CFD simulations in the nuclear containment using the DES turbulence models
International Nuclear Information System (INIS)
Ding, Peng; Chen, Meilan; Li, Wanai; Liu, Yulan; Wang, Biao
2015-01-01
Highlights: • The k-ε based DES model is used in the nuclear containment simulation. • The comparison of results between different turbulent models is obtained. • The superiority of DES models is analyzed. • The computational efficiency with the DES turbulence models is explained. - Abstract: Different species of gases would be released into the containment and cause unpredicted disasters during the nuclear severe accidents. It is important to accurately predict the transportation and stratification phenomena of these gas mixtures. CFD simulations of these thermal hydraulic issues in nuclear containment are investigated in this paper. The main work is to study the influence of turbulence model on the calculation of gas transportation and heat transfer. The k-ε based DES and other frequently used turbulence models are used in the steam and helium release simulation in THAI series experiment. This paper will show the superiority of the DES turbulence model in terms of computational efficiency and accuracy with the experimental results, and analyze the necessities of DES model to simulate the large-scale containment flows with both laminar and turbulence regions
CFD simulations in the nuclear containment using the DES turbulence models
Energy Technology Data Exchange (ETDEWEB)
Ding, Peng [School of Engineering, Sun Yat-Sen University, Guangzhou (China); Chen, Meilan [China Nuclear Power Technology Research Institute, Shenzhen (China); Li, Wanai, E-mail: liwai@mail.sysu.edu.cn [Sino-French Institute of Nuclear Engineering & Technology, Sun Yat-Sen University, Guangzhou (China); Liu, Yulan [School of Engineering, Sun Yat-Sen University, Guangzhou (China); Wang, Biao [Sino-French Institute of Nuclear Engineering & Technology, Sun Yat-Sen University, Guangzhou (China)
2015-06-15
Highlights: • The k-ε based DES model is used in the nuclear containment simulation. • The comparison of results between different turbulent models is obtained. • The superiority of DES models is analyzed. • The computational efficiency with the DES turbulence models is explained. - Abstract: Different species of gases would be released into the containment and cause unpredicted disasters during the nuclear severe accidents. It is important to accurately predict the transportation and stratification phenomena of these gas mixtures. CFD simulations of these thermal hydraulic issues in nuclear containment are investigated in this paper. The main work is to study the influence of turbulence model on the calculation of gas transportation and heat transfer. The k-ε based DES and other frequently used turbulence models are used in the steam and helium release simulation in THAI series experiment. This paper will show the superiority of the DES turbulence model in terms of computational efficiency and accuracy with the experimental results, and analyze the necessities of DES model to simulate the large-scale containment flows with both laminar and turbulence regions.
3D CFD computations of trasitional flows using DES and a correlation based transition model
DEFF Research Database (Denmark)
Sørensen, Niels N.; Bechmann, Andreas; Zahle, Frederik
2011-01-01
a circular cylinder from Re = 10 to 1 × 106 reproducing the cylinder drag crisis. The computations show good quantitative and qualitative agreement with the behaviour seen in experiments. This case shows that the methodology performs smoothly from the laminar cases at low Re to the turbulent cases at high Re......The present article describes the application of the correlation based transition model of Menter et al. in combination with the Detached Eddy Simulation (DES) methodology to two cases with large degree of flow separation typically considered difficult to compute. Firstly, the flow is computed over...
U.S. Environmental Protection Agency — Data associated with the development of the CFD model for spore deposition in respiratory systems of rabbits and humans. This dataset is associated with the...
Energy Technology Data Exchange (ETDEWEB)
Bellivier, A.
2004-05-15
For 3D modelling of thermo-aeraulics in building using field codes, it is necessary to reduce the computing time in order to model increasingly larger volumes. The solution suggested in this study is to couple two modelling: a zonal approach and a CFD approach. The first part of the work that was carried out is the setting of a simplified CFD modelling. We propose rules for use of coarse grids, a constant effective viscosity law and adapted coefficients for heat exchange in the framework of building thermo-aeraulics. The second part of this work concerns the creation of fluid Macro-Elements and their coupling with a calculation of CFD finite volume type. Depending on the boundary conditions of the problem, a local description of the driving flow is proposed via the installation and use of semi-empirical evolution laws. The Macro-Elements is then inserted in CFD computation: the values of velocity calculated by the evolution laws are imposed on the CFD cells corresponding to the Macro-Element. We use these two approaches on five cases representative of thermo-aeraulics in buildings. The results are compared with experimental data and with traditional RANS simulations. We highlight the significant gain of time that our approach allows while preserving a good quality of numerical results. (author)
Energy Technology Data Exchange (ETDEWEB)
Lee, S.
2011-05-05
The Savannah River Remediation (SRR) Organization requested that Savannah River National Laboratory (SRNL) develop a Computational Fluid Dynamics (CFD) method to mix and blend the miscible contents of the blend tanks to ensure the contents are properly blended before they are transferred from the blend tank; such as, Tank 50H, to the Salt Waste Processing Facility (SWPF) feed tank. The work described here consists of two modeling areas. They are the mixing modeling analysis during miscible liquid blending operation, and the flow pattern analysis during transfer operation of the blended liquid. The transient CFD governing equations consisting of three momentum equations, one mass balance, two turbulence transport equations for kinetic energy and dissipation rate, and one species transport were solved by an iterative technique until the species concentrations of tank fluid were in equilibrium. The steady-state flow solutions for the entire tank fluid were used for flow pattern analysis, for velocity scaling analysis, and the initial conditions for transient blending calculations. A series of the modeling calculations were performed to estimate the blending times for various jet flow conditions, and to investigate the impact of the cooling coils on the blending time of the tank contents. The modeling results were benchmarked against the pilot scale test results. All of the flow and mixing models were performed with the nozzles installed at the mid-elevation, and parallel to the tank wall. From the CFD modeling calculations, the main results are summarized as follows: (1) The benchmark analyses for the CFD flow velocity and blending models demonstrate their consistency with Engineering Development Laboratory (EDL) and literature test results in terms of local velocity measurements and experimental observations. Thus, an application of the established criterion to SRS full scale tank will provide a better, physically-based estimate of the required mixing time, and
Energy Technology Data Exchange (ETDEWEB)
Soerensen, Niels N.
2009-07-15
The report describes the application of the correlation based transition model of Menter et. al. [1, 2] to the cylinder drag crisis and the stalled flow over an DU-96-W-351 airfoil using the DES methodology. When predicting the flow over airfoils and rotors, the laminar-turbulent transition process can be important for the aerodynamic performance. Today, the most widespread approach is to use fully turbulent computations, where the transitional process is ignored and the entire boundary layer on the wings or airfoils is handled by the turbulence model. The correlation based transition model has lately shown promising results, and the present paper describes the application of the model to predict the drag and shedding frequency for flow around a cylinder from sub to super-critical Reynolds numbers. Additionally, the model is applied to the flow around the DU-96 airfoil, at high angles of attack. (au)
Efficient Turbulence Modeling for CFD Wake Simulations
DEFF Research Database (Denmark)
van der Laan, Paul
Wind turbine wakes can cause 10-20% annual energy losses in wind farms, and wake turbulence can decrease the lifetime of wind turbine blades. One way of estimating these effects is the use of computational fluid dynamics (CFD) to simulate wind turbines wakes in the atmospheric boundary layer. Since...... this flow is in the high Reynolds number regime, it is mainly dictated by turbulence. As a result, the turbulence modeling in CFD dominates the wake characteristics, especially in Reynolds-averaged Navier-Stokes (RANS). The present work is dedicated to study and develop RANS-based turbulence models...... verified with a grid dependency study. With respect to the standard k-ε EVM, the k-ε- fp EVM compares better with measurements of the velocity deficit, especially in the near wake, which translates to improved power deficits of the first wind turbines in a row. When the CFD metholody is applied to a large...
Isothermal coarse mixing: experimental and CFD modelling
International Nuclear Information System (INIS)
Gilbertson, M.A.; Kenning, D.B.R.; Hall, R.W.
1992-01-01
A plane, two-dimensional flow apparatus has been built which uses a jet of solid 6mm diameter balls to model a jet of molten drops falling into a tank of water to study premixing prior to a vapour explosion. Preliminary experiments with unheated stainless steel balls are here compared with computational fluid dynamics (CFD) calculations by the code CHYMES. (6 figures) (Author)
Tip studies using CFD and comparison with tip loss models
DEFF Research Database (Denmark)
Hansen, Martin Otto Laver; Johansen, J.
2004-01-01
The flow past a rotating LM8.2 blade equipped with two different tips are computed using CFD. The different tip flows are analysed and a comparison with two different tip loss models is made. Keywords: tip flow, aerodynamics, CFD......The flow past a rotating LM8.2 blade equipped with two different tips are computed using CFD. The different tip flows are analysed and a comparison with two different tip loss models is made. Keywords: tip flow, aerodynamics, CFD...
Linearised CFD Models for Wakes
DEFF Research Database (Denmark)
Ott, Søren; Berg, Jacob; Nielsen, Morten
This report describes the development of a fast and reasonably accurate model for the prediction of energy production in oshore wind farms taking wake eects into account. The model has been implemented as a windows application called Fuga which can run in batch mode or as a graphical user interface....... Fuga is brie y described. The model is based on alinearization technique which is described in some detail, and linearized, governing equations are derived and written in a standard form based on a mixed{spectral formulation. A new solution method is used to solve the equations which involves intensive...... use of look{up tables for storage of intermediate results. Due to the linearity of the model, multiple wakes from many turbines can be constructed from the wake of a single, solitary turbine. These are in turn constructed from Fourier components by a fast Fourier integral transform of results derived...
Linearised CFD models for wakes
Energy Technology Data Exchange (ETDEWEB)
Ott, S.; Berg, J.; Nielsen, Morten
2011-12-15
This report describes the development of a fast and reasonably accurate model for the prediction of energy production in offshore wind farms taking wake effects into account. The model has been implemented as a windows application called Fuga which can run in batch mode or as a graphical user interface. Fuga is briefly described. The model is based on a linearization technique which is described in some detail, and linearized, governing equations are derived and written in a standard form based on a mixed-spectral formulation. A new solution method is used to solve the equations which involves intensive use of look-up tables for storage of intermediate results. Due to the linearity of the model, multiple wakes from many turbines can be constructed from the wake of a single, solitary turbine. These are in turn constructed from Fourier components by a fast Fourier integral transform of results derived from generic look-up tables. Three different models, based on three different closures, are examined: 1) the 'simple closure' using an unperturbed eddy viscosity kucentre dotz. 2) the mixing length closure. 3) the E-epsilon closure. Model results are evaluated against offshore wind farm production data from Horns Rev I and the Nysted wind farm, and a comparison with direct wake measurements in an onshore turbine (Nibe B) is also made. A very satisfactory agreement with data is found for the simple closure. The exception is the near wake, just behind the rotor, where all three linearized models fail. The mixing length closure underestimates wake effects in all cases. The E-epsilon closure overestimates wake losses in the offshore farms while it predicts a too shallow and too wide the wake in the onshore case. The simple closure performs distinctly better than the other two. Wind speed data from the the Horns rev met masts are used to further validate Fuga results with the 'simple' closure. Finally, Roedsand 1 and 2 are used as an example to illustrate
CFD modeling of the IRIS pressurizer dynamic
International Nuclear Information System (INIS)
Sanz, Ronny R.; Montesinos, Maria E.; Garcia, Carlos; Bueno, Elizabeth D.; Mazaira, Leorlen R.; Bezerra, Jair L.; Lira, Carlos A.B. Oliveira
2015-01-01
Integral layout of nuclear reactor IRIS makes possible the elimination of the spray system, which is usually used to mitigate in-surge transient and also help to Boron homogenization. The study of transients with deficiencies in the Boron homogenization in this technology is very important, because they can cause disturbances in the reactor power and insert a strong reactivity in the core. The detailed knowledge of the behavior of multiphase multicomponent flows is challenging due to the complex phenomena and interactions at the interface. In this context, the CFD modeling is employed in the design of equipment in the nuclear industry as it allows predicting accidents or predicting their performance in dissimilar applications. The aim of the present research is to model the IRIS pressurizer's dynamic using the commercial CFD code CFX. A symmetric tri dimensional model equivalent to 1/8 of the total geometry was adopted to reduce mesh size and minimize processing time. The model considers the coexistence of four phases and also takes into account the heat losses. The relationships for interfacial mass, energy, and momentum transport are programmed and incorporated into CFX. Moreover, two subdomains and several additional variables are defined to monitoring the boron dilution sequences and condensation-evaporation rates in different control volumes. For transient states a non - equilibrium stratification in the pressurizer is considered. This paper discusses the model developed and the behavior of the system for representative transients sequences. The results of analyzed transients of IRIS can be applied to the design of pressurizer internal structures and components. (author)
CFD modeling of the IRIS pressurizer dynamic
Energy Technology Data Exchange (ETDEWEB)
Sanz, Ronny R.; Montesinos, Maria E.; Garcia, Carlos; Bueno, Elizabeth D.; Mazaira, Leorlen R., E-mail: rsanz@instec.cu, E-mail: mmontesi@instec.cu, E-mail: cgh@instec.cu, E-mail: leored1984@gmail.com [Instituto Superior de Tecnologias y Ciencias Aplicadas (InSTEC), La Habana (Cuba); Bezerra, Jair L.; Lira, Carlos A.B. Oliveira, E-mail: jair.lima@ufpe.br, E-mail: cabol@ufpe.br [Universida Federal de Pernambuco (UFPE), Recife, PE (Brazil). Dept. de Energia Nuclear
2015-07-01
Integral layout of nuclear reactor IRIS makes possible the elimination of the spray system, which is usually used to mitigate in-surge transient and also help to Boron homogenization. The study of transients with deficiencies in the Boron homogenization in this technology is very important, because they can cause disturbances in the reactor power and insert a strong reactivity in the core. The detailed knowledge of the behavior of multiphase multicomponent flows is challenging due to the complex phenomena and interactions at the interface. In this context, the CFD modeling is employed in the design of equipment in the nuclear industry as it allows predicting accidents or predicting their performance in dissimilar applications. The aim of the present research is to model the IRIS pressurizer's dynamic using the commercial CFD code CFX. A symmetric tri dimensional model equivalent to 1/8 of the total geometry was adopted to reduce mesh size and minimize processing time. The model considers the coexistence of four phases and also takes into account the heat losses. The relationships for interfacial mass, energy, and momentum transport are programmed and incorporated into CFX. Moreover, two subdomains and several additional variables are defined to monitoring the boron dilution sequences and condensation-evaporation rates in different control volumes. For transient states a non - equilibrium stratification in the pressurizer is considered. This paper discusses the model developed and the behavior of the system for representative transients sequences. The results of analyzed transients of IRIS can be applied to the design of pressurizer internal structures and components. (author)
Modelling of Air Flow trough a Slatted Floor by CFD
DEFF Research Database (Denmark)
Svidt, Kjeld; Bjerg, Bjarne; Morsing, Svend
In this paper two different CFD-approaches are investigated to model the airflow through a slatted floor. Experiments are carried out in a full-scale test room. The computer simulations are carried out with the CFD-code FLOVENT, which solves the time-averaged Navier-Stokes equations by use of the k...
Application of Simple CFD Models in Smoke Ventilation Design
DEFF Research Database (Denmark)
Brohus, Henrik; Nielsen, Peter Vilhelm; la Cour-Harbo, Hans
2004-01-01
The paper examines the possibilities of using simple CFD models in practical smoke ventilation design. The aim is to assess if it is possible with a reasonable accuracy to predict the behaviour of smoke transport in case of a fire. A CFD code mainly applicable for “ordinary” ventilation design...
Modeling Subgrid Scale Droplet Deposition in Multiphase-CFD
Agostinelli, Giulia; Baglietto, Emilio
2017-11-01
The development of first-principle-based constitutive equations for the Eulerian-Eulerian CFD modeling of annular flow is a major priority to extend the applicability of multiphase CFD (M-CFD) across all two-phase flow regimes. Two key mechanisms need to be incorporated in the M-CFD framework, the entrainment of droplets from the liquid film, and their deposition. Here we focus first on the aspect of deposition leveraging a separate effects approach. Current two-field methods in M-CFD do not include appropriate local closures to describe the deposition of droplets in annular flow conditions. As many integral correlations for deposition have been proposed for lumped parameters methods applications, few attempts exist in literature to extend their applicability to CFD simulations. The integral nature of the approach limits its applicability to fully developed flow conditions, without geometrical or flow variations, therefore negating the scope of CFD application. A new approach is proposed here that leverages local quantities to predict the subgrid-scale deposition rate. The methodology is first tested into a three-field approach CFD model.
MODELLING MANTLE TANKS FOR SDHW SYSTEMS USING PIV AND CFD
DEFF Research Database (Denmark)
Shah, Louise Jivan; Morrison, G.L.; Behnia, Masud
1999-01-01
Characteristics of vertical mantle heat exchanger tanks for SDHW systems have been investigated experimentally and theoretically using particle image velocimetry (PIV) and CFD modelling. A glass model of a mantle heat exchanger tank was constructed so that the flow distribution in the mantle could...... be studied using the PIV test facility. Two transient three-dimensional CFD-models of the glass model mantle tank were developed using the CFD-programmes CFX and FLUENT.The experimental results illustrate that the mantle flow structure in the mantle is complicated and the distribution of flow in the mantle...
CFD and FEM modeling of PPOOLEX experiments
Energy Technology Data Exchange (ETDEWEB)
Paettikangas, T.; Niemi, J.; Timperi, A. (VTT Technical Research Centre of Finland (Finland))
2011-01-15
Large-break LOCA experiment performed with the PPOOLEX experimental facility is analysed with CFD calculations. Simulation of the first 100 seconds of the experiment is performed by using the Euler-Euler two-phase model of FLUENT 6.3. In wall condensation, the condensing water forms a film layer on the wall surface, which is modelled by mass transfer from the gas phase to the liquid water phase in the near-wall grid cell. The direct-contact condensation in the wetwell is modelled with simple correlations. The wall condensation and direct-contact condensation models are implemented with user-defined functions in FLUENT. Fluid-Structure Interaction (FSI) calculations of the PPOOLEX experiments and of a realistic BWR containment are also presented. Two-way coupled FSI calculations of the experiments have been numerically unstable with explicit coupling. A linear perturbation method is therefore used for preventing the numerical instability. The method is first validated against numerical data and against the PPOOLEX experiments. Preliminary FSI calculations are then performed for a realistic BWR containment by modeling a sector of the containment and one blowdown pipe. For the BWR containment, one- and two-way coupled calculations as well as calculations with LPM are carried out. (Author)
CFD Modeling and Simulation in Materials Processing 2018
Nastac, Laurentiu; Pericleous, Koulis; Sabau, Adrian S.; Zhang, Lifeng; Thomas, Brian G.
2018-01-01
This book contains the proceedings of the symposium “CFD Modeling and Simulation in Materials Processing” held at the TMS 2018 Annual Meeting & Exhibition in Phoenix, Arizona, USA, March 11–15, 2018. This symposium dealt with computational fluid dynamics (CFD) modeling and simulation of engineering processes. The papers published in this book were requested from researchers and engineers involved in the modeling of multiscale and multiphase phenomena in material processing systems. The sympos...
Hybrid CFD/CAA Modeling for Liftoff Acoustic Predictions
Strutzenberg, Louise L.; Liever, Peter A.
2011-01-01
This paper presents development efforts at the NASA Marshall Space flight Center to establish a hybrid Computational Fluid Dynamics and Computational Aero-Acoustics (CFD/CAA) simulation system for launch vehicle liftoff acoustics environment analysis. Acoustic prediction engineering tools based on empirical jet acoustic strength and directivity models or scaled historical measurements are of limited value in efforts to proactively design and optimize launch vehicles and launch facility configurations for liftoff acoustics. CFD based modeling approaches are now able to capture the important details of vehicle specific plume flow environment, identifY the noise generation sources, and allow assessment of the influence of launch pad geometric details and sound mitigation measures such as water injection. However, CFD methodologies are numerically too dissipative to accurately capture the propagation of the acoustic waves in the large CFD models. The hybrid CFD/CAA approach combines the high-fidelity CFD analysis capable of identifYing the acoustic sources with a fast and efficient Boundary Element Method (BEM) that accurately propagates the acoustic field from the source locations. The BEM approach was chosen for its ability to properly account for reflections and scattering of acoustic waves from launch pad structures. The paper will present an overview of the technology components of the CFD/CAA framework and discuss plans for demonstration and validation against test data.
CFD modelling of condensers for freeze-drying processes
Indian Academy of Sciences (India)
Freeze-drying; condenser; CFD simulation; mathematical modelling; ... it is used for the stabilization and storage of delicate, heat-sensitive materials .... The effect of the surface mass transfer has been included in the continuity equation and.
CFD modeling of a boiler's tubes rupture
International Nuclear Information System (INIS)
Rahimi, Masoud; Khoshhal, Abbas; Shariati, Seyed Mehdi
2006-01-01
This paper reports the results of a study on the reason for tubes damage in the superheater Platen section of the 320 MW Bisotoun power plant, Iran. The boiler has three types of superheater tubes and the damage occurs in a series of elbows belongs to the long tubes. A three-dimensional modeling was performed using an in-house computational fluid dynamics (CFD) code in order to explore the reason. The code has ability of simultaneous solving of the continuity, the Reynolds-Averaged Navier-Stokes (RANS) equations and employing the turbulence, combustion and radiation models. The whole boiler including; walls, burners, air channels, three types of tubes, etc., was modeled in the real scale. The boiler was meshed into almost 2,000,000 tetrahedral control volumes and the standard k-ε turbulence model and the Rosseland radiation model were used in the model. The theoretical results showed that the inlet 18.9 MPa saturated steam becomes superheated inside the tubes and exit at a pressure of 17.8 MPa. The predicted results showed that the temperature of the steam and tube's wall in the long tubes is higher than the short and medium size tubes. In addition, the predicted steam mass flow rate in the long tube was lower than other ones. Therefore, it was concluded that the main reason for the rupture in the long tubes elbow is changing of the tube's metal microstructure due to working in a temperature higher than the design temperature. In addition, the structural fatigue tension makes the last elbow of the long tube more ready for rupture in comparison with the other places. The concluded result was validated by observations from the photomicrograph of the tube's metal samples taken from the damaged and undamaged sections
CFD model of an aerating hydrofoil
International Nuclear Information System (INIS)
Scott, D; Sabourin, M; Beaulieu, S; Papillon, B; Ellis, C
2014-01-01
Improving water quality in the tailrace below hydroelectric dams has become a priority in many river systems. In warm climates, water drawn by the turbine from deep in a reservoir can be deficient in dissolved oxygen (DO), a critical element in maintaining a healthy aquatic ecosystem. Many different solutions have been proposed in order to increase the DO levels in turbine discharge, including: turbine aeration systems (adding air to the water through either the turbine hub, the periphery or through distributed aeration in the runner blades); bubble diffusers in the reservoir or in the tailrace; aerating weirs downstream of the dams; and surface water pumps in the reservoir near the dam. There is a significant potential to increase the effectiveness of these solutions by improving the way that oxygen is introduced into the water; better distributions of bubbles will result in better oxygen transfer. In the present study, a two-phase Computational Fluid Dynamics model has been formulated using a commercial code to study the distribution of air downstream of a simple aerating hydrofoil. The two-phase model uses the Eulerian-Eulerian approach. Appropriate relations are used to model the interphase forces, including the Grace drag force model, the Favre averaged drag force and the Sato enhanced eddy viscosity. The model is validated using experimental results obtained in the water tunnel at the University of Minnesota's Saint Anthony Falls Laboratory. Results are obtained for water velocities between 5 and 10 m/s, air flow rates between 0.5 and 1.5 sL/min and for angles of attack between 0° and -8°. The results of this study show that the CFD model provides a good qualitative comparison to the experimental results by well predicting the wake location at the different flow rates and angles of attack used
Immersive visualization of dynamic CFD model results
International Nuclear Information System (INIS)
Comparato, J.R.; Ringel, K.L.; Heath, D.J.
2004-01-01
With immersive visualization the engineer has the means for vividly understanding problem causes and discovering opportunities to improve design. Software can generate an interactive world in which collaborators experience the results of complex mathematical simulations such as computational fluid dynamic (CFD) modeling. Such software, while providing unique benefits over traditional visualization techniques, presents special development challenges. The visualization of large quantities of data interactively requires both significant computational power and shrewd data management. On the computational front, commodity hardware is outperforming large workstations in graphical quality and frame rates. Also, 64-bit commodity computing shows promise in enabling interactive visualization of large datasets. Initial interactive transient visualization methods and examples are presented, as well as development trends in commodity hardware and clustering. Interactive, immersive visualization relies on relevant data being stored in active memory for fast response to user requests. For large or transient datasets, data management becomes a key issue. Techniques for dynamic data loading and data reduction are presented as means to increase visualization performance. (author)
CFD Modeling in Development of Renewable Energy Applications
Maher A.R. Sadiq Al-Baghdadi
2013-01-01
Chapter 1: A Multi-fluid Model to Simulate Heat and Mass Transfer in a PEM Fuel Cell. Torsten Berning, Madeleine Odgaard, Søren K. Kær Chapter 2: CFD Modeling of a Planar Solid Oxide Fuel Cell (SOFC) for Clean Power Generation. Meng Ni Chapter 3: Hydrodynamics and Hydropower in the New Paradigm for a Sustainable Engineering. Helena M. Ramos, Petra A. López-Jiménez Chapter 4: Opportunities for CFD in Ejector Solar Cooling. M. Dennis Chapter 5: Three Dimensional Modelling of Flow Field Around a...
CFD Modeling of a Multiphase Gravity Separator Vessel
Narayan, Gautham
2017-05-23
The poster highlights a CFD study that incorporates a combined Eulerian multi-fluid multiphase and a Population Balance Model (PBM) to study the flow inside a typical multiphase gravity separator vessel (GSV) found in oil and gas industry. The simulations were performed using Ansys Fluent CFD package running on KAUST supercomputer, Shaheen. Also, a highlight of a scalability study is presented. The effect of I/O bottlenecks and using Hierarchical Data Format (HDF5) for collective and independent parallel reading of case file is presented. This work is an outcome of a research collaboration on an Aramco project on Shaheen.
CFD Modeling of a Multiphase Gravity Separator Vessel
Narayan, Gautham; Khurram, Rooh Ul Amin; Elsaadawy, Ehab
2017-01-01
The poster highlights a CFD study that incorporates a combined Eulerian multi-fluid multiphase and a Population Balance Model (PBM) to study the flow inside a typical multiphase gravity separator vessel (GSV) found in oil and gas industry. The simulations were performed using Ansys Fluent CFD package running on KAUST supercomputer, Shaheen. Also, a highlight of a scalability study is presented. The effect of I/O bottlenecks and using Hierarchical Data Format (HDF5) for collective and independent parallel reading of case file is presented. This work is an outcome of a research collaboration on an Aramco project on Shaheen.
CFD modeling of fouling in crude oil pre-heaters
International Nuclear Information System (INIS)
Bayat, Mahmoud; Aminian, Javad; Bazmi, Mansour; Shahhosseini, Shahrokh; Sharifi, Khashayar
2012-01-01
Highlights: ► A conceptual CFD-based model to predict fouling in industrial crude oil pre-heaters. ► Tracing fouling formation in the induction and developing continuation periods. ► Effect of chemical components, shell-side HTC and turbulent flow on the fouling rate. - Abstract: In this study, a conceptual procedure based on the computational fluid dynamic (CFD) technique has been developed to predict fouling rate in an industrial crude oil pre-heater. According to the developed CFD concept crude oil was assumed to be composed of three pseudo-components comprising of petroleum, asphaltene and salt. The binary diffusion coefficients were appropriately categorized into five different groups. The species transport model was applied to simulate the mixing and transport of chemical species. The possibility of adherence of reaction products to the wall was taken into account by applying a high viscosity for the products in competition with the shear stress on the wall. Results showed a reasonable agreement between the model predictions and the plant data. The CFD model could be applied to new operating conditions to investigate the details of the crude oil fouling in the industrial pre-heaters.
3D CFD Modeling of the LMF System: Desulfurization Kinetics
Cao, Qing; Pitts, April; Zhang, Daojie; Nastac, Laurentiu; Williams, Robert
A fully transient 3D CFD modeling approach capable of predicting the three phase (gas, slag and steel) fluid flow characteristics and behavior of the slag/steel interface in the argon gas bottom stirred ladle with two off-centered porous plugs (Ladle Metallurgical Furnace or LMF) has been recently developed. The model predicts reasonably well the fluid flow characteristics in the LMF system and the observed size of the slag eyes for both the high-stirring and low-stirring conditions. A desulfurization reaction kinetics model considering metal/slag interface characteristics is developed in conjunction with the CFD modeling approach. The model is applied in this study to determine the effects of processing time, and gas flow rate on the efficiency of desulfurization in the studied LMF system.
Sensitivity study of CFD turbulent models for natural convection analysis
International Nuclear Information System (INIS)
Yu sun, Park
2007-01-01
The buoyancy driven convective flow fields are steady circulatory flows which were made between surfaces maintained at two fixed temperatures. They are ubiquitous in nature and play an important role in many engineering applications. Application of a natural convection can reduce the costs and efforts remarkably. This paper focuses on the sensitivity study of turbulence analysis using CFD (Computational Fluid Dynamics) for a natural convection in a closed rectangular cavity. Using commercial CFD code, FLUENT and various turbulent models were applied to the turbulent flow. Results from each CFD model will be compared each other in the viewpoints of grid resolution and flow characteristics. It has been showed that: -) obtaining general flow characteristics is possible with relatively coarse grid; -) there is no significant difference between results from finer grid resolutions than grid with y + + is defined as y + = ρ*u*y/μ, u being the wall friction velocity, y being the normal distance from the center of the cell to the wall, ρ and μ being respectively the fluid density and the fluid viscosity; -) the K-ε models show a different flow characteristic from K-ω models or from the Reynolds Stress Model (RSM); and -) the y + parameter is crucial for the selection of the appropriate turbulence model to apply within the simulation
CFD modeling of pool swell during large break LOCA
International Nuclear Information System (INIS)
Yan, Jin; Bolger, Francis; Li, Guangjun; Mintz, Saul; Pappone, Daniel
2009-01-01
GE had conducted a series of one-third scale three-vent air tests in support the horizontal vent pressure suppression system used in Mark III containment design for General Electric BWR plants. During the test, the air-water interface has been tracked by conductivity probes. There are many pressure monitors inside the test rig. The purpose of the test was to provide a basis for the pool swell load definition for the Mark III containment. In this paper, a transient 3-Dimensional CFD model of the one-third scale Mark III suppression pool swell process is constructed. The Volume of Fluid (VOF) multiphase model is used to explicitly track the interface between the water liquid and the air. The CFD results such as flow velocity, pressure, interface locations are compared to those from the test. Through the comparisons, a technical approach to numerically model the pool swell phenomenon is established and benchmarked. (author)
Aeroelastic Calculations Using CFD for a Typical Business Jet Model
Gibbons, Michael D.
1996-01-01
Two time-accurate Computational Fluid Dynamics (CFD) codes were used to compute several flutter points for a typical business jet model. The model consisted of a rigid fuselage with a flexible semispan wing and was tested in the Transonic Dynamics Tunnel at NASA Langley Research Center where experimental flutter data were obtained from M(sub infinity) = 0.628 to M(sub infinity) = 0.888. The computational results were computed using CFD codes based on the inviscid TSD equation (CAP-TSD) and the Euler/Navier-Stokes equations (CFL3D-AE). Comparisons are made between analytical results and with experiment where appropriate. The results presented here show that the Navier-Stokes method is required near the transonic dip due to the strong viscous effects while the TSD and Euler methods used here provide good results at the lower Mach numbers.
A CFD model for pollutant dispersion in rivers
Directory of Open Access Journals (Sweden)
Modenesi K.
2004-01-01
Full Text Available Studies have shown that humankind will experience a water shortage in the coming decades. It is therefore paramount to develop new techniques and models with a view to minimizing the impact of pollution. It is important to predict the environmental impact of new emissions in rivers, especially during periods of drought. Computational fluid dynamics (CFD has proved to be an invaluable tool to develop models able to analyze in detail particle dispersion in rivers. However, since these models generate grids with thousands (even millions of points to evaluate velocities and concentrations, they still require powerful machines. In this context, this work contributes by presenting a new three-dimensional model based on CFD techniques specifically developed to be fast, providing a significant improvement in performance. It is able to generate predictions in a couple of hours for a one-thousand-meter long section of river using Pentium IV computers. Commercial CFD packages would require weeks to solve the same problem. Another innovation inb this work is that a half channel with a constant elliptical cross section represents the river, so the Navier Stokes equations were derived for the elliptical system. Experimental data were obtained from REPLAN (PETROBRAS refining unit on the Atibaia River in São Paulo, Brazil. The results show good agreement with experimental data.
Modeling and verification of hemispherical solar still using ANSYS CFD
Energy Technology Data Exchange (ETDEWEB)
Panchal, Hitesh N. [KSV University, Gujarat Power Engineering and Research Institute, Mehsana (India); Shah, P.K. [Silver Oak College of Engineering and Technology, Ahmedabad, Gujarat (India)
2013-07-01
In every efficient solar still design, water temperature, vapor temperature and distillate output, and difference between water temperature and inner glass cover temperatures are very important. Here, two dimensional three phase model of hemispherical solar still is made for evaporation as well as condensation process in ANSYS CFD. Simulation results like water temperature, vapor temperature, distillate output compared with actual experimental results of climate conditions of Mehsana (latitude of 23° 59’ and longitude of 72° 38) of hemispherical solar still. Water temperature and distillate output were good agreement with actual experimental results. Study shows that ANSYS-CFD is very powerful as well as efficient tool for design, comparison purpose of hemispherical solar still.
CFD modelling of moisture interactions between air and constructions
DEFF Research Database (Denmark)
Mortensen, Lone Hedegaard; Woloszyn, Monika; Hohota, Raluca
2005-01-01
There is a strong demand for accurate moisture modelling since moisture poses a risk for both the constructions and the indoor climate. Thus, in this investigation there is special focus on moisture modelling. The paper describes a new model based on a CFD tool that is enhanced to include both...... detailed modelling of airflows in rooms and heat and moisture transfer in walls by applying them as fluid walls. In a 3D configuration the impact of different boundary conditions are investigated and the results are discussed. The changes of boundary conditions that are studied are velocity, moisture...
CFD modeling of airflow for indoor comfort in the tropics
International Nuclear Information System (INIS)
Aynsley, R.; Su, B.
2006-01-01
In humid tropical environments air movement is a common means to achieving indoor thermal comfort. In many locations closer to the equator, breezes are weaker and less reliable. Whatever the source of air movement it is important to quantity its potential in terms of the percentage of time the air movement will be available and the likely speed of the air movement in occupied zone of a building. It is also important to establish appropriate thermal comfort criteria with respect to air temperature, humidity and air movement. There are a number of techniques for modeling air movement inside naturally ventilated buildings. Boundary layer wind tunnels provide an opportunity to both measure and visually observe such airflow through model building. It is important to model adjacent buildings and any significant landscaping features that will influence outdoor airflow patterns. Such studies are relatively expensive. The recent availability of computational fluid dynamics (CFD) software for personal computers offers an alternative method for modeling air movement inside naturally ventilated buildings. Very expensive versions of this software have been available for large computers and work stations for many years but they have only recently become available for smaller computers. There are some features of such software that should be compared before purchasing a copy or a license. This paper discusses such features in detail. It is important in the case of natural ventilation that adjacent buildings and any significant landscaping features that will influence outdoor airflow patterns are included in the modeling. This paper also stresses the importance of calibrating the CFD software output against some physical measurements or wind tunnel modeling to ensure that the CFD results are realistic
Cfd modeling of a synthetic jet actuator
International Nuclear Information System (INIS)
Dghim, Marouane; Ben Chiekh, Maher; Ben Nasrallah, Sassi
2009-01-01
Synthetic jet actuators show good promise as an enabling technology for innovative boundary layer flow control applied to external surfaces, like airplane wings, and to internal flows, like those occurring in a curved engine inlet. The appealing characteristics of a synthetic jet are zero-net-mass flux operation and an efficient control effect that takes advantages of unsteady fluid phenomena. The formation of a synthetic jet in a quiescent external air flow is only beginning to be understood and a rational understanding of these devices is necessary before they can be applied to the control of flows outside of the laboratory. The synthetic jet flow generated by a planar orifice is investigated here using computational approach. Computations of the 2D synthetic jet are performed with unsteady RANS modeled with the Realizable κ - ε turbulence model available in FLUENT environment. In this present work, the ability of the first order turbulence model, employed in our computations, to model the formation of the counter-rotating-vortex pair (CVP) that appears in the flow-field was investigated. Computational results were in good agreement with experimental measurements. The effectiveness of such control actuator was tested on separated boundary layer. Preliminary investigation were presented and discussed
CFD modeling of an industrial municipal solid waste combustor
International Nuclear Information System (INIS)
Hussain, A.; Ani, F.N.; Darus, A.N.; Mustafa, A.
2006-01-01
The average amount of municipal solid waste (MSW) generated in Malaysia is 0.5-0.8 kg/person/day and has increased to 1.7 kg/person/day in major cities. Due to rapid development and lack of space for new landfills, big cities in Malaysia are now switching to incineration. However, a major public concern over this technology also is the perception of the emission of pollutants of any form. Design requirements of high performance incinerators are sometimes summarized as the achievement of 3Ts (time, temperature, and turbulence). An adequate retention time in hot environment is crucial to destroy the products of incomplete combustion and organic pollutants. Also turbulent mixing enhances uniform distributions of temperature and oxygen availability. CFD modeling is now in the development phase of becoming a useful tool for 3D modeling of the complex geometry and flow conditions in incinerators. However, CFD flow simulations enable detailed parametric variations of design variables. CFD modeling of an industrial scale MSW incinerator was done using FLUENT Ver. 6.1. The 3D modeling was based on conversation equations for mass, momentum and energy. The differential equations were discretized by the Finite Volume Method and were solved by the SIMPLE algorithm. The k-e turbulence model was employed. The meshing was done using Gambit 2. 0. The cold flow simulations were performed initially to develop the flow and velocity field. Numerical simulations of the flow field inside the primary and secondary combustion chambers provided the temperature profiles and the concentration data at the nodal points of computational grids. Parametric study was also done to minimize the NOx emissions. (author)
DEFF Research Database (Denmark)
Rong, Li; Nielsen, Peter Vilhelm; Bjerg, Bjarne Schmidt
2016-01-01
scale pig barns was simulated to show the procedures of validating a CFD simulation in livestock buildings. After summarizing the guideline and/or best practice for CFD modeling, the authors addressed the issues related to numerical methods and the governing equations, which were limited to RANS models....... Although it is not necessary to maintain the same format of reporting the CFD modeling as presented in this paper, the authors would suggest including all the information related to the selection of turbulence models, difference schemes, convergence criteria, boundary conditions, geometry simplification......, simulating domain etc. This information is particularly important for the readers to evaluate the quality of the CFD simulation results....
CFD modelling of polydispersed bubbly two-phase flow around an obstacle
International Nuclear Information System (INIS)
Krepper, Eckhard; Beyer, Matthias; Frank, Thomas; Lucas, Dirk; Prasser, Horst-Michael
2009-01-01
A population balance model (the Inhomogeneous MUSIG model) has recently been developed in close cooperation between ANSYS-CFX and Forschungszentrum Dresden-Rossendorf and implemented into the CFD-Code CFX [Krepper, E., Lucas, D., Prasser, H.-M, 2005. On the modelling of bubbly flow in vertical pipes. Nucl. Eng. Des. 235, 597-611; Frank, T., Zwart, P.J., Shi, J.-M., Krepper, E., Rohde, U., 2005. Inhomogeneous MUSIG Model-a population balance approach for polydispersed bubbly flows, International Conference 'Nuclear Energy for New Europe 2005', Bled, Slovenia, September 5-8, 2005; Krepper, E., Beyer, M., Frank, Th., Lucas, D., Prasser, H.-M., 2007. Application of a population balance approach for polydispersed bubbly flows, 6th Int. Conf. on Multiphase Flow Leipzig 2007, (paper 378)]. The current paper presents a brief description of the model principles. The capabilities of this model are discussed via the example of a bubbly flow around a half-moon shaped obstacle arranged in a 200 mm pipe. In applying the Inhomogeneous MUSIG approach, a deeper understanding of the flow structures is possible and the model allows effects of polydispersion to be investigated. For the complex flow around the obstacle, the general structure of the flow was well reproduced in the simulations. This test case demonstrates the complicated interplay between size dependent bubble migration and the effects of bubble coalescence and breakup on real flows. The closure models that characterize the bubble forces responsible for the simulation of bubble migration show agreement with the experimental observations. However, clear deviations occur for bubble coalescence and fragmentation. The models applied here, which describe bubble fragmentation and coalescence could be proved as a weakness in the validity of numerous CFD analyses of vertical upward two-phase pipe flow. Further work on this topic is under way.
Aeroelastic simulation using CFD based reduced order models
International Nuclear Information System (INIS)
Zhang, W.; Ye, Z.; Li, H.; Yang, Q.
2005-01-01
This paper aims at providing an accurate and efficient method for aeroelastic simulation. System identification is used to get the reduced order models of unsteady aerodynamics. Unsteady Euler codes are used to compute the output signals while 3211 multistep input signals are utilized. LS(Least Squares) method is used to estimate the coefficients of the input-output difference model. The reduced order models are then used in place of the unsteady CFD code for aeroelastic simulation. The aeroelastic equations are marched by an improved 4th order Runge-Kutta method that only needs to compute the aerodynamic loads one time at every time step. The computed results agree well with that of the direct coupling CFD/CSD methods. The computational efficiency is improved 1∼2 orders while still retaining the high accuracy. A standard aeroelastic computing example (isogai wing) with S type flutter boundary is computed and analyzed. It is due to the system has more than one neutral points at the Mach range of 0.875∼0.9. (author)
Directory of Open Access Journals (Sweden)
Griaznov V.
2006-12-01
Full Text Available Intense competition and global regulations in the automotive industry has placed unprecedented demands on the performance, efficiency, and emissions of today's IC engines. The success or failure of a new engine design to meet these often-conflicting requirements is primarily dictated by its capability to provide minimal restriction for the inducted and exhausted flow and by its capability to generate strong large-scale in-cylinder motion. The first criterion is directly linked to power performance of the engine, while the latter has been shown to control the burn rate in IC engines. Enhanced burn rates are favorable to engine efficiency and partial load performance. CFD based numerical simulations have recently made it possible to study the development of such engine flows in great details. However, they offer little guidance for modifying the ports and chamber geometry controlling the flow to meet the desired performance. This paper presents a methodology which combines 3D, steady state CFD techniques with robust numerical optimization tools to design, rather than just evaluate the performance, of IC engine ports and chambers. La forte concurrence et les réglementations dans l'industrie automobile entraînent aujourd'hui une exigence sans précédent de performance, de rendement et d'émissions pour les moteurs à combustion interne. Le succès ou l'échec de la conception d'un nouveau moteur satisfaisant à ces propriétés, souvent contradictoires, est dicté, dans un premier temps, par l'obtention d'une restriction minimale des débits d'admission et d'échappement, ensuite, par la nécessité de générer des écoulements forts de grande amplitude. Le premier critère est directement lié à la performance du moteur, tandis que le second est reconnu comme contrôlant la combustion. Des dégagements de chaleur accélérés améliorent le rendement et les performances à faible charge. La simulation 3D rend possible depuis peu d
CFD modeling and experience of waste-to-energy plant burning waste wood
DEFF Research Database (Denmark)
Rajh, B.; Yin, Chungen; Samec, N.
2013-01-01
Computational Fluid Dynamics (CFD) is being increasingly used in industry for in-depth understanding of the fundamental mixing, combustion, heat transfer and pollutant formation in combustion processes and for design and optimization of Waste-to-Energy (WtE) plants. In this paper, CFD modeling...... the conversion of the waste wood in the fuel bed on the grate, which provides the appropriate inlet boundary condition for the freeboard 3D CFD simulation. The CFD analysis reveals the detailed mixing and combustion characteristics in the waste wood-fired furnace, pinpointing how to improve the design...
Development of CFD model for augmented core tripropellant rocket engine
Jones, Kenneth M.
1994-10-01
The Space Shuttle era has made major advances in technology and vehicle design to the point that the concept of a single-stage-to-orbit (SSTO) vehicle appears more feasible. NASA presently is conducting studies into the feasibility of certain advanced concept rocket engines that could be utilized in a SSTO vehicle. One such concept is a tripropellant system which burns kerosene and hydrogen initially and at altitude switches to hydrogen. This system will attain a larger mass fraction because LOX-kerosene engines have a greater average propellant density and greater thrust-to-weight ratio. This report describes the investigation to model the tripropellant augmented core engine. The physical aspects of the engine, the CFD code employed, and results of the numerical model for a single modular thruster are discussed.
A coupled DEM-CFD method for impulse wave modelling
Zhao, Tao; Utili, Stefano; Crosta, GiovanBattista
2015-04-01
Rockslides can be characterized by a rapid evolution, up to a possible transition into a rock avalanche, which can be associated with an almost instantaneous collapse and spreading. Different examples are available in the literature, but the Vajont rockslide is quite unique for its morphological and geological characteristics, as well as for the type of evolution and the availability of long term monitoring data. This study advocates the use of a DEM-CFD framework for the modelling of the generation of hydrodynamic waves due to the impact of a rapid moving rockslide or rock-debris avalanche. 3D DEM analyses in plane strain by a coupled DEM-CFD code were performed to simulate the rockslide from its onset to the impact with still water and the subsequent wave generation (Zhao et al., 2014). The physical response predicted is in broad agreement with the available observations. The numerical results are compared to those published in the literature and especially to Crosta et al. (2014). According to our results, the maximum computed run up amounts to ca. 120 m and 170 m for the eastern and western lobe cross sections, respectively. These values are reasonably similar to those recorded during the event (i.e. ca. 130 m and 190 m respectively). In these simulations, the slope mass is considered permeable, such that the toe region of the slope can move submerged in the reservoir and the impulse water wave can also flow back into the slope mass. However, the upscaling of the grains size in the DEM model leads to an unrealistically high hydraulic conductivity of the model, such that only a small amount of water is splashed onto the northern bank of the Vajont valley. The use of high fluid viscosity and coarse grain model has shown the possibility to model more realistically both the slope and wave motions. However, more detailed slope and fluid properties, and the need for computational efficiency should be considered in future research work. This aspect has also been
Assessment of RANS CFD modelling for pressurised thermal shock analysis
International Nuclear Information System (INIS)
Sander M Willemsen; Ed MJ Komen; Sander Willemsen
2005-01-01
Full text of publication follows: The most severe Pressurised Thermal Shock (PTS) scenario is a cold water Emergency Core Coolant (ECC) injection into the cold leg during a LOCA. The injected ECC water mixes with the hot fluid present in the cold leg and flows towards the downcomer where further mixing takes place. When the cold mixture comes into contact with the Reactor Pressure Vessel (RPV) wall, it may lead to large temperature gradients and consequently to high stresses in the RPV wall. Knowledge of these thermal loads is important for RPV remnant life assessments. The existing thermal-hydraulic system codes currently applied for this purpose are based on one-dimensional approximations and can, therefore, not predict the complex three-dimensional flows occurring during ECC injection. Computational Fluid Dynamics (CFD) can be applied to predict these phenomena, with the ultimate benefit of improved remnant RPV life assessment. The present paper presents an assessment of various Reynolds Averaged Navier Stokes (RANS) CFD approaches for modeling the complex mixing phenomena occurring during ECC injection. This assessment has been performed by comparing the numerical results obtained using advanced turbulence models available in the CFX 5.6 CFD code in combination with a hybrid meshing strategy with experimental results of the Upper Plenum Test Facility (UPTF). The UPTF was a full-scale 'simulation' of the primary system of the four loop 1300 MWe Siemens/KWU Pressurised Water Reactor at Grafenrheinfeld. The test vessel upper plenum internals, downcomer and primary coolant piping were replicas of the reference plant, while other components, such as core, coolant pump and steam generators were replaced by simulators. From the extensive test programme, a single-phase fluid-fluid mixing experiment in the cold leg and downcomer was selected. Prediction of the mixing and stratification is assessed by comparison with the measured temperature profiles at several locations
Assessment of Computational Fluid Dynamics (CFD) Models for Shock Boundary-Layer Interaction
DeBonis, James R.; Oberkampf, William L.; Wolf, Richard T.; Orkwis, Paul D.; Turner, Mark G.; Babinsky, Holger
2011-01-01
A workshop on the computational fluid dynamics (CFD) prediction of shock boundary-layer interactions (SBLIs) was held at the 48th AIAA Aerospace Sciences Meeting. As part of the workshop numerous CFD analysts submitted solutions to four experimentally measured SBLIs. This paper describes the assessment of the CFD predictions. The assessment includes an uncertainty analysis of the experimental data, the definition of an error metric and the application of that metric to the CFD solutions. The CFD solutions provided very similar levels of error and in general it was difficult to discern clear trends in the data. For the Reynolds Averaged Navier-Stokes methods the choice of turbulence model appeared to be the largest factor in solution accuracy. Large-eddy simulation methods produced error levels similar to RANS methods but provided superior predictions of normal stresses.
CFD Modeling of Free-Piston Stirling Engines
Ibrahim, Mounir B.; Zhang, Zhi-Guo; Tew, Roy C., Jr.; Gedeon, David; Simon, Terrence W.
2001-01-01
NASA Glenn Research Center (GRC) is funding Cleveland State University (CSU) to develop a reliable Computational Fluid Dynamics (CFD) code that can predict engine performance with the goal of significant improvements in accuracy when compared to one-dimensional (1-D) design code predictions. The funding also includes conducting code validation experiments at both the University of Minnesota (UMN) and CSU. In this paper a brief description of the work-in-progress is provided in the two areas (CFD and Experiments). Also, previous test results are compared with computational data obtained using (1) a 2-D CFD code obtained from Dr. Georg Scheuerer and further developed at CSU and (2) a multidimensional commercial code CFD-ACE+. The test data and computational results are for (1) a gas spring and (2) a single piston/cylinder with attached annular heat exchanger. The comparisons among the codes are discussed. The paper also discusses plans for conducting code validation experiments at CSU and UMN.
CFD Modelling in Screw Compressors With Complex Multi Rotor Configurations
Rane, Sham Ramchandra; Kovacevic, Ahmed; Kethidi, Madhulika
2012-01-01
Computational Fluid Dynamics (CFD) of screw compressors is challenging due to the positive displacement nature of the process, existence of very fine fluid leakage paths, coexistence of working fluid and lubricant or coolant, fluid injection and most importantly the lack of methodologies available to generate meshes required for the full three dimensional transient simulations. In this paper, currently available technology of grid remeshing has been used to demonstrate the CFD simulations of ...
Isothermal CFD-model of Peirce-Smith converting process
Energy Technology Data Exchange (ETDEWEB)
Vaarno, J.; Pitkaelae, J.; Ahokainen, T.; Jokilaakso, A.
1997-12-31
The Peirce-Smith converter has been a dominating copper and nickel matte refining process since 1905. Due to extremely difficult process conditions, very little measured data has been available for studying interactions of the gas injection and molten sulphide matte. Detailed information on fluid dynamics of the gas injection is needed in solving gas injection related problems like refractory wear, accretion growth and tuyere blockage as well as optimising the efficiency of momentum and mass transfer created by the gas jets. A commercial CFD-code PHOENICS was used to solve isothermal flow field of gas and liquid in a Peirce-Smith converter. An Euler-Euler based algorithm was chosen for modelling fluid dynamics and evaluating controlling forces of a submerged gas injection generally. Predictions were made with a {kappa}-{epsilon} turbulence model in the body fitted co-ordinate system. The model has been verified with a 1/4 scale water model, and a parametric study with the mathematical model of submerged gas injection was made for the PS-process and the ladle injection processes. Limits of the modelling technique used were recognised, but calculated results indicates that the present model predicts the general flow field with reasonable accuracy and it can be used as input for more detailed mathematical models of gas plumes. Predicted bubble distribution, pattern of the flow field and magnitude of flow velocities were also used to evaluate scaling factors of physical models and general flow conditions of an industrial PS-converter. (orig.) 28 refs.
Validation of NEPTUNE-CFD two-phase flow models using experimental data
International Nuclear Information System (INIS)
Perez-Manes, Jorge; Sanchez Espinoza, Victor Hugo; Bottcher, Michael; Stieglitz, Robert; Sergio Chiva Vicent
2014-01-01
This paper deals with the validation of the two-phase flow models of the CFD code NEPTUNE-CFD using experimental data provided by the OECD BWR BFBT and PSBT Benchmark. Since the two-phase models of CFD codes are extensively being improved, the validation is a key step for the acceptability of such codes. The validation work is performed in the frame of the European NURISP Project and it was focused on the steady state and transient void fraction tests. The influence of different NEPTUNE-CFD model parameters on the void fraction prediction is investigated and discussed in detail. Due to the coupling of heat conduction solver SYRTHES with NEPTUNE-CFD, the description of the coupled fluid dynamics and heat transfer between the fuel rod and the fluid is improved significantly. The averaged void fraction predicted by NEPTUNE-CFD for selected PSBT and BFBT tests is in good agreement with the experimental data. Finally, areas for future improvements of the NEPTUNE-CFD code were identified, too. (authors)
International Nuclear Information System (INIS)
Visser, D.C.; Siccama, N.B.; Jayaraju, S.T.; Komen, E.M.J.
2014-01-01
Highlights: • A CFD based model developed in ANSYS-FLUENT for simulating the distribution of hydrogen in the containment of a nuclear power plant during a severe accident is validated against four large-scale experiments. • The successive formation and mixing of a stratified gas-layer in experiments performed in the THAI and PANDA facilities are predicted well by the CFD model. • The pressure evolution and related condensation rate during different mixed convection flow conditions in the TOSQAN facility are predicted well by the CFD model. • The results give confidence in the general applicability of the CFD model and model settings. - Abstract: In the event of core degradation during a severe accident in water-cooled nuclear power plants (NPPs), large amounts of hydrogen are generated that may be released into the reactor containment. As the hydrogen mixes with the air in the containment, it can form a flammable mixture. Upon ignition it can damage relevant safety systems and put the integrity of the containment at risk. Despite the installation of mitigation measures, it has been recognized that the temporary existence of combustible or explosive gas clouds cannot be fully excluded during certain postulated accident scenarios. The distribution of hydrogen in the containment and mitigation of the risk are, therefore, important safety issues for NPPs. Complementary to lumped parameter code modelling, Computational Fluid Dynamics (CFD) modelling is needed for the detailed assessment of the hydrogen risk in the containment and for the optimal design of hydrogen mitigation systems in order to reduce this risk as far as possible. The CFD model applied by NRG makes use of the well-developed basic features of the commercial CFD package ANSYS-FLUENT. This general purpose CFD package is complemented with specific user-defined sub-models required to capture the relevant thermal-hydraulic phenomena in the containment during a severe accident as well as the effect of
Energy Technology Data Exchange (ETDEWEB)
Visser, D.C., E-mail: visser@nrg.eu; Siccama, N.B.; Jayaraju, S.T.; Komen, E.M.J.
2014-10-15
Highlights: • A CFD based model developed in ANSYS-FLUENT for simulating the distribution of hydrogen in the containment of a nuclear power plant during a severe accident is validated against four large-scale experiments. • The successive formation and mixing of a stratified gas-layer in experiments performed in the THAI and PANDA facilities are predicted well by the CFD model. • The pressure evolution and related condensation rate during different mixed convection flow conditions in the TOSQAN facility are predicted well by the CFD model. • The results give confidence in the general applicability of the CFD model and model settings. - Abstract: In the event of core degradation during a severe accident in water-cooled nuclear power plants (NPPs), large amounts of hydrogen are generated that may be released into the reactor containment. As the hydrogen mixes with the air in the containment, it can form a flammable mixture. Upon ignition it can damage relevant safety systems and put the integrity of the containment at risk. Despite the installation of mitigation measures, it has been recognized that the temporary existence of combustible or explosive gas clouds cannot be fully excluded during certain postulated accident scenarios. The distribution of hydrogen in the containment and mitigation of the risk are, therefore, important safety issues for NPPs. Complementary to lumped parameter code modelling, Computational Fluid Dynamics (CFD) modelling is needed for the detailed assessment of the hydrogen risk in the containment and for the optimal design of hydrogen mitigation systems in order to reduce this risk as far as possible. The CFD model applied by NRG makes use of the well-developed basic features of the commercial CFD package ANSYS-FLUENT. This general purpose CFD package is complemented with specific user-defined sub-models required to capture the relevant thermal-hydraulic phenomena in the containment during a severe accident as well as the effect of
International Nuclear Information System (INIS)
Ivo, Kljenak; Miroslav, Babic; Borut, Mavko
2007-01-01
The possibility of simulating adequately the flow circulation within a nuclear power plant containment using a lumped-parameter code is considered. An experiment on atmosphere mixing and stratification, which was performed in the containment experimental facility TOSQAN at IRSN (Institute of Radioprotection and Nuclear Safety) in Saclay (France), was simulated with the CFD (Computational Fluid Dynamics) code CFX4 and the lumped-parameter code CONTAIN. During some phases of the experiment, steady states were achieved by keeping the boundary conditions constant. Two steady states during which natural convection was the dominant gas flow mechanism were simulated independently. The nodalization of the lumped-parameter model was based on the flow pattern, simulated with the CFD code. The simulation with the lumped-parameter code predicted basically the same flow circulation patterns within the experimental vessel as the simulation with the CFD code did. (authors)
National Aeronautics and Space Administration — The current project is going to investigate, implement and begin validating the Computational Fluid Dynamics (CFD) options available for modeling multi-phase...
CFD modeling of a boiler's tubes rupture
Energy Technology Data Exchange (ETDEWEB)
Rahimi, Masoud; Khoshhal, Abbas; Shariati, Seyed Mehdi [Chemical Engineering Department, Faculty of Engineering, Razi University, Kermanshah (Iran)
2006-12-15
This paper reports the results of a study on the reason for tubes damage in the superheater Platen section of the 320MW Bisotoun power plant, Iran. The boiler has three types of superheater tubes and the damage occurs in a series of elbows belongs to the long tubes. A three-dimensional modeling was performed using an in-house computational fluid dynamics (CFD) code in order to explore the reason. The code has ability of simultaneous solving of the continuity, the Reynolds-Averaged Navier-Stokes (RANS) equations and employing the turbulence, combustion and radiation models. The whole boiler including; walls, burners, air channels, three types of tubes, etc., was modeled in the real scale. The boiler was meshed into almost 2,000,000 tetrahedral control volumes and the standard k-{epsilon} turbulence model and the Rosseland radiation model were used in the model. The theoretical results showed that the inlet 18.9MPa saturated steam becomes superheated inside the tubes and exit at a pressure of 17.8MPa. The predicted results showed that the temperature of the steam and tube's wall in the long tubes is higher than the short and medium size tubes. In addition, the predicted steam mass flow rate in the long tube was lower than other ones. Therefore, it was concluded that the main reason for the rupture in the long tubes elbow is changing of the tube's metal microstructure due to working in a temperature higher than the design temperature. In addition, the structural fatigue tension makes the last elbow of the long tube more ready for rupture in comparison with the other places. The concluded result was validated by observations from the photomicrograph of the tube's metal samples taken from the damaged and undamaged sections. (author)
Advanced subgrid modeling for Multiphase CFD in CASL VERA tools
International Nuclear Information System (INIS)
Baglietto, Emilio; Gilman, Lindsey; Sugrue, Rosie
2014-01-01
This work introduces advanced modeling capabilities that are being developed to improve the accuracy and extend the applicability of Multiphase CFD. Specifics of the advanced and hardened boiling closure model are described in this work. The development has been driven by new physical understanding, derived from the innovative experimental techniques available at MIT. A new experimental-based mechanistic approach to heat partitioning is proposed. The model introduces a new description of the bubble evaporation, sliding and interaction on the heated surface to accurately capture the evaporation occurring at the heated surface, while also tracking the local surface conditions. The model is being assembled to cover an extended application area, up to Critical Heat Flux (CHF). The accurate description of the bubble interaction, effective microlayer and dry surface area are considered to be the enabling quantities towards innovated CHF capturing methodologies. Further, improved mechanistic force-balance models for bubble departure predictions and lift-off diameter predictions are implemented in the model. Studies demonstrate the influence of the newly implemented partitioning components. Finally, the development work towards a more consistent and integrated hydrodynamic closure is presented. The main objective here is to develop a set of robust momentum closure relations which focuses on the specific application to PWR conditions, but will facilitate the application to other geometries, void fractions, and flow regimes. The innovative approach considers local flow conditions on a cell-by-cell basis to ensure robustness. Closure relations of interest initially include drag, lift, and turbulence dispersion, with near wall corrections applied for both drag and lift. (author)
Umeda, Yasuyuki; Ishida, Fujimaro; Tsuji, Masanori; Furukawa, Kazuhiro; Shiba, Masato; Yasuda, Ryuta; Toma, Naoki; Sakaida, Hiroshi; Suzuki, Hidenori
2017-01-01
This study aimed to predict recurrence after coil embolization of unruptured cerebral aneurysms with computational fluid dynamics (CFD) using porous media modeling (porous media CFD). A total of 37 unruptured cerebral aneurysms treated with coiling were analyzed using follow-up angiograms, simulated CFD prior to coiling (control CFD), and porous media CFD. Coiled aneurysms were classified into stable or recurrence groups according to follow-up angiogram findings. Morphological parameters, coil packing density, and hemodynamic variables were evaluated for their correlations with aneurysmal recurrence. We also calculated residual flow volumes (RFVs), a novel hemodynamic parameter used to quantify the residual aneurysm volume after simulated coiling, which has a mean fluid domain > 1.0 cm/s. Follow-up angiograms showed 24 aneurysms in the stable group and 13 in the recurrence group. Mann-Whitney U test demonstrated that maximum size, dome volume, neck width, neck area, and coil packing density were significantly different between the two groups (P CFD and larger RFVs in the porous media CFD. Multivariate logistic regression analyses demonstrated that RFV was the only independently significant factor (odds ratio, 1.06; 95% confidence interval, 1.01-1.11; P = 0.016). The study findings suggest that RFV collected under porous media modeling predicts the recurrence of coiled aneurysms.
CFD Modeling and Experimental Validation of a Solar Still
Directory of Open Access Journals (Sweden)
Mahmood Tahir
2017-01-01
Full Text Available Earth is the densest planet of the solar system with total area of 510.072 million square Km. Over 71.68% of this area is covered with water leaving a scant area of 28.32% for human to inhabit. The fresh water accounts for only 2.5% of the total volume and the rest is the brackish water. Presently, the world is facing chief problem of lack of potable water. This issue can be addressed by converting brackish water into potable through a solar distillation process and solar still is specially assigned for this purpose. Efficiency of a solar still explicitly depends on its design parameters, such as wall material, chamber depth, width and slope of the zcondensing surface. This study was aimed at investigating the solar still parameters using CFD modeling and experimental validation. The simulation data of ANSYS-FLUENT was compared with actual experimental data. A close agreement among the simulated and experimental results was seen in the presented work. It reveals that ANSYS-FLUENT is a potent tool to analyse the efficiency of the new designs of the solar distillation systems.
CFD Models of a Serpentine Inlet, Fan, and Nozzle
Chima, R. V.; Arend, D. J.; Castner, R. S.; Slater, J. W.; Truax, P. P.
2010-01-01
Several computational fluid dynamics (CFD) codes were used to analyze the Versatile Integrated Inlet Propulsion Aerodynamics Rig (VIIPAR) located at NASA Glenn Research Center. The rig consists of a serpentine inlet, a rake assembly, inlet guide vanes, a 12-in. diameter tip-turbine driven fan stage, exit rakes or probes, and an exhaust nozzle with a translating centerbody. The analyses were done to develop computational capabilities for modeling inlet/fan interaction and to help interpret experimental data. Three-dimensional Reynolds averaged Navier-Stokes (RANS) calculations of the fan stage were used to predict the operating line of the stage, the effects of leakage from the turbine stream, and the effects of inlet guide vane (IGV) setting angle. Coupled axisymmetric calculations of a bellmouth, fan, and nozzle were used to develop techniques for coupling codes together and to investigate possible effects of the nozzle on the fan. RANS calculations of the serpentine inlet were coupled to Euler calculations of the fan to investigate the complete inlet/fan system. Computed wall static pressures along the inlet centerline agreed reasonably well with experimental data but computed total pressures at the aerodynamic interface plane (AIP) showed significant differences from the data. Inlet distortion was shown to reduce the fan corrected flow and pressure ratio, and was not completely eliminated by passage through the fan
Simulating Freak Waves in the Ocean with CFD Modeling
Manolidis, M.; Orzech, M.; Simeonov, J.
2017-12-01
Rogue, or freak, waves constitute an active topic of research within the world scientific community, as various maritime authorities around the globe seek to better understand and more accurately assess the risks that the occurrence of such phenomena entail. Several experimental studies have shed some light on the mechanics of rogue wave formation. In our work we numerically simulate the formation of such waves in oceanic conditions by means of Computational Fluid Dynamics (CFD) software. For this purpose we implement the NHWAVE and OpenFOAM software packages. Both are non-hydrostatic, turbulent flow solvers, but NHWAVE implements a shock-capturing scheme at the free surface-interface, while OpenFOAM utilizes the Volume Of Fluid (VOF) method. NHWAVE has been shown to accurately reproduce highly nonlinear surface wave phenomena, such as soliton propagation and wave shoaling. We conducted a range of tests simulating rogue wave formation and horizontally varying currents to evaluate and compare the capabilities of the two software packages. Then we used each model to investigate the effect of ocean currents and current gradients on the formation of rogue waves. We present preliminary results.
Melcher, Kevin J.
1997-01-01
The NASA Lewis Research Center is developing analytical methods and software tools to create a bridge between the controls and computational fluid dynamics (CFD) disciplines. Traditionally, control design engineers have used coarse nonlinear simulations to generate information for the design of new propulsion system controls. However, such traditional methods are not adequate for modeling the propulsion systems of complex, high-speed vehicles like the High Speed Civil Transport. To properly model the relevant flow physics of high-speed propulsion systems, one must use simulations based on CFD methods. Such CFD simulations have become useful tools for engineers that are designing propulsion system components. The analysis techniques and software being developed as part of this effort are an attempt to evolve CFD into a useful tool for control design as well. One major aspect of this research is the generation of linear models from steady-state CFD results. CFD simulations, often used during the design of high-speed inlets, yield high resolution operating point data. Under a NASA grant, the University of Akron has developed analytical techniques and software tools that use these data to generate linear models for control design. The resulting linear models have the same number of states as the original CFD simulation, so they are still very large and computationally cumbersome. Model reduction techniques have been successfully applied to reduce these large linear models by several orders of magnitude without significantly changing the dynamic response. The result is an accurate, easy to use, low-order linear model that takes less time to generate than those generated by traditional means. The development of methods for generating low-order linear models from steady-state CFD is most complete at the one-dimensional level, where software is available to generate models with different kinds of input and output variables. One-dimensional methods have been extended
Modeling near-road air quality using a computational fluid dynamics model, CFD-VIT-RIT.
