub expansion reported in subarctic regions.

  16. Spatial patterns and natural recruitment of native shrubs in a semi-arid sandy land.

    Science.gov (United States)

    Wu, Bo; Yang, Hongxiao

    2013-01-01

    Passive restoration depending on native shrubs is an attractive approach for restoring desertified landscapes in semi-arid sandy regions. We sought to understand the relationships between spatial patterns of native shrubs and their survival ability in sandy environments. Furthermore, we applied our results to better understand whether passive restoration is feasible for desertified landscapes in semi-arid sandy regions. The study was conducted in the semi-arid Mu Us sandy land of northern China with the native shrub Artemisia ordosica. We analyzed population structures and patterns of A. ordosica at the edges and centers of land patches where sand was stabilized by A. ordosica-dominated vegetation. Saplings were more aggregated than adults, and both were more aggregated at the patch edges than at the patch centers. At the patch edges, spatial association of the saplings with the adults was mostly positive at distances 0.3-6.6 m, and turned from positive to neutral, and even negative, at other distances. At the patch centers, the saplings were spaced almost randomly around the adults, and their distances from the adults did not seem to affect their locations. A greater number of A. ordosica individuals emerged at the patch edges than at the patch centers. Such patterns may have resulted from their integrative adjustment to specific conditions of soil water supply and sand drift intensity. These findings suggest that in semi-arid sandy regions, native shrubs that are well-adapted to local environments may serve as low-cost and competent ecological engineers that can promote the passive restoration of surrounding patches of mobile sandy land.

  17. Shrub type dominates the vertical distribution of leaf C : N : P stoichiometry across an extensive altitudinal gradient

    Directory of Open Access Journals (Sweden)

    W. Zhao

    2018-04-01

    Full Text Available Understanding leaf stoichiometric patterns is crucial for improving predictions of plant responses to environmental changes. Leaf stoichiometry of terrestrial ecosystems has been widely investigated along latitudinal and longitudinal gradients. However, very little is known about the vertical distribution of leaf C : N : P and the relative effects of environmental parameters, especially for shrubs. Here, we analyzed the shrub leaf C, N and P patterns in 125 mountainous sites over an extensive altitudinal gradient (523–4685 m on the Tibetan Plateau. Results showed that the shrub leaf C and C : N were 7.3–47.5 % higher than those of other regional and global flora, whereas the leaf N and N : P were 10.2–75.8 % lower. Leaf C increased with rising altitude and decreasing temperature, supporting the physiological acclimation mechanism that high leaf C (e.g., alpine or evergreen shrub could balance the cell osmotic pressure and resist freezing. The largest leaf N and high leaf P occurred in valley region (altitude 1500 m, likely due to the large nutrient leaching from higher elevations, faster litter decomposition and nutrient resorption ability of deciduous broadleaf shrub. Leaf N : P ratio further indicated increasing N limitation at higher altitudes. Interestingly, drought severity was the only climatic factor positively correlated with leaf N and P, which was more appropriate for evaluating the impact of water status than precipitation. Among the shrub ecosystem and functional types (alpine, subalpine, montane, valley, evergreen, deciduous, broadleaf, and conifer, their leaf element contents and responses to environments were remarkably different. Shrub type was the largest contributor to the total variations in leaf stoichiometry, while climate indirectly affected the leaf C : N : P via its interactive effects on shrub type or soil. Collectively, the large heterogeneity in shrub type was the most

  18. Is the herb-shrub composition of veredas (Brazilian palm swamps distinguishable?

    Directory of Open Access Journals (Sweden)

    Diogo Pereira da Silva

    2017-11-01

    Full Text Available ABSTRACT Vereda (Brazilian palm swamp is a poorly known savannic phytophysiognomy that occurs on moist soils with high herb-shrub floristic richness. This study aimed to document the herb-shrub species of veredas of the Estação Ecológica Serra Geral do Tocantins - EESGTO, and compare this flora with other veredas in Brazil. Furthermore, we assessed the similarity of the herb-shrub flora of the studied veredas with that of inventories of other savannas and grasslands in order to evaluate whether veredas possess an exclusive flora. Ordination analysis was performed to understand the floristic relationship among these areas. We recorded 213 species, 105 genera and 49 families at EESGTO, including five new floral records for the Cerrado and 78 for the state of Tocantins. The floristic similarity among veredas at EESGTO and the other sites was low. For all sites, a total of 1,324 species were recorded, of which 342 were unique to veredas and 187 unique to moist grasslands (campos limpos úmidos. After reviewing databases, 14.3 % of these species remained exclusive to veredas and moist grasslands. The ordination analysis indicated a gradient in floristic composition from wet to dry phytophysiognomies. In conclusion, we recognize a flora that distinguishes veredas from other Cerrado phytophysiognomies.

  19. Weak Evidence of Regeneration Habitat but Strong Evidence of Regeneration Niche for a Leguminous Shrub

    Science.gov (United States)

    Delerue, Florian; Gonzalez, Maya; Michalet, Richard; Pellerin, Sylvain; Augusto, Laurent

    2015-01-01

    The identification of an ecological niche specific to the regeneration phase has mobilised significant attention. However, the importance of the regeneration niche concept remains unclear. Our main objective was to study the existence of such a regeneration niche for a leguminous shrub, Ulex europaeus. This study was carried out in southwest France in the context of water and nutrient stresses (mainly phosphorus limitation) due to the presence of nutrient-poor sandy soils. We analysed the regeneration of the species from the germination of seeds and emergence of new seedlings until the seedlings reached young shrub size. Our design included a P fertilisation treatment. We also investigated microsite characteristics (micro-topography and vegetation development) as they can interact with meteorological conditions and determine water availability for seeds and seedlings. We found that P availability controlled seedling growth and the time necessary to reach young shrub size. Water availability appeared to impact the species germination and seedlings survival. We also found that P and water availability depended on the interactions between microsite characteristics and climatic variations. Finally we found evidence that P and water availability are important ecological factors shaping the regeneration niche of the species, but we found weak evidence that any microsite would be appropriate for the regeneration of the species in the long term. Future studies regarding regeneration niches need to distinguish more clearly the ecological factors important for regeneration (the regeneration niche per se) and the physical world where the seedlings appear and develop (the regeneration habitat). PMID:26098877

  20. Weak Evidence of Regeneration Habitat but Strong Evidence of Regeneration Niche for a Leguminous Shrub.

    Directory of Open Access Journals (Sweden)

    Florian Delerue

    Full Text Available The identification of an ecological niche specific to the regeneration phase has mobilised significant attention. However, the importance of the regeneration niche concept remains unclear. Our main objective was to study the existence of such a regeneration niche for a leguminous shrub, Ulex europaeus. This study was carried out in southwest France in the context of water and nutrient stresses (mainly phosphorus limitation due to the presence of nutrient-poor sandy soils. We analysed the regeneration of the species from the germination of seeds and emergence of new seedlings until the seedlings reached young shrub size. Our design included a P fertilisation treatment. We also investigated microsite characteristics (micro-topography and vegetation development as they can interact with meteorological conditions and determine water availability for seeds and seedlings. We found that P availability controlled seedling growth and the time necessary to reach young shrub size. Water availability appeared to impact the species germination and seedlings survival. We also found that P and water availability depended on the interactions between microsite characteristics and climatic variations. Finally we found evidence that P and water availability are important ecological factors shaping the regeneration niche of the species, but we found weak evidence that any microsite would be appropriate for the regeneration of the species in the long term. Future studies regarding regeneration niches need to distinguish more clearly the ecological factors important for regeneration (the regeneration niche per se and the physical world where the seedlings appear and develop (the regeneration habitat.

