WorldWideScience

Sample records for des in-beam pet

  1. Application of the in-beam PET therapy monitoring on precision irradiations with helium ions; Anwendung des in-beam PET Therapiemonitorings auf Praezisionsbestrahlungen mit Helium-Ionen

    Energy Technology Data Exchange (ETDEWEB)

    Fiedler, F.

    2008-02-19

    The main goal of the present dissertation was to extend the in-beam PET method to new ion types. It was shown that the in-beam PET method can also be applied for {sup 3}He irradiations. For this experiments on a {sup 3}He beam were performed. The activity yield is at equal applied dose about three times larger than at {sup 12}C irradiations. The reachable range resolution is smaller than 1 mm. At the irradiation of an inhomogeneous phantom it was shown that a contrast between different materials is resolvable. From the experimentally determined reaction rates cross sections for the reactions leading to positron emitters were performed. The data taken in the {sup 3}He experiments were compared those obtained in carbon-ion experiments as well as literature data for proton irradiations. A comparison with the calculations of the simulation program SHIELD-HIT was performed. A collection of cross-section models and the established requirements for a simulation program applicable for in-beam PET are preparing for further work.

  2. In-beam PET at clinical proton beams with pile-up rejection

    Energy Technology Data Exchange (ETDEWEB)

    Helmbrecht, Stephan; Fiedler, Fine; Iltzsche, Marc [Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany). Inst. of Radiation Physics; Enghardt, Wolfgang [Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany). Inst. of Radiation Physics; OncoRay - National Center for Radiation Research in Oncology, Dresden (Germany); Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany). Inst. of Radiooncology; German Cancer Research Center (DKFZ), Heidelberg (Germany); German Cancer Consortium (DKTK), Dresden (Germany); Pausch, Guntram [OncoRay - National Center for Radiation Research in Oncology, Dresden (Germany); Tintori, Carlo [CAEN S.p.A., Viareggio (Italy); Kormoll, Thomas [OncoRay - National Center for Radiation Research in Oncology, Dresden (Germany); Technische Univ. Dresden (Germany). AG Radiation Physics

    2017-10-01

    Positron emission tomography (PET) is a means of imaging the β{sup +}-activity produced by the radiation field in ion beam therapy and therefore for treatment verification. Prompt γ-rays that are emitted during beam application challenge the detectors and electronics of PET systems, since those are designed for low and medium count rates. Typical PET detectors operated according to a modified Anger principle suffer from multiple events at high rates. Therefore, in-beam PET systems using such detectors rely on a synchronization of beam status and measurement to reject deteriorated data. In this work, a method for pile-up rejection is applied to conventional Anger logic block detectors. It allows for an in-beam data acquisition without further synchronization. Though cyclotrons produce a continuous wave beam, the radiation field shaping technique introduces breaks in the application. Time regimes mimicking synchrotrons as well as cyclotron based ones using double-scattering or pencil beam scanning field shaping at dose rates of 0.5, 1.0 and 2.0 Gy/min were investigated. Two types of inhomogeneous phantoms were imaged. The first one simulates cavity structures, the other one mimics a static lung irradiation. It could be shown that, depending on the dose rate and the beam time structure, in-beam measurement including a few seconds decay time only, yield images which revealed all inhomogeneities in the phantoms. This technique can be the basis for the development of an in-beam PET system with traditional detectors and off-the-shelf electronics.

  3. In-beam PET at high-energy photon beams: a feasibility study

    Science.gov (United States)

    Müller, H.; Enghardt, W.

    2006-04-01

    For radiation therapy with carbon ion beams, either for the stable isotope 12C or for the radioactive one 11C, it has been demonstrated that the β+-activity distribution created or deposited, respectively, within the irradiated volume can be visualized by means of positron emission tomography (PET). The PET images provide valuable information for quality assurance and precision improvement of ion therapy. Dedicated PET scanners have been integrated into treatment sites at the Heavy Ion Medical Accelerator at Chiba (HIMAC), Japan, and the Gesellschaft für Schwerionenforschung (GSI), Germany, to make PET imaging feasible during therapeutic irradiation (in-beam PET). A similar technique may be worthwhile for radiotherapy with high-energy bremsstrahlung. In addition to monitoring the dose delivery process which in-beam PET has been primarily developed for, it may be expected that radiation response of tissue can be detected by means of in-beam PET. We investigate the applicability of PET for treatment control in the case of using bremsstrahlung spectra produced by 15-50 MeV electrons. Target volume activation due to (γ, n) reactions at energies above 20 MeV yields moderate β+-activity levels, which can be employed for imaging. The radiation from positrons produced by pair production is not presently usable because the detectors are overloaded due to the low duty factor of medical electron linear accelerators. However, the degradation of images caused by positron motion between creation and annihilation seems to be tolerable.

  4. PET in diagnosing exocrine pancreatic cancer; PET bei Tumoren des exokrinen Pankreas

    Energy Technology Data Exchange (ETDEWEB)

    Bares, R.; Besenfelder, H.; Dohmen, B.M. [Abt. Nuklearmedizin, Radiologische Klinik des Universitaetsklinikums Tuebingen (Germany)

    2003-06-01

    Despite dramatic improvements in diagnostic imaging (ultrasonography, in particular endoscopic ultrasound, CT, MRI) treatment results of pancreatic cancer are still poor. Due to the lack of early symptoms, most tumors are diagnosed at an advanced stage of disease which excludes curative surgical treatment. FDG-PET has been shown to be effective in detecting pancreatic cancer as well as differentiating benign from malignant pancreatic tumors. Results might be further improved by applying quantitative analyses, in particular kinetic modelling of FDG metabolism. Nevertheless false negative as well as false positive findings may occur. Small lesions (lymphnode or liver metastases < 1 cm) might be missed, furthermore hyperglycemia often present in patients with pancreatic disease might reduce tumor uptake and subsequently tumor detectability by PET. False positive findings were reported in active pancreatitis and some benign tumors. Although PET proved to be superior to CT or ERCP in detecting cancer, clinical relevance of PET is limited due to the absence of therapeutic consequences to be derived from PET. As a consequence PET should only be used in patients with equivocal findings of morphological imaging (CT, ERCP) who are potential candidates for surgical treatment. (orig.) [German] Trotz verbesserter diagnostischer Moeglichkeiten (endoskopischer Ultraschall, Spiral-CT, MRT) sind die Behandlungsergebnisse bei Tumoren des exokrinen Pankreas nach wie vor unbefriedigend. Aufgrund der spaet einsetzenden klinischen Symptomatik wird die Diagnose meist erst bei lokaler Inoperabilitaet gestellt. Die FDG-PET has sich sowohl im Nachweis von Pankreaskarzinomen als auch bei der Differenzialdiagnose pankreatischer Raumforderungen bewaehrt und den etablierten bildgebenden Verfahren (Ultraschall, CT) als ueberlegen erwiesen. Weitere Verbesserungen erscheinen durch absolute Quantifizierung der FDG-Kinetik moeglich. Dennoch koennen falsch negative wie auch falsch positive Ergebnisse

  5. PET-CT for nuclear medicine diagnostics of multiple myeloma; PET-CT in der nuklearmedizinischen Diagnostik des multiplen Myeloms

    Energy Technology Data Exchange (ETDEWEB)

    Dimitrakopoulou-Strauss, A. [Deutsches Krebsforschungszentrum (DKFZ), Klinische Kooperationseinheit Nuklearmedizin, Heidelberg (Germany)

    2014-06-15

    Functional or morphofunctional imaging modalities are used in myeloma patients for the diagnosis and therapy management within research protocols. Despite new staging criteria, which take into account the viability of a myeloma lesion, positron emission tomography (PET) is not used routinely. The impact of PET is therefore open. The role of PET and PET computed tomography (PET-CT) for the diagnosis and therapy management is discussed. The use of PET with 18F-fluorodeoxyglucose (FDG) allows the measurement of viable myeloma lesions and correlates with the stage of disease. A negative FDG examination correlates with a better prognosis. Furthermore, the number of focal lesions as well as the whole functional volume of myeloma lesions in FDG have a prognostic impact. Several studies have demonstrated the impact of FDG for the assessment of therapy monitoring and show that FDG is an earlier indicator for therapy response as compared to magnetic resonance imaging (MRI). The CT component of the new hybrid systems allows the assessment of osteolytic lesions in CT and their viability in FDG. The combination of PET with an MRT scanner allows the simultaneous measurement of bone marrow infiltration, focal lesions and their viability. The use of modern hybrid scanners, such as PET-CT and PET-MRT facilitates the simultaneous measurement of viable myeloma lesions, osteolytic lesions and bone marrow infiltration in the whole body; therefore, it is expected that these imaging modalities will play a greater role both in diagnosis and therapy management. (orig.) [German] Funktionelle oder morphologisch-funktionelle bildgebende Verfahren werden in der Diagnostik und im Therapiemanagement des multiplen Myeloms (MM) primaer fuer wissenschaftliche Zwecke eingesetzt. Ein routinemaessiger klinischer Einsatz ist trotz neuer Stadieneinteilung nicht erfolgt. Die Wertigkeit der Positronenemissionstomographie (PET) ist noch offen. Die Rolle von PET und PET-CT fuer die Diagnostik und das

  6. Production of an 15O beam using a stable oxygen ion beam for in-beam PET imaging

    Science.gov (United States)

    Mohammadi, Akram; Yoshida, Eiji; Tashima, Hideaki; Nishikido, Fumihiko; Inaniwa, Taku; Kitagawa, Atsushi; Yamaya, Taiga

    2017-03-01

    In advanced ion therapy, the 15O ion beam is a promising candidate to treat hypoxic tumors and simultaneously monitor the delivered dose to a patient using PET imaging. This study aimed at production of an 15O beam by projectile fragmentation of a stable 16O beam in an optimal material, followed by in-beam PET imaging using a prototype OpenPET system, which was developed in the authors' group. The study was carried out in three steps: selection of the optimal target based on the highest production rate of 15O fragments; experimental production of the beam using the optimal target in the Heavy Ion Medical Accelerator Chiba (HIMAC) secondary beam course; and realization of in-beam PET imaging for the produced beam. The optimal target evaluations were done using the Monte Carlo simulation code PHITS. The fluence and mean energy of the secondary particles were simulated and the optimal target was selected based on the production rate of 15O fragments. The highest production rate of 15O was observed for a liquid hydrogen target, 3.27% for a 53 cm thick target from the 16O beam of 430 MeV/u. Since liquid hydrogen is not practically applicable in the HIMAC secondary beam course a hydrogen-rich polyethylene material, which was the second optimal target from the simulation results, was selected as the experimental target. Three polyethylene targets with thicknesses of 5, 11 or 14 cm were used to produce the 15O beam without any degrader in the beam course. The highest production rate was measured as around 0.87% for the 11 cm thick polyethylene target from the 16O beam of 430 MeV/u when the angular acceptance and momentum acceptance were set at ±13 mrad and ±2.5%, respectively. The purity of the produced beam for the three targets were around 75%, insufficient for clinical application, but it was increased to 97% by inserting a wedge shape aluminum degrader with a thickness of 1.76 cm into the beam course and that is sufficiently high. In-beam PET imaging was also

  7. Production of an {sup 15}O beam using a stable oxygen ion beam for in-beam PET imaging

    Energy Technology Data Exchange (ETDEWEB)

    Mohammadi, Akram, E-mail: mohammadi.akram@qst.go.jp; Yoshida, Eiji; Tashima, Hideaki; Nishikido, Fumihiko; Inaniwa, Taku; Kitagawa, Atsushi; Yamaya, Taiga

    2017-03-21

    In advanced ion therapy, the {sup 15}O ion beam is a promising candidate to treat hypoxic tumors and simultaneously monitor the delivered dose to a patient using PET imaging. This study aimed at production of an {sup 15}O beam by projectile fragmentation of a stable {sup 16}O beam in an optimal material, followed by in-beam PET imaging using a prototype OpenPET system, which was developed in the authors’ group. The study was carried out in three steps: selection of the optimal target based on the highest production rate of {sup 15}O fragments; experimental production of the beam using the optimal target in the Heavy Ion Medical Accelerator Chiba (HIMAC) secondary beam course; and realization of in-beam PET imaging for the produced beam. The optimal target evaluations were done using the Monte Carlo simulation code PHITS. The fluence and mean energy of the secondary particles were simulated and the optimal target was selected based on the production rate of {sup 15}O fragments. The highest production rate of {sup 15}O was observed for a liquid hydrogen target, 3.27% for a 53 cm thick target from the {sup 16}O beam of 430 MeV/u. Since liquid hydrogen is not practically applicable in the HIMAC secondary beam course a hydrogen-rich polyethylene material, which was the second optimal target from the simulation results, was selected as the experimental target. Three polyethylene targets with thicknesses of 5, 11 or 14 cm were used to produce the {sup 15}O beam without any degrader in the beam course. The highest production rate was measured as around 0.87% for the 11 cm thick polyethylene target from the {sup 16}O beam of 430 MeV/u when the angular acceptance and momentum acceptance were set at ±13 mrad and ±2.5%, respectively. The purity of the produced beam for the three targets were around 75%, insufficient for clinical application, but it was increased to 97% by inserting a wedge shape aluminum degrader with a thickness of 1.76 cm into the beam course and that is

  8. Preliminary results of a prototype C-shaped PET designed for an in-beam PET system

    International Nuclear Information System (INIS)

    Kim, Hyun-Il; Chung, Yong Hyun; Lee, Kisung; Kim, Kyeong Min; Kim, Yongkwon; Joung, Jinhun

    2016-01-01

    Positron emission tomography (PET) can be utilized in particle beam therapy to verify the dose distribution of the target volume as well as the accuracy of the treatment. We present an in-beam PET scanner that can be integrated into a particle beam therapy system. The proposed PET scanner consisted of 14 detector modules arranged in a C-shape to avoid blockage of the particle beam line by the detector modules. Each detector module was composed of a 9×9 array of 4.0 mm×4.0 mm×20.0 mm LYSO crystals optically coupled to four 29-mm-diameter PMTs using the photomultiplier-quadrant-sharing (PQS) technique. In this study, a Geant4 Application for Tomographic Emission (GATE) simulation study was conducted to design a C-shaped PET scanner and then experimental evaluation of the proposed design was performed. The spatial resolution and sensitivity were measured according to NEMA NU2-2007 standards and were 6.1 mm and 5.61 cps/kBq, respectively, which is in good agreement with our simulation, with an error rate of 12.0%. Taken together, our results demonstrate the feasibility of the proposed C-shaped in-beam PET system, which we expect will be useful for measuring dose distribution in particle therapy.

  9. Electron beam induced conductivity in 'PET' and 'FEP'

    International Nuclear Information System (INIS)

    Walzade, S.J.; Jog, J.P.; Dake, S.B.; Bhoraskar, S.V.

    1983-01-01

    Electron Beam Induced Conductivity (EBIC), classified into EBIC (bulk) and EBIC (surface) have been measured in PET and FEP respectively. The peculiar oscillatory nature of the induced gain versus beam energy variations is explained in terms of the spatial distributions of the trapping centres near the surface of the polymers. (author)

  10. In-beam PET imaging for on-line adaptive proton therapy: an initial phantom study

    Science.gov (United States)

    Shao, Yiping; Sun, Xishan; Lou, Kai; Zhu, Xiaorong R.; Mirkovic, Dragon; Poenisch, Falk; Grosshans, David

    2014-07-01

    We developed and investigated a positron emission tomography (PET) system for use with on-line (both in-beam and intra-fraction) image-guided adaptive proton therapy applications. The PET has dual rotating depth-of-interaction measurable detector panels by using solid-state photomultiplier (SSPM) arrays and LYSO scintillators. It has a 44 mm diameter trans-axial and 30 mm axial field-of-view (FOV). A 38 mm diameter polymethyl methacrylate phantom was placed inside the FOV. Both PET and phantom axes were aligned with a collimated 179.2 MeV beam. Each beam delivered ˜50 spills (0.5 s spill and 1.5 s inter-spill time, 3.8 Gy at Bragg peak). Data from each beam were acquired with detectors at a given angle. Nine datasets for nine beams with detectors at nine different angles over 180° were acquired for full-tomographic imaging. Each dataset included data both during and 5 min after irradiations. The positron activity-range was measured from the PET image reconstructed from all nine datasets and compared to the results from simulated images. A 22Na disc-source was also imaged after each beam to monitor the PET system's performance. PET performed well except for slight shifts of energy photo-peak positions (<1%) after each beam, due mainly to the neutron exposure of SSPM that increased the dark-count noise. This minor effect was corrected offline with a shifting 350-650 keV energy window for each dataset. The results show a fast converging of activity-ranges measured by the prototype PET with high sensitivity and uniform resolution. Sub-mm activity-ranges were achieved with minimal 6 s acquisition time and three spill irradiations. These results indicate the feasibility of PET for intra-fraction beam-range verification. Further studies are needed to develop and apply a novel clinical PET system for on-line image-guided adaptive proton therapy.

  11. In-beam PET measurement of $^{7}Li^{3+}$ irradiation induced $\\beta^+}$-activity

    CERN Document Server

    Priegnitz, M; Parodi, K; Sommerer, F; Fiedler, F; Enghardt, W

    2008-01-01

    At present positron emission tomography (PET) is the only feasible method of an in situ and non-invasive monitoring of patient irradiation with ions. At the experimental carbon ion treatment facility of the Gesellschaft für Schwerionenforschung (GSI) Darmstadt an in-beam PET scanner has been integrated into the treatment site and lead to a considerable quality improvement of the therapy. Since ions other than carbon are expected to come into operation in future patient treatment facilities, it is highly desirable to extend in-beam PET also to other therapeutic relevant ions, e.g. 7Li. Therefore, by means of the in-beam PET scanner at GSI the β+-activity induced by 7Li3+ ions has been investigated for the first time. Targets of PMMA, water, graphite and polyethylene were irradiated with monoenergetic, pencil-like beams of 7Li3+ with energies between 129.1 A MeV and 205.3 A MeV and intensities ranging from 3.0 × 107 to 1.9 × 108 ions s−1. This paper presents the measured β+-activity profiles as well as d...

  12. Automated analysis of PET based in-vivo monitoring in ion beam therapy

    International Nuclear Information System (INIS)

    Kuess, P.

    2014-01-01

    Particle Therapy (PT)-PET is currently the only clinically approved in-vivo method for monitoring PT. Due to fragmentation processes in the patients' tissue and the beam projectiles, a beta plus activity distribution (BAD) can be measured during or shortly after the irradiation. The recorded activity map can not be directly compared to the planned dose distribution. However, by means of a Monte Carlo (MC) simulation it is possible to predict the measured BAD from a treatment plan (TP). Thus to verify a patient's treatment fraction the actual PET measurement can be compared to the respective BAD prediction. This comparison is currently performed by visual inspection which requires experienced evaluators and is rather time consuming. In this PhD thesis an evaluation tool is presented to compare BADs in an automated and objective way. The evaluation method was based on the Pearson's correlation coefficient (PCC) – an established measure in medical image processing – which was coded into a software tool. The patient data used to develop, test and validate the software tool were acquired at the GSI research facility where over 400 patient treatments with 12C were monitored by means of an in-beam PET prototype. The number of data sets was increased by artificially altering BAD to simulate different beam ranges. The automated detection tool was tested in head and neck (H&N), prostate, lung, and brain. To generate carbon ion TPs the treatment planning system TRiP98 was used for all cases. From these TPs the respective BAD predictions were derived. Besides the detection of range deviations by means of PT-PET also the automated detection of patient setup uncertainties was investigated. Although all measured patient data were recorded during the irradiation (in-beam) also scenarios performing PET scans shortly after the irradiation (in-room) were considered. To analyze the achievable precision of PT-PET with the automated evaluation tool based on

  13. Mechanical and thermal properties of commercial multilayer PET/PP film irradiated with electron-beam

    International Nuclear Information System (INIS)

    Ortiz, Angel V.; Nogueira, Beatriz R.; Oliveira, Vitor M.; Moura, Esperidiana A.B.

    2009-01-01

    The effects of electron-beam irradiation on mechanical and thermal properties, for one commercial flexible food packaging multilayer structure, were studied. The laminated poly(ethylene terephthalate) (PET)/ polypropylene (PP) structure was irradiated up to 60 kGy, using a 1.5 MeV electron beam accelerator, at room temperature in the presence of air. Mechanical properties showed significant changes (p < 0.05). In addition, the DSC analysis, after treatment, showed that the fusion enthalpy and crystallinity of the PET/PP structure components presented significant changes (p < 0.05) with the electron-beam radiation doses applied. It was observed an increase in PP crystallinity while the PET crystallinity decreases. Such decrease in PET crystallinity indicates the predominance of a cross-linking process on the irradiated PET layer; responsible for the increase in some mechanical properties of the studied film. (author)

  14. Application of the in-beam PET therapy monitoring on precision irradiations with helium ions

    International Nuclear Information System (INIS)

    Fiedler, F.

    2008-01-01

    The main goal of the present dissertation was to extend the in-beam PET method to new ion types. It was shown that the in-beam PET method can also be applied for 3 He irradiations. For this experiments on a 3 He beam were performed. The activity yield is at equal applied dose about three times larger than at 12 C irradiations. The reachable range resolution is smaller than 1 mm. At the irradiation of an inhomogeneous phantom it was shown that a contrast between different materials is resolvable. From the experimentally determined reaction rates cross sections for the reactions leading to positron emitters were performed. The data taken in the 3 He experiments were compared those obtained in carbon-ion experiments as well as literature data for proton irradiations. A comparison with the calculations of the simulation program SHIELD-HIT was performed. A collection of cross-section models and the established requirements for a simulation program applicable for in-beam PET are preparing for further work

  15. Initial clinical evaluation of PET-based ion beam therapy monitoring under consideration of organ motion.

    Science.gov (United States)

    Kurz, Christopher; Bauer, Julia; Unholtz, Daniel; Richter, Daniel; Herfarth, Klaus; Debus, Jürgen; Parodi, Katia

    2016-02-01

    Intrafractional organ motion imposes considerable challenges to scanned ion beam therapy and demands for a thorough verification of the applied treatment. At the Heidelberg Ion-Beam Therapy Center (HIT), the scanned ion beam delivery is verified by means of postirradiation positron-emission-tomography (PET) imaging. This work presents a first clinical evaluation of PET-based treatment monitoring in ion beam therapy under consideration of target motion. Three patients with mobile liver lesions underwent scanned carbon ion irradiation at HIT and postirradiation PET/CT (x-ray-computed-tomography) imaging with a commercial scanner. Respiratory motion was recorded during irradiation and subsequent image acquisition. This enabled a time-resolved (4D) calculation of the expected irradiation-induced activity pattern and, for one patient where an additional 4D CT was acquired at the PET/CT scanner after treatment, a motion-compensated PET image reconstruction. For the other patients, PET data were reconstructed statically. To verify the treatment, calculated prediction and reconstructed measurement were compared with a focus on the ion beam range. Results in the current three patients suggest that for motion amplitudes in the order of 2 mm there is no benefit from incorporating respiratory motion information into PET-based treatment monitoring. For a target motion in the order of 10 mm, motion-related effects become more severe and a time-resolved modeling of the expected activity distribution can lead to an improved data interpretation if a sufficient number of true coincidences is detected. Benefits from motion-compensated PET image reconstruction could not be shown conclusively at the current stage. The feasibility of clinical PET-based treatment verification under consideration of organ motion has been shown for the first time. Improvements in noise-robust 4D PET image reconstruction are deemed necessary to enhance the clinical potential.

  16. Initial clinical evaluation of PET-based ion beam therapy monitoring under consideration of organ motion

    International Nuclear Information System (INIS)

    Kurz, Christopher; Bauer, Julia; Unholtz, Daniel; Herfarth, Klaus; Debus, Jürgen; Richter, Daniel; Parodi, Katia

    2016-01-01

    Purpose: Intrafractional organ motion imposes considerable challenges to scanned ion beam therapy and demands for a thorough verification of the applied treatment. At the Heidelberg Ion-Beam Therapy Center (HIT), the scanned ion beam delivery is verified by means of postirradiation positron-emission-tomography (PET) imaging. This work presents a first clinical evaluation of PET-based treatment monitoring in ion beam therapy under consideration of target motion. Methods: Three patients with mobile liver lesions underwent scanned carbon ion irradiation at HIT and postirradiation PET/CT (x-ray-computed-tomography) imaging with a commercial scanner. Respiratory motion was recorded during irradiation and subsequent image acquisition. This enabled a time-resolved (4D) calculation of the expected irradiation-induced activity pattern and, for one patient where an additional 4D CT was acquired at the PET/CT scanner after treatment, a motion-compensated PET image reconstruction. For the other patients, PET data were reconstructed statically. To verify the treatment, calculated prediction and reconstructed measurement were compared with a focus on the ion beam range. Results: Results in the current three patients suggest that for motion amplitudes in the order of 2 mm there is no benefit from incorporating respiratory motion information into PET-based treatment monitoring. For a target motion in the order of 10 mm, motion-related effects become more severe and a time-resolved modeling of the expected activity distribution can lead to an improved data interpretation if a sufficient number of true coincidences is detected. Benefits from motion-compensated PET image reconstruction could not be shown conclusively at the current stage. Conclusions: The feasibility of clinical PET-based treatment verification under consideration of organ motion has been shown for the first time. Improvements in noise-robust 4D PET image reconstruction are deemed necessary to enhance the

  17. A simulation study of a C-shaped in-beam PET system for dose verification in carbon ion therapy

    International Nuclear Information System (INIS)

    Jung An, Su; Beak, Cheol-Ha; Lee, Kisung; Hyun Chung, Yong

    2013-01-01

    The application of hadrons such as carbon ions is being developed for the treatment of cancer. The effectiveness of such a technique is due to the eligibility of charged particles in delivering most of their energy near the end of the range, called the Bragg peak. However, accurate verification of dose delivery is required since misalignment of the hadron beam can cause serious damage to normal tissue. PET scanners can be utilized to track the carbon beam to the tumor by imaging the trail of the hadron-induced positron emitters in the irradiated volume. In this study, we designed and evaluated (through Monte Carlo simulations) an in-beam PET scanner for monitoring patient dose in carbon beam therapy. A C-shaped PET and a partial-ring PET were designed to avoid interference between the PET detectors and the therapeutic carbon beam delivery. Their performance was compared with that of a full-ring PET scanner. The C-shaped, partial-ring, and full-ring scanners consisted of 14, 12, and 16 detector modules, respectively, with a 30.2 cm inner diameter for brain imaging. Each detector module was composed of a 13×13 array of 4.0 mm×4.0 mm×20.0 mm LYSO crystals and four round 25.4 mm diameter PMTs. To estimate the production yield of positron emitters such as 10 C, 11 C, and 15 O, a cylindrical PMMA phantom (diameter, 20 cm; thickness, 20 cm) was irradiated with 170, 290, and 350 AMeV 12 C beams using the GATE code. Phantom images of the three types of scanner were evaluated by comparing the longitudinal profile of the positron emitters, measured along the carbon beam as it passed a simulated positron emitter distribution. The results demonstrated that the development of a C-shaped PET scanner to characterize carbon dose distribution for therapy planning is feasible.

  18. In vivo verification of proton beam path by using post-treatment PET/CT imaging.

    Science.gov (United States)

    Hsi, Wen C; Indelicato, Daniel J; Vargas, Carlos; Duvvuri, Srividya; Li, Zuofeng; Palta, Jatinder

    2009-09-01

    The purpose of this study is to establish the in vivo verification of proton beam path by using proton-activated positron emission distributions. A total of 50 PET/CT imaging studies were performed on ten prostate cancer patients immediately after daily proton therapy treatment through a single lateral portal. The PET/CT and planning CT were registered by matching the pelvic bones, and the beam path of delivered protons was defined in vivo by the positron emission distribution seen only within the pelvic bones, referred to as the PET-defined beam path. Because of the patient position correction at each fraction, the marker-defined beam path, determined by the centroid of implanted markers seen in the posttreatment (post-Tx) CT, is used for the planned beam path. The angular variation and discordance between the PET- and marker-defined paths were derived to investigate the intrafraction prostate motion. For studies with large discordance, the relative location between the centroid and pelvic bones seen in the post-Tx CT was examined. The PET/CT studies are categorized for distinguishing the prostate motion that occurred before or after beam delivery. The post-PET CT was acquired after PET imaging to investigate prostate motion due to physiological changes during the extended PET acquisition. The less than 2 degrees of angular variation indicates that the patient roll was minimal within the immobilization device. Thirty of the 50 studies with small discordance, referred as good cases, show a consistent alignment between the field edges and the positron emission distributions from the entrance to the distal edge. For those good cases, average displacements are 0.6 and 1.3 mm along the anterior-posterior (D(AP)) and superior-inferior (D(SI)) directions, respectively, with 1.6 mm standard deviations in both directions. For the remaining 20 studies demonstrating a large discordance (more than 6 mm in either D(AP) or D(SI)), 13 studies, referred as motion-after-Tx cases

  19. In vivo verification of proton beam path by using post-treatment PET/CT imaging

    Energy Technology Data Exchange (ETDEWEB)

    Hsi, Wen C.; Indelicato, Daniel J.; Vargas, Carlos; Duvvuri, Srividya; Li Zuofeng; Palta, Jatinder [Proton Therapy Institute, University of Florida, Jacksonville, Florida 32206 (United States); Boca Radiation Oncology Associates, Boca Raton, Florida 33431 (United States); Proton Therapy Institute, University of Florida, Jacksonville, Florida 32206 (United States); Department of Radiation Oncology, University of Florida, Gainesville, Florida 32610 (United States)

    2009-09-15

    Purpose: The purpose of this study is to establish the in vivo verification of proton beam path by using proton-activated positron emission distributions. Methods: A total of 50 PET/CT imaging studies were performed on ten prostate cancer patients immediately after daily proton therapy treatment through a single lateral portal. The PET/CT and planning CT were registered by matching the pelvic bones, and the beam path of delivered protons was defined in vivo by the positron emission distribution seen only within the pelvic bones, referred to as the PET-defined beam path. Because of the patient position correction at each fraction, the marker-defined beam path, determined by the centroid of implanted markers seen in the post-treatment (post-Tx) CT, is used for the planned beam path. The angular variation and discordance between the PET- and marker-defined paths were derived to investigate the intrafraction prostate motion. For studies with large discordance, the relative location between the centroid and pelvic bones seen in the post-Tx CT was examined. The PET/CT studies are categorized for distinguishing the prostate motion that occurred before or after beam delivery. The post-PET CT was acquired after PET imaging to investigate prostate motion due to physiological changes during the extended PET acquisition. Results: The less than 2 deg. of angular variation indicates that the patient roll was minimal within the immobilization device. Thirty of the 50 studies with small discordance, referred as good cases, show a consistent alignment between the field edges and the positron emission distributions from the entrance to the distal edge. For those good cases, average displacements are 0.6 and 1.3 mm along the anterior-posterior (D{sub AP}) and superior-inferior (D{sub SI}) directions, respectively, with 1.6 mm standard deviations in both directions. For the remaining 20 studies demonstrating a large discordance (more than 6 mm in either D{sub AP} or D{sub SI}), 13

  20. First full-beam PET acquisitions in proton therapy with a modular dual-head dedicated system

    Science.gov (United States)

    Sportelli, G.; Belcari, N.; Camarlinghi, N.; Cirrone, G. A. P.; Cuttone, G.; Ferretti, S.; Kraan, A.; Ortuño, J. E.; Romano, F.; Santos, A.; Straub, K.; Tramontana, A.; Del Guerra, A.; Rosso, V.

    2014-01-01

    During particle therapy irradiation, positron emitters with half-lives ranging from 2 to 20 min are generated from nuclear processes. The half-lives are such that it is possible either to detect the positron signal in the treatment room using an in-beam positron emission tomography (PET) system, right after the irradiation, or to quickly transfer the patient to a close PET/CT scanner. Since the activity distribution is spatially correlated with the dose, it is possible to use PET imaging as an indirect method to assure the quality of the dose delivery. In this work, we present a new dedicated PET system able to operate in-beam. The PET apparatus consists in two 10 cm × 10 cm detector heads. Each detector is composed of four scintillating matrices of 23 × 23 LYSO crystals. The crystal size is 1.9 mm × 1.9 mm × 16 mm. Each scintillation matrix is read out independently with a modularized acquisition system. The distance between the two opposing detector heads was set to 20 cm. The system has very low dead time per detector area and a 3 ns coincidence window, which is capable to sustain high single count rates and to keep the random counts relatively low. This allows a new full-beam monitoring modality that includes data acquisition also while the beam is on. The PET system was tested during the irradiation at the CATANA (INFN, Catania, Italy) cyclotron-based proton therapy facility. Four acquisitions with different doses and dose rates were analysed. In all cases the random to total coincidences ratio was equal or less than 25%. For each measurement we estimated the accuracy and precision of the activity range on a set of voxel lines within an irradiated PMMA phantom. Results show that the inclusion of data acquired during the irradiation, referred to as beam-on data, improves both the precision and accuracy of the range measurement with respect to data acquired only after irradiation. Beam-on data alone are enough to give precisions better than 1 mm

  1. First full-beam PET acquisitions in proton therapy with a modular dual-head dedicated system

    International Nuclear Information System (INIS)

    Sportelli, G; Belcari, N; Camarlinghi, N; Ferretti, S; Kraan, A; Straub, K; Guerra, A Del; Rosso, V; Cirrone, G A P; Cuttone, G; Romano, F; Tramontana, A; Ortuño, J E; Santos, A

    2014-01-01

    During particle therapy irradiation, positron emitters with half-lives ranging from 2 to 20 min are generated from nuclear processes. The half-lives are such that it is possible either to detect the positron signal in the treatment room using an in-beam positron emission tomography (PET) system, right after the irradiation, or to quickly transfer the patient to a close PET/CT scanner. Since the activity distribution is spatially correlated with the dose, it is possible to use PET imaging as an indirect method to assure the quality of the dose delivery. In this work, we present a new dedicated PET system able to operate in-beam. The PET apparatus consists in two 10 cm × 10 cm detector heads. Each detector is composed of four scintillating matrices of 23 × 23 LYSO crystals. The crystal size is 1.9 mm × 1.9 mm × 16 mm. Each scintillation matrix is read out independently with a modularized acquisition system. The distance between the two opposing detector heads was set to 20 cm. The system has very low dead time per detector area and a 3 ns coincidence window, which is capable to sustain high single count rates and to keep the random counts relatively low. This allows a new full-beam monitoring modality that includes data acquisition also while the beam is on. The PET system was tested during the irradiation at the CATANA (INFN, Catania, Italy) cyclotron-based proton therapy facility. Four acquisitions with different doses and dose rates were analysed. In all cases the random to total coincidences ratio was equal or less than 25%. For each measurement we estimated the accuracy and precision of the activity range on a set of voxel lines within an irradiated PMMA phantom. Results show that the inclusion of data acquired during the irradiation, referred to as beam-on data, improves both the precision and accuracy of the range measurement with respect to data acquired only after irradiation. Beam-on data alone are enough to give precisions better than 1

  2. Monte Carlo simulation tool for online treatment monitoring in hadrontherapy with in-beam PET: A patient study.

    Science.gov (United States)

    Fiorina, E; Ferrero, V; Pennazio, F; Baroni, G; Battistoni, G; Belcari, N; Cerello, P; Camarlinghi, N; Ciocca, M; Del Guerra, A; Donetti, M; Ferrari, A; Giordanengo, S; Giraudo, G; Mairani, A; Morrocchi, M; Peroni, C; Rivetti, A; Da Rocha Rolo, M D; Rossi, S; Rosso, V; Sala, P; Sportelli, G; Tampellini, S; Valvo, F; Wheadon, R; Bisogni, M G

    2018-05-07

    Hadrontherapy is a method for treating cancer with very targeted dose distributions and enhanced radiobiological effects. To fully exploit these advantages, in vivo range monitoring systems are required. These devices measure, preferably during the treatment, the secondary radiation generated by the beam-tissue interactions. However, since correlation of the secondary radiation distribution with the dose is not straightforward, Monte Carlo (MC) simulations are very important for treatment quality assessment. The INSIDE project constructed an in-beam PET scanner to detect signals generated by the positron-emitting isotopes resulting from projectile-target fragmentation. In addition, a FLUKA-based simulation tool was developed to predict the corresponding reference PET images using a detailed scanner model. The INSIDE in-beam PET was used to monitor two consecutive proton treatment sessions on a patient at the Italian Center for Oncological Hadrontherapy (CNAO). The reconstructed PET images were updated every 10 s providing a near real-time quality assessment. By half-way through the treatment, the statistics of the measured PET images were already significant enough to be compared with the simulations with average differences in the activity range less than 2.5 mm along the beam direction. Without taking into account any preferential direction, differences within 1 mm were found. In this paper, the INSIDE MC simulation tool is described and the results of the first in vivo agreement evaluation are reported. These results have justified a clinical trial, in which the MC simulation tool will be used on a daily basis to study the compliance tolerances between the measured and simulated PET images. Copyright © 2018 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  3. The use of multi-gap resistive plate chambers for in-beam PET in proton and carbon ion therapy

    CERN Document Server

    Watts, David; Sauli, Fabio; Amaldi, Ugo

    2013-01-01

    On-line verification of the delivered dose during proton and carbon ion radiotherapy is currently a very desirable goal for quality assurance of hadron therapy treatment plans. In-beam positron emission tomography (ibPET), which can provide an image of the β+ activity induced in the patient during irradiation, which in turn is correlated to the range of the ion beam, is one of the modalities for achieving this goal. Application to hadron therapy requires that the scanner geometry be modified from that which is used in nuclear medicine. In particular, PET detectors that allow a sub-nanosecond time-of-flight (TOF) registration of the collinear photons have been proposed. Inclusion of the TOF information in PET data leads to more effective PET sensitivity. Considering the challenges inherent in the ibPET technique, namely limited β+ activity and the effect of biological washout due to blood flow, TOF-PET technologies are very attractive. In this context, the TERA Foundation is investigating the use of resistiv...

  4. PET in cerebrovascular disease; PET bei zerebrovaskulaeren Erkrankungen

    Energy Technology Data Exchange (ETDEWEB)

    Herholz, K. [Neurologische Universitaetsklinik der Univ. Koeln (Germany)]|[Max-Planck-Institut fuer Neurologische Forschung, Koeln (Germany)

    1997-03-01

    Tissue viability is of particular interest in acute cerebral ischemia because it may be preserved if reperfusion can be achieved rapidly, e.g. by acute thrombolysis. Measurements of regional cerebral blood flow (CBF) and oxygen consumption by PET can assess tissue viability, and they have substantially increased our knowledge of th pathophysiology of ischemic stroke and the associated penumbra. Widerspread clinical application in acute stroke, however, is unlikely because of the large logistic and personnel resources required. In chronic cerebrovascular disease, measurement of regional CBF and glucose metabolism, which is usually coupled, provide detailed insights in disturbance of cortical function, e.g. due to deafferentiation, and contribute to differentiation of dementia types. Chronic misery perfusion, i.e. reduced perfusion that does not match the metabolic demand of the tissue, can be demonstrated by PET. It may be found in some patients with high-grade arterial stenoses. Less severe impairment of brain perfusion can be demonstrated by measurement of the cerebrovascular reserve capacity. The most frequent clinical situations can be assessed by less demanding procedures, e.g. by SPECT. In conclusion, PET has its role in cerebrovascular disease primarily within scientific studies, where high resolution and absolute quantitation of physiological variables are essential. (orig.). 65 refs. [Deutsch] Beim akuten ischaemischen Insult ist die Vitalitaet des Gewebes von besonderem Interesse, da sie durch rasche Reperfusion, z.B. durch Thrombolyse, erhalten bleiben kann. Messungen der zerebralen Durchblutung und des Sauerstoffumsatzes mittels PET geben darueber wesentliche Aufschluesse, und sie sind wichtig fuer das Verstaendnis der Pathophysiologie ischaemischer Infarkte und der Penumbra mit kritischer Perfusion beim Menschen. Ihre breitere Anwendung in der klinischen Patientenversorgung kommt allerdings wegen des hohen Aufwandes derzeit kaum in Betracht. Bei

  5. Regional MLEM reconstruction strategy for PET-based treatment verification in ion beam radiotherapy

    International Nuclear Information System (INIS)

    Gianoli, Chiara; Riboldi, Marco; Fattori, Giovanni; Baselli, Giuseppe; Baroni, Guido; Bauer, Julia; Debus, Jürgen; Parodi, Katia; De Bernardi, Elisabetta

    2014-01-01

    In ion beam radiotherapy, PET-based treatment verification provides a consistency check of the delivered treatment with respect to a simulation based on the treatment planning. In this work the region-based MLEM reconstruction algorithm is proposed as a new evaluation strategy in PET-based treatment verification. The comparative evaluation is based on reconstructed PET images in selected regions, which are automatically identified on the expected PET images according to homogeneity in activity values. The strategy was tested on numerical and physical phantoms, simulating mismatches between the planned and measured β + activity distributions. The region-based MLEM reconstruction was demonstrated to be robust against noise and the sensitivity of the strategy results were comparable to three voxel units, corresponding to 6 mm in numerical phantoms. The robustness of the region-based MLEM evaluation outperformed the voxel-based strategies. The potential of the proposed strategy was also retrospectively assessed on patient data and further clinical validation is envisioned. (paper)

  6. Construction and tests of an in-beam PET-like demonstrator for hadrontherapy beam ballistic control

    Energy Technology Data Exchange (ETDEWEB)

    Montarou, G., E-mail: montarou@clermont.in2p3.fr [Clermont University, Blaise Pascal University, CNRS/IN2P3, Laboratoire de Physique Corpusculaire, BP 10448, Clermont-Ferrand F-63000 (France); Bony, M.; Busato, E.; Chadelas, R. [Clermont University, Blaise Pascal University, CNRS/IN2P3, Laboratoire de Physique Corpusculaire, BP 10448, Clermont-Ferrand F-63000 (France); Donnarieix, D. [Centre Jean Perrin, Service de Physique Médicale, Clermont-Ferrand F-63000 (France); Force, P.; Guicheney, C.; Insa, C.; Lambert, D.; Lestand, L.; Magne, M.; Martin, F. [Clermont University, Blaise Pascal University, CNRS/IN2P3, Laboratoire de Physique Corpusculaire, BP 10448, Clermont-Ferrand F-63000 (France); Millardet, C. [Centre Jean Perrin, Service de Physique Médicale, Clermont-Ferrand F-63000 (France); Nivoix, M.; Podlyski, F.; Rozes, A. [Clermont University, Blaise Pascal University, CNRS/IN2P3, Laboratoire de Physique Corpusculaire, BP 10448, Clermont-Ferrand F-63000 (France)

    2017-02-11

    We present the first results obtained with a detector, called Large Area Pixelized Detector (LAPD), dedicated to the study the ballistic control of the beam delivered to the patient by in-beam and real time detection of secondary particles, emitted during its irradiation in the context of hadrontherapy. These particles are 511 keV γ from the annihilation of a positron issued from the β{sup +} emitters induced in the patient tissues along the beam path. The LAPD basic concepts are similar to a conventional PET camera. The 511 keV γ are detected and the reconstructed lines of response allow to measure the β{sup +} activity distribution. Nevertheless, when trying to use γ from positron annihilation for the ballistic control in hadrontherapy, the large prompt γ background should be taken into account and properly rejected. First reconstruction results, obtained with a phantom filled with a high intensity FDG source at the cancer research centre of Clermont-Ferrand are shown. We also report results of measurements performed at the Heidelberg Ion-Beam Therapy Centre with one third of the detector, using proton and carbon ion beams.

  7. Study of the properties of an electron linac beam by means of the electromagnetic fields associated with the beam; Etude des proprietes du faisceau d'electrons d'un accelerateur lineaire au moyen des champs electromagnetiques associes a ce faisceau

    Energy Technology Data Exchange (ETDEWEB)

    Bergere, R [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1967-07-01

    For measuring the diverse characteristic parameters of a Linac electron beam, the one method causing the least perturbation to the electron beam itself, consists in the detection of signals induced in certain types of detectors by the electromagnets fields associated with the beam. Some particular detectors are then described, for measuring the following characteristic parameters of a Linac electron beam; a) electron beam peak current, a) longitudinal dimension and density of an elementary electron bunch, c) phase position of the electrons on the travelling sine wave of the accelerating field, d) transverse position of the beam. These particular electrodes are then used to provide experimental data In order to check the theoretical computations giving the longitudinal and transversal motions Of the electrons during their acceleration. (author) [French] Parmi les methodes de mesure des diverses caracteristiques du faisceau d'electrons d'un accelerateur lineaire, celles qui perturbent le moins le faisceau sont les methodes dans lesquelles l'energie du signal de mesure provient de la perturbation par l'electrode de mesure des champs electromagnetiques associes au faisceau. On decrit les electrodes de ce type qui ont ete mises au point pour mesurer les caracteristiques suivantes du faisceau d'electrons: a) courant crete, b) extension en phase d'un paquet elementaire d'electrons, c) phase d'accrochage des electrons, d) position transversale moyenne des electrons. On decrit ensuite comment les signaux provenant de ces diverses electrodes peuvent etre utilises pour verifier experimentalement les previsions theoriques des mouvements longitudinaux et transversaux des electrons en cours d'acceleration. (auteur)

  8. Preliminary results of an in-beam PET prototype for proton therapy

    International Nuclear Information System (INIS)

    Attanasi, F.; Belcari, N.; Camarda, M.; Cirrone, G.A.P.; Cuttone, G.; Del Guerra, A.; Di Rosa, F.; Lanconelli, N.; Rosso, V.; Russo, G.; Vecchio, S.

    2008-01-01

    Proton therapy can overcome the limitations of conventional radiotherapy due to the more selective energy deposition in depth and to the increased biological effectiveness. Verification of the delivered dose is desirable, but the complete stopping of the protons in patient prevents the application of electronic portal imaging methods that are used in conventional radiotherapy During proton therapy β + emitters like 11 C, 15 O, 10 C are generated in irradiated tissues by nuclear reactions. The measurement of the spatial distribution of this activity, immediately after patient irradiation, can lead to information on the effective delivered dose. First, results of a feasibility study of an in-beam PET for proton therapy are reported. The prototype is based on two planar heads with an active area of about 5x5 cm 2 . Each head is made up of a position sensitive photomultiplier coupled to a square matrix of same size of LYSO scintillating crystals (2x2x18 mm 3 pixel dimensions). Four signals from each head are acquired through a dedicated electronic board that performs signal amplification and digitization. A 3D reconstruction of the activity distribution is calculated using an expectation maximization algorithm. To characterize the PET prototype, the detection efficiency and the spatial resolution were measured using a point-like radioactive source. The validation of the prototype was performed using 62 MeV protons at the CATANA beam line of INFN LNS and PMMA phantoms. Using the full energy proton beam and various range shifters, a good correlation between the position of the activity distal edge and the thickness of the beam range shifter was found along the axial direction

  9. Preliminary results of an in-beam PET prototype for proton therapy

    Science.gov (United States)

    Attanasi, F.; Belcari, N.; Camarda, M.; Cirrone, G. A. P.; Cuttone, G.; Del Guerra, A.; Di Rosa, F.; Lanconelli, N.; Rosso, V.; Russo, G.; Vecchio, S.

    2008-06-01

    Proton therapy can overcome the limitations of conventional radiotherapy due to the more selective energy deposition in depth and to the increased biological effectiveness. Verification of the delivered dose is desirable, but the complete stopping of the protons in patient prevents the application of electronic portal imaging methods that are used in conventional radiotherapy During proton therapy β + emitters like 11C, 15O, 10C are generated in irradiated tissues by nuclear reactions. The measurement of the spatial distribution of this activity, immediately after patient irradiation, can lead to information on the effective delivered dose. First, results of a feasibility study of an in-beam PET for proton therapy are reported. The prototype is based on two planar heads with an active area of about 5×5 cm 2. Each head is made up of a position sensitive photomultiplier coupled to a square matrix of same size of LYSO scintillating crystals (2×2×18 mm 3 pixel dimensions). Four signals from each head are acquired through a dedicated electronic board that performs signal amplification and digitization. A 3D reconstruction of the activity distribution is calculated using an expectation maximization algorithm. To characterize the PET prototype, the detection efficiency and the spatial resolution were measured using a point-like radioactive source. The validation of the prototype was performed using 62 MeV protons at the CATANA beam line of INFN LNS and PMMA phantoms. Using the full energy proton beam and various range shifters, a good correlation between the position of the activity distal edge and the thickness of the beam range shifter was found along the axial direction.

  10. Preliminary results of an in-beam PET prototype for proton therapy

    Energy Technology Data Exchange (ETDEWEB)

    Attanasi, F.; Belcari, N.; Camarda, M. [Department of Physics, University of Pisa and INFN Sezione di Pisa, Pisa (Italy); Cirrone, G.A.P.; Cuttone, G. [INFN Laboratori Nazionali del Sud, Catania (Italy); Del Guerra, A. [Department of Physics, University of Pisa and INFN Sezione di Pisa, Pisa (Italy); Di Rosa, F. [INFN Laboratori Nazionali del Sud, Catania (Italy); Lanconelli, N. [Department of Physics, University of Bologna and INFN Sezione di Bologna, Bologna (Italy); Rosso, V. [Department of Physics, University of Pisa and INFN Sezione di Pisa, Pisa (Italy)], E-mail: valeria.rosso@pi.infn.it; Russo, G. [INFN Laboratori Nazionali del Sud, Catania (Italy); Vecchio, S. [Department of Physics, University of Pisa and INFN Sezione di Pisa, Pisa (Italy)

    2008-06-11

    Proton therapy can overcome the limitations of conventional radiotherapy due to the more selective energy deposition in depth and to the increased biological effectiveness. Verification of the delivered dose is desirable, but the complete stopping of the protons in patient prevents the application of electronic portal imaging methods that are used in conventional radiotherapy During proton therapy {beta}{sup +} emitters like {sup 11}C, {sup 15}O, {sup 10}C are generated in irradiated tissues by nuclear reactions. The measurement of the spatial distribution of this activity, immediately after patient irradiation, can lead to information on the effective delivered dose. First, results of a feasibility study of an in-beam PET for proton therapy are reported. The prototype is based on two planar heads with an active area of about 5x5 cm{sup 2}. Each head is made up of a position sensitive photomultiplier coupled to a square matrix of same size of LYSO scintillating crystals (2x2x18 mm{sup 3} pixel dimensions). Four signals from each head are acquired through a dedicated electronic board that performs signal amplification and digitization. A 3D reconstruction of the activity distribution is calculated using an expectation maximization algorithm. To characterize the PET prototype, the detection efficiency and the spatial resolution were measured using a point-like radioactive source. The validation of the prototype was performed using 62 MeV protons at the CATANA beam line of INFN LNS and PMMA phantoms. Using the full energy proton beam and various range shifters, a good correlation between the position of the activity distal edge and the thickness of the beam range shifter was found along the axial direction.

  11. PET with coincidence gamma cameras - clinical benefit from the radiooncologists' point of view; PET mit Koinzidenz-Gammakameras - klinischer Nutzen aus der Sicht des Radioonkologen

    Energy Technology Data Exchange (ETDEWEB)

    Richter, E; Feyerabend, T; Stallmann, C; Lauer, I; Baehre, M [Universitaetsklinikum Luebeck (Germany). Klinik fuer Strahlentherapie und Nuklearmedizin

    2001-11-01

    Positron emission tomography with FDG (FDG-PET) is a new technique, which displays the cellular metabolic activity. Since tumors exhibit an increased metabolic activity when compared to normal tissue, this imaging modality has a particularly high importance. FDG-PET is not only useful for localizing and staging of malignant tumors, but also to evaluate therapy response. In this context, PET is superior to morphologically orientated modalities, because therapeutically induced changes in glucose metabolism precede morphologic alterations. Numerous studies indicate, that PET will play an important role in radiooncology concerning therapy planning and monitoring the effects of therapy during and after treatment. Further clinical studies are necessary to evaluate the information provided by FDG-PET more precisely. Coincidence gamma cameras with adequate imaging characteristics will gain enhanced importance to meet these increasing demands. (orig.) [German] Die Positronenemissionstomographie mit FDG (FDG-PET) ist ein neues Verfahren, das die Stoffwechselaktivitaet von Zellen bildlich wiedergibt. Da Tumorgewebe im Vergleich zu normalem Gewebe einen erhoehten Stoffwechsel aufweist, hat dieses Untersuchungsverfahren in der Onkologie einen besonders hohen Stellenwert. Neben der Lokalisations- und Ausbreitungsdiagnostik eignet sich die FDG-PET zur Erfolgsbeurteilung. Die PET ist hierin den anderen morphologischen Verfahren ueberlegen, da die Veraenderungen des Glukosemetabolismus durch therapeutische Massnahmen morphologischen Veraenderungen vorausgehen. Zahlreiche Untersuchungen lassen erkennen, dass die PET fuer die Radioonkologie einen wichtigen Stellenwert einnehmen wird. Dies betrifft die Bestrahlungsplanung und das Therapiemonitoring waehrend und nach einer Behandlung. Weitere klinische Studien sind notwendig, um die Aussagekraft der FDG-PET besser zu evaluieren. Den Koinzidenz-Gammakameras mit adaequaten Bildgebungseigenschaften kommt eine zunehmende Bedeutung zu, um

  12. Quantitative assessment of the physical potential of proton beam range verification with PET/CT

    Science.gov (United States)

    Knopf, A.; Parodi, K.; Paganetti, H.; Cascio, E.; Bonab, A.; Bortfeld, T.

    2008-08-01

    A recent clinical pilot study demonstrated the feasibility of offline PET/CT range verification for proton therapy treatments. In vivo PET measurements are challenged by blood perfusion, variations of tissue compositions, patient motion and image co-registration uncertainties. Besides these biological and treatment specific factors, the accuracy of the method is constrained by the underlying physical processes. This phantom study distinguishes physical factors from other factors, assessing the reproducibility, consistency and sensitivity of the PET/CT range verification method. A spread-out Bragg-peak (SOBP) proton field was delivered to a phantom consisting of poly-methyl methacrylate (PMMA), lung and bone equivalent material slabs. PET data were acquired in listmode at a commercial PET/CT scanner available within 10 min walking distance from the proton therapy unit. The measured PET activity distributions were compared to simulations of the PET signal based on Geant4 and FLUKA Monte Carlo (MC) codes. To test the reproducibility of the measured PET signal, data from two independent measurements at the same geometrical position in the phantom were compared. Furthermore, activation depth profiles within identical material arrangements but at different positions within the irradiation field were compared to test the consistency of the measured PET signal. Finally, activation depth profiles through air/lung, air/bone and lung/bone interfaces parallel as well as at 6° to the beam direction were studied to investigate the sensitivity of the PET/CT range verification method. The reproducibility and the consistency of the measured PET signal were found to be of the same order of magnitude. They determine the physical accuracy of the PET measurement to be about 1 mm. However, range discrepancies up to 2.6 mm between two measurements and range variations up to 2.6 mm within one measurement were found at the beam edge and at the edge of the field of view (FOV) of the PET

  13. Quantitative assessment of the physical potential of proton beam range verification with PET/CT

    Energy Technology Data Exchange (ETDEWEB)

    Knopf, A; Paganetti, H; Cascio, E; Bortfeld, T [Department of Radiation Oncology, MGH and Harvard Medical School, Boston, MA 02114 (United States); Parodi, K [Heidelberg Ion Therapy Center, Heidelberg (Germany); Bonab, A [Department of Radiology, MGH and Harvard Medical School, Boston, MA 02114 (United States)

    2008-08-07

    A recent clinical pilot study demonstrated the feasibility of offline PET/CT range verification for proton therapy treatments. In vivo PET measurements are challenged by blood perfusion, variations of tissue compositions, patient motion and image co-registration uncertainties. Besides these biological and treatment specific factors, the accuracy of the method is constrained by the underlying physical processes. This phantom study distinguishes physical factors from other factors, assessing the reproducibility, consistency and sensitivity of the PET/CT range verification method. A spread-out Bragg-peak (SOBP) proton field was delivered to a phantom consisting of poly-methyl methacrylate (PMMA), lung and bone equivalent material slabs. PET data were acquired in listmode at a commercial PET/CT scanner available within 10 min walking distance from the proton therapy unit. The measured PET activity distributions were compared to simulations of the PET signal based on Geant4 and FLUKA Monte Carlo (MC) codes. To test the reproducibility of the measured PET signal, data from two independent measurements at the same geometrical position in the phantom were compared. Furthermore, activation depth profiles within identical material arrangements but at different positions within the irradiation field were compared to test the consistency of the measured PET signal. Finally, activation depth profiles through air/lung, air/bone and lung/bone interfaces parallel as well as at 6{sup 0} to the beam direction were studied to investigate the sensitivity of the PET/CT range verification method. The reproducibility and the consistency of the measured PET signal were found to be of the same order of magnitude. They determine the physical accuracy of the PET measurement to be about 1 mm. However, range discrepancies up to 2.6 mm between two measurements and range variations up to 2.6 mm within one measurement were found at the beam edge and at the edge of the field of view (FOV) of the

  14. Quantitative assessment of the physical potential of proton beam range verification with PET/CT.

    Science.gov (United States)

    Knopf, A; Parodi, K; Paganetti, H; Cascio, E; Bonab, A; Bortfeld, T

    2008-08-07

    A recent clinical pilot study demonstrated the feasibility of offline PET/CT range verification for proton therapy treatments. In vivo PET measurements are challenged by blood perfusion, variations of tissue compositions, patient motion and image co-registration uncertainties. Besides these biological and treatment specific factors, the accuracy of the method is constrained by the underlying physical processes. This phantom study distinguishes physical factors from other factors, assessing the reproducibility, consistency and sensitivity of the PET/CT range verification method. A spread-out Bragg-peak (SOBP) proton field was delivered to a phantom consisting of poly-methyl methacrylate (PMMA), lung and bone equivalent material slabs. PET data were acquired in listmode at a commercial PET/CT scanner available within 10 min walking distance from the proton therapy unit. The measured PET activity distributions were compared to simulations of the PET signal based on Geant4 and FLUKA Monte Carlo (MC) codes. To test the reproducibility of the measured PET signal, data from two independent measurements at the same geometrical position in the phantom were compared. Furthermore, activation depth profiles within identical material arrangements but at different positions within the irradiation field were compared to test the consistency of the measured PET signal. Finally, activation depth profiles through air/lung, air/bone and lung/bone interfaces parallel as well as at 6 degrees to the beam direction were studied to investigate the sensitivity of the PET/CT range verification method. The reproducibility and the consistency of the measured PET signal were found to be of the same order of magnitude. They determine the physical accuracy of the PET measurement to be about 1 mm. However, range discrepancies up to 2.6 mm between two measurements and range variations up to 2.6 mm within one measurement were found at the beam edge and at the edge of the field of view (FOV) of the

  15. Simulations of Beam Quality in a 13 MeV PET Cyclotron

    Directory of Open Access Journals (Sweden)

    A. Pramudita

    2015-12-01

    Full Text Available Simulation of the trajectories of negative hydrogen ion (H− beam in a 13 MeV PET cyclotron (DECY-13 were carried out by using the Runge-Kutta (RK4 approximation method and Scilab 5.4.1. The magnetic and electric fields were calculated using Opera-3d/TOSCA softwares at 1 mm resolution. The cyclotron is of a fourth-harmonics type, meaning that the acceleration occurs four times per cycle, with a radiofrequency (RF field of 77.66 MHz frequency and 40 kV amplitude. The calculations and simulations show that the maximum distance between the ion source and the puller is about 6 mm, while the maximum width of the beam at 13 MeV is about 10 mm, and the initial phase between the RF field and the beam ranges from -10° to 10°, with a yield of about 10% of the beam from the ion source getting accelerated to 13 MeV.

  16. Study of the properties of an electron linac beam by means of the electromagnetic fields associated with the beam; Etude des proprietes du faisceau d'electrons d'un accelerateur lineaire au moyen des champs electromagnetiques associes a ce faisceau

    Energy Technology Data Exchange (ETDEWEB)

    Bergere, R. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1967-07-01

    For measuring the diverse characteristic parameters of a Linac electron beam, the one method causing the least perturbation to the electron beam itself, consists in the detection of signals induced in certain types of detectors by the electromagnets fields associated with the beam. Some particular detectors are then described, for measuring the following characteristic parameters of a Linac electron beam; a) electron beam peak current, a) longitudinal dimension and density of an elementary electron bunch, c) phase position of the electrons on the travelling sine wave of the accelerating field, d) transverse position of the beam. These particular electrodes are then used to provide experimental data In order to check the theoretical computations giving the longitudinal and transversal motions Of the electrons during their acceleration. (author) [French] Parmi les methodes de mesure des diverses caracteristiques du faisceau d'electrons d'un accelerateur lineaire, celles qui perturbent le moins le faisceau sont les methodes dans lesquelles l'energie du signal de mesure provient de la perturbation par l'electrode de mesure des champs electromagnetiques associes au faisceau. On decrit les electrodes de ce type qui ont ete mises au point pour mesurer les caracteristiques suivantes du faisceau d'electrons: a) courant crete, b) extension en phase d'un paquet elementaire d'electrons, c) phase d'accrochage des electrons, d) position transversale moyenne des electrons. On decrit ensuite comment les signaux provenant de ces diverses electrodes peuvent etre utilises pour verifier experimentalement les previsions theoriques des mouvements longitudinaux et transversaux des electrons en cours d'acceleration. (auteur)

  17. Simulation study of LYSO crystal pixels for In-Beam TOF-PET prototype

    International Nuclear Information System (INIS)

    Chen Ze; Hu Zhengguo; Chen Jinda; Zhang Xiuling

    2014-01-01

    In-beam TOF-PET is currently the only feasible method implemented for in-situ and noninvasive monitoring of the precision of the treatment in highly conformal ion radiotherapy. It ensures the safety of patient and accurate implementation of treatment plan. Therefore, we intent to carry out the development of In-beam TOF-PET prototype, which is made of LYSO crystal, for ion radiotherapy. LYSO crystal has perfect properties such as high light yield, fast decay time, good energy and time resolution, which makes it a good candidate. In the development of positron emission tomography (PET) detectors, understanding and optimizing scintillator light collection and energy resolution is critical for achieving high performance, particularly when the design incorporates depth-of-interaction (DOI) encoding or time-of-flight information. Monte Carlo simulations play an important role in guiding research in detector designs and popular software such as Gate now include models of light transport in scintillators. This study uses Gate software to investigate the influence of crystal length and wrapping materials to the light collection. Accurate physical modeling of scintillation detection process, from scintillation light generation through detection, is devised and performed for varying detector attributes, such as the crystal pixel length, light yield, decay time, attenuation length and surface treatment. The dependence of light output and energy resolution is studied and compared with experiment results. The results show that LYSO pixel with length of 5 mm has better light yield and energy resolution, meanwhile prove that it is possible to accurately simulate the light output using Gate. (authors)

  18. The role of positron-emission-tomography (F-18-FDG-PET) in the staging and follow-up of lung cancer and in the evaluation of focal pulmonary abnormalities; Positronenemissionstomographie (PET) mit F-18-FDG in der Diagnostik des Bronchialkarzinoms und zur Dignitaetsabklaerung von pulmonalen Raumforderungen

    Energy Technology Data Exchange (ETDEWEB)

    Baum, R.P. [Zentralklinik Bad Berka (Germany). Klinik fuer Nuklearmedizin/PET-Zentrum; Bonnet, R.B. [Zentralklinik Bad Berka (Germany). Klinik fuer Pneumologie; Presselt, N. [Zentralklinik Bad Berka (Germany). Klinik fuer Thorax- und Gefaesschirurgie; Leonhardi, J. [Zentralklinik Bad Berka (Germany). Inst. fuer Bildgebende Diagnostik

    2001-04-01

    bronchial carcinomas (except for slowly growing neuroendocrine tumors like carcinoids which show rarely an increased FDG metabolism). The specificity of FDG-PET is in the range of >80%. (orig.) [German] Prospektive Studien zeigten im Direktvergleich von PET und Spiral-CT eine deutlich hoehere diagnostische Genauigkeit der PET im Lymphknotenstaging des Bronchialkarzinoms (insbesondere mediastinal, d.h. N2- oder N3-Befall). Mittels FDG-PET koennen auch normal grosse Lymphknoten (im CT<10 mm) als tumorbefallen charakterisiert werden (Upstaging). Andererseits kann die PET aufgrund der hoeheren Spezifitaet eine Metastasierung in computertomographisch vergroesserten Lymphknoten oftmals ausschliessen (Downstaging in bis zu 30% der untersuchten Patienten). Eine Aenderung des therapeutischen Prozedere durch die PET-Untersuchung ergab sich bei bis zu 30% aller Patienten und unter Einschluss der Fernmetastasen bei ueber 40% der untersuchten Patienten. Nebennierenmetastasen (Sensitivitaet 100%, Spezifitaet 80%), als auch Leber-, Knochen- und parenchymatoese Lungenmetastasen und abdominelle und zervikale Lymphknotenmetastasen werden mit hoher Sensitivitaet und Spezifitaet detektiert. Bei zerebralen Metastasen ist die MRT im Nachweis eindeutig ueberlegen, bei sehr kleinen Lungenlaesionen (<5 mm) ist die Spiral-CT sensitiver. Der Nachweis des lokalen Rezidivs eines zuvor operierten Lungenkarzinoms ist mit einer Sensitivitaet von 83-100% (Mittel 95%) und einer Spezifitaet von 62-100% (Mittel 81%) moeglich. Auch zur Therapiekontrolle ist die FDG-PET geeignet, da die Abnahme des Glukosemetabolismus mit dem Therapieerfolg korreliert. Problematisch sind inflammatorische Veraenderungen in den ersten Wochen nach Strahlentherapie ('Strahlenpneumonitis'), die ebenfalls zu einem gesteigerten Glukosemetabolismus fuehren koennen, weshalb ein groesserer Zeitabstand (mehrere Wochen bis Monate) nach Strahlentherapie sinnvoll ist. Die FDG-PET hat sich in der Differenzialdiagnostik von

  19. 4D offline PET-based treatment verification in ion beam therapy. Experimental and clinical evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Kurz, Christopher

    2014-06-12

    Due to the accessible sharp dose gradients, external beam radiotherapy with protons and heavier ions enables a highly conformal adaptation of the delivered dose to arbitrarily shaped tumour volumes. However, this high conformity is accompanied by an increased sensitivity to potential uncertainties, e.g., due to changes in the patient anatomy. Additional challenges are imposed by respiratory motion which does not only lead to rapid changes of the patient anatomy, but, in the cased of actively scanned ions beams, also to the formation of dose inhomogeneities. Therefore, it is highly desirable to verify the actual application of the treatment and to detect possible deviations with respect to the planned irradiation. At present, the only clinically implemented approach for a close-in-time verification of single treatment fractions is based on detecting the distribution of β{sup +}-emitter formed in nuclear fragmentation reactions during the irradiation by means of positron emission tomography (PET). For this purpose, a commercial PET/CT (computed tomography) scanner has been installed directly next to the treatment rooms at the Heidelberg Ion-Beam Therapy Center (HIT). Up to present, the application of this treatment verification technique is, however, still limited to static target volumes. This thesis aimed at investigating the feasibility and performance of PET-based treatment verification under consideration of organ motion. In experimental irradiation studies with moving phantoms, not only the practicability of PET-based treatment monitoring for moving targets, using a commercial PET/CT device, could be shown for the first time, but also the potential of this technique to detect motion-related deviations from the planned treatment with sub-millimetre accuracy. The first application to four exemplary hepato-cellular carcinoma patient cases under substantially more challenging clinical conditions indicated potential for improvement by taking organ motion into

  20. 4D offline PET-based treatment verification in ion beam therapy. Experimental and clinical evaluation

    International Nuclear Information System (INIS)

    Kurz, Christopher

    2014-01-01

    Due to the accessible sharp dose gradients, external beam radiotherapy with protons and heavier ions enables a highly conformal adaptation of the delivered dose to arbitrarily shaped tumour volumes. However, this high conformity is accompanied by an increased sensitivity to potential uncertainties, e.g., due to changes in the patient anatomy. Additional challenges are imposed by respiratory motion which does not only lead to rapid changes of the patient anatomy, but, in the cased of actively scanned ions beams, also to the formation of dose inhomogeneities. Therefore, it is highly desirable to verify the actual application of the treatment and to detect possible deviations with respect to the planned irradiation. At present, the only clinically implemented approach for a close-in-time verification of single treatment fractions is based on detecting the distribution of β + -emitter formed in nuclear fragmentation reactions during the irradiation by means of positron emission tomography (PET). For this purpose, a commercial PET/CT (computed tomography) scanner has been installed directly next to the treatment rooms at the Heidelberg Ion-Beam Therapy Center (HIT). Up to present, the application of this treatment verification technique is, however, still limited to static target volumes. This thesis aimed at investigating the feasibility and performance of PET-based treatment verification under consideration of organ motion. In experimental irradiation studies with moving phantoms, not only the practicability of PET-based treatment monitoring for moving targets, using a commercial PET/CT device, could be shown for the first time, but also the potential of this technique to detect motion-related deviations from the planned treatment with sub-millimetre accuracy. The first application to four exemplary hepato-cellular carcinoma patient cases under substantially more challenging clinical conditions indicated potential for improvement by taking organ motion into

  1. Induced radioactivity of a GSO scintillator by secondary fragments in carbon ion therapy and its effects on in-beam OpenPET imaging.

    Science.gov (United States)

    Hirano, Yoshiyuki; Nitta, Munetaka; Nishikido, Fumihiko; Yoshida, Eiji; Inadama, Naoko; Yamaya, Taiga

    2016-07-07

    The accumulation of induced radioactivity within in-beam PET scanner scintillators is of concern for its long-term clinical usage in particle therapy. To estimate the effects on OpenPET which we are developing for in-beam PET based on GSOZ (Zi doped Gd2SiO5), we measured the induced radioactivity of GSO activated by secondary fragments in a water phantom irradiation by a (12)C beam with an energy of 290 MeV u(-1). Radioisotopes of Na, Ce, Eu, Gd, Nd, Pm and Tb including positron emitters were observed in the gamma ray spectra of the activated GSO with a high purity Ge detector and their absolute radioactivities were calculated. We used the Monte Carlo simulation platform, Geant4 in which the observed radioactivity was assigned to the scintillators of a precisely reproduced OpenPET and the single and coincidence rates immediately after one treatment and after one-year usage were estimated for the most severe conditions. Comparing the highest coincidence rate originating from the activated scintillators (background) and the expected coincidence rate from an imaging object (signal), we determined the expected signal-to-noise ratio to be more than 7 within 3 min and more than 10 within 1 min from the scan start time. We concluded the effects of scintillator activation and their accumulation on the OpenPET imaging were small and clinical long-term usage of the OpenPET was feasible.

  2. An in-beam PET system for monitoring ion-beam therapy: test on phantoms using clinical 62 MeV protons

    Science.gov (United States)

    Camarlinghi, N.; Sportelli, G.; Battistoni, G.; Belcari, N.; Cecchetti, M.; Cirrone, G. A. P.; Cuttone, G.; Ferretti, S.; Kraan, A.; Retico, A.; Romano, F.; Sala, P.; Straub, K.; Tramontana, A.; Del Guerra, A.; Rosso, V.

    2014-04-01

    Ion therapy allows the delivery of highly conformal dose taking advantage of the sharp depth-dose distribution at the Bragg-peak. However, patient positioning errors and anatomical uncertainties can cause dose distortions. To exploit the full potential of ion therapy, an accurate monitoring system of the ion range is needed. Among the proposed methods to monitor the ion range, Positron Emission Tomography (PET) has proven to be the most mature technique, allowing to reconstruct the β+ activity generated in the patient by the nuclear interaction of the ions, that can be acquired during or after the treatment. Taking advantages of the spatial correlation between positron emitters created along the ions path and the dose distribution, it is possible to reconstruct the ion range. Due to the high single rates generated during the beam extraction, the acquisition of the β+ activity is typically performed after the irradiation (cyclotron) or in between the synchrotron spills. Indeed the single photon rate can be one or more orders of magnitude higher than normal for cyclotron. Therefore, acquiring the activity during the beam irradiation requires a detector with a very short dead time. In this work, the DoPET detector, capable of sustaining the high event rate generated during the cyclotron irradiation, is presented. The capability of the system to acquire data during and after the irradiation will be demonstrated by showing the reconstructed activity for different PMMA irradiations performed using clinical dose rates and the 62 MeV proton beam at the CATANA-LNS-INFN. The reconstructed activity widths will be compared with the results obtained by simulating the proton beam interaction with the FLUKA Monte Carlo. The presented data are in good agreement with the FLUKA Monte Carlo.

  3. An in-beam PET system for monitoring ion-beam therapy: test on phantoms using clinical 62 MeV protons

    International Nuclear Information System (INIS)

    Camarlinghi, N; Sportelli, G; Belcari, N; Cecchetti, M; Ferretti, S; Kraan, A; Retico, A; Straub, K; Guerra, A Del; Rosso, V; Battistoni, G; Sala, P; Cirrone, G A P; Cuttone, G; Romano, F; Tramontana, A

    2014-01-01

    Ion therapy allows the delivery of highly conformal dose taking advantage of the sharp depth-dose distribution at the Bragg-peak. However, patient positioning errors and anatomical uncertainties can cause dose distortions. To exploit the full potential of ion therapy, an accurate monitoring system of the ion range is needed. Among the proposed methods to monitor the ion range, Positron Emission Tomography (PET) has proven to be the most mature technique, allowing to reconstruct the β + activity generated in the patient by the nuclear interaction of the ions, that can be acquired during or after the treatment. Taking advantages of the spatial correlation between positron emitters created along the ions path and the dose distribution, it is possible to reconstruct the ion range. Due to the high single rates generated during the beam extraction, the acquisition of the β + activity is typically performed after the irradiation (cyclotron) or in between the synchrotron spills. Indeed the single photon rate can be one or more orders of magnitude higher than normal for cyclotron. Therefore, acquiring the activity during the beam irradiation requires a detector with a very short dead time. In this work, the DoPET detector, capable of sustaining the high event rate generated during the cyclotron irradiation, is presented. The capability of the system to acquire data during and after the irradiation will be demonstrated by showing the reconstructed activity for different PMMA irradiations performed using clinical dose rates and the 62 MeV proton beam at the CATANA-LNS-INFN. The reconstructed activity widths will be compared with the results obtained by simulating the proton beam interaction with the FLUKA Monte Carlo. The presented data are in good agreement with the FLUKA Monte Carlo

  4. Combined PET/MRI in cerebral and paediatric diagnostics; Kombinierte PET/MRT-Diagnostik bei zerebralen und paediatrischen Fragestellungen

    Energy Technology Data Exchange (ETDEWEB)

    Pfluger, T.; Vollmar, C.; Porn, U.; Schmid, R.; Dresel, S.; Leinsinger, G.; Schmid, I.; Winkler, P.; Fischer, S.; Hahn, K. [Klinik und Poliklinik fuer Nuklearmedizin, Ludwig-Maximilians-Univ. Muenchen (Germany)

    2002-07-01

    The aim of this overview is presentation of MRI and PET as synergistic modalities for combined analysis of morphology and function. For operative planning in epilepsy surgery, definition of the epileptogenic focus based on functional PET diagnostics and morphological MRI is decisive. For staging and follow-up examinations in oncology, MRI should be complemented by PET for the assessment of tumor vitality. In paediatric oncology patients we could demonstrate a therapy relevant increase of sensitivity/specificity with combined PET/MRI in contrast to single modalities. In the brain, full spectrum of digital image registration and three-dimensional reconstruction should be used. In extracranial cases, image fusion is disturbing due to a partial loss of image information of single modalities by the fusion process. (orig.) [German] Ziel dieser Uebersicht ist die Darstellung der MRT und PET als synergistische Verfahren zur Analyse von Morphologie und Funktion. Zur Resektionsplanung im Rahmen der Epilepsiechirurgie ist die Definition des Epilepsiefokus anhand der funktionellen PET-Diagnostik und die exakte Kenntnis der zerebralen Morphologie aus der MRT ganz entscheidend. Im Rahmen des onkologischen Stagings und bei Verlaufskontrollen ist wegen der geringeren Spezifitaet der MRT die additive PET zur Beurteilung der Tumorvitalitaet erforderlich. Anhand eines paediatrisch-onkologischen Patientengutes konnten wir zeigen, dass mit der kombinierten PET/MRT-Diagnostik eine therapierelevante Steigerung der Sensitivitaet/Spezifitaet gegenueber den Einzeluntersuchungen moeglich ist. Bei zerebralen Fragestellungen sollte das gesamte Spektrum der digitalen Bildfusion mit direkter Ueberlagerung mehrerer Modalitaeten und anschliessender dreidimensionaler Rekonstruktion ausgeschoepft werden. Bei extrakraniellen Fragestellungen ist die direkte Bildueberlagerung eher hinderlich, da die Bildinformation der Einzelmodalitaeten durch die Fusion teilweise verloren geht. (orig.)

  5. Choline-PET/CT for imaging prostate cancer; Cholin-PET/CT zur Bildgebung des Prostatakarzinoms

    Energy Technology Data Exchange (ETDEWEB)

    Krause, Bernd Joachim [Klinik- und Poliklinik fuer Nuklearmedizin, Klinikum rechts der Isar, Technische Univ. Muenchen (Germany); Treiber, U.; Schwarzenboeck, S.; Souvatzoglou, M. [Klinik fuer Urologie, Klinikum rechts der Isar, Technische Univ. Muenchen (Germany)

    2010-09-15

    PET and PET/CT using [{sup 11}C]- and [{sup 18}F]-labelled choline derivatives are increasingly being used for imaging of prostate cancer. The value of PET and PET/CT with [{sup 11}C]- and [{sup 18}F]-labelled choline derivates in biochemical recurrence of prostate cancer has been examined in many studies and demonstrates an increasing importance. Primary prostate cancer can be detected with moderate sensitivity using PET and PET/CT using [{sup 11}C]- and [{sup 18}F]-labelled choline derivatives - the differentiation between benign prostatic hyperplasia, prostatitis or high-grade intraepithelial neoplasia (HGPIN) is not always possible. At the present time [{sup 11}C]choline PET/CT is not recommended in the primary setting but may be utilized in clinically suspected prostate cancer with repeatedly negative prostate biopsies, in preparation of a focused re-biopsy. Promising results have been obtained for the use of PET and PET/CT with [{sup 11}C]- and [{sup 18}F]-labelled choline derivates in patients with biochemical recurrence. The detection rate of choline PET and PET/CT for local, regional, and distant recurrence in patients with a biochemical recurrence shows a linear correlation with PSA values at the time of imaging and reaches about 75% in patients with PSA > 3 ng/mL. At PSA values below 1 ng/mL, the recurrence can be diagnosed with choline PET/CT in approximately 1/3 of the patients. PET and PET/CT with [{sup 11}C]- and [{sup 18}F]choline derivates can be helpful for choosing a therapeutic strategy in the sense of an individualized treatment: since an early diagnosis of recurrence is crucial to the choice of optimal treatment. The localization of the site of recurrence - local recurrence, lymph node metastasis or systemic dissemination - has important influence on the therapy regimen. (orig.)

  6. 4D in-beam positron emission tomography for verification of motion-compensated ion beam therapy

    International Nuclear Information System (INIS)

    Parodi, Katia; Saito, Nami; Chaudhri, Naved; Richter, Christian; Durante, Marco; Enghardt, Wolfgang; Rietzel, Eike; Bert, Christoph

    2009-01-01

    Purpose: Clinically safe and effective treatment of intrafractionally moving targets with scanned ion beams requires dedicated delivery techniques such as beam tracking. Apart from treatment delivery, also appropriate methods for validation of the actual tumor irradiation are highly desirable. In this contribution the feasibility of four-dimensionally (space and time) resolved, motion-compensated in-beam positron emission tomography (4DibPET) was addressed in experimental studies with scanned carbon ion beams. Methods: A polymethyl methracrylate block sinusoidally moving left-right in beam's eye view was used as target. Radiological depth changes were introduced by placing a stationary ramp-shaped absorber proximal of the moving target. Treatment delivery was compensated for motion by beam tracking. Time-resolved, motion-correlated in-beam PET data acquisition was performed during beam delivery with tracking the moving target and prolonged after beam delivery first with the activated target still in motion and, finally, with the target at rest. Motion-compensated 4DibPET imaging was implemented and the results were compared to a stationary reference irradiation of the same treatment field. Data were used to determine feasibility of 4DibPET but also to evaluate offline in comparison to in-beam PET acquisition. Results: 4D in-beam as well as offline PET imaging was found to be feasible and offers the possibility to verify the correct functioning of beam tracking. Motion compensation of the imaged β + -activity distribution allows recovery of the volumetric extension of the delivered field for direct comparison with the reference stationary condition. Observed differences in terms of lateral field extension and penumbra in the direction of motion were typically less than 1 mm for both imaging strategies in comparison to the corresponding reference distributions. However, in-beam imaging retained a better spatial correlation of the measured activity with the delivered

  7. Beam tracking simulation in the central region of a 13 MeV PET cyclotron

    Science.gov (United States)

    Anggraita, Pramudita; Santosa, Budi; Taufik, Mulyani, Emy; Diah, Frida Iswinning

    2012-06-01

    This paper reports the trajectories simulation of proton beam in the central region of a 13 MeV PET cyclotron, operating with negative proton beam (for easier beam extraction using a stripper foil), 40 kV peak accelerating dee voltage at fourth harmonic frequency of 77.88 MHz, and average magnetic field of 1.275 T. The central region covers fields of 240mm × 240mm × 30mm size at 1mm resolution. The calculation was also done at finer 0.25mm resolution covering fields of 30mm × 30mm × 4mm size to see the effects of 0.55mm horizontal width of the ion source window and the halted trajectories of positive proton beam. The simulations show up to 7 turns of orbital trajectories, reaching about 1 MeV of beam energy. The distribution of accelerating electric fields and magnetic fields inside the cyclotron were calculated in 3 dimension using Opera3D code and Tosca modules for static magnetic and electric fields. The trajectory simulation was carried out using Scilab 5.3.3 code.

  8. Integration of PET-CT and cone-beam CT for image-guided radiotherapy with high image quality and registration accuracy

    Science.gov (United States)

    Wu, T.-H.; Liang, C.-H.; Wu, J.-K.; Lien, C.-Y.; Yang, B.-H.; Huang, Y.-H.; Lee, J. J. S.

    2009-07-01

    Hybrid positron emission tomography-computed tomography (PET-CT) system enhances better differentiation of tissue uptake of 18F-fluorodeoxyglucose (18F-FDG) and provides much more diagnostic value in the non-small-cell lung cancer and nasopharyngeal carcinoma (NPC). In PET-CT, high quality CT images not only offer diagnostic value on anatomic delineation of the tissues but also shorten the acquisition time for attenuation correction (AC) compared with PET-alone imaging. The linear accelerators equipped with the X-ray cone-beam computed tomography (CBCT) imaging system for image-guided radiotherapy (IGRT) provides excellent verification on position setup error. The purposes of our study were to optimize the CT acquisition protocols of PET-CT and to integrate the PET-CT and CBCT for IGRT. The CT imaging parameters were modified in PET-CT for increasing the image quality in order to enhance the diagnostic value on tumour delineation. Reproducibility and registration accuracy via bone co-registration algorithm between the PET-CT and CBCT were evaluated by using a head phantom to simulate a head and neck treatment condition. Dose measurement in computed tomography dose index (CTDI) was also estimated. Optimization of the CT acquisition protocols of PET-CT was feasible in this study. Co-registration accuracy between CBCT and PET-CT on axial and helical modes was in the range of 1.06 to 2.08 and 0.99 to 2.05 mm, respectively. In our result, it revealed that the accuracy of the co-registration with CBCT on helical mode was more accurate than that on axial mode. Radiation doses in CTDI were 4.76 to 18.5 mGy and 4.83 to 18.79 mGy on axial and helical modes, respectively. Registration between PET-CT and CBCT is a state-of-the-art registration technology which could provide much information on diagnosis and accurate tumour contouring on radiotherapy while implementing radiotherapy procedures. This novelty technology of PET-CT and cone-beam CT integration for IGRT may have a

  9. Integration of PET-CT and cone-beam CT for image-guided radiotherapy with high image quality and registration accuracy

    International Nuclear Information System (INIS)

    Wu, T-H; Liang, C-H; Wu, J-K; Lien, C-Y; Yang, B-H; Lee, J J S; Huang, Y-H

    2009-01-01

    Hybrid positron emission tomography-computed tomography (PET-CT) system enhances better differentiation of tissue uptake of 18 F-fluorodeoxyglucose ( 18 F-FDG) and provides much more diagnostic value in the non-small-cell lung cancer and nasopharyngeal carcinoma (NPC). In PET-CT, high quality CT images not only offer diagnostic value on anatomic delineation of the tissues but also shorten the acquisition time for attenuation correction (AC) compared with PET-alone imaging. The linear accelerators equipped with the X-ray cone-beam computed tomography (CBCT) imaging system for image-guided radiotherapy (IGRT) provides excellent verification on position setup error. The purposes of our study were to optimize the CT acquisition protocols of PET-CT and to integrate the PET-CT and CBCT for IGRT. The CT imaging parameters were modified in PET-CT for increasing the image quality in order to enhance the diagnostic value on tumour delineation. Reproducibility and registration accuracy via bone co-registration algorithm between the PET-CT and CBCT were evaluated by using a head phantom to simulate a head and neck treatment condition. Dose measurement in computed tomography dose index (CTDI) was also estimated. Optimization of the CT acquisition protocols of PET-CT was feasible in this study. Co-registration accuracy between CBCT and PET-CT on axial and helical modes was in the range of 1.06 to 2.08 and 0.99 to 2.05 mm, respectively. In our result, it revealed that the accuracy of the co-registration with CBCT on helical mode was more accurate than that on axial mode. Radiation doses in CTDI were 4.76 to 18.5 mGy and 4.83 to 18.79 mGy on axial and helical modes, respectively. Registration between PET-CT and CBCT is a state-of-the-art registration technology which could provide much information on diagnosis and accurate tumour contouring on radiotherapy while implementing radiotherapy procedures. This novelty technology of PET-CT and cone-beam CT integration for IGRT may have a

  10. Optimization of radiotherapy planning for Non-Small Cell Lung Cancer (NSCLC) by {sup 18}FDG-PET; Optimierung der Bestrahlungsplanung beim nicht-kleinzelligen bronchialkarzinom (NSCLC) mit Hilfe von {sup 18}FDG-PET

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, S.; Nestle, U.; Kirsch, C.M. [Abt. fuer Nuklearmedizin, Universitaetskliniken des Saarlandes, Homburg/Saar (Germany); Walter, K. [Abt. fuer Strahlentherapie, Marienkrankenhaus Amberg (Germany); Licht, N.; Schnabel, K. [Abt. fuer Strahlentherapie, Universitaetskliniken des Saarlandes, Homburg/Saar (Germany); Ukena, D. [Innere Medizin V, Universitaetskliniken des Saarlandes, Homburg/Saar (Germany)

    2002-10-01

    Aim: In recent years, FDG-PET examinations have become more important for problems in oncology, especially in staging of bronchogenic carcinoma. In the retrospective study presented here, the influence of PET on the planning of radiotherapy for patients with non-small-cell lung cancer (NSCLC) was investigated. Methods: The study involved 39 patients with NSCLC who had been examined by PET for staging. They received radiotherapy on the basis of the anterior/posterior portals including the primary tumour and the mediastinum planned according to CT- and bronchoscopic findings. The results of the PET examination were not considered in initial radiotherapy planning. The portals were retrospectively redefined on the basis of FDG uptake considering the size and localization of the primary tumour; and FDG activities outside the mediastinal part of the portals. Results: In 15 out of 39 patients, the CT/PET-planned portals differed from the CT-planned ones. In most cases (n = 12) the CT/PET field was smaller than the CT field. The median geometric field size of the portals was 179 cm{sup 2}, after redefinition using PET 166 cm{sup 2}. In 20 patients with disturbed ventilation caused by the tumour (atelectosis, dystelectosis), a correction of the portal was suggested significantly more frequently than in the other patients (p = 0.03). Conclusions: Our results demonstrate the synergism of topographical (CT) and metabolic (FDG-PET) information, which could be helpful in planning radiotherapy of bronchial carcinoma, especially for patients with disturbed ventilation. (orig.) [German] Ziel: Die FDG-PET-Untersuchung hat in den vergangenen Jahren bei onkologischen Fragestellungen insbesondere beim Staging des Bronchialkarzinoms wachsende Bedeutung erlangt. In der vorliegenden retrospektiven Untersuchung wurde der Einfluss der PET auf die Strahlentherapieplanung bei Patienten mit non-small-cell lung cancer (NSCLC) untersucht. Methoden: Die Untersuchung umfasste 39 Patienten mit

  11. SU-E-J-82: Intra-Fraction Proton Beam-Range Verification with PET Imaging: Feasibility Studies with Monte Carlo Simulations and Statistical Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Lou, K [U.T M.D. Anderson Cancer Center, Houston, TX (United States); Rice University, Houston, TX (United States); Mirkovic, D; Sun, X; Zhu, X; Poenisch, F; Grosshans, D; Shao, Y [U.T M.D. Anderson Cancer Center, Houston, TX (United States); Clark, J [Rice University, Houston, TX (United States)

    2014-06-01

    Purpose: To study the feasibility of intra-fraction proton beam-range verification with PET imaging. Methods: Two phantoms homogeneous cylindrical PMMA phantoms (290 mm axial length, 38 mm and 200 mm diameter respectively) were studied using PET imaging: a small phantom using a mouse-sized PET (61 mm diameter field of view (FOV)) and a larger phantom using a human brain-sized PET (300 mm FOV). Monte Carlo (MC) simulations (MCNPX and GATE) were used to simulate 179.2 MeV proton pencil beams irradiating the two phantoms and be imaged by the two PET systems. A total of 50 simulations were conducted to generate 50 positron activity distributions and correspondingly 50 measured activity-ranges. The accuracy and precision of these activity-ranges were calculated under different conditions (including count statistics and other factors, such as crystal cross-section). Separate from the MC simulations, an activity distribution measured from a simulated PET image was modeled as a noiseless positron activity distribution corrupted by Poisson counting noise. The results from these two approaches were compared to assess the impact of count statistics on the accuracy and precision of activity-range calculations. Results: MC Simulations show that the accuracy and precision of an activity-range are dominated by the number (N) of coincidence events of the reconstructed image. They are improved in a manner that is inversely proportional to 1/sqrt(N), which can be understood from the statistical modeling. MC simulations also indicate that the coincidence events acquired within the first 60 seconds with 10{sup 9} protons (small phantom) and 10{sup 10} protons (large phantom) are sufficient to achieve both sub-millimeter accuracy and precision. Conclusion: Under the current MC simulation conditions, the initial study indicates that the accuracy and precision of beam-range verification are dominated by count statistics, and intra-fraction PET image-based beam-range verification is

  12. Study of electron beam irradiation effects on morphologic properties of the PET/PP/PE/EVA polymeric blend

    International Nuclear Information System (INIS)

    Rossini, Edvaldo L.; Silva, Leonardo G. Andrade e; Wiebeck, Helio

    2009-01-01

    Amidst the pollutants, plastics and especially the 'PET bottles' packaging type, which comprise of poly(ethylene terephthalate) (PET), polypropylene (PP), polyethylene (PE) and poly[ethylene-co-(vinyl acetate)] (EVA) have been causing big damage to the environment. In this work, the polymeric blend PET/PP/PE/EVA was obtained by mechanical recycling 'PET bottles' after consumption, with the objective of finding a solution for this environmental problem. It was also studied the different ionizing radiation dose effects (25, 50, 75, 100, 150, 200, 300, 400 and 500 kGy) on the blend properties using an electron beam accelerator. The morphologic properties of the non-irradiated and irradiated polymeric blend were evaluated by the Light Microscopy (LM) and Scanning Electron Microscopy (SEM). The analysis of the results appeared to be a not mixing and compatible blend. The use of the ionizing radiation improved the homogeneity of the blend. These modifications have been randomized and irregular, depending directly on the dose of applied radiation. (author)

  13. Study of electron beam irradiation effects on morphologic properties of the PET/PP/PE/EVA polymeric blend

    Energy Technology Data Exchange (ETDEWEB)

    Rossini, Edvaldo L.; Silva, Leonardo G. Andrade e, E-mail: lgasilva@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Wiebeck, Helio, E-mail: hwiebeck@usp.b [Universidade de Sao Paulo (USP), SP (Brazil). Escola Politecnica

    2009-07-01

    Amidst the pollutants, plastics and especially the 'PET bottles' packaging type, which comprise of poly(ethylene terephthalate) (PET), polypropylene (PP), polyethylene (PE) and poly[ethylene-co-(vinyl acetate)] (EVA) have been causing big damage to the environment. In this work, the polymeric blend PET/PP/PE/EVA was obtained by mechanical recycling 'PET bottles' after consumption, with the objective of finding a solution for this environmental problem. It was also studied the different ionizing radiation dose effects (25, 50, 75, 100, 150, 200, 300, 400 and 500 kGy) on the blend properties using an electron beam accelerator. The morphologic properties of the non-irradiated and irradiated polymeric blend were evaluated by the Light Microscopy (LM) and Scanning Electron Microscopy (SEM). The analysis of the results appeared to be a not mixing and compatible blend. The use of the ionizing radiation improved the homogeneity of the blend. These modifications have been randomized and irregular, depending directly on the dose of applied radiation. (author)

  14. Pancreatic neuroendocrine neoplasms; Neuroendokrine Neoplasien des Pankreas

    Energy Technology Data Exchange (ETDEWEB)

    Beiderwellen, K.; Lauenstein, T.C. [Universitaetsklinikum Essen, Institut fuer Diagnostische und Interventionelle Radiologie und Neuroradiologie, Essen (Germany); Sabet, A.; Poeppel, T.D. [Universitaetsklinikum Essen, Klinik fuer Nuklearmedizin, Essen (Germany); Lahner, H. [Universitaetsklinikum Essen, Klinik fuer Endokrinologie und Stoffwechselerkrankungen, Essen (Germany)

    2016-04-15

    Pancreatic neuroendocrine neoplasms (NEN) account for 1-2 % of all pancreatic neoplasms and represent a rare differential diagnosis. While some pancreatic NEN are hormonally active and exhibit endocrine activity associated with characteristic symptoms, the majority are hormonally inactive. Imaging techniques such as ultrasound, computed tomography (CT), magnetic resonance imaging (MRI) and positron emission tomography (PET) or as combined PET/CT play a crucial role in the initial diagnosis, therapy planning and control. Endoscopic ultrasound (EUS) and multiphase CT represent the reference methods for localization of the primary pancreatic tumor. Particularly in the evaluation of small liver lesions MRI is the method of choice. Somatostatin receptor scintigraphy and somatostatin receptor PET/CT are of particular value for whole body staging and special aspects of further therapy planning. (orig.) [German] Neuroendokrine Neoplasien (NEN) des Pankreas stellen mit einem Anteil von 1-2 % aller pankreatischen Tumoren eine seltene Differenzialdiagnose dar. Ein Teil der Tumoren ist hormonell aktiv und faellt klinisch durch charakteristische Symptome auf, wohingegen der ueberwiegende Anteil hormonell inaktiv ist. Bildgebende Verfahren wie Sonographie, Computertomographie (CT), Magnetresonanztomographie (MRT) und nicht zuletzt Positronenemissionstomographie (PET oder kombiniert als PET/CT) spielen eine zentrale Rolle fuer Erstdiagnose, Therapieplanung und -kontrolle. Die Endosonographie und die multiphasische CT stellen die Referenzmethoden zur Lokalisation des Primaertumors dar. Fuer die Differenzierung insbesondere kleiner Leberlaesionen bietet die MRT die hoechste Aussagekraft. Fuer das Ganzkoerperstaging und bestimmte Aspekte der Therapieplanung lassen sich die Somatostatinrezeptorszintigraphie und v. a. die Somatostatinrezeptor-PET/CT heranziehen. (orig.)