Wang, Y Jason; Zhang, K Max
2009-10-15
It is well recognized that dilution is an important mechanism governing the near-road air pollutant concentrations. In this paper, we aim to advance our understanding of turbulent mixing mechanisms on and near roadways using computation fluid dynamics. Turbulent mixing mechanisms can be classified into three categories according to their origins: vehicle-induced turbulence (VIT), road-induced turbulence (RIT), and atmospheric boundary layer turbulence. RIT includes the turbulence generated by road embankment, road surface thermal effects, and roadside structures. Both VIT and RIT are affected by the roadway designs. We incorporate the detailed treatment of VIT and RIT into the CFD (namely CFD-VIT-RIT) and apply the model in simulating the spatial gradients of carbon monoxide near two major highways with different traffic mix and roadway configurations. The modeling results are compared to the field measurements and those from CALINE4 and CFD without considering VIT and RIT. We demonstrate that the incorporation of VIT and RIT considerably improves the modeling predictions, especially on vertical gradients and seasonal variations of carbon monoxide. Our study implies that roadway design can significantly influence the near-road air pollution. Thus we recommend that mitigating near-road air pollution through roadway designs be considered in the air quality and transportation management In addition, thanks to the rigorous representation of turbulent mixing mechanisms, CFD-VIT-RIT can become valuable tools in the roadway designs process.
Energy Technology Data Exchange (ETDEWEB)
Hoyes, J.R., E-mail: james.hoyes@hsl.gsi.gov.uk; Ivings, M.J.
2016-12-15
Highlights: • The ability of CFD to predict hydrogen stratification phenomena is investigated. • Contrary to expectation, simulations on tetrahedral meshes under-predict mixing. • Simulations on structured meshes give good agreement with experimental data. • CFD model used to investigate the effects of stratification on PAR performance. • Results show stratification can have a significant effect on PAR performance. - Abstract: Computational Fluid Dynamics (CFD) models are maturing into useful tools for supporting safety analyses. This paper investigates the capabilities of CFD models for predicting hydrogen stratification in a containment vessel using data from the NEA/OECD SETH2 MISTRA experiments. Further simulations are then carried out to illustrate the qualitative effects of hydrogen stratification on the performance of Passive Autocatalytic Recombiner (PAR) units. The MISTRA experiments have well-defined initial and boundary conditions which makes them well suited for use in a validation study. Results are presented for the sensitivity to mesh resolution and mesh type. Whilst the predictions are shown to be largely insensitive to the mesh resolution they are surprisingly sensitive to the mesh type. In particular, tetrahedral meshes are found to induce small unphysical convection currents that result in molecular diffusion and turbulent mixing being under-predicted. This behaviour is not unique to the CFD model used here (ANSYS CFX) and furthermore, it may affect simulations run on other non-aligned meshes (meshes that are not aligned perpendicular to gravity), including non-aligned structured meshes. Following existing best practice guidelines can help to identify potential unphysical predictions, but as an additional precaution consideration should be given to using gravity-aligned meshes for modelling stratified flows. CFD simulations of hydrogen recombination in the Becker Technologies THAI facility are presented with high and low PAR positions
Validation of CFD models for hydrogen safety application
International Nuclear Information System (INIS)
Nikolaeva, Anna; Skibin, Alexander; Krutikov, Alexey; Golibrodo, Luka; Volkov, Vasiliy; Nechaev, Artem; Nadinskiy, Yuriy
2015-01-01
Most accidents involving hydrogen begin with its leakage and spreading in the air and spontaneous detonation, which is accompanied by fire or deflagration of hydrogen mixture with heat and /or shocks, which may cause harm to life and equipment. Outflow of hydrogen in a confined volume and its propagation in the volume is the worst option because of the impact of the insularity on the process of detonation. According to the safety requirements for handling hydrogen specialized systems (ventilation, sprinklers, burners etc.) are required for maintaining the hydrogen concentration less than the critical value, to eliminate the possibility of detonation and flame propagation. In this study, a simulation of helium propagation in a confined space with different methods of injection and ventilation of helium is presented, which is used as a safe replacement of hydrogen in experimental studies. Five experiments were simulated in the range from laminar to developed turbulent with different Froude numbers, which determine the regime of the helium outflow in the air. The processes of stratification and erosion of helium stratified layer were investigated. The study includes some results of OECD/NEA-PSI PANDA benchmark and some results of Gamelan project. An analysis of applicability of various turbulence models, which are used to close the system of equations of momentum transport, implemented in the commercial codes STAR CD, STAR CCM+, ANSYS CFX, was conducted for different mesh types (polyhedral and hexahedral). A comparison of computational studies results with experimental data showed a good agreement. In particular, for transition and turbulent regimes the error of the numerical results lies in the range from 5 to 15% for all turbulence models considered. This indicates applicability of the methods considered for some hydrogen safety problems. However, it should be noted that more validation research should be made to use CFD in Hydrogen safety applications with a wide
Lime Kiln Modeling. CFD and One-dimensional simulations
Energy Technology Data Exchange (ETDEWEB)
Svedin, Kristoffer; Ivarsson, Christofer; Lundborg, Rickard
2009-03-15
The incentives for burning alternative fuels in lime kilns are growing. An increasing demand on thorough investigations of alternative fuel impact on lime kiln performance have been recognized, and the purpose of this project has been to develop a lime kiln CFD model with the possibility to fire fuel oil and lignin. The second part of the project consists of three technical studies. Simulated data from a one-dimensional steady state program has been used to support theories on the impact of biofuels and lime mud dryness. The CFD simulations was carried out in the commercial code FLUENT. Due to difficulties with the convergence of the model the calcination reaction is not included. The model shows essential differences between the two fuels. Lignin gives a different flame shape and a longer flame length compared to fuel oil. Mainly this depends on how the fuel is fed into the combustion chamber and how much combustion air that is added as primary and secondary air. In the case of lignin combustion the required amount of air is more than in the fuel oil case. This generates more combustion gas and a different flow pattern is created. Based on the values from turbulent reaction rate for the different fuels an estimated flame length can be obtained. For fuel oil the combustion is very intense with a sharp peak in the beginning and a rapid decrease. For lignin the combustion starts not as intense as for the fuel oil case and has a smoother shape. The flame length appears to be approximately 2-3 meter longer for lignin than for fuel oil based on turbulent reaction rate in the computational simulations. The first technical study showed that there are many benefits of increasing dry solids content in the lime mud going into a kiln such as increased energy efficiency, reduced TRS, and reduced sodium in the kiln. However, data from operating kilns indicates that these benefits can be offset by increasing exit gas temperature that can limit kiln production capacity. Simulated
Evaluation of gas radiation models in CFD modeling of oxy-combustion
International Nuclear Information System (INIS)
Rajhi, M.A.; Ben-Mansour, R.; Habib, M.A.; Nemitallah, M.A.; Andersson, K.
2014-01-01
Highlights: • CFD modeling of a typical industrial water tube boiler is conducted. • Different combustion processes were considered including air and oxy-fuel combustion. • SGG, EWBM, Leckner, Perry and WSGG radiation models were considered in the study. • EWBM is the most accurate model and it’s considered to be the benchmark model. • Characteristics of oxy-fuel combustion are compared to those of air–fuel combustion. - Abstract: Proper determination of the radiation energy is very important for proper predictions of the combustion characteristics inside combustion devices using CFD modeling. For this purpose, different gas radiation models were developed and applied in the present work. These radiation models vary in their accuracy and complexity according to the application. In this work, a CFD model for a typical industrial water tube boiler was developed, considering three different combustion environments. The combustion environments are air–fuel combustion (21% O 2 and 79% N 2 ), oxy-fuel combustion (21% O 2 and 79% CO 2 ) and oxy-fuel combustion (27% O 2 and 73% CO 2 ). Simple grey gas (SGG), exponential wide band model (EWBM), Leckner, Perry and weighted sum of grey gases (WSGG) radiation models were examined and their influences on the combustion characteristics were evaluated. Among those radiation models, the EWBM was found to provide close results to the experimental data for the present boiler combustion application. The oxy-fuel combustion characteristics were analyzed and compared with those of air–fuel combustion
Guyonvarch, Estelle; Ramin, Elham; Kulahci, Murat; Plósz, Benedek Gy
2015-10-15
The present study aims at using statistically designed computational fluid dynamics (CFD) simulations as numerical experiments for the identification of one-dimensional (1-D) advection-dispersion models - computationally light tools, used e.g., as sub-models in systems analysis. The objective is to develop a new 1-D framework, referred to as interpreted CFD (iCFD) models, in which statistical meta-models are used to calculate the pseudo-dispersion coefficient (D) as a function of design and flow boundary conditions. The method - presented in a straightforward and transparent way - is illustrated using the example of a circular secondary settling tank (SST). First, the significant design and flow factors are screened out by applying the statistical method of two-level fractional factorial design of experiments. Second, based on the number of significant factors identified through the factor screening study and system understanding, 50 different sets of design and flow conditions are selected using Latin Hypercube Sampling (LHS). The boundary condition sets are imposed on a 2-D axi-symmetrical CFD simulation model of the SST. In the framework, to degenerate the 2-D model structure, CFD model outputs are approximated by the 1-D model through the calibration of three different model structures for D. Correlation equations for the D parameter then are identified as a function of the selected design and flow boundary conditions (meta-models), and their accuracy is evaluated against D values estimated in each numerical experiment. The evaluation and validation of the iCFD model structure is carried out using scenario simulation results obtained with parameters sampled from the corners of the LHS experimental region. For the studied SST, additional iCFD model development was carried out in terms of (i) assessing different density current sub-models; (ii) implementation of a combined flocculation, hindered, transient and compression settling velocity function; and (iii
Calibration of the k- ɛ model constants for use in CFD applications
Glover, Nina; Guillias, Serge; Malki-Epshtein, Liora
2011-11-01
The k- ɛ turbulence model is a popular choice in CFD modelling due to its robust nature and the fact that it has been well validated. However it has been noted in previous research that the k- ɛ model has problems predicting flow separation as well as unconfined and transient flows. The model contains five empirical model constants whose values were found through data fitting for a wide range of flows (Launder 1972) but ad-hoc adjustments are often made to these values depending on the situation being modeled. Here we use the example of flow within a regular street canyon to perform a Bayesian calibration of the model constants against wind tunnel data. This allows us to assess the sensitivity of the CFD model to changes in these constants, find the most suitable values for the constants as well as quantifying the uncertainty related to the constants and the CFD model as a whole.
Modeling chemical reactions in the indoor environment by CFD
DEFF Research Database (Denmark)
Sørensen, Dan Nørtoft; Weschler, Charles J.
2002-01-01
The concentrations of ozone and a terpene that react in the gas-phase to produce a hypothetical product were investigated by computational fluid dynamics (CFD) for two different air exchange rates. Ozone entered the room with the ventilation air. The terpenes were introduced as a localized source...
International Nuclear Information System (INIS)
Broatch, A.; Galindo, J.; Navarro, R.; García-Tíscar, J.
2014-01-01
Highlights: • A DES of a turbocharger compressor working at peak pressure point is performed. • In-duct pressure signals are measured in a steady flow rig with 3-sensor arrays. • Pressure spectra comparison is performed as a validation for the numerical model. • A suitable comparison methodology is developed, relying on pressure decomposition. • Whoosh noise at outlet duct is detected in experimental and numerical spectra. - Abstract: Centrifugal compressors working in the surge side of the map generate a broadband noise in the range of 1–3 kHz, named as whoosh noise. This noise is perceived at strongly downsized engines operating at particular conditions (full load, tip-in and tip-out maneuvers). A 3-dimensional CFD model of a centrifugal compressor is built to analyze fluid phenomena related to whoosh noise. A detached eddy simulation is performed with the compressor operating at the peak pressure point of 160 krpm. A steady flow rig mounted on an anechoic chamber is used to obtain experimental measurements as a means of validation for the numerical model. In-duct pressure signals are obtained in addition to standard averaged global variables. The numerical simulation provides global variables showing excellent agreement with experimental measurements. Pressure spectra comparison is performed to assess noise prediction capability of numerical model. The influence of the type and position of the virtual pressure probes is evaluated. Pressure decomposition is required by the simulations to obtain meaningful spectra. Different techniques for obtaining pressure components are analyzed. At the simulated conditions, a broadband noise in 1–3 kHz frequency band is detected in the experimental measurements. This whoosh noise is also captured by the numerical model
Development of a compartment model based on CFD simulations for description of mixing in bioreactors
Directory of Open Access Journals (Sweden)
Crine, M.
2010-01-01
Full Text Available Understanding and modeling the complex interactions between biological reaction and hydrodynamics are a key problem when dealing with bioprocesses. It is fundamental to be able to accurately predict the hydrodynamics behavior of bioreactors of different size and its interaction with the biological reaction. CFD can provide detailed modeling about hydrodynamics and mixing. However, it is computationally intensive, especially when reactions are taken into account. Another way to predict hydrodynamics is the use of "Compartment" or "Multi-zone" models which are much less demanding in computation time than CFD. However, compartments and fluxes between them are often defined by considering global quantities not representative of the flow. To overcome the limitations of these two methods, a solution is to combine compartment modeling and CFD simulations. Therefore, the aim of this study is to develop a methodology in order to propose a compartment model based on CFD simulations of a bioreactor. The flow rate between two compartments can be easily computed from the velocity fields obtained by CFD. The difficulty lies in the definition of the zones in such a way they can be considered as perfectly mixed. The creation of the model compartments from CFD cells can be achieved manually or automatically. The manual zoning consists in aggregating CFD cells according to the user's wish. The automatic zoning defines compartments as regions within which the value of one or several properties are uniform with respect to a given tolerance. Both manual and automatic zoning methods have been developed and compared by simulating the mixing of an inert scalar. For the automatic zoning, several algorithms and different flow properties have been tested as criteria for the compartment creation.
Vulović, Aleksandra; Šušteršič, Tijana; Cvijić, Sandra; Ibrić, Svetlana; Filipović, Nenad
2018-02-15
One of the critical components of the respiratory drug delivery is the manner in which the inhaled aerosol is deposited in respiratory tract compartments. Depending on formulation properties, device characteristics and breathing pattern, only a certain fraction of the dose will reach the target site in the lungs, while the rest of the drug will deposit in the inhalation device or in the mouth-throat region. The aim of this study was to link the Computational fluid dynamics (CFD) with physiologically-based pharmacokinetic (PBPK) modelling in order to predict aerolisolization of different dry powder formulations, and estimate concomitant in vivo deposition and absorption of amiloride hydrochloride. Drug physicochemical properties were experimentally determined and used as inputs for the CFD simulations of particle flow in the generated 3D geometric model of Aerolizer® dry powder inhaler (DPI). CFD simulations were used to simulate air flow through Aerolizer® inhaler and Discrete Phase Method (DPM) was used to simulate aerosol particles deposition within the fluid domain. The simulated values for the percent emitted dose were comparable to the values obtained using Andersen cascade impactor (ACI). However, CFD predictions indicated that aerosolized DPI have smaller particle size and narrower size distribution than assumed based on ACI measurements. Comparison with the literature in vivo data revealed that the constructed drug-specific PBPK model was able to capture amiloride absorption pattern following oral and inhalation administration. The PBPK simulation results, based on the CFD generated particle distribution data as input, illustrated the influence of formulation properties on the expected drug plasma concentration profiles. The model also predicted the influence of potential changes in physiological parameters on the extent of inhaled amiloride absorption. Overall, this study demonstrated the potential of the combined CFD-PBPK approach to model inhaled drug
Prediction of subcooled flow boiling characteristics using two-fluid Eulerian CFD model
Energy Technology Data Exchange (ETDEWEB)
Braz Filho, Francisco A.; Ribeiro, Guilherme B., E-mail: gbribeiro@ieav.cta.br; Caldeira, Alexandre D.
2016-11-15
Highlights: • CFD multiphase model is used to predict subcooled flow boiling characteristics. • Better agreement is achieved for higher saturation pressures. • Onset of nucleate boiling and saturated boiling are well predicted. • CFD multiphase model tends to underestimate the void fraction. • Factors were adjusted in order to improve the void fraction results. - Abstract: The present study concerns a detailed analysis of flow boiling phenomena under high pressure systems using a two-fluid Eulerian approach provided by a Computational Fluid Dynamics (CFD) solver. For this purpose, a vertical heated pipe made of stainless steel with an internal diameter of 15.4 mm was considered as the modeled domain. Two different uniform heat fluxes and three saturation pressures were applied to the channel wall, whereas water mass flux of 900 kg/m{sup 2} s was considered for all simulation cases. The model was validated against a set of experimental data and results have indicated a promising use of the CFD technique for estimation of the wall temperature, the liquid bulk temperature and the location of the departure of nucleate boiling. Changes in factors applied in the modeling of the interfacial heat transfer coefficient and bubble departure frequency were suggested, allowing a better prediction of the void fraction along the heated channel. The commercial CFD solver FLUENT 14.5 was used for the model implementation.
Prediction of subcooled flow boiling characteristics using two-fluid Eulerian CFD model
International Nuclear Information System (INIS)
Braz Filho, Francisco A.; Ribeiro, Guilherme B.; Caldeira, Alexandre D.
2016-01-01
Highlights: • CFD multiphase model is used to predict subcooled flow boiling characteristics. • Better agreement is achieved for higher saturation pressures. • Onset of nucleate boiling and saturated boiling are well predicted. • CFD multiphase model tends to underestimate the void fraction. • Factors were adjusted in order to improve the void fraction results. - Abstract: The present study concerns a detailed analysis of flow boiling phenomena under high pressure systems using a two-fluid Eulerian approach provided by a Computational Fluid Dynamics (CFD) solver. For this purpose, a vertical heated pipe made of stainless steel with an internal diameter of 15.4 mm was considered as the modeled domain. Two different uniform heat fluxes and three saturation pressures were applied to the channel wall, whereas water mass flux of 900 kg/m"2 s was considered for all simulation cases. The model was validated against a set of experimental data and results have indicated a promising use of the CFD technique for estimation of the wall temperature, the liquid bulk temperature and the location of the departure of nucleate boiling. Changes in factors applied in the modeling of the interfacial heat transfer coefficient and bubble departure frequency were suggested, allowing a better prediction of the void fraction along the heated channel. The commercial CFD solver FLUENT 14.5 was used for the model implementation.
Loomans, M.G.L.C.; Lemaire, A.D.; Plas, van der M.
2009-01-01
The paper describes results from a reference study that focuses on the application of the Computational Fluid Dynamics (CFD-) technique for heat and smoke transport in practice. Goal of the study is to obtain insight into the amount and causes of the spread of CFD-results when applied by different
PIV-measured versus CFD-predicted flow dynamics in anatomically realistic cerebral aneurysm models.
Ford, Matthew D; Nikolov, Hristo N; Milner, Jaques S; Lownie, Stephen P; Demont, Edwin M; Kalata, Wojciech; Loth, Francis; Holdsworth, David W; Steinman, David A
2008-04-01
Computational fluid dynamics (CFD) modeling of nominally patient-specific cerebral aneurysms is increasingly being used as a research tool to further understand the development, prognosis, and treatment of brain aneurysms. We have previously developed virtual angiography to indirectly validate CFD-predicted gross flow dynamics against the routinely acquired digital subtraction angiograms. Toward a more direct validation, here we compare detailed, CFD-predicted velocity fields against those measured using particle imaging velocimetry (PIV). Two anatomically realistic flow-through phantoms, one a giant internal carotid artery (ICA) aneurysm and the other a basilar artery (BA) tip aneurysm, were constructed of a clear silicone elastomer. The phantoms were placed within a computer-controlled flow loop, programed with representative flow rate waveforms. PIV images were collected on several anterior-posterior (AP) and lateral (LAT) planes. CFD simulations were then carried out using a well-validated, in-house solver, based on micro-CT reconstructions of the geometries of the flow-through phantoms and inlet/outlet boundary conditions derived from flow rates measured during the PIV experiments. PIV and CFD results from the central AP plane of the ICA aneurysm showed a large stable vortex throughout the cardiac cycle. Complex vortex dynamics, captured by PIV and CFD, persisted throughout the cardiac cycle on the central LAT plane. Velocity vector fields showed good overall agreement. For the BA, aneurysm agreement was more compelling, with both PIV and CFD similarly resolving the dynamics of counter-rotating vortices on both AP and LAT planes. Despite the imposition of periodic flow boundary conditions for the CFD simulations, cycle-to-cycle fluctuations were evident in the BA aneurysm simulations, which agreed well, in terms of both amplitudes and spatial distributions, with cycle-to-cycle fluctuations measured by PIV in the same geometry. The overall good agreement
Directory of Open Access Journals (Sweden)
Mazda Biglari
2016-06-01
Full Text Available Two modeling approaches, the scaling-law and CFD (Computational Fluid Dynamics approaches, are presented in this paper. To save on experimental cost of the pilot plant, the scaling-law approach as a low-computational-cost method was adopted and a small scale column operating under ambient temperature and pressure was built. A series of laboratory tests and computer simulations were carried out to evaluate the hydrodynamic characteristics of a pilot fluidized-bed biomass gasifier. In the small scale column solids were fluidized. The pressure and other hydrodynamic properties were monitored for the validation of the scaling-law application. In addition to the scaling-law modeling method, the CFD approach was presented to simulate the gas-particle system in the small column. 2D CFD models were developed to simulate the hydrodynamic regime. The simulation results were validated with the experimental data from the small column. It was proved that the CFD model was able to accurately predict the hydrodynamics of the small column. The outcomes of this research present both the scaling law with the lower computational cost and the CFD modeling as a more robust method to suit various needs for the design of fluidized-bed gasifiers.
3D unified CFD to modeling of bubbles phenomena
International Nuclear Information System (INIS)
Vladimir V Chudanov; Anna E Aksenova; Valerii A Pervichko
2005-01-01
Full text of publication follows: During of the last ten years the developed numerical methods and algorithms for solving of heat and mass transfer problems in compressible/incompressible fluids were successfully tested at simulation of interaction of two immiscible liquids. Now these computing tools are extended on a case of two-phase flows, such as a liquids-gas system as follows: outside of bubbles the non-stationary incompressible Navier-Stokes equations in the primitive variables coupled with the heat transfer equation are used; inside of bubble a compressible medium model with low Mach limit is applied. To observe of an interface of liquid-gas system we use the modified level set method and three-dimensional advective schemes of TVD-type with small scheme diffusion with use of sub-grid simulation. These schemes with small diffusion were already applied by us under using of sub-grid simulation for interface transfer in case of two non-mixing liquids. For bubble phenomena a numerical technique based on the developed algorithms with a small scheme diffusion, for which the discrete approximations are constructed using the finite-volume methods and fully staggered grids is adapted. Testing of the developed approach is carried out on the set of test problems and a good agreement is obtained between numerical predictions and experimental data. The numerical technique was successfully utilized for numerical support of 3D experiment financed by Nuclear Energy Agency at the Organization economic cooperation and development within the framework of MASKA Project, where computational fluid dynamics of two non-mixing fluids such as corium and steel was investigated. In this paper there is application of developed approach for simulation of bubble flows, in particular, for study of coalescence of two drops. The developed technique has a high degree of efficiency and allows on a personal computer (3 GHz and 2 Gbytes RAM) to carry out CFD calculations on a grid with 10 7
CFD aided analysis of a scaled down model of the Brazilian Multipurpose Reactor (RMB) pool
International Nuclear Information System (INIS)
Schweizer, Fernando L.A.; Lima, Claubia P.B.; Costa, Antonella L.; Veloso, Maria A.F.
2013-01-01
Research reactors are commonly built inside deep pools that provide radiological and thermal protection and easy access to its core. Reactors with thermal power in the order of MW usually use an auxiliary thermal-hydraulic circuit at the top of its pool to create a purified hot water layer (HWL). Thermal-hydraulic analysis of the flow configuration in the pool and HWL is paramount to insure radiological protection. A useful tool for these analyses is the application of CFD (Computational Fluid Dynamics). To obtain satisfactory results using CFD it is necessary the verification and validation of the CFD numerical model. Verification is divided in code and solution verifications. In the first one establishes the correctness of the CFD code implementation and in the former estimates the numerical accuracy of a particular calculation. Validation is performed through comparison of numerical and experimental results. This paper presents a dimensional analysis of the RMB (Brazilian Multipurpose Reactor) pool to determine a scaled down experimental installation able to aid in the HWL numerical investigation. Two CFD models were created one with the same dimensions and boundary conditions of the reactor prototype and the other with 1/10 proportion size and boundary conditions set to achieve the same inertial and buoyant forces proportions represented by Froude Number between the two models. Results comparing the HWL thickness show consistence between the prototype and the scaled down model behavior. (author)
Towards CFD modeling of turbulent pipeline material transportation
Shahirpour, Amir; Herzog, Nicoleta; Egbers, Cristoph
2013-04-01
Safe and financially efficient pipeline transportation of carbon dioxide is a critical issue in the developing field of the CCS Technology. In this part of the process, carbon dioxide is transported via pipes with diameter of 1.5 m and entry pressure of 150 bar, with Reynolds number of 107 and viscosity of 8×10(-5) Pa.s as dense fluid [1]. Presence of large and small scale structures in the pipeline, high Reynolds numbers at which CO2 should be transferred, and 3 dimensional turbulence caused by local geometrical modifications, increase the importance of simulation of turbulent material transport through the individual components of the CO2 chain process. In this study, incompressible turbulent channel flow and pipe flow have been modeled using OpenFoam, an open source CFD software. In the first step, simulation of a turbulent channel flow has been considered using LES for shear Reynolds number of 395. A simple geometry has been chosen with cyclic fluid inlet and outlet boundary conditions to simulate a fully developed flow. The mesh is gradually refined towards the wall to provide values close enough to the wall for the wall coordinate (y+). Grid resolution study has been conducted for One-Equation model. The accuracy of the results is analyzed with respect to the grid smoothness in order to reach an optimized resolution for carrying out the next simulations. Furthermore, three LES models, One-Equation, Smagorinsky and Dynamic Smagorinsky are applied for the grid resolution of (60 × 100 × 80) in (x, y, z) directions. The results are then validated with reference to the DNS carried out by Moser et al.[2] for the similar geometry using logarithmic velocity profile (U+) and Reynolds stress tensor components. In the second step the similar flow is modeled using Reynolds averaged method. Several RANS models, like K-epsilon and Launder-Reece-Rodi are applied and validated against DNS and LES results in a similar fashion. In the most recent step, it has been intended
CFD-model of the mass transfer in the vertical settler
Directory of Open Access Journals (Sweden)
E. K. Nagornaya
2013-02-01
Full Text Available Purpose. Nowadays the mathematical models of the secondary settlers are intensively developed. As a rule the engineers use the 0-D models or 1-D models to design settlers. But these models do not take into account the hydrodynamics process inside the settler and its geometrical form. That is why the CFD-models based on Navier - Stokes equations are not widely used in practice now. The use of CFD-models based on Navier - Stokes equations needs to incorporate very refine grid. It is very actually now to develop the CFD-models which permit to take into account the geometrical form of the settler, the most important physical processes and needs small computer time for calculation. That is why the development of the 2-D numerical model for the investigation of the waste waters transfer in the vertical settlers which permits to take into account the geometrical form and the constructive features of the settler is essential. Methodology. The finite - difference schemes are applied. Findings. The new 2-D-CFD-model was developed, which permits to perform the CFD investigation of the vertical settler. This model takes into account the geometrical form of the settler, the central pipe inside it and others peculiarities. The method of «porosity technique» is used to create the geometrical form of the settler in the numerical model. This technique permits to build any geometrical form of the settler for CFD investigation. Originality. Making of CFD-model which permits on the one hand to take into account the geometrical form of the settler, basic physical processes of mass transfer in construction and on the other hand requiring the low time cost in order to obtain results. Practical value. CFD-model is designed and code which is constructed on its basis allows at low cost of computer time and about the same as in the calculation of the 1-D model to solve complex multiparameter problems that arise during the design of vertical settlers with their shape and
A CFD model for determining mixing and mass transfer in a high power agitated bioreactor
DEFF Research Database (Denmark)
Bach, Christian; Albæk, Mads O.; Stocks, Stuart M.
performance of a high power agitated pilot scale bioreactor has been characterized using a novel combination of computational fluid dynamics (CFD) and experimental investigations. The effect of turbulence inside the vessel was found to be most efficiently described by using the k-ε model with regards...... simulations, and the overall mass transfer coefficient was found to be in accordance with experimental data. This work illustrates the possibility of predicting the hydrodynamic performance of an agitated bioreactor using validated CFD models. These models can be applied in the testing of new bioreactor...
Towards a CFD-based mechanistic deposit formation model for straw-fired boilers
DEFF Research Database (Denmark)
Kær, Søren Knudsen; Rosendahl, Lasse Aistrup; Baxter, L.L.
2006-01-01
is configured entirely through a graphical user interface integrated in the standard FLUENTe interface. The model considers fine and coarse mode ash deposition and sticking mechanisms for the complete deposit growth, as well as an influence on the local boundary conditions for heat transfer due to thermal...... in the reminder of the paper. The growth of deposits on furnace walls and super heater tubes is treated including the impact on heat transfer rates determined by the CFD code. Based on the commercial CFD code FLUENTe, the overall model is fully implemented through the User Defined Functions. The model...
International Nuclear Information System (INIS)
Zhou, Chenn
2008-01-01
Pulverized coal injection (PCI) into the blast furnace (BF) has been recognized as an effective way to decrease the coke and total energy consumption along with minimization of environmental impacts. However, increasing the amount of coal injected into the BF is currently limited by the lack of knowledge of some issues related to the process. It is therefore important to understand the complex physical and chemical phenomena in the PCI process. Due to the difficulty in attaining trus BF measurements, Computational fluid dynamics (CFD) modeling has been identified as a useful technology to provide such knowledge. CFD simulation is powerful for providing detailed information on flow properties and performing parametric studies for process design and optimization. In this project, comprehensive 3-D CFD models have been developed to simulate the PCI process under actual furnace conditions. These models provide raceway size and flow property distributions. The results have provided guidance for optimizing the PCI process
CFD Wake Modelling with a BEM Wind Turbine Sub-Model
Directory of Open Access Journals (Sweden)
Anders Hallanger
2013-01-01
Full Text Available Modelling of wind farms using computational fluid dynamics (CFD resolving the flow field around each wind turbine's blades on a moving computational grid is still too costly and time consuming in terms of computational capacity and effort. One strategy is to use sub-models for the wind turbines, and sub-grid models for turbulence production and dissipation to model the turbulent viscosity accurately enough to handle interaction of wakes in wind farms. A wind turbine sub-model, based on the Blade Momentum Theory, see Hansen (2008, has been implemented in an in-house CFD code, see Hallanger et al. (2002. The tangential and normal reaction forces from the wind turbine blades are distributed on the control volumes (CVs at the wind turbine rotor location as sources in the conservation equations of momentum. The classical k-epsilon turbulence model of Launder and Spalding (1972 is implemented with sub-grid turbulence (SGT model, see Sha and Launder (1979 and Sand and Salvesen (1994. Steady state CFD simulations were compared with flow and turbulence measurements in the wake of a model scale wind turbine, see Krogstad and Eriksen (2011. The simulated results compared best with experiments when stalling (boundary layer separation on the wind turbine blades did not occur. The SGT model did improve turbulence level in the wake but seems to smear the wake flow structure. It should be noted that the simulations are carried out steady state not including flow oscillations caused by vortex shedding from tower and blades as they were in the experiments. Further improvement of the simulated velocity defect and turbulence level seems to rely on better parameter estimation to the SGT model, improvements to the SGT model, and possibly transient- instead of steady state simulations.
Comparing different CFD wind turbine modelling approaches with wind tunnel measurements
International Nuclear Information System (INIS)
Kalvig, Siri; Hjertager, Bjørn; Manger, Eirik
2014-01-01
The performance of a model wind turbine is simulated with three different CFD methods: actuator disk, actuator line and a fully resolved rotor. The simulations are compared with each other and with measurements from a wind tunnel experiment. The actuator disk is the least accurate and most cost-efficient, and the fully resolved rotor is the most accurate and least cost-efficient. The actuator line method is believed to lie in between the two ends of the scale. The fully resolved rotor produces superior wake velocity results compared to the actuator models. On average it also produces better results for the force predictions, although the actuator line method had a slightly better match for the design tip speed. The open source CFD tool box, OpenFOAM, was used for the actuator disk and actuator line calculations, whereas the market leading commercial CFD code, ANSYS/FLUENT, was used for the fully resolved rotor approach
Development and Implementation of CFD-Informed Models for the Advanced Subchannel Code CTF
Blyth, Taylor S.
The research described in this PhD thesis contributes to the development of efficient methods for utilization of high-fidelity models and codes to inform low-fidelity models and codes in the area of nuclear reactor core thermal-hydraulics. The objective is to increase the accuracy of predictions of quantities of interests using high-fidelity CFD models while preserving the efficiency of low-fidelity subchannel core calculations. An original methodology named Physics-based Approach for High-to-Low Model Information has been further developed and tested. The overall physical phenomena and corresponding localized effects, which are introduced by the presence of spacer grids in light water reactor (LWR) cores, are dissected in corresponding four building basic processes, and corresponding models are informed using high-fidelity CFD codes. These models are a spacer grid-directed cross-flow model, a grid-enhanced turbulent mixing model, a heat transfer enhancement model, and a spacer grid pressure loss model. The localized CFD-models are developed and tested using the CFD code STAR-CCM+, and the corresponding global model development and testing in sub-channel formulation is performed in the thermal-hydraulic subchannel code CTF. The improved CTF simulations utilize data-files derived from CFD STAR-CCM+ simulation results covering the spacer grid design desired for inclusion in the CTF calculation. The current implementation of these models is examined and possibilities for improvement and further development are suggested. The validation experimental database is extended by including the OECD/NRC PSBT benchmark data. The outcome is an enhanced accuracy of CTF predictions while preserving the computational efficiency of a low-fidelity subchannel code.
Development and Implementation of CFD-Informed Models for the Advanced Subchannel Code CTF
Energy Technology Data Exchange (ETDEWEB)
Blyth, Taylor S. [Pennsylvania State Univ., University Park, PA (United States); Avramova, Maria [North Carolina State Univ., Raleigh, NC (United States)
2017-04-01
The research described in this PhD thesis contributes to the development of efficient methods for utilization of high-fidelity models and codes to inform low-fidelity models and codes in the area of nuclear reactor core thermal-hydraulics. The objective is to increase the accuracy of predictions of quantities of interests using high-fidelity CFD models while preserving the efficiency of low-fidelity subchannel core calculations. An original methodology named Physics- based Approach for High-to-Low Model Information has been further developed and tested. The overall physical phenomena and corresponding localized effects, which are introduced by the presence of spacer grids in light water reactor (LWR) cores, are dissected in corresponding four building basic processes, and corresponding models are informed using high-fidelity CFD codes. These models are a spacer grid-directed cross-flow model, a grid-enhanced turbulent mixing model, a heat transfer enhancement model, and a spacer grid pressure loss model. The localized CFD-models are developed and tested using the CFD code STAR-CCM+, and the corresponding global model development and testing in sub-channel formulation is performed in the thermal- hydraulic subchannel code CTF. The improved CTF simulations utilize data-files derived from CFD STAR-CCM+ simulation results covering the spacer grid design desired for inclusion in the CTF calculation. The current implementation of these models is examined and possibilities for improvement and further development are suggested. The validation experimental database is extended by including the OECD/NRC PSBT benchmark data. The outcome is an enhanced accuracy of CTF predictions while preserving the computational efficiency of a low-fidelity subchannel code.
Advancement and Application of Multi-Phase CFD Modeling to High Speed Supercavitating Flows
2013-08-13
October 2008 - December 2013 4. TITLE AND SUBTITLE Advancement and Application of Multi-Phase CFD Modeling to High Speed Supercavitating Flows...influence cavity hysteresis behavior. These observations are used to guide improved supercavitating -vehicle analyses including numerical predictions...experiments, and modeling 15. SUBJECT TERMS supercavitation , computational fluid dynamics, multiphase flow 16. SECURITY CLASSIFICATION OF: a
Befrui, Bizhan A.
1995-01-01
This viewgraph presentation discusses the following: STAR-CD computational features; STAR-CD turbulence models; common features of industrial complex flows; industry-specific CFD development requirements; applications and experiences of industrial complex flows, including flow in rotating disc cavities, diffusion hole film cooling, internal blade cooling, and external car aerodynamics; and conclusions on turbulence modeling needs.
Natural ventilation of a generic cask under a transport hood - CFD and analytical modelling
Energy Technology Data Exchange (ETDEWEB)
Powell, D.; Davies, G.; Tso, C.F. [Arup, London (United Kingdom)
2004-07-01
In comparison with finite element simulation for structural and thermal behaviour, the use of computational fluid dynamics technique (hereafter CFD) to analyse, predict and design air and heat flow in package design is relatively novel. Arup has been using CFD techniques to investigate fluid and heat flow, and to use it as a tool to design fluid and heat flow across a broad spectrum of industries for over fifteen years. In order demonstrate the power of the technique and its benefits, the airflow and heat flow characteristics around a transport package during transit under a transport hood has been evaluated using the CFD technique. This paper presents the scenario, the model, the analysis technique and the results of this analysis. Comparison with test results is probably the best way to validate a CFD analysis. In the absence of test results, the analysis was verified by comparison with hand calculation solutions. The scenario as it stands is too complex and hand calculation solution cannot describe the scenario sufficiently. However, hand calculation solutions could be derived for simplified version of the scenario against which CFD analysis of the simplified scenario can be compared. The second half of this paper describes the verification out.
Natural ventilation of a generic cask under a transport hood - CFD and analytical modelling
International Nuclear Information System (INIS)
Powell, D.; Davies, G.; Tso, C.F.
2004-01-01
In comparison with finite element simulation for structural and thermal behaviour, the use of computational fluid dynamics technique (hereafter CFD) to analyse, predict and design air and heat flow in package design is relatively novel. Arup has been using CFD techniques to investigate fluid and heat flow, and to use it as a tool to design fluid and heat flow across a broad spectrum of industries for over fifteen years. In order demonstrate the power of the technique and its benefits, the airflow and heat flow characteristics around a transport package during transit under a transport hood has been evaluated using the CFD technique. This paper presents the scenario, the model, the analysis technique and the results of this analysis. Comparison with test results is probably the best way to validate a CFD analysis. In the absence of test results, the analysis was verified by comparison with hand calculation solutions. The scenario as it stands is too complex and hand calculation solution cannot describe the scenario sufficiently. However, hand calculation solutions could be derived for simplified version of the scenario against which CFD analysis of the simplified scenario can be compared. The second half of this paper describes the verification out
Comparison of a semi-analytic and a CFD model uranium combustion to experimental data
International Nuclear Information System (INIS)
Clarksean, R.
1998-01-01
Two numerical models were developed and compared for the analysis of uranium combustion and ignition in a furnace. Both a semi-analytical solution and a computational fluid dynamics (CFD) numerical solution were obtained. Prediction of uranium oxidation rates is important for fuel storage applications, fuel processing, and the development of spent fuel metal waste forms. The semi-analytical model was based on heat transfer correlations, a semi-analytical model of flow over a flat surface, and simple radiative heat transfer from the material surface. The CFD model numerically determined the flowfield over the object of interest, calculated the heat and mass transfer to the material of interest, and calculated the radiative heat exchange of the material with the furnace. The semi-analytical model is much less detailed than the CFD model, but yields reasonable results and assists in understanding the physical process. Short computation times allowed the analyst to study numerous scenarios. The CFD model had significantly longer run times, was found to have some physical limitations that were not easily modified, but was better able to yield details of the heat and mass transfer and flow field once code limitations were overcome
A novel methodology for interpreting air quality measurements from urban streets using CFD modelling
Solazzo, Efisio; Vardoulakis, Sotiris; Cai, Xiaoming
2011-09-01
In this study, a novel computational fluid dynamics (CFD) based methodology has been developed to interpret long-term averaged measurements of pollutant concentrations collected at roadside locations. The methodology is applied to the analysis of pollutant dispersion in Stratford Road (SR), a busy street canyon in Birmingham (UK), where a one-year sampling campaign was carried out between August 2005 and July 2006. Firstly, a number of dispersion scenarios are defined by combining sets of synoptic wind velocity and direction. Assuming neutral atmospheric stability, CFD simulations are conducted for all the scenarios, by applying the standard k-ɛ turbulence model, with the aim of creating a database of normalised pollutant concentrations at specific locations within the street. Modelled concentration for all wind scenarios were compared with hourly observed NO x data. In order to compare with long-term averaged measurements, a weighted average of the CFD-calculated concentration fields was derived, with the weighting coefficients being proportional to the frequency of each scenario observed during the examined period (either monthly or annually). In summary the methodology consists of (i) identifying the main dispersion scenarios for the street based on wind speed and directions data, (ii) creating a database of CFD-calculated concentration fields for the identified dispersion scenarios, and (iii) combining the CFD results based on the frequency of occurrence of each dispersion scenario during the examined period. The methodology has been applied to calculate monthly and annually averaged benzene concentration at several locations within the street canyon so that a direct comparison with observations could be made. The results of this study indicate that, within the simplifying assumption of non-buoyant flow, CFD modelling can aid understanding of long-term air quality measurements, and help assessing the representativeness of monitoring locations for population
International Nuclear Information System (INIS)
Ajedegba, J.O.; Rosen, M.A.; Naterer, G.F.; Tsang, E.
2009-01-01
Wind power can help mitigate climate change. Computational fluid dynamics (CFD) is used here to simulate and analyze the Zephyr vertical axis wind turbine and to assess how it reduces greenhouse gas emissions. Fluid flow through the turbine is simulated to predict its performance. A multiple reference frame model capability of CFD is used to express the turbine power output as a function of the wind free stream velocity and the rotor rotational speed. The results suggest the wind turbine could significantly reduce energy demand and greenhouse gas emissions in urban and rural settings relative to conventional power systems. (author)
Hariharan, Prasanna; D'Souza, Gavin A; Horner, Marc; Morrison, Tina M; Malinauskas, Richard A; Myers, Matthew R
2017-01-01
A "credible" computational fluid dynamics (CFD) model has the potential to provide a meaningful evaluation of safety in medical devices. One major challenge in establishing "model credibility" is to determine the required degree of similarity between the model and experimental results for the model to be considered sufficiently validated. This study proposes a "threshold-based" validation approach that provides a well-defined acceptance criteria, which is a function of how close the simulation and experimental results are to the safety threshold, for establishing the model validity. The validation criteria developed following the threshold approach is not only a function of Comparison Error, E (which is the difference between experiments and simulations) but also takes in to account the risk to patient safety because of E. The method is applicable for scenarios in which a safety threshold can be clearly defined (e.g., the viscous shear-stress threshold for hemolysis in blood contacting devices). The applicability of the new validation approach was tested on the FDA nozzle geometry. The context of use (COU) was to evaluate if the instantaneous viscous shear stress in the nozzle geometry at Reynolds numbers (Re) of 3500 and 6500 was below the commonly accepted threshold for hemolysis. The CFD results ("S") of velocity and viscous shear stress were compared with inter-laboratory experimental measurements ("D"). The uncertainties in the CFD and experimental results due to input parameter uncertainties were quantified following the ASME V&V 20 standard. The CFD models for both Re = 3500 and 6500 could not be sufficiently validated by performing a direct comparison between CFD and experimental results using the Student's t-test. However, following the threshold-based approach, a Student's t-test comparing |S-D| and |Threshold-S| showed that relative to the threshold, the CFD and experimental datasets for Re = 3500 were statistically similar and the model could be
Modeling flow inside an anaerobic digester by CFD techniques
Energy Technology Data Exchange (ETDEWEB)
Mendoza, Alexandra Martinez; Jimenez, P. Amparo Lopez [Departmento do Ingenieria Hidralica y Medio Ambiente, Universitat Politecnica de Valencia, Camino de Vera S/N 46022 (Spain); Martinez, Tatiana Montoya; Monanana, Vincente Fajardo [Grupo Aquas de Valencia. Avenida Marques del Turia 19 46005 Valencia (Spain)
2011-07-01
Anaerobic processes are used to treat high strength organic wastewater as well as for the treatment of primary and secondary sludge from conventional wastewater treatment plants. In these processes, heterotrophic microorganisms convert biodegradable organic matter to methane and carbon dioxide in the absence of dissolved oxygen and nitrate. Some of the most important aspects of the design of anaerobic digesters are related to hydraulic considerations. In spite of its important role in performance, hydraulics of flow inside digesters has not been quantified or adequately characterized. In this contribution a three-dimensional steady-state computational fluid dynamics (CFD) simulation has been performed for a particular anaerobic digester, in order to visualize the flow patterns. Flow and velocities profiles have been represented inside the digester to identify possible dead zones or stratifications. The geometry of a real digester installed in Valencia Waste Water Treatment Plant (located in Quart-Benager, Valencia, Spain) has been used in order to consider the proposed methodology.
International Nuclear Information System (INIS)
Churl Yoon; Bo Wook Rhee; Byung-Joo Min
2002-01-01
A validation of a 3D CFD model for predicting local subcooling of the moderator in the vicinity of calandria tubes in a CANDU-6 reactor is performed. The small scale moderator experiments performed at Sheridan Park Experimental Laboratory (SPEL) in Ontario, Canada[1] is used for the validation. Also a comparison is made between previous CFD analyses based on 2DMOTH and PHOENICS, and the current analysis for the same SPEL experiment. For the current model, a set of grid structures for the same geometry as the experimental test section is generated and the momentum, heat and continuity equations are solved by CFX-4.3, a CFD code developed by AEA technology. The matrix of calandria tubes is simplified by the porous media approach. The standard k-ε turbulence model associated with logarithmic wall treatment and SIMPLEC algorithm on the body fitted grid are used. Buoyancy effects are accounted for by the Boussinesq approximation. For the test conditions simulated in this study, the flow pattern identified is the buoyancy-dominated flow, which is generated by the interaction between the dominant buoyancy force by heating and inertial momentum forces by the inlet jets. As a result, the current CFD moderator analysis model predicts the moderator temperature reasonably, and the maximum error against the experimental data is kept at less than 2.0 deg. C over the whole domain. The simulated velocity field matches with the visualization of SPEL experiments quite well. (authors)
Research Summary 3-D Computational Fluid Dynamics (CFD) Model Of The Human Respiratory System
The U.S. EPA’s Office of Research and Development (ORD) has developed a 3-D computational fluid dynamics (CFD) model of the human respiratory system that allows for the simulation of particulate based contaminant deposition and clearance, while being adaptable for age, ethnicity,...
Integrated DEM-CFD modeling of the contact charging of pneumatically conveyed powders
Korevaar, M.W.; Padding, J.T.; Hoef, van der M.A.; Kuipers, J.A.M.
2014-01-01
A model is proposed that incorporates contact charging (also known as triboelectric charging) of pneumatically conveyed powders in a DEM–CFD framework, which accounts for the electrostatic interactions, both between particles and between the particles and conducting walls. The simulation results
Integrated DEM–CFD modeling of the contact charging of pneumatically conveyed powders
Korevaar, M.W.; Padding, J.T.; van der Hoef, Martin Anton; Kuipers, J.A.M.
2014-01-01
A model is proposed that incorporates contact charging (also known as triboelectric charging) of pneumatically conveyed powders in a DEM–CFD framework, which accounts for the electrostatic interactions, both between particles and between the particles and conducting walls. The simulation results
Aspects of Using CFD for Wind Comfort Modeling Around Tall Buildings
DEFF Research Database (Denmark)
Rasmussen, Michael R.; Andersen, Lars
2008-01-01
The Light*House complex is investigated for uncomfortable wind climate and dangerous winds at pedestrian level. A CFD model is used for simulating the wind effect for 12 different directions and correlated to the wind statistics of a nearby meteorological station. Comparing to practical standards...
Simulation of a MW rotor equipped with vortex generators using CFD and an actuator shape model
DEFF Research Database (Denmark)
Troldborg, Niels; Zahle, Frederik; Sørensen, Niels N.
2015-01-01
This article presents a comparison of CFD simulations of the DTU 10 MW reference wind turbine with and without vortex generators installed on the inboard part of the blades. The vortex generators are modelled by introducing body forces determined using a modified version of the so-called BAY mode...
Development of a three-dimensional CFD model for rotary lime kilns
Energy Technology Data Exchange (ETDEWEB)
Lixin Tao; Blom, Roger (FS Dynamics Sweden AB, Goeteborg (Sweden)); Nordgren, Daniel (Innventia, Stockholm (Sweden))
2010-11-15
In the calcium loop of the recovery cycle in a Kraft process of pulp and paper production, rotary lime kilns are used to convert the lime mud, mainly CaCO3, back to quick lime, CaO, for re-use in the causticizing process. The lime kilns are one of the major energy consumption devices for paper and pulp industry. Because of the rising oil price and new emission limits, the pulp mills have been forced to look for alternative fuels for their lime kilns. One interesting alternative to oil, often easily available at pulp mills, is biofuels such as sawdust and bark. However the practical kiln operation often encounters some difficulties because of the uncertainties around the biofuel impact on the lime kiln performance. A deeper understanding of the flame characteristics is required when shifting from oil to biofuels. Fortunately recent advances in modern Computational Fluid Dynamics, CFD, have provided the possibility to study and predict the detailed flame characteristics regarding the lime kiln performance. In this project a three-dimensional CFD model for rotary lime kilns has been developed. To simulate a rotary lime kiln the developed CFD model integrates the three essential sub-models, i.e. the freeboard hot flow model, the lime bed model and the rotating refractory wall model and it is developed based on the modern CFD package: FLUENT which is commercially available on the market. The numerical simulations using the developed CFD model have been performed for three selected kiln operations fired with three different fuel mixtures. The predicted results from the CFD modelling are presented and discussed in order to compare the impacts on the kiln performance due to the different firing conditions. During the development, the lime kiln at the Soedra Cell Moensteraas mill has been used as reference kiln. To validate the CFD model, in-plant measurements were carried out in the Moensteraas lime kiln during an experiment campaign. The results obtained from the
International Nuclear Information System (INIS)
Jackson, V.L.
2011-01-01
The primary purpose of the tank mixing and sampling demonstration program is to mitigate the technical risks associated with the ability of the Hanford tank farm delivery and celtification systems to measure and deliver a uniformly mixed high-level waste (HLW) feed to the Waste Treatment and Immobilization Plant (WTP) Uniform feed to the WTP is a requirement of 24590-WTP-ICD-MG-01-019, ICD-19 - Interface Control Document for Waste Feed, although the exact definition of uniform is evolving in this context. Computational Fluid Dynamics (CFD) modeling has been used to assist in evaluating scaleup issues, study operational parameters, and predict mixing performance at full-scale.
CFD modeling of thermal mixing in a T-junction geometry using LES model
Energy Technology Data Exchange (ETDEWEB)
Ayhan, Hueseyin, E-mail: huseyinayhan@hacettepe.edu.tr [Hacettepe University, Department of Nuclear Engineering, Beytepe, Ankara 06800 (Turkey); Soekmen, Cemal Niyazi, E-mail: cemalniyazi.sokmen@hacettepe.edu.tr [Hacettepe University, Department of Nuclear Engineering, Beytepe, Ankara 06800 (Turkey)
2012-12-15
Highlights: Black-Right-Pointing-Pointer CFD simulations of temperature and velocity fluctuations for thermal mixing cases in T-junction are performed. Black-Right-Pointing-Pointer It is found that the frequency range of 2-5 Hz contains most of the energy; therefore, may cause thermal fatigue. Black-Right-Pointing-Pointer This study shows that RANS based calculations fail to predict a realistic mixing between the fluids. Black-Right-Pointing-Pointer LES model can predict instantaneous turbulence behavior. - Abstract: Turbulent mixing of fluids at different temperatures can lead to temperature fluctuations at the pipe material. These fluctuations, or thermal striping, inducing cyclical thermal stresses and resulting thermal fatigue, may cause unexpected failure of pipe material. Therefore, an accurate characterization of temperature fluctuations is important in order to estimate the lifetime of pipe material. Thermal fatigue of the coolant circuits of nuclear power plants is one of the major issues in nuclear safety. To investigate thermal fatigue damage, the OECD/NEA has recently organized a blind benchmark study including some of results of present work for prediction of temperature and velocity fluctuations performing a thermal mixing experiment in a T-junction. This paper aims to estimate the frequency of velocity and temperature fluctuations in the mixing region using Computational Fluid Dynamics (CFD). Reynolds Averaged Navier-Stokes and Large Eddy Simulation (LES) models were used to simulate turbulence. CFD results were compared with the available experimental results. Predicted LES results, even in coarse mesh, were found to be in well-agreement with the experimental results in terms of amplitude and frequency of temperature and velocity fluctuations. Analysis of the temperature fluctuations and the power spectrum densities (PSD) at the locations having the strongest temperature fluctuations in the tee junction shows that the frequency range of 2-5 Hz
CFD Modelling of Abdominal Aortic Aneurysm on Hemodynamic Loads Using a Realistic Geometry with CT
Directory of Open Access Journals (Sweden)
Eduardo Soudah
2013-01-01
Full Text Available The objective of this study is to find a correlation between the abdominal aortic aneurysm (AAA geometric parameters, wall stress shear (WSS, abdominal flow patterns, intraluminal thrombus (ILT, and AAA arterial wall rupture using computational fluid dynamics (CFD. Real AAA 3D models were created by three-dimensional (3D reconstruction of in vivo acquired computed tomography (CT images from 5 patients. Based on 3D AAA models, high quality volume meshes were created using an optimal tetrahedral aspect ratio for the whole domain. In order to quantify the WSS and the recirculation inside the AAA, a 3D CFD using finite elements analysis was used. The CFD computation was performed assuming that the arterial wall is rigid and the blood is considered a homogeneous Newtonian fluid with a density of 1050 kg/m3 and a kinematic viscosity of 4×10-3 Pa·s. Parallelization procedures were used in order to increase the performance of the CFD calculations. A relation between AAA geometric parameters (asymmetry index (β, saccular index (γ, deformation diameter ratio (χ, and tortuosity index (ε and hemodynamic loads was observed, and it could be used as a potential predictor of AAA arterial wall rupture and potential ILT formation.
CFD Model of Water Droplet Transport for ISS Hygiene Activity
Son, Chang H.
2011-01-01
The goal of the study is to assess the impacts of free water propagation in the Waste and Hygiene Compartment (WHC). Free water can be generated inside the WHC in small quantities due to crew hygiene activity. To mitigate potential impact of free water in Node 3 cabin the WHC doorway is enclosed by a waterproof bump-out, Kabin, with openings at the top and bottom. At the overhead side of the rack, there is a screen that prevents large drops of water from exiting. However, as the avionics fan in the WHC causes airflow toward the deck side of the rack, small quantities of free water may exit at the bottom of the Kabin. A Computational Fluid Dynamics (CFD) analysis of Node 3 cabin airflow made possible to identify the paths of water transport. The Node 3 airflow was computed for several ventilation scenarios. To simulate the droplet transport the Lagrangian discrete phase approach was used. Various initial droplet distributions were considered in the study. The droplet diameter was varied in the range of 2-20 mm. The results of the computations showed that most of the drops fall to the rack surface not far from the WHC curtain. The probability of the droplet transport to the adjacent rack surface with electronic equipment was predicted.
Yuan, Liming; Smith, Alex C
In this study, computational fluid dynamics (CFD) modeling was conducted to optimize gas sampling locations for the early detection of spontaneous heating in longwall gob areas. Initial simulations were carried out to predict carbon monoxide (CO) concentrations at various regulators in the gob using a bleeder ventilation system. Measured CO concentration values at these regulators were then used to calibrate the CFD model. The calibrated CFD model was used to simulate CO concentrations at eight sampling locations in the gob using a bleederless ventilation system to determine the optimal sampling locations for early detection of spontaneous combustion.
Development and validation of the 3-D CFD model for CANDU-6 moderator temperature predictions
International Nuclear Information System (INIS)
Yoon, Churl; Rhee, Bo Wook; Min, Byung Joo
2003-03-01
A computational fluid dynamics model for predicting the moderator circulation inside the CANada Deuterium Uranium (CANDU) reactor vessel has been developed to estimate the local subcooling of the moderator in the vicinity of the Calandria tubes. The buoyancy effect induced by internal heating is accounted for by Boussinesq approximation. The standard κ-ε turbulence model associated with logarithmic wall treatment is applied to predict the turbulent jet flows from the inlet nozzles. The matrix of the Calandria tubes in the core region is simplified to porous media, in which an-isotropic hydraulic impedance is modeled using an empirical correlation of the frictional pressure loss. The governing equations are solved by CFX-4.4, a commercial CFD code developed by AEA technology. The CFD model has been successfully verified and validated against experimental data obtained in the Stern Laboratories Inc. (SLI) in Hamilton, Ontario
Modelling of water sump evaporation in a CFD code for nuclear containment studies
Energy Technology Data Exchange (ETDEWEB)
Malet, J., E-mail: jeanne.malet@irsn.f [Institute for Radioprotection and Nuclear Safety, DSU/SERAC/LEMAC, BP68 - 91192 Gif-sur-Yvette cedex (France); Bessiron, M., E-mail: matthieu.bessiron@irsn.f [Institute for Radioprotection and Nuclear Safety, DSU/SERAC/LEMAC, BP68 - 91192 Gif-sur-Yvette cedex (France); Perrotin, C., E-mail: christophe.perrotin@irsn.f [Institute for Radioprotection and Nuclear Safety, DSU/SERAC/LEMAC, BP68 - 91192 Gif-sur-Yvette cedex (France)
2011-05-15
Highlights: We model sump evaporation in the reactor containment for CFD codes. The sump is modelled by an interface temperature and an evaporation mass flow-rate. These two variables are modelled using energy and mass balance. Results are compared with specific experiments in a 7 m3 vessel (Tonus Qualification ANalytique, TOSQAN). A good agreement is observed, for pressure, temperatures, mass flow-rates. - Abstract: During the course of a hypothetical severe accident in a pressurized water reactor (PWR), water can be collected in the sump containment through steam condensation on walls and spray systems activation. This water is generally under evaporation conditions. The objective of this paper is twofold: to present a sump model developed using external user-defined functions for the TONUS-CFD code and to perform a first detailed comparison of the model results with experimental data. The sump model proposed here is based on energy and mass balance and leads to a good agreement between the numerical and the experimental results. Such a model can be rather easily added to any CFD code for which boundary conditions, such as injection temperature and mass flow-rate, can be modified by external user-defined functions, depending on the atmosphere conditions.
Integration of CFD codes and advanced combustion models for quantitative burnout determination
Energy Technology Data Exchange (ETDEWEB)
Javier Pallares; Inmaculada Arauzo; Alan Williams [University of Zaragoza, Zaragoza (Spain). Centre of Research for Energy Resources and Consumption (CIRCE)
2007-10-15
CFD codes and advanced kinetics combustion models are extensively used to predict coal burnout in large utility boilers. Modelling approaches based on CFD codes can accurately solve the fluid dynamics equations involved in the problem but this is usually achieved by including simple combustion models. On the other hand, advanced kinetics combustion models can give a detailed description of the coal combustion behaviour by using a simplified description of the flow field, this usually being obtained from a zone-method approach. Both approximations describe correctly general trends on coal burnout, but fail to predict quantitative values. In this paper a new methodology which takes advantage of both approximations is described. In the first instance CFD solutions were obtained of the combustion conditions in the furnace in the Lamarmora power plant (ASM Brescia, Italy) for a number of different conditions and for three coals. Then, these furnace conditions were used as inputs for a more detailed chemical combustion model to predict coal burnout. In this, devolatilization was modelled using a commercial macromolecular network pyrolysis model (FG-DVC). For char oxidation an intrinsic reactivity approach including thermal annealing, ash inhibition and maceral effects, was used. Results from the simulations were compared against plant experimental values, showing a reasonable agreement in trends and quantitative values. 28 refs., 4 figs., 4 tabs.
DEFF Research Database (Denmark)
Yin, Chungen; Johansen, Lars Christian Riis; Rosendahl, Lasse
2010-01-01
gases model (WSGGM) is derived, which is applicable to computational fluid dynamics (CFD) modeling of both air-fuel and oxy-fuel combustion. First, a computer code is developed to evaluate the emissivity of any gas mixture at any condition by using the exponential wide band model (EWBM...
Energy Technology Data Exchange (ETDEWEB)
Soria, J. [Instituto Multidisciplinario de Investigación y Desarrollo de la Patagonia Norte (IDEPA, CONICET-UNCo) y Facultad de Ingeniería, Universidad Nacional del Comahue, Buenos Aires 1400, 8300 Neuquén (Argentina); Laboratoire Procédés, Matériaux et Energie Solaire (CNRS-PROMES), 7 Rue du Four Solaire, Odeillo, 66120 Font-Romeu (France); Gauthier, D., E-mail: Daniel.Gauthier@promes.cnrs.fr [Laboratoire Procédés, Matériaux et Energie Solaire (CNRS-PROMES), 7 Rue du Four Solaire, Odeillo, 66120 Font-Romeu (France); Falcoz, Q.; Flamant, G. [Laboratoire Procédés, Matériaux et Energie Solaire (CNRS-PROMES), 7 Rue du Four Solaire, Odeillo, 66120 Font-Romeu (France); Mazza, G. [Instituto Multidisciplinario de Investigación y Desarrollo de la Patagonia Norte (IDEPA, CONICET-UNCo) y Facultad de Ingeniería, Universidad Nacional del Comahue, Buenos Aires 1400, 8300 Neuquén (Argentina)
2013-03-15
Highlights: ► A 2-D local CFD model for simulating the Cd vaporization process is presented. ► It includes a kinetic expression of Cd vaporization into the incineration process. ► Pyrolysis, volatiles’ combustion and residual carbon combustion are also taken into account. ► It fits very well the experimental results obtained on a lab-scale fluidized bed reported in literature. ► It also compares favorably with a model developed previously by the group. -- Abstract: The emissions of heavy metals during incineration of Municipal Solid Waste (MSW) are a major issue to health and the environment. It is then necessary to well quantify these emissions in order to accomplish an adequate control and prevent the heavy metals from leaving the stacks. In this study the kinetic behavior of Cadmium during Fluidized Bed Incineration (FBI) of artificial MSW pellets, for bed temperatures ranging from 923 to 1073 K, was modeled. FLUENT 12.1.4 was used as the modeling framework for the simulations and implemented together with a complete set of user-defined functions (UDFs). The CFD model combines the combustion of a single solid waste particle with heavy metal (HM) vaporization from the burning particle, and it takes also into account both pyrolysis and volatiles’ combustion. A kinetic rate law for the Cd release, derived from the CFD thermal analysis of the combusting particle, is proposed. The simulation results are compared with experimental data obtained in a lab-scale fluidized bed incinerator reported in literature, and with the predicted values from a particulate non-isothermal model, formerly developed by the authors. The comparison shows that the proposed CFD model represents very well the evolution of the HM release for the considered range of bed temperature.
A CFD numerical model for the flow distribution in a MTR fuel element
International Nuclear Information System (INIS)
Andrade, Delvonei Alves de; Santos, Pedro Henrique Di Giovanni; Oliveira, Fabio Branco Vaz de; Torres, Walmir Maximo; Umbehaun, Pedro Ernesto; Souza, Jose Antonio Batista de; Belchior Junior, Antonio; Sabundjian, Gaiane; Prado, Adelk de Carvalho; Angelo, Gabriel
2015-01-01
Previously, an instrumented dummy fuel element (DMPV-01), with the same geometric characteristics of a MTR fuel element, was designed and constructed for pressure drop and flow distribution measurement experiments at the IEA-R1 reactor core. This dummy element was also used to measure the flow distribution among the rectangular flow channels formed by element fuel plates. A CFD numerical model was developed to complement the studies. This work presents the proposed CFD model as well as a comparison between numerical and experimental results of flow rate distribution among the internal flow channels. Numerical results show that the model reproduces the experiments very well and can be used for the studies as a more convenient and complementary tool. (author)
An extended CFD model to predict the pumping curve in low pressure plasma etch chamber
Zhou, Ning; Wu, Yuanhao; Han, Wenbin; Pan, Shaowu
2014-12-01
Continuum based CFD model is extended with slip wall approximation and rarefaction effect on viscosity, in an attempt to predict the pumping flow characteristics in low pressure plasma etch chambers. The flow regime inside the chamber ranges from slip wall (Kn ˜ 0.01), and up to free molecular (Kn = 10). Momentum accommodation coefficient and parameters for Kn-modified viscosity are first calibrated against one set of measured pumping curve. Then the validity of this calibrated CFD models are demonstrated in comparison with additional pumping curves measured in chambers of different geometry configurations. More detailed comparison against DSMC model for flow conductance over slits with contraction and expansion sections is also discussed.
A CFD numerical model for the flow distribution in a MTR fuel element
Energy Technology Data Exchange (ETDEWEB)
Andrade, Delvonei Alves de; Santos, Pedro Henrique Di Giovanni; Oliveira, Fabio Branco Vaz de; Torres, Walmir Maximo; Umbehaun, Pedro Ernesto; Souza, Jose Antonio Batista de; Belchior Junior, Antonio; Sabundjian, Gaiane; Prado, Adelk de Carvalho, E-mail: acprado@ipen.br, E-mail: delvonei@ipen.br, E-mail: dpedro_digiovanni_s@hotmail.com, E-mail: fabio@ipen.br, E-mail: wmtorres@ipen.br, E-mail: umbehaun@ipen.br, E-mail: jasouza@ipen.br, E-mail: abelchior@ipen.br, E-mail: gdjian@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Centro de Engenharia Nuclear; Angelo, Edvaldo, E-mail: eangelo@mackenzie.br [Universidade Presbiteriana Mackenzie, Sao Paulo, SP (Brazil); Angelo, Gabriel, E-mail: gangelo@fei.edu.br [Fundacao Educacional Inaciana (FEI), Sao Bernardo do Campo, SP (Brazil)
2015-07-01
Previously, an instrumented dummy fuel element (DMPV-01), with the same geometric characteristics of a MTR fuel element, was designed and constructed for pressure drop and flow distribution measurement experiments at the IEA-R1 reactor core. This dummy element was also used to measure the flow distribution among the rectangular flow channels formed by element fuel plates. A CFD numerical model was developed to complement the studies. This work presents the proposed CFD model as well as a comparison between numerical and experimental results of flow rate distribution among the internal flow channels. Numerical results show that the model reproduces the experiments very well and can be used for the studies as a more convenient and complementary tool. (author)
A CFD model for biomass combustion in a packed bed furnace
Energy Technology Data Exchange (ETDEWEB)
Karim, Md. Rezwanul [Faculty of Science, Engineering and Technology, Swinburne University of Technology, VIC 3122 (Australia); Department of Mechanical & Chemical Engineering, Islamic University of Technology, Gazipur 1704 (Bangladesh); Ovi, Ifat Rabbil Qudrat [Department of Mechanical & Chemical Engineering, Islamic University of Technology, Gazipur 1704 (Bangladesh); Naser, Jamal, E-mail: jnaser@swin.edu.au [Faculty of Science, Engineering and Technology, Swinburne University of Technology, VIC 3122 (Australia)
2016-07-12
Climate change has now become an important issue which is affecting environment and people around the world. Global warming is the main reason of climate change which is increasing day by day due to the growing demand of energy in developed countries. Use of renewable energy is now an established technique to decrease the adverse effect of global warming. Biomass is a widely accessible renewable energy source which reduces CO{sub 2} emissions for producing thermal energy or electricity. But the combustion of biomass is complex due its large variations and physical structures. Packed bed or fixed bed combustion is the most common method for the energy conversion of biomass. Experimental investigation of packed bed biomass combustion is difficult as the data collection inside the bed is challenging. CFD simulation of these combustion systems can be helpful to investigate different operational conditions and to evaluate the local values inside the investigation area. Available CFD codes can model the gas phase combustion but it can’t model the solid phase of biomass conversion. In this work, a complete three-dimensional CFD model is presented for numerical investigation of packed bed biomass combustion. The model describes the solid phase along with the interface between solid and gas phase. It also includes the bed shrinkage due to the continuous movement of the bed during solid fuel combustion. Several variables are employed to represent different parameters of solid mass. Packed bed is considered as a porous bed and User Defined Functions (UDFs) platform is used to introduce solid phase user defined variables in the CFD. Modified standard discrete transfer radiation method (DTRM) is applied to model the radiation heat transfer. Preliminary results of gas phase velocity and pressure drop over packed bed have been shown. The model can be useful for investigation of movement of the packed bed during solid fuel combustion.
