Thermodynamic Studies for Drug Design and Screening
Garbett, Nichola C.; Chaires, Jonathan B.
2012-01-01
Introduction A key part of drug design and development is the optimization of molecular interactions between an engineered drug candidate and its binding target. Thermodynamic characterization provides information about the balance of energetic forces driving binding interactions and is essential for understanding and optimizing molecular interactions. Areas covered This review discusses the information that can be obtained from thermodynamic measurements and how this can be applied to the drug development process. Current approaches for the measurement and optimization of thermodynamic parameters are presented, specifically higher throughput and calorimetric methods. Relevant literature for this review was identified in part by bibliographic searches for the period 2004 – 2011 using the Science Citation Index and PUBMED and the keywords listed below. Expert opinion The most effective drug design and development platform comes from an integrated process utilizing all available information from structural, thermodynamic and biological studies. Continuing evolution in our understanding of the energetic basis of molecular interactions and advances in thermodynamic methods for widespread application are essential to realize the goal of thermodynamically-driven drug design. Comprehensive thermodynamic evaluation is vital early in the drug development process to speed drug development towards an optimal energetic interaction profile while retaining good pharmacological properties. Practical thermodynamic approaches, such as enthalpic optimization, thermodynamic optimization plots and the enthalpic efficiency index, have now matured to provide proven utility in design process. Improved throughput in calorimetric methods remains essential for even greater integration of thermodynamics into drug design. PMID:22458502
Thermodynamic studies for drug design and screening.
Garbett, Nichola C; Chaires, Jonathan B
2012-04-01
A key part of drug design and development is the optimization of molecular interactions between an engineered drug candidate and its binding target. Thermodynamic characterization provides information about the balance of energetic forces driving binding interactions and is essential for understanding and optimizing molecular interactions. This review discusses the information that can be obtained from thermodynamic measurements and how this can be applied to the drug development process. Current approaches for the measurement and optimization of thermodynamic parameters are presented, specifically higher throughput and calorimetric methods. Relevant literature for this review was identified in part by bibliographic searches for the period 2004 - 2011 using the Science Citation Index and PUBMED and the keywords listed below. The most effective drug design and development platform comes from an integrated process utilizing all available information from structural, thermodynamic and biological studies. Continuing evolution in our understanding of the energetic basis of molecular interactions and advances in thermodynamic methods for widespread application are essential to realize the goal of thermodynamically driven drug design. Comprehensive thermodynamic evaluation is vital early in the drug development process to speed drug development toward an optimal energetic interaction profile while retaining good pharmacological properties. Practical thermodynamic approaches, such as enthalpic optimization, thermodynamic optimization plots and the enthalpic efficiency index, have now matured to provide proven utility in the design process. Improved throughput in calorimetric methods remains essential for even greater integration of thermodynamics into drug design. © 2012 Informa UK, Ltd.
Design of thermodynamic experiments and analyses of thermodynamic relationships
Oezer Arnas, A.
2009-01-01
In teaching of thermodynamics, a certain textbook is followed internationally whatever language it is written in. However, although some do a very good job, most are not correct and precise and furthermore NONE discuss at all the need for and importance of designing thermodynamic experiments although experimentation in engineering is considered to be the back bone of analyses, not pursued much these days, or numerical studies, so very predominant these days. Here some thermodynamic experiments along with physical interpretation of phenomena through simple mathematics will be discussed that are straightforward, meaningful and which can be performed by any undergraduate/graduate student. Another important topic for discussion is the fact that the thermodynamic state principle demands uniqueness of results. It has been found in literature that this fact is not well understood by those who attempt to apply it loosely and end up with questionable results. Thermodynamics is the fundamental science that clarifies all these issues if well understood, applied and interpreted. The attempt of this paper is to clarify these situations and offer alternative methods for analyses. (author)
Prediction of thermodynamic properties of coal derivatives
Donohue, M.D.
1993-09-01
We have developed new equations of state for pure-component chain molecules. The excellent performance of complicated theories, such as the Generalized Flory Dimer (GFD) theory can be mimicked by simpler equations, if assumptions for the shape parameters are made. We developed engineering correlations based on GFD theory, using local composition theory to take into account attractive forces. During this period, we compared methods for calculating repulsive and attractive contributions to equation of state against computer simulation data for hard and square-well chains, and against experimental data from the literature. We also have studied microstructure and local order in fluids that contain asymmetric molecules. We developed a thermodynamic model for polar compounds based on a site-site interaction approach. We have shown the equivalence of various classes of theories for hydrogen bonding, and used this equivalence to derive a multiple site model for water. In addition, simple cubic equations of state have been applied to calculate physical and chemical-reaction equilibria in nonideal systems. We measured infinite dilution activity coefficients using HPLC. We also measured high pressure vapor liquid equilibria of ternary and quaternary systems containing supercritical solvents. We used FT-IR spectroscopy to examine self-association of aliphatic alcohols due to hydrogen bonding, and to investigate the hydrogen bonding in polymer-solvent mixtures
DERIVED THERMODYNAMIC PROPERTIES OF [o-XYLENE OR p ...
Preferred Customer
This paper is a continuation of our earlier work related to the study of thermodynamic properties of binary and ternary mixtures [1-6]. Reliable data on phase behavior and thermodynamic excess properties of multi component fluid mixtures are necessary for the proper design of synthesis and separation processes of the ...
Membrane extraction with thermodynamically unstable diphosphonic acid derivatives
Horwitz, E.P.; Gatrone, R.C.; Nash, K.L.
1997-10-14
Thermodynamically-unstable complexing agents which are diphosphonic acids and diphosphonic acid derivatives (or sulphur containing analogs), like carboxyhydroxymethanediphosphonic acid and vinylidene-1,1-diphosphonic acid, are capable of complexing with metal ions, and especially metal ions in the II, III, IV, V and VI oxidation states, to form stable, water-soluble metal ion complexes in moderately alkaline to highly-acidic media. However, the complexing agents can be decomposed, under mild conditions, into non-organic compounds which, for many purposes are environmentally-nondamaging compounds thereby degrading the complex and releasing the metal ion for disposal or recovery. Uses for such complexing agents as well as methods for their manufacture are also described. 1 fig.
Partial Derivative Games in Thermodynamics: A Cognitive Task Analysis
Kustusch, Mary Bridget; Roundy, David; Dray, Tevian; Manogue, Corinne A.
2014-01-01
Several studies in recent years have demonstrated that upper-division students struggle with the mathematics of thermodynamics. This paper presents a task analysis based on several expert attempts to solve a challenging mathematics problem in thermodynamics. The purpose of this paper is twofold. First, we highlight the importance of cognitive task…
Chirico, R.D.; Steele, W.V.
2004-01-01
Measurements leading to the calculation of the standard thermodynamic properties for gaseous bicyclopentyl (Chemicals Abstracts registry number [1636-39-1]) are reported. Experimental methods include adiabatic heat-capacity calorimetry, comparative ebulliometry, and differential-scanning calorimetry (d.s.c.). The critical temperature was determined by d.s.c. and the critical pressure and critical density were estimated. Standard molar entropies, standard molar enthalpies, and standard molar Gibbs free energies of formation are reported at selected temperatures between T=(298.15 and 600) K. Formation properties were calculated with a literature value for the enthalpy of combustion in the liquid phase. All results are compared with available literature values
MOLECULAR THERMODYNAMICS IN THE DESIGN OF SUBSTITUTE SOLVENTS
The use of physical properties and fluid behavior from molecular thermodynamics can lead to better decision making in the design of substitute solvents and can greatly reduce the expense and time required to find substitutes compared to designing solvents by experiment. this pape...
Thermodynamic criterions for heat exchanger networks design
Guiglion, C.; Farhat, S.; Pibouleau, L.; Domenech, S. (Ecole Nationale Superieure d' Ingenieurs de Genie Chimique, 31 - Toulouse (France))
1994-03-01
This problem under consideration consists in selecting a heat exchanger network able to carry out a given request in heatings and coolings, in steady-state behaviour with constant pressure, by using if necessary cold and hot utilities, and under the constraint [Delta] T [>=] e in order to restrict investment costs. The exchanged energy and the produced entropy are compared in terms of operating costs. According to the request to be satisfied and the constraints of utility consumption, it is shown that the goal to minimize the produced entropy more or less agrees with the goal to minimize the exchanged energy. In the last part, the case where the cost of utility use is assumed to be proportional to the flow rate, with a proportionality constant only depending on the input thermodynamic state, is studied thoroughly. Under this assumption, the minimization of operating costs is compatible with the minimization of exchanged energy, and can be obtained via the maximization of the difficulty of the request part, made without using utilities. This point is based on the notion of a request easier than another, which explicits the quite vague idea that a request is all the more easier because it involves less heatings at high temperatures and less coolings at low temperatures. (author). 5 refs., 1 fig.
Derivation of the phase field equations from the thermodynamic extremal principle
Svoboda, J.; Fischer, F.D.; McDowell, D.L.
2012-01-01
Thermodynamics employs quantities that characterize the state of the system and provides driving forces for system evolution. These quantities can be applied by means of the thermodynamic extremal principle to obtain models and consequently constitutive equations for the evolution of the thermodynamic systems. The phase field method is a promising tool for simulation of the microstructure evolution in complex systems but introduces several parameters that are not standard in thermodynamics. The purpose of this paper is to show how the phase field method equations can be derived from the thermodynamic extremal principle, allowing the common treatment of the phase field parameters together with standard thermodynamic parameters in future applications. Fixed values of the phase field parameters may, however, not guarantee fixed values of thermodynamic parameters. Conditions are determined, for which relatively stable values of the thermodynamic parameters are guaranteed during phase field method simulations of interface migration. Finally, analytical relations between the thermodynamic and phase field parameters are found and verified for these simulations. A slight dependence of the thermodynamic parameters on the driving force is determined for the cases examined.
A novel constraint for thermodynamically designing DNA sequences.
Qiang Zhang
Full Text Available Biotechnological and biomolecular advances have introduced novel uses for DNA such as DNA computing, storage, and encryption. For these applications, DNA sequence design requires maximal desired (and minimal undesired hybridizations, which are the product of a single new DNA strand from 2 single DNA strands. Here, we propose a novel constraint to design DNA sequences based on thermodynamic properties. Existing constraints for DNA design are based on the Hamming distance, a constraint that does not address the thermodynamic properties of the DNA sequence. Using a unique, improved genetic algorithm, we designed DNA sequence sets which satisfy different distance constraints and employ a free energy gap based on a minimum free energy (MFE to gauge DNA sequences based on set thermodynamic properties. When compared to the best constraints of the Hamming distance, our method yielded better thermodynamic qualities. We then used our improved genetic algorithm to obtain lower-bound DNA sequence sets. Here, we discuss the effects of novel constraint parameters on the free energy gap.
Fermi, Enrico
1956-01-01
Indisputably, this is a modern classic of science. Based on a course of lectures delivered by the author at Columbia University, the text is elementary in treatment and remarkable for its clarity and organization. Although it is assumed that the reader is familiar with the fundamental facts of thermometry and calorimetry, no advanced mathematics beyond calculus is assumed.Partial contents: thermodynamic systems, the first law of thermodynamics (application, adiabatic transformations), the second law of thermodynamics (Carnot cycle, absolute thermodynamic temperature, thermal engines), the entr
On the application of thermodynamics of corrosion for service life design of concrete structures
Küter, Andre; Geiker, Mette Rica; Møller, Per
2010-01-01
There are unexploited possibilities in the application of thermodynamics of corrosion for service life design (SLD) of concrete structures. Thermodynamics provides means for insightful descriptions of corrosion mechanisms and of corrosion protection mechanisms. Strategies for corrosion protection...... of the application of thermodynamics for SLD and gives examples of two applications: description of corrosion processes and design of countermeasures. Emphasis is set on chloride induced corrosion....... can be based on thermodynamically consistent corrosion mechanisms and evaluation of existing and design of new countermeasures can be performed using thermodynamics. Similarly, materials concepts for embedded electrodes can be designed using thermodynamics. The present paper provides a brief outline...
Thermodynamics of sublimation and solvation for bicyclo-derivatives of 1,3-thiazine
Ol’khovich, Marina V.; Blokhina, Svetlana V.; Sharapova, Angelica V.; Perlovich, German L.; Proshin, Alexey N.
2013-01-01
Highlights: • Temperature dependencies of saturated vapor pressure of new bicyclo-derivatives were obtained. • Thermodynamic functions of sublimation and solvation were calculated. • The correlations between thermodynamic functions and molecular descriptors are discussed. - Abstract: Temperature dependencies of saturated vapor pressure of novel bicyclo-derivatives of 1,3-thiazine with methoxy- and carbonyl-substituents have been obtained by method of transference by means of an inert gas carrier. Thermodynamic functions of sublimation have been calculated. Correlations between thermodynamic functions of sublimation and thermophysical properties of the substances and molecular descriptors have been established. The enthalpies of solvation of compounds were calculated using the measured values of enthalpies of sublimation and of standard enthalpies of solution in hexane and buffer
Derivation of the Second Law of Thermodynamics from Boltzmann's Distribution Law.
Nelson, P. G.
1988-01-01
Shows how the thermodynamic condition for equilibrium in an isolated system can be derived by the application of Boltzmann's law to a simple physical system. States that this derivation could be included in an introductory course on chemical equilibrium to help prepare students for a statistical mechanical treatment presented in the curriculum.…
Upgrading of syngas derived from biomass gasification: A thermodynamic analysis
Haryanto, Agus; Fernando, Sandun D.; Pordesimo, Lester O.; Adhikari, Sushil
2009-01-01
Hydrogen yields in the syngas produced from non-catalytic biomass gasification are generally low. The hydrogen fraction, however, can be increased by converting CO, CH 4 , higher hydrocarbons, and tar in a secondary reactor downstream. This paper discusses thermodynamic limits of the synthesis gas upgrading process. The method used in this process is minimization of Gibbs free energy function. The analysis is performed for temperature ranges from 400 to 1300 K, pressure of 1-10 atm (0.1-1 MPa), and different carbon to steam ratios. The study concludes that to get optimum H 2 yields, with negligible CH 4 and coke formation, upgrading syngas is best practiced at a temperature range of 900-1100 K. At these temperatures, H 2 could be possibly increased by 43-124% of its generally observed values at the gasifier exit. The analysis revealed that increasing steam resulted in a positive effect. The study also concluded that increasing pressure from 1 to 3 atm can be applied at a temperature >1000 K to further increase H 2 yields.
Upgrading of syngas derived from biomass gasification: A thermodynamic analysis
Haryanto, Agus [Agricultural and Biological Engineering Department, Mississippi State University, 130 Creelman St., Mississippi State, MS 39762 (United States); Agricultural Engineering Department, University of Lampung, Jl. Sumantri Brojonegoro No. 1, Bandar Lampung 35145 (Indonesia); Fernando, Sandun D. [Biological and Agricultural Engineering Department, Texas A and M University, 2117 TAMU College Station, TX 77843-2117 (United States); Pordesimo, Lester O. [Agricultural and Biological Engineering Department, Mississippi State University, 130 Creelman St., Mississippi State, MS 39762 (United States); Adhikari, Sushil [Biosystems Engineering Department, Auburn University, 215 Tom Corley Building, Auburn, AL 36849-5417 (United States)
2009-05-15
Hydrogen yields in the syngas produced from non-catalytic biomass gasification are generally low. The hydrogen fraction, however, can be increased by converting CO, CH{sub 4}, higher hydrocarbons, and tar in a secondary reactor downstream. This paper discusses thermodynamic limits of the synthesis gas upgrading process. The method used in this process is minimization of Gibbs free energy function. The analysis is performed for temperature ranges from 400 to 1300 K, pressure of 1-10 atm (0.1-1 MPa), and different carbon to steam ratios. The study concludes that to get optimum H{sub 2} yields, with negligible CH{sub 4} and coke formation, upgrading syngas is best practiced at a temperature range of 900-1100 K. At these temperatures, H{sub 2} could be possibly increased by 43-124% of its generally observed values at the gasifier exit. The analysis revealed that increasing steam resulted in a positive effect. The study also concluded that increasing pressure from 1 to 3 atm can be applied at a temperature >1000 K to further increase H{sub 2} yields. (author)
Thermodynamic Derivation of the Activation Energy for Ice Nucleation
Barahona, D.
2015-01-01
Cirrus clouds play a key role in the radiative and hydrological balance of the upper troposphere. Their correct representation in atmospheric models requires an understanding of the microscopic processes leading to ice nucleation. A key parameter in the theoretical description of ice nucleation is the activation energy, which controls the flux of water molecules from the bulk of the liquid to the solid during the early stages of ice formation. In most studies it is estimated by direct association with the bulk properties of water, typically viscosity and self-diffusivity. As the environment in the ice-liquid interface may differ from that of the bulk, this approach may introduce bias in calculated nucleation rates. In this work a theoretical model is proposed to describe the transfer of water molecules across the ice-liquid interface. Within this framework the activation energy naturally emerges from the combination of the energy required to break hydrogen bonds in the liquid, i.e., the bulk diffusion process, and the work dissipated from the molecular rearrangement of water molecules within the ice-liquid interface. The new expression is introduced into a generalized form of classical nucleation theory. Even though no nucleation rate measurements are used to fit any of the parameters of the theory the predicted nucleation rate is in good agreement with experimental results, even at temperature as low as 190 K, where it tends to be underestimated by most models. It is shown that the activation energy has a strong dependency on temperature and a weak dependency on water activity. Such dependencies are masked by thermodynamic effects at temperatures typical of homogeneous freezing of cloud droplets; however, they may affect the formation of ice in haze aerosol particles. The new model provides an independent estimation of the activation energy and the homogeneous ice nucleation rate, and it may help to improve the interpretation of experimental results and the
Reassessing SERS enhancement factors: using thermodynamics to drive substrate design.
Guicheteau, J A; Tripathi, A; Emmons, E D; Christesen, S D; Fountain, Augustus W
2017-12-04
Over the past 40 years fundamental and application research into Surface-Enhanced Raman Scattering (SERS) has been explored by academia, industry, and government laboratories. To date however, SERS has achieved little commercial success as an analytical technique. Researchers are tackling a variety of paths to help break through the commercial barrier by addressing the reproducibility in both the SERS substrates and SERS signals as well as continuing to explore the underlying mechanisms. To this end, investigators use a variety of methodologies, typically studying strongly binding analytes such as aromatic thiols and azarenes, and report SERS enhancement factor calculations. However a drawback of the traditional SERS enhancement factor calculation is that it does not yield enough information to understand substrate reproducibility, application potential with another analyte, or the driving factors behind the molecule-metal interaction. Our work at the US Army Edgewood Chemical Biological Center has focused on these questions and we have shown that thermodynamic principles play a key role in the SERS response and are an essential factor in future designs of substrates and applications. This work will discuss the advantages and disadvantages of various experimental techniques used to report SERS enhancement with planar SERS substrates and present our alternative SERS enhancement value. We will report on three types of analysis scenarios that all yield different information concerning the effectiveness of the SERS substrate, practical application of the substrate, and finally the thermodynamic properties of the substrate. We believe that through this work a greater understanding for designing substrates will be achieved, one that is based on both thermodynamic and plasmonic properties as opposed to just plasmonic properties. This new understanding and potential change in substrate design will enable more applications for SERS based methodologies including targeting
Zanchini, E.
1988-01-01
The definition of energy, in thermodynamics, is dependent by starting operative definitions of the basic concepts of physics on which it rests, such as those of isolated systems, ambient of a system, separable system and set of separable states. Then the definition of energy is rigorously extended to open systems. The extension gives a clear physical meaning to the concept of energy difference between two states with arbitrary different compositions
Chemical Product Design: A new challenge of applied thermodynamics
Abildskov, Jens; Kontogeorgis, Georgios
2004-01-01
, and then to outline some specific examples from our research activities in the area of thermodynamics for chemical products. The examples cover rather diverse areas such as interrelation between thermodynamic and engineering properties in detergents (surfactants), paint thermodynamics and the development of models...
1976-01-01
The entropy of a gas system with the number of particles subject to external control is maximized to derive relations between the thermodynamic variables that obtain at equilibrium. These relations are described in terms of the chemical potential, defined as equivalent partial derivatives of entropy, energy, enthalpy, free energy, or free enthalpy. At equilibrium, the change in total chemical potential must vanish. This fact is used to derive the equilibrium constants for chemical reactions in terms of the partition functions of the species involved in the reaction. Thus the equilibrium constants can be determined accurately, just as other thermodynamic properties, from a knowledge of the energy levels and degeneracies for the gas species involved. These equilibrium constants permit one to calculate the equilibrium concentrations or partial pressures of chemically reacting species that occur in gas mixtures at any given condition of pressure and temperature or volume and temperature.
Impact of protein and ligand impurities on ITC-derived protein-ligand thermodynamics.
Grüner, Stefan; Neeb, Manuel; Barandun, Luzi Jakob; Sielaff, Frank; Hohn, Christoph; Kojima, Shun; Steinmetzer, Torsten; Diederich, François; Klebe, Gerhard
2014-09-01
The thermodynamic characterization of protein-ligand interactions by isothermal titration calorimetry (ITC) is a powerful tool in drug design, giving valuable insight into the interaction driving forces. ITC is thought to require protein and ligand solutions of high quality, meaning both the absence of contaminants as well as accurately determined concentrations. Ligands synthesized to deviating purity and protein of different pureness were titrated by ITC. Data curation was attempted also considering information from analytical techniques to correct stoichiometry. We used trypsin and tRNA-guanine transglycosylase (TGT), together with high affinity ligands to investigate the effect of errors in protein concentration as well as the impact of ligand impurities on the apparent thermodynamics. We found that errors in protein concentration did not change the thermodynamic properties obtained significantly. However, most ligand impurities led to pronounced changes in binding enthalpy. If protein binding of the respective impurity is not expected, the actual ligand concentration was corrected for and the thus revised data compared to thermodynamic properties obtained with the respective pure ligand. Even in these cases, we observed differences in binding enthalpy of about 4kJ⋅mol(-1), which is considered significant. Our results indicate that ligand purity is the critical parameter to monitor if accurate thermodynamic data of a protein-ligand complex are to be recorded. Furthermore, artificially changing fitting parameters to obtain a sound interaction stoichiometry in the presence of uncharacterized ligand impurities may lead to thermodynamic parameters significantly deviating from the accurate thermodynamic signature. Copyright © 2014 Elsevier B.V. All rights reserved.