  15. An experimental approach to improve the Monte Carlo modelling of offline PET/CT-imaging of positron emitters induced by scanned proton beams

    International Nuclear Information System (INIS)

    Bauer, J; Unholtz, D; Kurz, C; Parodi, K

    2013-01-01

    We report on the experimental campaign carried out at the Heidelberg Ion-Beam Therapy Center (HIT) to optimize the Monte Carlo (MC) modelling of proton-induced positron-emitter production. The presented experimental strategy constitutes a pragmatic inverse approach to overcome the known uncertainties in the modelling of positron-emitter production due to the lack of reliable cross-section data for the relevant therapeutic energy range. This work is motivated by the clinical implementation of offline PET/CT-based treatment verification at our facility. Here, the irradiation induced tissue activation in the patient is monitored shortly after the treatment delivery by means of a commercial PET/CT scanner and compared to a MC simulated activity expectation, derived under the assumption of a correct treatment delivery. At HIT, the MC particle transport and interaction code FLUKA is used for the simulation of the expected positron-emitter yield. For this particular application, the code is coupled to externally provided cross-section data of several proton-induced reactions. Studying experimentally the positron-emitting radionuclide yield in homogeneous phantoms provides access to the fundamental production channels. Therefore, five different materials have been irradiated by monoenergetic proton pencil beams at various energies and the induced β + activity subsequently acquired with a commercial full-ring PET/CT scanner. With the analysis of dynamically reconstructed PET images, we are able to determine separately the spatial distribution of different radionuclide concentrations at the starting time of the PET scan. The laterally integrated radionuclide yields in depth are used to tune the input cross-section data such that the impact of both the physical production and the imaging process on the various positron-emitter yields is reproduced. The resulting cross-section data sets allow to model the absolute level of measured β + activity induced in the investigated

  16. An experimental approach to improve the Monte Carlo modelling of offline PET/CT-imaging of positron emitters induced by scanned proton beams

    Science.gov (United States)

    Bauer, J.; Unholtz, D.; Kurz, C.; Parodi, K.

    2013-08-01

    We report on the experimental campaign carried out at the Heidelberg Ion-Beam Therapy Center (HIT) to optimize the Monte Carlo (MC) modelling of proton-induced positron-emitter production. The presented experimental strategy constitutes a pragmatic inverse approach to overcome the known uncertainties in the modelling of positron-emitter production due to the lack of reliable cross-section data for the relevant therapeutic energy range. This work is motivated by the clinical implementation of offline PET/CT-based treatment verification at our facility. Here, the irradiation induced tissue activation in the patient is monitored shortly after the treatment delivery by means of a commercial PET/CT scanner and compared to a MC simulated activity expectation, derived under the assumption of a correct treatment delivery. At HIT, the MC particle transport and interaction code FLUKA is used for the simulation of the expected positron-emitter yield. For this particular application, the code is coupled to externally provided cross-section data of several proton-induced reactions. Studying experimentally the positron-emitting radionuclide yield in homogeneous phantoms provides access to the fundamental production channels. Therefore, five different materials have been irradiated by monoenergetic proton pencil beams at various energies and the induced β+ activity subsequently acquired with a commercial full-ring PET/CT scanner. With the analysis of dynamically reconstructed PET images, we are able to determine separately the spatial distribution of different radionuclide concentrations at the starting time of the PET scan. The laterally integrated radionuclide yields in depth are used to tune the input cross-section data such that the impact of both the physical production and the imaging process on the various positron-emitter yields is reproduced. The resulting cross-section data sets allow to model the absolute level of measured β+ activity induced in the investigated

  17. Radiological diagnostics in CUP syndrome; Radiologische Diagnostik des CUP-Syndroms

    Energy Technology Data Exchange (ETDEWEB)

    Kazmierczak, P.M.; Nikolaou, K.; Graser, A.; Reiser, M.F.; Cyran, C.C. [Klinikum der Ludwig-Maximilians-Universitaet, Campus Grosshadern, Institut fuer Klinische Radiologie, Muenchen (Germany); Rominger, A. [Klinikum der Ludwig-Maximilians-Universitaet, Campus Grosshadern, Klinik und Poliklinik fuer Nuklearmedizin, Muenchen (Germany)

    2014-02-15

    , diffusion), e.g. investigation of breast carcinoma or prostate carcinoma. Whole body staging stands at the beginning of the diagnostic algorithm in CUP syndrome to localize a potential primary tumor. Clinically, contrast-enhanced CT of the neck, thorax and abdomen is frequently applied; however, many studies have demonstrated augmented sensitivity of {sup 18}F-FDG PET-CT for the detection of primary tumors and metastatic tumor manifestations. (orig.) [German] Im therapeutischen Management des Cancer-of-unknown-primary(CUP)-Syndroms spielt die bildgebende Diagnostik eine zentrale Rolle zur Lokalisation des Primaertumors, zur Identifikation von Tumoren, fuer die ein dediziertes Behandlungsschema zur Verfuegung steht, sowie zur Charakterisierung klinisch-pathologischer Subentitaeten, die das weitere diagnostische und therapeutische Procedere bestimmen und eine Einschaetzung der Prognose erlauben. Zur Verfuegung stehende radiologische Modalitaeten umfassen die Projektionsradiographie, die Computertomographie (CT), die Magnetresonanztomographie (MRT) und die Sonographie sowie die Hybridverfahren Positronenemissionstomographie(PET)-CT und MR-PET. In der Ganzkoerperbildgebung hat die CT eine hohe Sensitivitaet fuer Tumoren, die haeufig als metastasierte Tumorerkrankung auftreten. Nach aktueller Literatur ist die CT bei Patienten mit Pankreaskarzinom in 86% der Faelle diagnostisch, bei Patienten mit Kolonkarzinom in 36% und bei Patienten mit Bronchialkarzinom in 74%. Des Weiteren zeigte eine Metaanalyse, dass bei Patienten mit Plattenepithelkarzinom und zervikalen Lymphknotenmetastasen die CT in 22% der Faelle den Primaertumor lokalisieren konnte, im Vergleich zu 36% Detektionsrate der MRT und 28-57% der PET-CT mit {sup 18}F-FDG (Fluordesoxyglukose). Der MRT kommt auf Grund des hohen Weichteilkontrasts und der Moeglichkeit zur funktionellen Bildgebung besondere Bedeutung bei der Lokalisation primaer okkulter Tumoren bei Organuntersuchungen zu, z. B. beim Mamma- oder dem

  18. Development of UV absorbing PET through Electron Irradiation

    International Nuclear Information System (INIS)

    Kim, Jung Woo; Lee, Na Eun; Lim, Hyung San; Park, Yang Jeong; Cho, Sung Oh

    2017-01-01

    Experiment to increase UV absorbance through electron beam irradiation on PET was performed. Moreover, surface hardness and roughness of each sample were observed to find the key factor increasing UV absorbance. PET sheets were irradiated with an electron beam at various fluences. The irradiated samples, as well as pristine sample, were subjected to UV-visible spectral study(UV-Vis), pencil hardness test, and scanning electron microscopy(SEM) experiment. In this study, PET samples irradiated at several conditions were analyzed through various measurements. UV absorbance-another meaning of transmittance in this study- of irradiated PET sample increased compared with pristine sample as fluence was increased in UV-Visible spectroscopy experiment.

  19. STRUCTURAL, OPTICAL AND ELECTRICAL PROPERTIES OF PET POLYMER FILMS MODIFIED BY LOW ENERGY Ar+ ION BEAMS

    Science.gov (United States)

    Fawzy, Y. H. A.; Abdel-Hamid, H. M.; El-Okr, M. M.; Atta, A.

    Polyethylene terephthalate (PET) films with thickness 40μm are irradiated with 3keV argon ion beams with different fluence ranging from 0.5×1018ions.cm-2 to 2×1018ions.cm-2 using locally designed broad ion source. The changes in the PET structure are characterized using X-ray diffraction (XRD), Fourier transform infrared (FTIR) and scanning electron microscope (SEM) techniques. The XRD patterns show that the peak intensity decreases with irradiation and the particle size decreases from 65.75 Å for the un-irradiated to 52.80 Å after irradiation. The FTIR indicates partial decrease and reduction in the intensity of the bands due to the degradation of the polymer after ion irradiation. The optical energy band gap decreases from 3.14eV to 3.05eV and the number of carbon cluster increases from 119 to 126 after ion irradiation. The results show a slight increase in the electrical conductivities and the dielectric constant (ɛ). The results indicate the effectiveness of using PET films as capacitors and resistors in industrial applications.

  20. A PET Prototype for “In-Beam” Monitoring of Proton Therapy

    Science.gov (United States)

    Vecchio, Sara; Attanasi, Francesca; Belcari, Nicola; Camarda, Manuela; Cirrone, G. A. Pablo; Cuttone, Giacomo; Di Rosa, Francesco; Lanconelli, Nico; Moehrs, Sascha; Rosso, Valeria; Russo, Giorgio; Del Guerra, Alberto

    2009-02-01

    The in-beam PET is a novel PET application to image the beta+ activity induced in biological tissues by hadronic therapeutic beams. Thanks to the correlation existing between beam-delivered dose profiles and beam-induced activity profiles, in vivo information about the effective ion paths can be extracted from the in-beam pet image. in situ measurements, immediately after patient irradiation, are recommended in order to exploit the maximum statistics, by also detecting the contribution provided by the very short lived isotopes, e.g. 15O. A compact, dedicated tomograph should then be developed for such an application, so as to be used in the treatment room. We developed a small PET prototype in order to demonstrate the feasibility of such a technique for the monitoring of proton therapy of ocular tumors at the CATANA facility (Catania, Italy). The prototype consists of two planar heads with an active area of about 5 cm times 5 cm. Each head is made up of a square position sensitive photomultiplier (Hamamatsu H8500) coupled to a matrix of the same size of LYSO scintillating crystals (2 mm times 2 mm times 18 mm pixel dimensions). Dedicated, compact electronic boards are used for the signal multiplexing, amplification and digitization. The distance between the pair can be varied from 10 cm up to a maximum of about 20 cm. The validation of the prototype was performed on plastic phantoms using 62 MeV protons at the CATANA beam line. Different dose distributions were delivered and a good correlation between the distal fall-off of the activity profiles and of the dose profiles was found, i.e., better than 2 mm along the beam direction.

  1. A comparative study for different shielding material composition and beam geometry applied to PET facilities: simulated transmission curves

    Energy Technology Data Exchange (ETDEWEB)

    Hoff, Gabriela [Pontificia Univ. Catolica do Rio Grande do Sul (PUCRS), Porto Alegre, RS (Brazil). Grupo de Experimentacao e Simulacao Computacional em Fisica Medica; Costa, Paulo Roberto, E-mail: pcosta@if.usp.br [Universidade de Sao Paulo (IF/USP), SP (Brazil). Dept. de Fisica Nuclear. Lab. de Dosimetria das Radiacoes e Fisica Medica

    2013-03-15

    The aim of this work is to simulate transmission data for different beam geometry and material composition in order to evaluate the effect of these parameters on transmission curves. The simulations are focused on outgoing spectra for shielding barriers used in PET facilities. The behavior of the transmission was evaluated as a function of the shielding material composition and thickness using Geant4 Monte Carlo code, version 9.2 p 03.The application was benchmarked for barited mortar and compared to The American Association of Physicists in Medicine (AAPM) data for lead. Their influence on the transmission curves as well the study of the influence of the shielding material composition and beam geometry on the outgoing spectra were performed. Characteristics of transmitted spectra, such as shape, average energy and Half-Value Layer (HVL), were also evaluated. The Geant4 toolkit benchmark for the energy resulting from the positron annihilation phenomena and its application in transmission curves description shown good agreement between data published by American Association on Physicists in Medicine task group 108 and experimental data published by Brazil. The transmission properties for different material compositions were also studied and have shown low dependency with the considered thicknesses. The broad and narrow beams configuration presented significant differences on the result. The fitting parameter for determining the transmission curves equations, according to Archer model is presented for different material. As conclusion were defined that beam geometry has significant influence and the composition has low influence on transmission curves for shielding design for the range of energy applied to PET. (author)

  2. A comparative study for different shielding material composition and beam geometry applied to PET facilities: simulated transmission curves

    International Nuclear Information System (INIS)

    Hoff, Gabriela; Costa, Paulo Roberto

    2013-01-01

    The aim of this work is to simulate transmission data for different beam geometry and material composition in order to evaluate the effect of these parameters on transmission curves. The simulations are focused on outgoing spectra for shielding barriers used in PET facilities. The behavior of the transmission was evaluated as a function of the shielding material composition and thickness using Geant4 Monte Carlo code, version 9.2 p 03.The application was benchmarked for barited mortar and compared to The American Association of Physicists in Medicine (AAPM) data for lead. Their influence on the transmission curves as well the study of the influence of the shielding material composition and beam geometry on the outgoing spectra were performed. Characteristics of transmitted spectra, such as shape, average energy and Half-Value Layer (HVL), were also evaluated. The Geant4 toolkit benchmark for the energy resulting from the positron annihilation phenomena and its application in transmission curves description shown good agreement between data published by American Association on Physicists in Medicine task group 108 and experimental data published by Brazil. The transmission properties for different material compositions were also studied and have shown low dependency with the considered thicknesses. The broad and narrow beams configuration presented significant differences on the result. The fitting parameter for determining the transmission curves equations, according to Archer model is presented for different material. As conclusion were defined that beam geometry has significant influence and the composition has low influence on transmission curves for shielding design for the range of energy applied to PET. (author)

  3. WE-EF-303-06: Feasibility of PET Image-Based On-Line Proton Beam-Range Verification with Simulated Uniform Phantom and Human Brain Studies

    International Nuclear Information System (INIS)

    Lou, K; Sun, X; Zhu, X; Grosshans, D; Clark, J; Shao, Y

    2015-01-01

    Purpose: To study the feasibility of clinical on-line proton beam range verification with PET imaging Methods: We simulated a 179.2-MeV proton beam with 5-mm diameter irradiating a PMMA phantom of human brain size, which was then imaged by a brain PET with 300*300*100-mm 3 FOV and different system sensitivities and spatial resolutions. We calculated the mean and standard deviation of positron activity range (AR) from reconstructed PET images, with respect to different data acquisition times (from 5 sec to 300 sec with 5-sec step). We also developed a technique, “Smoothed Maximum Value (SMV)”, to improve AR measurement under a given dose. Furthermore, we simulated a human brain irradiated by a 110-MeV proton beam of 50-mm diameter with 0.3-Gy dose at Bragg peak and imaged by the above PET system with 40% system sensitivity at the center of FOV and 1.7-mm spatial resolution. Results: MC Simulations on the PMMA phantom showed that, regardless of PET system sensitivities and spatial resolutions, the accuracy and precision of AR were proportional to the reciprocal of the square root of image count if image smoothing was not applied. With image smoothing or SMV method, the accuracy and precision could be substantially improved. For a cylindrical PMMA phantom (200 mm diameter and 290 mm long), the accuracy and precision of AR measurement could reach 1.0 and 1.7 mm, with 100-sec data acquired by the brain PET. The study with a human brain showed it was feasible to achieve sub-millimeter accuracy and precision of AR measurement with acquisition time within 60 sec. Conclusion: This study established the relationship between count statistics and the accuracy and precision of activity-range verification. It showed the feasibility of clinical on-line BR verification with high-performance PET systems and improved AR measurement techniques. Cancer Prevention and Research Institute of Texas grant RP120326, NIH grant R21CA187717, The Cancer Center Support (Core) Grant CA016672

  4. Value of new MR techniques in MR-PET; Stellenwert neuer MR-Techniken in der MR-PET

    Energy Technology Data Exchange (ETDEWEB)

    Attenberger, U.I.; Schoenberg, S.O. [Universitaetsmedizin Mannheim, Medizinische Fakultaet Mannheim der Universitaet Heidelberg, Institut fuer klinische Radiologie und Nuklearmedizin, Mannheim (Germany); Quick, H.H. [Friedrich-Alexander-Universitaet Erlangen-Nuernberg, Institut fuer Medizinische Physik, Erlangen (Germany); Guimaraes, A. [Massachusetts General Hospital, Martinos Center for Biomedical Imaging, Department of Radiology, Charlestown (United States); Catalano, O. [University of Naples Federico II, Naples (Italy); Morelli, J.N. [The Johns Hopkins Hospital, The Russell H. Morgan Department of Radiology and Radiological Science, Baltimore (United States)

    2013-12-15

    wiederholte Untersuchungen durchlaufen muessen, und paediatrische Patienten relevant ist. Dabei koennen jedoch die Erfahrungen, die im Verlauf der letzten Jahre mit der Hybridtechnologie PET-CT gewonnen wurden, nicht direkt auf die MR-PET uebertragen werden. Ein wesentliches Beispiel hierfuer ist die Schwaechungskorrektur, fuer die in der PET-CT die mittels CT bestimmten Hounsfield-Einheiten verwendet werden. Da die in der PET emittierten 511-keV-Photonen durch das Koerpergewebe des Patienten geschwaecht werden, werden die CT-Datensaetze in sog. lineare Schwaechungskoeffizienten (''linear attenuation coefficients'', LAC) konvertiert. Da die Bilddatenakquisition in der MRT nicht auf einer Schwaechung von Roentgenstrahlung, sondern einer Messung der Protonendichte und von gewebespezifischen Relaxationszeiten basiert, muessen in der MR-PET alternative Verfahren zur Schwaechungskorrektur eingesetzt werden. Darueber hinaus bietet die MRT auch alternative Sequenz- und Akquisitionstechnologien, die es erlauben, bisherige Limitationen z. B. bzgl. der Bewegungskorrektur zu adressieren. Dieser Artikel berichtet ueber initiale klinische Erfahrungen mit einem voll integrierten MR-PET-System, wobei MR-Techniken zur Korrektur von Bewegungsartefakten, die Schwaechungskorrektur und die Reduktion von Metallartefakten im Zentrum stehen. (orig.)

  5. MO-F-CAMPUS-J-03: Development of a Human Brain PET for On-Line Proton Beam-Range Verification

    Energy Technology Data Exchange (ETDEWEB)

    Shao, Yiping [Department of Imaging Physics, University of Texas M.D. Anderson Cancer Center, Houston, TX (United States)

    2015-06-15

    Purpose: To develop a prototype PET for verifying proton beam-range before each fractionated therapy that will enable on-line re-planning proton therapy. Methods: Latest “edge-less” silicon photomultiplier arrays and customized ASIC readout electronics were used to develop PET detectors with depth-of-interaction (DOI) measurement capability. Each detector consists of one LYSO array with each end coupled to a SiPM array. Multiple detectors can be seamlessly tiled together to form a large detector panel. Detectors with 1.5×1.5 and 2.0×2.0 mm crystals at 20 or 30 mm lengths were studied. Readout of individual SiPM or signal multiplexing was used to transfer 3D interaction position-coded analog signals through flexible-print-circuit cables or PCB board to dedicated ASIC front-end electronics to output digital timing pulses that encode interaction information. These digital pulses can be transferred to, through standard LVDS cables, and decoded by a FPGA-based data acquisition of coincidence events and data transfer. The modular detector and scalable electronics/data acquisition will enable flexible PET system configuration for different imaging geometry. Results: Initial detector performance measurement shows excellent crystal identification even with 30 mm long crystals, ∼18% and 2.8 ns energy and timing resolutions, and around 2–3 mm DOI resolution. A small prototype PET scanner with one detector ring has been built and evaluated, validating the technology and design. A large size detector panel has been fabricated by scaling up from modular detectors. Different designs of resistor and capacitor based signal multiplexing boards were tested and selected based on optimal crystal identification and timing performance. Stackable readout electronics boards and FPGA-based data acquisition boards were developed and tested. A brain PET is under construction. Conclusion: Technology of large-size DOI detector based on SiPM array and advanced readout has been

  6. SU-E-J-174: Adaptive PET-Based Dose Painting with Tomotherapy

    International Nuclear Information System (INIS)

    Darwish, N; Mackie, T; Thomadsen, B

    2014-01-01

    Purpose: PET imaging can be converted into dose prescription directly. Due to the variability of the intensity of PET the image, PET prescription maybe superior over uniform dose prescription. Furthermore, unlike the case in image reconstruction of not knowing the image solution in advance, the prescribed dose is known from a PET image a priori. Therefore, optimum beam orientations are derivable. Methods: We can assume the PET image to be the prescribed dose and invert it to determine the energy fluence. The same method used to reconstruct tissue images from projections could be used to solve the inverse problem of determining beam orientations and modulation patterns from a dose prescription [10]. Unlike standard tomographic reconstruction of images from measured projection profiles, the inversion of the prescribed dose results in photon fluence which may be negative and therefore unphysical. Two-dimensional modulated beams can be modelled in terms of the attenuated or exponential radon transform of the prescribed dose function (assumed to be the PET image in this case), an application of a Ram-Lak filter, and inversion by backprojection. Unlike the case in PET processing, however, the filtered beam obtained from the inversion represents a physical photon fluence. Therefore, a positivity constraint for the fluence (setting negative fluence to zero) must be applied (Brahme et al 1982, Bortfeld et al 1990) Results: Truncating the negative profiles from the PET data results in an approximation of the derivable energy fluence. Backprojection of the deliverable fluence is an approximation of the dose delivered. The deliverable dose is comparable to the original PET image and is similar to the PET image. Conclusion: It is possible to use the PET data or image as a direct indicator of deliverable fluence for cylindrical radiotherapy systems such as TomoTherapy

  7. Interim PET Response-adapted Strategy in Untreated Advanced Stage Hodgkin Lymphoma: Results of GOELAMS LH 2007 Phase 2 Multicentric Trial.

    Science.gov (United States)

    Carras, Sylvain; Dubois, Benjamin; Senecal, Delphine; Jais, Jean-Philippe; Peoc'h, Michel; Quittet, Philippe; Foussard, Charles; Bouabdallah, Krimo; Gastinne, Thomas; Jourdan, Eric; Sanhes, Laurence; Ertault, Marjan; Lamy, Thierry; Molina, Lysiane

    2018-03-01

    Patients with advanced stage Hodgkin lymphoma still present unsatisfactory outcomes. The Groupe d'étude des Leucémies Aigues et des Maladies du Sang (GOELAMS) group conducted a prospective multicentric trial (NCT00920153) for advanced stage Hodgkin lymphoma to evaluate a positron emission tomography (PET)-adapted strategy. Patients received an intensive regimen (VABEM [vindesine, doxorubicin, carmustine, etoposide, and methylprednisolone]) in front-line and interim 18F FDG-PET evaluation after 2 courses (PET-2). Patients with negative PET-2 findings received 1 additional course. Patients with positive PET-2 findings underwent early salvage therapy followed by high-dose therapy/autologous stem cell transplantation. Fifty-one patients were included. The final complete remission rate was 88%. With a median follow up of 5.3 years, 5-year event-free survival and overall survival rates were 75.3% and 85.3%, respectively, for the whole cohort. Patients who were PET-2-negative had 5-year event-free survival and overall survival rates of, respectively, 77.8% and 88.2% versus 85.1% and 91.7% for patients who were PET-2-positive. A PET-guided strategy with early salvage therapy and high-dose therapy/autologous stem cell transplantation for patients with interim PET-2-positive findings is safe and feasible and provide similar outcome as patients with a negative PET-2. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. PET-CT and PET-MRI of the prostate. From {sup 18}F-FDG to {sup 68}Ga-PSMA; PET-CT/-MRT der Prostata. Von {sup 18}F-FDG zu {sup 68}Ga-PSMA

    Energy Technology Data Exchange (ETDEWEB)

    Knorr, K.; Eiber, M.; Scheidhauer, K. [Technische Universitaet Muenchen, Nuklearmedizinische Klinik und Poliklinik, Klinikum rechts der Isar, Muenchen (Germany); Maurer, T. [Technische Universitaet Muenchen, Urologische Klinik und Poliklinik, Klinikum rechts der Isar, Muenchen (Germany); Wester, H.J. [Technische Universitaet Muenchen, Pharmazeutische Radiochemie, Garching (Germany)

    2017-08-15

    In the last few years nuclear medical diagnostics have experienced a unprecedented renaissance in the diagnostics of prostate cancer, due to the availability of hybrid imaging with positron emission tomography computed tomography (PET/CT), PET magnetic resonance imaging (PET/MRI) and single photon emission computed tomography (SPECT) CT as well as the development of prostate-specific radiopharmaceuticals. The use of fluorodeoxyglucose (FDG), which has been successfully implemented for many years in PET diagnostics, is only helpful in dedifferentiated tumors due to the biological characteristics of prostate cancer. New specific radiopharmaceuticals, such as choline-derivatives, which are incorporated into the prostate cancer cell and built into the cell membrane as well as the recently developed highly specific ligands for prostate-specific membrane antigen (PSMA) are revolutionizing prostate cancer imaging and (re-) staging. The {sup 68} Ga-labeled PSMA ligands for PET-CT and PET-MRI are highly specific tracers for primary diagnostics and detection of metastases of prostate carcinoma. In risk patients, which includes patients with intermediate and high-risk tumors, they have largely replaced choline-based PET-CT, especially in the case of very low PSA values <0.5 ng/ml in the diagnostics of recurrence. The use in the primary diagnostics as PET-MRI, also in combination with multiparametric MRI (mpMRI), is promising with respect to early diagnostics and image fusion-assisted biopsy as well as surgery and irradiation planning. (orig.) [German] Die nuklearmedizinische Diagnostik hat in den letzten Jahren bei der Bildgebung des Prostatakarzinoms eine rasante Entwicklung erlebt, sowohl aufgrund der verfuegbaren Hybridbildgebung mit der Positronenemissionstomographie(PET)-CT, PET-MRT sowie der Single-photon-emission-computed-tomography(SPECT)-CT als auch durch die Entwicklung prostataspezifischer Radiopharmaka. Die in der PET-Diagnostik seit Jahren erfolgreich eingesetzte

  9. On the feasibility of dose quantification with in-beam PET data in radiotherapy with 12C and proton beams

    International Nuclear Information System (INIS)

    Parodi, K.

    2004-11-01

    The physical advantages of light ions in combination with technological advances like intensity controlled raster scanning offer a unique tool for high precision radiotherapy. This is particularly applied to delicate clinical situations of inoperable tumours growing in close proximity to critical organs. The potential benefit of such a high selectivity of ion beam therapy demands the complex and strictly conformal dose delivery to be monitored in-situ and non-invasively in three dimensions. In contrast to conventional photon radiation, light ions exhibit a well defined range which determines the position of the maximum dose delivery in the inhomogeneous tumour target. This requires a monitoring technology along the ion trajectory offering millimetre precision. Additionally, accurate control of the lateral position of the irradiation field within the patient can be a crucial issue for the frequent case of portals passing adjacent to organs at risk. At present, positron emission tomography (PET) represents the only feasible method fulfilling these requirements. For this purpose a dedicated in-beam positron camera has been completely integrated into the experimental heavy ion treatment site at the Gesellschaft fuer Schwerionenforschung (GSI) Darmstadt. This allows to measure the minor amount of β + -activity produced in nuclear reactions between the projectiles and the target nuclei of the tissue simultaneously to the tumour irradiation. The emitted signal is correlated but not directly proportional to the spatial pattern of the delivered dose. Hence, therapy control is achieved by comparing the measured β + -activity distribution with a prediction based on the treatment plan and the specific time course of the particular irradiation. (orig.)

  10. Modeling and analysis of all the positron emitters simulation steps generated during the treatment phase in proton-therapy - from the beam to the PET camera - for the follow-up of the irradiations

    International Nuclear Information System (INIS)

    Ty, C.V.N.

    2012-01-01

    The proton-therapy is an innovative technique for cancer treatment in critical areas, such as the eye or the head. Even though the interaction of protons with human tissues is a well-known physical phenomenon which gives rise to the proton-therapy, there are uncertainties on the proton trajectory due to heterogeneities in the irradiated tissue, the calculation of the beam parameters in the planning treatment affects the theoretical benefits of the protons and the chosen dose delivery process. Thus, methods for irradiation quality control have been suggested. Most of them rely on utilizing the mapping of the positron emitters generated during the irradiation. They are detectable and quantifiable thanks to the use of the PET (positron emitter tomography), a medical imaging technique mainly used for the cancer expansion assessment. PET acquisitions were proposed and then realized on phantoms and patients after proton-therapy. The quality control relies on comparing the measured radioactive distribution to the simulated β + distribution. The modeling of the positron activity generated by protons in the irradiated area can be divided into three steps: the simulation of the proton beam, the modeling of the proton interactions in the irradiated object and the modeling of the PET acquisition. Different ways of simulating these steps are possible. This PhD work suggests different ways of modeling the three steps and evaluates theirs benefits for the irradiation quality control. We have restrained our evaluation to the verification of the proton range and to the uncertainties related to the proton range. This research work utilizes on irradiations in homogenous and inhomogeneous areas in a head model. We have compared the uncertainties on the proton range measured thanks to the following β + distributions: 1) A β + distribution obtained by modeling the irradiation with a proton beam simulated analytically and simulated using the complete Monte Carlo method; 2) A Monte

  11. Comparison of PET and fMRI activation patterns during declarative memory processes; Vergleich von PET und fMRT-Aktivierungsmustern waehrend deklarativer Gedaechtnisvorgaenge

    Energy Technology Data Exchange (ETDEWEB)

    Mottaghy, F.M.; Krause, B.J.; Schmidt, D.; Hautzel, H.; Mueller-Gaertner, H.-W. [Heinrich-Heine-Univ. Duesseldorf (Germany). Klinik fuer Nuklearmedizin; Forschungszentrum Juelich (DE). Klinik fuer Nuklearmedizin (KME); Herzog, H.; Shah, N.J. [Forschungszentrum Juelich (DE). Inst. fuer Medizin (IME); Halsband, U. [Albert-Ludwigs-Univ. Freiburg (Germany). Psychologisches Inst., Neuropsychologie

    2000-11-01

    hochbildhaften Inhaltes zu lernen und dann zu erinnern (visuelle Praesentation). Ergebnisse: Die Gedaechtnisleistung (Anteil der richtigen Assoziationen) der Probanden lag sowohl in der PET- als auch in der fMRT-Studie bei 93%{+-}9,3%. Waehrend des Lernvorgangs wurden sowohl in der PET als auch in der fMRT Aktivierungen im anterioren cingulaeren Kortex, im linken und rechten praefrontalen Kortex und im Praecuneus beobachtet. Nur in der fMRT liess sich waehrend des Lernvorgangs der parahippocampale Kortex mit darstellen. Waehrend der Abfrage zeigten sich Aktivierungen im linken und rechten Praecuneus, im linken praefrontalen Kortex sowie im anterioren cingulaeren Kortex. Unterschiede finden sich hier vor allem im Bereich des praefrontalen Kortex, da in der fMRT frontalpolare Areale aufgrund von Suszeptibilitaetsartefakten nicht darstellbar sind. Die lokalen Maxima der kortikalen Regionen, die in beiden Bildgebungsmodalitaeten darstellbar sind, lagen im Mittel 7,2{+-}6,5 mm auseinander. Schlussfolgerung: Die Gemeinsamkeiten in den Aktivierungsmustern in der PET und der fMRT ueberwiegen. Die Wahl der Bildgebungsmodalitaet fuer eine Aktivierungsstudie sollte u.a. abhaengig vom Design (Einzelsubjekt vs. Gruppenstudie) und untersuchter kortikaler bzw. subkortikaler Struktur (Suszeptabilitaet, Signalaufloesung) getroffen werden. (orig.)

  12. Efficacité du renforcement des poutres en béton armé par des matériaux composites Efficiency of strengthening concrete beams using FRP

    Directory of Open Access Journals (Sweden)

    Chemrouk M

    2012-09-01

    Full Text Available Pour réduire le coût et assurer un comportement relativement plus ductile pour des éléments en béton armés renforcés, l’addition des fibres de verre pourrait être considérée comme solution de rechange, puisqu’elles sont relativement plus déformables et meilleur marché que la fibre de carbone. Dans ce sens, le travail actuel vise à évaluer l’efficacité du renfort externe sur les poutres renforcées par le tissu de FRP (verre-carbone. Un total de sept poutres en béton armé a été renforcé en flexion et en cisaillement, et testé sous un chargement quatre points cyclique statique. Les champs des contraintes et de déformation ont été contrôlés par un système de caméra numérique “Gom-Aramis”. Les résultats ont été analysés en termes de résistance, rigidité, ductilité et mode de rupture. To reduce the cost and to ensure a behavior relatively more ductile for concrete strengthening elements, the addition of glass fibers could be regarded as solution of replacement, since they are relatively more deformable and cheaper than carbon fiber. In this sense, current work aims at evaluating the effectiveness of the external reinforcement on the beams strengthened by fabric of FRP (glass – carbon. Seven concrete beams reinforced were strengthening in bending and shearing, and were testing under four point cyclic static. The fields of the stresses and deformation were controlled by a numerical system of camera “Gom-Aramis”. The results were analyzing in term of resistance, rigidity, ductility and mode of failure

  13. Development and testing of a double length pets for the CLIC experimental area

    CERN Document Server

    Sánchez, L; Gavela, D; Lara, A; Rodríguez, E; Gutiérrez, J L; Calero, J; Toral, F; Samoshkin, A; Gudkov, D; Riddone, G

    2014-01-01

    CLIC (compact linear collider) is a future e þ e collider based on normal-conducting technology, currently under study at CERN. Its design is based on a novel two-beam acceleration scheme. The main beam gets RF power extracted from a drive beam through power extraction and transfer structures (PETS). The technical feasibility of CLIC is currently being proved by its Third Test Facility (CTF3) which includes the CLIC experimental area (CLEX). Two Double Length CLIC PETS will be installed in CLEX to validate their performance with beam. This paper is focused on the engineering design, fabrication and validation of this PETS fi rst prototype. The design consists of eight identical bars, separated by radial slots in which damping material is located to absorb transverse wake fi elds, and two compact couplers placed at both ends of the bars to extract the generated power. The PETS bars are housed inside a vacuum tank designed to make the PETS as compact as possible. Several joint techniques such as vacuum brazing...

  14. On the feasibility of dose quantification with in-beam PET data in radiotherapy with {sup 12}C and proton beams

    Energy Technology Data Exchange (ETDEWEB)

    Parodi, K.

    2004-11-01

    The physical advantages of light ions in combination with technological advances like intensity controlled raster scanning offer a unique tool for high precision radiotherapy. This is particularly applied to delicate clinical situations of inoperable tumours growing in close proximity to critical organs. The potential benefit of such a high selectivity of ion beam therapy demands the complex and strictly conformal dose delivery to be monitored in-situ and non-invasively in three dimensions. In contrast to conventional photon radiation, light ions exhibit a well defined range which determines the position of the maximum dose delivery in the inhomogeneous tumour target. This requires a monitoring technology along the ion trajectory offering millimetre precision. Additionally, accurate control of the lateral position of the irradiation field within the patient can be a crucial issue for the frequent case of portals passing adjacent to organs at risk. At present, positron emission tomography (PET) represents the only feasible method fulfilling these requirements. For this purpose a dedicated in-beam positron camera has been completely integrated into the experimental heavy ion treatment site at the Gesellschaft fuer Schwerionenforschung (GSI) Darmstadt. This allows to measure the minor amount of {beta}{sup +}-activity produced in nuclear reactions between the projectiles and the target nuclei of the tissue simultaneously to the tumour irradiation. The emitted signal is correlated but not directly proportional to the spatial pattern of the delivered dose. Hence, therapy control is achieved by comparing the measured {beta}{sup +}-activity distribution with a prediction based on the treatment plan and the specific time course of the particular irradiation. (orig.)

  15. Electron-beam induced conduction in some polymers

    International Nuclear Information System (INIS)

    Suzuoki, Yasuo; Mizutani, Teruyoshi; Ieda, Masayuki

    1976-01-01

    The charge signal induced by pulsed electron beam consists of two components, i.e. the fast and the slow components. The slow component which corresponds to carrier transport via shallow traps exhibited an asymmetry with respect to the bias field polarity. The asymmetry revealed that the main carriers which drifted via shallow traps were electrons in PET, both electrons and holes in PEN, and holes in PS. TSC spectra of electron-beam induced electrets proved directly the existence of electron shallow traps in PET and both electron and hole traps in PEN. Their trap energies were 0.1 to 0.2 eV. (auth.)

  16. Development of a single-ring OpenPET prototype

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Eiji, E-mail: rush@nirs.go.jp; Tashima, Hideaki; Wakizaka, Hidekatsu; Nishikido, Fumihiko; Hirano, Yoshiyuki; Inadama, Naoko; Murayama, Hideo; Ito, Hiroshi; Yamaya, Taiga

    2013-11-21

    One of the challenging applications of PET is implementing it for in-beam PET, which is an in situ monitoring method for charged particle therapy. For this purpose, we have previously proposed an open-type PET scanner, OpenPET. The original OpenPET had a physically opened field-of-view (FOV) between two detector rings through which irradiation beams pass. This dual-ring OpenPET (DROP) had a wide axial FOV including the gap. This geometry was not necessarily the most efficient for application to in-beam PET in which only a limited FOV around the irradiation field is required. Therefore, we have proposed a new single-ring OpenPET (SROP) geometry which can provide an accessible and observable open space with higher sensitivity and a reduced number of detectors than the DROP. The proposed geometry was a cylinder shape with its ends cut at a slant, in which the shape of each cut end became an ellipse. In this work, we developed and evaluated a small prototype of the SROP geometry for proof-of-concept. The SROP prototype was designed with 2 ellipse-shaped detector rings of 16 depth-of-interaction (DOI) detectors each. The DOI detectors consisted of 1024 GSOZ scintillator crystals which were arranged in 4 layers of 16×16 arrays, coupled to a 64-channel FP-PMT. Each ellipse-shaped detector ring had a major axis of 281.6 mm and a minor axis of 207.5 mm. For the slant mode, the rings were placed at a 45-deg slant from the axial direction and for the non-slant mode (used as a reference) they were at 90 deg from the axial direction with no gap. The system sensitivity measured from a {sup 22}Na point source was 5.0% for the slant mode. The average spatial resolutions of major and minor axis directions were calculated as 3.8 mm FWHM and 4.9 mm FWHM, respectively for the slant mode. This difference resulted from the ellipsoidal ring geometry and the spatial resolution of the minor axis direction degraded by the parallax error. Comparison between the slant mode and the non

  17. MicroPET assessment of androgenic control of glucose and acetate uptake in the rat prostate and a prostate cancer tumor model

    Energy Technology Data Exchange (ETDEWEB)

    Oyama, Nobuyuki; Kim, Joonyoung; Jones, Lynne A.; Mercer, Nicole M.; Engelbach, John A.; Sharp, Terry L.; Welch, Michael J. E-mail: welchm@mir.wustl.edu

    2002-11-01

    PET has been used to monitor changes in tumor metabolism in breast cancer following hormonal therapy. This study was undertaken to determine whether PET imaging could evaluate early metabolic changes in prostate tumor following androgen ablation therapy. Studies were performed comparing two positron-emitting tracers, {sup 18}F-FDG and {sup 11}C-acetate, in Sprague-Dawley male rats to monitor metabolic changes in normal prostate tissue. Additional studies were performed in nude mice bearing the CWR22 androgen-dependent human prostate tumor to evaluate metabolic changes in prostate tumor. In rats, for the androgen ablation pretreatment, 1 mg diethylstilbestrol (DES) was injected subcutaneously 3 and 24 hours before tracer injection. For androgen pretreatment, 500 {mu}g dihydrotestosterone (DHT) was injected intraperitoneally 2 and 6 hours before tracer injection. The rats were divided into three groups, Group A (no-DES, no-DHT, n = 18), Group B (DES, no-DHT, n = 18) and Group C (DES, DHT, n = 18). In each group, 10 animals received {sup 18}F-FDG, whereas the remaining eight animals were administered {sup 11}C-acetate. Rats were sacrificed at 120 min post-injection of {sup 18}F-FDG or 30 min post-injection of {sup 11}C-acetate. Pretreatment of the mouse model using DHT (200 {mu}g of DHT in 0.1 mL of sunflower seed oil) or DES (200 {mu}g of DES in 0.1 mL of sunflower seed oil) was conducted every 2 days for one week. Mice were imaged with both tracers in the microPET scanner (Concorde Microsystems Inc.). DES treatment caused a decrease in acetate and glucose metabolism in the rat prostate. Co-treatment with DHT maintained the glucose metabolism levels at baseline values. In the tumor bearing mice, similar effects were seen in {sup 18}F-FDG study, while there was no significant difference in {sup 11}C-acetate uptake. These results indicate that changes in serum testosterone levels influence {sup 18}F-FDG uptake in the prostate gland, which is closely tied to glucose

  18. Electron-beam-induced conduction in polyethylene terephthalate films

    Energy Technology Data Exchange (ETDEWEB)

    Beckley, L M; Lewis, T J; Taylor, D M [University Coll. of North Wales, Bangor (UK). School of Electronic Engineering Science

    1976-06-21

    Measurements are reported of electron-beam-induced conduction in thin polyethylene terephthalate (PET) films for electron energies up to 10 keV. The ratio of induced dielectric current to incident beam current (the gain) is orders of magnitude less than unity over practically the whole range of beam penetration. This result is quite unlike that normally found for inorganic dielectrics where the gain will exceed unity and reach a maximum at or near full penetration. In spite of the very different gain characteristics it is shown that the model recently proposed by Nunes de Oliviera and Gross (J. App. Phys.; 46:3132 (1975)), and by Aris et al (IEE Conf. Publ. No.129.; 267 (1975) and J. Phys. C. Solid State Phys.; 9:797 (1976)) and applied to mica and tantalum oxide respectively is also applicable to PET. Use is made of the known carrier mobility and lifetime data for this polymer and it is shown that very large space-charge distortions of the field can be produced by the beam which may well account for the frequent sample failure experienced during the experiments. The work supports suggestions by earlier workers that the current in unirradiated PET is electrode limited and predicts the maximum (space-charge limited) current likely to occur in this polymer.

  19. A comparative study for different shielding material composition and beam geometry applied to PET facilities: simulated transmission curves

    OpenAIRE

    Hoff, Gabriela; Costa, Paulo Roberto

    2013-01-01

    The aim of this work is to simulate transmission data for different beam geometry and material composition in order to evaluate the effect of these parameters on transmission curves. The simulations are focused on outgoing spectra for shielding barriers used in PET facilities. The behavior of the transmission was evaluated as a function of the shielding material composition and thickness using Geant4 Monte Carlo code, version 9.2 p 03.The application was benchmarked for barited mortar and com...

  20. Radiation exposure to the patient caused by single-photon transmission measurement for 3D whole-body PET; Die Strahlenexposition des Patienten durch die Einzelphotonen-Transmissionsmessung bei der PET

    Energy Technology Data Exchange (ETDEWEB)

    Schaefer, A.; Donsch, P.; Kirsch, C.M. [Universitaet des Saarlandes, Homburg/Saar (Germany). Abt. fuer Nuklearmedizin; Seifert, H. [Universitaet des Saarlandes, Homburg/Saar (Germany). Abt. Strahlentherapie der Radiologischen Klinik

    2000-11-01

    Aim: The aim of the study was the determination of the radiation exposure to the patient caused by single-photon transmission measurement for 3D whole-body PET. Material and method: Single-photon-transmission measurement is performed using two Cs-137 pointsources (E{gamma}=662 keV, A=2*614 MBq) on a 3D PET scanner (ECAT ART). During a simulation of a whole body transmission scan (axial length: 75 cm, 6 contigous bed positions) dose measurements with thermoluminescent dosimeters were carried out using a thorax and an abdomen phantom. Following the guidelines of the ICRU report No. 60 an estimation of the effective dose caused by a single-photon transmission measurement was calculated. Results: For a total acquisition time of 360 min (6 beds with an acquisition time of 60 min per bed) the absorbed doses amounted to: Surface (xyphoid) 189 {mu}Gy, heart 196 {mu}Gy, lungs 234 {mu}Gy, vertebra 240 {mu}Gy, liver 204 {mu}Gy, gonads 205 {mu}Gy, thyroid 249 {mu}Gy and bladder 185 {mu}Gy resulting in a conversion factor of 1.7*10{sup -4} mSv/(h*MBq). The estimation of the effective dose for a patient's transmission (acquisition time of 3.2 min per bed) yields a value of 11 {mu}Sv. An estimation of the ratio of the conversion factors for transmission measurements in single-photon- and in coincidence mode (two Ge-68/Ga-68 rod sources of 40 MBq each), respectively, resulted in a value of 0.18. The comparison of the effective doses caused by single-photon transmission and by emission measurement (injection of 250 MBq of FDG) yields a ratio of 2.3*10{sup -3}. Conclusion: The radiation exposure of the patient caused by the transmission measurement for 3D whole-body-PET can be neglected. In comparison with the coincidence-transmission using uncollimated line sources of low activity the radiation exposure is still reduced using single photon transmission with collimated point sources of high activity. (orig.) [German] Ziel: Ziel war die Bestimmung der Strahlenexposition des

  1. Monte Carlo patient study on the comparison of prompt gamma and PET imaging for range verification in proton therapy

    Science.gov (United States)

    Moteabbed, M.; España, S.; Paganetti, H.

    2011-02-01

    The purpose of this work was to compare the clinical adaptation of prompt gamma (PG) imaging and positron emission tomography (PET) as independent tools for non-invasive proton beam range verification and treatment validation. The PG range correlation and its differences with PET have been modeled for the first time in a highly heterogeneous tissue environment, using different field sizes and configurations. Four patients with different tumor locations (head and neck, prostate, spine and abdomen) were chosen to compare the site-specific behaviors of the PG and PET images, using both passive scattered and pencil beam fields. Accurate reconstruction of dose, PG and PET distributions was achieved by using the planning computed tomography (CT) image in a validated GEANT4-based Monte Carlo code capable of modeling the treatment nozzle and patient anatomy in detail. The physical and biological washout phenomenon and decay half-lives for PET activity for the most abundant isotopes such as 11C, 15O, 13N, 30P and 38K were taken into account in the data analysis. The attenuation of the gamma signal after traversing the patient geometry and respective detection efficiencies were estimated for both methods to ensure proper comparison. The projected dose, PG and PET profiles along many lines in the beam direction were analyzed to investigate the correlation consistency across the beam width. For all subjects, the PG method showed on average approximately 10 times higher gamma production rates than the PET method before, and 60 to 80 times higher production after including the washout correction and acquisition time delay. This rate strongly depended on tissue density and elemental composition. For broad passive scattered fields, it was demonstrated that large differences exist between PG and PET signal falloff positions and the correlation with the dose distribution for different lines in the beam direction. These variations also depended on the treatment site and the

  2. Feasibility of quantitative PET/CT dosimetry for proton therapy using polymer gels

    Energy Technology Data Exchange (ETDEWEB)

    Zeidan, O A; Hsi, W C; Lopatiuk-Tirpak, O; Sriprisan, S I; Meeks, S L; Kupelian, P A; Li, Z; Palta, J R, E-mail: lenatirpak@gmail.co

    2010-11-01

    A feasibility study of proton beam PET/CT off-line quantitative dosimetry using polymer gels is presented. A newly developed proton-sensitive polymer gel dosimeter (BANG( (registered)) 3-Pro2) is used as a dosimeter and a tissue-equivalent phantom medium for this study. We explore a new approach to correlating measured proton 3-dimensional (3D) dose distributions directly to measured positron emission from in the gel medium using PET/CT imaging. A large cylindrical volume (2.2 Litres) of the gel was irradiated with a clinical modulated proton beam using irregular-shaped aperture geometry. The gel was imaged in a nearby PET/CT unit immediately (<3 min) after irradiation. Dose distribution in the gel was generated using an optical tomography scanning system. Direct 3D spatial comparison of dose and positron emission distributions was then performed. Profiles along the beam path show that the distal fall-off of the dose is nearly 2 cm deeper than the activity profile which is comparable to previous studies with plastic phantoms and Monte Carlo simulations of activity distributions. Planar PET and dose distributions at depth and perpendicular to beam axis show a strong one-to-one spatial correlation. This phantom study demonstrates that the gel medium could be potentially useful for quantifying various physical factors that can influence the PET activity range verification method in patients.

  3. A dedicated tool for PET scanner simulations using FLUKA

    International Nuclear Information System (INIS)

    Ortega, P.G.; Boehlen, T.T.; Cerutti, F.; Chin, M.P.W.; Ferrari, A.; Mancini, C.; Vlachoudis, V.; Mairani, A.; Sala, Paola R.

    2013-06-01

    Positron emission tomography (PET) is a well-established medical imaging technique. It is based on the detection of pairs of annihilation gamma rays from a beta+-emitting radionuclide, usually inoculated in the body via a biologically active molecule. Apart from its wide-spread use for clinical diagnosis, new applications are proposed. This includes notably the usage of PET for treatment monitoring of radiation therapy with protons and ions. PET is currently the only available technique for non-invasive monitoring of ion beam dose delivery, which was tested in several clinical pilot studies. For hadrontherapy, the distribution of positron emitters, produced by the ion beam, can be analyzed to verify the correct treatment delivery. The adaptation of previous PET scanners to new environments and the necessity of more precise diagnostics by better image quality triggered the development of new PET scanner designs. The use of Monte Carlo (MC) codes is essential in the early stages of the scanner design to simulate the transport of particles and nuclear interactions from therapeutic ion beams or radioisotopes and to predict radiation fields in tissues and radiation emerging from the patient. In particular, range verification using PET is based on the comparison of detected and simulated activity distributions. The accuracy of the MC code for the relevant physics processes is obviously essential for such applications. In this work we present new developments of the physics models with importance for PET monitoring and integrated tools for PET scanner simulations for FLUKA, a fully-integrated MC particle-transport code, which is widely used for an extended range of applications (accelerator shielding, detector and target design, calorimetry, activation, dosimetry, medical physics, radiobiology, ...). The developed tools include a PET scanner geometry builder and a dedicated scoring routine for coincident event determination. The geometry builder allows the efficient

  4. A proposal of an open PET geometry

    Energy Technology Data Exchange (ETDEWEB)

    Yamaya, Taiga [Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555 (Japan); Inaniwa, Taku [Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Minohara, Shinichi [Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Yoshida, Eiji [Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555 (Japan); Inadama, Naoko [Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555 (Japan); Nishikido, Fumihiko [Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555 (Japan); Shibuya, Kengo [Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555 (Japan); Lam, Chih Fung [Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555 (Japan); Murayama, Hideo [Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555 (Japan)

    2008-02-07

    The long patient port of a PET scanner tends to put stress on patients, especially patients with claustrophobia. It also prevents doctors and technicians from taking care of patients during scanning. In this paper, we proposed an 'open PET' geometry, which consists of two axially separated detector rings. A long and continuous field-of-view (FOV) including a 360 deg. opened gap between two detector rings can be imaged enabling a fully 3D image reconstruction of all the possible lines-of-response. The open PET will become practical if iterative image reconstruction methods are applied even though image reconstruction of the open PET is analytically an incomplete problem. First we implemented a 'masked' 3D ordered subset expectation maximization (OS-EM) in which the system matrix was obtained from a long 'gapless' scanner by applying a mask to detectors corresponding to the open space. Next, in order to evaluate imaging performance of the proposed open PET geometry, we simulated a dual HR+ scanner (ring diameter of D = 827 mm, axial length of W = 154 mm x 2) separated by a variable gap. The gap W was the maximum limit to have axially continuous FOV of 3W though the maximum diameter of FOV at the central slice was limited to D/2. Artifacts, observed on both sides of the open space when the gap exceeded W, were effectively reduced by inserting detectors partially into unnecessary open spaces. We also tested the open PET geometry using experimental data obtained by the jPET-D4. The jPET-D4 is a prototype brain scanner, which has 5 rings of 24 detector blocks. We simulated the open jPET-D4 with a gap of 66 mm by eliminating 1 block-ring from experimental data. Although some artifacts were seen at both ends of the opened gap, very similar images were obtained with and without the gap. The proposed open PET geometry is expected to lead to realization of in-beam PET, which is a method for an in situ monitoring of charged particle therapy, by

  5. Monte Carlo simulation of second-generation open-type PET ''single-ring OpenPET'' implemented with DOI detectors

    International Nuclear Information System (INIS)

    Tashima, Hideaki; Yamaya, Taiga; Hirano, Yoshiyuki; Yoshida, Eiji; Kinouch, Shoko; Watanabe, Mitsuo; Tanaka, Eiichi

    2013-01-01

    At the National Institute of Radiological Sciences, we are developing OpenPET, an open-type positron emission tomography (PET) geometry with a physically open space, which allows easy access to the patient during PET studies. Our first-generation OpenPET system, dual-ring OpenPET, which consisted of two detector rings, could provide an extended axial field of view (FOV) including the open space. However, for applications such as in-beam PET to monitor the dose distribution in situ during particle therapy, higher sensitivity concentrated on the irradiation field is required rather than a wide FOV. In this report, we propose a second-generation OpenPET geometry, single-ring OpenPET, which can efficiently improve sensitivity while providing the required open space. When the proposed geometry was realized with block detectors, position-dependent degradation of the spatial resolution was expected because it was necessary to arrange the detector blocks in ellipsoidal rings stacked and shifted relative to one another. However, we found by Monte Carlo simulation that the use of depth-of-interaction (DOI) detectors made it feasible to achieve uniform spatial resolution in the FOV. (author)

  6. Production of intense metallic ion beams in order of isotopic separations; Production de faisceaux intenses d'ions metalliques en vue de la separation des isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Sarrouy, J L [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1955-07-01

    We describe an isotope separator with magnetic sector of 60 deg that permits, with a process of neutralization of the space charge, to use efficiently intense ion beams. The sources of realized ions provide ionic debits of 10 mA. This present work deals who to obtain intense ion beams (10 to 15 mA), different processes of ion currents measurement, as well as the study of the phenomenon of space charge neutralization. The second part of this memory will be on the survey and the adaptation on the source of various type of oven permitting to spray and to ionize metals directly. By order of increasing difficulty of vaporization, we reached the chromium. (M.B.) [French] 0n decrit un separateur d'isotope a secteur magnetique de 60 deg qui permet, grace a un procede de neutralisation de la charge d'espace, d'utiliser efficacement des faisceaux d'ions intenses. Les sources d'ions realisees fournissent des debits ioniques de 10 mA. Ce present travail porte sur l'obtention de faisceaux d'ions faisceaux d'ions intenses (10 a 15 mA), des differents procedes de mesures des courants d'ions, ainsi que l'etude du phenomene de neutralisation de charge d'espace. La deuxieme partie de ce memoire portera sur l'etude et l'adaptation sur la source de divers type de four permettant de vaporiser et d'ioniser directement les metaux. Par ordre de difficulte croissantes de vaporisations, nous avons atteint le chrome. (M.B.)

  7. SU-C-207A-06: On-Line Beam Range Verification with Multiple Scanning Particle Beams: Initial Feasibility Study with Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, Y; Sun, X; Lu, W; Jia, X; Wang, J; Shao, Y [The University of Texas Southwestern Medical Ctr., Dallas, TX (United States)

    2016-06-15

    Purpose: To investigate the feasibility and requirement for intra-fraction on-line multiple scanning particle beam range verifications (BRVs) with in-situ PET imaging, which is beyond the current single-beam BRV with extra factors that will affect the BR measurement accuracy, such as beam diameter, separation between beams, and different image counts at different BRV positions. Methods: We simulated a 110-MeV proton beam with 5-mm diameter irradiating a uniform PMMA phantom by GATE simulation, which generated nuclear interaction-induced positrons. In this preliminary study, we simply duplicated these positrons and placed them next to the initial protons to approximately mimic the two spatially separated positron distributions produced by two beams parallel to each other but with different beam ranges. These positrons were then imaged by a PET (∼2-mm resolution, 10% sensitivity, 320×320×128 mm^3 FOV) with different acquisition times. We calculated the positron activity ranges (ARs) from reconstructed PET images and compared them with the corresponding ARs of original positron distributions. Results: Without further image data processing and correction, the preliminary study show the errors between the measured and original ARs varied from 0.2 mm to 2.3 mm as center-to-center separations and range differences were in the range of 8–12 mm and 2–8 mm respectively, indicating the accuracy of AR measurement strongly depends on the beam separations and range differences. In addition, it is feasible to achieve ≤ 1.0-mm accuracy for both beams with 1-min PET acquisition and 12 mm beam separation. Conclusion: This study shows that the overlap between the positron distributions from multiple scanning beams can significantly impact the accuracy of BRVs of distributed particle beams and need to be further addressed beyond the established method of single-beam BRV, but it also indicates the feasibility to achieve accurate on-line multi-beam BRV with further improved

  8. (18) F-FDG PET/CT for planning external beam radiotherapy alters therapy in 11% of 581 patients

    DEFF Research Database (Denmark)

    Birk Christensen, Charlotte; Loft-Jakobsen, Annika; Munck Af Rosenschöld, Per

    2018-01-01

    BACKGROUND: (18) F-FDG PET/CT (FDG PET/CT) used in radiotherapy planning for extra-cerebral malignancy may reveal metastases to distant sites that may affect the choice of therapy. AIM: To investigate the role of FDG PET/CT on treatment strategy changes induced by the use of PET/CT as part...... planning in our institution in the year 2008. All PET/CT scans were performed with the patient in treatment position with the use of immobilization devices according to the intended radiotherapy treatment. All scans were evaluated by a nuclear medicine physician together with a radiologist to delineate PET......% of the patients for whom the PET/CT simulation scan revealed unexpected dissemination, radiotherapy was given - changed (n = 38) or unchanged (n = 13) according to the findings on the FDG PET/CT. CONCLUSION: Unexpected dissemination on the FDG PET/CT scanning performed for radiotherapy planning caused a change...

  9. Particle Accelerators for PET radionuclides

    DEFF Research Database (Denmark)

    Jensen, Mikael

    2012-01-01

    The requirements set for particle accelerators for production of radioactive isotopes for PET can easily be derived from first principles. The simple general need is for proton beams with energy in the region 10–20 MeV and current 20–100 microAmps. This is most reliably and cost-effectively achie......The requirements set for particle accelerators for production of radioactive isotopes for PET can easily be derived from first principles. The simple general need is for proton beams with energy in the region 10–20 MeV and current 20–100 microAmps. This is most reliably and cost......-effectively achieved by the well proven technology of the compact medical cyclotron, presently available from several companies. The main features of these cyclotrons are essential similar: resistive, sector focused iron magnets, internal negative ion sources and stripping extraction. The remaining differences between...... different manufacturers will be discussed the light of what is actually needed for a given PET site operation. Alternatives to the conventional cyclotron have been proposed and tested but have at present very limited use. These alternatives will be discussed, as well as the future possibilities of supplying...

  10. The Development and Clinical Use of a Beam ON-LINE PET System Mounted on a Rotating Gantry Port in Proton Therapy

    International Nuclear Information System (INIS)

    Nishio, Teiji; Miyatake, Aya; Ogino, Takashi; Nakagawa, Keiichi; Saijo, Nagahiro; Esumi, Hiroyasu

    2010-01-01

    Purpose: To verify the usefulness of our developed beam ON-LINE positron emission tomography (PET) system mounted on a rotating gantry port (BOLPs-RGp) for dose-volume delivery-guided proton therapy (DGPT). Methods and Materials: In the proton treatment room at our facility, a BOLPs-RGp was constructed so that a planar PET apparatus could be mounted with its field of view covering the iso-center of the beam irradiation system. Activity measurements were performed in 48 patients with tumors of the head and neck, liver, lungs, prostate, and brain. The position and intensity of the activity were measured using the BOLPs-RGp during the 200 s immediately after the proton irradiation. Results: The daily measured activity images acquired by the BOLPs-RGp showed the proton irradiation volume in each patient. Changes in the proton-irradiated volume were indicated by differences between a reference activity image (taken at the first treatment) and the daily activity-images. In the case of head-and-neck treatment, the activity distribution changed in the areas where partial tumor reduction was observed. In the case of liver treatment, it was observed that the washout effect in necrotic tumor cells was slower than in non-necrotic tumor cells. Conclusions: The BOLPs-RGp was developed for the DGPT. The accuracy of proton treatment was evaluated by measuring changes of daily measured activity. Information about the positron-emitting nuclei generated during proton irradiation can be used as a basis for ensuring the high accuracy of irradiation in proton treatment.

  11. Monitoring proton radiation therapy with in-room PET imaging

    International Nuclear Information System (INIS)

    Zhu Xuping; Ouyang Jinsong; El Fakhri, Georges; Espana, Samuel; Daartz, Juliane; Liebsch, Norbert; Paganetti, Harald; Bortfeld, Thomas R

    2011-01-01

    We used a mobile positron emission tomography (PET) scanner positioned within the proton therapy treatment room to study the feasibility of proton range verification with an in-room, stand-alone PET system, and compared with off-line equivalent studies. Two subjects with adenoid cystic carcinoma were enrolled into a pilot study in which in-room PET scans were acquired in list-mode after a routine fractionated treatment session. The list-mode PET data were reconstructed with different time schemes to generate in-room short, in-room long and off-line equivalent (by skipping coincidences from the first 15 min during the list-mode reconstruction) PET images for comparison in activity distribution patterns. A phantom study was followed to evaluate the accuracy of range verification for different reconstruction time schemes quantitatively. The in-room PET has a higher sensitivity compared to the off-line modality so that the PET acquisition time can be greatly reduced from 30 to 15 O component and lower biological washout. For soft tissue-equivalent material, the distal fall-off edge of an in-room short acquisition is deeper compared to an off-line equivalent scan, indicating a better coverage of the high-dose end of the beam. In-room PET is a promising low cost, high sensitivity modality for the in vivo verification of proton therapy. Better accuracy in Monte Carlo predictions, especially for biological decay modeling, is necessary.

  12. DoPET: an in-treatment monitoring system for proton therapy at 62 MeV

    Science.gov (United States)

    Rosso, V.; Belcari, N.; Bisogni, M. G.; Camarlinghi, N.; Cirrone, G. A. P.; Collini, F.; Cuttone, G.; Del Guerra, A.; Milluzzo, G.; Morrocchi, M.; Raffaele, L.; Romano, F.; Sportelli, G.; Zaccaro, E.

    2016-12-01

    Proton beam radiotherapy is highly effective in treating cancer thanks to its conformal dose deposition. This superior capability in dose deposition has led to a massive growth of the treated patients around the world, raising the need of treatment monitoring systems. An in-treatment PET system, DoPET, was constructed and tested at CATANA beam-line, LNS-INFN in Catania, where 62 MeV protons are used to treat ocular melanoma. The PET technique profits from the beta+ emitters generated by the proton beam in the irradiated body, mainly 15-O and 11-C. The current DoPET prototype consists of two planar 15 cm × 15 cm LYSO-based detector heads. With respect to the previous versions, the system was enlarged and the DAQ up-graded during the years so now also anthropomorphic phantoms, can be fitted within the field of view of the system. To demonstrate the capability of DoPET to detect changes in the delivered treatment plan with respect to the planned one, various treatment plans were used delivering a standard 15 Gy fraction to an anthropomorphic phantom. Data were acquired during and after the treatment delivery up to 10 minutes. When the in-treatment phase was long enough (more than 1 minute), the corresponding activated volume was visible just after the treatment delivery, even if in presence of a noisy background. The after-treatment data, acquired for about 9 minutes, were segmented finding that few minutes are enough to be able to detect changes. These experiments will be presented together with the studies performed with PMMA phantoms where the DoPET response was characterized in terms of different dose rates and in presence of range shifters: the system response is linear up to 16.9 Gy/min and has the ability to see a 1 millimeter range shifter.

  13. DoPET: an in-treatment monitoring system for proton therapy at 62 MeV

    International Nuclear Information System (INIS)

    Rosso, V.; Belcari, N.; Bisogni, M.G.; Camarlinghi, N.; Guerra, A. Del; Morrocchi, M.; Sportelli, G.; Zaccaro, E.; Cirrone, G.A.P.; Cuttone, G.; Milluzzo, G.; Raffaele, L.; Romano, F.; Collini, F.

    2016-01-01

    Proton beam radiotherapy is highly effective in treating cancer thanks to its conformal dose deposition. This superior capability in dose deposition has led to a massive growth of the treated patients around the world, raising the need of treatment monitoring systems. An in-treatment PET system, DoPET, was constructed and tested at CATANA beam-line, LNS-INFN in Catania, where 62 MeV protons are used to treat ocular melanoma. The PET technique profits from the beta+ emitters generated by the proton beam in the irradiated body, mainly 15-O and 11-C. The current DoPET prototype consists of two planar 15 cm × 15 cm LYSO-based detector heads. With respect to the previous versions, the system was enlarged and the DAQ up-graded during the years so now also anthropomorphic phantoms, can be fitted within the field of view of the system. To demonstrate the capability of DoPET to detect changes in the delivered treatment plan with respect to the planned one, various treatment plans were used delivering a standard 15 Gy fraction to an anthropomorphic phantom. Data were acquired during and after the treatment delivery up to 10 minutes. When the in-treatment phase was long enough (more than 1 minute), the corresponding activated volume was visible just after the treatment delivery, even if in presence of a noisy background. The after-treatment data, acquired for about 9 minutes, were segmented finding that few minutes are enough to be able to detect changes. These experiments will be presented together with the studies performed with PMMA phantoms where the DoPET response was characterized in terms of different dose rates and in presence of range shifters: the system response is linear up to 16.9 Gy/min and has the ability to see a 1 millimeter range shifter.

  14. 18 F-FDG PET/CT for planning external beam radiotherapy alters therapy in 11% of 581 patients.

    Science.gov (United States)

    Birk Christensen, Charlotte; Loft-Jakobsen, Annika; Munck Af Rosenschöld, Per; Højgaard, Liselotte; Roed, Henrik; Berthelsen, Anne K

    2018-03-01

    18 F-FDG PET/CT (FDG PET/CT) used in radiotherapy planning for extra-cerebral malignancy may reveal metastases to distant sites that may affect the choice of therapy. To investigate the role of FDG PET/CT on treatment strategy changes induced by the use of PET/CT as part of the radiotherapy planning. 'A major change of treatment strategy' was defined as either including more lesions in the gross tumour volume (GTV) distant from the primary tumour or a change in treatment modalities. The study includes 581 consecutive patients who underwent an FDG PET/CT scan for radiotherapy planning in our institution in the year 2008. All PET/CT scans were performed with the patient in treatment position with the use of immobilization devices according to the intended radiotherapy treatment. All scans were evaluated by a nuclear medicine physician together with a radiologist to delineate PET-positive GTV (GTV-PET). For 63 of the patients (11%), the PET/CT simulation scans resulted in a major change in treatment strategy because of the additional diagnostic information. Changes were most frequently observed in patients with lung cancer (20%) or upper gastrointestinal cancer (12%). In 65% of the patients for whom the PET/CT simulation scan revealed unexpected dissemination, radiotherapy was given - changed (n = 38) or unchanged (n = 13) according to the findings on the FDG PET/CT. Unexpected dissemination on the FDG PET/CT scanning performed for radiotherapy planning caused a change in treatment strategy in 11% of 581 patients. © 2017 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.

  15. Experiments and FLUKA simulations of $^{12}C$ and $^{16}O$ beams for therapy monitoring by means of in-beam Positron Emission Tomography

    CERN Document Server

    Sommerer,; Ferrari, A

    2007-01-01

    Since 1997 at the experimental C-12 ion therapy facility at Gesellschaft fuer Schwerionenforschung (GSI), Darmstadt, Germany, more than 350 patients have been treated. The therapy is monitored with a dedicated positron emission tomograph, fully integrated into the treatment site. The measured beta+-activity arises from inelastic nuclear interactions between the beam particles an the nuclei of the patients tissue. Because the monitoring is done during the irradiation the method is called in-beam PET. The underlying principle of this monitoring is a comparison between the measured activity and a simulated one. The simulations are presently done by the PETSIM code which is dedicated to C-12 beams. In future ion therapy centers like the Heidelberger Ionenstrahl Therapiezentrum (HIT), Heidelberg, Germany, besides C-12 also proton, $^3$He and O-16 beams will be used for treatment and the therapy will be monitored by means of in-beam PET. Because PETSIM is not extendable to other ions in an easy way, a code capable ...

  16. Methodological studies into the applicability of positron emission tomography (PET) in light-ion beam tumor therapy

    International Nuclear Information System (INIS)

    Pawelke, J.

    1995-06-01

    For reconstruction of measured activity distributions, a multiplicative iteration scheme was used which, however, does not fulfill the clinical requirement of availability of reconstructed activity distributions within a few minutes after measuring. This disadvantage was set off by the development of an empirical algorithm for determination of the 3D-distribution of the intersection points of all possible coincidence line pairs. This algorithm was then applied for the reconstruction of the positron emitter distributions measured during range measurement of light ions. For the simple, compact source distributions and small number of measured coincidences in this case, the method of intersecting point computation is better than the iterative method in that it is significantly faster and yields images of comparable quality. On the basis of these results, a PET system was set up for clinical applications at the irradiation system for experimental light-ion beam therapy at GSI Darmstadt. (orig./DG) [de

  17. F-18-FDG PET of the thyroid in Graves` disease; F-18-FDG-PET der Schilddruese bei Morbus Basedow

    Energy Technology Data Exchange (ETDEWEB)

    Boerner, A.R.; Voth, E.; Schicha, H. [Klinik und Poliklinik fuer Nuklearmedizin, Koeln Univ. (Germany); Wienhard, K.; Wagner, R. [Max-Planck-Institut fuer Neurologische Forschung, Koeln (Germany)

    1998-12-31

    This study evaluates F-18-FDG PET of the thyroid in Graves` disease. Methods: Thirty patients were investigated the day before radioiodine therapy, 15 patients 3-10 days after radioiodine therapy. Twenty patients with cancer of the head or neck and normal thyroid function served as controls. Results: F-18-FDG uptake was higher in Graves` disease patients than in controls. Negative correlations of F-18-FDG uptake with half-life of radioiodine and absorbed radiation dose due to radioiodine therapy were found along with a positive correlation to autoantibody levels. Conclusion: Thus F-18-FDG PET is likely to give information on the biological activity of Graves` disease as well as on early radiation effects. (orig.) [Deutsch] Ziel: Diese Studie evaluiert F-18-Fluoro-Deoxy-Glukose (F-18-FDG) PET der Schilddruese bei Patienten mit M. Basedow. Methoden: 30 Patienten wurden am Tag vor Radioiod-Therapie, 15 Patienten am 3.-10. Tag nach Radioiodtherapie untersucht. 20 Patienten mit Kopf/Halstumoren und normaler Schilddruesenfunktion dienten als Kontrollgruppe. Ergebnisse: Die F-18-FDG-Aufnahme in der Schilddruese war signifikant hoeher bei Patienten mit M-Basedow im Vergleich zu den Kontrollen. Sie stieg mit hoeheren, antithyreoidalen Antikoerpern und sank bei laengerer I-131-Halbwertzeit. Es bestand eine Korrelation einer reduzierten Glukose-Utilisation bei hoeherer absorbierter Schilddruesendosis nach Radioiod-Therapie. Schlussfolgerung: Damit erscheint die F-18-FDG-PET-Untersuchung zur biologischen Aktivitaetsbeurteilung des M. Basedow und Darstellung von fruehen Strahleneffekten geeignet. (orig.)

  18. Electron beam induced modification of poly(ethylene terephthalate) films

    International Nuclear Information System (INIS)

    Vasiljeva, I.V.; Mjakin, S.V.; Makarov, A.V.; Krasovsky, A.N.; Varlamov, A.V.

    2006-01-01

    Electron beam processing of poly(ethylene terephthalate) (PET) films is found to promote significant changes in the melting heat, intrinsic viscosity and polymer film-liquid (water, isooctane and toluene) boundary surface tension. These properties are featured with several maximums depending on the absorbed dose and correlating with the modification of PET surface functionality. Studies using adsorption of acid-base indicators and IR-spectroscopy revealed that the increase of PET surface hydrophilicity is determined by the oxidation of methylene and methyne groups. Electron beam treatment of PET films on the surface of N-vinylpyrrolidone aqueous solution provided graft copolymerization with this comonomer at optimum process parameters (energy 700 keV, current 1 mA, absorbed dose 50 kGy)

  19. Electron beam induced modification of poly(ethylene terephthalate) films

    Energy Technology Data Exchange (ETDEWEB)

    Vasiljeva, I.V. [Technology Center RADIANT, 10, Kurchatova Str., 194223 St. Petersburg (Russian Federation)]. E-mail: radiant@skylink.spb.ru; Mjakin, S.V. [Technology Center RADIANT, 10, Kurchatova Str., 194223 St. Petersburg (Russian Federation); Makarov, A.V. [St.-Petersburg State University of Cinema and Television, 13, ul. Pravdy, 191126 St. Petersburg (Russian Federation); Krasovsky, A.N. [St.-Petersburg State University of Cinema and Television, 13, ul. Pravdy, 191126 St. Petersburg (Russian Federation); Varlamov, A.V. [St.-Petersburg State University of Cinema and Television, 13, ul. Pravdy, 191126 St. Petersburg (Russian Federation)

    2006-10-15

    Electron beam processing of poly(ethylene terephthalate) (PET) films is found to promote significant changes in the melting heat, intrinsic viscosity and polymer film-liquid (water, isooctane and toluene) boundary surface tension. These properties are featured with several maximums depending on the absorbed dose and correlating with the modification of PET surface functionality. Studies using adsorption of acid-base indicators and IR-spectroscopy revealed that the increase of PET surface hydrophilicity is determined by the oxidation of methylene and methyne groups. Electron beam treatment of PET films on the surface of N-vinylpyrrolidone aqueous solution provided graft copolymerization with this comonomer at optimum process parameters (energy 700 keV, current 1 mA, absorbed dose 50 kGy)

  20. Clinical evaluation of female pelvic tumors. Application fields of integrated PET/MRI; Lokal- und Ganzkoerperdiagnostik weiblicher Beckentumore. Anwendungsfelder der integrierten PET-MRT

    Energy Technology Data Exchange (ETDEWEB)

    Grueneisen, J.; Umutlu, L. [Universitaetsklinikum Essen, Institut fuer diagnostische und interventionelle Radiologie und Neuroradiologie, Essen (Germany)

    2016-07-15

    weitreichende Verwendung in der Diagnostik gynaekologischer Beckentumore. Durch die simultane PET- und MRT-Datenakquisition werden innerhalb eines Untersuchungsgangs zahlreiche komplementaere Informationen zur Verfuegung gestellt, die eine umfassendere Beurteilung des Primaertumors ermoeglichen und fuer die Ganzkoerperdiagnostik genutzt werden koennen. Daher sollen in diesem Artikel moegliche Anwendungsfelder der integrierten PET-MRT fuer die Primaer- und Rezidivdiagnostik gynaekologischer Beckentumore erlaeutert werden. (orig.)

  1. Reduction of radiation exposure in PET examinations by data acquisition in the 3D mode; Reduktion der Strahlenexposition bei PET-Untersuchungen durch Datenakquisition im 3D-Modus

    Energy Technology Data Exchange (ETDEWEB)

    Brix, G. [Bundesamt fuer Strahlenschutz, Neuherberg (Germany). Inst. fuer Strahlenhygiene]|[Deutsches Krebsforschungszentrum (DKFZ), Heidelberg (Germany). Forschungsschwerpunkt Radiologische Diagnostik und Therapie; Adam, L.E. [Department of Radiology, Philadelphia, PA (United States). Div. of Nuclear Medicine; Zaers, J.; Trojan, H.; Doll, J. [Deutsches Krebsforschungszentrum (DKFZ), Heidelberg (Germany). Forschungsschwerpunkt Radiologische Diagnostik und Therapie; Bellemann, M.E. [Deutsches Krebsforschungszentrum (DKFZ), Heidelberg (Germany). Forschungsschwerpunkt Radiologische Diagnostik und Therapie]|[Fachhochschule Jena (Germany). Fachbereich Medizintechnik; Nosske, D. [Bundesamt fuer Strahlenschutz, Neuherberg (Germany). Inst. fuer Strahlenhygiene

    1999-04-01

    , auf die abschirmende Wirkung von Septen zwischen den einzelnen Detektorringen (2D-Modus) zu verzichten, so dass auch koinzidente Ereignisse zwischen Detektoren auf weiter entfernt liegenden Ringen erfasst werden koennen (3D-Modus). Ziel der vorliegenden Arbeit war es, das Zaehlratenverhalten eines PET-Scanners der neuesten Generation im 2D- und im 3D-Modus anhand von Phantommessungen zu untersuchen und die sich daraus ergebenden Konsequenzen fuer die Strahlenhygiene bei PET-Untersuchungen mit 2-[F-18]-Fluor-2-Desoxyglukose (F-18-FDG) zu diskutieren. Methoden: Alle Messungen wurden am Ganzkoerper-PET-System ECAT EXACT HR{sup +} durchgefuehrt. Fuer die 2D-Messungen wurde ein Kollimator aus duennen Wolframlamellen in das Gesichtsfeld eingebracht. Das Zaehlratenverhalten des Scanners wurde dem NEMA-Protokoll folgend ueber einen weiten Bereich von F-18-Aktivitaetskonzentrationen untersucht. Darueber hinaus wurden PET-Aufnahmen des EEC-Ganzkoerperphantoms mit verschiedenen Einsaetzen im 2D- und im 3D-Modus jeweils ueber 15 min akquiriert, wobei die F-18-Aktivitaetskonzentrationen bei der 3D-Messung halb so hoch waren wie bei der 2D-Messung. Ergebnisse: Fuer das zylinderfoermige NEMA-Phantom (Durchmesser=19,4 cm, Laenge=19,0 cm) ergab sich im 3D-Modus eine im Vergleich zur 2D-Akquisition etwa fuenffach hoehere Systemsensitivitaet (27,7 statt 5,7 cps/Bq/ml). Die Auswertung der rekonstruierten Aktivitaetsverteilungen des EEC-Phantoms ergab, dass die Qualitaet der aus dem 3D-Projektionsdatensatz berechneten PET-Aufnahmen besser war als die der korrespondierenden 2D-Aufnahmen, obwohl die Aktivitaetskonzentrationen nur halb so hoch waren. Schlussfolgerungen: Durch die Datenakquisition im 3D-Modus kann die zu applizierende Aktivitaetsmenge bei gleichzeitiger Verbesserung der Bildqualitaet erheblich reduziert werden. Fuer Patientenuntersuchungen mit F-18-FDG im Ganzkoerperbereich reicht es unserer Erfahrung nach aus, eine Aktivitaet zwischen 150 und 200 MBq zu applizieren. Dies

  2. Online monitoring for proton therapy: A real-time procedure using a planar PET system

    Science.gov (United States)

    Kraan, A. C.; Battistoni, G.; Belcari, N.; Camarlinghi, N.; Ciocca, M.; Ferrari, A.; Ferretti, S.; Mairani, A.; Molinelli, S.; Pullia, M.; Sala, P.; Sportelli, G.; Del Guerra, A.; Rosso, V.

    2015-06-01

    In this study a procedure for range verification in proton therapy by means of a planar in-beam PET system is presented. The procedure consists of two steps: the measurement of the β+-activity induced in the irradiated body by the proton beam and the comparison of these distributions with simulations. The experimental data taking was performed at the CNAO center in Pavia, Italy, irradiating plastic phantoms. For two different cases we demonstrate how a real-time feedback of the delivered treatment plan can be obtained with in-beam PET imaging.

  3. Online monitoring for proton therapy: A real-time procedure using a planar PET system

    CERN Document Server

    Kraan, A C; Belcari, N; Camarlinghi, N; Ciocca, M; Ferrari, A; Ferretti, S; Mairani, A; Molinelli, S; Pullia, M; Sala, P; Sportelli, G; Del Guerra, A; Rosso, V

    2015-01-01

    In this study a procedure for range verification in proton therapy by means of a planar in-beam PET system is presented. The procedure consists of two steps: the measurement of the β+-activity induced in the irradiated body by the proton beam and the comparison of these distributions with simulations. The experimental data taking was performed at the CNAO center in Pavia, Italy, irradiating plastic phantoms. For two different cases we demonstrate how a real-time feedback of the delivered treatment plan can be obtained with in-beam PET imaging.

  4. NON-CONVENTIONAL PET NUCLIDES: PRODUCTION AND IMAGING

    OpenAIRE

    Laforest, Richard

    2015-01-01

    Abstract Medical cyclotrons are now commonly used for the production of PET nuclides by the (pn) reaction. These devices are typically capable of delivering 10-15 MeV protons beams at sufficiently high intensity for timely production of β+ decaying nuclides. Non-conventional PET nuclides have emerged recently and offers new opportunities for diagnostic and therapy drug discovery. In this paper, we will review the production capabilities for such nuclides at Washington University Medical Schoo...

  5. First in situ TOF-PET study using digital photon counters for proton range verification.

    Science.gov (United States)

    Cambraia Lopes, P; Bauer, J; Salomon, A; Rinaldi, I; Tabacchini, V; Tessonnier, T; Crespo, P; Parodi, K; Schaart, D R

    2016-08-21

    Positron emission tomography (PET) is the imaging modality most extensively tested for treatment monitoring in particle therapy. Optimal use of PET in proton therapy requires in situ acquisition of the relatively strong (15)O signal due to its relatively short half-life (~2 min) and high oxygen content in biological tissues, enabling shorter scans that are less sensitive to biological washout. This paper presents the first performance tests of a scaled-down in situ time-of-flight (TOF) PET system based on digital photon counters (DPCs) coupled to Cerium-doped Lutetium Yttrium Silicate (LYSO:Ce) crystals, providing quantitative results representative of a dual-head tomograph that complies with spatial constraints typically encountered in clinical practice (2  ×  50°, of 360°, transaxial angular acceptance). The proton-induced activity inside polymethylmethacrylate (PMMA) and polyethylene (PE) phantoms was acquired within beam pauses (in-beam) and immediately after irradiation by an actively-delivered synchrotron pencil-beam, with clinically relevant 125.67 MeV/u, 4.6  ×  10(8) protons s(-1), and 10(10) total protons. 3D activity maps reconstructed with and without TOF information are compared to FLUKA simulations, demonstrating the benefit of TOF-PET to reduce limited-angle artefacts using a 382 ps full width at half maximum coincidence resolving time. The time-dependent contributions from different radionuclides to the total count-rate are investigated. We furthermore study the impact of the acquisition time window on the laterally integrated activity depth-profiles, with emphasis on 2 min acquisitions starting at different time points. The results depend on phantom composition and reflect the differences in relative contributions from the radionuclides originating from carbon and oxygen. We observe very good agreement between the shapes of the simulated and measured activity depth-profiles for post-beam protocols. However, our results

  6. Evaluation of PET Scanner Performance in PET/MR and PET/CT Systems: NEMA Tests.

    Science.gov (United States)

    Demir, Mustafa; Toklu, Türkay; Abuqbeitah, Mohammad; Çetin, Hüseyin; Sezgin, H Sezer; Yeyin, Nami; Sönmezoğlu, Kerim

    2018-02-01

    The aim of the present study was to compare the performance of positron emission tomography (PET) component of PET/computed tomography (CT) with new emerging PET/magnetic resonance (MR) of the same vendor. According to National Electrical Manufacturers Association NU2-07, five separate experimental tests were performed to evaluate the performance of PET scanner of General Electric GE company; SIGNATM model PET/MR and GE Discovery 710 model PET/CT. The main investigated aspects were spatial resolution, sensitivity, scatter fraction, count rate performance, image quality, count loss and random events correction accuracy. The findings of this study demonstrated superior sensitivity (~ 4 folds) of PET scanner in PET/MR compared to PET/CT system. Image quality test exhibited higher contrast in PET/MR (~ 9%) compared with PET/CT. The scatter fraction of PET/MR was 43.4% at noise equivalent count rate (NECR) peak of 218 kcps and the corresponding activity concentration was 17.7 kBq/cc. Whereas the scatter fraction of PET/CT was found as 39.2% at NECR peak of 72 kcps and activity concentration of 24.3 kBq/cc. The percentage error of the random event correction accuracy was 3.4% and 3.1% in PET/MR and PET/CT, respectively. It was concluded that PET/MR system is about 4 times more sensitive than PET/CT, and the contrast of hot lesions in PET/MR was ~ 9% higher than PET/CT. These outcomes also emphasize the possibility to achieve excellent clinical PET images with low administered dose and/or a short acquisition time in PET/MR.

  7. Measuring the residual stress of transparent conductive oxide films on PET by the double-beam shadow Moiré interferometer

    Science.gov (United States)

    Chen, Hsi-Chao; Huang, Kuo-Ting; Lo, Yen-Ming; Chiu, Hsuan-Yi; Chen, Guan-Jhen

    2011-09-01

    The purpose of this research was to construct a measurement system which can fast and accurately analyze the residual stress of the flexible electronics. The transparent conductive oxide (TCO) films, tin-doped indium oxide (ITO), were deposited by radio frequency (RF) magnetron sputtering using corresponding oxide targets on PET substrate. As we know that the shadow Moiré interferometry is a useable way to measure the large deformation. So we set up a double beam shadow Moiré interferometer to measure and analyze the residual stress of TCO films on PET. The feature was to develop a mathematical model and combine the image processing software. By the LabVIEW graphical software, we could measure the distance which is between the left and right fringe on the pattern to solve the curvature of deformed surface. Hence, the residual stress could calculate by the Stoney correction formula for the flexible electronics. By combining phase shifting method with shadow Moiré, the measurement resolution and accuracy have been greatly improved. We also had done the error analysis for the system whose relative error could be about 2%. Therefore, shadow Moiré interferometer is a non-destructive, fast, and simple system for the residual stress on TCO/PET films.

  8. Commissioning status of the decelerator test beam line in CTF3

    CERN Document Server

    Adli, E; Lillestol, R; Olvegaard, M; Syratchev, I; Carrillo, D; Toral, F; Faus-Golfe, A; Garcia-Garrigos, J J; Kubyshin, Y; Montoro, G

    2010-01-01

    The CLIC Test Facility (CTF3) at CERN was constructed by the CTF3 collaboration to study the feasibility of the concepts for a compact linear collider. The test beam line (TBL) recently added to the CTF3 machine was designed to study the CLIC decelerator beam dynamics and 12 GHz power production. The beam line consists of a FODO lattice with high precision BPM’s and quadrupoles on movers for precise beam alignment. A total of 16 Power Extraction and Transfer Structures (PETS) will be installed in between the quadrupoles to extract 12 GHz power from the drive beam provided by the CTF3 machine. The CTF3 drive beam with a bunch-train length of 140 ns, 12 GHz bunch repetition frequency and an average current over the train of up to 28 A will be injected into the test beam line. Each PETS structure will produce 135 MW of 12 GHz power at nominal current. The beam will have lost more than 50 % of its initial energy of 150 MeV at the end of the beam line and will contain particles with energies between 65 MeV and 1...

  9. Analysis of {sup 18} F-FDG uptake patterns in PET for diagnosis of septic and aseptic loosening after total hip arthroplasty

    Energy Technology Data Exchange (ETDEWEB)

    Cremerius, U.; Niethard, F.U. [Rheinisch-Westfaelische Technische Hochschule Aachen (Germany). Klinik fuer Nuklearmedizin; Mumme, T.; Reinartz, P.; Wirtz, D. [Rheinisch-Westfaelische Technische Hochschule Aachen (Germany). Orthopaedische Klinik; Buell, U.

    2003-12-01

    -Fluordeoxyglukose ({sup 18}F-FDG) zur Erkennung von aseptischer Pfannen- und Schaft- sowie septischer Prothesenlockerung. Methoden: 18 Patienten mit Schmerzen nach Hueftgelenkersatz wurden praeoperativ mit 200-300 MBq {sup 18}F-FDG in einem dedizierten Vollring-PET-Scanner untersucht. Die Grenzflaeche zwischen Prothese und umgebendem Weichteil-/Knochengewebe in koronarer Schichtfuehrung wurde entsprechend den Klassifikationen von Delee und Gruen in 12 Segmente unterteilt. Fuer jedes Segment wurde durch zwei unabhaengige Untersucher ein visueller Uptake-Score (0-3) erhoben. Als Goldstandard dienten intraoperativ erhobene Befunde. Ergebnisse: Intraoperativ fanden sich 14 Pfannen- bzw. 9 Schaftlockerungen und 7 Protheseninfekte. In der PET korrelierte die Pfannenlockerung mit einem erhoehten Uptake im mittleren Acetabulum, die Schaftlockerung mit erhoehtem Uptake entlang des proximalen bis mittleren lateralen Schaftes sowie des proximalen medialen Schaftes, Protheseninfekte mit erhoehtem Uptake entlang des mittleren lateralen Schaftes. 6 der 7 infizierten Prothesen wiesen auch Pfannen- und Schaftlockerungen auf. Nimmt man zusaetzlich zu den genannten Befundmustern eine Speicherintensitaet entsprechend Grad 3 im Schaftbereich als Kriterium fuer einen Infekt, so ergibt sich eine Treffsicherheit der PET in der Detektion von aseptischer Pfannenlockerung, aseptischer Schaftlockerung und septischer Lockerung von 72, 78 und 89%. Schlussfolgerungen: Die Pilotstudie zeigt, dass {sup 18}F-FDG-PET eine vielversprechende Methode in der Diagnostik schmerzhafter Totalendoprothesen des Hueftgelenkes darstellt. Ihre Wertigkeit sollte an groesseren Patientenkollektiven ueberprueft werden. (orig.)

  10. Beam Stability in the Drive-Beam Decelerator of CLIC Using Structures of High-Order Symmetry

    CERN Document Server

    Millich, Antonio; Schulte, Daniel

    1999-01-01

    The RF power necessary to accelerate the main beam of the Compact Linear Collider (CLIC) is produced by decelerating a high-current drive beam in Power Extraction and Transfer Structures (PETS). The reference structure is not cylindrically symmetric but has longitudinal waveguides carved into the inner surface. This gives rise to a transverse component of the main longitudinal mode which can not be damped, in contrast to the transverse dipole wake- field. The field is non-linear and couples the motion of the particles in the two planes. Limits of the stability of the decelerated beam are investigated for different structures.

  11. Special relativity in beam trajectory simulation in small accelerators

    International Nuclear Information System (INIS)

    Pramudita Anggraita; Budi Santosa; Taufik; Emy Mulyani; Frida Iswinning Diah

    2012-01-01

    Calculation for trajectory simulation of particle beam in small accelerators should account special relativity effect in the beam motion, which differs between parallel and perpendicular direction to the beam velocity. For small electron beam machine of 300 keV, the effect shows up as the rest mass of electron is only 511 keV. Neglecting the effect yields wrong kinetic energy after 300 kV of dc acceleration. For a 13 MeV PET (positron emission tomography) baby cyclotron accelerating proton beam, the effect increases the proton mass by about 1.4% at the final energy. To keep the beam isochronous with the accelerating radiofrequency, a radial increase of the average magnetic field must be designed accordingly. (author)

  12. Pet Problems at Home: Pet Problems in the Community.

    Science.gov (United States)

    Soltow, Willow

    1984-01-01

    Discusses problems of pets in the community, examining the community's role related to disruptive pets and pet overpopulation. Also discusses pet problems at home, offering advice on selecting a pet, meeting a pet's needs, and disciplining pets. Includes a list of books, films/filmstrips, teaching materials, and various instructional strategies.…

  13. Electron beam induced modifications in flexible biaxially oriented polyethylene terephthalate sheets: Improved mechanical and electrical properties

    Energy Technology Data Exchange (ETDEWEB)

    Chaudhary, N. [Accelerator & Pulse Power Division, Bhabha Atomic Research Centre, Mumbai, 400 085 (India); Koiry, S.P. [Technical Physics Division, Bhabha Atomic Research Centre, Mumbai, 400 085 (India); Singh, A., E-mail: asb_barc@yahoo.com [Technical Physics Division, Bhabha Atomic Research Centre, Mumbai, 400 085 (India); Tillu, A.R. [Accelerator & Pulse Power Division, Bhabha Atomic Research Centre, Mumbai, 400 085 (India); Jha, P.; Samanta, S.; Debnath, A.K. [Technical Physics Division, Bhabha Atomic Research Centre, Mumbai, 400 085 (India); Aswal, D.K., E-mail: dkaswal@yahoo.com [Technical Physics Division, Bhabha Atomic Research Centre, Mumbai, 400 085 (India); Mondal, R.K. [Radiation Technology Development Division, Bhabha Atomic Research Centre, Mumbai, 400 085 (India); Acharya, S.; Mittal, K.C. [Accelerator & Pulse Power Division, Bhabha Atomic Research Centre, Mumbai, 400 085 (India)

    2017-03-01

    In the present work, we have studied the effects of electron beam irradiation (with dose ranging from 2 to 32 kGy) on mechanical and electrical properties of biaxially oriented polyethylene terephthalate (BOPET) sheets. The sol-gel analysis, Fourier transformation infra-red (FTIR), X-ray photoelectron spectroscopy (XPS) characterizations of the irradiated BOPET sheets suggest partial cross-linking of PET chains through the diethylene glycol (DEG). The mechanical properties of BOPET, such as, tensile strength, Young's modulus and electrical resistivity shows improvement with increasing dose and saturate for doses >10 kGy. The improved mechanical properties and high electrical resistivity of electron beam modified BOPET sheets may have additional advantages in applications, such as, packaging materials for food irradiation, medical product sterilization and electronic industries. - Graphical abstract: Irradiation of BOPET by electron beam leads to the formation of diethylene glycol that crosslink's the PET chains, resulting in improved mechanical properties and enhanced electrical resistivity. - Highlights: • BOPET exhibit improved tensile strength/Young's modulus after e-beam exposure. • Electrical resistivity of BOPET increases after e-beam exposure. • Cross-linking of PET chains through diethylene glycol was observed after e-beam exposure.

  14. Monte Carlo simulations in multi-detector CT (MDCT) for two PET/CT scanner models using MASH and FASH adult phantoms

    Energy Technology Data Exchange (ETDEWEB)

    Belinato, W., E-mail: wbfisica@gmail.com [Bahia Federal Institute of Education, Science and Technology – IFBA, Vitória da Conquista, 45.100-000 (Brazil); Department of Physics, Federal University of Sergipe – UFS, São Cristóvão, 49.100-000 (Brazil); Santos, W.S. [Department of Physics, Federal University of Sergipe – UFS, São Cristóvão, 49.100-000 (Brazil); Paschoal, C.M.M., E-mail: cinthiam.paschoal@gmail.com [Department of Civil Engineering, Vale do Acarau State University – UVA, Sobral 62.040-730 (Brazil); Souza, D.N. [Department of Physics, Federal University of Sergipe – UFS, São Cristóvão, 49.100-000 (Brazil)

    2015-06-01

    The combination of positron emission tomography (PET) and computed tomography (CT) has been extensively used in oncology for diagnosis and staging of tumors, radiotherapy planning and follow-up of patients with cancer, as well as in cardiology and neurology. This study determines by the Monte Carlo method the internal organ dose deposition for computational phantoms created by multidetector CT (MDCT) beams of two PET/CT devices operating with different parameters. The different MDCT beam parameters were largely related to the total filtration that provides a beam energetic change inside the gantry. This parameter was determined experimentally with the Accu-Gold Radcal measurement system. The experimental values of the total filtration were included in the simulations of two MCNPX code scenarios. The absorbed organ doses obtained in MASH and FASH phantoms indicate that bowtie filter geometry and the energy of the X-ray beam have significant influence on the results, although this influence can be compensated by adjusting other variables such as the tube current–time product (mAs) and pitch during PET/CT procedures.