  1. Convergent production and tolerance among 107 woody species and divergent production between shrubs and trees.

    Science.gov (United States)

    He, Wei-Ming; Sun, Zhen-Kai

    2016-02-08

    Green leaves face two fundamental challenges (i.e., carbon fixation and stress tolerance) during their lifespan. However, the relationships between leaf production potential and leaf tolerance potential have not been explicitly tested with a broad range of plant species in the same environment. To do so, we conducted a field investigation based on 107 woody plants grown in a common garden and complementary laboratory measurements. The values, as measured by a chlorophyll meter, were significantly related to the direct measurements of chlorophyll content on a leaf area basis. Area-based chlorophyll content was positively correlated with root surface area, whole-plant biomass, leaf mass per area (LMA), and force to punch. Additionally, LMA had a positive correlation with force to punch. Shrubs had a higher leaf chlorophyll content than trees; however, shrubs and trees exhibited a similar leaf lifespan, force to punch, and LMA. These findings suggest that the production potential of leaves and their tolerance to stresses may be convergent in woody species and that the leaf production potential may differ between shrubs and trees. This study highlights the possibility that functional convergence and divergence might be linked to long-term selection pressures and genetic constraints.

  2. Growth and defense in deciduous trees and shrubs under UV-B

    International Nuclear Information System (INIS)

    Julkunen-Tiitto, Riitta; Haeggman, Hely; Aphalo, Pedro J.; Lavola, Anu; Tegelberg, Riitta; Veteli, Timo

    2005-01-01

    Reflection by waxy or resinous surface structures and hairs, repair reactions of biomolecules and induction of different sheltering components provide the means of plant protection from harmful solar UV-B radiation. Secondary products, especially flavonoids and phenolic acids as defense components are also important in plant tolerance to UV-B, fulfilling the dual role as screens that reduce UV-B penetration in plant tissues, and as antioxidants protecting from damage by reactive oxidant species. Plants are sensitive to UV-B radiation, and this sensitivity can be even more clone-specific than species-specific. The results available in the literature for deciduous trees and shrubs indicate that UV-B radiation may affect several directions in the interaction of woody species with biotic (herbivores) and abiotic (CO 2 and nutrition) factors depending on the specific interaction in question. These multilevel interactions should have moderate ecological significance via the overall changed performance of woody species and shrubs. - The growth performance of deciduous trees and shrubs under UV-B irradiation is constrained by multilevel interactions with many abiotic and biotic factors

  3. [Ability of typical greenery shrubs of Beijing to adsorb and arrest PM2.5 ].

    Science.gov (United States)

    Liang, Dan; Wang, Bin; Wang, Yun-qi; Zhang, Hui-lan; Yang, Song-nan; Li, Ang

    2014-09-01

    Four typical types of green shrubs of Beijing (Euonymus japonicus, Buxus microphylla, Berberis thunbergii cv. atropurpurea, Taxus cuspidate cv. nana) were selected to study their capacities in adsorbing and arresting PM2.5 using both field observations and air chamber simulations. Concurrently, in order to analyze the pollution characteristics of Beijing in winter and spring, the PM2.5 concentrations of December 2012 to May 2013 were collected. Experimental results showed that: From the gas chamber experiments, the ability to adsorb and arrest PM2.5 was in the order of Berberis thunbergii cv. atropurpurea > Buxus microphylla > Taxus cuspidate cv. nana > Euonymus japonicus, mainly due to the differences in leaf characteristics; Outside measurement results showed that the ability to adsorb and arrest PM2.5 was ranked as Buxus microphylla > Berberis thunbergii cv. atropurpurea > Taxus cuspidate cv. nana > Euonymus japonicus. Chamber simulation and outdoor observation showed that Buxus microphylla and Berberis thunbergii cv. atropurpurea had strong ability to adsorb and arrest PM2.5; Meanwhile, the slight differences between the chamber simulation and outdoor observation results might be related to plant structure. Compared to tree species, the planting condition of shrub species was loose, and it greened quickly; By analyzing the Beijing PM2.5 concentration values in winter and spring, it was found that the PM2.5 concentration was particularly high in the winter of Beijing, and evergreen shrubs maintained the ability to adsorb and arrest PM2.5.

  4. Shrub resprouting response after fuel reduction treatments: comparison of prescribed burning, clearing and mastication.

    Science.gov (United States)

    Fernández, Cristina; Vega, José A; Fonturbel, Teresa

    2013-03-15

    Fuel reduction treatments are commonly used to reduce the risk of severe wildfire. However, more information about the effects on plant resprouting is needed to help land managers select the most appropriate treatment. To address this question, we evaluated the resprouting ability of five shrub species after the application of different types of fuel reduction methods (prescribed burning, clearing and mastication) in two contrasting shrubland areas in northern Spain. The shrub species were Erica australis, Pterospartum tridentatum and Halimium lasianthum spp. alyssoides, Ulex gallii and Erica cinerea. For most of the species under study (E. australis, P. tridentatum, H. lasianthum spp. alyssoides and U. gallii), neither plant mortality nor the number nor length of sprouted shoots per plant differed between treatments, although in E. cinerea the number of shoots was more negatively affected by prescribed burning than by clearing or mastication. The pre-treatment plant size did not affect plant mortality or plant resprouting response, suggesting that this parameter alone is not a good indicator of plant resprouting after fuel reduction treatments. Stem minimum diameter after treatments, a proxy of treatment severity, was not related to plant mortality, number or length of resprouted shoots. The duration of temperatures higher than 300 °C during burning in plant crown had a negative effect on the length of resprouted shoots, only in E. cinerea. The results show that fuel reduction treatments did not prevent shrub response in any case. Some reflections on the applicability of treatments are discussed. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Ecophysiological and anatomical characteristics of the subtropical shrub Zanthoxylum acanthopodium (Rutaceae) in conditions of a temperate continental climate (Serbia)

    DEFF Research Database (Denmark)

    Rakic, Tamara; Sinzar-Sekulic, Jasmina; Filipovic, Biljana

    2009-01-01

    The evergreen shrub Zanthoxylum acanthopodium DC. (Rutaceae), originating from warm temperate and subtropical Asia, has existed successfully in the Jevremovac Botanical Garden in Belgrade for more than 80 years. The seasonal pattern of water management in leaves, electrolyte leakage, essential oil...... composition, and leaf anatomy were examined in order to understand the resistance and viability of this subtropical shrub in the temperate continental climate of Belgrade, Serbia....

  6. The potential for mycobiont sharing between shrubs and seedlings to facilitate tree establishment after wildfire at Alaska arctic treeline.

    Science.gov (United States)

    Hewitt, Rebecca E; Chapin, F Stuart; Hollingsworth, Teresa N; Taylor, D Lee

    2017-07-01

    Root-associated fungi, particularly ectomycorrhizal fungi (EMF), are critical symbionts of all boreal tree species. Although climatically driven increases in wildfire frequency and extent have been hypothesized to increase vegetation transitions from tundra to boreal forest, fire reduces mycorrhizal inoculum. Therefore, changes in mycobiont inoculum may potentially limit tree-seedling establishment beyond current treeline. We investigated whether ectomycorrhizal shrubs that resprout after fire support similar fungal taxa to those that associate with tree seedlings that establish naturally after fire. We then assessed whether mycobiont identity correlates with the biomass or nutrient status of these tree seedlings. The majority of fungal taxa observed on shrub and seedling root systems were EMF, with some dark septate endophytes and ericoid mycorrhizal taxa. Seedlings and adjacent shrubs associated with similar arrays of fungal taxa, and there were strong correlations between the structure of seedling and shrub fungal communities. These results show that resprouting postfire shrubs support fungal taxa compatible with tree seedlings that establish after wildfire. Shrub taxon, distance to the nearest shrub and fire severity influenced the similarity between seedling and shrub fungal communities. Fungal composition was correlated with both foliar C:N ratio and seedling biomass and was one of the strongest explanatory variables predicting seedling biomass. While correlative, these results suggest that mycobionts are important to nutrient acquisition and biomass accrual of naturally establishing tree seedlings at treeline and that mycobiont taxa shared by resprouting postfire vegetation may be a significant source of inoculum for tree-seedling establishment beyond current treeline. © 2017 John Wiley & Sons Ltd.