Validation of a CFD analysis model for the calculation of CANDU6 moderator temperature distribution
International Nuclear Information System (INIS)
Yoon, Churl; Rhee, Bo Wook; Min, Byung Joo
2001-01-01
A validation of a 3D CFD model for predicting local subcooling of moderator in the vicinity of calandria tubes in a CANDU reactor is performed. The small scale moderator experiments performed at Sheridan Park Experimental Laboratory (SPEL) in Ontario, Canada is used for the validation. Also a comparison is made between previous DFD analyses based on 2DMOTH and PHOENICS, and the current model analysis for the same SPEL experiment. For the current model, a set of grid structures for the same geometry as the experimental test section is generated and the momentum, heat and continuity equations are solved by CFX-4.3, a CFD code developed by AEA technology. The matrix of calandria tubes is simplified by the porous media approach. The standard κ-ε turbulence model associated with logarithmic wall treatment and SIMPLEC algorithm on the body fitted grid are used and buoyancy effects are accounted for by the Boussinesq approximation. For the test conditions simulated in this study, the flow pattern identified is a buoyancy-dominated flow, which is generated by the interaction between the dominant buoyancy force by heating and inertial momentum forces by the inlet jets. As a result, the current CFD moderator analysis model predicts the moderator temperature reasonably, and the maximum error against the experimental data is kept at less than 2.0 .deg. C over the whole domain. The simulated velocity field matches with the visualization of SPEL experiments quite well
Numerical modelling of pressure suppression pools with CFD and FEM codes
Energy Technology Data Exchange (ETDEWEB)
Paettikangas, T.; Niemi, J.; Timperi, A. (VTT Technical Research Centre of Finland (Finland))
2011-06-15
Experiments on large-break loss-of-coolant accident for BWR is modeled with computational fluid (CFD) dynamics and finite element calculations. In the CFD calculations, the direct-contact condensation in the pressure suppression pool is studied. The heat transfer in the liquid phase is modeled with the Hughes-Duffey correlation based on the surface renewal model. The heat transfer is proportional to the square root of the turbulence kinetic energy. The condensation models are implemented with user-defined functions in the Euler-Euler two-phase model of the Fluent 12.1 CFD code. The rapid collapse of a large steam bubble and the resulting pressure source is studied analytically and numerically. Pressure source obtained from simplified calculations is used for studying the structural effects and FSI in a realistic BWR containment. The collapse results in volume acceleration, which induces pressure loads on the pool walls. In the case of a spherical bubble, the velocity term of the volume acceleration is responsible of the largest pressure load. As the amount of air in the bubble is decreased, the peak pressure increases. However, when the water compressibility is accounted for, the finite speed of sound becomes a limiting factor. (Author)
Soria, J; Gauthier, D; Falcoz, Q; Flamant, G; Mazza, G
2013-03-15
The emissions of heavy metals during incineration of Municipal Solid Waste (MSW) are a major issue to health and the environment. It is then necessary to well quantify these emissions in order to accomplish an adequate control and prevent the heavy metals from leaving the stacks. In this study the kinetic behavior of Cadmium during Fluidized Bed Incineration (FBI) of artificial MSW pellets, for bed temperatures ranging from 923 to 1073 K, was modeled. FLUENT 12.1.4 was used as the modeling framework for the simulations and implemented together with a complete set of user-defined functions (UDFs). The CFD model combines the combustion of a single solid waste particle with heavy metal (HM) vaporization from the burning particle, and it takes also into account both pyrolysis and volatiles' combustion. A kinetic rate law for the Cd release, derived from the CFD thermal analysis of the combusting particle, is proposed. The simulation results are compared with experimental data obtained in a lab-scale fluidized bed incinerator reported in literature, and with the predicted values from a particulate non-isothermal model, formerly developed by the authors. The comparison shows that the proposed CFD model represents very well the evolution of the HM release for the considered range of bed temperature. Copyright © 2013 Elsevier B.V. All rights reserved.
CO_2 capture with solid sorbent: CFD model of an innovative reactor concept
International Nuclear Information System (INIS)
Barelli, L.; Bidini, G.; Gallorini, F.
2016-01-01
Highlights: • A new reactor solution based on rotating fixed beds was presented. • The preliminary design of the reactor was approached. • A CFD model of the reactor, including CO_2 capture kinetic, was developed. • The CFD model is validated with experimental results. • Sorbent exploitation increasing is possible thanks to the new reactor. - Abstract: In future decarbonization scenarios, CCS with particular reference to post-combustion technologies will be an important option also for energy intensive industries. Nevertheless, today CCS systems are rarely installed due to high energy and cost penalties of current technology based on chemical scrubbing with amine solvent. Therefore, innovative solutions based on new/optimized solvents, sorbents, membranes and new process designs, are R&D priorities. Regarding the CO_2 capture through solid sorbents, a new reactor solution based on rotating fixed beds is presented in this paper. In order to design the innovative system, a suitable CFD model was developed considering also the kinetic capture process. The model was validated with experimental results obtained by the authors in previous research activities, showing a potential reduction of energy penalties respect to current technologies. In the future, the model will be used to identify the control logic of the innovative reactor in order to verify improvements in terms of sorbent exploitation and reduction of system energy consumption.
International Nuclear Information System (INIS)
Kljenak, I.; Mavko, B.; Babic, M.
2005-01-01
Full text of publication follows: The modelling and simulation of atmosphere mixing and stratification in nuclear power plant containments is a topic, which is currently being intensely investigated. With the increase of computer power, it has now become possible to model these phenomena with a local instantaneous description, using so-called Computational Fluid Dynamics (CFD) codes. However, calculations with these codes still take relatively long times. An alternative faster approach, which is also being applied, is to model nonhomogeneous atmosphere with lumped-parameter codes by dividing larger control volumes into smaller volumes, in which conditions are modelled as homogeneous. The flow between smaller volumes is modelled using one-dimensional approaches, which includes the prescription of flow loss coefficients. However, some authors have questioned this approach, as it appears that atmosphere stratification may sometimes be well simulated only by adjusting flow loss coefficients to adequate 'artificial' values that are case-dependent. To start the resolution of this issue, a modelling of nonhomogeneous atmosphere with a lumped-parameter code is proposed, where the subdivision of a large volume into smaller volumes is based on results of CFD simulations. The basic idea is to use the results of a CFD simulation to define regions, in which the flow velocities have roughly the same direction. These regions are then modelled as control volumes in a lumped-parameter model. In the proposed work, this procedure was applied to a simulation of an experiment of atmosphere mixing and stratification, which was performed in the TOSQAN facility. The facility is located at the Institut de Radioprotection et de Surete Nucleaire (IRSN) in Saclay (France) and consists of a cylindrical vessel (volume: 7 m3), in which gases are injected. In the experiment, which was also proposed for the OECD/NEA International Standard Problem No.47, air was initially present in the vessel, and
Surface Modeling, Grid Generation, and Related Issues in Computational Fluid Dynamic (CFD) Solutions
Choo, Yung K. (Compiler)
1995-01-01
The NASA Steering Committee for Surface Modeling and Grid Generation (SMAGG) sponsored a workshop on surface modeling, grid generation, and related issues in Computational Fluid Dynamics (CFD) solutions at Lewis Research Center, Cleveland, Ohio, May 9-11, 1995. The workshop provided a forum to identify industry needs, strengths, and weaknesses of the five grid technologies (patched structured, overset structured, Cartesian, unstructured, and hybrid), and to exchange thoughts about where each technology will be in 2 to 5 years. The workshop also provided opportunities for engineers and scientists to present new methods, approaches, and applications in SMAGG for CFD. This Conference Publication (CP) consists of papers on industry overview, NASA overview, five grid technologies, new methods/ approaches/applications, and software systems.
Computational Fluid Dynamics (CFD) simulations provide a number of unique opportunities for expanding and improving capabilities for modeling exposures to environmental pollutants. The US Environmental Protection Agency's National Exposure Research Laboratory (NERL) has been c...
Validation and Analysis of Forward Osmosis CFD Model in Complex 3D Geometries
Gruber, Mathias F.; Johnson, Carl J.; Tang, Chuyang; Jensen, Mogens H.; Yde, Lars; Hélix-Nielsen, Claus
2012-01-01
In forward osmosis (FO), an osmotic pressure gradient generated across a semi-permeable membrane is used to generate water transport from a dilute feed solution into a concentrated draw solution. This principle has shown great promise in the areas of water purification, wastewater treatment, seawater desalination and power generation. To ease optimization and increase understanding of membrane systems, it is desirable to have a comprehensive model that allows for easy investigation of all the major parameters in the separation process. Here we present experimental validation of a computational fluid dynamics (CFD) model developed to simulate FO experiments with asymmetric membranes. Simulations are compared with experimental results obtained from using two distinctly different complex three-dimensional membrane chambers. It is found that the CFD model accurately describes the solute separation process and water permeation through membranes under various flow conditions. It is furthermore demonstrated how the CFD model can be used to optimize membrane geometry in such as way as to promote the mass transfer. PMID:24958428
Validation and Analysis of Forward Osmosis CFD Model in Complex 3D Geometries
Directory of Open Access Journals (Sweden)
Lars Yde
2012-11-01
Full Text Available In forward osmosis (FO, an osmotic pressure gradient generated across a semi-permeable membrane is used to generate water transport from a dilute feed solution into a concentrated draw solution. This principle has shown great promise in the areas of water purification, wastewater treatment, seawater desalination and power generation. To ease optimization and increase understanding of membrane systems, it is desirable to have a comprehensive model that allows for easy investigation of all the major parameters in the separation process. Here we present experimental validation of a computational fluid dynamics (CFD model developed to simulate FO experiments with asymmetric membranes. Simulations are compared with experimental results obtained from using two distinctly different complex three-dimensional membrane chambers. It is found that the CFD model accurately describes the solute separation process and water permeation through membranes under various flow conditions. It is furthermore demonstrated how the CFD model can be used to optimize membrane geometry in such as way as to promote the mass transfer.
Effect of longwall face advance rate on spontaneous heating process in the gob area - CFD modelling
Czech Academy of Sciences Publication Activity Database
Taraba, B.; Michalec, Zdeněk
2011-01-01
Roč. 90, č. 8 (2011), s. 2790-2797 ISSN 0016-2361 R&D Projects: GA ČR GA105/06/0630 Grant - others:GA ČR(CZ) GA105/08/1414 Institutional research plan: CEZ:AV0Z30860518 Keywords : coal oxidation * spontaneous heating * CFD modelling * Fluent Subject RIV: DH - Mining, incl. Coal Mining Impact factor: 3.248, year: 2011 http://www.sciencedirect.com/science/article/pii/S0016236111001724
DEFF Research Database (Denmark)
Li, Y.; Nielsen, Peter V.
2011-01-01
There has been a rapid growth of scientific literature on the application of computational fluid dynamics (CFD) in the research of ventilation and indoor air science. With a 1000–10,000 times increase in computer hardware capability in the past 20 years, CFD has become an integral part...... of scientific research and engineering development of complex air distribution and ventilation systems in buildings. This review discusses the major and specific challenges of CFD in terms of turbulence modelling, numerical approximation, and boundary conditions relevant to building ventilation. We emphasize...... the growing need for CFD verification and validation, suggest on-going needs for analytical and experimental methods to support the numerical solutions, and discuss the growing capacity of CFD in opening up new research areas. We suggest that CFD has not become a replacement for experiment and theoretical...
Integration of plume and puff diffusion models/application of CFD
Mori, Akira
The clinical symptoms of patients and other evidences of a gas poisoning accident inside an industrial building strongly suggested an abrupt influx of engine exhaust from a construction vehicle which was operating outside in the open air. But the obviously high level of gas concentration could not be well explained by any conventional steady-state gas diffusion models. The author used an unsteady-state continuous Puff Model to simulate the time-wise changes in air stream with the pollutant gas being continuously emitted, and successfully reproduced the observed phenomena. The author demonstrates that this diffusion formula can be solved analytically by the use of error function as long as the change in wind velocity is stepwise, and clarifies the accurate differences between the unsteady- and steady-states and their convergence profiles. Also, the relationship between the Puff and Plume Models is discussed. The case study included a computational fluid dynamics (CFD) analysis to estimate the steady-state air stream and the gas concentration pattern in the affected area. It is well known that clear definition of the boundary conditions is key to successful CFD analysis. The author describes a two-step use of CFD: the first step to define the boundary conditions and the second to determine the steady-state air stream and the gas concentration pattern.
CFD Modeling and Simulation of Aeorodynamic Cooling of Automotive Brake Rotor
Belhocien, Ali; Omar, Wan Zaidi Wan
Braking system is one of the important control systems of an automotive. For many years, the disc brakes have been used in automobiles for the safe retarding of the vehicles. During the braking enormous amount of heat will be generated and for effective braking sufficient heat dissipation is essential. The thermal performance of disc brake depends upon the characteristics of the airflow around the brake rotor and hence the aerodynamics is an important in the region of brake components. A CFD analysis is carried out on the braking system as a case study to make out the behavior of airflow distribution around the disc brake components using ANSYS CFX software. We are interested in the determination of the heat transfer coefficient (HTC) on each surface of a ventilated disc rotor varying with time in a transient state using CFD analysis, and then imported the surface film condition data into a corresponding FEM model for disc temperature analysis.
Multi-d CFD Modeling of a Free-piston Stirling Convertor at NASA Glenn
Wilson, Scott D.; Dyson, Rodger W.; Tew, Roy C.; Ibrahim, Mounir B.
2004-01-01
A high efficiency Stirling Radioisotope Generator (SRG) is being developed for possible use in long duration space science missions. NASA s advanced technology goals for next generation Stirling convertors include increasing the Carnot efficiency and percent of Carnot efficiency. To help achieve these goals, a multidimensional Computational Fluid Dynamics (CFD) code is being developed to numerically model unsteady fluid flow and heat transfer phenomena of the oscillating working gas inside Stirling convertors. Simulations of the Stirling convertors for the SRG will help characterize the thermodynamic losses resulting from fluid flow and heat transfer between the working gas and solid walls. The current CFD simulation represents approximated 2-dimensional convertor geometry. The simulation solves the Navier Stokes equations for an ideal helium gas oscillating at low speeds. The current simulation results are discussed.
Comparison of turbulence models and CFD solution options for a plain pipe
Canli, Eyub; Ates, Ali; Bilir, Sefik
2018-06-01
Present paper is partly a declaration of state of a currently ongoing PhD work about turbulent flow in a thick walled pipe in order to analyze conjugate heat transfer. An ongoing effort on CFD investigation of this problem using cylindrical coordinates and dimensionless governing equations is identified alongside a literature review. The mentioned PhD work will be conducted using an in-house developed code. However it needs preliminary evaluation by means of commercial codes available in the field. Accordingly ANSYS CFD was utilized in order to evaluate mesh structure needs and asses the turbulence models and solution options in terms of computational power versus difference signification. Present work contains a literature survey, an arrangement of governing equations of the PhD work, CFD essentials of the preliminary analysis and findings about the mesh structure and solution options. Mesh element number was changed between 5,000 and 320,000. k-ɛ, k-ω, Spalart-Allmaras and Viscous-Laminar models were compared. Reynolds number was changed between 1,000 and 50,000. As it may be expected due to the literature, k-ɛ yields more favorable results near the pipe axis and k-ωyields more convenient results near the wall. However k-ɛ is found sufficient to give turbulent structures for a conjugate heat transfer problem in a thick walled plain pipe.
Rockslide and Impulse Wave Modelling in the Vajont Reservoir by DEM-CFD Analyses
Zhao, T.; Utili, S.; Crosta, G. B.
2016-06-01
This paper investigates the generation of hydrodynamic water waves due to rockslides plunging into a water reservoir. Quasi-3D DEM analyses in plane strain by a coupled DEM-CFD code are adopted to simulate the rockslide from its onset to the impact with the still water and the subsequent generation of the wave. The employed numerical tools and upscaling of hydraulic properties allow predicting a physical response in broad agreement with the observations notwithstanding the assumptions and characteristics of the adopted methods. The results obtained by the DEM-CFD coupled approach are compared to those published in the literature and those presented by Crosta et al. (Landslide spreading, impulse waves and modelling of the Vajont rockslide. Rock mechanics, 2014) in a companion paper obtained through an ALE-FEM method. Analyses performed along two cross sections are representative of the limit conditions of the eastern and western slope sectors. The max rockslide average velocity and the water wave velocity reach ca. 22 and 20 m/s, respectively. The maximum computed run up amounts to ca. 120 and 170 m for the eastern and western lobe cross sections, respectively. These values are reasonably similar to those recorded during the event (i.e. ca. 130 and 190 m, respectively). Therefore, the overall study lays out a possible DEM-CFD framework for the modelling of the generation of the hydrodynamic wave due to the impact of a rapid moving rockslide or rock-debris avalanche.
Brannock, M; Wang, Y; Leslie, G
2010-05-01
Membrane Bioreactors (MBRs) have been successfully used in aerobic biological wastewater treatment to solve the perennial problem of effective solids-liquid separation. The optimisation of MBRs requires knowledge of the membrane fouling, biokinetics and mixing. However, research has mainly concentrated on the fouling and biokinetics (Ng and Kim, 2007). Current methods of design for a desired flow regime within MBRs are largely based on assumptions (e.g. complete mixing of tanks) and empirical techniques (e.g. specific mixing energy). However, it is difficult to predict how sludge rheology and vessel design in full-scale installations affects hydrodynamics, hence overall performance. Computational Fluid Dynamics (CFD) provides a method for prediction of how vessel features and mixing energy usage affect the hydrodynamics. In this study, a CFD model was developed which accounts for aeration, sludge rheology and geometry (i.e. bioreactor and membrane module). This MBR CFD model was then applied to two full-scale MBRs and was successfully validated against experimental results. The effect of sludge settling and rheology was found to have a minimal impact on the bulk mixing (i.e. the residence time distribution).
CFD analysis and flow model reduction for surfactant production in helix reactor
Directory of Open Access Journals (Sweden)
Nikačević N.M.
2015-01-01
Full Text Available Flow pattern analysis in a spiral Helix reactor is conducted, for the application in the commercial surfactant production. Step change response curves (SCR were obtained from numerical tracer experiments by three-dimensional computational fluid dynamics (CFD simulations. Non-reactive flow is simulated, though viscosity is treated as variable in the direction of flow, as it increases during the reaction. The design and operating parameters (reactor diameter, number of coils and inlet velocity are varied in CFD simulations, in order to examine the effects on the flow pattern. Given that 3D simulations are not practical for fast computations needed for optimization, scale-up and control, CFD flow model is reduced to one-dimensional axial dispersion (AD model with spatially variable dispersion coefficient. Dimensionless dispersion coefficient (Pe is estimated under different conditions and results are analyzed. Finally, correlation which relates Pe number with Reynolds number and number of coils from the reactor entrance is proposed for the particular reactor application and conditions.
A CFD model for the IEA-R1 reactor neat exchanger inlet nozzle flow
International Nuclear Information System (INIS)
Andrade, Delvonei A.; Angelo, Gabriel; Gainer, Gerson; Angelo, Edvaldo; Umbehaun, Pedro E.; Torres, Walmir M.; Sabundjian, Gaiane; Macedo, Luiz A.; Belchior Junior, Antonio; Conti, Thadeu N.; Watanabe, Bruno C.; Sakai, Caio C.
2011-01-01
A previous preliminary model of the IEA-R1 heat exchanger inlet nozzle flow was developed and published in the International Nuclear Atlantic Conference-INAC-2009. A new model was created based on the preliminary one. It was improved concerning the actual heat exchanger tube bundle geometry. This became a very special issue. Difficulties with the size of the numerical mesh came out pointing to our computational system limits. New CFD calculations with this improved model were performed using ANSYS-CFX. In this paper, we present this model and discuss the results. (author)
CFD modeling of heat transfer performance of MgO-water nanofluid under turbulent flow
Davarnejad, Reza; Jamshidzadeh, Maryam
2015-01-01
In this paper, Computational fluid dynamics (CFD) modeling of turbulent heat transfer behavior of Magnesium Oxide-water nanofluid in a circular tube was studied. The modeling was two dimensional under k–ε turbulence model. The base fluid was pure water and the volume fraction of nanoparticles in the base fluid was 0.0625%, 0.125%, 0.25%, 0.5% and 1%. The applied Reynolds number range was 3000–19000. Three individual models including single phase, Volume of Fluid (VOF) and mixture were used. T...
A CFD model for the IEA-R1 reactor neat exchanger inlet nozzle flow
Energy Technology Data Exchange (ETDEWEB)
Andrade, Delvonei A.; Angelo, Gabriel; Gainer, Gerson; Angelo, Edvaldo; Umbehaun, Pedro E.; Torres, Walmir M.; Sabundjian, Gaiane; Macedo, Luiz A.; Belchior Junior, Antonio; Conti, Thadeu N.; Watanabe, Bruno C.; Sakai, Caio C., E-mail: delvonei@ipen.b, E-mail: gfainer@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)
2011-07-01
A previous preliminary model of the IEA-R1 heat exchanger inlet nozzle flow was developed and published in the International Nuclear Atlantic Conference-INAC-2009. A new model was created based on the preliminary one. It was improved concerning the actual heat exchanger tube bundle geometry. This became a very special issue. Difficulties with the size of the numerical mesh came out pointing to our computational system limits. New CFD calculations with this improved model were performed using ANSYS-CFX. In this paper, we present this model and discuss the results. (author)
Euler-Lagrange CFD modelling of unconfined gas mixing in anaerobic digestion.
Dapelo, Davide; Alberini, Federico; Bridgeman, John
2015-11-15
A novel Euler-Lagrangian (EL) computational fluid dynamics (CFD) finite volume-based model to simulate the gas mixing of sludge for anaerobic digestion is developed and described. Fluid motion is driven by momentum transfer from bubbles to liquid. Model validation is undertaken by assessing the flow field in a labscale model with particle image velocimetry (PIV). Conclusions are drawn about the upscaling and applicability of the model to full-scale problems, and recommendations are given for optimum application. Copyright © 2015 Elsevier Ltd. All rights reserved.
Corley, R A; Minard, K R; Kabilan, S; Einstein, D R; Kuprat, A P; Harkema, J R; Kimbell, J S; Gargas, M L; Kinzell, John H
2009-05-01
The percentages of total airflows over the nasal respiratory and olfactory epithelium of female rabbits were calculated from computational fluid dynamics (CFD) simulations of steady-state inhalation. These airflow calculations, along with nasal airway geometry determinations, are critical parameters for hybrid CFD/physiologically based pharmacokinetic models that describe the nasal dosimetry of water-soluble or reactive gases and vapors in rabbits. CFD simulations were based upon three-dimensional computational meshes derived from magnetic resonance images of three adult female New Zealand White (NZW) rabbits. In the anterior portion of the nose, the maxillary turbinates of rabbits are considerably more complex than comparable regions in rats, mice, monkeys, or humans. This leads to a greater surface area to volume ratio in this region and thus the potential for increased extraction of water soluble or reactive gases and vapors in the anterior portion of the nose compared to many other species. Although there was considerable interanimal variability in the fine structures of the nasal turbinates and airflows in the anterior portions of the nose, there was remarkable consistency between rabbits in the percentage of total inspired airflows that reached the ethmoid turbinate region (approximately 50%) that is presumably lined with olfactory epithelium. These latter results (airflows reaching the ethmoid turbinate region) were higher than previous published estimates for the male F344 rat (19%) and human (7%). These differences in regional airflows can have significant implications in interspecies extrapolations of nasal dosimetry.
Modernization of vertical Pelton turbines with the help of CFD and model testing
International Nuclear Information System (INIS)
Mack, Reiner; Gola, Bartlomiej; Smertnig, Martin; Wittwer, Bernhard; Meusburger, Peter
2014-01-01
The modernization of water turbines bears a high potential of increasing the already installed hydropower capacity. In many projects the existing waterways allow a substantial increase of the available flow capacity and with it the energy output. But also the upgrading onto a state of the art hydraulic, mechanical and electrical design will increase the available power considerably after the rehabilitation. The two phase nature of the flow in Pelton turbines requires for the hydraulic refurbishment special care in the application of the available design methods. Where the flow in the high pressure section of the turbine is mainly of one phase nature, CFD has been used as a standard tool for many years. Also the jet quality, and with it the exploration of the source of flow disturbances that cause poor free surface quality can be investigated with CFD. The interaction of the jet with the buckets of the runner is also examined by means of CFD. However, its accuracy with respect to hydraulic efficiency is, because of the two phase flow and the transient flow process, in very few cases good enough for a reliable and accurate prediction of absolute numbers. The optimization of hydraulic bucket profiles is therefore always checked with measurements in homologous scaled model turbines. A similar situation exists for the housing flow after the water is discharged from the runner. Here also CFD techniques are available to explore the general mechanisms. However, due to the two phase flow nature, where only a very small space is filled with moving water, the experimental setup in a model turbine is always the final proof for optimizations of housing inserts and modifications. The hydraulic design of a modernization project for a power station equipped with vertical Pelton turbines of two different designs is described in the proposed paper. It will be shown, how CFD is applied to determine the losses in the high pressure section and how these results are combined with the
Modernization of vertical Pelton turbines with the help of CFD and model testing
Mack, Reiner; Gola, Bartlomiej; Smertnig, Martin; Wittwer, Bernhard; Meusburger, Peter
2014-03-01
The modernization of water turbines bears a high potential of increasing the already installed hydropower capacity. In many projects the existing waterways allow a substantial increase of the available flow capacity and with it the energy output. But also the upgrading onto a state of the art hydraulic, mechanical and electrical design will increase the available power considerably after the rehabilitation. The two phase nature of the flow in Pelton turbines requires for the hydraulic refurbishment special care in the application of the available design methods. Where the flow in the high pressure section of the turbine is mainly of one phase nature, CFD has been used as a standard tool for many years. Also the jet quality, and with it the exploration of the source of flow disturbances that cause poor free surface quality can be investigated with CFD. The interaction of the jet with the buckets of the runner is also examined by means of CFD. However, its accuracy with respect to hydraulic efficiency is, because of the two phase flow and the transient flow process, in very few cases good enough for a reliable and accurate prediction of absolute numbers. The optimization of hydraulic bucket profiles is therefore always checked with measurements in homologous scaled model turbines. A similar situation exists for the housing flow after the water is discharged from the runner. Here also CFD techniques are available to explore the general mechanisms. However, due to the two phase flow nature, where only a very small space is filled with moving water, the experimental setup in a model turbine is always the final proof for optimizations of housing inserts and modifications. The hydraulic design of a modernization project for a power station equipped with vertical Pelton turbines of two different designs is described in the proposed paper. It will be shown, how CFD is applied to determine the losses in the high pressure section and how these results are combined with the
2015-09-01
UNCLASSIFIED UNCLASSIFIED CFD RANS Simulations on a Generic Conventional Scale Model Submarine: Comparison between Fluent and OpenFOAM ... OpenFOAM to replace some of the Fluent simulations. The fidelity of the Fluent code has been carefully validated, but the accuracy of parts of the... OpenFOAM code have not been so extensively tested. To test the accuracy of the OpenFOAM software, CFD simulations have been performed on the DSTO
Steady-state CFD modelling and experimental analysis of the local microclimate in Dubai (UAE
Directory of Open Access Journals (Sweden)
Fatima Syeda Firdaus
2017-01-01
Full Text Available Rapid urban growth and development over the past few years in Dubai has increased the rate at which the mean maximum temperatures are rising. Progressive soaring temperatures have greater effect of heat islands that add on to the high cooling demands. This work numerically explicated the effect of HIs in a tropical desert climate by adopting Heriot-Watt University Dubai Campus (HWUDC as a case study. The study analysed thermal flow behaviour around the campus by using Computational Fluid Dynamics (CFD as a numerical tool. The three dimensional Reynolds-Averaged Navier–Stokes (RANS equations were solved under FLUENT commercial code to simulate temperature and wind flow parameters at each discretised locations. Field measurements were carried out to validate the results produced by CFD for closer approximation in the representation of the actual phenomenon. Results established that the air temperature is inversely proportional to wind velocity. Hotspots were formed in the zone 1 and 3 region with a temperature rise of 9.1% that caused a temperature increase of 2.7 °C. Observations illustrated that the building configuration altered the wind flow pattern where the wind velocity was higher in the zone 2 region. Findings determined increase in the sensible cooling load by 19.61% due to 1.22 °C temperature rise. This paper highlighted the application of CFD in modelling an urban micro-climate and also shed light into future research development to quantify the HIs.
CFD model of air movement in ventilated facade: comparison between natural and forced air flow
Energy Technology Data Exchange (ETDEWEB)
Mora Perez, Miguel; Lopez Patino, Gonzalo; Lopez Jimenez, P. Amparo [Hydraulic and Environmental Engineering Department, Universitat Politècnica de Valencia (Spain)
2013-07-01
This study describes computational fluid dynamics (CFD) modeling of ventilated facade. Ventilated facades are normal facade but it has an extra channel between the concrete wall and the (double skin) facade. Several studies found in the literature are carried out with CFD simulations about the behavior of the thermodynamic phenomena of the double skin facades systems. These studies conclude that the presence of the air gap in the ventilated facade affects the temperature in the building skin, causing a cooling effect, at least in low-rise buildings. One of the most important factors affecting the thermal effects of ventilated facades is the wind velocity. In this contribution, a CFD analysis applied on two different velocity assumptions for air movement in the air gap of a ventilated facade is presented. A comparison is proposed considering natural wind induced velocity with forced fan induced velocity in the gap. Finally, comparing temperatures in the building skin, the differences between both solutions are described determining that, related to the considered boundary conditions, there is a maximum height in which the thermal effect of the induced flow is significantly observed.
CFD Modeling of Non-Neutral Atmospheric Boundary Layer Conditions
DEFF Research Database (Denmark)
Koblitz, Tilman
model results. A method is developed how to simulate the time-dependant non-neutral ABL flow over complex terrain: a precursor simulation is used to specify unsteady inlet boundary conditions on complex terrain domains. The advantage of the developed RANS model framework is its general applicability...... characteristics of neutral and non-neutral ABL flow. The developed ABL model significantly improves the predicted flow fields over both flat and complex terrain, when compared against neutral models and measurements....... cost than e.g. using large-eddy simulations. The developed ABL model is successfully validated using a range of different test cases with increasing complexity. Data from several large scale field campaigns, wind tunnel experiments, and previous numerical simulations is presented and compared against...
CFD Modeling of Airflow in a Livestock Building
DEFF Research Database (Denmark)
Rong, Li; Elhadidi, B.; Khalifa, H. E.
2010-01-01
In this paper, a 2D simulation for a typical livestock building is performed to assess the ammonia emission removal rate to the atmosphere. Two geometry models are used and compared in order to represent the slatted floor. In the first model the floor is modeled as a slatted floor and in the second...... the accuracy of the porous jump assumption by comparing the velocity, and ammonia concentration in a 2D simulation, heated solid bodies are added to represent the livestock in the following simulations. The results of simulations with heat source also indicate that modeling the slatted floor with slats...... is necessary. Furthermore, the combination of low inlet velocity and heated objects causes the flow to be buoyancy dominated and unsteady. This unsteadiness can be common in similar buoyancy induced flows for high Rayleigh number flow. The paper concludes with tradeoffs suggested for simulation of livestock...
CFD modeling of secondary flows in fuel rod bundles
International Nuclear Information System (INIS)
Baglietto, Emilio; Ninokata, Hisashi
2004-01-01
An optimized non-linear eddy viscosity model is introduced, for calculations of detailed coolant velocity distribution in a tight lattice fuel bundle. The low Reynolds formulation has been optimized based on DNS data for channel flow. The non-linear stress-strain relationship has been modified in the coefficients to model the flow anisotropy, which causes the formation of turbulence driven secondary flows inside the bundle subchannels. Predictions of the model are first compared to experimental measurements of secondary flows in a triangularly arrayed rod bundle with p/d=1.3. Subsequently wall shear stress and velocity predictions are compared with different experimental data for a rod bundle with p/d=1.17. The model shows to be able to correctly reproduce the scale of the secondary motion, and to accurately reproduce both wall shear stress and velocity distributions inside the rod bundle subchannels. (author)
THREE DIMENSIONAL CFD MODELLING OF FLOW STRUCTURE IN COMPOUND CHANNELS
Directory of Open Access Journals (Sweden)
Usman Ghani
2010-10-01
Full Text Available The computational modeling of three dimensional flows in a meandering compound channel has been performed in this research work. The flow calculations are performed by solving 3D steady state continuity and Reynolds averaged Navier-Stokes equations. The turbulence closure is approximated with standard - turbulence model. The model equations are solved numerically with a general purpose software package. A comprehensive validation of the simulated results against the experimental data and a demonstration that the software used in this study has matured enough for investigating practical engineering problems are the major contributions of this paper. The model was initially validated. This was achieved by computing streamwise point velocities at different depths of various sections and depth averaged velocities at three cross sections along the main channel and comparing these results with experimental data. After the validation of the model, predictions were made for different flow parameters including velocity contours at the surface, pressure distribution, turbulence intensity etc. The results gave an overall understanding of these flow variables in meandering channels. The simulation also established the good prediction capability of the standard - turbulence model for flows in compound channels.
Development and validation of a CFD model predicting the backfill process of a nuclear waste gallery
International Nuclear Information System (INIS)
Gopala, Vinay Ramohalli; Lycklama a Nijeholt, Jan-Aiso; Bakker, Paul; Haverkate, Benno
2011-01-01
Research highlights: → This work presents the CFD simulation of the backfill process of Supercontainers with nuclear waste emplaced in a disposal gallery. → The cement-based material used for backfill is grout and the flow of grout is modelled as a Bingham fluid. → The model is verified against an analytical solution and validated against the flowability tests for concrete. → Comparison between backfill plexiglas experiment and simulation shows a distinct difference in the filling pattern. → The numerical model needs to be further developed to include segregation effects and thixotropic behavior of grout. - Abstract: Nuclear waste material may be stored in underground tunnels for long term storage. The example treated in this article is based on the current Belgian disposal concept for High-Level Waste (HLW), in which the nuclear waste material is packed in concrete shielded packages, called Supercontainers, which are inserted into these tunnels. After placement of the packages in the underground tunnels, the remaining voids between the packages and the tunnel lining is filled-up with a cement-based material called grout in order to encase the stored containers into the underground spacing. This encasement of the stored containers inside the tunnels is known as the backfill process. A good backfill process is necessary to stabilize the waste gallery against ground settlements. A numerical model to simulate the backfill process can help to improve and optimize the process by ensuring a homogeneous filling with no air voids and also optimization of the injection positions to achieve a homogeneous filling. The objective of the present work is to develop such a numerical code that can predict the backfill process well and validate the model against the available experiments and analytical solutions. In the present work the rheology of Grout is modelled as a Bingham fluid which is implemented in OpenFOAM - a finite volume-based open source computational fluid
Detailed CFD Modelling of Open Refrigerated Display Cabinets
Directory of Open Access Journals (Sweden)
Pedro Dinis Gaspar
2012-01-01
Full Text Available A comprehensive and detailed computational fluid dynamics (CFDs modelling of air flow and heat transfer in an open refrigerated display cabinet (ORDC is performed in this study. The physical-mathematical model considers the flow through the internal ducts, across fans and evaporator, and includes the thermal response of food products. The air humidity effect and thermal radiation heat transfer between surfaces are taken into account. Experimental tests were performed to characterize the phenomena near physical extremities and to validate the numerical predictions of air temperature, relative humidity, and velocity. Numerical and experimental results comparison reveals the predictive capabilities of the computational model for the optimized conception and development of this type of equipments. Numerical predictions are used to propose geometrical and functional parametric studies that improve thermal performance of the ORDC and consequently food safety.
CFD modelling of Po River morphodynamics affected by bridge piers
Nones, Michael; Guerrero, Massimo; Ruther, Nils; Baranya, Sandor
2017-04-01
The paper presents the numerical modelling of the hydromorphological evolution of a 10-km reach of the Po River close to Ostiglia in Italy, affected by the presence of a railway bridge. The 3D simulation is performed using the freely available code SSIIM, developed at the University of Science and Technology in Trondheim in Norway. The domain consists of an unstructured grid with rectangular meshes having a dimension of 50x50 meters, with a nested detailed grid (5x5 m) around the piers. Preliminary results show the capability of the model in reproducing the behaviour of the reach, both in terms of liquid flow and morphodynamics, if compared with historical data measured along this watercourse. For the future, as a part of the Italian national project INFRASAFE, additional simulations will be performed to calibrate the model, changing the analyzed domain and used grids, and imposing, as boundary conditions, new data measured directly on the field with traditional and innovative techniques.
Comparison of Engineering Wake Models with CFD Simulations
DEFF Research Database (Denmark)
Andersen, Søren Juhl; Sørensen, Jens Nørkær; Ivanell, S.
2014-01-01
The engineering wake models by Jensen [1] and Frandsen et al. [2] are assessed for different scenarios simulated using Large Eddy Simulation and the Actuator Line method implemented in the Navier-Stokes equations. The scenarios include the far wake behind a single wind turbine, a long row of turb...
Norton, Tomás; Sun, Da-Wen; Grant, Jim; Fallon, Richard; Dodd, Vincent
2007-09-01
The application of computational fluid dynamics (CFD) in the agricultural industry is becoming ever more important. Over the years, the versatility, accuracy and user-friendliness offered by CFD has led to its increased take-up by the agricultural engineering community. Now CFD is regularly employed to solve environmental problems of greenhouses and animal production facilities. However, due to a combination of increased computer efficacy and advanced numerical techniques, the realism of these simulations has only been enhanced in recent years. This study provides a state-of-the-art review of CFD, its current applications in the design of ventilation systems for agricultural production systems, and the outstanding challenging issues that confront CFD modellers. The current status of greenhouse CFD modelling was found to be at a higher standard than that of animal housing, owing to the incorporation of user-defined routines that simulate crop biological responses as a function of local environmental conditions. Nevertheless, the most recent animal housing simulations have addressed this issue and in turn have become more physically realistic.
CFD modeling of a UV-LED photocatalytic odor abatement process in a continuous reactor
International Nuclear Information System (INIS)
Wang, Zimeng; Liu, Jing; Dai, Yuancan; Dong, Weiyang; Zhang, Shicheng; Chen, Jianmin
2012-01-01
Highlights: ► A CFD model is developed for a UV-LED based photocatalytic deodorization reactor. ► Radiation field model and Langmuir–Hinshelwood kinetics are integrated in the model. ► The model can predict the pollutant concentration profile and the reactor performance. ► LED distance is predicted to be a critical parameter in photocatalytic reactor design. - Abstract: This paper presents a model study of a UV light-emitting-diode (UV-LED) based photocatalytic odor abatement process. It integrated computational fluid dynamics (CFD) modeling of the gas flow in the reactor with LED-array radiation field calculation and Langmuir–Hinshelwood reaction kinetics. It was applied to simulate the photocatalytic degradation of dimethyl sulfide (DMS) in a UV-LED reactor based on experimentally determined chemical kinetic parameters. A non-linear power law relating reaction rate to irradiation intensity was adopted. The model could predict the steady state DMS concentration profiles by calculating the advection, diffusion and Langmuir–Hinshelwood reaction kinetics. By affecting the radiation intensity and uniformity, the position of the LED array relative to the catalyst appeared to be a critical parameter determining DMS removal efficiency. Too small distances might yield low quantum efficiency and consequently poor abatement performance. This study provided an example of LED-based photocatalytic process modeling and gave insights into the optimization of light source design for photocatalytic applications.
Development of Bubble Driven Flow CFD Model Applied for Aluminium Smelting Cells
Directory of Open Access Journals (Sweden)
Y.Q. Feng
2010-09-01
Full Text Available This paper presents the development of a computational fluid dynamics (CFD model for the study of bubble driven bath flow in aluminium reduction cells. For validation purposes, the model development was conducted using a full scale air -water model of part of an aluminium reduction cell as a test-bed. The bubble induced turbulence has been modelled by either modifying bubble induced turbulence viscosity directly or by modifying bubble induced turbulence kinetic energy in a standard k- ε turbulence model. The relative performance of the two modelling approaches has been examined through comparison with experimental data taken under similar conditions using Particle Image Velocimetry (PIV. Detailed comparison has been conducted by point-wise comparison of liquid velocities to quantify the level of agreement between CFD simulation and PIV measurement. Both models can capture the key flow patterns determined by PIV measurement, while the modified turbulence kinetic energy model gives better agreement with flow patterns in the gap between anode and cathode.
CFD approach to modeling of core-concrete interaction
International Nuclear Information System (INIS)
Vladimir V Chudanov; Anna E Aksenova; Valerii A Pervichko
2005-01-01
Full text of publication follows: A large attention is given to research behavior of concrete structures at high mechanical and thermal loadings, which those suffer at the severe accidents on Nuclear Power Plants with core melting and falling of the molten corium mass into reactor shaft. There are enough programs for analysis of heat and mass transfer processes at interaction of the molten corium with concrete. Most known among them CORCON and WECHSL, which were developed more than twenty years ago, allow considering a quasi-stationary phase decomposition of concrete and the some transition regimes. In opposing to the mentioned codes a new more generalized mathematical model and software are developed for modeling of a wide range of the heat and mass transfer processes under study of the molten core-concrete interaction. The developed mathematical model is based on the Navier-Stokes equations with variable properties with taking into account of a density jump under melting of concrete together with a heat transfer equation. The offered numerical technique is based on modern algorithms with small scheme diffusion, whose discrete approximations are constructed with use of finite-volume methods and the fully staggered grids. The developed software corresponds to modern level of development of computers and takes into account all phenomenology, used by mentioned codes, and allows to simulate the such phenomena and processes as: multidimensional heat transfer in concrete for modeling of transients for an intermediate thermal flux to concrete; direct erosion of concrete at a quasi-stationary regime of interaction with molten fuel masses; heat and mass transfer in corium and convective intermixing in a melt of corium with taking into account of its stratification on two layers of the metal and oxide components and heat transfer by radiation in a cavity of the reactor shaft; change physical properties of corium at concrete decomposition and release in corium of its
CFD to modeling molten core behavior simultaneously with chemical phenomena
International Nuclear Information System (INIS)
Vladimir V Chudanov; Anna E Aksenova; Valerii A Pervichko
2005-01-01
Full text of publication follows: This paper deals with the basic features of a computing procedure, which can be used for modeling of destruction and melting of a core with subsequent corium retaining into the reactor vessel. The destruction and melting of core mean the account of the following phenomena: a melting, draining (moving of the melt through a porous layer of core debris), freezing with release of an energy, change of geometry, formation of the molten pool, whose convective intermixing and distribution influence on a mechanism of borders destruction. It is necessary to take into account that during of heating molten pool and development in it of convective fluxes a stratification of a multi-component melt on two layers of metal light and of oxide heavy components is observed. These layers are in interaction, they can exchange by the separate components as result of diffusion or oxidizing reactions. It can have an effect considerably on compositions, on a specific weight, and on properties of molten interacting phases, and on a structure of the molten stratified pool. In turn, the retaining of the formed molten masses in reactor vessel requires the solution of a matched heat exchange problem, namely, of a natural convection in a heat generating fluid in partially or completely molten corium and of heat exchange problem with taking into account of a melting of the reactor vessel. In addition, it is necessary to take into account phase segregation, caused by influence of local and of global natural convective flows and thermal lag of heated up boundaries. The mathematical model for simulation of the specified phenomena is based on the Navier-Stokes equations with variable properties together with the heat transfer equation. For modeling of a corium moving through a porous layer of core debris, the special computing algorithm to take into account density jump on interface between a melt and a porous layer of core debris is designed. The model was
Kang, G.; Kim, J.
2017-12-01
This study investigated the tree's effect on wind comfort at pedestrian height in an urban area using a computational fluid dynamics (CFD) model. We implemented the tree's drag parameterization scheme to the CFD model and validated the simulated results against the wind-tunnel measurement data as well as LES data via several statistical methods. The CFD model underestimated (overestimated) the concentrations on the leeward (windward) walls inside the street canyon in the presence of trees, because the CFD model can't resolve the latticed cage and can't reflect the concentration increase and decrease caused by the latticed cage in the simulations. However, the scalar pollutants' dispersion simulated by the CFD model was quite similar to that in the wind-tunnel measurement in pattern and magnitude, on the whole. The CFD model overall satisfied the statistical validation indices (root normalized mean square error, geometric mean variance, correlation coefficient, and FAC2) but failed to satisfy the fractional bias and geometric mean bias due to the underestimation on the leeward wall and overestimation on the windward wall, showing that its performance was comparable to the LES's performance. We applied the CFD model to evaluation of the trees' effect on the pedestrian's wind-comfort in an urban area. To investigate sensory levels for human activities, the wind-comfort criteria based on Beaufort wind-force scales (BWSs) were used. In the tree-free scenario, BWS 4 and 5 (unpleasant condition for sitting long and sitting short, respectively) appeared in the narrow spaces between buildings, in the upwind side of buildings, and the unobstructed areas. In the tree scenario, BWSs decreased by 1 3 grade inside the campus of Pukyong National University located in the target area, which indicated that trees planted in the campus effectively improved pedestrian's wind comfort.
Hypersonic Combustor Model Inlet CFD Simulations and Experimental Comparisons
Venkatapathy, E.; TokarcikPolsky, S.; Deiwert, G. S.; Edwards, Thomas A. (Technical Monitor)
1995-01-01
Numerous two-and three-dimensional computational simulations were performed for the inlet associated with the combustor model for the hypersonic propulsion experiment in the NASA Ames 16-Inch Shock Tunnel. The inlet was designed to produce a combustor-inlet flow that is nearly two-dimensional and of sufficient mass flow rate for large scale combustor testing. The three-dimensional simulations demonstrated that the inlet design met all the design objectives and that the inlet produced a very nearly two-dimensional combustor inflow profile. Numerous two-dimensional simulations were performed with various levels of approximations such as in the choice of chemical and physical models, as well as numerical approximations. Parametric studies were conducted to better understand and to characterize the inlet flow. Results from the two-and three-dimensional simulations were used to predict the mass flux entering the combustor and a mass flux correlation as a function of facility stagnation pressure was developed. Surface heat flux and pressure measurements were compared with the computed results and good agreement was found. The computational simulations helped determine the inlet low characteristics in the high enthalpy environment, the important parameters that affect the combustor-inlet flow, and the sensitivity of the inlet flow to various modeling assumptions.
The difficult challenge of a two-phase CFD modelling for all flow regimes
International Nuclear Information System (INIS)
Bestion, D.
2014-01-01
Highlights: • The theoretical difficulties for modelling all flow regimes at CFD scale are identified. • The choice of the number of fields and of the time and space averaging or filtering are discussed and clarified. • Closure issues related to an all flow regime CFD model are listed and the main difficulties are identified. - Abstract: System thermalhydraulic codes model all two-phase flow regimes but they are limited to a macroscopic description. Two-phase CFD tools predict two-phase flow with a much finer space resolution but the current modelling capabilities are limited to dispersed bubbly or droplet flow and separate-phase flow. Much less experience exists on more complex flow regimes which combine the existence of dispersed fields with the presence of large interfaces such as a free surface or a film surface. A list of possible reactor issues which might benefit from an “all flow regime CFD model” is given. The first difficulty is to identify the various types of local flow configuration. It is shown that a 4-field model has much better capabilities than a two-fluid approach to identify most complex regimes. Then the choice between time averaging, space averaging, or even ensemble averaging is discussed. It is shown that only the RANS-2-fluid and a space-filtered 4-field model may be reasonably envisaged. The latter has the capabilities to identify all types of interfaces and should be privileged if a good accuracy is expected or if time fluctuations in intermittent flow have to be predicted while the former may be used when a high accuracy is not necessary and if time fluctuations in intermittent flow are not of interest. Finally the closure issue is presented including wall transfers, interfacial transfers, mass transfers between dispersed and continuous fields, and turbulent transfers. An important effort is required to model all interactions between sub-filter phenomena and the transfers from the sub-filter domain to the simulated domain. The
Reactor design, cold-model experiment and CFD modeling for chemical looping combustion
Energy Technology Data Exchange (ETDEWEB)
Zhang, Shaohua; Ma, Jinchen; Hu, Xintao; Zhao, Haibo; Wang, Baowen; Zheng, Chuguang [Huazhong Univ. of Science and Technology, Wuhan (China). State Key Lab. of Coal Combustion
2013-07-01
Chemical looping combustion (CLC) is an efficient, clean and cheap technology for CO{sub 2} capture, and an interconnected fluidized bed is more appropriate solution for CLC. This paper aims to design a reactor system for CLC, carry out cold-model experiment of the system, and model fuel reactor using commercial CFD software. As for the CLC system, the air reactor (AR) is designed as a fast fluidized bed while the fuel reactor (FR) is a bubbling bed; a cyclone is used for solid separation of the AR exit flow. The AR and FR are separated by two U-type loop seals to remain gas sealed. Considered the chemical kinetics of oxygen carrier, fluid dynamics, pressure balance and mass balance of the system simultaneously, some key design parameters of a CH{sub 4}-fueled and Fe{sub 2}O{sub 3}/Al{sub 2}O{sub 3}-based CLC reactor (thermal power of 50 kWth) are determined, including key geometric parameters (reactor cross-sectional area and reactor height) and operation parameters (bed material quantity, solid circulation rate, apparent gas velocity of each reactor). A cold-model bench having same geometric parameters with its prototype is built up to study the effects of various operation conditions (including gas velocity in the reactors and loop seals, and bed material height, etc.) on the solids circulation rate, gas leakage, and pressure balance. It is witnessed the cold-model system is able to meet special requirements for CLC system such as gas sealing between AR and FR, the circulation rate and particles residence time. Furthermore, the thermal FR reactor with oxygen carrier of Fe{sub 2}O{sub 3}/Al{sub 2}O{sub 3} and fuel of CH{sub 4} is simulated by commercial CFD solver FLUENT. It is found that for the design case the combustion efficiency of CH{sub 4} reaches 88.2%. A few part of methane is unburned due to fast, large bubbles rising through the reactor.
CFD Model Of A Planar Solid Oxide Electrolysis Cell For Hydrogen Production From Nuclear Energy
International Nuclear Information System (INIS)
Grant L. Hawkes; James E. O'Brien; Carl M. Stoots; J. Stephen Herring
2005-01-01
A three-dimensional computational fluid dynamics (CFD) model has been created to model high temperature steam electrolysis in a planar solid oxide electrolysis cell (SOEC). The model represents a single cell as it would exist in an electrolysis stack. Details of the model geometry are specific to a stack that was fabricated by Ceramatec2, Inc. and tested at the Idaho National Laboratory. Mass, momentum, energy, and species conservation and transport are provided via the core features of the commercial CFD code FLUENT2. A solid-oxide fuel cell (SOFC) model adds the electrochemical reactions and loss mechanisms and computation of the electric field throughout the cell. The FLUENT SOFC user-defined subroutine was modified for this work to allow for operation in the SOEC mode. Model results provide detailed profiles of temperature, Nernst potential, operating potential, anode-side gas composition, cathode-side gas composition, current density and hydrogen production over a range of stack operating conditions. Mean model results are shown to compare favorably with experimental results obtained from an actual ten-cell stack tested at INL
INPUT DATA OF BURNING WOOD FOR CFD MODELLING USING SMALL-SCALE EXPERIMENTS
Directory of Open Access Journals (Sweden)
Petr Hejtmánek
2017-12-01
Full Text Available The paper presents an option how to acquire simplified input data for modelling of burning wood in CFD programmes. The option lies in combination of data from small- and molecular-scale experiments in order to describe the material as a one-reaction material property. Such virtual material would spread fire, develop the fire according to surrounding environment and it could be extinguished without using complex reaction molecular description. Series of experiments including elemental analysis, thermogravimetric analysis and difference thermal analysis, and combustion analysis were performed. Then the FDS model of burning pine wood in a cone calorimeter was built. In the model where those values were used. The model was validated to HRR (Heat Release Rate from the real cone calorimeter experiment. The results show that for the purpose of CFD modelling the effective heat of combustion, which is one of the basic material property for fire modelling affecting the total intensity of burning, should be used. Using the net heat of combustion in the model leads to higher values of HRR in comparison to the real experiment data. Considering all the results shown in this paper, it was shown that it is possible to simulate burning of wood using the extrapolated data obtained in small-size experiments.
Assessment of Nucleation Site Density Models for CFD Simulations of Subcooled Flow Boiling
International Nuclear Information System (INIS)
Hoang, N. H.; Chu, I. C.; Euh, D. J.; Song, C. H.
2015-01-01
The framework of a CFD simulation of subcooled flow boiling basically includes a block of wall boiling models communicating with governing equations of a two-phase flow via parameters like temperature, rate of phasic change, etc. In the block of wall boiling models, a heat flux partitioning model, which describes how the heat is taken away from a heated surface, is combined with models quantifying boiling parameters, i.e. nucleation site density, and bubble departure diameter and frequency. It is realized that the nucleation site density is an important parameter for predicting the subcooled flow boiling. The number of nucleation sites per unit area decides the influence region of each heat transfer mechanism. The variation of the nucleation site density will mutually change the dynamics of vapor bubbles formed at these sites. In addition, the nucleation site density is needed as one initial and boundary condition to solve the interfacial area transport equation. A lot of effort has been devoted to mathematically formulate the nucleation site density. As a consequence, numerous correlations of the nucleation site density are available in the literature. These correlations are commonly quite different in their mathematical form as well as application range. Some correlations of the nucleation site density have been applied successfully to CFD simulations of several specific subcooled boiling flows, but in combination with different correlations of the bubble departure diameter and frequency. In addition, the values of the nucleation site density, and bubble departure diameter and frequency obtained from simulations for a same problem are relatively different, depending on which models are used, even when global characteristics, e.g., void fraction and mean bubble diameter, agree well with experimental values. It is realized that having a good CFD simulations of the subcooled flow boiling requires a detailed validations of all the models used. Owing to the importance
CFD modelling of the aerodynamic effect of trees on urban air pollution dispersion.
Amorim, J H; Rodrigues, V; Tavares, R; Valente, J; Borrego, C
2013-09-01
The current work evaluates the impact of urban trees over the dispersion of carbon monoxide (CO) emitted by road traffic, due to the induced modification of the wind flow characteristics. With this purpose, the standard flow equations with a kε closure for turbulence were extended with the capability to account for the aerodynamic effect of trees over the wind field. Two CFD models were used for testing this numerical approach. Air quality simulations were conducted for two periods of 31h in selected areas of Lisbon and Aveiro, in Portugal, for distinct relative wind directions: approximately 45° and nearly parallel to the main avenue, respectively. The statistical evaluation of modelling performance and uncertainty revealed a significant improvement of results with trees, as shown by the reduction of the NMSE from 0.14 to 0.10 in Lisbon, and from 0.14 to 0.04 in Aveiro, which is independent from the CFD model applied. The consideration of the plant canopy allowed to fulfil the data quality objectives for ambient air quality modelling established by the Directive 2008/50/EC, with an important decrease of the maximum deviation between site measurements and CFD results. In the non-aligned wind situation an average 12% increase of the CO concentrations in the domain was observed as a response to the aerodynamic action of trees over the vertical exchange rates of polluted air with the above roof-level atmosphere; while for the aligned configuration an average 16% decrease was registered due to the enhanced ventilation of the street canyon. These results show that urban air quality can be optimised based on knowledge-based planning of green spaces. Copyright © 2013 Elsevier B.V. All rights reserved.
A comprehensive CFD model of anode-supported solid oxide fuel cells
International Nuclear Information System (INIS)
Jeon, Dong Hyup
2009-01-01
The two-dimensional comprehensive CFD model of anode-supported SOFCs operating at intermediate temperature has been presented. This model provides transport phenomena of gas species with electrochemical characteristics and micro-structural properties, and predicts SOFC performance. The mathematical model solves conservation of electrons and ions, continuity equation, conservation of momentum, conservation of mass, and conservation of energy. A continuum micro-scale model based on statistical properties together with a mole-based conservation model was employed. CFD technique was used to solve the set of governing equations. The cell performance was decomposed with contributions of each overpotential and was presented at several operating temperatures with analysis of effective diffusivity. It was found that the contribution of potential gain due to temperature rising was considerably high. However it became non-significant at high operating temperature due to decreasing of effective diffusivity in AFL. These results showed that the performance and the distributions of current density, overpotentials, and mole fractions of gas species have a strong dependence upon temperature. From these results, it was concluded that the conservation of energy should be accommodated in comprehensive SOFC model. Also the useful information for the effect of parameters on cell performance and transport phenomena was provided
Modeling of annular two-phase flow using a unified CFD approach
Energy Technology Data Exchange (ETDEWEB)
Li, Haipeng, E-mail: haipengl@kth.se; Anglart, Henryk, E-mail: henryk@kth.se
2016-07-15
Highlights: • Annular two-phase flow has been modeled using a unified CFD approach. • Liquid film was modeled based on a two-dimensional thin film assumption. • Both Eulerian and Lagrangian methods were employed for the gas core flow modeling. - Abstract: A mechanistic model of annular flow with evaporating liquid film has been developed using computational fluid dynamics (CFD). The model is employing a separate solver with two-dimensional conservation equations to predict propagation of a thin boiling liquid film on solid walls. The liquid film model is coupled to a solver of three-dimensional conservation equations describing the gas core, which is assumed to contain a saturated mixture of vapor and liquid droplets. Both the Eulerian–Eulerian and the Eulerian–Lagrangian approach are used to describe the droplet and vapor motion in the gas core. All the major interaction phenomena between the liquid film and the gas core flow have been accounted for, including the liquid film evaporation as well as the droplet deposition and entrainment. The resultant unified framework for annular flow has been applied to the steam-water flow with conditions typical for a Boiling Water Reactor (BWR). The simulation results for the liquid film flow rate show good agreement with the experimental data, with the potential to predict the dryout occurrence based on criteria of critical film thickness or critical film flow rate.
Modeling of annular two-phase flow using a unified CFD approach
International Nuclear Information System (INIS)
Li, Haipeng; Anglart, Henryk
2016-01-01
Highlights: • Annular two-phase flow has been modeled using a unified CFD approach. • Liquid film was modeled based on a two-dimensional thin film assumption. • Both Eulerian and Lagrangian methods were employed for the gas core flow modeling. - Abstract: A mechanistic model of annular flow with evaporating liquid film has been developed using computational fluid dynamics (CFD). The model is employing a separate solver with two-dimensional conservation equations to predict propagation of a thin boiling liquid film on solid walls. The liquid film model is coupled to a solver of three-dimensional conservation equations describing the gas core, which is assumed to contain a saturated mixture of vapor and liquid droplets. Both the Eulerian–Eulerian and the Eulerian–Lagrangian approach are used to describe the droplet and vapor motion in the gas core. All the major interaction phenomena between the liquid film and the gas core flow have been accounted for, including the liquid film evaporation as well as the droplet deposition and entrainment. The resultant unified framework for annular flow has been applied to the steam-water flow with conditions typical for a Boiling Water Reactor (BWR). The simulation results for the liquid film flow rate show good agreement with the experimental data, with the potential to predict the dryout occurrence based on criteria of critical film thickness or critical film flow rate.
A systems CFD model of a packed bed high temperature gas-cooled nuclear reactor
International Nuclear Information System (INIS)
Du Toit, C.G.; Rousseau, P.G.; Greyvenstein, G.P.; Landman, W.A.
2006-01-01
The theoretical basis and conceptual formulation of a comprehensive reactor model to simulate the thermal-fluid phenomena of the PBMR reactor core and core structures is given. Through a rigorous analysis the fundamental equations are recast in a form that is suitable for incorporation in a systems CFD code. The formulation of the equations results in a collection of one-dimensional elements (models) that can be used to construct a comprehensive multi-dimensional network model of the reactor. The elements account for the pressure drop through the reactor; the convective heat transport by the gas; the convection heat transfer between the gas and the solids; the radiative, contact and convection heat transfer between the pebbles and the heat conduction in the pebbles. Results from the numerical model are compared with that of experiments conducted on the SANA facility covering a range of temperatures as well as two different fluids and different heating configurations. The good comparison obtained between the simulated and measured results show that the systems CFD approach sufficiently accounts for all of the important phenomena encountered in the quasi-steady natural convection driven flows that will prevail after critical events in a reactor. The fact that the computer simulation time for all of the simulations was less than three seconds on a standard notebook computer also indicates that the new model indeed achieves a fine balance between accuracy and simplicity. The new model can therefore be used with confidence and still allow quick integrated plant simulations. (authors)
Two-Dimensional Physical and CFD Modelling of Large Gas Bubble Behaviour in Bath Smelting Furnaces
Directory of Open Access Journals (Sweden)
Yuhua Pan
2010-09-01
Full Text Available The behaviour of large gas bubbles in a liquid bath and the mechanisms of splash generation due to gas bubble rupture in high-intensity bath smelting furnaces were investigated by means of physical and mathematical (CFD modelling techniques. In the physical modelling work, a two-dimensional Perspex model of the pilot plant furnace at CSIRO Process Science and Engineering was established in the laboratory. An aqueous glycerol solution was used to simulate liquid slag. Air was injected via a submerged lance into the liquid bath and the bubble behaviour and the resultant splashing phenomena were observed and recorded with a high-speed video camera. In the mathematical modelling work, a two-dimensional CFD model was developed to simulate the free surface flows due to motion and deformation of large gas bubbles in the liquid bath and rupture of the bubbles at the bath free surface. It was concluded from these modelling investigations that the splashes generated in high-intensity bath smelting furnaces are mainly caused by the rupture of fast rising large gas bubbles. The acceleration of the bubbles into the preceding bubbles and the rupture of the coalescent bubbles at the bath surface contribute significantly to splash generation.
A turbulence model for large interfaces in high Reynolds two-phase CFD
International Nuclear Information System (INIS)
Coste, P.; Laviéville, J.
2015-01-01
Highlights: • Two-phase CFD commonly involves interfaces much larger than the computational cells. • A two-phase turbulence model is developed to better take them into account. • It solves k–epsilon transport equations in each phase. • The special treatments and transfer terms at large interfaces are described. • Validation cases are presented. - Abstract: A model for two-phase (six-equation) CFD modelling of turbulence is presented, for the regions of the flow where the liquid–gas interface takes place on length scales which are much larger than the typical computational cell size. In the other regions of the flow, the liquid or gas volume fractions range from 0 to 1. Heat and mass transfer, compressibility of the fluids, are included in the system, which is used at high Reynolds numbers in large scale industrial calculations. In this context, a model based on k and ε transport equations in each phase was chosen. The paper describes the model, with a focus on the large interfaces, which require special treatments and transfer terms between the phases, including some approaches inspired from wall functions. The validation of the model is based on high Reynolds number experiments with turbulent quantities measurements of a liquid jet impinging a free surface and an air water stratified flow. A steam–water stratified condensing flow experiment is also used for an indirect validation in the case of heat and mass transfer
Bonneville Powerhouse 2 Fish Guidance Efficiency Studies: CFD Model of the Forebay
Energy Technology Data Exchange (ETDEWEB)
Rakowski, Cynthia L.; Serkowski, John A.; Richmond, Marshall C.
2012-07-01
In ongoing work, U.S. Army Corps of Engineers, Portland District (CENWP) is seeking to better understand and improve the conditions within the Bonneville Powerhouse 2 (B2) turbine intakes to improve survival of downstream migrant salmonid smolt. In this study, the existing B2 forebay computational fluid dynamics (CFD) model was modified to include a more detailed representation of all B2 turbine intakes. The modified model was validated to existing field-measured forebay ADCP velocities. The initial CFD model scenarios tested a single project operation and the impact of adding the Behavior Guidance System (BGS) or Corner Collector. These structures had impacts on forebay flows. Most notable was that the addition of the BGS and Corner Collector reduced the lateral extent of the recirculation areas on the Washington shore and Cascade Island and reduced the flow velocity parallel to the powerhouse in front of Units 11 and 12. For these same cases, at the turbine intakes across the powerhouse, there was very little difference in the flow volume into the gatewell for the clean forebay, and the forebay with the BGS in place and/or the Corner Collector operating. The largest differences were at Units 11 to 13. The CFD model cases testing the impact of the gatewell slot fillers showed no impact to the forebay flows, but large differences within the gatewells. With the slot fillers, the flow above the standard traveling screen and into the gatewell increased (about 100 cfs at each turbine intake) and the gap flow decreased across the powerhouse for all cases. The increased flow up the gatewell was further enhanced with only half the units operating. The flow into the gatewell slot was increased about 35 cfs for each bay of each intake across the powerhouse; this change was uniform across the powerhouse. The flows in the gatewell of Unit 12, the most impacted unit for the scenarios, was evaluated. In front of the vertical barrier screen, the CFD model with slot fillers
A Comparative Study of CFD Models of a Real Wind Turbine in Solar Chimney Power Plants
Directory of Open Access Journals (Sweden)
Ehsan Gholamalizadeh
2017-10-01
Full Text Available A solar chimney power plant consists of four main parts, a solar collector, a chimney, an energy storage layer, and a wind turbine. So far, several investigations on the performance of the solar chimney power plant have been conducted. Among them, different approaches have been applied to model the turbine inside the system. In particular, a real wind turbine coupled to the system was simulated using computational fluid dynamics (CFD in three investigations. Gholamalizadeh et al. simulated a wind turbine with the same blade profile as the Manzanares SCPP’s turbine (FX W-151-A blade profile, while a CLARK Y blade profile was modelled by Guo et al. and Ming et al. In this study, simulations of the Manzanares prototype were carried out using the CFD model developed by Gholamalizadeh et al. Then, results obtained by modelling different turbine blade profiles at different turbine rotational speeds were compared. The results showed that a turbine with the CLARK Y blade profile significantly overestimates the value of the pressure drop across the Manzanares prototype turbine as compared to the FX W-151-A blade profile. In addition, modelling of both blade profiles led to very similar trends in changes in turbine efficiency and power output with respect to rotational speed.
Voelker, C; Alsaad, H
2018-05-01
This study aims to develop an approach to couple a computational fluid dynamics (CFD) solver to the University of California, Berkeley (UCB) thermal comfort model to accurately evaluate thermal comfort. The coupling was made using an iterative JavaScript to automatically transfer data for each individual segment of the human body back and forth between the CFD solver and the UCB model until reaching convergence defined by a stopping criterion. The location from which data are transferred to the UCB model was determined using a new approach based on the temperature difference between subsequent points on the temperature profile curve in the vicinity of the body surface. This approach was used because the microclimate surrounding the human body differs in thickness depending on the body segment and the surrounding environment. To accurately simulate the thermal environment, the numerical model was validated beforehand using experimental data collected in a climate chamber equipped with a thermal manikin. Furthermore, an example of the practical implementations of this coupling is reported in this paper through radiant floor cooling simulation cases, in which overall and local thermal sensation and comfort were investigated using the coupled UCB model. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
DEFF Research Database (Denmark)
Rosendahl, Lasse; Yin, Chungen; Kær, Søren Knudsen
2007-01-01
A sample of 1.2 kg Danish wheat straw (Jutland, 1997) prepared for suspension firing in a PF boiler has been analyzed for the purpose of generating size and shape distribution functions applicable to numerical modelling of combustion processes involving biomass, characterised by highly anisotropic...... shapes. The sample is subdivided by straw type, and coherent size, type and mass distribution parameters are reported for the entire sample. This type of data is necessary in order to use CFD reliably as a design and retrofit tool for co-firing biomass with fossil fuels, as the combustion processes...