  15. Comparison between PET/MR and PET/CT in evaluation of oncological patients%PET/MR与PET/CT的对比研究

    Institute of Scientific and Technical Information of China (English)

    徐白萱; 富丽萍; 关志伟; 尹大一; 刘家金; 杨晖; 张锦明; 陈英茂; 安宁豫

    2014-01-01

    Objective To verify the feasibility of the integrated PET/MR for oncological applications by comparing PET/MR with PET/CT in terms of lesion detection and quantitative measurement.Methods A total of 277 patients (165 males,112 females,average age (52.9± 12.6) years) voluntarily participated in this same-day PET/CT and PET/MR comparative study.The time interval between the two studies was 15-35 min.PET/CT images were acquired and reconstructed following standard protocols.PET/MR covered the body trunk with a sequence combination of transverse T1 weighted imaging (WI) 3D-volumetric interpolated breath-hold,T2WI turbo spin echo with fat saturation,diffusion-weighted imaging,and simultaneous PET acquisition.PET images were reconstructed by vender-provided attenuation correction methods.The results of PET/CT and PET/MR were regarded as positive if any modality (CT,PET or MRI) was positive.SUVmax was obtained by the manually drawn ROI.Detection rates were compared with x2 test and SUVmax from the two modalities was analyzed with Spearman correlation analysis.Results A total of 353 lesions were detected in 220 patients.Compared to PET/CT,PET/MR revealed 30 additional true-positive lesions,while missed 6.The detection rates between PET/CT and PET/MR were significantly different (P<0.05).The lesion-based and patient-based consistency was 89.8% (317/353) and 85.9% (189/220),respectively.There were significant correlations of SUVmax between PET/MR and PET/CT for lesions(rs =0.91,P<0.01) and for normal tissues(rs =0.62-0.76,all P<0.01).Conclusions With reference to PET/CT,integrated PET/MR may provide comparable semi-quantitative measurements of pathological lesions as well as normal tissues.Integrated PET/MR may be more effective to detect lesions in abdomen and pelvis.%目的 通过与PET/CT在病灶检测及定量分析方面的比较,论证PET/MR一体机应用于临床的可行性.方法 2012年5月至2013年2月共300例患者同天间隔15 ~ 35 min行PET/CT和PET

  16. Scanning-probe-microscopy of polyethylene terephthalate surface treatment by argon ion beam

    Energy Technology Data Exchange (ETDEWEB)

    Espinoza-Beltran, Francisco [Polymer & Biopolymer Group, Libramiento Norponiente no. 2000, Cinvestav Queretaro, Queretaro 76230 (Mexico); Sanchez, Isaac C. [Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78712 (United States); España-Sánchez, Beatriz L.; Mota-Morales, Josué D.; Carrillo, Salvador; Enríquez-Flores, C.I. [Polymer & Biopolymer Group, Libramiento Norponiente no. 2000, Cinvestav Queretaro, Queretaro 76230 (Mexico); Poncin-Epaillard, Fabienne, E-mail: epaill@univ-lemans.fr [Institute for Molecules and Materials, UMR CNRS 6283, Av. O. Messiaen, Universitè du Maine, Le Mans 72085 (France); Luna-Barcenas, Gabriel, E-mail: gluna@qro.cinvestav.mx [Polymer & Biopolymer Group, Libramiento Norponiente no. 2000, Cinvestav Queretaro, Queretaro 76230 (Mexico)

    2015-11-01

    Highlights: • Kelvin-probe-force microscopy helps study of PET surface treated by Ar ion beam. • Ar ion beam surface treatment promotes chain scission and N insertion. • Surface roughness and work function increases as intensity of ion energy increases. • Adhesive force of PET decrease due to the surface changes by ion bombardment. - Abstract: The effect of argon (Ar{sup +}) ion beam treatment on the surface of polyethylene terephthalate (PET) samples was studied by scanning probe microscopy (SPM) and the changes in surface topography were assessed by atomic force microscopy (AFM). Kelvin probe force microscopy (KPFM) sheds light of adhesion force between treated polymer films and a Pt/Cr probe under dry conditions, obtaining the contact potential difference of material. As a result of Ar{sup +} ion bombardment, important surface chemical changes were detected by X-ray photoelectron spectroscopy (XPS) measurements such as chains scission and incorporation of nitrogen species. Ion beam treatment increases the surface roughness from 0.49 ± 0.1 nm to 7.2 ± 0.1 nm and modify the surface potential of PET samples, decreasing the adhesive forces from 12.041 ± 2.1 nN to 5.782 ± 0.06 nN, and producing a slight increase in the electronic work function (Φ{sub e}) from 5.1 V (untreated) to 5.2 V (treated). Ar{sup +} ion beam treatment allows to potentially changing the surface properties of PET, modifying surface adhesion, improving surface chemical changes, wetting properties and surface potential of polymers.

  17. Charging effects of PET under electron beam irradiation in a SEM

    International Nuclear Information System (INIS)

    Jbara, O; Rondot, S; Hadjadj, A; Patat, J M; Fakhfakh, S; Belhaj, M

    2008-01-01

    This paper deals with charge trapping and charge transport of polyethylene terephthalate (PET) polymer subjected to electron irradiation in a scanning electron microscope (SEM). Measurement of displacement current and leakage current using an arrangement adapted to the SEM allows the amount of trapped charge during and after electron irradiation to be determined and the charge mechanisms regulation to be studied. These mechanisms involve several parameters related to the electronic injection, the characteristics of insulator and the effects of the trapped charge itself. The dynamic trapping properties of PET samples are investigated and the time constants of charging are evaluated for various conditions of irradiation. The determination of the trapping cross section for electrons is possible by using the trapping rate at the onset of irradiation. Many physical processes are involved in the charging and discharging mechanisms; among them surface conduction is outlined. Through the control of irradiation conditions, various types of surface discharging (flashover phenomenon) behaviour are also observed. The strength of the electric field initiating surface discharge is estimated.

  18. Contribution of whole body F-18-FDG-PET and lymphoscintigraphy to the assessment of regional and distant metastases in cutaneous malignant melanoma. A pilot study

    Energy Technology Data Exchange (ETDEWEB)

    Klein, M.; Freedman, N.; Marciano, R.; Moshe, S.; Chisin, R. [Hadassah Univ. Hospital, Jerusalem (Israel). Dept. of Medical Biophysics and Nuclear Medicine; Lotem, M. [Hadassah Univ. Hospital, Jerusalem (Israel). Dept. of Oncology; Gimon, Z. [Hadassah Univ. Hospital, Jerusalem (Israel). Dept. of Surgery

    2000-05-01

    Aim: This pilot study describes use of whole body PET (WB PET) for staging of melanoma. WB PET in conjunction with lymphoscintigraphy (LS) for evaluating status of the sentinel lymph node (SLN) in primary melanoma was investigated with comparison to histopathological results. WB PET was also used both for primary and metastatic melanoma for screening for distant metastases, restaging and follow-up. Methods: Group I: 17 patients with primary cutaneous melanoma underwent LS, WB PET and SLN dissection. WB PET findings were compared with biopsy results at the SLN site and were used for screening for distant metastases. Group II: 17 patients with a history of melanoma underwent WB PET for follow-up and/or restaging. Results were confirmed or refuted by other radiological modalities or by biopsy of clinical follow-up. Results: Group I: Out of 20 SLNs identified by LS in the 17 patients, 18 were negative on WB PET and 2 were positive. 19/20 WB PET findings were confirmed either by histopathology or by clinical follow-up (20 mo). Accuracy was 94% for the assessment of the status of the SLN. Group II: WB PET findings altered staging and treatment in 12/17 patients and confirmed the validity of treatment in 3/17 patients. Overall, in 15/17 patients (88%), WB PET had an impact on treatment strategy. (orig.) [German] Ziel: Diese Pilot-Studie beschreibt die Anwendung der Ganzkoerper-PET (WB PET) zum Staging beim Melanom. Bei primaerem Melanom wurde WB PET in Verbindung mit der Lymphszintigraphie (LS) angewandt und mit der Histopathologie verglichen, um den Status des Sentinel Lymph Node (SLN) zu untersuchen. Zusaetzlich wurde WB PET fuer primaere und metastatische Melanome zum Screening auf Fernmetastasen, zum Restaging und zum Follow-up benutzt. Methoden: Gruppe I: 17 Patienten mit primaerem kutanem Melanom erhielten LS, WB PET und eine operative SLN-Entfernung. Die WB PET-Ergebnisse wurden mit den SLN-Biopsien verglichen und zum Screening fuer Fernmetastasen benutzt. Gruppe

  19. Detection of Cancer with PET and PET/CT in Asymptomatic Volunteers

    International Nuclear Information System (INIS)

    Chung, Ji In; Choi, Joon Young; Lee, Kyung Han; Kim, Byung Tae; Choi, Yoon Ho; Cho, Han Byoul; Shim, Jae Yong

    2009-01-01

    We retrospectively investigated the diagnostic performance of 18 F-fluorodeoxyglucose positron emission tomography (PET) and PET/CT for cancer detection in asymptomatic health-check examinees. This study consisted of 5091 PET or PET/CT conducted as part of annual health examination at one hospital from March 1998 to February 2008. To find the incidence of cancers, medical records of the subjects were thoroughly reviewed for a follow-up period of one year. The patterns of formal readings of PET and PET/CT were analyzed to assess the sensitivity and specificity for cancer detection. The histopathology and stage of the cancers were evaluated in relation to the results of PET. Eighty-six cancers (1.7%) were diagnosed within one year after PET or PET/CT. When PET and PET/CT results were combined, the sensitivity was 48.8% and specificity was 81.1% for cancer detection. PET only had a sensitivity of 46.2% and a specificity of 81.4%, and PET/CT only had a sensitivity of 75.0% and a specificity of 78.5% respectively. There were no significant differences in cancer site, stage and histopathology between PET positive and PET negative cancers. In 19.3% of formal readings of PET and PET/CT, further evaluation to exclude malignancy or significant disease was recommended. Head and neck area and upper gastrointestinal tract were commonly recommended sites for further evaluation. PET and PET/CT showed moderate performance for detecting cancers in asymptomatic adults in this study. More experience and further investigation are needed to overcome limitations of PET and PET/CT for cancer screening

  20. Characterisation of the SmartPET planar Germanium detectors

    Energy Technology Data Exchange (ETDEWEB)

    Boston, H.C. [Department of Physics, University of Liverpool, Oliver Lodge Laboratory, Liverpool L69 7ZE (United Kingdom)], E-mail: H.C.Boston@liverpool.ac.uk; Boston, A.J.; Cooper, R.J.; Cresswell, J.; Grint, A.N.; Mather, A.R.; Nolan, P.J.; Scraggs, D.P.; Turk, G. [Department of Physics, University of Liverpool, Oliver Lodge Laboratory, Liverpool L69 7ZE (United Kingdom); Hall, C.J.; Lazarus, I. [CCLRC Daresbury Laboratory, Warrington WA4 4AD (United Kingdom); Berry, A.; Beveridge, T.; Gillam, J.; Lewis, R. [School of Physics and Materials Engineering, Monash University, Melbourne (Australia)

    2007-08-21

    Small Animal Reconstruction PET (SmartPET) is a project funded by the UK medical research council (MRC) to demonstrate proof of principle that Germanium can be utilised in Positron Emission Tomography (PET). The SmartPET demonstrator consists of two orthogonal strip High Purity Germanium (HPGe) planar detectors manufactured by ORTEC. The aim of the project is to produce images of an internal source with sub mm{sup 3} spatial resolution. Before this image can be achieved the detectors have to be fully characterised to understand the response at any given location to a {gamma}-ray interaction. This has been achieved by probing the two detectors at a number of specified points with collimated sources of various energies and strengths. A 1 mm diameter collimated beam of photons was raster scanned in 1 mm steps across the detector. Digital pulse shape data were recorded from all the detector channels and the performance of the detector for energy and position determination has been assessed. Data will be presented for the first SmartPET detector.

  1. Contribution to a research on electron beam welding of metals; Contribution a l'etude de la soudure des metaux par faisceau d'electrons

    Energy Technology Data Exchange (ETDEWEB)

    Stohr, J [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1964-03-15

    The electron beam welding of metals is performed by the travelling of the focusing point along the junction of two pieces to be connected. Welding parameters are the electron gun power W, the value of the electron impact surface S, the welding speed s. From the beginning of our research in 1954, the preponderant part played by specific power W/s on the shape of the welded zone and the penetrating depth, became evident. A more methodical research has been undertaken in the laboratories of C.E.N. under the patronage of Professor CHAUDRON, in order to define in a better way the importance of the different welding parameters and to determine their influence on the metallurgical qualities of welded assemblies. This research induced us to define an electron gun adapted as well as possible to the performance of weldings, not only from the point of view of behaviour, especially during the passage from the atmospheric to a low pressure at 10{sup -5} Torr, necessary for the carrying out of a welding, but also from the point of view of adjustment conveniences of the different welding parameters, indispensable to the intended research work. The variations of welding parameters show that the shape of the molten zone turns from a circle segment to that of a very high triangle, which implies a continual change of the mode of heat transmission. Tests have been made, in order to confirm this way of looking, especially in order to achieve isotherms in dynamic operating and also the comparison of these isotherms with that recorded while using a method of argon arc welding. The thermal balance of energy supplied to the part, the necessary welding energy, and the energy loss (through conduction, radiation and evaporation) has also been established. These results proved that almost the whole of energy has been used for melting, that the different losses are negligible and that heat transmission can not occur by thermal conduction through the part during 'welding' time, when operating

  2. Evaluation of attenuation correction in cardiac PET using PET/MR.

    Science.gov (United States)

    Lau, Jeffrey M C; Laforest, R; Sotoudeh, H; Nie, X; Sharma, S; McConathy, J; Novak, E; Priatna, A; Gropler, R J; Woodard, P K

    2017-06-01

    Simultaneous acquisition Positron emission tomography/magnetic resonance (PET/MR) is a new technology that has potential as a tool both in research and clinical diagnosis. However, cardiac PET acquisition has not yet been validated using MR imaging for attenuation correction (AC). The goal of this study is to evaluate the feasibility of PET imaging using a standard 2-point Dixon volume interpolated breathhold examination (VIBE) MR sequence for AC. Evaluation was performed in both phantom and patient data. A chest phantom containing heart, lungs, and a lesion insert was scanned by both PET/MR and PET/CT. In addition, 30 patients underwent whole-body 18 F-fluorodeoxyglucose PET/CT followed by simultaneous cardiac PET/MR. Phantom study showed 3% reduction of activity values in the myocardium due to the non-inclusion of the phased array coil in the AC. In patient scans, average standardized uptake values (SUVs) obtained by PET/CT and PET/MR showed no significant difference (n = 30, 4.6 ± 3.5 vs 4.7 ± 2.8, P = 0.47). There was excellent per patient correlation between the values acquired by PET/CT and PET/MR (R 2  = 0.97). Myocardial SUVs PET imaging using MR for AC shows excellent correlation with myocardial SUVs obtained by standard PET/CT imaging. The 2-point Dixon VIBE MR technique can be used for AC in simultaneous PET/MR data acquisition.

  3. 18F-FDG PET and PET/CT in Burkitt's lymphoma

    International Nuclear Information System (INIS)

    Karantanis, Dimitrios; Durski, Jolanta M.; Lowe, Val J.; Nathan, Mark A.; Mullan, Brian P.; Georgiou, Evangelos; Johnston, Patrick B.; Wiseman, Gregory A.

    2010-01-01

    Objective: To explore the value of 18 F fluorodeoxy-glucose (FDG) positron emission tomography (PET) in Burkitt's lymphoma. Methods: All Burkitt's lymphoma patients referred for FDG PET or FDG PET/computed tomography (CT) exams at our institution from June 2003 to June 2006 were included. Selected patients were followed and clinical information was reviewed retrospectively. Results from FDG PET-PET/CT, as blindly reviewed by a consensus of two experienced readers, were compared with the status of the disease as determined by other laboratory, clinical and imaging exams and clinical follow-up. FDG PET-PET/CT results were classified as true positive or negative and false positive or negative. The degree of FDG uptake in the positive lesions was semiquantified as maximum standard uptake value (SUVmax). Results: Fifty-seven FDG PET-PET/CT exams were done in 15 patients. Seven exams were done for initial staging, 8 during and 14 after the completion of therapy, and 28 for disease surveillance. For nodal disease FDG PET-PET/CT was true positive in 8, true negative in 47 and false positive in 2 exams (sensitivity 100%, specificity 96%). For extranodal disease FDG PET-PET/CT was true positive in 6, true negative in 48 and false positive in 3 exams (sensitivity 100%, specificity 94%). The mean SUVmax for the positive nodal lesions was 15.7 (range 6.9-21.7, median 18.5) and for extranodal lesions was 14.2 (range 6.2-24.3, median 12.4). Conclusions: FDG PET-PET/CT is sensitive for the detection of viable disease in Burkitt's lymphoma. Affected areas demonstrated high degree of uptake that was reversible upon successful implementation of treatment.

  4. PET/CT in lymphoma patients; PET-CT bei Lymphompatienten

    Energy Technology Data Exchange (ETDEWEB)

    Steinert, H.C. [Universitaetsspital Zuerich, Klinik und Poliklinik fuer Nuklearmedizin (Switzerland)

    2004-11-01

    First results of PET/CT in Hodgkin's disease (HD) and aggressive non-Hodgkin's lymphoma (NHL) are reported. From March 2001 to August 2004 822 PET/CT were performed at our clinic in lymphoma patients for primary staging, restaging after therapy, and diagnosis of recurrence. For coregistration non contrast-enhanced low-dose CT were used. Due to the exact anatomic localization of {sup 18}F-FDG accumulating lesions equivocal or false positive PET findings are avoided. In comparison to contrast enhanced CT, PET/CT has a higher sensitivity and specificity in patients with HD and aggressive NHL. Integration of PET/CT in treatment planning of radiation therapy optimizes the field volume. Even in the initial phase of clinical evaluation, PET/CT has proven useful in staging and restaging of lymphoma. The exact anatomic localization of the PET findings is essential for a precise report, for treatment planning of radiation therapy, and for planning surgical biopsy. (orig.) [German] Erste Ergebnisse der PET-CT bei Morbus Hodgkin (HD) und den aggressiven Non-Hodgkin-Lymphomen (NHL) werden beschrieben. Von Maerz 2001 bis August 2004 wurden 822 PET-CT bei Lymphompatienten zum primaeren Staging, zum Restaging nach Therapie und zur Rezidivdiagnostik an unserer Klinik durchgefuehrt. Fuer die Koregistration wurde ein Low-dose-CT ohne i.v.-Kontrastmittel verwendet. Durch die exakte anatomische Zuordnung der {sup 18}F-FDG aufnehmenden Laesionen wurden unklare oder falsch-positive PET-Befunde vermieden. Die PET-CT erzielte im Vergleich zur KM-verstaerkten CT eine hoehere Sensitivitaet und Spezifitaet bei Patienten mit HD und aggressiven NHL. Die Integration der PET-CT in die Planung der Strahlentherapie fuehrte zu einer Optimierung der Feldgrenzen. Die PET-CT hat sich bereits in der Phase der initialen klinischen Evaluation als wertvoll beim Staging und Restaging von Lymphomen erwiesen. Die exakte anatomische Zuordnung der PET-Informationen ist fuer eine sichere Befundung

  5. Feasibility of proton-activated implantable markers for proton range verification using PET

    Science.gov (United States)

    Cho, Jongmin; Ibbott, Geoffrey; Gillin, Michael; Gonzalez-Lepera, Carlos; Titt, Uwe; Paganetti, Harald; Kerr, Matthew; Mawlawi, Osama

    2013-11-01

    Proton beam range verification using positron emission tomography (PET) currently relies on proton activation of tissue, the products of which decay with a short half-life and necessitate an on-site PET scanner. Tissue activation is, however, negligible near the distal dose fall-off region of the proton beam range due to their high interaction energy thresholds. Therefore Monte Carlo simulation is often supplemented for comparison with measurement; however, this also may be associated with systematic and statistical uncertainties. Therefore, we sought to test the feasibility of using long-lived proton-activated external materials that are inserted or infused into the target volume for more accurate proton beam range verification that could be performed at an off-site PET scanner. We irradiated samples of ≥98% 18O-enriched water, natural Cu foils, and >97% 68Zn-enriched foils as candidate materials, along with samples of tissue-equivalent materials including 16O water, heptane (C7H16), and polycarbonate (C16H14O3)n, at four depths (ranging from 100% to 3% of center of modulation (COM) dose) along the distal fall-off of a modulated 160 MeV proton beam. Samples were irradiated either directly or after being embedded in Plastic Water® or balsa wood. We then measured the activity of the samples using PET imaging for 20 or 30 min after various delay times. Measured activities of candidate materials were up to 100 times greater than those of the tissue-equivalent materials at the four distal dose fall-off depths. The differences between candidate materials and tissue-equivalent materials became more apparent after longer delays between irradiation and PET imaging, due to the longer half-lives of the candidate materials. Furthermore, the activation of the candidate materials closely mimicked the distal dose fall-off with offsets of 1 to 2 mm. Also, signals from the foils were clearly visible compared to the background from the activated Plastic Water® and balsa wood

  6. Evaluation of PET Scanner Performance in PET/MR and PET/CT Systems: NEMA Tests

    OpenAIRE

    Mustafa Demir; Türkay Toklu; Mohammad Abuqbeitah; Hüseyin Çetin; H. Sezer Sezgin; Nami Yeyin; Kerim Sönmezoğlu

    2018-01-01

    Objective: The aim of the present study was to compare the performance of positron emission tomography (PET) component of PET/computed tomography (CT) with new emerging PET/magnetic resonance (MR) of the same vendor. Methods: According to National Electrical Manufacturers Association NU2-07, five separate experimental tests were performed to evaluate the performance of PET scanner of General Electric GE company; SIGNATM model PET/MR and GE Discovery 710 model PET/CT. The main investigated...

  7. Evaluation of PET Scanner Performance in PET/MR and PET/CT Systems: NEMA Tests

    OpenAIRE

    Demir, Mustafa; Toklu, Türkay; Abuqbeitah, Mohammad; Çetin, Hüseyin; Sezgin, H. Sezer; Yeyin, Nami; Sönmezoğlu, Kerim

    2018-01-01

    Objective: The aim of the present study was to compare the performance of positron emission tomography (PET) component of PET/computed tomography (CT) with new emerging PET/magnetic resonance (MR) of the same vendor. Methods: According to National Electrical Manufacturers Association NU2-07, five separate experimental tests were performed to evaluate the performance of PET scanner of General Electric GE company; SIGNATM model PET/MR and GE Discovery 710 model PET/CT. The main investigated asp...

  8. Analysis of FFAG accelerators and the evolution of circular accelerators; L'analyse des accelerateurs FFAG et l'evolution des accelerateurs circulaires

    Energy Technology Data Exchange (ETDEWEB)

    Laslett, J [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires; [Iowa State Univ., U.S. Office of Naval Research, Dept. of Physics and Institute for Atomic Research, Ames (United States)

    1961-07-01

    After rapidly comparing circular machines with the linear accelerator and the reasons for the choice of an annular high energy and very high intensity accelerator, recent problems concerning accelerator theory are discussed, with emphasis on their physical character. The FFAG principle. The limit of the energy of FFAG cyclotron. The setting-up and interpreting of mean energy of focusing terms for a spiral FFAG synchrotron. The limiting amplitude stable near the non-linear resonance 2Q{sub z} = Q{sub r}, as well as the linear coupling resonance of Walkinshaw 2Q{sub z} = Q{sub r}. The crossed-beam accelerator. The 40 MeV electron model of MURA. Two other parts deal with linear and non-linear methods of injection and extraction using a variable disturbance applied to the magnetic field, as well as to collective effects. The interaction of the beam with the accelerating cavities and the walls. The modification of the phase oscillation equation. The influence of the beams' high frequency fields on the Nielsen longitudinal instability. (author) [French] Apres une comparaison rapide des machines circulaires avec l'accelerateur lineaire et une motivation du choix en faveur d'un accelerateur circulaire de haute energie et tres haute intensite, des problemes recents de la theorie des accelerateurs sont discutes, en insistant sur leur contenu physique. Le principe FFAG. La limitation en energie des cyclotrons FFAG. L'etablissement et l'interpretation des termes de la force moyenne de focalisation d'un synchrotron FFAG spirale. L'amplitude de limite stable a proximite de la resonance non-lineaire Q{sub r} = N/3, ainsi que la resonance lineaire de couplage de Walkinshaw 2Q{sub z} = Q{sub r}. L'accelerateur a faisceaux croises. Le modele a electrons de 40 MeV du MURA. Deux autres chapitres sont consacres a des methodes lineaires et non-lineaires d'injection et d'extraction a l'aide d'une perturbation variable appliquee au champ magnetique, ainsi qu'aux effets collectifs. L

  9. 78 FR 27303 - Irradiation in the Production, Processing, and Handling of Animal Feed and Pet Food; Electron...

    Science.gov (United States)

    2013-05-10

    ...-0178] Irradiation in the Production, Processing, and Handling of Animal Feed and Pet Food; Electron... electron beam and x-ray sources for irradiation of poultry feed and poultry feed ingredients. This action... CFR part 579) to provide for the safe use of electron beam and x-ray sources for irradiation of...

  10. Stability of the drive beam in the decelerator of CLIC

    CERN Document Server

    Schulte, Daniel

    2002-01-01

    The RF power necessary to accelerate the main beam in the compact linear collider (CLIC) is generated by decelerating high-intensity low energy drive beams in 44 decelerators. Recently new decelerating structures (PETS, power extraction and transfer structures) have been developed. In these structures the RF energy travels with particularly high group velocity, which can affect efficiency and transverse stability. The paper considers the transverse beam stability in the decelerator as well as the longitudinal effects in the presence of dynamic and static imperfections.

  11. Quantitative assessment of the physical potential of proton beam range verification with PET/CT

    NARCIS (Netherlands)

    Knopf, A; Parodi, K.; Paganetti, Harald; Lo Cascio, E; Bonab, A; Bortfeld, Thomas

    2008-01-01

    A recent clinical pilot study demonstrated the feasibility of offline PET/CT range verification for proton therapy treatments. In vivo PET measurements are challenged by blood perfusion, variations of tissue compositions, patient motion and image co-registration uncertainties. Besides these

  12. Clinical usefulness of PET in the management of oral cancer. Comparison between FDG-PET and MET-PET

    International Nuclear Information System (INIS)

    Kitagawa, Yoshimasa; Saitoh, Masaaki; Nakamura, Mikiko

    2007-01-01

    Inductive chemoradiotherapy has played an important role in preserving organs and functions in patients with oral squamous cell carcinoma (SCC). To determine whether a reduced form of surgery should be performed after chemoradiotherapy, accurate evaluation of residual tumor cells is essential. We investigated the clinical value of positron emission tomography with 18 F labeled fluorodeoxyglucose (FDG-PET) in the management of oral SCCs. Forty-five patients underwent two FDG-PET studies, one prior to and one at 6 weeks after the chemoradiotherapy. Pretreatment FDG-PET was useful in predicting the response to treatment. Posttreatment FDG-PET could evaluate residual viable cells and prognosis. Organ preservation may be feasible based on PET evaluation. Hence FDG-PET is a valuable tool in the treatment of oral cancer. 11 C-Methionine (MET) is another promising tracer for PET that can be used to assess metabolic demand for amino acids in cancer cells. A MET-PET and FDG-PET study was performed during the same period to investigate diagnostic accuracy in 40 oral malignancies. Sensitivity and positive predictive value of MET-PET were 95% and 100%, respectively, and were comparable with those of FDG-PET. Further study is required to determine the diagnostic significance of MET-PET in evaluating response to chemoradiotherapy. (author)

  13. Clinical application of in vivo treatment delivery verification based on PET/CT imaging of positron activity induced at high energy photon therapy

    Science.gov (United States)

    Janek Strååt, Sara; Andreassen, Björn; Jonsson, Cathrine; Noz, Marilyn E.; Maguire, Gerald Q., Jr.; Näfstadius, Peder; Näslund, Ingemar; Schoenahl, Frederic; Brahme, Anders

    2013-08-01

    The purpose of this study was to investigate in vivo verification of radiation treatment with high energy photon beams using PET/CT to image the induced positron activity. The measurements of the positron activation induced in a preoperative rectal cancer patient and a prostate cancer patient following 50 MV photon treatments are presented. A total dose of 5 and 8 Gy, respectively, were delivered to the tumors. Imaging was performed with a 64-slice PET/CT scanner for 30 min, starting 7 min after the end of the treatment. The CT volume from the PET/CT and the treatment planning CT were coregistered by matching anatomical reference points in the patient. The treatment delivery was imaged in vivo based on the distribution of the induced positron emitters produced by photonuclear reactions in tissue mapped on to the associated dose distribution of the treatment plan. The results showed that spatial distribution of induced activity in both patients agreed well with the delivered beam portals of the treatment plans in the entrance subcutaneous fat regions but less so in blood and oxygen rich soft tissues. For the preoperative rectal cancer patient however, a 2 ± (0.5) cm misalignment was observed in the cranial-caudal direction of the patient between the induced activity distribution and treatment plan, indicating a beam patient setup error. No misalignment of this kind was seen in the prostate cancer patient. However, due to a fast patient setup error in the PET/CT scanner a slight mis-position of the patient in the PET/CT was observed in all three planes, resulting in a deformed activity distribution compared to the treatment plan. The present study indicates that the induced positron emitters by high energy photon beams can be measured quite accurately using PET imaging of subcutaneous fat to allow portal verification of the delivered treatment beams. Measurement of the induced activity in the patient 7 min after receiving 5 Gy involved count rates which were about

  14. Do carotid MR surface coils affect PET quantification in PET/MR imaging?

    International Nuclear Information System (INIS)

    Willemink, Martin J; Eldib, Mootaz; Leiner, Tim; Fayad, Zahi A; Mani, Venkatesh

    2015-01-01

    To evaluate the effect of surface coils for carotid MR imaging on PET quantification in a clinical simultaneous whole-body PET/MR scanner. A cylindrical phantom was filled with a homogeneous 2L water-FDG mixture at a starting dose of 301.2MBq. Clinical PET/MR and PET/CT systems were used to acquire PET-data without a coil (reference standard) and with two carotid MRI coils (Siemens Special Purpose 8-Channel and Machnet 4-Channel Phased Array). PET-signal attenuation was evaluated with Osirix using 51 (PET/MR) and 37 (PET/CT) circular ROIs. Mean and maximum standardized uptake values (SUVs) were quantified for each ROI. Furthermore, SUVs of PET/MR and PET/CT were compared. For validation, a patient was scanned with an injected dose of 407.7MBq on both a PET/CT and a PET/MR system without a coil and with both coils. PET/MR underestimations were -2.2% (Siemens) and -7.8% (Machnet) for SUVmean, and -1.2% (Siemens) and -3.3% (Machnet) for SUVmax, respectively. For PET/CT, underestimations were -1.3% (Siemens) and -1.4% (Machnet) for SUVmean and -0.5% (both Siemens and Machnet) for SUVmax, respectively using no coil data as reference. Except for PET/CT SUVmax values all differences were significant. SUVs differed significantly between PET/MR and PET/CT with SUVmean values of 0.51-0.55 for PET/MR and 0.68-0.69 for PET/CT, respectively. The patient examination showed that median SUVmean values measured in the carotid arteries decreased from 0.97 without a coil to 0.96 (Siemens) and 0.88 (Machnet). Carotid surface coils do affect attenuation correction in both PET/MR and PET/CT imaging. Furthermore, SUVs differed significantly between PET/MR and PET/CT.

  15. On-line monitoring of heavy-ion therapy using PET

    International Nuclear Information System (INIS)

    Pavlovic, M.

    2004-01-01

    In this presentation authors present results of on-line monitoring of heavy-ion therapy using PET. It is concluded that in-beam positron emission tomography is a feasible and valuable method for in-situ and non-invasive monitoring of heavy-ion therapy

  16. Limited value of fluorine-18-fluorodeoxyglucose PET for the differential diagnosis of focal liver lesions in patients with chronic hepatitis C virus infection

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, O. [Frankfurt Univ. (Germany). Dept. of Nuclear Medicine]|[Frankfurt Univ. (Germany). 2. Dept. of Internal Medicine; Trojan, J.; Zeuzem, S. [Frankfurt Univ. (Germany). 2. Dept. of Internal Medicine; Baum, R.P. [Frankfurt Univ. (Germany). Dept. of Nuclear Medicine

    1998-12-31

    Aim: The differentiation of HCC from liver metastasis or benign disorders by imaging studies based upon morphological aspects may be difficult. Method: In order to evaluate the role of tumour metabolism, we performed FDG-PET (whole-body PET and transmission-corrected regional scans of the liver as well as the SUV determined 60 min after injection of FDG) in ten consecutive patients with HCV-associated focal liver lesions. Definite diagnosis was established after ultrasound-guided liver biopsy followed by histopathological examination. These results were compared with ultrasound, computed tomography, serum anti-p53, and p53 protein expression. Results: The histologic examination revealed a HCC in five patients, regenerative nodules in three patients, and liver metastasis (primary malignancy: One adenocarcinoma and one neuroendocrine tumour) in the remaining two patients. Three of ten lesions were detectable by FDG-PET: two HCCs and one metastatic adenocarcinoma. Seven lesions were not distinguishable by FDG-PET (three HCCs, three regeneration nodules and one metastatic neuroendocrine tumour). In each patient hepatic lesions were visible either by ultrasound or CT. Both tumours (metatatic adenocarcinoma, moderately well-differentiated HCC) with the strongest expression of p53 also presented with highly increased FDG uptake. Conclusions: FDG-PET is not superior to ultrasound or CT and therefore does not allow the non-invasive differentiation of HCV-associated focal liver lesions. Tissue-diagnosis by means of liver-biopsy followed by histopathological examination remains the gold-standard for the differentiation of HCV-related liver lesions. The finding of the relationship of p53 protein overexpression with the SUV needs further confirmation. (orig.) [Deutsch] Ziel: Eine Differenzierung des hepatozellulaeren Karzinoms (HCC) gegenueber Lebermetastasen oder benignen Erkrankungen ist durch Einsatz morphologischer bildgebender Verfahren nicht immer moeglich. Untersuchungen

  17. From the coupling between ion beam analysis techniques and physico-chemical characterization methods to the study of irradiation effects on materials behaviour; Du couplage des techniques d'analyse par faisceaux d'ions et des methodes de caracterisation physico-chimique a l'etude des effets d'irradiation sur le comportement des materiaux

    Energy Technology Data Exchange (ETDEWEB)

    Millard-Pinard, N

    2003-07-01

    The general purpose of my research work is to follow and to interpret the surface evolution of materials, which have received several treatments. During my PhD and my post-doc work, my field of research was tribology. Since I arrived in the 'Aval du Cycle Electronucleaire' group of the Institut de Physique Nucleaire de Lyon, my research activities are in line with the CNRS program 'PACE ' (Programme sur l'Aval du Cycle Electronucleaire) within the ACTINET network. They are coordinated by the PARIS (Physico-chimie des actinides et autres radioelements en solution et aux interfaces) and NOMADE (NOuveaux MAteriaux pour les DEchets) GDR with ANDRA (Agence Nationale pour la gestion des Dechets RAdioactifs), EDF and IRSN (Institut de Radioprotection et de Surete Nucleaire) as partner organisations. My work focused on the study of fission products and actinides migration in barrier materials, which may be capable of assuring the long term safety of deep geological repositories. Until now, it was necessary to use the coupling of ion beam analysis techniques and physico-chemical characterization techniques. During the last few months, I have became interested in understanding radiolytic effects. This new orientation has led us to use ion beams as an irradiating tool. These irradiation experiments are pursued in three major projects. The study of cobalt sulfide inhibition effects of radiolysis gas production during the irradiation of model organic molecules. This is a collaboration with the IRSN, the Institut de Recherche sur la Catalyse and the Ecole Nationale Superieure des Mines de Saint-Etienne. A PhD, co-directed by M. Pijolat from ENSMSE and myself, concerning this study will start in October 2003. Water radiolysis effects on iron corrosion are also studied in the particular case of vitrified nuclear waste containers, which will be stored in deep geological repositories. One ANDRA financed PhD, co-directed by Nathalie Moncoffre and myself, is dedicated to this study

  18. FEASIBILITY OF POSITRON EMISSION TOMOGRAPHY OF DOSE DISTRIBUTION IN PROTON BEAM CANCER THERAPY

    International Nuclear Information System (INIS)

    BEEBE-WANG, J.J.; DILMANIAN, F.A.; PEGGS, S.G.; SCHLYEER, D.J.; VASKA, P.

    2002-01-01

    Proton therapy is a treatment modality of increasing utility in clinical radiation oncology mostly because its dose distribution conforms more tightly to the target volume than x-ray radiation therapy. One important feature of proton therapy is that it produces a small amount of positron-emitting isotopes along the beam-path through the non-elastic nuclear interaction of protons with target nuclei such as 12 C, 14 N, and 16 O. These radioisotopes, mainly 11 C, 13 N and 15 O, allow imaging the therapy dose distribution using positron emission tomography (PET). The resulting PET images provide a powerful tool for quality assurance of the treatment, especially when treating inhomogeneous organs such as the lungs or the head-and-neck, where the calculation of the dose distribution for treatment planning is more difficult. This paper uses Monte Carlo simulations to predict the yield of positron emitters produced by a 250 MeV proton beam, and to simulate the productions of the image in a clinical PET scanner

  19. Effect of Short PET Fiber and Electron Beam Irradiation on The Properties of Acrylonitrile Butadiene Rubber-Poly(Vinyl Chloride) (NBR-PVC) Blend

    International Nuclear Information System (INIS)

    Youssef, H.A.; Shaltout, N.A.; EI Nemer, K.F.; EI Miligy, A.A.

    2009-01-01

    Blend of acrylonitrile-butadiene rubber (NBR ) and ploy vinyl chloride(PYV) (70-30) has been loaded with different concentrations of polyethylene terephthalate (PET) fibers waste ( 0.5 - 40 p hr); in the presence of resorcinol hexamethylenetetramine - precipitated silica (RHS) as bonding agent system and pentaeritheroal tetraacrylate (PET A) as co agent. Curing of the prepared composites has been carried out by electron beam irradiation (25 - 150 kGy) under atmospheric conditions. Evaluations of mechanical, physical, and thermal properties of uncured as well as cured composites have been undertaken. It has been found that the tensile strength, tensile modulus at 25 % elongation and hardness were increased with irradiation dose as well as fiber loading whereas the elongation at break and soluble fraction were decreased. Moreover, it has been found that the thermal stability of prepared composites at constant fiber loading of 10 p hr is improved on irradiation up to 100 kGy. Confirmation of latter data has been found through calculation of activation energy, Ea of the thermal degradation process

  20. Effect of Short PET Fiber and Electron Beam Irradiation on The Properties of Acrylonitrile Butadiene Rubber-Poly(Vinyl Chloride) (NBR-PVC) Blend

    International Nuclear Information System (INIS)

    Youssef, H.A.; Shaltout, N.A.; EI Nemer, K.F.; EI Miligy, A.A.

    2008-01-01

    Blend of acrylonitrile-butadiene rubber (NBR ) and ploy vinyl chloride(PYV) (70-30) has been loaded with different concentrations of polyethylene terephthalate (PET) fibers waste ( 0.5 - 40 p hr); in the presence of resorcinol hexamethylenetetramine - precipitated silica (RHS) as bonding agent system and pentaeritheroal tetraacrylate (PET A) as co agent. Curing of the prepared composites has been carried out by electron beam irradiation (25 - 150 kGy) under atmospheric conditions. Evaluations of mechanical, physical, and thermal properties of uncured as well as cured composites have been undertaken. It has been found that the tensile strength, tensile modulus at 25 % elongation and hardness were increased with irradiation dose as well as fiber loading whereas the elongation at break and soluble fraction were decreased. Moreover, it has been found that the thermal stability of prepared composites at constant fiber loading of 10 p hr is improved on irradiation up to 100 kGy. Confirmation of latter data has been found through calculation of activation energy, Ea of the thermal degradation process

  1. PET attenuation coefficients from CT images: experimental evaluation of the transformation of CT into PET 511-keV attenuation coefficients.

    Science.gov (United States)

    Burger, C; Goerres, G; Schoenes, S; Buck, A; Lonn, A H R; Von Schulthess, G K

    2002-07-01

    The CT data acquired in combined PET/CT studies provide a fast and essentially noiseless source for the correction of photon attenuation in PET emission data. To this end, the CT values relating to attenuation of photons in the range of 40-140 keV must be transformed into linear attenuation coefficients at the PET energy of 511 keV. As attenuation depends on photon energy and the absorbing material, an accurate theoretical relation cannot be devised. The transformation implemented in the Discovery LS PET/CT scanner (GE Medical Systems, Milwaukee, Wis.) uses a bilinear function based on the attenuation of water and cortical bone at the CT and PET energies. The purpose of this study was to compare this transformation with experimental CT values and corresponding PET attenuation coefficients. In 14 patients, quantitative PET attenuation maps were calculated from germanium-68 transmission scans, and resolution-matched CT images were generated. A total of 114 volumes of interest were defined and the average PET attenuation coefficients and CT values measured. From the CT values the predicted PET attenuation coefficients were calculated using the bilinear transformation. When the transformation was based on the narrow-beam attenuation coefficient of water at 511 keV (0.096 cm(-1)), the predicted attenuation coefficients were higher in soft tissue than the measured values. This bias was reduced by replacing 0.096 cm(-1) in the transformation by the linear attenuation coefficient of 0.093 cm(-1) obtained from germanium-68 transmission scans. An analysis of the corrected emission activities shows that the resulting transformation is essentially equivalent to the transmission-based attenuation correction for human tissue. For non-human material, however, it may assign inaccurate attenuation coefficients which will also affect the correction in neighbouring tissue.

  2. The influence of electron-beam irradiation on some mechanical properties of commercial multilayer flexible packaging materials (PET MET/LDPE)

    International Nuclear Information System (INIS)

    Nogueira, Beatriz R.; Oliveira, Vitor M.; Moura, Esperidiana A.B.; Ortiz, Angel V.

    2009-01-01

    The treatment with electron-beam radiation is a promising approach to the controllable modification of the properties of the polymeric flexible packaging materials, in order to adjust their properties. In recent years electron-beam irradiation have been efficiently applied in the flexible packaging industry to promote crosslinking and scission of the polymeric chains in order to improve material mechanical properties. On the other hand, ionizing irradiation can also affect the polymeric materials itself leading to a production of free radicals. These free radicals can in turn lead to degradation and or cross-linking phenomena. The influence of electron beam irradiation on mechanical properties of commercial multilayer flexible packaging materials based on laminated low-density polyethylene (LDPE) and metallized poly(ethylene terephthalate) (PET) was studied. The PETmet/LDPE structure was irradiated with doses up to 120 kGy, using a 1.5 MeV electron beam accelerator, dose rate 11.22kGy/s, at room temperature in presence of air. The results showed that penetration resistance of the irradiated PETmet/LDPE film increase up to 10 %, except for radiation dose of 30 kGy that resulted in a slight decrease of ca. 3%, while the sealing resistance decreased ca. 8-26% in all doses (p < 0.05). In addition, the samples of PETmet/LDPE film at 45, 60, 75 and 105 kGy presented a gain up to 18 % in their original tensile strength at break, a gain of ca. 38% in their original elongation at break for radiation dose of 45 kGy and ca. 17% for radiation doses of 60, 75 and 120 kGy. (author)

  3. Imaging and PET - PET/CT imaging

    International Nuclear Information System (INIS)

    Von Schulthess, G.K.; Hany, Th.F.

    2008-01-01

    PET/CT has grown because the lack of anatomic landmarks in PET makes 'hardware-fusion' to anatomic cross-sectional data extremely useful. Addition of CT to PET improves specificity, but also sensitivity, and adding PET to CT adds sensitivity and specificity in tumor imaging. The synergistic advantage of adding CT is that the attenuation correction needed for PET data can also be derived from the CT data. This makes PET-CT 25-30% faster than PET alone, leading to higher patient throughput and a more comfortable examination for patients typically lasting 20 minutes or less. FDG-PET-CT appears to provide relevant information in the staging and therapy monitoring of many tumors, such as lung carcinoma, colorectal cancer, lymphoma, gynaecological cancers, melanoma and many others, with the notable exception of prostatic cancer. for this cancer, choline derivatives may possibly become useful radiopharmaceuticals. The published literature on the applications of FDG-PET-CT in oncology is still limited but several designed studies have demonstrated the benefits of PET-CT. (authors)

  4. Development of a small prototype for a proof-of-concept of OpenPET imaging

    International Nuclear Information System (INIS)

    Yamaya, Taiga; Yoshida, Eiji; Wakizaka, Hidekatsu; Kokuryo, Daisuke; Tsuji, Atsushi; Mitsuhashi, Takayuki; Tashima, Hideaki; Nishikido, Fumihiko; Inadama, Naoko; Murayama, Hideo; Kinouchi, Shoko; Inaniwa, Taku; Sato, Shinji; Nakajima, Yasunori; Kawai, Hideyuki; Haneishi, Hideaki; Suga, Mikio

    2011-01-01

    The OpenPET geometry is our new idea to visualize a physically opened space between two detector rings. In this paper, we developed the first small prototype to show a proof-of-concept of OpenPET imaging. Two detector rings of 110 mm diameter and 42 mm axial length were placed with a gap of 42 mm. The basic imaging performance was confirmed through phantom studies; the open imaging was realized at the cost of slight loss of axial resolution and 24% loss of sensitivity. For a proof-of-concept of PET image-guided radiation therapy, we carried out the in-beam tests with 11 C radioactive beam irradiation in the heavy ion medical accelerator in Chiba to visualize in situ distribution of primary particles stopped in a phantom. We showed that PET images corresponding to dose distribution were obtained. For an initial proof-of-concept of real-time multimodal imaging, we measured a tumor-inoculated mouse with 18 F-FDG, and an optical image of the mouse body surface was taken during the PET measurement by inserting a digital camera in the ring gap. We confirmed that the tumor in the gap was clearly visualized. The result also showed the extension effect of an axial field-of-view (FOV); a large axial FOV of 126 mm was obtained with the detectors that originally covered only an 84 mm axial FOV. In conclusion, our initial imaging studies showed promising performance of the OpenPET.

  5. Development of a small prototype for a proof-of-concept of OpenPET imaging

    Energy Technology Data Exchange (ETDEWEB)

    Yamaya, Taiga; Yoshida, Eiji; Wakizaka, Hidekatsu; Kokuryo, Daisuke; Tsuji, Atsushi; Mitsuhashi, Takayuki; Tashima, Hideaki; Nishikido, Fumihiko; Inadama, Naoko; Murayama, Hideo; Kinouchi, Shoko [Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Inaniwa, Taku; Sato, Shinji [Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Nakajima, Yasunori [Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, Kanagawa 226-8503 (Japan); Kawai, Hideyuki; Haneishi, Hideaki; Suga, Mikio, E-mail: taiga@nirs.go.jp [Chiba University, 1-33 Yayoicho, Inage-ku, Chiba 263-8522 (Japan)

    2011-02-21

    The OpenPET geometry is our new idea to visualize a physically opened space between two detector rings. In this paper, we developed the first small prototype to show a proof-of-concept of OpenPET imaging. Two detector rings of 110 mm diameter and 42 mm axial length were placed with a gap of 42 mm. The basic imaging performance was confirmed through phantom studies; the open imaging was realized at the cost of slight loss of axial resolution and 24% loss of sensitivity. For a proof-of-concept of PET image-guided radiation therapy, we carried out the in-beam tests with {sup 11}C radioactive beam irradiation in the heavy ion medical accelerator in Chiba to visualize in situ distribution of primary particles stopped in a phantom. We showed that PET images corresponding to dose distribution were obtained. For an initial proof-of-concept of real-time multimodal imaging, we measured a tumor-inoculated mouse with {sup 18}F-FDG, and an optical image of the mouse body surface was taken during the PET measurement by inserting a digital camera in the ring gap. We confirmed that the tumor in the gap was clearly visualized. The result also showed the extension effect of an axial field-of-view (FOV); a large axial FOV of 126 mm was obtained with the detectors that originally covered only an 84 mm axial FOV. In conclusion, our initial imaging studies showed promising performance of the OpenPET.

  6. Progress update on the development of the 3He linac for PET isotope production

    International Nuclear Information System (INIS)

    Young, P.; Sun, D.; Larson, D.; Pasquinelli, R.; Anderson, K.; Bieniosek, F.; Schmidt, C.W.; Popovic, M.; McCrory, E.; Webber, R.; Link, J.; Krohn, K.; Bida, J.

    1996-01-01

    In 1995, Fermilab and SAIC formed a collaboration with partners from the University of Washington (UW) and the Biomedical Research Foundation of Northwest Louisiana (BRF) to explore an innovative approach to the production of radioisotopes. The accelerator system that is being developed accelerates 3 He to 10.5 MeV and then delivers this beam to the target to produce the short lived radioisotopes of interest to the PET community ( 18 F, 15 0, 13 N, 11 C). Research is being conducted to investigate the contribution that this promising approach can make to clinical and research PET. The accelerator system has several very interesting aspects. These innovations include multiple RFQ accelerators configured in series, a gas stripper jet to doubly charge the low energy (1 MeV) 3 He beam, and an isochronous matching section to manipulate the transverse and maintain the longitudinal profile of the beam (without the use of an RF buncher) in the charge doubler transition section between RFQ's. This paper updates the progress of the PET 3 He RFQ accelerator, the current status of the design, and some of the interesting ongoing research. (author)

  7. Progress update on the development of the 3He linac for PET isotope production

    International Nuclear Information System (INIS)

    1996-09-01

    In 1995, Fermilab and SAIC formed a collaboration with partners from the University of Washington (UW) and the Biomedical Research Foundation of Northwest Louisiana (BRF) to explore an innovative approach to the production radioisotopes. The accelerator system that is being developed accelerates 3 He to 10.5 MeV and then delivers this beam to the target to produce the short lived radioisotopes of interest to the PET community ( 18 F, 15 0, 13 N, 11 C). Research is being conducted to investigate the contribution that this promising approach can make to clinical and research PET. The accelerator system has several very interesting aspects. These innovations include multiple RFQ accelerators configured in series, a gas stripper jet to doubly charge the low energy (I MeV) 3 He beam, and an isochronous matching section to manipulate the transverse and maintain the longitudinal profile of the beam (without the use of an RF buncher) in the charge doubler transition section between RFQ'S. This paper updates the progress of the PET 3 He RFQ accelerator, the current status of the design, and some of the interesting ongoing research

  8. ACE3P Computations of Wakefield Coupling in the CLIC Two-Beam Accelerator

    International Nuclear Information System (INIS)

    Candel, Arno

    2010-01-01

    The Compact Linear Collider (CLIC) provides a path to a multi-TeV accelerator to explore the energy frontier of High Energy Physics. Its novel two-beam accelerator concept envisions rf power transfer to the accelerating structures from a separate high-current decelerator beam line consisting of power extraction and transfer structures (PETS). It is critical to numerically verify the fundamental and higher-order mode properties in and between the two beam lines with high accuracy and confidence. To solve these large-scale problems, SLAC's parallel finite element electromagnetic code suite ACE3P is employed. Using curvilinear conformal meshes and higher-order finite element vector basis functions, unprecedented accuracy and computational efficiency are achieved, enabling high-fidelity modeling of complex detuned structures such as the CLIC TD24 accelerating structure. In this paper, time-domain simulations of wakefield coupling effects in the combined system of PETS and the TD24 structures are presented. The results will help to identify potential issues and provide new insights on the design, leading to further improvements on the novel CLIC two-beam accelerator scheme.

  9. Evaluation of the PET component of simultaneous [18F]choline PET/MRI in prostate cancer: comparison with [18F]choline PET/CT

    International Nuclear Information System (INIS)

    Wetter, Axel; Lipponer, Christine; Nensa, Felix; Altenbernd, Jens-Christian; Schlosser, Thomas; Lauenstein, Thomas; Heusch, Philipp; Ruebben, Herbert; Bockisch, Andreas; Poeppel, Thorsten; Nagarajah, James

    2014-01-01

    The aim of this study was to evaluate the positron emission tomography (PET) component of [ 18 F]choline PET/MRI and compare it with the PET component of [ 18 F]choline PET/CT in patients with histologically proven prostate cancer and suspected recurrent prostate cancer. Thirty-six patients were examined with simultaneous [ 18 F]choline PET/MRI following combined [ 18 F]choline PET/CT. Fifty-eight PET-positive lesions in PET/CT and PET/MRI were evaluated by measuring the maximum and mean standardized uptake values (SUV max and SUV mean ) using volume of interest (VOI) analysis. A scoring system was applied to determine the quality of the PET images of both PET/CT and PET/MRI. Agreement between PET/CT and PET/MRI regarding SUV max and SUV mean was tested using Pearson's product-moment correlation and Bland-Altman analysis. All PET-positive lesions that were visible on PET/CT were also detectable on PET/MRI. The quality of the PET images was comparable in both groups. Median SUV max and SUV mean of all lesions were significantly lower in PET/MRI than in PET/CT (5.2 vs 6.1, p max of PET/CT and PET/MRI (R = 0.86, p mean of PET/CT and PET/MRI (R = 0.81, p max of PET/CT vs PET/MRI and -1.12 to +2.23 between SUV mean of PET/CT vs PET/MRI. PET image quality of PET/MRI was comparable to that of PET/CT. A highly significant correlation between SUV max and SUV mean was found. Both SUV max and SUV mean were significantly lower in [ 18 F]choline PET/MRI than in [ 18 F]choline PET/CT. Differences of SUV max and SUV mean might be caused by different techniques of attenuation correction. Furthermore, differences in biodistribution and biokinetics of [ 18 F]choline between the subsequent examinations and in the respective organ systems have to be taken into account. (orig.)

  10. PET and PET/CT in tumour of undetermined origin; PET y PET/CT en tumor de origen indeterminado

    Energy Technology Data Exchange (ETDEWEB)

    Garcia O, J R [Nuclear Medicine and Molecular Imaging, PET/CT, Centro Medico ABC, Mexico D.F. (Mexico)

    2007-07-01

    In this presentation the following conclusions were obtained regarding the use of PET and PET/CT in patient with cancer of unknown primary: 1. Detection of the primary one in 1/3 at 1/2 of patient. 2. It detects metastases in other places in 50%. 3. It changes the initial therapy planned in 1/3 at 1/2 of patient. 4. Useful in initial phases of protocol study to limit the other procedures. After standard evaluation. Before advanced protocol. 5. PET/CT study increases the % of primary detection, although in a non significant way vs. PET. 6. They are required more studies to value their utility to a more objective manner. (Author)

  11. PET diagnosis. The decisive factor for early detection of the cancer

    International Nuclear Information System (INIS)

    Yonekura, Yoshiharu; Kusakabe, Kiyoko; Fukuda, Hiroshi; Inoue, Kentaro; Tanaka, Koichi; Murayama, Hideo; Amano, Masaharu; Oikawa, Koichi; Yamashita, Takashi

    2007-01-01

    The feature contains 8 articles concerned with the subject matter in the title. The first is a document of the interview with Dr. Yoshiharu Yonekura, the National Institute of Radiological Sciences (NIRS) President, by the editor in chief of the journal, entitled ''Twenty to Thirty years are Necessary for Development of Basic Technology''- discussed are progress of molecular imaging, present and future of positron emission tomography (PET) diagnosis. Lasting are the articles of: ''Recommendation for PET diagnosis'' by K. Kusakabe, Tokyo Women's Medical Univ.- the role of PET diagnosis in a mass examination; ''The present state and future development of PET diagnosis of cancer'' by H. Fukuda and K. Inoue, Tohoku Univ. Hospital- labeled compounds and others; ''Promotion of popularization of the diagnosis as a part of CSR (corporate social responsibility) in the local medicare- A participation of the Hospital of Chugoku Electric Power Co., Ltd. in the project'' by K. Tanaka; ''Trend of development of next generation PET equipment'' by H. Murayama, NIRS- equipments like PET/CT or PET/MRI, and with high system sensitivity (detector- and photo-elements, DOI detection, high performance circuit, etc.); ''Achievement and developing trend of the equipments in the manufacturer- Shimadzu Corp.'' by M. Amano- PET/CT; ''(the same title)- Sumitomo Heavy Industries, Ltd.'' by K. Oikawa- cyclotron and therapeutic heavy ion beam generator; and ''Research and development in Hamamatsu Photonics K.K.'' by T. Yamashita- high throughput PET and animal PET. (R.T.)

  12. PET and PET/CT in oncology: the key of diagnostic challenge

    International Nuclear Information System (INIS)

    Mortelmans, L.; Stroobants, S.; Spaepen, K.

    2004-01-01

    In this presentation authors present use of positron emission tomography (PET) in oncology. This lecture is divided to the following parts: (1) Assessment of treatment response; (2) Treatment monitoring by PET: clinical examples; (3) PET for early response assessment; (4) Use of PET in Radiotherapy planning

  13. In-treatment tests for the monitoring of proton and carbon-ion therapy with a large area PET system at CNAO

    Energy Technology Data Exchange (ETDEWEB)

    Rosso, V., E-mail: valeria.rosso@pi.infn.it [Department of Physics, University of Pisa and INFN, Pisa (Italy); Battistoni, G. [INFN Sezione di Milano, Milano (Italy); Belcari, N.; Camarlinghi, N. [Department of Physics, University of Pisa and INFN, Pisa (Italy); Ciocca, M. [Fondazione CNAO, Pavia (Italy); Collini, F. [Department of Physical Sciences, Earth and Environment, University of Siena and INFN, Pisa (Italy); Ferretti, S.; Kraan, A.C.; Lucenò, S. [Department of Physics, University of Pisa and INFN, Pisa (Italy); Molinelli, S.; Pullia, M. [Fondazione CNAO, Pavia (Italy); Sportelli, G.; Zaccaro, E.; Del Guerra, A. [Department of Physics, University of Pisa and INFN, Pisa (Italy)

    2016-07-11

    One of the most promising new radiotherapy techniques makes use of charged particles like protons and carbon ions, rather than photons. At present, there are more than 50 particle therapy centers operating worldwide, and many new centers are being constructed. Positron Emission Tomography (PET) is considered a well-established non-invasive technique to monitor range and delivered dose in patients treated with particle therapy. Nuclear interactions of the charged hadrons with the patient tissue lead to the production of β+ emitting isotopes (mainly {sup 15}O and {sup 11}C), that decay with a short lifetime producing a positron. The two 511 keV annihilation photons can be detected with a PET detector. In-beam PET is particularly interesting because it could allow monitoring the ions range also during dose delivery. A large area dual head PET prototype was built and tested. The system is based on an upgraded version of the previously developed DoPET prototype. Each head covers now 15×15 cm{sup 2} and is composed by 9 (3×3) independent modules. Each module consists of a 23×23 LYSO crystal matrix (2 mm pitch) coupled to H8500 PMT and is readout by custom front-end and a FPGA based data acquisition electronics. Data taken at the CNAO treatment facility in Pavia with proton and carbon beams impinging on heterogeneous phantoms demonstrate the DoPET capability to detect the presence of a small air cavity in the phantom.

  14. How PET is changing the management of cancer with radiotherapy

    International Nuclear Information System (INIS)

    Mac Manus, M.

    2005-01-01

    Information from PET scanning is transforming the management of many malignancies and the impact of PET is likely to increase further as new indications are recognised. PET is of particular value in patients treated with radiotherapy (RT) with curative intent. These patients rarely undergo invasive surgical staging and therefore imaging is crucial in determining the extent of disease before treatment. More accurate staging with PET means that futile aggressive RT or chcmoRT can be avoided in patients with incurable extensive disease. FDG-PET is of proven value in the staging of common metabolically-active malignancies treated with radiotherapy. These include lung cancer, head and neck cancer, lymphomas and oesophageal carcinoma. It has been shown that PET can improve the selection of patients for radical surgery or radiotherapy in lung cancer and that PET-based staging more accurately predicts survival than conventional staging. For those patients that remain eligible for definitive RT after PET. treatment can be more accurately targeted at the tumour and involved regional nodes. The value of PET for treatment planning is enhanced significantly when PET and CT scans are acquired on a combined PET/CT scanner. Fused PET-CT images can be imported into the radiotherapy planning computer and used to accurately target tumour with the best beam arrangement. After treatment, response may be hard to assess with structural imaging. PET-rcsponse to chemotherapy or radiotherapy in non-small cell lung cancer (NSCLC) predicts survival in NSCLC more accurately than CT response. However, PET has much more potential than imaging with FDG alone can realise. Markers such as FLT can be used to image proliferation in tumours, misonidazole or FAZA can be used to image hypoxia and labeled metabolites of anti-cancer drugs such as 5-FU can be used to study pharmacokinetics. New combinations of radiation and drugs may emerge that can be selected based on biological characteristics of

  15. Inclusion of PET-CT into planning of primary or neoadjuvant chemoradiotherapy of esophageal cancer improves prognosis

    Energy Technology Data Exchange (ETDEWEB)

    Metzger, Jan-Christopher; Vaupel, Peter; Schmidberger, Heinz; Mayer, Arnulf [University Medical Center, Department of Radiation Oncology and Radiotherapy, Mainz (Germany); Wollschlaeger, Daniel [University Medical Center, Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), Mainz (Germany); Miederer, Matthias [University Medical Center, Department of Nuclear Medicine, Mainz (Germany); Moehler, Markus [University Medical Center, Department of Internal Medicine I, Mainz (Germany)

    2017-10-15

    data suggest for the first time that the use of PET-CT in the framework of staging and planning of primary or neoadjuvant chemoradiotherapy for esophageal cancer has a favorable impact on patient survival. (orig.) [German] Die Positronenemissionstomographie-Computertomographie (PET-CT) ist heute sowohl im Staging als auch in der Bestrahlungsplanung im Rahmen der primaeren oder neoadjuvanten Radiochemotherapie bei Oesophaguskarzinom weit verbreitet. Sie fuehrt haeufig zu Veraenderungen des strahlentherapeutischen Zielvolumens. Im Falle der Detektion von Fernmetastasen kann sie auch den Wechsel zu einem palliativen Konzept nach sich ziehen. So wird Patienten eine therapieassoziierte Toxizitaet erspart, der kein entsprechender Nutzen gegenuebersteht. Ob die PET-CT hierdurch jedoch einen nachweisbar guenstigen Einfluss auf das Ueberleben der Patienten nimmt, ist aufgrund fehlender Studien zum gegenwaertigen Zeitpunkt nicht klar. Retrospektiv wurden die Ueberlebensdaten von 145 Patienten mit Oesophaguskarzinomen der Stadien I (8 Patienten; 5 %), II (45; 31 %), III (79; 55 %) und IV (8; 5 %) sowie mit unbekanntem Stadium (5; 4 %) analysiert. Die Patienten hatten zwischen 1999 und 2014 in der Klinik fuer Radioonkologie der Universitaetsmedizin Mainz entweder eine primaere Radiochemotherapie (n = 101) oder eine neoadjuvante Radiochemotherapie erhalten, gefolgt von einer transabdominalen oder transthorakalen Tumorresektion (n = 44). 64 von insgesamt 145 Patienten (44 %) hatten eine PET-CT erhalten. Der Einsatz der PET-CT war in der univariaten Analyse mit einem signifikant laengeren lokalrezidivfreien Ueberleben (p = 0,006) und einem Trend hin zu einem messbar laengeren Gesamtueberleben (p = 0,071) assoziiert. Im Kollektiv der Patienten mit PET-CT wurden signifikant mehr Patienten operiert (20 % vs. 44 %; p = 0,002). Um einen moeglichen Confounder-Effekt auszuschliessen, wurde eine multivariate Cox-Regression unter Einschluss dieser beiden Variablen durchgefuehrt. Hier zeigte

  16. Trends in PET imaging

    International Nuclear Information System (INIS)

    Moses, William W.

    2000-01-01

    Positron Emission Tomography (PET) imaging is a well established method for obtaining information on the status of certain organs within the human body or in animals. This paper presents an overview of recent trends PET instrumentation. Significant effort is being expended to develop new PET detector modules, especially those capable of measuring depth of interaction. This is aided by recent advances in scintillator and pixellated photodetector technology. The other significant area of effort is development of special purpose PET cameras (such as for imaging breast cancer or small animals) or cameras that have the ability to image in more than one modality (such as PET / SPECT or PET / X-Ray CT)

  17. The beam-kicker system of the synchrotron Saturne. Magnetic field and particle orbit computations. Experimental results (1963); Le percuteur de faisceau de Saturne. Calcul du champ magnetique et des trajectoires. Verifications experimentales (1963)

    Energy Technology Data Exchange (ETDEWEB)

    Gouttefangeas, M; Katz, A; Rastoix, G [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1963-07-01

    In this report is briefly described the beam-kicker system of the synchrotron Saturne. An analysis of its operation based on the sampling method is given, as well as two methods for computing toe magnetic field produced by a set of endless conductors in the neighbourhood of a conducting shield where eddy currents are circulating. The first method leads to the resolution of a bi-dimensional Laplace equation with first kind boundary conditions (Dirichlet problem); the second one translates to electromagnetism the electrical images method currently used in electrostatics and yields the magnetic field as the sum of a triple series expansion in the general case of a set of conductors located in a parallelepipedal box. Finally are given the results obtained in computing on IBM 7090 the perturbation of the particle motion due to the beam-kicker. These results are compared with the experimental data. (authors) [French] Ce rapport decrit brievement le dispositif percuteur de faisceau mis en place sur le synchrotron Saturne. On y trouvera une analyse de se fonctionnement a partir de la theorie des echantillonnages. On indique egalment deux methodes de calcul du champ magnetique produit par un system de conducteurs indefinis en presence d'un blindage conducteur parcouru par des courants de Foucault: la premiere se ramene a la resolution d'une equation de Laplace a deux dimensions avec des conditions aux limites de premiere espece (probleme de Dirichlet), la seconde transpose en electromagnetisme la methode des images electriques classique en electrostatique et permet d'exprimer le champ magnetique sous la forme de la somme d'une serie triple dans le cas general d'un systeme de conducteurs contenus dans un blindage parallelepipedique. Pour terminer, on mentionne les resultats du calcul numerique de la perturbation de la trajectoire des particules sous l'effet du percuteur et on compare ces resultats aux resultats experimentaux. (auteurs)

  18. Present and future of PET and PET/CT in gynaecologic malignancies

    International Nuclear Information System (INIS)

    Musto, Alessandra; Rampin, Lucia; Nanni, Cristina; Marzola, Maria Cristina; Fanti, Stefano; Rubello, Domenico

    2011-01-01

    Objectives: To review the published data in literature on patients affected by gynaecological malignancies to establish the role of 18 F-FDG positron emission tomography (PET) and PET/CT in comparison to conventional imaging (CI). Materials and methods: All papers specifically addressed to the role of 18 F-FDG PET and PET/CT in gynaecological malignancies published on PubMed/Medline, in abstracts from the principal international congresses, in the guidelines from national Societies that had appeared in literature until November 2009 were considered for the purpose of the present study. Results and conclusions: The use of 18 F-FDG PET, and even more of 18 F-FDG PET/CT, is increasing in the follow up of patients with gynaecologic malignancies and suspected recurrent disease: there is evidence in the literature that 18 F-FDG PET/CT has a higher sensitivity than CI in depicting occult metastatic spread. An interesting issue is represented by patients with ovarian cancer with an increase of the specific biomarker, CA-125, and negative/inconclusive findings at CI. The use of 18 F-FDG PET in differential diagnosis and staging is more controversial, but there is some evidence that a baseline PET examination performed before commencing therapy, for staging purpose, is also useful to evaluate the response to chemoradiation treatment. In several papers it has been suggested a relevant role of 18 F-FDG PET/CT in evaluating the entity of response to treatment and therefore to plan the subsequent therapeutic strategy.

  19. Positron Emission Tomography imaging with the SmartPET system

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, R.J. [Department of Physics, University of Liverpool, Liverpool, Merseyside L69 7ZE (United Kingdom)], E-mail: cooperrj@ornl.gov; Boston, A.J.; Boston, H.C.; Cresswell, J.R.; Grint, A.N.; Harkness, L.J.; Nolan, P.J.; Oxley, D.C.; Scraggs, D.P.; Mather, A.R. [Department of Physics, University of Liverpool, Liverpool, Merseyside L69 7ZE (United Kingdom); Lazarus, I.; Simpson, J. [STFC Daresbury Laboratory, Daresbury, Warrington, Cheshire WA4 4AD (United Kingdom)

    2009-07-21

    The Small Animal Reconstruction Tomograph for Positron Emission Tomography (SmartPET) project is the development of a small animal Positron Emission Tomography (PET) demonstrator based on the use of High-Purity Germanium (HPGe) detectors and state of the art digital electronics. The experimental results presented demonstrate the current performance of this unique system. By performing high precision measurements of one of the SmartPET HPGe detectors with a range of finely collimated gamma-ray beams the response of the detector as a function of gamma-ray interaction position has been quantified, facilitating the development of parametric Pulse Shape Analysis (PSA) techniques and algorithms for the correction of imperfections in detector performance. These algorithms have then been applied to data from PET imaging measurements using two such detectors in conjunction with a specially designed rotating gantry. In this paper we show how the use of parametric PSA approaches allows over 60% of coincident events to be processed and how the nature and complexity of an event has direct implications for the quality of the resulting image.

  20. A new PET detector concept for compact preclinical high-resolution hybrid MR-PET

    Science.gov (United States)

    Berneking, Arne; Gola, Alberto; Ferri, Alessandro; Finster, Felix; Rucatti, Daniele; Paternoster, Giovanni; Jon Shah, N.; Piemonte, Claudio; Lerche, Christoph

    2018-04-01

    This work presents a new PET detector concept for compact preclinical hybrid MR-PET. The detector concept is based on Linearly-Graded SiPM produced with current FBK RGB-HD technology. One 7.75 mm x 7.75 mm large sensor chip is coupled with optical grease to a black coated 8 mm x 8 mm large and 3 mm thick monolithic LYSO crystal. The readout is obtained from four readout channels with the linear encoding based on integrated resistors and the Center of Gravity approach. To characterize the new detector concept, the spatial and energy resolutions were measured. Therefore, the measurement setup was prepared to radiate a collimated beam to 25 different points perpendicular to the monolithic scintillator crystal. Starting in the center point of the crystal at 0 mm / 0 mm and sampling a grid with a pitch of 1.75 mm, all significant points of the detector were covered by the collimator beam. The measured intrinsic spatial resolution (FWHM) was 0.74 +/- 0.01 mm in x- and 0.69 +/- 0.01 mm in the y-direction at the center of the detector. At the same point, the measured energy resolution (FWHM) was 13.01 +/- 0.05 %. The mean intrinsic spatial resolution (FWHM) over the whole detector was 0.80 +/- 0.28 mm in x- and 0.72 +/- 0.19 mm in y-direction. The energy resolution (FWHM) of the detector was between 13 and 17.3 % with an average energy resolution of 15.7 +/- 1.0 %. Due to the reduced thickness, the sensitivity of this gamma detector is low but still higher than pixelated designs with the same thickness due to the monolithic crystals. Combining compact design, high spatial resolution, and high sensitivity, the detector concept is particularly suitable for applications where the scanner bore size is limited and high resolution is required - as is the case in small animal hybrid MR-PET.

  1. Effects of high energy (MeV) ion beam irradiation on polyethylene terephthalate

    International Nuclear Information System (INIS)

    Singh, Nandlal; Sharma, Anita; Avasthi, D.K.

    2003-01-01

    Irradiation effects of 50 MeV Li 3+ ion beams in polyethylene terephthalate (PET) films were studied with respect to their structural and electrical properties by using Fourier transform infrared (FTIR) spectroscopy and ac electrical measurement in the frequency range: 50-100 kHz at different temperatures of 30-150 deg. C. It is found that ac resistivity of PET decreases as frequency increases. The temperature dependencies of dielectric loss tangent exhibit a peak (T g ) at 60 deg. C. The capacitance value of irradiated PET is almost temperature independent and ones increases with an increasing of lithium fluence. FTIR spectra show various bands related to C-H, C-O, C-O-C molecular bonds and groups which get modified or break down due to ion beam irradiation

  2. Comparison of PET/CT with Sequential PET/MRI Using an MR-Compatible Mobile PET System.

    Science.gov (United States)

    Nakamoto, Ryusuke; Nakamoto, Yuji; Ishimori, Takayoshi; Fushimi, Yasutaka; Kido, Aki; Togashi, Kaori

    2018-05-01

    The current study tested a newly developed flexible PET (fxPET) scanner prototype. This fxPET system involves dual arc-shaped detectors based on silicon photomultipliers that are designed to fit existing MRI devices, allowing us to obtain fused PET and MR images by sequential PET and MR scanning. This prospective study sought to evaluate the image quality, lesion detection rate, and quantitative values of fxPET in comparison with conventional whole-body (WB) PET and to assess the accuracy of registration. Methods: Seventeen patients with suspected or known malignant tumors were analyzed. Approximately 1 h after intravenous injection of 18 F-FDG, WB PET/CT was performed, followed by fxPET and MRI. For reconstruction of fxPET images, MRI-based attenuation correction was applied. The quality of fxPET images was visually assessed, and the number of detected lesions was compared between the 2 imaging methods. SUV max and maximum average SUV within a 1 cm 3 spheric volume (SUV peak ) of lesions were also compared. In addition, the magnitude of misregistration between fxPET and MR images was evaluated. Results: The image quality of fxPET was acceptable for diagnosis of malignant tumors. There was no significant difference in detectability of malignant lesions between fxPET and WB PET ( P > 0.05). However, the fxPET system did not exhibit superior performance to the WB PET system. There were strong positive correlations between the 2 imaging modalities in SUV max (ρ = 0.88) and SUV peak (ρ = 0.81). SUV max and SUV peak measured with fxPET were approximately 1.1-fold greater than measured with WB PET. The average misregistration between fxPET and MR images was 5.5 ± 3.4 mm. Conclusion: Our preliminary data indicate that running an fxPET scanner near an existing MRI system provides visually and quantitatively acceptable fused PET/MR images for diagnosis of malignant lesions. © 2018 by the Society of Nuclear Medicine and Molecular Imaging.

  3. From the coupling between ion beam analysis techniques and physico-chemical characterization methods to the study of irradiation effects on materials behaviour; Du couplage des techniques d'analyse par faisceaux d'ions et des methodes de caracterisation physico-chimique a l'etude des effets d'irradiation sur le comportement des materiaux

    Energy Technology Data Exchange (ETDEWEB)

    Millard-Pinard, N

    2003-07-01

    The general purpose of my research work is to follow and to interpret the surface evolution of materials, which have received several treatments. During my PhD and my post-doc work, my field of research was tribology. Since I arrived in the 'Aval du Cycle Electronucleaire' group of the Institut de Physique Nucleaire de Lyon, my research activities are in line with the CNRS program 'PACE ' (Programme sur l'Aval du Cycle Electronucleaire) within the ACTINET network. They are coordinated by the PARIS (Physico-chimie des actinides et autres radioelements en solution et aux interfaces) and NOMADE (NOuveaux MAteriaux pour les DEchets) GDR with ANDRA (Agence Nationale pour la gestion des Dechets RAdioactifs), EDF and IRSN (Institut de Radioprotection et de Surete Nucleaire) as partner organisations. My work focused on the study of fission products and actinides migration in barrier materials, which may be capable of assuring the long term safety of deep geological repositories. Until now, it was necessary to use the coupling of ion beam analysis techniques and physico-chemical characterization techniques. During the last few months, I have became interested in understanding radiolytic effects. This new orientation has led us to use ion beams as an irradiating tool. These irradiation experiments are pursued in three major projects. The study of cobalt sulfide inhibition effects of radiolysis gas production during the irradiation of model organic molecules. This is a collaboration with the IRSN, the Institut de Recherche sur la Catalyse and the Ecole Nationale Superieure des Mines de Saint-Etienne. A PhD, co-directed by M. Pijolat from ENSMSE and myself, concerning this study will start in October 2003. Water radiolysis effects on iron corrosion are also studied in the particular case of vitrified nuclear waste containers, which will be stored in deep geological repositories. One ANDRA financed PhD, co-directed by Nathalie Moncoffre and myself, is

  4. Present and future of PET and PET/CT in gynaecologic malignancies

    Energy Technology Data Exchange (ETDEWEB)

    Musto, Alessandra [Department of Nuclear Medicine, PET Center, Policlinico Sant' Orsola Malpighi, Bologna University, Bologna (Italy); Rampin, Lucia [Department of Nuclear Medicine, PET Center, Radiology, Medical Physics, Santa Maria della Misericordia Hospital, viale tre martiri 140, 45100 Rovigo (Italy); Nanni, Cristina [Department of Nuclear Medicine, PET Center, Policlinico Sant' Orsola Malpighi, Bologna University, Bologna (Italy); Marzola, Maria Cristina [Department of Nuclear Medicine, PET Center, Radiology, Medical Physics, Santa Maria della Misericordia Hospital, viale tre martiri 140, 45100 Rovigo (Italy); Fanti, Stefano [Department of Nuclear Medicine, PET Center, Policlinico Sant' Orsola Malpighi, Bologna University, Bologna (Italy); Rubello, Domenico, E-mail: domenico.rubello@libero.it [Department of Nuclear Medicine, PET Center, Radiology, Medical Physics, Santa Maria della Misericordia Hospital, viale tre martiri 140, 45100 Rovigo (Italy)

    2011-04-15

    Objectives: To review the published data in literature on patients affected by gynaecological malignancies to establish the role of {sup 18}F-FDG positron emission tomography (PET) and PET/CT in comparison to conventional imaging (CI). Materials and methods: All papers specifically addressed to the role of {sup 18}F-FDG PET and PET/CT in gynaecological malignancies published on PubMed/Medline, in abstracts from the principal international congresses, in the guidelines from national Societies that had appeared in literature until November 2009 were considered for the purpose of the present study. Results and conclusions: The use of {sup 18}F-FDG PET, and even more of {sup 18}F-FDG PET/CT, is increasing in the follow up of patients with gynaecologic malignancies and suspected recurrent disease: there is evidence in the literature that {sup 18}F-FDG PET/CT has a higher sensitivity than CI in depicting occult metastatic spread. An interesting issue is represented by patients with ovarian cancer with an increase of the specific biomarker, CA-125, and negative/inconclusive findings at CI. The use of {sup 18}F-FDG PET in differential diagnosis and staging is more controversial, but there is some evidence that a baseline PET examination performed before commencing therapy, for staging purpose, is also useful to evaluate the response to chemoradiation treatment. In several papers it has been suggested a relevant role of {sup 18}F-FDG PET/CT in evaluating the entity of response to treatment and therefore to plan the subsequent therapeutic strategy.

  5. Skull base meningioma. Surgical and adjuvant treatment with clinical and PET evaluation

    International Nuclear Information System (INIS)

    Gudjonsson, O.

    2001-01-01

    The treatment strategy for skull base meningiomas remains a controversial issue. Because of the proximity of these tumours to critical neurovascular structures, the risk for vascular damage and new cranial neuropathies postoperatively is significant. To avoid unacceptable neurological deficits the surgical treatment strategy includes different surgical approaches and a subtotal removal of these tumours in some cases. However, because the rate of recurrence and progression is significant in these patients, a demand for adjuvant treatment and better prognostic methods is called for so that treatment and follow-up can be tailored to each patient. Accordingly, we have chosen to evaluate general outcome and facial nerve function after translabyrinthine and transcochlear approaches for cerebellopontine angle (CPA) meningiomas. Furthermore, we have evaluated two adjuvant treatments, namely, irradiation by high-energy proton beams and medical treatment with interferon-alpha as well as evaluation of the treatment effect with 11 C-L-methionine PET. In addition, we have evaluated a new PET tracer ( 76 Br-BrdU) for 'in vivo' determination of the growth potential of intracranial tumours. Conclusion: The translabyrinthine and transcochlear approaches are apparently safe surgical procedures in the treatment of CPA meningiomas. Proton beam therapy is technically feasible as suggested by the fact that only minimal side effects were observed. Moreover, none of the meningiomas treated have shown progression during a 36-month follow-up. Our results indicate that IFN-alpha can be an effective oncostatic treatment for certain patients with meningiomas. The 11 C-L-methionine PET method might be used as a complement to CT or MRI in the evaluation of the effect of proton beam and IFN-alpha treatment in meningiomas. The present attempt failed to demonstrate that the PET tracer 76 Br-BrdU could be used for the non-invasive characterisation of growth potential in brain, tumours

  6. Skull base meningioma. Surgical and adjuvant treatment with clinical and PET evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Gudjonsson, O

    2001-05-01

    The treatment strategy for skull base meningiomas remains a controversial issue. Because of the proximity of these tumours to critical neurovascular structures, the risk for vascular damage and new cranial neuropathies postoperatively is significant. To avoid unacceptable neurological deficits the surgical treatment strategy includes different surgical approaches and a subtotal removal of these tumours in some cases. However, because the rate of recurrence and progression is significant in these patients, a demand for adjuvant treatment and better prognostic methods is called for so that treatment and follow-up can be tailored to each patient. Accordingly, we have chosen to evaluate general outcome and facial nerve function after translabyrinthine and transcochlear approaches for cerebellopontine angle (CPA) meningiomas. Furthermore, we have evaluated two adjuvant treatments, namely, irradiation by high-energy proton beams and medical treatment with interferon-alpha as well as evaluation of the treatment effect with {sup 11}C-L-methionine PET. In addition, we have evaluated a new PET tracer ({sup 76}Br-BrdU) for 'in vivo' determination of the growth potential of intracranial tumours. Conclusion: The translabyrinthine and transcochlear approaches are apparently safe surgical procedures in the treatment of CPA meningiomas. Proton beam therapy is technically feasible as suggested by the fact that only minimal side effects were observed. Moreover, none of the meningiomas treated have shown progression during a 36-month follow-up. Our results indicate that IFN-alpha can be an effective oncostatic treatment for certain patients with meningiomas. The {sup 11}C-L-methionine PET method might be used as a complement to CT or MRI in the evaluation of the effect of proton beam and IFN-alpha treatment in meningiomas. The present attempt failed to demonstrate that the PET tracer {sup 76}Br-BrdU could be used for the non-invasive characterisation of growth potential in

  7. PET and PET/CT in tumour of undetermined origin

    International Nuclear Information System (INIS)

    Garcia O, J.R.

    2007-01-01

    In this presentation the following conclusions were obtained regarding the use of PET and PET/CT in patient with cancer of unknown primary: 1. Detection of the primary one in 1/3 at 1/2 of patient. 2. It detects metastases in other places in 50%. 3. It changes the initial therapy planned in 1/3 at 1/2 of patient. 4. Useful in initial phases of protocol study to limit the other procedures. After standard evaluation. Before advanced protocol. 5. PET/CT study increases the % of primary detection, although in a non significant way vs. PET. 6. They are required more studies to value their utility to a more objective manner. (Author)

  8. Microfabrication of biocompatible hydrogels by proton beam writing

    Science.gov (United States)

    Nagasawa, Naotsugu; Kimura, Atsushi; Idesaki, Akira; Yamada, Naoto; Koka, Masashi; Satoh, Takahiro; Ishii, Yasuyuki; Taguchi, Mitsumasa

    2017-10-01

    Functionalization of biocompatible materials is expected to be widely applied in biomedical engineering and regenerative medicine fields. Hydrogel has been expected as a biocompatible scaffold which support to keep an organ shape during cell multiplying in regenerative medicine. Therefore, it is important to understanding a surface microstructure (minute shape, depth of flute) and a chemical characteristic of the hydrogel affecting the cell culture. Here, we investigate the microfabrication of biocompatible polymeric materials, such as the water-soluble polysaccharide derivatives hydroxypropyl cellulose and carboxymethyl cellulose, by use of proton beam writing (PBW). These polymeric materials were dissolved thoroughly in pure water using a planetary centrifugal mixer, and a sample sheet (1 mm thick) was formed on polyethylene terephthalate (PET) film. Crosslinking to form hydrogels was induced using a 3.0 MeV focused proton beam from the single-ended accelerator at Takasaki Ion Accelerators for Advanced Radiation Application. The aqueous samples were horizontally irradiated with the proton beam through the PET cover film, and then rinsed with deionized water. Microstructured hydrogels were obtained on the PET film using the PBW technique without toxic crosslinking reagents. Cell adhesion and proliferation on the microfabricated biocompatible hydrogels were investigated. Microfabrication of HPC and CMC by the use of PBW is expected to produce new biocompatible materials that can be applied in biological and medical applications.

  9. PET/MR in oncology

    DEFF Research Database (Denmark)

    Balyasnikova, Svetlana; Löfgren, Johan; de Nijs, Robin

    2012-01-01

    of the challenges inherent in this new technology, but focus on potential applications for simultaneous PET/MR in the field of oncology. Methods and tracers for use with the PET technology will be familiar to most readers of this journal; thus this paper aims to provide a short and basic introduction to a number...... be applied together with PET increasing the amount of information about the tissues of interest. The potential clinical benefit of applying PET/MR in staging, radiotherapy planning and treatment evaluation in oncology, as well as the research perspectives for the use of PET/MR in the development of new...

  10. PET/MRI and PET/CT in advanced gynaecological tumours: initial experience and comparison

    Energy Technology Data Exchange (ETDEWEB)

    Queiroz, Marcelo A.; Schulthess, Gustav von; Veit-Haibach, Patrick [University Hospital Zurich, Department Medical Radiology, Nuclear Medicine, Zurich (Switzerland); University Hospital Zurich, Department Medical Radiology, Diagnostic and Interventional Radiology, Zurich (Switzerland); University of Zurich, Zurich (Switzerland); Kubik-Huch, Rahel A.; Freiwald-Chilla, Bianka [Kantonsspital Baden AG, Department of Radiology, Baden (Switzerland); Hauser, Nik [Kantonsspital Baden AG, Department of Gynaecology, Baden (Switzerland); Froehlich, Johannes M. [Guerbet AG, Zurich (Switzerland)

    2015-08-15

    To compare the diagnostic accuracy of PET/MRI and PET/CT for staging and re-staging advanced gynaecological cancer patients as well as identify the potential benefits of each method in such a population. Twenty-six patients with suspicious or proven advanced gynaecological cancer (12 ovarian, seven cervical, one vulvar and four endometrial tumours, one uterine metastasis, and one primary peritoneal cancer) underwent whole-body imaging with a sequential trimodality PET/CT/MR system. Images were analysed regarding primary tumour detection and delineation, loco-regional lymph node staging, and abdominal/extra-abdominal distant metastasis detection (last only by PET/CT). Eighteen (69.2 %) patients underwent PET/MRI for primary staging and eight patients (30.8 %) for re-staging their gynaecological malignancies. For primary tumour delineation, PET/MRI accuracy was statistically superior to PET/CT (p < 0.001). Among the different types of cancer, PET/MRI presented better tumour delineation mainly for cervical (6/7) and endometrial (2/3) cancers. PET/MRI for local evaluation as well as PET/CT for extra-abdominal metastases had therapeutic consequences in three and one patients, respectively. PET/CT detected 12 extra-abdominal distant metastases in 26 patients. PET/MRI is superior to PET/CT for primary tumour delineation. No differences were found in detection of regional lymph node involvement and abdominal metastases detection. (orig.)

  11. {sup 18}F-FDG PET and PET/CT in Burkitt's lymphoma

    Energy Technology Data Exchange (ETDEWEB)

    Karantanis, Dimitrios, E-mail: dkarantanis@nuclmed.ne [Division of Nuclear Medicine, Department of Radiology, Mayo Clinic, Rochester, MN (United States); Durski, Jolanta M.; Lowe, Val J.; Nathan, Mark A.; Mullan, Brian P. [Division of Nuclear Medicine, Department of Radiology, Mayo Clinic, Rochester, MN (United States); Georgiou, Evangelos [Medical Physics Department, Medical School, University of Athens (Greece); Johnston, Patrick B. [Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN (United States); Wiseman, Gregory A. [Division of Nuclear Medicine, Department of Radiology, Mayo Clinic, Rochester, MN (United States)

    2010-07-15

    Objective: To explore the value of {sup 18}F fluorodeoxy-glucose (FDG) positron emission tomography (PET) in Burkitt's lymphoma. Methods: All Burkitt's lymphoma patients referred for FDG PET or FDG PET/computed tomography (CT) exams at our institution from June 2003 to June 2006 were included. Selected patients were followed and clinical information was reviewed retrospectively. Results from FDG PET-PET/CT, as blindly reviewed by a consensus of two experienced readers, were compared with the status of the disease as determined by other laboratory, clinical and imaging exams and clinical follow-up. FDG PET-PET/CT results were classified as true positive or negative and false positive or negative. The degree of FDG uptake in the positive lesions was semiquantified as maximum standard uptake value (SUVmax). Results: Fifty-seven FDG PET-PET/CT exams were done in 15 patients. Seven exams were done for initial staging, 8 during and 14 after the completion of therapy, and 28 for disease surveillance. For nodal disease FDG PET-PET/CT was true positive in 8, true negative in 47 and false positive in 2 exams (sensitivity 100%, specificity 96%). For extranodal disease FDG PET-PET/CT was true positive in 6, true negative in 48 and false positive in 3 exams (sensitivity 100%, specificity 94%). The mean SUVmax for the positive nodal lesions was 15.7 (range 6.9-21.7, median 18.5) and for extranodal lesions was 14.2 (range 6.2-24.3, median 12.4). Conclusions: FDG PET-PET/CT is sensitive for the detection of viable disease in Burkitt's lymphoma. Affected areas demonstrated high degree of uptake that was reversible upon successful implementation of treatment.

  12. Radionuclide production for PET with a linear electrostatic accelerator

    International Nuclear Information System (INIS)

    Shefer, R.E.; Hughey, B.J.; Klinkowstein, R.E.; Welch, M.J.

    1993-01-01

    A new type of linear electrostatic accelerator for the production of short-lived radionuclides for PET has been developed at Science Research Laboratory. The tandem cascade accelerator (TCA) is a low energy (3.7 MeV) proton and deuteron accelerator which can generate the four short-lived PET radionuclides in the quantities required for clinical use. The compact size, low weight, low power consumption and reduced radiation shielding requirements of the TCA result in a significant reduction in capital and operating costs when compared with higher energy cyclotron-based systems. Radioisotope target for the production of O-15, F-18, N-13 and C-11 have been designed specifically for use with the low energy TCA beam. A simple to use PC-based computer control system allows fully automated system operation and advanced scheduling of isotope production. Operating experience with the TCA and its PET radionuclide targets is described

  13. Practical use and implementation of PET in children in a hospital PET centre

    DEFF Research Database (Denmark)

    Borgwardt, Lise; Larsen, Helle Jung; Pedersen, Kate

    2003-01-01

    Children are not just small adults-they differ in their psychology, normal physiology and pathophysiology, and various aspects should be considered when planning a positron emission tomography (PET) scan in a child. PET in children is a growing area, and this article describes the practical use...... and implementation of PET in children in a hospital PET centre. It is intended to be of use to nuclear medicine departments implementing or starting to implement PET scans in children. Topics covered are: dealing with children, dosimetry, organisation within the department and relations with other departments......, preparation of the child (provision of information to the child and parents and the fasting procedure), the imaging procedure (resting, tracer injection, positioning, sedation and bladder emptying) and pitfalls in the interpretation of PET scans in children, including experiences with telemedicine....

  14. Practical use and implementation of PET in children in a hospital PET centre

    International Nuclear Information System (INIS)

    Borgwardt, Lise; Larsen, Helle Jung; Pedersen, Kate; Hoejgaard, Liselotte

    2003-01-01

    Children are not just small adults - they differ in their psychology, normal physiology and pathophysiology, and various aspects should be considered when planning a positron emission tomography (PET) scan in a child. PET in children is a growing area, and this article describes the practical use and implementation of PET in children in a hospital PET centre. It is intended to be of use to nuclear medicine departments implementing or starting to implement PET scans in children. Topics covered are: dealing with children, dosimetry, organisation within the department and relations with other departments, preparation of the child (provision of information to the child and parents and the fasting procedure), the imaging procedure (resting, tracer injection, positioning, sedation and bladder emptying) and pitfalls in the interpretation of PET scans in children, including experiences with telemedicine. (orig.)

  15. Practical use and implementation of PET in children in a hospital PET centre

    Energy Technology Data Exchange (ETDEWEB)

    Borgwardt, Lise; Larsen, Helle Jung; Pedersen, Kate; Hoejgaard, Liselotte [Department of Clinical Physiology, Nuclear Medicine and PET, University Hospital of Copenhagen, Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen (Denmark)

    2003-10-01

    Children are not just small adults - they differ in their psychology, normal physiology and pathophysiology, and various aspects should be considered when planning a positron emission tomography (PET) scan in a child. PET in children is a growing area, and this article describes the practical use and implementation of PET in children in a hospital PET centre. It is intended to be of use to nuclear medicine departments implementing or starting to implement PET scans in children. Topics covered are: dealing with children, dosimetry, organisation within the department and relations with other departments, preparation of the child (provision of information to the child and parents and the fasting procedure), the imaging procedure (resting, tracer injection, positioning, sedation and bladder emptying) and pitfalls in the interpretation of PET scans in children, including experiences with telemedicine. (orig.)

  16. Experimental validation of gallium production and isotope-dependent positron range correction in PET

    Energy Technology Data Exchange (ETDEWEB)

    Fraile, L.M., E-mail: lmfraile@ucm.es [Grupo de Física Nuclear, Dpto. Física Atómica, Molecular y Nuclear, Universidad Complutense de Madrid (Spain); Herraiz, J.L.; Udías, J.M.; Cal-González, J.; Corzo, P.M.G.; España, S.; Herranz, E.; Pérez-Liva, M.; Picado, E.; Vicente, E. [Grupo de Física Nuclear, Dpto. Física Atómica, Molecular y Nuclear, Universidad Complutense de Madrid (Spain); Muñoz-Martín, A. [Centro de Microanálisis de Materiales, Universidad Autónoma de Madrid, E-28049 Madrid (Spain); Vaquero, J.J. [Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid (Spain)

    2016-04-01

    Positron range (PR) is one of the important factors that limit the spatial resolution of positron emission tomography (PET) preclinical images. Its blurring effect can be corrected to a large extent if the appropriate method is used during the image reconstruction. Nevertheless, this correction requires an accurate modelling of the PR for the particular radionuclide and materials in the sample under study. In this work we investigate PET imaging with {sup 68}Ga and {sup 66}Ga radioisotopes, which have a large PR and are being used in many preclinical and clinical PET studies. We produced a {sup 68}Ga and {sup 66}Ga phantom on a natural zinc target through (p,n) reactions using the 9-MeV proton beam delivered by the 5-MV CMAM tandetron accelerator. The phantom was imaged in an ARGUS small animal PET/CT scanner and reconstructed with a fully 3D iterative algorithm, with and without PR corrections. The reconstructed images at different time frames show significant improvement in spatial resolution when the appropriate PR is applied for each frame, by taking into account the relative amount of each isotope in the sample. With these results we validate our previously proposed PR correction method for isotopes with large PR. Additionally, we explore the feasibility of PET imaging with {sup 68}Ga and {sup 66}Ga radioisotopes in proton therapy.