  7. Ungulate browsing maintains shrub diversity in the absence of episodic disturbance in seasonally-arid conifer forest.

    Directory of Open Access Journals (Sweden)

    Burak K Pekin

    Full Text Available Ungulates exert a strong influence on the composition and diversity of vegetation communities. However, little is known about how ungulate browsing pressure interacts with episodic disturbances such as fire and stand thinning. We assessed shrub responses to variable browsing pressure by cattle and elk in fuels treated (mechanical removal of fuels followed by prescribed burning and non-fuels treated forest sites in northeastern Oregon, US. Seven treatment paddocks were established at each site; three with cattle exclusion and low, moderate and high elk browsing pressure, three with elk exclusion and low, moderate and high cattle browsing pressure, and one with both cattle and elk exclusion. The height, cover and number of stems of each shrub species were recorded at multiple plots within each paddock at the time of establishment and six years later. Changes in shrub species composition over the six year period were explored using multivariate analyses. Generalized Linear Mixed Models were used to determine the effect of browsing pressure on the change in shrub diversity and evenness. Vegetation composition in un-browsed paddocks changed more strongly and in different trajectories than in browsed paddocks at sites that were not fuels treated. In fuels treated sites, changes in composition were minimal for un-browsed paddocks. Shrub diversity and evenness decreased strongly in un-browsed paddocks relative to paddocks with low, moderate and high browsing pressure at non-fuels treated sites, but not at fuels treated sites. These results suggest that in the combined absence of fire, mechanical thinning and ungulate browsing, shrub diversity is reduced due to increased dominance by certain shrub species which are otherwise suppressed by ungulates and/or fuels removal. Accordingly, ungulate browsing, even at low intensities, can be used to suppress dominant shrub species and maintain diversity in the absence of episodic disturbance events.

  8. Shrub growth and expansion in the Arctic tundra: an assessment of controlling factors using an evidence-based approach

    Science.gov (United States)

    Martin, Andrew C.; Jeffers, Elizabeth S.; Petrokofsky, Gillian; Myers-Smith, Isla; Macias-Fauria, Marc

    2017-08-01

    Woody shrubs have increased in biomass and expanded into new areas throughout the Pan-Arctic tundra biome in recent decades, which has been linked to a biome-wide observed increase in productivity. Experimental, observational, and socio-ecological research suggests that air temperature—and to a lesser degree precipitation—trends have been the predominant drivers of this change. However, a progressive decoupling of these drivers from Arctic vegetation productivity has been reported, and since 2010, vegetation productivity has also been declining. We created a protocol to (a) identify the suite of controls that may be operating on shrub growth and expansion, and (b) characterise the evidence base for controls on Arctic shrub growth and expansion. We found evidence for a suite of 23 proximal controls that operate directly on shrub growth and expansion; the evidence base focused predominantly on just four controls (air temperature, soil moisture, herbivory, and snow dynamics). 65% of evidence was generated in the warmest tundra climes, while 24% was from only one of 28 floristic sectors. Temporal limitations beyond 10 years existed for most controls, while the use of space-for-time approaches was high, with 14% of the evidence derived via experimental approaches. The findings suggest the current evidence base is not sufficiently robust or comprehensive at present to answer key questions of Pan-Arctic shrub change. We suggest future directions that could strengthen the evidence, and lead to an understanding of the key mechanisms driving changes in Arctic shrub environments.

  9. Effects of sand burial on the survival and growth of two shrubs dominant in different habitats of northern China.

    Science.gov (United States)

    Qu, Hao; Zhao, Ha-Lin; Zhao, Xue-Yong; Zuo, Xiao-An; Wang, Shao-Kun; Chen, Min

    2017-04-01

    Plants that grow in dune ecosystems always suffer from sand burial. Shrubs play implications on the healthy functioning of dune ecosystems due to control blowing sand. However, the survival and growth responses of shrubs to sand burial remain poorly understood. The survival rate and seedling height of two shrubs (Artemisia halodendron and Lespedeza davurica) along with the soil properties under different burial depths were examined in order to reveal the causing ecophysiological attributes of sand burial on shrubs in the desertified region. It was found that A. halodendron can survive a burial depth of 6 cm greater than its seedling height, which is a dominant shrub in mobile dunes with intense burial, whereas a burial depth equivalent to three fourths of its seedling height is detrimental to L. davurica, which is dominant in fixed dunes with less burial. The reasons for the shrub death under sand burial were associated with the physical barrier to vertical growth and the reduction in photosynthetic area. In conclusion, A. halodendron can facilitate the stabilization of mobile dunes because of their high tolerance to the frequent and intensive sand burial, while L. davurica can be beneficial for the recovery process because of their higher survival rates under shallow burial following restoration of mobile dunes.

  10. Respondence and feedback of modern sand deserts to climate change--A case study in Gurbantunggut Desert

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The research on the respondence and feedback of modern sand deserts to the climate change is an important component part in the studies on the global climate change. Deserts respond to the climate change, meanwhile, they affect the climate with their feedback of peculiar environment during the respondence. Many researches on desert climate have been carried out at home and abroad. However, there is little research on the respondence and feedback of modern fixed, semi-fixed and mobile deserts in arid areas to the climate change, in which the factor analysis as well as the parameter changing effects is especially the difficult problem all along. In this note, the parameters of the respondence and feedback of Gurbantunggut Desert to the climate change are measured and analyzed, some variable parameters of water-heat exchange are obtained, and a numerical model of desertification is developed according to a series of climate change of about 40 years and the variable relations of meteorological and physical features of the sand surface in Gurbantunggut Desert.

  11. [Effects of increased precipitation on the water use of Nitraira tangutorum at southeast edge of Baddain Jaran Desert in China].

    Science.gov (United States)

    Zhu, Ya-Juan; Lu, Qi; Wu, Bo; Li, Yong-Hua; Yao, Bin; Zhang, Jin-Xin

    2013-01-01

    This paper studied the threshold value of the water use of Nitraria tanturorum shrubs at the southeast edge of Baddain Jiran Desert. From the early May to late September in 2009, an irrigation simulating increased precipitation was conducted once every month. Three ratios of increased precipitation (0, 50% and 100%) were designed, based on the local mean annual precipitation (115 mm). On the 1 day before irrigation and the 1, 3 and 7 days after irrigation in May, July and September, the deltaD in the xylem water of N. tangutorum, the soil water at the depths 10 and 30 cm, and the well water and natural rainfall, and the variations of the soil water content were measured. Under natural condition, the N. tangutorum mainly utilize ground water in May and September, and utilize the soil water at the depths 10 and 30 cm in July. After irrigation, the ground water use rate of the N. tangutorum decreased, while the soil water use rate increased. In the treatment of 100% increased precipitation, the deltaD ratio of the water in N. tangutorum xylem was affected significantly, and the water use of the N. tangutorum in May, July and September increased. In the treatment of 50% increased precipitation, the soil water condition in May and July was improved, but the water use rate had little improvement. Only when the increased precipitation reached 100% of the local mean annual precipitation, could the water use rate of the N. tangutorum have an obvious increase.

  12. Localization and Speciation of Arsenic in Soil and Desert Plant Parkinsonia florida using μXRF and μXANES

    Science.gov (United States)

    Castillo-Michel, Hiram; Hernandez-Viezcas, Jose; Dokken, Kenneth M.; Marcus, Matthew A.; Peralta-Videa, Jose R.; Gardea-Torresdey, Jorge L.

    2011-01-01

    Parkinsonia florida is a plant species native to the semi-desert regions of North America. The cultivation characteristics of this shrub/tree suggest that it could be used for phytoremediation purposes in semiarid regions. This work describes, through the use of synchrotron μXRF and μXANES techniques and ICP-OES, the arsenic (As) accumulation and distribution in P. florida plants grown in two soils spiked with As at 20 mg kg-1. Plants grown in a sandy soil accumulated at least twice more As in the roots compared to plants grown in a loamy soil. The lower As accumulation in plants grown in the loamy soil corresponded to a lower concentration of As in the water soluble fraction (WSF) of this soil. LC-ICP-MS speciation analysis showed only As(V) in the WSF from all treatments. In contrast, linear combination XANES speciation analysis from the root tissues showed As mainly present in the reduced As(III) form. Moreover, a fraction of the reduced As was found coordinating to S in a form consistent with As-Cys3. The percentage of As coordinated to sulfur was smaller for plants grown in the loamy soil when compared to the sandy soil. PMID:21842861

  13. The role of salinity tolerance and competition in the distribution of an endangered desert salt marsh endemic

    Science.gov (United States)

    DeFalco, Lesley; Scoles, Sara; Beamguard, Emily R.