CFD evaluation of turbulence model on heat transfer in 5 × 5 rod bundles
International Nuclear Information System (INIS)
Chao Yanmeng; Yang Lixin; Zhang Yuxiang; Pang Zhengzheng
2014-01-01
Different turbulence models may lead to different results when analyzing fuel assemblies using computational fluid dynamics (CFD) method. In this paper, a 5 × 5 rod bundle model was built to analyze the relationship between flow and heat transfer. The pressure drop and Nu were calculated using ANSYS CFX. Three factors evaluating swirling flow and cross-flow were used to analyze the inner relationship between flow field and heat transfer. The performances of various turbulence models, including eddy viscosity model and Reynold stress model, were evaluated. The comparison between numerical and similar experimental results indicates that Reynold stress model is more appropriate for modeling flow features and heat transfer in spacer grids discussed in this paper. (authors)
CFD modeling using PDF approach for investigating the flame length in rotary kilns
Elattar, H. F.; Specht, E.; Fouda, A.; Bin-Mahfouz, Abdullah S.
2016-12-01
Numerical simulations using computational fluid dynamics (CFD) are performed to investigate the flame length characteristics in rotary kilns using probability density function (PDF) approach. A commercial CFD package (ANSYS-Fluent) is employed for this objective. A 2-D axisymmetric model is applied to study the effect of both operating and geometric parameters of rotary kiln on the characteristics of the flame length. Three types of gaseous fuel are used in the present work; methane (CH4), carbon monoxide (CO) and biogas (50 % CH4 + 50 % CO2). Preliminary comparison study of 2-D modeling outputs of free jet flames with available experimental data is carried out to choose and validate the proper turbulence model for the present numerical simulations. The results showed that the excess air number, diameter of kiln air entrance, radiation modeling consideration and fuel type have remarkable effects on the flame length characteristics. Numerical correlations for the rotary kiln flame length are presented in terms of the studied kiln operating and geometric parameters within acceptable error.
The NASA Ames Hypersonic Combustor-Model Inlet CFD Simulations and Experimental Comparisons
Venkatapathy, E.; Tokarcik-Polsky, S.; Deiwert, G. S.; Edwards, Thomas A. (Technical Monitor)
1995-01-01
Computations have been performed on a three-dimensional inlet associated with the NASA Ames combustor model for the hypersonic propulsion experiment in the 16-inch shock tunnel. The 3-dimensional inlet was designed to have the combustor inlet flow nearly two-dimensional and of sufficient mass flow necessary for combustion. The 16-inch shock tunnel experiment is a short duration test with test time of the order of milliseconds. The flow through the inlet is in chemical non-equilibrium. Two test entries have been completed and limited experimental results for the inlet region of the combustor-model are available. A number of CFD simulations, with various levels of simplifications such as 2-D simulations, 3-D simulations with and without chemical reactions, simulations with and without turbulent conditions, etc., have been performed. These simulations have helped determine the model inlet flow characteristics and the important factors that affect the combustor inlet flow and the sensitivity of the flow field to these simplifications. In the proposed paper, CFD modeling of the hypersonic inlet, results from the simulations and comparison with available experimental results will be presented.
Sances, Dillon J.; Gangadharan, Sathya N.; Sudermann, James E.; Marsell, Brandon
2010-01-01
Liquid sloshing within spacecraft propellant tanks causes rapid energy dissipation at resonant modes, which can result in attitude destabilization of the vehicle. Identifying resonant slosh modes currently requires experimental testing and mechanical pendulum analogs to characterize the slosh dynamics. Computational Fluid Dynamics (CFD) techniques have recently been validated as an effective tool for simulating fuel slosh within free-surface propellant tanks. Propellant tanks often incorporate an internal flexible diaphragm to separate ullage and propellant which increases modeling complexity. A coupled fluid-structure CFD model is required to capture the damping effects of a flexible diaphragm on the propellant. ANSYS multidisciplinary engineering software employs a coupled solver for analyzing two-way Fluid Structure Interaction (FSI) cases such as the diaphragm propellant tank system. Slosh models generated by ANSYS software are validated by experimental lateral slosh test results. Accurate data correlation would produce an innovative technique for modeling fuel slosh within diaphragm tanks and provide an accurate and efficient tool for identifying resonant modes and the slosh dynamic response.
Galerkin CFD solvers for use in a multi-disciplinary suite for modeling advanced flight vehicles
Moffitt, Nicholas J.
This work extends existing Galerkin CFD solvers for use in a multi-disciplinary suite. The suite is proposed as a means of modeling advanced flight vehicles, which exhibit strong coupling between aerodynamics, structural dynamics, controls, rigid body motion, propulsion, and heat transfer. Such applications include aeroelastics, aeroacoustics, stability and control, and other highly coupled applications. The suite uses NASA STARS for modeling structural dynamics and heat transfer. Aerodynamics, propulsion, and rigid body dynamics are modeled in one of the five CFD solvers below. Euler2D and Euler3D are Galerkin CFD solvers created at OSU by Cowan (2003). These solvers are capable of modeling compressible inviscid aerodynamics with modal elastics and rigid body motion. This work reorganized these solvers to improve efficiency during editing and at run time. Simple and efficient propulsion models were added, including rocket, turbojet, and scramjet engines. Viscous terms were added to the previous solvers to create NS2D and NS3D. The viscous contributions were demonstrated in the inertial and non-inertial frames. Variable viscosity (Sutherland's equation) and heat transfer boundary conditions were added to both solvers but not verified in this work. Two turbulence models were implemented in NS2D and NS3D: Spalart-Allmarus (SA) model of Deck, et al. (2002) and Menter's SST model (1994). A rotation correction term (Shur, et al., 2000) was added to the production of turbulence. Local time stepping and artificial dissipation were adapted to each model. CFDsol is a Taylor-Galerkin solver with an SA turbulence model. This work improved the time accuracy, far field stability, viscous terms, Sutherland?s equation, and SA model with NS3D as a guideline and added the propulsion models from Euler3D to CFDsol. Simple geometries were demonstrated to utilize current meshing and processing capabilities. Air-breathing hypersonic flight vehicles (AHFVs) represent the ultimate
Directory of Open Access Journals (Sweden)
Vincent Casseau
2016-10-01
Full Text Available A two-temperature CFD (computational fluid dynamics solver is a prerequisite to any spacecraft re-entry numerical study that aims at producing results with a satisfactory level of accuracy within realistic timescales. In this respect, a new two-temperature CFD solver, hy2Foam, has been developed within the framework of the open-source CFD platform OpenFOAM for the prediction of hypersonic reacting flows. This solver makes the distinct juncture between the trans-rotational and multiple vibrational-electronic temperatures. hy2Foam has the capability to model vibrational-translational and vibrational-vibrational energy exchanges in an eleven-species air mixture. It makes use of either the Park TTv model or the coupled vibration-dissociation-vibration (CVDV model to handle chemistry-vibration coupling and it can simulate flows with or without electronic energy. Verification of the code for various zero-dimensional adiabatic heat baths of progressive complexity has been carried out. hy2Foam has been shown to produce results in good agreement with those given by the CFD code LeMANS (The Michigan Aerothermodynamic Navier-Stokes solver and previously published data. A comparison is also performed with the open-source DSMC (direct simulation Monte Carlo code dsmcFoam. It has been demonstrated that the use of the CVDV model and rates derived from Quantum-Kinetic theory promote a satisfactory consistency between the CFD and DSMC chemistry modules.
International Nuclear Information System (INIS)
Lin, C.-H.; Ferng, Y.-M.; Pei, B.-S.
2009-01-01
Additional fire barriers of electrical cables are required for the nuclear power plants (NPPs) in Taiwan due to the separation requirements of Appendix R to 10 CFR Part 50. The risk-informed fire analysis (RIFA) may provide a viable method to resolve these fire barrier issues. However, it is necessary to perform the fire scenario analyses so that RIFA can quantitatively determine the risk related to the fire barrier wrap. The CFD fire models are then proposed in this paper to help the RIFA in resolving these issues. Three typical fire scenarios are selected to assess the present CFD models. Compared with the experimental data and other model's simulations, the present calculated results show reasonable agreements, rendering that present CFD fire models can provide the quantitative information for RIFA analyses to release the cable wrap requirements for NPPs
Modelling of unsteady airfoil aerodynamics for the prediction of blade standstill vibrations
DEFF Research Database (Denmark)
Skrzypinski, Witold Robert; Gaunaa, Mac; Sørensen, Niels N.
2012-01-01
In the present work, CFD simulations of the DU96-W-180 airfoil at 26 and 24 deg. angles of attack were performed. 2D RANS and 3D DES computations with non-moving and prescribed motion airfoil suspensions were carried out. The openings of the lift coefficient loops predicted by CFD were different...... than those predicted by engineering models. The average lift slope of the loops from the 3D CFD had opposite sign than the one from 2D CFD. Trying to model the 3D behaviour with the engineering models proved difficult. The disagreement between the 2D CFD, 3D CFD and the engineering models indicates...
A fast converging CFD model for thermal hydraulic analysis of gas cooled reactor cores
International Nuclear Information System (INIS)
Chen, Gary; Anghaie, Samim
1999-01-01
A computational fluid dynamics (CFD) approach to the solution of Navier-Stokes equations for the thermal and flow fields of gas cooled reactor cores is presented. An implicit-explicit MacCormack method based on finite volume discretization scheme, in conjunction with the Gauss-Seidel line iteration procedure is utilized to solve axisymmetric, thin-layer Navier-Stokes equations. This numerical method requires only the inversion of block bidiagonal systems rather than block tridiagonal systems, thus yielding savings in computer time and storage requirements. A two-layer algebraic eddy viscosity turbulence model is used in this study. The effects of turbulence are simulated in terms of the eddy viscosity coefficient, which is calculated for an inner and an outer region separately. An enthalpy-rebalancing scheme is implemented to allow the convergence solutions to be obtained with the application of a wall heat flux. The detailed computational analysis developed in this work is used to evaluate many different Nusselt number equations, property corrections, and axial distance corrections. The calculation based on this CFD model is compared with other published results. The good agreement indicates the usefulness of the presented model for the prediction of flow and temperature distributions for gas cooled reactor cores. (author)
Yuliusman; Afdhol, M. K.; Sanal, Alristo; Nasruddin
2018-03-01
Indonesia imports fuel (fuel oil) in large quantities. Indonesia has reserves of methane gas in the form of natural gas in large numbers but has obstacles in the process of storage. To produce a storage tank to a safe condition then proclaimed to use ANG (Adsorbed Natural Gas) technology. Manufacture of activated PET based activated carbon for storage of natural gas where technology has been widely studied, but still has some shortcomings. Therefore to predict the performance of ANG technology, modeling of ANG tank with Fluent CFD program is done so the condition inside the ANG tank can be known and can be used to increased the performance of ANG technology. Therefore, in this experiment natural gas storage test is done at the ANG tank model using Fluent CFD program. This experiment is begin with preparation tools and material by characterize the natural gas and activated carbon followed by create the mesh and model of ANG tank. The next process is state the characteristic of activated carbon and fluid in this experiment. The last process is run the simulation using the condition that already been stated which is at 27°C and 35 bar during 15 minutes. The result is at adsorption contour we can see that adsorption is higher at the top of the tank because the input of the adsorbent is at the top of the ANG tank so the adsorbate distribution is uneven that cause the adsorbate concentration at the top of the ANG tank is higher than the bottom tank.
Validation of a loss of vacuum accident (LOVA) Computational Fluid Dynamics (CFD) model
International Nuclear Information System (INIS)
Bellecci, C.; Gaudio, P.; Lupelli, I.; Malizia, A.; Porfiri, M.T.; Quaranta, R.; Richetta, M.
2011-01-01
Intense thermal loads in fusion devices occur during plasma disruptions, Edge Localized Modes (ELM) and Vertical Displacement Events (VDE). They will result in macroscopic erosion of the plasma facing materials and consequent accumulation of activated dust into the ITER Vacuum Vessel (VV). A recognized safety issue for future fusion reactors fueled with deuterium and tritium is the generation of sizeable quantities of dust. In case of LOVA, air inlet occurs due to the pressure difference between the atmospheric condition and the internal condition. It causes mobilization of the dust that can exit the VV threatening public safety because it may contain tritium, may be radioactive from activation products, and may be chemically reactive and/or toxic (Sharpe et al.; Sharpe and Humrickhouse). Several experiments have been conducted with STARDUST facility in order to reproduce a low pressurization rate (300 Pa/s) LOVA event in ITER due to a small air leakage for two different positions of the leak, at the equatorial port level and at the divertor port level, in order to evaluate the velocity magnitude in case of a LOVA that is strictly connected with dust mobilization phenomena. A two-dimensional (2D) modelling of STARDUST, made with the CFD commercial code FLUENT, has been carried out. The results of these simulations were compared against the experimental data for CFD code validation. For validation purposes, the CFD simulation data were extracted at the same locations as the experimental data were collected. In this paper, the authors present and discuss the computer-simulation data and compare them with data collected during the laboratory studies at the University of Rome 'Tor Vergata' Quantum Electronics and Plasmas lab.
International Nuclear Information System (INIS)
Duraisamy Jothiprakasam, Venkatesh
2014-01-01
The development of wind energy generation requires precise and well-established methods for wind resource assessment, which is the initial step in every wind farm project. During the last two decades linear flow models were widely used in the wind industry for wind resource assessment and micro-siting. But the linear models inaccuracies in predicting the wind speeds in very complex terrain are well known and led to use of CFD, capable of modeling the complex flow in details around specific geographic features. Mesoscale models (NWP) are able to predict the wind regime at resolutions of several kilometers, but are not well suited to resolve the wind speed and turbulence induced by the topography features on the scale of a few hundred meters. CFD has proven successful in capturing flow details at smaller scales, but needs an accurate specification of the inlet conditions. Thus coupling NWP and CFD models is a better modeling approach for wind energy applications. A one-year field measurement campaign carried out in a complex terrain in southern France during 2007-2008 provides a well-documented data set both for input and validation data. The proposed new methodology aims to address two problems: the high spatial variation of the topography on the domain lateral boundaries, and the prediction errors of the mesoscale model. It is applied in this work using the open source CFD code Code-Saturne, coupled with the mesoscale forecast model of Meteo-France (ALADIN). The improvement is obtained by combining the mesoscale data as inlet condition and field measurement data assimilation into the CFD model. Newtonian relaxation (nudging) data assimilation technique is used to incorporate the measurement data into the CFD simulations. The methodology to reconstruct long term averages uses a clustering process to group the similar meteorological conditions and to reduce the number of CFD simulations needed to reproduce 1 year of atmospheric flow over the site. The assimilation
Directory of Open Access Journals (Sweden)
Dantas C.C.
2013-01-01
Full Text Available The solid flow in air-catalyst in circulating fluidized bed was simulated with CFD model to obtain axial and radial distribution. Therefore, project parameters were confirmed and steady state operation condition was improved. Solid holds up axial end radial profiles simulation and comparison with gamma transmission measurements are in a good agreement. The transmission signal from an 241Am radioactive source was evaluated in NaI(Tl detector coupled to multichannel analyzer. This non intrusive measuring set up is installed at riser of a cold pilot unit to determine parameters of FCC catalyst flow at several concentrations. Mass flow rate calculated by combining solid hold up and solid phase velocity measurements was compared with catalyst inlet measured at down-comer. Evaluation in each measured parameter shows that a relative combined uncertainty of 6% in a 95% interval was estimated. Uncertainty analysis took into account a significant correlation in scan riser transmission measurements. An Eulerian approach of CFD model incorporating the kinetic theory of granular flow was adopted to describe the gas–solid two-phase flows in a multizone circulating reactor. Instantaneous and local gas-particle velocity, void fraction and turbulent parameters were obtained and results are shown in 2 D and 3D graphics.
CFD Modelling of Biomass Combustion in Small-Scale Boilers. Final Report
Energy Technology Data Exchange (ETDEWEB)
Xue-Song Bai; Griselin, Niklas; Klason, Torbern; Nilsson, Johan [Lund Inst. of Tech. (Sweden). Dept. of Heat and Power Engineering
2002-10-01
This project deals with CFD modeling of combustion of wood in fixed bed boilers. A flamelet model for the interaction between turbulence and chemical reactions is developed and applied to study small-scale boiler. The flamelet chemistry employs 43 reactive species and 174 elementary reactions. It gives detailed distributions of important species such as CO and NO{sub x} in the flow field and flue gas. Simulation of a small-scale wood fired boiler measured at SP Boraas (50 KW) shows that the current flamelet model yields results agreeable to the available experimental data. A detailed chemical kinetic model is developed to study the bed combustion process. This model gives boundary conditions for the CFD analysis of gas phase volatile oxidation in the combustion chambers. The model combines a Functional Group submodel with a Depolymerisation, Vaporisation and Crosslinking submodel. The FG submodel simulates how functional groups decompose and form light gas species. The DVC submodell predicts depolymerisation and vaporisation of the macromolecular network and this includes bridge breaking and crosslinking processes, where the wood structure breaks down to fragments. The light fragments form tar and the heavy ones form metaplast. Two boilers firing wood log/chips are studied using the FG-DVC model, one is the SP Boraas small-scale boiler (50 KW) and the other is the Sydkraft Malmoe Vaerme AB's Flintraennan large-scale boiler (55 MW). The fix bed is assumed to be two zones, a partial equilibrium drying/devolatilisation zone and an equilibrium zone. Three typical biomass conversion modes are simulated, a lean fuel combustion mode, a near-stoichiometric combustion and a fuel rich gasification mode. Detailed chemical species and temperatures at different modes are obtained. Physical interpretation is provided. Comparison of the computational results with experimental data shows that the model can reasonably simulate the fixed bed biomass conversion process. CFD
Development and validation of a CFD-based steam reformer model
DEFF Research Database (Denmark)
Kær, Søren Knudsen; Dahlqvist, Mathis; Saksager, Anders
2006-01-01
Steam reforming of liquid biofuels (ethanol, bio-diesel etc.) represents a sustainable source of hydrogen for micro Combined Heat and Power (CHP) production as well as Auxiliary Power Units (APUs). In relation to the design of the steam reforming reactor several parameter are important including...... for expensive prototypes. This paper presents an advanced Computational Fluid Dynamics based model of a steam reformer. The model was implemented in the commercial CFD code Fluent through the User Defined Functions interface. The model accounts for the flue gas flow as well as the reformate flow including...... a detailed mechanism for the reforming reactions. Heat exchange between the flue gas and reformate streams through the reformer reactor walls was also included as a conjugate heat transfer process. From a review of published models for the catalytic steam reforming of ethanol and preliminary predictions...
From Detailed Description of Chemical Reacting Carbon Particles to Subgrid Models for CFD
Directory of Open Access Journals (Sweden)
Schulze S.
2013-04-01
Full Text Available This work is devoted to the development and validation of a sub-model for the partial oxidation of a spherical char particle moving in an air/steam atmosphere. The particle diameter is 2 mm. The coal particle is represented by moisture- and ash-free nonporous carbon while the coal rank is implemented using semi-global reaction rate expressions taken from the literature. The submodel includes six gaseous chemical species (O2, CO2, CO, H2O, H2, N2. Three heterogeneous reactions are employed, along with two homogeneous semi-global reactions, namely carbon monoxide oxidation and the water-gas-shift reaction. The distinguishing feature of the subgrid model is that it takes into account the influence of homogeneous reactions on integral characteristics such as carbon combustion rates and particle temperature. The sub-model was validated by comparing its results with a comprehensive CFD-based model resolving the issues of bulk flow and boundary layer around the particle. In this model, the Navier-Stokes equations coupled with the energy and species conservation equations were used to solve the problem by means of the pseudo-steady state approach. At the surface of the particle, the balance of mass, energy and species concentration was applied including the effect of the Stefan flow and heat loss due to radiation at the surface of the particle. Good agreement was achieved between the sub-model and the CFD-based model. Additionally, the CFD-based model was verified against experimental data published in the literature (Makino et al. (2003 Combust. Flame 132, 743-753. Good agreement was achieved between numerically predicted and experimentally obtained data for input conditions corresponding to the kinetically controlled regime. The maximal discrepancy (10% between the experiments and the numerical results was observed in the diffusion-controlled regime. Finally, we discuss the influence of the Reynolds number, the ambient O2 mass fraction and the ambient
Validation of CFD modeling for VGM loss-of-forced-cooling accidents
International Nuclear Information System (INIS)
Wysocki, Aaron; Ahmed, Bobby; Charmeau, Anne; Anghaie, Samim
2009-01-01
Heat transfer and fluid flow in the VGM reactor cavity cooling system (RCCS) was modeled using Computational Fluid Dynamics (CFD). The VGM is a Russian modular-type high temperature helium-cooled reactor. In the reactor cavity, heat is removed from the pressure vessel wall through natural convection and radiative heat transfer to water-cooled vertical pipes lining the outer cavity concrete. The RCCS heat removal capability under normal operation and accident scenarios needs to be assessed. The purpose of the present study is to validate the use of CFD to model heat transfer in the VGM RCCS. Calculations were based on a benchmark problem which defines a two-dimensional temperature distribution on the pressure vessel outer wall for both Depressurized and Pressurized Loss-of-Forced Cooling events. A two-dimensional axisymmetric model was developed to determine the best numerical modeling approach. A grid sensitivity study for the air region showed that a 20 mm mesh size with a boundary layer giving a maximum y+ of 2.0 was optimal. Sensitivity analyses determined that the discrete ordinates radiative model, the k-omega turbulence model, and the ideal gas law gave the best combination for capturing radiation and natural circulation in the air cavity. A maximum RCCS pipe wall temperature of 62degC located 6 m from the top of the cavity was predicted. The model showed good agreement with previous results for both Pressurized and Depressurized Loss-of-Forced-Cooling accidents based on RCCS coolant outlet temperature, relative contributions of radiative and convective heat transfer, and RCCS heat load profiles. (author)
DEFF Research Database (Denmark)
Yin, Chungen; Singh, Shashank; Romero, Sergio Sanchez
2017-01-01
As a good compromise between computational efficiency and accuracy, the weighted-sum-of-gray-gases model (WSGGM) is often used in computational fluid dynamics (CFD) modeling of combustion processes for evaluating gas radiative properties. However, the WSGGMs still have practical limitations (e...
CFD Analysis of a Slug Mixing Experiment Conducted on a VVER-1000 Model
Directory of Open Access Journals (Sweden)
F. Moretti
2009-01-01
Full Text Available A commercial CFD code was applied, for validation purposes, to the simulation of a slug mixing experiment carried out at OKB “Gidropress” scaled facility in the framework of EC TACIS project R2.02/02: “Development of safety analysis capabilities for VVER-1000 transients involving spatial variations of coolant properties (temperature or boron concentration at core inlet.” Such experimental model reproduces a VVER-1000 nuclear reactor and is aimed at investigating the in-vessel mixing phenomena. The addressed experiment involves the start-up of one of the four reactor coolant pumps (the other three remaining idle, and the presence of a tracer slug on the starting loop, which is thus transported to the reactor pressure vessel where it mixes with the clear water. Such conditions may occur in a boron dilution scenario, hence the relevance of the addressed phenomena for nuclear reactor safety. Both a pretest and a posttest CFD simulations of the mentioned experiment were performed, which differ in the definition of the boundary conditions (based either on nominal quantities or on measured quantities, resp.. The numerical results are qualitatively and quantitatively analyzed and compared against the measured data in terms of space and time tracer distribution at the core inlet. The improvement of the results due to the optimization of the boundary conditions is evidenced, and a quantification of the simulation accuracy is proposed.
A coupled CFD and wake model simulation of helicopter rotor in hover
Zhao, Qinghe; Li, Xiaodong
2018-03-01
The helicopter rotor wake plays a dominant role since it affects the flow field structure. It is very difficult to predict accurately of the flow-field. The numerical dissipation is so excessive that it eliminates the vortex structure. A hybrid method of CFD and prescribed wake model was constructed by applying the prescribed wake model as much as possible. The wake vortices were described as a single blade tip vortex in this study. The coupling model is used to simulate the flow field. Both non-lifting and lifting cases have been calculated with subcritical and supercritical tip Mach numbers. Surface pressure distributions are presented and compared with experimental data. The calculated results agree well with the experimental data.
International Nuclear Information System (INIS)
Guingo, M.; Baudry, C.; Hassanaly, M.; Lavieville, J.; Mechitouna, N.; Merigoux, N.; Mimouni, S.; Bestion, D.; Coste, P.; Morel, C.
2015-01-01
NEPTUNE CFD is a Computational Multi-(Fluid) Dynamics code dedicated to the simulation of multiphase flows, primarily targeting nuclear thermo-hydraulics applications, such as the departure from nuclear boiling (DNB) or the two-phase Pressurized Thermal Shock (PTS). It is co-developed within the joint research/development project NEPTUNE (AREVA, CEA, EDF, IRSN) since 2001. Over the years, to address the aforementioned applications, dedicated physical models and numerical methods have been developed and implemented in the code, including specific sets of models for turbulent boiling flows and two-phase non-adiabatic stratified flows. This paper aims at summarizing the current main modeling capabilities of the code, and gives an overview of the associated validation database. A brief summary of emerging applications of the code, such as containment simulation during a potential severe accident or in-vessel retention, is also provided. (authors)
Discussion of heat transfer phenomena in fluids at supercritical pressure with the aid of CFD models
International Nuclear Information System (INIS)
Sharabi, Medhat; Ambrosini, Walter
2009-01-01
The paper discusses heat transfer enhancement and deterioration phenomena observed in experimental data for fluids at supercritical pressure. The results obtained by the application of various CFD turbulence models in the prediction of experimental data for water and carbon dioxide flowing in circular tubes are firstly described. On this basis, the capabilities of the addressed models in predicting the observed phenomena are shortly discussed. Then, the analysis focuses on further results obtained by a low-Reynolds number k - ε model addressing one of the considered experimental apparatuses by changing the operating conditions. In particular, the usual imposed heat flux boundary condition is changed to assigned wall temperature, in order to highlight effects otherwise impossible to point out. The obtained results, supported by considerations drawn from experimental information, allow comparing the trends observed for heat transfer deterioration at supercritical pressure with those typical of the thermal crisis in boiling systems, clarifying old concepts of similarity among them
CFD Modeling of Flow and Ion Exchange Kinetics in a Rotating Bed Reactor System
DEFF Research Database (Denmark)
Larsson, Hilde Kristina; Schjøtt Andersen, Patrick Alexander; Byström, Emil
2017-01-01
A rotating bed reactor (RBR) has been modeled using computational fluid dynamics (CFD). The flow pattern in the RBR was investigated and the flow through the porous material in it was quantified. A simplified geometry representing the more complex RBR geometry was introduced and the simplified...... model was able to reproduce the main characteristics of the flow. Alternating reactor shapes were investigated, and it was concluded that the use of baffles has a very large impact on the flows through the porous material. The simulations suggested, therefore, that even faster reaction rates could...... be achieved by making the baffles deeper. Two-phase simulations were performed, which managed to reproduce the deflection of the gas–liquid interface in an unbaffled system. A chemical reaction was implemented in the model, describing the ion-exchange phenomena in the porous material using four different...
Computational fluid dynamics (CFD) modelling of coal/biomass co-firing in pulverised fuel boilers
Energy Technology Data Exchange (ETDEWEB)
Moghtaderi, B.; Meesri, C. [University of Newcastle, Callaghan, NSW (Australia). CRC for Coal in Sustainable Development, Dept. of Chemical Engineering
2002-07-01
The present study is concerned with computational fluid dynamics (CFD) modelling of coal/biomass blends co-fired under conditions pertinent to pulverised fuel (PF) boilers. The attention is particularly focused on the near burner zone to examine the impact of biomass on the flame geometry and temperature. The predictions are obtained by numerical solution of the conservation equations for the gas and particle phases. The gas phase is solved in the Eulerian domain using steady-state time-averaged Navier-Stokes equations while the solution of the particle phase is obtained from a series of Lagrangian particle tracking equations. Turbulence is modelled using the {kappa}-{epsilon} and Reynolds Stress models. The comparison between the predictions and experimental measurement reported in the literature resulted in a good agreement. Other influences of biomass co-firing are observed for fuel devolatilisation and burnout. 19 refs., 6 figs.
Actuator forces in CFD: RANS and LES modeling in OpenFOAM
International Nuclear Information System (INIS)
Schito, P; Zasso, A
2014-01-01
Wind turbine wakes are a very challenging topic for scientific computations, but modern CFD frameworks and latest HPC centers allow setting up numerical computations on the wake induced by the wind turbine. The main issues is that the correct modeling of the wake is related to the correct modeling of the interaction between the blade and the incoming flow. The aim of the proposed work is to estimate the aerodynamic forces acting on the blades in order to correctly generate the rotor wake applying equivalent aerodynamic force source on the flow. The definition of a blade forces is done developing a model able to correctly estimate this aerodynamic forces as a function of the local flow seen by the blade during its revolution
CFD model of diabatic annular two-phase flow using the Eulerian–Lagrangian approach
International Nuclear Information System (INIS)
Li, Haipeng; Anglart, Henryk
2015-01-01
Highlights: • A CFD model of annular two-phase flow with evaporating liquid film has been developed. • A two-dimensional liquid film model is developed assuming that the liquid film is sufficiently thin. • The liquid film model is coupled to the gas core flow, which is represented using the Eulerian–Lagrangian approach. - Abstract: A computational fluid dynamics (CFD) model of annular two-phase flow with evaporating liquid film has been developed based on the Eulerian–Lagrangian approach, with the objective to predict the dryout occurrence. Due to the fact that the liquid film is sufficiently thin in the diabatic annular flow and at the pre-dryout conditions, it is assumed that the flow in the wall normal direction can be neglected, and the spatial gradients of the dependent variables tangential to the wall are negligible compared to those in the wall normal direction. Subsequently the transport equations of mass, momentum and energy for liquid film are integrated in the wall normal direction to obtain two-dimensional equations, with all the liquid film properties depth-averaged. The liquid film model is coupled to the gas core flow, which currently is represented using the Eulerian–Lagrangian technique. The mass, momentum and energy transfers between the liquid film, gas, and entrained droplets have been taken into account. The resultant unified model for annular flow has been applied to the steam–water flow with conditions typical for a Boiling Water Reactor (BWR). The simulation results for the liquid film flow rate show favorable agreement with the experimental data, with the potential to predict the dryout occurrence based on criteria of critical film thickness or critical film flow rate
International Nuclear Information System (INIS)
Jarnicki, R.; Sobiesiak, A.
2002-01-01
In order to solve the averaged conservation equations for turbulent reacting flow one is faced with a task of specifying the averaged chemical reaction rate. This is due to turbulence influence on the mean reaction rates that appear in the species concentration Reynolds-averaged equation. In order to investigate the Partially Stirred Reactor (PaSR) combustion model capabilities, a CFD modeling using KIVA3V Code with the PaSR model of two very different combustion processes, was performed. Experimental results were compared with modeling
A simplified model of Passive Containment Cooling System in a CFD code
International Nuclear Information System (INIS)
Jiang, X.W.; Studer, E.; Kudriakov, S.
2013-01-01
Highlights: ► We have built a condensing model using Navier–Stokes equations in CAST3M code. ► We have done a benchmark work on the condensing model using the COPAIN tests data. ► We have built an evaporating model according to Aiello's model in CAST3M code. ► We used Kang and Park's film evaporation tests data to validate the model. ► An integrated model was derived by coupling two individual models with a steel plate. -- Abstract: In this paper, we built up a simplified model of the Passive Containment Cooling System in a CFD code, including a steel plate, a condensing channel and an evaporating channel. In the inner side of the plate, the condensing channel is supposed to be the source of heat transfer into the steel plate. Along the outer side, an evaporating falling film is used to extract the heat from the steel plate. Upward flow of air is also considered along the evaporating film. In the condensing channel, a flow solver based on an asymptotic model of the Navier–Stokes equations at the low Mach number regime and two turbulence models (Buleev's model and Chien's k–ε model) are considered. The condensing channel model was used to model the COPAIN test, the computed heat flux and condensation rate were compared with the experimental data. In the evaporating channel, a simplified model developed by Aiello and Ciofalo (2009) was used, which considered the heat and mass balance between the falling film and the ascending air flow. The model was validated for two cases: a dry wall case and a completely wet wall case. In the former case, the results were compared with 2D predictions obtained by using the CFX-4 CFD code. In the latter case, the results were compared with experimental data obtained by Kang and Park. The comparison showed a satisfactory agreement on heat transfer rates, despite some overprediction depending on the air velocity. At the end, the condensing channel model and the evaporating channel model were coupled by the steel plate
Darmawan, R.
2018-01-01
Nuclear power industry is facing uncertainties since the occurrence of the unfortunate accident at Fukushima Daiichi Nuclear Power Plant. The issue of nuclear power plant safety becomes the major hindrance in the planning of nuclear power program for new build countries. Thus, the understanding of the behaviour of reactor system is very important to ensure the continuous development and improvement on reactor safety. Throughout the development of nuclear reactor technology, investigation and analysis on reactor safety have gone through several phases. In the early days, analytical and experimental methods were employed. For the last four decades 1D system level codes were widely used. The continuous development of nuclear reactor technology has brought about more complex system and processes of nuclear reactor operation. More detailed dimensional simulation codes are needed to assess these new reactors. Recently, 2D and 3D system level codes such as CFD are being explored. This paper discusses a comparative study on two different approaches of CFD modelling on reactor core cooling behaviour.
A Generalized turbulent dispersion model for bubbly flow numerical simulation in NEPTUNE-CFD
Energy Technology Data Exchange (ETDEWEB)
Laviéville, Jérôme, E-mail: Jerome-marcel.lavieville@edf.fr; Mérigoux, Nicolas, E-mail: nicolas.merigoux@edf.fr; Guingo, Mathieu, E-mail: mathieu.guingo@edf.fr; Baudry, Cyril, E-mail: Cyril.baudry@edf.fr; Mimouni, Stéphane, E-mail: stephane.mimouni@edf.fr
2017-02-15
The NEPTUNE-CFD code, based upon an Eulerian multi-fluid model, is developed within the framework of the NEPTUNE project, financially supported by EDF (Electricité de France), CEA (Commissariat à l’Energie Atomique et aux Energies Alternatives), IRSN (Institut de Radioprotection et de Sûreté Nucléaire) and AREVA-NP. NEPTUNE-CFD is mainly focused on Nuclear Safety applications involving two-phase water-steam flows, like two-phase Pressurized Shock (PTS) and Departure from Nucleate Boiling (DNB). Many of these applications involve bubbly flows, particularly, for application to flows in PWR fuel assemblies, including studies related to DNB. Considering a very usual model for interfacial forces acting on bubbles, including drag, virtual mass and lift forces, the turbulent dispersion force is often added to moderate the lift effect in orthogonal directions to the main flow and get the right dispersion shape. This paper presents a formal derivation of this force, considering on the one hand, the fluctuating part of drag and virtual mass, and on the other hand, Turbulent Pressure derivation obtained by comparison between Lagrangian and Eulerian description of bubbles motion. An extension of the Tchen’s theory is used to express the turbulent kinetic energy of bubbles and the two-fluid turbulent covariance tensor in terms of liquid turbulent velocities and time scale. The model obtained by this way, called Generalized Turbulent Dispersion Model (GTD), does not require any user parameter. The model is validated against Liu & Bankoff air-water experiment, Arizona State University (ASU) experiment, DEBORA experiment and Texas A&M University (TAMU) boiling flow experiments.
Temperature Field-Wind Velocity Field Optimum Control of Greenhouse Environment Based on CFD Model
Directory of Open Access Journals (Sweden)
Yongbo Li
2014-01-01
Full Text Available The computational fluid dynamics technology is applied as the environmental control model, which can include the greenhouse space. Basic environmental factors are set to be the control objects, the field information is achieved via the division of layers by height, and numerical characteristics of each layer are used to describe the field information. Under the natural ventilation condition, real-time requirements, energy consumption, and distribution difference are selected as index functions. The optimization algorithm of adaptive simulated annealing is used to obtain optimal control outputs. A comparison with full-open ventilation shows that the whole index can be reduced at 44.21% and found that a certain mutual exclusiveness exists between the temperature and velocity field in the optimal course. All the results indicate that the application of CFD model has great advantages to improve the control accuracy of greenhouse.
Parametric sensitivity of a CFD model concerning the hydrodynamics of trickle-bed reactor (TBR
Directory of Open Access Journals (Sweden)
Janecki Daniel
2016-03-01
Full Text Available The aim of the present study was to investigate the sensitivity of a multiphase Eulerian CFD model with respect to relations defining drag forces between phases. The mean relative error as well as standard deviation of experimental and computed values of pressure gradient and average liquid holdup were used as validation criteria of the model. Comparative basis for simulations was our own data-base obtained in experiments carried out in a TBR operating at a co-current downward gas and liquid flow. Estimated errors showed that the classical equations of Attou et al. (1999 defining the friction factors Fjk approximate experimental values of hydrodynamic parameters with the best agreement. Taking this into account one can recommend to apply chosen equations in the momentum balances of TBR.
CFD model of thermal and velocity conditions in a particular indoor environment
Energy Technology Data Exchange (ETDEWEB)
Mora Perez, Miguel; Lopez Patino, Gonzalo; Lopez Jimenez, P. Amparo [Hydraulic and Environmental Engineering Department, Universitat Politecnica de Valencia (Spain); Guillen Guillamon, Ignacio [Applied Physics Department, Universitat Politecnica de Valencia (Spain)
2013-07-01
The demand for maintaining high indoor environmental quality (IEQ) with the minimum energy consumption is rapidly increasing. In the recent years, several studies have been completed to investigate the impact of indoor environment factors on human comfort, health and energy efficiency. Therefore, the design of the thermal environment in any sort of room, specially offices, has huge economic consequences. In this paper, a particular analysis on the air temperature in a multi-task room environment is modeled, in order to represent the velocities and temperatures inside the room by using Computational Fluid Dynamics (CFD) techniques. This model will help to designers to analyze the thermal comfort regions inside the studied air volume and to visualize the whole temperatures inside the room, determining the effect of the fresh external incoming air in the internal air temperature.
Energy Technology Data Exchange (ETDEWEB)
Soria, José, E-mail: jose.soria@probien.gob.ar [Institute for Research and Development in Process Engineering, Biotechnology and Alternative Energies (PROBIEN, CONICET – UNCo), 1400 Buenos Aires St., 8300 Neuquén (Argentina); Gauthier, Daniel; Flamant, Gilles [Processes, Materials and Solar Energy Laboratory (PROMES-CNRS, UPR 8521), 7 Four Solaire Street, Odeillo, 66120 Font-Romeu (France); Rodriguez, Rosa [Chemical Engineering Institute, National University of San Juan, 1109 Libertador (O) Avenue, 5400 San Juan (Argentina); Mazza, Germán [Institute for Research and Development in Process Engineering, Biotechnology and Alternative Energies (PROBIEN, CONICET – UNCo), 1400 Buenos Aires St., 8300 Neuquén (Argentina)
2015-09-15
Highlights: • A CFD two-scale model is formulated to simulate heavy metal vaporization from waste incineration in fluidized beds. • MSW particle is modelled with the macroscopic particle model. • Influence of bed dynamics on HM vaporization is included. • CFD predicted results agree well with experimental data reported in literature. • This approach may be helpful for fluidized bed reactor modelling purposes. - Abstract: Municipal Solid Waste Incineration (MSWI) in fluidized bed is a very interesting technology mainly due to high combustion efficiency, great flexibility for treating several types of waste fuels and reduction in pollutants emitted with the flue gas. However, there is a great concern with respect to the fate of heavy metals (HM) contained in MSW and their environmental impact. In this study, a coupled two-scale CFD model was developed for MSWI in a bubbling fluidized bed. It presents an original scheme that combines a single particle model and a global fluidized bed model in order to represent the HM vaporization during MSW combustion. Two of the most representative HM (Cd and Pb) with bed temperatures ranging between 923 and 1073 K have been considered. This new approach uses ANSYS FLUENT 14.0 as the modelling platform for the simulations along with a complete set of self-developed user-defined functions (UDFs). The simulation results are compared to the experimental data obtained previously by the research group in a lab-scale fluid bed incinerator. The comparison indicates that the proposed CFD model predicts well the evolution of the HM release for the bed temperatures analyzed. It shows that both bed temperature and bed dynamics have influence on the HM vaporization rate. It can be concluded that CFD is a rigorous tool that provides valuable information about HM vaporization and that the original two-scale simulation scheme adopted allows to better represent the actual particle behavior in a fluid bed incinerator.
International Nuclear Information System (INIS)
Soria, José; Gauthier, Daniel; Flamant, Gilles; Rodriguez, Rosa; Mazza, Germán
2015-01-01
Highlights: • A CFD two-scale model is formulated to simulate heavy metal vaporization from waste incineration in fluidized beds. • MSW particle is modelled with the macroscopic particle model. • Influence of bed dynamics on HM vaporization is included. • CFD predicted results agree well with experimental data reported in literature. • This approach may be helpful for fluidized bed reactor modelling purposes. - Abstract: Municipal Solid Waste Incineration (MSWI) in fluidized bed is a very interesting technology mainly due to high combustion efficiency, great flexibility for treating several types of waste fuels and reduction in pollutants emitted with the flue gas. However, there is a great concern with respect to the fate of heavy metals (HM) contained in MSW and their environmental impact. In this study, a coupled two-scale CFD model was developed for MSWI in a bubbling fluidized bed. It presents an original scheme that combines a single particle model and a global fluidized bed model in order to represent the HM vaporization during MSW combustion. Two of the most representative HM (Cd and Pb) with bed temperatures ranging between 923 and 1073 K have been considered. This new approach uses ANSYS FLUENT 14.0 as the modelling platform for the simulations along with a complete set of self-developed user-defined functions (UDFs). The simulation results are compared to the experimental data obtained previously by the research group in a lab-scale fluid bed incinerator. The comparison indicates that the proposed CFD model predicts well the evolution of the HM release for the bed temperatures analyzed. It shows that both bed temperature and bed dynamics have influence on the HM vaporization rate. It can be concluded that CFD is a rigorous tool that provides valuable information about HM vaporization and that the original two-scale simulation scheme adopted allows to better represent the actual particle behavior in a fluid bed incinerator
International Nuclear Information System (INIS)
Yun, B. J.; Song, C. H.; Splawski, A.; Lo, S.
2010-01-01
Subcooled boiling is one of the crucial phenomena for the design, operation and safety analysis of a nuclear power plant. It occurs due to the thermally nonequilibrium state in the two-phase heat transfer system. Many complicated phenomena such as a bubble generation, a bubble departure, a bubble growth, and a bubble condensation are created by this thermally nonequilibrium condition in the subcooled boiling flow. However, it has been revealed that most of the existing best estimate safety analysis codes have a weakness in the prediction of the subcooled boiling phenomena in which multi-dimensional flow behavior is dominant. In recent years, many investigators are trying to apply CFD (Computational Fluid Dynamics) codes for an accurate prediction of the subcooled boiling flow. In the CFD codes, evaporation heat flux from heated wall is one of the key parameters to be modeled for an accurate prediction of the subcooled boiling flow. The evaporate heat flux for the CFD codes is expressed typically as follows, q' e = πD 3 d /6 ρ g h fg fN' where, D d , f ,N' are bubble departure size, bubble departure frequency and active nucleation site density, respectively. In the most of the commercial CFD codes, Tolubinsky bubble departure size model, Kurul and Podowski active nucleation site density model and Ceumem-Lindenstjerna bubble departure frequency model are adopted as a basic wall boiling model. However, these models do not consider their dependency on the flow, pressure and fluid type. In this paper, an advanced wall boiling model was proposed in order to improve subcooled boiling model for the CFD codes
Issues in the validation of CFD modelling of semi-solid metal forming
International Nuclear Information System (INIS)
Ward, P.J.; Atkinson, H.V.; Kirkwood, D.H.; Liu, T.Y.; Chin, S.B.
2000-01-01
Modelling of die filling during semi-solid metal processing (thixoforming) places particular demands on the CFD package being used. Not only are the velocities of the metal slurry in the die very high, the viscosity is too. Furthermore, the viscosity changes with shear rate (i.e. with changes in cross sectional area of the region the slurry travels through) and with time, as the injected material is thixotropic. The CFD software therefore requires good free surface tracking, accurate implicit solutions of the flow equations (as the CPU times for explicit solutions at high viscosities are impractical) and a model that adequately describes the slurry thixotropy. Finally, reliable, experimentally determined viscosity data are required. This paper describes the experiments on tin-lead and aluminium alloy slurries using compressive tests and rotating cylinder viscometry, followed by modelling using FLOW-3D. This package is known for its ability to track free surfaces accurately. Compressive tests allow rapid changes in shear rate to be imparted to the slurry, without wall slip, while the simple geometry of the viscometer makes it possible to compare analytical and numerical solutions. It is shown that the implicit viscous solver in its original form can reproduce the general trends found in the compressive and viscometry tests. However, sharp changes in shear rate lead to overestimation of pressure gradients in the slurry, making it difficult to separate these effects from those due to thixotropic breakdown. In order to achieve this separation, it is necessary to implement a more accurate implicit solver, which is currently under development. (author)
Directory of Open Access Journals (Sweden)
Belardini P.
2006-12-01
Full Text Available In the present paper some results, obtained by the use of modern numerical CFD tools, are presented. In particular, starting from the experimental characterization of a common rail DI Diesel engine, the empirical constants of the different submodels were tuned to obtain satisfactory results in some key test conditions. The main constraints of numerical models, to obtain a right scaling of pollutants predictions in the different test cases are analyzed. The numerical analysis demonstrates that the numerical CFD tools, at their stage of development, can help the engine designers to define the more promising strategies to obtain tailpipe emission control of common rail Diesel DI engines. Dans cet article, nous présentons les résultats obtenus en utilisant des outils de simulation de la mécanique des fluides numérique (CFD. À partir de résultats expérimentaux issus de la caractérisation d'un moteur Diesel common rail, les constantes empiriques de divers modèles ont été ajustées afin d'obtenir des résultats satisfaisants pour des cas tests représentatifs. Les principales contraintes des modèles numériques pour obtenir une bonne précision dans les différents cas d'études sont ici analysées. Cette analyse numérique montre que la CFD permet déjà, au stade de développement atteint, d'aider les ingénieurs à définir les stratégies les plus prometteuses pour maîtriser les émissions à l'échappement des moteurs Diesel à injection common rail.
Ma, Baoshun; Ruwet, Vincent; Corieri, Patricia; Theunissen, Raf; Riethmuller, Michel; Darquenne, Chantal
2009-05-01
Accurate modeling of air flow and aerosol transport in the alveolated airways is essential for quantitative predictions of pulmonary aerosol deposition. However, experimental validation of such modeling studies has been scarce. The objective of this study is to validate CFD predictions of flow field and particle trajectory with experiments within a scaled-up model of alveolated airways. Steady flow (Re = 0.13) of silicone oil was captured by particle image velocimetry (PIV), and the trajectories of 0.5 mm and 1.2 mm spherical iron beads (representing 0.7 to 14.6 mum aerosol in vivo) were obtained by particle tracking velocimetry (PTV). At twelve selected cross sections, the velocity profiles obtained by CFD matched well with those by PIV (within 1.7% on average). The CFD predicted trajectories also matched well with PTV experiments. These results showed that air flow and aerosol transport in models of human alveolated airways can be simulated by CFD techniques with reasonable accuracy.
DEFF Research Database (Denmark)
Yang, Jifeng; Jensen, Bo Boye Busk; Nordkvist, Mikkel
2018-01-01
The intermediate and final rinses of straight pipes, in which water replaces a cleaning agent of similar density and viscosity, are modelled using Computational Fluid Dynamic (CFD) methods. It is anticipated that the displacement process is achieved by convective and diffusive transport. The simu...
International Nuclear Information System (INIS)
Ching, W-H; K H Leung, Michael; Leung, Dennis Y C
2009-01-01
Transient turbulent dispersion phenomena can be found in various practical problems, such as the accidental release of toxic chemical vapor and the airborne transmission of infectious droplets. Computational fluid dynamics (CFD) is an effective tool for analyzing such transient dispersion behaviors. However, the transient CFD analysis is often computationally expensive and time consuming. In the present study, a computationally efficient CFD-statistical hybrid modeling method has been developed for studying transient turbulent dispersion. In this method, the source emission is represented by emissions of many infinitesimal puffs. Statistical analysis is performed to obtain first the statistical properties of the puff trajectories and subsequently the most probable distribution of the puff trajectories that represent the macroscopic dispersion behaviors. In two case studies of ambient dispersion, the numerical modeling results obtained agree reasonably well with both experimental measurements and conventional k-ε modeling results published in the literature. More importantly, the proposed many-puff CFD-statistical hybrid modeling method effectively reduces the computational time by two orders of magnitude.
Energy Technology Data Exchange (ETDEWEB)
Leishear, R.; Poirier, M.; Lee, S.; Fowley, M.
2012-06-26
This paper documents testing methods, statistical data analysis, and a comparison of experimental results to CFD models for blending of fluids, which were blended using a single pump designed with dual opposing nozzles in an eight foot diameter tank. Overall, this research presents new findings in the field of mixing research. Specifically, blending processes were clearly shown to have random, chaotic effects, where possible causal factors such as turbulence, pump fluctuations, and eddies required future evaluation. CFD models were shown to provide reasonable estimates for the average blending times, but large variations -- or scatter -- occurred for blending times during similar tests. Using this experimental blending time data, the chaotic nature of blending was demonstrated and the variability of blending times with respect to average blending times were shown to increase with system complexity. Prior to this research, the variation in blending times caused discrepancies between CFD models and experiments. This research addressed this discrepancy, and determined statistical correction factors that can be applied to CFD models, and thereby quantified techniques to permit the application of CFD models to complex systems, such as blending. These blending time correction factors for CFD models are comparable to safety factors used in structural design, and compensate variability that cannot be theoretically calculated. To determine these correction factors, research was performed to investigate blending, using a pump with dual opposing jets which re-circulate fluids in the tank to promote blending when fluids are added to the tank. In all, eighty-five tests were performed both in a tank without internal obstructions and a tank with vertical obstructions similar to a tube bank in a heat exchanger. These obstructions provided scale models of vertical cooling coils below the liquid surface for a full scale, liquid radioactive waste storage tank. Also, different jet
Comparaison de simulations CFD avec des résultats expérimentaux de Jet Erosion Test
Mercier , F.; Bonelli , S.; Pinettes , P.; Golay , F.; Anselmet , F.; Philippe , P.
2014-01-01
International audience; The Jet Erosion Test (JET) is an experimental device increasingly used to quantify the resistance of soils to erosion. This resistance is characterised by two geotechnical parameters: the critical shear stress and the erosion coefficient. The JET interpretation model of Hanson and Cook (2004) provides an estimation of these erosion parameters. But Hanson's model is simplified, semi-empirical and several assumed hypotheses can be discussed. Our aim is to determine the r...
Coupled 0D-1D CFD Modeling of Right Heart and Pulmonary Artery Morphometry Tree
Dong, Melody; Yang, Weiguang; Feinstein, Jeffrey A.; Marsden, Alison
2017-11-01
Pulmonary arterial hypertension (PAH) is characterized by elevated pulmonary artery (PA) pressure and remodeling of the distal PAs resulting in right ventricular (RV) dysfunction and failure. It is hypothesized that patients with untreated ventricular septal defects (VSD) may develop PAH due to elevated flows and pressures in the PAs. Wall shear stress (WSS), due to elevated flows, and circumferential stress, due to elevated pressures, are known to play a role in vascular mechanobiology. Thus, simulating VSD hemodynamics and wall mechanics may facilitate our understanding of mechanical stimuli leading to PAH initiation and progression. Although 3D CFD models can capture detailed hemodynamics in the proximal PAs, they cannot easily model hemodynamics and wave propagation in the distal PAs, where remodeling occurs. To improve current PA models, we will present a new method that couples distal PA hemodynamics with RV function. Our model couples a 0D lumped parameter model of the RV to a 1D model of the PA tree, based on human PA morphometry data, to characterize RV performance and WSS changes in the PA tree. We will compare a VSD 0D-1D model and a 0D-3D model coupled to a mathematical morphometry tree model to quantify WSS in the entire PA vascular tree.
The application of CFD modelling to support the reduction of CO2 emissions in cement industry
International Nuclear Information System (INIS)
Mikulčić, Hrvoje; Vujanović, Milan; Fidaros, Dimitris K.; Priesching, Peter; Minić, Ivica; Tatschl, Reinhard; Duić, Neven; Stefanović, Gordana
2012-01-01
The cement industry is one of the leading producers of anthropogenic greenhouse gases, of which CO 2 is the most significant. Recently, researchers have invested a considerable amount of time studying ways to improve energy consumption and pollutant formation in the overall cement manufacturing process. One idea involves dividing the calcination and clinkering processes into two separate furnaces. The calcination process is performed in a calciner while the clinkering process takes place in a rotary kiln. As this is new technology in the cement manufacturing process, calciners are still in the research and development phase. The purpose of this paper is to demonstrate the potential of CFD to support the design and optimization of calciners, whose use appears to be essential in reduction of CO 2 emission during cement production. The mathematical model of the calcination process was developed, validated and implemented into a commercial CFD code, which was then used for the analysis. From the results obtained by these simulations, researchers will gain an in-depth understanding of all thermo-chemical reactions in a calciner. This understanding can be used to optimize the calciner's geometry, to make production more efficient, to lower pollutant formation and to subsequently reduce greenhouse gas emissions. -- Highlights: ► The potential of CO 2 emissions reduction, by using a cement calciner was presented. ► When a cement calciner is used, CO 2 emissions reduction of 3–4% can be achieved. ► The calcination model was developed, validated, and then used for the analysis. ► Shown method can be applied for investigation and optimization of cement calciners.
Flow dynamics of a novel counterpulsation device characterized by CFD and PIV modeling.
Giridharan, G A; Lederer, C; Berthe, A; Goubergrits, L; Hutzenlaub, J; Slaughter, M S; Dowling, R D; Spence, P A; Koenig, S C
2011-12-01
Historically, single port valveless pneumatic blood pumps have had a high incidence of thrombus formation due to areas of blood stagnation and hemolysis due to areas of high shear stress. To ensure minimal hemolysis and favorable blood washing characteristics, particle image velocimetry (PIV) and computational fluid dynamics (CFD) were used to evaluate the design of a new single port, valveless counterpulsation device (Symphony). The Symphony design was tested in 6-h acute (n=8), 5-day (n=8) and 30-day (n=2) chronic experiments in a calf model (Jersey, 76 kg). Venous blood samples were collected during acute (hourly) and chronic (weekly) time courses to analyze for temporal changes in biochemical markers and quantify plasma free hemoglobin. At the end of the study, animals were euthanized and the Symphony and end-organs (brain, liver, kidney, lungs, heart, and spleen) were examined for thrombus formations. Both the PIV and the CFD showed the development of a strong moving vortex during filling phase and that blood exited the Symphony uniformly from all areas during ejection phase. The laminar shear stresses estimated by CFD remained well below the hemolysis threshold of 400 Pa inside the Symphony throughout filling and ejection phases. No areas of persistent blood stagnation or flow separation were observed. The maximum plasma free hemoglobin (<10mg/dl), average platelet count (pre-implant = 473 ± 56 K/μl and post-implant = 331 ± 62 K/μl), and average hematocrit (pre-implant = 31 ± 2% and post-implant = 29 ± 2%) were normal at all measured time-points for each test animal in acute and chronic experiments. There were no changes in measures of hepatic function (ALP, ALT) or renal function (creatinine) from pre-Symphony implantation values. The necropsy examination showed no signs of thrombus formation in the Symphony or end organs. These data suggest that the designed Symphony has good washing characteristics without persistent areas of blood stagnation sites
Optimization of pulverised coal combustion by means of CFD/CTA modeling
Directory of Open Access Journals (Sweden)
Filkoski Risto V.
2006-01-01
Full Text Available The objective of the work presented in this paper was to apply a method for handling two-phase reacting flow for prediction of pulverized coal combustion in large-scale boiler furnace and to assess the ability of the model to predict existing power plant data. The paper presents the principal steps and results of the numerical modeling of power boiler furnace with tangential disposition of the burners. The computational fluid dynamics/computational thermal analysis (CFD/CTA approach is utilized for creation of a three-dimensional model of the boiler furnace, including the platen superheater in the upper part of the furnace. Standard k-e model is employed for description of the turbulent flow. Coal combustion is modeled by the mixture fraction/probability density function approach for the reaction chemistry, with equilibrium assumption applied for description of the system chemistry. Radiation heat transfer is computed by means of the simplified P-N model, based on the expansion of the radiation intensity into an orthogonal series of spherical harmonics. Some distinctive results regarding the examined boiler performance in capacity range between 65 and 95% are presented graphically. Comparing the simulation predictions and available site measurements concerning temperature, heat flux and combustion efficiency, a conclusion can be drawn that the model produces realistic insight into the furnace processes. Qualitative agreement indicates reasonability of the calculations and validates the employed sub-models. After the validation and verification of the model it was used to check the combustion efficiency as a function of coal dust sieve characteristics, as well as the impact of burners modification with introduction of over fire air ports to the appearance of incomplete combustion, including CO concentration, as well as to the NOx concentration. The described case and other experiences with CFD/CTA stress the advantages of numerical modeling and
Development of CFD analysis method based on droplet tracking model for BWR fuel assemblies
International Nuclear Information System (INIS)
Onishi, Yoichi; Minato, Akihiko; Ichikawa, Ryoko; Mashara, Yasuhiro
2011-01-01
It is well known that the minimum critical power ratio (MCPR) of the boiling water reactor (BWR) fuel assembly depends on the spacer grid type. Recently, improvement of the critical power is being studied by using a spacer grid with mixing devices attaching various types of flow deflectors. In order to predict the critical power of the improved BWR fuel assembly, we have developed an analysis method based on the consideration of detailed thermal-hydraulic mechanism of annular mist flow regime in the subchannels for an arbitrary spacer type. The proposed method is based on a computational fluid dynamics (CFD) model with a droplet tracking model for analyzing the vapor-phase turbulent flow in which droplets are transported in the subchannels of the BWR fuel assembly. We adopted the general-purpose CFD software Advance/FrontFlow/red (AFFr) as the base code, which is a commercial software package created as a part of Japanese national project. AFFr employs a three-dimensional (3D) unstructured grid system for application to complex geometries. First, AFFr was applied to single-phase flows of gas in the present paper. The calculated results were compared with experiments using a round cellular spacer in one subchannel to investigate the influence of the choice of turbulence model. The analyses using the large eddy simulation (LES) and re-normalisation group (RNG) k-ε models were carried out. The results of both the LES and RNG k-ε models show that calculations of velocity distribution and velocity fluctuation distribution in the spacer downstream reproduce the experimental results qualitatively. However, the velocity distribution analyzed by the LES model is better than that by the RNG k-ε model. The velocity fluctuation near the fuel rod, which is important for droplet deposition to the rod, is also simulated well by the LES model. Then, to examine the effect of the spacer shape on the analytical result, the gas flow analyses with the RNG k-ε model were performed
CFD modeling of heat transfer performance of MgO-water nanofluid under turbulent flow
Directory of Open Access Journals (Sweden)
Reza Davarnejad
2015-12-01
Full Text Available In this paper, Computational fluid dynamics (CFD modeling of turbulent heat transfer behavior of Magnesium Oxide-water nanofluid in a circular tube was studied. The modeling was two dimensional under k–ε turbulence model. The base fluid was pure water and the volume fraction of nanoparticles in the base fluid was 0.0625%, 0.125%, 0.25%, 0.5% and 1%. The applied Reynolds number range was 3000–19000. Three individual models including single phase, Volume of Fluid (VOF and mixture were used. The results showed that the simulated data were in good agreement with the experimental ones available in the literature. According to the experimental work (literature and simulation (this research, Nusselt number (Nu increased with increasing the volume fraction of nanofluid. However friction factor of nanofluid increased but its effect was ignorable compared with the Nu on heat transfer increment. It was concluded that two phase models were more accurate than the others for heat transfer prediction particularly in the higher volume fractions of nanoparticle. The average deviation from experimental data for single phase model was about 11% whereas it was around 2% for two phase models.
A CFD model for biomass fast pyrolysis in fluidized-bed reactors
Xue, Qingluan; Heindel, T. J.; Fox, R. O.
2010-11-01
A numerical study is conducted to evaluate the performance and optimal operating conditions of fluidized-bed reactors for fast pyrolysis of biomass to bio-oil. A comprehensive CFD model, coupling a pyrolysis kinetic model with a detailed hydrodynamics model, is developed. A lumped kinetic model is applied to describe the pyrolysis of biomass particles. Variable particle porosity is used to account for the evolution of particle physical properties. The kinetic scheme includes primary decomposition and secondary cracking of tar. Biomass is composed of reference components: cellulose, hemicellulose, and lignin. Products are categorized into groups: gaseous, tar vapor, and solid char. The particle kinetic processes and their interaction with the reactive gas phase are modeled with a multi-fluid model derived from the kinetic theory of granular flow. The gas, sand and biomass constitute three continuum phases coupled by the interphase source terms. The model is applied to investigate the effect of operating conditions on the tar yield in a fluidized-bed reactor. The influence of various parameters on tar yield, including operating temperature and others are investigated. Predicted optimal conditions for tar yield and scale-up of the reactor are discussed.
Directory of Open Access Journals (Sweden)
Vincent Casseau
2016-12-01
Full Text Available hy2Foam is a newly-coded open-source two-temperature computational fluid dynamics (CFD solver that has previously been validated for zero-dimensional test cases. It aims at (1 giving open-source access to a state-of-the-art hypersonic CFD solver to students and researchers; and (2 providing a foundation for a future hybrid CFD-DSMC (direct simulation Monte Carlo code within the OpenFOAM framework. This paper focuses on the multi-dimensional verification of hy2Foam and firstly describes the different models implemented. In conjunction with employing the coupled vibration-dissociation-vibration (CVDV chemistry–vibration model, novel use is made of the quantum-kinetic (QK rates in a CFD solver. hy2Foam has been shown to produce results in good agreement with previously published data for a Mach 11 nitrogen flow over a blunted cone and with the dsmcFoam code for a Mach 20 cylinder flow for a binary reacting mixture. This latter case scenario provides a useful basis for other codes to compare against.
Vortex Tube: A Comparison of Experimental and CFD Analysis Featuring Different RANS Models
Directory of Open Access Journals (Sweden)
Chýlek Radomír
2018-01-01
Full Text Available The Ranque–Hilsch vortex tube represents a device for both cooling and heating applications. It uses compressed gas as drive medium. The temperature separation is affected by fluid flow behaviour inside the tube. It has not been sufficiently examined in detail yet and has the potential for further investigation. The aim of this paper is to compare results of numerical simulations of the vortex tube with obtained experimental data. The numerical study was using computational fluid dynamics (CFD, namely computational code STAR-CCM+. For the numerical study, a three-dimensional geometry model, and various turbulence physics models were used. For the validation of carried out calculations, an experimental device of the vortex tube of identical geometrical and operating conditions was created and tested. The numerical simulation results have been obtained for five different turbulence models, namely Standard k-ε, Realizable k-ε, Standard k-ω, SST k-ω and Reynolds stress model (RSM, were compared with experimental results. The most important evaluation factor was the temperature field in the vortex tube. All named models of turbulence were able to predict the general flow behaviour in the vortex tube with satisfactory precision. Standard k-ε turbulence model predicted temperature distribution in the best accordance with the obtained experimental data.
An assessment of CFD-based wall heat transfer models in piston engines
Energy Technology Data Exchange (ETDEWEB)
Sircar, Arpan [Pennsylvania State Univ., University Park, PA (United States); Paul, Chandan [Pennsylvania State Univ., University Park, PA (United States); Ferreyro-Fernandez, Sebastian [Pennsylvania State Univ., University Park, PA (United States); Imren, Abdurrahman [Pennsylvania State Univ., University Park, PA (United States); Haworth, Daniel C [Pennsylvania State Univ., University Park, PA (United States)
2017-04-26
The lack of accurate submodels for in-cylinder heat transfer has been identified as a key shortcoming in developing truly predictive, physics-based computational fluid dynamics (CFD) models that can be used to develop combustion systems for advanced high-efficiency, low-emissions engines. Only recently have experimental methods become available that enable accurate near-wall measurements to enhance simulation capability via advancing models. Initial results show crank-angle dependent discrepancies with respect to previously used boundary-layer models of up to 100%. However, available experimental data is quite sparse (only few data points on engine walls) and limited (available measurements are those of heat flux only). Predictive submodels are needed for medium-resolution ("engineering") LES and for unsteady Reynolds-averaged simulations (URANS). Recently, some research groups have performed DNS studies on engine-relevant conditions using simple geometries. These provide very useful data for benchmarking wall heat transfer models under such conditions. Further, a number of new and more sophisticated models have also become available in the literature which account for these engine-like conditions. Some of these have been incorporated while others of a more complex nature, which include solving additional partial differential equations (PDEs) within the thin boundary layer near the wall, are underway. These models will then be tested against the available DNS/experimental data in both SI (spark-ignition) and CI (compression-ignition) engines.
Predicting self-pollution inside school buses using a CFD and multi-zone coupled model
Li, Fei; Lee, Eon S.; Liu, Junjie; Zhu, Yifang
2015-04-01
The in-cabin environment of a school bus is important for children's health. The pollutants from a bus's own exhaust contribute to children's overall exposure to air pollutants inside the school bus cabin. In this study, we adapted a coupled model originally developed for indoor environment to determine the relative contribution of the bus own exhaust to the in-cabin pollutant concentrations. The coupled model uses CFD (computational fluent dynamics) model to simulate outside concentration and CONTAM (a multi-zone model) for inside the school bus. The model was validated with experimental data in the literature. Using the validated model, we analyzed the effects of vehicle speed and tailpipe location on self-pollution inside the bus cabin. We confirmed that the pollution released from the tailpipe can penetrate into the bus cabin through gaps in the back emergency door. We found the pollution concentration inside school buses was the highest when buses were driven at a medium speed. In addition, locating the tailpipe on the side, behind the rear axle resulted in less self-pollution since there is less time for the suction effect to take place. The developed theoretical framework can be generalized to study other types of buses. These findings can be used in developing policy recommendations for reducing human exposure to air pollution inside buses.
Neverov, V. V.; Kozhukhov, Y. V.; Yablokov, A. M.; Lebedev, A. A.
2017-08-01
Nowadays the optimization using computational fluid dynamics (CFD) plays an important role in the design process of turbomachines. However, for the successful and productive optimization it is necessary to define a simulation model correctly and rationally. The article deals with the choice of a grid and computational domain parameters for optimization of centrifugal compressor impellers using computational fluid dynamics. Searching and applying optimal parameters of the grid model, the computational domain and solver settings allows engineers to carry out a high-accuracy modelling and to use computational capability effectively. The presented research was conducted using Numeca Fine/Turbo package with Spalart-Allmaras and Shear Stress Transport turbulence models. Two radial impellers was investigated: the high-pressure at ψT=0.71 and the low-pressure at ψT=0.43. The following parameters of the computational model were considered: the location of inlet and outlet boundaries, type of mesh topology, size of mesh and mesh parameter y+. Results of the investigation demonstrate that the choice of optimal parameters leads to the significant reduction of the computational time. Optimal parameters in comparison with non-optimal but visually similar parameters can reduce the calculation time up to 4 times. Besides, it is established that some parameters have a major impact on the result of modelling.