  17. The application of PET and PET-CT in cervical cancer

    International Nuclear Information System (INIS)

    Huang Jianmin; Pan Liping; Li Dongxue

    2007-01-01

    Cervical cancer is the common malignancies in woman, 18 F-fluorodeoxyglucose ( 18 F-FDG) PET is a well-established method for detecting, staging, cancer recurrence, therapeutic response and prognosis of cervical cancer. PET-CT can accurately locate the anatomical sites of tracer uptake and improve the diagnostic accuraccy of PET. (authors)

  18. Clinical relevance of positron emission tomography for initial staging and follow-up of malignant melanoma; Klinischer Stellenwert der Positronenemissionstomographie im Primaerstaging und in der Nachsorge des malignen Melanoms

    Energy Technology Data Exchange (ETDEWEB)

    Baum, R.P. [Zentralklinik Bad Berka GmbH (Germany). Klinik fuer Nuklearmedizin/PET-Zentrum; Rinne, D.; Kaufmann, R. [Frankfurt Univ. (Germany). Klinik fuer Dermatologie und Venerologie

    2000-12-01

    and evaluation of patients with melanoma in the USA. (orig.) [German] Die Inzidenz des malignen Melanoms steigt weltweit mit etwa 5% pro Jahr rasch an. In Europa betraegt die Erkrankungshaeufigkeit etwa 10-12 neue Erkrankungsfaelle pro 100 000 Einwohner. Der wichtigste prognostische Faktor ist das Primaertumorstadium (Clark-Level und vertikale Tumordicke nach BRESLOW). Bei einer Tumordicke <1,5 mm betraegt die 10-Jahre-Ueberlebensrate 90%, mit einer Tumordicke von >1,5 mm sinkt sie auf 65%. Die 5-Jahres-Ueberlebensrate liegt zwischen 15 und 50% bei regionalem Lymphknotenbefall und unter 5% bei disseminierter Erkrankung. Zum Primaerstaging werden ueblicherweise als konventionelle bildgebende Verfahren die Roentgenthoraxuntersuchung, die Lymphknotensonographie und Laboruntersuchungen eingesetzt. Die Sentinel-Node-Biopsie gewinnt zunehmend an Bedeutung, da das Melanom haeufig in die regionalen Lymphknoten metastasiert. CT-Thorax oder Abdomen sowie die kraniale MRT und andere Verfahren werden symptombezogen eingesetzt. Die Ganzkoerper-FDG-PET zeigte sich in einer prospektiven Studie bei 100 Patienten mit Hochrisikomelanom (Primaerstaging n=48) bzw. zum Restaging bei Verdacht auf Rezidiv oder Progression (n=52) der konventionellen bildgebenden Diagnostik ueberlegen (mit Ausnahme des Hirnmetastasennachweises). Die diagnostische Genauigkeit der PET zum Metastasennachweis betrug 92,1%, die der konventionellen Bildgebung 55,7% (p<0,001). Uebereinstimmend mit weiteren Publikationen, den Empfehlungen der Deutschen Konsensuskonferenz 1997 und des ICP halten wir die FDG-PET beim Melanom fuer sinnvoll zum: Nachweis von okkulten Lymphknotenmetastasen oder Fernmetastasen, in der Primaerdiagnostik von Patienten mit einem malignen kutanen Melanom mit einer Tumordicke >1,5 mm sowie zum Nachweis okkulter Metastasen bei Patienten mit einem Rezidiv vor geplanten chirurgischen Eingriffen. Die PET aendert haeufig das diagnostische Vorgehen und fuehrt zur Veraenderung des therapeutischen

  19. Improvements in fast-neutron spectroscopy methods (1961); Amelioration des methodes de spectrometrie des neutrons rapides (1961)

    Energy Technology Data Exchange (ETDEWEB)

    Cambou, F [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1961-02-15

    This research aimed at improving fast-neutron electronic detectors based on n-p elastic scattering. The first part concerns proportional counters; careful constructional methods have made it possible to plot mono-energetic neutron spectra in the range 700 keV - 3 MeV with a resolution of 7 per cent. The second part concerns scintillation counters: an organic scintillator and an inorganic scintillator covered with a thin layer of a scattering agent. An exact study of the types of scintillation has made it possible to develop efficient discriminator circuits. Different neutron spectra plotted in the presence of a strong gamma background are presented. The last part deals with the development of form discrimination methods for the study, in the actual beam, of the elastic scattering of 14.58 MeV electrons. With hydrogen, the distribution f ({phi}) of the recoil protons is f({phi}) = 1 + 0.034 cos {phi} + 0.042 cos{sup 2} {phi}. With tritium the scattering is strongly anisotropic; the curve representing the variation of the differential cross-section for the elastic scattering in the centre of mass system is obtained with a target containing 1 cm{sup 3} of tritium. (author) [French] Le travail a porte sur l'amelioration des detecteurs electroniques de neutrons rapides bases sur la diffusion elastique n-p. La premiere partie est relative aux compteurs proportionnels; des methodes soignees de fabrication ont permis des traces de spectres de neutrons monoenergetiques dans le domaine 700 keV - 3 MeV avec une resolution de 7 pour cent. La deuxieme partie est relative au compteur a scintillations; scintillateur organique et scintillateur mineral recouvert d'un diffuseur mince. Une etude precise des formes de scintillations a permis la mise au point de circuits discriminateurs efficaces. Differents spectres de neutrons traces en presence d'un fond gamma intense sont presentes. La derniere partie est relative a la mise en oeuvre des methodes de discrimination de forme pour l

  20. Magnetic Resonance-based Motion Correction for Quantitative PET in Simultaneous PET-MR Imaging.

    Science.gov (United States)

    Rakvongthai, Yothin; El Fakhri, Georges

    2017-07-01

    Motion degrades image quality and quantitation of PET images, and is an obstacle to quantitative PET imaging. Simultaneous PET-MR offers a tool that can be used for correcting the motion in PET images by using anatomic information from MR imaging acquired concurrently. Motion correction can be performed by transforming a set of reconstructed PET images into the same frame or by incorporating the transformation into the system model and reconstructing the motion-corrected image. Several phantom and patient studies have validated that MR-based motion correction strategies have great promise for quantitative PET imaging in simultaneous PET-MR. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. PET studies in epilepsy

    Science.gov (United States)

    Sarikaya, Ismet

    2015-01-01

    Various PET studies, such as measurements of glucose, serotonin and oxygen metabolism, cerebral blood flow and receptor bindings are availabe for epilepsy. 18Fluoro-2-deoxyglucose (18F-FDG) PET imaging of brain glucose metabolism is a well established and widely available technique. Studies have demonstrated that the sensitivity of interictal FDG-PET is higher than interictal SPECT and similar to ictal SPECT for the lateralization and localization of epileptogenic foci in presurgical patients refractory to medical treatments who have noncontributory EEG and MRI. In addition to localizing epileptogenic focus, FDG-PET provide additional important information on the functional status of the rest of the brain. The main limitation of interictal FDG-PET is that it cannot precisely define the surgical margin as the area of hypometabolism usually extends beyond the epileptogenic zone. Various neurotransmitters (GABA, glutamate, opiates, serotonin, dopamine, acethylcholine, and adenosine) and receptor subtypes are involved in epilepsy. PET receptor imaging studies performed in limited centers help to understand the role of neurotransmitters in epileptogenesis, identify epileptic foci and investigate new treatment approaches. PET receptor imaging studies have demonstrated reduced 11C-flumazenil (GABAA-cBDZ) and 18F-MPPF (5-HT1A serotonin) and increased 11C-cerfentanil (mu opiate) and 11C-MeNTI (delta opiate) bindings in the area of seizure. 11C-flumazenil has been reported to be more sensitive than FDG-PET for identifying epileptic foci. The area of abnormality on GABAAcBDZ and opiate receptor images is usually smaller and more circumscribed than the area of hypometabolism on FDG images. Studies have demonstrated that 11C-alpha-methyl-L-tryptophan PET (to study synthesis of serotonin) can detect the epileptic focus within malformations of cortical development and helps in differentiating epileptogenic from non-epileptogenic tubers in patients with tuberous sclerosis complex

  2. Imaging with 124I in differentiated thyroid carcinoma: is PET/MRI superior to PET/CT?

    International Nuclear Information System (INIS)

    Binse, I.; Poeppel, T.D.; Ruhlmann, M.; Gomez, B.; Bockisch, A.; Rosenbaum-Krumme, S.J.; Umutlu, L.

    2016-01-01

    The aim of this study was to compare integrated PET/CT and PET/MRI for their usefulness in detecting and categorizing cervical iodine-positive lesions in patients with differentiated thyroid cancer using 124 I as tracer. The study group comprised 65 patients at high risk of iodine-positive metastasis who underwent PET/CT (low-dose CT scan, PET acquisition time 2 min; PET/CT 2 ) followed by PET/MRI of the neck 24 h after 124 I administration. PET images from both modalities were analysed for the numbers of tracer-positive lesions. Two different acquisition times were used for the comparisons, one matching the PET/CT 2 acquisition time (2 min, PET/MRI 2 ) and the other covering the whole MRI scan time (30 min, PET/MRI 30 ). Iodine-positive lesions were categorized as metastasis, thyroid remnant or inconclusive according to their location on the PET/CT images. Morphological information provided by MRI was considered for evaluation of lesions on PET/MRI and for volume information. PET/MRI 2 detected significantly more iodine-positive metastases and thyroid remnants than PET/CT 2 (72 vs. 60, p = 0.002, and 100 vs. 80, p = 0.001, respectively), but the numbers of patients with at least one tumour lesion identified were not significantly different (21/65 vs. 17/65 patients). PET/MRI 30 tended to detect more PET-positive metastases than PET/MRI 2 (88 vs. 72), but the difference was not significant (p = 0.07). Of 21 lesions classified as inconclusive on PET/CT, 5 were assigned to metastasis or thyroid remnant when evaluated by PET/MRI. Volume information was available in 34 % of iodine-positive metastases and 2 % of thyroid remnants on PET/MRI. PET/MRI of the neck was found to be superior to PET/CT in detecting iodine-positive lesions. This was attributed to the higher sensitivity of the PET component, Although helpful in some cases, we found no substantial advantage of PET/MRI over PET/CT in categorizing iodine-positive lesions as either metastasis or thyroid remnant

  3. TOF-PET/MR和TOF-PET/CT在体部恶性肿瘤SUVmax值的比较%Comparision of SUVmax of TOF-PET/MR and TOF-PET/CT in body malignant tumor

    Institute of Scientific and Technical Information of China (English)

    宋天彬; 卢洁; 崔碧霄; 马杰; 杨宏伟; 马蕾; 梁志刚

    2017-01-01

    目的 探讨时间飞行(TOF)技术PET/CT和PET/MR检查体部恶性病变SUVmax值的一致性.方法 回顾性分析接受TOF-PET/CT和TOF-PET/MR检查的体部恶性肿瘤患者20例,分为先PET/CT后PET/MR组和先PET/MR后PET/CT组,每组10例.采用Bland-Altma图评价两次检查病灶SUVmax值的一致性,采用多因素方差分析评价扫描顺序和机器类型对病灶的SUVmax测量值的影响.结果 TOF-PET/CT与TOF-PET/MR检查病灶的SUVmax值有较好的一致性[先PET/CT后PET/MR组:均值差为3.06,95%CI(-7.5,13.6),先PET/MR后PET/CT组:均值差3.0,95%CI(-2.4,8.3)].扫描顺序对于恶性病灶的SUVmax有影响(F=46.00,P<0.001),而机器类型对恶性病灶的SUVmax值无影响(F=0.005,P=0.95).结论 TOF-PET/MR和TOF-PET/CT在体部恶性病变SUVmax值测量方面具有相当的诊断价值,且延迟显像SUVmax的增加与采集时间有关,而与检查机器类型无关.%Objective To explore the consistency of time-of-flight (TOF) technology of PET/MRI and PET/CT for max standardized uptake value (SUVmax) of body malignant tumors.Methods A retrospective analysis of TOF-PET/CT and TOF-PET/MR imaging data about twenty patients with body malignant tumors was performed.Patients were divided into two groups (each n=10),including PET/CT first and sequentially PET/MR group and PET/MR first and sequentially PET/CT group.Bland-Altman figure was used to evaluate consistency of SUVmax of malignant lesions between TOF-PET/CT and TOF-PET/MR.Multi-way ANOVA was used to analysis effect of machine type and exam order on SUVmaxof malignant lesions in TOF-PET/CT and TOF-PET/MR.Results SUVmax of malignant lesions in TOF-PET/CT and TOF-PET/MR had good consistency in two groups (PET/CT first and sequentially PET/MR group:Mean difference was 3.06,95%CI was [-7.5,13.6];PET/MR first and sequentially PET/CT group:Mean difference was 3.0,95%CI was [-2.4,8.3]).SUVmax was not influenced by machine type (F=0.005,P=0.95),but exam order (F=46.00,P<0

  4. Additional value of PET-CT in the staging of lung cancer: comparison with CT alone, PET alone and visual correlation of PET and CT

    International Nuclear Information System (INIS)

    Wever, W. de; Marchal, G.; Bogaert, J.; Verschakelen, J.A.; Ceyssens, S.; Mortelmans, L.; Stroobants, S.

    2007-01-01

    Integrated positron emission tomography (PET) and computed tomography (CT) is a new imaging modality offering anatomic and metabolic information. The purpose was to evaluate retrospectively the accuracy of integrated PET-CT in the staging of a suggestive lung lesion, comparing this with the accuracy of CT alone, PET alone and visually correlated PET-CT. Fifty patients undergoing integrated PET-CT for staging of a suggestive lung lesion were studied. Their tumor, node, metastasis (TNM) statuses were determined with CT, PET, visually correlated PET-CT and integrated PET-CT. These TNM stages were compared with the surgical TNM status. Integrated PET-CT was the most accurate imaging technique in the assessment of the TNM status. Integrated PET-CT predicted correctly the T status, N status, M status and TNM status in, respectively, 86%, 80%, 98%, 70% versus 68%, 66%,88%, 46% with CT, 46%, 70%, 96%, 30% with PET and 72%, 68%, 96%, 54% with visually correlated PET-CT. T status and N status were overstaged, respectively, in 8% and 16% with integrated PET-CT, in 20% and 28% with CT, in 16% and 20% with PET, in 12% and 20% with visually correlated PET-CT and understaged in 6% and 4% with integrated PET-CT, versus 12% and 6% with CT, 38% and 10% with PET and 12% with visually correlated PET-CT. Integrated PET-CT improves the staging of lung cancer through a better anatomic localization and characterization of lesions and is superior to CT alone and PET alone. If this technique is not available, visual correlation of PET and CT can be a valuable alternative. (orig.)

  5. Professional practice assessment. Pertinence of positron emission tomography clinical indications in oncology; Evaluation des pratiques professionnelles. Pertinence des indications de la tomographie a emission de positons en cancerologie

    Energy Technology Data Exchange (ETDEWEB)

    Le Stanc, E.; Tainturier, C. [Hopital Foch, Service de Medecine Nucleaire, 92 - Suresnes (France); Swaenepoel, J. [Hopital Foch, Cellule Qualite, 92 - Suresnes (France)

    2009-09-15

    Introduction As part of the health care quality and safety policy in France, Professional Practice Assessment (P.P.A.) are mandatory in the health services 'certification' process. We present our study regarding the pertinence of Positron Emission Tomography (PET) indications in oncology. Materials and methods A multidisciplinary task group used the Quick Audit method with two rounds of 100 request forms each. The assessment list of criteria comprised four items of decreasing relevance grading the PET scans clinical indications, which were derived from the three French published guidelines (S.O.R. [F.N.C.L.C.C]., 'Guide du bon usage des examens d'imagerie medicale' [S.F.R.-S.F.M.N.], 'Guide pour la redaction de protocoles pour la TEP au F.D.G. en cancerologie' [S.F.M.N.]) and five additional items: clinical information, patient's body weight, previous treatments dates, diabetes, claustrophobia. Results The first round showed that 68% of the requested scans corresponded to the two most relevant groups of indications (S.O.R. Standards and Options). The request forms were correctly filled in regarding the clinical information, but this was not the case for the other items we tested. Several actions were conducted: dedicated PET request form, availability of the S.O.R. on the hospital intranet, boost of the referring physicians awareness during the multidisciplinary oncology meetings (Reunions de Concertation Pluridisciplinaires RCP). The second round showed a better pertinence of the PET scans indications (75% versus 68%); the patient's body weight was more frequently mentioned on the request form. Discussion This study is an example of P.P.A. in our discipline. It led to an improvement of the oncologic PET scans clinical indications in our hospital. This work is pursued in everyday discussion with the referring clinicians, especially during the RCP. (authors)

  6. Clinical Application of F-18 FDG PET (PET/CT) in Colo-rectal and Anal Cancer

    International Nuclear Information System (INIS)

    Kim, Byung Il

    2008-01-01

    In the management of colo-retal and anal cancer, accurate staging, treatment evaluation, early detection of recurrence are main clinical problems. F-18 FDG PET (PET/CT) has been reported as useful in the management of colo-rectal and anal cancer because that PET has high diagnostic performance comparing to conventional studies. In case of liver metastases, for confirmation of no extrahepatic metastases, in case of high risk of metastasis, for avoiding unnecessary operation, PET (PET/CT) is expected more useful. In anal cancer, PET is expected useful in lymph node staging. For the early prediction of chemotherapy or radiation therapy effect PET has been reported as useful, also. In early detection of recurrence by PET, cost-benefit advantages has been suggested, also. PET/CT is expected to have higher diagnostic performance than PET alone

  7. Clinical Application of F-18 FDG PET (PET/CT) in Malignancy of Unknown Origin

    International Nuclear Information System (INIS)

    Kim, Byung Il

    2008-01-01

    Diagnosis of primary origin site in the management of malignancy of unknown origin (MUO) is the most important issue. According to the histopathologic subtype of primary lesion, specialized treatment can be given and survival gain is expected. F-18 FDG PET (PET/CT) has been estimated as useful in detection of primary lesion with high sensitivity and moderate specificity. F-18 FDG PET (PET/CT) study before conventional studies is also recommended because it has high diagnostic performance compared to conventional studies. Although there has few data, F-18 FDG PET (PET/CT) is expected to be useful in diagnosis of recurrence, restaging, evaluation of treatment effect, considering that PET (PET/CT) has been reported as useful in other malignancies

  8. Retrospektive Analyse von Zufallsbefunden, die bei Patienten mit kutanem malignen Malignom durch (18) F-Fluordeoxyglucose-PET/CT erhoben wurden.

    Science.gov (United States)

    Conrad, Franziska; Winkens, Thomas; Kaatz, Martin; Goetze, Steven; Freesmeyer, Martin

    2016-08-01

    Bei der (18) F-Fluordeoxyglucose-Positronenemissionstomographie/Computertomographie (FDG-PET/CT) ergeben sich häufig Zufallsbefunde. In der vorliegenden Studie konzentrierten wir uns auf mittels FDG-PET/CT erhaltene Zufallsbefunde bei Patienten mit kutanem Melanom und überprüften deren Relevanz hinsichtlich weiterer diagnostischer Maßnahmen und Interventionen. Die Krankenakten von 181 konsekutiven Melanom-Patienten wurden retrospektiv ausgewertet, um das Management von Zufallsbefunden zu dokumentieren. Der Schwerpunkt lag dabei auf den histologischen Befunden. Bei 33 von 181 (18 %) Patienten lagen 39 relevante Zufallsbefunde vor, und zwar im Kolorektalbereich (n = 15 Patienten), in der Schilddrüse (n = 8), der Prostata (n = 2), dem Bewegungsapparat (n = 2), in Lymphknoten (n = 2), der Parotis (n = 1), den Mandeln (n = 1), den Nieren (n = 1) und der Gallenblase (n = 1). Bei 25 Patienten schlossen sich weitere diagnostische Verfahren an, wobei in 21 Fällen ein klinisches Korrelat nachgewiesen wurde. Bei 16 von 21 Patienten ergab sich eine Neoplasie, darunter fünf maligne Läsionen (vier Kolonkarzinome und ein Prostatakarzinom). Die Malignome wurden frühzeitig diagnostiziert und in der Mehrzahl der Fälle erfolgreich entfernt. Der Einsatz der FDG-PET/CT als Routine-Diagnostik wird in den Leitlinien empfohlen und ist indiziert bei malignem Melanom ab Stadium IIC. In dieser Studie wurden auf effektive Weise ansonsten nicht erkannte Krebserkrankungen, insbesondere Kolonkarzinome, detektiert. In den meisten Fällen war eine frühe Intervention möglich. Zufallsbefunde durch FDG-PET/CT sollten, unter Berücksichtigung des Zustands und der Wünsche des Patienten, mit den geeigneten diagnostischen Maßnahmen abgeklärt werden. © 2016 Deutsche Dermatologische Gesellschaft (DDG). Published by John Wiley & Sons Ltd.

  9. Monte Carlo simulation of simultaneous radiation detection in the hybrid tomography system ClearPET-XPAD3/CT

    Energy Technology Data Exchange (ETDEWEB)

    Dávila, H. Olaya, E-mail: hernan.olaya@uptc.edu.co; Martínez, S. A. [Physics Department, Universidad Pedagógica y Tecnológica de Colombia, Tunja-Colombia (Colombia); Sevilla, A. C., E-mail: acsevillam@unal.edu.co; Castro, H. F. [Physics Department, Universidad Nacional de Colombia, Bogotá D.C - Colombia (Colombia)

    2016-07-07

    Using the Geant4 based simulation framework SciFW1, a detailed simulation was performed for a detector array in the hybrid tomography prototype for small animals called ClearPET / XPAD, which was built in the Centre de Physique des Particules de Marseille. The detector system consists of an array of phoswich scintillation detectors: LSO (Lutetium Oxy-ortosilicate doped with cerium Lu{sub 2}SiO{sub 5}:Ce) and LuYAP (Lutetium Ortoaluminate of Yttrium doped with cerium Lu{sub 0.7}Y{sub 0.3}AlO{sub 3}:Ce) for Positron Emission Tomography (PET) and hybrid pixel detector XPAD for Computed Tomography (CT). Simultaneous acquisition of deposited energy and the corresponding time - position for each recorded event were analyzed, independently, for both detectors. interference between detection modules for PET and CT. Information about amount of radiation reaching each phoswich crystal and XPAD detector using a phantom in order to study the effectiveness by radiation attenuation and influence the positioning of the radioactive source {sup 22}Na was obtained. The simulation proposed will improve distribution of detectors rings and interference values will be taken into account in the new versions of detectors.

  10. Monte Carlo simulation of simultaneous radiation detection in the hybrid tomography system ClearPET-XPAD3/CT

    Science.gov (United States)

    Dávila, H. Olaya; Sevilla, A. C.; Castro, H. F.; Martínez, S. A.

    2016-07-01

    Using the Geant4 based simulation framework SciFW1, a detailed simulation was performed for a detector array in the hybrid tomography prototype for small animals called ClearPET / XPAD, which was built in the Centre de Physique des Particules de Marseille. The detector system consists of an array of phoswich scintillation detectors: LSO (Lutetium Oxy-ortosilicate doped with cerium Lu2SiO5:Ce) and LuYAP (Lutetium Ortoaluminate of Yttrium doped with cerium Lu0.7Y0.3AlO3:Ce) for Positron Emission Tomography (PET) and hybrid pixel detector XPAD for Computed Tomography (CT). Simultaneous acquisition of deposited energy and the corresponding time - position for each recorded event were analyzed, independently, for both detectors. interference between detection modules for PET and CT. Information about amount of radiation reaching each phoswich crystal and XPAD detector using a phantom in order to study the effectiveness by radiation attenuation and influence the positioning of the radioactive source 22Na was obtained. The simulation proposed will improve distribution of detectors rings and interference values will be taken into account in the new versions of detectors.

  11. Comparison of lesion detection and quantitation of tracer uptake between PET from a simultaneously acquiring whole-body PET/MR hybrid scanner and PET from PET/CT

    International Nuclear Information System (INIS)

    Wiesmueller, Marco; Schmidt, Daniela; Beck, Michael; Kuwert, Torsten; Gall, Carl C. von; Quick, Harald H.; Navalpakkam, Bharath; Lell, Michael M.; Uder, Michael; Ritt, Philipp

    2013-01-01

    PET/MR hybrid scanners have recently been introduced, but not yet validated. The aim of this study was to compare the PET components of a PET/CT hybrid system and of a simultaneous whole-body PET/MR hybrid system with regard to reproducibility of lesion detection and quantitation of tracer uptake. A total of 46 patients underwent a whole-body PET/CT scan 1 h after injection and an average of 88 min later a second scan using a hybrid PET/MR system. The radioactive tracers used were 18 F-deoxyglucose (FDG), 18 F-ethylcholine (FEC) and 68 Ga-DOTATATE (Ga-DOTATATE). The PET images from PET/CT (PET CT ) and from PET/MR (PET MR ) were analysed for tracer-positive lesions. Regional tracer uptake in these foci was quantified using volumes of interest, and maximal and average standardized uptake values (SUV max and SUV avg , respectively) were calculated. Of the 46 patients, 43 were eligible for comparison and statistical analysis. All lesions except one identified by PET CT were identified by PET MR (99.2 %). In 38 patients (88.4 %), the same number of foci were identified by PET CT and by PET MR . In four patients, more lesions were identified by PET MR than by PET CT , in one patient PET CT revealed an additional focus compared to PET MR . The mean SUV max and SUV avg of all lesions determined by PET MR were by 21 % and 11 % lower, respectively, than the values determined by PET CT (p CT and PET MR were minor, but statistically significant. Nevertheless, a more detailed study of the quantitative accuracy of PET MR and the factors governing it is needed to ultimately assess its accuracy in measuring tissue tracer concentrations. (orig.)

  12. Clinical Applications of FDG PET and PET/CT in Head and Neck Cancer

    Directory of Open Access Journals (Sweden)

    Akram Al-Ibraheem

    2009-01-01

    Full Text Available 18F-FDG PET plays an increasing role in diagnosis and management planning of head and neck cancer. Hybrid PET/CT has promoted the field of molecular imaging in head and neck cancer. This modality is particular relevant in the head and neck region, given the complex anatomy and variable physiologic FDG uptake patterns. The vast majority of 18F-FDG PET and PET/CT applications in head and neck cancer related to head and neck squamous cell carcinoma. Clinical applications of 18F-FDG PET and PET/CT in head and neck cancer include diagnosis of distant metastases, identification of synchronous 2nd primaries, detection of carcinoma of unknown primary and detection of residual or recurrent disease. Emerging applications are precise delineation of the tumor volume for radiation treatment planning, monitoring treatment, and providing prognostic information. The clinical role of 18F-FDG PET/CT in N0 disease is limited which is in line with findings of other imaging modalities. MRI is usually used for T staging with an intense discussion concerning the preferable imaging modality for regional lymph node staging as PET/CT, MRI, and multi-slice spiral CT are all improving rapidly. Is this review, we summarize recent literature on 18F-FDG PET and PET/CT imaging of head and neck cancer.

  13. F.D.G.-PET scanning in managing patients with lymphoma; La place de la TEP au FDG dans l'evaluation des lymphomes

    Energy Technology Data Exchange (ETDEWEB)

    Bodet-Milin, C.; Kraeber-Bodere, F. [CHU de Nantes, Service de Medecine Nucleaire, Hotel-Dieu, 44 - Nantes (France); Salaun, P.Y. [CHU de Brest, Service de Medecine Nucleaire, 29 - Brest (France); Crespin, C.; Vuillez, J.P. [CHU de Grenoble, Service de Medecine Nucleaire, 38 - Grenoble (France); Kraeber-Bodere, F. [Centre Rene-Gauducheau, Service de Medecine Nucleaire, 44 - Saint-Herblain (France); CRCNA, Inserm UMR 892, 44 - Nantes (France)

    2009-08-15

    The place of positron emission tomography (PET) in the evaluation of diffuse at big cells B lymphomas and hodgkin lymphomas is validated. The clinical impact of the PET registered in end of therapy development is indisputable. recommendations must be followed for images interpretation. The PET is strongly recommended during the first evaluation of the disease because it is a reference examination that makes easy the interpretation at the end of the therapy and allows to evaluate the extension of the disease with a sensitivity and a specificity superior to the computerized tomography. the prognosis value of intermediate evaluations appears certain in the diffuse at big cells B lymphomas and the hodgkin lymphomas but the impact of an early therapy change induced by PET is still to determine. The criteria of interpretation of early evaluations are to standardize. for the other types of lymphomas, the PET can have an interest to confirm the the localized stages, especially for the follicular lymphomas and direct the biopsy for a patient ill of a low range lymphoma suspect of aggressive change. (N.C.)

  14. A compact cost-effective beamline for a PET Cyclotron

    International Nuclear Information System (INIS)

    Dehnel, M.P.; Jackle, P.; Roeder, M.; Stewart, T.; Theroux, J.; Brasile, J.P.; Sirot, P.; Buckley, K.R.; Bedue, M.

    2007-01-01

    Most commercial PET Cyclotrons have targets mounted on or near the main cyclotron vacuum chamber. There is often little or no system capability for centering or focusing the extracted beam on target to achieve maximum production. This paper describes the ion-optics, design and development of a compact cost-effective beamline comprised of low activation and radiation resistant materials. The beamline, complete with suitable diagnostic devices, permits the extracted proton beam to be centered (X-Y steering magnet), and focused (quadrupole doublet) on target eliminating unnecessary beamspill and ensuring high production

  15. Use of PET to monitor the response of lung cancer to radiation treatment

    International Nuclear Information System (INIS)

    Erdi, Y.E.; Humm, J.L.; Erdi, A.K.; Yorke, E.D.; Macapinlac, H.; Larson, S.M.; Rosenzweig, K.E.

    2000-01-01

    Approximately 170,000 people are diagnosed with lung cancer in the United States each year. Many of these patients receive external beam radiation for treatment. Fluorine-18 2-fluoro-2-deoxy-d-glucose positron emission tomography (FDG PET) is increasingly being used in evaluating non-small cell lung cancer and may be of clinical utility in assessing response to treatment. In this report, we present FDG PET images and data from two patients who were followed with a total of eight and seven serial FDG PET scans, respectively, through the entire course of their radiation therapy. Changes in several potential response parameters are shown versus time, including lesion volume (V FDG ) by PET, SUV av , SUV max , and total lesion glycolysis (TLG) during the course of radiotherapy. The response parameters for patient 1 demonstrated a progressive decrease; however, the response parameters for patient 2 showed an initial decrease followed by an increase. The data presented here may suggest that the outcome of radiation therapy can be predicted by PET imaging, but this observation requires a study of additional patients. (orig.)

  16. Imaging with {sup 124}I in differentiated thyroid carcinoma: is PET/MRI superior to PET/CT?

    Energy Technology Data Exchange (ETDEWEB)

    Binse, I.; Poeppel, T.D.; Ruhlmann, M.; Gomez, B.; Bockisch, A.; Rosenbaum-Krumme, S.J. [University of Duisburg-Essen, Medical Faculty, Department of Nuclear Medicine, Essen (Germany); Umutlu, L. [University of Duisburg-Essen, Medical Faculty, Department of Radiology, Essen (Germany)

    2016-06-15

    The aim of this study was to compare integrated PET/CT and PET/MRI for their usefulness in detecting and categorizing cervical iodine-positive lesions in patients with differentiated thyroid cancer using {sup 124}I as tracer. The study group comprised 65 patients at high risk of iodine-positive metastasis who underwent PET/CT (low-dose CT scan, PET acquisition time 2 min; PET/CT{sub 2}) followed by PET/MRI of the neck 24 h after {sup 124}I administration. PET images from both modalities were analysed for the numbers of tracer-positive lesions. Two different acquisition times were used for the comparisons, one matching the PET/CT{sub 2} acquisition time (2 min, PET/MRI{sub 2}) and the other covering the whole MRI scan time (30 min, PET/MRI{sub 30}). Iodine-positive lesions were categorized as metastasis, thyroid remnant or inconclusive according to their location on the PET/CT images. Morphological information provided by MRI was considered for evaluation of lesions on PET/MRI and for volume information. PET/MRI{sub 2} detected significantly more iodine-positive metastases and thyroid remnants than PET/CT{sub 2} (72 vs. 60, p = 0.002, and 100 vs. 80, p = 0.001, respectively), but the numbers of patients with at least one tumour lesion identified were not significantly different (21/65 vs. 17/65 patients). PET/MRI{sub 30} tended to detect more PET-positive metastases than PET/MRI{sub 2} (88 vs. 72), but the difference was not significant (p = 0.07). Of 21 lesions classified as inconclusive on PET/CT, 5 were assigned to metastasis or thyroid remnant when evaluated by PET/MRI. Volume information was available in 34 % of iodine-positive metastases and 2 % of thyroid remnants on PET/MRI. PET/MRI of the neck was found to be superior to PET/CT in detecting iodine-positive lesions. This was attributed to the higher sensitivity of the PET component, Although helpful in some cases, we found no substantial advantage of PET/MRI over PET/CT in categorizing iodine

  17. [18F]FDG PET/CT outperforms [18F]FDG PET/MRI in differentiated thyroid cancer

    International Nuclear Information System (INIS)

    Vrachimis, Alexis; Wenning, Christian; Weckesser, Matthias; Stegger, Lars; Burg, Matthias Christian; Allkemper, Thomas; Schaefers, Michael

    2016-01-01

    To evaluate the diagnostic potential of PET/MRI with [ 18 F]FDG in comparison to PET/CT in patients with differentiated thyroid cancer suspected or known to have dedifferentiated. The study included 31 thyroidectomized and remnant-ablated patients who underwent a scheduled [ 18 F]FDG PET/CT scan and were then enrolled for a PET/MRI scan of the neck and thorax. The datasets (PET/CT, PET/MRI) were rated regarding lesion count, conspicuity, diameter and characterization. Standardized uptake values were determined for all [ 18 F]FDG-positive lesions. Histology, cytology, and examinations before and after treatment served as the standards of reference. Of 26 patients with a dedifferentiated tumour burden, 25 were correctly identified by both [ 18 F]FDG PET/CT and PET/MRI. Detection rates by PET/CT and PET/MRI were 97 % (113 of 116 lesions) and 85 % (99 of 113 lesions) for malignant lesions, and 100 % (48 of 48 lesions) and 77 % (37 of 48 lesions) for benign lesions, respectively. Lesion conspicuity was higher on PET/CT for both malignant and benign pulmonary lesions and in the overall rating for malignant lesions (p < 0.001). There was a difference between PET/CT and PET/MRI in overall evaluation of malignant lesions (p < 0.01) and detection of pulmonary metastases (p < 0.001). Surgical evaluation revealed three malignant lesions missed by both modalities. PET/MRI additionally failed to detect 14 pulmonary metastases and 11 benign lesions. In patients with thyroid cancer and suspected or known dedifferentiation, [ 18 F]FDG PET/MRI was inferior to low-dose [ 18 F]FDG PET/CT for the assessment of pulmonary status. However, for the assessment of cervical status, [ 18 F]FDG PET/MRI was equal to contrast-enhanced neck [ 18 F]FDG PET/CT. Therefore, [ 18 F]FDG PET/MRI combined with a low-dose CT scan of the thorax may provide an imaging solution when high-quality imaging is needed and high-energy CT is undesirable or the use of a contrast agent is contraindicated. (orig.)

  18. Quantitative and Visual Assessments toward Potential Sub-mSv or Ultrafast FDG PET Using High-Sensitivity TOF PET in PET/MRI.

    Science.gov (United States)

    Behr, Spencer C; Bahroos, Emma; Hawkins, Randall A; Nardo, Lorenzo; Ravanfar, Vahid; Capbarat, Emily V; Seo, Youngho

    2018-06-01

    Newer high-performance time-of-flight (TOF) positron emission tomography (PET) systems have the capability to preserve diagnostic image quality with low count density, while maintaining a high raw photon detection sensitivity that would allow for a reduction in injected dose or rapid data acquisition. To assess this, we performed quantitative and visual assessments of the PET images acquired using a highly sensitive (23.3 cps/kBq) large field of view (25-cm axial) silicon photomultiplier (SiPM)-based TOF PET (400-ps timing resolution) integrated with 3 T-MRI in comparison to PET images acquired on non-TOF PET/x-ray computed tomography (CT) systems. Whole-body 2-deoxy-2-[ 18 F]fluoro-D-glucose ([ 18 F]FDG) PET/CT was acquired for 15 patients followed by whole body PET/magnetic resonance imaging (MRI) with an average injected dose of 325 ± 84 MBq. The PET list mode data from PET/MRI were reconstructed using full datasets (4 min/bed) and reduced datasets (2, 1, 0.5, and 0.25 min/bed). Qualitative assessment between PET/CT and PET/MR images were made. A Likert-type scale between 1 and 5, 1 for non-diagnostic, 3 equivalent to PET/CT, and 5 superior quality, was used. Maximum and mean standardized uptake values (SUV max and SUV mean ) of normal tissues and lesions detected were measured and compared. Mean visual assessment scores were 3.54 ± 0.32, 3.62 ± 0.38, and 3.69 ± 0.35 for the brain and 3.05 ± 0.49, 3.71 ± 0.45, and 4.14 ± 0.44 for the whole-body maximum intensity projections (MIPs) for 1, 2, and 4 min/bed PET/MR images, respectively. The SUV mean values for normal tissues were lower and statistically significant for images acquired at 4, 2, 1, 0.5, and 0.25 min/bed on the PET/MR, with values of - 18 ± 28 % (p PET/MR datasets. High-sensitivity TOF PET showed comparable but still better visual image quality even at a much reduced activity in comparison to lower-sensitivity non-TOF PET. Our data translates to a seven times

  19. Diagnostic performance of FDG PET or PET/CT in prosthetic infection after arthroplasty: a meta-analysis

    International Nuclear Information System (INIS)

    Jin, H.; Yuan, L.; Li, C.; Kan, Y.; Yang, J.; Hao, R.

    2014-01-01

    The purpose of this study was to systematically review and perform a meta-analysis of published data regarding the diagnostic performance of positron emission tomography (PET) or PET/computed tomography (PET/CT) in prosthetic infection after arthroplasty. A comprehensive computer literature search of studies published through May 31, 2012 regarding PET or PET/CT in patients suspicious of prosthetic infection was performed in PubMed/MEDLINE, Embase and Scopus databases. Pooled sensitivity and specificity of PET or PET/CT in patients suspicious of prosthetic infection on a per prosthesis-based analysis were calculated. The area under the receiver-operating characteristic (ROC) curve was calculated to measure the accuracy of PET or PET/CT in patients with suspicious of prosthetic infection. Fourteen studies comprising 838 prosthesis with suspicious of prosthetic infection after arthroplasty were included in this meta-analysis. The pooled sensitivity of PET or PET/CT in detecting prosthetic infection was 86% (95% confidence interval [CI] 82-90%) on a per prosthesis-based analysis. The pooled specificity of PET or PET/CT in detecting prosthetic infection was 86% (95% CI 83-89%) on a per prosthesis-based analysis. The area under the ROC curve was 0.93 on a per prosthesis-based analysis. In patients suspicious of prosthetic infection, FDG PET or PET/CT demonstrated high sensitivity and specificity. FDG PET or PET/CT are accurate methods in this setting. Nevertheless, possible sources of false positive results and influcing factors should kept in mind.

  20. Diagnostic performance of FDG PET or PET/CT in prosthetic infection after arthroplasty: a meta-analysis.

    Science.gov (United States)

    Jin, H; Yuan, L; Li, C; Kan, Y; Hao, R; Yang, J

    2014-03-01

    The purpose of this study was to systematically review and perform a meta-analysis of published data regarding the diagnostic performance of positron emission tomography (PET) or PET/computed tomography (PET/CT) in prosthetic infection after arthroplasty. A comprehensive computer literature search of studies published through May 31, 2012 regarding PET or PET/CT in patients suspicious of prosthetic infection was performed in PubMed/MEDLINE, Embase and Scopus databases. Pooled sensitivity and specificity of PET or PET/CT in patients suspicious of prosthetic infection on a per prosthesis-based analysis were calculated. The area under the receiver-operating characteristic (ROC) curve was calculated to measure the accuracy of PET or PET/CT in patients with suspicious of prosthetic infection. Fourteen studies comprising 838 prosthesis with suspicious of prosthetic infection after arthroplasty were included in this meta-analysis. The pooled sensitivity of PET or PET/CT in detecting prosthetic infection was 86% (95% confidence interval [CI] 82-90%) on a per prosthesis-based analysis. The pooled specificity of PET or PET/CT in detecting prosthetic infection was 86% (95% CI 83-89%) on a per prosthesis-based analysis. The area under the ROC curve was 0.93 on a per prosthesis-based analysis. In patients suspicious of prosthetic infection, FDG PET or PET/CT demonstrated high sensitivity and specificity. FDG PET or PET/CT are accurate methods in this setting. Nevertheless, possible sources of false positive results and influcing factors should kept in mind.

  1. PET/MRI in cancer patients

    DEFF Research Database (Denmark)

    Kjær, Andreas; Loft, Annika; Law, Ian

    2013-01-01

    Combined PET/MRI systems are now commercially available and are expected to change the medical imaging field by providing combined anato-metabolic image information. We believe this will be of particular relevance in imaging of cancer patients. At the Department of Clinical Physiology, Nuclear...... described include brain tumors, pediatric oncology as well as lung, abdominal and pelvic cancer. In general the cases show that PET/MRI performs well in all these types of cancer when compared to PET/CT. However, future large-scale clinical studies are needed to establish when to use PET/MRI. We envision...... that PET/MRI in oncology will prove to become a valuable addition to PET/CT in diagnosing, tailoring and monitoring cancer therapy in selected patient populations....

  2. Study of the dispersion phenomena connected with the absorption by recoilless nuclear resonance fluorescence; Etude des phenomenes de dispersion lies a l'absorption resonnante sans recul des noyaux atomiques

    Energy Technology Data Exchange (ETDEWEB)

    Imbert, P [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1965-12-01

    In nuclear resonance fluorescence as in the optical field abnormal dispersion curves are related to the absorption lines. It is possible, by using quadrupolar or magnetic splitting of the line in the case of recoilless resonance fluorescence (Moessbauer effect) to obtain differential dispersion effects between the two orthogonal linear or the two inverse circular components of the incident gamma radiation. These effects induce bi-refraction phenomena or Faraday rotation on the gamma beam, which have been studied on Fe-57 enriched absorbers. (author) [French] Comme dans le domaine optique, aux raies d'absorption de fluorescence resonnante des noyaux atomiques sont associees des courbes de dispersion anormale. Les decompositions des raies d'absorption de fluorescence resonnante sans recul (raies Moessbauer) par couplage quadrupolaire ou effet Zeeman permettent d'obtenir des effets dispersifs differentiels entre composantes lineaires orthogonales ou circulaires inverses du rayonnement gamma incident. Ces effets se traduisent par des phenomenes de birefringence ou de rotation Faraday, qui ont pu etre etudies sur des milieux enrichis en fer-57. (auteur)

  3. Radiological diagnostics of malignant tumors of the musculoskeletal system in childhood and adolescence; Radiologische Diagnostik maligner Tumoren des Muskuloskelettalsystems im Kindes- und Adoleszentenalter

    Energy Technology Data Exchange (ETDEWEB)

    Nemec, S.F.; Krestan, C.R. [Medizinische Universitaet Wien, Klinische Abteilung fuer Neuroradiologie und muskuloskelettale Radiologie, Wien (Austria); Hojreh, A.; Hoermann, M. [Medizinische Universitaet Wien, Klinische Abteilung fuer Allgemeine Radiologie und Kinderradiologie, Wien (Austria)

    2008-10-15

    Rhabdomyosarcoma, osteosarcoma and Ewing's sarcoma are the most common malignant tumors of the musculoskeletal system in childhood and adolescence representing about 10% of newly diagnosed cancers in children and adolescents. In the last two decades the prognosis of patients with such malignancies improved significantly. On the one hand because of the advances in chemotherapy and orthopedic surgery, on the other hand also because of the innovations in radiological diagnostics. The precise pre-therapeutical staging of tumors of the musculoskeletal system provides important prognostic information and has impact on the entire therapy management. During respectively after therapy, imaging is extremely important in the follow-up and in diagnosing a possible recurrent disease. Modern imaging diagnostics of musculoskeletal tumors basically consist of conventional X-ray, of computed tomography (CT) and magnetic resonance imaging (MRI), and of modalities of nuclear medicine such as szintigraphy, positron emission tomography (PET) and PET CT. (orig.) [German] Das Rhabdomyosarkom, das Osteosarkom und das Ewing-Sarkom sind die am haeufigsten auftretenden malignen Tumoren des Muskuloskelettalsystems im Kindes- und Adoleszentenalter. Diese Erkrankungen repraesentieren etwa 10% der bei Kindern und Jugendlichen neu diagnostizierten Tumoren. In den letzten beiden Jahrzehnten hat sich insgesamt die Prognose der Patienten mit solchen Malignomen deutlich gebessert. Einerseits aufgrund der Fortschritte in der Chemotherapie und orthopaedischen Tumorchirurgie, andererseits nicht zuletzt aufgrund der zahlreichen Innovationen der radiologischen Diagnostik. Das praezise praetherapeutische Staging von Tumoren des Muskuloskelettalsystems liefert wichtige prognostische Informationen und beeinflusst das gesamte Therapiemanagement. Waehrend bzw. nach erfolgter Therapie ist die Bildgebung ganz entscheidend im Follow-up und bei der Diagnostik einer moeglichen Rezidiverkrankung. Die moderne

  4. Diagnosis and dosimetry in differentiated thyroid carcinoma using 124I PET: comparison of PET/MRI vs PET/CT of the neck

    International Nuclear Information System (INIS)

    Nagarajah, James; Jentzen, Walter; Hartung, Verena; Rosenbaum-Krumme, Sandra; Bockisch, Andreas; Stahl, Alexander; Mikat, Christian; Heusner, Till Alexander; Antoch, Gerald

    2011-01-01

    This study compares intrinsically coregistered 124 I positron emission tomography (PET) and CT (PET/CT) and software coregistered 124 I PET and MRI (PET/MRI) images for the diagnosis and dosimetry of thyroid remnant tissues and lymph node metastases in patients with differentiated thyroid carcinoma (DTC). After thyroidectomy, 33 high-risk DTC patients (stage III or higher) received 124 I PET/CT dosimetry prior to radioiodine therapy to estimate the absorbed dose to lesions and subsequently underwent a contrast-enhanced MRI examination of the neck. Images were evaluated by two experienced nuclear medicine physicians and two radiologists to identify the lesions and to categorize their presumable provenience, i.e. thyroid remnant tissue (TT), lymph node metastasis (LN) and inconclusive tissue. The categorization and dosimetry of lesions was initially performed with PET images alone (PET only). Subsequently lesions were reassessed including the CT and MRI data. The analyses were performed on a patient and on a lesion basis. Patient-based analyses showed that 26 of 33 (79%) patients had at least one lesion categorized as TT on PET only. Of these patients, 11 (42%) and 16 (62%) had a morphological correlate on CT and MRI, respectively, in at least one TT PET lesion. Twelve patients (36%) had at least one lesion classified as LN on PET only. Nine (75%) of these patients had a morphological correlate on both CT and MRI in at least one LN PET lesion. Ten patients (30%) showed at least one lesion on PET only classified as inconclusive. The classification was changed to a clear classification in two patients (two LN) by CT and in four (two TT, two LN) patients by MRI. Lesion-based analyses (n = 105 PET positive lesions) resulted in categorization as TT in 61 cases (58%), 16 (26%) of which had a morphological correlate on CT and 33 (54%) on MRI. A total of 29 lesions (27%) were classified as LN on PET, 18 (62%) of which had a morphological correlate on CT and 24 (83%) on MRI

  5. Hybrid FDG-PET/MR compared to FDG-PET/CT in adult lymphoma patients.

    Science.gov (United States)

    Atkinson, Wendy; Catana, Ciprian; Abramson, Jeremy S; Arabasz, Grae; McDermott, Shanaugh; Catalano, Onofrio; Muse, Victorine; Blake, Michael A; Barnes, Jeffrey; Shelly, Martin; Hochberg, Ephraim; Rosen, Bruce R; Guimaraes, Alexander R

    2016-07-01

    The goal of this study is to evaluate the diagnostic performance of simultaneous FDG-PET/MR including diffusion compared to FDG-PET/CT in patients with lymphoma. Eighteen patients with a confirmed diagnosis of non-Hodgkin's (NHL) or Hodgkin's lymphoma (HL) underwent an IRB-approved, single-injection/dual-imaging protocol consisting of a clinical FDG-PET/CT and subsequent FDG-PET/MR scan. PET images from both modalities were reconstructed iteratively. Attenuation correction was performed using low-dose CT data for PET/CT and Dixon-MR sequences for PET/MR. Diffusion-weighted imaging was performed. SUVmax was measured and compared between modalities and the apparent diffusion coefficient (ADC) using ROI analysis by an experienced radiologist using OsiriX. Strength of correlation between variables was measured using the Pearson correlation coefficient (r p). Of the 18 patients included in this study, 5 had HL and 13 had NHL. The median age was 51 ± 14.8 years. Sixty-five FDG-avid lesions were identified. All FDG-avid lesions were visible with comparable contrast, and therefore initial and follow-up staging was identical between both examinations. SUVmax from FDG-PET/MR [(mean ± sem) (21.3 ± 2.07)] vs. FDG-PET/CT (mean 23.2 ± 2.8) demonstrated a strongly positive correlation [r s = 0.95 (0.94, 0.99); p < 0.0001]. There was no correlation found between ADCmin and SUVmax from FDG-PET/MR [r = 0.17(-0.07, 0.66); p = 0.09]. FDG-PET/MR offers an equivalent whole-body staging examination as compared with PET/CT with an improved radiation safety profile in lymphoma patients. Correlation of ADC to SUVmax was weak, understating their lack of equivalence, but not undermining their potential synergy and differing importance.

  6. Role of FDG-PET and PET/CT in the diagnosis of prolonged febrile states

    International Nuclear Information System (INIS)

    Jaruskova, M.; Belohlavek, O.

    2006-01-01

    The role of FDG-PET and PET/CT in patients whose main symptom is prolonged fever has not yet been defined. We addressed this topic in a retrospective study. A total of 124 patients (referred between May 2001 and December 2004) with fever of unknown origin or prolonged fever due to a suspected infection of a joint or vascular prosthesis were included in the study. The patients underwent either FDG-PET or FDG-PET/CT scanning. Sixty-seven patients had a negative focal FDG-PET finding; in this group the method was regarded as unhelpful in determining a diagnosis, and no further investigation was pursued. We tried to obtain clinical confirmation for all patients with positive PET findings. Fifty-seven (46%) patients had positive FDG-PET findings. In six of them no further clinical information was available. Fifty-one patients with positive PET findings and 118 patients in total were subsequently evaluated. Systemic connective tissue disease was confirmed in 17 patients, lymphoma in three patients, inflammatory bowel disease in two patients, vascular prosthesis infection in seven patients, infection of a hip or knee replacement in seven patients, mycotic aneurysm in two patients, abscess in four patients and AIDS in one patient. In eight (16%) patients the finding was falsely positive. FDG-PET or PET/CT contributed to establishing a final diagnosis in 84% of the 51 patients with positive PET findings and in 36% of all 118 evaluated patients with prolonged fever. (orig.)

  7. Bacteriophages safely reduce Salmonella contamination in pet food and raw pet food ingredients.

    Science.gov (United States)

    Soffer, Nitzan; Abuladze, Tamar; Woolston, Joelle; Li, Manrong; Hanna, Leigh Farris; Heyse, Serena; Charbonneau, Duane; Sulakvelidze, Alexander

    2016-01-01

    Contamination of pet food with Salmonella is a serious public health concern, and several disease outbreaks have recently occurred due to human exposure to Salmonella tainted pet food. The problem is especially challenging for raw pet foods (which include raw meats, seafood, fruits, and vegetables). These foods are becoming increasingly popular because of their nutritional qualities, but they are also more difficult to maintain Salmonella -free because they lack heat-treatment. Among various methods examined to improve the safety of pet foods (including raw pet food), one intriguing approach is to use bacteriophages to specifically kill Salmonella serotypes. At least 2 phage preparations (SalmoFresh® and Salmonelex™) targeting Salmonella are already FDA cleared for commercial applications to improve the safety of human foods. However, similar preparations are not yet available for pet food applications. Here, we report the results of evaluating one such preparation (SalmoLyse®) in reducing Salmonella levels in various raw pet food ingredients (chicken, tuna, turkey, cantaloupe, and lettuce). Application of SalmoLyse® in low (ca. 2-4×10 6 PFU/g) and standard (ca. 9×10 6 PFU/g) concentrations significantly ( P contamination in all raw foods examined compared to control treatments. When SalmoLyse®-treated (ca. 2×10 7 PFU/g) dry pet food was fed to cats and dogs, it did not trigger any deleterious side effects in the pets. Our data suggest that the bacteriophage cocktail lytic for Salmonella can significantly and safely reduce Salmonella contamination in various raw pet food ingredients.

  8. Application of PET and PET/CT imaging for cancer screening

    International Nuclear Information System (INIS)

    Chen Yenkung; Hu Fenglan; Shen Yehyou; Liao, A.C.; Hung, T.Z.; Su, Chentau; Chen Liangkuang

    2004-01-01

    The aim of this study was to evaluate the potential application of 18F-fluorodeoxyglucose (FDG) Positron Emission Tomography (PET) and PET/CT for cancer screening in asymptomatic individuals. Methods: The subjects consisted of 3631 physical check up examinees (1947 men, 1684 women; mean age ±SD, 52.1±8.2 y) with non-specific medical histories. Whole-body FDG PET (or PET/CT), ultrasound and tumor markers were performed on all patients. Focal hypermetabolic areas with intensities equal to or exceeding the level of FDG uptake in the brain and bladder were considered abnormal and interpreted as neoplasia. Follow-up periods were longer than one year. Results: Among the 3631 FDG PET (including 1687 PET/CT), ultrasound and tumor markers examinations, malignant tumors were discovered in 47 examinees (1.29%). PET findings were true-positive in 38 of the 47 cancers (80.9%). In addition, 32 of the 47 cancers were performed with the PET-CT scan. PET detected cancer lesions in 28 of the 32 examinees. However, the CT detected cancer lesions in only 15 of 32 examinees. Conclusion: The sensitivity of FDG PET in the detection of a wide variety of cancers is high. Most cancer can be detected with FDG PET in a resectable stage. CT of the PET/CT for localization and characteristics of the lesion shows an increased specificity of the PET scan. Using ultrasound and tumor markers may complement the PET scan in cancer screening for hepatic and urologic neoplasms. (authors)

  9. PET or PET-CT with cancer screening

    International Nuclear Information System (INIS)

    Wang Taisong; Zhao Jinhua; Song Jianhua

    2007-01-01

    At present, cancer screening remains a lot of debate in contemporary medical practice. Many constitutes have done a lot of experiments in cancer screening. The same version is that recommendations and decisions regarding cancer screening should be based on reliable data, not self- approbation. Now, some institutes advocate 18 F-FDG PET or 18 F-FDG PET-CT for cancer screening, here, discussed status quo, potential financial, radiation safety and statistical data in 18 F-FDG PET or 18 F-FDG PET- CT cancer screening. (authors)

  10. PET / MRI vs. PET / CT. Indications Oncology

    International Nuclear Information System (INIS)

    Oliva González, Juan P.

    2016-01-01

    Hybrid techniques in Nuclear Medicine is currently a field in full development for diagnosis and treatment of various medical conditions. With the recent advent of PET / MRI much it speculated about whether or not it is superior to PET / CT especially in oncology. The Conference seeks to clarify this situation by dealing issues such as: State of the art technology PET / MRI; Indications Oncology; Some clinical cases. It concludes by explaining the oncological indications of both the real and current situation of the PET / MRI. (author)

  11. Recommendations for the use of PET and PET-CT for radiotherapy planning in research projects.

    Science.gov (United States)

    Somer, E J; Pike, L C; Marsden, P K

    2012-08-01

    With the increasing use of positron emission tomography (PET) for disease staging, follow-up and therapy monitoring in a number of oncological indications there is growing interest in the use of PET and PET-CT for radiation treatment planning. In order to create a strong clinical evidence base for this, it is important to ensure that research data are clinically relevant and of a high quality. Therefore the National Cancer Research Institute PET Research Network make these recommendations to assist investigators in the development of radiotherapy clinical trials involving the use of PET and PET-CT. These recommendations provide an overview of the current literature in this rapidly evolving field, including standards for PET in clinical trials, disease staging, volume delineation, intensity modulated radiotherapy and PET-augmented planning techniques, and are targeted at a general audience. We conclude with specific recommendations for the use of PET in radiotherapy planning in research projects.

  12. SU-E-J-49: Distal Edge Activity Fall Off Of Proton Therapy Beams

    Energy Technology Data Exchange (ETDEWEB)

    Elmekawy, A; Ewell, L [Hampton University, Hampton, VA (United States); Butuceanu, C; Zhu, L [HUPTI, Hampton, VA (United States)

    2014-06-01

    Purpose: To characterize and quantify the distal edge activity fall off, created in a phantom by a proton therapy beam Method and Materials: A 30x30x10cm polymethylmethacrylate phantom was irradiated with a proton therapy beam using different ranges and beams. The irradiation volume is approximated by a right circular cylinder of diameter 7.6cm and varying lengths. After irradiation, the phantom was scanned via a Philips Gemini Big Bore™ PET-CT for isotope activation. Varian Eclipse™ treatment planning system as well as ImageJ™ were used to analyze the resulting PET and CT scans. The region of activity within the phantom was longitudinally measured as a function of PET slice number. Dose estimations were made via Monte Carlo (GATE) simulation. Results: For both the spread out Bragg peak (SOBP) and the mono-energetic pristine Bragg peak proton beams, the proximal activation rise was steep: average slope −0.735 (average intensity/slice number) ± 0.091 (standard deviation) for the pristine beams and −1.149 ± 0.117 for the SOBP beams. In contrast, the distal fall offs were dissimilar. The distal fall off in activity for the pristine beams was fit well by a linear curve: R{sup 2} (Pierson Product) was 0.9968, 0.9955 and 0.9909 for the 13.5, 17.0 and 21.0cm range beams respectively. The good fit allows for a slope comparison between the different ranges. The slope varied as a function of range from 1.021 for the 13.5cm beam to 0.8407 (average intensity/slice number) for the 21.0cm beam. This dependence can be characterized: −0.0234(average intensity/slice number/cm range). For the SOBP beams, the slopes were significantly less and were also less linear: average slope 0.2628 ± 0.0474, average R{sup 2}=0.9236. Conclusion: The distal activation fall off edge for pristine proton beams was linear and steep. The corresponding quantities for SOBP beams were shallower and less linear. Philips has provided support for this work.

  13. Application of PET in breast cancer

    International Nuclear Information System (INIS)

    Noh, Dong Young

    2002-01-01

    Positron emission tomography (PET) is an imaging method that employs radionuclide and tomography techniques. Since 1995, we applied PET not only to the diagnosis of breast cancer but also to the detection of abnormalities in the augmented breast and to the detection of metastasis. Until 2001, we evaluated 242 breast cases by PET at PET center of Seoul National University Hospital. Our group has reported serially at the international journals. In the firtst report, PET showed high sensitivity for detecting breast cancer, both the primary and axillary node metastasis. A total of 27 patients underwent breast operations based on PET results at Seoul National University Hospital from 1995 to 1996. The diagnostic accuracy of PET were 97% for the primary tumor mass and 96% for axillary lymph node metastasis. In case of the breast augmented, PET also showed excellent diagnostic results for primary breast cancer and axillary lymph node metastasis where mammography and ultrasound could not diagnose properly. PET also had outstanding results in the detection of recurrent or metastatic breast cancer(sensitivity 94%, specificity 80%, accuracy 89%). In addition, our study gave some evidence that PET could be applied further to evaluate the growth rate of tumors by measuring SUV, and finally to prognosticated the disease. PET could also be applied to evaluate the response after chemotherapy to measure its metabolic rate and size. In conclsion, PET is a highly sensitive, accurate diagnostic tool for breast cancer of primary lesion in various conditions including metastasis

  14. Treatment of Human Cancer Using Relativistic Hadron Beams

    International Nuclear Information System (INIS)

    Chu, William T.

    2003-01-01

    The major sections of the powerpoint presentation is are: rationale and history, including the Berkeley laboratory legacy; an overview of proton therapy facilities; and future developments in three areas: beam scanning (IMpT); pCT, pPET, etc,; and carbon-ion therapy

  15. WE-FG-202-06: The Use of Hybrid PET MRI for Identifying the Presence of Cardiac Inflammation Following External Beam Irradiation

    International Nuclear Information System (INIS)

    El-Sherif, O; Xhaferllari, I; Battista, J; Sykes, J; Butler, J; Wisenberg, G; Prato, F; Gaede, S

    2016-01-01

    Purpose: To monitor the evolution of radiation-induced cardiac inflammation in a canine model using hybrid positron emission tomography (PET/magnetic resonance imaging (MRI). Methods: Research ethics approval was obtained for a longitudinal imaging study of 5 canines after cardiac irradiation. Animals were imaged at baseline, 3 months, 6 months, and 12 months post cardiac irradiation using a hybrid PET-MRI system (Biograph mMR, Siemens Healthcare). The imaging protocol was designed to assess changes in cardiac inflammation using 18 F-fluorodeoxyglucose ( 18 F-FDG) PET tracer. In order to image cardiac inflammation, the normal myocardial uptake of glucose was suppressed prior to the injection of 18 F-FDG. The suppression of glycolysis was achieved through; fasting (16–21 hours prior to the start of imaging) and an intravenous injection of heparin immediately followed by a 20% lipid infusion 20 min prior to the injection of 18 F-FDG. The standard uptake value (SUV) obtained from 17 myocardial regions were used to compare FDG scans. All animals received a simulation CT scan (GE Medical Systems) for radiation treatment planning. Radiation treatment plans were created using the Pinncale3 treatment planning system (Philips Radiation Oncology Systems) and designed to resemble the typical cardiac exposure during left-sided breast cancer radiotherapy. Cardiac irradiations were performed in a single fraction using a TrueBeam linear accelerator (Varian Medical Systems). Results: The delivered dose (mean ± standard error) to heart, left ventricle, and left anterior descending artery were 1.7±0.1 Gy, 2.7±0.1 Gy, and 5.5±0.3 Gy respectively. At these doses, a significant increase in 18 F-FDG uptake within the entire heart relative to baseline (1.1±0.02 g/ml) uptake was observed. 18 F-FDG uptake at 3 months, 6 months, and 12 months post irradiation were 1.8±0.03 g/ml, 2.4±0.06 g/ml, and 2.6±0.11 g/ml respectively. Conclusion: Low doses of limited cardiac irradiation

  16. WE-FG-202-06: The Use of Hybrid PET MRI for Identifying the Presence of Cardiac Inflammation Following External Beam Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    El-Sherif, O; Xhaferllari, I; Battista, J [Western University, London, ON (United Kingdom); London Regional Cancer Program, London, ON (United Kingdom); Sykes, J; Butler, J [Thames Valley Veterinary Services, London, Ontario (Canada); Lawson Health Research Institute, London, Ontario (Canada); Wisenberg, G; Prato, F [Western University, London, ON (United Kingdom); Lawson Health Research Institute, London, Ontario (Canada); Gaede, S [Western University, London, ON (United Kingdom); London Regional Cancer Program, London, ON (United Kingdom); Lawson Health Research Institute, London, Ontario (Canada)

    2016-06-15

    Purpose: To monitor the evolution of radiation-induced cardiac inflammation in a canine model using hybrid positron emission tomography (PET/magnetic resonance imaging (MRI). Methods: Research ethics approval was obtained for a longitudinal imaging study of 5 canines after cardiac irradiation. Animals were imaged at baseline, 3 months, 6 months, and 12 months post cardiac irradiation using a hybrid PET-MRI system (Biograph mMR, Siemens Healthcare). The imaging protocol was designed to assess changes in cardiac inflammation using {sup 18}F-fluorodeoxyglucose ({sup 18}F-FDG) PET tracer. In order to image cardiac inflammation, the normal myocardial uptake of glucose was suppressed prior to the injection of {sup 18}F-FDG. The suppression of glycolysis was achieved through; fasting (16–21 hours prior to the start of imaging) and an intravenous injection of heparin immediately followed by a 20% lipid infusion 20 min prior to the injection of {sup 18}F-FDG. The standard uptake value (SUV) obtained from 17 myocardial regions were used to compare FDG scans. All animals received a simulation CT scan (GE Medical Systems) for radiation treatment planning. Radiation treatment plans were created using the Pinncale3 treatment planning system (Philips Radiation Oncology Systems) and designed to resemble the typical cardiac exposure during left-sided breast cancer radiotherapy. Cardiac irradiations were performed in a single fraction using a TrueBeam linear accelerator (Varian Medical Systems). Results: The delivered dose (mean ± standard error) to heart, left ventricle, and left anterior descending artery were 1.7±0.1 Gy, 2.7±0.1 Gy, and 5.5±0.3 Gy respectively. At these doses, a significant increase in {sup 18}F-FDG uptake within the entire heart relative to baseline (1.1±0.02 g/ml) uptake was observed. {sup 18}F-FDG uptake at 3 months, 6 months, and 12 months post irradiation were 1.8±0.03 g/ml, 2.4±0.06 g/ml, and 2.6±0.11 g/ml respectively. Conclusion: Low doses of

  17. Preparation of the PET/PP/PE/EVA polymeric blend from PET bottles and modification studies induced by ionizing radiation; Obtencao da blenda polimerica PET/PP/PE/EVA a partir de garrafas PET e estudo das modificacoes provocadas pela radiacao ionizante

    Energy Technology Data Exchange (ETDEWEB)

    Rossini, Edvaldo Luis

    2005-07-01

    The environmental pollution is one of the biggest problems nowadays. Amidst the pollutants, plastic and especially the packings type {sup P}ET bottles{sup ,} which comprise of poly(ethylene terephthalate) (PET), polypropylene (PP), polyethylene (PE) and poly[ethylene-co-(vinyl acetate)] (EVA) are causing big damage in the environment. In this work, the polymeric blend PET/PP/PE/EVA was obtained by a process of simplified mechanical recycling from 'PET bottles' after consumption, with the objective to find solution to this environmental problem. It was also studied the different ionizing radiation doses effects (25, 50, 75, 100, 150, 200, 300, 400 e 500 kGy) on the blend properties using an electron beam accelerator. The mechanical (tensile strength, impact and hardness), thermal (Vicat softening temperature, differential scanning calorimetry and termogravimetric) and microscopic (light microscopy and scanning electron microscopy) properties of the blend were studied. The analysis of the results showed to be a not mixing and compatible blend, with mechanical and thermal properties (which appeared to be similar to the properties of the component material used in the blend in separate) satisfactory, resulting in a resistant material and of low cost, being able to be used in the production of parts that do not demand specifications techniques. The use of the ionizing radiation improved some of the mechanical and thermal properties of the blend (these modifications had been random and irregular, depending directly on the dose of applied radiation and the type of property) making possible more specific applications for this material. (author)

  18. Pet ownership, dog types and attachment to pets in 9-10 year old children in Liverpool, UK.

    Science.gov (United States)

    Westgarth, Carri; Boddy, Lynne M; Stratton, Gareth; German, Alexander J; Gaskell, Rosalind M; Coyne, Karen P; Bundred, Peter; McCune, Sandra; Dawson, Susan

    2013-05-13

    Little is known about ethnic, cultural and socioeconomic differences in childhood ownership and attitudes to pets. The objective of this study was to describe the factors associated with living with different pet types, as well as factors that may influence the intensity of relationship or 'attachment' that children have to their pet. Data were collected using a survey of 1021 9-10 year old primary school children in a deprived area of the city of Liverpool, UK. Dogs were the most common pet owned, most common 'favourite' pet, and species most attached to. Twenty-seven percent of dog-owning children (10% of all children surveyed) reported living with a 'Bull Breed' dog (which includes Pit Bulls and Staffordshire Bull Terriers), and the most popular dog breed owned was the Staffordshire Bull Terrier. Multivariable regression modelling identified a number of variables associated with ownership of different pets and the strength of attachment to the child's favourite pet. Girls were more likely to own most pet types, but were no more or less attached to their favourite pet than boys. Children of white ethnicity were more likely to own dogs, rodents and 'other' pets but were no more or less attached to their pets than children of non-white ethnicity. Single and youngest children were no more or less likely to own pets than those with younger brothers and sisters, but they showed greater attachment to their pets. Children that owned dogs lived in more deprived areas than those without dogs, and deprivation increased with number of dogs owned. 'Pit Bull or cross' and 'Bull Breed' dogs were more likely to be found in more deprived areas than other dog types. Non-whites were also more likely to report owning a 'Pit Bull or cross' than Whites. Gender, ethnicity and socioeconomic status were associated with pet ownership, and sibling status with level of attachment to the pet. These are important to consider when conducting research into the health benefits and risks of the

  19. Gamma camera based FDG PET in oncology

    International Nuclear Information System (INIS)

    Park, C. H.

    2002-01-01

    Positron Emission Tomography(PET) was introduced as a research tool in the 1970s and it took about 20 years before PET became an useful clinical imaging modality. In the USA, insurance coverage for PET procedures in the 1990s was the turning point, I believe, for this progress. Initially PET was used in neurology but recently more than 80% of PET procedures are in oncological applications. I firmly believe, in the 21st century, one can not manage cancer patients properly without PET and PET is very important medical imaging modality in basic and clinical sciences. PET is grouped into 2 categories; conventional (c) and gamma camera based ( CB ) PET. CB PET is more readily available utilizing dual-head gamma cameras and commercially available FDG to many medical centers at low cost to patients. In fact there are more CB PET in operation than cPET in the USA. CB PET is inferior to cPET in its performance but clinical studies in oncology is feasible without expensive infrastructures such as staffing, rooms and equipments. At Ajou university Hospital, CBPET was installed in late 1997 for the first time in Korea as well as in Asia and the system has been used successfully and effectively in oncological applications. Our was the fourth PET operation in Korea and I believe this may have been instrumental for other institutions got interested in clinical PET. The following is a brief description of our clinical experience of FDG CBPET in oncology

  20. Clinical Nononcologic Applications of PET/CT and PET/MRI in Musculoskeletal, Orthopedic, and Rheumatologic Imaging.

    Science.gov (United States)

    Gholamrezanezhad, Ali; Basques, Kyle; Batouli, Ali; Matcuk, George; Alavi, Abass; Jadvar, Hossein

    2018-06-01

    With improvements in PET/CT and PET/MRI over the last decade, as well as increased understanding of the pathophysiology of musculoskeletal diseases, there is an emerging potential for PET as a primary or complementary modality in the management of rheumatologic and orthopedic conditions. We discuss the role of PET/CT and PET/MRI in nononcologic musculoskeletal disorders, including inflammatory and infectious conditions and postoperative complications. There is great potential for an increased role for PET to serve as a primary or complementary modality in the management of orthopedic and rheumatologic disorders.

  1. PET/MR Imaging in Gynecologic Oncology.

    Science.gov (United States)

    Ohliger, Michael A; Hope, Thomas A; Chapman, Jocelyn S; Chen, Lee-May; Behr, Spencer C; Poder, Liina

    2017-08-01

    MR imaging and PET using 2-Deoxy-2-[ 18 F]fluoroglucose (FDG) are both useful in the evaluation of gynecologic malignancies. MR imaging is superior for local staging of disease whereas fludeoxyglucose FDG PET is superior for detecting distant metastases. Integrated PET/MR imaging scanners have great promise for gynecologic malignancies by combining the advantages of each modality into a single scan. This article reviews the technology behind PET/MR imaging acquisitions and technical challenges relevant to imaging the pelvis. A dedicated PET/MR imaging protocol; the roles of PET and MR imaging in cervical, endometrial, and ovarian cancers; and future directions for PET/MR imaging are discussed. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. [Principles of PET].

    Science.gov (United States)

    Beuthien-Baumann, B

    2018-05-01

    Positron emission tomography (PET) is a procedure in nuclear medicine, which is applied predominantly in oncological diagnostics. In the form of modern hybrid machines, such as PET computed tomography (PET/CT) and PET magnetic resonance imaging (PET/MRI) it has found wide acceptance and availability. The PET procedure is more than just another imaging technique, but a functional method with the capability for quantification in addition to the distribution pattern of the radiopharmaceutical, the results of which are used for therapeutic decisions. A profound knowledge of the principles of PET including the correct indications, patient preparation, and possible artifacts is mandatory for the correct interpretation of PET results.

  3. Cyclotron/PET project in Uruguay

    International Nuclear Information System (INIS)

    Engler, H.

    2006-01-01

    The Positron Computed Tomography (PET) is a tri dimensional image technique which shows biochemical information. PET is used in neurology and cardiology diseases. The National Center Cyclotron PET has been found to research, development and health science applications.

  4. FDG-PET and FDG-PET/CT for therapy monitoring and restaging in malignant lymphoma

    International Nuclear Information System (INIS)

    Mottaghy, F.M.; Krause, B.J.

    2003-01-01

    F-18-fluorodeoxyglucose (FDG) PET allows to assess residual masses in patients with malignant lymphoma differentiating vital tumor from scar tissue. This approach is not applicable with conventional imaging methods (CDM) such as CT or MRI. On the other hand circumscribed results often cannot be definitely allocated in PET, therefore the combined morphological-biochemical approach using the now available PET/CT systems promises to be a pathbreaking technical progress. There is no doubt that stand alone PET is superior to CDM differentiating residual scar tissue from vital tumor as has been shown in 15 recently published studies. The median sensitivity for detecting active disease with FDG PET across the studies was 91%; the corresponding specificity was 89%. As a result FDG PET had a high negative predictive value of 94%. In contrast, specificity and positive predictive value (PPV) of CDM in the 9 studies were a direct comparison was available were low (31% and 46%, one study 82%). PET positive residual masses were associated with a progression-free survival of 0 - 55%. Only a few studies have included FDG-PET in therapy response monitoring studies, however also these results are promising. At the moment FDG-PET seems to be the best possibility to characterize and qualitatively visualize vitality of tumor masses and also hold promises for efficient therapy response monitoring in patients with malignant lymphoma. Therefore it should be included in standard diagnostic protocols in lymphoma patients. The combined PET/CT has to be ranked superior to conventional PET studies as in many cases the combined structural and functional imaging brings a clearer diagnostic statement. (orig.) [de

  5. 3D-segmentation of the 18F-choline PET signal for target volume definition in radiation therapy of the prostate.

    Science.gov (United States)

    Ciernik, I Frank; Brown, Derek W; Schmid, Daniel; Hany, Thomas; Egli, Peter; Davis, J Bernard

    2007-02-01

    Volumetric assessment of PET signals becomes increasingly relevant for radiotherapy (RT) planning. Here, we investigate the utility of 18F-choline PET signals to serve as a structure for semi-automatic segmentation for forward treatment planning of prostate cancer. 18F-choline PET and CT scans of ten patients with histologically proven prostate cancer without extracapsular growth were acquired using a combined PET/CT scanner. Target volumes were manually delineated on CT images using standard software. Volumes were also obtained from 18F-choline PET images using an asymmetrical segmentation algorithm. PTVs were derived from CT 18F-choline PET based clinical target volumes (CTVs) by automatic expansion and comparative planning was performed. As a read-out for dose given to non-target structures, dose to the rectal wall was assessed. Planning target volumes (PTVs) derived from CT and 18F-choline PET yielded comparable results. Optimal matching of CT and 18F-choline PET derived volumes in the lateral and cranial-caudal directions was obtained using a background-subtracted signal thresholds of 23.0+/-2.6%. In antero-posterior direction, where adaptation compensating for rectal signal overflow was required, optimal matching was achieved with a threshold of 49.5+/-4.6%. 3D-conformal planning with CT or 18F-choline PET resulted in comparable doses to the rectal wall. Choline PET signals of the prostate provide adequate spatial information amendable to standardized asymmetrical region growing algorithms for PET-based target volume definition for external beam RT.

  6. Development of PET/MRI with insertable PET for simultaneous PET and MR imaging of human brain

    International Nuclear Information System (INIS)

    Jung, Jin Ho; Choi, Yong; Jung, Jiwoong; Kim, Sangsu; Lim, Hyun Keong; Im, Ki Chun; Oh, Chang Hyun; Park, Hyun-wook; Kim, Kyung Min; Kim, Jong Guk

    2015-01-01

    Purpose: The purpose of this study was to develop a dual-modality positron emission tomography (PET)/magnetic resonance imaging (MRI) with insertable PET for simultaneous PET and MR imaging of the human brain. Methods: The PET detector block was composed of a 4 × 4 matrix of detector modules, each consisting of a 4 × 4 array LYSO coupled to a 4 × 4 Geiger-mode avalanche photodiode (GAPD) array. The PET insert consisted of 18 detector blocks, circularly mounted on a custom-made plastic base to form a ring with an inner diameter of 390 mm and axial length of 60 mm. The PET gantry was shielded with gold-plated conductive fabric tapes with a thickness of 0.1 mm. The charge signals of PET detector transferred via 4 m long flat cables were fed into the position decoder circuit. The flat cables were shielded with a mesh-type aluminum sheet with a thickness of 0.24 mm. The position decoder circuit and field programmable gate array-embedded DAQ modules were enclosed in an aluminum box with a thickness of 10 mm and located at the rear of the MR bore inside the MRI room. A 3-T human MRI system with a Larmor frequency of 123.7 MHz and inner bore diameter of 60 cm was used as the PET/MRI hybrid system. A custom-made radio frequency (RF) coil with an inner diameter of 25 cm was fabricated. The PET was positioned between gradient and the RF coils. PET performance was measured outside and inside the MRI scanner using echo planar imaging, spin echo, turbo spin echo, and gradient echo sequences. MRI performance was also evaluated with and without the PET insert. The stability of the newly developed PET insert was evaluated and simultaneous PET and MR images of a brain phantom were acquired. Results: No significant degradation of the PET performance caused by MR was observed when the PET was operated using various MR imaging sequences. The signal-to-noise ratio of MR images was slightly degraded due to the PET insert installed inside the MR bore while the homogeneity was

  7. Development of PET/MRI with insertable PET for simultaneous PET and MR imaging of human brain

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Jin Ho; Choi, Yong, E-mail: ychoi.image@gmail.com; Jung, Jiwoong; Kim, Sangsu; Lim, Hyun Keong; Im, Ki Chun [Department of Electronic Engineering, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 121-742 (Korea, Republic of); Oh, Chang Hyun; Park, Hyun-wook [Department of Electrical Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701 (Korea, Republic of); Kim, Kyung Min; Kim, Jong Guk [Korea Institute of Radiological and Medical Science, 75 Nowon-ro, Nowon-gu, Seoul 139-709 (Korea, Republic of)

    2015-05-15

    Purpose: The purpose of this study was to develop a dual-modality positron emission tomography (PET)/magnetic resonance imaging (MRI) with insertable PET for simultaneous PET and MR imaging of the human brain. Methods: The PET detector block was composed of a 4 × 4 matrix of detector modules, each consisting of a 4 × 4 array LYSO coupled to a 4 × 4 Geiger-mode avalanche photodiode (GAPD) array. The PET insert consisted of 18 detector blocks, circularly mounted on a custom-made plastic base to form a ring with an inner diameter of 390 mm and axial length of 60 mm. The PET gantry was shielded with gold-plated conductive fabric tapes with a thickness of 0.1 mm. The charge signals of PET detector transferred via 4 m long flat cables were fed into the position decoder circuit. The flat cables were shielded with a mesh-type aluminum sheet with a thickness of 0.24 mm. The position decoder circuit and field programmable gate array-embedded DAQ modules were enclosed in an aluminum box with a thickness of 10 mm and located at the rear of the MR bore inside the MRI room. A 3-T human MRI system with a Larmor frequency of 123.7 MHz and inner bore diameter of 60 cm was used as the PET/MRI hybrid system. A custom-made radio frequency (RF) coil with an inner diameter of 25 cm was fabricated. The PET was positioned between gradient and the RF coils. PET performance was measured outside and inside the MRI scanner using echo planar imaging, spin echo, turbo spin echo, and gradient echo sequences. MRI performance was also evaluated with and without the PET insert. The stability of the newly developed PET insert was evaluated and simultaneous PET and MR images of a brain phantom were acquired. Results: No significant degradation of the PET performance caused by MR was observed when the PET was operated using various MR imaging sequences. The signal-to-noise ratio of MR images was slightly degraded due to the PET insert installed inside the MR bore while the homogeneity was

  8. FDG-PET evaluation of vaginal carcinoma

    International Nuclear Information System (INIS)

    Lamoreaux, Wayne T.; Grigsby, Perry W.; Dehdashti, Farrokh; Zoberi, Imran; Powell, Matthew A.; Gibb, Randall K.; Rader, Janet S.; Mutch, David G.; Siegel, Barry A.

    2005-01-01

    Purpose: To compare the results of CT and positron emission tomography (PET) and F-18 fluorodeoxyglucose (FDG) in the detection of the primary tumor and lymph node metastases in carcinoma of the vagina. Methods and Materials: This was a prospective registry study of 23 consecutive patients with carcinoma of the vagina, in which we respectively compared the results of CT and whole-body FDG-PET. The tumor was clinical Stage II in 16 patients, Stage III in 6, and Stage IVa in 1 patient. The primary tumor ranged in size from 2 to 10 cm (mean 4.9), and 4 patients had palpable groin lymph nodes. All patients were treated with external beam radiotherapy and brachytherapy, 14 received concurrent chemotherapy, and 2 underwent primary tumor excision before the imaging evaluation. The median follow-up was 21 months in those patients alive without disease. Survival was estimated by the Kaplan-Meier method. Results: Of the 21 patients with an intact primary tumor, CT visualized it in 9 (43%). CT also demonstrated abnormally enlarged groin lymph nodes in 3 patients and both groin and pelvic lymph nodes in 1 patient (4 of 23, 17%). FDG-PET identified abnormal uptake in all 21 intact primary tumors (100%). Abnormal uptake was found in the groin lymph nodes in 4 patients, pelvic lymph nodes in 2, and both groin and pelvic lymph nodes in 2 patients (8 of 23, 35%). The 3-year progression-free and overall survival estimate was 73% and 68%, respectively. Conclusion: The results of this study have demonstrated that FDG-PET detects the primary tumor and abnormal lymph nodes more often than does CT

  9. Proton therapy treatment monitoring with the DoPET system: activity range, positron emitters evaluation and comparison with Monte Carlo predictions

    Science.gov (United States)

    Muraro, S.; Battistoni, G.; Belcari, N.; Bisogni, M. G.; Camarlinghi, N.; Cristoforetti, L.; Del Guerra, A.; Ferrari, A.; Fracchiolla, F.; Morrocchi, M.; Righetto, R.; Sala, P.; Schwarz, M.; Sportelli, G.; Topi, A.; Rosso, V.

    2017-12-01

    Ion beam irradiations can deliver conformal dose distributions minimizing damage to healthy tissues thanks to their characteristic dose profiles. Nevertheless, the location of the Bragg peak can be affected by different sources of range uncertainties: a critical issue is the treatment verification. During the treatment delivery, nuclear interactions between the ions and the irradiated tissues generate β+ emitters: the detection of this activity signal can be used to perform the treatment monitoring if an expected activity distribution is available for comparison. Monte Carlo (MC) codes are widely used in the particle therapy community to evaluate the radiation transport and interaction with matter. In this work, FLUKA MC code was used to simulate the experimental conditions of irradiations performed at the Proton Therapy Center in Trento (IT). Several mono-energetic pencil beams were delivered on phantoms mimicking human tissues. The activity signals were acquired with a PET system (DoPET) based on two planar heads, and designed to be installed along the beam line to acquire data also during the irradiation. Different acquisitions are analyzed and compared with the MC predictions, with a special focus on validating the PET detectors response for activity range verification.

  10. Local recurrence of prostate cancer after radical prostatectomy is at risk to be missed in {sup 68}Ga-PSMA-11-PET of PET/CT and PET/MRI: comparison with mpMRI integrated in simultaneous PET/MRI

    Energy Technology Data Exchange (ETDEWEB)

    Freitag, Martin T. [Department of Radiology, German Cancer Research Center, Heidelberg (Germany); Clinical Cooperation Unit Nuclear Medicine, German Cancer Research Center, Heidelberg (Germany); Radtke, Jan P. [Department of Radiology, German Cancer Research Center, Heidelberg (Germany); University Hospital Heidelberg, Department of Urology, Heidelberg (Germany); Afshar-Oromieh, Ali; Flechsig, Paul; Giesel, Frederik; Haberkorn, Uwe [University Hospital Heidelberg, Department of Nuclear Medicine, Heidelberg (Germany); Roethke, Matthias C.; Bonekamp, David; Schlemmer, Heinz-Peter [Department of Radiology, German Cancer Research Center, Heidelberg (Germany); Hadaschik, Boris A.; Hohenfellner, Markus [University Hospital Heidelberg, Department of Urology, Heidelberg (Germany); Gleave, Martin [University of British Columbia, The Vancouver Prostate Centre, Vancouver (Canada); Kopka, Klaus; Eder, Matthias [Division of Radiopharmaceutical Chemistry, German Cancer Research Center, Heidelberg (Germany); Heusser, Thorsten; Kachelriess, Marc [Department of Medical Physics in Radiology, German Cancer Research Center, Heidelberg (Germany); Wieczorek, Kathrin [University Hospital Heidelberg, Institute of Pathology, Heidelberg (Germany); Sachpekidis, Christos; Dimitrakopoulou-Strauss, A. [Clinical Cooperation Unit Nuclear Medicine, German Cancer Research Center, Heidelberg (Germany)

    2017-05-15

    The positron emission tomography (PET) tracer {sup 68}Ga-PSMA-11, targeting the prostate-specific membrane antigen (PSMA), is rapidly excreted into the urinary tract. This leads to significant radioactivity in the bladder, which may limit the PET-detection of local recurrence (LR) of prostate cancer (PC) after radical prostatectomy (RP), developing in close proximity to the bladder. Here, we analyze if there is additional value of multi-parametric magnetic resonance imaging (mpMRI) compared to the {sup 68}Ga-PSMA-11-PET-component of PET/CT or PET/MRI to detect LR. One hundred and nineteen patients with biochemical recurrence after prior RP underwent both hybrid {sup 68}Ga-PSMA-11-PET/CT{sub low-dose} (1 h p.i.) and -PET/MRI (2-3 h p.i.) including a mpMRI protocol of the prostatic bed. The comparison of both methods was restricted to the abdomen with focus on LR (McNemar). Bladder-LR distance and recurrence size were measured in axial T2w-TSE. A logistic regression was performed to determine the influence of these variables on detectability in {sup 68}Ga-PSMA-11-PET. Standardized-uptake-value (SUV{sub mean}) quantification of LR was performed. There were 93/119 patients that had at least one pathologic finding. In addition, 18/119 Patients (15.1%) were diagnosed with a LR in mpMRI of PET/MRI but only nine were PET-positive in PET/CT and PET/MRI. This mismatch was statistically significant (p = 0.004). Detection of LR using the PET-component was significantly influenced by proximity to the bladder (p = 0.028). The PET-pattern of LR-uptake was classified into three types (1): separated from bladder; (2): fuses with bladder, and (3): obliterated by bladder. The size of LRs did not affect PET-detectability (p = 0.84), mean size was 1.7 ± 0.69 cm long axis, 1.2 ± 0.46 cm short-axis. SUV{sub mean} in nine men was 8.7 ± 3.7 (PET/CT) and 7.0 ± 4.2 (PET/MRI) but could not be quantified in the remaining nine cases (obliterated by bladder). The present study demonstrates

  11. Evaluation of Dixon Sequence on Hybrid PET/MR Compared with Contrast-Enhanced PET/CT for PET-Positive Lesions

    International Nuclear Information System (INIS)

    Jeong, Ju Hye; Cho, Ihn Ho; Kong, Eun Jung; Chun, Kyung Ah

    2014-01-01

    Hybrid positron emission tomography and magnetic resonance (PET/MR) imaging performs a two-point Dixon MR sequence for attenuation correction. However, MR data in hybrid PET/MR should provide anatomic and morphologic information as well as an attenuation map. We evaluated the Dixon sequence of hybrid PET/MR for anatomic correlation of PET-positive lesions compared with contrast-enhanced PET/computed tomography (CT) in patients with oncologic diseases. Twelve patients underwent a single injection, dual imaging protocol. PET/CT was performed with an intravenous contrast agent (85±13 min after 18 F-FDG injection of 403± 45 MBq) and then (125±19 min after injection) PET/MR was performed. Attenuation correction and anatomic allocation of PET were performed using contrast-enhanced CT for PET/CT and Dixon MR sequence for hybrid PET/MR. The Dixon MR sequence and contrast-enhanced CT were compared for anatomic correlation of PET-positive lesions (scoring scale ranging from 0 to 3 for visual ratings). Additionally, standardized uptake values (SUVs) for the detected lesions were assessed for quantitative comparison. Both hybrid PET/MR and contrast-enhanced PET/CT identified 55 lesions with increased FDG uptake in ten patients. In total, 28 lymph nodes, 11 bone lesions, 3 dermal nodules, 3 pleural thickening lesions, 2 thyroid nodules, 1 pancreas, 1 liver, 1 ovary, 1 uterus, 1 breast, 1 soft tissue and 2 lung lesions were present. The best performance was observed for anatomic correlation of PET findings by the contrast-enhanced CT scans (contrast-enhanced CT, 2.64± 0.70; in-phase, 1.29±1.01; opposed-phase, 1.29±1.15; water-weighted, 1.71±1.07; fat weighted, 0.56±1.03). A significant difference was observed between the scores obtained from the contrast-enhanced CT and all four coregistered Dixon MR images. Quantitative evaluation revealed a high correlation between the SUVs measured with hybrid PET/MR (SUVmean, 2.63±1.62; SUVmax, 4.30±2.88) and contrast-enhanced PET

  12. Evaluation of Dixon Sequence on Hybrid PET/MR Compared with Contrast-Enhanced PET/CT for PET-Positive Lesions

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Ju Hye; Cho, Ihn Ho; Kong, Eun Jung; Chun, Kyung Ah [Yeungnam Univ. Hospital, Daegu (Korea, Republic of)

    2014-03-15

    Hybrid positron emission tomography and magnetic resonance (PET/MR) imaging performs a two-point Dixon MR sequence for attenuation correction. However, MR data in hybrid PET/MR should provide anatomic and morphologic information as well as an attenuation map. We evaluated the Dixon sequence of hybrid PET/MR for anatomic correlation of PET-positive lesions compared with contrast-enhanced PET/computed tomography (CT) in patients with oncologic diseases. Twelve patients underwent a single injection, dual imaging protocol. PET/CT was performed with an intravenous contrast agent (85±13 min after {sup 18}F-FDG injection of 403± 45 MBq) and then (125±19 min after injection) PET/MR was performed. Attenuation correction and anatomic allocation of PET were performed using contrast-enhanced CT for PET/CT and Dixon MR sequence for hybrid PET/MR. The Dixon MR sequence and contrast-enhanced CT were compared for anatomic correlation of PET-positive lesions (scoring scale ranging from 0 to 3 for visual ratings). Additionally, standardized uptake values (SUVs) for the detected lesions were assessed for quantitative comparison. Both hybrid PET/MR and contrast-enhanced PET/CT identified 55 lesions with increased FDG uptake in ten patients. In total, 28 lymph nodes, 11 bone lesions, 3 dermal nodules, 3 pleural thickening lesions, 2 thyroid nodules, 1 pancreas, 1 liver, 1 ovary, 1 uterus, 1 breast, 1 soft tissue and 2 lung lesions were present. The best performance was observed for anatomic correlation of PET findings by the contrast-enhanced CT scans (contrast-enhanced CT, 2.64± 0.70; in-phase, 1.29±1.01; opposed-phase, 1.29±1.15; water-weighted, 1.71±1.07; fat weighted, 0.56±1.03). A significant difference was observed between the scores obtained from the contrast-enhanced CT and all four coregistered Dixon MR images. Quantitative evaluation revealed a high correlation between the SUVs measured with hybrid PET/MR (SUVmean, 2.63±1.62; SUVmax, 4.30±2.88) and contrast

  13. New developments in PET detector technology

    International Nuclear Information System (INIS)

    Niu Lingxin; Zhao Shujun; Zhang Bin; Liu Haojia

    2010-01-01

    The researches on PET detector are always active and innovative area. The research direction of PET detector includes improving performances of scintillator-based detectors, investigating new detectors suitable for multi-modality imaging (e.g. PET/CT and PET/MRI), meeting requirements of TOF and DOI technologies and boosting the development of the technologies. In this paper, new developments in PET detector technology about scintillation crystal, photodetector and semiconductor detector is introduced. (authors)

  14. Clinical evaluation of PET image quality as a function of acquisition time in a new TOF-PET/MR compared to TOF-PET/CT - initial results

    International Nuclear Information System (INIS)

    Zeimpekis, Konstantinos; Huellner, Martin; De Galiza Barbosa, Felipe; Ter Voert, Edwin; Davison, Helen; Delso, Gaspar; Veit-Haibach, Patrick

    2015-01-01

    The recently available integrated PET/MR imaging can offer significant additional advances in clinical imaging. The purpose of this study was to compare the PET performance between a PET/CT scanner and an integrated TOF-PET/MR scanner concerning image quality parameters and quantification in terms of SUV as a function of acquisition time (a surrogate of dose). Five brain and five whole body patients were included in the study. The PET/CT scan was used as a reference and the PET/MR acquisition time was consecutively adjusted, taking into account the decay between the scans in order to expose both systems to the same amount of emitted signal. The acquisition times were then retrospectively reduced to assess the performance of the PET/MRI for lower count rates. Image quality, image sharpness, artifacts and noise were evaluated. SUV measurements were taken in the liver and in white matter to compare quantification. Quantitative evaluation showed good correlation between PET/CT and PET/MR brain SUVs. Liver correlation was lower, with uptake underestimation in PET/MR, partially justified by bio-redistribution. The clinical evaluation showed that PET/MR offers higher image quality and sharpness with lower levels of noise and artefacts compared to PET/CT with reduced acquisition times for whole body scans, while for brain scans there is no significant difference. The PET-component of the TOF-PET/MR showed higher image quality compared to PET/CT as tested with reduced imaging times. However, these results account mainly for body imaging, while no significant difference were found in brain imaging. This overall higher image quality suggests that the acquisition time or injected activity can be reduced by at least 37% on the PET/MR scanner.