    2017-01-01

    Rare plants are often associated with distinctive soil types, and understanding why endemic species occur in unique environments is fundamental for their management. At Ash Meadows National Wildlife Refuge in southern Nevada, USA, we evaluated whether the limited distribution of endangered Amargosa niterwort (Nitrophila mohavensis) is explained by this species’ tolerance of saline soils on salt-encrusted mud flats compared with the broadly distributed desert saltgrass (Distichlis spicata var. stricta). We simultaneously explored whether niterwort distribution is restricted from expanding due to interspecific competition with saltgrass. Surface soils collected throughout niterwort’s range were unexpectedly less saline with lower extractable Na, seasonal electroconductivity, and Na absorption ratio, and higher soil moisture than in adjacent saltgrass or mixed shrub habitats. Comparison of niterwort and saltgrass growth along an experimental salinity gradient in a greenhouse demonstrated lower growth of niterwort at all but the highest NaCl concentrations. Although growth of niterwort ramets was similar when transplanted into both habitats at the refuge below Crystal Reservoir, niterwort reproductive effort was considerably higher in saltgrass compared to its own habitat, implying reallocation of resources to sexual reproduction to maximize fitness when the probability of ramet mortality increases with greater salinity stress. Saltgrass was not a demonstrated direct competitor of niterwort; however, this species is known to increase soil salinity by exuding salt ions and through litterfall. Niterwort conservation will benefit from protecting hydrological processes that reduce salinity stress and preventing saltgrass colonization into niterwort habitat.

  14. Assessment of interspecific interactions in plant communities: an illustration from the cold desert saltbush grasslands of North America

    Science.gov (United States)

    Freeman, Carl D.; Emlen, John M.

    1995-01-01

    Interspecific interactions influence both the productivity and composition of plant communities. Here, we propose new field procedures and analytical approaches for assessing interspecific interactions in nature and apply these procedures to the salt desert shrub grasslands of western Utah. Data were collected from two grazing treatments over a period of 2 years. The proposed equations were fairly consistent across both treatments and years. In addition to illustrating how to assess interspecific interactions within a community, we also develop a new approach for projecting the community composition as a result of some alteration, i.e. increase or decrease in the abundance of one or more species. Results demonstrate competition both within and between plant life-form groups. While introduced annuals were found to depress profoundly the likelihood of perennial plants replacing themselves, perennials had little influence on annuals. Thus, as native perennials die, they are more likely to be replaced by perennials than for the reverse to occur. Our results suggest that unless conditions change, these communities will become increasingly dominated by introduced annuals.

  15. Plant population and habitat characteristics of the endemic Sonoran Desert cactus Peniocereus striatus in Organ Pipe Cactus National Monument, Arizona

    Science.gov (United States)

    Anderson, Greta; Rutman, Sue; Munson, Seth M.

    2010-01-01

    Peniocereus striatus (Brandegee) Buxb. (Cactaceae) is an endemic Sonoran Desert cactus that reaches its northern range limit in southwestern Arizona. One U.S. population occupies a small area of Organ Pipe Cactus National Monument near the U.S./Mexico international boundary, which has been monitored since 1939. An extensive survey conducted in 2002, covering 177 ha, resulted in the discovery of 88 new plants, in addition to the relocation of 57 plants found in previous surveys. Despite potential increases in population size and spatial distribution, mean plant height and number of basal stems has not significantly changed in recent years. Bud scars revealed that a majority of the population was sexually mature. Peniocereus striatus occurrence increased with decreasing slope, spanned every slope aspect, and was highest on rocky soils, but was noticeably low on west and northwest slopes and areas where severe land degradation had previously occurred. Over half of P. striatus plants were nursed by shrubs and subshrubs, while 40% occurred under leguminous trees. A severe frost in January 2002 top-killed 19% of the population, with the greatest damage in drainage bottoms. However, long-term (1944–2002) climate records show that there has been an overall increase in the number of frost free days in the region, which, coupled with land use change, has implications for the future health of this population.

  16. Biology of Pink Hibiscus MealybugMaconellicoccushirsutus (Green on Chinese Hibiscus Shrubs in Khuzestan Province

    Directory of Open Access Journals (Sweden)

    M. Sadat Alizadeh

    2017-12-01

    Full Text Available Introduction: The pink hibiscus mealybug, Maconellicoccushirsutus (Green (Hem.:Pseudococcidae is one of the serious economic pests of agricultural crops in tropical and subtropical regions.This pesthas spread through Asia, Africa, America and Australia, and infests more than 330 host plants which some of them have the important role in theeconomy. This sap-feeding insect secrets honeydew which provides suitablemedium for black sooty moldgrowth. It also releases a toxin during feeding, which results in severe stunting, decline, and deformation of twigs. It has recorded as a pest on different host plants in southern Iranian provinces since the 1990s.In Khuzestan province, it was first observed on Chinese hibiscus shrubs in urban landscapes of Ahvaz in February 2009. The evergreen hibiscus shrub is very common in the urban landscape of warmcities of Khuzestan province. The severity of mealybug damage to hibiscus shrubs causedto becut off in some regions. As there is no data on the biology of M. hirsutus in Iran,in the present study, the biologyof this pestwas investigatedat different temperatures in laboratory conditions as well as its population fluctuations on Chinese hibiscus shrubs in urban landscapes of Ahvaz. Materials and methods: Biology of the pest species was evaluated at five laboratory constant temperatures 15, 20, 25, 30and 35±2°C (65±5% RH and a photoperiod of L: D 14:10 h on Chinese hibiscus leaves in plastic boxes (8×6×2 cm. Number ofM. hirsutusgenerations was also studied in clip cages on hibiscus shrubs in Ahvaz urban landscapes within a year. Population fluctuations of the insect were also investigated on those shrubs in two different regions of Ahvaz for 16 months. For this purpose, random sampling was done on five shrubs in each region bi-weekly. Eight twigs, 5 cm in length, were cut from the upper and lower halves of each shrub quadrant and a number of all mealybug developmental stages per twig were counted and recorded

  17. Altered Plant Litter and Microbial Composition Lead to Topsoil Organic Carbon Loss Over a Shrub-encroachment Gradient in an Inner Mongolia Grassland

    Science.gov (United States)

    Zhou, L.; Li, H.; Shen, H.; Xu, Y.; Wang, Y.; Xing, A.; Fang, J.

    2017-12-01

    Over the past 150 years, shrub encroachment has occurred in arid and semi-arid ecosystems resulting from climate change and increased human disturbance. Previous studies have revealed that shrub encroachment has substantial effects on habitat heterogeneity, aboveground biomass and bulk carbon content of grasslands, thereby affecting the regional carbon balance. Soil organic carbon (SOC) is mainly derived from aboveground litter, root litter and root exudates and is metabolized by microorganisms. The quality and quantity of plant litter together with soil microbial biomass are important drivers of SOC accumulation. However, the mechanisms regulating soil carbon accumulation by the shrub encroachment remain unclear and molecular evidence is particularly lacking. We use the data of the chemical composition of plant tissues and SOC, and the soil microbial communities to identify the effects of shrub encroachment on SOC accumulation in the top layer along a gradient of natural shrub cover in the grasslands of Inner Mongolia. Our finding indicates that nitrogen-rich legume-shrub encroachment led to soil carbon accumulation in the shrub patch, with more extensive carbon loss observed in the grassy matrix, which resulted in an overall carbon loss. In the pure grassland, a higher abundance of cutin and suberin and a lower concentration of free lipids were detected, suggesting the preservation of recalcitrant polymers derived from herb inputs. In the shrub-encroached grasslands, the labile shrub leaves did not decompose alone but were mixed with herb litter to promote the degradation of SOC via the priming of microbial activities. The SOC remained unchanged in the shrub patches with the increasing shrub cover, which might have been caused by the replacement of prior carbon decompositions with the fresh input of shrub leaves. Similarly, the SOC decreased significantly with increasing shrub cover in the grassy matrix, which likely resulted from insufficient fresh plant inputs

  18. Arctic plant ecophysiology and water source utilization in response to altered snow: isotopic (δ18O and δ2H) evidence for meltwater subsidies to deciduous shrubs.