International Nuclear Information System (INIS)
Chen Zhao; Chen, Xue-Nong; Rineiski, Andrei; Zhao Pengcheng; Chen Hongli
2014-01-01
Safety analysis is an important tool for justifying the safety of nuclear reactors. The traditional method for nuclear reactor safety analysis is performed by means of system codes, which use one-dimensional lumped-parameter method to model real reactor systems. However, there are many multi-dimensional thermal-hydraulic phenomena cannot be predicated using traditional one-dimensional system codes. This problem is extremely important for pool-type nuclear systems. Computational fluid dynamics (CFD) codes are powerful numerical simulation tools to solve multi-dimensional thermal-hydraulics problems, which are widely used in industrial applications for single phase flows. In order to use general CFD codes to solve nuclear reactor transient problems, some additional models beyond general ones are required. Neutron kinetics model for power calculation and fuel pin model for fuel pin temperature calculation are two important models of these additional models. The motivation of this work is to develop an advance numerical simulation method for nuclear reactor safety analysis by implementing neutron kinetics model and fuel pin model into general CFD codes. In this paper, the Point Kinetics Model (PKM) and Fuel Pin Model (FPM) are implemented into a general CFD code FLUENT. The improved FLUENT was called as FLUENT/PK. The mathematical models and implementary method of FLUENT/PK are descripted and two demonstration application cases, e.g. the unprotected transient overpower (UTOP) accident of a Liquid Metal cooled Fast Reactor (LMFR) and the unprotected beam overpower (UBOP) accident of an Accelerator Driven System (ADS), are presented. (author)
A CFD model for particle dispersion in turbulent boundary layer flows
International Nuclear Information System (INIS)
Dehbi, A.
2008-01-01
In Lagrangian particle dispersion modeling, the assumption that turbulence is isotropic everywhere yields erroneous predictions of particle deposition rates on walls, even in simple geometries. In this investigation, the stochastic particle tracking model in Fluent 6.2 is modified to include a better treatment of particle-turbulence interactions close to walls where anisotropic effects are significant. The fluid rms velocities in the boundary layer are computed using fits of DNS data obtained in channel flow. The new model is tested against correlations for particle removal rates in turbulent pipe flow and 90 o bends. Comparison with experimental data is much better than with the default model. The model is also assessed against data of particle removal in the human mouth-throat geometry where the flow is decidedly three-dimensional. Here, the agreement with the data is reasonable, especially in view of the fact that the DNS fits used are those of channel flows, for lack of better alternatives. The CFD Best Practice Guidelines are followed to a large extent, in particular by using multiple grid resolutions and at least second order discretization schemes
Concept of CFD model of natural draft wet-cooling tower flow
Directory of Open Access Journals (Sweden)
Hyhlík T.
2014-03-01
Full Text Available The article deals with the development of CFD model of natural draft wet-cooling tower flow. The physical phenomena taking place within a natural draft wet cooling tower are described by the system of conservation law equations along with additional equations. The heat and mass transfer in the counterflow wet-cooling tower fill are described by model [1] which is based on the system of ordinary differential equations. Utilization of model [1] of the fill allows us to apply commonly measured fill characteristics as shown by [2].The boundary value problem resulting from the fill model is solved separately. The system of conservation law equations is interlinked with the system of ordinary differential equations describing the phenomena occurring in the counterflow wet-cooling tower fill via heat and mass sources and via boundary conditions. The concept of numerical solution is presented for the quasi one dimensional model of natural draft wet-cooling tower flow. The simulation results are shown.
Integrating CFD and building simulation
DEFF Research Database (Denmark)
Bartak, M.; Beausoleil-Morrison, I.; Clarke, J.A.
2002-01-01
Commission, which furthered the CFD modelling aspects of the ESP-r system. The paper summarises the form of the CFD model, describes the method used to integrate the thermal and 3ow domains and reports the outcome from an empirical validation exercise. © 2002 Published by Elsevier Science Ltd....
Wang, Qun-Zhen
2003-01-01
Four erosive burning models, equations (11) to (14). are developed in this work by using a power law relationship to correlate (1) the erosive burning ratio and the local velocity gradient at propellant surfaces; (2) the erosive burning ratio and the velocity gradient divided by centerline velocity; (3) the erosive burning difference and the local velocity gradient at propellant surfaces; and (4) the erosive burning difference and the velocity gradient divided by centerline velocity. These models depend on the local velocity gradient at the propellant surface (or the velocity gradient divided by centerline velocity) only and, unlike other empirical models, are independent of the motor size. It was argued that, since the erosive burning is a local phenomenon occurring near the surface of the solid propellant, the erosive burning ratio should be independent of the bore diameter if it is correlated with some local flow parameters such as the velocity gradient at the propellant surface. This seems to be true considering the good results obtained by applying these models, which are developed from the small size 5 inch CP tandem motor testing, to CFD simulations of much bigger motors.
International Nuclear Information System (INIS)
Sazhin, S.S.
1995-01-01
Traditional applications of the commercial CFD package FLUENT include modelling of gas and liquid flows, combustion processes, thermal radiation exchange, particle dynamics and related processes of industrial interest. Recently, however, the area of applications of this package has been extended to modelling of new processes such as CO 2 laser discharges and the solution of the Boltzmann equation. Results of this modelling were reported at XXI International Conference on Phenomena in Ionized gases in Bochum and were later published in a number of research papers. The aim of this report is to summarize some further latest developments of the FLUENT package aimed to adjust it to the needs of modelling of plasma processes including those in ionized gases. The simplest way to modify this package is to include Amper force into Navier-Stokes equation and Ohm heating term into the enthalpy equation. In most cases, however, electric currents and electric and magnetic fields used in these equations cannot be assumed to be a priori known as they depend on plasma dynamics (distribution of velocities and pressures) and thermodynamics (distribution of temperatures) which implicitly enter into Maxwell or any equivalent electromagnetic equations. This makes it necessary to include these electromagnetic equations into the general iteration loop used in FLUENT
CFD modelling approaches against single wind turbine wake measurements using RANS
International Nuclear Information System (INIS)
Stergiannis, N; Lacor, C; Beeck, J V; Donnelly, R
2016-01-01
Numerical simulations of two wind turbine generators including the exact geometry of their blades and hub are compared against a simplified actuator disk model (ADM). The wake expansion of the upstream rotor is investigated and compared with measurements. Computational Fluid Dynamics (CFD) simulations have been performed using the open-source platform OpenFOAM [1]. The multiple reference frame (MRF) approach was used to model the inner rotating reference frames in a stationary computational mesh and outer reference frame for the full wind turbine rotor simulations. The standard k — ε and k — ω turbulence closure schemes have been used to solve the steady state, three dimensional Reynolds Averaged Navier- Stokes (RANS) equations. Results of near and far wake regions are compared with wind tunnel measurements along three horizontal lines downstream. The ADM under-predicted the velocity deficit at the wake for both turbulence models. Full wind turbine rotor simulations showed good agreement against the experimental data at the near wake, amplifying the differences between the simplified models. (paper)
Energy Technology Data Exchange (ETDEWEB)
Rogel-Ramirez, A [Universidad Nacional Autonoma de Mexico, Mexico, D.F. (Mexico)]. E-mail: ARogelR@iingen.unam.mx
2008-10-15
This paper contains the description of a bidimensional Computational Fluid Dynamics (CFD), model Developer to simulate the flow and reaction in a stratified downdraft biomass gasifier, whereby Eulerian conservation equations are solved for particle and gas phase components, velocities and specific enthalpies. The model is based on the PHOENICS package and represents a tool which can be used in gasifier analysis and design. Contributions of chemical kinetics and the mixing rate using the EBU approach are considered in the gas phase global homogeneous reactions. The harmonic blending of chemical kinetics and mass transfer effects, determine the global heterogeneous reactions between char and O{sub 2}, CO{sub 2} and H{sub 2}O. The turbulence effect in the gas phase is accounted by the standard {kappa}-{epsilon} approach. The model provides information of the producer gas composition, velocities and temperature at the outlet, and allows different operating parameters and feed properties to be changed. Finally, a comparison with experimental data available in literature was done, which showed satisfactory agreement from a qualitative point of view, though further validation is required. [Spanish] Este estudio describe un modelo numerico bidimensional, basado en Dinamica de Fluidos Computacional (CFD), desarrollado para simular el flujo y las reacciones que ocurren en un gasificador estratificado de flujos paralelos, en el que se resuelven ecuaciones de conservacion Eulerianas para los componentes de la fase gaseosa, la fase solida, velocidades y entalpias especificas. El modelo esta basado en el codigo PHOENICS y representa una herramienta que puede ser utilizada en el analisis y diseno de gasificadores. En las reacciones globales homogeneas se consideran las contribuciones de la cinetica quimica y la rapidez de mezclado, usando el modelo Eddy Brake-UP (EBU). La medida harmonica de la cinetica quimica y la transferencia de masa, determinan las velocidades globales de
Directory of Open Access Journals (Sweden)
Mimoun Maurice
2011-03-01
Full Text Available Abstract Background Controlling airborne contamination is of major importance in burn units because of the high susceptibility of burned patients to infections and the unique environmental conditions that can accentuate the infection risk. In particular the required elevated temperatures in the patient room can create thermal convection flows which can transport airborne contaminates throughout the unit. In order to estimate this risk and optimize the design of an intensive care room intended to host severely burned patients, we have relied on a computational fluid dynamic methodology (CFD. Methods The study was carried out in 4 steps: i patient room design, ii CFD simulations of patient room design to model air flows throughout the patient room, adjacent anterooms and the corridor, iii construction of a prototype room and subsequent experimental studies to characterize its performance iv qualitative comparison of the tendencies between CFD prediction and experimental results. The Electricité De France (EDF open-source software Code_Saturne® (http://www.code-saturne.org was used and CFD simulations were conducted with an hexahedral mesh containing about 300 000 computational cells. The computational domain included the treatment room and two anterooms including equipment, staff and patient. Experiments with inert aerosol particles followed by time-resolved particle counting were conducted in the prototype room for comparison with the CFD observations. Results We found that thermal convection can create contaminated zones near the ceiling of the room, which can subsequently lead to contaminate transfer in adjacent rooms. Experimental confirmation of these phenomena agreed well with CFD predictions and showed that particles greater than one micron (i.e. bacterial or fungal spore sizes can be influenced by these thermally induced flows. When the temperature difference between rooms was 7°C, a significant contamination transfer was observed to
Code Validation of CFD Heat Transfer Models for Liquid Rocket Engine Combustion Devices
National Research Council Canada - National Science Library
Coy, E. B
2007-01-01
.... The design of the rig and its capabilities are described. A second objective of the test rig is to provide CFD validation data under conditions relevant to liquid rocket engine thrust chambers...
Numerical estimation of wall friction ratio near the pseudo-critical point with CFD-models
International Nuclear Information System (INIS)
Angelucci, M.; Ambrosini, W.; Forgione, N.
2013-01-01
In this paper, the STAR-CCM+ CFD code is used in the attempt to reproduce the values of friction factor observed in experimental data at supercritical pressures at various operating conditions. A short survey of available data and correlations for smooth pipe friction in circular pipes puts the basis for the discussion, reporting observed trends of friction factor in the liquid-like and the gas-like regions and within the transitional region across the pseudo-critical temperature. For smooth pipes, a general decrease of the friction factor in the transitional region is reported, constituting one of the relevant effects to be predicted by the computational fluid-dynamic models. A limited number of low-Reynolds number models are adopted, making use of refined near-wall discretisation as required by the constraint y + < 1 at the wall. In particular, the Lien k–ε and the SST k–ω models are considered. The values of the wall shear stress calculated by the code are then post-processed on the basis of bulk fluid properties to obtain the Fanning and then the Darcy–Weisbach friction factors, based on their classical definitions. The obtained values are compared with those provided by experimental tests and correlations, finding a reasonable qualitative agreement. Expectedly, the agreement is better in the gas-like and liquid-like regions, where fluid property changes are moderate, than in the transitional region, where the trends provided by available correlations are reproduced only in a qualitative way
Thermohydraulic modeling of very high temperature reactors in regimes with loss of coolant using CFD
Energy Technology Data Exchange (ETDEWEB)
Moreira, Uebert G.; Dominguez, Dany S. [Universidade Estadual de Santa Cruz (UESC), Ilh´eus, BA (Brazil). Programa de P´os-Graduacao em Modelagem Computacional em Ciencia e Tecnologia; Mazaira, Leorlen Y.R.; Lira, Carlos A.B.O. [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Departamento de Energia Nuclear; Hernandez, Carlos R.G., E-mail: uebert.gmoreira@gmail.com, E-mail: dsdominguez@gmail.com, E-mail: leored1984@gmail.com, E-mail: cabol@ufpe.br, E-mail: cgh@instec.cu [Instituto Superior de Tecnologas y Ciencias Aplicadas (InSTEC), La Habana (Cuba)
2017-07-01
The nuclear energy is a good alternative to meet the continuous increase in world energy demand. In this perspective, VHTRs (Very High Temperature Reactors) are serious candidates for energy generation due to its inherently safe performance, low power density and high conversion efficiency. However, the viability of these reactors depends on an efficient safety system in the operation of nuclear plants. The HTR (High Temperature Reactor)-10 model, an experimental reactor of the pebble bed type, is used as a case study in this work to perform the thermohydraulic simulation. Due to the complex patterns flow that appear in the pebble bed reactor core, and advances in computational capacity, CFD (Computational Fluid Dynamics) techniques are used to simulate these reactors. A realistic approach is adopted to simulate the central annular column of the reactor core, which each pebble bed element is modeled in detail. As geometrical model of the fuel elements was selected the BCC (Body Centered Cubic) arrangement. Previous works indicate this arrangement as the configuration that obtain higher fuel temperatures inside the core. Parameters considered for reactor design are available in the technical report of benchmark issues by IAEA (TECDOC-1694). Among the results obtained, we obtained the temperature profiles with different mass flow rates for the coolant. In general, the temperature distributions calculated are consistent with phenomenological behaviour. Even without consider the reactivity changes to reduce the reactor power or other safety procedures, the maximum temperatures do not exceed the recommended limits for fuel elements. (author)
CFD-Modeling of the Multistage Gasifier Capacity of 30 KW
Levin, A. A.; Kozlov, A. N.; Svishchev, D. A.; Donskoy, I. G.
2017-11-01
Single-stage fuel gasification processes have been developed and widely studied in Russia and abroad throughout the 20th century. They are fundamental to the creation and design of modern gas generator equipment. Many studies have shown that single-stage gasification process, have already reached the limit of perfection, which was a significant improvement in their performance becomes impossible and unprofitable. The most fully meet modern technical requirements of multistage gasification technology. In the first step of the process, is organized allothermic biomass pyrolysis using heat of exhaust gas and generating power plant. At this stage, the yield of volatile products (gas and tar) of fuel. In the second step, the layer of fuel is, the tar is decomposed by the action of hot air and steam, steam-gas mixture is formed further reacts with the charcoal in the third process stage. The paper presents a model developed by the authors of the multi-stage gasifier for wood chips. The model is made with the use of CFD-modeling software package (COMSOL Multiphisics). To describe the kinetics of wood pyrolysis and gasification of charcoal studies were carried out using a set of simultaneous thermal analysis. For this complex developed original methods of interpretation of measurements, including methods of technical analysis of fuels and determine the parameters of the detailed kinetics and mechanism of pyrolysis.
Thermohydraulic modeling of very high temperature reactors in regimes with loss of coolant using CFD
International Nuclear Information System (INIS)
Moreira, Uebert G.; Dominguez, Dany S.
2017-01-01
The nuclear energy is a good alternative to meet the continuous increase in world energy demand. In this perspective, VHTRs (Very High Temperature Reactors) are serious candidates for energy generation due to its inherently safe performance, low power density and high conversion efficiency. However, the viability of these reactors depends on an efficient safety system in the operation of nuclear plants. The HTR (High Temperature Reactor)-10 model, an experimental reactor of the pebble bed type, is used as a case study in this work to perform the thermohydraulic simulation. Due to the complex patterns flow that appear in the pebble bed reactor core, and advances in computational capacity, CFD (Computational Fluid Dynamics) techniques are used to simulate these reactors. A realistic approach is adopted to simulate the central annular column of the reactor core, which each pebble bed element is modeled in detail. As geometrical model of the fuel elements was selected the BCC (Body Centered Cubic) arrangement. Previous works indicate this arrangement as the configuration that obtain higher fuel temperatures inside the core. Parameters considered for reactor design are available in the technical report of benchmark issues by IAEA (TECDOC-1694). Among the results obtained, we obtained the temperature profiles with different mass flow rates for the coolant. In general, the temperature distributions calculated are consistent with phenomenological behaviour. Even without consider the reactivity changes to reduce the reactor power or other safety procedures, the maximum temperatures do not exceed the recommended limits for fuel elements. (author)
3-D CFD modeling and experimental testing of thermal behavior of a Li-Ion battery
International Nuclear Information System (INIS)
Gümüşsu, Emre; Ekici, Özgür; Köksal, Murat
2017-01-01
Highlights: • A thermally fully predictive 3-D CFD model is developed for Li-Ion batteries. • Complete flow field around the battery and conduction inside the battery are solved. • Macro-scale thermophysical properties and the entropic term are investigated. • Discharge rate and usage history of the battery are systematically investigated. • Reliability of the model was tested through experimental measurements. - Abstract: In this study, a 3-D computational fluid dynamics model was developed for investigating the thermal behavior of lithium ion batteries under natural convection. The model solves the complete flow field around the battery as well as conduction inside the battery using the well-known heat generation model of Bernardi et al. (1985). The model is thermally fully predictive so it requires only electrical performance parameters of the battery to calculate its temperature during discharging. Using the model, detailed investigation of the effects of the variation of the macro-scale thermophysical properties and the entropic term of the heat generation model was carried out. Results show that specific heat is a critical property that has a significant impact on the simulation results whereas thermal conductivity has relatively minor importance. Moreover, the experimental data can be successfully predicted without taking the entropic term into account in the calculation of the heat generation. The difference between the experimental and predicted battery surface temperature was less than 3 °C for all discharge rates and regardless of the usage history of the battery. The developed model has the potential to be used for the investigation of the thermal behavior of Li-Ion batteries in different packaging configurations under natural and forced convection.
San Jose, R.; Perez, J. L.; Gonzalez, R. M.
2009-12-01
Urban metabolism modeling has advanced substantially during the last years due to the increased detail in mesoscale urban parameterization in meteorological mesoscale models and CFD numerical tools. Recently the implementation of the “urban canopy model” (UCM) into the WRF mesoscale meteorological model has produced a substantial advance on the understanding of the urban atmospheric heat flux exchanges in the urban canopy. The need to optimize the use of heat energy in urban environment has produced a substantial increase in the detailed investigation of the urban heat flux exchanges. In this contribution we will show the performance of using a tool called MICROSYS (MICRO scale CFD modelling SYStem) which is an adaptation of the classical urban canopy model but on a high resolution environment by using a classical CFD approach. The energy balance in the urban system can be determined in a micrometeorologicl sense by considering the energy flows in and out of a control volume. For such a control volume reaching from ground to a certain height above buildings, the energy balance equation includes the net radiation, the anthropogenic heat flux, the turbulent sensible heat flux, the turbulent latent heat flux, the net storage change within the control volume, the net advected flux and other sources and sinks. We have applied the MICROSYS model to an area of 5 km x 5 km with 200 m spatial resolution by using the WRF-UCM (adapted and the MICROSYS CFD model. The anthropogenic heat flux has been estimated by using the Flanner M.G. (2009) database and detailed GIS information (50 m resolution) of Madrid city. The Storage energy has been estimated by calculating the energy balance according to the UCM procedure and implementing it into the MICROSYS tool. Results show that MICROSYS can be used as an energy efficient tool to estimate the energy balance of different urban areas and buildings.
Energy Technology Data Exchange (ETDEWEB)
Ceuca, Christian Sabin; Macian-Juan, Rafael [Technische Univ. Muenchen (Germany). Lehrstuhl fuer Nukleartechnik
2013-03-15
A Hybrid Heat Transfer Coefficient module has been developed based on two Surface Renewal Theory models using CFD simulations. The validation of the model has been done on a meso-scale computational grid for CFD simulations and on a macro-scale computational grid for System Code analysis. The CFD simulation was performed for a stratified co-current two phase flow between saturated steam and sub-cooled water while the System Code analysis was performed for a Condensation Induced Water Hammer experiment. (orig.)
CFD Modeling of Chamber Filling in a Micro-Biosensor for Protein Detection.
Islamov, Meiirbek; Sypabekova, Marzhan; Kanayeva, Damira; Rojas-Solórzano, Luis
2017-10-03
Tuberculosis (TB) remains one of the main causes of human death around the globe. The mortality rate for patients infected with active TB goes beyond 50% when not diagnosed. Rapid and accurate diagnostics coupled with further prompt treatment of the disease is the cornerstone for controlling TB outbreaks. To reduce this burden, the existing gap between detection and treatment must be addressed, and dedicated diagnostic tools such as biosensors should be developed. A biosensor is a sensing micro-device that consists of a biological sensing element and a transducer part to produce signals in proportion to quantitative information about the binding event. The micro-biosensor cell considered in this investigation is designed to operate based on aptamers as recognition elements against Mycobacterium tuberculosis secreted protein MPT64, combined in a microfluidic-chamber with inlet and outlet connections. The microfluidic cell is a miniaturized platform with valuable advantages such as low cost of analysis with low reagent consumption, reduced sample volume, and shortened processing time with enhanced analytical capability. The main purpose of this study is to assess the flooding characteristics of the encapsulated microfluidic cell of an existing micro-biosensor using Computational Fluid Dynamics (CFD) techniques. The main challenge in the design of the microfluidic cell lies in the extraction of entrained air bubbles, which may remain after the filling process is completed, dramatically affecting the performance of the sensing element. In this work, a CFD model was developed on the platform ANSYS-CFX using the finite volume method to discretize the domain and solving the Navier-Stokes equations for both air and water in a Eulerian framework. Second-order space discretization scheme and second-order Euler Backward time discretization were used in the numerical treatment of the equations. For a given inlet-outlet diameter and dimensions of an in-house built cell chamber
Modeling and simulation of PEM fuel cell's flow channels using CFD techniques
International Nuclear Information System (INIS)
Cunha, Edgar F.; Andrade, Alexandre B.; Robalinho, Eric; Bejarano, Martha L.M.; Linardi, Marcelo; Cekinski, Efraim
2007-01-01
Fuel cells are one of the most important devices to obtain electrical energy from hydrogen. The Proton Exchange Membrane Fuel Cell (PEMFC) consists of two important parts: the Membrane Electrode Assembly (MEA), where the reactions occur, and the flow field plates. The plates have many functions in a fuel cell: distribute reactant gases (hydrogen and air or oxygen), conduct electrical current, remove heat and water from the electrodes and make the cell robust. The cost of the bipolar plates corresponds up to 45% of the total stack costs. The Computational Fluid Dynamic (CFD) is a very useful tool to simulate hydrogen and oxygen gases flow channels, to reduce the costs of bipolar plates production and to optimize mass transport. Two types of flow channels were studied. The first type was a commercial plate by ELECTROCELL and the other was entirely projected at Programa de Celula a Combustivel (IPEN/CNEN-SP) and the experimental data were compared with modelling results. Optimum values for each set of variables were obtained and the models verification was carried out in order to show the feasibility of this technique to improve fuel cell efficiency. (author)
CFD analysis of municipal solid waste combustion using detailed chemical kinetic modelling.
Frank, Alex; Castaldi, Marco J
2014-08-01
Nitrogen oxides (NO x ) emissions from the combustion of municipal solid waste (MSW) in waste-to-energy (WtE) facilities are receiving renewed attention to reduce their output further. While NO x emissions are currently 60% below allowed limits, further reductions will decrease the air pollution control (APC) system burden and reduce consumption of NH3. This work combines the incorporation of the GRI 3.0 mechanism as a detailed chemical kinetic model (DCKM) into a custom three-dimensional (3D) computational fluid dynamics (CFD) model fully to understand the NO x chemistry in the above-bed burnout zones. Specifically, thermal, prompt and fuel NO formation mechanisms were evaluated for the system and a parametric study was utilized to determine the effect of varying fuel nitrogen conversion intermediates between HCN, NH3 and NO directly. Simulation results indicate that the fuel nitrogen mechanism accounts for 92% of the total NO produced in the system with thermal and prompt mechanisms accounting for the remaining 8%. Results also show a 5% variation in final NO concentration between HCN and NH3 inlet conditions, demonstrating that the fuel nitrogen intermediate assumed is not significant. Furthermore, the conversion ratio of fuel nitrogen to NO was 0.33, revealing that the majority of fuel nitrogen forms N2. © The Author(s) 2014.
CFD investigation of pentamaran ship model with chine hull form on the resistance characteristics
Yanuar; Sulistyawati, W.
2018-03-01
This paper presents an investigation of pentamaran hull form with chine hull form to the effects of outriggers position, asymmetry, and deadrise angles on the resistance characteristics. The investigation to the resistance characteristics by modelling pentamaran hull form using chine with symmetrical main hull and asymmetric outboard on the variation deadrise angles: 25°, 30°, 35° and Froude number 0,1 to 0,7. On calm water resistance characteristics of six pentamaran models with chine-hull form examined by variation of deadrise angles by using CFD. Comparation with Wigley hull form, the maximum resistance drag reduction of the chine hull form was reduced by 15.81% on deadrise 25°, 13.8% on deadrise 30°, and 20.38% on deadrise 35°. While the smallest value of total resistance coefficient was generated from chine 35° at R/L:1/14 and R/L:1/7. Optimum hull form for minimum resistance has been obtained, so it is interesting to continue with angle of entrance and stem angle of hull for further research.
Modeling and simulation of PEM fuel cell's flow channels using CFD techniques
Energy Technology Data Exchange (ETDEWEB)
Cunha, Edgar F.; Andrade, Alexandre B.; Robalinho, Eric; Bejarano, Martha L.M.; Linardi, Marcelo [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)]. E-mails: efcunha@ipen.br; abodart@ipen.br; eric@ipen.br; mmora@ipen.br; mlinardi@ipen.br; Cekinski, Efraim [Instituto de Pesquisas Tecnologicas (IPT-SP), Sao Paulo, SP (Brazil)]. E-mail: cekinski@ipt.br
2007-07-01
Fuel cells are one of the most important devices to obtain electrical energy from hydrogen. The Proton Exchange Membrane Fuel Cell (PEMFC) consists of two important parts: the Membrane Electrode Assembly (MEA), where the reactions occur, and the flow field plates. The plates have many functions in a fuel cell: distribute reactant gases (hydrogen and air or oxygen), conduct electrical current, remove heat and water from the electrodes and make the cell robust. The cost of the bipolar plates corresponds up to 45% of the total stack costs. The Computational Fluid Dynamic (CFD) is a very useful tool to simulate hydrogen and oxygen gases flow channels, to reduce the costs of bipolar plates production and to optimize mass transport. Two types of flow channels were studied. The first type was a commercial plate by ELECTROCELL and the other was entirely projected at Programa de Celula a Combustivel (IPEN/CNEN-SP) and the experimental data were compared with modelling results. Optimum values for each set of variables were obtained and the models verification was carried out in order to show the feasibility of this technique to improve fuel cell efficiency. (author)
CFD Recombiner Modelling and Validation on the H2-Par and Kali-H2 Experiments
International Nuclear Information System (INIS)
Mimouni, S.; Mechitoua, N.; Ouraou, M.
2011-01-01
A large amount of Hydrogen gas is expected to be released within the dry containment of a pressurized water reactor (PWR), shortly after the hypothetical beginning of a severe accident leading to the melting of the core. According to local gas concentrations, the gaseous mixture of hydrogen, air and steam can reach the flammability limit, threatening the containment integrity. In order to prevent mechanical loads resulting from a possible conflagration of the gas mixture, French and German reactor containments are equipped with passive autocatalytic recombiners (PARs) which preventively oxidize hydrogen for concentrations lower than that of the flammability limit. The objective of the paper is to present numerical assessments of the recombiner models implemented in CFD solvers NEPTUNE C FD and Code S aturne. Under the EDF/EPRI agreement, CEA has been committed to perform 42 tests of PARs. The experimental program named KALI-H 2 , consists checking the performance and behaviour of PAR. Unrealistic values for the gas temperature are calculated if the conjugate heat transfer and the wall steam condensation are not taken into account. The combined effects of these models give a good agreement between computational results and experimental data
CFD for hypersonic airbreathing aircraft
Kumar, Ajay
1989-01-01
A general discussion is given on the use of advanced computational fluid dynamics (CFD) in analyzing the hypersonic flow field around an airbreathing aircraft. Unique features of the hypersonic flow physics are presented and an assessment is given of the current algorithms in terms of their capability to model hypersonic flows. Several examples of advanced CFD applications are then presented.
Sanchez, Beatriz; Santiago, Jose Luis; Martilli, Alberto; Martin, Fernando; Borge, Rafael; Quaassdorff, Christina; de la Paz, David
2017-08-01
Air quality management requires more detailed studies about air pollution at urban and local scale over long periods of time. This work focuses on obtaining the spatial distribution of NOx concentration averaged over several days in a heavily trafficked urban area in Madrid (Spain) using a computational fluid dynamics (CFD) model. A methodology based on weighted average of CFD simulations is applied computing the time evolution of NOx dispersion as a sequence of steady-state scenarios taking into account the actual atmospheric conditions. The inputs of emissions are estimated from the traffic emission model and the meteorological information used is derived from a mesoscale model. Finally, the computed concentration map correlates well with 72 passive samplers deployed in the research area. This work reveals the potential of using urban mesoscale simulations together with detailed traffic emissions so as to provide accurate maps of pollutant concentration at microscale using CFD simulations.
Development of a flocculation sub-model for a 3-D CFD model based on rectangular settling tanks.
Gong, M; Xanthos, S; Ramalingam, K; Fillos, J; Beckmann, K; Deur, A; McCorquodale, J A
2011-01-01
To assess performance and evaluate alternatives to improve the efficiency of rectangular Gould II type final settling tanks (FSTs), New York City Department of Environmental Protection and City College of NY developed a 3D computer model depicting the actual structural configuration of the tanks and the current and proposed hydraulic and solids loading rates. Fluent 6.3.26™ was the base platform for the computational fluid dynamics (CFD) model, for which sub-models of the SS settling characteristics, turbulence, flocculation and rheology were incorporated. This was supplemented by field and bench scale experiments to quantify the coefficients integral to the sub-models. The 3D model developed can be used to consider different baffle arrangements, sludge withdrawal mechanisms and loading alternatives to the FSTs. Flocculation in the front half of the rectangular tank especially in the region before and after the inlet baffle is one of the vital parameters that influences the capture efficiency of SS. Flocculation could be further improved by capturing medium and small size particles by creating an additional zone with an in-tank baffle. This was one of the methods that was adopted in optimizing the performance of the tank where the CCNY 3D CFD model was used to locate the in-tank baffle position. This paper describes the development of the flocculation sub-model and the relationship of the flocculation coefficients in the known Parker equation to the initial mixed liquor suspended solids (MLSS) concentration X0. A new modified equation is proposed removing the dependency of the breakup coefficient to the initial value of X0 based on preliminary data using normal and low concentration mixed liquor suspended solids values in flocculation experiments performed.
A study on the dependency between turbulent models and mesh configurations of CFD codes
International Nuclear Information System (INIS)
Bang, Jungjin; Heo, Yujin; Jerng, Dong-Wook
2015-01-01
This paper focuses on the analysis of the behavior of hydrogen mixing and hydrogen stratification, using the GOTHIC code and the CFD code. Specifically, we examined the mesh sensitivity and how the turbulence model affects hydrogen stratification or hydrogen mixing, depending on the mesh configuration. In this work, sensitivity analyses for the meshes and the turbulence models were conducted for missing and stratification phenomena. During severe accidents in a nuclear power plants, the generation of hydrogen may occur and this will complicate the atmospheric condition of the containment by causing stratification of air, steam, and hydrogen. This could significantly impact containment integrity analyses, as hydrogen could be accumulated in local region. From this need arises the importance of research about stratification of gases in the containment. Two computation fluid dynamics code, i.e. GOTHIC and STAR-CCM+ were adopted and the computational results were benchmarked against the experimental data from PANDA facility. The main findings observed through the present work can be summarized as follows: 1) In the case of the GOTHIC code, it was observed that the aspect ratio of the mesh was found more important than the mesh size. Also, if the number of the mesh is over 3,000, the effects of the turbulence models were marginal. 2) For STAR-CCM+, the tendency is quite different from the GOTHIC code. That is, the effects of the turbulence models were small for fewer number of the mesh, however, as the number of mesh increases, the effects of the turbulence models becomes significant. Another observation is that away from the injection orifice, the role of the turbulence models tended to be important due to the nature of mixing process and inducted jet stream
A study on the dependency between turbulent models and mesh configurations of CFD codes
Energy Technology Data Exchange (ETDEWEB)
Bang, Jungjin; Heo, Yujin; Jerng, Dong-Wook [CAU, Seoul (Korea, Republic of)
2015-10-15
This paper focuses on the analysis of the behavior of hydrogen mixing and hydrogen stratification, using the GOTHIC code and the CFD code. Specifically, we examined the mesh sensitivity and how the turbulence model affects hydrogen stratification or hydrogen mixing, depending on the mesh configuration. In this work, sensitivity analyses for the meshes and the turbulence models were conducted for missing and stratification phenomena. During severe accidents in a nuclear power plants, the generation of hydrogen may occur and this will complicate the atmospheric condition of the containment by causing stratification of air, steam, and hydrogen. This could significantly impact containment integrity analyses, as hydrogen could be accumulated in local region. From this need arises the importance of research about stratification of gases in the containment. Two computation fluid dynamics code, i.e. GOTHIC and STAR-CCM+ were adopted and the computational results were benchmarked against the experimental data from PANDA facility. The main findings observed through the present work can be summarized as follows: 1) In the case of the GOTHIC code, it was observed that the aspect ratio of the mesh was found more important than the mesh size. Also, if the number of the mesh is over 3,000, the effects of the turbulence models were marginal. 2) For STAR-CCM+, the tendency is quite different from the GOTHIC code. That is, the effects of the turbulence models were small for fewer number of the mesh, however, as the number of mesh increases, the effects of the turbulence models becomes significant. Another observation is that away from the injection orifice, the role of the turbulence models tended to be important due to the nature of mixing process and inducted jet stream.
International Nuclear Information System (INIS)
Haber, I E; Farkas, I
2011-01-01
The exterior factors which influencing the working circumstances of photovoltaic modules are the irradiation, the optical air layer (Air Mass - AM), the irradiation angle, the environmental temperature and the cooling effect of the wind. The efficiency of photovoltaic (PV) devices is inversely proportional to the cell temperature and therefore the mounting of the PV modules can have a big affect on the cooling, due to wind flow-around and naturally convection. The construction of the modules could be described by a heatflow-network model, and that can define the equation which determines the cells temperature. An equation like this can be solved as a block oriented model with hybrid-analogue simulator such as Matlab-Simulink. In view of the flow field and the heat transfer, witch was calculated numerically, the heat transfer coefficients can be determined. Five inflow rates were set up for both pitched and flat roof cases, to let the trend of the heat transfer coefficient know, while these functions can be used for the Matlab/Simulink model. To model the free convection flows, the Boussinesq-approximation were used, integrated into the Navier-Stokes equations and the energy equation. It has been found that under a constant solar heat gain, the air velocity around the modules and behind the pitched-roof mounted module is increasing, proportionately to the wind velocities, and as result the heat transfer coefficient increases linearly, and can be described by a function in both cases. To the block based model the meteorological parameters and the results of the CFD simulations as single functions were attached. The final aim was to make a model that could be used for planning photovoltaic systems, and define their accurate performance for better sizing of an array of modules.
A three field two fluid CFD model for the bubbly-cap bubble regime
International Nuclear Information System (INIS)
Martin Lopez de Bertodano; Xiaodong Sun; Mamoru Ishii; Asim Ulke
2005-01-01
Full text of publication follows: The lateral phase distribution of a two phase duct flow in the cap bubble regime is analyzed with a three dimensional three field two-fluid CFD model based on the turbulent k-ε model for bubbly flows developed by Lopez de Bertodano et. al. [2]. The turbulent diffusion of the bubbles is the dominant phase distribution mechanism. A new analytic result is presented to support the development of the model for the bubble induced turbulent diffusion force. New experimental data obtained with a state-of-the-art four sensor miniature conductivity probe are used to validate the two-fluid model. The focus of this work is modeling the transport of the dispersed phase. Previous work (e.g., Lopez de Bertodano et. al.) was focused on the interfacial forces of drag, lift and virtual mass. However, the dispersion of the bubbles by the turbulent eddies of the continuous phase must be considered too. The rigorous formulation of a model for the turbulent dispersion of the bubbles results in a turbulent diffusion force which is obtained from a probability distribution function average (i.e., Boltzmann averaging) of the dispersed phase momentum equation. This force was recently applied to a turbulent bubbly jet with small bubbles (i.e., 1 mm diameter) without adjusting any coefficient. However, the application of this force to industrial conditions (i.e., larger bubbles) requires specific two-phase flow experimental data to calibrate the model due to the uncertainties of the flow around large bubbles. In particular the void distribution and the interfacial area concentration are measured in a mixture of big and small bubbles. The state-of-the-art miniaturized four-sensor conductivity probe developed by Kim et al. [3] is used to obtain the interfacial area concentration in complex two-phase flow situations. This probe can discriminate between small and large bubbles so it offers an opportunity to perform further developments of the multidimensional two
CFD Modeling of Fuel Injection and Combustion in an HDDI Engine
Energy Technology Data Exchange (ETDEWEB)
Rijk, E.
2009-07-01
In this study, the Star-CD CFD package is first used to model spray formation in a constant volume chamber and in a cycle of a heavy duty direct injection (HDDI) engine. Secondly, combustion is modeled using a standard Star-CD combustion model and a user-defined tabulated chemistry method (FGM). In modern diesel engines, fuel is injected into the combustion chamber by an injector, at a high pressure. As the fuel flows through this nozzle, phenomena like cavitation can occur influencing the injection velocity. When the liquid fuel jet exits the nozzle, it breaks up into droplets, which is called primary break-up. Due to the velocity difference between the in-cylinder air and these droplets, they break-up even further, called secondary break-up. The high temperature in the combustion chamber make the droplets evaporate until a point is reached where no liquid fuel is present anymore (liquid length). Hereafter, the evaporated fuel penetrates further (fuel penetration) and at some point in time, the spray auto-ignites. In Star-CD, different sub-models are present to simulate nozzle flow, primary and secondary break-up in a Eulerian-Lagrangian framework. The best performing sub-models are determined by comparing measured liquid length and fuel penetration with calculated values. To be able to do this objectively, a virtual Mie scattering method is developed and applied, together with a previously designed virtual Schlieren method. Using this optimal combination of sub-models, a sensitivity study is performed as previous research revealed that CFD calculations can be highly mesh and timestep dependent. When the optimal settings are known, the Star-CD spray results are validated with experimental data containing a wide range of nozzle diameters, ambient conditions, injection pressures and fuel types. Next to Star-CD, non-Lagrangian models are used to calculate liquid length and spray penetration. It appears that the accuracies of Star-CD and the non-Lagrangian model of
CFD Analyses for Water-Air Flow With the Euler-Euler Two-Phase Model in the Fluent4 CFD Code
International Nuclear Information System (INIS)
Miettinen, Jaakko; Schmidt, Holger
2002-01-01
calculation results were adjusted for a good agreement with the experimental data. The analysis results were very valuable for designing the final water/steam facility for final CHF tests. The validation against data from the air-water experiments proved that the present CFD codes approach to the state where they can be used for simulating such two-phase experiments, where the fraction of both phases is essential and the flow is strongly affected by the density differences. It is still too early to predict, if the CFD calculation of the 1:1 scale critical heat flux experiments is successful, could the result be used for formulating a new type of a critical heat flux correlation, where the effects of CRD's on the flow patterns and gap dimensions are model parameters. (authors)
Simulation of hydrogen mitigation in catalytic recombiner. Part-II: Formulation of a CFD model
International Nuclear Information System (INIS)
Prabhudharwadkar, Deoras M.; Iyer, Kannan N.
2011-01-01
Research highlights: → Hydrogen transport in containment with recombiners is a multi-scale problem. → A novel methodology worked out to lump the recombiner characteristics. → Results obtained using commercial code FLUENT are cast in the form of correlations. → Hence, coarse grids can obtain accurate distribution of H 2 in containment. → Satisfactory working of the methodology is clearly demonstrated. - Abstract: This paper aims at formulation of a model compatible with CFD code to simulate hydrogen distribution and mitigation using a Passive Catalytic Recombiner in the Nuclear power plant containments. The catalytic recombiner is much smaller in size compared to the containment compartments. In order to fully resolve the recombination processes during the containment simulations, it requires the geometric details of the recombiner to be modelled and a very fine mesh size inside the recombiner channels. This component when integrated with containment mixing calculations would result in a large number of mesh elements which may take large computational times to solve the problem. This paper describes a method to resolve this simulation difficulty. In this exercise, the catalytic recombiner alone was first modelled in detail using the best suited option to describe the reaction rate. A detailed parametric study was conducted, from which correlations for the heat of reaction (hence the rate of reaction) and the heat transfer coefficient were obtained. These correlations were then used to model the recombiner channels as single computational cells providing necessary volumetric sources/sinks to the energy and species transport equations. This avoids full resolution of these channels, thereby allowing larger mesh size in the recombiners. The above mentioned method was successfully validated using both steady state and transient test problems and the results indicate very satisfactory modelling of the component.
Hadade, Ioan; di Mare, Luca
2016-08-01
Modern multicore and manycore processors exhibit multiple levels of parallelism through a wide range of architectural features such as SIMD for data parallel execution or threads for core parallelism. The exploitation of multi-level parallelism is therefore crucial for achieving superior performance on current and future processors. This paper presents the performance tuning of a multiblock CFD solver on Intel SandyBridge and Haswell multicore CPUs and the Intel Xeon Phi Knights Corner coprocessor. Code optimisations have been applied on two computational kernels exhibiting different computational patterns: the update of flow variables and the evaluation of the Roe numerical fluxes. We discuss at great length the code transformations required for achieving efficient SIMD computations for both kernels across the selected devices including SIMD shuffles and transpositions for flux stencil computations and global memory transformations. Core parallelism is expressed through threading based on a number of domain decomposition techniques together with optimisations pertaining to alleviating NUMA effects found in multi-socket compute nodes. Results are correlated with the Roofline performance model in order to assert their efficiency for each distinct architecture. We report significant speedups for single thread execution across both kernels: 2-5X on the multicore CPUs and 14-23X on the Xeon Phi coprocessor. Computations at full node and chip concurrency deliver a factor of three speedup on the multicore processors and up to 24X on the Xeon Phi manycore coprocessor.
CFD Modeling of Sodium-Oxide Deposition in Sodium-Cooled Fast Reactor Compact Heat Exchangers
Energy Technology Data Exchange (ETDEWEB)
Tatli, Emre; Ferroni, Paolo; Mazzoccoli, Jason
2015-09-02
The possible use of compact heat exchangers (HXs) in sodium-cooled fast reactors (SFR) employing a Brayton cycle is promising due to their high power density and resulting small volume in comparison with conventional shell-and-tube HXs. However, the small diameter of their channels makes them more susceptible to plugging due to Na2O deposition during accident conditions. Although cold traps are designed to reduce oxygen impurity levels in the sodium coolant, their failure, in conjunction with accidental air ingress into the sodium boundary, could result in coolant oxygen levels that are above the saturation limit in the cooler parts of the HX channels. This can result in Na2O crystallization and the formation of solid deposits on cooled channel surfaces, limiting or even blocking coolant flow. The development of analysis tools capable of modeling the formation of these deposits in the presence of sodium flow will allow designers of SFRs to properly size the HX channels so that, in the scenario mentioned above, the reactor operator has sufficient time to detect and react to the affected HX. Until now, analytical methodologies to predict the formation of these deposits have been developed, but never implemented in a high-fidelity computational tool suited to modern reactor design techniques. This paper summarizes the challenges and the current status in the development of a Computational Fluid Dynamics (CFD) methodology to predict deposit formation, with particular emphasis on sensitivity studies on some parameters affecting deposition.
Directory of Open Access Journals (Sweden)
Carlos Morón
2018-03-01
Full Text Available Energy consumption in the building sector has increased significantly in the developed countries over the last decades. For this reason, the new European standards have become stricter in terms of energy saving. This paper establishes a comparison between using infrared thermography for technical building inspection and modelling with Computational Flow Dynamics (CFD tools for the study of thermal performance of the building. The results show that the use of this type of tools gives a reliable response with the difference in thermal changes lower than 0.5 °C with respect to the data taken in situ. Moreover, these simulators of flow dynamics allow to evaluate the efficiency of proposed measures for energy savings and to obtain a reliable approximation to thermal comfort applying the improvement, deepening in the surface analysis of infrared thermography before performing rehabilitation project. In this research, Predicted Mean Vote Index (PMV comfort index of 0.7 for a living room and 0.6 for a bedroom were obtained, that corresponds to C class that includes values in the range of −0.7 < PMV < 0.7 according to the standard UNE-EN 7730.
Portable implementation model for CFD simulations. Application to hybrid CPU/GPU supercomputers
Oyarzun, Guillermo; Borrell, Ricard; Gorobets, Andrey; Oliva, Assensi
2017-10-01
Nowadays, high performance computing (HPC) systems experience a disruptive moment with a variety of novel architectures and frameworks, without any clarity of which one is going to prevail. In this context, the portability of codes across different architectures is of major importance. This paper presents a portable implementation model based on an algebraic operational approach for direct numerical simulation (DNS) and large eddy simulation (LES) of incompressible turbulent flows using unstructured hybrid meshes. The strategy proposed consists in representing the whole time-integration algorithm using only three basic algebraic operations: sparse matrix-vector product, a linear combination of vectors and dot product. The main idea is based on decomposing the nonlinear operators into a concatenation of two SpMV operations. This provides high modularity and portability. An exhaustive analysis of the proposed implementation for hybrid CPU/GPU supercomputers has been conducted with tests using up to 128 GPUs. The main objective consists in understanding the challenges of implementing CFD codes on new architectures.
A coupled CFD and two-phase substrate kinetic model for enzymatic hydrolysis of lignocellulose
Danes, Nicholas; Sitaraman, Hariswaran; Stickel, Jonathan; Sprague, Michael
2017-11-01
Cost-effective production of fuels from lignocellulosic biomass is an important subject of research in order to meet the world's current and future energy demands. Enzymatic hydrolysis is one of the several steps in the biochemical conversion of biomass into fuels. This process involves the interplay of non-Newtonian fluid dynamics that happen over tens of seconds coupled with chemical reactions that happen over several hours. In this work, we present a coupled CFD-reaction model for conversion of cellulose to sugars in a benchtop mixer reactor. A subcycling approach is used to circumvent the large time scale disparity between fluid dynamics and reactions. We will present a validation study of our simulations with experiments for well-mixed and stratified reactor scenarios along with predictions for conversion rates and product concentrations at varying impeller speeds and in scaled-up reactors. This work is funded by the Bioenergy Technology Office of DOE and the NSF's Enriched Doctoral Training program (DMS-1551229).
A simplified treatment of the boundary conditions of the k- ε model in coarse-mesh CFD-type codes
International Nuclear Information System (INIS)
Analytis, G.Th.; Andreani, M.
1999-01-01
In coarse-mesh, CFD-type codes such as the containment analysis code GOTHIC, one of the options that can be used for modelling of turbulence is the k - ε model. However, in contrast to most other CFD codes which are designed to perform detailed CFD calculations with a large number of spatial meshes, codes such as GOTHIC are primarily aimed at simplified calculation of transients in large spaces (e.g., reactor containments), and generally use coarse meshes. The solution of the two parabolic equations for the k - ε model requires the definition of boundary conditions at physical boundaries and this, in turn, requires very small spatial meshes near these boundaries. Hence, while in codes like CFX this is done in a rigorous and consistent manner, codes like GOTHIC adopt an indirect and heuristic approach, due to the fact that the spatial meshes are usually large. This can have adverse consequences during the calculation of a transient and in this work, we shall give some examples of this and outline a method by which this problem can be avoided. (author)
2-D and 3-D CFD Investigation of NREL S826 Airfoil at Low Reynolds Numbers
International Nuclear Information System (INIS)
Cakmakcioglu, S C; Sert, I O; Tugluk, O; Sezer-Uzol, N
2014-01-01
In this study CFD investigation of flow over the NREL S826 airfoil is performed. NREL S826 airfoil was designed for HAWTs of 10-15 meter diameters. However, it is used in the NTNU wind turbine rotor model and low Reynolds number flow characteristics become important in the validations with the test cases of this rotor model. The airfoil CFD simulations are carried out in 2-D and 3-D computational domains. The k-rn SST turbulence model with Langtry-Menter (γ-Re θ ) transition prediction model for turbulence closure is used in the calculations. The Delayed DES is also performed in the stall region for comparisons. The results are compared with the available METUWIND experimental data, and are shown to be in fair agreement. It is observed that 3-D CFD analysis provides increased accuracy at increased computational cost
Energy Technology Data Exchange (ETDEWEB)
Lucas, D.; Beyer, M.; Banowski, M.; Seidel, T.; Krepper, E.; Liao, Y.; Apanasevich, P.; Gauss, F.; Ma, T.
2016-12-15
This report summarizes the main results obtained in frame of the project. The aim of the project was the qualification of CFD-methods for two-phase flows with phase transfer relevant for nuclear safety research. To reach this aim CFD-grade experimental data are required. Such data can be obtained at the TOPFLOW facility because of the combination of experiments in scales and at parameters which are relevant for nuclear safety research with innovative measuring techniques. The experimental part of this project comprises investigations on flows in vertical pipes using the ultrafast X-ray tomography, on flows with and without phase transfer in a special test basin and on counter-current flow limitation in a model of a PWR hot leg. These experiments are only briefly presented in this report since detailed documentations are given in separated reports for all of these 3 experimental series. One important results of the activities devoted on CFD qualification is the establishment of the baseline model concept and the definition of the baseline model for poly-disperse bubbly flows. This is an important contribution to improve the predictive capabilities of CFD-models basing on the two- or multi-fluid approach. On the other hand, the innovative Generalized Two-Phase Flow concept (GENTOP) aims on an extension of the range of applicability of CFD-methods. In many relevant flow situations different morphologies of the phases or different flow pattern occur simultaneously in one flow domain. In addition transitions between these morphologies may occur. The GENTOP-concept for the first time a framework was established which allows the simulation of such flow situations in a consistent manner. Other activities of the project aim on special model developments to improve the simulation capabilities for flows with phase transfer.
International Nuclear Information System (INIS)
Hristov, Y; Oxley, G; Žagar, M
2014-01-01
The Bolund measurement campaign, performed by Danish Technical University (DTU) Wind Energy Department (also known as RISØ), provided significant insight into wind flow modeling over complex terrain. In the blind comparison study several modelling solutions were submitted with the vast majority being steady-state Computational Fluid Dynamics (CFD) approaches with two equation k-ε turbulence closure. This approach yielded the most accurate results, and was identified as the state-of-the-art tool for wind turbine generator (WTG) micro-siting. Based on the findings from Bolund, further comparison between CFD and field measurement data has been deemed essential in order to improve simulation accuracy for turbine load and long-term Annual Energy Production (AEP) estimations. Vestas Wind Systems A/S is a major WTG original equipment manufacturer (OEM) with an installed base of over 60GW in over 70 countries accounting for 19% of the global installed base. The Vestas Performance and Diagnostic Centre (VPDC) provides online live data to more than 47GW of these turbines allowing a comprehensive comparison between modelled and real-world energy production data. In previous studies, multiple sites have been simulated with a steady neutral CFD formulation for the atmospheric surface layer (ASL), and wind resource (RSF) files have been generated as a base for long-term AEP predictions showing significant improvement over predictions performed with the industry standard linear WAsP tool. In this study, further improvements to the wind resource file generation with CFD are examined using an unsteady diurnal cycle approach with a full atmospheric boundary layer (ABL) formulation, with the unique stratifications throughout the cycle weighted according to mesoscale simulated sectorwise stability frequencies
International Nuclear Information System (INIS)
Silva, Valter; Rouboa, Abel
2015-01-01
Highlights: • A multiphase CFD model was combined with RSM. • Gasification optimal operating conditions were found in a pilot scale reactor. • Syngas quality indices were optimized in a biomass gasification process. • Propagation of error methodology was combined with a CFD model and RSM. - Abstract: This paper presents a study to evaluate the potential of Portuguese biomasses (coffee husks, forest residues and vine pruning residues) to produce syngas for different applications. By using a 2-D Eulerian–Eulerian approach within the CFD framework, a design of several computer experiments was developed and were used as analysis tools the response surface method (RSM) and the propagation of error (POE) approach. The CFD model was validated under experimental results collected at a semi-industrial reactor. For design purposes, temperature, steam to biomass ratio (SBR) and the type of biomass were selected as input factors. The responses were the H 2 generation, the H 2 /CO ratio, the CH 4 /H 2 ratio, the carbon conversion and the cold gas efficiency. It was concluded that after an optimization procedure to determine the operating conditions, vine pruning residues could show very promising results considering some of the typical syngas indice standards for commercial purposes. From the optimization procedure, it was also concluded that forest residues are preferable for domestic natural gas applications and vine pruning residues for fuel cells and integrated gasification systems application. By using the RSM combined with POE, it was verified that the operating conditions to get higher performances do not always coincide with those necessary to obtain a stable syngas composition
2010-04-01
Aerothermodynamic Design, Review on Ground Testing and CFD (RTO-EN-AVT-186) Executive Summary The Lecture Series focus on the presentation of...impulsions ITAM et les tubes à choc DLR HEG. Les sondes à réponse rapide et les techniques de mesures instables ont été présentées ainsi que les outils de
CFD Modeling of Swirl and Nonswirl Gas Injections into Liquid Baths Using Top Submerged Lances
Huda, Nazmul; Naser, J.; Brooks, G.; Reuter, M. A.; Matusewicz, R. W.
2010-02-01
Fluid flow phenomena in a cylindrical bath stirred by a top submerged lance (TSL) gas injection was investigated by using the computational fluid dynamic (CFD) modeling technique for an isothermal air-water system. The multiphase flow simulation, based on the Euler-Euler approach, elucidated the effect of swirl and nonswirl flow inside the bath. The effects of the lance submergence level and the air flow rate also were investigated. The simulation results for the velocity fields and the generation of turbulence in the bath were validated against existing experimental data from the previous water model experimental study by Morsi et al.[1] The model was extended to measure the degree of the splash generation for different liquid densities at certain heights above the free surface. The simulation results showed that the two-thirds lance submergence level provided better mixing and high liquid velocities for the generation of turbulence inside the water bath. However, it is also responsible for generating more splashes in the bath compared with the one-third lance submergence level. An approach generally used by heating, ventilation, and air conditioning (HVAC) system simulations was applied to predict the convective mixing phenomena. The simulation results for the air-water system showed that mean convective mixing for swirl flow is more than twice than that of nonswirl in close proximity to the lance. A semiempirical equation was proposed from the results of the present simulation to measure the vertical penetration distance of the air jet injected through the annulus of the lance in the cylindrical vessel of the model, which can be expressed as L_{va} = 0.275( {do - di } )Frm^{0.4745} . More work still needs to be done to predict the detail process kinetics in a real furnace by considering nonisothermal high-temperature systems with chemical reactions.
CFD modelling of a membrane reactor for hydrogen production from ammonia
Shwe Hla, San; Dolan, Michael D.
2018-01-01
Despite the growing use of hydrogen (H2) as a transport fuel, one of the major barriers still remaining is efficient and inexpensive fuel distribution and storage. Current approaches, such as compression, liquefaction or metal hydride formation, incur a significant energy penalty. Ammonia (NH3) has long been considered a prospective H2 medium, exhibiting a higher volumetric H2 density than liquid H2, through liquid-phase storage at mild pressure. Decomposition of NH3 into H2 and N2 can be achieved via use of catalytic reactors and fuel-cell-grade H2 can be produced using metal membranes at H2 distribution sites.In this study, a 3-Dimensional (3D) Computational Fluid Dynamics (CFD) model has been developed to understand the performance of the H2 separation process in gas mixtures derived from an NH3-cracking reaction. The reactor consists of 19 tubular membrane tubes, each 470 mm long, inside a tubular shell with an inner diameter of 130 mm. Standard transport and energy equations governing a 3D, pressure-based, steady-state model were derived from the laws of conservation of mass, momentum and energy. The governing equations were solved using commercial CFD software ANSYS Fluent 18.0. Gas flow and mixing were modelled by the two-equation standard k-epsilon model for closure. Coupled solver was used for pressure-velocity coupling, enabling a pseudo-transient option with pseudo time steps of 0.01 s. To estimate H2 permeation through the metal membrane, a constant H2 permeability of 3.0E-07 mol.m-1 s-1 Pa-0.5 derived from series of experiments tested under a range of industrial conditions, was used. Model simulations were conducted for an adiabatic temperature of 300 °C, a feed-side pressure of 7.8 bara and a permeate side pressure of 0.1 bara. A parametric analysis was carried out to explore the effects of variation in total feed-gas flow and effects of changes in NH3-cracking efficiency on H2 production rates and H2 yields. The model estimated that 4.6-11.6 kg H2
Mousavi, Monireh Sadat; Ashrafi, Khosro; Motlagh, Majid Shafie Pour; Niksokhan, Mohhamad Hosein; Vosoughifar, HamidReza
2018-02-01
In this study, coupled method for simulation of flow pattern based on computational methods for fluid dynamics with optimization technique using genetic algorithms is presented to determine the optimal location and number of sensors in an enclosed residential complex parking in Tehran. The main objective of this research is costs reduction and maximum coverage with regard to distribution of existing concentrations in different scenarios. In this study, considering all the different scenarios for simulation of pollution distribution using CFD simulations has been challenging due to extent of parking and number of cars available. To solve this problem, some scenarios have been selected based on random method. Then, maximum concentrations of scenarios are chosen for performing optimization. CFD simulation outputs are inserted as input in the optimization model using genetic algorithm. The obtained results stated optimal number and location of sensors.
Prediction of wall friction for fluids at supercritical pressure with CFD models
International Nuclear Information System (INIS)
Angelucci, M.; Ambrosini, W.; Forgione, N.
2011-01-01
In this paper, the STAR-CCM+ CFD code is used in the attempt to reproduce the values of friction factor observed in experimental data at supercritical pressures at various operating conditions. A short survey of available data and correlations for smooth pipe friction in circular pipes puts the basis for the discussion, reporting observed trends of friction factor in the liquid-like and the gas-like regions and within the transitional region around the pseudo-critical temperature. For smooth pipes, a general decrease of the friction factor in the transitional region is reported, constituting one of the relevant effects to be predicted by the computational fluid-dynamic models. A limited number of low-Reynolds number models is adopted, making use of refined near-wall discretisations as required by the constraint y + < 1 at the wall. In particular, the Lien k-ε and the SST k-ω models are considered. The values of the wall shear stress calculated by the code are then post-processed on the basis of bulk fluid properties to obtain the Fanning and then the Darcy-Weisbach friction factors, basing on their classical definitions. The obtained values are compared with those provided by experimental tests and correlations, finding a reasonable qualitative agreement. Expectedly, the agreement is better in the gas-like and liquid-like regions, where fluid property changes are moderate, than in the transitional region, where the trends provided by available correlations are reproduced only in a qualitative way. (author)
CFD modelling of convective heat transfer from a window with adjacent venetian blinds
Energy Technology Data Exchange (ETDEWEB)
Marjanovic, L. [Belgrade Univ., Belgrade (Yugoslavia). Faculty of Mechanical Engineering]|[DeMontfort Univ. (United Kingdom). Inst. of Energy and Sustainable Development; Cook, M; Hanby, V.; Rees, S. [DeMontfort Univ. (United Kingdom). Inst. of Energy and Sustainable Development
2005-07-01
There is a limited amount of 3-dimensional modeling information on the performance of glazing systems with blinds. Two-dimensional flow modeling has indicated that 1-dimensional heat transfer can lead to invalid results where 2- and 3-dimensional effects are present. In this study, a 3-dimensional numerical solution was obtained on the effect of a venetian blind on the conjugate heat transfer from an indoor window glazing system. The solution was obtained for the coupled laminar free convection and radiation heat transfer problem, including conduction along the blind slats. Continuity, momentum and energy equations for buoyant flow were solved using Computational Fluid Dynamics (CFD) software. Grey diffuse radiation exchange between the window, blind and air were considered using the Monte Carlo method. All thermophysical properties of air were assumed to be constant with the exception of density, which was modeled using the Bousinesq approximation. Both winter and summer conditions were considered. In the computational domain, the window represented an isothermal type boundary condition with no slip. The height of the domain was extended beyond the blinds to allow for inflow and outflow regions. Fluid was allowed to entrain into the domain at an ambient temperature in a direction perpendicular to the window. The results indicated that heat transfer between window and indoor air is influenced both quantitatively and qualitatively by the presence of an aluminium venetian blind, and that the cellular flow between the blind slats can have a significant effect on the convective heat transfer from the window surface that is more fully recognized and analyzed in 3 dimensions. refs., 2 tabs., 13 figs.
CFD modeling of hydro-biochemical behavior of MSW subjected to leachate recirculation.
Feng, Shi-Jin; Cao, Ben-Yi; Li, An-Zheng; Chen, Hong-Xin; Zheng, Qi-Teng
2018-02-01
The most commonly used method of operating landfills more sustainably is to promote rapid biodegradation and stabilization of municipal solid waste (MSW) by leachate recirculation. The present study is an application of computational fluid dynamics (CFD) to the 3D modeling of leachate recirculation in bioreactor landfills using vertical wells. The objective is to model and investigate the hydrodynamic and biochemical behavior of MSW subject to leachate recirculation. The results indicate that the maximum recirculated leachate volume can be reached when vertical wells are set at the upper middle part of a landfill (H W /H T = 0.4), and increasing the screen length can be more helpful in enlarging the influence radius than increasing the well length (an increase in H S /H W from 0.4 to 0.6 results in an increase in influence radius from 6.5 to 7.7 m). The time to reach steady state of leachate recirculation decreases with the increase in pressure head; however, the time for leachate to drain away increases with the increase in pressure head. It also showed that methanogenic biomass inoculum of 1.0 kg/m 3 can accelerate the volatile fatty acid depletion and increase the peak depletion rate to 2.7 × 10 -6 kg/m 3 /s. The degradation-induced void change parameter exerts an influence on the processes of MSW biodegradation because a smaller parameter value results in a greater increase in void space.
International Nuclear Information System (INIS)
Gubba, S.R.; Ingham, D.B.; Larsen, K.J.; Ma, L.; Pourkashanian, M.; Qian, X.; Williams, A.; Yan, Y.
2012-01-01
Recent national and international emission legislations to reduce emissions of carbon dioxide are forcing power generation industries using coal to look at various alternatives, such as biomass and especially by co-firing techniques. Biomass is transported to the burners either mixed with the primary fuel, in general, coal, or used in dedicated pipelines. In both cases, transportation of biomass is difficult due to its composition, size, shape and physical behaviour in comparison to the transportation of coal. This study considers experimental measurements for biomass particle transportation in a pipeline with a transverse elbow and compares the results with those using computation fluid dynamic (CFD) techniques. Various materials: flour, willow, wood, bark and a mixture of flour and willow, have been considered in the present investigation. The experimental work was performed using the dynamic changes in the electrostatic charges of biomass particles in conjunction with correlation signal processing techniques. The CFD simulations were performed by considering the effects of gravity, non-spherical drag (based on estimated shape factor), detailed information of the particle distribution, particle wall collisions and particle–particle interactions. Good quantitative and qualitative agreement was obtained between the CFD simulations and the experimental data. It is concluded that particle–particle interactions are of less importance if the mass loading ratio of particles to air is less than 0.03. -- Highlights: ► Dispersed biomass particle transportation is studied using experiments and CFD. ► Inclusion of asphericity in the drag model clearly demonstrated the improvements. ► Gravity effects are found to be important for correct particle distribution in pipe lines. ► Inter-particle collisions were less important for mass loading ratios <0.05 kg/kg.
CFD code calibration and inlet-fairing effects on a 3D hypersonic powered-simulation model
Huebner, Lawrence D.; Tatum, Kenneth E.
1993-01-01
A three-dimensional (3D) computational study has been performed addressing issues related to the wind tunnel testing of a hypersonic powered-simulation model. The study consisted of three objectives. The first objective was to calibrate a state-of-the-art computational fluid dynamics (CFD) code in its ability to predict hypersonic powered-simulation flows by comparing CFD solutions with experimental surface pressure dam. Aftbody lower surface pressures were well predicted, but lower surface wing pressures were less accurately predicted. The second objective was to determine the 3D effects on the aftbody created by fairing over the inlet; this was accomplished by comparing the CFD solutions of two closed-inlet powered configurations with a flowing-inlet powered configuration. Although results at four freestream Mach numbers indicate that the exhaust plume tends to isolate the aftbody surface from most forebody flowfield differences, a smooth inlet fairing provides the least aftbody force and moment variation compared to a flowing inlet. The final objective was to predict and understand the 3D characteristics of exhaust plume development at selected points on a representative flight path. Results showed a dramatic effect of plume expansion onto the wings as the freestream Mach number and corresponding nozzle pressure ratio are increased.
International Nuclear Information System (INIS)
Endalew, A. Melese; Hertog, M.; Delele, M.A.; Baetens, K.; Persoons, T.; Baelmans, M.; Ramon, H.; Nicolai, B.M.; Verboven, P.
2009-01-01
The efficiency of pesticide application to agricultural fields and the resulting environmental contamination highly depend on atmospheric airflow. A computational fluid dynamics (CFD) modelling of airflow within plant canopies using 3D canopy architecture was developed to understand the effect of the canopy to airflow. The model average air velocity was validated using experimental results in a wind tunnel with two artificial model trees of 24 cm height. Mean air velocities and their root mean square (RMS) values were measured on a vertical plane upstream and downstream sides of the trees in the tunnel using 2D hotwire anemometer after imposing a uniform air velocity of 10 m s -1 at the inlet. 3D virtual canopy geometries of the artificial trees were modelled and introduced into a computational fluid domain whereby airflow through the trees was simulated using Reynolds-Averaged Navier-Stokes (RANS) equations and k-ε turbulence model. There was good agreement of the average longitudinal velocity, U between the measurements and the simulation results with relative errors less than 2% for upstream and 8% for downstream sides of the trees. The accuracy of the model prediction for turbulence kinetic energy k and turbulence intensity I was acceptable within the tree height when using a roughness length (y 0 = 0.02 mm) for the surface roughness of the tree branches and by applying a source model in a porous sub-domain created around the trees. The approach was applied for full scale orchard trees in the atmospheric boundary layer (ABL) and was compared with previous approaches and works. The simulation in the ABL was made using two groups of full scale orchard trees; short (h = 3 m) with wider branching and long (h = 4 m) with narrow branching. This comparison showed good qualitative agreements on the vertical profiles of U with small local differences as expected due to the spatial disparities in tree architecture. This work was able to show airflow within and above the
Directory of Open Access Journals (Sweden)
Christophe Morel
2009-01-01
Full Text Available This paper describes the modeling of boiling multisize bubbly flows and its application to the simulation of the DEBORA experiment. We follow the method proposed originally by Kamp, assuming a given mathematical expression for the bubble diameter pdf. The original model is completed by the addition of some new terms for vapor compressibility and phase change. The liquid-to-interface heat transfer term, which essentially determines the bubbles condensation rate in the DEBORA experiment, is also modeled with care. First numerical results realized with the Neptune_CFD code are presented and discussed.