  15. Clinical evaluation of PET image quality as a function of acquisition time in a new TOF-PET/MR compared to TOF-PET/CT - initial results

    Energy Technology Data Exchange (ETDEWEB)

    Zeimpekis, Konstantinos; Huellner, Martin; De Galiza Barbosa, Felipe; Ter Voert, Edwin; Davison, Helen; Delso, Gaspar; Veit-Haibach, Patrick [Nuclear Medicine, University Hospital Zurich (Switzerland)

    2015-05-18

    The recently available integrated PET/MR imaging can offer significant additional advances in clinical imaging. The purpose of this study was to compare the PET performance between a PET/CT scanner and an integrated TOF-PET/MR scanner concerning image quality parameters and quantification in terms of SUV as a function of acquisition time (a surrogate of dose). Five brain and five whole body patients were included in the study. The PET/CT scan was used as a reference and the PET/MR acquisition time was consecutively adjusted, taking into account the decay between the scans in order to expose both systems to the same amount of emitted signal. The acquisition times were then retrospectively reduced to assess the performance of the PET/MRI for lower count rates. Image quality, image sharpness, artifacts and noise were evaluated. SUV measurements were taken in the liver and in white matter to compare quantification. Quantitative evaluation showed good correlation between PET/CT and PET/MR brain SUVs. Liver correlation was lower, with uptake underestimation in PET/MR, partially justified by bio-redistribution. The clinical evaluation showed that PET/MR offers higher image quality and sharpness with lower levels of noise and artefacts compared to PET/CT with reduced acquisition times for whole body scans, while for brain scans there is no significant difference. The PET-component of the TOF-PET/MR showed higher image quality compared to PET/CT as tested with reduced imaging times. However, these results account mainly for body imaging, while no significant difference were found in brain imaging. This overall higher image quality suggests that the acquisition time or injected activity can be reduced by at least 37% on the PET/MR scanner.

  16. Interference between PET and MRI sub-systems in a silicon-photomultiplier-based PET/MRI system

    International Nuclear Information System (INIS)

    Yamamoto, Seiichi; Watabe, Hiroshi; Kanai, Yasukazu; Hatazawa, Jun; Aoki, Masaaki; Sugiyama, Eiji; Watabe, Tadashi; Imaizumi, Masao; Shimosegawa, Eku

    2011-01-01

    The silicon-photomultiplier (Si-PM) is a promising photodetector, especially for integrated PET/MRI systems, due to its small size, high gain, and low sensitivity to static magnetic fields. The major problem using a Si-PM-based PET system within the MRI system is the interference between the PET and MRI units. We measured the interference by combining a Si-PM-based PET system with a permanent-magnet MRI system. When the RF signal-induced pulse height exceeded the lower energy threshold level of the PET system, interference between the Si-PM-based PET system and MRI system was detected. The prompt as well as the delayed coincidence count rates of the Si-PM-based PET system increased significantly. These noise counts produced severe artifacts on the reconstructed images of the Si-PM-based PET system. In terms of the effect of the Si-PM-based PET system on the MRI system, although no susceptibility artifact was observed on the MR images, electronic noise from the PET detector ring was detected by the RF coil and reduced the signal-to-noise ratio (S/N) of the MR images. The S/N degradation of the MR images was reduced when the distance between the RF coil and the Si-PM-based PET system was increased. We conclude that reducing the interference between the PET and MRI systems is essential for achieving the optimum performance of integrated Si-PM PET/MRI systems.

  17. SU-F-J-197: A Novel Intra-Beam Range Detection and Adaptation Strategy for Particle Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Chen, M; Jiang, S; Shao, Y; Lu, W [UT Southwestern Medical Center, Dallas, TX (United States)

    2016-06-15

    Purpose: In-vivo range detection/verification is crucial in particle therapy for effective and safe delivery. The state-of-art techniques are not sufficient for in-vivo on-line range verification due to conflicts among patient dose, signal statistics and imaging time. We propose a novel intra-beam range detection and adaptation strategy for particle therapy. Methods: This strategy uses the planned mid-range spots as probing beams without adding extra radiation to patients. Such choice of probing beams ensures the Bragg peaks to remain inside the tumor even with significant range variation from the plan. It offers sufficient signal statistics for in-beam positron emission tomography (PET) due to high positron activity of therapeutic dose. The probing beam signal can be acquired and reconstructed using in-beam PET that allows for delineation of the Bragg peaks and detection of range shift with ease of detection enabled by single-layered spots. If the detected range shift is within a pre-defined tolerance, the remaining spots will be delivered as the original plan. Otherwise, a fast re-optimization using range-shifted beamlets and accounting for the probing beam dose is applied to consider the tradeoffs posed by the online anatomy. Simulated planning and delivery studies were used to demonstrate the effectiveness of the proposed techniques. Results: Simulations with online range variations due to shifts of various foreign objects into the beam path showed successful delineation of the Bragg peaks as a result of delivering probing beams. Without on-line delivery adaptation, dose distribution was significantly distorted. In contrast, delivery adaptation incorporating detected range shift recovered well the planned dose. Conclusion: The proposed intra-beam range detection and adaptation utilizing the planned mid-range spots as probing beams, which illuminate the beam range with strong and accurate PET signals, is a safe, practical, yet effective approach to address range

  18. SU-F-I-57: Evaluate and Optimize PET Acquisition Overlap in 18F-FDG Oncology Wholebody PET/CT: Can We Scan PET Faster?

    International Nuclear Information System (INIS)

    Zhang, J; Natwa, M; Hall, NC; Knopp, MV; Knopp, MU; Zhang, B; Tung, C

    2016-01-01

    Purpose: The longer patient has to remain on the table during PET imaging, the higher the likelihood of motion artifacts due to patient discomfort. This study was to investigate and optimize PET acquisition overlap in 18F-FDG oncology wholebody PET/CT to speed up PET acquisition and improve patient comfort. Methods: Wholebody 18F-FDG PET/CT of phantoms, 8 pre-clinical patients (beagles) and 5 clinical oncology patients were performed in 90s/bed on a time-of-flight Gemini TF 64 system. Imaging of phantoms and beagles was acquired with reduced PET overlaps (40%, 33%, 27%, 20%, 13% and no overlap) in addition to the system default (53%). In human studies, 1 or 2 reduced overlaps from the listed options were used to acquire PET/CT sweeps right after the default standard of care imaging. Image quality was blindly reviewed using visual scoring criteria and quantitative SUV assessment. NEMA PET sensitivity was performed under different overlaps. Results: All PET exams demonstrated no significant impact on the visual grades for overlaps >20%. Blinded reviews assigned the best visual scores to PET using overlaps 53%–27%. Reducing overlap to 27% for oncology patients (12-bed) saved an average of ∼40% acquisition time (11min) compared to using the default overlap (18min). No significant SUV variances were found when reducing overlap to half of default for cerebellum, lung, heart, aorta, liver, fat, muscle, bone marrow, thighs and target lesions (p>0.05), except expected variability in urinary system. Conclusion: This study demonstrated by combined phantom, pre-clinical and clinical PET/CT scans that PET acquisition overlap in axial of today’s systems can be reduced and optimized. It showed that a reduction of PET acquisition overlap to 27% (half of system default) can be implemented to reduce table time by ∼40% to improve patient comfort and minimize potential motion artifacts, without prominently degrading image quality or compromising PET quantification.

  19. SU-F-I-57: Evaluate and Optimize PET Acquisition Overlap in 18F-FDG Oncology Wholebody PET/CT: Can We Scan PET Faster?

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, J; Natwa, M; Hall, NC; Knopp, MV [The Ohio State University, Columbus, OH (United States); Knopp, MU [Pepperdine University, Malibu, CA (United States); Zhang, B; Tung, C [Philips Healthcare, Highland Heights, OH (United States)

    2016-06-15

    Purpose: The longer patient has to remain on the table during PET imaging, the higher the likelihood of motion artifacts due to patient discomfort. This study was to investigate and optimize PET acquisition overlap in 18F-FDG oncology wholebody PET/CT to speed up PET acquisition and improve patient comfort. Methods: Wholebody 18F-FDG PET/CT of phantoms, 8 pre-clinical patients (beagles) and 5 clinical oncology patients were performed in 90s/bed on a time-of-flight Gemini TF 64 system. Imaging of phantoms and beagles was acquired with reduced PET overlaps (40%, 33%, 27%, 20%, 13% and no overlap) in addition to the system default (53%). In human studies, 1 or 2 reduced overlaps from the listed options were used to acquire PET/CT sweeps right after the default standard of care imaging. Image quality was blindly reviewed using visual scoring criteria and quantitative SUV assessment. NEMA PET sensitivity was performed under different overlaps. Results: All PET exams demonstrated no significant impact on the visual grades for overlaps >20%. Blinded reviews assigned the best visual scores to PET using overlaps 53%–27%. Reducing overlap to 27% for oncology patients (12-bed) saved an average of ∼40% acquisition time (11min) compared to using the default overlap (18min). No significant SUV variances were found when reducing overlap to half of default for cerebellum, lung, heart, aorta, liver, fat, muscle, bone marrow, thighs and target lesions (p>0.05), except expected variability in urinary system. Conclusion: This study demonstrated by combined phantom, pre-clinical and clinical PET/CT scans that PET acquisition overlap in axial of today’s systems can be reduced and optimized. It showed that a reduction of PET acquisition overlap to 27% (half of system default) can be implemented to reduce table time by ∼40% to improve patient comfort and minimize potential motion artifacts, without prominently degrading image quality or compromising PET quantification.

  20. F-FDG PET/CT (PET/CT) influences management in patients with known or suspected pancreatic cancer

    International Nuclear Information System (INIS)

    Barber, Thomas W.; Kalff, Victor; Cherk, Martin H.; Yap, Kenneth SK.; Evans, Peter; Kelly, Michael J.

    2009-01-01

    Full text: Objective: To assess the impact on clinical management of PET/CT in patients with known or suspected pancreatic cancer. Methods: Between April 2006 and September 2008,25 PET/CT scans were performed using a dedicated PET/CT (22 scans) or a coincidence hybrid PET/CT camera (3 scans) in 23 patients with known or suspected pancreatic cancer. 17 scans were performed for initial evaluation and 8 for restaging of disease. The pre-PET/CT management plan and for intent were prospectively recorded in all cases. The post-PET/CT management plan was determined from the medical record and for discussions with treating clinicians. The impact of PET/CT on management was classified as High, Medium, Low or None, defined using ANZAPNM PET data collection project criteria. Follow-up was used to reconcile any discordance between PET/CT and conventional imaging. Results: Overall, PET/CT management impact was classified as high (n equal 7), medium (n equal 4), low (n equal 10) or none (n equal 4). Impact was either high or medium in l l/25 patients (44%) (95% confidence interval; 24 - 64%). Impact was high in 4/17 patients imaged for initial evaluation, predominantly by clarifying equivocal lesions on conventional imaging. In restaged patients, PET/CT impact was high in 3/8, and it correctly modified disease extent in 5/8. In the 16 discordant studies, PET/CT assessment was correct in 10, conventional imaging in 4 and there was insufficient information in 2. Conclusion: PET/CT has high or medium management impact in 44% of patients imaged for known or suspected pancreatic cancer, more commonly during restaging. Discordant PET/CT results were usually correct.

  1. Positron Emission Tomography (PET)

    International Nuclear Information System (INIS)

    Welch, M.J.

    1990-01-01

    Positron emission tomography (PET) assesses biochemical processes in the living subject, producing images of function rather than form. Using PET, physicians are able to obtain not the anatomical information provided by other medical imaging techniques, but pictures of physiological activity. In metaphoric terms, traditional imaging methods supply a map of the body's roadways, its, anatomy; PET shows the traffic along those paths, its biochemistry. This document discusses the principles of PET, the radiopharmaceuticals in PET, PET research, clinical applications of PET, the cost of PET, training of individuals for PET, the role of the United States Department of Energy in PET, and the futures of PET. 22 figs

  2. Positron Emission Tomography (PET)

    Science.gov (United States)

    Welch, M. J.

    1990-01-01

    Positron emission tomography (PET) assesses biochemical processes in the living subject, producing images of function rather than form. Using PET, physicians are able to obtain not the anatomical information provided by other medical imaging techniques, but pictures of physiological activity. In metaphoric terms, traditional imaging methods supply a map of the body's roadways, its, anatomy; PET shows the traffic along those paths, its biochemistry. This document discusses the principles of PET, the radiopharmaceuticals in PET, PET research, clinical applications of PET, the cost of PET, training of individuals for PET, the role of the United States Department of Energy in PET, and the futures of PET.

  3. Positron Emission Tomography (PET)

    Energy Technology Data Exchange (ETDEWEB)

    Welch, M.J.

    1990-01-01

    Positron emission tomography (PET) assesses biochemical processes in the living subject, producing images of function rather than form. Using PET, physicians are able to obtain not the anatomical information provided by other medical imaging techniques, but pictures of physiological activity. In metaphoric terms, traditional imaging methods supply a map of the body's roadways, its, anatomy; PET shows the traffic along those paths, its biochemistry. This document discusses the principles of PET, the radiopharmaceuticals in PET, PET research, clinical applications of PET, the cost of PET, training of individuals for PET, the role of the United States Department of Energy in PET, and the futures of PET. 22 figs.

  4. 18F-fluorodeoxyglucose PET and PET-CT in early detection of cancer recurrent

    International Nuclear Information System (INIS)

    Xing Yan; Zhao Jinhua

    2007-01-01

    Early detection of recurrent can improve prognosis and survival of patients with cancer. 18 F- fluorodeoxyglucose( 18 F-FDG) PET can detect metabolic changes before structural changes. The fused imaging provided by PET-CT can precisely localize the foci and demonstrate the complementary roles of functional and anatomic assessments in the diagnosis of cancer recurrence. In addition to the accurate diagnosis and definition of the whole extent of recurrent cancer, 18 F-FDG PET and PET-CT can impact patients management. (authors)

  5. Molecular Imaging in Breast Cancer: From Whole-Body PET/CT to Dedicated Breast PET

    Directory of Open Access Journals (Sweden)

    B. B. Koolen

    2012-01-01

    Full Text Available Positron emission tomography (PET, with or without integrated computed tomography (CT, using 18F-fluorodeoxyglucose (FDG is based on the principle of elevated glucose metabolism in malignant tumors, and its use in breast cancer patients is frequently being investigated. It has been shown useful for classification, staging, and response monitoring, both in primary and recurrent disease. However, because of the partial volume effect and limited resolution of most whole-body PET scanners, sensitivity for the visualization of small tumors is generally low. To improve the detection and quantification of primary breast tumors with FDG PET, several dedicated breast PET devices have been developed. In this nonsystematic review, we shortly summarize the value of whole-body PET/CT in breast cancer and provide an overview of currently available dedicated breast PETs.

  6. Deep-inspiration breath-hold PET/CT versus free breathing PET/CT and respiratory gating PET for reference. Evaluation in 95 patients with lung cancer

    International Nuclear Information System (INIS)

    Kawano, Tsuyoshi; Ohtake, Eiji; Inoue, Tomio

    2011-01-01

    The objective of this study was to define the factors that correlate with differences in maximum standardized uptake value (SUV max ) in deep-inspiration breath-hold (DIBH) and free breathing (FB) positron emission tomography (PET)/CT admixed with respiratory gating (RG) PET for reference. Patients (n=95) with pulmonary lesions were evaluated at one facility over 33 months. After undergoing whole-body PET/CT, a RG PET and FB PET/CT scans were obtained, followed by a DIBH PET/CT scan. All scans were recorded using a list-mode dynamic collection method with respiratory gating. The RG PET was reconstructed using phase gating without attenuation correction; the FB PET was reconstructed from the RG PET sinogram datasets with attenuation correction. Respiratory motion distance, breathing cycle speed, and waveform of RG PET were recorded. The SUV max of FB PET/CT and DIBH PET/CT were recorded: the percent difference in SUV max between the FB and DIBH scans was defined as the %BH-index. The %BH-index was significantly higher for lesions in the lower lung area than in the upper lung area. Respiratory motion distance was significantly higher in the lower lung area than in the upper lung area. A significant relationship was observed between the %BH-index and respiratory motion distance. Waveforms without steady end-expiration tended to show a high %BH-index. Significant inverse relationships were observed between %BH-index and cycle speed, and between respiratory motion distance and cycle speed. Decrease in SUV max of FB PET/CT was due to tumor size, distribution of lower lung, long respiratory movement at slow breathing cycle speeds, and respiratory waveforms without steady end-expiration. (author)

  7. Indeterminate findings on oncologic PET/CT: What difference dose PET/MRI make?

    Energy Technology Data Exchange (ETDEWEB)

    Fraum, Tyler J.; Fowler, Kathryn J.; McConathy, Jonathan; Dehdashti, Farokh [Mallinckrodt Institute of Radiology, Washington University School of Medicine, Saint Louis (United States)

    2016-12-15

    Positron emission tomography/computed tomography (PET/CT) with 2-deoxy-2-[{sup 18}F]fluoro-D-glucose (FDG) has become the standard of care for the initial staging and subsequent treatment response assessment of many different malignancies. Despite this success, PET/CT is often supplemented by MRI to improve assessment of local tumor invasion and to facilitate detection of lesions in organs with high background FDG uptake. Consequently, PET/MRI has the potential to expand the clinical value of PET examinations by increasing reader certainty and reducing the need for subsequent imaging. This study evaluates the ability of FDG-PET/MRI to clarify findings initially deemed indeterminate on clinical FDG-PET/CT studies. A total of 190 oncology patients underwent whole-body PET/CT, immediately followed by PET/MRI utilizing the same FDG administration. Each PET/CT was interpreted by our institution's nuclear medicine service as a standard-of-care clinical examination. Review of these PET/CT reports identified 31 patients (16 %) with indeterminate findings. Two readers evaluated all 31 PET/CT studies, followed by the corresponding PET/MRI studies. A consensus was reached for each case, and changes in interpretation directly resulting from PET/MRI review were recorded. Interpretations were then correlated with follow-up imaging, pathology results, and other diagnostic studies. In 18 of 31 cases with indeterminate findings on PET/CT, PET/MRI resulted in a more definitive interpretation by facilitating the differentiation of infection/inflammation from malignancy (15/18), the accurate localization of FDG-avid lesions (2/18), and the characterization of incidental non-FDG-avid solid organ lesions (1/18). Explanations for improved reader certainty with PET/MRI included the superior soft tissue contrast of MRI and the ability to assess cellular density with diffusion-weighted imaging. The majority (12/18) of such cases had an appropriate standard of reference; in all 12 cases

  8. Indeterminate findings on oncologic PET/CT: What difference dose PET/MRI make?

    International Nuclear Information System (INIS)

    Fraum, Tyler J.; Fowler, Kathryn J.; McConathy, Jonathan; Dehdashti, Farokh

    2016-01-01

    Positron emission tomography/computed tomography (PET/CT) with 2-deoxy-2-["1"8F]fluoro-D-glucose (FDG) has become the standard of care for the initial staging and subsequent treatment response assessment of many different malignancies. Despite this success, PET/CT is often supplemented by MRI to improve assessment of local tumor invasion and to facilitate detection of lesions in organs with high background FDG uptake. Consequently, PET/MRI has the potential to expand the clinical value of PET examinations by increasing reader certainty and reducing the need for subsequent imaging. This study evaluates the ability of FDG-PET/MRI to clarify findings initially deemed indeterminate on clinical FDG-PET/CT studies. A total of 190 oncology patients underwent whole-body PET/CT, immediately followed by PET/MRI utilizing the same FDG administration. Each PET/CT was interpreted by our institution's nuclear medicine service as a standard-of-care clinical examination. Review of these PET/CT reports identified 31 patients (16 %) with indeterminate findings. Two readers evaluated all 31 PET/CT studies, followed by the corresponding PET/MRI studies. A consensus was reached for each case, and changes in interpretation directly resulting from PET/MRI review were recorded. Interpretations were then correlated with follow-up imaging, pathology results, and other diagnostic studies. In 18 of 31 cases with indeterminate findings on PET/CT, PET/MRI resulted in a more definitive interpretation by facilitating the differentiation of infection/inflammation from malignancy (15/18), the accurate localization of FDG-avid lesions (2/18), and the characterization of incidental non-FDG-avid solid organ lesions (1/18). Explanations for improved reader certainty with PET/MRI included the superior soft tissue contrast of MRI and the ability to assess cellular density with diffusion-weighted imaging. The majority (12/18) of such cases had an appropriate standard of reference; in all 12 cases, the

  9. Comparison of the diagnosis using FDG-PET and AC-PET with histopathological features in lung adenocarcinomas

    International Nuclear Information System (INIS)

    Koizumi, Satoko

    2011-01-01

    Fluorodeoxyglucose-positron emission tomography (FDG-PET) is a useful tool for lung cancer diagnosis because of its good sensitivity and specificity. However, FDG-PET is problematically causing the false negative in cases of well differentiated lung adenocarcinomas which are low grade malignancies. Acetate (AC)-PET using 11 C-acetate is thought to be a superior detection tool for low grade malignancies. In this study, comparison of each type of PET in relation with histopathological features of lung adenocarcinomas was conducted. Samples obtained from 81 lesions in 75 patients with a lung adenocarcinoma who were operated at various institutions of our collaborators between 2005 and 2009 following FDG-PET and AC-PET procedures were examined. These samples consisted of fifty-seven cases of a well differentiated adenocarcinoma and twenty-four cases of a moderately- or a poorly-differentiated adenocarcinoma. Relationships between the histopathological factors (ly, v, p) as well as the lymphatic microvessel and microvessel densities in a tumor and FDG- and AC-PET findings were evaluated. AC-PET was more sensitive than FDG-PET (0.58 vs 0.74, p=0.0001). FDG-PET showed a correlation with invasiveness of the tumor and intratumoral lymphatic microvessel density (p<0.05). Furthermore, AC-PET possessed a superior sensitivity for the detection of well differentiated adenocarcinomas, and tumors without ly, v, or p factors. In lung adenocarcinoma AC-PET showed better sensitivity than FDG-PET and true positive in all cases of stage I B or more. FDG-PET showed the correlation with the pathological invasiveness (ly, v, p) of a tumor and the intratumoral lymphatic microvessel density. (author)

  10. PET imaging in multiple sclerosis

    NARCIS (Netherlands)

    Faria, Daniele de Paula; Copray, Sjef; Buchpiguel, Carlos; Dierckx, Rudi; de Vries, Erik

    Positron emission tomography (PET) is a non-invasive technique for quantitative imaging of biochemical and physiological processes in animals and humans. PET uses probes labeled with a radioactive isotope, called PET tracers, which can bind to or be converted by a specific biological target and thus

  11. Clinical Evaluation of PET Image Quality as a Function of Acquisition Time in a New TOF-PET/MRI Compared to TOF-PET/CT--Initial Results.

    Science.gov (United States)

    Zeimpekis, Konstantinos G; Barbosa, Felipe; Hüllner, Martin; ter Voert, Edwin; Davison, Helen; Veit-Haibach, Patrick; Delso, Gaspar

    2015-10-01

    The purpose of this study was to compare only the performance of the PET component between a TOF-PET/CT (henceforth noted as PET/CT) scanner and an integrated TOF-PET/MRI (henceforth noted as PET/MRI) scanner concerning image quality parameters and quantification in terms of standardized uptake value (SUV) as a function of acquisition time (a surrogate of dose). The CT and MR image quality were not assessed, and that is beyond the scope of this study. Five brain and five whole-body patients were included in the study. The PET/CT scan was used as a reference and the PET/MRI acquisition time was consecutively adjusted, taking into account the decay between the scans in order to expose both systems to the same amount of the emitted signal. The acquisition times were then retrospectively reduced to assess the performance of the PET/MRI for lower count rates. Image quality, image sharpness, artifacts, and noise were evaluated. SUV measurements were taken in the liver and in the white matter to compare quantification. Quantitative evaluation showed strong correlation between PET/CT and PET/MRI brain SUVs. Liver correlation was good, however, with lower uptake estimation in PET/MRI, partially justified by bio-redistribution. The clinical evaluation showed that PET/MRI offers higher image quality and sharpness with lower levels of noise and artifacts compared to PET/CT with reduced acquisition times for whole-body scans while for brain scans there is no significant difference. The TOF-PET/MRI showed higher image quality compared to TOF-PET/CT as tested with reduced imaging times. However, this result accounts mainly for body imaging, while no significant differences were found in brain imaging.

  12. MR-assisted PET motion correction in simultaneous PET/MRI studies of dementia subjects.

    Science.gov (United States)

    Chen, Kevin T; Salcedo, Stephanie; Chonde, Daniel B; Izquierdo-Garcia, David; Levine, Michael A; Price, Julie C; Dickerson, Bradford C; Catana, Ciprian

    2018-03-08

    Subject motion in positron emission tomography (PET) studies leads to image blurring and artifacts; simultaneously acquired magnetic resonance imaging (MRI) data provides a means for motion correction (MC) in integrated PET/MRI scanners. To assess the effect of realistic head motion and MR-based MC on static [ 18 F]-fluorodeoxyglucose (FDG) PET images in dementia patients. Observational study. Thirty dementia subjects were recruited. 3T hybrid PET/MR scanner where EPI-based and T 1 -weighted sequences were acquired simultaneously with the PET data. Head motion parameters estimated from high temporal resolution MR volumes were used for PET MC. The MR-based MC method was compared to PET frame-based MC methods in which motion parameters were estimated by coregistering 5-minute frames before and after accounting for the attenuation-emission mismatch. The relative changes in standardized uptake value ratios (SUVRs) between the PET volumes processed with the various MC methods, without MC, and the PET volumes with simulated motion were compared in relevant brain regions. The absolute value of the regional SUVR relative change was assessed with pairwise paired t-tests testing at the P = 0.05 level, comparing the values obtained through different MR-based MC processing methods as well as across different motion groups. The intraregion voxelwise variability of regional SUVRs obtained through different MR-based MC processing methods was also assessed with pairwise paired t-tests testing at the P = 0.05 level. MC had a greater impact on PET data quantification in subjects with larger amplitude motion (higher than 18% in the medial orbitofrontal cortex) and greater changes were generally observed for the MR-based MC method compared to the frame-based methods. Furthermore, a mean relative change of ∼4% was observed after MC even at the group level, suggesting the importance of routinely applying this correction. The intraregion voxelwise variability of regional SUVRs

  13. Simultaneous PET-MR acquisition and MR-derived motion fields for correction of non-rigid motion in PET

    International Nuclear Information System (INIS)

    Tsoumpas, C.; Mackewn, J.E.; Halsted, P.; King, A.P.; Buerger, C.; Totman, J.J.; Schaeffter, T.; Marsden, P.K.

    2010-01-01

    Positron emission tomography (PET) provides an accurate measurement of radiotracer concentration in vivo, but performance can be limited by subject motion which degrades spatial resolution and quantitative accuracy. This effect may become a limiting factor for PET studies in the body as PET scanner technology improves. In this work, we propose a new approach to address this problem by employing motion information from images measured simultaneously using a magnetic resonance (MR) scanner. The approach is demonstrated using an MR-compatible PET scanner and PET-MR acquisition with a purpose-designed phantom capable of non-rigid deformations. Measured, simultaneously acquired MR data were used to correct for motion in PET, and results were compared with those obtained using motion information from PET images alone. Motion artefacts were significantly reduced and the PET image quality and quantification was significantly improved by the use of MR motion fields, whilst the use of PET-only motion information was less successful. Combined PET-MR acquisitions potentially allow PET motion compensation in whole-body acquisitions without prolonging PET acquisition time or increasing radiation dose. This, to the best of our knowledge, is the first study to demonstrate that simultaneously acquired MR data can be used to estimate and correct for the effects of non-rigid motion in PET. (author)

  14. Are Pets in the Bedroom a Problem?

    Science.gov (United States)

    Krahn, Lois E; Tovar, M Diane; Miller, Bernie

    2015-12-01

    The presence of pets in the bedroom can alter the sleep environment in ways that could affect sleep. Data were collected by questionnaire and interview from 150 consecutive patients seen at the Center for Sleep Medicine, Mayo Clinic in Arizona. Seventy-four people (49%) reported having pets, with 31 (41% of pet owners) having multiple pets. More than half of pet owners (56%) allowed their pets to sleep in the bedroom. Fifteen pet owners (20%) described their pets as disruptive, whereas 31 (41%) perceived their pets as unobtrusive or even beneficial to sleep. Health care professionals working with patients with sleep concerns should inquire about the presence of companion animals in the sleep environment to help them find solutions and optimize their sleep. Copyright © 2015 Mayo Foundation for Medical Education and Research. Published by Elsevier Inc. All rights reserved.

  15. PET SUV correlates with radionuclide uptake in peptide receptor therapy in meningioma

    Energy Technology Data Exchange (ETDEWEB)

    Haenscheid, Heribert; Buck, Andreas K.; Samnick, Samuel; Kreissl, Michael [University Hospital Wuerzburg, Department of Nuclear Medicine, Wuerzburg (Germany); Sweeney, Reinhart A.; Flentje, Michael [University Hospital Wuerzburg, Department of Radiation Oncology, Wuerzburg (Germany); Loehr, Mario [University Hospital Wuerzburg, Department of Neurosurgery, Wuerzburg (Germany); Verburg, Frederik A. [University Hospital Wuerzburg, Department of Nuclear Medicine, Wuerzburg (Germany); RWTH University Hospital Aachen, Department of Nuclear Medicine, Aachen (Germany)

    2012-08-15

    To investigate whether the tumour uptake of radionuclide in peptide receptor radionuclide therapy (PRRT) of meningioma can be predicted by a PET scan with {sup 68}Ga-labelled somatostatin analogue. In this pilot trial, 11 meningioma patients with a PET scan indicating somatostatin receptor expression received PRRT with 7.4 GBq {sup 177}Lu-DOTATOC or {sup 177}Lu-DOTATATE, followed by external beam radiotherapy. A second PET scan was scheduled for 3 months after therapy. During PRRT, multiple whole-body scans and a SPECT/CT scan of the head and neck region were acquired and used to determine the kinetics and dose in the voxel with the highest radionuclide uptake within the tumour. Maximum voxel dose and retention of activity 1 h after administration in PRRT were compared to the maximum standardized uptake values (SUV{sub max}) in the meningiomas from the PET scans before and after therapy. The median SUV{sub max} in the meningiomas was 13.7 (range 4.3 to 68.7), and the maximum fractional radionuclide uptake in voxels of size 0.11 cm{sup 3} was a median of 23.4 x 10{sup -6} (range 0.4 x 10{sup -6} to 68.3 x 10{sup -6}). A strong correlation was observed between SUV{sub max} and the PRRT radionuclide tumour retention in the voxels with the highest uptake (Spearman's rank test, P < 0.01). Excluding one patient who showed large differences in biokinetics between PET and PRRT and another patient with incomplete data, linear regression analysis indicated significant correlations between SUV{sub max} and the therapeutic uptake (r = 0.95) and between SUV{sub max} and the maximum voxel dose from PRRT (r = 0.76). Observed absolute deviations from the values expected from regression were a median of 5.6 x 10{sup -6} (maximum 9.3 x 10{sup -6}) for the voxel fractional radionuclide uptake and 0.40 Gy per GBq (maximum 0.85 Gy per GBq) {sup 177}Lu for the voxel dose from PRRT. PET with {sup 68}Ga-labelled somatostatin analogues allows the pretherapeutic assessment of tumour

  16. Simultaneous PET/MRI with 13C magnetic resonance spectroscopic imaging (hyperPET): phantom-based evaluation of PET quantification

    DEFF Research Database (Denmark)

    Hansen, Adam E.; Andersen, Flemming L.; Henriksen, Sarah T.

    2016-01-01

    Background: Integrated PET/MRI with hyperpolarized 13C magnetic resonance spectroscopic imaging (13C-MRSI) offers simultaneous, dual-modality metabolic imaging. A prerequisite for the use of simultaneous imaging is the absence of interference between the two modalities. This has been documented...... for a clinical whole-body system using simultaneous 1 H-MRI and PET but never for 13C-MRSI and PET. Here, the feasibility of simultaneous PET and 13C-MRSI as well as hyperpolarized 13C-MRSI in an integrated whole-body PET/MRI hybrid scanner is evaluated using phantom experiments. Methods: Combined PET and 13C......-MRSI phantoms including a NEMA [18F]-FDG phantom, 13C-acetate and 13C-urea sources, and hyperpolarized 13C-pyruvate were imaged repeatedly with PET and/or 13C-MRSI. Measurements evaluated for interference effects included PET activity values in the largest sphere and a background region; total number of PET...

  17. An update on the role of PET/CT and PET/MRI in ovarian cancer

    International Nuclear Information System (INIS)

    Khiewvan, Benjapa; Torigian, Drew A.; Emamzadehfard, Sahra; Paydary, Koosha; Salavati, Ali; Houshmand, Sina; Werner, Thomas J.; Alavi, Abass

    2017-01-01

    This review article summarizes the role of PET/CT and PET/MRI in ovarian cancer. With regard to the diagnosis of ovarian cancer, the presence of FDG uptake within the ovary of a postmenopausal woman raises the concern for ovarian cancer. Multiple studies show that FDG PET/CT can detect lymph node and distant metastasis in ovarian cancer with high accuracy and may, therefore, alter the management to obtain better clinical outcomes. Although PET/CT staging is superior for N and M staging of ovarian cancer, its role is limited for T staging. Additionally, FDG PET/CT is of great benefit in evaluating treatment response and has prognostic value in patients with ovarian cancer. FDG PET/CT also has value to detect recurrent disease, particularly in patients with elevated serum CA-125 levels and negative or inconclusive conventional imaging test results. PET/MRI may beneficial for tumor staging because MRI has higher soft tissue contrast and no ionizing radiation exposure compared to CT. Some non-FDG PET radiotracers such as 18 F-fluorothymidine (FLT) or 11 C-methionine (MET) have been studied in preclinical and clinical studies as well and may play a role in the evaluation of patients with ovarian cancer. (orig.)

  18. An update on the role of PET/CT and PET/MRI in ovarian cancer

    Energy Technology Data Exchange (ETDEWEB)

    Khiewvan, Benjapa [Hospital of the University of Pennsylvania, Department of Radiology, Philadelphia, PA (United States); Mahidol University, Division of Nuclear Medicine, Department of Radiology, Faculty of Medicine Siriraj Hospital, Bangkok (Thailand); Torigian, Drew A.; Emamzadehfard, Sahra; Paydary, Koosha; Salavati, Ali; Houshmand, Sina; Werner, Thomas J.; Alavi, Abass [Hospital of the University of Pennsylvania, Department of Radiology, Philadelphia, PA (United States)

    2017-06-15

    This review article summarizes the role of PET/CT and PET/MRI in ovarian cancer. With regard to the diagnosis of ovarian cancer, the presence of FDG uptake within the ovary of a postmenopausal woman raises the concern for ovarian cancer. Multiple studies show that FDG PET/CT can detect lymph node and distant metastasis in ovarian cancer with high accuracy and may, therefore, alter the management to obtain better clinical outcomes. Although PET/CT staging is superior for N and M staging of ovarian cancer, its role is limited for T staging. Additionally, FDG PET/CT is of great benefit in evaluating treatment response and has prognostic value in patients with ovarian cancer. FDG PET/CT also has value to detect recurrent disease, particularly in patients with elevated serum CA-125 levels and negative or inconclusive conventional imaging test results. PET/MRI may beneficial for tumor staging because MRI has higher soft tissue contrast and no ionizing radiation exposure compared to CT. Some non-FDG PET radiotracers such as {sup 18}F-fluorothymidine (FLT) or {sup 11}C-methionine (MET) have been studied in preclinical and clinical studies as well and may play a role in the evaluation of patients with ovarian cancer. (orig.)

  19. Dependence of simulated positron emitter yields in ion beam cancer therapy on modeling nuclear fragmentation

    DEFF Research Database (Denmark)

    Lühr, Armin; Priegnitz, Marlen; Fiedler, Fine

    2014-01-01

    In ion beam cancer therapy, range verification in patients using positron emission tomography (PET) requires the comparison of measured with simulated positron emitter yields. We found that (1) changes in modeling nuclear interactions strongly affected the positron emitter yields and that (2) Monte...... Carlo simulations with SHIELD-HIT10A reasonably matched the most abundant PET isotopes 11C and 15O. We observed an ion-energy (i.e., depth) dependence of the agreement between SHIELD-HIT10A and measurement. Improved modeling requires more accurate measurements of cross-section values....

  20. Simultaneous PET/MRI with (13)C magnetic resonance spectroscopic imaging (hyperPET): phantom-based evaluation of PET quantification.

    Science.gov (United States)

    Hansen, Adam E; Andersen, Flemming L; Henriksen, Sarah T; Vignaud, Alexandre; Ardenkjaer-Larsen, Jan H; Højgaard, Liselotte; Kjaer, Andreas; Klausen, Thomas L

    2016-12-01

    Integrated PET/MRI with hyperpolarized (13)C magnetic resonance spectroscopic imaging ((13)C-MRSI) offers simultaneous, dual-modality metabolic imaging. A prerequisite for the use of simultaneous imaging is the absence of interference between the two modalities. This has been documented for a clinical whole-body system using simultaneous (1)H-MRI and PET but never for (13)C-MRSI and PET. Here, the feasibility of simultaneous PET and (13)C-MRSI as well as hyperpolarized (13)C-MRSI in an integrated whole-body PET/MRI hybrid scanner is evaluated using phantom experiments. Combined PET and (13)C-MRSI phantoms including a NEMA [(18)F]-FDG phantom, (13)C-acetate and (13)C-urea sources, and hyperpolarized (13)C-pyruvate were imaged repeatedly with PET and/or (13)C-MRSI. Measurements evaluated for interference effects included PET activity values in the largest sphere and a background region; total number of PET trues; and (13)C-MRSI signal-to-noise ratio (SNR) for urea and acetate phantoms. Differences between measurement conditions were evaluated using t tests. PET and (13)C-MRSI data acquisition could be performed simultaneously without any discernible artifacts. The average difference in PET activity between acquisitions with and without simultaneous (13)C-MRSI was 0.83 (largest sphere) and -0.76 % (background). The average difference in net trues was -0.01 %. The average difference in (13)C-MRSI SNR between acquisitions with and without simultaneous PET ranged from -2.28 to 1.21 % for all phantoms and measurement conditions. No differences were significant. The system was capable of (13)C-MRSI of hyperpolarized (13)C-pyruvate. Simultaneous PET and (13)C-MRSI in an integrated whole-body PET/MRI hybrid scanner is feasible. Phantom experiments showed that possible interference effects introduced by acquiring data from the two modalities simultaneously are small and non-significant. Further experiments can now investigate the benefits of simultaneous PET and

  1. PET

    DEFF Research Database (Denmark)

    Mariager, Rasmus Mølgaard; Schmidt, Regin; Heiberg, Morten Rievers

    PET handler om den hemmelige tjenestes arbejde under den kolde krig 1945-1989. Her fortæller Regin Schmidt, Rasmus Mariager og Morten Heiberg om de mest dramatiske og interessante sager fra PET's arkiv. PET er på flere måder en udemokratisk institution, der er sat til at vogte over demokratiet....... Dens virksomhed er skjult for offentligheden, den overvåger borgernes aktiviteter, og den registrerer følsomme personoplysninger. Historien om PET rejser spørgsmålet om, hvad man skal gøre, når befolkningen i et demokrati er kritisk indstillet over for overvågningen af lovlige politiske aktiviteter......, mens myndighederne mener, at det er nødvendigt for at beskytte demokratiet. PET er på en gang en fortælling om konkrete aktioner og begivenheder i PET's arbejde og et stykke Danmarkshistorie. Det handler om overvågning, spioner, politisk ekstremisme og international terrorisme.  ...

  2. PET/CT in radiation therapy planning; PET/CT in der Strahlentherapieplanung

    Energy Technology Data Exchange (ETDEWEB)

    Grosu, A.L. [Klinik und Poliklinik fuer Strahlentherapie und Radiologische Onkologie, Klinikum rechts der Isar, Technische Univ. Muenchen (Germany); Krause, B.J. [Klinik fuer Nuklearmedizin, Klinikum rechts der Isar, Technische Univ. Muenchen (Germany); Nestle, U. [Klinik fuer Nuklearmedizin, Universitaetsklinikum des Saarlandes, Homburg/Saar (Germany)

    2006-09-15

    Regarding treatment planning in radiotherapy PET offers advantages in terms of tumor delineation and the description of biological processes. To define the real impact of this investigation in radiation treatment planning, following experimental, clinical and cost/benefit analysis are required. FDG-PET has a significant impact on GTV and PTV delineation in lung cancer and can detect lymph node involvement and differentiation of malignant tissue from atelectasis. In high-grade gliomas and meningiomas, methionine-PET helps to define the GTV and differentiate tumor from normal tissue. In head and neck cancer, cervix cancer and prostate cancer the value of FDG-PET for radiation treatment planning is still under investigation. For example, FDG-PET can be superior to CT and MRI in the detection of lymph node metastases in head and neck, unknown primary cancer and differentiation of viable tumor tissue after treatment. Therefore, it could play an important role in GTV definition and sparing of normal tissue. For other entities like gastro-intestinal cancer, lymphomas, sarcoma etc., the data of the literature are yet insufficient. The imaging of hypoxia, cell proliferation, angiogenesis, apoptosis and gene expression leads to the identification of different areas of a biologically heterogeneous tumor mass that can be individually targeted using IMRT. In addition, a biological dose distribution can be generated, the so-called dose painting. However, systematical experimental and clinical trials are necessary to validate this hypothesis. (orig.)

  3. GRONINGEN/ORSAY: First AGOR beam

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    AGOR (Accelerateur Groningen-ORsay) delivered its first beam on at Orsay on 12 April. This small-scale smallscale superconducting machine, to be used for nuclear physics studies, is the result of a particularly fruitful collaboration between the French Institut de Physique Nucleaire et de Physique des Particules (IN2P3/CNRS) and the Netherlands' Fundamenteel Onderzoek der Materie (FOM)

  4. Simultaneous PET/MR imaging in a human brain PET/MR system in 50 patients—Current state of image quality

    International Nuclear Information System (INIS)

    Schwenzer, N.F.; Stegger, L.; Bisdas, S.; Schraml, C.; Kolb, A.; Boss, A.; Müller, M.

    2012-01-01

    Objectives: The present work illustrates the current state of image quality and diagnostic accuracy in a new hybrid BrainPET/MR. Materials and methods: 50 patients with intracranial masses, head and upper neck tumors or neurodegenerative diseases were examined with a hybrid BrainPET/MR consisting of a conventional 3T MR system and an MR-compatible PET insert. Directly before PET/MR, all patients underwent a PET/CT examination with either [ 18 F]-FDG, [ 11 C]-methionine or [ 68 Ga]-DOTATOC. In addition to anatomical MR scans, functional sequences were performed including diffusion tensor imaging (DTI), arterial spin labeling (ASL) and proton-spectroscopy. Image quality score of MR imaging was evaluated using a 4-point-scale. PET data quality was assessed by evaluating FDG-uptake and tumor delineation with [ 11 C]-methionine and [ 68 Ga]-DOTATOC. FDG uptake quantification accuracy was evaluated by means of ROI analysis (right and left frontal and temporo-occipital lobes). The asymmetry indices and ratios between frontal and occipital ROIs were compared. Results: In 45/50 patients, PET/MR examination was successful. Visual analysis revealed a diagnostic image quality of anatomical MR imaging (mean quality score T2 FSE: 1.27 ± 0.54; FLAIR: 1.38 ± 0.61). ASL and proton-spectroscopy was possible in all cases. In DTI, dental artifacts lead to one non-diagnostic dataset (mean quality score DTI: 1.32 ± 0.69; ASL: 1.10 ± 0.31). PET datasets of PET/MR and PET/CT offered comparable tumor delineation with [ 11 C]-methionine; additional lesions were found in 2/8 [ 68 Ga]-DOTATOC-PET in the PET/MR. Mean asymmetry index revealed a high accordance between PET/MR and PET/CT (1.5 ± 2.2% vs. 0.9 ± 3.6%; mean ratio (frontal/parieto-occipital) 0.93 ± 0.08 vs. 0.96 ± 0.05), respectively. Conclusions: The hybrid BrainPET/MR allows for molecular, anatomical and functional imaging with uncompromised MR image quality and a high accordance of PET results between PET/MR and PET

  5. Simultaneous PET/MR imaging in a human brain PET/MR system in 50 patients-Current state of image quality

    Energy Technology Data Exchange (ETDEWEB)

    Schwenzer, N.F., E-mail: nina.schwenzer@med.uni-tuebingen.de [Department of Diagnostic and Interventional Radiology, Eberhard-Karls University Tuebingen, Tuebingen (Germany); Stegger, L., E-mail: stegger@gmx.net [Department of Nuclear Medicine and European Institute for Molecular Imaging, University of Muenster, Muenster (Germany); Bisdas, S., E-mail: sbisdas@gmail.com [Department of Diagnostic and Interventional Neuroradiology, Eberhard-Karls University Tuebingen, Tuebingen (Germany); Schraml, C., E-mail: christina.schraml@med.uni-tuebingen.de [Department of Diagnostic and Interventional Radiology, Eberhard-Karls University Tuebingen, Tuebingen (Germany); Kolb, A., E-mail: armin.kolb@med.uni-tuebingen.de [Laboratory for Preclinical Imaging and Imaging Technology of the Werner Siemens-Foundation, Department of Preclinical Imaging and Radiopharmacy, Eberhard-Karls University Tuebingen, Tuebingen (Germany); Boss, A., E-mail: Andreas.Boss@usz.ch [Department of Diagnostic and Interventional Radiology, Eberhard-Karls University Tuebingen, Tuebingen (Germany); Institute of Diagnostic and Interventional Radiology, University Hospital Zuerich, Zuerich (Switzerland); Mueller, M., E-mail: mark.mueller@med.uni-tuebingen.de [Department of Nuclear Medicine, Eberhard-Karls University Tuebingen, Tuebingen (Germany); and others

    2012-11-15

    Objectives: The present work illustrates the current state of image quality and diagnostic accuracy in a new hybrid BrainPET/MR. Materials and methods: 50 patients with intracranial masses, head and upper neck tumors or neurodegenerative diseases were examined with a hybrid BrainPET/MR consisting of a conventional 3T MR system and an MR-compatible PET insert. Directly before PET/MR, all patients underwent a PET/CT examination with either [{sup 18}F]-FDG, [{sup 11}C]-methionine or [{sup 68}Ga]-DOTATOC. In addition to anatomical MR scans, functional sequences were performed including diffusion tensor imaging (DTI), arterial spin labeling (ASL) and proton-spectroscopy. Image quality score of MR imaging was evaluated using a 4-point-scale. PET data quality was assessed by evaluating FDG-uptake and tumor delineation with [{sup 11}C]-methionine and [{sup 68}Ga]-DOTATOC. FDG uptake quantification accuracy was evaluated by means of ROI analysis (right and left frontal and temporo-occipital lobes). The asymmetry indices and ratios between frontal and occipital ROIs were compared. Results: In 45/50 patients, PET/MR examination was successful. Visual analysis revealed a diagnostic image quality of anatomical MR imaging (mean quality score T2 FSE: 1.27 {+-} 0.54; FLAIR: 1.38 {+-} 0.61). ASL and proton-spectroscopy was possible in all cases. In DTI, dental artifacts lead to one non-diagnostic dataset (mean quality score DTI: 1.32 {+-} 0.69; ASL: 1.10 {+-} 0.31). PET datasets of PET/MR and PET/CT offered comparable tumor delineation with [{sup 11}C]-methionine; additional lesions were found in 2/8 [{sup 68}Ga]-DOTATOC-PET in the PET/MR. Mean asymmetry index revealed a high accordance between PET/MR and PET/CT (1.5 {+-} 2.2% vs. 0.9 {+-} 3.6%; mean ratio (frontal/parieto-occipital) 0.93 {+-} 0.08 vs. 0.96 {+-} 0.05), respectively. Conclusions: The hybrid BrainPET/MR allows for molecular, anatomical and functional imaging with uncompromised MR image quality and a high accordance

  6. Colorectal cancer staging: comparison of whole-body PET/CT and PET/MR.

    Science.gov (United States)

    Catalano, Onofrio A; Coutinho, Artur M; Sahani, Dushyant V; Vangel, Mark G; Gee, Michael S; Hahn, Peter F; Witzel, Thomas; Soricelli, Andrea; Salvatore, Marco; Catana, Ciprian; Mahmood, Umar; Rosen, Bruce R; Gervais, Debra

    2017-04-01

    Correct staging is imperative for colorectal cancer (CRC) since it influences both prognosis and management. Several imaging methods are used for this purpose, with variable performance. Positron emission tomography-magnetic resonance (PET/MR) is an innovative imaging technique recently employed for clinical application. The present study was undertaken to compare the staging accuracy of whole-body positron emission tomography-computed tomography (PET/CT) with whole-body PET/MR in patients with both newly diagnosed and treated colorectal cancer. Twenty-six patients, who underwent same day whole-body (WB) PET/CT and WB-PET/MR, were evaluated. PET/CT and PET/MR studies were interpreted by consensus by a radiologist and a nuclear medicine physician. Correlations with prior imaging and follow-up studies were used as the reference standard. Correct staging was compared between methods using McNemar's Chi square test. The two methods were in agreement and correct for 18/26 (69%) patients, and in agreement and incorrect for one patient (3.8%). PET/MR and PET/CT stages for the remaining 7/26 patients (27%) were discordant, with PET/MR staging being correct in all seven cases. PET/MR significantly outperformed PET/CT overall for accurate staging (P = 0.02). PET/MR outperformed PET/CT in CRC staging. PET/MR might allow accurate local and distant staging of CRC patients during both at the time of diagnosis and during follow-up.

  7. Emittance Measurement for Beamline Extension at the PET Cyclotron

    Directory of Open Access Journals (Sweden)

    Sae-Hoon Park

    2016-01-01

    Full Text Available Particle-induced X-ray emission is used for determining the elemental composition of materials. This method uses low-energy protons (of several MeV, which can be obtained from high-energy (of tens MeV accelerators. Instead of manufacturing an accelerator for generating the MeV protons, the use of a PET cyclotron has been suggested for designing the beamline for multipurpose applications, especially for the PIXE experiment, which has a dedicated high-energy (of tens MeV accelerator. The beam properties of the cyclotron were determined at this experimental facility by using an external beamline before transferring the ion beam to the experimental chamber. We measured the beam profile and calculated the emittance using the pepper-pot method. The beam profile was measured as the beam current using a wire scanner, and the emittance was measured as the beam distribution at the beam dump using a radiochromic film. We analyzed the measurement results and are planning to use the results obtained in the simulations of external beamline and aligned beamline components. We will consider energy degradation after computing the beamline simulation. The experimental study focused on measuring the emittance from the cyclotron, and the results of this study are presented in this paper.

  8. PET SUV correlates with radionuclide uptake in peptide receptor therapy in meningioma

    International Nuclear Information System (INIS)

    Haenscheid, Heribert; Buck, Andreas K.; Samnick, Samuel; Kreissl, Michael; Sweeney, Reinhart A.; Flentje, Michael; Loehr, Mario; Verburg, Frederik A.

    2012-01-01

    To investigate whether the tumour uptake of radionuclide in peptide receptor radionuclide therapy (PRRT) of meningioma can be predicted by a PET scan with 68 Ga-labelled somatostatin analogue. In this pilot trial, 11 meningioma patients with a PET scan indicating somatostatin receptor expression received PRRT with 7.4 GBq 177 Lu-DOTATOC or 177 Lu-DOTATATE, followed by external beam radiotherapy. A second PET scan was scheduled for 3 months after therapy. During PRRT, multiple whole-body scans and a SPECT/CT scan of the head and neck region were acquired and used to determine the kinetics and dose in the voxel with the highest radionuclide uptake within the tumour. Maximum voxel dose and retention of activity 1 h after administration in PRRT were compared to the maximum standardized uptake values (SUV max ) in the meningiomas from the PET scans before and after therapy. The median SUV max in the meningiomas was 13.7 (range 4.3 to 68.7), and the maximum fractional radionuclide uptake in voxels of size 0.11 cm 3 was a median of 23.4 x 10 -6 (range 0.4 x 10 -6 to 68.3 x 10 -6 ). A strong correlation was observed between SUV max and the PRRT radionuclide tumour retention in the voxels with the highest uptake (Spearman's rank test, P max and the therapeutic uptake (r = 0.95) and between SUV max and the maximum voxel dose from PRRT (r = 0.76). Observed absolute deviations from the values expected from regression were a median of 5.6 x 10 -6 (maximum 9.3 x 10 -6 ) for the voxel fractional radionuclide uptake and 0.40 Gy per GBq (maximum 0.85 Gy per GBq) 177 Lu for the voxel dose from PRRT. PET with 68 Ga-labelled somatostatin analogues allows the pretherapeutic assessment of tumour radionuclide uptake in PRRT of meningioma and an estimate of the achievable dose. (orig.)

  9. Role of FDG-PET and PET/CT in the diagnosis and management of vasculitis

    Energy Technology Data Exchange (ETDEWEB)

    Zerizer, Imene; Tan, Kathryn; Khan, Sameer; Barwick, Tara [Department of Nuclear Medicine, Imperial College Healthcare, Hammersmith Hospital, Du Cane Road, London (United Kingdom); Marzola, Maria Cristina [Department of Nuclear Medicine, PET/CT Centre, Radiology and Medical Physics, ' Santa Maria della Misericordia' Hospital, Rovigo (Italy); Rubello, Domenico [Department of Nuclear Medicine, PET/CT Centre, Radiology and Medical Physics, ' Santa Maria della Misericordia' Hospital, Rovigo (Italy)], E-mail: domenico.rubello@libero.it; Al-Nahhas, Adil [Department of Nuclear Medicine, Imperial College Healthcare, Hammersmith Hospital, Du Cane Road, London (United Kingdom)

    2010-03-15

    Purpose: to investigate the role of FDG-PET and PET/CT in the evaluation of vasculitis. Materials and methods: a systematic revision of the papers published in PubMed/Medline until December 2009 was done. Results: FDG-PET and PET/CT have been proven to be valuable in the diagnosis of large-vessel vasculitis, especially giant cells arteritis with sensitivity values ranging 77% to 92%, and specificity values ranging 89% to 100%. In particular, FDG-PET/CT has demonstrated the potential to non-invasively diagnose the onset of the vasculitis earlier than traditional anatomical imaging techniques, thus enabling prompt treatment. False positive results mainly occur in the differential diagnosis between vasculitis and atherosclerotic vessels in elderly patients. Another area where FDG-PET/CT is gaining wider acceptance is in monitoring response to therapy; it can reliably detect the earliest changes of disease improvement post-therapy, and persistent activity is an indicator of non-responders to therapy. A few data have been reported about medium/small vessel vasculitis. Discussion: FDG-PET and PET/CT have proven utility: (a) in the initial diagnosis of patients suspected of having vasculitis particularly in those who present with non-specific symptoms; (b) in the identification of areas of increased FDG uptake in which a biopsy should be done for obtaining a diagnosis; (c) in evaluating the extent of the disease; (d) in assessing response to treatment.

  10. Role of FDG-PET and PET/CT in the diagnosis and management of vasculitis

    International Nuclear Information System (INIS)

    Zerizer, Imene; Tan, Kathryn; Khan, Sameer; Barwick, Tara; Marzola, Maria Cristina; Rubello, Domenico; Al-Nahhas, Adil

    2010-01-01

    Purpose: to investigate the role of FDG-PET and PET/CT in the evaluation of vasculitis. Materials and methods: a systematic revision of the papers published in PubMed/Medline until December 2009 was done. Results: FDG-PET and PET/CT have been proven to be valuable in the diagnosis of large-vessel vasculitis, especially giant cells arteritis with sensitivity values ranging 77% to 92%, and specificity values ranging 89% to 100%. In particular, FDG-PET/CT has demonstrated the potential to non-invasively diagnose the onset of the vasculitis earlier than traditional anatomical imaging techniques, thus enabling prompt treatment. False positive results mainly occur in the differential diagnosis between vasculitis and atherosclerotic vessels in elderly patients. Another area where FDG-PET/CT is gaining wider acceptance is in monitoring response to therapy; it can reliably detect the earliest changes of disease improvement post-therapy, and persistent activity is an indicator of non-responders to therapy. A few data have been reported about medium/small vessel vasculitis. Discussion: FDG-PET and PET/CT have proven utility: (a) in the initial diagnosis of patients suspected of having vasculitis particularly in those who present with non-specific symptoms; (b) in the identification of areas of increased FDG uptake in which a biopsy should be done for obtaining a diagnosis; (c) in evaluating the extent of the disease; (d) in assessing response to treatment.

  11. MRI-assisted PET motion correction for neurologic studies in an integrated MR-PET scanner.

    Science.gov (United States)

    Catana, Ciprian; Benner, Thomas; van der Kouwe, Andre; Byars, Larry; Hamm, Michael; Chonde, Daniel B; Michel, Christian J; El Fakhri, Georges; Schmand, Matthias; Sorensen, A Gregory

    2011-01-01

    Head motion is difficult to avoid in long PET studies, degrading the image quality and offsetting the benefit of using a high-resolution scanner. As a potential solution in an integrated MR-PET scanner, the simultaneously acquired MRI data can be used for motion tracking. In this work, a novel algorithm for data processing and rigid-body motion correction (MC) for the MRI-compatible BrainPET prototype scanner is described, and proof-of-principle phantom and human studies are presented. To account for motion, the PET prompt and random coincidences and sensitivity data for postnormalization were processed in the line-of-response (LOR) space according to the MRI-derived motion estimates. The processing time on the standard BrainPET workstation is approximately 16 s for each motion estimate. After rebinning in the sinogram space, the motion corrected data were summed, and the PET volume was reconstructed using the attenuation and scatter sinograms in the reference position. The accuracy of the MC algorithm was first tested using a Hoffman phantom. Next, human volunteer studies were performed, and motion estimates were obtained using 2 high-temporal-resolution MRI-based motion-tracking techniques. After accounting for the misalignment between the 2 scanners, perfectly coregistered MRI and PET volumes were reproducibly obtained. The MRI output gates inserted into the PET list-mode allow the temporal correlation of the 2 datasets within 0.2 ms. The Hoffman phantom volume reconstructed by processing the PET data in the LOR space was similar to the one obtained by processing the data using the standard methods and applying the MC in the image space, demonstrating the quantitative accuracy of the procedure. In human volunteer studies, motion estimates were obtained from echo planar imaging and cloverleaf navigator sequences every 3 s and 20 ms, respectively. Motion-deblurred PET images, with excellent delineation of specific brain structures, were obtained using these 2 MRI

  12. Tumor Response and Survival Predicted by Post-Therapy FDG-PET/CT in Anal Cancer

    International Nuclear Information System (INIS)

    Schwarz, Julie K.; Siegel, Barry A.; Dehdashti, Farrokh; Myerson, Robert J.; Fleshman, James W.; Grigsby, Perry W.

    2008-01-01

    Purpose: To evaluate the response to therapy for anal carcinoma using post-therapy imaging with positron emission tomography (PET)/computed tomography and F-18 fluorodeoxyglucose (FDG) and to compare the metabolic response with patient outcome. Patients and Methods: This was a prospective cohort study of 53 consecutive patients with anal cancer. All patients underwent pre- and post-treatment whole-body FDG-PET/computed tomography. Patients had been treated with external beam radiotherapy and concurrent chemotherapy. Whole-body FDG-PET was performed 0.9-5.4 months (mean, 2.1) after therapy completion. Results: The post-therapy PET scan did not show any abnormal FDG uptake (complete metabolic response) in 44 patients. Persistent abnormal FDG uptake (partial metabolic response) was found in the anal tumor in 9 patients. The 2-year cause-specific survival rate was 94% for patients with a complete vs. 39% for patients with a partial metabolic response in the anal tumor (p = 0.0008). The 2-year progression-free survival rate was 95% for patients with a complete vs. 22% for patients with a partial metabolic response in the anal tumor (p < 0.0001). A Cox proportional hazards model of survival outcome indicated that a complete metabolic response was the most significant predictor of progression-free survival in our patient population (p = 0.0003). Conclusions: A partial metabolic response in the anal tumor as determined by post-therapy FDG-PET is predictive of significantly decreased progression-free and cause-specific survival after chemoradiotherapy for anal cancer

  13. Direct comparison of [18F]FDG PET/CT with PET alone and with side-by-side PET and CT in patients with malignant melanoma

    International Nuclear Information System (INIS)

    Mottaghy, Felix M.; Wohlfart, Petra; Blumstein, Norbert M.; Neumaier, Bernd; Glatting, Gerhard; Buck, Andreas K.; Reske, Sven N.; Sunderkoetter, Cord; Schubert, Roland; Oezdemir, Cueneyt; Scharfetter-Kochanek, Karin

    2007-01-01

    The purpose of this retrospective, blinded study was to evaluate the additional value of [ 18 F]FDG PET/CT in comparison with PET alone and with side-by-side PET and CT in patients with malignant melanoma (MM). A total of 127 consecutive studies of patients with known MM referred for a whole-body PET/CT examination were included in this study. PET alone, side-by-side PET and CT and integrated PET/CT study were independently and separately interpreted without awareness of the clinical information. One score each was applied for certainty of lesion localisation and for certainty of lesion characterisation. Verification of the findings was subsequently performed using all available clinical, pathological (n = 30) and follow-up information. The number of lesions with an uncertain localisation was significantly (p 18 F]FDG. (orig.)

  14. MR Imaging-Guided Attenuation Correction of PET Data in PET/MR Imaging.

    Science.gov (United States)

    Izquierdo-Garcia, David; Catana, Ciprian

    2016-04-01

    Attenuation correction (AC) is one of the most important challenges in the recently introduced combined PET/magnetic resonance (MR) scanners. PET/MR AC (MR-AC) approaches aim to develop methods that allow accurate estimation of the linear attenuation coefficients of the tissues and other components located in the PET field of view. MR-AC methods can be divided into 3 categories: segmentation, atlas, and PET based. This review provides a comprehensive list of the state-of-the-art MR-AC approaches and their pros and cons. The main sources of artifacts are presented. Finally, this review discusses the current status of MR-AC approaches for clinical applications. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. PET/TAC in Oncology; PET/TAC en Oncologia

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez V, A M [Especialista en Medicina Nuclear, Profa. Depto. Radiologia de la Facultad de Medicina, Universidad Complutense de Madrid, Madrid (Spain)

    2007-07-01

    From this presentation of PET-TAC in oncology the following advantages on the conventional PET are obtained: 1. More short study and stadium in one session. 2. It adds the information of both techniques. 3. Better localization of leisure: affected organ, stadium change (neck, mediastinum, abdomen). 4. Reduction of false positive (muscle, brown fat, atelectasis, pneumonias, intestine, urinary vials, etc.). 5. Reduction of negative false. 6. Reduction of not conclusive. 7. More understandable for other specialists. 8. Biopsies guide. 9. Planning radiotherapy.

  16. The role of F-18 FDG-PET for 3-D radiation treatment planning of non-small cell lung cancer - first results of a prospective study; Einsatz der F-18-FDG-PET in der 3-D-Bestrahlungsplanung des nichtkleinzelligen Bronchialkarzinoms: erste Ergebnisse einer prospektiven Studie

    Energy Technology Data Exchange (ETDEWEB)

    Schmuecking, M.; Baum, R.P.; Przetak, C.; Niesen, A. [Zentralklinik Bad Berka (Germany). Klinik fuer Nuklearmedizin/PET-Zentrum; Lopatta, E.C.; Wendt, T.G. [Jena Univ. (Germany). Klinik fuer Radiologie, Abt. Strahlentherapie; Plichta, K.; Leonhardi, J. [Zentralklinik Bad Berka (Germany). Inst. fuer Bildgebende Diagnostik

    2001-04-01

    To determine the role of F-18 FDG-PET in 3-D-radiation therapy planning, findings in 27 patients, studied by both, PET and CT, were analyzed prospectively. All patients were first examined by helical CT and F-18 FDG-PET. The PET data were iteratively reconstructed into 3-D images and image fusion with CT data was applied. First, based on CT data, the planning target volumes (PTV) and the volumes of organs at risk were generated. In a second step, the transversal slices of CT and PET were matched. Then, based on PET data, new target volumes were generated. Treatment plans for radiation therapy were calculated on CT-based and PET-based planning target volumes. If PET results were used additionally for the 3-D-planning procedure of radiation therapy, the planning target volume could be reduced in a range of 3-21% as compared with conventional imaging methods, e.g., PET allowed differentiation between tumor and atelectasis resulting in smaller PTV. The dose volume histograms of the PET-based treatment plans showed a reduction of dose to the organs at risk, e.g., V{sub lung} (20 Gy) could be reduced by 5% to 17%. In 2 patients, the boost volume based on PET findings was larger than the one based on CT, since PET detected lymph node metastases being of normal size in CT (<1 cm). PET can provide important complementary metabolic information to morphological imaging modalities for an exact localization of nodal involvement and the extent of the primary tumor. Due to smaller PTV, radiation therapy could be delivered with less toxicity in most patients. Using metabolic tumor localization by PET additionally to anatomic delineation by CT scan, a better tumor control may be achieved. Further studies are required to proof this concept. (orig.) [German] Es sollte in einer prospektiven Studie der Einfluss der metabolischen Zusatzinformation durch PET auf die Generierung der Zielvolumina (PTV) und der Dosis-Volumen-Histogramme (DVH) untersucht werden. Alle Patienten erhielten eine

  17. PET in management of breast cancer

    International Nuclear Information System (INIS)

    Lee, Myung-Chul

    2004-01-01

    Full text: PET provides useful information about tumor metabolism enabling accurate visualization of malignant lesions. Approximately 60-80% suspicious lesions on mammography have benign histology and about 10% of breast cancers with palpable mass are not identified in mammography. The key roles of PET technology in breast cancer are in: primary diagnosis, staging, recurrent diseases monitoring and prediction of therapy response. The sensitivity and specificity of FDG-PET for the diagnosis of breast cancer has been reported to be 68-100% and 83-100%, respectively. Considering the increasing number of small breast tumors detected by mammography and false negative results, the clinical relevance of FDG-PET for the primary diagnosis is limited. In selected patients, however, for example with dense breasts, breasts implants, augmented breast or after breast surgery, which can affect the accuracy of mammography, and in cases with equivocal mammography, FDG-PET can provide clinically relevant information. PET accurately determines the extent of disease, including the loco-regional lymph node status. Furthermore, whole-body PET imaging promises a high diagnostic accuracy for detecting recurrent or metastatic breast carcinoma with a high positive predictive value. We studied the usefulness of the FDG-PET in 42 preoperative patients with suspected breast cancer in differentiation of lesions. The diagnostic value of FDG-PET in terms of sensitivity and specificity was 95% and 77% respectively in primary mass while it was 73% and 100% for axillary lymph nodes. PET is much more accurate than other conventional modalities. The sensitivity of FDG-PET for correct staging of axillary nodal status is 84-100%. It has the potential to replace conventional procedures for the staging of distant metastases. We observed the sensitivity and the specificity of FDG-PET to be 96% and 85% to detect distant metastases. FDG-PET may become the method of choice for the early assessment of

  18. [{sup 18}F]FDG PET/CT outperforms [{sup 18}F]FDG PET/MRI in differentiated thyroid cancer

    Energy Technology Data Exchange (ETDEWEB)

    Vrachimis, Alexis; Wenning, Christian; Weckesser, Matthias; Stegger, Lars [University Hospital Muenster, Department of Nuclear Medicine, Muenster (Germany); Burg, Matthias Christian; Allkemper, Thomas [University Hospital Muenster, Department of Clinical Radiology, Muenster (Germany); Schaefers, Michael [University Hospital Muenster, Department of Nuclear Medicine, Muenster (Germany); Westfaelische Wilhelms University Muenster, European Institute for Molecular Imaging, Muenster (Germany)

    2016-02-15

    To evaluate the diagnostic potential of PET/MRI with [{sup 18}F]FDG in comparison to PET/CT in patients with differentiated thyroid cancer suspected or known to have dedifferentiated. The study included 31 thyroidectomized and remnant-ablated patients who underwent a scheduled [{sup 18}F]FDG PET/CT scan and were then enrolled for a PET/MRI scan of the neck and thorax. The datasets (PET/CT, PET/MRI) were rated regarding lesion count, conspicuity, diameter and characterization. Standardized uptake values were determined for all [{sup 18}F]FDG-positive lesions. Histology, cytology, and examinations before and after treatment served as the standards of reference. Of 26 patients with a dedifferentiated tumour burden, 25 were correctly identified by both [{sup 18}F]FDG PET/CT and PET/MRI. Detection rates by PET/CT and PET/MRI were 97 % (113 of 116 lesions) and 85 % (99 of 113 lesions) for malignant lesions, and 100 % (48 of 48 lesions) and 77 % (37 of 48 lesions) for benign lesions, respectively. Lesion conspicuity was higher on PET/CT for both malignant and benign pulmonary lesions and in the overall rating for malignant lesions (p < 0.001). There was a difference between PET/CT and PET/MRI in overall evaluation of malignant lesions (p < 0.01) and detection of pulmonary metastases (p < 0.001). Surgical evaluation revealed three malignant lesions missed by both modalities. PET/MRI additionally failed to detect 14 pulmonary metastases and 11 benign lesions. In patients with thyroid cancer and suspected or known dedifferentiation, [{sup 18}F]FDG PET/MRI was inferior to low-dose [{sup 18}F]FDG PET/CT for the assessment of pulmonary status. However, for the assessment of cervical status, [{sup 18}F]FDG PET/MRI was equal to contrast-enhanced neck [{sup 18}F]FDG PET/CT. Therefore, [{sup 18}F]FDG PET/MRI combined with a low-dose CT scan of the thorax may provide an imaging solution when high-quality imaging is needed and high-energy CT is undesirable or the use of a contrast

  19. PET in neuro-oncology

    NARCIS (Netherlands)

    Roelcke, U; Leenders, K.L.

    This article reviews possible clinical applications of positron emission tomography (PET) in brain tumor patients. PET allows quantitative assessment of brain tumor pathophysiology and biochemistry. It therefore provides different information about tumors when compared to histological or

  20. PET motion correction in context of integrated PET/MR: Current techniques, limitations, and future projections.

    Science.gov (United States)

    Gillman, Ashley; Smith, Jye; Thomas, Paul; Rose, Stephen; Dowson, Nicholas

    2017-12-01

    Patient motion is an important consideration in modern PET image reconstruction. Advances in PET technology mean motion has an increasingly important influence on resulting image quality. Motion-induced artifacts can have adverse effects on clinical outcomes, including missed diagnoses and oversized radiotherapy treatment volumes. This review aims to summarize the wide variety of motion correction techniques available in PET and combined PET/CT and PET/MR, with a focus on the latter. A general framework for the motion correction of PET images is presented, consisting of acquisition, modeling, and correction stages. Methods for measuring, modeling, and correcting motion and associated artifacts, both in literature and commercially available, are presented, and their relative merits are contrasted. Identified limitations of current methods include modeling of aperiodic and/or unpredictable motion, attaining adequate temporal resolution for motion correction in dynamic kinetic modeling acquisitions, and maintaining availability of the MR in PET/MR scans for diagnostic acquisitions. Finally, avenues for future investigation are discussed, with a focus on improvements that could improve PET image quality, and that are practical in the clinical environment. © 2017 American Association of Physicists in Medicine.

  1. Neurocognition and PET: strategies for data analysis in activation studies on working memory; Neurokognition und PET: datenanalytische Strategien bei Aktivierungsstudien zum Arbeitsgedaechtnis

    Energy Technology Data Exchange (ETDEWEB)

    Hautzel, H.; Mottaghy, F.M.; Schmidt, D.; Mueller, H.-W.; Krause, B. J. [Klinik fuer Nuklearmedizin (KME), Forschungszentrum Juelich (Germany); Nuklearmedizinische Klinik, Heinrich-Heine-Universitaet Duesseldorf (Germany)

    2003-10-01

    Aim: In cognitive neuroscience regional cerebral blood flow (rCBF) imaging with positron-emission-tomography (PET) is a powerful tool to characterize different aspects of cognitive processes by using different data analysis approaches. By use of an n-back verbal working memory task (varied from 0- to 3-back) we present cognitive subtraction analysis as basic strategy as well as parametric and covariance analyses and discuss the results. Methods: Correlation analyses were performed using the individual performance rate as an external covariate, computing inter-regional correlations, an as network analysis applying structural equation modelling to evaluate the effective connectivity between the involved brain regions. Results: Subtraction analyses revealed a fronto-parietal neuronal network also including the anterior cingulate cortex and the cerebellum. With higher memory load the parametric analysis evidenced linear rCBF increases in prefrontal, pre-motor and inferior parietal areas including the precuneus as well as in the anterior cingulate cortex. The rCBF correlation with the individual performance as external covariate depicted negative correlations in bilateral prefrontal and inferior parietal regions, in the precuneus and the anterior cingulate cortex. The network analysis demonstrated mainly occipito-frontally directed interactions which were predominantly left-hemispheric. Additionally, strong linkages were found between extrastriate and parietal regions as well as within the parietal cortex. Conclusion: The data analysis approaches presented here contribute to an extended and more elaborated understanding of cognitive processes and their different sub-aspects. (orig.) [German] Ziel, Methoden: Im Bereich der neurokognitiven Aktivierungsstudien mit Messung des regionalen zerebralen Blutflusses (rCBF) mit PET koennen durch Anwendung verschiedener Datenanalysestrategien unterschiedliche Aspekte eines kognitiven Prozesses charakterisiert werden. Unter

  2. Development of dose delivery verification by PET imaging of photonuclear reactions following high energy photon therapy

    International Nuclear Information System (INIS)

    Janek, S; Svensson, R; Jonsson, C; Brahme, A

    2006-01-01

    A method for dose delivery monitoring after high energy photon therapy has been investigated based on positron emission tomography (PET). The technique is based on the activation of body tissues by high energy bremsstrahlung beams, preferably with energies well above 20 MeV, resulting primarily in 11 C and 15 O but also 13 N, all positron-emitting radionuclides produced by photoneutron reactions in the nuclei of 12 C, 16 O and 14 N. A PMMA phantom and animal tissue, a frozen hind leg of a pig, were irradiated to 10 Gy and the induced positron activity distributions were measured off-line in a PET camera a couple of minutes after irradiation. The accelerator used was a Racetrack Microtron at the Karolinska University Hospital using 50 MV scanned photon beams. From photonuclear cross-section data integrated over the 50 MV photon fluence spectrum the predicted PET signal was calculated and compared with experimental measurements. Since measured PET images change with time post irradiation, as a result of the different decay times of the radionuclides, the signals from activated 12 C, 16 O and 14 N within the irradiated volume could be separated from each other. Most information is obtained from the carbon and oxygen radionuclides which are the most abundant elements in soft tissue. The predicted and measured overall positron activities are almost equal (-3%) while the predicted activity originating from nitrogen is overestimated by almost a factor of two, possibly due to experimental noise. Based on the results obtained in this first feasibility study the great value of a combined radiotherapy-PET-CT unit is indicated in order to fully exploit the high activity signal from oxygen immediately after treatment and to avoid patient repositioning. With an RT-PET-CT unit a high signal could be collected even at a dose level of 2 Gy and the acquisition time for the PET could be reduced considerably. Real patient dose delivery verification by means of PET imaging seems to be

  3. Particle beam experiments for the analysis of reactive sputtering processes in metals and polymer surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Corbella, Carles; Grosse-Kreul, Simon; Kreiter, Oliver; Arcos, Teresa de los; Benedikt, Jan; Keudell, Achim von [RD Plasmas with Complex Interactions, Ruhr-Universität Bochum, Universitätsstr. 150, 44780 Bochum (Germany)

    2013-10-15

    A beam experiment is presented to study heterogeneous reactions relevant to plasma-surface interactions in reactive sputtering applications. Atom and ion sources are focused onto the sample to expose it to quantified beams of oxygen, nitrogen, hydrogen, noble gas ions, and metal vapor. The heterogeneous surface processes are monitored in situ by means of a quartz crystal microbalance and Fourier transform infrared spectroscopy. Two examples illustrate the capabilities of the particle beam setup: oxidation and nitriding of aluminum as a model of target poisoning during reactive magnetron sputtering, and plasma pre-treatment of polymers (PET, PP)

  4. Compensation for photon attenuation in PET

    International Nuclear Information System (INIS)

    Chintu Chen; Ordonez, C.E.; Xiaolin Yu.

    1992-01-01

    CT/MR and PET images usually are not in registration spatially because of differences in the imaging setup. CT, MR and PET imaging parameters that are used regularly for brain studies in their institution are compared, in addition, because the patient orientations in CT/MR and PET scanners are not the same, slice centers are positioned differently relative to the patients anatomy. For application of the new idea of using structural information from CT or MR images in PET image reconstruction for attenuation correction, image registration is required as a first step so that one can obtain a corresponding anatomic map for any selected PET image plane. The authors chose to use the surface-matching technique developed in their laboratories for image registration because this method is retrospective and accurate. After the PET and CT/MR scans are registered, they reslice the CT/MR images along the planes of the PET images. The differences in slice thickness and slice separation, as well as in image resolution between various image modalities are to be considered

  5. Membrane fluidization by alcohols inhibits DesK-DesR signalling in Bacillus subtilis.

    Science.gov (United States)

    Vaňousová, Kateřina; Beranová, Jana; Fišer, Radovan; Jemioła-Rzemińska, Malgorzata; Matyska Lišková, Petra; Cybulski, Larisa; Strzałka, Kazimierz; Konopásek, Ivo

    2018-03-01

    After cold shock, the Bacillus subtilis desaturase Des introduces double bonds into the fatty acids of existing membrane phospholipids. The synthesis of Des is regulated exclusively by the two-component system DesK/DesR; DesK serves as a sensor of the state of the membrane and triggers Des synthesis after a decrease in membrane fluidity. The aim of our work is to investigate the biophysical changes in the membrane that are able to affect the DesK signalling state. Using linear alcohols (ethanol, propanol, butanol, hexanol, octanol) and benzyl alcohol, we were able to suppress Des synthesis after a temperature downshift. The changes in the biophysical properties of the membrane caused by alcohol addition were followed using membrane fluorescent probes and differential scanning calorimetry. We found that the membrane fluidization induced by alcohols was reflected in an increased hydration at the lipid-water interface. This is associated with a decrease in DesK activity. The addition of alcohol mimics a temperature increase, which can be measured isothermically by fluorescence anisotropy. The effect of alcohols on the membrane periphery is in line with the concept of the mechanism by which two hydrophilic motifs located at opposite ends of the transmembrane region of DesK, which work as a molecular caliper, sense temperature-dependent variations in membrane properties. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. qPET - a quantitative extension of the Deauville scale to assess response in interim FDG-PET scans in lymphoma

    Energy Technology Data Exchange (ETDEWEB)

    Hasenclever, Dirk [University of Leipzig, Institute for Medical Informatics, Statistics and Epidemiology (IMISE), Leipzig (Germany); Kurch, Lars; Georgi, Thomas; Sabri, Osama; Kluge, Regine [University Hospital Leipzig, Department of Nuclear Medicine, Leipzig (Germany); Mauz-Koerholz, Christine; Koerholz, Dieter [University Hospital Halle, Department of Pediatrics, Halle (Germany); Elsner, Andreas [Hermes Medical Solutions AB, Stockholm (Sweden); Wallace, Hamish [Royal Hospital for Sick Children, Edinburgh, Scotland (United Kingdom); Landman-Parker, Judith [Hopital d' Enfants Armand Trousseau, Paris (France); Moryl-Bujakowska, Angelina [Jagiellonian University Medical College, Department of Pediatric Oncology and Hematology, Polish-American Institute of Pediatrics, Krakow (Poland); Cepelova, Michaela [Department of Pediatric Hematology and Oncology, Faculty Hospital Motol, Prague (Czech Republic); Karlen, Jonas [Karolinska University Hospital, Pediatric Cancer Unit, Astrid Lindgrens Childrens Hospital, Stockholm (Sweden); Alvarez Fernandez-Teijeiro, Ana [University Hospital Virgen Macarena Avda, Department of Pediatric Oncology and Hematology, Sevilla (Spain); Attarbaschi, Andishe [Medical University of Vienna, Department of Pediatric Hematology and Oncology, St. Anna Children' s Hospital, Vienna (Austria); Fossaa, Alexander [Department of Medical Oncology and Radiotherapy, Rikshospitalet - Radiumhospitalet HF, Oslo (Norway); Pears, Jane [Our Lady' s Children' s Hospital, Crumlin, Dublin (Ireland); Hraskova, Andrea [University Children' s Hospital, Clinic of Pediatric Oncology, Bratislava (Slovakia); Bergstraesser, Eva [University Children' s Hospital, Department Oncology, Zurich (Switzerland); Beishuizen, Auke [MC - Sophia Children' s Hospital, Department of Pediatric Oncology/Hematology, Rotterdam (Netherlands); Uyttebroeck, Anne [University Hospitals of Leuven, Department of Pediatric Hemato-Oncology, Leuven (Belgium); Schomerus, Eckhard [University of Odense (OUH), Department of Pediatric Oncology and Hematology, H. C. Andersen Children' s Hospital, Odense (Denmark)

    2014-07-15

    Interim FDG-PET is used for treatment tailoring in lymphoma. Deauville response criteria consist of five ordinal categories based on visual comparison of residual tumor uptake to physiological reference uptakes. However, PET-response is a continuum and visual assessments can be distorted by optical illusions. With a novel semi-automatic quantification tool we eliminate optical illusions and extend the Deauville score to a continuous scale. SUV{sub peak} of residual tumors and average uptake of the liver is measured with standardized volumes of interest. The qPET value is the quotient of these measurements. Deauville scores and qPET-values were determined in 898 pediatric Hodgkin's lymphoma patients after two OEPA chemotherapy cycles. Deauville categories translate to thresholds on the qPET scale: Categories 3, 4, 5 correspond to qPET values of 0.95, 1.3 and 2.0, respectively. The distribution of qPET values is unimodal with a peak representing metabolically normal responses and a tail of clearly abnormal outliers. In our patients, the peak is at qPET = 0.95 coinciding with the border between Deauville 2 and 3. qPET cut values of 1.3 or 2 (determined by fitting mixture models) select abnormal metabolic responses with high sensitivity, respectively, specificity. qPET methodology provides semi-automatic quantification for interim FDG-PET response in lymphoma extending ordinal Deauville scoring to a continuous scale. Deauville categories correspond to certain qPET cut values. Thresholds between normal and abnormal response can be derived from the qPET-distribution without need for follow-up data. In our patients, qPET < 1.3 excludes abnormal response with high sensitivity. (orig.)

  7. qPET - a quantitative extension of the Deauville scale to assess response in interim FDG-PET scans in lymphoma

    International Nuclear Information System (INIS)

    Hasenclever, Dirk; Kurch, Lars; Georgi, Thomas; Sabri, Osama; Kluge, Regine; Mauz-Koerholz, Christine; Koerholz, Dieter; Elsner, Andreas; Wallace, Hamish; Landman-Parker, Judith; Moryl-Bujakowska, Angelina; Cepelova, Michaela; Karlen, Jonas; Alvarez Fernandez-Teijeiro, Ana; Attarbaschi, Andishe; Fossaa, Alexander; Pears, Jane; Hraskova, Andrea; Bergstraesser, Eva; Beishuizen, Auke; Uyttebroeck, Anne; Schomerus, Eckhard

    2014-01-01

    Interim FDG-PET is used for treatment tailoring in lymphoma. Deauville response criteria consist of five ordinal categories based on visual comparison of residual tumor uptake to physiological reference uptakes. However, PET-response is a continuum and visual assessments can be distorted by optical illusions. With a novel semi-automatic quantification tool we eliminate optical illusions and extend the Deauville score to a continuous scale. SUV peak of residual tumors and average uptake of the liver is measured with standardized volumes of interest. The qPET value is the quotient of these measurements. Deauville scores and qPET-values were determined in 898 pediatric Hodgkin's lymphoma patients after two OEPA chemotherapy cycles. Deauville categories translate to thresholds on the qPET scale: Categories 3, 4, 5 correspond to qPET values of 0.95, 1.3 and 2.0, respectively. The distribution of qPET values is unimodal with a peak representing metabolically normal responses and a tail of clearly abnormal outliers. In our patients, the peak is at qPET = 0.95 coinciding with the border between Deauville 2 and 3. qPET cut values of 1.3 or 2 (determined by fitting mixture models) select abnormal metabolic responses with high sensitivity, respectively, specificity. qPET methodology provides semi-automatic quantification for interim FDG-PET response in lymphoma extending ordinal Deauville scoring to a continuous scale. Deauville categories correspond to certain qPET cut values. Thresholds between normal and abnormal response can be derived from the qPET-distribution without need for follow-up data. In our patients, qPET < 1.3 excludes abnormal response with high sensitivity. (orig.)

  8. Determination of the 20 MeV linear accelerator, new injector for the synchrotron Saturne. Choice of the electrical and dynamical particle parameters; Determination de l'accelerateur lineaire de 20 MeV, nouvel injecteur du synchrotron Saturne. Choix des parametres electriques, dynamique des particules

    Energy Technology Data Exchange (ETDEWEB)

    Prome, M [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1968-12-15

    This report takes place in the general determination of the 20 MeV linear accelerator which will be the new Saturne injector; it deals with particle dynamics. Starting from beam requirements at the output of the linac, cells lengths with variable synchronous phase angle, buncher and de-buncher parameters, beam emittances at the output in several phase spaces are successively determined. (author) [French] Dans le contexte general de la determination de l'accelerateur lineaire de 20 MeV, nouvel injecteur du synchrotron Saturne, ce rapport traite de la partie relative au mecanisme de l'acceleration des particules; a partir des caracteristiques souhaitees pour le faisceau a la sortie de cet accelerateur, on determine successivement les longueurs des cellules, compte tenu du choix d'un angle de phase synchrone variable, les caracteristiques du groupeur et du degroupeur et les emittances du faisceau en sortie dans les differents plans de phase. (auteur)

  9. Beam dynamics studies and emittance optimization in the CTF3 linac at CERN

    CERN Document Server

    Urschütz, Peter; Corsini, Roberto; Döbert, Steffen; Ferrari, Arnaud; Tecker, Frank

    2006-01-01

    Small transverse beam emittances and well-known lattice functions are crucial for the 30 GHz power production in the Power Extraction and Transfer Structure (PETS) and for the commissioning of the Delay Loop of the CLIC Test Facility 3 (CTF3). Following beam dynamics simulation results, two additional solenoids were installed in the CTF3 injector in order to improve the emittance. During the runs in 2005 and 2006, an intensive measurement campaign to determine Twiss parameters and beam sizes was launched. The results obtained by means of quadrupole scans for different modes of operation suggest emittances well below the nominal .n,rms = 100 ?Î?Êm and a good agreement with PARMELA simulations.

  10. Application of PET in brain tumor

    International Nuclear Information System (INIS)

    Chung, June Key

    2002-01-01

    The annual incidence of primary brain tumors is 7-19 cases per 100,000 people. The unique capacity of visualizing biochemical processes allows PET to determine functional metabolic activities of the brain tumors. Like other malignant tumors, F-18 FDG has been used commonly in the imaging of brain tumors. FDG PET is valuable in grading malignancy, predicting prognosis, monitoring treatment, differentiating tumor recurrence from radiation nucrosis, and detecting primary lesion in metastatric brain tumors. Among amino acids labeled with positron emitters, C-11 methionine is used clinically.Tumor delineation is much better with methionine PET than with FDG PET. Low grade gliomas, in particular, are better evaluated with methionine than with FDG. PET opens another dimension in brain tumor imaging. PET imaging has clearly entered the clinical area with a profound impact on patient care in many indications

  11. Clinical PET application

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Sang Moo; Hong, Song W.; Choi, Chang W.; Yang, Seong Dae [Korea Cancer Center Hospital, Seoul (Korea)

    1997-12-01

    PET gives various methabolic images, and is very important, new diagnostic modality in clinical oncology. In Korea Cancer Center Hospital, PET is installed as a research tool of long-mid-term atomic research project. For the efficient use of PET for clinical and research projects, income from the patients should be managed to get the raw material, equipment, manpower, and also for the clinical PET research. 1. Support the clinical application of PET in oncology. 2. Budgetary management of income, costs for raw material, equipment, manpower, and the clinical PET research project. In this year, 250 cases of PET images were obtained, which resulted total income of 180,000,000 won. 50,000,000 won was deposited for the 1998 PET clinical research. Second year PET clinical research should be managed under unified project. Increased demand for {sup 18}FDG in and outside KCCH need more than 2 times production of {sup 18}FDG in a day purchase of HPLC pump and {sup 68}Ga pin source which was delayed due to economic crisis, should be done early in 1998. (author). 2 figs., 3 tabs.

  12. PET/CT with intravenous contrast can be used for PET attenuation correction in cancer patients

    International Nuclear Information System (INIS)

    Berthelsen, A.K.; Holm, S.; Loft, A.; Klausen, T.L.; Andersen, F.; Hoejgaard, L.

    2005-01-01

    If the CT scan of a combined PET/CT study is performed as a full diagnostic quality CT scan including intravenous (IV) contrast agent, the quality of the joint PET/CT procedure is improved and a separate diagnostic CT scan can be avoided. CT with IV contrast can be used for PET attenuation correction, but this may result in a bias in the attenuation factors. The clinical significance of this bias has not been established. Our aim was to perform a prospective clinical study where each patient had CT performed with and without IV contrast agent to establish whether PET/CT with IV contrast can be used for PET attenuation without reducing the clinical value of the PET scan. A uniform phantom study was used to document that the PET acquisition itself is not significantly influenced by the presence of IV contrast medium. Then, 19 patients referred to PET/CT with IV contrast underwent CT scans without, and then with contrast agent, followed by an 18 F-fluorodeoxyglucose whole-body PET scan. The CT examinations were performed with identical parameters on a GE Discovery LS scanner. The PET data were reconstructed with attenuation correction based on the two CT data sets. A global comparison of standard uptake value (SUV) was performed, and SUVs in tumour, in non-tumour tissue and in the subclavian vein were calculated. Clinical evaluation of the number and location of lesions on all PET/CT scans was performed twice, blinded and in a different random order, by two independent nuclear medicine specialists. In all patients, the measured global SUV of PET images based on CT with IV contrast agent was higher than the global activity using non-contrast correction. The overall increase in the mean SUV (for two different conversion tables tested) was 4.5±2.3% and 1.6±0.5%, respectively. In 11/19 patients, focal uptake was identified corresponding to malignant tumours. Eight out of 11 tumours showed an increased SUV max (2.9±3.1%) on the PET images reconstructed using IV contrast

  13. Staging performance of whole-body DWI, PET/CT and PET/MRI in invasive ductal carcinoma of the breast.

    Science.gov (United States)

    Catalano, Onofrio Antonio; Daye, Dania; Signore, Alberto; Iannace, Carlo; Vangel, Mark; Luongo, Angelo; Catalano, Marco; Filomena, Mazzeo; Mansi, Luigi; Soricelli, Andrea; Salvatore, Marco; Fuin, Niccolo; Catana, Ciprian; Mahmood, Umar; Rosen, Bruce Robert

    2017-07-01

    The aim of the present study was to evaluate the performance of whole-body diffusion-weighted imaging (WB-DWI), whole-body positron emission tomography with computed tomography (WB-PET/CT), and whole-body positron emission tomography with magnetic resonance imaging (WB-PET/MRI) in staging patients with untreated invasive ductal carcinoma of the breast. Fifty-one women with newly diagnosed invasive ductal carcinoma of the breast underwent WB-DWI, WB-PET/CT and WB-PET/MRI before treatment. A radiologist and a nuclear medicine physician reviewed in consensus the images from the three modalities and searched for occurrence, number and location of metastases. Final staging, according to each technique, was compared. Pathology and imaging follow-up were used as the reference. WB-DWI, WB-PET/CT and WB-PET/MRI correctly and concordantly staged 33/51 patients: stage IIA in 7 patients, stage IIB in 8 patients, stage IIIC in 4 patients and stage IV in 14 patients. WB-DWI, WB-PET/CT and WB-PET/MRI incorrectly and concordantly staged 1/51 patient as stage IV instead of IIIA. Discordant staging was reported in 17/51 patients. WB-PET/MRI resulted in improved staging when compared to WB-PET/CT (50 correctly staged on WB-PET/MRI vs. 38 correctly staged on WB-PET/CT; McNemar's test; p<0.01). Comparing the performance of WB-PET/MRI and WB-DWI (43 correct) did not reveal a statistically significant difference (McNemar test, p=0.14). WB-PET/MRI is more accurate in the initial staging of breast cancer than WB-DWI and WB-PET/CT, however, the discrepancies between WB-PET/MRI and WB-DWI were not statistically significant. When available, WB-PET/MRI should be considered for staging patient with invasive ductal breast carcinoma.

  14. Efficacité des néonicotinoïdes et des pyréthrinoïdes utilisés contre le ...

    African Journals Online (AJOL)

    Efficacité des néonicotinoïdes et des pyréthrinoïdes utilisés contre le foreur des tiges du cacaoyer ( Eulophonotus myrmeleon Felder : Lepidoptera, Cossidae). Implications dans la stratégie de protection de la cacaoculture en Côte d'Ivoire.

  15. Effect of Attenuation Correction on Regional Quantification Between PET/MR and PET/CT

    DEFF Research Database (Denmark)

    Teuho, Jarmo; Johansson, Jarkko; Linden, Jani

    2016-01-01

    UNLABELLED: A spatial bias in brain PET/MR exists compared with PET/CT, because of MR-based attenuation correction. We performed an evaluation among 4 institutions, 3 PET/MR systems, and 4 PET/CT systems using an anthropomorphic brain phantom, hypothesizing that the spatial bias would be minimized....../MR systems, CTAC was applied as the reference method for attenuation correction. RESULTS: With CTAC, visual and quantitative differences between PET/MR and PET/CT systems were minimized. Intersystem variation between institutions was +3.42% to -3.29% in all VOIs for PET/CT and +2.15% to -4.50% in all VOIs...... for PET/MR. PET/MR systems differed by +2.34% to -2.21%, +2.04% to -2.08%, and -1.77% to -5.37% when compared with a PET/CT system at each institution, and these differences were not significant (P ≥ 0.05). CONCLUSION: Visual and quantitative differences between PET/MR and PET/CT systems can be minimized...

  16. Quantitative PET imaging with the 3T MR-BrainPET

    International Nuclear Information System (INIS)

    Weirich, C.; Scheins, J.; Lohmann, P.; Tellmann, L.; Byars, L.; Michel, C.; Rota Kops, E.; Brenner, D.; Herzog, H.; Shah, N.J.

    2013-01-01

    The new hybrid imaging technology of MR-PET allows for simultaneous acquisition of versatile MRI contrasts and the quantitative metabolic imaging with PET. In order to achieve the quantification of PET images with minimal residual error the application of several corrections is crucial. In this work we present our results on quantification with the 3T MR BrainPET scanner

  17. What do we measure in oncology PET?

    Energy Technology Data Exchange (ETDEWEB)

    Pak, Kyoung June; Kim, Seong Jang [Dept. of Nuclear Medicine and Biomedical Research Institute, Pusan National University Hospital, Busan (Korea, Republic of)

    2017-09-15

    Positron emission tomography (PET) has come to the practice of oncology. It is known that {sup 18}F-fluorodeoxyglucose (FDG) PET is more sensitive for the assessment of treatment response than conventional imaging. In addition, PET has an advantage in the use of quantitative analysis of the study. Nowadays, various PET parameters are adopted in clinical settings. In addition, a wide range of factors has been known to be associated with FDG uptake. Therefore, there has been a need for standardization and harmonization of protocols and PET parameters. We will introduce PET parameters and discuss major issues in this review.