    Science.gov (United States)

    Jespersen, R Gus; Leffler, A Joshua; Oberbauer, Steven F; Welker, Jeffrey M

    2018-06-28

    Warming-linked woody shrub expansion in the Arctic has critical consequences for ecosystem processes and climate feedbacks. The snow-shrub interaction model has been widely implicated in observed Arctic shrub increases, yet equivocal experimental results regarding nutrient-related components of this model have highlighted the need for a consideration of the increased meltwater predicted in expanding shrub stands. We used a 22-year snow manipulation experiment to simultaneously address the unexplored role of snow meltwater in arctic plant ecophysiology and nutrient-related components of the snow-shrub hypothesis. We coupled measurements of leaf-level gas exchange and leaf tissue chemistry (%N and δ 13 C) with an analysis of stable isotopes (δ 18 O and δ 2 H) in soil water, precipitation, and stem water. In deeper snow areas photosynthesis, conductance, and leaf N increased and δ 13 C values decreased in the deciduous shrubs, Betula nana and Salix pulchra, and the graminoid, Eriophorum vaginatum, with the strongest treatment effects observed in deciduous shrubs, consistent with predictions of the snow-shrub hypothesis. We also found that deciduous shrubs, especially S. pulchra, obtained much of their water from snow melt early in the growing season (40-50%), more than either E. vaginatum or the evergreen shrub, Rhododendron tomentosum (Ledum palustre). This result provides the basis for adding a meltwater-focused feedback loop to the snow-shrub interaction model of shrub expansion in the Arctic. Our results highlight the critical role of winter snow in the ecophysiology of Arctic plants, particularly deciduous shrubs, and underline the importance of understanding how global warming will affect the Arctic winter snowpack.

  19. Automated classification of tropical shrub species: a hybrid of leaf shape and machine learning approach

    Directory of Open Access Journals (Sweden)

    Miraemiliana Murat

    2017-09-01

    Full Text Available Plants play a crucial role in foodstuff, medicine, industry, and environmental protection. The skill of recognising plants is very important in some applications, including conservation of endangered species and rehabilitation of lands after mining activities. However, it is a difficult task to identify plant species because it requires specialized knowledge. Developing an automated classification system for plant species is necessary and valuable since it can help specialists as well as the public in identifying plant species easily. Shape descriptors were applied on the myDAUN dataset that contains 45 tropical shrub species collected from the University of Malaya (UM, Malaysia. Based on literature review, this is the first study in the development of tropical shrub species image dataset and classification using a hybrid of leaf shape and machine learning approach. Four types of shape descriptors were used in this study namely morphological shape descriptors (MSD, Histogram of Oriented Gradients (HOG, Hu invariant moments (Hu and Zernike moments (ZM. Single descriptor, as well as the combination of hybrid descriptors were tested and compared. The tropical shrub species are classified using six different classifiers, which are artificial neural network (ANN, random forest (RF, support vector machine (SVM, k-nearest neighbour (k-NN, linear discriminant analysis (LDA and directed acyclic graph multiclass least squares twin support vector machine (DAG MLSTSVM. In addition, three types of feature selection methods were tested in the myDAUN dataset, Relief, Correlation-based feature selection (CFS and Pearson’s coefficient correlation (PCC. The well-known Flavia dataset and Swedish Leaf dataset were used as the validation dataset on the proposed methods. The results showed that the hybrid of all descriptors of ANN outperformed the other classifiers with an average classification accuracy of 98.23% for the myDAUN dataset, 95.25% for the Flavia

  20. Closed bioregenerative life support systems: Applicability to hot deserts

    Science.gov (United States)

    Polyakov, Yuriy S.; Musaev, Ibrahim; Polyakov, Sergey V.

    2010-09-01

    Water scarcity in hot deserts, which cover about one-fifth of the Earth's land area, along with rapid expansion of hot deserts into arable lands is one of the key global environmental problems. As hot deserts are extreme habitats characterized by the availability of solar energy with a nearly complete absence of organic life and water, space technology achievements in designing closed ecological systems may be applicable to the design of sustainable settlements in the deserts. This review discusses the key space technology findings for closed biogenerative life support systems (CBLSS), which can simultaneously produce food, water, nutrients, fertilizers, process wastes, and revitalize air, that can be applied to hot deserts. Among them are the closed cycle of water and the acceleration of the cycling times of carbon, biogenic compounds, and nutrients by adjusting the levels of light intensity, temperature, carbon dioxide, and air velocity over plant canopies. Enhanced growth of algae and duckweed at higher levels of carbon dioxide and light intensity can be important to provide complete water recycling and augment biomass production. The production of fertilizers and nutrients can be enhanced by applying the subsurface flow wetland technology and hyper-thermophilic aerobic bacteria for treating liquid and solid wastes. The mathematical models, optimization techniques, and non-invasive measuring techniques developed for CBLSS make it possible to monitor and optimize the performance of such closed ecological systems. The results of long-duration experiments performed in BIOS-3, Biosphere 2, Laboratory Biosphere, and other ground-based closed test facilities suggest that closed water cycle can be achieved in hot-desert bioregenerative systems using the pathways of evapotranspiration, condensation, and biological wastewater treatment technologies. We suggest that the state of the art in the CBLSS design along with the possibility of using direct sunlight for

  1. Status of the Desert Fireball Network

    Science.gov (United States)

    Devillepoix, H. A. R.; Bland, P. A.; Towner, M. C.; Cupák, M.; Sansom, E. K.; Jansen-Sturgeon, T.; Howie, R. M.; Paxman, J.; Hartig, B. A. D.

    2016-01-01

    A meteorite fall precisely observed from multiple locations allows us to track the object back to the region of the Solar System it came from, and sometimes link it with a parent body, providing context information that helps trace the history of the Solar System. The Desert Fireball Network (DFN) is built in arid areas of Australia: its observatories get favorable observing conditions, and meteorite recovery is eased thanks to the mostly featureless terrain. After the successful recovery of two meteorites with 4 film cameras, the DFN has now switched to a digital network, operating 51 cameras, covering 2.5 million km2 of double station triangulable area. Mostly made of off-the-shelf components, the new observatories are cost effective while maintaining high imaging performance. To process the data (~70TB/month), a significant effort has been put to writing an automated reduction pipeline so that all events are reduced with little human intervention. Innovative techniques have been implemented for this purpose: machine learning algorithms for event detection, blind astrometric calibration, and particle filter simulations to estimate both physical properties and state vector of the meteoroid. On 31 December 2015, the first meteorite from the digital systems was recovered: Murrili (the 1.68 kg H5 ordinary chondrite was observed to fall on 27 November 2015). Another 11 events have been flagged as potential meteorites droppers, and are to be searched in the coming months.

  2. Water Sources for Cyanobacteria Below Desert Rocks in the Negev Desert Determined by Conductivity

    Science.gov (United States)

    McKay, Christopher P.

    2016-01-01

    We present year round meteorological and conductivity measurements of colonized hypolithic rocks in the Arava Valley, Negev Desert, Israel. The data indicate that while dew is common in the Negev it is not an important source of moisture for hypolithic organisms at this site. The dominance of cyanobacteria in the hypolithic community are consistent with predictions that cyanobacteria are confined to habitats supplied by rain. To monitor the presence of liquid water under the small Negev rocks we developed and tested a simple field conductivity system based on two wires placed about 0.5 cm apart. Based on 21 replicates recorded for one year in the Negev we conclude that in natural rains (0.25 mm to 6 mm) the variability between sensor readings is between 20 and 60% decreasing with increasing rain amount. We conclude that the simple small electrical conductivity system described here can be used effectively to monitor liquid water levels in lithic habitats. However, the natural variability of these sensors indicates that several replicates should be deployed. The results and method presented have use in arid desert reclamation programs.