Thermodynamics of Gas Turbine Cycles with Analytic Derivatives in OpenMDAO
Gray, Justin; Chin, Jeffrey; Hearn, Tristan; Hendricks, Eric; Lavelle, Thomas; Martins, Joaquim R. R. A.
2016-01-01
A new equilibrium thermodynamics analysis tool was built based on the CEA method using the OpenMDAO framework. The new tool provides forward and adjoint analytic derivatives for use with gradient based optimization algorithms. The new tool was validated against the original CEA code to ensure an accurate analysis and the analytic derivatives were validated against finite-difference approximations. Performance comparisons between analytic and finite difference methods showed a significant speed advantage for the analytic methods. To further test the new analysis tool, a sample optimization was performed to find the optimal air-fuel equivalence ratio, , maximizing combustion temperature for a range of different pressures. Collectively, the results demonstrate the viability of the new tool to serve as the thermodynamic backbone for future work on a full propulsion modeling tool.
Thermodynamic derivation of Saha's equation for a multi-temperature plasma
Morro, Angelo; Romeo, Maurizio
1988-01-01
The ionization equilibrium between the constituents of a multi-temperature plasma is investigated within the thermodynamics of fluid mixtures. As a result, a law of mass action is derived that, in the approximation of ideal gases for the constituents, leads to a direct generalization of Saha's equation. The main properties of this generalization are discussed, and contrasted with those of other equations which have appeared in the literature. (author)
Frank, T.D.
2002-01-01
We study many particle systems in the context of mean field forces, concentration-dependent diffusion coefficients, generalized equilibrium distributions, and quantum statistics. Using kinetic transport theory and linear nonequilibrium thermodynamics we derive for these systems a generalized multivariate Fokker-Planck equation. It is shown that this Fokker-Planck equation describes relaxation processes, has stationary maximum entropy distributions, can have multiple stationary solutions and stationary solutions that differ from Boltzmann distributions
Thermodynamic metrics for measuring the ``sustainability'' of design for recycling
Reuter, Markus; van Schaik, Antoinette
2008-08-01
In this article, exergy is applied as a parameter to measure the “sustainability” of a recycling system in addition to the fundamental prediction of material recycling and energy recovery, summarizing a development of over 20 years by the principal author supported by various co-workers, Ph.D., and M.Sc. students. In order to achieve this, recyclate qualities and particle size distributions throughout the system must be predicted as a function of product design, liberation during shredding, process dynamics, physical separation physics, and metallurgical thermodynamics. This crucial development enables the estimation of the true exergy of a recycling system from its inputs and outputs including all its realistic industrial traits. These models have among others been linked to computer aided design tools of the automotive industry and have been used to evaluate the performance of waste electric and electronic equipment recycling systems in The Netherlands. This paper also suggests that the complete system must be optimized to find a “truer” optimum of the material production system linked to the consumer market.
On the derivation of thermodynamic restrictions for materials with internal state variables
Malmberg, T.
1987-07-01
Thermodynamic restrictions for the constitutive relations of an internal variable model are derived by evaluating the Clausius-Duhem entropy inequality with two different approaches. The classical Coleman-Noll argumentation of Rational Thermodynamics applied by Coleman and Gurtin to an internal variable model is summarized. This approach requires an arbitrary modulation of body forces and heat supply in the interior of the body which is subject to criticism. The second approach applied in this presentation is patterned after a concept of Mueller and Liu, originally developed within the context of a different entropy inequality and different classes of constitutive models. For the internal variable model the second approach requires only the modulation of initial values on the boundary of the body. In the course of the development of the second approach certain differences to the argumentation of Mueller and Liu become evident and are pointed out. Finally, the results demonstrate that the first and second approach give the same thermodynamic restrictions for the internal variable model. The derived residual entropy inequality requires further analysis. (orig.) [de
Kleidon, Alex; Kravitz, Benjamin S.; Renner, Maik
2015-01-16
We derive analytic expressions of the transient response of the hydrological cycle to surface warming from an extremely simple energy balance model in which turbulent heat fluxes are constrained by the thermodynamic limit of maximum power. For a given magnitude of steady-state temperature change, this approach predicts the transient response as well as the steady-state change in surface energy partitioning and the hydrologic cycle. We show that the transient behavior of the simple model as well as the steady state hydrological sensitivities to greenhouse warming and solar geoengineering are comparable to results from simulations using highly complex models. Many of the global-scale hydrological cycle changes can be understood from a surface energy balance perspective, and our thermodynamically-constrained approach provides a physically robust way of estimating global hydrological changes in response to altered radiative forcing.
RG flow and thermodynamics of causal horizons in higher-derivative AdS gravity
Banerjee, Shamik; Bhattacharyya, Arpan
2016-01-01
In http://arxiv.org/abs/1508.01343 [hep-th], one of the authors proposed that in AdS/CFT the gravity dual of the boundary c-theorem is the second law of thermodynamics satisfied by causal horizons in AdS and this was verified for Einstein gravity in the bulk. In this paper we verify this for higher derivative theories. We pick up theories for which an entropy expression satisfying the second law exists and show that the entropy density evaluated on the causal horizon in a RG flow geometry is a holographic c-function. We also prove that given a theory of gravity described by a local covariant action in the bulk a sufficient condition to ensure holographic c-theorem is that the second law of causal horizon thermodynamics be satisfied by the theory. This allows us to explicitly construct holographic c-function in a theory where there is curvature coupling between gravity and matter and standard null energy condition cannot be defined although second law is known to hold. Based on the duality between c-theorem and the second law of causal horizon thermodynamics proposed in http://arxiv.org/abs/1508.01343 [hep-th] and the supporting calculations of this paper we conjecture that every Unitary higher derivative theory of gravity in AdS satisfies the second law of causal horizon thermodynamics. If this is not true then c-theorem will be violated in a unitary Lorentz invariant field theory.
Zherikova, Kseniya V.; Zelenina, Ludmila N.; Chusova, Tamara P.; Gelfond, Nikolay V.; Morozova, Natalia B.
2016-01-01
Highlights: • Thermal properties of two volatile fluorinated Sc(III) beta-diketonates were studied. • Saturated and unsaturated vapor pressures were measured. • DSC analysis was carried out. • Sublimation, evaporation and melting enthalpies and entropies were derived. • Effect of fluorine introduction on volatility and thermal stability was established. - Abstract: The present work deals with the investigation of thermal properties of two volatile scandium(III) beta-diketonates with 2,2,6,6-tetramethyl-4-fluoro-3,5-heptanedione and 1,1,1-trifluoro-5,5-dimethyl-2,4-hexanedione which have been synthesized and purified. Using the static method with glass membrane gauge-manometer the temperature dependencies of saturated and unsaturated vapor pressure were measured for the first time. The temperatures and enthalpies of melting were measured for these compounds by differential scanning calorimetry. The standard thermodynamic characteristics of enthalpy and entropy for sublimation, vaporization and melting processes were derived.
Alvarez-Lopez, Enrique; Perez-Casas, Silvia
2013-01-01
Highlights: • The complexes formation between cyclodextrins and pheniramines were studied by ITC. • In all the cases, the process is enthalpy driven. • The interactions between cyclodextrins and pheniramines are discussed. -- Abstract: The interactions of native and hydroxypropyl-cyclodextrin derivatives with pheniramine, (±)-brompheniramine, (+)-brompheniramine, (±)-chlorpheniramine, (+)-chlorpheniramine, carbinoxamine maleate salts and doxylamine succinate salt have been studied by isothermal titration calorimetry at T = 298.15 K in aqueous solution. The enthalpies and association constants for the complex formation were obtained, from which the Gibbs energy and entropy changes were derived. The thermodynamic parameters corresponding to the transfer process of the guest from the native to the modified CD are also calculated. The results show that the hydrophobic interactions are important in this process, but the size of the guest and the nature of the substituent are also of some importance
A constitutive rheological model for agglomerating blood derived from nonequilibrium thermodynamics
Tsimouri, Ioanna Ch.; Stephanou, Pavlos S.; Mavrantzas, Vlasis G.
2018-03-01
Red blood cells tend to aggregate in the presence of plasma proteins, forming structures known as rouleaux. Here, we derive a constitutive rheological model for human blood which accounts for the formation and dissociation of rouleaux using the generalized bracket formulation of nonequilibrium thermodynamics. Similar to the model derived by Owens and co-workers ["A non-homogeneous constitutive model for human blood. Part 1. Model derivation and steady flow," J. Fluid Mech. 617, 327-354 (2008)] through polymer network theory, each rouleau in our model is represented as a dumbbell; the corresponding structural variable is the conformation tensor of the dumbbell. The kinetics of rouleau formation and dissociation is treated as in the work of Germann et al. ["Nonequilibrium thermodynamic modeling of the structure and rheology of concentrated wormlike micellar solutions," J. Non-Newton. Fluid Mech. 196, 51-57 (2013)] by assuming a set of reversible reactions, each characterized by a forward and a reverse rate constant. The final set of evolution equations for the microstructure of each rouleau and the expression for the stress tensor turn out to be very similar to those of Owens and co-workers. However, by explicitly considering a mechanism for the formation and breakage of rouleaux, our model further provides expressions for the aggregation and disaggregation rates appearing in the final transport equations, which in the kinetic theory-based network model of Owens were absent and had to be specified separately. Despite this, the two models are found to provide similar descriptions of experimental data on the size distribution of rouleaux.
Thermodynamic design of natural gas liquefaction cycles for offshore application
Chang, Ho-Myung; Lim, Hye Su; Choe, Kun Hyung
2014-09-01
A thermodynamic study is carried out for natural gas liquefaction cycles applicable to offshore floating plants, as partial efforts of an ongoing governmental project in Korea. For offshore liquefaction, the most suitable cycle may be different from the on-land LNG processes under operation, because compactness and simple operation are important as well as thermodynamic efficiency. As a turbine-based cycle, closed Claude cycle is proposed to use NG (natural gas) itself as refrigerant. The optimal condition for NG Claude cycle is determined with a process simulator (Aspen HYSYS), and the results are compared with fully-developed C3-MR (propane pre-cooled mixed refrigerant) JT cycles and various N2 (nitrogen) Brayton cycles in terms of efficiency and compactness. The newly proposed NG Claude cycle could be a good candidate for offshore LNG processes.
Weronika Kotkowiak
2018-03-01
Full Text Available Thrombin is a serine protease that plays a crucial role in hemostasis, fibrinolysis, cell proliferation, and migration. Thrombin binding aptamer (TBA is able to inhibit the activity of thrombin molecule via binding to its exosite I. This 15-nt DNA oligonucleotide forms an intramolecular, antiparallel G-quadruplex structure with a chair-like conformation. In this paper, we report on our investigations on the influence of certain modified nucleotide residues on thermodynamic stability, folding topology, and biological properties of TBA variants. In particular, the effect of single incorporation of a novel 4-thiouracil derivative of unlocked nucleic acid (UNA, as well as single incorporation of 4-thiouridine and all four canonical UNAs, was evaluated. The studies presented herein have shown that 4-thiouridine in RNA and UNA series, as well as all four canonical UNAs, can efficiently modulate G-quadruplex thermodynamic and biological stability, and that the effect is strongly position dependent. Interestingly, TBA variants containing the modified nucleotide residues are characterized by unchanged folding topology. Thrombin time assay revealed that incorporation of certain UNA residues may improve G-quadruplex anticoagulant properties. Noteworthy, some TBA variants, characterized by decreased ability to inhibit thrombin activity, possess significant antiproliferative properties reducing the viability of the HeLa cell line even by 95% at 10 μM concentration.
A thermodynamic model for C-(N-)A-S-H gel: CNASHss. Derivation and validation
Myers, Rupert J.; Bernal, Susan A.; Provis, John L.
2014-01-01
The main reaction product in Ca-rich alkali-activated cements and hybrid Portland cement (PC)-based materials is a calcium (alkali) aluminosilicate hydrate (C-(N-)A-S-H) gel. Thermodynamic models without explicit definitions of structurally-incorporated Al species have been used in numerous past studies to describe this gel, but offer limited ability to simulate the chemistry of blended PC materials and alkali-activated cements. Here, a thermodynamic model for C-(N-)A-S-H gel is derived and parameterised to describe solubility data for the CaO–(Na 2 O,Al 2 O 3 )–SiO 2 –H 2 O systems and alkali-activated slag (AAS) cements, and chemical composition data for C-A-S-H gels. Simulated C-(N-)A-S-H gel densities and molar volumes are consistent with the corresponding values reported for AAS cements, meaning that the model can be used to describe chemical shrinkage in these materials. Therefore, this model can provide insight into the chemistry of AAS cements at advanced ages, which is important for understanding the long-term durability of these materials
A general derivation and quantification of the third law of thermodynamics.
Masanes, Lluís; Oppenheim, Jonathan
2017-03-14
The most accepted version of the third law of thermodynamics, the unattainability principle, states that any process cannot reach absolute zero temperature in a finite number of steps and within a finite time. Here, we provide a derivation of the principle that applies to arbitrary cooling processes, even those exploiting the laws of quantum mechanics or involving an infinite-dimensional reservoir. We quantify the resources needed to cool a system to any temperature, and translate these resources into the minimal time or number of steps, by considering the notion of a thermal machine that obeys similar restrictions to universal computers. We generally find that the obtainable temperature can scale as an inverse power of the cooling time. Our results also clarify the connection between two versions of the third law (the unattainability principle and the heat theorem), and place ultimate bounds on the speed at which information can be erased.
Apol, M.E F; Amadei, A; Berendsen, H.J.C.
1996-01-01
In an analogous way as was done previously in the canonical ensemble, we derived for dilute gases an approximated thermodynamic closure relation in the isothermal-isobaric ensemble using quasi-Gaussian entropy theory. For the Gamma state, we formulated equations for the temperature dependence of
Tian, Jun-Nan; Ge, Bing-Qiang; Shen, Yun-Feng; He, Yu-Xuan; Chen, Zhong-Xiu
2016-03-09
Interaction of endogenous sodium cholate (SC) with dietary amphiphiles would induce structural evolution of the self-assembled aggregates, which inevitably affects the hydrolysis of fat in the gut. Current work mainly focused on the interaction of bile salts with classical double-layered phospholipid vesicles. In this paper, the thermodynamics and structural evolution during the interaction of SC with novel unilamellar vesicles formed from vitamin-derived zwitterionic bolaamphiphile (DDO) were characterized. It was revealed that an increased temperature and the presence of NaCl resulted in narrowed micelle-vesicle coexistence and enlarged the vesicle region. The coexistence of micelles and vesicles mainly came from the interaction of monomeric SC with DDO vesicles, whereas micellar SC contributed to the total solubilization of DDO vesicles. This research may enrich the thermodynamic mechanism behind the structure transition of the microaggregates formed by amphiphiles in the gut. It will also contribute to the design of food formulation and drug delivery system.
Durán-Zenteno, Moisés S.; Pérez-López, Hugo I.; Galicia-Luna, Luis A.; Elizalde-Solis, Octavio
2012-01-01
Highlights: ► We measured densities for {alkanol (ethanol or 1-propanol) + boldine} mixtures. ► Liquid densities are reported in the ranges of (1 to 20) MPa and (313 to 363) K. ► Thermodynamic derived properties were calculated using an empirical correlation. ► Extrapolated densities at atmospheric pressure agree with the literature data. - Abstract: In this work, densities of two binary systems of {alkanol (ethanol and 1-propanol) + boldine} are measured at temperatures from (313 to 363) K and pressures up to 20 MPa using an Anton Paar vibrating tube densimeter. Each (alkanol + boldine) system was prepared at five diluted compositions with respect to the alkaloid. These are (x 2 = 0.0012, 0.0074, 0.0136, 0.0196, 0.0267) and (x 2 = 0.0018, 0.0046, 0.0077, 0.0112, 0.0142) mixed in ethanol and 1-propanol, respectively. Experimental densities are correlated using an empirical 6-parameter equation with deviations within 0.04%. Extrapolated densities at atmospheric pressure agree with the literature data. Isobaric expansivity, isothermal compressibility, thermal pressure coefficient, and internal pressure have been calculated.
Thermodynamics of Horndeski black holes with non-minimal derivative coupling
Miao, Yan-Gang [Nankai University, School of Physics, Tianjin (China); Max-Planck-Institut fuer Gravitationsphysik (Albert-Einstein-Institut), Potsdam (Germany); Xu, Zhen-Ming [Nankai University, School of Physics, Tianjin (China)
2016-11-15
We explore thermodynamic properties of a new class of Horndeski black holes whose action contains a non-minimal kinetic coupling of a massless real scalar and the Einstein tensor. Our treatment is based on the well-accepted consideration, where the cosmological constant is dealt with as thermodynamic pressure and the mass of black holes as thermodynamic enthalpy. We resort to a newly introduced intensive thermodynamic variable, i.e., the coupling strength of the scalar and tensor whose dimension is length square, and thus yield both the generalized first law of thermodynamics and the generalized Smarr relation. Our result indicates that this class of Horndeski black holes presents rich thermodynamic behaviors and critical phenomena. Especially in the case of the presence of an electric field, these black holes undergo two phase transitions. Once the charge parameter exceeds its critical value, or the cosmological parameter does not exceed its critical value, no phase transitions happen and the black holes are stable. As a by-product, we point out, the coupling strength acts as the thermodynamic pressure in thermodynamics. (orig.)
A thermodynamic derivation of the stress-strain relations for Burgers media and related substances
Kluitenberg, G.A.
1968-01-01
A generalization is given of the author's thermodynamic theory for mechanical phenomena in continuous media. The developments are based on the general methods of non-equilibrium thermodynamics. Temperature effects are fully taken into account. It is assumed that several microscopic phenomena occur
Thermodynamics of Horndeski black holes with non-minimal derivative coupling
Miao, Yan-Gang; Xu, Zhen-Ming
2016-01-01
We explore thermodynamic properties of a new class of Horndeski black holes whose action contains a non-minimal kinetic coupling of a massless real scalar and the Einstein tensor. Our treatment is based on the well-accepted consideration, where the cosmological constant is dealt with as thermodynamic pressure and the mass of black holes as thermodynamic enthalpy. We resort to a newly introduced intensive thermodynamic variable, i.e., the coupling strength of the scalar and tensor whose dimension is length square, and thus yield both the generalized first law of thermodynamics and the generalized Smarr relation. Our result indicates that this class of Horndeski black holes presents rich thermodynamic behaviors and critical phenomena. Especially in the case of the presence of an electric field, these black holes undergo two phase transitions. Once the charge parameter exceeds its critical value, or the cosmological parameter does not exceed its critical value, no phase transitions happen and the black holes are stable. As a by-product, we point out, the coupling strength acts as the thermodynamic pressure in thermodynamics. (orig.)
Benson, Rowland S
1979-01-01
Internal Combustion of Engines: A Detailed Introduction to the Thermodynamics of Spark and Compression Ignition Engines, Their Design and Development focuses on the design, development, and operations of spark and compression ignition engines. The book first describes internal combustion engines, including rotary, compression, and indirect or spark ignition engines. The publication then discusses basic thermodynamics and gas dynamics. Topics include first and second laws of thermodynamics; internal energy and enthalpy diagrams; gas mixtures and homocentric flow; and state equation. The text ta
Hostrup, Martin; Gani, Rafiqul; Kravanja, Zdravko
1999-01-01
This paper presents an integrated approach to the solution of process synthesis, design and analysis problems. Integration is achieved by combining two different techniques, synthesis based on thermodynamic insights and structural optimization together with a simulation engine and a properties pr...
Applications of thermodynamic calculations to Mg alloy design: Mg-Sn based alloy development
Jung, In-Ho; Park, Woo-Jin; Ahn, Sang Ho; Kang, Dae Hoon; Kim, Nack J.
2007-01-01
Recently an Mg-Sn based alloy system has been investigated actively in order to develop new magnesium alloys which have a stable structure and good mechanical properties at high temperatures. Thermodynamic modeling of the Mg-Al-Mn-Sb-Si-Sn-Zn system was performed based on available thermodynamic, phase equilibria and phase diagram data. Using the optimized database, the phase relationships of the Mg-Sn-Al-Zn alloys with additions of Si and Sb were calculated and compared with their experimental microstructures. It is shown that the calculated results are in good agreement with experimental microstructures, which proves the applicability of thermodynamic calculations for new Mg alloy design. All calculations were performed using FactSage thermochemical software. (orig.)
McKenzie, W.F.
1992-08-01
The thermodynamic properties of secondary phases observed to form during nuclear waste glass-water interactions are of particular interest as it is with the application of these properties together with the thermodynamic properties of other solid phases, fluid phases, and aqueous species that one may predict the environmental consequences of introducing radionuclides contained in the glass into groundwater at a high-level nuclear waste repository. The validation of these predicted consequences can be obtained from laboratory experiments and field observations at natural analogue sites. The purpose of this report is to update and expand the previous compilation (McKenzie, 1991) of thermodynamic data retrieved from the literature and/or estimated for secondary phases observed to form (and candidate phases from observed chemical compositions) during nuclear waste glass-water interactions. In addition, this report includes provisionally recommended thermodynamic data of secondary phases
Molecular Thermodynamic Modeling and Design of Microencapsulation Systems for Drug Delivery
Abildskov, Jens; O’Connell, John P.