  18. MR-assisted PET Motion Correction for eurological Studies in an Integrated MR-PET Scanner

    Science.gov (United States)

    Catana, Ciprian; Benner, Thomas; van der Kouwe, Andre; Byars, Larry; Hamm, Michael; Chonde, Daniel B.; Michel, Christian J.; El Fakhri, Georges; Schmand, Matthias; Sorensen, A. Gregory

    2011-01-01

    Head motion is difficult to avoid in long PET studies, degrading the image quality and offsetting the benefit of using a high-resolution scanner. As a potential solution in an integrated MR-PET scanner, the simultaneously acquired MR data can be used for motion tracking. In this work, a novel data processing and rigid-body motion correction (MC) algorithm for the MR-compatible BrainPET prototype scanner is described and proof-of-principle phantom and human studies are presented. Methods To account for motion, the PET prompts and randoms coincidences as well as the sensitivity data are processed in the line or response (LOR) space according to the MR-derived motion estimates. After sinogram space rebinning, the corrected data are summed and the motion corrected PET volume is reconstructed from these sinograms and the attenuation and scatter sinograms in the reference position. The accuracy of the MC algorithm was first tested using a Hoffman phantom. Next, human volunteer studies were performed and motion estimates were obtained using two high temporal resolution MR-based motion tracking techniques. Results After accounting for the physical mismatch between the two scanners, perfectly co-registered MR and PET volumes are reproducibly obtained. The MR output gates inserted in to the PET list-mode allow the temporal correlation of the two data sets within 0.2 s. The Hoffman phantom volume reconstructed processing the PET data in the LOR space was similar to the one obtained processing the data using the standard methods and applying the MC in the image space, demonstrating the quantitative accuracy of the novel MC algorithm. In human volunteer studies, motion estimates were obtained from echo planar imaging and cloverleaf navigator sequences every 3 seconds and 20 ms, respectively. Substantially improved PET images with excellent delineation of specific brain structures were obtained after applying the MC using these MR-based estimates. Conclusion A novel MR-based MC

  19. Additive value of amyloid-PET in routine cases of clinical dementia work-up after FDG-PET

    International Nuclear Information System (INIS)

    Brendel, Matthias; Schnabel, Jonas; Wagner, Leonie; Brendel, Eva; Meyer-Wilmes, Johanna; Unterrainer, Marcus; Schoenecker, Sonja; Prix, Catharina; Ackl, Nibal; Schildan, Andreas; Patt, Marianne; Barthel, Henryk; Sabri, Osama; Catak, Cihan; Pogarell, Oliver; Levin, Johannes; Danek, Adrian; Buerger, Katharina; Bartenstein, Peter; Rominger, Axel

    2017-01-01

    In recent years, several [ 18 F]-labeled amyloid-PET tracers have been developed and have obtained clinical approval. Despite their widespread scientific use, studies in routine clinical settings are limited. We therefore investigated the impact of [ 18 F]-florbetaben (FBB)-PET on the diagnostic management of patients with suspected dementia that was still unclarified after [ 18 F]-fluordeoxyglucose (FDG)-PET. All subjects were referred in-house with a suspected dementia syndrome due to neurodegenerative disease. After undergoing an FDG-PET exam, the cases were discussed by the interdisciplinary dementia board, where the most likely diagnosis as well as potential differential diagnoses were documented. Because of persistent diagnostic uncertainty, the patients received an additional FBB-PET exam. Results were interpreted visually and classified as amyloid-positive or amyloid-negative, and we then compared the individual clinical diagnoses before and after additional FBB-PET. A total of 107 patients (mean age 69.4 ± 9.7y) were included in the study. The FBB-PET was rated as amyloid-positive in 65/107. In 83% of the formerly unclear cases, a final diagnosis was reached through FBB-PET, and the most likely prior diagnosis was changed in 28% of cases. The highest impact was observed for distinguishing Alzheimer's dementia (AD) from fronto-temporal dementia (FTLD), where FBB-PET altered the most likely diagnosis in 41% of cases. FBB-PET has a high additive value in establishing a final diagnosis in suspected dementia cases when prior investigations such as FDG-PET are inconclusive. The differentiation between AD and FTLD was particularly facilitated by amyloid-PET, predicting a considerable impact on patient management, especially in the light of upcoming disease-modifying therapies. (orig.)

  20. Additive value of amyloid-PET in routine cases of clinical dementia work-up after FDG-PET

    Energy Technology Data Exchange (ETDEWEB)

    Brendel, Matthias; Schnabel, Jonas; Wagner, Leonie; Brendel, Eva; Meyer-Wilmes, Johanna; Unterrainer, Marcus [University Hospital, LMU Munich, Department of Nuclear Medicine, Munich (Germany); Schoenecker, Sonja; Prix, Catharina; Ackl, Nibal [University Hospital, LMU Munich, Department of Neurology, Munich (Germany); Schildan, Andreas; Patt, Marianne; Barthel, Henryk; Sabri, Osama [University of Leipzig, Department of Nuclear Medicine, Leipzig (Germany); Catak, Cihan [Klinikum der Universitaet Muenchen, Institute for Stroke and Dementia Research, Munich (Germany); Pogarell, Oliver [University Hospital, LMU Munich, Department of Psychiatry, Munich (Germany); Levin, Johannes; Danek, Adrian [University Hospital, LMU Munich, Department of Neurology, Munich (Germany); DZNE - German Center for Neurodegenerative Diseases, Munich (Germany); Buerger, Katharina [Klinikum der Universitaet Muenchen, Institute for Stroke and Dementia Research, Munich (Germany); DZNE - German Center for Neurodegenerative Diseases, Munich (Germany); Bartenstein, Peter; Rominger, Axel [University Hospital, LMU Munich, Department of Nuclear Medicine, Munich (Germany); Munich Cluster for Systems Neurology (SyNergy), Munich (Germany)

    2017-12-15

    In recent years, several [{sup 18}F]-labeled amyloid-PET tracers have been developed and have obtained clinical approval. Despite their widespread scientific use, studies in routine clinical settings are limited. We therefore investigated the impact of [{sup 18}F]-florbetaben (FBB)-PET on the diagnostic management of patients with suspected dementia that was still unclarified after [{sup 18}F]-fluordeoxyglucose (FDG)-PET. All subjects were referred in-house with a suspected dementia syndrome due to neurodegenerative disease. After undergoing an FDG-PET exam, the cases were discussed by the interdisciplinary dementia board, where the most likely diagnosis as well as potential differential diagnoses were documented. Because of persistent diagnostic uncertainty, the patients received an additional FBB-PET exam. Results were interpreted visually and classified as amyloid-positive or amyloid-negative, and we then compared the individual clinical diagnoses before and after additional FBB-PET. A total of 107 patients (mean age 69.4 ± 9.7y) were included in the study. The FBB-PET was rated as amyloid-positive in 65/107. In 83% of the formerly unclear cases, a final diagnosis was reached through FBB-PET, and the most likely prior diagnosis was changed in 28% of cases. The highest impact was observed for distinguishing Alzheimer's dementia (AD) from fronto-temporal dementia (FTLD), where FBB-PET altered the most likely diagnosis in 41% of cases. FBB-PET has a high additive value in establishing a final diagnosis in suspected dementia cases when prior investigations such as FDG-PET are inconclusive. The differentiation between AD and FTLD was particularly facilitated by amyloid-PET, predicting a considerable impact on patient management, especially in the light of upcoming disease-modifying therapies. (orig.)

  1. PET-COMPTON System. Comparative evaluation with PET System using Monte Carlo Simulation

    International Nuclear Information System (INIS)

    Diaz Garcia, Angelina; Arista Romeu, Eduardo; Abreu Alfonso, Yamiel; Leyva Fabelo, Antonio; Pinnera HernAndez, Ibrahin; Bolannos Perez, Lourdes; Rubio Rodriguez, Juan A.; Perez Morales, Jose M.; Arce Dubois, Pedro; Vela Morales, Oscar; Willmott Zappacosta, Carlos

    2012-01-01

    Positron Emission Tomography (PET) in small animals has actually achieved spatial resolution round about 1 mm and currently there are under study different approaches to improve this spatial resolution. One of them combines PET technology with Compton Cameras. This paper presents the idea of the so called PET-Compton systems and has included comparative evaluation of spatial resolution and global efficiency in both PET and PET-Compton system by means of Monte Carlo simulations using Geant4 code. Simulation was done on a PET-Compton system made-up of LYSO-LuYAP scintillating detectors of particular small animal PET scanner named Clear-PET and for Compton detectors based on CdZnTe semiconductor. A group of radionuclides that emits a positron (e+) and quantum almost simultaneously and fulfills some selection criteria for their possible use in PET-Compton systems for medical and biological applications were studied under simulation conditions. By means of analytical reconstruction using SSRB (Single Slide Rebinning) method were obtained superior spatial resolution in PET-Compton system for all tested radionuclides (reaching sub-millimeter values of for 22Na source). However this analysis done by simulation have shown limited global efficiency values in PET-Compton system (in the order of 10 -5 -10 -6 %) instead of values around 5*10 -1 % that have been achieved in PET system. (author)

  2. PET/CT applications in oncology

    International Nuclear Information System (INIS)

    Oliva González, Juan Perfecto; Martínez Ramírez, Aldo; Baum, Richard Paul

    2017-01-01

    PET means Positron Emission Tomography, it is a nuclear medicine technique in which radiopharmaceuticals labeled with positron emitters are used to obtain biochemical-metabolic images of the human body. The use of PET / CT contributes to obtain multimodal images that combine anatomical and metabolic information, allowing a more reliable diagnosis of a tumor or local or distant metastases in an organ or tissue. Other multimodal devices combine metabolic imaging with nuclear magnetic resonance. PET/CT is mainly used in Oncology (85-90%), Neurology, Cardiology, Inflammation and Infection although it is currently also used in different medical and surgical pathologies. The present work is aimed at showing what PET/CT is and how useful it is in Oncology. (author)

  3. Assess PET/MR in diagnosis of disease in comparison with PET/CT

    International Nuclear Information System (INIS)

    Yan, Jianhua; Lim, Jason Chu-Chern; Loi, Hoi Yin; Totoman, John; Sinha, Arvind Kumar; Quek, Swee Titan; Townsend, David

    2015-01-01

    The aim of this study is to assess the performance of 18F-FDG whole body PET/MRI in comparison with PET/CT based on SUV. Anatomical location of lesion with Dixon MRI and additional value of advanced MRI technology such as diffusion weighted MR imaging in diagnosis of malignant disease will also be investigated.

  4. 'PET -Compton' system. Comparative evaluation with PET system using Monte Carlo simulation

    International Nuclear Information System (INIS)

    Diaz Garcia, Angelina; Arista Romeu, Eduardo; Abreu Alfonso, Yamiel; Leyva Fabelo, Antonio; Pinnera Hernandez, Ibrahin; Bolannos Perez, Lourdes; Rubio Rodriguez, Juan A; Perez Morales, Jose M.; Arce Dubois, Pedro; Vela Morales, Oscar; Willmott Zappacosta, Carlos

    2011-01-01

    Positron Emission Tomography (PET) in small animals has actually achieved spatial resolution round about 1 mm and currently there are under study different approaches to improve this spatial resolution. One of them combines PET technology with Compton Cameras. This paper presents the idea of the so called 'PET-Compton' systems and includes comparative evaluation of spatial resolution and global efficiency in both PET and PET-Compton system by means of Monte Carlo simulations using Geant4 code. Simulation is done on a PET-Compton system consisting of LYSO-LuYAP scintillating detectors of particular small animal PET scanner named 'Clear-PET' and for Compton detectors based on CdZnTe semiconductor. A group of radionuclides that emits a positron (e + ) and γ quantum almost simultaneously and fulfills some selection criteria for their possible use in PET-Compton systems for medical and biological applications were studied under simulation conditions. (Author)

  5. Brain PET scan

    Science.gov (United States)

    ... results on a PET scan. Blood sugar or insulin levels may affect the test results in people with diabetes . PET scans may be done along with a CT scan. This combination scan is called a PET/CT. Alternative Names Brain positron emission tomography; PET scan - brain References Chernecky ...

  6. PET applications in pediatrics

    Energy Technology Data Exchange (ETDEWEB)

    Shulkin, B. L. [Ann Arbor, Univ. of Michigan Medical Center (United States). Pediatric Nuclear Medicine Section

    1997-12-01

    This article summarizes the major PET studies which have been performed in pediatric patients to elucidate and characterize diseases and normal development. Issues special for the application of the technique in children, such as dosimetry, patient preparation, and image acquisition are discussed. Studies of central nervous system (CNS) development and pathology, including epilepsy, intraventricular hemorrhage, neonatal asphyxia, tumors, and effects on the CNS from treatment of other tumors are reviewed. These have contributed information fundamental to their understanding of CNS development and pathology. PET investigations into the pathophysiology of congenital heart disease have begun and hold great promise to aid their understanding of these conditions. The second major area in which PET has been applied is the study of non CNS neoplasms. Neuroblastoma has been investigated with tracers which explore basic biochemical features which characterize this tumor, as well as with tracers which explore biochemical events relatively specific for this malignancy. Other common and uncommon tumors of childhood are discussed. The PET technique has been shown useful for answering questions of clinical relevance for the management of these uncommon neoplasms. PET is likely to continue to aid their understanding of many pediatric diseases and may gain more widespread clinical acceptance as the technology continues to disseminate rapidly.

  7. Multiparametric and molecular imaging of breast tumors with MRI and PET/MRI; Multiparametrische und molekulare Bildgebung von Brusttumoren mit MRT und PET-MRT

    Energy Technology Data Exchange (ETDEWEB)

    Pinker, K. [Medizinische Universitaet Wien, Universitaetsklinik fuer Radiologie und Nuklearmedizin, Division fuer Molekulare und Gender Bildgebung, Wien (Austria); Memorial Sloan-Kettering Cancer Center, Department of Radiology, Molecular Imaging and Therapy Service, New York (United States); State University of Florida, Department of Scientific Computing in Medicine, Florida (United States); Marino, M.A. [Medizinische Universitaet Wien, Universitaetsklinik fuer Radiologie und Nuklearmedizin, Division fuer Molekulare und Gender Bildgebung, Wien (Austria); Policlinico Universitario G. Martino, University of Messina, Department of Biomedical Sciences and Morphologic and Functional Imaging, Messina (Italy); Meyer-Baese, A. [State University of Florida, Department of Scientific Computing in Medicine, Florida (United States); Helbich, T.H. [Medizinische Universitaet Wien, Universitaetsklinik fuer Radiologie und Nuklearmedizin, Division fuer Molekulare und Gender Bildgebung, Wien (Austria)

    2016-07-15

    wertvolle Information ueber die Schluesselprozesse der Krebsentstehung und Progression liefern und sowohl Diagnostik als auch Therapieplanung von Brustkrebs verbessern kann. Die multiparametrische und molekulare Bildgebung der Brust umfasst derzeit die kontrastmittelverstaerkte MRT (KM-MRT), diffusionsgewichtete Bildgebung (DWI) und Protonenspektroskopie ({sup 1}H-MRSI) sowie radiologisch-nuklearmedizinisch kombinierte Verfahren (PET-CT, MP-PET-MRT) unter Verwendung des Radiotracers Fluordesoxyglukose (FDG). Die multiparametrischen Bildgebung der Brust kann bei unterschiedlichen Feldstaerken durchgefuehrt werden (1,5-7 T). Die multiparametrische und molekulare Bildgebung in der Mammadiagnostik ist ein sich rapide entwickelndes Forschungsfeld mit neuen vielversprechenden Techniken wie der Natriumbildgebung ({sup 23}Na-MRT), der Phosphorspektroskopie ({sup 31}P-MRSI), der Chemical-Exchange-Saturation-Transfer(CEST)-, Blood-Oxygen-Level-Dependent(BOLD)- und der hyperpolarisierten MRT sowie neuen zielgerichteten Radiotracern. In den letzten Jahren hat sich die multiparametrische und molekulare Bildgebung in der Mammadiagnostik etabliert. Die multiparametrische Bildgebung der Brust ist jedoch ein sich konstant weiter entwickelndes Forschungsfeld, deren Einfluss in den naechsten Jahren weiter zunehmen und so eine verbesserte Diagnose, Staging und zielgerichtete Therapie ermoeglichen wird. (orig.)

  8. Lung PET scan

    Science.gov (United States)

    ... Chest PET scan; Lung positron emission tomography; PET - chest; PET - lung; PET - tumor imaging; ... Grainger & Allison's Diagnostic Radiology: A Textbook of Medical Imaging . 6th ed. Philadelphia, ...

  9. Santé des adolescents et des jeunes au Burkina Faso : état des ...

    African Journals Online (AJOL)

    Il s'est agi d'une étude évaluative ayant utilisé une revue documentaire associée à une interview des acteurs clés et un atelier de validation et d'identification des interventions pertinentes pour un plan stratégique national. La situation de la santé des adolescents et des jeunes est caractérisée par des grossesses précoces ...

  10. Comparison Between In-Beam and Offline Positron Emission Tomography Imaging of Proton and Carbon Ion Therapeutic Irradiation at Synchrotron- and Cyclotron-Based Facilities

    International Nuclear Information System (INIS)

    Parodi, Katia; Bortfeld, Thomas; Haberer, Thomas

    2008-01-01

    Purpose: The benefit of using dedicated in-beam positron emission tomography (PET) detectors in the treatment room instead of commercial tomographs nearby is an open question. This work quantitatively compares the measurable signal for in-beam and offline PET imaging, taking into account realistic acquisition strategies at different ion beam facilities. Both scenarios of pulsed and continuous irradiation from synchrotron and cyclotron accelerators are considered, because of their widespread use in most carbon ion and proton therapy centers. Methods and Materials: A mathematical framework is introduced to compare the time-dependent amount and spatial distribution of decays from irradiation-induced isotope production. The latter is calculated with Monte Carlo techniques for real proton treatments of head-and-neck and paraspinal tumors. Extrapolation to carbon ion irradiation is based on results of previous phantom experiments. Biologic clearance is modeled taking into account available data from previous animal and clinical studies. Results: Ratios between the amount of physical decays available for in-beam and offline detection range from 40% to 60% for cyclotron-based facilities, to 65% to 110% (carbon ions) and 94% to 166% (protons) at synchrotron-based facilities, and increase when including biologic clearance. Spatial distributions of decays during irradiation exhibit better correlation with the dose delivery and reduced influence of biologic processes. Conclusions: In-beam imaging can be advantageous for synchrotron-based facilities, provided that efficient PET systems enabling detection of isotope decays during beam extraction are implemented. For very short (<2 min) irradiation times at cyclotron-based facilities, a few minutes of acquisition time after the end of irradiation are needed for counting statistics, thus affecting patient throughput

  11. Multi-technique hybrid imaging in PET/CT and PET/MR: what does the future hold?

    International Nuclear Information System (INIS)

    Galiza Barbosa, F. de; Delso, G.; Voert, E.E.G.W. ter; Huellner, M.W.; Herrmann, K.; Veit-Haibach, P.

    2016-01-01

    Integrated positron-emission tomography and computed tomography (PET/CT) is one of the most important imaging techniques to have emerged in oncological practice in the last decade. Hybrid imaging, in general, remains a rapidly growing field, not only in developing countries, but also in western industrialised healthcare systems. A great deal of technological development and research is focused on improving hybrid imaging technology further and introducing new techniques, e.g., integrated PET and magnetic resonance imaging (PET/MRI). Additionally, there are several new PET tracers on the horizon, which have the potential to broaden clinical applications in hybrid imaging for diagnosis as well as therapy. This article aims to highlight some of the major technical and clinical advances that are currently taking place in PET/CT and PET/MRI that will potentially maintain the position of hybrid techniques at the forefront of medical imaging technologies.

  12. Calculation of shielding and radiation doses for PET/CT nuclear medicine facility

    International Nuclear Information System (INIS)

    Mollah, A.S.; Muraduzzaman, S.M.

    2011-01-01

    Positron emission tomography (PET) is a new modality that is gaining use in nuclear medicine. The use of PET and computed tomography (CT) has grown dramatically. Because of the high energy of the annihilation radiation (511 keV), shielding requirements are an important consideration in the design of a PET or PET/CT imaging facility. The goal of nuclear medicine and PET facility shielding design is to keep doses to workers and the public as low as reasonably achievable (ALARA). Design involves: 1. Calculation of doses to occupants of the facility and adjacent regions based on projected layouts, protocols and workflows, and 2. Reduction of doses to ALARA through adjustment of the aforementioned parameters. The radiological evaluation of a PET/CT facility consists of the assessment of the annual effective dose both to workers occupationally exposed, and to members of the public. This assessment takes into account the radionuclides involved, the facility features, the working procedures, the expected number of patients per year, and so on. The objective of the study was to evaluate shielding requirements for a PET/CT to be installed in the department of nuclear medicine of Bangladesh Atomic Energy Commission (BAEC). Minimizing shielding would result in a possible reduction of structural as well as financial burden. Formulas and attenuation coefficients following the basic AAPM guidelines were used to calculate un-attenuated radiation through shielding materials. Doses to all points on the floor plan are calculated based primarily on the AAPM guidelines and include consideration of broad beam attenuation and radionuclide energy and decay. The analysis presented is useful for both, facility designers and regulators. (author)

  13. Dedicated brain PET system of PET/MR for brain research

    International Nuclear Information System (INIS)

    Cheng, Li; Liu, Yaqiang; Ma, Tianyu; Wang, Shi; Wei, Qingyang; Xu, Tianpeng

    2015-01-01

    This work is to replace PET ring in human brain PET/MR system with a dedicated wearable PET insert, aimed at improving both patient feasibility and system performance for brain imaging. The designed PET/MR system includes two parts: the inside parts, including a radio frequency (RF) coil and PET ring, are mounted on patient’s head, and the outside part, a MR imager, is dependent of patient. The RF coil is the innermost layer, surrounded by an outer PET-ring layer. They are supported by a MRcompatible structure. And both RF coil and PET detectors are placed inside a standard clinical 3-T MR imager. From the design of the system we can infer that some advantages can be achieved. First, high sensitivity will be achieved with the same amount crystals as the PET ring is more close to region-of-interest area, at a reduced cost. Second, by using a 2-layer depth of interaction (DOI) detector, the parallax effect can be minimized. The resolution will benefit from short positron range caused by magnetic field and smaller ring diameter will also reduce the effect of non-collinearity. Thirdly, as the PET ring is mounted on head, impact of patient motion will be reduced.

  14. Dedicated brain PET system of PET/MR for brain research

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Li; Liu, Yaqiang; Ma, Tianyu; Wang, Shi; Wei, Qingyang; Xu, Tianpeng [Institute of Medical Physics, Department of Engineering Physics, Tsinghua University, Beijing (China)

    2015-05-18

    This work is to replace PET ring in human brain PET/MR system with a dedicated wearable PET insert, aimed at improving both patient feasibility and system performance for brain imaging. The designed PET/MR system includes two parts: the inside parts, including a radio frequency (RF) coil and PET ring, are mounted on patient’s head, and the outside part, a MR imager, is dependent of patient. The RF coil is the innermost layer, surrounded by an outer PET-ring layer. They are supported by a MRcompatible structure. And both RF coil and PET detectors are placed inside a standard clinical 3-T MR imager. From the design of the system we can infer that some advantages can be achieved. First, high sensitivity will be achieved with the same amount crystals as the PET ring is more close to region-of-interest area, at a reduced cost. Second, by using a 2-layer depth of interaction (DOI) detector, the parallax effect can be minimized. The resolution will benefit from short positron range caused by magnetic field and smaller ring diameter will also reduce the effect of non-collinearity. Thirdly, as the PET ring is mounted on head, impact of patient motion will be reduced.

  15. PET and PET-CT. State of the art and future prospects

    International Nuclear Information System (INIS)

    Fanti, Stefano; Franchi, Roberto; Battista, Giuseppe; Monetti, Nino; Canini, Romeo

    2005-01-01

    Fluoro-deoxyglucose positron emission tomography (FDG PET) enables the in vivo study of tissue metabolism, and thus is able to identify malignant tumours as hypermetabolic lesions by an increase in tracer uptake. Many papers have demonstrated both the relevant impact of FDG PET on staging of many cancers and the superior accuracy of the technique compared with conventional diagnostic methods for pre-treatment evaluation, therapy response evaluation and relapse identification. In particular PET was found useful in identifying lymph nodal and metastatic spread. thus altering patient management in more than 30% of cases. PET images, however, provide limited anatomical data, which in regions such as the head and neck, mediastinum and pelvic cavity is a significant drawback. The exact localization of lesions may also be difficult in some cases, on the basis of PET images alone. The introduction of combined PET-computed tomography (PET-CT) scanners enables the almost simultaneous acquisition of transmission and emission images, thus obtaining optimal fusion images in a very short time. PET-CT fusion images enable lesions to be located, reducing false positive studies and increasing accuracy; the overall duration of examination may also be reduced. On the basis of both literature data and our experience we established the clinical indications when PET-CT may be particularly useful, in comparison with PET alone. It should also be underlined that the use of PET-CT is almost mandatory for new traces such as C-choline and C-methionine; these new tracers may be applied for studying tumours not assessable with FDG, such as prostate cancer. In conclusion PET-CT is at present the most advanced method for metabolic imaging, and is capable of precisely localizing and assessing tumours; fusion images reduce false positive and inconclusive studies, thus increasing diagnostic accuracy [it

  16. Development of PET in Latin America. Experience of the first PET-Cyclotron Center

    International Nuclear Information System (INIS)

    Tutor, C.A.; Frias, L.

    2002-01-01

    Aim: Describe the experience of the first PET-Cyclotron Center in Latin America. Demonstrate the viability of running a PET Center in Argentina despite the economic crisis. Materials and Methods: For this study, we used a UGM/GE Quest 250 PET scan, a RDS 112 cyclotron and a Radiosynthesis Laboratory installed at the (FUESMEN) Nuclear Medicine School Foundation, located in Mendoza City, in the middle-west of Argentina. From January 1999 to March 2002, 741 studies were obtained, 731 were 18 FluorDeoxyGlucose-PET studies and 10 phantoms for calibration purposes. We used acquisition and imaging processing standard protocols, as well as research protocols designed according to the pathology under investigation. To better correlate anatomical and functional images, we used fusion techniques with (CT) Computed Tomography in some (WB) whole-body PET scans. Results: A total of 731 patients were retrospectively analyzed and classified according to statistics variables such as: 1-sex: 317 women and 414 men, 2-type of scan: 439 WB cases, 267 brain studies and 25 cardiac. From this data we divided them as PET indications and resulted in 17 cases as healthy volunteers, 422 oncological cases, 267 neurological studies and 25 cardiac for myocardial viability. According to the origin they were classified as patients coming from Mendoza 544, Buenos Aires 112, other argentine provinces 60 and foreign (Chile, Brazil and Uruguay) 15 cases. In terms of billing, 181 studies were done free of charge, 95 under research protocols were also done free of charge and 451 were charged. Conclusion: Not only the economical and political factors play an important role limiting the advances of PET Imaging in Latin America, but also the lack of a neighboring cyclotron that circumscribe many hospitals to have access to the radiopharmaceutical agent. FUESMEN was established in 1991 by three governmental entities: the (CONEA) National Commission of Atomic Energy, the (UNC) National University of Cuyo and

  17. Effect of MR contrast agents on quantitative accuracy of PET in combined whole-body PET/MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Lois, Cristina [University of Santiago de Compostela, Department of Particle Physics, Santiago de Compostela (Spain); Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela (Spain); Imaging Science Institute, Tuebingen (Germany); Bezrukov, Ilja [Eberhard Karls University, Laboratory for Preclinical Imaging and Imaging Technology of the Werner Siemens Foundation, Department of Preclinical Imaging and Radiopharmacy, Tuebingen (Germany); Max Plank Institute for Intelligent Systems, Department of Empirical Inference, Tuebingen (Germany); Schmidt, Holger [Eberhard Karls University, Laboratory for Preclinical Imaging and Imaging Technology of the Werner Siemens Foundation, Department of Preclinical Imaging and Radiopharmacy, Tuebingen (Germany); Eberhard Karls University, Diagnostic and Interventional Radiology, Department of Radiology, Tuebingen (Germany); Schwenzer, Nina; Werner, Matthias K. [Eberhard Karls University, Diagnostic and Interventional Radiology, Department of Radiology, Tuebingen (Germany); Kupferschlaeger, Juergen [Eberhard Karls University, Nuclear Medicine, Department of Radiology, Tuebingen (Germany); Beyer, Thomas [Imaging Science Institute, Tuebingen (Germany); cmi-experts GmbH, Zuerich (Switzerland)

    2012-11-15

    Clinical PET/MR acquisition protocols entail the use of MR contrast agents (MRCA) that could potentially affect PET quantification following MR-based attenuation correction (AC). We assessed the effect of oral and intravenous (IV) MRCA on PET quantification in PET/MR imaging. We employed two MRCA: Lumirem {sup registered} (oral) and Gadovist {sup registered} (IV). First, we determined their reference PET attenuation values using a PET transmission scan (ECAT-EXACT HR+, Siemens) and a CT scan (PET/CT Biograph 16 HI-REZ, Siemens). Second, we evaluated the attenuation of PET signals in the presence of MRCA. Phantoms were filled with clinically relevant concentrations of MRCA in a background of water and {sup 18}F-fluoride, and imaged using a PET/CT scanner (Biograph 16 HI-REZ, Siemens) and a PET/MR scanner (Biograph mMR, Siemens). Third, we investigated the effect of clinically relevant volumes of MRCA on MR-based AC using human pilot data: a patient study employing Gadovist {sup registered} (IV) and a volunteer study employing two different oral MRCA (Lumirem {sup registered} and pineapple juice). MR-based attenuation maps were calculated following Dixon-based fat-water segmentation and an external atlas-based and pattern recognition (AT and PR) algorithm. IV and oral MRCA in clinically relevant concentrations were found to have PET attenuation values similar to those of water. The phantom experiments showed that under clinical conditions IV and oral MRCA did not yield additional attenuation of PET emission signals. Patient scans showed that PET attenuation maps are not biased after the administration of IV MRCA but may be biased, however, after ingestion of iron oxide-based oral MRCA when segmentation-based AC algorithms are used. Alternative AC algorithms, such as AT and PR, or alternative oral contrast agents, such as pineapple juice, can yield unbiased attenuation maps. In clinical PET/MR scenarios MRCA are not expected to lead to markedly increased attenuation

  18. La fabrique des sciences des institutions aux pratiques

    CERN Document Server

    Benninghoff, Martin; Crettaz von Roten, Fabienne; Merz, Martina

    2006-01-01

    Aujourd'hui, les façons de produire, d'organiser, d'évaluer et d'utiliser les savoirs sont en profond débat. De plus en plus, l'Etat, la société civile et l'économie tentent d'influencer les activités des universités et des laboratoires de recherche. Ces développements mettent à l'épreuve tout à la fois les fondements des systèmes d'enseignement supérieur et de recherche, l'autonomie des institutions scientifiques, la définition des frontières des savoirs et l'acceptation des sciences. Dans des contextes suisses et européens, cet ouvrage s'intéresse aux manières dont les sciences et les technologies sont fabriquées, en analysant leurs institutions et les pratiques. A partir d'une approche relationnelle, les sciences et les technologies sont conçues comme des phénomènes profondément sociaux, culturels et politiques. Une telle démarche déstabilise les visions parfois idéalisées et stéréotypées de la construction des savoirs. Des études de cas détaillées décrivent des phénomè...

  19. Comparison of dosimetry between PET/CT and PET alone using 11C-ITMM

    International Nuclear Information System (INIS)

    Ito, Kimiteru; Sakata, Muneyuki; Wagarsuma, Kei; Toyohara, Jun; Ishibashi, Kenji; Ishii, Kenji; Ishiwata, Kiichi; Oda, Keiichi

    2016-01-01

    We used a new tracer, N-[4-[6-(isopropylamino) pyrimidin-4-yl]-1,3-thiazol-2-yl]-4- 11 C-methoxy-N-methylbenzamide ( 11 C-ITMM), to compare radiation doses from positron emission tomography (PET)/computed tomography (CT) with previously published doses from PET alone. Twelve healthy volunteers [six males (mean age ± SD, 27.7 ± 6.7 years) and six females (31.8 ± 14.5 years)] in 12 examinations were recruited. Dose estimations from PET/CT were compared with those from PET alone. Regions of interest (ROIs) in PET/CT were delineated on the basis of low-dose CT (LD-CT) images acquired during PET/CT. Internal and external radiation doses were estimated using OLINDA/EXM 1.0 and CT-Expo software. The effective dose (ED) for 11 C-ITMM calculated from PET/CT was estimated to be 4.7 ± 0.5 μSv/MBq for the male subjects and 4.1 ± 0.7 μSv/MBq for the female subjects. The mean ED for 11 C-ITMM calculated from PET alone in a previous report was estimated to be 4.6 ± 0.3 μSv/MBq (males, n = 3). The ED values for 11 C-ITMM calculated from PET/CT in the male subjects were almost identical to those from PET alone. The absorbed doses (ADs) of the gallbladder, stomach, red bone marrow, and spleen calculated from PET/CT were significantly different from those calculated from PET alone. The EDs of 11 C-ITMM calculated from PET/CT were almost identical to those calculated from PET alone. The ADs in several organs calculated from PET/CT differed from those from PET alone. LD-CT images acquired during PET/CT may facilitate organ identification.

  20. A study of artefacts in simultaneous PET and MR imaging using a prototype MR compatible PET scanner

    International Nuclear Information System (INIS)

    Slates, R.B.; Farahani, K.; Marsden, P.K.; Taylor, J.; Summers, P.E.; Williams, S.; Beech, J.

    1999-01-01

    We have assessed the possibility of artefacts that can arise in attempting to perform simultaneous positron emission tomography (PET) and magnetic resonance imaging (MRI) using a small prototype MR compatible PET scanner (McPET). In these experiments, we examine MR images for any major artefacts or loss in image quality due to inhomogeneities in the magnetic field, radiofrequency interference or susceptibility effects caused by operation of the PET system inside the MR scanner. In addition, possible artefacts in the PET images caused by the static and time-varying magnetic fields or radiofrequency interference from the MR system were investigated. Biological tissue and a T 2 -weighted spin echo sequence were used to examine susceptibility artefacts due to components of the McPET scanner (scintillator, optical fibres) situated in the MR field of view. A range of commonly used MR pulse sequences was studied while acquiring PET data to look for possible artefacts in either the PET or MR images. Other than a small loss in signal-to-noise using gradient echo sequences, there was no significant interaction between the two imaging systems. Simultaneous PET and MR imaging of simple phantoms was also carried out in different MR systems with field strengths ranging from 0.2 to 4.7 T. The results of these studies demonstrate that it is possible to acquire PET and MR images simultaneously, without any significant artefacts or loss in image quality, using our prototype MR compatible PET scanner. (author)

  1. Mécanique des sols et des roches

    CERN Document Server

    Vullier, Laurent; Zhao, Jian

    2016-01-01

    La mécanique des sols et la mécanique des roches sont des disciplines généralement traitées séparément dans la littérature. Pour la première fois, un traité réunit ces deux spécialités, en intégrant également les connaissances en lien avec les écoulements souterrains et les transferts thermiques. A la fois théorique et pratique, cet ouvrage propose tout d'abord une description détaillée de la nature et de la composition des sols et des roches, puis s'attache à la modélisation de problèmes aux conditions limites et présente les essais permettant de caractériser les sols et les roches, tant d'un point de vue mécanique qu'hydraulique et thermique. La problématique des sols non saturés et des écoulements multiphasiques est également abordée. Une attention particulière est portée aux lois de comportement mécanique et à la détermination de leurs paramètres par des essais in situ et en laboratoire, et l'ouvrage offre également une présentation détaillée des systèmes de classi...

  2. Utility of PET in gynecological cancer

    International Nuclear Information System (INIS)

    Choi, Chang Woon

    2002-01-01

    Clinical application of positron emission tomography (PET) is rapidly increasing for the detection and staging of cancer at whole-body studies performed with 2-[fluorine-18] fluoro-2-deoxy-D-glucose (FDG). Although many cancers can be detected by FDG-PET, there has been limited clinical experience with FDG-PET for the detection of gynecological cancers including malignancies in uterus and ovary. FDG-PET can show foci of metastatic disease that may not be apparent at conventional anatomic imaging and can aid in the characterization of indeterminate soft-tissue masses. Most gynecological cancers need to surgical management. FDG-PET can improve the selection of patients for surgical treatment and thereby reduce the morbidity and mortality associated with inappropriate surgery. FDG-PET is also useful for the early detection of recurrence and the monitoring of therapeutic effect. In this review, I discuss the clinical feasibility and imitations of this imaging modality in patients with gynecological cancers

  3. Comparison of 18F-FDG PET/CT and PET/MRI in patients with multiple myeloma

    OpenAIRE

    Sachpekidis, Christos; Hillengass, Jens; Goldschmidt, Hartmut; Mosebach, Jennifer; Pan, Leyun; Schlemmer, Heinz-Peter; Haberkorn, Uwe; Dimitrakopoulou-Strauss, Antonia

    2015-01-01

    PET/MRI represents a promising hybrid imaging modality with several potential clinical applications. Although PET/MRI seems highly attractive in the diagnostic approach of multiple myeloma (MM), its role has not yet been evaluated. The aims of this prospective study are to evaluate the feasibility of 18F-FDG PET/MRI in detection of MM lesions, and to investigate the reproducibility of bone marrow lesions detection and quantitative data of 18F-FDG uptake between the functional (PET) component ...

  4. FDG-PET/CT in oncology. German guideline

    International Nuclear Information System (INIS)

    Krause, B.J.; Beyer, T.; Bockisch, A.; Delbeke, D.; Kotzerke, J.; Minkov, V.; Reiser, M.; Willich, N.

    2007-01-01

    FDG-PET/CT examinations combine metabolic and morphologic imaging within an integrated procedure. Over the past decade PET/CT imaging has gained wide clinical acceptance in the field of oncology. This FDG-PET/CT guideline focuses on indications, data acquisition and processing as well as documentation of FDG-PET/CT examinations in oncologic patients within a clinical and social context specific to Germany. Background information and definitions are followed by examples of clinical and research applications of FDG-PET/CT. Furthermore, protocols for CT scanning (low dose and contrast-enhanced CT) and PET emission imaging are discussed. Documentation and reporting of examinations are specified. Image interpretation criteria and sources of errors are discussed. Quality control for FDG and PET/CT-systems, qualification requirements of personnel as well as legal aspects are presented. (orig.)

  5. Characterizing proton-activated materials to develop PET-mediated proton range verification markers

    Science.gov (United States)

    Cho, Jongmin; Ibbott, Geoffrey S.; Kerr, Matthew D.; Amos, Richard A.; Stingo, Francesco C.; Marom, Edith M.; Truong, Mylene T.; Palacio, Diana M.; Betancourt, Sonia L.; Erasmus, Jeremy J.; DeGroot, Patricia M.; Carter, Brett W.; Gladish, Gregory W.; Sabloff, Bradley S.; Benveniste, Marcelo F.; Godoy, Myrna C.; Patil, Shekhar; Sorensen, James; Mawlawi, Osama R.

    2016-06-01

    Conventional proton beam range verification using positron emission tomography (PET) relies on tissue activation alone and therefore requires particle therapy PET whose installation can represent a large financial burden for many centers. Previously, we showed the feasibility of developing patient implantable markers using high proton cross-section materials (18O, Cu, and 68Zn) for in vivo proton range verification using conventional PET scanners. In this technical note, we characterize those materials to test their usability in more clinically relevant conditions. Two phantoms made of low-density balsa wood (~0.1 g cm-3) and beef (~1.0 g cm-3) were embedded with Cu or 68Zn foils of several volumes (10-50 mm3). The metal foils were positioned at several depths in the dose fall-off region, which had been determined from our previous study. The phantoms were then irradiated with different proton doses (1-5 Gy). After irradiation, the phantoms with the embedded foils were moved to a diagnostic PET scanner and imaged. The acquired data were reconstructed with 20-40 min of scan time using various delay times (30-150 min) to determine the maximum contrast-to-noise ratio. The resultant PET/computed tomography (CT) fusion images of the activated foils were then examined and the foils’ PET signal strength/visibility was scored on a 5 point scale by 13 radiologists experienced in nuclear medicine. For both phantoms, the visibility of activated foils increased in proportion to the foil volume, dose, and PET scan time. A linear model was constructed with visibility scores as the response variable and all other factors (marker material, phantom material, dose, and PET scan time) as covariates. Using the linear model, volumes of foils that provided adequate visibility (score 3) were determined for each dose and PET scan time. The foil volumes that were determined will be used as a guideline in developing practical implantable markers.

  6. Dynamic observation by PET in epilepsy

    International Nuclear Information System (INIS)

    Shimizu, Hiroyuki; Ishijima, Buichi; Iio, Masaaki.

    1990-01-01

    Before the era when positron emission tomography (PET) has emerged, much controversy has existed concerning regional cerebral blood flow in partial epilepsy. In 1979, PET revealed that cerebral blood flow is decreased during the interictal period, but is remarkably increased in the intraictal phase. In this paper, historical process of dynamic observation in epilepsy is reviewed. Potential use and limitations of PET in the clinical setting are discussed in view of the scanning methods and the relationships between PET and electroencephalograms, magnetic resonance imaging, and surgical treatment. (N.K.) 106 refs

  7. Head and neck imaging with PET and PET/CT: artefacts from dental metallic implants

    International Nuclear Information System (INIS)

    Goerres, Gerhard W.; Hany, Thomas F.; Kamel, Ehab; Schulthess von, Gustav K.; Buck, Alfred

    2002-01-01

    Germanium-68 based attenuation correction (PET Ge68 ) is performed in positron emission tomography (PET) imaging for quantitative measurements. With the recent introduction of combined in-line PET/CT scanners, CT data can be used for attenuation correction. Since dental implants can cause artefacts in CT images, CT-based attenuation correction (PET CT ) may induce artefacts in PET images. The purpose of this study was to evaluate the influence of dental metallic artwork on the quality of PET images by comparing non-corrected images and images attenuation corrected by PET Ge68 and PET CT . Imaging was performed on a novel in-line PET/CT system using a 40-mAs scan for PET CT in 41 consecutive patients with high suspicion of malignant or inflammatory disease. In 17 patients, additional PET Ge68 images were acquired in the same imaging session. Visual analysis of fluorine-18 fluorodeoxyglucose (FDG) distribution in several regions of the head and neck was scored on a 4-point scale in comparison with normal grey matter of the brain in the corresponding PET images. In addition, artefacts adjacent to dental metallic artwork were evaluated. A significant difference in image quality scoring was found only for the lips and the tip of the nose, which appeared darker on non-corrected than on corrected PET images. In 33 patients, artefacts were seen on CT, and in 28 of these patients, artefacts were also seen on PET imaging. In eight patients without implants, artefacts were seen neither on CT nor on PET images. Direct comparison of PET Ge68 and PET CT images showed a different appearance of artefacts in 3 of 17 patients. Malignant lesions were equally well visible using both transmission correction methods. Dental implants, non-removable bridgework etc. can cause artefacts in attenuation-corrected images using either a conventional 68 Ge transmission source or the CT scan obtained with a combined PET/CT camera. We recommend that the non-attenuation-corrected PET images also be

  8. SPECT and PET imaging in epilepsia; SPECT und PET in der Diagnostik von Epilepsien

    Energy Technology Data Exchange (ETDEWEB)

    Landvogt, C. [Mainz Univ. (Germany). Klinik und Poliklinik fuer Nuklearmedizin

    2007-09-15

    In preoperative localisation of epileptogenic foci, nuclear medicine diagnostics plays a crucial role. FDG-PET is used as first line diagnostics. In case of inconsistent MRI, EEG and FDG-PET findings, {sup 11}C-Flumazenil-PET or ictal and interictal perfusion-SPECT should be performed. Other than FDG, Flumazenil can help to identify the extend of the region, which should be resected. To enhance sensitivity and specificity, further data analysis using voxelbased statistical analyses or SISCOM (substraction ictal SPECT coregistered MRI) should be performed.

  9. Pet-Related Infections.

    Science.gov (United States)

    Day, Michael J

    2016-11-15

    Physicians and veterinarians have many opportunities to partner in promoting the well-being of people and their pets, especially by addressing zoonotic diseases that may be transmitted between a pet and a human family member. Common cutaneous pet-acquired zoonoses are dermatophytosis (ringworm) and sarcoptic mange (scabies), which are both readily treated. Toxoplasmosis can be acquired from exposure to cat feces, but appropriate hygienic measures can minimize the risk to pregnant women. Persons who work with animals are at increased risk of acquiring bartonellosis (e.g., cat-scratch disease); control of cat fleas is essential to minimize the risk of these infections. People and their pets share a range of tick-borne diseases, and exposure risk can be minimized with use of tick repellent, prompt tick removal, and appropriate tick control measures for pets. Pets such as reptiles, amphibians, and backyard poultry pose a risk of transmitting Salmonella species and are becoming more popular. Personal hygiene after interacting with these pets is crucial to prevent Salmonella infections. Leptospirosis is more often acquired from wildlife than infected dogs, but at-risk dogs can be protected with vaccination. The clinical history in the primary care office should routinely include questions about pets and occupational or other exposure to pet animals. Control and prevention of zoonoses are best achieved by enhancing communication between physicians and veterinarians to ensure patients know the risks of and how to prevent zoonoses in themselves, their pets, and other people.

  10. Development of PET insert for simultaneous PET/MR imaging of human brain

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Jiwoong; Choi, Yong; Jung, Jin Ho; Kim, Sangsu; Im, Ki Chun; Lim, Hyun Keong [Molecular Imaging Research & Education (MiRe) Laboratory, Department of Electronic Engineering, Sogang University, Seoul (Korea, Republic of); Oh, Changheun; Park, HyunWook; Cho, Gyuseong [Departments of Electrical Engineering and Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon (Korea, Republic of)

    2014-07-29

    Recently, there has been great interest on the development of combined PET/MR, which is a useful tool for both functional and anatomic imaging. The purpose of this study was to develop a MR compatible PET insert for simultaneous PET and MR imaging of human brain and to evaluate the performance of the hybrid PET-MRI. The PET insert consisted of 18 detector blocks arranged in a ring of 390 mm diameter with 60 mm axial FOV. Each detector block was composed of 4 × 4 matrix of detector modules, each of which consisted of a 4 × 4 array LYSO coupled to a 4 × 4 GAPD array. The PET gantry was shielded with gold-plated conductive fabric tapes. The charge signals of PET detector transferred via 4 m long flat cables were fed into the position decoder circuits (PDCs) and then transferred to FPGA-embedded DAQ modules. The PDCs and DAQ modules were enclosed in an aluminum box and located at the rear of the MR bore inside MRI room. 3-T human MRIs of two different vendors were used to evaluate the MR compatibility of developed PET insert. No significant changes of the PET performance and the homogeneity of MR images caused by the non-compatibility of PET-MRI were observed with the 2 different MRIs. The signal intensities of MR images were slightly degraded (<3.6%) with the both MRI systems. The difference between independently and simultaneously acquired PET images of brain phantom was negligibly small (<4.3%). High quality simultaneous brain PET and MRI of 3 normal volunteers were successfully acquired. Experimental results indicate that the high performance compact and lightweight PET insert for hybrid PET/MRI, which could be utilized with the MRI from various manufactures, can be developed using GAPD arrays and charge signal transmission method proposed in this study.

  11. Comparative analysis of PET/CT and PET/MR image characteristics of head and neck squamous cell carcinoma%对比分析头颈部鳞状细胞癌PET/CT与PET/MR特征

    Institute of Scientific and Technical Information of China (English)

    白乐; 程勇; 唐勇进; 凌雪英

    2017-01-01

    Objective To investigate PET/CT and PET/MR characteristics of head and neck squamous cell carcinoma (HNSCC).Methods Totally 40 patients with HNSCC underwent whole body 18F-FDG PET/CT and MR scans of head and neck before anti-tumor treatment.PET positive lesions of HNSCC,including primary lesions and lymph nodes were evaluated by 2 radiologists independently.Then the imaging quality,fusion quality,lesion conspicuity and lesion characteristics were assessed based on PET/CT,PET/MR T1WI and PET/MR T2WI.Results Ninety PET positive lesions in all 40patients were evaluated,including 40 primary lesions and 50 lymph nodes.Similar imaging quality and fusion quality of PET/CT,PET/MR T1WI and PET/MR T2WI were obtained without statistical difference (both P>0.05).For the lesion conspicuity,PET/MR T1WI and PET/MR T2WI demonstrated significantly better than PET/CT in positive primary lesions and lymph nodes (all P<0.05).For the characteristics of positive primary lesions,PET/MR T2WI provided more information than PET/CT in 29 lesions,equal to PET/CT in 4 lesions,and less than PET/CT in 7 lesions.Conclusion The application of PET/MR in HNSCC is feasible,being superior to PET/CT in indication of lesions in head and neck area.%目的 探讨头颈部鳞状细胞癌(HNSCC)的PET/CT及PET/MR特征.方法 纳入未经抗肿瘤治疗的头颈部鳞状细胞癌患者40例,所有患者均接受PET/CT及头颈部MR检查.由2名观察者独立观察PET阳性病灶,包括阳性原发灶及阳性淋巴结;并对PET/CT、PET/MR T1WI及PET/MR T2WI的图像质量、融合准确度、病灶清晰度、病灶特征等进行评分.分析2名观察者间的一致性.结果 40例患者共90个PET阳性病灶,包括阳性原发灶40个、阳性淋巴结50个.PET/CT、PET/MR T1WI及PET/MR T2WI在图像质量及融合准确度方面差异均无统计学意义(P均>0.05);在显示阳性原发灶及阳性淋巴结的清晰度方面,PET/MR T1WI及PET/MR T2WI均优于PET/CT(P均<0.05).40个阳性原发灶中,PET

  12. Non-invasive monitoring of therapeutic carbon ion beams in a homogeneous phantom by tracking of secondary ions

    Science.gov (United States)

    Gwosch, K.; Hartmann, B.; Jakubek, J.; Granja, C.; Soukup, P.; Jäkel, O.; Martišíková, M.

    2013-06-01

    Radiotherapy with narrow scanned carbon ion beams enables a highly accurate treatment of tumours while sparing the surrounding healthy tissue. Changes in the patient’s geometry can alter the actual ion range in tissue and result in unfavourable changes in the dose distribution. Consequently, it is desired to verify the actual beam delivery within the patient. Real-time and non-invasive measurement methods are preferable. Currently, the only technically feasible method to monitor the delivered dose distribution within the patient is based on tissue activation measurements by means of positron emission tomography (PET). An alternative monitoring method based on tracking of prompt secondary ions leaving a patient irradiated with carbon ion beams has been previously suggested. It is expected to help in overcoming the limitations of the PET-based technique like physiological washout of the beam induced activity, low signal and to allow for real-time measurements. In this paper, measurements of secondary charged particle tracks around a head-sized homogeneous PMMA phantom irradiated with pencil-like carbon ion beams are presented. The investigated energies and beam widths are within the therapeutically used range. The aim of the study is to deduce properties of the primary beam from the distribution of the secondary charged particles. Experiments were performed at the Heidelberg Ion Beam Therapy Center, Germany. The directions of secondary charged particles emerging from the PMMA phantom were measured using an arrangement of two parallel pixelated silicon detectors (Timepix). The distribution of the registered particle tracks was analysed to deduce its dependence on clinically important beam parameters: beam range, width and position. Distinct dependencies of the secondary particle tracks on the properties of the primary carbon ion beam were observed. In the particular experimental set-up used, beam range differences of 1.3 mm were detectable. In addition, variations

  13. Standardised uptake values from PET/CT images: comparison with conventional attenuation-corrected PET

    International Nuclear Information System (INIS)

    Souvatzoglou, M.; Ziegler, S.I.; Martinez, M.J.; Dzewas, G.; Schwaiger, M.; Bengel, F.; Busch, R.

    2007-01-01

    In PET/CT, CT-derived attenuation factors may influence standardised uptake values (SUVs) in tumour lesions and organs when compared with stand-alone PET. Therefore, we compared PET/CT-derived SUVs intra-individually in various organs and tumour lesions with stand-alone PET-derived SUVs. Thirty-five patients with known or suspected cancer were prospectively included. Sixteen patients underwent FDG PET using an ECAT HR+scanner, and subsequently a second scan using a Biograph Sensation 16PET/CT scanner. Nineteen patients were scanned in the reverse order. All images were reconstructed with an iterative algorithm (OSEM). Suspected lesions were grouped as paradiaphragmatic versus distant from the diaphragm. Mean and maximum SUVs were also calculated for brain, lung, liver, spleen and vertebral bone. The attenuation coefficients (μ values) used for correction of emission data (bone, soft tissue, lung) in the two data sets were determined. A body phantom containing six hot spheres and one cold cylinder was measured using the same protocol as in patients. Forty-six lesions were identified. There was a significant correlation of maximum and mean SUVs derived from PET and PET/CT for 14 paradiaphragmatic lesions (r=0.97 respectively; p<0.001 respectively) and for 32 lesions located distant from the diaphragm (r=0.87 and r=0.89 respectively; p<0.001 respectively). No significant differences were observed in the SUVs calculated with PET and PET/CT in the lesions or in the organs. In the phantom, radioactivity concentration in spheres calculated from PET and from PET/CT correlated significantly (r=0.99; p<0.001). SUVs of cancer lesions and normal organs were comparable between PET and PET/CT, supporting the usefulness of PET/CT-derived SUVs for quantification of tumour metabolism. (orig.)

  14. Use of the CT component of PET-CT to improve PET-MR registration: demonstration in soft-tissue sarcoma

    International Nuclear Information System (INIS)

    Somer, Edward J; Benatar, Nigel A; O'Doherty, Michael J; Smith, Mike A; Marsden, Paul K

    2007-01-01

    We have investigated improvements to PET-MR image registration offered by PET-CT scanning. Ten subjects with suspected soft-tissue sarcomas were scanned with an in-line PET-CT and a clinical MR scanner. PET to CT, CT to MR and PET to MR image registrations were performed using a rigid-body external marker technique and rigid and non-rigid voxel-similarity algorithms. PET-MR registration was also performed using transformations derived from the registration of CT to MR. The external marker technique gave fiducial registration errors of 2.1 mm, 5.1 mm and 5.3 mm for PET-CT, PET-MR and CT-MR registration. Target registration errors were 3.9 mm, 9.0 mm and 9.3 mm, respectively. Voxel-based algorithms were evaluated by measuring the distance between corresponding fiducials after registration. Registration errors of 6.4 mm, 14.5 mm and 9.5 mm, respectively, for PET-CT, PET-MR and CT-MR were observed for rigid-body registration while non-rigid registration gave errors of 6.8 mm, 16.3 mm and 7.6 mm for the same modality combinations. The application of rigid and non-rigid CT to MR transformations to accompanying PET data gives significantly reduced PET-MR errors of 10.0 mm and 8.5 mm, respectively. Visual comparison by two independent observers confirmed the improvement over direct PET-MR registration. We conclude that PET-MR registration can be more accurately and reliably achieved using the hybrid technique described than through direct rigid-body registration of PET to MR

  15. An approach to the usage of polyethylene terephthalate (PET) waste as roadway pavement material

    Energy Technology Data Exchange (ETDEWEB)

    Gürü, Metin, E-mail: mguru@gazi.edu.tr [Gazi University, Eng. Fac., Chem. Eng. Depart., 06570 Maltepe-Ankara (Turkey); Çubuk, M. Kürşat; Arslan, Deniz; Farzanian, S. Ali [Gazi University, Eng. Fac., Civil Eng. Depart., 06570 Maltepe-Ankara (Turkey); Bilici, İbrahim [Hitit University, Eng. Fac., Chem. Eng. Depart., 19100 Çorum (Turkey)

    2014-08-30

    Graphical abstract: - Highlights: • We derived two novel additive materials from PET bottle waste: TLPP and VPP. • We used them to modify the base asphalt separately. • The additives improved both the asphalt and the asphalt mixture performance. • TLPP, VPP offer a beneficial way about disposal of ecologically hazardous PET waste. - Abstract: This study investigates an application area for Polyethylene Terephthalate (PET) bottle waste which has become an environmental problem in recent decades as being a considerable part of the total plastic waste bulk. Two novel additive materials, namely Thin Liquid Polyol PET (TLPP) and Viscous Polyol PET (VPP), were chemically derived from waste PET bottles and used to modify the base asphalt separately for this aim. The effects of TLPP and VPP on the asphalt and hot mix asphalt (HMA) mixture properties were detected through conventional tests (Penetration, Softening Point, Ductility, Marshall Stability, Nicholson Stripping) and Superpave methods (Rotational Viscosity, Dynamic Shear Rheometer (DSR), Bending Beam Rheometer (BBR)). Also, chemical structures were described by Scanning Electron Microscope (SEM) equipped with Energy Dispersive Spectrometer (EDS) and Fourier Transform Infrared (FTIR) techniques. Since TLPP and VPP were determined to improve the low temperature performance and fatigue resistance of the asphalt as well as the Marshall Stability and stripping resistance of the HMA mixtures based on the results of the applied tests, the usage of PET waste as an asphalt roadway pavement material offers an alternative and a beneficial way of disposal of this ecologically hazardous material.

  16. An approach to the usage of polyethylene terephthalate (PET) waste as roadway pavement material

    International Nuclear Information System (INIS)

    Gürü, Metin; Çubuk, M. Kürşat; Arslan, Deniz; Farzanian, S. Ali; Bilici, İbrahim

    2014-01-01

    Graphical abstract: - Highlights: • We derived two novel additive materials from PET bottle waste: TLPP and VPP. • We used them to modify the base asphalt separately. • The additives improved both the asphalt and the asphalt mixture performance. • TLPP, VPP offer a beneficial way about disposal of ecologically hazardous PET waste. - Abstract: This study investigates an application area for Polyethylene Terephthalate (PET) bottle waste which has become an environmental problem in recent decades as being a considerable part of the total plastic waste bulk. Two novel additive materials, namely Thin Liquid Polyol PET (TLPP) and Viscous Polyol PET (VPP), were chemically derived from waste PET bottles and used to modify the base asphalt separately for this aim. The effects of TLPP and VPP on the asphalt and hot mix asphalt (HMA) mixture properties were detected through conventional tests (Penetration, Softening Point, Ductility, Marshall Stability, Nicholson Stripping) and Superpave methods (Rotational Viscosity, Dynamic Shear Rheometer (DSR), Bending Beam Rheometer (BBR)). Also, chemical structures were described by Scanning Electron Microscope (SEM) equipped with Energy Dispersive Spectrometer (EDS) and Fourier Transform Infrared (FTIR) techniques. Since TLPP and VPP were determined to improve the low temperature performance and fatigue resistance of the asphalt as well as the Marshall Stability and stripping resistance of the HMA mixtures based on the results of the applied tests, the usage of PET waste as an asphalt roadway pavement material offers an alternative and a beneficial way of disposal of this ecologically hazardous material

  17. FDG-PET in Follicular Lymphoma Management

    Directory of Open Access Journals (Sweden)

    C. Bodet-Milin

    2012-01-01

    Full Text Available 18-Fluoro-deoxyglucose positron emission tomography/computerised tomography (FDG PET/CT is commonly used in the management of patients with lymphomas and is recommended for both initial staging and response assessment after treatment in patients with diffuse large B-cell lymphoma and Hodgkin lymphoma. Despite the FDG avidity of follicular lymphoma (FL, FDG PET/CT is not yet applied in standard clinical practice for patients with FL. However, FDG PET/CT is more accurate than conventional imaging for initial staging, often prompting significant management change, and allows noninvasive characterization to guide assessment of high-grade transformation. For restaging, FDG PET/CT assists in distinguishing between scar tissue and viable tumors in residual masses and a positive PET after induction treatment would seem to predict a shorter progression-free survival.

  18. Pet Allergy Quiz

    Science.gov (United States)

    ... Treatments ▸ Allergies ▸ Pet Allergy ▸ Pet Allergy Quiz Share | Pet Allergy Quiz More than half of U.S. households ... cat family. Yet, millions of people suffer from pet allergies. Take this quiz to test your knowledge ...

  19. Pets in the family: practical approaches.

    Science.gov (United States)

    Hodgson, Kate; Darling, Marcia

    2011-01-01

    Adapting family life cycle theory to include pets provides veterinarians with a framework for understanding and reinforcing the human-animal bond. The family genogram with pets is a practice tool that identifies all people and pets in the family, enhancing the practice of One Health at the community level.

  20. PET/CT imaging in head and neck tumors

    International Nuclear Information System (INIS)

    Roedel, R.; Palmedo, H.; Reichmann, K.; Reinhardt, M.J.; Biersack, H.J.; Straehler-Pohl, H.J.; Jaeger, U.

    2004-01-01

    To evaluate the usefulness of combined PET/CT examinations for detection of malignant tumors and their metastases in head and neck oncology. 51 patients received whole body scans on a dual modality PET/CT system. CT was performed without i.v. contrast. The results were compared concerning the diagnostic impact of native CT scan on FDG-PET images and the additional value of fused imaging. From 153 lesions were 97 classified as malignant on CT and 136 on FDG/PET images, as suspicious for malignancy in 33 on CT and 7 on FDG-PET and as benign in 23 on CT and 10 on FDG-PET. With combined PET/CT all primary and recurrent tumors could be found, the detection rate in patients with unknown primary tumors was 45%. Compared to PET or CT alone the sensitivity, specifity and accuracy could be significantly improved by means of combined PET/CT. Fused PET/CT imaging with [F18]-FDG and native CT-scanning enables accurate diagnosis in 93% of lesions and 90% of patients with head and neck oncology. (orig.) [de

  1. Kinetic modeling in PET imaging of hypoxia

    DEFF Research Database (Denmark)

    Li, Fan; Jørgensen, Jesper Tranekjær; Hansen, Anders E

    2014-01-01

    be used for non-invasive mapping of tissue oxygenation in vivo and several hypoxia specific PET tracers have been developed. Evaluation of PET data in the clinic is commonly based on visual assessment together with semiquantitative measurements e.g. standard uptake value (SUV). However, dynamic PET......Tumor hypoxia is associated with increased therapeutic resistance leading to poor treatment outcome. Therefore the ability to detect and quantify intratumoral oxygenation could play an important role in future individual personalized treatment strategies. Positron Emission Tomography (PET) can...... analysis for PET imaging of hypoxia....

  2. Sci—Fri PM: Topics — 07: Monte Carlo Simulation of Primary Dose and PET Isotope Production for the TRIUMF Proton Therapy Facility

    Energy Technology Data Exchange (ETDEWEB)

    Lindsay, C; Jirasek, A [University of Victoria (Australia); Blackmore, E; Hoehr, C; Schaffer, P; Trinczek, M [TRIUMF (Canada); Sossi, V [University of British Columbia (Canada)

    2014-08-15

    Uveal melanoma is a rare and deadly tumour of the eye with primary metastases in the liver resulting in an 8% 2-year survival rate upon detection. Large growths, or those in close proximity to the optic nerve, pose a particular challenge to the commonly employed eye-sparing technique of eye-plaque brachytherapy. In these cases external beam charged particle therapy offers improved odds in avoiding catastrophic side effects such as neuropathy or blindness. Since 1995, the British Columbia Cancer Agency in partnership with the TRIUMF national laboratory have offered proton therapy in the treatment of difficult ocular tumors. Having seen 175 patients, yielding 80% globe preservation and 82% metastasis free survival as of 2010, this modality has proven to be highly effective. Despite this success, there have been few studies into the use of the world's largest cyclotron in patient care. Here we describe first efforts of modeling the TRIUMF dose delivery system using the FLUKA Monte Carlo package. Details on geometry, estimating beam parameters, measurement of primary dose and simulation of PET isotope production are discussed. Proton depth dose in both modulated and pristine beams is successfully simulated to sub-millimeter precision in range (within limits of measurement) and 2% agreement to measurement within in a treatment volume. With the goal of using PET signals for in vivo dosimetry (alignment), a first look at PET isotope depth distribution is presented — comparing favourably to a naive method of approximating simulated PET slice activity in a Lucite phantom.

  3. Utilisation sans risque des eaux usées, des excréta et des eaux ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Les responsables de ce projet piloteront l'application et l'adaptation des principes directeurs relatifs à l'utilisation sans risque des eaux usées, des excreta et des eaux grises en agriculture et en aquaculture (Guidelines for the Safe Use of Wastewater, Excreta and Greywater in Agriculture and Aquaculture), que ...

  4. FDG-PET, PET/CT and conventional nuclear medicine procedures in the evaluation of lung cancer. A systematic review

    International Nuclear Information System (INIS)

    Hellwig, Dirk; Kirsch, C.M.; Baum, R.P.

    2009-01-01

    Aim: Currently, the German and Austrian S3 guidelines on the evaluation and treatment of lung cancer are about to be published whereas the American Colleague of Chest Physicians (ACCP) guidelines were already presented in 2007. An important part of the diagnostic workup of lung cancer will be the evaluation of indeterminate lung lesions and the mediastinal and extrathoracic staging using FDG-PET or PET/CT. The results from the literature on FDG-PET and PET/CT as well as on conventional nuclear medicine staging procedures and the clinical implications are presented. Methods: The literature data was amassed in analogy to the metaanalyses drawn for the current ACCP guidelines. In addition, relevant more recent publications were also considered. To answer the important question for the extent of pathological confirmation needed, the residual risk of mediastinal metastases was calculated for certain constellations of FDG-PET and CT findings. Suggested recommendations were characterized with the level of evidence. Results: FDG-PET (PET/CT) allows the differentiation of indeterminate lung lesions with high accuracy. FDG-PET (PET/CT) is the most accurate non-invasive procedure to assess the mediastinal nodal stage, for non-small cell as well as for small cell lung cancer. It is justified to omit invasive evaluation of enlarged but FDG-PET negative lymph nodes under certain circumstances. Unexpected extrathoracic metastases detected by FDG-PET imply important changes in therapeutic management. Conclusion: The upcoming S3 guideline on lung cancer will recommend FDG-PET in several indications due to its clinical efficacy well proven by data from literature (high level of evidence). The selected use of conventional nuclear medicine procedures remains beyond doubt. FDG-PET (PET/CT) belongs to the standard of care in lung cancer

  5. FDG-PET, PET/CT and conventional nuclear medicine procedures in the evaluation of lung cancer. A systematic review

    Energy Technology Data Exchange (ETDEWEB)

    Hellwig, Dirk; Kirsch, C.M. [Saarland Univ. Medical Center, Homburg (Germany). Dept. of Nuclear Medicine; Baum, R.P. [Zentralklinik Bad Berka (Germany). Dept. of Nuclear Medicine / PET Center

    2009-07-01

    Aim: Currently, the German and Austrian S3 guidelines on the evaluation and treatment of lung cancer are about to be published whereas the American Colleague of Chest Physicians (ACCP) guidelines were already presented in 2007. An important part of the diagnostic workup of lung cancer will be the evaluation of indeterminate lung lesions and the mediastinal and extrathoracic staging using FDG-PET or PET/CT. The results from the literature on FDG-PET and PET/CT as well as on conventional nuclear medicine staging procedures and the clinical implications are presented. Methods: The literature data was amassed in analogy to the metaanalyses drawn for the current ACCP guidelines. In addition, relevant more recent publications were also considered. To answer the important question for the extent of pathological confirmation needed, the residual risk of mediastinal metastases was calculated for certain constellations of FDG-PET and CT findings. Suggested recommendations were characterized with the level of evidence. Results: FDG-PET (PET/CT) allows the differentiation of indeterminate lung lesions with high accuracy. FDG-PET (PET/CT) is the most accurate non-invasive procedure to assess the mediastinal nodal stage, for non-small cell as well as for small cell lung cancer. It is justified to omit invasive evaluation of enlarged but FDG-PET negative lymph nodes under certain circumstances. Unexpected extrathoracic metastases detected by FDG-PET imply important changes in therapeutic management. Conclusion: The upcoming S3 guideline on lung cancer will recommend FDG-PET in several indications due to its clinical efficacy well proven by data from literature (high level of evidence). The selected use of conventional nuclear medicine procedures remains beyond doubt. FDG-PET (PET/CT) belongs to the standard of care in lung cancer.

  6. Thoracic staging in lung cancer: prospective comparison of 18F-FDG PET/MR imaging and 18F-FDG PET/CT.

    Science.gov (United States)

    Heusch, Philipp; Buchbender, Christian; Köhler, Jens; Nensa, Felix; Gauler, Thomas; Gomez, Benedikt; Reis, Henning; Stamatis, Georgios; Kühl, Hilmar; Hartung, Verena; Heusner, Till A

    2014-03-01

    Therapeutic decisions in non-small cell lung cancer (NSCLC) patients depend on the tumor stage. PET/CT with (18)F-FDG is widely accepted as the diagnostic standard of care. The purpose of this study was to compare a dedicated pulmonary (18)F-FDG PET/MR imaging protocol with (18)F-FDG PET/CT for primary and locoregional lymph node staging in NSCLC patients using histopathology as the reference. Twenty-two patients (12 men, 10 women; mean age ± SD, 65.1 ± 9.1 y) with histopathologically confirmed NSCLC underwent (18)F-FDG PET/CT, followed by (18)F-FDG PET/MR imaging, including a dedicated pulmonary MR imaging protocol. T and N staging according to the seventh edition of the American Joint Committee on Cancer staging manual was performed by 2 readers in separate sessions for (18)F-FDG PET/CT and PET/MR imaging, respectively. Results from histopathology were used as the standard of reference. The mean and maximum standardized uptake value (SUV(mean) and SUV(max), respectively) and maximum diameter of the primary tumor was measured and compared in (18)F-FDG PET/CT and PET/MR imaging. PET/MR imaging and (18)F-FDG PET/CT agreed on T stages in 16 of 16 of patients (100%). All patients were correctly staged by (18)F-FDG PET/CT and PET/MR (100%), compared with histopathology. There was no statistically significant difference between (18)F-FDG PET/CT and (18)F-FDG PET/MR imaging for lymph node metastases detection (P = 0.48). For definition of thoracic N stages, PET/MR imaging and (18)F-FDG PET/CT were concordant in 20 of 22 patients (91%). PET/MR imaging determined the N stage correctly in 20 of 22 patients (91%). (18)F-FDG PET/CT determined the N stage correctly in 18 of 22 patients (82%). The mean differences for SUV(mean) and SUV(max) of NSCLC in (18)F-FDG PET/MR imaging and (18)F-FDG PET/CT were 0.21 and -5.06. These differences were not statistically significant (P > 0.05). The SUV(mean) and SUV(max) measurements derived from (18)F-FDG PET/CT and (18)F-FDG PET

  7. PET/CT with intravenous contrast can be used for PET attenuation correction in cancer patients

    DEFF Research Database (Denmark)

    Berthelsen, A K; Holm, S; Loft, A

    2005-01-01

    PURPOSE: If the CT scan of a combined PET/CT study is performed as a full diagnostic quality CT scan including intravenous (IV) contrast agent, the quality of the joint PET/CT procedure is improved and a separate diagnostic CT scan can be avoided. CT with IV contrast can be used for PET attenuation...... correction, but this may result in a bias in the attenuation factors. The clinical significance of this bias has not been established. Our aim was to perform a prospective clinical study where each patient had CT performed with and without IV contrast agent to establish whether PET/CT with IV contrast can...... scans without, and then with contrast agent, followed by an 18F-fluorodeoxyglucose whole-body PET scan. The CT examinations were performed with identical parameters on a GE Discovery LS scanner. The PET data were reconstructed with attenuation correction based on the two CT data sets. A global...

  8. The role of 18F-FDG PET and PET/CT in the evaluation of primary cutaneous lymphoma.

    Science.gov (United States)

    Qiu, Lin; Tu, Guojian; Li, Jing; Chen, Yue

    2017-02-01

    Primary cutaneous lymphoma (PCL) is the second most common type of extranodal non-Hodgkin lymphoma, including both cutaneous T-cell and B-cell lymphomas. PCL comprises numerous subtypes and thus has myriad clinical presentations in the skin and subcutaneous tissues. Accurate classification and staging are important for making treatment recommendations for PCL and will further impact patient prognosis significantly. We review the role of fluorine-18-fluorodeoxyglucose (F-FDG) PET (F-FDG PET) and F-FDG PET with computed tomography (CT) in the diagnosis, staging, tumor biological evaluation, treatment response assessment, and early recurrence surveillance of PCL. Although F-FDG PET and PET/CT do not seem to adequately distinguish the plaque, patch, or erythroderma cutaneous lesions of PCL, the imaging modalities are superior to CT, MRI, and other nuclear medicine methods in detecting both the cutaneous and the extracutaneous lesions of PCL. The available literature addressing the clinical role of F-FDG PET and PET/CT in patients with PCL is promising for the use of the modalities in staging, tumor biological evaluation, biopsy guidance, early treatment response assessment, and recurrence surveillance. However, more data are needed to better specify the role of F-FDG PET and PET/CT in the management of PCL.

  9. Progress of PET imaging in Schizophrenia

    International Nuclear Information System (INIS)

    Cai Li; Gao Shuo

    2011-01-01

    PET is an important functional neuroimaging technique that can be used to assessment of cerebral metabolic activity and blood flow and identifies the distribution of important neurotransmitters in the human brain. Compared with other conventional imaging techniques, PET enables regional cerebral glucose metabolism, blood flow, dopaminergic and serotonergic receptor function to be assessed qualitatively and quantitatively. In recent years, PET increasingly being used greatly to advance our understanding of the neurobiology and pathophysiology of schizophrenia. This review focuses on the use of PET tracers in identifying regional brain abnormalities and regions associated with cognitive functioning in schizophrenia. (authors)

  10. FDG PET and PET-CT for the detection of bone metastases in patients with head and neck cancer. A meta-analysis

    International Nuclear Information System (INIS)

    Yi, Xuelin; Zhang, Hongting; Liu, Shixi; Fan, Min; Liu, Yilin

    2013-01-01

    We performed a meta-analysis to evaluate 18FDG PET/PET-CT for the detection of bone metastases in patients with head and neck cancer. We calculated sensitivities, specificities, likelihood ratios, and constructed summary receiver operating characteristic curves for PET and PET-CT, respectively. We also compared the performance of PET/PET-CT with that of bone scintigraphy by analysing studies that had also used bone scintigraphy on the same patients. Across 9 PET studies (1621 patients) and 10 PET-CT studies (1291 patients), sensitivity and specificity of PET were 0.81 and 0.99, and of PET-CT were 0.89 and 0.99, respectively. In 5 comparative studies (1184 patients), sensitivity and specificity of PET/PET-CT were 0.85 and 0.98, and of bone scintigraphy were 0.55 and 0.98, respectively. 18FDG PET and PET-CT have high sensitivity and accuracy for the detection of bone metastasis in patients with head and neck cancer.

  11. Tombes et cimetières éthiopiens : des rois, des saints, des anonymes1

    OpenAIRE

    Derat, Marie-Laure

    2009-01-01

    L’histoire des tombes et cimetières éthiopiens, dans la longue durée, en est encore à ses balbutiements. Si les tombes des saints et des rois nous sont un peu mieux connus grâce à des textes témoignant à la fois des enjeux entourant les sépultures de ces personnages hors du commun et des soins apportés à leur inhumation, en revanche, les cimetières ordinaires échappent encore largement à l’enquête, en grande partie parce que le commun des mortels est inhumé dans l’anonymat et dans un grand dé...

  12. Évaluation des pratiques agricoles des légumes feuilles : le cas des ...

    African Journals Online (AJOL)

    Face à ce constat, le défi de la recherche serait la détermination du niveau actuel de contamination des légumes feuilles et des eaux du barrage et celui de l'État serait l'initiation de programmes de sensibilisation des producteurs par rapport à une gestion plus rigoureuse des pesticides. Mots-clés : pratiques paysannes, ...

  13. The use of polarized deuterons beams and the determination of the optical model parameters; Utilisation de faisceaux de deutons polarises et determination des parametres du modele optique

    Energy Technology Data Exchange (ETDEWEB)

    Raynal, J [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1964-06-15

    A general description of beams of polarized particles in nuclear reactions is studied; the various choices necessary to define the polarization parameters are discussed with regard to their consequences. The frequent occurrence of symmetry plane yields a set of relations among these parameters. The range of these parameters is studied in particular for a beam of particles of spin 1 and with a symmetry plane. Nuclear reactions involving two bodies are described in terms of the helicity formalism. With the use of the adopted set of polarization parameters, the polarization of the final state is studied for a given polarization in the initial state. An optical model for deuterons may consist of a scalar term, an L.S potential and tensor potentials built with the distance between the deuteron and the nucleus, its angular momentum or its relative momentum. Calculations have been made with the first two tensor potentials. Many authors have calculated a potential for deuterons starting from the nucleon-nucleus potential. These calculations are redone taking into account both the S and D waves of the deuteron. The various terms of the potential have been calculated with a set of different intrinsic wave functions. The use of a potential not limited to scalar form yields good fits for cross-sections with nuclear radii which are greater than those necessary with a purely central potential. The experimental results obtained at Saclay for the polarization of deuterons elastically scattered by Ca are not compatible with the existence of an important tensor potential; they can be accounted for by an L.S coupling potential independent of the central potential but with very small radii. (author) [French] La description de faisceaux do particules polarisees dans les reactions nucleaires est etudiee de facon generale; les choix necessaires pour definir les parametres de polarisation sont discutes en fonction de leurs consequences. L'existence tres frequente d'un plan de symetrie

  14. La convergence des rôles respectifs des relationnistes et des journalistes influence-t-elle la perception qu'ils ont les uns des autres?

    DEFF Research Database (Denmark)

    Valentini, Chiara

    2017-01-01

    la convergence des rôles respectifs des praticiens des relations publiques et des journalistes a un effet favorable sur la perception qu’ils ont les uns des autres. L’effet est plus marqué chez les praticiens des relations publiques, car leur vision de la profession en journalisme correspond à celle...

  15. Value of PET and PET-CT for monitoring tumor therapy

    International Nuclear Information System (INIS)

    Chen Xiang; Zhao Jinhua

    2007-01-01

    18 F-fluorodeoxyglucose ( 18 F-FDG) PET or PET-CT is an accurate test for differentiating residual viable tumor tissue from therapy-induced changes in tumor. Furthermore, quantitative assessment of therapy-induced changes in tumor 18 F-FDG uptake may allow the prediction of tumor response. Treatment may be adjusted according to tumor response. So it is increasingly used to monitor tumor response in patients undergoing chemotherapy and chemoradiotherapy. Here we focused on practical aspects of 18 F-FDG PET or PET-CT for treatment monitoring and on the existing advantages and challenges. (authors)

  16. Accuracy of a clinical PET/CT vs. a preclinical μPET system for monitoring treatment effects in tumour xenografts

    Energy Technology Data Exchange (ETDEWEB)

    Palmowski, Karin [Department of Experimental Molecular Imaging, RWTH-Aachen University, Aachen (Germany); Department of Pneumology and Critical Care Medicine, Thoraxklinik Heidelberg, University of Heidelberg, Heidelberg (Germany); Winz, Oliver [Department of Nuclear Medicine, RWTH-Aachen University, Aachen (Germany); Rix, Anne; Bzyl, Jessica [Department of Experimental Molecular Imaging, RWTH-Aachen University, Aachen (Germany); Behrendt, Florian F.; Verburg, Frederic A.; Mottaghy, Felix M. [Department of Nuclear Medicine, RWTH-Aachen University, Aachen (Germany); Palmowski, Moritz, E-mail: mpalmowski@ukaachen.de [Department of Experimental Molecular Imaging, RWTH-Aachen University, Aachen (Germany); Department of Nuclear Medicine, RWTH-Aachen University, Aachen (Germany); Academic Radiology Baden Baden, Diagnostic and Interventional Radiology, University Medical Center Heidelberg, Heidelberg (Germany)

    2013-08-15

    Purpose: Small animal imaging is of growing importance for preclinical research and drug development. Tumour xenografts implanted in mice can be visualized with a clinical PET/CT (cPET); however, it is unclear whether early treatment effects can be monitored. Thus, we investigated the accuracy of a cPET versus a preclinical μPET using {sup 18}F-FDG for assessing early treatment effects. Materials and methods: The spatial resolution and the quantitative accuracy of a clinical and preclinical PET were evaluated in phantom experiments. To investigate the sensitivity for assessing treatment response, A431 tumour xenografts were implanted in nude mice. Glucose metabolism was measured in untreated controls and in two therapy groups (either one or four days of antiangiogenic treatment). Data was validated by γ-counting of explanted tissues. Results: In phantom experiments, cPET enabled reliable separation of boreholes ≥ 5 mm whereas μPET visualized boreholes ≥ 2 mm. In animal studies, μPET provided significantly higher tumour-to-muscle ratios for untreated control tumours than cPET (3.41 ± 0.87 vs. 1.60 ± .0.28, respectively; p < 0.01). During treatment, cPET detected significant therapy effects at day 4 (p < 0.05) whereas μPET revealed highly significant therapy effects even at day one (p < 0.01). Correspondingly, γ-counting of explanted tumours indicated significant therapy effects at day one and highly significant treatment response at day 4. Correlation with γ-counting was good for cPET (r = 0.74; p < 0.01) and excellent for μPET (r = 0.85; p < 0.01). Conclusion: Clinical PET is suited to investigate tumour xenografts ≥ 5 mm at an advanced time-point of treatment. For imaging smaller tumours or for the sensitive assessment of very early therapy effects, μPET should be preferred.

  17. Processing and characterization of extruded PET and its r-PET and ...

    Indian Academy of Sciences (India)

    of r-PET and r-PET+ MWCNT fillers was obtained by the precipitation method using TFA as a solvent and acetone ... crystallinity in r-PET and decrease in chain entanglements. ..... insufficient to supply the complete information of the surface.

  18. Adapting MR-BrainPET scans for comparison with conventional PET: experiences with dynamic FET-PET in brain tumours

    Energy Technology Data Exchange (ETDEWEB)

    Lohmann, Philipp; Herzog, Hans; Kops, Elena Rota; Stoffels, Gabriele; Filss, Christian [Institute of Neuroscience and Medicine (INM-3,-4,-5), Forschungszentrum Juelich, Juelich (Germany); Galldiks, Norbert [Institute of Neuroscience and Medicine (INM-3,-4,-5), Forschungszentrum Juelich, Juelich (Germany); Department of Neurology, University of Cologne, Cologne (Germany); Coenen, Heinrich H; Shah, N Jon; Langen, Karl-Josef [Institute of Neuroscience and Medicine (INM-3,-4,-5), Forschungszentrum Juelich, Juelich (Germany)

    2014-07-29

    Imaging results from subsequent measurements (preclinical 3T MR-BrainPET, HR+) are compared. O-(2-[{sup 18}F]fluoroethyl)-L-tyrosine (FET) may exhibit non-uniform tracer uptake in gliomas. The aim was to analyse and adapt the physical properties of the scanners and study variations of biological tumour volume (BTV) in early and late FET-PET.

  19. Towards enhanced PET quantification in clinical oncology

    DEFF Research Database (Denmark)

    Zaidi, Habib; Karakatsanis, Nicolas

    2018-01-01

    is still a matter of debate. Quantitative PET has advanced elegantly during the last two decades and is now reaching the maturity required for clinical exploitation, particularly in oncology where it has the capability to open many avenues for clinical diagnosis, assessment of response to treatment...... and therapy planning. Therefore, the preservation and further enhancement of the quantitative features of PET imaging is crucial to ensure that the full clinical value of PET imaging modality is utilized in clinical oncology. Recent advancements in PET technology and methodology have paved the way for faster...... PET acquisitions of enhanced sensitivity to support the clinical translation of highly quantitative 4D parametric imaging methods in clinical oncology. In this report, we provide an overview of recent advances and future trends in quantitative PET imaging in the context of clinical oncology. The pros...

  20. Quantitative Evaluation of Atlas-based Attenuation Correction for Brain PET in an Integrated Time-of-Flight PET/MR Imaging System.

    Science.gov (United States)

    Yang, Jaewon; Jian, Yiqiang; Jenkins, Nathaniel; Behr, Spencer C; Hope, Thomas A; Larson, Peder E Z; Vigneron, Daniel; Seo, Youngho

    2017-07-01

    Purpose To assess the patient-dependent accuracy of atlas-based attenuation correction (ATAC) for brain positron emission tomography (PET) in an integrated time-of-flight (TOF) PET/magnetic resonance (MR) imaging system. Materials and Methods Thirty recruited patients provided informed consent in this institutional review board-approved study. All patients underwent whole-body fluorodeoxyglucose PET/computed tomography (CT) followed by TOF PET/MR imaging. With use of TOF PET data, PET images were reconstructed with four different attenuation correction (AC) methods: PET with patient CT-based AC (CTAC), PET with ATAC (air and bone from an atlas), PET with ATAC patientBone (air and tissue from the atlas with patient bone), and PET with ATAC boneless (air and tissue from the atlas without bone). For quantitative evaluation, PET mean activity concentration values were measured in 14 1-mL volumes of interest (VOIs) distributed throughout the brain and statistical significance was tested with a paired t test. Results The mean overall difference (±standard deviation) of PET with ATAC compared with PET with CTAC was -0.69 kBq/mL ± 0.60 (-4.0% ± 3.2) (P PET with ATAC boneless (-9.4% ± 3.7) was significantly worse than that of PET with ATAC (-4.0% ± 3.2) (P PET with ATAC patientBone (-1.5% ± 1.5) improved over that of PET with ATAC (-4.0% ± 3.2) (P PET/MR imaging achieves similar quantification accuracy to that from CTAC by means of atlas-based bone compensation. However, patient-specific anatomic differences from the atlas causes bone attenuation differences and misclassified sinuses, which result in patient-dependent performance variation of ATAC. © RSNA, 2017 Online supplemental material is available for this article.

  1. A PET system based on 2-18FDG production with a low energy electrostatic proton accelerator and a dual headed PET scanner.

    Science.gov (United States)

    Sandell, A; Ohlsson, T; Erlandsson, K; Hellborg, R; Strand, S E

    1992-01-01

    We have developed a comparatively inexpensive PET system, based on a rotating scanner with two scintillation camera heads, and a nearby low energy electrostatic proton accelerator for production of short-lived radionuclides. Using a 6 MeV proton beam of 5 microA, and by optimization of the target geometry for the 18O(p,n)18F reaction, 750 MBq of 2-18FDG can be obtained. The PET scanner shows a spatial resolution of 6 mm (FWHM) and a sensitivity of 80 s-1kBq-1ml-1 (3 kcps/microCi/ml). Various corrections are included in the imaging process, to compensate for spatial and temporal response variations in the detector system. Both filtered backprojection and iterative reconstruction methods are employed. Clinical studies have been performed with acquisition times of 30-40 min. The system will be used for clinical experimental research with short- as well as long-lived positron emitters. Also the possibility of true 3D reconstruction is under evaluation.

  2. Initial evaluation of a practical PET respiratory motion correction method in clinical simultaneous PET/MRI

    International Nuclear Information System (INIS)

    Manber, Richard; Thielemans, Kris; Hutton, Brian; Barnes, Anna; Ourselin, Sebastien; Arridge, Simon; O’Meara, Celia; Atkinson, David

    2014-01-01

    Respiratory motion during PET acquisitions can cause image artefacts, with sharpness and tracer quantification adversely affected due to count ‘smearing’. Motion correction by registration of PET gates becomes increasingly difficult with shorter scan times and less counts. The advent of simultaneous PET/MRI scanners allows the use of high spatial resolution MRI to capture motion states during respiration [1, 2]. In this work, we use a respiratory signal derived from the PET list-mode data [3, ], with no requirement for an external device or MR sequence modifications.

  3. Study of betatron oscillations in a constant field and alternating gradient accelerator; Etude des oscillations betatron dans l'accelerateur a champ fixe et a gradient alterne

    Energy Technology Data Exchange (ETDEWEB)

    Lauzanne, C [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1963-07-01

    The conditions for the stability of a constant energy particle beam circulating in the magnetic field of the F.F.A.G. accelerator are studied. By a mathematical study it is possible to derive the equations for the equilibrium orbit and for the low amplitude oscillations, and the expressions for the amplitude stability limits of the beam. For this, approximation methods are used, in particular the linearization of the differential equations of the movement, and the method of gradual approximation. Numerical investigations carried out with the help of the IBM 7090 computer make it possible to judge the precision of the results given by the theory. A systematic variation of the parameters makes it possible to understand more clearly the mechanism of the amplitude variations of the trajectories. Finally, for the radial sector model, the possibility of introducing zones free from the magnetic field is considered. The case of short straight sections, respecting the field periodicity, and of that of long straight sections creating super-periods are considered. For the two cases are given solutions which should lead to a practical machine. (author) [French] On etudie les conditions de stabilite d'un faisceau de particules circulant a energie constante dans le champ magnetique de l'accelerateur F.F.A.G. Une etude mathematique permet d'etablir les equations de l'orbite d'equilibre et des oscillations de faible amplitude, les expressions des limites de stabilite en amplitude du faisceau. On emploie a cet effet des methodes d'approximation, essentiellement la linearisation des equations differentielles du mouvement et la methode de l'approximation douce. Des investigations numeriques effectuees a l'aide de la calculatrice IBM 7090 permettent d'apprecier l'exactitude des resultats fournis par la theorie. Une variation systematique des parametres permet de mieux comprendre le mecanisme des variations d'amplitude des trajectoires. On etudie enfin, pour le modele a secteur radial

  4. Multiphase contrast-enhanced CT with highly concentrated contrast agent can be used for PET attenuation correction in integrated PET/CT imaging

    International Nuclear Information System (INIS)

    Aschoff, Philip; Plathow, Christian; Lichy, Matthias P.; Claussen, Claus D.; Pfannenberg, Christina; Beyer, Thomas; Erb, Gunter; Oeksuez, Mehmet Oe.

    2012-01-01

    State-of-the-art positron emission tomography/computed tomography (PET/CT) systems incorporate multislice CT technology, thus facilitating the acquisition of multiphase, contrast-enhanced CT data as part of integrated PET/CT imaging protocols. We assess the influence of a highly concentrated iodinated contrast medium (CM) on quantification and image quality following CT-based attenuation correction (CT-AC) in PET/CT. Twenty-eight patients with suspected malignant liver lesions were enrolled prospectively. PET/CT was performed 60 min after injection of 400 MBq of 18 F-fluorodeoxyglucose (FDG) and following the biphasic administration of an intravenous CM (400 mg iodine/ml, Iomeron 400). PET images were reconstructed with CT-AC using any of four acquired CT image sets: non-enhanced, pre-contrast (n-PET), arterial phase (art-PET), portal venous phase (pv-PET) and late phase (late-PET). Normal tissue activity and liver lesions were assessed visually and quantitatively on each PET/CT image set. Visual assessment of PET following CT-AC revealed no noticeable difference in image appearance or quality when using any of the four CT data sets for CT-AC. A total of 44 PET-positive liver lesions was identified in 21 of 28 patients. There were no false-negative or false-positive lesions on PET. Mean standardized uptake values (SUV) in 36 evaluable lesions were: 5.5 (n-PET), 5.8 (art-PET), 5.8 (pv-PET) and 5.8 (late-PET), with the highest mean increase in mean SUV of 6%. Mean SUV changes in liver background increased by up to 10% from n-PET to pv-PET. Multiphase CT data acquired with the use of highly concentrated CM can be used for qualitative assessment of liver lesions in torso FDG PET/CT. The influence on quantification of FDG uptake is small and negligible for most clinical applications. (orig.)

  5. An approach to the usage of polyethylene terephthalate (PET) waste as roadway pavement material.

    Science.gov (United States)

    Gürü, Metin; Çubuk, M Kürşat; Arslan, Deniz; Farzanian, S Ali; Bilici, İbrahim

    2014-08-30

    This study investigates an application area for Polyethylene Terephthalate (PET) bottle waste which has become an environmental problem in recent decades as being a considerable part of the total plastic waste bulk. Two novel additive materials, namely Thin Liquid Polyol PET (TLPP) and Viscous Polyol PET (VPP), were chemically derived from waste PET bottles and used to modify the base asphalt separately for this aim. The effects of TLPP and VPP on the asphalt and hot mix asphalt (HMA) mixture properties were detected through conventional tests (Penetration, Softening Point, Ductility, Marshall Stability, Nicholson Stripping) and Superpave methods (Rotational Viscosity, Dynamic Shear Rheometer (DSR), Bending Beam Rheometer (BBR)). Also, chemical structures were described by Scanning Electron Microscope (SEM) equipped with Energy Dispersive Spectrometer (EDS) and Fourier Transform Infrared (FTIR) techniques. Since TLPP and VPP were determined to improve the low temperature performance and fatigue resistance of the asphalt as well as the Marshall Stability and stripping resistance of the HMA mixtures based on the results of the applied tests, the usage of PET waste as an asphalt roadway pavement material offers an alternative and a beneficial way of disposal of this ecologically hazardous material. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. The petit rat (pet/pet), a new semilethal mutant dwarf rat with thymic and testicular anomalies.

    Science.gov (United States)

    Chiba, Junko; Suzuki, Katsushi; Suzuki, Hiroetsu

    2008-12-01

    The petit rat (pet/pet) is a recently discovered semilethal mutant dwarf. The neonatal pet/pet rats had a low body weight and small thymus and testis. During the first 3 d after birth, 50% of the male and 80% of the female pet/pet pups were lost or found dead. Surviving pet/pet rats showed marked retardation of postnatal growth, and their body weights were 41% (female rats) and 32% (male rats) of those of normal rats at the adult stage. The pet/pet rats exhibited proportional dwarfism, and their longitudinal bones were shorter than those of controls without skeletal malformations. Most organs of male pet/pet rats, especially the thymus, testis, adipose tissue surrounding the kidney, and accessory sex organs, weighed markedly less at 140 d of age than did those of their normal counterparts. The thymus of pet/pet rats was small with abnormal thymic follicles. Testes from pet/pet rats exhibited 2 patterns of abnormal histology. Spermatogenesis was present in testes that were only slightly anomalous, but the seminiferous tubules were reduced in diameter. In severely affected testes, most of the seminiferous tubules showed degeneration, and interstitial tissue was increased. Plasma growth hormone concentrations did not differ between pet/pet and normal male rats. The dwarf phenotype of pet/pet rats was inherited as an autosomal recessive trait. These results indicate that the pet/pet rat has a semilethal growth-hormone-independent dwarf phenotype that is accompanied by thymic and testicular anomalies and low birth weight.