  3. Water sources for cyanobacteria below desert rocks in the Negev Desert determined by conductivity

    Directory of Open Access Journals (Sweden)

    Christopher P. McKay

    2016-04-01

    Full Text Available We present year round meteorological and conductivity measurements of colonized hypolithic rocks in the Arava Valley, Negev Desert, Israel. The data indicate that while dew is common in the Negev it is not an important source of moisture for hypolithic organisms at this site. The dominance of cyanobacteria in the hypolithic community is consistent with predictions that cyanobacteria are confined to habitats supplied by rain. To monitor the presence of liquid water under the small Negev rocks we developed and tested a simple field conductivity system based on two wires placed about 0.5 cm apart. Based on 21 replicates recorded for one year in the Negev we conclude that in natural rains (0.25 mm to 6 mm the variability between sensor readings is between 20 and 60% decreasing with increasing rain amount. We conclude that the simple small electrical conductivity system described here can be used effectively to monitor liquid water levels in lithic habitats. However, the natural variability of these sensors indicates that several replicates should be deployed. The results and method presented have use in arid desert reclamation programs.

  4. Monitoring of desert dune topography by multi angle sensors

    Science.gov (United States)

    Yun, J.; Kim, J.; Choi, Y.; Yun, H.

    2011-12-01

    Nowadays, the sandy desert is rapidly expanding world widely and results in a lot of risks in the socio-econimical aspects as well as the anthropogenic activities. For example, the increasing occurrences of mineral dust storm which presumably originated from the sandy deserts in northwest China become a serious threat in human activities as well as public health over Far East Asian area as the interpretation by the MODIS analysis (Zhang et al., 2007) and the particle trajectory simulation with HYSPLYT (HYbrid Single-Particle Lagrangian Integrated Trajectory) (Kim et al., 2011) identified. Since the sand dune activity has been recognized as an essential indicator of the progressive desertification, it is important to establish the monitoring method for the variations of topographic properties by the dune activities such as local roughness. Thus it will provide the crucial data about the extent and the transition of sandy desert. For example, it is well known the aerodynamic roughness lengths Zo which can be driven from the specialized sensor such as POLDER (POLarization and Directionality of the Earth's Reflectances) is essential to understand desert dune characteristics. However, for the multi temporal observation of dune fields, the availability of data set to extract Zo is limited. Therefore, we employed MISR (Multi angle imaging Spectro Radiometer) image sequence to extract multi angle topographic parameters such as NDAI (Normalized Difference Angular Index) or the variation of radiance with the viewing geometry which are representing the characteristics of target desert topography instead of Zo. In our approach, NDAI were expanded to the all viewing angles and then compared over the target sandy desert and the surrounding land covers. It showed very strong consistencies according to the land cover type and especially over the dynamic dune fields. On the other hands, the variation of NDAIs of sandy desert combining with the metrological observations were

  5. Comparing soil organic carbon dynamics in perennial grasses and shrubs in a saline-alkaline arid region, northwestern China.

    Science.gov (United States)

    Zhou, Yong; Pei, Zhiqin; Su, Jiaqi; Zhang, Jingli; Zheng, Yuanrun; Ni, Jian; Xiao, Chunwang; Wang, Renzhong

    2012-01-01

    Although semi-arid and arid regions account for about 40% of terrestrial surface of the Earth and contain approximately 10% of the global soil organic carbon stock, our understanding of soil organic carbon dynamics in these regions is limited. A field experiment was conducted to compare soil organic carbon dynamics between a perennial grass community dominated by Cleistogenes squarrosa and an adjacent shrub community co-dominated by Reaumuria soongorica and Haloxylon ammodendron, two typical plant life forms in arid ecosystems of saline-alkaline arid regions in northwestern China during the growing season 2010. We found that both fine root biomass and necromass in two life forms varied greatly during the growing season. Annual fine root production in the perennial grasses was 45.6% significantly higher than in the shrubs, and fine root turnover rates were 2.52 and 2.17 yr(-1) for the perennial grasses and the shrubs, respectively. Floor mass was significantly higher in the perennial grasses than in the shrubs due to the decomposition rate of leaf litter in the perennial grasses was 61.8% lower than in the shrubs even though no significance was detected in litterfall production. Soil microbial biomass and activity demonstrated a strong seasonal variation with larger values in May and September and minimum values in the dry month of July. Observed higher soil organic carbon stocks in the perennial grasses (1.32 Kg C m(-2)) than in the shrubs (1.12 Kg C m(-2)) might be attributed to both greater inputs of poor quality litter that is relatively resistant to decay and the lower ability of microorganism to decompose these organic matter. Our results suggest that the perennial grasses might accumulate more soil organic carbon with time than the shrubs because of larger amounts of inputs from litter and slower return of carbon through decomposition.

  6. Different parts, different stories: climate sensitivity of growth is stronger in root collars vs. stems in tundra shrubs.

    Science.gov (United States)

    Ropars, Pascale; Angers-Blondin, Sandra; Gagnon, Marianne; Myers-Smith, Isla H; Lévesque, Esther; Boudreau, Stéphane

    2017-08-01

    Shrub densification has been widely reported across the circumpolar arctic and subarctic biomes in recent years. Long-term analyses based on dendrochronological techniques applied to shrubs have linked this phenomenon to climate change. However, the multi-stemmed structure of shrubs makes them difficult to sample and therefore leads to non-uniform sampling protocols among shrub ecologists, who will favor either root collars or stems to conduct dendrochronological analyses. Through a comparative study of the use of root collars and stems of Betula glandulosa, a common North American shrub species, we evaluated the relative sensitivity of each plant part to climate variables and assessed whether this sensitivity is consistent across three different types of environments in northwestern Québec, Canada (terrace, hilltop and snowbed). We found that root collars had greater sensitivity to climate than stems and that these differences were maintained across the three types of environments. Growth at the root collar was best explained by spring precipitation and summer temperature, whereas stem growth showed weak and inconsistent responses to climate variables. Moreover, sensitivity to climate was not consistent among plant parts, as individuals having climate-sensitive root collars did not tend to have climate-sensitive stems. These differences in sensitivity of shrub parts to climate highlight the complexity of resource allocation in multi-stemmed plants. Whereas stem initiation and growth are driven by microenvironmental variables such as light availability and competition, root collars integrate the growth of all plant parts instead, rendering them less affected by mechanisms such as competition and more responsive to signals of global change. Although further investigations are required to determine the degree to which these findings are generalizable across the tundra biome, our results indicate that consistency and caution in the choice of plant parts are a key

  7. Tree planting in deserts and utilization of atomic energy

    International Nuclear Information System (INIS)

    Hattori, Sadao; Minato, Akio; Hashizume, Kenichi; Handa, Norihiko.

    1991-01-01

    Global environment problems are discussed actively, concretely, those are the warming of the earth, the advance of desertification, the damage due to acid rain, the decrease of tropical forests, the pollution of sea, the depletion of ozone layer and so on. Most of these phenomena advance gradually. However, the advance of desertification is different from other phenomena in that the people in the areas concerned are deprived of their living space and even their lives are threatened at this moment. Desertification is advancing on global scale, and its rate is estimated to be 60,000 km 2 yearly. Especially the area where the advance is remarkable is the southern edge of Sahara Desert, which advances southward at 10-30 km in one year. Recently also in Japan, the interest in the prevention of desertification has become high, and the experiment on tree planting in a desert using a huge desert dome of the Institute of Physical and Chemical Research, 'Desert Aquanet concept' of Shimizu Construction Co., Ltd., 'Sahara green belt project' of the Ministry of International Trade and Industry and so on were published. Water and energy for tree planting in deserts, utilization of atomic energy for seawater desalination and the technical fields to which Japan can contribute are reported. (K.I.)