2011-01-01
is based on fundamental thermodynamic relations and group contributions to properties of pure species (solvent, active ingredient and polymer) and their mixtures. The method is intended for pharmaceuticals with complex molecular structures, for which limited experimental information is known. Case studies......A systematic design strategy is given for computer-aided design of microparticle drug-delivery systems produced by solvent evaporation. In particular, design of solvents, polymer material, and external phase composition are considered for the case when the active ingredient is known. The procedure...... of solvent design are given....
Designing the microturbine engine for waste-derived fuels.
Seljak, Tine; Katrašnik, Tomaž
2016-01-01
Presented paper deals with adaptation procedure of a microturbine (MGT) for exploitation of refuse derived fuels (RDF). RDF often possess significantly different properties than conventional fuels and usually require at least some adaptations of internal combustion systems to obtain full functionality. With the methodology, developed in the paper it is possible to evaluate the extent of required adaptations by performing a thorough analysis of fuel combustion properties in a dedicated experimental rig suitable for testing of wide-variety of waste and biomass derived fuels. In the first part key turbine components are analyzed followed by cause and effect analysis of interaction between different fuel properties and design parameters of the components. The data are then used to build a dedicated test system where two fuels with diametric physical and chemical properties are tested - liquefied biomass waste (LW) and waste tire pyrolysis oil (TPO). The analysis suggests that exploitation of LW requires higher complexity of target MGT system as stable combustion can be achieved only with regenerative thermodynamic cycle, high fuel preheat temperatures and optimized fuel injection nozzle. Contrary, TPO requires less complex MGT design and sufficient operational stability is achieved already with simple cycle MGT and conventional fuel system. The presented approach of testing can significantly reduce the extent and cost of required adaptations of commercial system as pre-selection procedure of suitable MGT is done in developed test system. The obtained data can at the same time serve as an input for fine-tuning the processes for RDF production. Copyright © 2015. Published by Elsevier Ltd.
Chen, Yuzhen; Xiao, Huizhi; Zheng, Jie; Liang, Guizhao
2015-01-01
Phenolic acids and derivatives have potential biological functions, however, little is known about the structure-activity relationships and the underlying action mechanisms of these phenolic acids to date. Herein we investigate the structure-thermodynamics-antioxidant relationships of 20 natural phenolic acids and derivatives using DPPH• scavenging assay, density functional theory calculations at the B3LYP/6-311++G(d,p) levels of theory, and quantitative structure-activity relationship (QSAR) modeling. Three main working mechanisms (HAT, SETPT and SPLET) are explored in four micro-environments (gas-phase, benzene, water and ethanol). Computed thermodynamics parameters (BDE, IP, PDE, PA and ETE) are compared with the experimental radical scavenging activities against DPPH•. Available theoretical and experimental investigations have demonstrated that the extended delocalization and intra-molecular hydrogen bonds are the two main contributions to the stability of the radicals. The C = O or C = C in COOH, COOR, C = CCOOH and C = CCOOR groups, and orthodiphenolic functionalities are shown to favorably stabilize the specific radical species to enhance the radical scavenging activities, while the presence of the single OH in the ortho position of the COOH group disfavors the activities. HAT is the thermodynamically preferred mechanism in the gas phase and benzene, whereas SPLET in water and ethanol. Furthermore, our QSAR models robustly represent the structure-activity relationships of these explored compounds in polar media.
Thermodynamic design of 10 kW Brayton cryocooler for HTS cable
Chang, Ho-Myung; Park, C. W.; Yang, H. S.; Sohn, Song Ho; Lim, Ji Hyun; Oh, S. R.; Hwang, Si Dole
2012-06-01
Thermodynamic design of Brayton cryocooler is presented as part of an ongoing governmental project in Korea, aiming at 1 km HTS power cable in the transmission grid. The refrigeration requirement is 10 kW for continuously sub-cooling liquid nitrogen from 72 K to 65 K. An ideal Brayton cycle for this application is first investigated to examine the fundamental features. Then a practical cycle for a Brayton cryocooler is designed, taking into account the performance of compressor, expander, and heat exchangers. Commercial software (Aspen HYSYS) is used for simulating the refrigeration cycle with real fluid properties of refrigerant. Helium is selected as a refrigerant, as it is superior to neon in thermodynamic efficiency. The operating pressure and flow rate of refrigerant are decided with a constraint to avoid the freezing of liquid nitrogen
Ciancio, V.; Kluitenberg, G.A.
1990-01-01
Using the general methods of non-equilibrium thermodynamics, a theory for anisotropic polarizable media in which dielectric relaxation phenomena occur is developed. Assuming that ii microscopic phenomena give rise to dielectric relaxation, the contributions of these phenomena to the macroscopic
Buchkremer, S.; Klocke, F.
2017-01-01
Performance and operational safety of many metal parts in engineering depend on their surface integrity. During metal cutting, large thermomechanical loads and high gradients of the loads concerning time and location act on the surfaces and may yield significant structural material modifications, which alter the surface integrity. In this work, the derivation and validation of a model of nanostructural surface modifications in metal cutting are presented. For the first time in process modeling, initiation and kinetics of these modifications are predicted using a thermodynamic potential, which considers the interdependent developments of plastic work, dissipation, heat conduction and interface energy as well as the associated productions and flows of entropy. The potential is expressed based on the free Helmholtz energy. The irreversible thermodynamic state changes in the workpiece surface are homogenized over the volume in order to bridge the gap between discrete phenomena involved with the initiation and kinetics of dynamic recrystallization and its macroscopic implications for surface integrity. The formulation of the thermodynamic potential is implemented into a finite element model of orthogonal cutting of steel AISI 4140. Close agreement is achieved between predicted nanostructures and those obtained in transmission electron microscopical investigations of specimen produced in cutting experiments.
Nguyen, Tuong-Van; Elmegaard, Brian
2016-01-01
of their performance. However, the thermodynamic models used for this purpose are characterised by different mathematical formulations, ranges of application and levels of accuracy. This may lead to inconsistent results when estimating hydrocarbon properties and assessing the efficiency of a given process. This paper...... are related to the prediction of the energy flows (up to 7%) and to the heat exchanger conductances (up to 11%), and they are not systematic errors. The results illustrate the superiority of using the GERG-2008 model for designing gas processes in real applications, with the aim of reducing their energy use....... They demonstrate as well that particular caution should be exercised when extrapolating the results of the conventional thermodynamic models to the actual conception of the gas liquefaction chain....
Modular Approach to Designing Computer Cultural Systems: Culture as a Thermodynamic Machine
Leland Gilsen
2015-01-01
Full Text Available Culture is a complex non-linear system. In order to design computer simulations of cultural systems, it is necessary to break the system down into sub-systems. Human culture is modular. It consists of sets of people that belong to economic units. Access to, and control over matter, energy and information is postulated as the key to development of cultural simulations. Because resources in the real world are patchy, access to and control over resources is expressed in two related arenas: economics (direct control and politics (non-direct control. The best way to create models for cultural ecology/economics lies in an energy-information-economic paradigm based on general systems theory and an understanding of the "thermodynamics" of ecology, or culture as a thermodynamic machine.
Talantsev, Evgueni [Robinson Research Institute, Victoria University of Wellington, Lower Hutt (New Zealand); Crump, Wayne P.; Tallon, Jeffery L. [Robinson Research Institute, Victoria University of Wellington, Lower Hutt (New Zealand); MacDiarmid Institute for Advanced Materials and Nanotechnology, Lower Hutt (New Zealand)
2017-12-15
Key questions for any superconductor include: what is its maximum dissipation-free electrical current (its 'critical current') and can this be used to extract fundamental thermodynamic parameters? Present models focus on depinning of magnetic vortices and implicate materials engineering to maximise pinning performance. But recently we showed that the self-field critical current for thin films is a universal property, independent of microstructure, controlled only by the penetration depth. Here, using an extended BCS-like model, we calculate the penetration depth from the temperature dependence of the superconducting energy gap thus allowing us to fit self-field critical current data. In this way we extract from the T-dependent gap a set of key thermodynamic parameters, the ground-state penetration depth, energy gap and jump in electronic specific heat. Our fits to 79 available data sets, from zinc nanowires to compressed sulphur hydride with critical temperatures of 0.65 to 203 K, respectively, are excellent and the extracted parameters agree well with reported bulk values. Samples include thin films, wires or nanowires of single- or multi-band s-wave and d-wave superconductors of either type I or type II. For multiband or multiphase samples we accurately recover individual band contributions and phase fractions. (copyright 2017 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Kotkowiak, Weronika; Lisowiec-Wachnicka, Jolanta; Grynda, Jakub
2018-01-01
Thrombin is a serine protease that plays a crucial role in hemostasis, fibrinolysis, cell proliferation, and migration. Thrombin binding aptamer (TBA) is able to inhibit the activity of thrombin molecule via binding to its exosite I. This 15-nt DNA oligonucleotide forms an intramolecular, antipar......Thrombin is a serine protease that plays a crucial role in hemostasis, fibrinolysis, cell proliferation, and migration. Thrombin binding aptamer (TBA) is able to inhibit the activity of thrombin molecule via binding to its exosite I. This 15-nt DNA oligonucleotide forms an intramolecular......, antiparallel G-quadruplex structure with a chair-like conformation. In this paper, we report on our investigations on the influence of certain modified nucleotide residues on thermodynamic stability, folding topology, and biological properties of TBA variants. In particular, the effect of single incorporation......-quadruplex thermodynamic and biological stability, and that the effect is strongly position dependent. Interestingly, TBA variants containing the modified nucleotide residues are characterized by unchanged folding topology. Thrombin time assay revealed that incorporation of certain UNA residues may improve G...
Maser, Adam Charles
More electric aircraft systems, high power avionics, and a reduction in heat sink capacity have placed a larger emphasis on correctly satisfying aircraft thermal management requirements during conceptual design. Thermal management systems must be capable of dealing with these rising heat loads, while simultaneously meeting mission performance. Since all subsystem power and cooling requirements are ultimately traced back to the engine, the growing interactions between the propulsion and thermal management systems are becoming more significant. As a result, it is necessary to consider their integrated performance during the conceptual design of the aircraft gas turbine engine cycle to ensure that thermal requirements are met. This can be accomplished by using thermodynamic subsystem modeling and simulation while conducting the necessary design trades to establish the engine cycle. However, this approach also poses technical challenges associated with the existence of elaborate aircraft subsystem interactions. This research addresses these challenges through the creation of a parsimonious, transparent thermodynamic model of propulsion and thermal management systems performance with a focus on capturing the physics that have the largest impact on propulsion design choices. This modeling environment, known as Cycle Refinement for Aircraft Thermodynamically Optimized Subsystems (CRATOS), is capable of operating in on-design (parametric) and off-design (performance) modes and includes a system-level solver to enforce design constraints. A key aspect of this approach is the incorporation of physics-based formulations involving the concurrent usage of the first and second laws of thermodynamics, which are necessary to achieve a clearer view of the component-level losses across the propulsion and thermal management systems. This is facilitated by the direct prediction of the exergy destruction distribution throughout the system and the resulting quantification of available
Nguyen, Tuong-Van; Elmegaard, Brian
2016-01-01
Highlights: • Six thermodynamic models used for evaluating gas liquefaction systems are compared. • Three gas liquefaction systems are modelled, assessed and optimised for each equation of state. • The predictions of thermophysical properties and energy flows are significantly different. • The GERG-2008 model is the only consistent one, while cubic, virial and statistical equations are unsatisfying. - Abstract: Natural gas liquefaction systems are based on refrigeration cycles – they consist of the same operations such as heat exchange, compression and expansion, but they have different layouts, components and working fluids. The design of these systems requires a preliminary simulation and evaluation of their performance. However, the thermodynamic models used for this purpose are characterised by different mathematical formulations, ranges of application and levels of accuracy. This may lead to inconsistent results when estimating hydrocarbon properties and assessing the efficiency of a given process. This paper presents a thorough comparison of six equations of state widely used in the academia and industry, including the GERG-2008 model, which has recently been adopted as an ISO standard for natural gases. These models are used to (i) estimate the thermophysical properties of a Danish natural gas, (ii) simulate, and (iii) optimise liquefaction systems. Three case studies are considered: a cascade layout with three pure refrigerants, a single mixed-refrigerant unit, and an expander-based configuration. Significant deviations are found between all property models, and in all case studies. The main discrepancies are related to the prediction of the energy flows (up to 7%) and to the heat exchanger conductances (up to 11%), and they are not systematic errors. The results illustrate the superiority of using the GERG-2008 model for designing gas processes in real applications, with the aim of reducing their energy use. They demonstrate as well that
Liebenberg, D.H.; Mills, R.L.; Bronson, J.C.
1977-01-01
Hydrogen isotopes play an important role in energy technologies, in particular, the compression to high densities for initiation of controlled thermonuclear fusion energy. At high densities the properties of the compressed hydrogen isotopes depart drastically from ideal thermodynamic predictions. The measurement of accurate data including the author's own recent measurements of n-H 2 and n-D 2 in the range 75 to 300 K and 0.2 to 2.0 GPa (2 to 20 kbar) is reviewed. An equation-of-state of the Benedict type is fit to these data with a double-process least-squares computer program. The results are reviewed and compared with existing data and with a variety of theoretical work reported for fluid hydrogens. A new heuristic correlation is presented for simplicity in predicting volumes and sound velocity at high pressures. 9 figures, 1 table
Thermodynamic design of Stirling engine using multi-objective particle swarm optimization algorithm
Duan, Chen; Wang, Xinggang; Shu, Shuiming; Jing, Changwei; Chang, Huawei
2014-01-01
Highlights: • An improved thermodynamic model taking into account irreversibility parameter was developed. • A multi-objective optimization method for designing Stirling engine was investigated. • Multi-objective particle swarm optimization algorithm was adopted in the area of Stirling engine for the first time. - Abstract: In the recent years, the interest in Stirling engine has remarkably increased due to its ability to use any heat source from outside including solar energy, fossil fuels and biomass. A large number of studies have been done on Stirling cycle analysis. In the present study, a mathematical model based on thermodynamic analysis of Stirling engine considering regenerative losses and internal irreversibilities has been developed. Power output, thermal efficiency and the cycle irreversibility parameter of Stirling engine are optimized simultaneously using Particle Swarm Optimization (PSO) algorithm, which is more effective than traditional genetic algorithms. In this optimization problem, some important parameters of Stirling engine are considered as decision variables, such as temperatures of the working fluid both in the high temperature isothermal process and in the low temperature isothermal process, dead volume ratios of each heat exchanger, volumes of each working spaces, effectiveness of the regenerator, and the system charge pressure. The Pareto optimal frontier is obtained and the final design solution has been selected by Linear Programming Technique for Multidimensional Analysis of Preference (LINMAP). Results show that the proposed multi-objective optimization approach can significantly outperform traditional single objective approaches
A thermodynamic model for C-(N-)A-S-H gel: CNASH{sub s}s. Derivation and validation
Myers, Rupert J.; Bernal, Susan A.; Provis, John L., E-mail: j.provis@sheffield.ac.uk
2014-12-15
The main reaction product in Ca-rich alkali-activated cements and hybrid Portland cement (PC)-based materials is a calcium (alkali) aluminosilicate hydrate (C-(N-)A-S-H) gel. Thermodynamic models without explicit definitions of structurally-incorporated Al species have been used in numerous past studies to describe this gel, but offer limited ability to simulate the chemistry of blended PC materials and alkali-activated cements. Here, a thermodynamic model for C-(N-)A-S-H gel is derived and parameterised to describe solubility data for the CaO–(Na{sub 2}O,Al{sub 2}O{sub 3})–SiO{sub 2}–H{sub 2}O systems and alkali-activated slag (AAS) cements, and chemical composition data for C-A-S-H gels. Simulated C-(N-)A-S-H gel densities and molar volumes are consistent with the corresponding values reported for AAS cements, meaning that the model can be used to describe chemical shrinkage in these materials. Therefore, this model can provide insight into the chemistry of AAS cements at advanced ages, which is important for understanding the long-term durability of these materials.
Eisenbach, Markus; Perera, Meewanage Dilina N.; Landau, David P; Nicholson, Don M.; Yin, Junqi; Brown, Greg
2015-01-01
We present a unified approach to describe the combined behavior of the atomic and magnetic degrees of freedom in magnetic materials. Using Monte Carlo simulations directly combined with first principles the Curie temperature can be obtained ab initio in good agreement with experimental values. The large scale constrained first principles calculations have been used to construct effective potentials for both the atomic and magnetic degrees of freedom that allow the unified study of influence of phonon-magnon coupling on the thermodynamics and dynamics of magnetic systems. The MC calculations predict the specific heat of iron in near perfect agreement with experimental results from 300K to above Tc and allow the identification of the importance of the magnon-phonon interaction at the phase-transition. Further Molecular Dynamics and Spin Dynamics calculations elucidate the dynamics of this coupling and open the potential for quantitative and predictive descriptions of dynamic structure factors in magnetic materials using first principles-derived simulations.
Leege, Brian J.
The design of a liquid nitrogen vaporization and pressure building device that has zero product waste while recovering some of its stored energy is of interest for the cost reduction of nitrogen for use in industrial processes. Current devices may waste up to 30% of the gaseous nitrogen product by venting it to atmosphere. Furthermore, no attempt is made to recover the thermal energy available in the coldness of the cryogen. A seven step cycle with changing volumes and ambient heat addition is proposed, eliminating all product waste and providing the means of energy recovery from the nitrogen. This thesis discusses the new thermodynamic cycle and modeling as well as the mechanical design and testing of a prototype device. The prototype was able to achieve liquid nitrogen vaporization and pressurization up to 1000 psi, while full cycle validation is ongoing with promising initial results.
Qian, Ma; Ma, Jie
2009-06-07
Fletcher's spherical substrate model [J. Chem. Phys. 29, 572 (1958)] is a basic model for understanding the heterogeneous nucleation phenomena in nature. However, a rigorous thermodynamic formulation of the model has been missing due to the significant complexities involved. This has not only left the classical model deficient but also likely obscured its other important features, which would otherwise have helped to better understand and control heterogeneous nucleation on spherical substrates. This work presents a rigorous thermodynamic formulation of Fletcher's model using a novel analytical approach and discusses the new perspectives derived. In particular, it is shown that the use of an intermediate variable, a selected geometrical angle or pseudocontact angle between the embryo and spherical substrate, revealed extraordinary similarities between the first derivatives of the free energy change with respect to embryo radius for nucleation on spherical and flat substrates. Enlightened by the discovery, it was found that there exists a local maximum in the difference between the equivalent contact angles for nucleation on spherical and flat substrates due to the existence of a local maximum in the difference between the shape factors for nucleation on spherical and flat substrate surfaces. This helps to understand the complexity of the heterogeneous nucleation phenomena in a practical system. Also, it was found that the unfavorable size effect occurs primarily when R<5r( *) (R: radius of substrate and r( *): critical embryo radius) and diminishes rapidly with increasing value of R/r( *) beyond R/r( *)=5. This finding provides a baseline for controlling the size effects in heterogeneous nucleation.
Third derivative thermodynamic quantities of aqueous tetrahydrofuran at 25 degrees C
Westh, Peter; Yoshida, Koh; Inaba, Akira
2015-01-01
–THF interaction functions, HETHF–THF, and SETHF–THF. Using the literature density data, the effect of THF on the excess partial molar volume of THF, VETHF–THF, was also evaluated. Furthermore, we directly determined the partial molar entropy-volume cross fluctuation density of THF, View the MathML sourceδ......We measured the excess chemical potential, μΕTHF, the excess partial molar enthalpy and entropy of solute tetrahydrofuran (THF), HETHF and SETHF, in THF–H2O at 25 °C. Using these second derivatives of G, we graphically evaluated the third derivative quantities; the enthalpic, entropic THF...
Derivation of the spin-glass order parameter from stochastic thermodynamics
Crisanti, A.; Picco, M.; Ritort, F.
2018-05-01
A fluctuation relation is derived to extract the order parameter function q (x ) in weakly ergodic systems. The relation is based on measuring and classifying entropy production fluctuations according to the value of the overlap q between configurations. For a fixed value of q , entropy production fluctuations are Gaussian distributed allowing us to derive the quasi-FDT so characteristic of aging systems. The theory is validated by extracting the q (x ) in various types of glassy models. It might be generally applicable to other nonequilibrium systems and experimental small systems.
Thermodynamic design of hydrogen liquefaction systems with helium or neon Brayton refrigerator
Chang, Ho-Myung; Ryu, Ki Nam; Baik, Jong Hoon
2018-04-01
A thermodynamic study is carried out for the design of hydrogen liquefaction systems with helium (He) or neon (Ne) Brayton refrigerator. This effort is motivated by our immediate goal to develop a small-capacity (100 L/h) liquefier for domestic use in Korea. Eight different cycles are proposed and their thermodynamic performance is investigated in comparison with the existing liquefaction systems. The proposed cycles include the standard and modified versions of He Brayton refrigerators whose lowest temperature is below 20 K. The Brayton refrigerator is in direct thermal contact with the hydrogen flow at atmospheric pressure from ambient-temperature gas to cryogenic liquid. The Linde-Hampson system pre-cooled by a Ne Brayton refrigerator is also considered. Full cycle analysis is performed with the real properties of fluids to estimate the figure of merit (FOM) under an optimized operation condition. It is concluded that He Brayton refrigerators are feasible for this small-scale liquefaction, because a reasonably high efficiency can be achieved with simple and safe (low-pressure) operation. The complete cycles with He Brayton refrigerator are presented for the development of a prototype, including the ortho-to-para conversion.