Energy Technology Data Exchange (ETDEWEB)
Sathiah, Pratap, E-mail: sathiah@nrg.eu [Nuclear Research and Consultancy Group (NRG), Westerduinweg 3, 1755 ZG Petten (Netherlands); Haren, Steven van, E-mail: vanharen@nrg.eu [Nuclear Research and Consultancy Group (NRG), Westerduinweg 3, 1755 ZG Petten (Netherlands); Komen, Ed, E-mail: komen@nrg.eu [Nuclear Research and Consultancy Group (NRG), Westerduinweg 3, 1755 ZG Petten (Netherlands); Roekaerts, Dirk, E-mail: d.j.e.m.roekaerts@tudelft.nl [Department of Multi-Scale Physics, Delft University of Technology, P.O. Box 5, 2600 AA Delft (Netherlands)
2012-11-15
Highlights: Black-Right-Pointing-Pointer A CFD based method is proposed for the simulation of hydrogen deflagration. Black-Right-Pointing-Pointer A dynamic grid adaptation method is proposed to resolve turbulent flame brush thickness. Black-Right-Pointing-Pointer The predictions obtained using this method is in good agreement with the static grid method. Black-Right-Pointing-Pointer TFC model results are in good agreement with large-scale homogeneous hydrogen-air experiments. - Abstract: During a severe accident in a PWR, large quantities of hydrogen can be generated and released into the containment. The generated hydrogen, when mixed with air, can lead to hydrogen combustion. The dynamic pressure loads resulting from hydrogen combustion can be detrimental to the structural integrity of the reactor safety systems and the reactor containment. Therefore, accurate prediction of these pressure loads is an important safety issue. In a previous article, we presented a CFD based method to determine these pressure loads. This CFD method is based on the application of a turbulent flame speed closure combustion model. The validation analyses in our previous paper demonstrated that it is of utmost importance to apply successive mesh and time step refinement in order to get reliable results. In this article, we first determined to what extent the required computational effort required for our CFD approach can be reduced by the application of adaptive mesh refinement, while maintaining the accuracy requirements. Experiments performed within a small fan stirred explosion bomb were used for this purpose. It could be concluded that adaptive grid adaptation is a reliable and efficient method for usage in hydrogen deflagration analyses. For the two-dimensional validation analyses, the application of dynamic grid adaptation resulted in a reduction of the required computational effort by about one order of magnitude. In a second step, the considered CFD approach including adaptive
Directory of Open Access Journals (Sweden)
Yogang Singh
2017-06-01
Full Text Available Underwater gliders are buoyancy propelled vehicle which make use of buoyancy for vertical movement and wings to propel the glider in forward direction. Autonomous underwater gliders are a patented technology and are manufactured and marketed by corporations. In this study, we validate the experimental lift and drag characteristics of a glider from the literature using Computational fluid dynamics (CFD approach. This approach is then used for the assessment of the steady state characteristics of a laboratory glider designed at Indian Institute of Technology (IIT Madras. Flow behaviour and lift and drag force distribution at different angles of attack are studied for Reynolds numbers varying from 105 to 106 for NACA0012 wing configurations. The state variables of the glider are the velocity, gliding angle and angle of attack which are simulated by making use of the hydrodynamic drag and lift coefficients obtained from CFD. The effect of the variable buoyancy is examined in terms of the gliding angle, velocity and angle of attack. Laboratory model of glider is developed from the final design asserted by CFD. This model is used for determination of static and dynamic properties of an underwater glider which were validated against an equivalent CAD model and simulation results obtained from equations of motion of glider in vertical plane respectively. In the literature, only empirical approach has been adopted to estimate the hydrodynamic coefficients of the AUG that are required for its trajectory simulation. In this work, a CFD approach has been proposed to estimate the hydrodynamic coefficients and validated with experimental data. A two-mass variable buoyancy engine has been designed and implemented. The equations of motion for this two-mass engine have been obtained by modifying the single mass version of the equations described in the literature. The objectives of the present study are to understand the glider dynamics adopting a CFD approach
A Transient 3D-CFD Model Incorporating Biological Processes for Use in Tissue Engineering
DEFF Research Database (Denmark)
Krühne, Ulrich; Wendt, D.; Martin, I.
2010-01-01
after 2, 8 and 13 days. The development of the cells is compared to the simulated growth of cells and it is attempted to draw a conclusion about the impact of the shear stress on the cell growth. Keyword: Computational fluid dynamics (CFD),Micro pores,Scaffold,Bioreactor,Fluid structure interaction,Tissue...... engineering...
Towards a generic, reliable CFD modelling methodology for waste-fired grate boilers
DEFF Research Database (Denmark)
Rajh, Boštjan; Yin, Chungen; Samec, Niko
of the increased CO2 and H2O vapour concentrations on radiative heat transfer in the boiler. The impacts of full buoyancy on turbulence are also investigated. As a validation effort, the temperature profiles at different ports inside the furnace are measured and the experimental values are compared with the CFD...
CFD analysis and flow model reduction for surfactant production in helix reactor
Nikačević, N.M.; Thielen, L.; Twerda, A.; Hof, P.M.J. van den
2014-01-01
Flow pattern analysis in a spiral Helix reactor is conducted, for the application in the commercial surfactant production. Step change response curves (SCR) were obtained from numerical tracer experiments by three-dimensional computational fluid dynamics (CFD) simulations. Non-reactive flow is
A Coupled VOF-Eulerian Multiphase CFD Model to Simulate Breaking Wave Impacts on Offshore Structures
DEFF Research Database (Denmark)
Tomaselli, Pietro; Christensen, Erik Damgaard
2016-01-01
Breaking wave-induced loads on offshore structures can be extremely severe. The air entrainment mechanism during the breaking process plays a not well-known role in the exerted forces. This paper present a CFD solver, developed in the Open-FOAM environment, capable of simulating the wave breaking...
On the modeling of bubble evolution and transport using coupled level-set/CFD method
International Nuclear Information System (INIS)
Bartlomiej Wierzbicki; Steven P Antal; Michael Z Podowski
2005-01-01
Full text of publication follows: The ability to predict the shape of the gas/liquid/solid interfaces is important for various multiphase flow and heat transfer applications. Specific issues of interest to nuclear reactor thermal-hydraulics, include the evolution of the shape of bubbles attached to solid surfaces during nucleation, bubble surface interactions in complex geometries, etc. Additional problems, making the overall task even more complicated, are associated with the effect of material properties that may be significantly altered by the addition of minute amounts of impurities, such as surfactants or nano-particles. The present paper is concerned with the development of an innovative approach to model time-dependent shape of gas/liquid interfaces in the presence of solid walls. The proposed approach combines a modified level-set method with an advanced CFD code, NPHASE. The coupled numerical solver can be used to simulate the evolution of gas/liquid interfaces in two-phase flows for a variety of geometries and flow conditions, from individual bubbles to free surfaces (stratified flows). The issues discussed in the full paper will include: a description of the novel aspects of the proposed level-set concept based method, an overview of the NPHASE code modeling framework and a description of the coupling method between these two elements of the overall model. A particular attention will be give to the consistency and completeness of model formulation for the interfacial phenomena near the liquid/gas/solid triple line, and to the impact of the proposed numerical approach on the accuracy and consistency of predictions. The accuracy will be measured in terms of both the calculated shape of the interfaces and the gas and liquid velocity fields around the interfaces and in the entire computational domain. The results of model testing and validation will also be shown in the full paper. The situations analyzed will include: bubbles of different sizes and varying
Directory of Open Access Journals (Sweden)
Zoltan-Iosif Korka
2016-10-01
Full Text Available CFD (Computational Fluid Dynamic is today a standard procedure for analyzing and simulating the flow through several hydraulic machines. In this process, the fluid flow domain is divided into small volumes where the governing equations are converted into algebraic ones, which are numerically solved. Computational results strongly depend on the applied mathematical model and on the numerical methods used for converting the governing equations into the algebraic ones. The goal of the paper is to evaluate, by numerical simulation, the hydraulic loads (forces and torques on the runner blades of an existent Kaplan turbine and to compare them with the experimental results obtained from model test.
Directory of Open Access Journals (Sweden)
Maher A.R. Sadiq Al-Baghdadi
2016-07-01
Full Text Available This paper presents a comprehensive three–dimensional, multi–phase, non-isothermal model of a Proton Exchange Membrane (PEM fuel cell that incorporates significant physical processes and key parameters affecting the fuel cell performance. The model construction involves equations derivation, boundary conditions setting, and solution algorithm flow chart. Equations in gas flow channels, gas diffusion layers (GDLs, catalyst layers (CLs, and membrane as well as equations governing cell potential and hygro-thermal stresses are described. The algorithm flow chart starts from input of the desired cell current density, initialization, iteration of the equations solution, and finalizations by calculating the cell potential. In order to analyze performance, water and thermal distribution, and mechanical related failure in the cell, the equations are solved using a computational fluid dynamic (CFD code. Performance analysis includes a performance curve which plots the cell potential (Volt against nominal current density (A/cm2 as well as losses. Velocity vectors of gas and liquid water, liquid water saturation, and water content profile are calculated. Thermal distribution is then calculated together with hygro-thermal stresses and deformation. The CFD model was executed under boundary conditions of 20°C room temperature, 35% relative humidity, and 1 MPA pressure on the lower surface. Parameters values of membrane electrode assembly (MEA and other base conditions are selected. A cell with dimension of 1 mm x 1 mm x 50 mm is used as the object of analysis. The nominal current density of 1.4 A/cm2 is given as the input of the CFD calculation. The results show that the model represents well the performance curve obtained through experiment. Moreover, it can be concluded that the model can help in understanding complex process in the cell which is hard to be studied experimentally, and also provides computer aided tool for design and optimization of PEM
Soria, José; Gauthier, Daniel; Flamant, Gilles; Rodriguez, Rosa; Mazza, Germán
2015-09-01
Municipal Solid Waste Incineration (MSWI) in fluidized bed is a very interesting technology mainly due to high combustion efficiency, great flexibility for treating several types of waste fuels and reduction in pollutants emitted with the flue gas. However, there is a great concern with respect to the fate of heavy metals (HM) contained in MSW and their environmental impact. In this study, a coupled two-scale CFD model was developed for MSWI in a bubbling fluidized bed. It presents an original scheme that combines a single particle model and a global fluidized bed model in order to represent the HM vaporization during MSW combustion. Two of the most representative HM (Cd and Pb) with bed temperatures ranging between 923 and 1073K have been considered. This new approach uses ANSYS FLUENT 14.0 as the modelling platform for the simulations along with a complete set of self-developed user-defined functions (UDFs). The simulation results are compared to the experimental data obtained previously by the research group in a lab-scale fluid bed incinerator. The comparison indicates that the proposed CFD model predicts well the evolution of the HM release for the bed temperatures analyzed. It shows that both bed temperature and bed dynamics have influence on the HM vaporization rate. It can be concluded that CFD is a rigorous tool that provides valuable information about HM vaporization and that the original two-scale simulation scheme adopted allows to better represent the actual particle behavior in a fluid bed incinerator. Copyright © 2015 Elsevier Ltd. All rights reserved.
Energy Technology Data Exchange (ETDEWEB)
Kruggel-Emden, H.; Stepanek, F. [Department of Chemical Engineering, South Kensington Campus, Imperial College London, SW7 2AZ, London (United Kingdom); Kruggel-Emden, H.; Munjiza, A. [Department of Engineering, Queen Mary, University of London, Mile End Road, E1 4NS, London (United Kingdom)
2011-03-15
Chemical Looping Combustion is an energy efficient combustion technology for the inherent separation of carbon dioxide for both gaseous and solid fuels. For scale up and further development of this process multi-phase CFD-based simulations have a strong potential which rely on kinetic models for the solid/gaseous reactions. Reaction models are usually simple in structure in order to keep the computational cost low. They are commonly derived from thermogravimetric experiments. With only few CFD-based simulations performed on chemical looping combustion, there is a lack in understanding of the role and of the sensitivity of the applied chemical reaction model on the outcome of a simulation. The aim of this investigation is therefore the study of three different carrier materials CaSO{sub 4}, Mn{sub 3}O{sub 4} and NiO with the gaseous fuels H{sub 2} and CH{sub 4} in a batch type reaction vessel. Four reaction models namely the linear shrinking core, the spherical shrinking core, the Avrami-Erofeev and a recently proposed multi parameter model are applied and compared on a case by case basis. (authors)
International Nuclear Information System (INIS)
Boateng, A.A.; Mtui, P.L.
2012-01-01
A model for the evolution of pyrolysis products in a fluidized bed has been developed. In this study the unsteady constitutive transport equations for inert gas flow and decomposition kinetics were modeled using the commercial computational fluid dynamics (CFD) software FLUENT-12. The Eulerarian-Eulerian multiphase model system described herein is a fluidized bed of sand externally heated to a predetermined temperature prior to introduction of agricultural biomass. We predict the spontaneous emergence of pyrolysis vapors, char and non-condensable (permanent) gases and confirm the observation that the kinetics are fast and that bio-oil vapor evolution is accomplished in a few seconds, and occupying two-thirds of the spatial volume of the reactor as widely reported in the open literature. The model could be advantageous in the virtual design of fast pyrolysis reactors and their optimization to meet economic scales required for distributed or satellite units. - Highlights: ► We model the evolution of pyrolysis products in a fluidized bed via CFD. ► We predict the spontaneous emergence of pyrolysis products. ► We confirm the experimental observation that the kinetics are fast. ► And that bio-oil vapor evolution is accomplished in a few seconds. ► The model is advantageous in the virtual design of fast pyrolysis reactors.
International Nuclear Information System (INIS)
Shin, Dong-Ho; Cho, Hyoung-Kyu; Tak, Nam-Il; Park, Goon-Cherl
2014-01-01
Effective thermal conductivity models which can be used to analyze the heat transfer phenomena of a prismatic fuel block were evaluated by CFD analysis. In the accident condition of VHTR when forced convection is lost, the heat flows in radial direction through the hexagonal fuel blocks that contain the large number of coolant holes and fuel compacts. Due to the complex geometry of fuel block and radiation heat transfer; the detail heat transfer computation on the fuel block needs excessive computation resources. Therefore, the detail computation isn’t appropriate for the lumped parameter code. The system code such as GAMMA+ adopts effective thermal conductivity model. Despite the complexity in heat transfer modes, the accurate analysis on the heat transfer in fuel block is necessary since it is directly relevant to the integrity of nuclear fuel embedded in fuel block. To satisfy the accurate analysis of complex heat transfer modes with limited computing sources, the credible effective thermal conductivity (ETC) models in which the effects of all of heat transfer modes are lumped is necessary. In this study, various ETC models were introduced and they are evaluated with CFD calculations. It is estimated that Maxwell-based model was the most pertinent one among the introduced ETC models. (author)
International Nuclear Information System (INIS)
Liu, Xiong; Godbole, Ajit; Lu, Cheng; Michal, Guillaume; Venton, Philip
2014-01-01
Highlights: • Validated CFD models for decompression and dispersion of CO 2 releases from pipelines. • Incorporation of real gas EOS into CFD code for source strength estimation. • Demonstration of better performance of SST k–ω turbulence model for jet flow. • Demonstration of better performance of real gas EOS compared to ideal gas EOS. • Demonstration of superiority of CFD models over a commercial risk assessment package. - Abstract: Transportation of CO 2 in high-pressure pipelines forms a crucial link in the ever-increasing application of Carbon Capture and Storage (CCS) technologies. An unplanned release of CO 2 from a pipeline presents a risk to human and animal populations and the environment. Therefore it is very important to develop a deeper understanding of the atmospheric dispersion of CO 2 before the deployment of CO 2 pipelines, to allow the appropriate safety precautions to be taken. This paper presents a two-stage Computational Fluid Dynamics (CFD) study developed (1) to estimate the source strength, and (2) to simulate the subsequent dispersion of CO 2 in the atmosphere, using the source strength estimated in stage (1). The Peng–Robinson (PR) EOS was incorporated into the CFD code. This enabled accurate modelling of the CO 2 jet to achieve more precise source strength estimates. The two-stage simulation approach also resulted in a reduction in the overall computing time. The CFD models were validated against experimental results from the British Petroleum (BP) CO 2 dispersion trials, and also against results produced by the risk management package Phast. Compared with the measurements, the CFD simulation results showed good agreement in both source strength and dispersion profile predictions. Furthermore, the effect of release direction on the dispersion was studied. The presented research provides a viable method for the assessment of risks associated with CCS
Artnak, Edward Joseph, III
This work seeks to illustrate the potential benefits afforded by implementing aspects of fluid dynamics, especially the latest computational fluid dynamics (CFD) modeling approach, through numerical experimentation and the traditional discipline of physical experimentation to improve the calibration of the severe reactor accident analysis code, MELCOR, in one of several spent fuel pool (SFP) complete loss-ofcoolant accident (LOCA) scenarios. While the scope of experimental work performed by Sandia National Laboratories (SNL) extends well beyond that which is reasonably addressed by our allotted resources and computational time in accordance with initial project allocations to complete the report, these simulated case trials produced a significant array of supplementary high-fidelity solutions and hydraulic flow-field data in support of SNL research objectives. Results contained herein show FLUENT CFD model representations of a 9x9 BWR fuel assembly in conditions corresponding to a complete loss-of-coolant accident scenario. In addition to the CFD model developments, a MATLAB based controlvolume model was constructed to independently assess the 9x9 BWR fuel assembly under similar accident scenarios. The data produced from this work show that FLUENT CFD models are capable of resolving complex flow fields within a BWR fuel assembly in the realm of buoyancy-induced mass flow rates and that characteristic hydraulic parameters from such CFD simulations (or physical experiments) are reasonably employed in corresponding constitutive correlations for developing simplified numerical models of comparable solution accuracy.
Experimental and CFD modelling for thermal comfort and CO2 concentration in office building
Kabrein, H.; Hariri, A.; Leman, A. M.; Yusof, M. Z. M.; Afandi, A.
2017-09-01
Computational fluid dynamic CFD was used for simulating air flow, indoor air distribution and contamination concentration. Gases pollution and thermal discomfort affected occupational health and productivity of work place. The main objectives of this study are to investigate the impact of air change rate in CO2 concentration and to estimate the profile of CO2 concentration in the offices building. The thermal comfort and gases contamination are investigated by numerical analysis CFD which was validated by experiment. Thus the air temperature, air velocity and CO2 concentration were measured at several points in the chamber with four occupants. Comparing between experimental and numerical results showed good agreement. In addition, the CO2 concentration around human recorded high, compared to the other area. Moreover, the thermal comfort in this study is within the ASHRAE standard 55-2004.
CFD Application and OpenFOAM on the 2-D Model for the Moderator System of Heavy-Water Reactors
International Nuclear Information System (INIS)
Chang, Se Myong; Park, A. Y.; Kim, Hyoung Tae
2011-01-01
The flow in the complex pipeline system in a calandria tank of CANDU reactor is transported through the distribution of heat sources, which also exerts the pressure drop to the coolant flow. So the phenomena should be considered as multi-physics both in the viewpoints of heat transfer and fluid dynamics. In this study, we have modeled the calandria tank system as two-dimensional simplified one preliminarily that is yet far from the real objects, but to see the essential physics and to test the possibility of the present CFD(computational fluid dynamics) methods for the thermo-hydraulic problem in the moderator system of heavy-water reactors
Poussou, Stephane B.; Mazumdar, Sagnik; Plesniak, Michael W.; Sojka, Paul E.; Chen, Qingyan
2010-08-01
The effects of a moving human body on flow and contaminant transport inside an aircraft cabin were investigated. Experiments were performed in a one-tenth scale, water-based model. The flow field and contaminant transport were measured using the Particle Image Velocimetry (PIV) and Planar Laser-Induced Fluorescence (PLIF) techniques, respectively. Measurements were obtained with (ventilation case) and without (baseline case) the cabin environmental control system (ECS). The PIV measurements show strong intermittency in the instantaneous near-wake flow. A symmetric downwash flow was observed along the vertical centerline of the moving body in the baseline case. The evolution of this flow pattern is profoundly perturbed by the flow from the ECS. Furthermore, a contaminant originating from the moving body is observed to convect to higher vertical locations in the presence of ventilation. These experimental data were used to validate a Computational Fluid Dynamic (CFD) model. The CFD model can effectively capture the characteristic flow features and contaminant transport observed in the small-scale model.
CFD modelling of nocturnal low-level jet effects on wind energy related variables
Sogachev, Andrey; Mann, Jakob; Dellwik, Ebba; Ejsing Jørgensen, Hans
2010-05-01
The development of a wind speed maximum in the nocturnal boundary layer, referred to as a low-level jet (LLJ), is a common feature of the vertical structure of the atmospheric boundary layer (ABL). Characterizing and understanding LLJ streams is growing in importance as wind turbines are being built larger and taller to take advantage of higher wind speeds at increased heights. We used a computational fluid dynamics (CFD) model to explore LLJs effect on wind speed, wind directional and speed shear inside the surface layer 40 - 130 m, where their physical measurements are not trivial and still rare today. We used the one-dimensional version of the ABL model SCADIS (Sogachev et al. 2002: Tellus 54:784-819). The unique feature of the model, based on a two-equation closure approach, is the treatment of buoyancy effects in a universal way, which overcomes the uncertainties with model coefficients for non-shear source/sink terms (Sogachev, 2009: Boundary Layer Meteor. 130:423-435). From a variety of mechanisms suggested for formation of LLJs, such as inertial oscillations, baroclinicity over sloping terrain, and land-sea breeze effects, the one-dimensional ABL model is capable of simulating only the first one. However, that mechanism, which is caused by the diurnal oscillation of eddy viscosity, is often responsible for jet formation. Sensitivity tests carried out showed that SCADIS captures the most prominent features of the LLJ, including its vertical structure as well as its diurnal phase and amplitude. We simulated ABL pattern under conditions typical for LLJ formation (a fair day on July 1, a flat low-roughness underlying surface) at 30 and 50o latitudes. Diurnal variability of wind speed and turbulence intensity at four levels of 40, 70, 100 and 130 m above ground and of wind and directional shear between those levels were analysed. Despite of small differences in LLJ structure the properties of LLJ important for wind energy production are still common for two
Directory of Open Access Journals (Sweden)
Ali Belhocine
2017-05-01
Full Text Available Braking system is one of the important control systems of an automotive. For many years, the disc brakes have been used in automobiles for safe retardation of the vehicles. During braking enormous amount of heat will be generated and for effective braking sufficient heat dissipation is essential. The thermal performance of disc brake depends upon the characteristics of the airflow around the brake rotor and hence the aerodynamics is an important in the region of brake components. A CFD analysis is carried out on the braking system as a case study to make out the behaviour of airflow distribution around the disc brake components using ANSYS CFX software. We are interested in the determination of the heat transfer coefficient (HTC on each surface of a ventilated disc rotor varying with time in a transient state using CFD analysis, and then imported the surface film condition data into a corresponding FEM model for disc temperature analysis.
Sensitivity analysis of the Gupta and Park chemical models on the heat flux by DSMC and CFD codes
Morsa, Luigi; Festa, Giandomenico; Zuppardi, Gennaro
2012-11-01
The present study is the logical continuation of a former paper by the first author in which the influence of the chemical models by Gupta and by Park on the computation of heat flux on the Orion and EXPERT capsules was evaluated. Tests were carried out by the direct simulation Monte Carlo code DS2V and by the computational fluiddynamic (CFD) code H3NS. DS2V implements the Gupta model, while H3NS implements the Park model. In order to compare the effects of the chemical models, the Park model was implemented also in DS2V. The results showed that DS2V and H3NS compute a different composition both in the flow field and on the surface, even using the same chemical model (Park). Furthermore DS2V computes, by the two chemical models, different compositions in the flow field but the same composition on the surface, therefore the same heat flux. In the present study, in order to evaluate the influence of these chemical models also in a CFD code, the Gupta and the Park models have been implemented in FLUENT. Tests by DS2V and by FLUENT, have been carried out for the EXPERT capsule at the altitude of 70 km and with velocity of 5000 m/s. The capsule experiences a hypersonic, continuum low density regime. Due to the energy level of the flow, the vibration equation, lacking in the original version of FLUENT, has been implemented. The results of the heat flux computation verify that FLUENT is quite sensitive to the Gupta and to the Park chemical models. In fact, at the stagnation point, the percentage difference between the models is about 13%. On the opposite the DS2V results by the two models are practically equivalent.
Directory of Open Access Journals (Sweden)
Tilahun Nigussie
2017-01-01
Full Text Available This paper addresses the design, modeling, and performance analysis of a Pelton turbine using CFD for one of the selected micro hydro potential sites in Ethiopia to meet the requirements of the energy demands. The site has a net head of 47.5 m and flow rate of 0.14 m3/s. The design process starts with the design of initial dimensions for the runner based on different literatures and directed towards the modeling of bucket using CATIA V5. The performance of the runner has been analyzed in ANSYS CFX (CFD under given loading conditions of the turbine. Consequently, the present study has also the ambition to reduce the size of the runner to have a cost effective runner design. The case study described in this paper provides an example of how the size of turbine can affect the efficiency of the turbine. These were discussed in detail which helps in understanding of the underlying fluid dynamic design problem as an aid for improving the efficiency and lowering the manufacturing cost for future study. The result showed that the model is highly dependent on the size and this was verified and discussed properly using flow visualization of the computed flow field and published result.
International Nuclear Information System (INIS)
Lavaroni, Luca; Cook, Malcolm J; Watson, Simon J; Dubal, Mark R
2014-01-01
In this paper computational fluid dynamics (CFD) simulations are performed using ANSYS CFX to compare wake interaction results obtained from two rotor modelling methodologies: the standard actuator disc and the blade element momentum model (BEM). The unsteady simulations embed Coriolis forces and neutral stability conditions in the surface layer and stable conditions in the free stream. The BEM method is implemented in the CFD code through a pre-processing set of files that employs look-up tables. The control system for the wind turbines is considered through look-up tables that are constructed based on operational wind farm data. Simulations using the actuator disc and BEM methodologies have been performed using a number of different turbulence models in order to compare the wind turbine wake structure results. The use of URANS and LES numerical methods, coupled with the two different methodologies of representing the turbine, enables an assessment to be made of the details required for varying degrees of accuracy in computing the wake structures. The findings stress the importance of including the rotation of the wake and the non-uniform load on the rotor in LES simulations to account for more accurate turbulence intensity levels in the near wake
DEFF Research Database (Denmark)
Troen, Ib; Bechmann, Andreas; Kelly, Mark C.
2014-01-01
Using the Wind Atlas methodology to predict the average wind speed at one location from measured climatological wind frequency distributions at another nearby location we analyse the relative prediction errors using a linearized flow model (IBZ) and a more physically correct fully non-linear 3D...... flow model (CFD) for a number of sites in very complex terrain (large terrain slopes). We first briefly describe the Wind Atlas methodology as implemented in WAsP and the specifics of the “classical” model setup and the new setup allowing the use of the CFD computation engine. We discuss some known...
Botti, Lorenzo; Paliwal, Nikhil; Conti, Pierangelo; Antiga, Luca; Meng, Hui
2018-06-01
Image-based computational fluid dynamics (CFD) has shown potential to aid in the clinical management of intracranial aneurysms (IAs) but its adoption in the clinical practice has been missing, partially due to lack of accuracy assessment and sensitivity analysis. To numerically solve the flow-governing equations CFD solvers generally rely on two spatial discretization schemes: Finite Volume (FV) and Finite Element (FE). Since increasingly accurate numerical solutions are obtained by different means, accuracies and computational costs of FV and FE formulations cannot be compared directly. To this end, in this study we benchmark two representative CFD solvers in simulating flow in a patient-specific IA model: (1) ANSYS Fluent, a commercial FV-based solver and (2) VMTKLab multidGetto, a discontinuous Galerkin (dG) FE-based solver. The FV solver's accuracy is improved by increasing the spatial mesh resolution (134k, 1.1m, 8.6m and 68.5m tetrahedral element meshes). The dGFE solver accuracy is increased by increasing the degree of polynomials (first, second, third and fourth degree) on the base 134k tetrahedral element mesh. Solutions from best FV and dGFE approximations are used as baseline for error quantification. On average, velocity errors for second-best approximations are approximately 1cm/s for a [0,125]cm/s velocity magnitude field. Results show that high-order dGFE provide better accuracy per degree of freedom but worse accuracy per Jacobian non-zero entry as compared to FV. Cross-comparison of velocity errors demonstrates asymptotic convergence of both solvers to the same numerical solution. Nevertheless, the discrepancy between under-resolved velocity fields suggests that mesh independence is reached following different paths. This article is protected by copyright. All rights reserved.
Simulating Flow and Dispersion by Using WRF-CFD Coupled Model in a Built-Up Area of Shenyang, China
Directory of Open Access Journals (Sweden)
Yijia Zheng
2015-01-01
Full Text Available Results are presented from a series of numerical studies designed to investigate the atmospheric boundary layer structure, ambient wind, and pollutant source location and their impacts on the wind field and pollutant distribution within the built-up areas of Shenyang, China. Two models, namely, Open Source Field Operation and Manipulation (OpenFOAM software package and Weather Research and Forecasting (WRF model, are used in the present study. Then the high resolution computational fluid dynamics (CFD numerical experiments were performed under the typical simulated atmospheric boundary conditions. It was found that the atmospheric boundary structure played a crucial role in the pollution within the building cluster, which determined the potential turbulent diffusion ability of the atmospheric surface layer; the change of the ambient wind direction can significantly affect the dispersion pattern of pollutants, which was a more sensitive factor than the ambient wind speed; under a given atmospheric state, the location of the pollution sources would dramatically determine the pollution patterns within built-up areas. The WRF-CFD numerical evaluation is a reliable method to understand the complicated flow and dispersion within built-up areas.
Smith, Marilyn J.; Lim, Joon W.; vanderWall, Berend G.; Baeder, James D.; Biedron, Robert T.; Boyd, D. Douglas, Jr.; Jayaraman, Buvana; Jung, Sung N.; Min, Byung-Young
2012-01-01
Over the past decade, there have been significant advancements in the accuracy of rotor aeroelastic simulations with the application of computational fluid dynamics methods coupled with computational structural dynamics codes (CFD/CSD). The HART II International Workshop database, which includes descent operating conditions with strong blade-vortex interactions (BVI), provides a unique opportunity to assess the ability of CFD/CSD to capture these physics. In addition to a baseline case with BVI, two additional cases with 3/rev higher harmonic blade root pitch control (HHC) are available for comparison. The collaboration during the workshop permits assessment of structured, unstructured, and hybrid overset CFD/CSD methods from across the globe on the dynamics, aerodynamics, and wake structure. Evaluation of the plethora of CFD/CSD methods indicate that the most important numerical variables associated with most accurately capturing BVI are a two-equation or detached eddy simulation (DES)-based turbulence model and a sufficiently small time step. An appropriate trade-off between grid fidelity and spatial accuracy schemes also appears to be pertinent for capturing BVI on the advancing rotor disk. Overall, the CFD/CSD methods generally fall within the same accuracy; cost-effective hybrid Navier-Stokes/Lagrangian wake methods provide accuracies within 50% the full CFD/CSD methods for most parameters of interest, except for those highly influenced by torsion. The importance of modeling the fuselage is observed, and other computational requirements are discussed.
Godfrey, B.; Majdalani, J.
2014-11-01
This study relies on computational fluid dynamics (CFD) tools to analyse a possible method for creating a stable quadrupole vortex within a simulated, circular-port, cylindrical rocket chamber. A model of the vortex generator is created in a SolidWorks CAD program and then the grid is generated using the Pointwise mesh generation software. The non-reactive flowfield is simulated using an open source computational program, Stanford University Unstructured (SU2). Subsequent analysis and visualization are performed using ParaView. The vortex generation approach that we employ consists of four tangentially injected monopole vortex generators that are arranged symmetrically with respect to the center of the chamber in such a way to produce a quadrupole vortex with a common downwash. The present investigation focuses on characterizing the flow dynamics so that future investigations can be undertaken with increasing levels of complexity. Our CFD simulations help to elucidate the onset of vortex filaments within the monopole tubes, and the evolution of quadrupole vortices downstream of the injection faceplate. Our results indicate that the quadrupole vortices produced using the present injection pattern can become quickly unstable to the extent of dissipating soon after being introduced into simulated rocket chamber. We conclude that a change in the geometrical configuration will be necessary to produce more stable quadrupoles.
Directory of Open Access Journals (Sweden)
Iannetti Aldo
2015-09-01
Full Text Available An advanced transient CFD model of a positive displacement reciprocating pump was created to study its behavior and performance in cavitating condition during the inlet stroke. The “full” cavitation model developed by Singhal et al. was utilized, and a sensitivity analysis test on two air mass fraction amounts (1.5 and 15 parts per million was carried out to study the influence of the dissolved air content in water on the cavitation phenomenon. The model was equipped with user defined functions to introduce the liquid compressibility, which stabilizes the simulation, and to handle the two-way coupling between the pressure field and the inlet valve lift history. Estimation of the performance is also presented in both cases.
Structure et comportement des modeles mathematiques en biologie
Gouzé , Jean-Luc
1988-01-01
Nous décrivons une méthodologie assez générale pour construire des modèles mathématiques en biologie. A partir de la structure du modèle, on peut déduire des résultats sur le comportement des solutions du système différentiel : existence et stabilité de spoints stationnaires, des solutions périodiques... Ces résultats dépendent suelement des relations structurelles dans le modèle, et pas de la formulation quantitative des fonctions qui décrivent ces relations.
CFD modelling and PIV experimental validation of flow fields in urban environments
Directory of Open Access Journals (Sweden)
Gnatowska Renata
2017-01-01
Full Text Available The problem of flow field in the urban boundary-layer (UBL in aspects of wind comfort around buildings and pollutant dispersion has grown in importance since human activity has become so intense that it started to have considerable impact on environment. The issue of wind comfort in urban areas is the result of complex interactions of many flow phenomena and for a long time it arouses a great interest of the research centres. The aim of article is to study urban atmospheric flow at the local scale, which allows for both a detailed reproduction of the flow phenomena and the development of wind comfort criteria. The proposed methodology involves the use of PIV wind tunnel experiments as well as numerical simulations (Computational Fluid Dynamics, CFD in order to enhance understanding of the flow phenomena at this particular scale in urban environments. The analysis has been performed for the 3D case of two surface-mounted buildings arranged in tandem, which were placed with one face normal to the oncoming flow. The local characteristics of flow were obtained by the use of commercial CFD code (ANSYS Fluent. The validation was carried out with reference to the PIV results.
Ramalingam, K; Xanthos, S; Gong, M; Fillos, J; Beckmann, K; Deur, A; McCorquodale, J A
2012-01-01
New York City Environmental Protection is in the process of incorporating biological nitrogen removal (BNR) in its wastewater treatment plants (WWTPs) which entails operating the aeration tanks with higher levels of mixed liquor suspended solids (MLSS) than a conventional activated sludge process. The objective of this paper is to discuss two of the important parameters introduced in the 3D CFD model that has been developed by the City College of New York (CCNY) group: (a) the development of the 'discrete particle' measurement technique to carry out the fractionation of the solids in the final settling tank (FST) which has critical implications in the prediction of the effluent quality; and (b) the modification of the floc aggregation (K(A)) and floc break-up (K(B)) coefficients that are found in Parker's flocculation equation (Parker et al. 1970, 1971) used in the CFD model. The dependence of these parameters on the predictions of the CFD model will be illustrated with simulation results on one of the FSTs at the 26th Ward WWTP in Brooklyn, NY.
International Nuclear Information System (INIS)
Gruber, Thomas; Scharler, Robert; Obernberger, Ingwald
2015-01-01
To gain reliable data for the development of an empirical model for the prediction of the local high temperature corrosion potential in biomass fired boilers, online corrosion probe measurements have been carried out. The measurements have been performed in a specially designed fixed bed/drop tube reactor in order to simulate a superheater boiler tube under well-controlled conditions. The investigated boiler steel 13CrMo4-5 is commonly used as steel for superheater tube bundles in biomass fired boilers. Within the test runs the flue gas temperature at the corrosion probe has been varied between 625 °C and 880 °C, while the steel temperature has been varied between 450 °C and 550 °C to simulate typical current and future live steam temperatures of biomass fired steam boilers. To investigate the dependence on the flue gas velocity, variations from 2 m·s −1 to 8 m·s −1 have been considered. The empirical model developed fits the measured data sufficiently well. Therefore, the model has been applied within a Computational Fluid Dynamics (CFD) simulation of flue gas flow and heat transfer to estimate the local corrosion potential of a wood chips fired 38 MW steam boiler. Additionally to the actual state analysis two further simulations have been carried out to investigate the influence of enhanced steam temperatures and a change of the flow direction of the final superheater tube bundle from parallel to counter-flow on the local corrosion potential. - Highlights: • Online corrosion probe measurements in a fixed bed/drop tube reactor. • Development of an empirical corrosion model. • Application of the model in a CFD simulation of flow and heat transfer. • Variation of boundary conditions and their effects on the corrosion potential
International Nuclear Information System (INIS)
Hadgu, T.; Webb, S.; Itamura, M.
2004-01-01
Yucca Mountain, Nevada has been designated as the nation's high-level radioactive waste repository and the U.S. Department of Energy has been approved to apply to the U.S. Nuclear Regulatory Commission for a license to construct a repository. Heat transfer in the Yucca Mountain Project (YMP) drift enclosures is an important aspect of repository waste emplacement. Canisters containing radioactive waste are to be emplaced in tunnels drilled 500 m below the ground surface. After repository closure, decaying heat is transferred from waste packages to the host rock by a combination of thermal radiation, natural convection and conduction heat transfer mechanism?. Current YMP mountain-scale and drift-scale numerical models often use a simplified porous medium code to model fluid and heat flow in the drift openings. To account for natural convection heat transfer, the thermal conductivity of the air was increased in the porous medium model. The equivalent thermal conductivity, defined as the ratio of total heat flow to conductive heat flow, used in the porous media models was based on horizontal concentric cylinders. Such modeling does not effectively capture turbulent natural convection in the open spaces as discussed by Webb et al. (2003) yet the approach is still widely used on the YMP project. In order to mechanistically model natural convection conditions in YMP drifts, the computational fluid dynamics (CFD) code FLUENT (Fluent, Incorporated, 2001) has been used to model natural convection heat transfer in the YMP emplacement drifts. A two-dimensional (2D) model representative of YMP geometry (e.g., includes waste package, drip shield, invert and drift wall) has been developed and numerical simulations made (Francis et al., 2003). Using CFD simulation results for both natural convection and conduction-only heat transfer in a single phase, single component fluid, equivalent thermal conductivities have been calculated for different Rayleigh numbers. Correlation
V&V Of CFD Modeling Of The Argonne Bubble Experiment: FY15 Summary Report
Energy Technology Data Exchange (ETDEWEB)
Hoyt, Nathaniel C. [Argonne National Lab. (ANL), Argonne, IL (United States); Wardle, Kent E. [Argonne National Lab. (ANL), Argonne, IL (United States); Bailey, James L. [Argonne National Lab. (ANL), Argonne, IL (United States); Basavarajappa, Manjunath [Univ. of Utah, Salt Lake City, UT (United States)
2015-09-30
In support of the development of accelerator-driven production of the fission product Mo 99, computational fluid dynamics (CFD) simulations of an electron-beam irradiated, experimental-scale bubble chamber have been conducted in order to aid in interpretation of existing experimental results, provide additional insights into the physical phenomena, and develop predictive thermal hydraulic capabilities that can be applied to full-scale target solution vessels. Toward that end, a custom hybrid Eulerian-Eulerian-Lagrangian multiphase solver was developed, and simulations have been performed on high-resolution meshes. Good agreement between experiments and simulations has been achieved, especially with respect to the prediction of the maximum temperature of the uranyl sulfate solution in the experimental vessel. These positive results suggest that the simulation methodology that has been developed will prove to be suitable to assist in the development of full-scale production hardware.
Global Combustion Mechanisms for Use in CFD Modeling under Oxy-Fuel Conditions
DEFF Research Database (Denmark)
Andersen, Jimmy; Rasmussen, Christian Lund; Giselsson, Trine
2009-01-01
Two global multistep schemes, the two-step mechanism of Westbrook and Dryer (WD) and the four-step mechanism of Jones and Lindstedt (JL), have been refined for oxy-fuel conditions. Reference calculations were conducted with a detailed chemical kinetic mechanism, validated for oxy-fuel combustion...... conditions. In the modification approach, the initiating reactions involving hydrocarbon and oxygen were retained, while modifying the H-2-CO-CO2 reactions in order to improve prediction of major species concentrations. The main attention has been to capture the trend and level of CO predicted...... by the detailed mechanism as well as the correct equilibrium concentration. A CFD analysis of a propane oxy-fuel flame has been performed using both the original and modified mechanisms. Compared to the original schemes, the modified WD mechanism improved the prediction of the temperature field and of CO...
Parallel CFD simulation of flow in a 3D model of vibrating human vocal folds
Czech Academy of Sciences Publication Activity Database
Šidlof, Petr; Horáček, Jaromír; Řidký, V.
2013-01-01
Roč. 80, č. 1 (2013), s. 290-300 ISSN 0045-7930 R&D Projects: GA ČR(CZ) GAP101/11/0207 Institutional research plan: CEZ:AV0Z20760514 Keywords : numerical simulation * vocal folds * glottal airflow * inite volume method * parallel CFD Subject RIV: BI - Acoustics Impact factor: 1.532, year: 2013 http://www.sciencedirect.com/science?_ob=ArticleListURL&_method=list&_ArticleListID=-268060849&_sort=r&_st=13&view=c&_acct=C000034318&_version=1&_urlVersion=0&_userid=640952&md5=7c5b5539857ee9a02af5e690585b3126&searchtype=a
Montorfano, Davide; Gaetano, Antonio; Barbato, Maurizio C.; Ambrosetti, Gianluca; Pedretti, Andrea
2014-09-01
Concentrating photovoltaic (CPV) cells offer higher efficiencies with regard to the PV ones and allow to strongly reduce the overall solar cell area. However, to operate correctly and exploit their advantages, their temperature has to be kept low and as uniform as possible and the cooling circuit pressure drops need to be limited. In this work an impingement water jet cooling system specifically designed for an industrial HCPV receiver is studied. Through the literature and by means of accurate computational fluid dynamics (CFD) simulations, the nozzle to plate distance, the number of jets and the nozzle pitch, i.e. the distance between adjacent jets, were optimized. Afterwards, extensive experimental tests were performed to validate pressure drops and cooling power simulation results.
Energy saving during bulb storage applying modeling with computational fluid dynamics (CFD)
Energy Technology Data Exchange (ETDEWEB)
Sapounas, A.A.; Campen, J.B.; Wildschut, J.; Bot, G.P. [Wageningen UR Greenhouse Horticutlure and Applied Plant Research, Wageningen (Netherlands)
2010-07-01
Tulip bulbs are stored in ventilated containers to avoid high ethylene concentration between the bulbs. A commercial computational fluid dynamics (CFD) code was used in this study to examine the distribution of air flow between the containers and the potential energy saving by applying simple solutions concerning the design of the air inlet area and the adjustment of the ventilation rate. The variation in container ventilation was calculated to be between 60 and 180 per cent, with 100 per cent being the average flow through the containers. Various improvement measures were examined. The study showed that 7 per cent energy can be saved by smoothing the sharp corners of the entrance channels of the ventilation wall. The most effective and simple improvement was to cover the open top containers. In this case, the variation was between 80 and 120 per cent. The energy saving was about 38 per cent by adjusting the overall ventilation to the container with the minimal acceptable air flow.
Tracer dispersion - experiment and CFD
International Nuclear Information System (INIS)
Zitny, R.
2004-01-01
Description of tracer distribution by means of dispersion models is a method successfully used in process engineering for fifty years. Application of dispersion models in reactor engineering for characterization of flows in column apparatus, heat exchangers, etc. is summarized and experimental tracer techniques as well as CFD methods for dispersion coefficients evaluation are discussed. Possible extensions of thermal axial dispersion model (ADM) and a core-wall ADM model suitable for description of tracer dispersion in laminar flows are suggested as well as CFD implementation as 1D finite elements. (author)
Overview 2004 of NASA Stirling-Convertor CFD-Model Development and Regenerator R&D Efforts
Tew, Roy C.; Dyson, Rodger W.; Wilson, Scott D.; Demko, Rikako
2005-01-01
This paper reports on accomplishments in 2004 in development of Stirling-convertor CFD model at NASA GRC and via a NASA grant, a Stirling regenerator-research effort being conducted via a NASA grant (a follow-on effort to an earlier DOE contract), and a regenerator-microfabrication contract for development of a "next-generation Stirling regenerator." Cleveland State University is the lead organization for all three grant/contractual efforts, with the University of Minnesota and Gedeor Associates as subcontractors. Also, the Stirling Technology Co. and Sunpower, Inc. are both involved in all three efforts, either as funded or unfunded participants. International Mezzo Technologies of Baton Rouge, LA is the regenerator fabricator for the regenerator-microfabrication contract. Results of the efforts in these three areas are summarized.
International Nuclear Information System (INIS)
Pradeep, Chaminda; Yan, Ru; Mylvaganam, Saba; Vestøl, Sondre; Melaaen, Morten C
2014-01-01
The electrical capacitance tomographic (ECT) approach is increasingly seen as attractive for measurement and control applications in the process industries. Recently, there is increased interest in using the tomographic details from ECT for comparing with and validating and tuning CFD models of multiphase flow. Collaboration with researchers working in the field of computational fluid dynamics (CFD) modeling of multiphase flows gives valuable information for both groups of researchers in the field of ECT and CFD. By studying the ECT tomograms of multiphase flows under carefully monitored inflow conditions of the different media and by obtaining the capacitance values, C(i, j, t) with i = 1…N, j = 1, 2,…N and i ≠ j obtained from ECT modules with N electrodes, it is shown how the interface heights in a pipe with stratified flow of oil and air can be fruitfully compared to the values of those obtained from ECT and gamma radiation meter (GRM) for improving CFD modeling. Monitored inflow conditions in this study are flow rates of air, water and oil into a pipe which can be positioned at varying inclinations to the horizontal, thus emulating the pipelines laid in subsea installations. It is found that ECT-based tomograms show most of the features seen in the GRM-based visualizations with nearly one-to-one correspondence to interface heights obtained from these two methods, albeit some anomalies at the pipe wall. However, there are some interesting features the ECT manages to capture: features which the GRM or the CFD modeling apparently do not show, possibly due to parameters not defined in the inputs to the CFD model or much slower response of the GRM. Results presented in this paper indicate that a combination of ECT and GRM and preferably with other modalities with enhanced data fusion and analysis combined with CFD modeling can help to improve the modeling, measurement and control of multiphase flow in the oil and gas industries and in the process industries
Pradeep, Chaminda; Yan, Ru; Vestøl, Sondre; Melaaen, Morten C.; Mylvaganam, Saba
2014-07-01
The electrical capacitance tomographic (ECT) approach is increasingly seen as attractive for measurement and control applications in the process industries. Recently, there is increased interest in using the tomographic details from ECT for comparing with and validating and tuning CFD models of multiphase flow. Collaboration with researchers working in the field of computational fluid dynamics (CFD) modeling of multiphase flows gives valuable information for both groups of researchers in the field of ECT and CFD. By studying the ECT tomograms of multiphase flows under carefully monitored inflow conditions of the different media and by obtaining the capacitance values, C(i, j, t) with i = 1…N, j = 1, 2,…N and i ≠ j obtained from ECT modules with N electrodes, it is shown how the interface heights in a pipe with stratified flow of oil and air can be fruitfully compared to the values of those obtained from ECT and gamma radiation meter (GRM) for improving CFD modeling. Monitored inflow conditions in this study are flow rates of air, water and oil into a pipe which can be positioned at varying inclinations to the horizontal, thus emulating the pipelines laid in subsea installations. It is found that ECT-based tomograms show most of the features seen in the GRM-based visualizations with nearly one-to-one correspondence to interface heights obtained from these two methods, albeit some anomalies at the pipe wall. However, there are some interesting features the ECT manages to capture: features which the GRM or the CFD modeling apparently do not show, possibly due to parameters not defined in the inputs to the CFD model or much slower response of the GRM. Results presented in this paper indicate that a combination of ECT and GRM and preferably with other modalities with enhanced data fusion and analysis combined with CFD modeling can help to improve the modeling, measurement and control of multiphase flow in the oil and gas industries and in the process industries
Directory of Open Access Journals (Sweden)
Dionysios I. Kolaitis
2010-12-01
Full Text Available Diesel fuel is used in a variety of technological applications due to its high energy density and ease of distribution and storage. Motivated by the need to use novel fuel utilization techniques, such as porous burners and fuel cells, which have to be fed with a gaseous fuel, a Diesel fuel evaporation device, operating in the “Stabilized Cool Flame” (SCF regime, is numerically investigated. In this device, a thermo-chemically stable low-temperature oxidative environment is developed, which produces a well-mixed, heated air-fuel vapour gaseous mixture that can be subsequently fed either to premixed combustion systems or fuel reformer devices for fuel cell applications. In this work, the ANSYS CFX 11.0 CFD code is used to simulate the three-dimensional, turbulent, two-phase, multi-component and reacting flow-field, developed in a SCF evaporation device. An innovative modelling approach, based on the fitting parameter concept, has been developed in order to simulate cool flame reactions. The model, based on physico-chemical reasoning coupled with information from available experimental data, is implemented in the CFD code and is validated by comparing numerical predictions to experimental data obtained from an atmospheric pressure, recirculating flow SCF device. Numerical predictions are compared with temperature measurements, achieving satisfactory levels of agreement. The developed numerical tool can effectively support the theoretical study of the physical and chemical phenomena emerging in practical devices of liquid fuel spray evaporation in a SCF environment, as well as the design optimisation process of such innovative devices.
Xanthos, S; Ramalingam, K; Lipke, S; McKenna, B; Fillos, J
2013-01-01
The water industry and especially the wastewater treatment sector has come under steadily increasing pressure to optimize their existing and new facilities to meet their discharge limits and reduce overall cost. Gravity separation of solids, producing clarified overflow and thickened solids underflow has long been one of the principal separation processes used in treating secondary effluent. Final settling tanks (FSTs) are a central link in the treatment process and often times act as the limiting step to the maximum solids handling capacity when high throughput requirements need to be met. The Passaic Valley Sewerage Commission (PVSC) is interested in using a computational fluid dynamics (CFD) modeling approach to explore any further FST retrofit alternatives to sustain significantly higher plant influent flows, especially under wet weather conditions. In detail there is an interest in modifying and/or upgrading/optimizing the existing FSTs to handle flows in the range of 280-720 million gallons per day (MGD) (12.25-31.55 m(3)/s) in compliance with the plant's effluent discharge limits for total suspended solids (TSS). The CFD model development for this specific plant will be discussed, 2D and 3D simulation results will be presented and initial results of a sensitivity study between two FST effluent weir structure designs will be reviewed at a flow of 550 MGD (∼24 m(3)/s) and 1,800 mg/L MLSS (mixed liquor suspended solids). The latter will provide useful information in determining whether the existing retrofit of one of the FSTs would enable compliance under wet weather conditions and warrants further consideration for implementing it in the remaining FSTs.
Verma, Shashi Kant; Sinha, S. L.; Chandraker, D. K.
2018-05-01
Numerical simulation has been carried out for the study of natural mixing of a Tracer (Passive scalar) to describe the development of turbulent diffusion in an injected sub-channel and, afterwards on, cross-mixing between adjacent sub-channels. In this investigation, post benchmark evaluation of the inter-subchannel mixing was initiated to test the ability of state-of-the-art Computational Fluid Dynamics (CFD) codes to numerically predict the important turbulence parameters downstream of a ring type spacer grid in a rod-bundle. A three-dimensional Computational Fluid Dynamics (CFD) tool (STAR-CCM+) was used to model the single phase flow through a 30° segment or 1/12th of the cross segment of a 54-rod bundle with a ring shaped spacer grid. Polyhedrons were used to discretize the computational domain, along with prismatic cells near the walls, with an overall mesh count of 5.2 M cell volumes. The Reynolds Stress Models (RSM) was tested because of RSM accounts for the turbulence anisotropy, to assess their capability in predicting the velocities as well as mass fraction of potassium nitrate measured in the experiment. In this way, the line probes are located in the different position of subchannels which could be used to characterize the progress of the mixing along the flow direction, and the degree of cross-mixing assessed using the quantity of tracer arriving in the neighbouring sub-channels. The predicted dimensionless mixing scalar along the length, however, was in good agreement with the measurements downstream of spacers.
Qi, Shouliang; Zhang, Baihua; Yue, Yong; Shen, Jing; Teng, Yueyang; Qian, Wei; Wu, Jianlin
2018-03-01
Tracheal Bronchus (TB) is a rare congenital anomaly characterized by the presence of an abnormal bronchus originating from the trachea or main bronchi and directed toward the upper lobe. The airflow pattern in tracheobronchial trees of TB subjects is critical, but has not been systemically studied. This study proposes to simulate the airflow using CT image based models and the computational fluid dynamics (CFD) method. Six TB subjects and three health controls (HC) are included. After the geometric model of tracheobronchial tree is extracted from CT images, the spatial distribution of velocity, wall pressure, wall shear stress (WSS) is obtained through CFD simulation, and the lobar distribution of air, flow pattern and global pressure drop are investigated. Compared with HC subjects, the main bronchus angle of TB subjects and the variation of volume are large, while the cross-sectional growth rate is small. High airflow velocity, wall pressure, and WSS are observed locally at the tracheal bronchus, but the global patterns of these measures are still similar to those of HC. The ratio of airflow into the tracheal bronchus accounts for 6.6-15.6% of the inhaled airflow, decreasing the ratio to the right upper lobe from 15.7-21.4% (HC) to 4.9-13.6%. The air into tracheal bronchus originates from the right dorsal near-wall region of the trachea. Tracheal bronchus does not change the global pressure drop which is dependent on multiple variables. Though the tracheobronchial trees of TB subjects present individualized features, several commonalities on the structural and airflow characteristics can be revealed. The observed local alternations might provide new insight into the reason of recurrent local infections, cough and acute respiratory distress related to TB.
Energy Technology Data Exchange (ETDEWEB)
Manera, Annalisa [Univ. of Michigan, Ann Arbor, MI (United States); Corradini, Michael [Univ. of Wisconsin, Madison, WI (United States); Petrov, Victor [Univ. of Michigan, Ann Arbor, MI (United States); Anderson, Mark [Univ. of Wisconsin, Madison, WI (United States); Tompkins, Casey [Univ. of Wisconsin, Madison, WI (United States); Nunez, Daniel [Univ. of Michigan, Ann Arbor, MI (United States)
2018-02-13
This project has been focused on the experimental and numerical investigations of the water-cooled and air-cooled Reactor Cavity Cooling System (RCCS) designs. At this aim, we have leveraged an existing experimental facility at the University of Wisconsin-Madison (UW), and we have designed and built a separate effect test facility at the University of Michigan. The experimental facility at UW has underwent several upgrades, including the installation of advanced instrumentation (i.e. wire-mesh sensors) built at the University of Michigan. These provides highresolution time-resolved measurements of the void-fraction distribution in the risers of the water-cooled RCCS facility. A phenomenological model has been developed to assess the water cooled RCCS system stability and determine the root cause behind the oscillatory behavior that occurs under normal two-phase operation. Testing under various perturbations to the water-cooled RCCS facility have resulted in changes in the stability of the integral system. In particular, the effects on stability of inlet orifices, water tank volume have and system pressure been investigated. MELCOR was used as a predictive tool when performing inlet orificing tests and was able to capture the Density Wave Oscillations (DWOs) that occurred upon reaching saturation in the risers. The experimental and numerical results have then been used to provide RCCS design recommendations. The experimental facility built at the University of Michigan was aimed at the investigation of mixing in the upper plenum of the air-cooled RCCS design. The facility has been equipped with state-of-theart high-resolution instrumentation to achieve so-called CFD grade experiments, that can be used for the validation of Computational Fluid Dynanmics (CFD) models, both RANS (Reynold-Averaged) and LES (Large Eddy Simulations). The effect of risers penetration in the upper plenum has been investigated as well.
Modelling of unsteady airfoil aerodynamics for the prediction of blade standstill vibrations
Skrzypinski, Witold Robert; Gaunaa, Mac; Sørensen, Niels N.; Zahle, Frederik
2012-01-01
In the present work, CFD simulations of the DU96-W-180 airfoil at 26 and 24 deg. angles of attack were performed. 2D RANS and 3D DES computations with non-moving and prescribed motion airfoil suspensions were carried out. The openings of the lift coefficient loops predicted by CFD were different than those predicted by engineering models. The average lift slope of the loops from the 3D CFD had opposite sign than the one from 2D CFD. Trying to model the 3D behaviour with the engineering models...
International Nuclear Information System (INIS)
Lucas, D.; Beyer, M.; Banowski, M.; Seidel, T.; Krepper, E.; Liao, Y.; Apanasevich, P.; Gauss, F.; Ma, T.
2016-12-01
This report summarizes the main results obtained in frame of the project. The aim of the project was the qualification of CFD-methods for two-phase flows with phase transfer relevant for nuclear safety research. To reach this aim CFD-grade experimental data are required. Such data can be obtained at the TOPFLOW facility because of the combination of experiments in scales and at parameters which are relevant for nuclear safety research with innovative measuring techniques. The experimental part of this project comprises investigations on flows in vertical pipes using the ultrafast X-ray tomography, on flows with and without phase transfer in a special test basin and on counter-current flow limitation in a model of a PWR hot leg. These experiments are only briefly presented in this report since detailed documentations are given in separated reports for all of these 3 experimental series. One important results of the activities devoted on CFD qualification is the establishment of the baseline model concept and the definition of the baseline model for poly-disperse bubbly flows. This is an important contribution to improve the predictive capabilities of CFD-models basing on the two- or multi-fluid approach. On the other hand, the innovative Generalized Two-Phase Flow concept (GENTOP) aims on an extension of the range of applicability of CFD-methods. In many relevant flow situations different morphologies of the phases or different flow pattern occur simultaneously in one flow domain. In addition transitions between these morphologies may occur. The GENTOP-concept for the first time a framework was established which allows the simulation of such flow situations in a consistent manner. Other activities of the project aim on special model developments to improve the simulation capabilities for flows with phase transfer.
International Nuclear Information System (INIS)
Zhen, Xudong; Wang, Yang; Liu, Daming
2016-01-01
Highlights: • A new optimized chemical kinetic mechanism for PRF is developed. • New mechanism optimization is performed based on the CHEMKIN simulations. • More reactions of C_0–C_1 oxidation are added in the present mechanism. • Good performance is achieved of mechanism by validating various reactors and operating conditions. - Abstract: In the present study, for the multi-dimensional CFD (computational fluid dynamics) combustion simulations of internal combustion engines, a new optimized chemical kinetic reaction mechanism for the oxidation of PRF (primary reference fuel) instead of gasoline has been developed. In order to carry out the in-depth research for combustion phenomenon of internal combustion engines, an optimized reduced PRF mechanism including more intermediate species and radicals was developed. The developed mechanism contains of iso-octane (C_8H_1_8) and n-heptane (C_7H_1_6) surrogates, which contains of 51-species and 193 reactions. Compared with many other mechanisms of PRF, more reactions of C_0–C_1 oxidation (100 reactions) are added in the present mechanism. In order to improve the performances of the model, the developed mechanism focused on the improvement through the prediction of the ignition delay time. The developed mechanism has been validated against various experimental and simulation data including shock tube data, laminar flame speed data and HCCI (homogeneous charge compression ignition) engine data. The results showed that the developed PRF mechanism was agreements with the experimental data and other approved reduced mechanisms, and it could be applied to the multi-dimensional CFD simulations for internal combustion engines.
International Nuclear Information System (INIS)
Santiago, J. L.; Martin, F.
2015-01-01
A methodology to estimate the spatial representativeness of air pollution monitoring sites is applied to two urban districts. This methodology is based on high resolution maps of air pollution computed by using Computational Fluid Dynamics (CFD) modelling tools. Traffic-emitted NO 2 dispersion is simulated for several meteorological conditions taking into account the effect of the buildings on air flow and pollutant dispersion and using a steady state CFD-RANS approach. From these results, maps of average pollutant concentrations for January -May 2011 are computed as a combination of the simulated scenarios. Two urban districts of Madrid City were simulated. Spatial representativeness areas for 32 different sites within the same district (including the site of the operative air quality stations) have been estimated by computing the portion of the domains with average NO 2 concentration differing less than a 20% of the concentration at each candidate monitoring site. New parameters such as the ratio AR between the representativeness area and the whole domain area or the representativeness index (IR) has been proposed to discuss and compare the representativeness areas. Significant differences between the spatial representativeness of the candidate sites of both studied districts have been found. The sites of the Escuelas Aguirre district have generally smaller representativeness areas than those of the Plaza de Castilla. More stations are needed to cover the Escuelas Aguirre district than for the Plaza de Castilla one. The operative air quality station of the Escuelas Aguirre district is less representative than the station of the Plaza de Castilla district. The cause of these differences seems to be the differences in urban structure of both districts prompting different ventilation. (Author)
Energy Technology Data Exchange (ETDEWEB)
Santiago, J. L.; Martin, F.
2015-07-01
A methodology to estimate the spatial representativeness of air pollution monitoring sites is applied to two urban districts. This methodology is based on high resolution maps of air pollution computed by using Computational Fluid Dynamics (CFD) modelling tools. Traffic-emitted NO{sub 2} dispersion is simulated for several meteorological conditions taking into account the effect of the buildings on air flow and pollutant dispersion and using a steady state CFD-RANS approach. From these results, maps of average pollutant concentrations for January -May 2011 are computed as a combination of the simulated scenarios. Two urban districts of Madrid City were simulated. Spatial representativeness areas for 32 different sites within the same district (including the site of the operative air quality stations) have been estimated by computing the portion of the domains with average NO{sub 2} concentration differing less than a 20% of the concentration at each candidate monitoring site. New parameters such as the ratio AR between the representativeness area and the whole domain area or the representativeness index (IR) has been proposed to discuss and compare the representativeness areas. Significant differences between the spatial representativeness of the candidate sites of both studied districts have been found. The sites of the Escuelas Aguirre district have generally smaller representativeness areas than those of the Plaza de Castilla. More stations are needed to cover the Escuelas Aguirre district than for the Plaza de Castilla one. The operative air quality station of the Escuelas Aguirre district is less representative than the station of the Plaza de Castilla district. The cause of these differences seems to be the differences in urban structure of both districts prompting different ventilation. (Author)
Energy Technology Data Exchange (ETDEWEB)
Santiago, J.L.; Martin, F.
2015-07-01
A methodology to estimate the spatial representativeness of air pollution monitoring sites is applied to two urban districts. This methodology is based on high resolution maps of air pollution computed by using Computational Fluid Dynamics (CFD) modelling tools. Traffic-emitted NO2 dispersion is simulated for several meteorological conditions taking into account the effect of the buildings on air flow and pollutant dispersion and using a steady state CFD-RANS approach. From these results, maps of average pollutant concentrations for January–May 2011 are computed as a combination of the simulated scenarios. Two urban districts of Madrid City were simulated. Spatial representativeness areas for 32 different sites within the same district (including the site of the operative air quality stations) have been estimated by computing the portion of the domains with average NO2 concentration differing less than a 20% of the concentration at each candidate monitoring site. New parameters such as the ratio AR between the representativeness area and the whole domain area or the representativeness index (IR) has been proposed to discuss and compare the representativeness areas. Significant differences between the spatial representativeness of the candidate sites of both studied districts have been found. The sites of the Escuelas Aguirre district have generally smaller representativeness areas than those of the Plaza de Castilla. More stations are needed to cover the Escuelas Aguirre district than for the Plaza de Castilla one. The operative air quality station of the Escuelas Aguirre district is less representative than the station of the Plaza de Castilla district. The cause of these differences seems to be the differences in urban structure of both districts prompting different ventilation. (Author)
International Nuclear Information System (INIS)
Ferng, Y.M.
2008-01-01
The erosion-corrosion (E/C) wear is an essential degradation mechanism for the piping in the nuclear power plant, which results in the oxide mass loss from the inside of piping, the wall thinning, and even the pipe break. The pipe break induced by the E/C wear may cause costly plant repairs and personal injures. The measurement of pipe wall thickness is a useful tool for the power plant to prevent this incident. In this paper, CFD models are proposed to predict the local distributions of E/C wear sites, which include both the two-phase hydrodynamic model and the E/C models. The impacts of centrifugal and gravitational forces on the liquid droplet behaviors within the piping can be reasonably captured by the two-phase model. Coupled with these calculated flow characteristics, the E/C models can predicted the wear site distributions that show satisfactory agreement with the plant measurements. Therefore, the models proposed herein can assist in the pipe wall monitoring program for the nuclear power plant by way of concentrating the measuring point on the possible sites of severe E/C wear for the piping and reducing the measurement labor works
International Nuclear Information System (INIS)
Moussiere, S.; Roubaud, A.; Fournel, B.; Joussot-Dubien, C.; Boutin, O.; Guichardon, P.
2012-01-01
In order to design and define appropriate dimensions for a supercritical oxidation reactor, a comparative 2D and 3D simulation of the fluid dynamics and heat transfer during an oxidation process has been performed. The solver used is a commercial code, Fluent 6.2 (R). The turbulent flow field in the reactor, created by the stirrer, is taken into account with a k-omega model and a swirl imposed to the fluid. In the 3D case the rotation of the stirrer can be modelled using the sliding mesh model and the moving reference frame model. This work allows comparing 2D and 3D velocity and heat transfer calculations. The predicted values (mainly species concentrations and temperature profiles) are of the same order in both cases. The reactivity of the system is taken into account with a classical Eddy Dissipation Concept combustion model. Comparisons with experimental temperature measurements validate the ability of the CFD modelling to simulate the supercritical water oxidation reactive medium. Results indicate that the flow can be considered as plug flow-like and that heat transfer is strongly enhanced by the stirring. (authors)
CFD Lagrangian Modeling of Water Droplet Transport for ISS Hygiene Activity Application
Son, Chang H.
2013-01-01
The goal of this study was to assess the impacts of free water propagation in the Waste and Hygiene Compartment (WHC) installed in Node 3. Free water can be generated inside the WHC in small quantities due to crew hygiene activity. To mitigate potential impact of free water in Node 3 cabin the WHC doorway is enclosed by a waterproof bump-out, Kabin, with openings at the top and bottom. At the overhead side of the rack, there is a screen that prevents large drops of water from exiting. However, as the avionics fan in the WHC causes airflow toward the deck side of the rack, small quantities of free water may exit at the bottom of the Kabin. A Computational Fluid Dynamics (CFD) analysis of Node 3 cabin airflow enable identifying the paths of water transport. To simulate the droplet transport the Lagrangian discrete phase approach was used. Various initial droplet distributions were considered in the study. The droplet diameter was varied in the range of 5-20 mm. The results of the computations showed that most of the drops fall to the rack surface not far from the WHC curtain.
Statistical Analysis of Detailed 3-D CFD LES Simulations with Regard to CCV Modeling
Directory of Open Access Journals (Sweden)
Vítek Oldřich
2016-06-01
Full Text Available The paper deals with statistical analysis of large amount of detailed 3-D CFD data in terms of cycle-to-cycle variations (CCVs. These data were obtained by means of LES calculations of many consecutive cycles. Due to non-linear nature of Navier-Stokes equation set, there is a relatively significant CCV. Hence, every cycle is slightly different – this leads to requirement to perform statistical analysis based on ensemble averaging procedure which enables better understanding of CCV in ICE including its quantification. The data obtained from the averaging procedure provides results on different space resolution levels. The procedure is applied locally, i.e., in every cell of the mesh. Hence there is detailed CCV information on local level – such information can be compared with RANS simulations. Next, volume/mass averaging provides information at specific locations – e.g., gap between electrodes of a spark plug. Finally, volume/mass averaging of the whole combustion chamber leads to global information which can be compared with experimental data or results of system simulation tools (which are based on 0-D/1-D approach.