  7. Value of {sup 11}C-choline PET and PET/CT in patients with suspected prostate cancer

    Energy Technology Data Exchange (ETDEWEB)

    Scher, Bernhard; Albinger, Wolfram; Tiling, Reinhold; Gildehaus, Franz-Josef; Dresel, Stefan [University of Munich, Department of Nuclear Medicine, Munich (Germany); Seitz, Michael [University of Munich, Department of Urology, Munich (Germany); Scherr, Michael; Becker, Hans-Christoph [University of Munich, Department of Radiology, Munich (Germany); Souvatzogluou, Michael; Wester, Hans-Juergen [Technical University of Munich, Department of Nuclear Medicine, Munich (Germany)

    2007-01-15

    The value and limitations of {sup 11}C-choline PET and PET/CT for the detection of prostate cancer remain controversial. The aim of this study was to investigate the diagnostic efficacy of {sup 11}C-choline PET and PET/CT in a large group of patients with suspected prostate cancer. Fifty-eight patients with clinical suspicion of prostate cancer underwent {sup 11}C-choline PET (25/58, Siemens ECAT Exact HR+) or PET/CT (33/58, Philips Gemini) scanning. On average, 500 MBq of {sup 11}C-choline was administered intravenously. Studies were interpreted by raters blinded to clinical information and other diagnostic procedures. Qualitative image analysis as well as semiquantitative SUV measurement was carried out. The reference standard was histopathological examination of resection specimens or biopsy. Prevalence of prostate cancer in this selected patient population was 63.8% (37/58). {sup 11}C-choline PET and PET/CT showed a sensitivity of 86.5% (32/37) and a specificity of 61.9% (13/21) in the detection of the primary malignancy. With regard to metastatic spread, PET showed a per-patient sensitivity of 81.8% (9/11) and produced no false positive findings. Based on our findings, differentiation between benign prostatic changes, such as benign prostatic hyperplasia or prostatitis, and prostate cancer is feasible in the majority of cases when image interpretation is primarily based on qualitative characteristics. SUV{sub max} may serve as guidance. False positive findings may occur due to an overlap of {sup 11}C-choline uptake between benign and malignant processes. By providing functional information regarding both the primary malignancy and its metastases, {sup 11}C-choline PET may prove to be a useful method for staging prostate cancer. (orig.)

  8. FDG PET/CT in cancer

    DEFF Research Database (Denmark)

    Petersen, Henrik; Holdgaard, Paw Christian; Madsen, Poul Henning

    2016-01-01

    PURPOSE: The Region of Southern Denmark (RSD), covering 1.2 of Denmark's 5.6 million inhabitants, established a task force to (1) retrieve literature evidence for the clinical use of positron emission tomography (PET)/CT and provide consequent recommendations and further to (2) compare the actual...... use of PET/CT in the RSD with these recommendations. This article summarizes the results. METHODS: A Work Group appointed a professional Subgroup which made Clinician Groups conduct literature reviews on six selected cancers responsible for 5,768 (62.6 %) of 9,213 PET/CT scans in the RSD in 2012...... use of PET/CT and literature-based recommendations was high in the first five mentioned cancers in that 96.2 % of scans were made for grade A or B indications versus only 22.2 % in gynaecological cancers. CONCLUSION: Evidence-based usefulness was reported in five of six selected cancers; evidence...

  9. Évaluation des pratiques agricoles des légumes feuilles : le cas des ...

    African Journals Online (AJOL)

    SARAH

    30 sept. 2017 ... ... de Biochimie et Immunologie Appliquée, Centre de Recherche en Sciences Biologiques, Alimentaires et .... l'intoxication des agriculteurs et des consommateurs, ... source d'alimentation en eau et au pouvoir d'achat des.

  10. Side-by-side reading of PET and CT scans in oncology: Which patients might profit from integrated PET/CT?

    International Nuclear Information System (INIS)

    Reinartz, Patrick; Wieres, Franz-Josef; Schneider, Wolfram; Schur, Alexander; Buell, Ulrich

    2004-01-01

    Most early publications on integrated positron emission tomography/computed tomography (PET/CT) devices have reported the new scanner generation to be superior to conventional PET. However, few of these studies have analysed the situation where, in addition to PET, a current CT scan is available for side-by-side viewing. This fact is important, because combined PET/CT or a software-based fusion of the two modalities may improve diagnosis only in cases where side-by-side reading of PET and CT data does not lead to a definitive diagnosis. The aim of this study was to analyse which patients will profit from integrated PET/CT in terms of lesion characterization. A total of 328 consecutively admitted patients referred for PET in whom a current CT scan was available were included in the study. The localization of all pathological PET lesions, as well as possible infiltration of adjacent anatomical structures, was assessed. Of 467 pathological lesions, 94.0% were correctly assessed with respect to localization and infiltration by either conventional PET alone (51.6%) or combined reading of PET and the already existing CT scans (42.4%). Hence, in only 6.0% of all lesions, affecting 6.7% of all patients, could evaluation have profited from integrated PET/CT. We conclude that side-by-side viewing of PET and CT scans is essential, as in 42.4% of all cases, combined viewing was important for a correct diagnosis in our series. In up to 6.7% of patients, integrated PET/CT might have given additional information, so that in nearly 50% of patients some form of combined viewing of PET and CT data is needed for accurate lesion characterization. (orig.)

  11. The application of PET/MRI in pancreatic neoplasms%PET/MRI在胰腺肿瘤中的应用

    Institute of Scientific and Technical Information of China (English)

    李旭东; 林晓珠

    2018-01-01

    PET/MRI是一种将PET和MRI融合的新型影像诊断技术,其整合了PET提供的人体生理代谢、分子信息和MRI提供的功能及解剖形态信息.相较于CT,MRI具有更高的软组织对比度,可多参数成像,且无辐射.PET/MRI在胰腺癌病灶检测、 术前分期和预后评估方面优于PET/CT.68Ga标记的生长抑素受体显像剂PET/MRI能够提高胰腺神经内分泌肿瘤的检测和诊断能力.新型显像剂的研发和应用能够提高胰腺肿瘤PET/MRI的特异性和精准性.就PET/MRI在胰腺癌的诊断、分期及疗效监测的应用价值及其对胰腺神经内分泌肿瘤的研究进展予以综述.%PET/MRI is a new medical imaging technology that can obtain hybrid images of PET and MRI simultane-ously,which integrates human physiological metabolism and molecular information from PET with functional and anatomical information from MRI.MRI has many advantages compared with computed tomography (CT),such as better soft tissue contrast, multiple parameters and no radiation.Researches showed that PET/MRI is superior to PET/CT in the detection, preoperative staging and prognosis of pancreatic cancers. PET/MRI using Somatostatin(SST) receptor with 68-Gallium (68Ga)-labeled can enhance the detection and diagnosis of pancreatic neuroendocrine tumors. The application of newly developed contrast media can improve specificity and accuracy of PET/MRI in diagnosing pancreatic tumors.In this paper, the values of PET/MRI in di-agnosis, staging and evaluating therapeutic effect in pancreatic cancer and progress of PET/MRI researches in pancreatic neu-roendocrine tumors were reviewed.

  12. PET/MRI in head and neck cancer: initial experience

    Energy Technology Data Exchange (ETDEWEB)

    Platzek, Ivan; Laniado, Michael [Dresden University Hospital, Department of Radiology, Dresden (Germany); Beuthien-Baumann, Bettina [Dresden University Hospital, Department of Nuclear Medicine, Dresden (Germany); Schneider, Matthias [Dresden University Hospital, Oral and Maxillofacial Surgery, Dresden (Germany); Gudziol, Volker [Dresden University Hospital, Department of Otolaryngology, Dresden (Germany); Langner, Jens; Schramm, Georg; Hoff, Joerg van den [Institute of Bioinorganic and Radiopharmaceutical Chemistry, Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany); Kotzerke, Joerg [Dresden University Hospital, Nuclear Medicine, Dresden (Germany)

    2013-01-15

    To evaluate the feasibility of PET/MRI (positron emission tomography/magnetic resonance imaging) with FDG ({sup 18}F-fluorodeoxyglucose) for initial staging of head and neck cancer. The study group comprised 20 patients (16 men, 4 women) aged between 52 and 81 years (median 64 years) with histologically proven squamous cell carcinoma of the head and neck region. The patients underwent a PET scan on a conventional scanner and a subsequent PET/MRI examination on a whole-body hybrid system. FDG was administered intravenously prior to the conventional PET scan (267-395 MBq FDG, 348 MBq on average). The maximum standardized uptake values (SUV{sub max}) of the tumour and of both cerebellar hemispheres were determined for both PET datasets. The numbers of lymph nodes with increased FDG uptake were compared between the two PET datasets. No MRI-induced artefacts where observed in the PET images. The tumour was detected by PET/MRI in 17 of the 20 patients, by PET in 16 and by MRI in 14. The PET/MRI examination yielded significantly higher SUV{sub max} than the conventional PET scanner for both the tumour (p < 0.0001) and the cerebellum (p = 0.0009). The number of lymph nodes with increased FDG uptake detected using the PET dataset from the PET/MRI system was significantly higher the number detected by the stand-alone PET system (64 vs. 39, p = 0.001). The current study demonstrated that PET/MRI of the whole head and neck region is feasible with a whole-body PET/MRI system without impairment of PET or MR image quality. (orig.)

  13. Interest of FDG-PET for lung cancer radiotherapy; Interet de la TEP au FDG pour la radiotherapie des cancers bronchiques

    Energy Technology Data Exchange (ETDEWEB)

    Thureau, S.; Mezzani-Saillard, S.; Dubray, B. [Departement de radiotherapie et de physique medicale et QuantIF - Litis, EA 4108, CRLCC Henri-Becquerel, 1, rue d' Amiens, 76038 Rouen (France); Modzelewski, R.; Edet-Sanson, A.; Vera, P. [Departement de medecine nucleaire et QuantIF - Litis, EA 4108, CRLCC Henri-Becquerel, 1, rue d' Amiens, 76038 Rouen (France)

    2011-10-15

    The recent advances in medical imaging have profoundly altered the radiotherapy of non-small cell lung cancers (NSCLC). A meta-analysis has confirmed the superiority of FDG PET-CT over CT for initial staging. FDG PET-CT improves the reproducibility of target volume delineation, especially close to the mediastinum or in the presence of atelectasis. Although not formally validated by a randomized trial, the reduction of the mediastinal target volume, by restricting the irradiation to FDG-avid nodes, is widely accepted. The optimal method of delineation still remains to be defined. The role of FDGPET-CT in monitoring tumor response during radiotherapy is under investigation, potentially opening the way to adapting the treatment modalities to tumor radiation sensitivity. Other tracers, such as F-miso (hypoxia), are also under clinical investigation. To avoid excessive delays, the integration of PET-CT in routine practice requires quick access to the imaging equipment, technical support (fusion and image processing) and multidisciplinary delineation of target volumes. (authors)

  14. Observation of surface discharge on polymer films irradiated by electron beam

    International Nuclear Information System (INIS)

    Komatsubara, Minoru; Ishii, Masaru; Tsumura, Eiji.

    1992-01-01

    The surface discharge on dielectric surfaces of a spacecraft caused by spacecraft charging is simulated by using a high vacuum chamber equipped with an electron beam gun. Fluoroethylene-propylene (FEP) and polyethleneterephthalate (PET) films frequently employed as thermal control materials are irradiated by an electron beam until surface discharges occur, then the spectrum and waveform of emitted light of discharge, together with the current waveform of the discharge and the mass spectrum of the gas in the vacuum chamber are measured. In the range of 300 through 700 nm of the wavelength, light emission from CN radicals, C 2 radicals, CH radicals and hydrogen atoms are detected. From this result, it is suggested that water molecules in the residual gas and molecules in the structure of the specimen contribute the light emission. The spectroscopic observation of the light emission suggests that the discharge energy is concentrated on PET more than that on FEP. (author)

  15. Coincidence detection FDG-PET (Co-PET) in the management of oncological patients: attenuation correction versus non-attenuation correction

    International Nuclear Information System (INIS)

    Chan, W.L.; Freund, J.; Pocock, N.; Szeto, E.; Chan, F.; Sorensen, B.; McBride, B.

    2000-01-01

    Full text: This study was to determine if attenuation correction (AC) in FDG Co-PET improved image quality, lesion detection, patient staging and management of various malignant neoplasms, compared to non-attenuation-corrected (NAC) images. Thirty patients (25 men, 5 women, mean age 58 years) with known or suspected malignant neoplasms, including non-small-cell lung cancer, non Hodgkin's and Hodgkin's lymphoma, carcinoma of the breast, head and neck cancer and melanoma, underwent FDG Co-PET, which was correlated with histopathology, CT and other conventional imaging modalities and clinical follow-up. Whole body tomography was performed (ADAC Vertex MCD) 60 min after 200 MBq of 18 F-FDG (>6h fasting). The number and location of FDG avid lesions detected on the AC images and NAC Co-PET images were blindly assessed by two independent observers. Semi-quantitative grading of image clarity and lesion-to-background quality was performed. This revealed markedly improved image clarity and lesion-to-background quality, in the AC versus NAC images. AC and NAC Co-PET were statistically different in relation to lesion detection (p<0.01) and tumour staging (p<0.0 1). NAC Co-PET demonstrated 51 of the 65 lesions (78%) detected by AC Co-PET. AC Co-PET staging was correct in 27 patients (90%), compared with NAC Co-PET in 22 patients (73%). AC Co-PET altered tumour staging in five of 30 patients (16%) and NAC Co-PET did not alter tumour staging in any of the patients- management was altered in only two of these five patients (7%). In conclusion, AC Co-PET resulted in better image quality with significantly improved lesion detectability and tumour staging compared to NAC Co-PET. Its additional impact on patient management in this relatively small sample was minor. Copyright (2000) The Australian and New Zealand Society of Nuclear Medicine Inc

  16. Modelisation des effets physico-techniques pour la conception des ...

    African Journals Online (AJOL)

    automatisation dans les installations industrielles a besoin d'une régulation automatique des commandes des processus technologiques pour lesquelles certaines contraintes sont à relever compte tenu des exigences des innovations scientifiques de ...

  17. CyberPET: a PET service distributed over a wide area

    International Nuclear Information System (INIS)

    Pilloy, W.J.; Hellwig, D.; Schaeffer, A.; Hoffmann, P.; Lens, V.

    2002-01-01

    Aim: Demonstration of bi-directional PET data transmission, interactive display and co-registration, for the purpose of correlative imaging, treatment planning and teaching. Material and Method: In the year 2000, the initial problem to attend was to provide an effective PET service to a hospital (in Luxemburg) which lies 150 km away from a PET center (in another country). Once this solved, the procedure was expanded (in 2001) to co-registration with CT/MRI scans performed locally, and with radiotherapy simulation CT performed in another center 25 km away (in 2002). Equipment from various vendors was used (Siemens, Adac, GE, Hermes). With preliminary agreement of the national medical aid, patients are sent from the Nuclear Medicine Dept of the Centre Hospitalier in Luxemburg (CHL) to the Dept NM of the Saarland University Medical Center for PET examination. The digital data are then sent from the Siemens PET camera to a PC connected to the LAN, and then to a FTP server (Healthnet). The data are similarly collected by a PC of the hospital network in Luxemburg, and transferred to a Hermes NM station. The Dicom PET data are converted on the fly to Interfile, displayed interactively as any other tomographic data, printed and available on the NM image server. Since 2001, the PET data are co-registered with whole-body CT data recorded at CHL according to a specific protocol (see other paper of this group). Now in 2002, we are busy implementing the co-registration of PET data and simulation CT data obtained from the Centre Baclesse (CFB, 25 km from CHL) for the treatment planning of brain tumours (input into an ADAC system). Furthermore, we plan to send the data (after deletion of their digital ID) to a (South African) university which does not yet dispose of a PET camera, to allow the training of their registrars. Results: For the end-user clinician at CHL and CFB , the PET data have the quality of 'live data', which can be examined interactively, along with other imaging

  18. Neurosurgical applications of ion beams

    Science.gov (United States)

    Fabrikant, Jacob I.; Levy, Richard P.; Phillips, Mark H.; Frankel, Kenneth A.; Lyman, John T.

    1989-04-01

    The program at Donner Pavilion has applied nuclear medicine research to the diagnosis and radiosurgical treatment of life-threatening intracranial vascular disorders that affect more than half a million Americans. Stereotactic heavy-charged-particle Bragg peak radiosurgery, using narrow beams of heavy ions, demonstrates superior biological and physical characteristics in brain over X-and γ-rays, viz., improved dose distribution in the Bragg peak and sharp lateral and distal borders and less scattering of the beam. Examination of CNS tissue response and alteration of cerebral blood-flow dynamics related to heavy-ion Bragg peak radiosurgery is carried out using three-dimensional treatment planning and quantitative imaging utilizing cerebral angiography, computerized tomography (CT), magnetic resonance imaging (MRI), cine-CT, xenon X-ray CT and positron emission tomography (PET). Also under examination are the physical properties of narrow heavy-ion beams for improving methods of dose delivery and dose distribution and for establishing clinical RBE/LET and dose-response relationships for human CNS tissues. Based on the evaluation and treatment with stereotactically directed narrow beams of heavy charged particles of over 300 patients, with cerebral angiography, CT scanning and MRI and PET scanning of selected patients, plus extensive clinical and neuroradiological followup, it appears that Stereotactic charged-particle Bragg peak radiosurgery obliterates intracranial arteriovenous malformations or protects against rebleeding with reduced morbidity and no mortality. Discussion will include the method of evaluation, the clinical research protocol, the Stereotactic neuroradiological preparation, treatment planning, the radiosurgery procedure and the protocol for followup. Emphasis will be placed on the neurological results, including the neuroradiological and clinical response and early and late delayed injury in brain leading to complications (including vasogenic edema

  19. Improving the Spatial Alignment in PET/CT Using Amplitude-Based Respiration-Gated PET and Respiration-Triggered CT

    NARCIS (Netherlands)

    Vos, C.S. van der; Grootjans, W.; Osborne, D.R.; Meeuwis, A.P.; Hamill, J.J.; Acuff, S.; Geus-Oei, L.F. de; Visser, E.P.

    2015-01-01

    Respiratory motion during PET can cause inaccuracies in the quantification of radiotracer uptake, which negatively affects PET-guided radiotherapy planning. Quantitative accuracy can be improved by respiratory gating. However, additional miscalculation of standardized uptake value (SUV) in PET

  20. PET with a dual-head coincidence gamma camera in head and neck cancer: A comparison with computed tomography and dedicated PET

    International Nuclear Information System (INIS)

    Zimny, M.

    2001-01-01

    Positron emission tomography with 18 F-fluoro-deoxyglucose (FDG PET) is a promising imaging tool for detecting and staging of primary or recurrent head and neck cancer. The aim of this study was to evaluate a dual-head gamma camera modified for coincidence detection (KGK-PET) in comparison to computed tomography (CT) and dedicated PET (dPET). 50 patients with known or suspected primary or recurrent head and neck cancer were enrolled. 32 patients underwent KGK-PET and dPET using a one-day protocol. The sensitivity for the detection of primary/ recurrent head and neck cancer for KGK-PET and CT was 80% and 54%, respectively, specificity was 73% and 82%, respectively. The sensitivity and specificity for the detection of lymph node metastases based on neck sides with KGK-PET was 71% (CT: 65%) and 88% (CT: 89%) respectively. In comparison to dPET, KGK-PET revealed concordant results in 32/32 patients with respect to primary tumor/recurrent disease and in 55/60 evaluated neck sides. All involved neck sides that were missed by KGK-PET were also negative with dPET. These results indicate that in patients with head and neck cancer KGK-PET reveals information, that are similar to dPET and complementary to CT. (orig.) [de

  1. Clinical evaluation of TOF versus non-TOF on PET artifacts in simultaneous PET/MR: a dual centre experience

    Energy Technology Data Exchange (ETDEWEB)

    Voert, Edwin E.G.W. ter [University Hospital Zurich, Department of Nuclear Medicine, Zurich (Switzerland); University of Zurich, Zurich (Switzerland); Veit-Haibach, Patrick [University Hospital Zurich, Department of Nuclear Medicine, Zurich (Switzerland); University of Zurich, Zurich (Switzerland); University Hospital Zurich, Department of Diagnostic and Interventional Radiology, Zurich (Switzerland); Ahn, Sangtae [GE Global Research, Niskayuna, NY (United States); Wiesinger, Florian [GE Global Research, Muenchen (Germany); Khalighi, M.M.; Delso, Gaspar [GE Healthcare, Waukesha, WI (United States); Levin, Craig S. [Stanford University, Department of Radiology, Molecular Imaging Program at Stanford, Stanford, CA (United States); Iagaru, Andrei H. [Stanford University, Department of Radiology, Division of Nuclear Medicine and Molecular Imaging, Stanford, CA (United States); Zaharchuk, Greg [Stanford University, Department of Radiology, Neuroradiology, Stanford, CA (United States); Huellner, Martin [University Hospital Zurich, Department of Nuclear Medicine, Zurich (Switzerland); University of Zurich, Zurich (Switzerland); University Hospital Zurich, Department of Neuroradiology, Zurich (Switzerland)

    2017-07-15

    Our objective was to determine clinically the value of time-of-flight (TOF) information in reducing PET artifacts and improving PET image quality and accuracy in simultaneous TOF PET/MR scanning. A total 65 patients who underwent a comparative scan in a simultaneous TOF PET/MR scanner were included. TOF and non-TOF PET images were reconstructed, clinically examined, compared and scored. PET imaging artifacts were categorized as large or small implant-related artifacts, as dental implant-related artifacts, and as implant-unrelated artifacts. Differences in image quality, especially those related to (implant) artifacts, were assessed using a scale ranging from 0 (no artifact) to 4 (severe artifact). A total of 87 image artifacts were found and evaluated. Four patients had large and eight patients small implant-related artifacts, 27 patients had dental implants/fillings, and 48 patients had implant-unrelated artifacts. The average score was 1.14 ± 0.82 for non-TOF PET images and 0.53 ± 0.66 for TOF images (p < 0.01) indicating that artifacts were less noticeable when TOF information was included. Our study indicates that PET image artifacts are significantly mitigated with integration of TOF information in simultaneous PET/MR. The impact is predominantly seen in patients with significant artifacts due to metal implants. (orig.)

  2. Vecteurs Singuliers des Theories des Champs Conformes Minimales

    Science.gov (United States)

    Benoit, Louis

    En 1984 Belavin, Polyakov et Zamolodchikov revolutionnent la theorie des champs en explicitant une nouvelle gamme de theories, les theories quantiques des champs bidimensionnelles invariantes sous les transformations conformes. L'algebre des transformations conformes de l'espace-temps presente une caracteristique remarquable: en deux dimensions elle possede un nombre infini de generateurs. Cette propriete impose de telles conditions aux fonctions de correlations qu'il est possible de les evaluer sans aucune approximation. Les champs des theories conformes appartiennent a des representations de plus haut poids de l'algebre de Virasoro, une extension centrale de l'algebre conforme du plan. Ces representations sont etiquetees par h, le poids conforme de leur vecteur de plus haut poids, et par la charge centrale c, le facteur de l'extension centrale, commune a toutes les representations d'une meme theorie. Les theories conformes minimales sont constituees d'un nombre fini de representations. Parmi celles-ci se trouvent des theories unitaires dont les representation forment la serie discrete de l'algebre de Virasoro; leur poids h a la forme h_{p,q}(m)=[ (p(m+1) -qm)^2-1] (4m(m+1)), ou p,q et m sont des entiers positifs et p+q= 2. Ces representations possedent un sous-espace invariant engendre par deux sous-representations avec h_1=h_{p,q} + pq et h_2=h_{p,q} + (m-p)(m+1-q) dont chacun des vecteurs de plus haut poids portent le nom de vecteur singulier et sont notes respectivement |Psi _{p,q}> et |Psi_{m-p,m+1-q}>. . Les theories super-conformes sont une version super-symetrique des theories conformes. Leurs champs appartiennent a des representation de plus haut poids de l'algebre de Neveu-Schwarz, une des deux extensions super -symetriques de l'algebre de Virasoro. Les theories super -conformes minimales possedent la meme structure que les theories conformes minimales. Les representations sont elements de la serie h_{p,q}= [ (p(m+2)-qm)^2-4] /(8m(m+2)) ou p,q et m sont

  3. Detection and quantification of focal uptake in head and neck tumours: {sup 18}F-FDG PET/MR versus PET/CT

    Energy Technology Data Exchange (ETDEWEB)

    Varoquaux, Arthur; Rager, Olivier; Ratib, Osman; Becker, Christoph D.; Zaidi, Habib; Becker, Minerva [Geneva University Hospital, Department of Imaging, Divisions of Radiology and Nuclear Medicine, Geneva 14 (Switzerland); Poncet, Antoine [Geneva University Hospital, Center for Clinical Research, Geneva (Switzerland); Delattre, Benedicte M.A. [Geneva University Hospital, Department of Imaging, Divisions of Radiology and Nuclear Medicine, Geneva 14 (Switzerland); Philips Healthcare AG, Nuclear Medicine Division, Gland (Switzerland); Dulguerov, Pavel; Dulguerov, Nicolas [Geneva University Hospital, Clinic of Otorhinolaryngology Head and Neck Surgery, Geneva (Switzerland)

    2014-03-15

    Our objectives were to assess the quality of PET images and coregistered anatomic images obtained with PET/MR, to evaluate the detection of focal uptake and SUV, and to compare these findings with those of PET/CT in patients with head and neck tumours. The study group comprised 32 consecutive patients with malignant head and neck tumours who underwent whole-body {sup 18}F-FDG PET/MR and PET/CT. PET images were reconstructed using the attenuation correction sequence for PET/MR and CT for PET/CT. Two experienced observers evaluated the anonymized data. They evaluated image and fusion quality, lesion conspicuity, anatomic location, number and size of categorized (benign versus assumed malignant) lesions with focal uptake. Region of interest (ROI) analysis was performed to determine SUVs of lesions and organs for both modalities. Statistical analysis considered data clustering due to multiple lesions per patient. PET/MR coregistration and image fusion was feasible in all patients. The analysis included 66 malignant lesions (tumours, metastatic lymph nodes and distant metastases), 136 benign lesions and 470 organ ROIs. There was no statistically significant difference between PET/MR and PET/CT regarding rating scores for image quality, fusion quality, lesion conspicuity or anatomic location, number of detected lesions and number of patients with and without malignant lesions. A high correlation was observed for SUV{sub mean} and SUV{sub max} measured on PET/MR and PET/CT for malignant lesions, benign lesions and organs (ρ = 0.787 to 0.877, p < 0.001). SUV{sub mean} and SUV{sub max} measured on PET/MR were significantly lower than on PET/CT for malignant tumours, metastatic neck nodes, benign lesions, bone marrow, and liver (p < 0.05). The main factor affecting the difference between SUVs in malignant lesions was tumour size (p < 0.01). In patients with head and neck tumours, PET/MR showed equivalent performance to PET/CT in terms of qualitative results. Comparison of

  4. Childhood Attachment to Pets: Associations between Pet Attachment, Attitudes to Animals, Compassion, and Humane Behaviour

    Directory of Open Access Journals (Sweden)

    Roxanne D. Hawkins

    2017-05-01

    Full Text Available Attachment to pets has an important role in children’s social, emotional, and cognitive development, mental health, well-being, and quality of life. This study examined associations between childhood attachment to pets and caring and friendship behaviour, compassion, and attitudes towards animals. This study also examined socio-demographic differences, particularly pet ownership and pet type. A self-report survey of over one thousand 7 to 12 year-olds in Scotland, UK, revealed that the majority of children are strongly attached to their pets, but attachment scores differ depending on pet type and child gender. Analysis revealed that attachment to pets is facilitated by compassion and caring and pet-directed friendship behaviours and that attachment to pets significantly predicts positive attitudes towards animals. The findings have implications for the promotion of prosocial and humane behaviour. Encouraging children to participate in pet care behaviour may promote attachment between children and their pet, which in turn may have a range of positive outcomes for both children (such as reduced aggression, better well-being, and quality of life and pets (such as humane treatment. This study enhances our understanding of childhood pet attachment and has implications for humane education and promoting secure emotional attachments in childhood.

  5. Oncology PET imaging

    International Nuclear Information System (INIS)

    Inubushi, Masayuki

    2014-01-01

    At the beginning of this article, likening medical images to 'Where is Waldo?' I indicate the concept of diagnostic process of PET/CT imaging, so that medical physics specialists could understand the role of each imaging modality and infer our distress for image diagnosis. Then, I state the present situation of PET imaging and the basics (e.g. health insurance coverage, clinical significance, principle, protocol, and pitfall) of oncology FDG-PET imaging which accounts for more than 99% of all clinical PET examinations in Japan. Finally, I would like to give a wishful prospect of oncology PET that will expand to be more cancer-specific in order to assess therapeutic effects of emerging molecular targeted drugs targeting the 'hallmarks of cancer'. (author)

  6. Value of new MR techniques in MR-PET

    International Nuclear Information System (INIS)

    Attenberger, U.I.; Schoenberg, S.O.; Quick, H.H.; Guimaraes, A.; Catalano, O.; Morelli, J.N.

    2013-01-01

    The unparalleled soft tissue contrast of magnetic resonance imaging (MRI) and the functional information obtainable with 18-F fluorodeoxyglucose positron emission tomography (FDG-PET) render MR-PET well-suited for oncological and psychiatric imaging. The lack of ionizing radiation with MRI also makes MR-PET a promising modality for oncology patients requiring frequent follow-up and pediatric patients. Lessons learned with PET computed tomography (CT) over the last few years do not directly translate to MR-PET. For example, in PET-CT the Hounsfield units derived from CT are used for attenuation correction (AC). As 511 keV photons emitted in PET examinations are attenuated by the patient's body CT data are converted directly to linear attenuation coefficients (LAC); however, proton density measured by MRI is not directly related to the radiodensity or LACs of biological tissue. Thus, direct conversion to LAC data is not possible making AC more challenging in simultaneous MRI-PET scanning. In addition to these constraints simultaneous MRI-PET acquisitions also improve on some solutions to well-known challenges of hybrid imaging techniques, such as limitations in motion correction. This article reports on initial clinical experiences with simultaneously acquired MRI-PET data, focusing on the potential benefits and limitations of MRI with respect to motion correction as well as metal and attenuation correction artefacts. (orig.) [de

  7. Additional value of integrated PET/CT over PET alone in the initial staging and follow up of head and neck malignancy

    International Nuclear Information System (INIS)

    Ishikita, Tomohiro; Oriuchi, Noboru; Higuchi, Tetsuya

    2010-01-01

    Clinical application of fluorodeoxyglucose (FDG)-positron emission tomography (PET) in head and neck cancer includes identification of metastases, unknown primary head and neck malignancy, or second primary carcinoma, and also recurrent tumor after treatment. In this study, the additional value of PET/CT fusion images over PET images alone was evaluated in patients with initial staging and follow up of head and neck malignancy. Forty patients with suspected primary head and neck malignancy and 129 patients with suspected relapse after treatment of head and neck malignancy were included. FDG-PET/CT study was performed after the intravenous administration of FDG (5 MBq/kg). Target of evaluation was set at primary tumor, cervical lymph node, and whole body. PET images and PET with CT fusion images were compared. Sensitivity, specificity, accuracy, positive predictive value (PPV), and negative predictive value (NPV) were calculated. Results of PET and PET/CT were compared with postoperative histopathological examination, and case by case comparison of PET and PET/CT results for each region was performed. The additional value of CT images over PET only images was assessed. Statistical differences in sensitivity and specificity were evaluated. In the comparative evaluation of 507 targets by PET alone and PET/CT, 401 targets showed agreement of the results. Of the 106 discordant targets, 103 showed a positive result on PET alone and negative result on PET/CT. These results showed a significant difference (p<0.01). Sensitivity of PET/CT was slightly higher than that of PET without statistical significance, while specificity of PET/CT was significantly higher than that of PET alone (Initial Staging: 90.5% vs. 62.2%, p<0.01; Follow up: 97.2% vs. 74.4%, p<0.01). In Fisher's direct probability test, a significant difference was noted in the sensitivity (Initial staging: 91.3% vs. 87.0%, p<0.01; Follow up: 93.9% vs. 91.4%, p<0.01). Combined PET/CT showed improved diagnostic

  8. Imaging with PET system

    International Nuclear Information System (INIS)

    Das, B.K.; Noreen Norfaraheen Lee Abdullah

    2012-01-01

    PET deals with biochemistry and metabolic changes that occur at molecular level. Hence, PET differs fundamentally from other imaging modalities. CT imaging is based on tissue density, whereas MRI conveys anatomic information based on proton density and proton relaxation dynamics. CT and MRI are useful in clinical diagnosis only when disease process has caused significant anatomic alterations. However, in most disease conditions chemical changes precede anatomic changes, that can be detected by PET technology. Thus, PET can provide earliest and unique information about ongoing disease process long before anatomic or structural changes take place. There is no other modality available at present that can replace PET technology. Although PET produces cross-sectional images like that obtained in MRI or CT, they represent circulation, function and metabolism, and not anatomic structure. PET is extremely sensitive measuring quantitatively concentration of tracers in nano to pico-molar range. Thus, PET enables merger of biochemistry and biology in medicine giving birth to molecular medicine that focuses on identifying the molecular errors of disease leading to developing molecular corrections including gene therapy. Molecular imaging with PET has been playing a role in examining the biological nature of a disease condition and its characterization to guide selection and evaluation of treatment. (author)

  9. SU-E-J-222: Evaluation of Deformable Registration of PET/CT Images for Cervical Cancer Brachytherapy

    International Nuclear Information System (INIS)

    Liao, Y; Turian, J; Templeton, A; Kiel, K; Chu, J; Kadir, T

    2014-01-01

    Purpose: PET/CT provides important functional information for radiotherapy targeting of cervical cancer. However, repeated PET/CT procedures for external beam and subsequent brachytherapy expose patients to additional radiation and are not cost effective. Our goal is to investigate the possibility of propagating PET-active volumes for brachytherapy procedures through deformable image registration (DIR) of earlier PET/CT and ultimately to minimize the number of PET/CT image sessions required. Methods: Nine cervical cancer patients each received their brachytherapy preplanning PET/CT at the end of EBRT with a Syed template in place. The planning PET/CT was acquired on the day of brachytherapy treatment with the actual applicator (Syed or Tandem and Ring) and rigidly registered. The PET/CT images were then deformably registered creating a third (deformed) image set for target prediction. Regions of interest with standardized uptake values (SUV) greater than 65% of maximum SUV were contoured as target volumes in all three sets of PET images. The predictive value of the registered images was evaluated by comparing the preplanning and deformed PET volumes with the planning PET volume using Dice's coefficient (DC) and center-of-mass (COM) displacement. Results: The average DCs were 0.12±0.14 and 0.19±0.16 for rigid and deformable predicted target volumes, respectively. The average COM displacements were 1.9±0.9 cm and 1.7±0.7 cm for rigid and deformable registration, respectively. The DCs were improved by deformable registration, however, both were lower than published data for DIR in other modalities and clinical sites. Anatomical changes caused by different brachytherapy applicators could have posed a challenge to the DIR algorithm. The physiological change from interstitial needle placement may also contribute to lower DC. Conclusion: The clinical use of DIR in PET/CT for cervical cancer brachytherapy appears to be limited by applicator choice and requires further

  10. Comparison between whole-body MRI and Fluorine-18-Fluorodeoxyglucose PET or PET/CT in oncology: a systematic review

    International Nuclear Information System (INIS)

    Ciliberto, Mario; Maggi, Fabio; Treglia, Giorgio; Padovano, Federico; Calandriello, Lucio; Giordano, Alessandro; Bonomo, Lorenzo

    2013-01-01

    The aim of the article is to systematically review published data about the comparison between positron emission tomography (PET) or PET/computed tomography (PET/CT) using Fluorine-18-Fluorodeoxyglucose (FDG) and whole-body magnetic resonance imaging (WB-MRI) in patients with different tumours. A comprehensive literature search of studies published in PubMed/MEDLINE, Scopus and Embase databases through April 2012 and regarding the comparison between FDG-PET or PET/CT and WB-MRI in patients with various tumours was carried out. Forty-four articles comprising 2287 patients were retrieved in full-text version, included and discussed in this systematic review. Several articles evaluated mixed tumours with both diagnostic methods. Concerning the specific tumour types, more evidence exists for lymphomas, bone tumours, head and neck tumours and lung tumours, whereas there is less evidence for other tumour types. Overall, based on the literature findings, WB-MRI seems to be a valid alternative method compared to PET/CT in oncology. Further larger prospective studies and in particular cost-effectiveness analysis comparing these two whole-body imaging techniques are needed to better assess the role of WB-MRI compared to FDG-PET or PET/CT in specific tumour types

  11. New perspective in high tech radiotherapy planning using PET/CT images (Radiation oncologist's view on PET/CT usage)

    International Nuclear Information System (INIS)

    Hadjieva, T.; Bildirev, N.; Koleva, I.; Zahariev, Z.; Vasileva, V.; Encheva, E.; Sultanov, B.

    2010-01-01

    Biological images provided by 18F-FDG PET in combination with structural X ray picture currently offer the most accurate available information on tumour staging, curative antitumour effect for prognosis, impairment of organ function after treatment, as well as primary tumour detection in unknown primary metastatic disease. The authors as radiation oncologists critically have analyzed numerous clinical trials and two guidelines to prove PET/ CT benefit in radiotherapy practice. At present they found lack of scientific evidence to confirm that patient outcomes are superior as a result of the use of PET in RT planning. PET/CT offers a best image for tumour delineation only in some cases of lung cancer, mediastinal lymph nodes and malignant lymphomas. 11C methionin PET adds additional information on postoperative MRI image for brain tumours. Inflammation as postradiation phenomenon, as well as physiological organ movements leads to false-positive PET signal. High tech radiotherapy methods require delineation on precise images given after multidisciplinary team expertise - a practice that is possible only in clinical trials, These unsolved problems have raised many ethical challenges in medical, scientific and social aspect, if wide and routine use of FDG-PET u PET/CT is advocated. (authors)

  12. Pet in Clinical oncology

    International Nuclear Information System (INIS)

    Hunsche, A.; Grossman, G.; Santana, M.; Santana, C.; Halkar, R.; Garcia, E.

    2003-01-01

    The utility of the PET (positron emission tomography in clinical oncology has been recognized for more than two decades, locating it as a sensible technique for the diagnosis and the prognosis stratification of the oncology patients. The sensitivity and specificity of the PET in comparation to other image studies have demonstrated to be greater. For some years, there was a restriction of PET because of the high cost of the equipment and the cyclotrons. Nevertheless, the relation of cost/benefits is considered as a priority as this technique offers important clinical information. In this article the results observed when using it in diverse types of cancer, as well as the effectiveness shown in the pre-operating evaluation, the evaluation of residual disease, diagnosis of recurrences, pursuit and prognosis stratification of the patients with cancer. (The author)

  13. Beam Current Increase and Cathode Lifetime Improvement of KOTRON-13 Ion Source

    International Nuclear Information System (INIS)

    Lee, W. K.; Chae, S. K.; Song, J. Y.; Im, G. S.; Cho, B. O.

    2010-01-01

    Technology of cyclotron has been actively developed to meet the increasing requirement output of medical radioactive isotopes for PET. KOTRON-13 is produced with low negative hydrogen ion beam current owing to the low efficiency of proton beam current compared with foreign cyclotron. In the defect there from, the lifetime of cathode is around 5,000min, which requires frequent maintenance period, and the target beam current is maximum 50uA at a poor efficiency compared with the inflow quantity of hydrogen gas and that of inflicting arc current. Considering above affairs, we have to improve the PIG ion source extraction efficiency of KOTRON-13 in order to lift beam current. Mostly the ion source of cyclotron less than 30Mev comes from the use of PIG ion source mainly with the method of cold cathode or hot cathode. However, the cyclotron of 30Mev grade of EBCO or IBA uses the external ion source and uses ion source with cusp type of good withdrawal efficiency. This type requires high voltage, and transports ion from ion source to cyclotron, which requires precise transportation equipment. And entering cyclotron requires a high quality of inflictor with a high defect rate, but high current cyclotron has no choice but to use ion source of such a method. But the cyclotron using PET with the beam current less than 100uA uses PIG ion source of KOTRON-13 with a reasonable maintenance cost

  14. Proton ejection project for Saturne; Projet d'ejection des protons de saturne

    Energy Technology Data Exchange (ETDEWEB)

    Bronca, G; Gendreau, G

    1959-07-01

    The reasons for choosing the ejection system are given. The characteristics required for the ejected beam are followed by a description of the ejection process, in chronological order from the viewpoint of the protons: movement of the particles, taking into account the various elements which make up the system (internal magnet, external magnet, quadrupoles, ejection correction coils, thin and thick cables,...) and specification of these elements. Then follows an estimation of the delay in manufacture and the cost of the project. Finally, the characteristics of the magnets and quadrupoles are listed in an appendix. (author) [French] On donne d'abord les raisons du choix du systeme d'ejection, puis le principe. Apres les caracteristiques requises pour le faisceau ejecte, on decrit le processus d'ejection selon l'ordre chronologique vu par les protons: mouvement des particules compte tenu des divers elements composant le systeme (aimant interne, aimant externe, quadrupoles, enroulements correcteurs ejection, cibles mince et epaisse,. ..) et cahier de charge de ces elements. On estime, ensuite les delais de realisation et le cout du projet. Enfin, un resume des caracteristiques des aimants et quadrupoles est donne en appendice. (auteur)

  15. Detection of an intense polychromatic gamma beam modulated at 3000 MHz; Detection d'un faisceau intense de gammas polychromatiques module a 3000 MHz

    Energy Technology Data Exchange (ETDEWEB)

    Beil, H; Veyssiere, A; Daujat, P [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1968-07-01

    This paper presents two methods of detection of a {gamma} beam modulated at very high frequencies. The intense modulated beam is created by means of Bremsstrahlung in a gold-target, the latter having been placed in the emerging electron beam of the Linac at Saclay. A tentative interpretation of the physical phenomena involved in the detection processes is also given. The empirical data agree reasonably well with numerical evaluations based on well established theoretical concepts concerning these phenomena. (authors) [French] Cet article presente deux facons de detecter un faisceau de {gamma} module a haute frequence. Le faisceau intense de {gamma} est cree par l'impact d'electrons (acceleres dans un accelerateur lineaire) sur une cible en or. Une tentative d'interpretation des phenomenes physiques mis en cause dans le processus de detection est donnee et les valeurs experimentales trouvees s'accordent raisonnablement bien avec les valeurs calculees a partir des considerations theoriques des phenomenes. (auteurs)

  16. New developments of 11C post-accelerated beams for hadron therapy and imaging

    Science.gov (United States)

    Augusto, R. S.; Mendonca, T. M.; Wenander, F.; Penescu, L.; Orecchia, R.; Parodi, K.; Ferrari, A.; Stora, T.

    2016-06-01

    Hadron therapy was first proposed in 1946 and is by now widespread throughout the world, as witnessed with the design and construction of the CNAO, HIT, PROSCAN and MedAustron treatment centres, among others. The clinical interest in hadron therapy lies in the fact that it delivers precision treatment of tumours, exploiting the characteristic shape (the Bragg peak) of the energy deposition in the tissues for charged hadrons. In particular, carbon ion therapy is found to be biologically more effective, with respect to protons, on certain types of tumours. Following an approach tested at NIRS in Japan [1], carbon ion therapy treatments based on 12C could be combined or fully replaced with 11C PET radioactive ions post-accelerated to the same energy. This approach allows providing a beam for treatment and, at the same time, to collect information on the 3D distributions of the implanted ions by PET imaging. The production of 11C ion beams can be performed using two methods. A first one is based on the production using compact PET cyclotrons with 10-20 MeV protons via 14N(p,α)11C reactions following an approach developed at the Lawrence Berkeley National Laboratory [2]. A second route exploits spallation reactions 19F(p,X)11C and 23Na(p,X)11C on a molten fluoride salt target using the ISOL (isotope separation on-line) technique [3]. This approach can be seriously envisaged at CERN-ISOLDE following recent progresses made on 11C+ production [4] and proven post-acceleration of pure 10C3/6+ beams in the REX-ISOLDE linac [5]. Part of the required components is operational in radioactive ion beam facilities or commercial medical PET cyclotrons. The driver could be a 70 MeV, 1.2 mA proton commercial cyclotron, which would lead to 8.1 × 10711C6+ per spill. This intensity is appropriate using 11C ions alone for both imaging and treatment. Here we report on the ongoing feasibility studies of such approach, using the Monte Carlo particle transport code FLUKA [6,7] to simulate

  17. Welfare assessment in pet rabbits

    NARCIS (Netherlands)

    Schepers, F.; Koene, P.; Beerda, B.

    2009-01-01

    One million pet rabbits are kept in The Netherlands, but there are no data available on their behaviour and welfare. This study seeks to assess the welfare of pet rabbits in Dutch households and is a first step in the development of a welfare assessment system. In an internet survey, housing

  18. Usefulness of {sup 18}F-FDG PET, combined FDG-PET/CT and EUS in diagnosing primary pancreatic carcinoma: A meta-analysis

    Energy Technology Data Exchange (ETDEWEB)

    Tang Shuang [Department of Nuclear Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127 (China); Huang Gang, E-mail: huang2802@163.com [Department of Nuclear Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127 (China); Liu Jianjun [Department of Nuclear Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127 (China); Liu Tao [Department of Orthopedics, Soochow University, Suzhou (China); Treven, Lyndal [Faculty of Public Health, University of Sydney, Sydney (Australia); Song Saoli; Zhang Chenpeng; Pan Lingling [Department of Nuclear Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127 (China); Zhang Ting [Department of Anesthesiology, Renji Hospital, Shanghai (China)

    2011-04-15

    The aim was to evaluate the diagnostic value of {sup 18}F-fluorodeoxyglucose-positron emission tomography ({sup 18}F-FDG PET), combined {sup 18}F-fluorodeoxyglucose-positron emission tomography/computed tomography ({sup 18}F-FDG PET/CT) and endoscopic ultrasonography (EUS) in diagnosing patients with pancreatic carcinoma. MEDLINE, EMBASE, Cochrane library and some other databases, from January 1966 to April 2009, were searched for initial studies. All the studies published in English or Chinese relating to the diagnostic value of {sup 18}F-FDG PET, PET/CT and EUS for patients with pancreatic cancer were collected. Methodological quality was assessed. The statistic software called 'Meta-Disc 1.4' was used for data analysis. Results: 51 studies were included in this meta-analysis. The pooled sensitivity estimate for combined PET/CT (90.1%) was significantly higher than PET (88.4%) and EUS (81.2%). The pooled specificity estimate for EUS (93.2%) was significantly higher than PET (83.1%) and PET/CT (80.1%). The pooled DOR estimate for EUS (49.774) was significantly higher than PET (32.778) and PET/CT (27.105). SROC curves for PET/CT and EUS showed a little better diagnostic accuracy than PET alone. For PET alone, when interpreted the results with knowledge of other imaging tests, its sensitivity (89.4%) and specificity (80.1%) were closer to PET/CT. For EUS, its diagnostic value decreased in differentiating pancreatic cancer for patients with chronic pancreatitis. In conclusion, PET/CT was a high sensitive and EUS was a high specific modality in diagnosing patients with pancreatic cancer. PET/CT and EUS could play different roles during different conditions in diagnosing pancreatic carcinoma.

  19. Calculation of the muon contamination in a {pi}- meson beam; Calcul de la contamination en muons d'un faisceau de mesons {pi}

    Energy Technology Data Exchange (ETDEWEB)

    Tran, A H [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1965-07-01

    We present here a method for calculating the {mu} contamination of a {pi}-meson beam which is parallel and of cylindrical symmetry, and also the so-called 'CONTAMU' programme which makes it possible to carry out this calculation. An evaluation of the {mu} contamination is necessary for correcting the experimental values (gross) of the cross-sections of the various reactions using the {pi}-meson beam as a beam of incident particles. The following two cases are dealt with: 1 - The beam is defined by an S{sub 1} counter: the {mu} contamination is calculated when the beam passes through this counter. 2 - The beam is defined by 2 counters, S{sub 1} and S{sub 2}: the {mu} contamination is calculated when the beam passes through the 2 counters successively. After presenting the problem in the first introductory paragraph, we deal in detail in paragraph II with the calculation, following the order of the programme. At the end of paragraph II will be found definitions of a certain number of values which the programme calculates; these are the values of the contamination in one of the two preceding cases integrated in certain well-defined disintegration volumes. In paragraph III is given as an example a table of results for a few values of the parameters. The listing of the 'CONTAMU' programme is given in the appendix. This programme was established in 1963 for correcting the experimental values of the cross-sections obtained during an experiment carried out on the synchrotron Saturne by the Falk-Vairant group. (author) [French] Nous presentons ici une methode de calcul de la contamination en {mu} dans un faisceau de mesons {pi} parallele et a symetrie cylindrique, ainsi que le programme, appele 'CONTAMU', qui permet d'effectuer ce calcul. L'estimation de la contamination en {mu} est necessaire pour faire des corrections aux valeurs experimentales (brutes) des sections efficaces des differentes reactions utilisant le faisceau de mesons {pi} comme faisceau de particules

  20. Test beam measurement of the first prototype of the fast silicon pixel monolithic detector for the TT-PET project

    Science.gov (United States)

    Paolozzi, L.; Bandi, Y.; Benoit, M.; Cardarelli, R.; Débieux, S.; Forshaw, D.; Hayakawa, D.; Iacobucci, G.; Kaynak, M.; Miucci, A.; Nessi, M.; Ratib, O.; Ripiccini, E.; Rücker, H.; Valerio, P.; Weber, M.

    2018-04-01

    The TT-PET collaboration is developing a PET scanner for small animals with 30 ps time-of-flight resolution and sub-millimetre 3D detection granularity. The sensitive element of the scanner is a monolithic silicon pixel detector based on state-of-the-art SiGe BiCMOS technology. The first ASIC prototype for the TT-PET was produced and tested in the laboratory and with minimum ionizing particles. The electronics exhibit an equivalent noise charge below 600 e‑ RMS and a pulse rise time of less than 2 ns , in accordance with the simulations. The pixels with a capacitance of 0.8 pF were measured to have a detection efficiency greater than 99% and, although in the absence of the post-processing, a time resolution of approximately 200 ps .

  1. Competitive advantage of PET/MRI

    Energy Technology Data Exchange (ETDEWEB)

    Jadvar, Hossein, E-mail: jadvar@usc.edu; Colletti, Patrick M.

    2014-01-15

    Multimodality imaging has made great strides in the imaging evaluation of patients with a variety of diseases. Positron emission tomography/computed tomography (PET/CT) is now established as the imaging modality of choice in many clinical conditions, particularly in oncology. While the initial development of combined PET/magnetic resonance imaging (PET/MRI) was in the preclinical arena, hybrid PET/MR scanners are now available for clinical use. PET/MRI combines the unique features of MRI including excellent soft tissue contrast, diffusion-weighted imaging, dynamic contrast-enhanced imaging, fMRI and other specialized sequences as well as MR spectroscopy with the quantitative physiologic information that is provided by PET. Most evidence for the potential clinical utility of PET/MRI is based on studies performed with side-by-side comparison or software-fused MRI and PET images. Data on distinctive utility of hybrid PET/MRI are rapidly emerging. There are potential competitive advantages of PET/MRI over PET/CT. In general, PET/MRI may be preferred over PET/CT where the unique features of MRI provide more robust imaging evaluation in certain clinical settings. The exact role and potential utility of simultaneous data acquisition in specific research and clinical settings will need to be defined. It may be that simultaneous PET/MRI will be best suited for clinical situations that are disease-specific, organ-specific, related to diseases of the children or in those patients undergoing repeated imaging for whom cumulative radiation dose must be kept as low as reasonably achievable. PET/MRI also offers interesting opportunities for use of dual modality probes. Upon clear definition of clinical utility, other important and practical issues related to business operational model, clinical workflow and reimbursement will also be resolved.

  2. Competitive advantage of PET/MRI.

    Science.gov (United States)

    Jadvar, Hossein; Colletti, Patrick M

    2014-01-01

    Multimodality imaging has made great strides in the imaging evaluation of patients with a variety of diseases. Positron emission tomography/computed tomography (PET/CT) is now established as the imaging modality of choice in many clinical conditions, particularly in oncology. While the initial development of combined PET/magnetic resonance imaging (PET/MRI) was in the preclinical arena, hybrid PET/MR scanners are now available for clinical use. PET/MRI combines the unique features of MRI including excellent soft tissue contrast, diffusion-weighted imaging, dynamic contrast-enhanced imaging, fMRI and other specialized sequences as well as MR spectroscopy with the quantitative physiologic information that is provided by PET. Most evidence for the potential clinical utility of PET/MRI is based on studies performed with side-by-side comparison or software-fused MRI and PET images. Data on distinctive utility of hybrid PET/MRI are rapidly emerging. There are potential competitive advantages of PET/MRI over PET/CT. In general, PET/MRI may be preferred over PET/CT where the unique features of MRI provide more robust imaging evaluation in certain clinical settings. The exact role and potential utility of simultaneous data acquisition in specific research and clinical settings will need to be defined. It may be that simultaneous PET/MRI will be best suited for clinical situations that are disease-specific, organ-specific, related to diseases of the children or in those patients undergoing repeated imaging for whom cumulative radiation dose must be kept as low as reasonably achievable. PET/MRI also offers interesting opportunities for use of dual modality probes. Upon clear definition of clinical utility, other important and practical issues related to business operational model, clinical workflow and reimbursement will also be resolved. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  3. Competitive advantage of PET/MRI

    International Nuclear Information System (INIS)

    Jadvar, Hossein; Colletti, Patrick M.

    2014-01-01

    Multimodality imaging has made great strides in the imaging evaluation of patients with a variety of diseases. Positron emission tomography/computed tomography (PET/CT) is now established as the imaging modality of choice in many clinical conditions, particularly in oncology. While the initial development of combined PET/magnetic resonance imaging (PET/MRI) was in the preclinical arena, hybrid PET/MR scanners are now available for clinical use. PET/MRI combines the unique features of MRI including excellent soft tissue contrast, diffusion-weighted imaging, dynamic contrast-enhanced imaging, fMRI and other specialized sequences as well as MR spectroscopy with the quantitative physiologic information that is provided by PET. Most evidence for the potential clinical utility of PET/MRI is based on studies performed with side-by-side comparison or software-fused MRI and PET images. Data on distinctive utility of hybrid PET/MRI are rapidly emerging. There are potential competitive advantages of PET/MRI over PET/CT. In general, PET/MRI may be preferred over PET/CT where the unique features of MRI provide more robust imaging evaluation in certain clinical settings. The exact role and potential utility of simultaneous data acquisition in specific research and clinical settings will need to be defined. It may be that simultaneous PET/MRI will be best suited for clinical situations that are disease-specific, organ-specific, related to diseases of the children or in those patients undergoing repeated imaging for whom cumulative radiation dose must be kept as low as reasonably achievable. PET/MRI also offers interesting opportunities for use of dual modality probes. Upon clear definition of clinical utility, other important and practical issues related to business operational model, clinical workflow and reimbursement will also be resolved

  4. ANALYSE DES PERCEPTIONS LOCALES ET DES FACTEURS ...

    African Journals Online (AJOL)

    AISA

    1Faculté des Sciences Agronomiques (FSA), Université d'Abomey-Calavi (UAC), 01 BP 526 Cotonou Bénin. Email : cgbemavo@yahoo.fr. 2Institut National des Recherches Agricoles du Bénin, Centre de Recherches Agricoles d'Agonkanmey (CRA-A),. Laboratoire des Sciences du Sol, Eau et Environnement (LSSEE).

  5. [F-18]FDG imaging of head and neck tumors: comparison of hybrid PET, dedicated PET and CT

    International Nuclear Information System (INIS)

    Dresel, S.; Brinkbaeumer, K.; Schmid, R.; Poepperl, G.; Hahn, K.; Szeimies, U.

    2001-01-01

    Aim: Aim of the study was to evaluate [F-18]FDG imaging of head and neck tumors using a Hybrid-PET device of the 2nd or 3rd generation. Examinations were compared to dedicated PET and Spiral-CT. Methods: 54 patients suffering from head and neck tumors were examined using dedicated PET and Hybrid-PET after injection of 185-350 MBq [F-18]FDG. Examinations were carried out on the dedicated PET first followed by a scan on the Hybrid-PET. Dedicated PET was acquired in 3D mode, Hybrid-PET was performed in list mode using an axial filter. Reconstruction of data was performed iteratively on both, dedicated PET and Hybrid-PET. All patients received a CT scan in multislice technique. All finding have been verified by the goldstandard histology or in case of negative histology by follow up. Results: Using dedicated PET the primary or recurrent lesion was correctly diagnosed in 47/48 patients, using Hybrid-PET in 46/48 patients and using CT in 25/48 patients. Metastatic disease in cervical lymph nodes was diagnosed in 17/18 patients with dedicated PET, in 16/18 patients with Hybrid-PET and in 15/18 with CT. False positive results with regard to lymph node metastasis were seen with one patient for dedicated PET and Hybrid-PET, respectively, and with 18 patients for CT. In a total of 11 patients unknown metastastic lesions were seen with dedicated PET and with Hybrid-PET elsewhere in the body. Additional malignant disease other than the head and neck tumor was found in 4 patients. Conclusion: Using Hybrid-PET for [F-18]FDG imaging reveals a loss of sensitivity and specificity of about 1-5% as compared to dedicated PET in head and neck tumors. [F-18]FDG PET with both, dedicated PET and Hybrid-PET is superior to CT in the diagnosis of primary or recurrent lesions as well as in the assessment of lymph node involvement. (orig.) [de

  6. Single-slice rebinning method for helical cone-beam CT

    International Nuclear Information System (INIS)

    Noo, F.; Defrise, M.; Clackdoyle, R.

    1999-01-01

    In this paper, we present reconstruction results from helical cone-beam CT data, obtained using a simple and fast algorithm, which we call the CB-SSRB algorithm. This algorithm combines the single-slice rebinning method of PET imaging with the weighting schemes of spiral CT algorithms. The reconstruction is approximate but can be performed using 2D multislice fan-beam filtered backprojection. The quality of the results is surprisingly good, and far exceeds what one might expect, even when the pitch of the helix is large. In particular, with this algorithm comparable quality is obtained using helical cone-beam data with a normalized pitch of 10 to that obtained using standard spiral CT reconstruction with a normalized pitch of 2. (author)

  7. Simultaneous Hyperpolarized 13C-Pyruvate MRI and 18F-FDG PET (HyperPET) in 10 Dogs with Cancer

    DEFF Research Database (Denmark)

    Gutte, Henrik; Hansen, Adam E; Larsen, Majbrit M E

    2015-01-01

    with biopsy-verified spontaneous malignant tumors were included for imaging. All dogs underwent a protocol of simultaneous (18)F-FDG PET, anatomic MR, and hyperpolarized dynamic nuclear polarization with (13)C-pyruvate imaging. The data were acquired using a combined clinical PET/MR imaging scanner. We found...... that combined (18)F-FDG PET and (13)C-pyruvate MRS imaging was possible in a single session of approximately 2 h. A continuous workflow was obtained with the injection of (18)F-FDG when the dogs was placed in the PET/MR scanner. (13)C-MRS dynamic acquisition demonstrated in an axial slab increased (13)C......With the introduction of combined PET/MR spectroscopic (MRS) imaging, it is now possible to directly and indirectly image the Warburg effect with hyperpolarized (13)C-pyruvate and (18)F-FDG PET imaging, respectively, via a technique we have named hyperPET. The main purpose of this present study...

  8. The spatial distribution of pet dogs and pet cats on the island of Ireland

    Directory of Open Access Journals (Sweden)

    More Simon J

    2011-06-01

    Full Text Available Abstract Background There is considerable international research regarding the link between human demographics and pet ownership. In several international studies, pet ownership was associated with household demographics including: the presence of children in the household, urban/rural location, level of education and age/family structure. What is lacking across all these studies, however, is an understanding of how these pets are spatially distributed throughout the regions under study. This paper describes the spatial distribution of pet dog and pet cat owning households on the island of Ireland. Results In 2006, there were an estimated 640,620 pet dog owning households and 215,542 pet cat owning households in Ireland. These estimates are derived from logistic regression modelling, based on household composition to determine pet dog ownership and the type of house to determine pet cat ownership. Results are presented using chloropleth maps. There is a higher density of pet dog owning households in the east of Ireland and in the cities than the west of Ireland and rural areas. However, in urban districts there are a lower proportion of households owning pet dogs than in rural districts. There are more households with cats in the urban areas, but the proportion of households with cats is greater in rural areas. Conclusions The difference in spatial distribution of dog ownership is a reflection of a generally higher density of households in the east of Ireland and in major cities. The higher proportion of ownership in the west is understandable given the higher proportion of farmers and rural dwellings in this area. Spatial representation allows us to visualise the impact of human household distribution on the density of both pet dogs and pet cats on the island of Ireland. This information can be used when analysing risk of disease spread, for market research and for instigating veterinary care.

  9. Medical application of PET technology

    International Nuclear Information System (INIS)

    Lim, Sang Moo; Choi, C. W.; An, S. H.; Woo, K. S.; Chung, W. S.; Yang, S. D.; Jun, G. S. and others

    1999-04-01

    We performed following studies using PET technology: 1. Clinical usefulness of [ 18 F]FDG whole body PET in malignant disease 2. Clinical usefulness of quantitative evaluation of F-18-FDG 3. Pilot study of C-11 methionine PET in brain tumor 4. PET study in patients with Parkinson's disease 5. A study on the clinical myocardial PET image. PET gives various metabolic information for the living human body, and is very important, new diagnostic modality. The PET study will give us the information of cancer patients such as early detection of cancer, staging, recurrence detection and characterization of cancer. The quantitative analysis using PET could be applied to evaluate the pathophysiology of various diseases and develop new drugs and develop new radiopharmaceuticals

  10. Medical application of PET technology

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Sang Moo; Choi, C. W.; An, S. H.; Woo, K. S.; Chung, W. S.; Yang, S. D.; Jun, G. S. and others

    1999-04-01

    We performed following studies using PET technology: 1. Clinical usefulness of [{sup 18}F]FDG whole body PET in malignant disease 2. Clinical usefulness of quantitative evaluation of F-18-FDG 3. Pilot study of C-11 methionine PET in brain tumor 4. PET study in patients with Parkinson's disease 5. A study on the clinical myocardial PET image. PET gives various metabolic information for the living human body, and is very important, new diagnostic modality. The PET study will give us the information of cancer patients such as early detection of cancer, staging, recurrence detection and characterization of cancer. The quantitative analysis using PET could be applied to evaluate the pathophysiology of various diseases and develop new drugs and develop new radiopharmaceuticals.

  11. Clinical utility of flumazenil-PET versus [18F]fluorodeoxyglucose-PET and MRI in refractory partial epilepsy. A prospective study in 100 patients.

    Science.gov (United States)

    Ryvlin, P; Bouvard, S; Le Bars, D; De Lamérie, G; Grégoire, M C; Kahane, P; Froment, J C; Mauguière, F

    1998-11-01

    We assessed the clinical utility of [11C]flumazenil-PET (FMZ-PET) prospectively in 100 epileptic patients undergoing a pre-surgical evaluation, and defined the specific contribution of this neuro-imaging technique with respect to those of MRI and [18F]fluorodeoxyglucose-PET (FDG-PET). All patients benefited from a long term video-EEG monitoring, whereas an intracranial EEG investigation was performed in 40 cases. Most of our patients (73%) demonstrated a FMZ-PET abnormality; this hit rate was significantly higher in temporal lobe epilepsy (94%) than in other types of epilepsy (50%) (P lobe epilepsy associated with MRI signs of hippocampal sclerosis, FMZ-PET abnormalities delineated the site of seizure onset precisely, whenever they were coextensive with FDG-PET abnormalities; (ii) in bi-temporal epilepsy, FMZ-PET helped to confirm the bilateral origin of seizures by showing a specific pattern of decreased FMZ binding in both temporal lobes in 33% of cases; (iii) in patients with a unilateral cryptogenic frontal lobe epilepsy, FMZ-PET provided further evidence of the side and site of seizure onset in 55% of cases. Thus, FMZ-PET deserves to be included in the pre-surgical evaluation of these specific categories of epileptic patients, representing approximately half of the population considered for epilepsy surgery.

  12. Investigations on the effects of ``Ecstasy`` on cerebral glucose metabolism: an 18-FDG PET study; Untersuchungen zum Einfluss von ``Ecstasy`` auf den zerebralen Glukosemetabolismus: eine 18-FDG-PET-Studie

    Energy Technology Data Exchange (ETDEWEB)

    Schreckenberger, M.; Sabri, O.; Arning, C.; Tuttass, T.; Schulz, G.; Kaiser, H.J.; Wagenknecht, G.; Buell, U. [Klinik fuer Nuklearmedizin, Universitaetsklinik, RWTH Aachen (Germany); Gouzoulis-Mayfrank, E.; Sass, H. [Klinik fuer Psychiatrie, Universitaetsklinikum, RWTH Aachen (Germany)

    1998-12-31

    Purpose: The aim of the present study was to determine the acute effects of the `Ecstasy` analogue MDE (3,4-methylendioxyethamphetamine) on the cerebral glucose metabolism (rMRGlu) of healthy volunteers. Method: In a randomised double-blind trial, 16 healthy volunteers without a history of drug abuse were examined with 18-FDG PET 110-120 minutes after oral administration of 2 mg/kg MDE (n=8) or placebo (n=8). Beginning two minutes prior to radiotracer injection, a constant cognitive stimulation was maintained for 32 minutes using a word repetition paradigm in order to ensure constant and comparable mental conditions during cerebral 18-FDG uptake. Individual brain anatomy was represented using T1-weighted 3D flash MRI, followed by manual regionalisation into 108 regions-of-interest and PET/MRI overlay. Absolute quantification of rMRGlu and comparison of glucose metabolism under MDE versus placebo were performed using Mann-Whitney U-test. Results: Absolute global MRGlu was not significantly changed under MDE versus placebo (MDE: 41,8{+-}11,1 {mu}mol/min/100 g, placebo: 50,1{+-}18,1 {mu}mol/min/100 g, p=0,298). The normalised regional metabolic data showed a significantly decreased rMRGlu in the bilateral frontal cortex: Left frontal posterior (-7.1%, p<0.05) and right prefrontal superior (-4.6%, p<0.05). On the other hand, rMRGlu was significantly increased in the bilateral cerebellum (right: +10.1%, p<0.05; left: +7.6%, p<0.05) and in the right putamen (+6.2%, p<0.05). Conclusions: The present study revealed acute neurometabolic changes under the `Ecstasy` analogon MDE indicating a fronto-striato-cerebellar dysbalance with parallels to other psychotropic substances and various endogenous psychoses respectively. (orig.) [Deutsch] Ziel: In der vorliegenden Studie sollte die Akutwirkung des `Ecstasy`-Analogons MDE (3,4-Methylendioxyethamphetamin) auf den zentralen Glukosemetabolismus (rMRGlu) gesunder Probanden untersucht werden. Methode: In einer randomisierten

  13. Poly-crystallinity of indium-tin-oxide films improved by using simultaneous ion beam and heat treatment of the plastic substrate

    International Nuclear Information System (INIS)

    Son, Phil Kook; Kim, Tae Hyung; Choi, Suk Won; Gwag, Jin Seog

    2012-01-01

    The combined treatment effects of an ion beam with directionality and heat of a low temperature on a plastic substrate was investigated as a method to increase the electrical conductivity of indium tinoxide (ITO) films deposited on plastic substrate surfaces at low temperatures. Polyethylene terephthalate (PET) surface treatment by using an ion beam at low temperature (120 .deg. C), which can be applied to plastic substrates, improves the conductivity of ITO films. X-ray diffraction indicates that ITO films deposited on PET surfaces treated simultaneously by using an ion beam and heat of a low temperature have an almost polycrystalline structure even though they have small amorphous party on. As a supplementary measurement, the contact angle showed that the polycrystalline structure was due to a self-assembly effect at the PET surfaces. Consequently, the electrical conductivity of an ITO film deposited by using the proposed technique is three times higher than that of an ITO film treated only with heat of low temperature due to the improved polycrystalline structure.

  14. Poly-crystallinity of indium-tin-oxide films improved by using simultaneous ion beam and heat treatment of the plastic substrate

    Science.gov (United States)

    Son, Phil Kook; Kim, Taehyung; Choi, Suk-Won; Gwag, Jin Seog

    2012-08-01

    The combined treatment effects of an ion beam with directionality and heat of a low temperature on a plastic substrate was investigated as a method to increase the electrical conductivity of indiumtin-oxide (ITO) films deposited on plastic substrate surfaces at low temperatures. Polyethylene terephthalate (PET) surface treatment by using an ion beam at low temperature (120 °C), which can be applied to plastic substrates, improves the conductivity of ITO films. X-ray diffraction indicates that ITO films deposited on PET surfaces treated simultaneously by using an ion beam and heat of a low temperature have an almost polycrystalline structure even though they have small amorphous party on. As a supplementary measurement, the contact angle showed that the polycrystalline structure was due to a self-assembly effect at the PET surfaces. Consequently, the electrical conductivity of an ITO film deposited by using the proposed technique is three times higher than that of an ITO film treated only with heat of low temperature due to the improved polycrystalline structure.

  15. variabilite des productions et des revenus des exploitations

    African Journals Online (AJOL)

    3Centre de coopération internationale en recherche agronomique pour le développement (CIRAD), UMR Innovation,. Montpellier, France. Doubangolo COULIBALY, Email kone_b@yahoo.fr. RESUME. La durabilité des systèmes de production à base de coton dans un contexte de variabilité des prix aux producteurs et de ...

  16. Le statut vitaminique des individus et des populations…

    Directory of Open Access Journals (Sweden)

    Icart Jean-Claude

    2000-05-01

    Full Text Available Comme le souligne un récent rapport du Haut comité de santé publique, le statut vitaminique des individus et des populations demeure une question d’actualité. Si les études ne révèlent plus de signes évocateurs de carence, au plus des problèmes de déficiences pour certains groupes à risque, des interrogations, demeurent malgré le contexte d’abondance, concernant la couverture des besoins, laquelle pourrait s’avérer inférieure aux valeurs considérées comme satisfaisantes.

  17. Imaging corn plants with PhytoPET, a modular PET system for plant biology

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S.; Kross, B.; McKisson, J.; McKisson, J. E.; Weisenberger, A. G.; Xi, W.; Zorn, C.; Bonito, G.; Howell, C. R.; Reid, C. D.; Crowell, A.; Cumberbatch, L. C.; Topp, C.; Smith, M. F.

    2013-11-01

    PhytoPET is a modular positron emission tomography (PET) system designed specifically for plant imaging. The PhytoPET design allows flexible arrangements of PET detectors based on individual standalone detector modules built from single Hamamatsu H8500 position sensitive photomultiplier tubes and pixelated LYSO arrays. We have used the PhytoPET system to perform preliminary corn plant imaging studies at the Duke University Biology Department Phytotron. Initial evaluation of the PhytoPET system to image the biodistribution of the positron emitting tracer {sup 11}C in corn plants is presented. {sup 11}CO{sub 2} is loaded into corn seedlings by a leaf-labeling cuvette and translocation of {sup 11}C-sugars is imaged by a flexible arrangement of PhytoPET modules on each side. The PhytoPET system successfully images {sup 11}C within corn plants and allows for the dynamic measurement of {sup 11}C-sugar translocation from the leaf to the roots.

  18. Diagnostic value of [18F] FDG-PET and PET/CT in urinary bladder cancer: a meta-analysis.

    Science.gov (United States)

    Zhang, Huojun; Xing, Wei; Kang, Qinqin; Chen, Chao; Wang, Linhui; Lu, Jianping

    2015-05-01

    An early diagnosis of urinary bladder cancer is crucial for early treatment and management. The objective of this systematic review was to assess the overall diagnostic accuracy of 18 F FDG-PET and PET/CT in urinary bladder cancer with meta-analysis. The PubMed and CNKI databases were searched for the eligible studies published up to June 01, 2014. The sensitivity, specificity, and other measures of accuracy of 18 F FDG-PET and PET/CT in the diagnosis of urinary bladder cancer were pooled along with 95 % confidence intervals (CI). Summary receiver operating characteristic (ROC) curves were used to summarize overall test performance. Ten studies met our inclusion criteria. The summary estimates for 18 F FDG-PET and PET/CT in the diagnosis of urinary bladder cancer in meta-analysis were as follows: a pooled sensitivity, 0.82 (95 % confidence interval [CI], 0.75 to 0.88); a pooled specificity, 0.92 (95 % CI, 0.87 to 0.95); positive likelihood ratio, 6.80 (95 % CI, 4.31 to 10.74); negative likelihood ratio, 0.27 (95 % CI, 0.19 to 0.36); and diagnostic odds ratio, 25.18 (95 % CI, 17.58 to 70.4). The results indicate that 18 F FDG-PET and PET/CT are relatively high sensitive and specific for the diagnosis of urinary bladder cancer.

  19. Application des TIC à l'atténuation des effets des catastrophes dans ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    L'Amérique centrale est souvent aux prises avec des inondations et des ... (SIG) et de traitement des images, afin de cartographier les dangers et de modéliser les ... de l'Institut d'étude du développement international de l'Université McGill.

  20. PET/CT in staging and treatment response evaluation in lymphomas

    International Nuclear Information System (INIS)

    Bochev, P.

    2015-01-01

    Full text:The introduction of positron emission tomography (PET) and especially PET/CT with FDG in 2001 resulted in new concepts of overall management of patients with lymphoma and changed significantly the staging process and treatment response assessment. The considerable amount of literature and clinical trial data allowed leading cancer organizations like NCCN to incorporate in their current guidelines FDG-PET as a sole imaging modality in the management of Hodgkin‘s lymphoma, and an essential one in the management of FDG avid non-Hodgkin lymphoma (where indications vary based on particular histology). Main indications of FDG PET/CT in lymphoma are initial staging, restaging upon completion of therapy (EOT PET) and treatment response assessment. While staging with FDG and EOT PET restaging alone or combined with CECT have a straight-forward advantage over CT in evaluating small and borderline sized lymph nodes, bone marrow involvement and residual masses, treatment response assessment is rather challenging. By now and after long term trial evaluations, the response assessment is based on a visual assessment five point scale – Deauvillae criteria for response evaluation in HD and combined lugano criteria for NHL. The scale defines PET negative and PET positive cases as a presentation of responders versus non-responders which directly affects management. Although ESMO restricts the use of FDG-PET response evaluation in clinical trials only, NCCN go further, and bases its treatment recommendations on FDG-PET (Interim PET). Nowadays PET/CT is extensively used also in radiotherapy planning, which, in lymphoma patients include initial staging scans on a flat table, in order to assure similar position of future involved sites RT. Despite the extensive use of FDG with the above mentioned indications, neither evidence based guidelines, nor routine clinical practice could recommend follow up of lymphoma patients with FDG-PET. An exception could be made for ositive or

  1. Cost-effective analysis of PET application in NSCLC

    International Nuclear Information System (INIS)

    Gu Aichun; Liu Jianjun; Sun Xiaoguang; Shi Yiping; Huang Gang

    2006-01-01

    Objective: To evaluate the cost-effectiveness of PET and CT application for diagnosis of non-small cell lung cancer (NSCLC) in China. Methods: Using decision analysis method the diagnostic efficiency of PET and CT for diagnosis of NSCLC in china was analysed. And also the value of cost for accurate diagnosis (CAD), cost for accurate staging (CAS) and cost for effective therapy (CAT) was calculated. Results: (1) For the accurate diagnosis, CT was much more cost-effective than PET. (2) For the accurate staging, CT was still more cost-effective than PET. (3) For the all over diagnostic and therapeutic cost, PET was more cost-effective than CT. (4) The priority of PET to CT was for the diagnosis of stage I NSCLC. Conclusion: For the management of NSCLC patient in China, CT is more cost-effective for screening, whereas PET for clinical staging and monitoring therapeutic effect. (authors)

  2. Kinetic modeling in PET imaging of hypoxia

    Science.gov (United States)

    Li, Fan; Joergensen, Jesper T; Hansen, Anders E; Kjaer, Andreas

    2014-01-01

    Tumor hypoxia is associated with increased therapeutic resistance leading to poor treatment outcome. Therefore the ability to detect and quantify intratumoral oxygenation could play an important role in future individual personalized treatment strategies. Positron Emission Tomography (PET) can be used for non-invasive mapping of tissue oxygenation in vivo and several hypoxia specific PET tracers have been developed. Evaluation of PET data in the clinic is commonly based on visual assessment together with semiquantitative measurements e.g. standard uptake value (SUV). However, dynamic PET contains additional valuable information on the temporal changes in tracer distribution. Kinetic modeling can be used to extract relevant pharmacokinetic parameters of tracer behavior in vivo that reflects relevant physiological processes. In this paper, we review the potential contribution of kinetic analysis for PET imaging of hypoxia. PMID:25250200

  3. Basic study of entire whole-body PET scanners based on the OpenPET geometry

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Eiji, E-mail: rush@nirs.go.j [National Institute of Radiological Sciences, 4-9-1 Inage-ku, Chiba 263-8555 (Japan); Yamaya, Taiga; Nishikido, Fumihiko; Inadama, Naoko; Murayama, Hideo [National Institute of Radiological Sciences, 4-9-1 Inage-ku, Chiba 263-8555 (Japan)

    2010-09-21

    A conventional PET scanner has a 15-25 cm axial field-of-view (FOV) and images a whole body using about six bed positions. An OpenPET geometry can extend the axial FOV with a limited number of detectors. The entire whole-body PET scanner must be able to process a large amount of data effectively. In this work, we study feasibility of the fully 3D entire whole-body PET scanner using the GATE simulation. The OpenPET has 12 block detector rings with the ring diameter of 840 mm and each block detector ring consists of 48 depth-of-interaction (DOI) detectors. The OpenPET has the axial length of 895.95 mm with five parts of 58.95 mm open gaps. The OpenPET has higher single data loss than a conventional PET scanner at grouping circuits. NECR of the OpenPET decreases by single data loss. But single data loss is mitigated by separating the axially arranged detector into two parts. Also, multiple coincidences are found to be important for the entire whole-body PET scanner. The entire whole-body PET scanner with the OpenPET geometry promises to provide a large axial FOV with the open space and to have sufficient performance values. But single data loss at the grouping circuits and multiple coincidences are limited to the peak noise equivalent count rate (NECR) for the entire whole-body PET scanner.

  4. FDG PET and CT in locally advanced adenocarcinomas of the distal oesophagus. Clinical relevance of a discordant PET finding

    International Nuclear Information System (INIS)

    Stahl, A.; Wieder, H.; Schwaiger, M.; Weber, W.A.; Stollfuss, J.; Ott, K.; Fink, U.

    2005-01-01

    Aim: the incidence of adenocarcinomas of the distal oesophagus (ADE) has dramatically increased in Western countries. The clinical importance of a FDG PET finding discordant with CT was determined in patients with locally advanced ADE. In addition, tumour standardized uptake values (SUV) were correlated with patient survival. Patients, methods: 40 consecutive patients were analyzed retrospectively. All patients underwent an attenuation corrected FDG PET scan (neck, chest, abdomen) and contrast enhanced helical CT of the chest and abdomen. PET and CT scans were reviewed independently and concomitantly with respect to metastases in predefined lymph node sites and organs. Any discordance between PET and CT was assessed for clinical relevance. Clinical relevance was defined as a change in the overall therapeutic concept (curative vs. palliative). Follow-up imaging and histological evaluation served as the gold standard. Mean tumour SUVs were determined by 1.5 cm regions of interest placed over the tumour's maximum. Results: when read independently from the CT scan FDG PET indicated a clinically relevant change in tumour stage in 9/40 patients (23%) and a non-relevant change in 11/40 patients (28%). PET was correct in 5/9 patients (56%) with clinically relevant discordances. In 4/9 patients PET was incorrect (3 false positive due to suspicion of MI-lymph nodes or lung metastases, 1 false negative in disseminated liver metastases). With concomitant reading, PET indicated a clinically relevant change in tumour stage in 6/40 patients (15%) and a non-relevant change in 5/40 patients (13%). PET was correct in 5/6 patients (83%) with clinically relevant discordances. The patient with disseminated liver disease remained the single false negative. Overall, the benefit from PET was based on its higher diagnostic accuracy at organ sites. Tumour SUV did not correlate with patient survival. Conclusion: about half of discordances between FDG PET and CT are clinically relevant

  5. Reproducibility of Quantitative Brain Imaging Using a PET-Only and a Combined PET/MR System

    Directory of Open Access Journals (Sweden)

    Martin L. Lassen

    2017-07-01

    Full Text Available The purpose of this study was to test the feasibility of migrating a quantitative brain imaging protocol from a positron emission tomography (PET-only system to an integrated PET/MR system. Potential differences in both absolute radiotracer concentration as well as in the derived kinetic parameters as a function of PET system choice have been investigated. Five healthy volunteers underwent dynamic (R-[11C]verapamil imaging on the same day using a GE-Advance (PET-only and a Siemens Biograph mMR system (PET/MR. PET-emission data were reconstructed using a transmission-based attenuation correction (AC map (PET-only, whereas a standard MR-DIXON as well as a low-dose CT AC map was applied to PET/MR emission data. Kinetic modeling based on arterial blood sampling was performed using a 1-tissue-2-rate constant compartment model, yielding kinetic parameters (K1 and k2 and distribution volume (VT. Differences for parametric values obtained in the PET-only and the PET/MR systems were analyzed using a 2-way Analysis of Variance (ANOVA. Comparison of DIXON-based AC (PET/MR with emission data derived from the PET-only system revealed average inter-system differences of −33 ± 14% (p < 0.05 for the K1 parameter and −19 ± 9% (p < 0.05 for k2. Using a CT-based AC for PET/MR resulted in slightly lower systematic differences of −16 ± 18% for K1 and −9 ± 10% for k2. The average differences in VT were −18 ± 10% (p < 0.05 for DIXON- and −8 ± 13% for CT-based AC. Significant systematic differences were observed for kinetic parameters derived from emission data obtained from PET/MR and PET-only imaging due to different standard AC methods employed. Therefore, a transfer of imaging protocols from PET-only to PET/MR systems is not straightforward without application of proper correction methods.Clinical Trial Registration:www.clinicaltrialsregister.eu, identifier 2013-001724-19

  6. 18F-FDG PET of the hands with a dedicated high-resolution PEM system (arthro-PET): correlation with PET/CT, radiography and clinical parameters.

    Science.gov (United States)

    Mhlanga, Joyce C; Carrino, John A; Lodge, Martin; Wang, Hao; Wahl, Richard L

    2014-12-01

    The aim of this study was to prospectively determine the feasibility and compare the novel use of a positron emission mammography (PEM) scanner with standard PET/CT for evaluating hand osteoarthritis (OA) with (18)F-FDG. Institutional review board approval and written informed consent were obtained for this HIPAA-compliant prospective study in which 14 adults referred for oncological (18)F-FDG PET/CT underwent dedicated hand PET/CT followed by arthro-PET using the PEM device. Hand radiographs were obtained and scored for the presence and severity of OA. Summed qualitative and quantitative joint glycolytic scores for each modality were compared with the findings on plain radiography and clinical features. Eight patients with clinical and/or radiographic evidence of OA comprised the OA group (mean age 73 ± 7.7 years). Six patients served as the control group (53.7 ± 9.3 years). Arthro-PET quantitative and qualitative joint glycolytic scores were highly correlated with PET/CT findings in the OA patients (r = 0.86. p = 0.007; r = 0.94, p = 0.001). Qualitative arthro-PET and PET/CT joint scores were significantly higher in the OA patients than in controls (38.7 ± 6.6 vs. 32.2 ± 0.4, p = 0.02; 37.5 ± 5.4 vs. 32.2 ± 0.4, p = 0.03, respectively). Quantitative arthro-PET and PET/CT maximum SUV-lean joint scores were higher in the OA patients, although they did not reach statistical significance (20.8 ± 4.2 vs. 18 ± 1.8, p = 0.13; 22.8 ± 5.38 vs. 20.1 ± 1.54, p = 0.21). By definition, OA patients had higher radiographic joint scores than controls (30.9 ± 31.3 vs. 0, p = 0.03). Hand imaging using a small field of view PEM system (arthro-PET) with FDG is feasible, performing comparably to PET/CT in assessing metabolic joint activity. Arthro-PET and PET/CT showed higher joint FDG uptake in OA. Further exploration of arthro-PET in arthritis management is warranted.

  7. La gestion des résultats des entreprises innovantes

    OpenAIRE

    Dumas, Guillaume

    2014-01-01

    Cette thèse s’intéresse à la gestion des résultats dans le cadre des entreprises innovantes. Elle est constituée de trois articles. Dans le premier, il s’agit d’examiner si les résultats des entreprises innovantes sont gérés et si le stade de développement des innovations influence cette gestion des résultats. Il apparaît que les résultats des entreprises innovantes sont gérés à la hausse. Cette gestion ne semble intervenir qu’au cours de l’activité d’innovation (c’est-à-dire lorsque les entr...

  8. Etude des erreurs d'estimation des populations par la méthode des captures successives (DeLURY, 2 captures et des captures-recaptures (PETERSEN

    Directory of Open Access Journals (Sweden)

    LAURENT M.

    1978-01-01

    Full Text Available L'estimation des populations naturelles par capture-recapture et par captures successives est souvent entachée d'erreur car, dans de nombreux cas, l'hypothèse fondamentale d'égalité des probabilités de captures pour tous les individus dans le temps et dans l'espace n'est pas respectée. Dans le cas des populations de poissons envisagés ici, les captures ont lieu par la pêche électrique. On a pu chiffrer l'ordre de grandeur des erreurs systématiques faites sur l'estimation des peuplements, en fonction des conditions particulières, biotiques et abiotiques, des différents milieux inventoriés.

  9. Evaluation of PeneloPET Simulations of Biograph PET/CT Scanners

    Science.gov (United States)

    Abushab, K. M.; Herraiz, J. L.; Vicente, E.; Cal-González, J.; España, S.; Vaquero, J. J.; Jakoby, B. W.; Udías, J. M.

    2016-06-01

    Monte Carlo (MC) simulations are widely used in positron emission tomography (PET) for optimizing detector design, acquisition protocols, and evaluating corrections and reconstruction methods. PeneloPET is a MC code based on PENELOPE, for PET simulations which considers detector geometry, acquisition electronics and materials, and source definitions. While PeneloPET has been successfully employed and validated with small animal PET scanners, it required a proper validation with clinical PET scanners including time-of-flight (TOF) information. For this purpose, we chose the family of Biograph PET/CT scanners: the Biograph True-Point (B-TP), Biograph True-Point with TrueV (B-TPTV) and the Biograph mCT. They have similar block detectors and electronics, but a different number of rings and configuration. Some effective parameters of the simulations, such as the dead-time and the size of the reflectors in the detectors, were adjusted to reproduce the sensitivity and noise equivalent count (NEC) rate of the B-TPTV scanner. These parameters were then used to make predictions of experimental results such as sensitivity, NEC rate, spatial resolution, and scatter fraction (SF), from all the Biograph scanners and some variations of them (energy windows and additional rings of detectors). Predictions agree with the measured values for the three scanners, within 7% (sensitivity and NEC rate) and 5% (SF). The resolution obtained for the B-TPTV is slightly better (10%) than the experimental values. In conclusion, we have shown that PeneloPET is suitable for simulating and investigating clinical systems with good accuracy and short computational time, though some effort tuning of a few parameters of the scanners modeled may be needed in case that the full details of the scanners studied are not available.

  10. Value of PET/CT versus PET and CT performed as separate investigations in patients with Hodgkin's disease and non-Hodgkin's lymphoma

    International Nuclear Information System (INIS)

    Fougere, Christian la; Broeckel, Nicole; Pfluger, Thomas; Haug, Alexander; Scher, Bernhard; Hacker, Marcus; Hahn, Klaus; Tiling, Reinhold; Hundt, Walter; Reiser, Maximilan

    2006-01-01

    The aim of this study was to assess the clinical benefit of combined [ 18 F]FDG PET/CT in patients with malignant lymphoma as compared to separately performed PET and CT. Overall, 100 patients with Hodgkin's disease (HD) or non-Hodgkin's lymphoma (NHL) were included in this study. Co-registered PET/CT with [ 18 F]FDG and contrast medium was performed in 50 consecutive patients with NHL (n=38) or HD (n=12) for initial staging (IS) (n=12) or re-treatment staging (RS) (n=38). Another 50 patients with NHL (n=32) or HD (n=18) underwent separate PET and CT investigations within a time frame of 10 days for IS (n=22) or RS (n=28). Lymphoma involvement was separately evaluated for seven different regions in each patient. Each patient had clinical follow-up evaluation for >6 months. PET and CT data were analysed separately as well as side-by-side or in fused mode. In the PET/CT group, region-based evaluation for lymphoma involvement suggested a sensitivity/specificity of 85%/91% for CT, 98%/99% for PET and 98%/99% for PET/CT. In the PET and CT group, region-based evaluation showed a sensitivity/specificity of 87%/80% for CT, 98%/99% for PET and 98%/100% for PET and CT read side by side. PET was superior to CT alone and was improved further by side-by-side reading of both examinations. However, no significant difference was observed between PET/CT and separate PET and CT imaging in patients with lymphoma. (orig.)

  11. Guidelines for 18F-FDG PET and PET-CT imaging in paediatric oncology

    DEFF Research Database (Denmark)

    Stauss, J.; Franzius, C.; Pfluger, T.

    2008-01-01

    tomography ((18)F-FDG PET) in paediatric oncology. The Oncology Committee of the European Association of Nuclear Medicine (EANM) has published excellent procedure guidelines on tumour imaging with (18)F-FDG PET (Bombardieri et al., Eur J Nucl Med Mol Imaging 30:BP115-24, 2003). These guidelines, published...

  12. Software-based PET-MR image coregistration: combined PET-MRI for the rest of us

    International Nuclear Information System (INIS)

    Robertson, Matthew S.; Liu, Xinyang; Vyas, Pranav K.; Safdar, Nabile M.; Plishker, William; Zaki, George F.; Shekhar, Raj

    2016-01-01

    With the introduction of hybrid positron emission tomography/magnetic resonance imaging (PET/MRI), a new imaging option to acquire multimodality images with complementary anatomical and functional information has become available. Compared with hybrid PET/computed tomography (CT), hybrid PET/MRI is capable of providing superior anatomical detail while removing the radiation exposure associated with CT. The early adoption of hybrid PET/MRI, however, has been limited. To provide a viable alternative to the hybrid PET/MRI hardware by validating a software-based solution for PET-MR image coregistration. A fully automated, graphics processing unit-accelerated 3-D deformable image registration technique was used to align PET (acquired as PET/CT) and MR image pairs of 17 patients (age range: 10 months-21 years, mean: 10 years) who underwent PET/CT and body MRI (chest, abdomen or pelvis), which were performed within a 28-day (mean: 10.5 days) interval. MRI data for most of these cases included single-station post-contrast axial T1-weighted images. Following registration, maximum standardized uptake value (SUV max ) values observed in coregistered PET (cPET) and the original PET were compared for 82 volumes of interest. In addition, we calculated the target registration error as a measure of the quality of image coregistration, and evaluated the algorithm's performance in the context of interexpert variability. The coregistration execution time averaged 97±45 s. The overall relative SUV max difference was 7% between cPET-MRI and PET/CT. The average target registration error was 10.7±6.6 mm, which compared favorably with the typical voxel size (diagonal distance) of 8.0 mm (typical resolution: 0.66 mm x 0.66 mm x 8 mm) for MRI and 6.1 mm (typical resolution: 3.65 mm x 3.65 mm x 3.27 mm) for PET. The variability in landmark identification did not show statistically significant differences between the algorithm and a typical expert. We have presented a software

  13. Software-based PET-MR image coregistration: combined PET-MRI for the rest of us

    Energy Technology Data Exchange (ETDEWEB)

    Robertson, Matthew S.; Liu, Xinyang; Vyas, Pranav K.; Safdar, Nabile M. [Children' s National Health System, Sheikh Zayed Institute for Pediatric Surgical Innovation, Washington, DC (United States); Plishker, William; Zaki, George F. [IGI Technologies, Inc., College Park, MD (United States); Shekhar, Raj [Children' s National Health System, Sheikh Zayed Institute for Pediatric Surgical Innovation, Washington, DC (United States); IGI Technologies, Inc., College Park, MD (United States)

    2016-10-15

    With the introduction of hybrid positron emission tomography/magnetic resonance imaging (PET/MRI), a new imaging option to acquire multimodality images with complementary anatomical and functional information has become available. Compared with hybrid PET/computed tomography (CT), hybrid PET/MRI is capable of providing superior anatomical detail while removing the radiation exposure associated with CT. The early adoption of hybrid PET/MRI, however, has been limited. To provide a viable alternative to the hybrid PET/MRI hardware by validating a software-based solution for PET-MR image coregistration. A fully automated, graphics processing unit-accelerated 3-D deformable image registration technique was used to align PET (acquired as PET/CT) and MR image pairs of 17 patients (age range: 10 months-21 years, mean: 10 years) who underwent PET/CT and body MRI (chest, abdomen or pelvis), which were performed within a 28-day (mean: 10.5 days) interval. MRI data for most of these cases included single-station post-contrast axial T1-weighted images. Following registration, maximum standardized uptake value (SUV{sub max}) values observed in coregistered PET (cPET) and the original PET were compared for 82 volumes of interest. In addition, we calculated the target registration error as a measure of the quality of image coregistration, and evaluated the algorithm's performance in the context of interexpert variability. The coregistration execution time averaged 97±45 s. The overall relative SUV{sub max} difference was 7% between cPET-MRI and PET/CT. The average target registration error was 10.7±6.6 mm, which compared favorably with the typical voxel size (diagonal distance) of 8.0 mm (typical resolution: 0.66 mm x 0.66 mm x 8 mm) for MRI and 6.1 mm (typical resolution: 3.65 mm x 3.65 mm x 3.27 mm) for PET. The variability in landmark identification did not show statistically significant differences between the algorithm and a typical expert. We have presented a software

  14. Survey to investigate pet ownership and attitudes to pet care in metropolitan Chicago dog and/or cat owners.

    Science.gov (United States)

    Freiwald, Amber; Litster, Annette; Weng, Hsin-Yi

    2014-08-01

    The aims of this descriptive cross-sectional study were to investigate dog and cat acquisition and attitudes toward pet care among residents of the Chicago area (zip codes 60600-60660); to compare data obtained from owners of shelter-acquired pets with those of residents who acquired their pets from other sources; to compare data from dog owners with cat owners; and to compare pet health practices among the respondents of different zip code income groups. In-person surveys administered at five pet store locations collected data from 529 respondents, representing 582 dogs and 402 cats owned or continuously cared for in the past 3 years. Median household income data for represented zip codes was also obtained. Shelters were the most common source of cats (ppet stores, breeders or rescue organizations and to be kept as outdoor-only pets (pPet owners were most commonly 'very likely' (5 on a 1-5/5 Likert scale) to administer all hypothetical treatments discussed, although cat owners were less likely to spend time training their pet (p=0.05). Cat owners were less likely to have taken their pet to a veterinarian for vaccinations or annual physical exams (ppets were at least as willing as other respondents to administer hypothetical treatments and pay ≥$1000 for veterinary treatment. Respondents from site #3 lived in zip codes that had relatively lower median household incomes (ppets than those at the four other sites (ppet owners from all acquisition categories expressed very high levels of attachment (≥8-10/10 on a Likert scale), except for owners of cats acquired as strays (84.9%) or from the 'other' category (75.0%). Survey respondents commonly acquired their pets from shelters and those who did were at least as willing to pay for and provide veterinary care as respondents who owned pets acquired from other sources. The data collected provides a snapshot of the attitudes of survey respondents in the Chicago area toward pet acquisition and care. Copyright © 2014

  15. Relevance of positron emission tomography (PET) in oncology

    International Nuclear Information System (INIS)

    Weber, W.A.; Avril, N.; Schwaiger, M.