Giegerich Robert
2004-08-01
Full Text Available Abstract Background The general problem of RNA secondary structure prediction under the widely used thermodynamic model is known to be NP-complete when the structures considered include arbitrary pseudoknots. For restricted classes of pseudoknots, several polynomial time algorithms have been designed, where the O(n6time and O(n4 space algorithm by Rivas and Eddy is currently the best available program. Results We introduce the class of canonical simple recursive pseudoknots and present an algorithm that requires O(n4 time and O(n2 space to predict the energetically optimal structure of an RNA sequence, possible containing such pseudoknots. Evaluation against a large collection of known pseudoknotted structures shows the adequacy of the canonization approach and our algorithm. Conclusions RNA pseudoknots of medium size can now be predicted reliably as well as efficiently by the new algorithm.
Xu, Yue; Wu, Yining; Deng, Shimin; Wei, Shirang
2004-02-01
The partial coal gasification air pre-heating coal-fired combined cycle (PGACC) is a cleaning coal power system, which integrates the coal gasification technology, circulating fluidized bed technology, and combined cycle technology. It has high efficiency and simple construction, and is a new selection of the cleaning coal power systems. A thermodynamic analysis of the PGACC is carried out. The effects of coal gasifying rate, pre-heating air temperature, and coal gas temperature on the performances of the power system are studied. In order to repower the power plant rated 100 MW by using the PGACC, a conceptual design is suggested. The computational results show that the PGACC is feasible for modernizing the old steam power plants and building the new cleaning power plants.
Wang, Shu; Robertson, Megan L
2015-06-10
Vegetable oils and their fatty acids are promising sources for the derivation of polymers. Long-chain poly(n-alkyl acrylates) and poly(n-alkyl methacrylates) are readily derived from fatty acids through conversion of the carboxylic acid end-group to an acrylate or methacrylate group. The resulting polymers contain long alkyl side-chains with around 10-22 carbon atoms. Regardless of the monomer source, the presence of alkyl side-chains in poly(n-alkyl acrylates) and poly(n-alkyl methacrylates) provides a convenient mechanism for tuning their physical properties. The development of structured multicomponent materials, including block copolymers and blends, containing poly(n-alkyl acrylates) and poly(n-alkyl methacrylates) requires knowledge of the thermodynamic interactions governing their self-assembly, typically described by the Flory-Huggins interaction parameter χ. We have investigated the χ parameter between polystyrene and long-chain poly(n-alkyl acrylate) homopolymers and copolymers: specifically we have included poly(stearyl acrylate), poly(lauryl acrylate), and their random copolymers. Lauryl and stearyl acrylate were chosen as model alkyl acrylates derived from vegetable oils and have alkyl side-chain lengths of 12 and 18 carbon atoms, respectively. Polystyrene is included in this study as a model petroleum-sourced polymer, which has wide applicability in commercially relevant multicomponent polymeric materials. Two independent methods were employed to measure the χ parameter: cloud point measurements on binary blends and characterization of the order-disorder transition of triblock copolymers, which were in relatively good agreement with one another. The χ parameter was found to be independent of the alkyl side-chain length (n) for large values of n (i.e., n > 10). This behavior is in stark contrast to the n-dependence of the χ parameter predicted from solubility parameter theory. Our study complements prior work investigating the interactions between
Optimum design and thermodynamic analysis of a gas turbine and ORC combined cycle with recuperators
Cao, Yue; Gao, Yike; Zheng, Ya; Dai, Yiping
2016-01-01
Highlights: • A GT-ORC combined cycle with recuperators was designed. • The effect of the ORC turbine inlet pressure on the combined cycle was examined. • Toluene was a more suitable working fluid for the GT-ORC combined cycle. • The GT-ORC combined cycle performed better than the GT-Rankine combined cycle. • The sensitivity analysis to the ambient temperature was completed. - Abstract: Gas turbines are widely used in distributed power generation because of their high efficiency, low pollution and low operational cost. To further utilize the waste heat from gas turbines, an organic Rankine cycle (ORC) was proposed as the bottoming cycle for gas turbines in this paper. Two recuperators were coupled with the combined cycle to increase the thermal efficiency, and aromatics were chosen as the working fluid for the bottoming cycle. This paper focused on the optimum design and thermodynamic analysis of the gas turbine and ORC (GT-ORC) combined cycle. Results showed that the net power and thermal efficiency of the ORC increased with the ORC turbine inlet pressure and achieved optimum values at a specific pressure based on the optimum criteria. Furthermore, compared with the GT-Rankine combined cycle, the GT-ORC combined cycle had better thermodynamic performance. Toluene was a more suitable working fluid for the GT-ORC combined cycle. Moreover, ambient temperature sensitivity simulations concluded that the GT-ORC combined cycle had a maximum thermal efficiency and the combined cycle net power was mainly determined by the topping gas turbine cycle.
Weisbrod, Kirk Ryan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Veirs, Douglas Kirk [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Funk, David John [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Clark, David Lewis [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2016-03-11
This report describes the derivation of the salt composition from the Veazey salt stream analysis. It also provides an estimate of the proportions of the kitty litter, nitrate salt and neutralizer that was contained in drum 68660. While the actinide content of waste streams was judiciously followed in the 1980s in TA-55, no record of the salt composition could be found. Consequently, a salt waste stream produced from 1992 to 1994 and reported by Gerry Veazey provided the basis for this study. While chemical analysis of the waste stream was highly variable, an average analysis provided input to the Stream Analyzer software to calculate a composition for a concentrated solid nitrate salt and liquid waste stream. The calculation predicted the gas / condensed phase compositions as well as solid salt / saturated liquid compositions. The derived composition provides an estimate of the nitrate feedstream to WIPP for which kinetic measurements can be made. The ratio of salt to Swheat in drum 68660 contents was estimated through an overall mass balance on the parent and sibling drums. The RTR video provided independent confirmation concerning the volume of the mixture. The solid salt layer contains the majority of the salt at a ratio with Swheat that potentially could become exothermic.
Weisbrod, Kirk Ryan; Veirs, Douglas Kirk; Funk, David John; Clark, David Lewis
2016-01-01
This report describes the derivation of the salt composition from the Veazey salt stream analysis. It also provides an estimate of the proportions of the kitty litter, nitrate salt and neutralizer that was contained in drum 68660. While the actinide content of waste streams was judiciously followed in the 1980s in TA-55, no record of the salt composition could be found. Consequently, a salt waste stream produced from 1992 to 1994 and reported by Gerry Veazey provided the basis for this study. While chemical analysis of the waste stream was highly variable, an average analysis provided input to the Stream Analyzer software to calculate a composition for a concentrated solid nitrate salt and liquid waste stream. The calculation predicted the gas / condensed phase compositions as well as solid salt / saturated liquid compositions. The derived composition provides an estimate of the nitrate feedstream to WIPP for which kinetic measurements can be made. The ratio of salt to Swheat in drum 68660 contents was estimated through an overall mass balance on the parent and sibling drums. The RTR video provided independent confirmation concerning the volume of the mixture. The solid salt layer contains the majority of the salt at a ratio with Swheat that potentially could become exothermic.
Thermodynamic properties of ethanol solution of chiral camphors and its derivatives
Kimura, Takayoshi [Department of Chemistry, Kinki University, Kowakae, Higashi-Osaka 577-8502 (Japan)], E-mail: kimura@chem.kindai.ac.jp; Iwama, Sekai; Kido, Satoko; Khan, Mohammad Abdullah [Department of Chemistry, Kinki University, Kowakae, Higashi-Osaka 577-8502 (Japan)
2009-10-15
Enthalpies of mixing and the densities of ethanol solution of R- and S-enantiomers of camphor, 10-camphorsulfonamide, 10-camphorsulfonic acid, camphorquinone, and 10-camphorsulfonyl chloride have been measured for a wide range of mole fractions of heterochiral components at 298.15 K. Enthalpies of mixing were exothermic for all concentrations and heterochiral solutions were more stable than each of the homochiral solutions. Enthalpic stabilization of mixing of heterochiral solutions was increased with a decreasing concentration of all the camphor derivatives measured. The sequence of enthalpic stabilization on mixing was 10-camphorsulfonyl chloride, 10-camphorsulfonic acid, 10-camphorsulfonamide, camphor, and camphorquinone. Apparent molar volumes were determined and excess volumes of mixing of heterochiral solutions were small and negative. Enthalpic stabilizations were found to be dependent on dipole-dipole interaction between solutes and solvents.
Zaghloul, Mofreh R.
2009-01-01
Accurate and consistent prediction of thermodynamic properties is of great importance in high-energy density physics and in modeling stellar atmospheres and interiors as well. Modern descriptions of thermodynamic properties of such nonideal plasma systems are sophisticated and/or full of pitfalls that make it difficult, if not impossible, to reproduce. The use of the Saha equation modified at high densities by incorporating simple expressions for depression of ionization potentials is very convenient in that context. However, as it is commonly known, the incorporation of ad hoc or empirical expressions for the depression of ionization potentials in the Saha equation leads to thermodynamic inconsistencies. The problem of thermodynamic consistency of ionization potentials depression in nonideal plasmas is investigated and a criterion is derived, which shows immediately, whether a particular model for the ionization potential depression is self-consistent, that is, whether it can be directly related to a modification of the free-energy function, or not. A backward scheme is introduced which can be utilized to derive nonideality corrections to the free-energy function from formulas of ionization potentials depression derived from plasma microfields or in ad hoc or empirical fashion provided that the aforementioned self-consistency criterion is satisfied. The value and usefulness of such a backward method are pointed out and discussed. The above-mentioned criterion is applied to investigate the thermodynamic consistency of some historic models in the literature and an optional routine is introduced to recover their thermodynamic consistencies while maintaining the same functional dependence on the species densities as in the original models. Sample computational problems showing the effect of the proposed modifications on the computed plasma composition are worked out and presented.
Carvalho, Tânia M.T.; Amaral, Luísa M.P.F.; Morais, Victor M.F.; Ribeiro da Silva, Maria D.M.C.
2016-01-01
Highlights: • Combustion of methyl 1H-indole-3-carboxylate and ethyl 1H-indole-2-carboxylate by static bomb calorimetry. • The Knudsen mass-loss effusion technique was used to measure the vapour pressures of compounds at different temperatures. • Enthalpies of sublimation of methyl 1H-indole-3-carboxylate and ethyl 1H-indole-2-carboxylate. • Gas-phase enthalpies of formation of methyl 1H-indole-3-carboxylate and ethyl 1H-indole-2-carboxylate have been derived. • Gas-phase enthalpies of formation estimated from G3(MP2) calculations. - Abstract: The standard (p"o = 0.1 MPa) molar enthalpies of formation, in the crystalline phase, of methyl 1H-indole-3-carboxylate and ethyl 1H-indole-2-carboxylate, at T = 298.15 K, were derived from measurements of the standard massic energies of combustion using a static bomb combustion calorimeter. The Knudsen effusion technique was used to measure the vapour pressures as a function of the temperature, which allowed determining the standard molar enthalpies of sublimation of these compounds. The standard (p"o = 0.1 MPa) molar enthalpies of formation, in the gaseous phase, at T = 298.15 K, were calculated by combining, for each compound, the standard molar enthalpy of formation, in the crystalline phase, and the standard molar enthalpy of sublimation, yielding −(207.6 ± 3.6) kJ·mol"−"1 and −(234.4 ± 2.4) kJ·mol"−"1, for methyl 1H-indole-3-carboxylate and ethyl 1H-indole-2-carboxylate, respectively. Quantum chemical studies were also conducted, in order to complement the experimental study. The gas-phase enthalpies of formation were estimated from high level ab initio molecular orbital calculations, at the G3(MP2) level, for the compounds studied experimentally, extending the study to the methyl 1H-indole-2-carboxylate and ethyl 1H-indole-3-carboxylate. The results obtained were compared with the experimental data and were also analysed in terms of structural enthalpic group contributions.
Güssregen, Stefan; Matter, Hans; Hessler, Gerhard; Lionta, Evanthia; Heil, Jochen; Kast, Stefan M
2017-07-24
Water molecules play an essential role for mediating interactions between ligands and protein binding sites. Displacement of specific water molecules can favorably modulate the free energy of binding of protein-ligand complexes. Here, the nature of water interactions in protein binding sites is investigated by 3D RISM (three-dimensional reference interaction site model) integral equation theory to understand and exploit local thermodynamic features of water molecules by ranking their possible displacement in structure-based design. Unlike molecular dynamics-based approaches, 3D RISM theory allows for fast and noise-free calculations using the same detailed level of solute-solvent interaction description. Here we correlate molecular water entities instead of mere site density maxima with local contributions to the solvation free energy using novel algorithms. Distinct water molecules and hydration sites are investigated in multiple protein-ligand X-ray structures, namely streptavidin, factor Xa, and factor VIIa, based on 3D RISM-derived free energy density fields. Our approach allows the semiquantitative assessment of whether a given structural water molecule can potentially be targeted for replacement in structure-based design. Finally, PLS-based regression models from free energy density fields used within a 3D-QSAR approach (CARMa - comparative analysis of 3D RISM Maps) are shown to be able to extract relevant information for the interpretation of structure-activity relationship (SAR) trends, as demonstrated for a series of serine protease inhibitors.
Schilling, O.F.
1986-01-01
A statistical method for the treatment of the defect structure of oxides is applied to H-Nb 2 Osub(5-x) and its thermodynamic properties are derived as a function of x and temperature. The results based on a model of Nb O 3 vacancy clusters located at the tetrahedral columns of the structure presented very good agreement with experimental data in the literature [2]. Further, the predicted arrangement of the clusters of vacancies along the columns at the limiting composition of the H-Nb 2 O 5 phase indicates, according to recent electron microscopy experiments [18, 19], that the initial step of the transformation is the collapse of the structure around rows of defective sites along the columns, involving Andersson and Wadsley's [20] cooperative migration of atoms. The limiting compositions of the H-Nb 2 O 5 and Nb 53 O 132 phases are also correctly predicted on the basis of electrostatic interactions among defect units only. Thus elastic interactions among planar defects appear to affect only the arrangement of such defects, and not the compositions of the initial and final compounds. (author)
A. A. El-Bindary
2013-01-01
Full Text Available The proton-ligand dissociation constant of 4-(4-amino-1,5-dimethyl-2-phenyl-1,2-dihydro-pyrazol-3-ylideneamino-phenol ( and 4-(4-amino-1,5-dimethyl-2-phenyl-1,2-dihydro-pyrazol-3-ylideneamino-benzoic acid ( and metal-ligand stability constants of their complexes with metal ions (Mn2+, Co2+, Ni2+, and Cu2+ have been determined potentiometrically in 0.1 mol·dm−3 KCl and 10% (by volume ethanol-water mixture and at 298, 308, and 318 K. The stability constants of the formed complexes increase in the order Mn2+, Co2+, Ni2+, and Cu2+. The effect of temperature was studied, and the corresponding thermodynamic parameters (, , and were derived and discussed. The dissociation process is nonspontaneous, endothermic, and entropically unfavourable. The formation of the metal complexes has been found to be spontaneous, endothermic, and entropically favourable.
Frutiger, Jerome; Abildskov, Jens; Sin, Gürkan
Computer Aided Molecular Design (CAMD) is an important tool to generate, test and evaluate promising chemical products. CAMD can be used in thermodynamic cycle for the design of pure component or mixture working fluids in order to improve the heat transfer capacity of the system. The safety......, there is no information about the reliability of the data. Furthermore, the global optimality of the GC parameters estimation is often not ensured....
Peng Sang
Full Text Available Although the crystal structures of the HIV-1 gp120 core bound and pre-bound by CD4 are known, the details of dynamics involved in conformational equilibrium and transition in relation to gp120 function have remained elusive. The homology models of gp120 comprising the N- and C-termini and loops V3 and V4 in the CD4-bound and CD4-unbound states were built and subjected to molecular dynamics (MD simulations to investigate the differences in dynamic properties and molecular motions between them. The results indicate that the CD4-bound gp120 adopted a more compact and stable conformation than the unbound form during simulations. For both the unbound and bound gp120, the large concerted motions derived from essential dynamics (ED analyses can influence the size/shape of the ligand-binding channel/cavity of gp120 and, therefore, were related to its functional properties. The differences in motion direction between certain structural components of these two forms of gp120 were related to the conformational interconversion between them. The free energy calculations based on the metadynamics simulations reveal a more rugged and complex free energy landscape (FEL for the unbound than for the bound gp120, implying that gp120 has a richer conformational diversity in the unbound form. The estimated free energy difference of ∼-6.0 kJ/mol between the global minimum free energy states of the unbound and bound gp120 indicates that gp120 can transform spontaneously from the unbound to bound states, revealing that the bound state represents a high-probability "ground state" for gp120 and explaining why the unbound state resists crystallization. Our results provide insight into the dynamics-and-function relationship of gp120, and facilitate understandings of the thermodynamics, kinetics and conformational control mechanism of HIV-1 gp120.
Zhang, Guoqiang; Zheng, Jiongzhi; Xie, Angjun; Yang, Yongping; Liu, Wenyi
2016-01-01
Highlights: • Based on the PG9351FA gas turbine, two gas-steam combined cycles are redesigned. • Analysis of detailed off-design characteristics of the combined cycle main parts. • Suggestions for improving design and operation performance of the combined cycle. • Higher design efficiency has higher off-design efficiency in general PR range. • High pressure ratio combined cycles possess good off-design performance. - Abstract: To achieve a highly efficient design and operation of combined cycles, this study analyzed in detail the off-design characteristics of the main components of three combined cycles with different compressor pressure ratios (PRs) based on real units. The off-design model of combined cycle was built consisting of a compressor, a combustor, a gas turbine, and a heat recovery steam generator (HRSG). The PG9351FA unit is selected as the benchmark unit, on the basis of which the compressor is redesigned with two different PRs. Then, the design/off-design characteristics of the three units with different design PRs and the interactive relations between topping and bottoming cycles are analyzed with the same turbine inlet temperature (TIT). The results show that the off-design characteristics of the topping cycle affect dramatically the combined cycle performance. The variation range of the exergy efficiency of the topping cycle for the three units is between 11.9% and 12.4% under the design/off-design conditions. This range is larger than that of the bottoming cycle (between 9.2% and 9.5%). The HRSG can effectively recycle the heat/heat exergy of the gas turbine exhaust. Comparison among the three units shows that for a traditional gas-steam combined cycle, a high design efficiency results in a high off-design efficiency in the usual PR range. The combined cycle design efficiency of higher pressure ratio is almost equal to that of the PG9351FA, but its off-design efficiency is higher (maximum 0.42%) and the specific power decreases. As for
Eichhorn, Ralf; Aurell, Erik
2014-04-01
'Stochastic thermodynamics as a conceptual framework combines the stochastic energetics approach introduced a decade ago by Sekimoto [1] with the idea that entropy can consistently be assigned to a single fluctuating trajectory [2]'. This quote, taken from Udo Seifert's [3] 2008 review, nicely summarizes the basic ideas behind stochastic thermodynamics: for small systems, driven by external forces and in contact with a heat bath at a well-defined temperature, stochastic energetics [4] defines the exchanged work and heat along a single fluctuating trajectory and connects them to changes in the internal (system) energy by an energy balance analogous to the first law of thermodynamics. Additionally, providing a consistent definition of trajectory-wise entropy production gives rise to second-law-like relations and forms the basis for a 'stochastic thermodynamics' along individual fluctuating trajectories. In order to construct meaningful concepts of work, heat and entropy production for single trajectories, their definitions are based on the stochastic equations of motion modeling the physical system of interest. Because of this, they are valid even for systems that are prevented from equilibrating with the thermal environment by external driving forces (or other sources of non-equilibrium). In that way, the central notions of equilibrium thermodynamics, such as heat, work and entropy, are consistently extended to the non-equilibrium realm. In the (non-equilibrium) ensemble, the trajectory-wise quantities acquire distributions. General statements derived within stochastic thermodynamics typically refer to properties of these distributions, and are valid in the non-equilibrium regime even beyond the linear response. The extension of statistical mechanics and of exact thermodynamic statements to the non-equilibrium realm has been discussed from the early days of statistical mechanics more than 100 years ago. This debate culminated in the development of linear response
Thermodynamic analysis and system design of a novel split cycle engine concept
Dong, Guangyu; Morgan, Robert E.; Heikal, Morgan R.
2016-01-01
The split cycle engine is a new reciprocating internal combustion engine with a potential of a radical efficiency improvement. In this engine, the compression and combustion–expansion processes occur in different cylinders. In the compression cylinder, the charge air is compressed through a quasi-isothermal process by direct cooling of the air. The high pressure air is then heated in a recuperator using the waste heat of exhaust gas before induction to the combustion cylinder. The combustion process occurs during the expansion stroke, in a quasi-isobaric process. In this paper, a fundamental theoretical cycle analysis and one-dimensional engine simulation of the split cycle engine was undertaken. The results show that the thermal efficiency (η) is mainly decided by the CR (compression ratio) and ER (expansion ratio), the regeneration effectiveness (σ), and the temperature rising ratio (N). Based on the above analysis, a system optimization of the engine was conducted. The results showed that by increasing CR from 23 to 25, the combustion and recuperation processes could be improved. By increasing the expansion ratio to 26, the heat losses during the gas exchange stroke were further reduced. Furthermore, the coolant temperatures of the compression and expansion chambers can be controlled separately to reduce the wall heat transfer losses. Compared to a conventional engine, a 21% total efficiency improvement was achieved when the split cycle was applied. It was concluded that through the system optimization, a total thermal efficiency of 53% can be achieved on split cycle engine. - Highlights: • Fundamental mechanism of the split cycle engine is investigated. • The key affecting factors of the thermodynamic cycle efficiency are identified. • The practical efficiency of split cycle applying on diesel engine is analysed. • The design optimization on the split cycle engine concept is conducted.