Grazziotin, Pablo Colossi
2016-01-01
This research presents the development of CityZoom UP, the first attempt to extend existing urban planning software in order to assist in modelling urban scenarios and setting up simulation parameters for Gaussian dispersion and CFD models. Based on the previous capabilities and graphic user interfaces of CityZoom to model and validate urban scenarios based on Master Plan regulations, new graphic user interfaces, automatic mesh generation and data conversion algorithms have been created to se...
Golzarijalal, Mohammad; Zokaee Ashtiani, Farzin; Dabir, Bahram
2018-01-01
In this study, shear-induced flocculation modeling of Chlorella sp. microalgae was conducted by combination of population balance modeling and CFD. The inhomogeneous Multiple Size Group (MUSIG) and the Euler-Euler two fluid models were coupled via Ansys-CFX-15 software package to achieve both fluid and particle dynamics during the flocculation. For the first time, a detailed model was proposed to calculate the collision frequency and breakage rate during the microalgae flocculation by means of the response surface methodology as a tool for optimization. The particle size distribution resulted from the model was in good agreement with that of the jar test experiment. Furthermore, the subsequent sedimentation step was also examined by removing the shear rate in both simulations and experiments. Consequently, variation in the shear rate and its effects on the flocculation behavior, sedimentation rate and recovery efficiency were evaluated. Results indicate that flocculation of Chlorella sp. microalgae under shear rates of 37, 182, and 387 s -1 is a promising method of pre-concentration which guarantees the cost efficiency of the subsequent harvesting process by recovering more than 90% of the biomass. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 34:160-174, 2018. © 2017 American Institute of Chemical Engineers.
International Nuclear Information System (INIS)
Peña-Monferrer, C.; Passalacqua, A.; Chiva, S.; Muñoz-Cobo, J.L.
2016-01-01
Highlights: • A population balance equation solved with QMOM approximation is implemented in OpenFOAM. • Available models for interfacial forces and bubble induced turbulence are analyzed. • A vertical pipe flow is simulated for different bubbly flow conditions. • Two-phase flow characteristics in vertical pipes are properly predicted. - Abstract: An Eulerian–Eulerian approach was investigated to model adiabatic bubbly flow with CFD techniques. In the framework of the OpenFOAM"® software, a two-fluid model solver was modified to include a population balance equation, solved with the quadrature method of moments approximation to predict upward bubbly flow in vertical pipes considering the polydisperse nature of two-phase flow. Some progress have been made recently solving population balance equations in OpenFOAM"® and this research aims to extend its application to the case of vertical pipes under different conditions of liquid and gas velocities. In order to test the solver for nuclear applications, interfacial forces and bubble induced turbulence models were included to provide to this solver the capability to correctly predict the behavior of the continuous and disperse phases. Two-phase flow experiments with different superficial velocities of gas and liquid are used to validate the model and its implementation. Radial profiles of void fraction, gas and liquid velocities, Sauter mean diameter and turbulence intensity are compared to the computational results. These results are in satisfactory agreement with the experiments, showing the capability of the solver to predict two-phase flow characteristics.
Clamens, Olivier; Lecerf, Johann; Hudelot, Jean-Pascal; Duc, Bertrand; Cadiou, Thierry; Blaise, Patrick; Biard, Bruno
2018-01-01
CABRI is an experimental pulse reactor, funded by the French Nuclear Safety and Radioprotection Institute (IRSN) and operated by CEA at the Cadarache research center. It is designed to study fuel behavior under RIA conditions. In order to produce the power transients, reactivity is injected by depressurization of a neutron absorber (3He) situated in transient rods inside the reactor core. The shapes of power transients depend on the total amount of reactivity injected and on the injection speed. The injected reactivity can be calculated by conversion of the 3He gas density into units of reactivity. So, it is of upmost importance to properly master gas density evolution in transient rods during a power transient. The 3He depressurization was studied by CFD calculations and completed with measurements using pressure transducers. The CFD calculations show that the density evolution is slower than the pressure drop. Surrogate models were built based on CFD calculations and validated against preliminary tests in the CABRI transient system. Studies also show that it is harder to predict the depressurization during the power transients because of neutron/3He capture reactions that induce a gas heating. This phenomenon can be studied by a multiphysics approach based on reaction rate calculation thanks to Monte Carlo code and study the resulting heating effect with the validated CFD simulation.
Directory of Open Access Journals (Sweden)
Clamens Olivier
2018-01-01
Full Text Available CABRI is an experimental pulse reactor, funded by the French Nuclear Safety and Radioprotection Institute (IRSN and operated by CEA at the Cadarache research center. It is designed to study fuel behavior under RIA conditions. In order to produce the power transients, reactivity is injected by depressurization of a neutron absorber (3He situated in transient rods inside the reactor core. The shapes of power transients depend on the total amount of reactivity injected and on the injection speed. The injected reactivity can be calculated by conversion of the 3He gas density into units of reactivity. So, it is of upmost importance to properly master gas density evolution in transient rods during a power transient. The 3He depressurization was studied by CFD calculations and completed with measurements using pressure transducers. The CFD calculations show that the density evolution is slower than the pressure drop. Surrogate models were built based on CFD calculations and validated against preliminary tests in the CABRI transient system. Studies also show that it is harder to predict the depressurization during the power transients because of neutron/3He capture reactions that induce a gas heating. This phenomenon can be studied by a multiphysics approach based on reaction rate calculation thanks to Monte Carlo code and study the resulting heating effect with the validated CFD simulation.
Vincent Casseau; Daniel E. R. Espinoza; Thomas J. Scanlon; Richard E. Brown
2016-01-01
hy2Foam is a newly-coded open-source two-temperature computational fluid dynamics (CFD) solver that has previously been validated for zero-dimensional test cases. It aims at (1) giving open-source access to a state-of-the-art hypersonic CFD solver to students and researchers; and (2) providing a foundation for a future hybrid CFD-DSMC (direct simulation Monte Carlo) code within the OpenFOAM framework. This paper focuses on the multi-dimensional verification of hy2Foam and firstly describes th...
Vincent Casseau; Rodrigo C. Palharini; Thomas J. Scanlon; Richard E. Brown
2016-01-01
A two-temperature CFD (computational fluid dynamics) solver is a prerequisite to any spacecraft re-entry numerical study that aims at producing results with a satisfactory level of accuracy within realistic timescales. In this respect, a new two-temperature CFD solver, hy2Foam, has been developed within the framework of the open-source CFD platform OpenFOAM for the prediction of hypersonic reacting flows. This solver makes the distinct juncture between the trans-rotational and multiple vibrat...
Energy Technology Data Exchange (ETDEWEB)
Leishear, Robert A.; Lee, Si Y.; Poirier, Michael R.; Steeper, Timothy J.; Ervin, Robert C.; Giddings, Billy J.; Stefanko, David B.; Harp, Keith D.; Fowley, Mark D.; Van Pelt, William B.
2012-10-07
Computational fluid dynamics (CFD) is recognized as a powerful engineering tool. That is, CFD has advanced over the years to the point where it can now give us deep insight into the analysis of very complex processes. There is a danger, though, that an engineer can place too much confidence in a simulation. If a user is not careful, it is easy to believe that if you plug in the numbers, the answer comes out, and you are done. This assumption can lead to significant errors. As we discovered in the course of a study on behalf of the Department of Energy's Savannah River Site in South Carolina, CFD models fail to capture some of the large variations inherent in complex processes. These variations, or scatter, in experimental data emerge from physical tests and are inadequately captured or expressed by calculated mean values for a process. This anomaly between experiment and theory can lead to serious errors in engineering analysis and design unless a correction factor, or safety factor, is experimentally validated. For this study, blending times for the mixing of salt solutions in large storage tanks were the process of concern under investigation. This study focused on the blending processes needed to mix salt solutions to ensure homogeneity within waste tanks, where homogeneity is required to control radioactivity levels during subsequent processing. Two of the requirements for this task were to determine the minimum number of submerged, centrifugal pumps required to blend the salt mixtures in a full-scale tank in half a day or less, and to recommend reasonable blending times to achieve nearly homogeneous salt mixtures. A full-scale, low-flow pump with a total discharge flow rate of 500 to 800 gpm was recommended with two opposing 2.27-inch diameter nozzles. To make this recommendation, both experimental and CFD modeling were performed. Lab researchers found that, although CFD provided good estimates of an average blending time, experimental blending times varied
DEFF Research Database (Denmark)
Pang, Kar Mun; Karvounis, Nikolas; Schramm, Jesper
In this reported work, simulation studies of in-cylinder diesel combustion and pollutant formation processesin a two-stroke, low-speed uniflow-scavenged marine diesel engine are presented. Numerical computation is performed by integrating chemical kinetics into CFD computations. In order...... to minimize the computational runtime, an in-house skeletal n-heptane chemical mechanism is coupled with the CFD model. This surrogate fuel model comprises 89 reactions with 32 species essential to diesel ignition/combustion processes as well as the formation of soot precursors and nitrogen monoxide (NO......). Prior to the marine engine simulation,coupling of the newly developed surrogate fuel model and a revised multi-step soot model [1] is validated on the basis of optical diagnostics measurement obtained at varying ambient pressure levels [2]. It is demonstrated that the variation of ignition delay times...
CFD Modelling of the Effects of Operating Parameters on the Spreading of Liquids on a Spinning Disc
Directory of Open Access Journals (Sweden)
Y. Pan
2014-03-01
Full Text Available A novel dry slag granulation process based on a spinning disc is being developed by CSIRO. This process utilises centrifugal force to break up molten slag into droplets, which are then quenched into solidified granules by a flow of cold air. In this process the sensible heat of slag is recovered as hot air. In the present work, a previously developed steady-state, two-dimensional and multiphase CFD model was applied to perform parametric numerical experiments to investigate the effects of a number of parameters on the liquid film thickness at the disc edge, which included liquid mass feeding (pouring rate, disc spinning speed, disc radius, liquid viscosity, density and surface tension. The modelling results were compared with experimental data and were found to be in good agreement. To reduce the number of simulations needed, Box and Behnken's fractional factorial design of numerical experiment was adopted. Furthermore, in order for the modelling results to be applicable to atomisation of different liquids using spinning discs of different sizes, a dimensionless correlation was developed based on dimensional analysis of the numerical simulation data. The modelling results indicate that the liquid film thickness can be significantly influenced by the disc radius and spinning speed, the liquid mass feeding rate, viscosity and density, whereas the liquid surface tension has a negligible effect.
Modelling of EAF off-gas post combustion in dedusting systems using CFD methods
Energy Technology Data Exchange (ETDEWEB)
Tang, X.; Kirschen, M.; Pfeifer, H. [Inst. for Industrial Furnaces and Heat Engineering in Metallurgy, RWTH Aachen, Aachen (Germany); Abel, M. [VAI-Fuchs GmbH, Willstaett (Germany)
2003-04-01
To comply with the increasingly strict environmental regulations, the poisonous off-gas species, e.g. carbon monoxide (CO), produced in the electric arc furnace (EAF) must be treated in the dedusting system. In this work, gas flow patterns of the off-gas post combustion in three different dedusting system units were simulated with a computational fluid dynamics (CFD) code: (1) post combustion in a horizontal off-gas duct, (2) post combustion in a water cooled post combustion chamber without additional energy supply (no gas or air/oxygen injectors) and (3) post combustion in a post combustion chamber with additional energy input (gas, air injectors and ignition burner, case study of VAI-Fuchs GmbH). All computational results are illustrated with gas velocity, temperature distribution and chemical species concentration fields for the above three cases. In case 1, the effect of different false air volume flow rates at the gap between EAF elbow and exhaust gas duct on the external post combustion of the off-gas was investigated. For case 2, the computed temperature and chemical composition (CO, CO{sub 2} and O{sub 2}) of the off-gas at the post chamber exit are in good agreement with additional measurements. Various operating conditions for case 3 have been studied, including different EAF off-gas temperatures and compositions, i. e. CO content, in order to optimize oxygen and burner gas flow rates. Residence time distributions in the external post combustion chambers have been calculated for cases 2 and 3. Derived temperature fields of the water cooled walls yield valuable information on thermally stressed parts of post combustion units. The results obtained in this work may also gain insight to future investigation of combustion of volatile organic components (VOC) or formation of nitrogen oxide (NO{sub x}) and permit the optimization of the operation and design of the off-gas dedusting system units. (orig.)
Frolov, S V; Sindeev, S V; Liepsch, D; Balasso, A
2016-05-18
According to the clinical data, flow conditions play a major role in the genesis of intracranial aneurysms. The disorder of the flow structure is the cause of damage of the inner layer of the vessel wall, which leads to the development of cerebral aneurysms. Knowledge of the alteration of the flow field in the aneurysm region is important for treatment. The aim is to study quantitatively the flow structure in an patient-specific aneurysm model of the internal carotid artery using both experimental and computational fluid dynamics (CFD) methods with Newtonian and non-Newtonian fluids. A patient-specific geometry of aneurysm of the internal carotid artery was used. Patient data was segmented and smoothed to obtain geometrical model. An elastic true-to-scale silicone model was created with stereolithography. For initial investigation of the blood flow, the flow was visualized by adding particles into the silicone model. The precise flow velocity measurements were done using 1D Laser Doppler Anemometer with a spatial resolution of 50 μ m and a temporal resolution of 1 ms. The local velocity measurements were done at a distance of 4 mm to each other. A fluid with non-Newtonian properties was used in the experiment. The CFD simulations for unsteady-state problem were done using constructed hexahedral mesh for Newtonian and non-Newtonian fluids. Using 1D laser Doppler Anemometer the minimum velocity magnitude at the end of systole -0.01 m/s was obtained in the aneurysm dome while the maximum velocity 1 m/s was at the center of the outlet segment. On central cross section of the aneurysm the maximum velocity value is only 20% of the average inlet velocity. The average velocity on the cross-section is only 11% of the inlet axial velocity. Using the CFD simulation the wall shear stresses for Newtonian and non-Newtonian fluid at the end of systolic phase (t= 0.25 s) were computed. The wall shear stress varies from 3.52 mPa (minimum value) to 10.21 Pa (maximum value) for the
Retooling CFD for hypersonic aircraft
Dwoyer, Douglas L.; Kutler, Paul; Povinelli, Louis A.
1987-01-01
The CFD facility requirements of hypersonic aircraft configuration design development are different from those thus far employed for reentry vehicle design, because (1) the airframe and the propulsion system must be fully integrated to achieve the desired performance; (2) the vehicle must be reusable, with minimum refurbishment requirements between flights; and (3) vehicle performance must be optimized for a wide range of Mach numbers. An evaluation is presently made of flow resolution within shock waves, transition and turbulence phenomenon tractability, chemical reaction modeling, and hypersonic boundary layer transition, with state-of-the-art CFD.
Directory of Open Access Journals (Sweden)
Jan Skočilas
2015-08-01
Full Text Available This paper deals with a computational fluid dynamics (CFD simulation of the heat transfer process during turbulent hot water flow between two chevron plates in a plate heat exchanger. A three-dimensional model with the simplified geometry of two cross-corrugated channels provided by chevron plates, taking into account the inlet and outlet ports, has been designed for the numerical study. The numerical model was based on the shear-stress transport (SST k-! model. The basic characteristics of the heat exchanger, as values of heat transfer coefficient and pressure drop, have been investigated. A comparative analysis of analytical calculation results, based on experimental data obtained from literature, and of the results obtained by numerical simulation, has been carried out. The coefficients and the exponents in the design equations for the considered plates have been arranged by using simulation results. The influence on the main flow parameters of the corrugation inclination angle relative to the flow direction has been taken into account. An analysis of the temperature distribution across the plates has been carried out, and it has shown the presence of zones with higher heat losses and low fluid flow intensity.
Coupling of the 3D neutron kinetic core model DYN3D with the CFD software ANSYS-CFX
International Nuclear Information System (INIS)
Grahn, Alexander; Kliem, Sören; Rohde, Ulrich
2015-01-01
Highlights: • Improved thermal hydraulic description of nuclear reactor cores. • Possibility of three-dimensional flow phenomena in the core, such as cross flow, flow reversal, flow around obstacles. • Simulation at higher spatial resolution as compared to system codes. - Abstract: This article presents the implementation of a coupling between the 3D neutron kinetic core model DYN3D and the commercial, general purpose computational fluid dynamics (CFD) software ANSYS-CFX. In the coupling approach, parts of the thermal hydraulic calculation are transferred to CFX for its better ability to simulate the three-dimensional coolant redistribution in the reactor core region. The calculation of the heat transfer from the fuel into the coolant remains with DYN3D, which incorporates well tested and validated heat transfer models for rod-type fuel elements. On the CFX side, the core region is modeled based on the porous body approach. The implementation of the code coupling is verified by comparing test case results with reference solutions of the DYN3D standalone version. Test cases cover mini and full core geometries, control rod movement and partial overcooling transients
Directory of Open Access Journals (Sweden)
Emma Frosina
2017-01-01
Full Text Available Small and micro hydropower systems represent an attractive solution for generating electricity at low cost and with low environmental impact. The pump-as-turbine (PAT approach has promise in this application due to its low purchase and maintenance costs. In this paper, a new method to predict the inverse characteristic of industrial centrifugal pumps is presented. This method is based on results of simulations performed with commercial three-dimensional Computational Fluid Dynamics (CFD software. Model results have been first validated in pumping mode using data supplied by pump manufacturers. Then, the results have been compared to experimental data for a pump running in reverse. Experimentation has been performed on a dedicated test bench installed in the Department of Civil Construction and Environmental Engineering of the University of Naples Federico II. Three different pumps, with different specific speeds, have been analyzed. Using the model results, the inverse characteristic and the best efficiency point have been evaluated. Finally, results have been compared to prediction methods available in the literature.
Directory of Open Access Journals (Sweden)
Pablo Fernández-Yáñez
2017-06-01
Full Text Available Around a third of the energy input in an automotive engine is wasted through the exhaust system. Since numerous technologies to harvest energy from exhaust gases are accessible, it is of great interest to find time- and cost-efficient methods to evaluate available thermal energy under different engine conditions. Computational fluid dynamics (CFD is becoming a very valuable tool for numerical predictions of exhaust flows. In this work, a methodology to build a simple three-dimensional (3D model of the exhaust system of automotive internal combustion engines (ICE was developed. Experimental data of exhaust gas in the most used part of the engine map in passenger diesel vehicles were employed as input for calculations. Sensitivity analyses of different numeric schemes have been conducted in order to attain accurate results. The model built allows for obtaining details on temperature and pressure fields along the exhaust system, and for complementing the experimental results for a better understanding of the flow phenomena and heat transfer through the system for further energy recovery devices.
Liu, Huolong; Li, Mingzhong
2014-11-20
In this work a two-compartmental population balance model (TCPBM) was proposed to model a pulsed top-spray fluidized bed granulation. The proposed TCPBM considered the spatially heterogeneous granulation mechanisms of the granule growth by dividing the granulator into two perfectly mixed zones of the wetting compartment and drying compartment, in which the aggregation mechanism was assumed in the wetting compartment and the breakage mechanism was considered in the drying compartment. The sizes of the wetting and drying compartments were constant in the TCPBM, in which 30% of the bed was the wetting compartment and 70% of the bed was the drying compartment. The exchange rate of particles between the wetting and drying compartments was determined by the details of the flow properties and distribution of particles predicted by the computational fluid dynamics (CFD) simulation. The experimental validation has shown that the proposed TCPBM can predict evolution of the granule size and distribution within the granulator under different binder spray operating conditions accurately. Copyright © 2014 Elsevier B.V. All rights reserved.
International Nuclear Information System (INIS)
Zou, Zhengping; Liu, Jingyuan; Zhang, Weihao; Wang, Peng
2016-01-01
Multi-dimensional coupling simulation is an effective approach for evaluating the flow and aero-thermal performance of shrouded turbines, which can balance the simulation accuracy and computing cost effectively. In this paper, 1D leakage models are proposed based on classical jet theories and dynamics equations, which can be used to evaluate most of the main features of shroud leakage flow, including the mass flow rate, radial and circumferential momentum, temperature and the jet width. Then, the 1D models are expanded to 2D distributions on the interface by using a multi-dimensional scaling method. Based on the models and multi-dimensional scaling, a multi-dimensional coupling simulation method for shrouded turbines is developed, in which, some boundary source and sink are set on the interface between the shroud and the main flow passage. To verify the precision, some simulations on the design point and off design points of a 1.5 stage turbine are conducted. It is indicated that the models and methods can give predictions with sufficient accuracy for most of the flow field features and will contribute to pursue deeper understanding and better design methods of shrouded axial turbines, which are the important devices in energy engineering. - Highlights: • Free and wall attached jet theories are used to model the leakage flow in shrouds. • Leakage flow rate is modeled by virtual labyrinth number and residual-energy factor. • A scaling method is applied to 1D model to obtain 2D distributions on interfaces. • A multi-dimensional coupling CFD method for shrouded turbines is proposed. • The proposed coupling method can give accurate predictions with low computing cost.
Directory of Open Access Journals (Sweden)
Flávio Alves Damasceno
2014-06-01
Full Text Available Abstract.. The objective of this study was to adapt and validate a computer model using the Computational Fluid Dinamics (CFD, in the prediction of temperature and air speed in a duct distribution system coupled to a heating furnace that is used in typical poultry houses in tropical and subtropical countries. The validation of the model with experimental data was satisfactory, presentingnormalized mean square error NMSE values of 0.25 and 0.02 for air temperature and air speed, respectively. The results evidenced that the proposed model is adequate for predicting the air speed and temperature for this type of system, and could be used to improve the efficiency of the distribution of heat inside and around air ducts using different air speeds, types of materials and dimensions. / Resumen. El objetivo de este estudio fue adaptar y validar un modelo computacional haciendo uso de la dinámica de fluidos computacional (CFD para predecir la temperatura y la velocidad del aire en un sistema de distribución de ductos acoplado a un sitema de calefacción que es utilizado en las instalaciones avícola en los países tropicales y subtropicales. La validación del modelo con los datos experimentales fue satisfactoria, presentando valores medios normalizados del error cuadrado NMSE de 0,25 y 0,02 para la temperatura y velocidad del aire respectivamente. Los resultados muestran que el modelo propuesto es adecuado para predecir la velocidad del aire y la temperatura alrededor de este tipo de sistema, y podría ser utilizado para mejorar la eficiencia la distribución de calor en el interior y alrededor de los conductos, usando diferentes velocidades, tipos de materiales y dimensiones.
García-Ramos, F Javier; Malón, Hugo; Aguirre, A Javier; Boné, Antonio; Puyuelo, Javier; Vidal, Mariano
2015-01-22
A computational fluid dynamics (CFD) model of the air flow generated by an air-assisted sprayer equipped with two axial fans was developed and validated by practical experiments in the laboratory. The CFD model was developed by considering the total air flow supplied by the sprayer fan to be the main parameter, rather than the outlet air velocity. The model was developed for three air flows corresponding to three fan blade settings and assuming that the sprayer is stationary. Actual measurements of the air velocity near the sprayer were taken using 3D sonic anemometers. The workspace sprayer was divided into three sections, and the air velocity was measured in each section on both sides of the machine at a horizontal distance of 1.5, 2.5, and 3.5 m from the machine, and at heights of 1, 2, 3, and 4 m above the ground The coefficient of determination (R2) between the simulated and measured values was 0.859, which demonstrates a good correlation between the simulated and measured data. Considering the overall data, the air velocity values produced by the CFD model were not significantly different from the measured values.
Energy Technology Data Exchange (ETDEWEB)
Peña-Monferrer, C., E-mail: cmonfer@upv.es [Institute for Energy Engineering, Universitat Politècnica de València, 46022 València (Spain); Passalacqua, A., E-mail: albertop@iastate.edu [Department of Mechanical Engineering, Iowa State University, Ames, IA 50011 (United States); Chiva, S., E-mail: schiva@emc.uji.es [Department of Mechanical Engineering and Construction, Universitat Jaume I, 12080 Castelló de la Plana (Spain); Muñoz-Cobo, J.L., E-mail: jlcobos@iqn.upv.es [Institute for Energy Engineering, Universitat Politècnica de València, 46022 València (Spain)
2016-05-15
Highlights: • A population balance equation solved with QMOM approximation is implemented in OpenFOAM. • Available models for interfacial forces and bubble induced turbulence are analyzed. • A vertical pipe flow is simulated for different bubbly flow conditions. • Two-phase flow characteristics in vertical pipes are properly predicted. - Abstract: An Eulerian–Eulerian approach was investigated to model adiabatic bubbly flow with CFD techniques. In the framework of the OpenFOAM{sup ®} software, a two-fluid model solver was modified to include a population balance equation, solved with the quadrature method of moments approximation to predict upward bubbly flow in vertical pipes considering the polydisperse nature of two-phase flow. Some progress have been made recently solving population balance equations in OpenFOAM{sup ®} and this research aims to extend its application to the case of vertical pipes under different conditions of liquid and gas velocities. In order to test the solver for nuclear applications, interfacial forces and bubble induced turbulence models were included to provide to this solver the capability to correctly predict the behavior of the continuous and disperse phases. Two-phase flow experiments with different superficial velocities of gas and liquid are used to validate the model and its implementation. Radial profiles of void fraction, gas and liquid velocities, Sauter mean diameter and turbulence intensity are compared to the computational results. These results are in satisfactory agreement with the experiments, showing the capability of the solver to predict two-phase flow characteristics.
International Nuclear Information System (INIS)
Prospathopoulos, John M; Papadakis, Giorgos; Voutsinas, Spyros G; Diakakis, Kostas; Sieros, Giorgos; Chaviaropoulos, Takis K
2014-01-01
The aerodynamic characteristics of thick airfoils in high Reynolds number is assessed using two different CFD RANS solvers: the compressible MaPFlow and the incompressible CRES-flowNS-2D both equipped with the k-ω SST turbulence model. Validation is carried out by comparing simulations against existing high Reynolds experimental data for the NACA 63-018 airfoil in the range of -10° to 20°. The use of two different solvers aims on one hand at increasing the credibility in the results and on the other at quantifying the compressibility effects. Convergence of steady simulations is achieved within a mean range of -10° to 14° which refers to attached or light stall conditions. Over this range the simulations from the two codes are in good agreement. As stall gets deeper, steady convergence ceases and the simulations must switch to unsteady. Lift and drag oscillations are produced which increase in amplitude as the angle of attack increases. Finally in post stall, the average C L is found to decrease up to ∼24° or 32° for the FFA or the NACA 63-018 airfoils respectively, and then recover to higher values indicating a change in the unsteady features of the flow
CFD Modelling of a Pump as Turbine (PAT with Rounded Leading Edge Impellers for Micro Hydro Systems
Directory of Open Access Journals (Sweden)
Ismail Mohd Azlan
2017-01-01
Full Text Available A Pump as Turbine (PAT is one of micro hydro system components that is used to substitute a commercially available turbine due to its wide availability and low acquisition cost. However, PAT have high hydraulic losses due to differences in pump-turbine operation and hydraulic design. The fluid flowing inside the PAT is subjected to hydraulic losses due to the longer flow passage and unmatched fluid flow within the wall boundaries. This paper presents the effect of rounding the impeller leading edges of the pump on turbine performance. A CFD model of a PAT was designed to simulate virtual performance for the analysis. The aim of this study is to observe the internal hydraulic performance resulting from the changes in the performance characteristics. Highest efficiency was recorded at 17.0 l/s, an increase of 0.18%. The simulation results reveal that there is an improvement in hydraulic performance at overflow operation. The velocity vector visualization shows that there is a reduction in wake and consequently less flow separation along impeller flow passages. However, adjusting the sensitive impeller inlet geometry will also alter the velocity inlet vector and consequently change the velocity triangles for the turbo machinery system.
Phase-contrast MRI and CFD modeling of apparent 3He gas flow in rat pulmonary airways
Minard, Kevin R.; Kuprat, Andrew P.; Kabilan, Senthil; Jacob, Richard E.; Einstein, Daniel R.; Carson, James P.; Corley, Richard A.
2012-08-01
Phase-contrast (PC) magnetic resonance imaging (MRI) with hyperpolarized 3He is potentially useful for developing and testing patient-specific models of pulmonary airflow. One challenge, however, is that PC-MRI provides apparent values of local 3He velocity that not only depend on actual airflow but also on gas diffusion. This not only blurs laminar flow patterns in narrow airways but also introduces anomalous airflow structure that reflects gas-wall interactions. Here, both effects are predicted in a live rat using computational fluid dynamics (CFD), and for the first time, simulated patterns of apparent 3He gas velocity are compared with in vivo PC-MRI. Results show (1) that correlations (R2) between measured and simulated airflow patterns increase from 0.23 to 0.79 simply by accounting for apparent 3He transport, and (2) that remaining differences are mainly due to uncertain airway segmentation and partial volume effects stemming from relatively coarse MRI resolution. Higher-fidelity testing of pulmonary airflow predictions should therefore be possible with future imaging improvements.
Directory of Open Access Journals (Sweden)
Gábor Fleit
2016-07-01
Full Text Available Waves induced by ship movement might be harmful for the habitat in the littoral zone of rivers due to the temporally increasing bed shear stress, the high-energy breaking waves and the consequently related detachment of benthic animals. In order to understand the complex hydrodynamic phenomena resulting from littoral waves, we present the testing of a novel methodology that incorporates field observations and numerical tools. The study is performed at a section of the Danube River in Hungary and analyzes the influence of different ship types. The field methods consist of parallel acoustic measurements (using Acoustic Doppler Velocimetry (ADV conducted at the riverbed and Large Scale Particle Image Velocimetry (LSPIV of the water surface. ADV measurements provided near-bed flow velocities based on which the wave induced currents and local bed shear stress could be estimated. The LSPIV was able to quantify the dynamics of the breaking waves along the bank. Furthermore, computational fluid dynamics (CFD modeling was successfully applied to simulate the propagation and the breaking of littoral waves. The used techniques complement each other well and their joint application provides an adequate tool to support the improvement of riverine habitats.
Energy Technology Data Exchange (ETDEWEB)
Moussiere, S
2006-12-15
Supercritical water oxidation is an innovative process to treat organic liquid waste which uses supercritical water properties to mix efficiency the oxidant and the organic compounds. The reactor is a stirred double shell reactor. In the step of adaptation to nuclear constraints, the computational fluid dynamic modeling is a good tool to know required temperature field in the reactor for safety analysis. Firstly, the CFD modeling of tubular reactor confirms the hypothesis of an incompressible fluid and the use of k-w turbulence model to represent the hydrodynamic. Moreover, the EDC model is as efficiency as the kinetic to compute the reaction rate in this reactor. Secondly, the study of turbulent flow in the double shell reactor confirms the use of 2D axisymmetric geometry instead of 3D geometry to compute heat transfer. Moreover, this study reports that water-air mixing is not in single phase. The reactive turbulent flow is well represented by EDC model after adaptation of initial conditions. The reaction rate in supercritical water oxidation reactor is mainly controlled by the mixing. (author)
Zhu, Dongming; Sakowski, Barbara A.; Fisher, Caleb
2014-01-01
SiCSiC ceramic matrix composites (CMCs) systems will play a crucial role in next generation turbine engines for hot-section component applications because of their ability to significantly increase engine operating temperatures, reduce engine weight and cooling requirements. However, the environmental stability of Si-based ceramics in high pressure, high velocity turbine engine combustion environment is of major concern. The water vapor containing combustion gas leads to accelerated oxidation and corrosion of the SiC based ceramics due to the water vapor reactions with silica (SiO2) scales forming non-protective volatile hydroxide species, resulting in recession of the ceramic components. Although environmental barrier coatings are being developed to help protect the CMC components, there is a need to better understand the fundamental recession behavior of in more realistic cooled engine component environments.In this paper, we describe a comprehensive film cooled high pressure burner rig based testing approach, by using standardized film cooled SiCSiC disc test specimen configurations. The SiCSiC specimens were designed for implementing the burner rig testing in turbine engine relevant combustion environments, obtaining generic film cooled recession rate data under the combustion water vapor conditions, and helping developing the Computational Fluid Dynamics (CFD) film cooled models and performing model validation. Factors affecting the film cooled recession such as temperature, water vapor concentration, combustion gas velocity, and pressure are particularly investigated and modeled, and compared with impingement cooling only recession data in similar combustion flow environments. The experimental and modeling work will help predict the SiCSiC CMC recession behavior, and developing durable CMC systems in complex turbine engine operating conditions.
Optimization of two-phase R600a ejector geometries using a non-equilibrium CFD model
International Nuclear Information System (INIS)
Lee, Moon Soo; Lee, Hoseong; Hwang, Yunho; Radermacher, Reinhard; Jeong, Hee-Moon
2016-01-01
Highlights: • Empirical mass transfer coefficient correlation is built based on Weber number. • Developed model is validated in terms of the e and DP. • A set of Pareto solutions is obtained from MOGA based OAAO method. • DP is improved up to 10,379 Pa with the same e of the baseline. • e is enhanced up to 0.782 with the same DP of the baseline case. - Abstract: A vapor compression cycle, which is typically utilized for the heat pump, air conditioning and refrigeration systems, has inherent thermodynamic losses associated with expansion and compression processes. To minimize these losses and improve the energy efficiency of the vapor compression cycle, an ejector can be applied. However, due to the occurrence of complex physics i.e., non-equilibrium flashing compressible flow in the nozzle with possible shock interactions, it has not been feasible to model or optimize the design of a two-phase ejector. In this study, a homogeneous, non-equilibrium, two-phase flow computational fluid dynamics (CFD) model in a commercial code is used with an in-house empirical correlation for the mass transfer coefficient and real gas properties to perform a geometric optimization of a two-phase ejector. The model is first validated with experimental data of an ejector with R600a as the working fluid. After that, the design parameters of the ejector are optimized using multi-objective genetic algorithm (MOGA) based online approximation-assisted optimization (OAAO) approaches to find the maximum performance.
Safety Injection Tank Performance Analysis Using CFD
Energy Technology Data Exchange (ETDEWEB)
Cho, Jai Oan; Lee, Jeong Ik; Nietiadi Yohanes Setiawan [KAIST, Daejeon (Korea, Republic of); Addad Yacine [KUSTAR, Abu Dhabi (United Arab Emirates); Bang, Young Seok; Yoo, Seung Hun [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)
2016-10-15
This may affect the core cooling capability and threaten the fuel integrity during LOCA situations. However, information on the nitrogen flow rate during discharge is very limited due to the associated experimental measurement difficulties, and these phenomena are hardly reflected in current 1D system codes. In the current study, a CFD analysis is presented which hopefully should allow obtaining a more realistic prediction of the SIT performance which can then be reflected on 1D system codes to simulate various accident scenarios. Current Computational Fluid Dynamics (CFD) calculations have had limited success in predicting the fluid flow accurately. This study aims to find a better CFD prediction and more accurate modeling to predict the system performance during accident scenarios. The safety injection tank with fluidic device was analyzed using commercial CFD. A fine resolution grid was used to capture the vortex of the fluidic device. The calculation so far has shown good consistency with the experiment. Calculation should complete by the conference date and will be thoroughly analyzed to be discussed. Once a detailed CFD computation is finished, a small-scale experiment will be conducted for the given conditions. Using the experimental results and the CFD model, physical models can be validated to give more reliable results. The data from CFD and experiments will provide a more accurate K-factor of the fluidic device which can later be applied in system code inputs.
DEFF Research Database (Denmark)
Dannemand, Mark; Fan, Jianhua; Furbo, Simon
2014-01-01
Experimental and theoretical investigations are carried out to study the heating of a 302 x 302 x 55 mm test box of steel containing a sodium acetate water mixture. A thermostatic bath has been set up to control the charging and discharging of the steel box. The charging and discharging has been...... for a Computational Fluid Dynamics (CFD) model. The CFD calculated temperatures are compared to measured temperatures internally in the box to validate the CFD model. Four cases are investigated; heating the test module with the sodium acetate water mixture in solid phase from ambient temperature to 52˚C; heating...... the module starting with the salt water mixture in liquid phase from 72˚C to 95˚C; heating up the module from ambient temperature with the salt water mixture in solid phase, going through melting, ending in liquid phase at 78˚C/82˚C; and discharging the test module from liquid phase at 82˚C, going through...
CFD modelling and analysis of pulverized coal injection in blast furnace: an overview
Energy Technology Data Exchange (ETDEWEB)
Shen, Yansong; Yu, Aibing [Laboratory for Simulation and Modelling of Particulate Systems, School of Materials Science and Engineering, The University of New South Wales (UNSW), Sydney, NSW 2052 (Australia); Zulli, Paul [BlueScope Steel Research (BSR), P.O. Box 202, Port Kembla, NSW 2505 (Australia)
2011-05-15
In order to understand the complicated phenomena of pulverized coal injection (PCI) process in blast furnace (BF), several mathematical models have been developed by the UNSW and BSR cooperation. These models are featuring from coal combustion in a pilot-scale test rig, to coal combustion in a real BF, and then to coal/coke combustion in a real BF, respectively. This paper reviews these PCI models in aspects of model developments and model applicability. The model development is firstly discussed in terms of model formulation, their new features and geometry/regions considered. The model applicability is then discussed in terms of main findings followed by the model evaluation on their advantages and limitations. It is indicated that the three PCI models are all able to describe PCI operation qualitatively. The model of coal/coke combustion in a real BF is more reliable for simulating in-furnace phenomena of PCI operation qualitatively and quantitatively. Such model gives a more reliable burnout prediction over the raceway surface, which could better represent the amount of unburnt char entering the coke bed. These models are useful for understanding the flow-thermo-chemical behaviours and then optimising the PCI operation in practice. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Co-firing biomass and coal-progress in CFD modelling capabilities
DEFF Research Database (Denmark)
Kær, Søren Knudsen; Rosendahl, Lasse Aistrup; Yin, Chungen
2005-01-01
This paper discusses the development of user defined FLUENT™ sub models to improve the modelling capabilities in the area of large biomass particle motion and conversion. Focus is put on a model that includes the influence from particle size and shape on the reactivity by resolving intra-particle......This paper discusses the development of user defined FLUENT™ sub models to improve the modelling capabilities in the area of large biomass particle motion and conversion. Focus is put on a model that includes the influence from particle size and shape on the reactivity by resolving intra......-particle gradients. The advanced reaction model predicts moisture and volatiles release characteristics that differ significantly from those found from a 0-dimensional model partly due to the processes occurring in parallel rather than sequentially. This is demonstrated for a test case that illustrates single...
Particle Tracking and Deposition from CFD Simulations using a Viscoelastic Particle Model
Losurdo, M.
2009-01-01
In the present dissertation the mathematical modelling of particle deposition is studied and the solution algorithms for particle tracking, deposition and deposit growth are developed. Particle deposition is modelled according to mechanical impact and contact mechanics taking into account the
PIV, radiotracers and CFD for flow anomalies
International Nuclear Information System (INIS)
Houdek, P.; Reitspiesova, I.; Zitny, R.; Thyn, J.
2004-01-01
Experimental investigation of flow asymmetries in continuous direct ohmic heater by using PIV and stimulus response technique (radioisotope 99 Tc) is presented together with CFD modelling by using finite element code FEMINA. (author)
CFD computations of wind turbine blade loads during standstill operation KNOW-BLADE, Task 3.1 report
Energy Technology Data Exchange (ETDEWEB)
Soerensen, N.N.; Johansen, J.; Conway, S.
2004-06-01
Two rotors blades are computed during standstill conditions, using two different Navier-Stokes solvers EDGE and EllipSys3D. Both steady and transient linear {kappa} - {omega} RANS turbulence models are applied, along with steady non-linear RANS and transient DES simulations. The STORK 5.0 WPX blade is computed a three different tip pitch angles, 0, 26 and 50 degrees tip pitch angle, while the NREL Phase-VI blade is computed at 90 degrees tip pitch angle. Generally the CFD codes reproduce the measured trends quite well and the two involved CFD codes give very similar results. The discrepancies observed can be explained by the difference in the applied turbulence models and the fact that the results from one of the solvers are presented as instantaneous values instead of averaged values. The comparison of steady and transient RANS results show that the gain of using time true computations are very limited for this case, with respect to mean quantities. The same can be said for the RANS/DES comparison performed for the NREL rotor, even though the DES computation shows improved agreement at the tip and root sections. Finally, it is shown that the DES methodology provides a much more physical representation of the heavily stalled part of the flow over blades at high angles of attack. (au)
Energy Technology Data Exchange (ETDEWEB)
Sathiah, Pratap, E-mail: pratap.sathiah78@gmail.com [Shell Global Solutions Ltd., Brabazon House, Concord Business Park, Threapwood Road, Manchester M220RR (United Kingdom); Komen, Ed [Nuclear Research and Consultancy Group – NRG, P.O. Box 25, 1755 ZG Petten (Netherlands); Roekaerts, Dirk [Delft University of Technology, P.O. Box 5, 2600 AA Delft (Netherlands)
2015-08-15
Highlights: • A CFD based method proposed in the previous article is used for the simulation of the effect of CO{sub 2}–He dilution on hydrogen deflagration. • A theoretical study is presented to verify whether CO{sub 2}–He diluent can be used as a replacement for H{sub 2}O as diluent. • CFD model used for the validation work is described. • TFC combustion model results are in good agreement with large-scale homogeneous hydrogen–air–CO{sub 2}–He experiments. - Abstract: Large quantities of hydrogen can be generated and released into the containment during a severe accident in a PWR. The generated hydrogen, when mixed with air, can lead to hydrogen combustion. The dynamic pressure loads resulting from hydrogen combustion can be detrimental to the structural integrity of the reactor safety systems and the reactor containment. Therefore, accurate prediction of these pressure loads is an important safety issue. In our previous article, a CFD based method to determine these pressure loads was presented. This CFD method is based on the application of a turbulent flame speed closure combustion model. The method was validated against three uniform hydrogen–air deflagration experiments with different blockage ratio performed in the ENACCEF facility. It was concluded that the maximum pressures were predicted within 13% accuracy, while the rate of pressure rise dp/dt was predicted within about 30%. The eigen frequencies of the residual pressure wave phenomena were predicted within a few %. In the present article, we perform additional validation of the CFD based method against three uniform hydrogen–air–CO{sub 2}–He deflagration experiments with three different concentrations of the CO{sub 2}–He diluent. The trends of decrease in the flame velocity, the intermediate peak pressure, the rate of pressure rise dp/dt, and the maximum value of the mean pressure with an increase in the CO{sub 2}–He dilution are captured well in the simulations. From the
Prototype coupling of the CFD software ansys CFX with the 3D neutron kinetic core model DYN3D - 249
International Nuclear Information System (INIS)
Kliem, S.; Rohde, U.; Schutze, J.; Frank, Th.
2010-01-01
The CFD code ANSYS CFX has been coupled with the neutron-kinetic core model DYN3D. ANSYS CFX calculates the fluid dynamics and related transport phenomena in the reactor's coolant and provides the corresponding data to DYN3D. In the fluid flow simulation of the coolant, the core itself is modeled within the porous body approach. DYN3D calculates the neutron kinetics and the fuel behavior including the heat transfer to the coolant. The physical data interface between the codes is the volumetric heat release rate into the coolant. In the prototype that is currently available, the coupling is restricted to single-phase flow problems. In the time domain an explicit coupling of the codes has been implemented so far. Steady-state and transient verification calculations for a small-size test problem confirm the correctness of the implementation of the prototype coupling. This test problem was a mini-core consisting of nine real-size fuel assemblies. Comparison was performed with the DYN3D standalone code. In the steady state, the effective multiplication factor obtained by the ANSYS CFX/DYN3D codes shows a deviation of 9.8 pcm from the DYN3D stand-alone solution. This difference can be attributed to the use of different water property packages in the two codes. The transient test case simulated the withdrawal of the control rod from the central fuel assembly at hot zero power. Power increase during the introduction of positive reactivity and power reduction due to fuel temperature increase are calculated in the same manner by the coupled and the stand-alone codes. The maximum values reached during the power rise differ by about 1 MW at a power level of 50 MW. Beside the different water property packages, these differences are caused by the use of different flow solvers. (authors)
CFD Modeling of Flow, Temperature, and Concentration Fields in a Pilot-Scale Rotary Hearth Furnace
Liu, Ying; Su, Fu-Yong; Wen, Zhi; Li, Zhi; Yong, Hai-Quan; Feng, Xiao-Hong
2014-01-01
A three-dimensional mathematical model for simulation of flow, temperature, and concentration fields in a pilot-scale rotary hearth furnace (RHF) has been developed using a commercial computational fluid dynamics software, FLUENT. The layer of composite pellets under the hearth is assumed to be a porous media layer with CO source and energy sink calculated by an independent mathematical model. User-defined functions are developed and linked to FLUENT to process the reduction process of the layer of composite pellets. The standard k-ɛ turbulence model in combination with standard wall functions is used for modeling of gas flow. Turbulence-chemistry interaction is taken into account through the eddy-dissipation model. The discrete ordinates model is used for modeling of radiative heat transfer. A comparison is made between the predictions of the present model and the data from a test of the pilot-scale RHF, and a reasonable agreement is found. Finally, flow field, temperature, and CO concentration fields in the furnace are investigated by the model.
DEFF Research Database (Denmark)
Guyonvarch, Estelle; Ramin, Elham; Kulahci, Murat
2015-01-01
using the example of a circular secondary settling tank (SST). First, the significant design and flow factors are screened out by applying the statistical method of two-level fractional factorial design of experiments. Second, based on the number of significant factors identified through the factor...... of (i) assessing different density current sub-models; (ii) implementation of a combined flocculation, hindered, transient and compression settling velocity function; and (iii) assessment of modelling the onset of transient and compression settling. Furthermore, the optimal level of model discretization...
Botha, J. D. M.; Shahroki, A.; Rice, H.
2017-12-01
This paper presents an enhanced method for predicting aerodynamically generated broadband noise produced by a Vertical Axis Wind Turbine (VAWT). The method improves on existing work for VAWT noise prediction and incorporates recently developed airfoil noise prediction models. Inflow-turbulence and airfoil self-noise mechanisms are both considered. Airfoil noise predictions are dependent on aerodynamic input data and time dependent Computational Fluid Dynamics (CFD) calculations are carried out to solve for the aerodynamic solution. Analytical flow methods are also benchmarked against the CFD informed noise prediction results to quantify errors in the former approach. Comparisons to experimental noise measurements for an existing turbine are encouraging. A parameter study is performed and shows the sensitivity of overall noise levels to changes in inflow velocity and inflow turbulence. Noise sources are characterised and the location and mechanism of the primary sources is determined, inflow-turbulence noise is seen to be the dominant source. The use of CFD calculations is seen to improve the accuracy of noise predictions when compared to the analytic flow solution as well as showing that, for inflow-turbulence noise sources, blade generated turbulence dominates the atmospheric inflow turbulence.
International Nuclear Information System (INIS)
Valverde Ramirez, M.; Coury, J.R.; Goncalves, J.A.S.
2009-01-01
In recent years, many computational fluid dynamics (CFD) studies have appeared attempting to predict cyclone pressure drop and collection efficiency. While these studies have been able to predict pressure drop well, they have been only moderately successful in predicting collection efficiency. Part of the reason for this failure has been attributed to the relatively simple wall boundary conditions implemented in the commercially available CFD software, which are not capable of accurately describing the complex particle-wall interaction present in a cyclone. According, researches have proposed a number of different boundary conditions in order to improve the model performance. This work implemented the critical velocity boundary condition through a user defined function (UDF) in the Fluent software and compared its predictions both with experimental data and with the predictions obtained when using Fluent's built-in boundary conditions. Experimental data was obtained from eight laboratory scale cyclones with varying geometric ratios. The CFD simulations were made using the software Fluent 6.3.26. (author)
Directory of Open Access Journals (Sweden)
Petr Trávníček
2011-01-01
Full Text Available The paper focuses on the non-destructive method of determination of temperatures in the boiler combustion chamber. This method proves to be significant mainly as regards CFD (Computational Fluid Dynamics simulations of combustion processes, in case of which it is subsequently advisable to verify the data calculated using CFD software application with the actually measured data. Verification of the method was based on usage of reference combustion equipment (130 kW which performs combustion of a mixture of waste sawdust and shavings originating in the course of production of wooden furniture. Measuring of temperatures inside the combustion chamber is – considering mainly the high temperature values – highly demanding and requires a special type of temperature sensors. Furthermore, as regards standard operation, it is not possible to install such sensors without performing structural alterations of the boiler. Therefore, for the purpose of determination of these temperatures a special experimental device was constructed while exploiting a thermal imaging system used for monitoring of the surface temperature of outer wall of the reference boiler. Temperatures on the wall of the boiler combustion chamber were determined on the basis of data measured using the experimental device as well as data from the thermal imaging system. These values might serve for verification of the respective CFD model of combustion equipment.
Energy Technology Data Exchange (ETDEWEB)
Sharma, Subash L., E-mail: sharma55@purdue.edu [School of Nuclear Engineering, Purdue University, West Lafayette, IN 47907-1290 (United States); Hibiki, Takashi; Ishii, Mamoru [School of Nuclear Engineering, Purdue University, West Lafayette, IN 47907-1290 (United States); Brooks, Caleb S. [Department of Nuclear, Plasma, and Radiological Engineering, University of Illinois, Urbana, IL 61801 (United States); Schlegel, Joshua P. [Nuclear Engineering Program, Missouri University of Science and Technology, Rolla, MO 65409 (United States); Liu, Yang [Nuclear Engineering Program, Department of Mechanical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061 (United States); Buchanan, John R. [Bechtel Marine Propulsion Corporation, Bettis Laboratory, West Mifflin, PA 15122 (United States)
2017-02-15
Highlights: • Void distribution in narrow rectangular channel with various non-uniform inlet conditions. • Modeling of void diffusion due to bubble collision force. • Validation of new modeling in adiabatic air–water two-phase flow in a narrow channel. - Abstract: The prediction capability of the two-fluid model for gas–liquid dispersed two-phase flow depends on the accuracy of the closure relations for the interfacial forces. In previous studies of two-phase flow Computational Fluid Dynamics (CFD), interfacial force models for a single isolated bubble has been extended to disperse two-phase flow assuming the effect in a swarm of bubbles is similar. Limited studies have been performed investigating the effect of the bubble concentration on the lateral phase distribution. Bubbles, while moving through the liquid phase, may undergo turbulence-driven random collision with neighboring bubbles without significant coalescence. The rate of these collisions depends upon the bubble approach velocity and bubble spacing. The bubble collision frequency is expected to be higher in locations with higher bubble concentrations, i.e., volume fraction. This turbulence-driven random collision causes the diffusion of the bubbles from high concentration to low concentration. Based on experimental observations, a phenomenological model has been developed for a “turbulence-induced bubble collision force” for use in the two-fluid model. For testing the validity of the model, two-phase flow data measured at Purdue University are utilized. The geometry is a 10 mm × 200 mm cross section channel. Experimentally, non-uniform inlet boundary conditions are applied with different sparger combinations to vary the volume fraction distribution across the wider dimension. Examining uniform and non-uniform inlet data allows for the influence of the volume fraction to be studied as a separate effect. The turbulence-induced bubble collision force has been implemented in ANSYS CFX. The
International Nuclear Information System (INIS)
Van Hees, P.; Wahlqvist, J.; Kong, D.; Hostikka, S.; Sikanen, T.; Husted, B.; Magnusson, T.; Joerud, F.
2013-05-01
Fires in nuclear power plants can be an important hazard for the overall safety of the facility. One of the typical fire sources is a pool fire. It is therefore important to have good knowledge on the fire behaviour of pool fire and be able to predict the heat release rate by prediction of the mass loss rate. This project envisages developing a pyrolysis model to be used in CFD models. In this report the activities for second year are reported, which is an overview of the experiments conducted, further development and validation of models and cases study to be selected in year 3. (Author)
Energy Technology Data Exchange (ETDEWEB)
van Hees, P.; Wahlqvist, J.; Kong, D. [Lund Univ., Lund (Sweden); Hostikka, S.; Sikanen, T. [VTT Technical Research Centre of Finland (Finland); Husted, B. [Haugesund Univ. College, Stord (Norway); Magnusson, T. [Ringhals AB, Vaeroebacka (Sweden); Joerud, F. [European Spallation Source (ESS), Lund (Sweden)
2013-05-15
Fires in nuclear power plants can be an important hazard for the overall safety of the facility. One of the typical fire sources is a pool fire. It is therefore important to have good knowledge on the fire behaviour of pool fire and be able to predict the heat release rate by prediction of the mass loss rate. This project envisages developing a pyrolysis model to be used in CFD models. In this report the activities for second year are reported, which is an overview of the experiments conducted, further development and validation of models and cases study to be selected in year 3. (Author)
International Nuclear Information System (INIS)
Chaney, Joel; Liu Hao; Li Jinxing
2012-01-01
Highlights: ► Overview of the overall approach of modelling fixed-bed biomass boilers in CFD. ► Bed sub-models of moisture evaporation, devolatisation and char combustion reviewed. ► A method of embedding a combustion model in discrete fuel zones within the CFD is suggested. ► Includes sample of preliminary results for a 50 kW pellet boiler. ► Clear physical trends predicted. - Abstract: The increasing global energy demand and mounting pressures for CO 2 mitigation call for increased efficient utilization of biomass, particularly for heating domestic and commercial buildings. The authors of the present paper are investigating the optimization of the combustion performance and NO x emissions of a 50 kW biomass pellet boiler fabricated by a UK manufacturer. The boiler has a number of adjustable parameters including the ratio of air flow split between the primary and secondary supplies, the orientation, height, direction and number of the secondary inlets. The optimization of these parameters provides opportunities to improve both the combustion efficiency and NO x emissions. When used carefully in conjunction with experiments, Computational Fluid Dynamics (CFD) modelling is a useful tool for rapidly and at minimum cost examining the combustion performance and emissions from a boiler with multiple variable parameters. However, modelling combustion and emissions of a small-scale biomass pellet boiler is not trivial and appropriate fixed-bed models that can be coupled with the CFD code are required. This paper reviews previous approaches specifically relevant to simulating fixed-bed biomass boilers. In the first part it considers approaches to modelling the heterogeneous solid phase and coupling this with the gas phase. The essential components of the sub-models are then overviewed. Importantly, for the optimization process a model is required that has a good balance between accuracy in predicting physical trends, with low computational run time. Finally, a
Energy Technology Data Exchange (ETDEWEB)
Cutrono Rakhimov, A., E-mail: cutrono@nrg.eu [Nuclear Research and Consultancy Group (NRG), Westerduinweg 3, 1755 ZG Petten (Netherlands); Visser, D.C., E-mail: visser@nrg.eu [Nuclear Research and Consultancy Group (NRG), Westerduinweg 3, 1755 ZG Petten (Netherlands); Holler, T., E-mail: tadej.holler@ijs.si [Jožef Stefan Institute (JSI), Jamova cesta 39, 1000 Ljubljana (Slovenia); Komen, E.M.J., E-mail: komen@nrg.eu [Nuclear Research and Consultancy Group (NRG), Westerduinweg 3, 1755 ZG Petten (Netherlands)
2017-01-15
Highlights: • Deflagration of hydrogen-air-steam homogeneous mixtures is modeled in a medium-scale containment. • Adaptive mesh refinement is applied on flame front positions. • Steam effect influence on combustion modeling capabilities is investigated. • Mean pressure rise is predicted with 18% under-prediction when steam is involved. • Peak pressure is evaluated with 5% accuracy when steam is involved. - Abstract: Large quantities of hydrogen can be generated during a severe accident in a water-cooled nuclear reactor. When released in the containment, the hydrogen can create a potential deflagration risk. The dynamic pressure loads resulting from hydrogen combustion can be detrimental to the structural integrity of the reactor. Therefore, accurate prediction of these pressure loads is an important safety issue. In previous papers, we validated a Computational Fluid Dynamics (CFD) based method to determine the pressure loads from a fast deflagration. The combustion model applied in the CFD method is based on the Turbulent Flame Speed Closure (TFC). In our last paper, we presented the extension of this combustion model, Extended Turbulent Flame Speed Closure (ETFC), and its validation against hydrogen deflagration experiments in the slow deflagration regime. During a severe accident, cooling water will enter the containment as steam. Therefore, the effect of steam on hydrogen deflagration is important to capture in a CFD model. The primary objectives of the present paper are to further validate the TFC and ETFC combustion models, and investigate their capability to predict the effect of steam. The peak pressures, the trends of the flame velocity, and the pressure rise with an increase in the initial steam dilution are captured reasonably well by both combustion models. In addition, the ETFC model appeared to be more robust to mesh resolution changes. The mean pressure rise is evaluated with 18% under-prediction and the peak pressure is evaluated with 5
CFD modelling wall heat transfer inside a combustion chamber using ANSYS forte
Plengsa-ard, C.; Kaewbumrung, M.
2018-01-01
A computational model has been performed to analyze a wall heat transfer in a single cylinder, direct injection and four-stroke diesel engine. A direct integration using detailed chemistry CHEMKIN is employed in a combustion model and the Reynolds Averaged Navier Stokes (RANS) turbulence model is used to simulate the flow in the cylinder. To obtain heat flux results, a modified classical variable-density wall heat transfer model is also performed. The model is validated using experimental data from a CUMMINs engine operated with a conventional diesel combustion. One operating engine condition is simulated. Comparisons of simulated in-cylinder pressure and heat release rates with experimental data shows that the model predicts the cylinder pressure and heat release rates reasonably well. The contour plot of instantaneous temperature are presented. Also, the contours of predicted heat flux results are shown. The magnitude of peak heat fluxes as predicted by the wall heat transfer model is in the range of the typical measure values in diesel combustion.
High-Fidelity Modeling of Ablation and Coupled CFD-Material Response
National Aeronautics and Space Administration — This research proposal seeks to improve the state of the art in the modeling and simulation of ablating thermal protection systems (TPS). It will accomplish the...
CFD Model of HDS Catalyst Tests in Trickle-Bed Reactor
Tukač, V.
2014-01-01
The goal of this study was to evaluate hydrodynamic influence on experimental HDS catalyst activity measurement carried out in pilot scale trickle-bed reactor. Hydrodynamic data were evaluated by RTD method in laboratory glass model of pilot reactor. Mathematical models of the process were formulated both like 1D pseudohomogeneou and 3D heterogeneous ones. The aim of this work was to forecast interaction between intrinsic reaction kinetic, hydrodynamics and mass transfer.
International Nuclear Information System (INIS)
Rakopoulos, C.D.; Kosmadakis, G.M.; Pariotis, E.G.
2010-01-01
The present work investigates the effect of varying the combustion chamber geometry and engine rotational speed on the gas flow and temperature field, using a new quasi-dimensional engine simulation model in conjunction with an in-house developed computational fluid dynamics (CFD) code served to validate the predicted in-cylinder flow field and gas temperature distribution calculated by the quasi-dimensional model, for three alternative piston bowl geometries and three rotational speeds. This CFD code can simulate three-dimensional curvilinear domains using the finite volume method in a collocated grid; it solves the generalized transport equation for the conservation of mass, momentum and energy, and incorporates the standard k-ε turbulence model with some slight modifications to introduce the compressibility of a fluid in generalized coordinates. On the other hand, the quasi-dimensional model solves the general transport equation for the conservation of mass and energy by a finite volume method throughout the entire in-cylinder volume, while for the estimation of the flow field a new simplified three dimensional air motion model is used. To compare these two models the in-cylinder spatial and temporal temperature distribution, the mean cylinder pressure diagram, as well as the mean in-cylinder radial and axial velocity are examined, for the three piston bowl geometries and the three speeds, for a high speed direct injection (HSDI) diesel engine operating under motoring conditions. From the comparison of calculated results, it becomes apparent that the two models predict similar in-cylinder temperature distributions and mean air velocity fields at each crank angle, for all cases examined. Thus, it is shown that the quasi-dimensional model with the proposed simplified air motion model is capable of capturing the physical effect of combustion chamber geometry and speed on the in-cylinder velocity and temperature field, while needing significantly lower computing
Improved CFD Model to Predict Flow and Temperature Distributions in a Blast Furnace Hearth
Komiyama, Keisuke M.; Guo, Bao-Yu; Zughbi, Habib; Zulli, Paul; Yu, Ai-Bing
2014-10-01
The campaign life of a blast furnace is limited by the erosion of hearth refractories. Flow and temperature distributions of the liquid iron have a significant influence on the erosion mechanism. In this work, an improved three-dimensional computational fluid dynamics model is developed to simulate the flow and heat transfer phenomena in the hearth of BlueScope's Port Kembla No. 5 Blast Furnace. Model improvements feature more justified input parameters in turbulence modeling, buoyancy modeling, wall boundary conditions, material properties, and modeling of the solidification of iron. The model is validated by comparing the calculated temperatures with the thermocouple data available, where agreements are established within ±3 pct. The flow distribution in the hearth is discussed for intact and eroded hearth profiles, for sitting and floating coke bed states. It is shown that natural convection affects the flow in several ways: for example, the formation of (a) stagnant zones preventing hearth bottom from eroding or (b) the downward jetting of molten liquid promoting side wall erosion, or (c) at times, a vortex-like peripheral flow, promoting the "elephant foot" type erosion. A significant influence of coke bed permeability on the macroscopic flow pattern and the refractory temperature is observed.
CFD model development and data comparison for thermal-hydraulic analysis of HTO pilot scale reactor
International Nuclear Information System (INIS)
Kochan, R.J.; Oh, C.H.
1995-09-01
The DOE Hydrothermal Oxidation (HTO) program is validating computational methods for use in scaling up small HTO systems to production scale. As part of that effort, the computational fluid dynamics code FLUENT is being used to calculate the integrated fluid dynamics and chemical reactions in an HTO vessel reactor designed by MODAR, Inc. Previous validation of the code used data from a benchscale reactor. This reports presents the validation of the code using pilotscale (10 times greater throughput than benchscale) data. The model for the pilotscale reactor has been improved based upon the benchscale data by including better fluid thermal properties, a better solution algorithm, addition of external heat transfer, investigation of the effects of turbulent flow, and, although not built into the computer model, a technique for using the calculated adiabatic oxidation temperatures for selecting initial conditions. Thermal results from this model show very good agreement with the limited test data from MODAR Run 920. In addition to the reactor temperatures, flowfield details, including chemical reaction distribution, and simulated salt particle transport were obtained. This model will be very beneficial in designing and evaluating larger commercial scale units. The results of these calculations indicate that for model validation, more accurate boundary conditions need to be measured in future test runs
Modelling of containment atmosphere mixing and stratification experiment using CFD approach
International Nuclear Information System (INIS)
Ivo Kljenak; Miroslav Babic; Borut Mavko; Ivan Bajsic
2005-01-01
An experiment on containment atmosphere mixing and stratification, which was originally performed in the TOSQAN facility in Saclay (France), was simulated with the Computational Fluid Dynamics code CFX. The TOSQAN facility consists of a large cylindrical vessel in which gases are injected. In the considered experiment, steam, air and helium were injected during different phases of the experiment, with steam condensing on vessel walls. Three intermediate steady states, which were obtained with different boundary conditions, were simulated independently. A two-dimensional axisymmetric model of the TOSQAN vessel for the CFX4.4 code was developed. The flow in the simulation domain was modelled as single-phase. Steam condensation on vessel walls was modelled as a sink of mass and energy. Calculated profiles of temperature, steam concentration, and velocity components are compared to experimental results. (authors)
Experiments and CFD Modelling of Turbulent Mass Transfer in a Mixing Channel
DEFF Research Database (Denmark)
Hjertager Osenbroch, Lene Kristin; Hjertager, Bjørn H.; Solberg, Tron
2006-01-01
. Three different flow cases are studied. The 2D numerical predictions of the mixing channel show that none of the k-ε turbulence models tested is suitable for the flow cases studied here. The turbulent Schmidt number is reduced to obtain a better agreement between measured and predicted mean......Experiments are carried out for passive mixing in order to obtain local mean and turbulent velocities and concentrations. The mixing takes place in a square channel with two inlets separated by a block. A combined PIV/PLIF technique is used to obtain instantaneous velocity and concentration fields...... and fluctuating concentrations. The multi-peak presumed PDF mixing model is tested....
H2-O2 supercritical combustion modeling using a CFD code
Directory of Open Access Journals (Sweden)
Benarous Abdallah
2009-01-01
Full Text Available The characteristics of propellant injection, mixing, and combustion have a profound effect on liquid rocket engine performance. The necessity of raising rocket engines performance requires a combustion chamber operation often in a supercritical regime. A supercritical combustion model based on a one-phase multi-components approach is developed and tested on a non-premixed H2-O2 flame configuration. A two equations turbulence model is used for describing the jet dynamics where a limited Pope correction is added to account for the oxidant spreading rate. Transport properties of the mixture are calculated using extended high pressure forms of the mixing rules. An equilibrium chemistry scheme is adopted in this combustion case, with both algebraic and stochastic expressions for the chemistry/turbulence coupling. The model was incorporated into a computational fluid dynamics commercial code (Fluent 6.2.16. The validity of the present model was investigated by comparing predictions of temperature, species mass fractions, recirculation zones and visible flame length to the experimental data measured on the Mascotte test rig. The results were confronted also with advanced code simulations. It appears that the agreement between the results was fairly good in the chamber regions situated downstream the near injection zone.
Application of transition modelling in CFD for use with turbine blades
CSIR Research Space (South Africa)
Dunn, Dwain I
2011-09-01
Full Text Available of this study. In general it was found the following observations held true. Pressure surface heat transfer was acceptably well predicted by all turbulence models, including the boundary layer solver. On the suction surface accuracy of prediction was best...
CFD Simulation of Vortex Induced Vibration for FRP Composite Riser with Different Modeling Methods
Directory of Open Access Journals (Sweden)
Chunguang Wang
2018-04-01
Full Text Available Steel risers are widely used in offshore oil and gas industry. However, the production capacity and depths are limited due to their extreme weight and poor fatigue and corrosion resistance. Nowadays, it is confirmed that fiber reinforced polymer (FRP composite risers have apparent advantages over steel risers. However, the study of vortex induced vibration (VIV for composite risers is rarely involved. Three different risers (one steel riser and two composite risers were compared for their VIV characteristics. The effects of 2D and 3D models and fluid–structure interaction (FSI were considered. The models of composite risers are established by effective modulus method (EMM and layered-structure method (LSM. It is found that 2D model are only suitable for ideal condition, while, for real situation, 3D model with FSI has to be considered. The results show that the displacements of the FRP composite risers are significantly larger than those of the steel riser, while the stresses are reversed. In addition, the distributions of the displacements and stresses depend on the geometries, material properties, top-tension force, constraints, etc. In addition, it is obvious that EMM are suitable to study the global working condition while LSM can be utilized to obtain the results in every single composite layer.
Perfusion kinetics in human brain tumor with DCE-MRI derived model and CFD analysis.
Bhandari, A; Bansal, A; Singh, A; Sinha, N
2017-07-05
Cancer is one of the leading causes of death all over the world. Among the strategies that are used for cancer treatment, the effectiveness of chemotherapy is often hindered by factors such as irregular and non-uniform uptake of drugs inside tumor. Thus, accurate prediction of drug transport and deposition inside tumor is crucial for increasing the effectiveness of chemotherapeutic treatment. In this study, a computational model of human brain tumor is developed that incorporates dynamic contrast enhanced-magnetic resonance imaging (DCE-MRI) data into a voxelized porous media model. The model takes into account realistic transport and perfusion kinetics parameters together with realistic heterogeneous tumor vasculature and accurate arterial input function (AIF), which makes it patient specific. The computational results for interstitial fluid pressure (IFP), interstitial fluid velocity (IFV) and tracer concentration show good agreement with the experimental results. The computational model can be extended further for predicting the deposition of chemotherapeutic drugs in tumor environment as well as selection of the best chemotherapeutic drug for a specific patient. Copyright © 2017 Elsevier Ltd. All rights reserved.