    1999-01-01

    Background: The clinical use of positron emission tomography (PET) for detection and staging of malignant tumors is rapidly increasing. Furthermore, encouraging results for monitoring the effects of radio- and chemotherapy have been reported. Methods: This review describes the technical principles of PET and the biological characteristics of tracers used in oncological research and patient studies. The results of clinical studies published in peer reviewed journals during the last 5 years are summarized and clinical indications for PET scans in various tumor types are discussed. Results and Conclusions: Numerous studies have documented the high diagnostic accuracy of PET studies using the glucose analogue F-18-fluordeoxyglucose (FDG-PET) for detection and staging of malignant tumors. In this field, FDG-PET has been particularly successful in lung cancer, colorectal cancer, malignant lymphoma and melanoma. Furthermore, FDG-PET has often proven to be superior to morphological imaging techniques for differentation of tumor recurrence from scar tissue. Due to the high glucose utilization of normal gray matter radiolabeled amino-acids like C-11-methionine are superior to FDG for detection and delineation of brain tumors by PET. In the future, more specific markers of tumor cell proliferation and gene expression may allow the application of PET not only for dianostic imaging also but for non-invasive biological characterization of malignant tumors and early monitoring of therapeutic interventions. (orig.) [de

  16. Improved detection of localized prostate cancer using co-registered MRI and {sup 11}C-acetate PET/CT

    Energy Technology Data Exchange (ETDEWEB)

    Jambor, Ivan, E-mail: ivjamb@utu.fi [Department of Diagnostic Radiology, University of Turku, Turku (Finland); 2nd Department of Radiology, Comenius University and St. Elisabeth Oncology Institute, Bratislava (Slovakia); Turku PET Centre, University of Turku, Turku (Finland); Borra, Ronald, E-mail: ronald.borra@tyks.fi [Department of Diagnostic Radiology, University of Turku, Turku (Finland); Turku PET Centre, University of Turku, Turku (Finland); Medical Imaging Centre of Southwest Finland, Turku University Hospital, Turku (Finland); Kemppainen, Jukka, E-mail: Jukka.Kemppainen@tyks.fi [Turku PET Centre, University of Turku, Turku (Finland); Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, Turku (Finland); Lepomaeki, Virva, E-mail: Virva.Lepomaki@tyks.fi [Turku PET Centre, University of Turku, Turku (Finland); Parkkola, Riitta, E-mail: Riitta.Parkkola@tyks.fi [Department of Diagnostic Radiology, University of Turku, Turku (Finland); Turku PET Centre, University of Turku, Turku (Finland); Medical Imaging Centre of Southwest Finland, Turku University Hospital, Turku (Finland); Dean, Kirsti, E-mail: Kirsti.Dean@tyks.fi [Department of Diagnostic Radiology, University of Turku, Turku (Finland); Medical Imaging Centre of Southwest Finland, Turku University Hospital, Turku (Finland); Alanen, Kalle, E-mail: Kalle.Alanen@tyks.fi [Department of Pathology, Turku University Hospital, Turku (Finland); Arponen, Eveliina, E-mail: Eveliina.Arponen@utu.fi [Turku PET Centre, University of Turku, Turku (Finland); Nurmi, Martti, E-mail: Martti.Nurmi@tyks.fi [Department of Surgery, Division of Urology, Turku University Hospital, Turku (Finland); Aronen, Hannu J., E-mail: Hannu.Aronen@tyks.fi [Department of Diagnostic Radiology, University of Turku, Turku (Finland); Medical Imaging Centre of Southwest Finland, Turku University Hospital, Turku (Finland); and others

    2012-11-15

    Objectives: We aimed to study the ability of contrast enhanced MRI at 1.5 T and {sup 11}C-acetate PET/CT, both individually and using fused data, to detect localized prostate cancer. Methods: Thirty-six men with untreated prostate cancer and negative for metastatic disease on pelvic CT and bone scan were prospectively enrolled. A pelvic {sup 11}C-acetate PET/CT scan was performed in all patients, and a contrast enhanced MRI scan in 33 patients (6 examinations using both endorectal coil and surface coils, and 27 examinations using surface coils only). After the imaging studies 10 patients underwent prostatectomy and 26 were treated by image guided external beam radiation treatment. Image fusion of co-registered PET and MRI data was performed based on anatomical landmarks visible on CT and MRI using an advanced in-house developed software package. PET/CT, MRI and fused PET/MRI data were evaluated visually and compared with biopsy findings on a lobar level, while a sextant approach was used for patients undergoing prostatectomy. Results: When using biopsy samples as method of reference, the sensitivity, specificity and accuracy for visual detection of prostate cancer on a lobar level by contrast enhanced MRI was 85%, 37%, 73% and that of {sup 11}C-acetate PET/CT 88%, 41%, 74%, respectively. Fusion of PET with MRI data increased sensitivity, specificity and accuracy to 90%, 72% and 85%, respectively. Conclusions: Fusion of sequentially obtained PET/CT and MRI data for the localization of prostate cancer is feasible and superior to the performance of each individual modality alone.

  17. Measurement of the temperature of the neutrons in reactor G1; Mesure de la temperature des neutrons dans la pile G1

    Energy Technology Data Exchange (ETDEWEB)

    Raievski, V; Sautiez, B [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1957-07-01

    A precise experimental method has been adapted to the analysis of the spectrum of neutrons in the thermal region. This method uses the technique of modulation applied to a beam of neutrons issuing from a characteristic point in the pile. The analysis of the spectrum is made by adjusting, by the method of least squares, an analytical form to the experimental results. In this report are given the results obtained with a beam from the centre of the moderator of G1. The spectrum of this beam essentially represents the spectrum of the neutrons in the moderator. The most probable velocity was determined by means of Maxwell's functions. The measurements were made of different moderator temperatures between 304 deg. K and 435 deg. K. (author) [French] Une methode experimentale precise a ete mise au point pour l'analyse du spectre des neutrons dans le domaine thermique. Cette methode utilise la technique de la modulation appliquee a un faisceau de neutrons issu d'un point caracteristique de la pile. L'analyse du spectre est faite en ajustant par la methode des moindres carres une forme analytique aux resultats experimentaux. Dans ce rapport, on donne les resultats obtenus sur un faisceau du centre du moderateur de G1. Le spectre de ce faisceau represente convenablement le spectre des neutrons dans le moderateur. On s'est limite ici a une fonction de Maxwell dont on a recherche la vitesse la plus probable. Les mesures ont ete faites avec une temperature du moderateur variant entre 304 deg. K et 435 deg. K. (auteur)

  18. Clinical PET activities in European and Asia-Oceanian Countries

    International Nuclear Information System (INIS)

    Tashiro, Manabu; Ito, Masatoshi; Yamaguchi, Keiichiro; Kubota, Kazuo; Fujimoto, Toshihiko; Sasaki, Hidetada; Moser, E.

    2001-01-01

    Clinical diagnosis using positron emission tomography (PET) requires high costs. Therefore, sociomedical evaluation is very important for spread of clinical PET. In this report, sociomedical situation in European and Asia-Oceanian countries, especially concerning transportation of 18 F-FDG and reimbursement of medical costs for clinical PET indications, is reported. It seems that UK, Germany and Belgium are the most advanced in clinical PET in Europe. In these countries, many PET investigations are reimbursed though systems are different among the countries. In UK, both public and private insurance gives authorization for clinical PET to some extent. In Germany, private health insurance companies give authorization but public insurance has not. In Belgium, private health insurance does not exist and public insurance gives authorization for clinical PET. Other European countries seem to be in transitional stages. Transportation of 18 F-FDG has been already started in almost every country in Europe and Asia-Oceania. In Japan, neither transportation of FDG nor full reimbursement of clinical PET has not started yet and this situation seems to be exceptional. To promote clinical PET in Japan, there is the need of at least establishing a list of clinical indications for PET investigations and establishing commercial-based 18 F-FDG supplying system. They could be regarded as a kind of infrastructure for spread of clinical PET. (author)

  19. Performance evaluation and calibration of the neuro-pet scanner

    International Nuclear Information System (INIS)

    Sank, V.J.; Brooks, R.A.; Cascio, H.E.; Di Chiro, G.; Friauf, W.S.; Leighton, S.B.

    1983-01-01

    The Neuro-PET is a circular ring seven-slice positron emission tomograph designed for imaging human heads and small animals. The scanner uses 512 bismuth germanate detectors 8.25 mm wide packed tightly together in four layers to achieve high spatial resolution (6-7 mm FWHM) without the use of beam blockers. Because of the small 38 cm ring diameter, the sensitivity is also very high: 70,000 c/s per true slice with medium energy threshold (375 keV) for a 20 cm diameter phantom containing 1 μCi/cc of positron-emitting activity, according to a preliminary measurement. There are three switch-selectable thresholds, and the sensitivity will be higher in the low threshold setting. The Neuro-PET is calibrated with a round or elliptical phantom that approximates a patient's head; this method eliminates the effects of scatter and self-attenuation to first order. Further software corrections for these artifacts are made in the reconstruction program, which reduce the measured scatter to zero, as determined with a 5 cm cold spot. With a 1 cm cold spot, the apparent activity at the center of the cold spot is 18% of the surrounding activity, which is clearly a consequence of the limits of spatial resolution, rather than scatter. The Neuro-PET has been in clinical operation since June 1982, and approximately 30 patients have been scanned to date

  20. 11C-methionine PET as a prognostic marker in patients with glioma: comparison with18F-FDG PET

    International Nuclear Information System (INIS)

    Kim, Sungeun; Chung, June-Key; Jeong, Jae Min; Im, So-Hyang; Kim, Dong Gyu; Jung, Hee Won; Lee, Dong Soo; Lee, Myung Chul

    2005-01-01

    The purpose of this study was to compare the prognostic value of 11 C-methionine (MET) and 18 F-fluorodeoxyglucose (FDG) positron emission tomography (PET) in glioma patients. The study population comprised 47 patients with gliomas (19 glioblastoma, 28 others). Pretreatment magnetic resonance imaging, MET PET and FDG PET were performed within a time interval of 2 weeks in all patients. The uptake ratio and standard uptake values were calculated. Univariate and multivariate analyses were done to determine significant prognostic factors. Ki-67 index was measured by immunohistochemical staining, and compared with FDG and MET uptake in glioma. Among the several clinicopathological prognostic factors, tumour pathology (glioblastoma or not), age (≥60 or <60 years), Karnofsky performance status (KPS) (≥70 or <70) and MET PET (higher uptake or not compared with normal cortex) were found to be significant predictors by univariate analysis. In multivariate analysis, tumour pathology, KPS and MET PET were identified as significant independent predictors. The Ki-67 proliferation index was significantly correlated with MET uptake (r=0.64), but not with FDG uptake. Compared with FDG PET in glioma, MET PET was an independent significant prognostic factor and MET uptake was correlated with cellular proliferation. MET PET may be a useful biological prognostic marker in glioma patients. (orig.)

  1. Decay correction methods in dynamic PET studies

    International Nuclear Information System (INIS)

    Chen, K.; Reiman, E.; Lawson, M.

    1995-01-01

    In order to reconstruct positron emission tomography (PET) images in quantitative dynamic studies, the data must be corrected for radioactive decay. One of the two commonly used methods ignores physiological processes including blood flow that occur at the same time as radioactive decay; the other makes incorrect use of time-accumulated PET counts. In simulated dynamic PET studies using 11 C-acetate and 18 F-fluorodeoxyglucose (FDG), these methods are shown to result in biased estimates of the time-activity curve (TAC) and model parameters. New methods described in this article provide significantly improved parameter estimates in dynamic PET studies

  2. Preparation of the PET/PP/PE/EVA polymeric blend from PET bottles and modification studies induced by ionizing radiation

    International Nuclear Information System (INIS)

    Rossini, Edvaldo Luis

    2005-01-01

    The environmental pollution is one of the biggest problems nowadays. Amidst the pollutants, plastic and especially the packings type P ET bottles , which comprise of poly(ethylene terephthalate) (PET), polypropylene (PP), polyethylene (PE) and poly[ethylene-co-(vinyl acetate)] (EVA) are causing big damage in the environment. In this work, the polymeric blend PET/PP/PE/EVA was obtained by a process of simplified mechanical recycling from 'PET bottles' after consumption, with the objective to find solution to this environmental problem. It was also studied the different ionizing radiation doses effects (25, 50, 75, 100, 150, 200, 300, 400 e 500 kGy) on the blend properties using an electron beam accelerator. The mechanical (tensile strength, impact and hardness), thermal (Vicat softening temperature, differential scanning calorimetry and termogravimetric) and microscopic (light microscopy and scanning electron microscopy) properties of the blend were studied. The analysis of the results showed to be a not mixing and compatible blend, with mechanical and thermal properties (which appeared to be similar to the properties of the component material used in the blend in separate) satisfactory, resulting in a resistant material and of low cost, being able to be used in the production of parts that do not demand specifications techniques. The use of the ionizing radiation improved some of the mechanical and thermal properties of the blend (these modifications had been random and irregular, depending directly on the dose of applied radiation and the type of property) making possible more specific applications for this material. (author)

  3. {sup 18}F-PET imaging: frequency, distribution and appearance of benign lesions; Die Positronenemissionstomographie des Skelettsystems mit {sup 18}FNa: Haeufigkeit, Befundmuster und Verteilung benigner Veraenderungen

    Energy Technology Data Exchange (ETDEWEB)

    Schirrmeister, H.; Kotzerke, J.; Rentschler, M.; Traeger, H.; Fenchel, S.; Diederichs, C.G.; Reske, S.N. [Ulm Univ. (Germany). Abt. Nuklearmedizin; Nuessle, K. [Ulm Univ. (Germany). Abt. fuer Roentgendiagnostik

    1998-09-01

    Purpose: We evaluated the frequency, distribution and appearance of benign lesions in {sup 18}F-PET scans. Methods: Between March 1996 and May 1997, {sup 18}F-PET scans were performed in 59 patients in addition to conventional planar bone scintigraphy. Eleven patients were subjected to additional SPECT imaging. The main indication was searching for bone metastases (58 pat.). The diagnosis was confirmed radiologically. Results: With {sup 18}F-PET in 39 patients (66,1%) 152 benign lesions, mostly located in the spine were detected. {sup 99m}Tc bone scans revealed 45 lesions in 10 patients. Osteoarthritis of the intervertebral articulations (69%) or of the acromioclavicular joint (15%) were the most common reasons for degenerative lesions detected with {sup 18}F-PET. Osteophytes appeared as hot lesions located at two adjacent vertebral endplates. Osteoarthritis of the intervertebral articulations showed an enhanced tracer uptake at these localizations, whereas endplate fractures of the vertebral bodies appeared very typically; solitary fractures of the ribs could not be differentiated from metastases. Rare benign lesions were not studied. Conclusion: Most of the degenerative lesions (84%) detected with {sup 18}F-PET had a very typical appearance and could be detected with the improved spatial resolution and advantages of a tomographic technique. {sup 18}F-PET had an increased accuracy in detecting degenerative bone lesions. (orig.) [Deutsch] Ziel: Wir untersuchten Haeufigkeit und Befundmuster benigner Skelettveraenderungen mit {sup 18}F-PET. Material und Methoden: Zwischen 3/96 und 5/97 untersuchten wir 59 Patienten mit {sup 18}F-PET zusaetzlich zur planaren, bei 11 Patienten durch SPECT ergaenzten konventionellen Skelettszintigraphie (KS). Hauptindikation war die Metastasensuche (58 Pat.). Die Befundkontrolle erfolgte radiologisch. Ergebnisse: {sup 18}F-PET zeigte bei 39 Patienten (66,1%) 152 meist in der Wirbelsaeule lokalisierte, benigne Mehranreicherungen. Mit der

  4. Radiation Protection in PET-CT

    International Nuclear Information System (INIS)

    2011-10-01

    The presentation is based on the following areas: radiological monitoring installations in the production of PET radiopharmaceuticals, personal dose, dosage advertising, nuclear medicine, PET, radiation protection of patients, requirements for medical practice, regulatory aspects, dose calculation, shields, quantities, center Cudim, cyclotron and synthesis of radiopharmaceuticals, biological effects of radiation protection practices.

  5. Selected PET radiomic features remain the same.

    Science.gov (United States)

    Tsujikawa, Tetsuya; Tsuyoshi, Hideaki; Kanno, Masafumi; Yamada, Shizuka; Kobayashi, Masato; Narita, Norihiko; Kimura, Hirohiko; Fujieda, Shigeharu; Yoshida, Yoshio; Okazawa, Hidehiko

    2018-04-17

    We investigated whether PET radiomic features are affected by differences in the scanner, scan protocol, and lesion location using 18 F-FDG PET/CT and PET/MR scans. SUV, TMR, skewness, kurtosis, entropy, and homogeneity strongly correlated between PET/CT and PET/MR images. SUVs were significantly higher on PET/MR 0-2 min and PET/MR 0-10 min than on PET/CT in gynecological cancer ( p = 0.008 and 0.008, respectively), whereas no significant difference was observed between PET/CT, PET/MR 0-2 min , and PET/MR 0-10 min images in oral cavity/oropharyngeal cancer. TMRs on PET/CT, PET/MR 0-2 min , and PET/MR 0-10 min increased in this order in gynecological cancer and oral cavity/oropharyngeal cancer. In contrast to conventional and histogram indices, 4 textural features (entropy, homogeneity, SRE, and LRE) were not significantly different between PET/CT, PET/MR 0-2 min , and PET/MR 0-10 min images. 18 F-FDG PET radiomic features strongly correlated between PET/CT and PET/MR images. Dixon-based attenuation correction on PET/MR images underestimated tumor tracer uptake more significantly in oral cavity/oropharyngeal cancer than in gynecological cancer. 18 F-FDG PET textural features were affected less by differences in the scanner and scan protocol than conventional and histogram features, possibly due to the resampling process using a medium bin width. Eight patients with gynecological cancer and 7 with oral cavity/oropharyngeal cancer underwent a whole-body 18 F-FDG PET/CT scan and regional PET/MR scan in one day. PET/MR scans were performed for 10 minutes in the list mode, and PET/CT and 0-2 min and 0-10 min PET/MR images were reconstructed. The standardized uptake value (SUV), tumor-to-muscle SUV ratio (TMR), skewness, kurtosis, entropy, homogeneity, short-run emphasis (SRE), and long-run emphasis (LRE) were compared between PET/CT, PET/MR 0-2 min , and PET/MR 0-10 min images.

  6. Sensory analysis of pet foods.

    Science.gov (United States)

    Koppel, Kadri

    2014-08-01

    Pet food palatability depends first and foremost on the pet and is related to the pet food sensory properties such as aroma, texture and flavor. Sensory analysis of pet foods may be conducted by humans via descriptive or hedonic analysis, pets via acceptance or preference tests, and through a number of instrumental analysis methods. Sensory analysis of pet foods provides additional information on reasons behind palatable and unpalatable foods as pets lack linguistic capabilities. Furthermore, sensory analysis may be combined with other types of information such as personality and environment factors to increase understanding of acceptable pet foods. Most pet food flavor research is proprietary and, thus, there are a limited number of publications available. Funding opportunities for pet food studies would increase research and publications and this would help raise public awareness of pet food related issues. This mini-review addresses current pet food sensory analysis literature and discusses future challenges and possibilities. © 2014 Society of Chemical Industry.

  7. PET and SPECT in psychiatry

    International Nuclear Information System (INIS)

    Dierckx, Rudi A.J.O.; Otte, Andreas; Vries, Erik F.J. de; Waarde, Aren van

    2014-01-01

    Covers classical psychiatric disorders as well as other subjects such as suicide, sleep, eating disorders, and autism. Emphasis on a multidisciplinary approach. Written by internationally acclaimed experts. PET and SPECT in Psychiatry showcases the combined expertise of renowned authors whose dedication to the investigation of psychiatric disease through nuclear medicine technology has achieved international recognition. The classical psychiatric disorders as well as other subjects - such as suicide, sleep, eating disorders, and autism - are discussed and the latest results in functional neuroimaging are detailed. Most chapters are written jointly by a clinical psychiatrist and a nuclear medicine expert to ensure a multidisciplinary approach. This state of the art compendium will be valuable to all who have an interest in the field of neuroscience, from the psychiatrist and the radiologist/nuclear medicine specialist to the interested general practitioner and cognitive psychologist. It is the first volume of a trilogy on PET and SPECT imaging in the neurosciences; other volumes will focus on PET and SPECT in neurology and PET and SPECT of neurobiological systems.

  8. PET and SPECT in psychiatry

    Energy Technology Data Exchange (ETDEWEB)

    Dierckx, Rudi A.J.O. [University Medical Center Groningen (Netherlands). Dept. of Nuclear Medicine and Molecular Imaging; Ghent Univ. (Belgium); Otte, Andreas [Univ. of Applied Sciences Offenburg (Germany). Faculty of Electrical Engineering and Information Technology; Vries, Erik F.J. de; Waarde, Aren van (eds.) [University Medical Center Groningen (Netherlands). Dept. of Nuclear Medicine and Molecular Imaging

    2014-09-01

    Covers classical psychiatric disorders as well as other subjects such as suicide, sleep, eating disorders, and autism. Emphasis on a multidisciplinary approach. Written by internationally acclaimed experts. PET and SPECT in Psychiatry showcases the combined expertise of renowned authors whose dedication to the investigation of psychiatric disease through nuclear medicine technology has achieved international recognition. The classical psychiatric disorders as well as other subjects - such as suicide, sleep, eating disorders, and autism - are discussed and the latest results in functional neuroimaging are detailed. Most chapters are written jointly by a clinical psychiatrist and a nuclear medicine expert to ensure a multidisciplinary approach. This state of the art compendium will be valuable to all who have an interest in the field of neuroscience, from the psychiatrist and the radiologist/nuclear medicine specialist to the interested general practitioner and cognitive psychologist. It is the first volume of a trilogy on PET and SPECT imaging in the neurosciences; other volumes will focus on PET and SPECT in neurology and PET and SPECT of neurobiological systems.

  9. PET and PET/CT in malignant melanoma; PET y PET/CT en melanoma maligno

    Energy Technology Data Exchange (ETDEWEB)

    Garcia O, J R [Nuclear Medicine and Molecular Imaging PET/CT, Centro Medico ABC, Mexico D.F. (Mexico)

    2007-07-01

    The advantages that it has the PET/CT are: 1. It diminishes mainly positive false lesions. It identifies physiologic accumulate places. 2. It diminishes in smaller grade false negative. Small injuries. Injuries with low grade concentration. Injure on intense activity areas. 3. Precise anatomical localization of accumulate places. 4. Reduction of the acquisition time. (Author)

  10. SPECT and PET imaging in epilepsia

    International Nuclear Information System (INIS)

    Landvogt, C.

    2007-01-01

    In preoperative localisation of epileptogenic foci, nuclear medicine diagnostics plays a crucial role. FDG-PET is used as first line diagnostics. In case of inconsistent MRI, EEG and FDG-PET findings, 11 C-Flumazenil-PET or ictal and interictal perfusion-SPECT should be performed. Other than FDG, Flumazenil can help to identify the extend of the region, which should be resected. To enhance sensitivity and specificity, further data analysis using voxelbased statistical analyses or SISCOM (substraction ictal SPECT coregistered MRI) should be performed

  11. Clinical application of PET in abdominal cancers

    International Nuclear Information System (INIS)

    Choi, Chang Woon

    2002-01-01

    Clinical application of positron emission tomography (PET) is rapidly increasing for the detection and staging of cancer at whole-body studies performed with the glucose analogue tracer 2-[fluorine-18]fluoro-2-deoxy-D-glucose (FG). Although FDG PET cannot match the anatomic resolution of conventional imaging techniques in the liver and the other abdominal organs, it is particularly useful for identification and characterization of the entire body simultaneously. FDG PET can show foci of metastatic disease that may not be apparent at conventional anatomic imaging and can aid in the characterizing of indeterminate soft-tissue masses. Most abdominal cancer requires surgical management. FGD PET can improve the selection of patients for surgical treatment and thereby reduce the morbidity and mortality associated with inappropriate surgery. FDG PET is also useful for the early detection of recurrence and the monitoring of therapeutic effect. The abdominal cancers, such as gastroesophageal cancer, colorectal cancer, liver cancer and pancreatic cancer, are common malignancies in Korea, and PET is one of the most promising and useful methodologies for the management of abdominal cancers

  12. Advances in prostate-specific membrane antigen PET of prostate cancer.

    Science.gov (United States)

    Bouchelouche, Kirsten; Choyke, Peter L

    2018-05-01

    In recent years, a large number of reports have been published on prostate-specific membrane antigen (PSMA)/PET in prostate cancer (PCa). This review highlights advances in PSMA PET in PCa during the past year. PSMA PET/computed tomography (CT) is useful in detection of biochemical recurrence, especially at low prostate-specific antigen (PSA) values. The detection rate of PSMA PET is influenced by PSA level. For primary PCa, PSMA PET/CT shows promise for tumour localization in the prostate, especially in combination with multiparametric MRI (mpMRI). For primary staging, PSMA PET/CT can be used in intermediate and high-risk PCa. Intraoperative PSMA radioligand guidance seems promising for detection of malignant lymph nodes. While the use of PSMA PET/MRI in primary localized disease is limited to high and intermediate-risk patients and localized staging, in the recurrence setting, PET/MRI can be particularly helpful when the lesions are subtle. PSMA PET/CT is superior to choline PET/CT and other conventional imaging modalities. Molecular imaging with PSMA PET continues to pave the way for personalized medicine in PCa.However, large prospective clinical studies are still needed to fully evaluate the role of PSMA PET/CT and PET/MRI in the clinical workflow of PCa.

  13. SPECT and PET imaging in epilepsy

    International Nuclear Information System (INIS)

    Semah, F.

    2007-01-01

    Positron emission tomography (PET) and single photon emission computed tomography (SPECT) imaging are very useful for the management of patients with medically refractory partial epilepsy. Presurgical evaluation of patients with medically refractory partial epilepsy often included PET imaging using FDG. The use of SPECT in these patients adds some more information and gives the clinicians the possibility of having ictal imaging. Furthermore, PET and SPECT imaging are performed to better understand the pathophysiology of epilepsy. (authors)

  14. The MiniPET: a didactic PET system

    International Nuclear Information System (INIS)

    Pedro, R; Silva, J; Maio, A; Gurriana, L; Silva, J M; Augusto, J Soares

    2013-01-01

    The MiniPET project aims to design and build a small PET system. It consists of two 4 × 4 matrices of 16 LYSO scintillator crystals and two PMTs with 16 channels resulting in a low cost system with the essential functionality of a clinical PET instrument. It is designed to illustrate the physics of the PET technique and to provide a didactic platform for the training of students and nuclear imaging professionals as well as for scientific outreach. The PET modules can be configured to test for the coincidence of 511 keV gamma rays. The model has a flexible mechanical setup [1] and can simulate 14 diferent ring geometries, from a configuration with as few as 18 detectors per ring (ring radius φ=51 mm), up to a geometry with 70 detectors per ring (φ=200 mm). A second version of the electronic system [2] allowed measurement and recording of the energy deposited in 4 detector channels by photons from a 137 Cs radioactive source and by photons resulting of the annihilation of positrons from a 22 Na radioactive source. These energy spectra are used for detector performance studies, as well as angular dependency studies. In this paper, the mechanical setup, the front-end high-speed analog electronics, the digital acquisition and control electronics implemented in a FPGA, as well as the data-transfer interface between the FPGA board and a host PC are described. Recent preliminary results obtained with the 4 active channels in the prototype are also presented.

  15. Accuracy of whole-body FDG-PET and FDG-PET/CT in M staging of nasopharyngeal carcinoma: A systematic review and meta-analysis

    International Nuclear Information System (INIS)

    Chang, Ming-Che; Chen, Jin-Hua; Liang, Ji-An; Yang, Kuang-Tao; Cheng, Kai-Yuan; Kao, Chia-Hung

    2013-01-01

    Background: A meta-analysis was conducted to evaluate the accuracy of whole-body positron emission tomography (PET) or PET/CT in M staging of nasopharyngeal carcinoma (NPC). Methods: Through a search of relevant English language studies from October 1996 to September 2011, pooled estimated sensitivity, specificity, positive likelihood ratios, negative likelihood ratios, and summary receiver operating characteristic (SROC) curves of whole-body PET or PET/CT in M staging of NPC were calculated. Results: Three PET and 5 PET/CT studies were identified. The pooled sensitivity, specificity, positive likelihood ratio, and negative likelihood ratio of FDG-PET or PET/CT were 0.83 (95% confidence interval [CI], 0.77–0.88), 0.97 (95% CI, 0.95–0.98), 23.38 (95% CI, 16.22–33.69), and 0.19 (95% CI, 0.13–0.25), respectively. The area under curve was 0.9764 and Q* index estimate was 0.9307 for FDG-PET or PET/CT. Conclusion: Current evidence confirms the good diagnostic performance of the whole-body FDG-PET or PET/CT in M staging of NPC

  16. Performance of integrated FDG-PET/contrast-enhanced CT in the staging and restaging of colorectal cancer: Comparison with PET and enhanced CT

    International Nuclear Information System (INIS)

    Dirisamer, Albert; Halpern, Benjamin S.; Floery, Daniel; Wolf, Florian; Beheshti, Mohsen; Mayerhoefer, Marius E.; Langsteger, Werner

    2010-01-01

    Objective: The purpose of this study was to assess the diagnostic value of PET/CT as a one step examination in patients with colorectal cancer. Therefore we proved whether diagnostic PET/CT adds information over PET or contrast-enhanced CT alone for staging or restaging of patients with colorectal cancer. Methods: Seventy-three patients (46 males and 27 females; age range: 50-81 years; mean age: 67 years) with known colorectal cancer underwent 18F-FDG-PET/CT for staging or restaging. Results: Of the 73 patients 26 patients underwent PET/CT for staging and 47 for restaging. 266 metastases could be detected in 60 patients. Contrast-enhanced PET/CT had a lesion-based sensitivity of 100%, contrast-enhanced CT of 91% and PET of 85%. PET/CT identified 2 lesions as false positive. PET/CT could also reach a patient-based sensitivity of 100%, which was superior to contrast-enhanced CT and PET. Conclusion: Our study clearly demonstrated the added value of contrast-enhanced PET/CT in staging and restaging patients with colorectal cancer over CT and PET alone.

  17. The value of 18F-DOPA PET-CT in patients with medullary thyroid carcinoma: comparison with 18F-FDG PET-CT

    International Nuclear Information System (INIS)

    Beheshti, Mohsen; Poecher, Sigrid; Vali, Reza; Nader, Michael; Langsteger, Werner; Waldenberger, Peter; Broinger, Gabriele; Kohlfuerst, Susanne; Pirich, Christian; Dralle, Henning

    2009-01-01

    The purpose of this prospective study was to compare the value of DOPA PET-CT with FDG PET-CT in the detection of malignant lesions in patients with medullary thyroid carcinoma (MTC). Twenty-six consecutive patients (10 men, 16 women, mean age 59 ± 14 years) with elevated calcitonin levels were evaluated in this prospective study. DOPA and FDG PET-CT modalities were performed within a maximum of 4 weeks (median 7 days) in all patients. The data were evaluated on a patient- and lesion-based analysis. The final diagnosis of positive PET lesions was based on histopathological findings and/or imaging follow-up studies (i.e., DOPA and/or FDG PET-CT) for at least 6 months (range 6-24 months). In 21 (21/26) patients at least one malignant lesion was detected by DOPA PET, while only 15 (15/26) patients showed abnormal FDG uptake. DOPA PET provided important additional information in the follow-up assessment in seven (27%) patients which changed the therapeutic management. The patient-based analysis of our data demonstrated a sensitivity of 81% for DOPA PET versus 58% for FDG PET, respectively. In four (4/26) postoperative patients DOPA and FDG PET-CT studies were negative in spite of elevated serum calcitonin and CEA levels as well as abnormal pentagastrin tests. Overall 59 pathological lesions with abnormal tracer uptake were seen on DOPA and/or FDG PET studies. In the final diagnosis 53 lesions proved to be malignant. DOPA PET correctly detected 94% (50/53) of malignant lesions, whereas only 62% (33/53) of malignant lesions were detected with FDG PET. DOPA PET-CT showed superior results to FDG PET-CT in the preoperative and follow-up assessment of MTC patients. Therefore, we recommend DOPA PET-CT as a one-stop diagnostic procedure to provide both functional and morphological data in order to select those patients who may benefit from (re-)operation with curative intent as well as guiding further surgical procedures. (orig.)

  18. Injectabilite des coulis de ciment dans des milieux fissures

    Science.gov (United States)

    Mnif, Thameur

    Le travail presente ici est un bilan du travaux de recherche effectues sur l'injectabilite des coulis de ciment dans lu milieux fissures. Un certain nombre de coulis a base de ciment Portland et microfin ont ete selectionnes afin de caracteriser leur capacite a penetrer des milieux fissures. Une partie des essais a ete menee en laboratoire. L'etude rheologique des differents melanges a permis de tester l'influence de l'ajout de superplastifiant et/ou de fumee de silice sur la distribution granulometrique des coulis et par consequent sur leur capacite a injecter des colonnes de sable simulant un milieu fissure donne. La classe granulometrique d'un coulis, sa stabilite et sa fluidite sont apparus comme les trois facteurs principaux pour la reussite d'une injection. Un facteur de finesse a ete defini au cours de cette etude: base sur la classe granulometrique du ciment et sa stabilite, il peut entrer dans la formulation theorique du debit d'injection avant application sur chantier. La deuxieme et derniere partie de l'etude presente les resultats de deux projets de recherche sur l'injection realises sur chantier. L'injection de dalles de beton fissurees a permis le suivi de l'evolution des pressions avec la distance au point d'injection. L'injection de murs de maconnerie a caractere historique a montre l'importance de la definition de criteres de performance des coulis a utiliser pour traiter un milieu donne et pour un objectif donne. Plusieurs melanges peuvent ainsi etre predefinis et mis a disposition sur le chantier. La complementarite des ciments traditionnels et des ciments microfins devient alors un atout important. Le choix d'utilisation de ces melanges est fonction du terrain rencontre. En conclusion, cette recherche etablit une methodologie pour la selection des coulis a base de ciment et des pressions d'injection en fonction de l'ouverture des fissures ou joints de construction.

  19. Validating PET segmentation of thoracic lesions-is 4D PET necessary?

    DEFF Research Database (Denmark)

    Nielsen, M. S.; Carl, J.

    2017-01-01

    Respiratory-induced motions are prone to degrade the positron emission tomography (PET) signal with the consequent loss of image information and unreliable segmentations. This phantom study aims to assess the discrepancies relative to stationary PET segmentations, of widely used semiautomatic PET...... segmentation methods on heterogeneous target lesions influenced by motion during image acquisition. Three target lesions included dual F-18 Fluoro-deoxy-glucose (FDG) tracer concentrations as high-and low tracer activities relative to the background. Four different tracer concentration arrangements were...... segmented using three SUV threshold methods (Max40%, SUV40% and 2.5SUV) and a gradient based method (GradientSeg). Segmentations in static 3D-PET scans (PETsta) specified the reference conditions for the individual segmentation methods, target lesions and tracer concentrations. The motion included PET...

  20. Use of fluorine-18-BPA PET images and image registration to enhance radiation treatment planning for boron neutron capture therapy

    Science.gov (United States)

    Khan, Mohammad Khurram

    The Monte-Carlo based simulation environment for radiation therapy (SERA) software is used to simulate the dose administered to a patient undergoing boron neutron capture therapy (BNCT). Point sampling of tumor tissue results in an estimate of a uniform boron concentration scaling factor of 3.5. Under conventional treatment protocols, this factor is used to scale the boron component of the dose linearly and homogenously within the tumor and target volumes. The average dose to the tumor cells by such a method could be improved by better methods of quantifying the in-vivo 10B biodistribution. A better method includes radiolabeling para-Boronophenylalanine (p-BPA) with 18F and imaging the pharmaceutical using positron emission tomography (PET). This biodistribution of 18F-BPA can then be used to better predict the average dose delivered to the tumor regions. This work uses registered 18F-BPA PET images to incorporate the in-vivo boron biodistribution within current treatment planning. The registered 18F-BPA PET images are then coupled in a new computer software, PET2MRI.m, to linearly scale the boron component of the dose. A qualititative and quantitative assessment of the dose contours is presented using the two approaches. Tumor volume, tumor axial extent, and target locations are compared between using MRI or PET images to define the tumor volume. In addition, peak-to-normal brain value at tumor axial center is determined for pre and post surgery patients using 18F-BPA PET images. The differences noted between the registered GBM tumor volumes (range: 34.04--136.36%), tumor axial extent (range: 20--150%), and the beam target location (1.27--4.29 cm) are significantly different. The peak-to-normal brain values are also determined at the tumor axial center using the 18F-BPA PET images. The peak-to-normal brain values using the last frame of the pre-surgery study for the GBM patients ranged from 2.05--3.4. For post surgery time weighted PET data, the peak

  1. La gouvernance des risques naturels et la problematique des ...

    African Journals Online (AJOL)

    Depuis quelques années, la gouvernance des risques naturels dus aux inondations remet en cause les processus de mise en oeuvre des politiques urbaines et la qualité de la structure des aménagements dans les grandes villes du Golfe de Guinée. La perception de la gouvernance et l'application des politiques de ...

  2. PET imaging in pediatric neuroradiology: current and future applications

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sunhee [Children' s Hospital of Pittsburgh of UPMC, Department of Radiology, Pittsburgh, PA (United States); Salamon, Noriko [UCLA David Geffen School of Medicine at UCLA, Department of Radiology, Ronald Reagan UCLA Medical Center, Los Angeles, CA (United States); Jackson, Hollie A.; Blueml, Stefan [Keck School of Medicine of USC, Department of Radiology, Childrens Hospital Los Angeles, Los Angeles, CA (United States); Panigrahy, Ashok [Children' s Hospital of Pittsburgh of UPMC, Department of Radiology, Pittsburgh, PA (United States); Keck School of Medicine of USC, Department of Radiology, Childrens Hospital Los Angeles, Los Angeles, CA (United States)

    2010-01-15

    Molecular imaging with positron emitting tomography (PET) is widely accepted as an essential part of the diagnosis and evaluation of neoplastic and non-neoplastic disease processes. PET has expanded its role from the research domain into clinical application for oncology, cardiology and neuropsychiatry. More recently, PET is being used as a clinical molecular imaging tool in pediatric neuroimaging. PET is considered an accurate and noninvasive method to study brain activity and to understand pediatric neurological disease processes. In this review, specific examples of the clinical use of PET are given with respect to pediatric neuroimaging. The current use of co-registration of PET with MR imaging is exemplified in regard to pediatric epilepsy. The current use of PET/CT in the evaluation of head and neck lymphoma and pediatric brain tumors is also reviewed. Emerging technologies including PET/MRI and neuroreceptor imaging are discussed. (orig.)

  3. PET imaging in pediatric neuroradiology: current and future applications

    International Nuclear Information System (INIS)

    Kim, Sunhee; Salamon, Noriko; Jackson, Hollie A.; Blueml, Stefan; Panigrahy, Ashok

    2010-01-01

    Molecular imaging with positron emitting tomography (PET) is widely accepted as an essential part of the diagnosis and evaluation of neoplastic and non-neoplastic disease processes. PET has expanded its role from the research domain into clinical application for oncology, cardiology and neuropsychiatry. More recently, PET is being used as a clinical molecular imaging tool in pediatric neuroimaging. PET is considered an accurate and noninvasive method to study brain activity and to understand pediatric neurological disease processes. In this review, specific examples of the clinical use of PET are given with respect to pediatric neuroimaging. The current use of co-registration of PET with MR imaging is exemplified in regard to pediatric epilepsy. The current use of PET/CT in the evaluation of head and neck lymphoma and pediatric brain tumors is also reviewed. Emerging technologies including PET/MRI and neuroreceptor imaging are discussed. (orig.)

  4. PET imaging in breast cancer

    International Nuclear Information System (INIS)

    Bombardieri, E.; Crippa, F.

    2001-01-01

    The basis of tumour imaging with PET is a specific uptake mechanism of positron emitting radiopharmaceuticals. Among the potential tracers for breast cancer (fluorodeoxyglucose, methionine, tyrosine, fluoro-estradiol, nor-progesterone), 2-deoxy-2-fluoro-D-glucose labelled with fluorine (FDG) is the most widely used radiopharmaceutical because breast cancer is particularly avid of FDG and 18 F has the advantages of the a relatively long physical half-life. Mammography is the first choice examination in studying breast masses, due to its very good performances, an excellent compliance and the best value regarding the cost/effectiveness aspects. The FDG uptake in tissue correlates with the histological grade and potential aggressiveness of breast cancer and this may have prognostic consequences. Besides the evaluation of breast lesions, FDG-PET shows a great efficacy in staging lymph node involvement prior surgery and this could have a great value in loco-regional staging. Whole body PET provides also information with regard to metastasis localizations both in soft tissue and bone, and plays an important clinical role mainly in detecting recurrent metastatic disease. In fact for its metabolic characteristics PET visualizes regions of enhanced metabolic activity and can complete other imaging modalities based on structural anatomic changes. Even though CT and MRI show superior resolution characteristics, it has been demonstrated that PET provides more accurate information in discriminating between viable tumour, fibrotic scar or necrosis. These statements are coming from the examination of more than 2000 breast cancer detection

  5. PET/CT与PET/MR在诊断宫颈癌原发灶及评价盆腔淋巴结转移的比较研究%Value of PET/CT and PET/MR in diagnosing primary cervical cancer and evaluating pelvic lymph node metastasis: Comparative study

    Institute of Scientific and Technical Information of China (English)

    尚靳; 孙洪赞; 辛军; 郭启勇

    2018-01-01

    目的 比较PET/CT和PET/MR在诊断宫颈癌原发灶及盆腔淋巴结转移中的应用价值.方法 对40例宫颈癌患者于治疗前分别行PET/CT和PET/MR检查并进行评价.采用Kappa一致性检验及配对x2检验分别评价PET/CT和PET/MR与金标准的诊断一致性及差异.采用ROC曲线分析两者对盆腔转移淋巴结的诊断效能,采用秩和检验分析两者评价转移淋巴结的可见性及诊断自信度的差异.结果 PET/MR分期与金标准的诊断一致性显著高于PET/CT,二者对宫颈癌分期诊断的差异有统计学意义(x2=10.286,P=0.002);PET/CT和PET/MR诊断转移淋巴结的曲线下面积差异无统计学意义(Z=0.83,P>0.05);二者对转移淋巴结的可见性评分差异无统计学意义(P=0.157),诊断自信度评分差异有统计学意义(P=0.014).结论 PET/CT和PET/MR对检出宫颈癌原发灶均有较高的诊断价值,但PET/MR对宫颈癌分期及判定淋巴结转移有更大的诊断优势,PET/MR有望在综合评价宫颈恶性病变进展中成为替代PET/CT的一种新技术.%Objective To compare the application value between PET/CT and PET/MR in diagnosing primary cervical cancer and pelvic lymph node metastasis.Methods Forty cases of cervical cancer were prospectively enrolled.PET/CT and PET/MR examinations were performed before treatment.All imaging data were evaluated by two experienced radiologists.The diagnostic consistency and difference of PET/CT and PET/MR were evaluated with Cohen's Kappa and paired Chi-square test.ROC curve was adopted to observe the value in diagnosing pelvic lymph node metastasis of cervical cancer.The lesions' visibility and diagnostic confidence of metastatic lymph nodes on PET/CT and PET/MR images were compared with Wilcoxon signed ranks test.Results Compared with the gold standard,the diagnostic consistency of PET/MR staging was much higher than that of PET/CT (x2 =10.286,P=0.002).The area under ROC curve of PET/CT and PET/MR on lymph node metastasis

  6. Influence of PET/CT-introduction on PET scanning frequency and indications. Results of a multicenter study

    International Nuclear Information System (INIS)

    Stergar, H.; Bockisch, A.; Eschmann, S.M.; Krause, B.J.; Roedel, R.; Tiling, R.; Weckesser, M.

    2007-01-01

    Aim: to evaluate the influence of the introduction of combined PET/CT scanners into clinical routine. This investigation addresses the quantitative changes between PET/CT and stand alone PET. Methods: the study included all examinations performed on stand alone PET- or PET/CT-scanners within 12 month prior to and after implementation of PET/CT. The final data analysis included five university hospitals and a total number of 15 497 exams. We distinguished exams on stand alone tomographs prior to and after installation of the combined device as well as PET/CT scans particularly with regard to disease entities. Various further parameters were investigated. Results: the overall number of PET scans (PET and PET/CT) rose by 146% while the number of scans performed on stand alone scanners declined by 22%. Only one site registered an increase in stand alone PET. The number of exams for staging in oncology increased by 196% while that of cardiac scans decreased by 35% and the number of scans in neurology rose by 47%. The use of scans for radiotherapy planning increased to 7% of all PET/CT studies. The increase of procedures for so-called classic PET oncology indications was moderate compared to the more common tumors. An even greater increase was observed in some rare entities. Conclusions: the introduction of PET/CT led to more than a doubling of overall PET procedures with a main focus on oncology. Some of the observed changes in scanning frequency may be caused by a rising availability of new radiotracers and advancements of competing imaging methods. Nevertheless the evident increase in the use of PET/CT for the most common tumour types demonstrates its expanding role in cancer staging. The combination of molecular and morphologic imaging has not only found its place but is still gaining greater importance with new developments in technology and radiochemistry. (orig.)

  7. (18)F-FDG PET-CT simulation for non-small-cell lung cancer: effect in patients already staged by PET-CT.

    Science.gov (United States)

    Hanna, Gerard G; McAleese, Jonathan; Carson, Kathryn J; Stewart, David P; Cosgrove, Vivian P; Eakin, Ruth L; Zatari, Ashraf; Lynch, Tom; Jarritt, Peter H; Young, V A Linda; O'Sullivan, Joe M; Hounsell, Alan R

    2010-05-01

    Positron emission tomography (PET), in addition to computed tomography (CT), has an effect in target volume definition for radical radiotherapy (RT) for non-small-cell lung cancer (NSCLC). In previously PET-CT staged patients with NSCLC, we assessed the effect of using an additional planning PET-CT scan for gross tumor volume (GTV) definition. A total of 28 patients with Stage IA-IIIB NSCLC were enrolled. All patients had undergone staging PET-CT to ensure suitability for radical RT. Of the 28 patients, 14 received induction chemotherapy. In place of a RT planning CT scan, patients underwent scanning on a PET-CT scanner. In a virtual planning study, four oncologists independently delineated the GTV on the CT scan alone and then on the PET-CT scan. Intraobserver and interobserver variability were assessed using the concordance index (CI), and the results were compared using the Wilcoxon signed ranks test. PET-CT improved the CI between observers when defining the GTV using the PET-CT images compared with using CT alone for matched cases (median CI, 0.57 for CT and 0.64 for PET-CT, p = .032). The median of the mean percentage of volume change from GTV(CT) to GTV(FUSED) was -5.21% for the induction chemotherapy group and 18.88% for the RT-alone group. Using the Mann-Whitney U test, this was significantly different (p = .001). PET-CT RT planning scan, in addition to a staging PET-CT scan, reduces interobserver variability in GTV definition for NSCLC. The GTV size with PET-CT compared with CT in the RT-alone group increased and was reduced in the induction chemotherapy group.

  8. 18F-FDG PET-CT Simulation for Non-Small-Cell Lung Cancer: Effect in Patients Already Staged by PET-CT

    International Nuclear Information System (INIS)

    Hanna, Gerard G.; McAleese, Jonathan; Carson, Kathryn J.; Stewart, David P.; Cosgrove, Vivian P.; Eakin, Ruth L.; Zatari, Ashraf; Lynch, Tom; Jarritt, Peter H.; Young, V.A. Linda D.C.R.; O'Sullivan, Joe M.

    2010-01-01

    Purpose: Positron emission tomography (PET), in addition to computed tomography (CT), has an effect in target volume definition for radical radiotherapy (RT) for non-small-cell lung cancer (NSCLC). In previously PET-CT staged patients with NSCLC, we assessed the effect of using an additional planning PET-CT scan for gross tumor volume (GTV) definition. Methods and Materials: A total of 28 patients with Stage IA-IIIB NSCLC were enrolled. All patients had undergone staging PET-CT to ensure suitability for radical RT. Of the 28 patients, 14 received induction chemotherapy. In place of a RT planning CT scan, patients underwent scanning on a PET-CT scanner. In a virtual planning study, four oncologists independently delineated the GTV on the CT scan alone and then on the PET-CT scan. Intraobserver and interobserver variability were assessed using the concordance index (CI), and the results were compared using the Wilcoxon signed ranks test. Results: PET-CT improved the CI between observers when defining the GTV using the PET-CT images compared with using CT alone for matched cases (median CI, 0.57 for CT and 0.64 for PET-CT, p = .032). The median of the mean percentage of volume change from GTV CT to GTV FUSED was -5.21% for the induction chemotherapy group and 18.88% for the RT-alone group. Using the Mann-Whitney U test, this was significantly different (p = .001). Conclusion: PET-CT RT planning scan, in addition to a staging PET-CT scan, reduces interobserver variability in GTV definition for NSCLC. The GTV size with PET-CT compared with CT in the RT-alone group increased and was reduced in the induction chemotherapy group.

  9. Advances in PET-MRI technology

    International Nuclear Information System (INIS)

    Chen Xiang; Zhao Jinhua

    2011-01-01

    Multimodality imaging is the general trend of clinical imaging. PET-CT is one of the most classic and mature multimodality imaging methods and is widely used today. MRI is another kind of conventional imaging method, in contrast to CT, MRI can not only yield images with higher soft-tissue contrast and better spatial resolution resolution but also provide some functional information by special imaging techniques such as MRS. The combination of PET and MRI for simultaneous data acquisition should have far-reaching consequences for clinical and scientific study. This review describes the progress to date and talks about the problems met in the development of PET-MRI and look forward to its potential application. (authors)

  10. Combined PET/MRI

    DEFF Research Database (Denmark)

    Bailey, D L; Pichler, B J; Gückel, B

    2018-01-01

    The 6th annual meeting to address key issues in positron emission tomography (PET)/magnetic resonance imaging (MRI) was held again in Tübingen, Germany, from March 27 to 29, 2017. Over three days of invited plenary lectures, round table discussions and dialogue board deliberations, participants c...... of response to pharmacological interventions and therapies. As such, PET/MRI is a key to advancing medicine and patient care.......The 6th annual meeting to address key issues in positron emission tomography (PET)/magnetic resonance imaging (MRI) was held again in Tübingen, Germany, from March 27 to 29, 2017. Over three days of invited plenary lectures, round table discussions and dialogue board deliberations, participants...... critically assessed the current state of PET/MRI, both clinically and as a research tool, and attempted to chart future directions. The meeting addressed the use of PET/MRI and workflows in oncology, neurosciences, infection, inflammation and chronic pain syndromes, as well as deeper discussions about how...

  11. An experimental phantom study of the effect of gadolinium-based MR contrast agents on PET attenuation coefficients and PET quantification in PET-MR imaging: application to cardiac studies.

    Science.gov (United States)

    O' Doherty, Jim; Schleyer, Paul

    2017-12-01

    Simultaneous cardiac perfusion studies are an increasing trend in PET-MR imaging. During dynamic PET imaging, the introduction of gadolinium-based MR contrast agents (GBCA) at high concentrations during a dual injection of GBCA and PET radiotracer may cause increased attenuation effects of the PET signal, and thus errors in quantification of PET images. We thus aimed to calculate the change in linear attenuation coefficient (LAC) of a mixture of PET radiotracer and increasing concentrations of GBCA in solution and furthermore, to investigate if this change in LAC produced a measurable effect on the image-based PET activity concentration when attenuation corrected by three different AC strategies. We performed simultaneous PET-MR imaging of a phantom in a static scenario using a fixed activity of 40 MBq [18 F]-NaF, water, and an increasing GBCA concentration from 0 to 66 mM (based on an assumed maximum possible concentration of GBCA in the left ventricle in a clinical study). This simulated a range of clinical concentrations of GBCA. We investigated two methods to calculate the LAC of the solution mixture at 511 keV: (1) a mathematical mixture rule and (2) CT imaging of each concentration step and subsequent conversion to LAC at 511 keV. This comparison showed that the ranges of LAC produced by both methods are equivalent with an increase in LAC of the mixed solution of approximately 2% over the range of 0-66 mM. We then employed three different attenuation correction methods to the PET data: (1) each PET scan at a specific millimolar concentration of GBCA corrected by its corresponding CT scan, (2) each PET scan corrected by a CT scan with no GBCA present (i.e., at 0 mM GBCA), and (3) a manually generated attenuation map, whereby all CT voxels in the phantom at 0 mM were replaced by LAC = 0.1 cm -1 . All attenuation correction methods (1-3) were accurate to the true measured activity concentration within 5%, and there were no trends in image

  12. 'Serial review on clinical PET tracers'. Application of health insurance of [15O]oxygen PET and [18F]FDG-PET

    International Nuclear Information System (INIS)

    Torizuka, Kanji

    2009-01-01

    As regards the application required for health insurance of PET, the Ministry of Health, Labour and Welfare indicates the following procedures: first, request a permission to the Ministry of Health, Labour and Welfare for the clinical use of the automatic synthetic instrument for PET drug, approved according to the Pharmaceutical Affairs Law. Second, put into practice the use of PET test, under the highly advanced medicine premises. Then, in case of gathered positive results, the health insurance is approved for this PET test. Thus, following the above mentioned procedures, first, the use of [ 15 O] oxygen PET was approved in April 1996. Second, the use of [ 18 F]FDG-PET was approved in 12 different diseases: epilepsy, ischemic heart disease and 10 different types of cancer, in April 2002. Third, in April 2006, a additional 3 types of cancer were approved. Now, we are in the process to get the health insurance of all kinds of malignant tumors (cancer and sarcoma) except for the early gastric cancer. (author)

  13. Breast cancer detection using high-resolution breast PET compared to whole-body PET or PET/CT

    Energy Technology Data Exchange (ETDEWEB)

    Kalinyak, Judith E. [Naviscan Inc., San Diego, CA (United States); Berg, Wendie A. [University of Pittsburgh School of Medicine, Magee-Womens Hospital, Pittsburgh, PA (United States); Schilling, Kathy [Boca Raton Regional Hospital, Boca Raton, FL (United States); Madsen, Kathleen S. [Certus International, Inc., St. Louis, MO (United States); Narayanan, Deepa [Naviscan Inc., San Diego, CA (United States); National Cancer Institute, Bethesda, MD (United States); Tartar, Marie [Scripps Clinic, Scripps Green Hospital, La Jolla, CA (United States)

    2014-02-15

    To compare the performance characteristics of positron emission mammography (PEM) with those of whole-body PET (WBPET) and PET/CT in women with newly diagnosed breast cancer. A total of 178 women consented to PEM for presurgical planning in an IRB-approved protocol and also underwent either WBPET (n = 69) or PET/CT (n = 109) imaging, as per usual care at three centers. Tumor detection sensitivity, positive predictive values, and {sup 18}F-fluorodeoxyglucose (FDG) uptake were compared between the modalities. The effects of tumor size, type, and grade on detection were examined. The chi-squared or Fisher's exact tests were used to compare distributions between groups, and McNemar's test was used to compare distributions for paired data within subject groups, i.e. PEM versus WBPET or PEM versus PET/CT. The mean age of the women was 59 ± 12 years (median 60 years, range 26-89 years), with a mean invasive index tumor size of 1.6 ± 0.8 cm (median 1.5 cm, range 0.5-4.0 cm). PEM detected more index tumors (61/66, 92 %) than WBPET (37/66, 56 %; p < 0.001) or PET/CT (95/109, 87 % vs. 104/109, 95 % for PEM; p < 0.029). Sensitivity for the detection of additional ipsilateral malignancies was also greater with PEM (7/15, 47 %) than with WBPET (1/15, 6.7 %; p = 0.014) or PET/CT (3/23, 13 % vs. 13/23, 57 % for PEM; p = 0.003). Index tumor detection decreased with decreasing invasive tumor size for both WBPET (p = 0.002) and PET/CT (p < 0.001); PEM was not significantly affected (p = 0.20). FDG uptake, quantified in terms of maximum PEM uptake value, was lowest in ductal carcinoma in situ (median 1.5, range 0.7-3.0) and invasive lobular carcinoma (median 1.5, range 0.7-3.4), and highest in grade III invasive ductal carcinoma (median 3.1, range 1.4-12.9). PEM was more sensitive than either WBPET or PET/CT in showing index and additional ipsilateral breast tumors and remained highly sensitive for tumors smaller than 1 cm. (orig.)

  14. Additional value of integrated PET-CT in the detection and characterization of lung metastases: correlation with CT alone and PET alone

    International Nuclear Information System (INIS)

    Wever, W. de; Meylaerts, L.; Verschakelen, J.A.; Ceuninck, L. de; Stroobants, S.

    2007-01-01

    The purpose was evaluating retrospectively the additional value of integrated positron emission tomography (PET) and computed tomography (CT) in the detection of pulmonary metastases in comparison with CT and PET alone. Fifty-six lung nodules, divided into three groups according their size, detected in 24 consecutive patients with a known primary tumor were retrospectively evaluated with integrated PET-CT, CT and PET. The nature of these nodules was determined by either histopathology or a follow-up of at least 6 months. The CT and PET images of the integrated PET-CT were evaluated separately by a radiologist and a nuclear medicine physician, the integrated PET-CT images were evaluated by a chest radiologist and nuclear medicine physician in consensus. The investigators were asked to search lung nodules and to determine whether these nodules were metastases or not. Sensitivity and accuracy for CT, PET and integrated PET-CT for characterization of all pulmonary nodules were, respectively: 100%, 90%, 100% and 57%, 55%, 55%. There was no significant difference in the characterization of pulmonary nodules between integrated PET-CT and CT alone (P=1.000) and PET alone (P=0.1306). An accurate evaluation is only possible for lesions larger than 1 cm. (orig.)

  15. Clinical applications of PET/CT

    International Nuclear Information System (INIS)

    Le Ngoc Ha

    2011-01-01

    The purpose of this article is to review the evolution of PET, PET/CT focusing on the technical aspects, PET radiopharmaceutical developments and current clinical applications as well. The newest technologic advances have been reviewed, including improved crystal design, acquisition modes, reconstruction algorithms, etc. These advancements will continue to improve contrast, decrease noise, and increase resolution. Combined PET/CT system provides faster attenuation correction and useful anatomic correlation to PET functional information. A number of new radiopharmaceuticals used for PET imaging have been developed, however, FDG have been considered as the principal PET radiotracer. The current clinical applications of PET and PET/CT are widespread and include oncology, cardiology and neurology. (author)

  16. 18F-FDG PET of the hands with a dedicated high-resolution PEM system (arthro-PET): correlation with PET/CT, radiography and clinical parameters

    International Nuclear Information System (INIS)

    Mhlanga, Joyce C.; Lodge, Martin; Carrino, John A.; Wang, Hao; Wahl, Richard L.

    2014-01-01

    The aim of this study was to prospectively determine the feasibility and compare the novel use of a positron emission mammography (PEM) scanner with standard PET/CT for evaluating hand osteoarthritis (OA) with 18 F-FDG. Institutional review board approval and written informed consent were obtained for this HIPAA-compliant prospective study in which 14 adults referred for oncological 18 F-FDG PET/CT underwent dedicated hand PET/CT followed by arthro-PET using the PEM device. Hand radiographs were obtained and scored for the presence and severity of OA. Summed qualitative and quantitative joint glycolytic scores for each modality were compared with the findings on plain radiography and clinical features. Eight patients with clinical and/or radiographic evidence of OA comprised the OA group (mean age 73 ± 7.7 years). Six patients served as the control group (53.7 ± 9.3 years). Arthro-PET quantitative and qualitative joint glycolytic scores were highly correlated with PET/CT findings in the OA patients (r = 0.86. p = 0.007; r = 0.94, p = 0.001). Qualitative arthro-PET and PET/CT joint scores were significantly higher in the OA patients than in controls (38.7 ± 6.6 vs. 32.2 ± 0.4, p = 0.02; 37.5 ± 5.4 vs. 32.2 ± 0.4, p = 0.03, respectively). Quantitative arthro-PET and PET/CT maximum SUV-lean joint scores were higher in the OA patients, although they did not reach statistical significance (20.8 ± 4.2 vs. 18 ± 1.8, p = 0.13; 22.8 ± 5.38 vs. 20.1 ± 1.54, p= 0.21). By definition, OA patients had higher radiographic joint scores than controls (30.9 ± 31.3 vs. 0, p = 0.03). Hand imaging using a small field of view PEM system (arthro-PET) with FDG is feasible, performing comparably to PET/CT in assessing metabolic joint activity. Arthro-PET and PET/CT showed higher joint FDG uptake in OA. Further exploration of arthro-PET in arthritis management is warranted. (orig.)

  17. PET/TAC in Oncology

    International Nuclear Information System (INIS)

    Jimenez V, A.M.

    2007-01-01

    From this presentation of PET-TAC in oncology the following advantages on the conventional PET are obtained: 1. More short study and stadium in one session. 2. It adds the information of both techniques. 3. Better localization of leisure: affected organ, stadium change (neck, mediastinum, abdomen). 4. Reduction of false positive (muscle, brown fat, atelectasis, pneumonias, intestine, urinary vials, etc.). 5. Reduction of negative false. 6. Reduction of not conclusive. 7. More understandable for other specialists. 8. Biopsies guide. 9. Planning radiotherapy

  18. First-in-human uPAR PET

    DEFF Research Database (Denmark)

    Persson, Morten; Skovgaard, Dorthe; Brandt-Larsen, Malene

    2015-01-01

    A first-in-human clinical trial with Positron Emission Tomography (PET) imaging of the urokinase-type plasminogen activator receptor (uPAR) in patients with breast, prostate and bladder cancer, is described. uPAR is expressed in many types of human cancers and the expression is predictive...... for targeted molecular imaging with PET. The safety, pharmacokinetic, biodistribution profile and radiation dosimetry after a single intravenous dose of (64)Cu-DOTA-AE105 were assessed by serial PET and computed tomography (CT) in 4 prostate, 3 breast and 3 bladder cancer patients. Safety assessment...... of invasion, metastasis and indicates poor prognosis. uPAR PET imaging therefore holds promise to be a new and innovative method for improved cancer diagnosis, staging and individual risk stratification. The uPAR specific peptide AE105 was conjugated to the macrocyclic chelator DOTA and labeled with (64)Cu...

  19. Effective source size, radial, angular and energy spread of therapeutic 11C positron emitter beams produced by 12C fragmentation

    Science.gov (United States)

    Lazzeroni, Marta; Brahme, Anders

    2014-02-01

    The use of positron emitter light ion beams in combination with PET (Positron Emission Tomography) and PET-CT (Computed Tomography) imaging could significantly improve treatment verification and dose delivery imaging during radiation therapy. The present study is dedicated to the analysis of the beam quality in terms of the effective source size, as well as radial, angular and energy spread of the 11C ion beam produced by projectile fragmentation of a primary point monodirectional and monoenergetic 12C ion beam in a dedicated range shifter of different materials. This study was performed combining analytical methods describing the transport of particles in matter and the Monte Carlo code SHIELD-HIT+. A high brilliance and production yield of 11C fragments with a small effective source size and emittance is best achieved with a decelerator made of two media: a first liquid hydrogen section of about 20 cm followed by a hydrogen rich section of variable length. The calculated intensity of the produced 11C ion beam ranges from about 5% to 8% of the primary 12C beam intensity depending on the exit energy and the acceptance of the beam transport system. The angular spread is lower than 1 degree for all the materials studied, but the brilliance of the beam is the highest with the proposed mixed decelerator.

  20. Incremental clinical value of a dedicated RT planning FDG PET-CT over staging PET-CT in non-small cell lung cancer

    International Nuclear Information System (INIS)

    Lin, P.; Som, S.; Vinod, S.; Lin, M.; Shon, I. H.

    2009-01-01

    Full text:Objectives: To evaluate whether FDG-PET performed for radiotherapy planning can detect disease progression, compared with staging PET. Methods: Thirteen patients underwent a planning PET-CT for curative RT ( R T-PET ) within eight weeks of a staging PET-CT for newly diagnosed NSCLC between 10/2007 and 1/2009. All studies were acquired on a Philips GXL PET-CT using the same protocols, except RT-PET is acquired on a RT flat bed. The images were interpreted by consensus readings of two physicians: location/number, visual grading (0-4:3> liver, 4>brain), max transverse diameter ( M ax D ) (tumour margin is delineated by a SUV threshold of 2.5) and max SUV of each lesion. Progressive disease (PD) is defined as >10% increase in max D. Results: RT-PET detected PD (primary or nodal) or new metastases in 8 pts (61%) (mean interval:30.2±14 days, range:7-54 days). For primary tumour, RT-PET detected PD in 5

  1. Usefulness of FDG-PET in the evaluation of patients with colon and rectal cancer in a PET center in Chile

    Energy Technology Data Exchange (ETDEWEB)

    Jofre, M J; Massardo, L T; Canessa, J; Sierralta, P; Gonzalez, P [Molecular Imaging PET Center, Nuclear Medicine Department, Military Hospital, Santiago (Chile)

    2007-11-15

    Introduction: FDG, PET is a useful imaging technique in the management of patients with gastrointestinal tumours, mainly in oesophageal and colorectal cancer. In Chile, colorectal cancer is a prevalent disease, representing the 7th cause of death in men and 6th in women. The aim of the study was to assess FDG-PET value in the management of colorectal cancer in the first PET center in Chile. Material and Methods: Population: In a retrospective analysis, we studied 130 patients with 159 PET scans, 56% corresponded to women. Group A rectal cancer: 42 patients (55 studies), mean age 61 {+-} 11 y.o. (range 39-80) Group B colon cancer: 88 patients (104 studies), mean age 61 {+-} 11 y.o. (range 39-80). Referral: In the whole population, 53% were studied by recurrence suspicion (31% with increased CEA levels with negative anatomical imaging), 33% for re-staging, 8% for therapy control and 6% for staging. Eighty-five % was submitted to surgery (range: lm -7y) and 42% presented local or distance dissemination; 70% have received chemotherapy and 23% associated radiotherapy. Technique: Whole-body images were acquired with a dedicated high resolution PET Siemens Ecat Exact HR+ camera 60 minutes after injection of intravenous F18-FDG, produced at the Chilean Nuclear Energy Commission (mean dose: 12 mCi). Visual analysis and semi-quantitative standardized uptake value (SUV) were performed by a consensus of 5 nuclear medicine physicians. Results: 65% of the PET studies were positive, showing hypermetabolic tumoral uptake (63% studies in colon cancer and 69% in rectal cancer). In 30% from the positive cases liver lesions were found, 52% of them without other lesions. In 75% from positive studies there was extrahepatic involvement. In the group B, local recurrence was found in 37%. In 48% cases there was good correlation between anatomical images available and FDG and in 42% new unknown lesions were found with PET. CEA levels: they were available in 62% of the cases (71% of them

  2. Usefulness of Choline-PET for the detection of residual hemangiopericytoma in the skull base: comparison with FDG-PET

    Directory of Open Access Journals (Sweden)

    Ito Shin

    2012-02-01

    Full Text Available Abstract Background Choline is a new PET tracer that is useful for the detection of malignant tumor. Choline is a precursor of the biosynthesis of phosphatidylcholine, a major phospholipid in the cell membrane of eukaryotic cells. Malignant tumors have an elevated level of phosphatidylcholine in cell membrane. Thus, choline is a marker of tumor malignancy. Method The patient was a 51-year-old man with repeated recurrent hemangiopericytoma in the skull base. We performed Choline-PET in this patient after various treatments and compared findings with those of FDG-PET. Results Choline accumulated in this tumor, but FDG did not accumulate. We diagnosed this tumor as residual hemangiopericytoma and performed the resection of the residual tumor. FDG-PET is not appropriate for skull base tumor detection because uptake in the brain is very strong. Conclusion We emphasize the usefulness of Choline-PET for the detection of residual hemangiopericytoma in the skull base after various treatments, compared with FDG-PET.

  3. PET scanning in plastic and reconstructive surgery.

    Science.gov (United States)

    Liodaki, Eirini; Eirini, Liodaki; Liodakis, Emmanouil; Emmanouil, Liodakis; Papadopoulos, Othonas; Othonas, Papadopoulos; Machens, Hans-Günther; Hans-Günther, Machens; Papadopulos, Nikolaos A; Nikolaos, Papadopulos A

    2012-02-01

    In this report we highlight the use of PET scan in plastic and reconstructive surgery. PET scanning is a very important tool in plastic surgery oncology (melanoma, soft-tissue sarcomas and bone sarcomas, head and neck cancer, peripheral nerve sheath tumors of the extremities and breast cancer after breast esthetic surgery), as diagnosis, staging, treatment planning and follow-up of cancer patients is based on imaging. PET scanning seems also to be useful as a flap monitoring system as well as an infection's imaging tool, for example in the management of diabetic foot ulcer. PET also contributes to the understanding of pathophysiology of keloids which remain a therapeutic challenge.

  4. PET in cancer screening: a controversial imaging

    International Nuclear Information System (INIS)

    Su Minggang; Tan Tianzhi

    2012-01-01

    Malignancy has been one of the most dangerous threats to human health. Early diagnosis and treatment are key factors for improving prognosis. Cancer screening is an important way to detect early stage cancer and precancerous lesion. PET has been used increasingly in cancer screening in accordance with the requirement of the public. Though a great number of data show that PET can find some subclinical malignancy, yet as a cancer screening modality, PET is still controversial in contemporary medical practice. The aim of this article is to review the application status and existing problem of PET in cancer screening, and to offer some recognition and view about cancer srceening. (authors)

  5. Comparison of CE-FDG-PET/CT with CE-FDG-PET/MR in the evaluation of osseous metastases in breast cancer patients

    OpenAIRE

    Catalano, O A; Nicolai, E; Rosen, B R; Luongo, A; Catalano, M; Iannace, C; Guimaraes, A; Vangel, M G; Mahmood, U; Soricelli, A; Salvatore, M

    2015-01-01

    Background: Despite improvements in treatments, metastatic breast cancer remains difficult to cure. Bones constitute the most common site of first-time recurrence, occurring in 40?75% of cases. Therefore, evaluation for possible osseous metastases is crucial. Technetium 99 (99Tc) bone scintigraphy and fluorodexossyglucose (FDG) positron emission tomography (PET)-computed tomography (PET-CT) are the most commonly used techniques to assess osseous metastasis. PET magnetic resonance (PET-MR) ima...

  6. PET application in psychiatry and psychopharmacology

    Energy Technology Data Exchange (ETDEWEB)

    Suhara, Tetsuya [National Inst. of Radiological Sciences, Chiba (Japan)

    1999-07-01

    In the last few decades diagnostic and research tools in the medical field have made great advances, yet psychiatry has lacked sufficiently sensitive tools to measure the aberration of brain functions. Recently however, the development of Positron emission tomography (PET) techniques has made it possible to measure changes in neurochemical components in mental disorders and the effect of psychoactive drugs in living human brain. Most of the advancement in the psychiatric field has came from the development psychoactive drugs. Brain research involving identification of neurotransmission is largely based on compounds developed in psychopharmacology. Some of these compounds have been radiolabelled and used as radioligands for quantitative examination of neuroreceptors and other aspects of neurotransmission. Using PET, radioligand binding can now be examined in the human brain in vivo. PET techniques also allow examination of an unlabelled drug by examination of its interaction with a radioligand. So one potential of PET in psychiatry is to investigate the mechanism of psychoactive drugs. Antidepressants modulate serotonin transmission by inhibiting serotonin reuptake from the synaptic cleft. High affinity [{sup 3}H]imipramine binding sites in mammalian brain have been labelled to investigate serotonin transporters in living human brain by PET. Cyanoimipramine which is described as a potent serotonin reuptake inhibitor, was labelled with {sup 11}C. In a PET experiment with 6 healthy human subjects, a high accumulation of [{sup 11}C]cyanoimipramine was found in the thalamus and striatum and lowest accumulation was observed in the cerebellum, a region relatively void of serotonin transporters. The thalamus to cerebellum ratio was about 2 at 90 min after the injection of the tracer. Recently, [{sup 11}C]McN5652-X has been introduced as a better tracer for serotonin transporter imaging. Employing [{sup 11}C]McN5652-X in a PET study of 7 healthy human subjects, a high

  7. PET application in psychiatry and psychopharmacology

    International Nuclear Information System (INIS)

    Suhara, Tetsuya

    1999-01-01

    In the last few decades diagnostic and research tools in the medical field have made great advances, yet psychiatry has lacked sufficiently sensitive tools to measure the aberration of brain functions. Recently however, the development of Positron emission tomography (PET) techniques has made it possible to measure changes in neurochemical components in mental disorders and the effect of psychoactive drugs in living human brain. Most of the advancement in the psychiatric field has came from the development psychoactive drugs. Brain research involving identification of neurotransmission is largely based on compounds developed in psychopharmacology. Some of these compounds have been radiolabelled and used as radioligands for quantitative examination of neuroreceptors and other aspects of neurotransmission. Using PET, radioligand binding can now be examined in the human brain in vivo. PET techniques also allow examination of an unlabelled drug by examination of its interaction with a radioligand. So one potential of PET in psychiatry is to investigate the mechanism of psychoactive drugs. Antidepressants modulate serotonin transmission by inhibiting serotonin reuptake from the synaptic cleft. High affinity [ 3 H]imipramine binding sites in mammalian brain have been labelled to investigate serotonin transporters in living human brain by PET. Cyanoimipramine which is described as a potent serotonin reuptake inhibitor, was labelled with 11 C. In a PET experiment with 6 healthy human subjects, a high accumulation of [ 11 C]cyanoimipramine was found in the thalamus and striatum and lowest accumulation was observed in the cerebellum, a region relatively void of serotonin transporters. The thalamus to cerebellum ratio was about 2 at 90 min after the injection of the tracer. Recently, [ 11 C]McN5652-X has been introduced as a better tracer for serotonin transporter imaging. Employing [ 11 C]McN5652-X in a PET study of 7 healthy human subjects, a high accumulation was observed

  8. Quantitative simultaneous PET-MR imaging

    Science.gov (United States)

    Ouyang, Jinsong; Petibon, Yoann; Huang, Chuan; Reese, Timothy G.; Kolnick, Aleksandra L.; El Fakhri, Georges

    2014-06-01

    Whole-body PET is currently limited by the degradation due to patient motion. Respiratory motion degrades imaging studies of the abdomen. Similarly, both respiratory and cardiac motions significantly hamper the assessment of myocardial ischemia and/or metabolism in perfusion and viability cardiac PET studies. Based on simultaneous PET-MR, we have developed robust and accurate MRI methods allowing the tracking and measurement of both respiratory and cardiac motions during abdominal or cardiac studies. Our list-mode iterative PET reconstruction framework incorporates the measured motion fields into PET emission system matrix as well as the time-dependent PET attenuation map and the position dependent point spread function. Our method significantly enhances the PET image quality as compared to conventional methods.

  9. Similarities between obesity in pets and children: the addiction model.

    Science.gov (United States)

    Pretlow, Robert A; Corbee, Ronald J

    2016-09-01

    Obesity in pets is a frustrating, major health problem. Obesity in human children is similar. Prevailing theories accounting for the rising obesity rates - for example, poor nutrition and sedentary activity - are being challenged. Obesity interventions in both pets and children have produced modest short-term but poor long-term results. New strategies are needed. A novel theory posits that obesity in pets and children is due to 'treats' and excessive meal amounts given by the 'pet-parent' and child-parent to obtain affection from the pet/child, which enables 'eating addiction' in the pet/child and results in parental 'co-dependence'. Pet-parents and child-parents may even become hostage to the treats/food to avoid the ire of the pet/child. Eating addiction in the pet/child also may be brought about by emotional factors such as stress, independent of parental co-dependence. An applicable treatment for child obesity has been trialled using classic addiction withdrawal/abstinence techniques, as well as behavioural addiction methods, with significant results. Both the child and the parent progress through withdrawal from specific 'problem foods', next from snacking (non-specific foods) and finally from excessive portions at meals (gradual reductions). This approach should adapt well for pets and pet-parents. Pet obesity is more 'pure' than child obesity, in that contributing factors and treatment points are essentially under the control of the pet-parent. Pet obesity might thus serve as an ideal test bed for the treatment and prevention of child obesity, with focus primarily on parental behaviours. Sharing information between the fields of pet and child obesity would be mutually beneficial.

  10. The feasibility of 11C-methionine-PET in diagnosis of solitary lung nodules/masses when compared with 18F-FDG-PET

    International Nuclear Information System (INIS)

    Hsieh Hungjen; Lin Shenghsiang; Lin Kohan; Lee Chienying; Chang Chengpei; Wang Shyhjen

    2008-01-01

    The objective of this study was to differentiate between benign and malignant lesions of the lung, 18 F-fluorodeoxyglucose positron emission tomography ( 18 F-FDG-PET) has limitations such as a lower specificity in cases of non-specific inflammation. The positive predictive value is unsatisfactory in countries where inflammatory lung disorders are prevalent. We present the preliminary results of the usefulness of combining 11 C-methionine-PET and 18 F-FDG-PET in this context. Fifteen patients with indeterminate solitary pulmonary nodules/masses (10 men, 5 women; average age 64.7±14.0 years, ranging from 25 to 87 years) were studied using 11 C-methionine- and 18 F-FDG-PET. Interpretations were primarily made on visual analysis with five-point scale and a consensus of two nuclear medicine physicians, using standardized uptake value as an accessory reference. Foci of abnormal radiotracer uptake were subsequently correlated with clinical follow-up, imaging modalities such as chest radiography, chest computed tomography (CT), serial PET studies, and pathology results from bronchoscopic biopsy and/or surgical specimen. Diagnoses were established in 14 patients. The 11 C-methionine-PET and 18 F-FDG-PET studies were both true positive in two cases of adenocarcinoma and true negative in two cases of clinical benign nodules. In one case of lymphoid hyperplasia both 11 C-methionine-PET and 18 F-FDG-PET showed false-positive findings. Discordant results were obtained in nine cases. In spite of the false-positive results of 18 F-FDG-PET, 11 C-methionine-PET was true negative in four cases with chronic inflammatory nodules and three cases of pulmonary tuberculosis. Furthermore, 11 C-methionine-PET was true positive in one case of lung metastasis of thyroid cancer, and in another with recurrence of gastric cancer, respectively, for which 18 F-FDG-PET imaging was false negative. Our experience indicates that 11 C-methionine-PET seems more specific and sensitive when compared with

  11. Theoretical and experimental study of ions focusing systems in order to improve the ions beam brightness by suppressing aberration causes; Etude theorique et experimentale de la focalisation des ions afin d'ameliorer la brillance du faisceau ionique par la suppression des causes d'aberration

    Energy Technology Data Exchange (ETDEWEB)

    Faure, J

    1966-07-01

    It is shown that a beam brightness can be improved by an order of magnitude when the sources of aberrations are suppressed in the anode region source, as well as in the extraction region and in the electrostatic focusing system. A calculation was first set up to determine a simple focusing system. The aberration ratio due to this focusing system is smaller than 10 to 15 per cent. The experimental study was developed by using an ion source and its extraction system capable of producing an aberration free beam at an energy of 20 keV and an accelerating unit up to 190 keV that confirms that the qualities of a 35 mA beam produced by the said ion source are not spoiled when the beam goes through the focusing and accelerating system that was designed to be aberration free. (author) [French] Dans ce travail, on s'attache a demontrer que la brillance d'un faisceau peut etre amelioree d'un ordre de grandeur lorsque l'on supprime les causes d'aberration aussi bien a la sortie de la source, dans la zone d'extraction, que dans le systeme de focalisation electrostatique. Un calcul est, tout d'abord, mis au point pour determiner un systeme de focalisation simple. Cette focalisation n'entraine pas un taux d'aberrations superieur a 10 ou 15 pour cent. Puis l'etude experimentale conduit: a) a la realisation d'une source et de son systeme d'extraction fournissant un faisceau sans aberration a une energie de 20 keV. b) et a l'elaboration d'un petit accelerateur a 190 keV qui verifie que les proprietes d'un faisceau de 35 mA issu de la source ne sont pas affectees par la traversee des systemes focalisateur et accelerateur lorsque ceux-ci n'apportent pas d'aberration. (auteur)

  12. Evacuating People and Their Pets: Older Floridians' Need for and Proximity to Pet-Friendly Shelters.

    Science.gov (United States)

    Douglas, Rachel; Kocatepe, Ayberk; Barrett, Anne E; Ozguven, Eren Erman; Gumber, Clayton

    2017-10-04

    Pets influence evacuation decisions, but little is known about pet-friendly emergency shelters' availability or older adults' need for them. Our study addresses this issue, focusing on the most densely populated area of Florida (Miami-Dade)-the state with the oldest population and greatest hurricane susceptibility. We use Geographic Information Systems (GIS)-based methodology to identify the shortest paths to pet-friendly shelters, based on distance and congested and uncongested travel times-taking into account the older population's spatial distribution. Logistic regression models using the 2013 American Housing Survey's Disaster Planning Module examine anticipated shelter use as a function of pet ownership and requiring pet evacuation assistance. Thirty-four percent of older adults in the Miami-Dade area have pets-35% of whom report needing pet evacuation assistance. However, GIS accessibility measures show that travel time factors are likely to impede older adults' use of the area's few pet-friendly shelters. Logistic regression results reveal that pet owners are less likely to report anticipating shelter use; however, the opposite holds for pet owners reporting they would need help evacuating their pets-they anticipate using shelters. High pet shelter need coupled with low availability exacerbates older adults' heightened vulnerability during Florida's hurricane season. © The Author 2017. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  13. Evaluation of 68Ga-DOTATOC PET/MRI for whole-body staging of neuroendocrine tumours in comparison with 68Ga-DOTATOC PET/CT.

    Science.gov (United States)

    Sawicki, Lino M; Deuschl, Cornelius; Beiderwellen, Karsten; Ruhlmann, Verena; Poeppel, Thorsten D; Heusch, Philipp; Lahner, Harald; Führer, Dagmar; Bockisch, Andreas; Herrmann, Ken; Forsting, Michael; Antoch, Gerald; Umutlu, Lale

    2017-10-01

    To compare the diagnostic performance of 68 Ga-DOTATOC PET/MRI and 68 Ga-DOTATOC PET/CT in the whole-body staging of patients with neuroendocrine tumours (NET). Thirty patients with histopathologically confirmed NET underwent PET/CT and PET/MRI in a single-injection protocol. PET/CT and PET/MRI scans were prospectively evaluated with regard to lesion count, localization, nature (NET/non-NET), and conspicuity (four-point scale). Histopathology and follow-up imaging served as the reference standards. The proportions of NET and non-NET lesions rated correctly were compared using McNemar's chi-squared test. The Wilcoxon test was used to assess differences in SUVmax and lesion conspicuity. The correlation between the SUVmax for the same lesions from each modality was analysed using Pearson's correlation coefficient (r). According to the reference standard, there were 197 lesions (142 NET, 55 non-NET). Lesion-based analysis showed a higher proportion of correctly rated NET lesions on PET/MRI than on PET/CT (90.8% vs. 86.7%, p = 0.031), whereas on PET/CT there was a higher proportion of correctly rated non-NET lesions (94.5% vs. 83.6%, p = 0.031). SUVmax was strongly correlated (r = 0.86; p PET/MRI (both p PET/MRI yielded a higher proportion of correctly rated NET lesions and should be regarded as a valuable alternative to 68 Ga-DOTATOC PET/CT in whole-body staging of NET patients. • 68 Ga-DOTATOC PET/MRI correctly identified more NET lesions than 68 Ga-DOTATOC PET/CT. • 68 Ga-DOTATOC PET/MRI provides better NET lesion conspicuity than 68 Ga-DOTATOC PET/CT. • SUVmax values from the two modalities are strongly correlated and do not differ significantly.

  14. Assessment of PET & ASL metabolism in the hippocampal subfields of MCI and AD using simultaneous PET-MR

    Energy Technology Data Exchange (ETDEWEB)

    Goubran, Maged; Douglas, David; Chao, Steven; Quon, Andrew; Tripathi, Pragya; Holley, Dawn; Vasanawala, Minal; Zaharchuk, Greg; Zeineh, Michael [Stanford University (United States)

    2015-05-18

    Alzheimer’s disease (AD) has been reported to show decreased metabolic activity in the hippocampus using FDG PET-MR. Histological data suggests that the hippocampal subfields are selectively affected in AD. Given the simultaneous imaging nature of integrated PET-MR scanners and the multimodal capabilities of PET-MR, our purpose here is to assess FDG activity, as well as ASL perfusion in the subfields of MCI and AD patients. 10 consecutive subjects were recruited for this study 3 MCI, 3 AD patients and 4 age-matched controls. The scanning was performed on a simultaneous 3T PET/MR scanner. To delineate the hippocampal subfields, automatic segmentation of hippocampal subfields (ASHS) was employed. Static FDG-PET series were reconstructed for analysis at 45-75 min for all subjects. All imaging sequences were automatically registered to the oblique coronal T2-weighted images (segmentation space). PET standardized uptake values (SUV) in the hippocampal subfields were normalized by the pons. FDG PET metabolism was reduced significantly in AD, as well as MCI patients as compared to controls, with the highest effect demonstrated in the CA3/DG and CA1/2 (p = 0.047, subfields. Patients (MCI and AD combined) had decreased metabolism as compared to controls in CA1/2 and significantly smaller volumes the Subiculum. When assessing CBF across groups, a significant decrease in CBF was found in the Subiculum. Our preliminary results demonstrate that PET-MRI may potentially be a sensitive biomarker and tool for early diagnosis of AD. They also confirm the importance of assessing metabolic and structural changes of neurodegenerative diseases at the subfield level.

  15. Incremental clinical value of a dedicated RT planning FDG PET-CT over staging PET-CT in non-small cell lung cancer

    International Nuclear Information System (INIS)

    Lin, P.; Som, S.; Vinod, S.; Lin, M.; Shon, I. H.

    2009-01-01

    Full text:Objectives: To evaluate whether FDG-PET performed for radiotherapy planning can detect disease progression, compared with staging PET. Methods: Thirteen patients underwent a planning PET-CT for curative RT ( R T-PET ) within eight weeks of a staging PET-CT for newly diagnosed NSCLC between 10/2007 and 1/2009. All studies were acquired on a Philips GXL PET-CT using the same protocols, except RT-PET is acquired on a RT flat bed. The images were interpreted by consensus readings of two physicians: location/number, visual grading (0-4:3> liver, 4>brain), max transverse diameter ( M ax D ) (tumour margin is delineated by a SUV threshold of 2.5) and max SUV of each lesion. Progressive disease (PD) is defined as >10% increase in max D. Results: RT-PET detected PD (primary or nodal) or new metastases in 8 pts (61%) (mean interval:30.2±14 days, range:7-54 days). For primary tumour, RT-PET detected PD in 5 pts (range: 12-32% increase in max D and 12-39% increase in SUV) and RT-CT detected PD in 3 pts (11-21% increase in max D, paired t test: p = 0.19). Stage-PET detected 28 mediastinal/hilar nodal sites. RT-PET detected PD in 11 of these lesions in 4 pts (31%) and CT detected similar progression in 8 lesions in 2 pts. RT-PET detected 10 new lesions in 3 pts (23%) resulting in upstaging to N3 in 2 pts (supraclavicular and hilar nodes) and M1 in 1 pt (bone). Conclusion: A dedicated RT PET-CT has the potential to detect disease progression and impact on RT planning in a large number of patients.

  16. PeneloPET, a Monte Carlo PET simulation tool based on PENELOPE: features and validation

    Energy Technology Data Exchange (ETDEWEB)

    Espana, S; Herraiz, J L; Vicente, E; Udias, J M [Grupo de Fisica Nuclear, Departmento de Fisica Atomica, Molecular y Nuclear, Universidad Complutense de Madrid, Madrid (Spain); Vaquero, J J; Desco, M [Unidad de Medicina y CirugIa Experimental, Hospital General Universitario Gregorio Maranon, Madrid (Spain)], E-mail: jose@nuc2.fis.ucm.es

    2009-03-21

    Monte Carlo simulations play an important role in positron emission tomography (PET) imaging, as an essential tool for the research and development of new scanners and for advanced image reconstruction. PeneloPET, a PET-dedicated Monte Carlo tool, is presented and validated in this work. PeneloPET is based on PENELOPE, a Monte Carlo code for the simulation of the transport in matter of electrons, positrons and photons, with energies from a few hundred eV to 1 GeV. PENELOPE is robust, fast and very accurate, but it may be unfriendly to people not acquainted with the FORTRAN programming language. PeneloPET is an easy-to-use application which allows comprehensive simulations of PET systems within PENELOPE. Complex and realistic simulations can be set by modifying a few simple input text files. Different levels of output data are available for analysis, from sinogram and lines-of-response (LORs) histogramming to fully detailed list mode. These data can be further exploited with the preferred programming language, including ROOT. PeneloPET simulates PET systems based on crystal array blocks coupled to photodetectors and allows the user to define radioactive sources, detectors, shielding and other parts of the scanner. The acquisition chain is simulated in high level detail; for instance, the electronic processing can include pile-up rejection mechanisms and time stamping of events, if desired. This paper describes PeneloPET and shows the results of extensive validations and comparisons of simulations against real measurements from commercial acquisition systems. PeneloPET is being extensively employed to improve the image quality of commercial PET systems and for the development of new ones.

  17. PeneloPET, a Monte Carlo PET simulation tool based on PENELOPE: features and validation

    International Nuclear Information System (INIS)

    Espana, S; Herraiz, J L; Vicente, E; Udias, J M; Vaquero, J J; Desco, M

    2009-01-01

    Monte Carlo simulations play an important role in positron emission tomography (PET) imaging, as an essential tool for the research and development of new scanners and for advanced image reconstruction. PeneloPET, a PET-dedicated Monte Carlo tool, is presented and validated in this work. PeneloPET is based on PENELOPE, a Monte Carlo code for the simulation of the transport in matter of electrons, positrons and photons, with energies from a few hundred eV to 1 GeV. PENELOPE is robust, fast and very accurate, but it may be unfriendly to people not acquainted with the FORTRAN programming language. PeneloPET is an easy-to-use application which allows comprehensive simulations of PET systems within PENELOPE. Complex and realistic simulations can be set by modifying a few simple input text files. Different levels of output data are available for analysis, from sinogram and lines-of-response (LORs) histogramming to fully detailed list mode. These data can be further exploited with the preferred programming language, including ROOT. PeneloPET simulates PET systems based on crystal array blocks coupled to photodetectors and allows the user to define radioactive sources, detectors, shielding and other parts of the scanner. The acquisition chain is simulated in high level detail; for instance, the electronic processing can include pile-up rejection mechanisms and time stamping of events, if desired. This paper describes PeneloPET and shows the results of extensive validations and comparisons of simulations against real measurements from commercial acquisition systems. PeneloPET is being extensively employed to improve the image quality of commercial PET systems and for the development of new ones.

  18. EFFET DES TRAITEMENTS THERMIQUES SUR LA REACTION ENTRE DES COUCHES MINCES DE TITANE ET DES SUBSTRATS EN ACIER

    Directory of Open Access Journals (Sweden)

    D Slimani

    2015-06-01

    Full Text Available Des couches minces du titane pur ont été déposées avec la méthode de pulvérisation cathodique sur des substrats en acier, type FF80 K-1 contenants ~1% mass. en carbone. La réaction entre les deux parties du système substrat-couche mince est activée avec des traitements thermiques sous vide dans l’intervalle de températures de 400 à900°Cpendant 30 minutes. Les Spectres de diffraction de rayons x confirment l’inter- diffusion des éléments  chimiques du système résultants la formation et la croissance des nouvelles phases en particulier le carbure binaire TiC ayant des caractéristiques thermomécaniques importantes. L’analyse morphologique des échantillons traités  avec le microscope électronique à balayage (MEB montre l’augmentation du flux de diffusion atomique avec la température de recuit, notamment la diffusion du manganèse et du fer vers la surface libre des échantillons aux températures élevées provoquant la dégradation des propriétés mécaniques des revêtements contrairement au premiers stades d’interaction où on a obtenu des bonnes valeurs de la microdureté.

  19. Possibilities of FDG-PET in diagnosis of urological tumors

    International Nuclear Information System (INIS)

    Kawamoto, Ken; Nakagawa, Masayuki

    2004-01-01

    The aim of this study was to determine the value of 18 F-fluorodeoxyglucose positron emission tomography (FDG-PET) in evaluating patients with urological tumors. FDG-PET scans were taken in 116 patients with urological diseases. The number of patients with prostatic disease, renal disease and adrenal disease was 86 (74.1%), 10 and 10, respectively. Seven patients with bladder tumors who had previously undergone either cystectomy or transurethral resection of bladder cancer (TUR-Bt) received FDG-PET scan for medical check-up. Three patients with testicular disease were also included in this series. In patients with prostatic disease, 41 patients were already diagnosed as having prostate cancer and FDG-PET was performed for medical check-up. Forty-five patients were suspected of having prostate cancer because of the FDG accumulation and/or a rise in serum prostatic specific antigen (PSA). Of these patients, 9 were diagnosed as having prostate cancer by biopsy. Serum PSA levels were elevated in all 9 patients, however FDG-PET findings were false-negative in 4 of the 9 patients. In patients with renal disease, 2 of the 4 patients suspected of having renal cell carcinoma actually had benign diseases. In one patient with a renal mass, FDG-PET was false-negative. All 6 patients with metastatic adrenal tumors showed positive findings in FDG-PET, and the patients with nonhypersecreting adrenal masses showed negative findings in FDG-PET. In three patients with seminoma, viable metastatic foci were successfully detected by FDG-PET after chemotherapy. In the present study, FDG-PET was not superior to tumor markers, such as serum PSA and conventional imaging modalities for the detection of prostate cancer and renal cell carcinoma. However, in patients with nonhypersecreting adrenal masses or a metastatic adrenal tumor, FDG-PET may provide significant functional information for tissue characterization. Moreover FDG-PET can be useful for the detection of residual viable carcinoma

  20. Qualification test of a MPPC-based PET module for future MRI-PET scanners

    Science.gov (United States)

    Kurei, Y.; Kataoka, J.; Kato, T.; Fujita, T.; Funamoto, H.; Tsujikawa, T.; Yamamoto, S.

    2014-11-01

    We have developed a high-resolution, compact Positron Emission Tomography (PET) module for future use in MRI-PET scanners. The module consists of large-area, 4×4 ch MPPC arrays (Hamamatsu S11827-3344MG) optically coupled with Ce:LYSO scintillators fabricated into 12×12 matrices of 1×1 mm2 pixels. At this stage, a pair of module and coincidence circuits was assembled into an experimental prototype gantry arranged in a ring of 90 mm in diameter to form the MPPC-based PET system. The PET detector ring was then positioned around the RF coil of the 4.7 T MRI system. We took an image of a point 22Na source under fast spin echo (FSE) and gradient echo (GE), in order to measure interference between the MPPC-based PET and the MRI. We only found a slight degradation in the spatial resolution of the PET image from 1.63 to 1.70 mm (FWHM; x-direction), or 1.48-1.55 mm (FWHM; y-direction) when operating with the MRI, while the signal-to-noise ratio (SNR) of the MRI image was only degraded by 5%. These results encouraged us to develop a more advanced version of the MRI-PET gantry with eight MPPC-based PET modules, whose detailed design and first qualification test are also presented in this paper.