Liu, Zi-Kui [Pennsylvania State University; Gleeson, Brian [University of Pittsburgh; Shang, Shunli [Pennsylvania State University; Gheno, Thomas [University of Pittsburgh; Lindwall, Greta [Pennsylvania State University; Zhou, Bi-Cheng [Pennsylvania State University; Liu, Xuan [Pennsylvania State University; Ross, Austin [Pennsylvania State University
2018-04-23
This project developed computational tools that can complement and support experimental efforts in order to enable discovery and more efficient development of Ni-base structural materials and coatings. The project goal was reached through an integrated computation-predictive and experimental-validation approach, including first-principles calculations, thermodynamic CALPHAD (CALculation of PHAse Diagram), and experimental investigations on compositions relevant to Ni-base superalloys and coatings in terms of oxide layer growth and microstructure stabilities. The developed description included composition ranges typical for coating alloys and, hence, allow for prediction of thermodynamic properties for these material systems. The calculation of phase compositions, phase fraction, and phase stabilities, which are directly related to properties such as ductility and strength, was a valuable contribution, along with the collection of computational tools that are required to meet the increasing demands for strong, ductile and environmentally-protective coatings. Specifically, a suitable thermodynamic description for the Ni-Al-Cr-Co-Si-Hf-Y system was developed for bulk alloy and coating compositions. Experiments were performed to validate and refine the thermodynamics from the CALPHAD modeling approach. Additionally, alloys produced using predictions from the current computational models were studied in terms of their oxidation performance. Finally, results obtained from experiments aided in the development of a thermodynamic modeling automation tool called ESPEI/pycalphad - for more rapid discovery and development of new materials.
Drosdziok, A.; Zorner, W.
1989-01-01
Many different problems have been experienced with power plant condensers all over the world. It has become apparent that plant availability and cost-effectiveness are significantly influenced by the thermodynamic design of the condensers and the materials selected. This paper reports that by refitting older condensers in operating plants it has proven possible to improve thermodynamic efficiency by changing the tube bundle design. In conjunction with the replacement of the cooper-bearing tubing in these condensers, which became necessary because of the introduction of high AVT (All Volatile Treatment) conditioning in the secondary circuit, it has generally been possible to fulfil the requirements imposed on the condensers without a deterioration of plant efficiency. By experience, best results have been obtained by replacing the condenser bundle with an advanced tube bundle design. Apart from solving all problems, this further improves the thermodynamic efficiency of the condensers. In nuclear power plants constructed by the Siemens KWU Group the condensers are tailored to present-day requirements
Conceptual Engine System Design for NERVA derived 66.7KN and 111.2KN Thrust Nuclear Thermal Rockets
Fittje, James E.; Buehrle, Robert J.
2006-01-01
The Nuclear Thermal Rocket concept is being evaluated as an advanced propulsion concept for missions to the moon and Mars. A tremendous effort was undertaken during the 1960's and 1970's to develop and test NERVA derived Nuclear Thermal Rockets in the 111.2 KN to 1112 KN pound thrust class. NASA GRC is leveraging this past NTR investment in their vehicle concepts and mission analysis studies, and has been evaluating NERVA derived engines in the 66.7 KN to the 111.2 KN thrust range. The liquid hydrogen propellant feed system, including the turbopumps, is an essential component of the overall operation of this system. The NASA GRC team is evaluating numerous propellant feed system designs with both single and twin turbopumps. The Nuclear Engine System Simulation code is being exercised to analyze thermodynamic cycle points for these selected concepts. This paper will present propellant feed system concepts and the corresponding thermodynamic cycle points for 66.7 KN and 111.2 KN thrust NTR engine systems. A pump out condition for a twin turbopump concept will also be evaluated, and the NESS code will be assessed against the Small Nuclear Rocket Engine preliminary thermodynamic data
Hwang, Jeong Ui; Jang, Jong Jae; Jee, Jong Gi
1987-01-01
The contents of this book are thermodynamics on the law of thermodynamics, classical thermodynamics and molecule thermodynamics, basics of molecule thermodynamics, molecule and assembly partition function, molecule partition function, classical molecule partition function, thermodynamics function for ideal assembly in fixed system, thermodynamics function for ideal assembly in running system, Maxwell-Boltzmann's law of distribution, chemical equilibrium like calculation of equilibrium constant and theory of absolute reaction rate.
Involvement of Thermodynamic Cycle Analysis in a Concurrent Approach to Reciprocating Engine Design
J. Macek
2001-01-01
Full Text Available A modularised approach to thermodynamic optimisation of new concepts of volumetric combustion engines concerning efficiency and emissions is outlined. Levels of primary analysis using a computerised general-change entropy diagram and detailed multizone, 1 to 3-D finite volume methods are distinguished. The use of inverse algorithms based on the same equations is taken into account.
Integration of ecological and thermodynamic concepts in the design of sustainable energy landscapes
Stremke, S.; Koh, J.
2011-01-01
Resource depletion and climate change motivate a transition to sustainable energy systems that make effective use of renewable sources. Whereas nature presents strategies to sustain on the basis of renewables, the Laws of Thermodynamics can help to increase efficiency in energy use. In previous
Design, Synthesis and Insecticidal Activity of Novel Phenylurea Derivatives
Jialong Sun
2015-03-01
Full Text Available A series of novel phenylurea derivatives were designed and synthesized according to the method of active groups linkage and the principle of aromatic groups bioisosterism in this study. The structures of the novel phenylurea derivatives were confirmed based on ESI-MS, IR and 1H-NMR spectral data. All of the compounds were evaluated for the insecticidal activity against the third instars larvae of Spodoptera exigua Hiibner, Plutella xyllostella Linnaeus, Helicoverpa armigera Hubner and Pieris rapae Linne respectively, at the concentration of 10 mg/L. The results showed that all of the derivatives displayed strong insecticidal activity. Most of the compounds presented higher insecticidal activity against S. exigua than the reference compounds tebufenozide, chlorbenzuron and metaflumizone. Among the synthesized compounds, 3b, 3d, 3f, 4b and 4g displayed broad spectrum insecticidal activity.
Ochs, M.; Davis, J.A.; Olin, M.; Payne, T.E.; Tweed, C.J.; Askarieh, M.M.; Altmann, S.
2006-01-01
For the safe final disposal and/or long-term storage of radioactive wastes, deep or near-surface underground repositories are being considered world-wide. A central safety feature is the prevention, or sufficient retardation, of radionuclide (RN) migration to the biosphere. To this end, radionuclide sorption is one of the most important processes. Decreasing the uncertainty in radionuclide sorption may contribute significantly to reducing the overall uncertainty of a performance assessment (PA). For PA, sorption is typically characterised by distribution coefficients (Kd values). The conditional nature of Kd requires different estimates of this parameter for each set of geochemical conditions of potential relevance in a RN's migration pathway. As it is not feasible to measure sorption for every set of conditions, the derivation of Kd for PA must rely on data derived from representative model systems. As a result, uncertainty in Kd is largely caused by the need to derive values for conditions not explicitly addressed in experiments. The recently concluded NEA Sorption Project [1] showed that thermodynamic sorption models (TSMs) are uniquely suited to derive K d as a function of conditions, because they allow a direct coupling of sorption with variable solution chemistry and mineralogy in a thermodynamic framework. The results of the project enable assessment of the suitability of various TSM approaches for PA-relevant applications as well as of the potential and limitations of TSMs to model RN sorption in complex systems. ?? by Oldenbourg Wissenschaftsverlag.
Thermodynamically efficient solar concentrators
Winston, Roland
2012-10-01
Non-imaging Optics is the theory of thermodynamically efficient optics and as such depends more on thermodynamics than on optics. Hence in this paper a condition for the "best" design is proposed based on purely thermodynamic arguments, which we believe has profound consequences for design of thermal and even photovoltaic systems. This new way of looking at the problem of efficient concentration depends on probabilities, the ingredients of entropy and information theory while "optics" in the conventional sense recedes into the background.
Ribeiro, Rafael S.; Hermes, Christian J.L.
2014-01-01
In this study, the method of entropy generation minimization (i.e., design aimed at facilitating both heat, mass and fluid flows) is used to assess the evaporator design (aspect ratio and fin density) considering the thermodynamic losses due to heat and mass transfer, and viscous flow processes. A fully algebraic model was put forward to simulate the thermal-hydraulic behavior of tube-fin evaporator coils running under frosting conditions. The model predictions were validated against experimental data, showing a good agreement between calculated and measured counterparts. The optimization exercise has pointed out that high aspect ratio heat exchanger designs lead to lower entropy generation in cases of fixed cooling capacity and air flow rate constrained by the characteristic curve of the fan. - Highlights: • An algebraic model for frost accumulation on tube-fin heat exchangers was advanced. • Model predictions for cooling capacity and air flow rate were compared with experimental data, with errors within ±5% band. • Minimum entropy generation criterion was used to optimize the evaporator geometry. • Thermodynamic analysis led to slender designs for fixed cooling capacity and fan characteristics
Zhang, Chao-Zhi, E-mail: zhangchaozhi@nuist.edu.cn [Department of Chemistry, Nanjing University of Information Science & Technology, Nanjing 210044 (China); Shen, Dan [Department of Chemistry, Nanjing University of Information Science & Technology, Nanjing 210044 (China); Yuan, Yang [Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Nanjing University of Information Science & Technology, Nanjing 210044 (China); Song, Ming-Xia; Li, Shi-Juan [Department of Chemistry, Nanjing University of Information Science & Technology, Nanjing 210044 (China); Cao, Hui, E-mail: yccaoh@hotmail.com [Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Nanjing University of Information Science & Technology, Nanjing 210044 (China)
2016-07-01
A series of planar 1,5,2,4,6,8-dithiotetrazocine derivatives were synthesized for study on charge transfer at donor/acceptor interface. The fluorescence quenching spectra, and the highest occupied molecular orbital (−6.10 ∼ −6.25 eV) and the lowest unoccupied molecular orbital (−3.45 ∼ −3.58 eV) energy levels of these 1,5,2,4,6,8-dithiotetrazocine derivatives show that they would be potential acceptor materials. Based on theoretical calculations, thermodynamic study on charge transfer at donor/acceptor interface was carried out. The results of experiments and theoretical calculations show that the electrons could transfer spontaneously from poly(3-hexylthiophene) to these acceptors. The percentages of fluorescence quenching increase with negative Gibbs free energy values increasing in the charge transfer procedures. Therefore, short circuit current values of organic solar cells would increase with the Gibbs free energy values increasing. This paper suggests a useful way for developing efficient organic solar cells. - Highlights: • Syntheses of planar 1,5,2,4,6,8-dithiotetrazocine derivatives for develop effective acceptor. • Electrons at excited state in P3HT could transfer spontaneously to these acceptors. • Thermodynamic study on charge transfer at donor/acceptor interface. • Short circuit currents would be predicted by Gibbs free energy in procedure of charge transfer.
Efficient Minimax Design of Networks without Using Derivatives
Madsen, Kaj; Nielsen, Niels Ole; Schjær-Jacobsen, Hans
1975-01-01
., which makes the gradient computation by the adjoint network method or related methods rather complicated, and often numerical errors are introduced in the gradients. Consequently, the algorithm is found to be of particular relevance in optimum design of practical microwave networks. The relative...... design results. Finally, optimum broad-band design of a practical coaxial transferred-electron reflection-type amplilier is carried out by means of the proposed method. The results are supported by experimental verification.......A new minimax network optimization algorithm not requiring derivatives has been developed. It is based on successive linear approximations to the nonlinear functions defining the problem. Adequate modeling of distributed parameter circuits for optimization purposes often involves parasitic, etc...
Design, Synthesis and Antiviral Activity Studies of Schizonepetin Derivatives
Anwei Ding
2013-08-01
Full Text Available A series of schizonepetin derivatives have been designed and synthesized in order to obtain potent antivirus agents. The antiviral activity against HSV-1 and influenza virus H3N2 as well as the cytotoxicity of these derivatives was evaluated by using cytopathic effect (CPE inhibition assay in vitro. Compounds M2, M4, M5 and M34 showed higher inhibitory activity against HSV-1 virus with the TC50 values being in micromole. Compounds M28, M33, and M35 showed higher inhibitory activity against influenza virus H3N2 with their TC50 values being 96.4, 71.0 and 75.4 μM, respectively. Preliminary biological activity evaluation indicated that the anti-H3N2 and anti-HSV-1 activities improved obviously through the introduction of halogen into the structure of schizonepetin.
Design of Gain Scheduling Control Using State Derivative Feedback
Lázaro Ismael Hardy Llins
2017-01-01
Full Text Available In recent years, the study of systems subject to time-varying parameters has awakened the interest of many researchers. The gain scheduling control strategy guarantees a good performance for systems of this type and also is considered as the simplest to deal with problems of this nature. Moreover, the class of systems in which the state derivative signals are easier to obtain than the state signals, such as in the control for reducing vibrations in a mechanical system, has gained an important hole in control theory. Considering those ideas, we propose sufficient conditions via LMI for designing a gain scheduling controller using state derivative feedback. The D-stability methodology was used for improving the performance of the transitory response. Practical implementation in an active suspension system and comparison with other methods validates the efficiency of the proposed strategy.
Design, Synthesis, and Antibacterial Activities of Novel Heterocyclic Arylsulphonamide Derivatives.
Singh, Anuradha; Srivastava, Ritika; Singh, Ramendra K
2017-02-13
Design, synthesis, and antibacterial activities of a series of arylsulphonamide derivatives as probable peptide deformylase (PDF) inhibitors have been discussed. Compounds have been designed following Lipinski's rule and after docking into the active site of PDF protein (PDB code: 1G2A) synthesized later on. Furthermore, to assess their antibacterial activity, screening of the compound was done in vitro conditions against Gram-positive and Gram-negative bacterial strains. In silico, studies revealed these compounds as potential antibacterial agents and this fact was also supported by their prominent scoring functions. Antibacterial results indicated that these molecules possessed a significant activity against Staphylococcus aureus, Bacillus cereus, Pseudomonas aeruginosa, and Escherichia coli with MIC values ranging from 0.06 to 0.29 μM. TOPKAT results showed that high LD 50 values and the compounds were assumed non-carcinogenic when various animal models were studied computationally.
Li, Xu; Jiang, Jian-Hong; Xiao, Sheng-Xiong [Hunan Provincial Key Laboratory of Xiangnan Rare-Precious Metals Compounds and Applications, Department of Chemistry and Life Science, Xiangnan University, Chenzhou 423000, Hunan Province (China); Gu, Hui-Wen, E-mail: gruyclewee@hnu.edu.cn [State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, Hunan Province (China); Li, Chuan-Hua; Ye, Li-Juan; Li, Xia; He, Du-Gui; Yao, Fei-Hong [Hunan Provincial Key Laboratory of Xiangnan Rare-Precious Metals Compounds and Applications, Department of Chemistry and Life Science, Xiangnan University, Chenzhou 423000, Hunan Province (China); Li, Qiang-Guo, E-mail: liqiangguo@163.com [Hunan Provincial Key Laboratory of Xiangnan Rare-Precious Metals Compounds and Applications, Department of Chemistry and Life Science, Xiangnan University, Chenzhou 423000, Hunan Province (China)
2014-01-10
Graphical abstract: A new single Valen Shiff base was synthesized and characterized. The thermodynamics properties of the Shiff base were investigated by microcalorimetry. In particular, the interaction between the synthetic Shiff base and BSA at four different temperatures has been investigated using fluorescence quenching method. - Highlights: • A new single Valen Shiff base was synthesized and characterized. • The thermodynamics properties of the Shiff base were investigated by microcalorimetry. • The interaction between the Shiff base and BSA has been investigated using fluorescence quenching method. - Abstract: A new Valen Shiff base (C{sub 22}H{sub 24}N{sub 4}O{sub 5}) was synthesized using equivalent moles of o-vanillin and trimethoprim. At 298.15 K, the standard molar enthalpy of formation of the new compound was estimated to be Δ{sub f}H{sub m}{sup Θ} [C{sub 22}H{sub 24}N{sub 4}O{sub 5}(s), 298.15 K] = −(696.92 ± 1.67) kJ mol{sup −1} by microcalorimetry. In particular, the interaction between the Shiff base and bovine serum albumin (BSA) has been investigated. It was proved that the fluorescence quenching of BSA by Shiff base is a result of the formation of a Shiff base-BSA complex. Quenching constants were determined using the Sterns–Volmer equation to provide a measurement of the binding site between Shiff base and BSA. The thermodynamic parameters ΔG, ΔH, and ΔS of the system at different temperatures were calculated. What is more, the distance r between donor (Trp. 213) and acceptor (Shiff base) was obtained. Finally, synchronous fluorescence spectroscopy data has suggested the association between Shiff base and BSA changed the molecular conformation of BSA.
Li, Xu; Jiang, Jian-Hong; Xiao, Sheng-Xiong; Gu, Hui-Wen; Li, Chuan-Hua; Ye, Li-Juan; Li, Xia; He, Du-Gui; Yao, Fei-Hong; Li, Qiang-Guo
2014-01-01
Graphical abstract: A new single Valen Shiff base was synthesized and characterized. The thermodynamics properties of the Shiff base were investigated by microcalorimetry. In particular, the interaction between the synthetic Shiff base and BSA at four different temperatures has been investigated using fluorescence quenching method. - Highlights: • A new single Valen Shiff base was synthesized and characterized. • The thermodynamics properties of the Shiff base were investigated by microcalorimetry. • The interaction between the Shiff base and BSA has been investigated using fluorescence quenching method. - Abstract: A new Valen Shiff base (C 22 H 24 N 4 O 5 ) was synthesized using equivalent moles of o-vanillin and trimethoprim. At 298.15 K, the standard molar enthalpy of formation of the new compound was estimated to be Δ f H m Θ [C 22 H 24 N 4 O 5 (s), 298.15 K] = −(696.92 ± 1.67) kJ mol −1 by microcalorimetry. In particular, the interaction between the Shiff base and bovine serum albumin (BSA) has been investigated. It was proved that the fluorescence quenching of BSA by Shiff base is a result of the formation of a Shiff base-BSA complex. Quenching constants were determined using the Sterns–Volmer equation to provide a measurement of the binding site between Shiff base and BSA. The thermodynamic parameters ΔG, ΔH, and ΔS of the system at different temperatures were calculated. What is more, the distance r between donor (Trp. 213) and acceptor (Shiff base) was obtained. Finally, synchronous fluorescence spectroscopy data has suggested the association between Shiff base and BSA changed the molecular conformation of BSA
Gromiha, M Michael; Anoosha, P; Huang, Liang-Tsung
2016-01-01
Protein stability is the free energy difference between unfolded and folded states of a protein, which lies in the range of 5-25 kcal/mol. Experimentally, protein stability is measured with circular dichroism, differential scanning calorimetry, and fluorescence spectroscopy using thermal and denaturant denaturation methods. These experimental data have been accumulated in the form of a database, ProTherm, thermodynamic database for proteins and mutants. It also contains sequence and structure information of a protein, experimental methods and conditions, and literature information. Different features such as search, display, and sorting options and visualization tools have been incorporated in the database. ProTherm is a valuable resource for understanding/predicting the stability of proteins and it can be accessed at http://www.abren.net/protherm/ . ProTherm has been effectively used to examine the relationship among thermodynamics, structure, and function of proteins. We describe the recent progress on the development of methods for understanding/predicting protein stability, such as (1) general trends on mutational effects on stability, (2) relationship between the stability of protein mutants and amino acid properties, (3) applications of protein three-dimensional structures for predicting their stability upon point mutations, (4) prediction of protein stability upon single mutations from amino acid sequence, and (5) prediction methods for addressing double mutants. A list of online resources for predicting has also been provided.
Mohanty, Itishree; Chintha, Appa Rao; Kundu, Saurabh
2018-06-01
The optimization of process parameters and composition is essential to achieve the desired properties with minimal additions of alloying elements in microalloyed steels. In some cases, it may be possible to substitute such steels for those which are more richly alloyed. However, process control involves a larger number of parameters, making the relationship between structure and properties difficult to assess. In this work, neural network models have been developed to estimate the mechanical properties of steels containing Nb + V or Nb + Ti. The outcomes have been validated by thermodynamic calculations and plant data. It has been shown that subtle thermodynamic trends can be captured by the neural network model. Some experimental rolling data have also been used to support the model, which in addition has been applied to calculate the costs of optimizing microalloyed steel. The generated pareto fronts identify many combinations of strength and elongation, making it possible to select composition and process parameters for a range of applications. The ANN model and the optimization model are being used for prediction of properties in a running plant and for development of new alloys, respectively.