  8. Water use sources of desert riparian Populus euphratica forests.

    Science.gov (United States)

    Si, Jianhua; Feng, Qi; Cao, Shengkui; Yu, Tengfei; Zhao, Chunyan

    2014-09-01

    Desert riparian forests are the main body of natural oases in the lower reaches of inland rivers; its growth and distribution are closely related to water use sources. However, how does the desert riparian forest obtains a stable water source and which water sources it uses to effectively avoid or overcome water stress to survive? This paper describes an analysis of the water sources, using the stable oxygen isotope technique and the linear mixed model of the isotopic values and of desert riparian Populus euphratica forests growing at sites with different groundwater depths and conditions. The results showed that the main water source of Populus euphratica changes from water in a single soil layer or groundwater to deep subsoil water and groundwater as the depth of groundwater increases. This appears to be an adaptive selection to arid and water-deficient conditions and is a primary reason for the long-term survival of P. euphratica in the desert riparian forest of an extremely arid region. Water contributions from the various soil layers and from groundwater differed and the desert riparian P. euphratica forests in different habitats had dissimilar water use strategies.

  9. Tree planting in deserts and utilization of atomic energy

    Energy Technology Data Exchange (ETDEWEB)

    Hattori, Sadao; Minato, Akio [Central Research Inst. of Electric Power Industry, Tokyo (Japan); Hashizume, Kenichi; Handa, Norihiko

    1991-06-01

    Global environment problems are discussed actively, concretely, those are the warming of the earth, the advance of desertification, the damage due to acid rain, the decrease of tropical forests, the pollution of sea, the depletion of ozone layer and so on. Most of these phenomena advance gradually. However, the advance of desertification is different from other phenomena in that the people in the areas concerned are deprived of their living space and even their lives are threatened at this moment. Desertification is advancing on global scale, and its rate is estimated to be 60,000 km{sup 2} yearly. Especially the area where the advance is remarkable is the southern edge of Sahara Desert, which advances southward at 10-30 km in one year. Recently also in Japan, the interest in the prevention of desertification has become high, and the experiment on tree planting in a desert using a huge desert dome of the Institute of Physical and Chemical Research, 'Desert Aquanet concept' of Shimizu Construction Co., Ltd., 'Sahara green belt project' of the Ministry of International Trade and Industry and so on were published. Water and energy for tree planting in deserts, utilization of atomic energy for seawater desalination and the technical fields to which Japan can contribute are reported. (K.I.).

  10. Production of desert rose seedlings in different potting media

    Directory of Open Access Journals (Sweden)

    Ronan Carlos Colombo

    2017-09-01

    Full Text Available Over the past decade the desert rose received fame in the flower market due to its striking and sculptural forms; however, the commercial production of these species is quite recent and little is known about its crop management, including substrates recommendation. The objectives of this study were to investigate the effect of different substrates on desert rose seed germination and production of its seedlings. Experiment I: freshly harvested seeds of desert rose were sown in different substrates e.g. sand, coconut fiber, semi-composted pine bark, sand + coconut fiber, semi-composted pine bark + sand and coconut fiber + semicomposted pine bark. These substrates were evaluated to study the emergence percentage of seeds, initial growth of seedlings and seedling emergence speed index (ESI. Experiment II: desert rose from the experiment I were transferred to plastic pots filled with the same substrates as in experiment I. The pH and electrical conductivity (EC of the substrates were noted every 30 days while the growth parameters of seedlings were recorded after 240 days. Results from experiment I showed higher germination rate and seedling growth in substrates containing semi-composted pine bark. Similarly, in experiment II, better quality seedlings were observed in substrates containing semi-composted pine bark. Thus, for desert rose seed germination and seedling growth, it is recommended to use substrates containing semi-composted pine bark.

  11. Atmospheric Surface Layer Characterization: Preliminary Desert Lapse Rate Study 22-25 August 2000

    National Research Council Canada - National Science Library

    Elliott, Doyle

    2003-01-01

    Results of the August 2000 Desert Lapse Rate (DLR) Experiment are presented. The DLR Experiment was performed to document the night-to-day transition effects on the desert Atmospheric Surface Layer (ASL...

  12. The Ocean deserts:salt budgets of northern subtropical oceans and their

    KAUST Repository

    Carton, Jim

    2011-04-09

    The Ocean deserts: salt budgets of northern subtropical oceans and their relationship to climate variability The high salinity near surface pools of the subtropical oceans are the oceanic deserts, with high levels of evaporation and low levels of precip

  13. Out of the Desert: My Journey from Nomadic Bedouin to the Heart of Global Oil

    KAUST Repository

    Al-Naimi, Ali Ibrahim

    2017-01-01

    Arabian deserts. From his first job as a shepherd boy to his appointment to one of the most powerful political and economic jobs in the world, Out of the Desert charts Al-Naimi's extraordinary rise to power.

  14. X-36 in Flight over Mojave Desert

    Science.gov (United States)

    1997-01-01

    The unusual lines of the X-36 technology demonstrator contrast sharply with the desert floor as the remotely piloted aircraft scoots across the California desert at low altitude during a research flight on October 30, 1997. The NASA/Boeing X-36 Tailless Fighter Agility Research Aircraft program successfully demonstrated the tailless fighter design using advanced technologies to improve the maneuverability and survivability of possible future fighter aircraft. The program met or exceeded all project goals. For 31 flights during 1997 at the Dryden Flight Research Center, Edwards, California, the project team examined the aircraft's agility at low speed / high angles of attack and at high speed / low angles of attack. The aircraft's speed envelope reached up to 206 knots (234 mph). This aircraft was very stable and maneuverable. It handled very well. The X-36 vehicle was designed to fly without the traditional tail surfaces common on most aircraft. Instead, a canard forward of the wing was used as well as split ailerons and an advanced thrust-vectoring nozzle for directional control. The X-36 was unstable in both pitch and yaw axes, so an advanced, single-channel digital fly-by-wire control system (developed with some commercially available components) was put in place to stabilize the aircraft. Using a video camera mounted in the nose of the aircraft and an onboard microphone, the X-36 was remotely controlled by a pilot in a ground station virtual cockpit. A standard fighter-type head-up display (HUD) and a moving-map representation of the vehicle's position within the range in which it flew provided excellent situational awareness for the pilot. This pilot-in-the-loop approach eliminated the need for expensive and complex autonomous flight control systems and the risks associated with their inability to deal with unknown or unforeseen phenomena in flight. Fully fueled the X-36 prototype weighed approximately 1,250 pounds. It was 19 feet long and three feet high with

  15. Cryophenomena in the Cold Desert of Atacama

    Science.gov (United States)

    Buchroithner, Dr.; Trombotto, Dr.

    2012-04-01

    The study area of the Valle de Barrancas Blancas in the High Atacama Andes of Chile (68°39' W, 27°02' S), a kind of Patagonian "bajo sin salida", shows well preserved landforms resulting from a combination of slope, eolian, lacustrine/litoral, fluvial, glacial and periglacial regimes. They permit the reconstruction of geomorphological processes within this isolated catchment of approximately 160 km2. The mean annual air temperature varies between -2 and -4 °C and the precipitation is approximately 150 mm/a. Snowfall is frequent but the snow is quickly sublimated, redeposited and/or covered by cryosediments, i.e. mainly pumice pebbles. Water bodies present icings, even in summer. Regarding its climatic conditions the study area represents an extremely cold desertic region. Extremophile microfauna was also found. The area displays both in situ mountain permafrost and creeping permafrost. The active layer is 30 to 45 cm thick. It is a periglacial macro-environment where interdependent processes, and not only cryogenic processes but also erosion and eolian deposition and the action of fluvial washout mainly caused by precipitation, accumulation, retransportation/redeposition and melting of snow, play an important role. The cryogenic geomorphology of the Valle de Barrancas Blancas is varied and contains microforms such as patterned ground and microforms caused by cryoturbation, as well as mesoforms like rockglaciers and cryoplanation surfaces. Slopes are strongly affected by gelifluction. New cryoforms in South America and in the Southern Hemisphere like the Atacama Pingo (Pingo atacamensis) and Permafrosted Dunes ("Dunas heladas") were found. Intense niveo-eolian processes participate in the erosion of preexisting landforms, in the formation of subterraneous ice layers, and the retransportation/redeposition of snow and sediments. Studies of this periglacial environment are crucial for the understanding of Tundrean paleoenvironments and Martian conditions.