CFD Studies on Biomass Thermochemical Conversion
Directory of Open Access Journals (Sweden)
Lifeng Yan
2008-06-01
Full Text Available Thermochemical conversion of biomass offers an efficient and economically process to provide gaseous, liquid and solid fuels and prepare chemicals derived from biomass. Computational fluid dynamic (CFD modeling applications on biomass thermochemical processes help to optimize the design and operation of thermochemical reactors. Recent progression in numerical techniques and computing efficacy has advanced CFD as a widely used approach to provide efficient design solutions in industry. This paper introduces the fundamentals involved in developing a CFD solution. Mathematical equations governing the fluid flow, heat and mass transfer and chemical reactions in thermochemical systems are described and sub-models for individual processes are presented. It provides a review of various applications of CFD in the biomass thermochemical process field.
CFD Based Erosion Modelling of Abrasive Waterjet Nozzle using Discrete Phase Method
International Nuclear Information System (INIS)
Kamarudin, Naqib Hakim; Prasada Rao, A K; Azhari, Azmir
2016-01-01
In Abrasive Waterjet (AWJ) machining, the nozzle is the most critical component that influences the performance, precision and economy. Exposure to a high speed jet and abrasives makes it susceptible to wear erosion which requires for frequent replacement. The present works attempts to simulate the erosion of the nozzle wall using computational fluid dynamics. The erosion rate of the nozzle was simulated under different operating conditions. The simulation was carried out in several steps which is flow modelling, particle tracking and erosion rate calculation. Discrete Phase Method (DPM) and K-ε turbulence model was used for the simulation. Result shows that different operating conditions affect the erosion rate as well as the flow interaction of water, air and abrasives. The simulation results correlates well with past work. (paper)
Directory of Open Access Journals (Sweden)
Lucas Eder
2018-03-01
Full Text Available This paper focuses on improving the 3D-Computational Fluid Dynamics (CFD modeling of diesel ignited gas engines, with an emphasis on injection and combustion modeling. The challenges of modeling are stated and possible solutions are provided. A specific approach for modeling injection is proposed that improves the modeling of the ballistic region of the needle lift. Experimental results from an inert spray chamber are used for model validation. Two-stage ignition methods are described along with improvements in ignition delay modeling of the diesel ignited gas engine. The improved models are used in the Extended Coherent Flame Model with the 3 Zones approach (ECFM-3Z. The predictive capability of the models is investigated using data from single cylinder engine (SCE tests conducted at the Large Engines Competence Center (LEC. The results are discussed and further steps for development are identified.
The Three-Dimensional Velocity Distribution of Wide Gap Taylor-Couette Flow Modelled by CFD
Directory of Open Access Journals (Sweden)
David Shina Adebayo
2016-01-01
Full Text Available A numerical investigation is conducted for the flow between two concentric cylinders with a wide gap, relevant to bearing chamber applications. This wide gap configuration has received comparatively less attention than narrow gap journal bearing type geometries. The flow in the gap between an inner rotating cylinder and an outer stationary cylinder has been modelled as an incompressible flow using an implicit finite volume RANS scheme with the realisable k-ε model. The model flow is above the critical Taylor number at which axisymmetric counterrotating Taylor vortices are formed. The tangential velocity profiles at all axial locations are different from typical journal bearing applications, where the velocity profiles are quasilinear. The predicted results led to two significant findings of impact in rotating machinery operations. Firstly, the axial variation of the tangential velocity gradient induces an axially varying shear stress, resulting in local bands of enhanced work input to the working fluid. This is likely to cause unwanted heat transfer on the surface in high torque turbomachinery applications. Secondly, the radial inflow at the axial end-wall boundaries is likely to promote the transport of debris to the junction between the end-collar and the rotating cylinder, causing the build-up of fouling in the seal.
Evaluation of Interfacial Heat Transfer Models for Flashing Flow with Two-Fluid CFD
Directory of Open Access Journals (Sweden)
Yixiang Liao
2018-06-01
Full Text Available The complexity of flashing flows is increased vastly by the interphase heat transfer as well as its coupling with mass and momentum transfers. A reliable heat transfer coefficient is the key in the modelling of such kinds of flows with the two-fluid model. An extensive literature survey on computational modelling of flashing flows has been given in previous work. The present work is aimed at giving a brief review on available theories and correlations for the estimation of interphase heat transfer coefficient, and evaluating them quantitatively based on computational fluid dynamics simulations of bubble growth in superheated liquid. The comparison of predictions for bubble growth rate obtained by using different correlations with the experimental as well as direct numerical simulation data reveals that the performance of the correlations is dependent on the Jakob number and Reynolds number. No generally applicable correlations are available. Both conduction and convection are important in cases of bubble rising and translating in stagnant liquid at high Jakob numbers. The correlations combining the analytical solution for heat diffusion and the theoretical relation for potential flow give the best agreement.
CFD Modeling of Wall Steam Condensation: Two-Phase Flow Approach versus Homogeneous Flow Approach
International Nuclear Information System (INIS)
Mimouni, S.; Mechitoua, N.; Foissac, A.; Hassanaly, M.; Ouraou, M.
2011-01-01
The present work is focused on the condensation heat transfer that plays a dominant role in many accident scenarios postulated to occur in the containment of nuclear reactors. The study compares a general multiphase approach implemented in NEPTUNE C FD with a homogeneous model, of widespread use for engineering studies, implemented in Code S aturne. The model implemented in NEPTUNE C FD assumes that liquid droplets form along the wall within nucleation sites. Vapor condensation on droplets makes them grow. Once the droplet diameter reaches a critical value, gravitational forces compensate surface tension force and then droplets slide over the wall and form a liquid film. This approach allows taking into account simultaneously the mechanical drift between the droplet and the gas, the heat and mass transfer on droplets in the core of the flow and the condensation/evaporation phenomena on the walls. As concern the homogeneous approach, the motion of the liquid film due to the gravitational forces is neglected, as well as the volume occupied by the liquid. Both condensation models and compressible procedures are validated and compared to experimental data provided by the TOSQAN ISP47 experiment (IRSN Saclay). Computational results compare favorably with experimental data, particularly for the Helium and steam volume fractions.
MyrrhaFoam: A CFD model for the study of the thermal hydraulic behavior of MYRRHA
Energy Technology Data Exchange (ETDEWEB)
Koloszar, Lilla; Buckingham, Sophia; Planquart, Philippe [von Karman Institute, Chaussée de Waterloo 72, B-1640 Rhode-St-Genèse (Belgium); Keijers, Steven [SCK-CEN, Boeretang 200, 2400 Mol (Belgium)
2017-02-15
Highlights: • Development of a modeling approach for simulating the thermal hydraulics of heavy liquid metal nuclear reactors. • Detailed description of the modeling of each component through the MYRRHA reactor. • Detailed analysis of the flow field of the MYRRHA reactor under operating condition. • Assessment of the thermal load on the structures as well as the thermal stratification in the upper and the lower plenum. - Abstract: Numerical analysis of the thermohydraulic behavior of the innovative flexible fast spectrum research reactor, MYRRHA, under design by the Belgian Nuclear Research Center (SCK• CEN) is a very challenging task. The primary coolant of the reactor is Lead Bismuth Eutectic, LBE, which is an opaque heavy liquid metal with low Prandtl number. The simulation tool needs to involve many complex physical phenomena to be able to predict accurately the flow and thermal field in the pool type reactor. In the past few years, within the frame of a collaboration between SCK• CEN and the von Karman Institute, a new platform, MyrrhaFoam, was developed based on the open source simulation environment, OpenFOAM. The current tool can deal with incompressible buoyancy corrected steady/unsteady single phase flows. It takes into account conjugate heat transfer in the solid parts which is mandatory due to the expected high temperature gradients between the different parts of the reactor. The temperature dependent properties of LBE are also considered. MyrrhaFoam is supplemented with the most relevant thermal turbulence models for low Prandtl number liquids up to date.
Analysis of mass transfer characteristics in a tubular membrane using CFD modeling.
Yang, Jixiang; Vedantam, Sreepriya; Spanjers, Henri; Nopens, Ingmar; van Lier, Jules B
2012-10-01
In contrast to the large amount of research into aerobic membrane bioreactors, little work has been reported on anaerobic membrane bioreactors (AMBRs). As to the application of membrane bioreactors, membrane fouling is a key issue. Membrane fouling generally occurs more seriously in AMBRs than in aerobic membrane bioreactors. However, membrane fouling could be managed through the application of suitable shear stress that can be introduced by the application of a two-phase flow. When the two-phase flow is applied in AMBRs, little is known about the mass transfer characteristics, which is of particular importance, in tubular membranes of AMBRs. In our present work, we have employed fluid dynamic modeling to analyze the mass transfer characteristics in the tubular membrane of a side stream AMBR in which, gas-lift two-phase flow was applied. The modeling indicated that the mass transfer capacity at the membrane surface at the noses of gas bubbles was higher than the mass transfer capacity at the tails of the bubbles, which is in contrast to the results when water instead of sludge is applied. At the given mass transfer rate, the filterability of the sludge was found to have a strong influence on the transmembrane pressure at a steady flux. In addition, the model also showed that the shear stress in the internal space of the tubular membrane was mainly around 20 Pa but could be as high as about 40 Pa due to gas bubble movements. Nonetheless, at these shear stresses a stable particle size distribution was found for sludge particles. Copyright © 2012 Elsevier Ltd. All rights reserved.
Uncertainty Quantification of CFD Data Generated for a Model Scramjet Isolator Flowfield
Baurle, R. A.; Axdahl, E. L.
2017-01-01
Computational fluid dynamics is now considered to be an indispensable tool for the design and development of scramjet engine components. Unfortunately, the quantification of uncertainties is rarely addressed with anything other than sensitivity studies, so the degree of confidence associated with the numerical results remains exclusively with the subject matter expert that generated them. This practice must be replaced with a formal uncertainty quantification process for computational fluid dynamics to play an expanded role in the system design, development, and flight certification process. Given the limitations of current hypersonic ground test facilities, this expanded role is believed to be a requirement by some in the hypersonics community if scramjet engines are to be given serious consideration as a viable propulsion system. The present effort describes a simple, relatively low cost, nonintrusive approach to uncertainty quantification that includes the basic ingredients required to handle both aleatoric (random) and epistemic (lack of knowledge) sources of uncertainty. The nonintrusive nature of the approach allows the computational fluid dynamicist to perform the uncertainty quantification with the flow solver treated as a "black box". Moreover, a large fraction of the process can be automated, allowing the uncertainty assessment to be readily adapted into the engineering design and development workflow. In the present work, the approach is applied to a model scramjet isolator problem where the desire is to validate turbulence closure models in the presence of uncertainty. In this context, the relevant uncertainty sources are determined and accounted for to allow the analyst to delineate turbulence model-form errors from other sources of uncertainty associated with the simulation of the facility flow.
CFD based aerodynamic modeling to study flight dynamics of a flapping wing micro air vehicle
Rege, Alok Ashok
The demand for small unmanned air vehicles, commonly termed micro air vehicles or MAV's, is rapidly increasing. Driven by applications ranging from civil search-and-rescue missions to military surveillance missions, there is a rising level of interest and investment in better vehicle designs, and miniaturized components are enabling many rapid advances. The need to better understand fundamental aspects of flight for small vehicles has spawned a surge in high quality research in the area of micro air vehicles. These aircraft have a set of constraints which are, in many ways, considerably different from that of traditional aircraft and are often best addressed by a multidisciplinary approach. Fast-response non-linear controls, nano-structures, integrated propulsion and lift mechanisms, highly flexible structures, and low Reynolds aerodynamics are just a few of the important considerations which may be combined in the execution of MAV research. The main objective of this thesis is to derive a consistent nonlinear dynamic model to study the flight dynamics of micro air vehicles with a reasonably accurate representation of aerodynamic forces and moments. The research is divided into two sections. In the first section, derivation of the nonlinear dynamics of flapping wing micro air vehicles is presented. The flapping wing micro air vehicle (MAV) used in this research is modeled as a system of three rigid bodies: a body and two wings. The design is based on an insect called Drosophila Melanogaster, commonly known as fruit-fly. The mass and inertial effects of the wing on the body are neglected for the present work. The nonlinear dynamics is simulated with the aerodynamic data published in the open literature. The flapping frequency is used as the control input. Simulations are run for different cases of wing positions and the chosen parameters are studied for boundedness. Results show a qualitative inconsistency in boundedness for some cases, and demand a better
Zavattoni, Simone A.; Geissbühler, Lukas; Barbato, Maurizio C.; Zanganeh, Giw; Haselbacher, Andreas; Steinfeld, Aldo
2017-06-01
The concept of combined sensible/latent heat thermal energy storage (TES) has been exploited to mitigate an intrinsic thermocline TES systems drawback of heat transfer fluid outflow temperature reduction during discharging. In this study, the combined sensible/latent TES prototype under investigation is constituted by a packed bed of rocks and a small amount of encapsulated phase change material (AlSi12) as sensible heat and latent heat sections respectively. The thermo-fluid dynamics behavior of the combined TES prototype was analyzed by means of a computational fluid dynamics approach. Due to the small value of the characteristic vessel-to-particles diameter ratio, the effect of radial void-fraction variation, also known as channeling, was accounted for. Both the sensible and the latent heat sections of the storage were modeled as porous media under the assumption of local thermal non-equilibrium (LTNE). The commercial code ANSYS Fluent 15.0 was used to solve the model's constitutive conservation and transport equations obtaining a fairly good agreement with reference experimental measurements.
CFD modeling of condensation process of water vapor in supersonic flows
DEFF Research Database (Denmark)
Yang, Yan; Walther, Jens Honore; Yan, Yuying
2017-01-01
The condensation phenomenon of vapor plays an important role in various industries, such as the steam flow in turbines and refrigeration system. A mathematical model is developed to predict the spontaneous condensing phenomenon in the supersonic flows using the nucleation and droplet growth...... theories. The numerical approach is validated with the experimental data, which shows a good agreement between them. The condensation characteristics of water vapor in the Laval nozzle are described in detail. The results show that the condensation process is a rapid variation of the vapor-liquid phase...... change both in the space and in time. The spontaneous condensation of water vapor will not appear immediately when the steam reaches the saturation state. Instead, it occurs further downstream the nozzle throat, where the steam is in the state of supersaturation....
International Nuclear Information System (INIS)
Hassan, Yassin; Corradini, Michael; Tokuhiro, Akira; Wei, Thomas Y.C.
2014-01-01
The Reactor Cavity Cooling Systems (RCCS) is a passive safety system that will be incorporated in the VTHR design. The system was designed to remove the heat from the reactor cavity and maintain the temperature of structures and concrete walls under desired limits during normal operation (steady-state) and accident scenarios. A small scale (1:23) water-cooled experimental facility was scaled, designed, and constructed in order to study the complex thermohydraulic phenomena taking place in the RCCS during steady-state and transient conditions. The facility represents a portion of the reactor vessel with nine stainless steel coolant risers and utilizes water as coolant. The facility was equipped with instrumentation to measure temperatures and flow rates and a general verification was completed during the shakedown. A model of the experimental facility was prepared using RELAP5-3D and simulations were performed to validate the scaling procedure. The experimental data produced during the steady-state run were compared with the simulation results obtained using RELAP5-3D. The overall behavior of the facility met the expectations. The facility capabilities were confirmed to be very promising in performing additional experimental tests, including flow visualization, and produce data for code validation.
Unsteady CFD modeling of micro-adaptive flow control for an axisymmetric body
International Nuclear Information System (INIS)
Sahu, J.; Heavey, K.R.
2005-01-01
This paper describes a computational study undertaken, as part of a grand challenge project, to consider the aerodynamic effect of micro-adaptive flow control as a means to provide the divert authority needed to maneuver a projectile at a low subsonic speed. A time-accurate Navier-Stokes computational technique has been used to obtain numerical solutions for the unsteady microjet-interaction flow field for the axisymmetric projectile body at subsonic speeds, Mach = 0.11 and 0.24 and angles of attack, 0 o to 4 o . Numerical solutions have been obtained using both Renolds-Averaged Navier-Stokes (RANS) and a hybrid RANS/Large Eddy Simulation (LES) turbulence models. Unsteady numerical results show the effect of the jet on the flow field and the aerodynamic coefficients, in particular the lift force. This research has provided an increased fundamental understanding of the complex, three-dimensional, time-dependent, aerodynamic interactions associated with micro-jet control for yawing spin-stabilized munitions. (author)
Unsteady CFD modeling of micro-adaptive flow control for an axisymmetric body
Energy Technology Data Exchange (ETDEWEB)
Sahu, J.; Heavey, K.R. [U.S. Army Research Laboratory, Aberdeen Proving Ground, MD (United States)]. E-mail: sahu@arl.army.mil
2005-07-01
This paper describes a computational study undertaken, as part of a grand challenge project, to consider the aerodynamic effect of micro-adaptive flow control as a means to provide the divert authority needed to maneuver a projectile at a low subsonic speed. A time-accurate Navier-Stokes computational technique has been used to obtain numerical solutions for the unsteady microjet-interaction flow field for the axisymmetric projectile body at subsonic speeds, Mach = 0.11 and 0.24 and angles of attack, 0{sup o} to 4{sup o}. Numerical solutions have been obtained using both Renolds-Averaged Navier-Stokes (RANS) and a hybrid RANS/Large Eddy Simulation (LES) turbulence models. Unsteady numerical results show the effect of the jet on the flow field and the aerodynamic coefficients, in particular the lift force. This research has provided an increased fundamental understanding of the complex, three-dimensional, time-dependent, aerodynamic interactions associated with micro-jet control for yawing spin-stabilized munitions. (author)
CFD simulations and reduced order modeling of a refrigerator compartment including radiation effects
International Nuclear Information System (INIS)
Bayer, Ozgur; Oskay, Ruknettin; Paksoy, Akin; Aradag, Selin
2013-01-01
Highlights: ► Free convection in a refrigerator is simulated including radiation effects. ► Heat rates are affected drastically when radiation effects are considered. ► 95% of the flow energy can be represented by using one spatial POD mode. - Abstract: Considering the engineering problem of natural convection in domestic refrigerator applications, this study aims to simulate the fluid flow and temperature distribution in a single commercial refrigerator compartment by using the experimentally determined temperature values as the specified constant wall temperature boundary conditions. The free convection in refrigerator applications is evaluated as a three-dimensional (3D), turbulent, transient and coupled non-linear flow problem. Radiation heat transfer mode is also included in the analysis. According to the results, taking radiation effects into consideration does not change the temperature distribution inside the refrigerator significantly; however the heat rates are affected drastically. The flow inside the compartment is further analyzed with a reduced order modeling method called Proper Orthogonal Decomposition (POD) and the energy contents of several spatial and temporal modes that exist in the flow are examined. The results show that approximately 95% of all the flow energy can be represented by only using one spatial mode
Energy Technology Data Exchange (ETDEWEB)
Hassan, Yassin [Univ. of Wisconsin, Madison, WI (United Texas A & M Univ., College Station, TX (United States); Corradini, Michael; Tokuhiro, Akira; Wei, Thomas Y.C.
2014-07-14
The Reactor Cavity Cooling Systems (RCCS) is a passive safety system that will be incorporated in the VTHR design. The system was designed to remove the heat from the reactor cavity and maintain the temperature of structures and concrete walls under desired limits during normal operation (steady-state) and accident scenarios. A small scale (1:23) water-cooled experimental facility was scaled, designed, and constructed in order to study the complex thermohydraulic phenomena taking place in the RCCS during steady-state and transient conditions. The facility represents a portion of the reactor vessel with nine stainless steel coolant risers and utilizes water as coolant. The facility was equipped with instrumentation to measure temperatures and flow rates and a general verification was completed during the shakedown. A model of the experimental facility was prepared using RELAP5-3D and simulations were performed to validate the scaling procedure. The experimental data produced during the steady-state run were compared with the simulation results obtained using RELAP5-3D. The overall behavior of the facility met the expectations. The facility capabilities were confirmed to be very promising in performing additional experimental tests, including flow visualization, and produce data for code validation.
Groves, Curtis E.; LLie, Marcel; Shallhorn, Paul A.
2012-01-01
There are inherent uncertainties and errors associated with using Computational Fluid Dynamics (CFD) to predict the flow field and there is no standard method for evaluating uncertainty in the CFD community. This paper describes an approach to -validate the . uncertainty in using CFD. The method will use the state of the art uncertainty analysis applying different turbulence niodels and draw conclusions on which models provide the least uncertainty and which models most accurately predict the flow of a backward facing step.
Cormier, Marianne
Les faibles resultats en sciences des eleves du milieu francophone minoritaire, lors d'epreuves au plan national et international, ont interpelle la recherche de solutions. Cette these avait pour but de creer et d'experimenter un modele pedagogique pour l'enseignement des sciences en milieu linguistique minoritaire. En raison de la presence de divers degres de francite chez la clientele scolaire de ce milieu, plusieurs elements langagiers (l'ecriture, la discussion et la lecture) ont ete integres a l'apprentissage scientifique. Nous avions recommande de commencer le processus d'apprentissage avec des elements langagiers plutot informels (redaction dans un journal, discussions en dyades...) pour progresser vers des activites langagieres plus formelles (redaction de rapports ou d'explications scientifiques). En ce qui a trait a l'apprentissage scientifique, le modele preconisait une demarche d'evolution conceptuelle d'inspiration socio-constructiviste tout en s'appuyant fortement sur l'apprentissage experientiel. Lors de l'experimentation du modele, nous voulions savoir si celui-ci provoquait une evolution conceptuelle chez les eleves, et si, simultanement, le vocabulaire scientifique de ces derniers s'enrichissait. Par ailleurs, nous cherchions a comprendre comment les eleves vivaient leurs apprentissages dans le cadre de ce modele pedagogique. Une classe de cinquieme annee de l'ecole de Grande-Digue, dans le Sud-est du Nouveau-Brunswick, a participe a la mise a l'essai du modele en etudiant les marais sales locaux. Lors d'entrevues initiales, nous avons remarque que les connaissances des eleves au sujet des marais sales etaient limitees. En effet, s'ils etaient conscients que les marais etaient des lieux naturels, ils ne pouvaient pas necessairement les decrire avec precision. Nous avons egalement constate que les eleves utilisaient surtout des mots communs (plantes, oiseaux, insectes) pour decrire le marais. Les resultats obtenus indiquent que les eleves ont
Energy Technology Data Exchange (ETDEWEB)
Sharma, S.L., E-mail: sharma55@purdue.edu [School of Nuclear Engineering, Purdue University, West Lafayette, IN (United States); Hibiki, T.; Ishii, M. [School of Nuclear Engineering, Purdue University, West Lafayette, IN (United States); Schlegel, J.P. [Department of Mining and Nuclear Engineering, Missouri University of Science and Technology, Rolla, MO (United States); Buchanan, J.R.; Hogan, K.J. [Bettis Laboratory, Naval Nuclear Laboratory, West Mifflin, PA (United States); Guilbert, P.W. [ANSYS UK Ltd, Oxfordshire (United Kingdom)
2017-02-15
Highlights: • Closure form of the interfacial shear term in three-dimensional form is investigated. • Assessment against adiabatic upward bubbly air–water flow data using CFD. • Effect of addition of the interfacial shear term on the phase distribution. - Abstract: In commercially available Computational Fluid Dynamics (CFD) codes such as ANSYS CFX and Fluent, the interfacial shear term is missing in the field momentum equations. The derivation of the two-fluid model (Ishii and Hibiki, 2011) indicates the presence of this term as a momentum source in the right hand side of the field momentum equation. The inclusion of this term is considered important for proper modeling of the interfacial momentum coupling between phases. For separated flows, such as annular flow, the importance of the shear term is understood in the one-dimensional (1-D) form as the major mechanism by which the wall shear is transferred to the gas phase (Ishii and Mishima, 1984). For gas dispersed two-phase flow CFD simulations, it is important to assess the significance of this term in the prediction of phase distributions. In the first part of this work, the closure of this term in three-dimensional (3-D) form in a CFD code is investigated. For dispersed gas–liquid flow, such as bubbly or churn-turbulent flow, bubbles are dispersed in the shear layer of the continuous phase. The continuous phase shear stress is mainly due to the presence of the wall and the modeling of turbulence through the Boussinesq hypothesis. In a 3-D simulation, the continuous phase shear stress can be calculated from the continuous fluid velocity gradient, so that the interfacial shear term can be closed using the local values of the volume fraction and the total stress of liquid phase. This form also assures that the term acts as an action-reaction force for multiple phases. In the second part of this work, the effect of this term on the volume fraction distribution is investigated. For testing the model two
Recent developments in CFD and their impact on fuel assembly optimization
International Nuclear Information System (INIS)
Lascar, Celine; Alleborn, Norbert; Leberig, Mario; Jones, J.; Martin, M.
2010-01-01
In the recent past, progress in computer hardware and in Computational Fluid Dynamics (CFD) codes has made CFD attractive for thermal-hydraulic applications of the nuclear industry. Available code systems have a separated treatment of 1-phase and 2-phase CFD. While 1-phase phenomena (relevant for example to determine pressure losses in fuel assembly) can be reliably predicted with today's CFD programs, 2-phase CFD is still in the process of strong development in modeling 2- phase phenomena. AREVA NP is investing major efforts and resources (i) to develop knowledge and mastery of CFD models, their associated parameters, and the ranges of applications; (ii) to ensure validation of the in-house CFD codes and methodologies by gathering a large experimental databank; and (iii) to build state-ofthe- art tools and hardware to support this CFD development. All CFD work presented in this paper was performed with the commercial code STAR-CD. (orig.)
International Nuclear Information System (INIS)
Hung, T.C.; Dhir, V.K.; Chang, J.C.; Wang, S.K.
2011-01-01
Research highlights: → The COOLOD/N2 and PARET/ANL codes were used for a steady-state thermal-hydraulic and safety analysis of the 2 MW TRIGA MARK II reactor located at the Nuclear Studies Center of Maamora (CENM), Morocco. → The main objective of this study is to ensure the safety margins of different safety related parameters by steady-state calculations at full power level (2 MW). → The most important conclusion is that all obtained values of DNBR, fuel center and surface temperature, cladding surface temperature and coolant temperature across the hottest channel are largely far to compromise safety of the reactor. - Abstract: In this study, a pool-typed design similar to sodium-cooled fast reactor (SFR) of the fourth generation reactors has been modeled using CFD simulations to investigate the characteristics of a passive mechanism of Shutdown Heat Removal System (SHRS). The main aim is to refine the reactor pool design in terms of temperature safety margin of the sodium pool. Thus, an appropriate protection mechanism is maintained in order to ensure the safety and integrity of the reactor system during a shutdown mode without using any active heat removal system. The impacts on the pool temperature are evaluated based on the following considerations: (1) the aspect ratio of pool diameter to depth, (2) the values of thermal emissivity of the surface materials of reactor and guard vessels, and (3) innerpool liner and core periphery structures. The computational results show that an optimal pool design in geometry can reduce the maximum pool temperature down to ∼551 o C which is substantially lower than ∼627 o C as calculated for the reference case. It is also concluded that the passive Reactor Air Cooling System (RACS) is effective in removing decay heat after shutdown. Furthermore, thermal radiation from the surface of the reactor vessel is found to be important; and thus, the selection of the vessel surface materials with a high emissivity would be a
International Nuclear Information System (INIS)
Benajes, Jesus; Novella, Ricardo; Pastor, Jose Manuel; Hernández-López, Alberto; Hasegawa, Manabu; Tsuji, Naohide; Emi, Masahiko; Uehara, Isshoh; Martorell, Jordi; Alonso, Marcos
2016-01-01
Highlights: • A DOE-based optimization of the combustion system of a CI engine has been performed. • Improving efficiency controlling emissions needs optimizing bowl design and settings. • Swirl-supported with re-entrant bowl combustion system is required after optimizing. • Computationally optimized combustion system has been validated by engine tests. - Abstract: The research in the field of internal combustion engines is currently driven by the needs of decreasing fuel consumption and CO_2 emissions, while fulfilling the increasingly stringent pollutant emissions regulations. In this framework, this research work focuses on describing a methodology for optimizing the combustion system of Compression Ignition (CI) engines, by combining Computational Fluid Dynamics (CFD) modeling, and the statistical Design of Experiments (DOE) technique known as Response Surface Method (RSM). As a key aspect, in addition to the definition of the optimum set of values for the input parameters, this methodology is extremely useful to gain knowledge on the cause/effect relationships between the input and output parameters under investigation. This methodology is applied in two sequential studies to the optimization of the combustion system of a 4-cylinder 4-stroke Medium Duty Direct Injection (DI) CI engine, minimizing the fuel consumption while fulfilling the emission limits in terms of NO_x and soot. The first study targeted four optimization parameters related to the engine hardware including piston bowl geometry, injector nozzle configuration and mean swirl number (MSN) induced by the intake manifold design. After the analysis of the results, the second study extended to six parameters, limiting the optimization of the engine hardware to the bowl geometry, but including the key air management and injection settings. For both studies, the simulation plans were defined following a Central Composite Design (CCD), providing 25 and 77 simulations respectively. The results
Energy Technology Data Exchange (ETDEWEB)
Jaeger, Wadim; Manes, Jorge Perez; Imke, Uwe; Escalante, Javier Jimenez; Espinoza, Victor Sanchez, E-mail: victor.sanchez@kit.edu
2013-10-15
Highlights: • Simulation of BFBT turbine and pump transients at multiple scales. • CFD, sub-channel and system codes are used for the comparative study. • Heat transfer models are compared to identify difference between the code predictions. • All three scales predict results in good agreement to experiment. • Sub cooled boiling models are identified as field for future research. -- Abstract: The Institute for Neutron Physics and Reactor Technology (INR) at the Karlsruhe Institute of Technology (KIT) is involved in the validation and qualification of modern thermo hydraulic simulations tools at various scales. In the present paper, the prediction capabilities of four codes from three different scales – NEPTUNE{sub C}FD as fine mesh computational fluid dynamics code, SUBCHANFLOW and COBRA-TF as sub channels codes and TRACE as system code – are assessed with respect to their two-phase flow modeling capabilities. The subject of the investigations is the well-known and widely used data base provided within the NUPEC BFBT benchmark related to BWRs. Void fraction measurements simulating a turbine and a re-circulation pump trip are provided at several axial levels of the bundle. The prediction capabilities of the codes for transient conditions with various combinations of boundary conditions are validated by comparing the code predictions with the experimental data. In addition, the physical models of the different codes are described and compared to each other in order to explain the different results and to identify areas for further improvements.
Haghighi, Babak; Choi, Jiwoong; Choi, Sanghun; Hoffman, Eric A.; Lin, Ching-Long
2017-11-01
Accurate modeling of small airway diameters in patients with chronic obstructive pulmonary disease (COPD) is a crucial step toward patient-specific CFD simulations of regional airflow and particle transport. We proposed to use computed tomography (CT) imaging-based cluster membership to identify structural characteristics of airways in each cluster and use them to develop cluster-specific airway diameter models. We analyzed 284 COPD smokers with airflow limitation, and 69 healthy controls. We used multiscale imaging-based cluster analysis (MICA) to classify smokers into 4 clusters. With representative cluster patients and healthy controls, we performed multiple regressions to quantify variation of airway diameters by generation as well as by cluster. The cluster 2 and 4 showed more diameter decrease as generation increases than other clusters. The cluster 4 had more rapid decreases of airway diameters in the upper lobes, while cluster 2 in the lower lobes. We then used these regression models to estimate airway diameters in CT unresolved regions to obtain pressure-volume hysteresis curves using a 1D resistance model. These 1D flow solutions can be used to provide the patient-specific boundary conditions for 3D CFD simulations in COPD patients. Support for this study was provided, in part, by NIH Grants U01-HL114494, R01-HL112986 and S10-RR022421.
International research progress of CFD application in analysis of nuclear power system
International Nuclear Information System (INIS)
Li Linsen; Wang Kan; Song Xiaoming
2009-01-01
This paper introduces the latest international research progress of CFD application in nuclear reactor system analysis. CFD method has been applied to a few 3-D single phase transient simulations, including flow field modeling of the reactor cores, assemblies, and vessel plenums. On the other hand, CFD method applied to reactor system still needs further validation and benchmarking, meanwhile,the application of CFD also needs to be studied, including the setup of the Best Practice Guidelines (BPG). Furthermore, CFD codes are used to couple with thermal-hydraulic system codes or neutronic codes. Eventually, in two phase field and turbulence modeling, CFD codes are still being developed. (authors)
Directory of Open Access Journals (Sweden)
Muhammad Ahsan
2015-07-01
Full Text Available Fluid catalytic cracking (FCC is an essential process for the conversion of gas oil to gasoline. This study is an effort to model the phenomenon numerically using commercial computational fluid dynamics (CFD software, heavy density catalyst and 4-lump kinetic model. Geometry, boundary conditions and dimensions of industrial riser for catalytic cracking unit are conferred for 2D simulation using commercial CFD code FLUENT 6.3. Continuity, momentum, energy and species transport equations, applicable to two phase solid and gas flow, are used to simulate the physical phenomenon as efficient as possible. This study implements and predicts the use of the granular Eulerian multiphase model with species transport. Time accurate transient problem is solved with the prediction of mass fraction profiles of gas oil, gasoline, light gas and coke. The output curves demonstrate the breaking of heavy hydrocarbon in the presence of catalyst. An approach proposed in this study shows good agreement with the experimental and numerical data available in the literature.
Alonso-Torres, Beatriz; Hernández-Pérez, José Alfredo; Sierra-Espinoza, Fernando; Schenker, Stefan; Yeretzian, Chahan
2013-01-01
Heat and mass transfer in individual coffee beans during roasting were simulated using computational fluid dynamics (CFD). Numerical equations for heat and mass transfer inside the coffee bean were solved using the finite volume technique in the commercial CFD code Fluent; the software was complemented with specific user-defined functions (UDFs). To experimentally validate the numerical model, a single coffee bean was placed in a cylindrical glass tube and roasted by a hot air flow, using the identical geometrical 3D configuration and hot air flow conditions as the ones used for numerical simulations. Temperature and humidity calculations obtained with the model were compared with experimental data. The model predicts the actual process quite accurately and represents a useful approach to monitor the coffee roasting process in real time. It provides valuable information on time-resolved process variables that are otherwise difficult to obtain experimentally, but critical to a better understanding of the coffee roasting process at the individual bean level. This includes variables such as time-resolved 3D profiles of bean temperature and moisture content, and temperature profiles of the roasting air in the vicinity of the coffee bean.
Energy Technology Data Exchange (ETDEWEB)
Xiao, Jianjun, E-mail: jianjun.xiao@kit.edu [Institute of Nuclear and Energy Technologies, Karlsruhe Institute of Technology, P.O. Box 3640, 76021 Karlsruhe (Germany); Travis, John R., E-mail: jack_travis@comcast.com [Engineering and Scientific Software Inc., 3010 Old Pecos Trail, Santa Fe, NM 87505 (United States); Royl, Peter, E-mail: peter.royl@partner.kit.edu [Institute of Nuclear and Energy Technologies, Karlsruhe Institute of Technology, P.O. Box 3640, 76021 Karlsruhe (Germany); Necker, Gottfried, E-mail: gottfried.necker@partner.kit.edu [Institute of Nuclear and Energy Technologies, Karlsruhe Institute of Technology, P.O. Box 3640, 76021 Karlsruhe (Germany); Svishchev, Anatoly, E-mail: anatoly.svishchev@kit.edu [Institute of Nuclear and Energy Technologies, Karlsruhe Institute of Technology, P.O. Box 3640, 76021 Karlsruhe (Germany); Jordan, Thomas, E-mail: thomas.jordan@kit.edu [Institute of Nuclear and Energy Technologies, Karlsruhe Institute of Technology, P.O. Box 3640, 76021 Karlsruhe (Germany)
2016-05-15
Highlights: • 3-D scalable semi-implicit pressure-based CFD code for containment safety analysis. • Robust solution algorithm valid for all-speed flows. • Well validated and widely used CFD code for hydrogen safety analysis. • Code applied in various types of nuclear reactor containments. • Parallelization enables high-fidelity models in large scale containment simulations. - Abstract: GASFLOW is a three dimensional semi-implicit all-speed CFD code which can be used to predict fluid dynamics, chemical kinetics, heat and mass transfer, aerosol transportation and other related phenomena involved in postulated accidents in nuclear reactor containments. The main purpose of the paper is to give a brief review on recent GASFLOW code development, validations and applications in the field of nuclear safety. GASFLOW code has been well validated by international experimental benchmarks, and has been widely applied to hydrogen safety analysis in various types of nuclear power plants in European and Asian countries, which have been summarized in this paper. Furthermore, four benchmark tests of a lid-driven cavity flow, low Mach number jet flow, 1-D shock tube and supersonic flow over a forward-facing step are presented in order to demonstrate the accuracy and wide-ranging capability of ICE’d ALE solution algorithm for all-speed flows. GASFLOW has been successfully parallelized using the paradigms of Message Passing Interface (MPI) and domain decomposition. The parallel version, GASFLOW-MPI, adds great value to large scale containment simulations by enabling high-fidelity models, including more geometric details and more complex physics. It will be helpful for the nuclear safety engineers to better understand the hydrogen safety related physical phenomena during the severe accident, to optimize the design of the hydrogen risk mitigation systems and to fulfill the licensing requirements by the nuclear regulatory authorities. GASFLOW-MPI is targeting a high
Keye, Stefan; Togiti, Vamish; Eisfeld, Bernhard; Brodersen, Olaf P.; Rivers, Melissa B.
2013-01-01
The accurate calculation of aerodynamic forces and moments is of significant importance during the design phase of an aircraft. Reynolds-averaged Navier-Stokes (RANS) based Computational Fluid Dynamics (CFD) has been strongly developed over the last two decades regarding robustness, efficiency, and capabilities for aerodynamically complex configurations. Incremental aerodynamic coefficients of different designs can be calculated with an acceptable reliability at the cruise design point of transonic aircraft for non-separated flows. But regarding absolute values as well as increments at off-design significant challenges still exist to compute aerodynamic data and the underlying flow physics with the accuracy required. In addition to drag, pitching moments are difficult to predict because small deviations of the pressure distributions, e.g. due to neglecting wing bending and twisting caused by the aerodynamic loads can result in large discrepancies compared to experimental data. Flow separations that start to develop at off-design conditions, e.g. in corner-flows, at trailing edges, or shock induced, can have a strong impact on the predictions of aerodynamic coefficients too. Based on these challenges faced by the CFD community a working group of the AIAA Applied Aerodynamics Technical Committee initiated in 2001 the CFD Drag Prediction Workshop (DPW) series resulting in five international workshops. The results of the participants and the committee are summarized in more than 120 papers. The latest, fifth workshop took place in June 2012 in conjunction with the 30th AIAA Applied Aerodynamics Conference. The results in this paper will evaluate the influence of static aeroelastic wing deformations onto pressure distributions and overall aerodynamic coefficients based on the NASA finite element structural model and the common grids.
Directory of Open Access Journals (Sweden)
Farkas Istvan
2017-01-01
Full Text Available This paper focuses on the validation and applicability of CFD to simulate and analyze the thermo-hydraulic consequences of a main steam line break. Extensive validation data come from experiments performed using the Rossendorf coolant mixing model facility. For the calculation, the range of 9 to 12 million hexahe¬dral cells was constructed to capture all details in the interrogation domain in the system. The analysis was performed by running a time-dependent calculation, Detailed analyses were made at different cross-sections in the system to evaluate not only the value of the maximum and minimum temperature, but also the loca¬tion and the time at which it occurs during the transient which is considered to be indicator for the quality of mixing in the system. CFD and experimental results were qualitatively compared; mixing in the cold legs with emergency core cooling systems was overestimated. This could be explained by the sensitivity to the bound¬ary conditions. In the downcomer, the experiments displayed higher mixing: by our assumption this related to the dense measurement grid (they were not modelled. The temperature distribution in the core inlet plane agreed with the measurement results. Minor deviations were seen in the quantitative comparisons: the maximum temperature difference was 2ºC.
Energy Technology Data Exchange (ETDEWEB)
Chen, Youhua [University of Science and Technology of China, Hefei, Anhui, 230027 (China); Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui, 230031 (China); Chen, Lei [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui, 230031 (China); Liu, Songlin, E-mail: slliu@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui, 230031 (China); Luo, Guangnan [University of Science and Technology of China, Hefei, Anhui, 230027 (China); Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui, 230031 (China)
2017-01-15
Highlights: • A unitary pebble bed was built to analyze the flow characteristics of purge gas based on DEM-CFD method. • Flow characteristics between particles were clearly displayed. • Porosity distribution, velocity field distribution, pressure field distribution, pressure drop and the wall effects on velocity distribution were studied. - Abstract: Helium is used as the purge gas to sweep tritium out when it flows through the lithium ceramic and beryllium pebble beds in solid breeder blanket for fusion reactor. The flow characteristics of the purge gas will dominate the tritium sweep capability and tritium recovery system design. In this paper, a computational model for the unitary pebble bed was conducted using DEM-CFD method to study the purge gas flow characteristics in the bed, which include porosity distribution between pebbles, velocity field distribution, pressure field distribution, pressure drop as well as the wall effects on velocity distribution. Pebble bed porosity and velocity distribution with great fluctuations were found in the near-wall region and detailed flow characteristics between pebbles were displayed clearly. The results show that the numerical simulation model has an error with about 11% for estimating pressure drop when compared with the Ergun equation.
CFD simulations of the MEXICO rotor
DEFF Research Database (Denmark)
Bechmann, Andreas; Sørensen, Niels N.; Zahle, Frederik
2011-01-01
The wake behind a wind turbine model is investigated using Computational Fluid Dynamics (CFD), and results are compared with measurements. The turbine investigated is the three‐bladed test rotor (D = 4.5 m) used in the Model Experiments in Controlled Conditions (MEXICO) wind tunnel experiment....... During the MEXICO experiment, particle image velocimetry measurements of the induction upstream and downstream of the rotor were performed for different operating conditions, giving a unique dataset to verify theoretical models and CFD models. The present paper first describes the efforts in reproducing...
Best Practice Guidelines for the use of CFD in Nuclear Reactor Safety Applications
International Nuclear Information System (INIS)
Mahaffy, J.; Chung, B.; Song, C.; Dubois, F.; Graffard, E.; Ducros, F.; Heitsch, M.; Scheuerer, M.; Henriksson, M.; Komen, E.; Moretti, F.; Morii, T.; Muehlbauer, P.; Rohde, U.; Smith, B. L.; Watanabe, T.; Zigh, G.
2007-01-01
models available as user options. As is appropriate for single phase CFD, most of the emphasis is on selection of turbulence models. Recommendations are provided for high level selection between Reynolds Averaged Navier Stokes (RANS), Large Eddy Simulation (LES), and hybrid approaches such as Detached Eddy Simulation (DES). Chapter 7 focuses on the numerical approximations available to solve the flow equations. Guidelines are provided for nodalization, and for choice of discrete approximations to the differential equations. Guidance is also given on convergence of iterative solutions, and numerical techniques for following free surfaces. Chapter 7 discusses general assessment strategy. Chapter 8 covers approaches to limiting errors associated with discretization and numerical solution methods (verification). This step is a necessary precursor to quantifying errors associated with physical models (validation) as described in Chapter 9. Guidance on documentation is provided in Chapter 10. Chapter 11 provides some examples of NRS applications; the first two examples are boron dilution and pressurized thermal shock; the third example explores the use of Fluent for simulation of dry cask storage of spent fuel (this example is highly suited to single phase CFD analysis)
Energy Technology Data Exchange (ETDEWEB)
Sathiah, Pratap [Nuclear Research and Consultancy Group (NRG), Westerduinweg 3, 1755 ZG Petten (Netherlands); Holler, Tadej, E-mail: tadej.holler@ijs.si [Jozef Stefan Institute (JSI), Jamova cesta 39, 1000 Ljubljana (Slovenia); Kljenak, Ivo [Jozef Stefan Institute (JSI), Jamova cesta 39, 1000 Ljubljana (Slovenia); Komen, Ed [Nuclear Research and Consultancy Group (NRG), Westerduinweg 3, 1755 ZG Petten (Netherlands)
2016-12-15
Highlights: • Validation of the modeling approach for hydrogen deflagration is presented. • Modeling approach is based on two combustion models implemented in ANSYS Fluent. • Experiments with various initial hydrogen concentrations were used for validation. • The effects of heat transfer mechanisms selection were also investigated. • The grid sensitivity analysis was performed as well. - Abstract: The control of hydrogen in the containment is an important safety issue following rapid oxidation of the uncovered reactor core during a severe accident in a Nuclear Power Plant (NPP), because dynamic pressure loads from eventual hydrogen combustion can be detrimental to the structural integrity of the reactor safety systems and the reactor containment. In the set of our previous papers, a CFD-based method to assess the consequence of fast combustion of uniform hydrogen-air mixtures was presented, followed by its validation for hydrogen-air mixtures with diluents and for non-uniform hydrogen-air mixtures. In the present paper, the extension of this model for the slow deflagration regime is presented and validated using the hydrogen deflagration experiments performed in the medium-scale experimental facility THAI. The proposed method is implemented in the CFD software ANSYS Fluent using user defined functions. The paper describes the combustion model and the main results of code validation. It addresses questions regarding turbulence model selection, effect of heat transfer mechanisms, and grid sensitivity, as well as provides insights into the importance of combustion model choice for the slow deflagration regime of hydrogen combustion in medium-scale and large-scale experimental vessels mimicking the NPP containment.
Des proprietes de l'etat normal du modele de Hubbard bidimensionnel
Lemay, Francois
Depuis leur decouverte, les etudes experimentales ont demontre que les supra-conducteurs a haute temperature ont une phase normale tres etrange. Les proprietes de ces materiaux ne sont pas bien decrites par la theorie du liquide de Fermi. Le modele de Hubbard bidimensionnel, bien qu'il ne soit pas encore resolu, est toujours considere comme un candidat pour expliquer la physique de ces composes. Dans cet ouvrage, nous mettons en evidence plusieurs proprietes electroniques du modele qui sont incompatibles avec l'existence de quasi-particules. Nous montrons notamment que la susceptibilite des electrons libres sur reseau contient des singularites logarithmiques qui influencent de facon determinante les proprietes de la self-energie a basse frequence. Ces singularites sont responsables de la destruction des quasi-particules. En l'absence de fluctuations antiferromagnetiques, elles sont aussi responsables de l'existence d'un petit pseudogap dans le poids spectral au niveau de Fermi. Les proprietes du modele sont egalement etudiees pour une surface de Fermi similaire a celle des supraconducteurs a haute temperature. Un parallele est etabli entre certaines caracteristiques du modele et celles de ces materiaux.
Energy Technology Data Exchange (ETDEWEB)
Castro, Landy Y.; Rojas, Leorlen Y.; Gamez, Abel; Rosales, Jesus; Gonzalez, Daniel; Garcia, Carlos, E-mail: lcastro@instec.cu, E-mail: leored1984@gmail.com, E-mail: agamezgmf@gmail.com, E-mail: jrosales@instec.cu, E-mail: danielgonro@gmail.com, E-mail: cgh@instec.cu [Instituto Superior de Tecnologias y Ciencias Aplicadas (InSTEC), La Habana (Cuba); Oliveira, Carlos Brayner de, E-mail: cabol@ufpe.br [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil); Dominguez, Dany S., E-mail: dsdominguez@gmail.com [Universidade Estadual de Santa Cruz (UESC), Ilheus, BA (Brazil). Pos-Graduacao em Modelagem Computacional
2015-07-01
Chosen as one of six Generation‒IV nuclear-reactor concepts, Supercritical Water-cooled Reactors (SCWRs) are expected to have high thermal efficiencies within the range of 45 - 50% owing to the reactor's high pressures and outlet temperatures. In this reactor, the primary water enters the core under supercritical-pressure condition (25 MPa) at a temperature of 280 deg C and leaves it at a temperature of up to 510 deg C. Due to the significant changes in the physical properties of water at supercritical-pressure, the system is susceptible to local temperature, density and power oscillations. The behavior of supercritical water into the core of the SCWR, need to be sufficiently studied. Most of the methods available to predict the effects of the heat transfer phenomena within the pseudocritical region are based on empirical one-directional correlations, which do not capture the multidimensional effects and do not provide accurate results in regions such as the deteriorated heat transfer regime. In this paper, computational fluid dynamics (CFD) analysis was carried out to study the thermal-hydraulic behavior of supercritical water flows in sub-channels of a typical European High Performance Light Water Reactor (HPLWR) fuel assembly using commercial CFD code CFX-14. It was determined the steady-state equilibrium parameters and calculated the temperature and density distributions. A comparative study for different turbulence models were carried out and the obtained results are discussed. (author)
International Nuclear Information System (INIS)
Castro, Landy Y.; Rojas, Leorlen Y.; Gamez, Abel; Rosales, Jesus; Gonzalez, Daniel; Garcia, Carlos; Oliveira, Carlos Brayner de; Dominguez, Dany S.
2015-01-01
Chosen as one of six Generation‒IV nuclear-reactor concepts, Supercritical Water-cooled Reactors (SCWRs) are expected to have high thermal efficiencies within the range of 45 - 50% owing to the reactor's high pressures and outlet temperatures. In this reactor, the primary water enters the core under supercritical-pressure condition (25 MPa) at a temperature of 280 deg C and leaves it at a temperature of up to 510 deg C. Due to the significant changes in the physical properties of water at supercritical-pressure, the system is susceptible to local temperature, density and power oscillations. The behavior of supercritical water into the core of the SCWR, need to be sufficiently studied. Most of the methods available to predict the effects of the heat transfer phenomena within the pseudocritical region are based on empirical one-directional correlations, which do not capture the multidimensional effects and do not provide accurate results in regions such as the deteriorated heat transfer regime. In this paper, computational fluid dynamics (CFD) analysis was carried out to study the thermal-hydraulic behavior of supercritical water flows in sub-channels of a typical European High Performance Light Water Reactor (HPLWR) fuel assembly using commercial CFD code CFX-14. It was determined the steady-state equilibrium parameters and calculated the temperature and density distributions. A comparative study for different turbulence models were carried out and the obtained results are discussed. (author)
Energy Technology Data Exchange (ETDEWEB)
Trocheris, M [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires
1953-07-01
The systematic comparison of {beta} decays of the cores of number of odd mass with the predictions of the modal of Mrs. Mayer on spins and parities, has already been made by several authors. It is taken in the present work with more recent experimental data and with a method of classification of the {beta} transitions. A simultaneous comparison to the experience of the model of the layers and the theory of the {beta} transitions can serve to verify one and the other too. In the present work, it appeared more fruitful to try to verify the model of the layers with the help of the very established theory of the {beta} transitions. One will look to verify and perfect the models of the layers for transitions between fundamental states or isomers of the cores. (M.B.) [French] La comparaison systematique des desintegrations {beta} des noyaux de nombre de masse impair avec les predictions du modale de Mme MAYER sur les spins et les parites, a deja ete faite par plusieurs auteurs. Elle est reprise dans le present travail avec des donnees experimentales plus recentes et avec une methode de classification des transitions {beta}. Une comparaison simultanee a l'experience du modele des couches et de la theorie des transitions {beta} peut, a priori, servir a verifier egalement l'un et l'autre. Dans le present travail, il a paru plus fructueux de chercher a verifier le modele des couches a l'aide de la theorie bien etablie des transitions {beta}. On cherchera de verifier et de perfectionner le modele des couches pour les transitions entre etats fondamentaux ou isomeres des noyaux. (M.B.)
Devia-Orjuela, John Steven; Betancourt-Buitrago, Luis Andrés; Machuca-Martinez, Fiderman
2018-06-02
The use of ultraviolet light in photoreactors for wastewater treatment has become popular as an alternative of known chemical oxidative substances. UV LED light represents cheaper, robust, and versatile alternative to traditional UV lamps. In this study, it was designed and evaluated a photoreactor with an approach of chemical fluid dynamics (CFD) and experimental validation. The evaluation consisted of (1) CFD velocity profile analysis, (2) characterization of the average light distribution with potassium ferrioxalate actinometry, (3) degradation of a typical recalcitrant metallic cyanocomplex Fe(CN) 6 3- , and (4) scavenger effect analysis in the photodegradation using potassium persulfate. Actinometrical essay concluded that the system was able to receive 1.93 μE/s. The reactor operated under turbulent regime and best result for Fe(CN) 6 3- degradation was obtained at 4 h of operation, using 5-W UV-A LEDs, with pH ~ 7 and 10 mM de S 2 O 8 2- . Baffled photoreactor demonstrated to be useful for this type of illumination and wastewater treatment.
Haro, Alexander J.; Chelminski, Michael; Dudley, Robert W.
2015-01-01
We developed two-dimensional computational fluid hydraulics-habitat suitability index (CFD-HSI) models to identify and qualitatively assess potential zones of shallow water depth and high water velocity that may present passage challenges for five major anadromous fish species in a 2.63-km reach of the main stem Penobscot River, Maine, as a result of a dam removal downstream of the reach. Suitability parameters were based on distribution of fish lengths and body depths and transformed to cruising, maximum sustained and sprint swimming speeds. Zones of potential depth and velocity challenges were calculated based on the hydraulic models; ability of fish to pass a challenge zone was based on the percent of river channel that the contiguous zone spanned and its maximum along-current length. Three river flows (low: 99.1 m3 sec-1; normal: 344.9 m3 sec-1; and high: 792.9 m3 sec-1) were modelled to simulate existing hydraulic conditions and hydraulic conditions simulating removal of a dam at the downstream boundary of the reach. Potential depth challenge zones were nonexistent for all low-flow simulations of existing conditions for deeper-bodied fishes. Increasing flows for existing conditions and removal of the dam under all flow conditions increased the number and size of potential velocity challenge zones, with the effects of zones being more pronounced for smaller species. The two-dimensional CFD-HSI model has utility in demonstrating gross effects of flow and hydraulic alteration, but may not be as precise a predictive tool as a three-dimensional model. Passability of the potential challenge zones cannot be precisely quantified for two-dimensional or three-dimensional models due to untested assumptions and incomplete data on fish swimming performance and behaviours.
Lou, Wentao; Zhu, Miaoyong
2014-10-01
A computation fluid dynamics-simultaneous reaction model (CFD-SRM) coupled model has been proposed to describe the desulfurization behavior in a gas-stirred ladle. For the desulfurization thermodynamics, different models were investigated to determine sulfide capacity and oxygen activity. For the desulfurization kinetic, the effect of bubbly plume flow, as well as oxygen absorption and oxidation reactions in slag eyes are considered. The thermodynamic and kinetic modification coefficients are proposed to fit the measured data, respectively. Finally, the effects of slag basicity and gas flow rate on the desulfurization efficiency are investigated. The results show that as the interfacial reactions (Al2O3)-(FeO)-(SiO2)-(MnO)-[S]-[O] simultaneous kinetic equilibrium is adopted to determine the oxygen activity, and the Young's model with the modification coefficient R th of 1.5 is adopted to determine slag sulfide capacity, the predicted sulfur distribution ratio LS agrees well with the measured data. With an increase of the gas blowing time, the predicted desulfurization rate gradually decreased, and when the modification parameter R k is 0.8, the predicted sulfur content changing with time in ladle agrees well with the measured data. If the oxygen absorption and oxidation reactions in slag eyes are not considered in this model, then the sulfur removal rate in the ladle would be overestimated, and this trend would become more obvious with an increase of the gas flow rate and decrease of the slag layer height. With the slag basicity increasing, the total desulfurization ratio increases; however, the total desulfurization ratio changes weakly as the slag basicity exceeds 7. With the increase of the gas flow rate, the desulfurization ratio first increases and then decreases. When the gas flow rate is 200 NL/min, the desulfurization ratio reaches a maximum value in an 80-ton gas-stirred ladle.
CFD analysis of poison injection in AHWR calandria
International Nuclear Information System (INIS)
Kansal, A.K.; Kamble, M.T.; Maheshwari, N.K.; Vijayan, P.K.
2014-01-01
The present work intends to give details of design and performance validation of SDS-2. The performance is evaluated on the basis of dispersion of poison in calandria in a given period of time. Location of injection tube and injection holes, size of jet hole and number of holes are some of the design parameters which greatly affect dispersion of poison in calandria. A Computational Fluid Dynamic (CFD) study for axial and radial injection of poison was carried out using open source CFD code OpenFOAM. CFD benchmarking was done using experiments performed by Johari (Johari et al. 1997) to identify suitable turbulence model for this problem. An experimental facility simulating poison injection in moderator in presence of calandria tubes was used to further validate the CFD model is shown in the paper. CFD analysis was carried out for axial as well as radial injection for AHWR geometry. CFD analysis using OpenFOAM has been carried out to study high pressure poison injection for single jet of Shut Down System - 2 (SDS- 2) of Advanced Heavy Water Reactor (AHWR) for various design options. CFD model used in analysis have been validated with experimental data available in literature as well as experiments performed for AHWR specific geometry. Various turbulence models are tested and their adequacy for such flow problems has been established. The CFD model is then used to simulate poison injection for two design options for AHWR and their performance is compared. (author)
CFD computations of the second round of MEXICO rotor measurements
DEFF Research Database (Denmark)
Sørensen, Niels N.; Zahle, Frederik; Boorsma, K.
2016-01-01
A comparison, between selected wind tunnel data from the NEW MEXICO measuring campaign and CFD computations are shown. The present work, documents that a state of the art CFD code, including a laminar turbulent transition model, can provide good agreement with experimental data. Good agreement...
International Nuclear Information System (INIS)
Bellecci, C.; Gaudio, P.; Lupelli, I.; Malizia, A.; Porfiri, M.T.; Quaranta, R.; Richetta, M.
2011-01-01
A recognized safety issue for future fusion reactors fueled with deuterium and tritium is the generation of sizeable quantities of dust. Several mechanisms resulting from material response to plasma bombardment in normal and off-normal conditions are responsible for generating dust of micron and sub-micron length scales inside the VV (Vacuum Vessel) of experimental fusion facilities. The loss of coolant accidents (LOCA), loss of coolant flow accidents (LOFA) and loss of vacuum accidents (LOVA) are types of accidents, expected in experimental fusion reactors like ITER, that may jeopardize components and plasma vessel integrity and cause dust mobilization risky for workers and public. The air velocity is the driven parameter for dust resuspension and its characterization, in the very first phase of the accidents, is critical for the dust release. To study the air velocity trend a small facility, Small Tank for Aerosol Removal and Dust (STARDUST), was set up at the University of Rome 'Tor Vergata', in collaboration with ENEA Frascati laboratories. It simulates a low pressurization rate (300 Pa/s) LOVA event in ITER due to a small air inlet from two different positions of the leak: at the equatorial port level and at the divertor port level. The velocity magnitude in STARDUST was investigated in order to map the velocity field by means of a punctual capacitive transducer placed inside STARDUST without obstacles. FLUENT was used to simulate the flow behavior for the same LOVA scenarios used during the experimental tests. The results of these simulations were compared against the experimental data for CFD code validation. For validation purposes, the CFD simulation data were extracted at the same locations as the experimental data were collected for the first four seconds, because at the beginning of the experiments the maximum velocity values (that could cause the almost complete dust mobilization) have been measured. In this paper the authors present and discuss the
Directory of Open Access Journals (Sweden)
Cabezón D.
2014-01-01
Full Text Available Wake effect represents one of the main sources of energy loss and uncertainty when designing offshore wind farms. Traditionally analytical models have been used to optimize and estimate power deficits. However these models have shown to underestimate wake effect and consequently overestimate output power [1, 2]. This means that analytical models can be very helpful at optimizing preliminary layouts but not as accurate as needed for an ultimate fine design. Different techniques can be found in the literature to study wind turbine wakes that include simplified kinematic models and more advanced field models, that solve flow equations with different turbulence closure schemes. See the review papers of Crespo et al. [3], Vermeer et al. [4], and Sanderse et al. [5]. Purely elliptic Computational Fluid Dynamics (CFD models based on the actuator disk technique have been developed during the last years [6–8]. They consider wind turbine rotor as a disk where a distribution of axial forces act over the incoming air. It is a fair approach but it can still be computationally expensive for big wind farms in an operative mode. With this technique still active, an alternative approach inspired on the parabolic wake models [9, 10] is proposed. Wind turbine rotors continue to be represented as actuator disks but now the domain is split into subdomains containing one or more wind turbines. The output of each subdomain is mapped onto the input boundary of the next one until the end of the domain is reached, getting a considerable decrease on computational time, by a factor of order 10. As the model is based on the open source CFD solver OpenFOAM, it can be parallelized to speed-up convergence. The near wake is calculated so no initial wind speed deficit profiles have to be supposed as in totally parabolic models and alternative turbulence models, such as the anisotropic Reynolds Stress Model (RSM can be used. Traditional problems of elliptic models related to
Application of CFD methods in research of SCWR thermo-hydraulics
International Nuclear Information System (INIS)
Zeng Xiaokang; Li Yongliang; Yan Xiao; Xiao Zejun; Huang Yanping
2013-01-01
The CFD method has been an important tool in the research of SCWR thermo- hydraulics. Currently, the CFD methods uses commonly the subcritical turbulence models, which can not accurately simulate the gravity and thermal expansion acceleration effect, and CFD numerical method is not applicable when the heat flux is large. The paper summarizes the application status of the CFD methods in the research of SCWR thermo-hydraulics in RETH. (authors)
Energy Technology Data Exchange (ETDEWEB)
Gaussens, J; Paillot, H [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires
1965-07-01
The authors define the notions of use values and price of plutonium. They give a 'simplified parametrized model' simulating the equilibrium of the offer and the demand in time, concerning the plutonium and the price deriving from the relative scarcity of this metal, taking into account the technical and economic operating parameters of the various reactors confronted. This model is simple enough to allow direct computations and establish clear relations between the various parameters. The use of the linear programmes method allows on the other hand a wide extension of the model. This report includes three main parts: I - General description of the study (without detailed calculations) II - Mathematical development of the simplified parametrized model and application (the basic data and the results of the calculations are given) III - Appendices (giving the detailed computations of part II). (authors) [French] Les auteurs definissent les notions de valeurs d'usage et de prix du plutonium. Ils donnent un 'modele parametre simplifie' simulant l'equilibre de l'office et de la demande dans le temps concernant le plutonium et le prix qui decoule de la rarete relative de ce metal, compte tenu des parametres techniques et economiques de fonctionnement des divers reacteurs en presence. Ce modele est suffisamment simple pour permettre des calculs manuels et etablir des liaisons claires entre les divers parametres. L'utilisation de la technique des programmes lineaires permet par ailleurs une extension considerable du modele. Cette note comprend trois parties: I - Expose general de l'etude (sans expose du detail des calculs) II - Developpement mathematique du modele parametre simplifie et application (on precise les donnees de base et le resultat des calculs) III - Annexes (donnant le detail des calculs de la partie II). (auteurs)
Best Practice Guidelines for the Use of CFD in Nuclear Reactor Safety Applications - Revision
International Nuclear Information System (INIS)
Mahaffy, J.; Chung, B.; Song, C.; Dubois, F.; Graffard, E.; Ducros, F.; Heitsch, M.; Scheuerer, M.; Henriksson, M.; Komen, E.; Moretti, F.; Morii, T.; Muehlbauer, P.; Rohde, U.; Smith, B.L.; Watanabe, T.; Zigh, G.
2015-01-01
, most of the emphasis is on selection of turbulence models. Recommendations are provided for high level selection between Reynolds Averaged Navier-Stokes (RANS), Large Eddy Simulation (LES), and hybrid approaches such as Detached Eddy Simulation (DES). Specific turbulence models available with each of these approaches are also described. Recommendations are also provided for models associated with buoyancy, heat transfer, free surfaces, and fluid structure interactions. Chapter 7 focuses on the numerical approximations available to solve the flow equations. Guidelines are provided for nodalization, and for choice of discrete approximations to the differential equations. Guidance is also given on convergence of iterative solutions, and numerical techniques for following free surfaces. Results from any simulation must be properly justified. Chapter 7 discusses general assessment strategy. Chapter 8 covers approaches to limiting errors associated with discretization and numerical solution methods (verification). This step is a necessary precursor to quantifying errors associated with physical models (validation) as described in Chapter 9. All of these steps must, of course, be properly documented both for immediate review and archival purposes. Guidance on documentation is provided in Chapter 10. Chapter 11 provides some examples of NRS applications. These are not intended as comprehensive illustrations of best practices, but illustrate some of these practices for very specific NRS applications. The first two examples are boron dilution and pressurized thermal shock. These scenarios have been analysed for many years by a number of organizations, and references to some of these other studies can be found in Chapter 1. The third example explores the use of Fluent for simulation of dry cask storage of spent fuel. This is example is highly suited to single phase CFD analysis
1994-08-01
Ums les cas d’essai. Ces disquettes sont disponibles ä la demande aupres des Centres de distribution nalionaux de I’AGARD. Le groupe de travail a... Tesi Matrix for Configuralion (21 q, (kPa) a (degrees) NPR From Nozzle NPR Rear Nozzle Vc Front Nozzle Ve Rear Nozzle Remarks 0.00 0 1.3 to
Gomez, C.; Lavigne, F.; Sri Hadmoko, D.; Wassmer, P.
2018-03-01
Semeru Volcano is an active stratovolcano located in East Java (Indonesia), where historic lava flows, occasional pyroclastic flows and vulcanian explosions (on average every 5 min to 15 min) generate a stock of material that is remobilized by lahars, mostly occurring during the rainy season between October and March. Every year, several lahars flow down the Curah Lengkong Valley on the South-east flank of the volcano, where numerous lahar studies have been conducted. In the present contribution, the objective was to study the spatial distribution of boulder-size clasts and try to understand how this distribution relates to the valley morphology and to the dynamic and deposition dynamic of lahars. To achieve this objective, the method relies on a combination of (1) aerial photogrammetry-derived geospatial data on boulders' distribution, (2) ground penetrating radar data collected along a 2 km series of transects and (3) a CFD model of flow to analyse the results from the deposits. Results show that <1 m diameter boulders are evenly distributed along the channel, but that lava flow deposits visible at the surface of the river bed and SABO dams increase the concentration of clasts upstream of their position. Lateral input of boulders from collapsing lava-flow deposits can bring outsized clasts in the system that tend to become trapped at one location. Finally, the comparison between the CFD simulation and previous research using video imagery of lahars put the emphasis the fact that there is no direct link between the sedimentary units observed in the field and the flow that deposited them. Both grain size, flow orientation, matrix characteristics can be very different in a deposit for one single flow, even in confined channels like the Curah Lengkong.
Energy Technology Data Exchange (ETDEWEB)
Cremer, M.A.; Montgomery, C.J.; Swensen, D.A.; Wang, D.H.; Heap, M.P.
2000-07-01
Conditions for the selective noncatalytic reduction (SNCR) of NO to N{sub 2} by ammonia in the presence of excess oxygen were first identified by Lyon nearly twenty-five years ago. Since that time, researchers have investigated the effectiveness of other reagents, such as urea and cyanuric acid and effects of process parameters such as temperature, residence time, normalized stoichiometric ratio (NSR), equivalence ratio, initial NOx level, and various additives on SNCR performance. In practical combustion systems, NOx reduction efficiencies are primarily dependent on three factors: (1) mixing, (2) temperature, and (3) residence time. Efficiencies increase when all three act in concert so that the reagent is fully mixed with the flue gas at optimum temperatures over a sufficient time. In practical combustion system, severe design constraints are placed on the reagent injection system that must disperse the reagent throughout the entire combustion product stream while the gases are within the appropriate temperature window. Thus, the design of an SNCR injection system requires an analysis capability that takes into account the nonlinear coupling between these physical processes. In particular, it is critical to (1) couple robust finite-rate SNCR chemistry to the flow field