Buy, Francois; Voltz, Christophe; Llorca, Fabrice
2006-01-01
This work is devoted to the evaluation of complex behavior of metals under shock wave loading. It presents a methodology for the design of specific experiments performed for validation of models and the evaluation of a multiphase equation of state for tin. This material has been selected because of the numerous works completed during the past years on its equation of state. We focus on the solid diagram which presents two solid phases. A thermodynamically based equation of state is developed which gives the opportunity to search for singularities which could be activated under particular shock wave loading. In the temperature -- pressure diagram, the superimposed Hugoniot and release paths make apparent a double shock, release shock configurations. We propose the design and the VISAR results of a calibrated shock -- reshock test for investigating the validity and the efficiency of the model for predicting the thermodynamical state of tin (phases mixing, temperature...). Comparison between numerical and experimental data shows the good accuracy of the results given by the EOS
Duthil, P
2014-01-01
The goal of this paper is to present a general thermodynamic basis that is useable in the context of superconductivity and particle accelerators. The first part recalls the purpose of thermodynamics and summarizes its important concepts. Some applications, from cryogenics to magnetic systems, are covered. In the context of basic thermodynamics, only thermodynamic equilibrium is considered
Duthil, P [Orsay, IPN (France)
2014-07-01
The goal of this paper is to present a general thermodynamic basis that is useable in the context of superconductivity and particle accelerators. The first part recalls the purpose of thermodynamics and summarizes its important concepts. Some applications, from cryogenics to magnetic systems, are covered. In the context of basic thermodynamics, only thermodynamic equilibrium is considered.
Xu, Gang; Xu, Cheng; Yang, Yongping; Fang, Yaxiong; Zhou, Luyao; Yang, Zhiping
2015-01-01
An increasing number of tower-type boilers have been selected for advanced double reheat power plants, due to the uniform flue gas profile and the smooth steam temperature increase. The tall height and long steam pipelines lengths will however, result in dramatic increases in the difficulty of construction, as well as increased power plant investment cost. Given these factors, a novel partially-underground tower-type boiler design has been proposed in this study, which has nearly half of the boiler embedded underground, thereby significantly reducing the boiler height and steam pipeline lengths. Thermodynamic and economic analyses were quantitatively conducted on a 1000 MW advanced double reheat steam cycle. Results showed that compared to the reference power plant, the power plant with the proposed tower-type boiler design could reduce the net heat rate by 18.3 kJ/kWh and could reduce the cost of electricity (COE) by $0.60/MWh. The study also investigated the effects of price fluctuations on the cost-effectiveness of the reference power plant, for both the conventional and the proposed tower-type boilers designs, and found that the double reheat power plant with the proposed tower-type boiler design would be even more competitive and price-effective when the coal price and the investment costs increase. The research of this paper may provide a promising tower-type boiler design for advanced double reheat power plants with lower construction complexity and better cost-effectiveness. - Highlights: • A partially-underground tower-type boiler in double reheat power plants is proposed. for double reheat power plants is proposed. • Thermodynamic and economic analyses are quantitatively conducted. • Better energetic efficiency and greater economic benefits are achieved. • The impacts of price fluctuations on the economic feasibility are discussed
Birla, Bhagyashree S; Chou, Hui-Hsien
2015-01-01
Gene synthesis is frequently used in modern molecular biology research either to create novel genes or to obtain natural genes when the synthesis approach is more flexible and reliable than cloning. DNA chemical synthesis has limits on both its length and yield, thus full-length genes have to be hierarchically constructed from synthesized DNA fragments. Gibson Assembly and its derivatives are the simplest methods to assemble multiple double-stranded DNA fragments. Currently, up to 12 dsDNA fragments can be assembled at once with Gibson Assembly according to its vendor. In practice, the number of dsDNA fragments that can be assembled in a single reaction are much lower. We have developed a rational design method for gene construction that allows high-number dsDNA fragments to be assembled into full-length genes in a single reaction. Using this new design method and a modified version of the Gibson Assembly protocol, we have assembled 3 different genes from up to 45 dsDNA fragments at once. Our design method uses the thermodynamic analysis software Picky that identifies all unique junctions in a gene where consecutive DNA fragments are specifically made to connect to each other. Our novel method is generally applicable to most gene sequences, and can improve both the efficiency and cost of gene assembly.
Bhagyashree S Birla
Full Text Available Gene synthesis is frequently used in modern molecular biology research either to create novel genes or to obtain natural genes when the synthesis approach is more flexible and reliable than cloning. DNA chemical synthesis has limits on both its length and yield, thus full-length genes have to be hierarchically constructed from synthesized DNA fragments. Gibson Assembly and its derivatives are the simplest methods to assemble multiple double-stranded DNA fragments. Currently, up to 12 dsDNA fragments can be assembled at once with Gibson Assembly according to its vendor. In practice, the number of dsDNA fragments that can be assembled in a single reaction are much lower. We have developed a rational design method for gene construction that allows high-number dsDNA fragments to be assembled into full-length genes in a single reaction. Using this new design method and a modified version of the Gibson Assembly protocol, we have assembled 3 different genes from up to 45 dsDNA fragments at once. Our design method uses the thermodynamic analysis software Picky that identifies all unique junctions in a gene where consecutive DNA fragments are specifically made to connect to each other. Our novel method is generally applicable to most gene sequences, and can improve both the efficiency and cost of gene assembly.
Kipke, H.E.; Stoehr, A.; Banerjea, A.; Hammeke, K.; Huepping, N.
1978-12-01
The following report presents in tabular form the safety standard of the nuclear safety standard commission (KTA) on reactor core design of high-temperature gas-cooled reactors. Part 1: Calculation of thermodynamic properties of helium The basis of the present work is the data and formulae given by H. Petersen for the calculation of density, specific heat, thermal conductivity and dynamic viscosity of helium together with the formula for their standard deviations in the range of temperature and pressure stated above. The relations for specific enthalpy and specific entropy have been derived from density and specific heat, whereby specific heat is assumed constant over the given range of temperature and pressure. The latter section of this report contains tables of thermodynamic properties of helium calculated from the equations stated earlier in this paper. (orig.) [de
Lim, Gyeong Hui
2008-03-01
This book consists of 15 chapters, which are basic conception and meaning of statistical thermodynamics, Maxwell-Boltzmann's statistics, ensemble, thermodynamics function and fluctuation, statistical dynamics with independent particle system, ideal molecular system, chemical equilibrium and chemical reaction rate in ideal gas mixture, classical statistical thermodynamics, ideal lattice model, lattice statistics and nonideal lattice model, imperfect gas theory on liquid, theory on solution, statistical thermodynamics of interface, statistical thermodynamics of a high molecule system and quantum statistics
Tancret, F
2012-01-01
Computational thermodynamics based on the CALPHAD approach (Thermo-Calc software) are used to design creep-resistant and affordable superalloys for large-scale applications such as power plants. Cost is reduced by the introduction of iron and by avoiding the use of expensive alloying elements such as Nb, Ta, Mo, Co etc. Strengthening is ensured by the addition of W, and of Al and Ti to provoke the precipitation of γ′. However, the addition of iron reduces the maximum possible volume fraction of γ′. The latter is maximized automatically using a genetic algorithm during simulation, while keeping the alloys free of undesirable phases at high temperatures. New superalloys with 20 wt% Cr are designed, with Fe content up to 37 wt%. They should be forgeable, weldable, oxidation resistant and significantly cheaper than existing alloys with equivalent properties. (paper)
Design of Ag-Ge-Zn braze/solder alloys: Experimental thermodynamics and surface properties
Delsante S.
2017-01-01
Full Text Available The experimental investigation of the Ag-Ge-Zn phase diagram was performed by using combined microstructural and Differential Scanning Calorimeter (DSC analyses. The samples were subjected to thermal cycles by a heat-flux DSC apparatus with heating and cooling rate of 0.5 or 0.3°C/min. The microstructure of the samples, both after annealing and after DSC analysis, was studied by optical and scanning electron microscopy coupled with EDS (Energy Dispersive Spectroscopy analysis. Considering the slow heating and cooling rate adopted, the isothermal section at room temperature was established. No ternary compounds were observed. On the basis of the experimental investigations the invariant reactions were identified. Combining the thermodynamic data on the Ag-Ge, Ag-Zn and Ge-Zn liquid phases by means of Butler’s model the surface tension of Ag-Ge-Zn alloys was calculated.
Design, Synthesis and Fungicidal Activities of Some Novel Pyrazole Derivatives
Xue-Ru Liu
2014-09-01
Full Text Available In order to discover new compounds with good fungicidal activities, 32 pyrazole derivatives were designed and synthesized. The structures of the target compounds were confirmed by 1H-NMR, 13C-NMR, and high-resolution electrospray ionization mass spectrometry (HR-ESI-MS, and their fungicidal activities against Botrytis cinerea, Rhizoctonia solani Kuhn, Valsa mali Miyabe et Yamada, Thanatephorus cucumeris (Frank Donk, Fusarium oxysporum (S-chl f.sp. cucumerinum Owen, and Fusarium graminearum Schw were tested. The bioassay results indicated that most of the derivatives exhibited considerable antifungal activities, especially compound 26 containing a p-trifluoromethyl- phenyl moiety showed the highest activity, with EC50 values of 2.432, 2.182, 1.787, 1.638, 6.986, and 6.043 μg/mL against B. cinerea, R. solani, V. mali, T. cucumeris, F. oxysporum, and F. graminearum, respectively. Moreover, the activities of compounds such as compounds 27–32 were enhanced by introducing isothiocyanate and carboxamide moieties to the 5-position of the pyrazole ring.
Zaitseva, Ksenia V.; Varfolomeev, Mikhail A.; Solomonov, Boris N.
2012-01-01
Highlights: ► Solution enthalpies and activity coefficients of amines in methanol were measured. ► Thermodynamic functions of H-bonding of amines with methanol were determined. ► Specific interaction entropy of amines in methanol can be about zero or positive. ► Cooperativity of H-bonds in methanol media is smaller than in water solutions. ► A new view on analysis of specific interaction of solute with methanol is presented. - Abstract: Reactivity and equilibrium properties of organic molecules in self-associated liquids greatly depend on the hydrogen bonding with solvent. This work contains comprehensive thermodynamic analysis of hydrogen bonding of aliphatic and aromatic amines in self-associated solvent methanol. Enthalpies of solution at infinite dilution and limiting activity coefficients for the studied systems were measured experimentally. Enthalpies and Gibbs energies of hydrogen bonding of amines with neat methanol were determined. These values were found to be decreased compared with hydrogen bond energy in equimolar complexes “methanol–amine” determined in inert solvent or base media. A linear dependence between enthalpies and Gibbs energies of hydrogen bonding of amines with neat methanol was observed. It was firstly revealed that the entropy of specific interactions of amines with neat methanol can be about zero or positive. Disruption of solvent–solvent hydrogen bonds can be regarded as the most important step during dissolution of amine in methanol. It was found that the cooperative effect influences on the Gibbs energies of hydrogen bonding of amines in methanol, but in a lesser extent than in aqueous solutions. The new results show that the hydrogen bonding process in the self-associated solvents differs significantly from equimolar complexation in aprotic media.
Zaitseva, Ksenia V., E-mail: zaitseva.ksenia@gmail.com [Chemical Institute, Kazan (Volga Region) Federal University, Kremlevskaya 18, Kazan 420008 (Russian Federation); Varfolomeev, Mikhail A., E-mail: vma.ksu@gmail.com [Chemical Institute, Kazan (Volga Region) Federal University, Kremlevskaya 18, Kazan 420008 (Russian Federation); Solomonov, Boris N., E-mail: boris.solomonov@ksu.ru [Chemical Institute, Kazan (Volga Region) Federal University, Kremlevskaya 18, Kazan 420008 (Russian Federation)
2012-05-10
Highlights: Black-Right-Pointing-Pointer Solution enthalpies and activity coefficients of amines in methanol were measured. Black-Right-Pointing-Pointer Thermodynamic functions of H-bonding of amines with methanol were determined. Black-Right-Pointing-Pointer Specific interaction entropy of amines in methanol can be about zero or positive. Black-Right-Pointing-Pointer Cooperativity of H-bonds in methanol media is smaller than in water solutions. Black-Right-Pointing-Pointer A new view on analysis of specific interaction of solute with methanol is presented. - Abstract: Reactivity and equilibrium properties of organic molecules in self-associated liquids greatly depend on the hydrogen bonding with solvent. This work contains comprehensive thermodynamic analysis of hydrogen bonding of aliphatic and aromatic amines in self-associated solvent methanol. Enthalpies of solution at infinite dilution and limiting activity coefficients for the studied systems were measured experimentally. Enthalpies and Gibbs energies of hydrogen bonding of amines with neat methanol were determined. These values were found to be decreased compared with hydrogen bond energy in equimolar complexes 'methanol-amine' determined in inert solvent or base media. A linear dependence between enthalpies and Gibbs energies of hydrogen bonding of amines with neat methanol was observed. It was firstly revealed that the entropy of specific interactions of amines with neat methanol can be about zero or positive. Disruption of solvent-solvent hydrogen bonds can be regarded as the most important step during dissolution of amine in methanol. It was found that the cooperative effect influences on the Gibbs energies of hydrogen bonding of amines in methanol, but in a lesser extent than in aqueous solutions. The new results show that the hydrogen bonding process in the self-associated solvents differs significantly from equimolar complexation in aprotic media.
Thermodynamics of Bioreactions.
Held, Christoph; Sadowski, Gabriele
2016-06-07
Thermodynamic principles have been applied to enzyme-catalyzed reactions since the beginning of the 1930s in an attempt to understand metabolic pathways. Currently, thermodynamics is also applied to the design and analysis of biotechnological processes. The key thermodynamic quantity is the Gibbs energy of reaction, which must be negative for a reaction to occur spontaneously. However, the application of thermodynamic feasibility studies sometimes yields positive Gibbs energies of reaction even for reactions that are known to occur spontaneously, such as glycolysis. This article reviews the application of thermodynamics in enzyme-catalyzed reactions. It summarizes the basic thermodynamic relationships used for describing the Gibbs energy of reaction and also refers to the nonuniform application of these relationships in the literature. The review summarizes state-of-the-art approaches that describe the influence of temperature, pH, electrolytes, solvents, and concentrations of reacting agents on the Gibbs energy of reaction and, therefore, on the feasibility and yield of biological reactions.
Ghosh, G.; Olson, G.B.
2007-01-01
An optimal integration of modern computational tools and efficient experimentation is presented for the accelerated design of Nb-based superalloys. Integrated within a systems engineering framework, we have used ab initio methods along with alloy theory tools to predict phase stability of solid solutions and intermetallics to accelerate assessment of thermodynamic and kinetic databases enabling comprehensive predictive design of multicomponent multiphase microstructures as dynamic systems. Such an approach is also applicable for the accelerated design and development of other high performance materials. Based on established principles underlying Ni-based superalloys, the central microstructural concept is a precipitation strengthened system in which coherent cubic aluminide phase(s) provide both creep strengthening and a source of Al for Al 2 O 3 passivation enabled by a Nb-based alloy matrix with required ductile-to-brittle transition temperature, atomic transport kinetics and oxygen solubility behaviors. Ultrasoft and PAW pseudopotentials, as implemented in VASP, are used to calculate total energy, density of states and bonding charge densities of aluminides with B2 and L2 1 structures relevant to this research. Characterization of prototype alloys by transmission and analytical electron microscopy demonstrates the precipitation of B2 or L2 1 aluminide in a (Nb) matrix. Employing Thermo-Calc and DICTRA software systems, thermodynamic and kinetic databases are developed for substitutional alloying elements and interstitial oxygen to enhance the diffusivity ratio of Al to O for promotion of Al 2 O 3 passivation. However, the oxidation study of a Nb-Hf-Al alloy, with enhanced solubility of Al in (Nb) than in binary Nb-Al alloys, at 1300 deg. C shows the presence of a mixed oxide layer of NbAlO 4 and HfO 2 exhibiting parabolic growth
Torres Reyes, Ernestina; Navarrete Gonzalez, Jose L; Ibarra Salazar, Beatriz A; Picon Nunez, Martin [Instituto de Investigaciones Cientificas, Universidad de Guanajuato, Guanjuato, Guanajuato (Mexico)
2000-07-01
In this paper a thermal performance analysis of solar drying process at operating varying conditions is presented. It is described semi-empirical models to thermal characterization of an experimental device. A simulator of thermal performance for operating varying conditions was developed as a part of the procedure of thermal design of solar dryers. On the other hand, it is described a simplified method to design solar collectors based on the determination of minimum entropy generation during the thermal conversion of the solar device by using the thermal analysis procedure established and the method derived of the second law of the Thermodynamics are finally presented. [Spanish] En este trabajo se presenta el analisis termico del comportamiento del sistema -colector solar camara de secado-. Se describen los modelos semi-empiricos con los que se caracterizo termicamente un secador solar experimental del tipo indirecto. Se presenta tambien un procedimiento de diseno de equipo de secado que toma en cuenta las condiciones variables de operacion que presentan los dispositivos solares. Por otro lado se describe un procedimiento simplificado de diseno, basado en un analisis derivado de la segunda ley de la Termodinamica. Esta metodologia se fundamenta en la minima generacion de entropia durante la conversion termica de la energia solar, utilizando colectores solares planos. Finalmente se presentan los resultados del diseno preliminar de equipo de secado utilizando los dos procedimientos mencionados.
Sunaryo, G.R.; Sumijanto; Latifah, S.N.
1999-01-01
During the development of making fresh water for supplying the potable water in Jakarta and eastern Indonesia, Indonesia Atomic Energy Agency (BATAN) has been developing the application of small power reactor for dual purposes,electricity and fresh water producing. One of the most popular method, because of the cheapest maintenance, is the Multi Stage Flash Distillation (MSF) which us study on designing the miniscale of MDF, the process fundamental aspects are the scale formation, degassing dissolved gas and diminishing foam, and from the thermodynamic aspect it is known that the total amount of heat required for MSF desalination is equal to free energy differences between water in solution and pure water times the ratio of total boiling temperature and the boiling temperature elevation with boiling temperature, where the range value is 35-40 kj/kg. Since the complex aspect of irreversible the heat required become 7 times higher as 240∼280 kj/kg
The thermodynamic basis of entransy and entransy dissipation
Xu, Mingtian
2011-01-01
In the present work, the entransy and entransy dissipation are defined from the thermodynamic point of view. It is shown that the entransy is a state variable and can be employed to describe the second law of thermodynamics. For heat conduction, a principle of minimum entransy dissipation is established based on the second law of thermodynamics in terms of entransy dissipation, which leads to the governing equation of the steady Fourier heat conduction without heat source. Furthermore, we derive the expressions of the entransy dissipation in duct flows and heat exchangers from the second law of thermodynamics, which paves the way for applications of the entransy dissipation theory in heat exchanger design. -- Highlights: → The concepts of entransy and entransy dissipation are defined from the thermodynamic point of view. → We find that the entransy is a new thermodynamic property. → The second law of thermodynamics can be described by the entransy and entransy dissipation. → The expressions of entransy dissipation in duct flows and heat exchangers are derived from the second law of thermodynamics.
Garcia-Moliner, F.
1975-01-01
Basic thermodynamics of a system consisting of two bulk phases with an interface. Solid surfaces: general. Discussion of experimental data on surface tension and related concepts. Adsorption thermodynamics in the Gibbsian scheme. Adsorption on inert solid adsorbents. Systems with electrical charges: chemistry and thermodynamics of imperfect crystals. Thermodynamics of charged surfaces. Simple models of charge transfer chemisorption. Adsorption heat and related concepts. Surface phase transitions
A Thermodynamic Library for Simulation and Optimization of Dynamic Processes
Ritschel, Tobias Kasper Skovborg; Gaspar, Jozsef; Jørgensen, John Bagterp
2017-01-01
Process system tools, such as simulation and optimization of dynamic systems, are widely used in the process industries for development of operational strategies and control for process systems. These tools rely on thermodynamic models and many thermodynamic models have been developed for different...... compounds and mixtures. However, rigorous thermodynamic models are generally computationally intensive and not available as open-source libraries for process simulation and optimization. In this paper, we describe the application of a novel open-source rigorous thermodynamic library, ThermoLib, which...... is designed for dynamic simulation and optimization of vapor-liquid processes. ThermoLib is implemented in Matlab and C and uses cubic equations of state to compute vapor and liquid phase thermodynamic properties. The novelty of ThermoLib is that it provides analytical first and second order derivatives...
Cüneyt Ezgi
2015-12-01
Full Text Available Naval surface ships should use thermally driven heating and cooling technologies to continue the Navy’s leadership role in protecting the marine environment. Steam ejector refrigeration (SER or steam ejector heat pump (SEHP systems are thermally driven heating and cooling technologies and seem to be a promising technology to reduce emissions for heating and cooling on board naval surface ships. In this study, design and thermodynamic analysis of a seawater cooled SER and SEHP as an HVAC system for a naval surface ship application are presented and compared with those of a current typical naval ship system case, an H2O-LiBr absorption heat pump and a vapour-compression heat pump. The off-design study estimated the coefficient of performances (COPs were 0.29–0.11 for the cooling mode and 1.29–1.11 for the heating mode, depending on the pressure of the exhaust gas boiler at off-design conditions. In the system operating at the exhaust gas boiler pressure of 0.2 MPa, the optimum area ratio obtained was 23.30.