  16. Condition-dependent clutch desertion in Great Tit (Parus major) females subjected to human disturbance

    OpenAIRE

    2011-01-01

    Abstract Nest desertion behaviour in relation to body condition and timing of breeding was studied in Great Tit (Parus major) females during two breeding seasons. Desertion, most likely unintentionally provoked by catching females during the incubation period, occurred at a very high rate with 41.2 and 25.6% of deserted first clutches in the two study years. The association between desertion probability, body condition (index calculated as residuals from the regression of body mass...

  17. Analysis of postfire vegetation dynamics of Mediterranean shrub species based on terrestrial and NDVI data.

    Science.gov (United States)

    Hernández-Clemente, Rocío; Cerrillo, R M Navarro; Hernández-Bermejo, J E; Royo, S Escuin; Kasimis, N A

    2009-05-01

    The present study offers an analysis of regeneration patterns and diversity dynamics after a wildfire, which occurred in 1993 and affected about 7000 ha in southern Spain. The aim of the work was to analyze the rule in the succession of shrub species after fire, relating it to the changes registered in the Normalized Difference Vegetation Index (NDVI). Fractional vegetation cover was recorded from permanent plots in 2000 and 2005. NDVI data related to each time were obtained from Landsat images. Both data sets, from fieldwork and remote sensing, were analyzed through statistical and quantitative analyses and then correlated. Results have permitted the description of the change in plant cover and species composition on a global and plot scale. It can be affirmed that, from the seventh to the twelfth year after the fire, the floristic composition within the burned area remained unchanged at a global level. However, on a smaller scale (plot level), the major shrub species, Ulex parviflorus, Rosmarinus officinalis, and Cistus clusii, underwent significant changes. The regeneration dynamics established by these species conditioned plant species composition and, consequently, diversity indexes such as Shannon (H) and Simpson (D). The changes recorded in the NDVI values corresponding to the surveyed plots were highly correlated with those found in the regrowth of the main species. Areas dominated by U. parviflorus in a senile phase were related to a decrease in NDVI values and an increase in the number of species. This result describes the successional dynamics; the dryness of the main colonizer shrub species is allowing the regrowth and re-establishment of other species. Within the study area, NDVI shows sensitivity to postfire plant cover changes and indirectly expresses the diversity dynamics.

  18. Photosynthetic response of Eriophorum vaginatum to in situ shrub shading in tussock tundra of northern Alaska

    Science.gov (United States)

    Anderson-Smith, A.; Pattison, R.; Sullivan, P.; Welker, J. M.

    2009-12-01

    Eriophorum vaginatum (Cotton Grass) is an important component of moist acidic tussock tundra, a plant community that appears to be undergoing changes in species composition associated with climate warming. This species is one of the most abundant in the arctic tundra, and provides important forage for caribou in their calving grounds on the Arctic Coastal Plain and along their migratory route through the foothills of Alaska. Recently, remote sensing data, repeat photography and plot-level measurements have indicated that shrub abundance is increasing while Eriophorum abundance is either constant or decreasing. One possible explanation for the reduction of Eriophorum while Betula nana is increasing, is that lower light levels in the taller Betula canopy may be constraining Eriophorum photosynthesis and subsequently reducing plant growth. This study measured the effect of shading on the light response of Eriphorum leaf photosynthesis in four different sites near Toolik Lake Alaska during the summer of 2009. Measurements were taken in: 1) a shrub patch within the drift zone of the ITEX long term snow fence experiment, 2) an LTER shade house (50% shading) built in 1989, 3) water track site 1 and water track site 2 (i.e. control areas with no experimental manipulations) Average photosynthetic rates for Eriophorum at a light level of 800 PAR varied from 3.8 to 10.9 umol m-2 s-1 and were not significantly different in shaded and unshaded areas. This study indicates that shading by shrubs does not appear to be altering the light response of Eriophorum nor does long-term shading by itself eliminate Eriophorum from the community. An alternative explanation for the decline of Eriophorum while Betula increases in abundance under changing climates may be related to plant and soil mineral nutrition, plant water relations or biotic processes involving herbivores.

  19. Analysis of Postfire Vegetation Dynamics of Mediterranean Shrub Species Based on Terrestrial and NDVI Data

    Science.gov (United States)

    Hernández-Clemente, Rocío; Navarro Cerrillo, R. M.; Hernández-Bermejo, J. E.; Escuin Royo, S.; Kasimis, N. A.

    2009-05-01

    The present study offers an analysis of regeneration patterns and diversity dynamics after a wildfire, which occurred in 1993 and affected about 7000 ha in southern Spain. The aim of the work was to analyze the rule in the succession of shrub species after fire, relating it to the changes registered in the Normalized Difference Vegetation Index (NDVI). Fractional vegetation cover was recorded from permanent plots in 2000 and 2005. NDVI data related to each time were obtained from Landsat images. Both data sets, from fieldwork and remote sensing, were analyzed through statistical and quantitative analyses and then correlated. Results have permitted the description of the change in plant cover and species composition on a global and plot scale. It can be affirmed that, from the seventh to the twelfth year after the fire, the floristic composition within the burned area remained unchanged at a global level. However, on a smaller scale (plot level), the major shrub species, Ulex parviflorus, Rosmarinus officinalis, and Cistus clusii, underwent significant changes. The regeneration dynamics established by these species conditioned plant species composition and, consequently, diversity indexes such as Shannon (H) and Simpson (D). The changes recorded in the NDVI values corresponding to the surveyed plots were highly correlated with those found in the regrowth of the main species. Areas dominated by U. parviflorus in a senile phase were related to a decrease in NDVI values and an increase in the number of species. This result describes the successional dynamics; the dryness of the main colonizer shrub species is allowing the regrowth and re-establishment of other species. Within the study area, NDVI shows sensitivity to postfire plant cover changes and indirectly expresses the diversity dynamics.

  20. Bird communities of the arctic shrub tundra of Yamal: habitat specialists and generalists.

    Directory of Open Access Journals (Sweden)

    Vasiliy Sokolov

    Full Text Available BACKGROUND: The ratio of habitat generalists to specialists in birds has been suggested as a good indicator of ecosystem changes due to e.g. climate change and other anthropogenic perturbations. Most studies focusing on this functional component of biodiversity originate, however, from temperate regions. The Eurasian Arctic tundra is currently experiencing an unprecedented combination of climate change, change in grazing pressure by domestic reindeer and growing human activity. METHODOLOGY/PRINCIPAL FINDINGS: Here we monitored bird communities in a tundra landscape harbouring shrub and open habitats in order to analyse bird habitat relationships and quantify habitat specialization. We used ordination methods to analyse habitat associations and estimated the proportions of specialists in each of the main habitats. Correspondence Analysis identified three main bird communities, inhabiting upland, lowland and dense willow shrubs. We documented a stable structure of communities despite large multiannual variations of bird density (from 90 to 175 pairs/km(2. Willow shrub thickets were a hotspot for bird density, but not for species richness. The thickets hosted many specialized species whose main distribution area was south of the tundra. CONCLUSION/SIGNIFICANCE: If current arctic changes result in a shrubification of the landscape as many studies suggested, we would expect an increase in the overall bird abundance together with an increase of local specialists, since they are associated with willow thickets. The majority of these species have a southern origin and their increase in abundance would represent a strengthening of the boreal component in the southern tundra, perhaps at the expense of species typical of the subarctic zone, which appear to be generalists within this zone.