Modern engineering thermodynamics
Balmer, Robert T
2010-01-01
Designed for use in a standard two-semester engineering thermodynamics course sequence. The first half of the text contains material suitable for a basic Thermodynamics course taken by engineers from all majors. The second half of the text is suitable for an Applied Thermodynamics course in mechanical engineering programs. The text has numerous features that are unique among engineering textbooks, including historical vignettes, critical thinking boxes, and case studies. All are designed to bring real engineering applications into a subject that can be somewhat abstract and mathematica
de Mol, Nico J; Dekker, Frank J; Broutin, Isabel; Fischer, Marcel J E; Liskamp, Rob M J; Dekker, Frank
2005-01-01
Thermodynamic and kinetic studies of biomolecular interactions give insight into specificity of molecular recognition processes and advance rational drug design. Binding of phosphotyrosine (pY)-containing peptides to Src- and Grb2-SH2 domains was investigated using a surface plasmon resonance
Bretti, Clemente; De Stefano, Concetta; Foti, Claudia [Dipartimento di Chimica Inorganica, Chimica Analitica e Chimica Fisica, Universita di Messina, Viale F. Stagno d' Alcontres, 31, I-98166 Messina (Vill. S. Agata) (Italy); Sammartano, Silvio, E-mail: ssammartano@unime.it [Dipartimento di Chimica Inorganica, Chimica Analitica e Chimica Fisica, Universita di Messina, Viale F. Stagno d' Alcontres, 31, I-98166 Messina (Vill. S. Agata) (Italy); Vianelli, Giuseppina [Dipartimento di Chimica Inorganica, Chimica Analitica e Chimica Fisica, Universita di Messina, Viale F. Stagno d' Alcontres, 31, I-98166 Messina (Vill. S. Agata) (Italy)
2012-01-15
Highlights: > Protonation thermodynamics of four aminophenol derivatives were determined. > Dependence on ionic strength was analysed by using different models. > Neutral species activity coefficient was determined by distribution measurements. > Acid-base behaviour of this ligand class was modelled. - Abstract: The acid-base properties of four aminophenol derivatives, namely m-aminophenol (L1), 4-amino-2-hydroxytoluene (L2), 2-amino-5-ethylphenol (L3) and 5-amino-4-chloro-o-cresol (L4), are studied by potentiometric and titration calorimetric measurements in NaCl{sub (aq)} (0 {<=} I {<=} 3 mol . kg{sup -1}) at T = 298.15 K. The dependence of the protonation constants on ionic strength is modelled by the Debye-Hueckel, SIT (Specific ion Interaction Theory) and Pitzer equations. Therefore, the values of protonation constants at infinite dilution and the relative interaction coefficients are calculated. The dependence of protonation enthalpies on ionic strength is also determined. Distribution (2-methyl-1-propanol/aqueous solution) measurements allowed us to determine the Setschenow coefficients and the activity coefficients of neutral species. Experimental results show that these compounds behave in a very similar way, and common class parameters are reported, in particular for the dependence on ionic strength of both protonation constants and protonation enthalpies.
Bretti, Clemente; De Stefano, Concetta; Foti, Claudia; Sammartano, Silvio; Vianelli, Giuseppina
2012-01-01
Highlights: → Protonation thermodynamics of four aminophenol derivatives were determined. → Dependence on ionic strength was analysed by using different models. → Neutral species activity coefficient was determined by distribution measurements. → Acid-base behaviour of this ligand class was modelled. - Abstract: The acid-base properties of four aminophenol derivatives, namely m-aminophenol (L1), 4-amino-2-hydroxytoluene (L2), 2-amino-5-ethylphenol (L3) and 5-amino-4-chloro-o-cresol (L4), are studied by potentiometric and titration calorimetric measurements in NaCl (aq) (0 ≤ I ≤ 3 mol . kg -1 ) at T = 298.15 K. The dependence of the protonation constants on ionic strength is modelled by the Debye-Hueckel, SIT (Specific ion Interaction Theory) and Pitzer equations. Therefore, the values of protonation constants at infinite dilution and the relative interaction coefficients are calculated. The dependence of protonation enthalpies on ionic strength is also determined. Distribution (2-methyl-1-propanol/aqueous solution) measurements allowed us to determine the Setschenow coefficients and the activity coefficients of neutral species. Experimental results show that these compounds behave in a very similar way, and common class parameters are reported, in particular for the dependence on ionic strength of both protonation constants and protonation enthalpies.
Prevosto, L.; Mancinelli, B.; Artana, G.; Kelly, H.
2011-01-01
A two-wavelength quantitative Schlieren technique that allows inferring the electron and gas densities of axisymmetric arc plasmas without imposing any assumption regarding statistical equilibrium models is reported. This technique was applied to the study of local thermodynamic equilibrium (LTE) departures within the core of a 30 A high-energy density cutting arc. In order to derive the electron and heavy particle temperatures from the inferred density profiles, a generalized two-temperature Saha equation together with the plasma equation of state and the quasineutrality condition were employed. Factors such as arc fluctuations that influence the accuracy of the measurements and the validity of the assumptions used to derive the plasma species temperature were considered. Significant deviations from chemical equilibrium as well as kinetic equilibrium were found at elevated electron temperatures and gas densities toward the arc core edge. An electron temperature profile nearly constant through the arc core with a value of about 14000-15000 K, well decoupled from the heavy particle temperature of about 1500 K at the arc core edge, was inferred.
Briguglio, Irene; Laurini, Erik; Pirisi, Maria Antonietta; Piras, Sandra; Corona, Paola; Fermeglia, Maurizio; Pricl, Sabrina; Carta, Antonio
2017-12-01
In this paper we report the synthesis, in vitro anticancer activity, and the experimental/computational characterization of mechanism of action of a new series of E isomers of triazolo[4,5-b/c]pyridin-acrylonitrile derivatives (6c-g, 7d-e, 8d-e, 9c-f, 10d-e, 11d-e). All new compounds are endowed with moderate to interesting antiproliferative activity against 9 different cancer cell lines derived from solid and hematological human tumors. Fluorescence-based assays prove that these molecules interfere with tubulin polymerization. Furthermore, isothermal titration calorimetry (ITC) provides full tubulin/compound binding thermodynamics, thereby ultimately qualifying and quantifying the interactions of these molecular series with the target protein. Lastly, the analysis based on the tight coupling of in vitro and in silico modeling of the interactions between tubulin and the title compounds allows to propose a molecular rationale for their biological activity. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Statistical mechanics and the foundations of thermodynamics
Martin-Loef, A.
1979-01-01
These lectures are designed as an introduction to classical statistical mechanics and its relation to thermodynamics. They are intended to bridge the gap between the treatment of the subject in physics text books and the modern presentations of mathematically rigorous results. We shall first introduce the probability distributions, ensembles, appropriate for describing systems in equilibrium and consider some of their basic physical applications. We also discuss the problem of approach to equilibrium and how irreversibility comes into the dynamics. We then give a detailed description of how the law of large numbers for macrovariables in equilibrium is derived from the fact that entropy is an extensive quantity in the thermodynamic limit. We show in a natural way how to split the energy changes in an thermodynamical process into work and heat leading to a derivation of the first and second laws of thermodynamics from the rules of thermodynamical equilibrium. We have elaborated this part in detail because we feel it is quite satisfactory, that the establishment of the limit of thermodynamic functions as achieved in the modern development of the mathematical aspects of statistical mechanics allows a more general and logically clearer presentation of the bases of thermodynamics. We close these lectures by presenting the basic facts about fluctuation theory. The treatment aims to be reasonably self-contained both concerning the physics and mathematics needed. No knowledge of quantum mechanics is presupposed. Since we spent a large part on mathematical proofs and give many technical facts these lectures are probably most digestive for the mathematically inclined reader who wants to understand the physics of the subject. (HJ)
Mueller, Pablo
2004-01-01
The aim of this work was to develop a model to simulate the evolution of the thermodynamic variables in a nuclear reactor containment with pressure suppression pool under accidental transients.We wanted a program able to give fast results, to facilitate the physical interpretation of the phenomena involved, and to make parametric studies.We did not pretend to get a precise result of a particular case.The program was made to be used as a design tool for the containment and to solve the interactions with the primary cooling system and the other security systems of the reactor, on a conceptual design context.The model consists on energy and mass balances on control volumes with liquid water, steam and a non-condensable gas like air.The dynamics of the system is shown with a base case during a loss of coolant accident.Sensibility and effects of varying some important parameters like volumes and heat and mass transfer coefficients are studied.Finally the results for the CAREM-25 reactor are compared with the codes CORAN, MELCOR 1.8.4 and CONTAIN 2.0 [es
Cotterman, R.L.; Bender, R.; Prausnitz, J.M.
1984-01-01
For some multicomponent mixtures, where detailed chemical analysis is not feasible, the compositio of the mixture may be described by a continuous distribution function of some convenient macroscopic property suc as normal boiling point or molecular weight. To attain a quantitative description of phase equilibria for such mixtures, this work has developed thermodynamic procedures for continuous systems; that procedure is called continuous thermodynamics. To illustrate, continuous thermodynamics is used to calculate dew points for natural-gas mixtures, solvent loss in a high-pressure absorber, and liquid-liquid phase equilibria in a polymer fractionation process. Continuous thermodynamics provides a rational method for calculating phase equilibria for those mixtures where complete chemical analysis is not available but where composition can be given by some statistical description. While continuous thermodynamics is only the logical limit of the well-known pseudo-component method, it is more efficient than that method because it is less arbitrary and it often requires less computer time
Thermodynamics of nuclear materials
1979-01-01
Full text: The science of chemical thermodynamics has substantially contributed to the understanding of the many problems encountered in nuclear and reactor technology. These problems include reaction of materials with their surroundings and chemical and physical changes of fuels. Modern reactor technology, by its very nature, has offered new fields of investigations for the scientists and engineers concerned with the design of nuclear fuel elements. Moreover, thermodynamics has been vital in predicting the behaviour of new materials for fission as well as fusion reactors. In this regard, the Symposium was organized to provide a mechanism for review and discussion of recent thermodynamic investigations of nuclear materials. The Symposium was held in the Juelich Nuclear Research Centre, at the invitation of the Government of the Federal Republic of Germany. The International Atomic Energy Agency has given much attention to the thermodynamics of nuclear materials, as is evidenced by its sponsorship of four international symposia in 1962, 1965, 1967, and 1974. The first three meetings were primarily concerned with the fundamental thermodynamics of nuclear materials; as with the 1974 meeting, this last Symposium was primarily aimed at the thermodynamic behaviour of nuclear materials in actual practice, i.e., applied thermodynamics. Many advances have been made since the 1974 meeting, both in fundamental and applied thermodynamics of nuclear materials, and this meeting provided opportunities for an exchange of new information on this topic. The Symposium dealt in part with the thermodynamic analysis of nuclear materials under conditions of high temperatures and a severe radiation environment. Several sessions were devoted to the thermodynamic studies of nuclear fuels and fission and fusion reactor materials under adverse conditions. These papers and ensuing discussions provided a better understanding of the chemical behaviour of fuels and materials under these
Müller, Ingo
1993-01-01
Physicists firmly believe that the differential equations of nature should be hyperbolic so as to exclude action at a distance; yet the equations of irreversible thermodynamics - those of Navier-Stokes and Fourier - are parabolic. This incompatibility between the expectation of physicists and the classical laws of thermodynamics has prompted the formulation of extended thermodynamics. After describing the motifs and early evolution of this new branch of irreversible thermodynamics, the authors apply the theory to mon-atomic gases, mixtures of gases, relativistic gases, and "gases" of phonons and photons. The discussion brings into perspective the various phenomena called second sound, such as heat propagation, propagation of shear stress and concentration, and the second sound in liquid helium. The formal mathematical structure of extended thermodynamics is exposed and the theory is shown to be fully compatible with the kinetic theory of gases. The study closes with the testing of extended thermodynamics thro...
Theoretical physics 5 thermodynamics
Nolting, Wolfgang
2017-01-01
This concise textbook offers a clear and comprehensive introduction to thermodynamics, one of the core components of undergraduate physics courses. It follows on naturally from the previous volumes in this series, defining macroscopic variables, such as internal energy, entropy and pressure,together with thermodynamic principles. The first part of the book introduces the laws of thermodynamics and thermodynamic potentials. More complex themes are covered in the second part of the book, which describes phases and phase transitions in depth. Ideally suited to undergraduate students with some grounding in classical mechanics, the book is enhanced throughout with learning features such as boxed inserts and chapter summaries, with key mathematical derivations highlighted to aid understanding. The text is supported by numerous worked examples and end of chapter problem sets. About the Theoretical Physics series Translated from the renowned and highly successful German editions, the eight volumes of this series cove...
Thermodynamic analysis of a new design of temperature controlled parabolic trough collector
Ceylan, İlhan; Ergun, Alper
2013-01-01
Highlights: • This new design parabolic trough collector has been made as temperature control. • The TCPTC system is very appropriate for the industrial systems which require high temperatures. • With TCPTC can provide hot water with low solar radiation. • TCPTC system costs are cheaper than other systems (thermo siphon systems, pomp systems, etc.). - Abstract: Numerous types of solar water heater are used throughout the world. These heaters can be classified into two groups as pumped systems and thermo siphon systems. However, water temperature cannot be controlled by these systems. In this study, a new temperature-controlled parabolic trough collector (TCPTC) was designed and analyzed experimentally. The analysis was made at a temperature range of 40–100 °C, with at intervals of 10 °C. A detailed analysis was performed by calculating energy efficiencies, exergy efficiencies, water temperatures and water amounts. The highest energy efficiency of TCPTC was calculated as 61.2 for 100 °C. As the set temperature increased, the energy efficiency increased as well. The highest exergy efficiency was calculated as 63 for 70 °C. However, as the set temperature increased, the exergy efficiency did not increase. Optimum exergy efficiency was obtained for 70 °C
Anninos, Dionysios; Pastras, Georgios
2009-01-01
The local and global thermal phase structure for asymptotically anti-de Sitter black holes charged under an abelian gauge group, with both Gauss-Bonnet and quartic field strength corrections, is mapped out for all parameter space. We work in the grand canonical ensemble where the external electric potential is held fixed. The analysis is performed in an arbitrary number of dimensions, for all three possible horizon topologies - spherical, flat or hyperbolic. For spherical horizons, new metastable configurations are exhibited both for the pure Gauss-Bonnet theory as well as the pure higher derivative gauge theory and combinations thereof. In the pure Gauss-Bonnet theory with negative coefficient and five or more spatial dimensions, two locally thermally stable black hole solutions are found for a given temperature. Either one or both of them may be thermally favored over the anti-de Sitter vacuum - corresponding to a single or a double decay channel for the metastable black hole. Similar metastable configurations are uncovered for the theory with pure quartic field strength corrections, as well combinations of the two types of corrections, in three or more spatial dimensions. Finally, a secondary Hawking-Page transition between the smaller thermally favored black hole and thermal anti-de Sitter space is observed when both corrections are turned on and their couplings are both positive.
Multi-pressure boiler thermodynamics analysis code
Lorenzoni, G.
1992-01-01
A new method and the relative FORTRAN program for the thermodynamics design analysis of a multipressure boiler are reported. This method permits the thermodynamics design optimization with regard to total exergy production and a preliminary costs
Sarver, Ronald W.; Bills, Elizabeth; Bolton, Gary; Bratton, Larry D.; Caspers, Nicole L.; Dunbar, James B.; Harris, Melissa S.; Hutchings, Richard H.; Kennedy, Robert M.; Larsen, Scott D.; Pavlovsky, Alexander; Pfefferkorn, Jeffrey A.; Bainbridge, Graeme (Pfizer)
2008-10-02
Clinical studies have demonstrated that statins, 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) inhibitors, are effective at lowering mortality levels associated with cardiovascular disease; however, 2--7% of patients may experience statin-induced myalgia that limits compliance with a treatment regimen. High resolution crystal structures, thermodynamic binding parameters, and biochemical data were used to design statin inhibitors with improved HMGR affinity and therapeutic index relative to statin-induced myalgia. These studies facilitated the identification of imidazole 1 as a potent (IC{sub 50} = 7.9 nM) inhibitor with excellent hepatoselectivity (>1000-fold) and good in vivo efficacy. The binding of 1 to HMGR was found to be enthalpically driven with a {Delta}H of -17.7 kcal/M. Additionally, a second novel series of bicyclic pyrrole-based inhibitors was identified that induced order in a protein flap of HMGR. Similar ordering was detected in a substrate complex, but has not been reported in previous statin inhibitor complexes with HMGR.
Wendel, Christopher H.; Kazempoor, Pejman; Braun, Robert J.
2016-01-01
Reversible solid oxide cell (ReSOC) systems are being increasingly considered for electrical energy storage, although much work remains before they can be realized, including cell materials development and system design optimization. These systems store electricity by generating a synthetic fuel in electrolysis mode and subsequently recover electricity by electrochemically oxidizing the stored fuel in fuel cell mode. System thermal management is improved by promoting methane synthesis internal to the ReSOC stack. Within this strategy, the cell-stack operating conditions are highly impactful on system performance and optimizing these parameters to suit both operating modes is critical to achieving high roundtrip efficiency. Preliminary analysis shows the thermoneutral voltage to be a useful parameter for analyzing ReSOC systems and the focus of this study is to quantitatively examine how it is affected by ReSOC operating conditions. The results reveal that the thermoneutral voltage is generally reduced by increased pressure, and reductions in temperature, fuel utilization, and hydrogen-to-carbon ratio. Based on the thermodynamic analysis, many different combinations of these operating conditions are expected to promote efficient energy storage. Pressurized systems can achieve high efficiency at higher temperature and fuel utilization, while non-pressurized systems may require lower stack temperature and suffer from reduced energy density.
Design of Drug Delivery Systems Containing Artemisinin and Its Derivatives
Blessing Atim Aderibigbe
2017-02-01
Full Text Available Artemisinin and its derivatives have been reported to be experimentally effective for the treatment of highly aggressive cancers without developing drug resistance, they are useful for the treatment of malaria, other protozoal infections and they exhibit antiviral activity. However, they are limited pharmacologically by their poor bioavailability, short half-life in vivo, poor water solubility and long term usage results in toxicity. They are also expensive for the treatment of malaria when compared to other antimalarials. In order to enhance their therapeutic efficacy, they are incorporated onto different drug delivery systems, thus yielding improved biological outcomes. This review article is focused on the currently synthesized derivatives of artemisinin and different delivery systems used for the incorporation of artemisinin and its derivatives.
Palencia, Andrés; Cobos, Eva S; Mateo, Pedro L; Martínez, Jose C; Luque, Irene
2004-02-13
The inhibition of the interactions between SH3 domains and their targets is emerging as a promising therapeutic strategy. To date, rational design of potent ligands for these domains has been hindered by the lack of understanding of the origins of the binding energy. We present here a complete thermodynamic analysis of the binding energetics of the p41 proline-rich decapeptide (APSYSPPPPP) to the SH3 domain of the c-Abl oncogene. Isothermal titration calorimetry experiments have revealed a thermodynamic signature for this interaction (very favourable enthalpic contributions opposed by an unfavourable binding entropy) inconsistent with the highly hydrophobic nature of the p41 ligand and the Abl-SH3 binding site. Our structural and thermodynamic analyses have led us to the conclusion, having once ruled out any possible ionization events or conformational changes coupled to the association, that the establishment of a complex hydrogen-bond network mediated by water molecules buried at the binding interface is responsible for the observed thermodynamic behaviour. The origin of the binding energetics for proline-rich ligands to the Abl-SH3 domain is further investigated by a comparative calorimetric analysis of a set of p41-related ligands. The striking effects upon the enthalpic and entropic contributions provoked by conservative substitutions at solvent-exposed positions in the ligand confirm the complexity of the interaction. The implications of these results for rational ligand design are discussed.
Thermodynamic modelling and solar reactor design for syngas production through SCWG of algae
Venkataraman, Mahesh B.; Rahbari, Alireza; Pye, John
2017-06-01
Conversion of algal biomass into value added products, such as liquid fuels, using solar-assisted supercritical water gasification (SCWG) offers a promising approach for clean fuel production. SCWG has significant advantages over conventional gasification in terms of flexibility of feedstock, faster intrinsic kinetics and lower char formation. A relatively unexplored avenue in SCWG is the use of non-renewable source of energy for driving the endothermic gasification. The use of concentrated solar thermal to provide the process heat is attractive, especially in the case of expensive feedstocks such as algae. This study attempts to identify the key parameters and constraints in designing a solar cavity receiver/reactor for on-sun SCWG of algal biomass. A tubular plug-flow reactor, operating at 24 MPa and 400-600 °C with a solar input of 20MWth is modelled. Solar energy is utilized to increase the temperature of the reaction medium (10 wt.% algae solution) from 400 to 605 °C and simultaneously drive the gasification. The model additionally incorporates material constraints based on the allowable stresses for a commercially available Ni-based alloy (Inconel 625), and exergy accounting for the cavity reactor. A parametric evaluation of the steady state performance and quantification of the losses through wall conduction, external radiation and convection, internal convection, frictional pressure drop, mixing and chemical irreversibility, is presented.
Karthikeyan, S; Sekaran, G
2014-03-07
The objective of this investigation is to evaluate the hydroxyl radical (˙OH) generation using nanoporous activated carbon (NPAC), derived from rice husk, and dissolved oxygen in water. The in situ production of the ˙OH radical was confirmed through the DMPO spin trapping method in EPR spectroscopy and quantitative determination by a deoxyribose assay procedure. NPAC served as a heterogeneous catalyst to degrade 2-deoxy-d-ribose (a reference compound) using hydroxyl radical generated from dissolved oxygen in water at temperatures in the range 313-373 K and pH 6, with first order rate constants (k = 9.2 × 10(-2) min(-1), k = 1.2 × 10(-1) min(-1), k = 1.3 × 10(-1) min(-1) and k = 1.68 × 10(-1) min(-1)). The thermodynamic constants for the generation of hydroxyl radicals by NPAC and dissolved oxygen in water were ΔG -1.36 kJ mol(-1) at 313 K, ΔH 17.73 kJ mol(-1) and ΔS 61.01 J mol(-1) K(-1).
Násner, Albany Milena Lozano; Lora, Electo Eduardo Silva; Palacio, José Carlos Escobar; Rocha, Mateus Henrique; Restrepo, Julian Camilo; Venturini, Osvaldo José; Ratner, Albert
2017-11-01
This work deals with the development of a Refuse Derived Fuel (RDF) gasification pilot plant using air as a gasification agent. A downdraft fixed bed reactor is integrated with an Otto cycle Internal Combustion Engine (ICE). Modelling was carried out using the Aspen Plus™ software to predict the ideal operational conditions for maximum efficiency. Thermodynamics package used in the simulation comprised the Non-Random Two-Liquid (NRTL) model and the Hayden-O'Connell (HOC) equation of state. As expected, the results indicated that the Equivalence Ratio (ER) has a direct influence over the gasification temperature and the composition of the Raw Produced Gas (RPG), and effects of ER over the Lower Heating Value (LHV) and Cold Gasification Efficiency (CGE) of the RPG are also discussed. A maximum CGE efficiency of 57-60% was reached for ER values between 0.25 and 0.3, also an average reactor temperature values in the range of 680-700°C, with a peak LHV of 5.8MJ/Nm 3 . RPG was burned in an ICE, reaching an electrical power of 50kW el . The economic assessment of the pilot plant implementation was also performed, showing the project is feasible, with power above 120kW el with an initial investment of approximately US$ 300,000. Copyright © 2017 Elsevier Ltd. All rights reserved.
He, Zhonglu; Zhang, Yufeng; Dong, Shengming; Ma, Hongting; Yu, Xiaohui; Zhang, Yan; Ma, Xuelian; Deng, Na; Sheng, Ying
2017-01-01
Highlights: • An ORC power plant driven by low grade heat source is set up. • Energy and exergy analysis at off-design conditions is conducted. • The twin screw expander performance is characterized. • An empirical model to predict the net power output and thermal efficiency. - Abstract: This paper deals with an experimental study on a 50-kW Organic Rankine cycle (ORC) power generation plant driven by low-grade heat source. Hot water boiler and solar-thermal system were used as the low-grade heat source providing hot water at temperature ranging from 65 to 95 °C. A twin screw compressor has been modified as the expansion machine in the ORC module and its expansion efficiency under variable operating conditions was tested in the experiments. This work was purposed to assess the ORC system and get the performance map at off-design operating conditions in a typical year from the view of the first and the second law of thermodynamics. The maximum electricity production and thermal efficiency were 46.5 kW and 6.52% respectively at the optimal operating condition. The highest exergetic efficiency reached 36.3% and the exergy analysis showed that evaporation pressure and condensation pressure were the key parameters to influence the exergy flow and exergetic efficiency. Furthermore, by fitting the actual plant data obtained in different months, an empirical model has been developed to predict the net power output and thermal efficiency with acceptable accuracy. Lastly, as an illustration, the empirical model is used to analyze the performance of the solar-driven ORC system.
Olander, Donald
2007-01-01
The book’s methodology is unified, concise, and multidisciplinary, allowing students to understand how the principles of thermodynamics apply to all technical fields that touch upon this most fundamental of scientific theories. It also offers a rigorous approach to the quantitative aspects of thermodynamics, accompanied by clear explanations to help students transition smoothly from the physical concepts to their mathematical representations
Cost-derived indices for building design and construction ...
Also as multiples of gfi, substructure cost index, sci and roofing cost index, rci could predict componental costs of substructure and roofing for phased development purposes. Keywords: Cost Indices, Building Design, Building Construction Journal of Modeling, Design and Management of Engineering Systems, Vol.
Peng, Shuo; Hong, Hui; Wang, Yanjuan; Wang, Zhaoguo; Jin, Hongguang
2014-01-01
Highlights: • Optical loss and heat loss of solar field under different turbine load were investigated. • Off-design thermodynamic feature was disclosed by analyzing several operational parameters. • Possible schemes was proposed to improve the net solar-to-electricity efficiency. - Abstract: The contribution of mid-temperature solar thermal power to improve the performance of coal-fired power plant is analyzed in the present paper. In the solar aided coal-fired power plant, solar heat at <300 °C is used to replace the extracted steam from the steam turbine to heat the feed water. In this way, the steam that was to be extracted could consequently expand in the steam turbine to boost output power. The advantages of a solar aided coal-fired power plant in design condition have been discussed by several researchers. However, thermodynamic performances on off-design operation have not been well discussed until now. In this paper, a typical 330 MW coal-fired power plant in Sinkiang Province of China is selected as the case study to demonstrate the advantages of the solar aided coal-fired power plant under off-design conditions. Hourly thermodynamic performances are analyzed on typical days under partial load. The effects of several operational parameters, such as solar irradiation intensity, incident angle, flow rate of thermal oil, on the performance of solar field efficiency and net solar-to-electricity efficiency were examined. Possible schemes have been proposed for improving the solar aided coal-fired power plant on off-design operation. The results obtained in the current study could provide a promising approach to solve the poor thermodynamic performance of solar thermal power plant and also offer a basis for the practical operation of MW-scale solar aided coal-fired power plant
Thermodynamics of Accelerating Black Holes.
Appels, Michael; Gregory, Ruth; Kubizňák, David
2016-09-23
We address a long-standing problem of describing the thermodynamics of an accelerating black hole. We derive a standard first law of black hole thermodynamics, with the usual identification of entropy proportional to the area of the event horizon-even though the event horizon contains a conical singularity. This result not only extends the applicability of black hole thermodynamics to realms previously not anticipated, it also opens a possibility for studying novel properties of an important class of exact radiative solutions of Einstein equations describing accelerated objects. We discuss the thermodynamic volume, stability, and phase structure of these black holes.
Feria, Erlan H.
2017-10-01
Gyrochronology estimates the age of a low-mass star from its rotational period, which is found from changes in brightness caused by dark star spots. First revealed as an insight in (Skumanich, A. 1972, The Astrophysical Journal. 171: 565) it allows astronomers to find true sun-like stars that may harbor life in its planets (Meibom, S. et. al., Nature. 517: 589-591). Here a simple expression for the age of a star is derived through a novel linger thermo theory (LTT) integrating thermodynamics with its revealed time-dual, named lingerdynamics. This expression relates the star age to the ratio of past and present rotational period metrics (RPM) of lingerdynamics. LTT has been used earlier to derive a simple expression for the finding of the entropy of spherical-homogeneous mediums (Feria, E. H. Nov. 19, 2016, Linger Thermo Theory, IEEE Int’l Conf. on Smart Cloud, 18 pages, DOI 10.1109/SmartCloud.2016.57, Colombia Univ., N.Y., N.Y. and Feria, E. H. June 7th 2017, AAS 340th Meeting). In LTT the lifespan of system operation τ is given by: τ = (2Π /3v3)G2M2 x RPM where G is the gravitational constant, Π is the pace of mass-energy retention in s/m3 units (e.g., for our current sun it is given by 5 billion ‘future’ years over its volume), and v is the perpetual radial speed about the point-mass M. Since in LTT a star is modeled as a point mass at the center of its spherical volume, its RPM is not the same as the measured rotational period of an actual star. For instance, for our sun its equator rotational period is approximately 25.34 days, while in lingerdynamics it is a fraction of a day, i.e., 0.116 days, where this value is derived from the RPM expression 2πrsun/(GMsun / rsun)1/2 where 2πrsun is the circumference of the sun, (GMsun/rsun)1/2 is the perpetual radial speed v for our point-mass modeled sun, and rsun and Msun are the sun radius and point-mass, respectively. However, using conservation of angular momentum arguments it is assumed that the ratio of
Design synthesis and biological evaluation of 2-methylphenyl semicarbazone derivatives
Manmohan Singhal
2011-03-01
Full Text Available We have used pharmacophore hybridization technique of drug design and designed a pharmacophore model 2-methylphenylsemicarbazone which is having hydrogen acceptor site, hydrogen donor site, lipophilic site etc using ligandscout-2.02 software. A series of 2-methylphenyl-semicarbazone was synthesized and evaluated for their antipyretic activity using boiled cow milk induced pyrexia in rabbits. Compound 11 was the most active compound. The possible metabolites of some selected synthesized chalconesemicarbazones were predicted by computational method using Pallas version-3.1 ADME-Tox prediction software. The major pathway of metabolism was found to be p-hydroxylation and amide hydrolysis.
Statistical thermodynamics of alloys
Gokcen, N.A.
1986-01-01
This book presents information on the following topics: consequences of laws of thermodynamics; Helmholtz and Gibbs energies; analytical forms of excess partial molar properties; single-component and multicomponent equilibria; phase rules and diagrams; lever rule; fermions, bosons, and Boltzons; approximate equations; enthalpy and heat capacity; Pd-H system; hydrogen-metal systems; limitations of Wagner model; energy of electrons and hols; dopants in semiconductors; derived thermodynamic properties; simple equivalent circuit; calculation procedure; multicompoent diagrams re; Engel-Brewer theories; p-n junctions; and solar cells
Iribarne, J V
1973-01-01
The thermodynamics of the atmosphere is the subject of several chapters in most textbooks on dynamic meteorology, but there is no work in English to give the subject a specific and more extensive treatment. In writing the present textbook, we have tried to fill this rather remarkable gap in the literature related to atmospheric sciences. Our aim has been to provide students of meteorology with a book that can playa role similar to the textbooks on chemical thermodynamics for the chemists. This implies a previous knowledge of general thermodynamics, such as students acquire in general physics courses; therefore, although the basic principles are reviewed (in the first four chapters), they are only briefly discussed, and emphasis is laid on those topics that will be useful in later chapters, through their application to atmospheric problems. No attempt has been made to introduce the thermodynamics of irreversible processes; on the other hand, consideration of heterogeneous and open homogeneous systems permits a...
Wei, Bo-Bo; Jiang, Zhan-Feng; Liu, Ren-Bao
2015-01-01
The holographic principle states that the information about a volume of a system is encoded on the boundary surface of the volume. Holography appears in many branches of physics, such as optics, electromagnetism, many-body physics, quantum gravity, and string theory. Here we show that holography is also an underlying principle in thermodynamics, a most important foundation of physics. The thermodynamics of a system is fully determined by its partition function. We prove that the partition function of a finite but arbitrarily large system is an analytic function on the complex plane of physical parameters, and therefore the partition function in a region on the complex plane is uniquely determined by its values along the boundary. The thermodynamic holography has applications in studying thermodynamics of nano-scale systems (such as molecule engines, nano-generators and macromolecules) and provides a new approach to many-body physics. PMID:26478214
Design, Synthesis and Antifungal Activity of Psoralen Derivatives
Xiang Yu
2017-10-01
Full Text Available A series of linear furanocoumarins with different substituents have been designed and synthesized. Their structures were confirmed by 1H-NMR spectroscopy, high resolution mass spectra (EI-MS, IR, and X-ray single-crystal diffraction. All of the target compounds were evaluated in vitro for their antifungal activity against Rhizoctorzia solani, Botrytis cinerea, Alternaria solani, Gibberella zeae, Cucumber anthrax, and Alternaria leaf spot at 100 μg/mL, and some of the designed compounds exhibited potential antifungal activities. Compound 3a (67.9% exhibited higher activity than the control Osthole (66.1% against Botrytis cinerea. Furthermore, compound 4b (62.4% represented equivalent antifungal activity as Osthole (69.5% against Rhizoctonia solani. The structure-activity relationship (SAR study demonstrates that linear furanocoumarin moiety has an important effect on the antifungal activity, promoting the idea of the coumarin ring as a framework that might be exploited in the future.
Chemical thermodynamics. An introduction
Keszei, Ernoe [Budapest Univ. (Hungary). Dept. of Physical Chemistry
2012-07-01
Eminently suitable as a required textbook comprising complete material for or an undergraduate chemistry major course in chemical thermodynamics. Clearly explains details of formal derivations that students can easily follow and so master applied mathematical operations. Offers problems and solutions at the end of each chapter for self-test and self- or group study. This course-derived undergraduate textbook provides a concise explanation of the key concepts and calculations of chemical thermodynamics. Instead of the usual 'classical' introduction, this text adopts a straightforward postulatory approach that introduces thermodynamic potentials such as entropy and energy more directly and transparently. Structured around several features to assist students' understanding, Chemical Thermodynamics: - Develops applications and methods for the ready treatment of equilibria on a sound quantitative basis. - Requires minimal background in calculus to understand the text and presents formal derivations to the student in a detailed but understandable way. - Offers end-of-chapter problems (and answers) for self-testing and review and reinforcement, of use for self- or group study. This book is suitable as essential reading for courses in a bachelor and master chemistry program and is also valuable as a reference or textbook for students of physics, biochemistry and materials science.
Extended Irreversible Thermodynamics
Jou, David
2010-01-01
This is the 4th edition of the highly acclaimed monograph on Extended Irreversible Thermodynamics, a theory that goes beyond the classical theory of irreversible processes. In contrast to the classical approach, the basic variables describing the system are complemented by non-equilibrium quantities. The claims made for extended thermodynamics are confirmed by the kinetic theory of gases and statistical mechanics. The book covers a wide spectrum of applications, and also contains a thorough discussion of the foundations and the scope of the current theories on non-equilibrium thermodynamics. For this new edition, the authors critically revised existing material while taking into account the most recent developments in fast moving fields such as heat transport in micro- and nanosystems or fast solidification fronts in materials sciences. Several fundamental chapters have been revisited emphasizing physics and applications over mathematical derivations. Also, fundamental questions on the definition of non-equil...
Naemi, Sanaz; Saffar-Avval, Majid; Behboodi Kalhori, Sahand; Mansoori, Zohreh
2013-01-01
The thermodynamic and thermoeconomic analyses are investigated to achieve the optimum operating parameters of a dual pressure heat recovery steam generator (HRSG), coupled with a heavy duty gas turbine. In this regard, the thermodynamic objective function including the exergy waste and the exergy destruction, is defined in such a way to find the optimum pinch point, and consequently to minimize the objective function by using non-dimensional operating parameters. The results indicated that, the optimum pinch point from thermodynamic viewpoint is 2.5 °C and 2.1 °C for HRSGs with live steam at 75 bar and 90 bar respectively. Since thermodynamic analysis is not able to consider economic factors, another objective function including annualized installation cost and annual cost of irreversibilities is proposed. To find the irreversibility cost, electricity price and also fuel price are considered independently. The optimum pinch point from thermoeconomic viewpoint on basis of electricity price is 20.6 °C (75 bar) and 19.2 °C (90 bar), whereas according to the fuel price it is 25.4 °C and 23.7 °C. Finally, an extensive sensitivity analysis is performed to compare optimum pinch point for different electricity and fuel prices. -- Highlights: ► Presenting thermodynamic and thermoeconomic optimization of a heat recovery steam generator. ► Defining an objective function consists of exergy waste and exergy destruction. ► Defining an objective function including capital cost and cost of irreversibilities. ► Obtaining the optimized operating parameters of a dual pressure heat recovery boiler. ► Computing the optimum pinch point using non-dimensional operating parameters
Constraining continuous rainfall simulations for derived design flood estimation
Woldemeskel, F. M.; Sharma, A.; Mehrotra, R.; Westra, S.
2016-11-01
Stochastic rainfall generation is important for a range of hydrologic and water resources applications. Stochastic rainfall can be generated using a number of models; however, preserving relevant attributes of the observed rainfall-including rainfall occurrence, variability and the magnitude of extremes-continues to be difficult. This paper develops an approach to constrain stochastically generated rainfall with an aim of preserving the intensity-durationfrequency (IFD) relationships of the observed data. Two main steps are involved. First, the generated annual maximum rainfall is corrected recursively by matching the generated intensity-frequency relationships to the target (observed) relationships. Second, the remaining (non-annual maximum) rainfall is rescaled such that the mass balance of the generated rain before and after scaling is maintained. The recursive correction is performed at selected storm durations to minimise the dependence between annual maximum values of higher and lower durations for the same year. This ensures that the resulting sequences remain true to the observed rainfall as well as represent the design extremes that may have been developed separately and are needed for compliance reasons. The method is tested on simulated 6 min rainfall series across five Australian stations with different climatic characteristics. The results suggest that the annual maximum and the IFD relationships are well reproduced after constraining the simulated rainfall. While our presentation focusses on the representation of design rainfall attributes (IFDs), the proposed approach can also be easily extended to constrain other attributes of the generated rainfall, providing an effective platform for post-processing of stochastic rainfall generators.
Tavenor, Nathan Albert
-turns) of a small protein with a tertiary fold. Although the tertiary fold of the native sequence was mimicked by the resulting artificial protein, the thermodynamic stability was greatly compromised. Most of this energetic penalty derived from the modifications present in the alpha-helix. The contribution within this thesis was direct comparison of several alpha-helical design strategies and establishment of the thermodynamic consequences of each.
Ben-Naim, Arieh
2017-01-01
This textbook introduces thermodynamics with a modern approach, starting from four fundamental physical facts (the atomic nature of matter, the indistinguishability of atoms and molecules of the same species, the uncertainty principle, and the existence of equilibrium states) and analyzing the behavior of complex systems with the tools of information theory, in particular with Shannon's measure of information (or SMI), which can be defined on any probability distribution. SMI is defined and its properties and time evolution are illustrated, and it is shown that the entropy is a particular type of SMI, i.e. the SMI related to the phase-space distribution for a macroscopic system at equilibrium. The connection to SMI allows the reader to understand what entropy is and why isolated systems follow the Second Law of Thermodynamics. The Second Llaw is also formulated for other systems, not thermally isolated and even open with respect to the transfer of particles. All the fundamental aspects of thermodynamics are d...
Schrödinger, Erwin
1952-01-01
Nobel Laureate's brilliant attempt to develop a simple, unified standard method of dealing with all cases of statistical thermodynamics - classical, quantum, Bose-Einstein, Fermi-Dirac, and more.The work also includes discussions of Nernst theorem, Planck's oscillator, fluctuations, the n-particle problem, problem of radiation, much more.
Jacobs, Michael H G; Schmid-Fetzer, Rainer; van den Berg, Arie P.
2017-01-01
In a previous paper, we showed a technique that simplifies Kieffer’s lattice vibrational method by representing the vibrational density of states with multiple Einstein frequencies. Here, we show that this technique can be applied to construct a thermodynamic database that accurately represents
Zhang, Guoqiang; Zheng, Jiongzhi; Yang, Yongping; Liu, Wenyi
2016-01-01
Highlights: • An off-design performance simulation of triple-pressure reheat HRSG is executed. • The bottoming cycle characteristics of energy transfer/conversion are analyzed. • Concise formulas for the off-design performance of bottoming cycle are proposed. • The accuracy of the formulas is verified under different load control strategies. • The errors of the formulas are generally within 1% at a load of 100–50%. - Abstract: Concise semi-theoretical, semi-empirical formulas are developed in this study to predict the off-design performance of the bottoming cycle of the gas–steam turbine combined cycle. The formulas merely refer to the key thermodynamic design parameters (full load parameters) of the bottoming cycle and off-design gas turbine exhaust temperature and flow, which are convenient in determining the overall performance of the bottoming cycle. First, a triple-pressure reheat heat recovery steam generator (HRSG) is modeled, and thermodynamic analysis is performed. Second, concise semi-theoretical, semi-empirical performance prediction formulas for the bottoming cycle are proposed through a comprehensive analysis of the heat transfer characteristics of the HRSG and the energy conversion characteristics of the steam turbine under the off-design condition. The concise formulas are found to be effective, i.e., fast, simple, and precise in obtaining the thermodynamic parameters for bottoming cycle efficiency, HRSG heat transfer capacity, HRSG efficiency, steam turbine power output, and steam turbine efficiency under the off-design condition. Accuracy is verified by comparing the concise formulas’ calculation results with the simulation results and practical operation data under different load control strategies. The calculation errors are within 1.5% (mainly less than 1% for both simulation and actual operation data) under combined cycle load (gas turbine load) ranging from 50% to 100%. However, accuracy declines sharply when the turbine
Thermodynamic metrics and optimal paths.
Sivak, David A; Crooks, Gavin E
2012-05-11
A fundamental problem in modern thermodynamics is how a molecular-scale machine performs useful work, while operating away from thermal equilibrium without excessive dissipation. To this end, we derive a friction tensor that induces a Riemannian manifold on the space of thermodynamic states. Within the linear-response regime, this metric structure controls the dissipation of finite-time transformations, and bestows optimal protocols with many useful properties. We discuss the connection to the existing thermodynamic length formalism, and demonstrate the utility of this metric by solving for optimal control parameter protocols in a simple nonequilibrium model.
Thermodynamic features of dioxins’ adsorption
Prisciandaro, Marina [Department of Industrial and Information Engineering and of Economics, University of L’Aquila, Viale Giovanni Gronchi 18, L’Aquila 67100 (Italy); Piemonte, Vincenzo, E-mail: v.piemonte@unicampus.it [Faculty of Engineering, University Campus Biomedico of Rome, Via Alvaro del Portillo 21, Rome 00128 (Italy); Mazziotti di Celso, Giuseppe [Faculty of Bioscience, University of Teramo, Via R. Balzarini, 1, 64100 Teramo (Italy); Ronconi, Silvia [Arta Abruzzo, Department of L’Aquila, Bazzano (AQ), 67100 L’Aquila (Italy); Capocelli, Mauro [Faculty of Engineering, University Campus Biomedico of Rome, Via Alvaro del Portillo 21, Rome 00128 (Italy)
2017-02-15
Highlights: • We develop the P-T diagram for six PCDD. • We derive theoretical adsorption isotherms according to the Langmuir’s model. • We calculate K and w{sub max} values for several temperatures. • We estimate the adsorption heat with a good agreement with literature data. - Abstract: In this paper, the six more poisonous species among all congeners of dioxin group are taken into account, and the P-T diagram for each of them is developed. Starting from the knowledge of vapour tensions and thermodynamic parameters, the theoretical adsorption isotherms are calculated according to the Langmuir’s model. In particular, the Langmuir isotherm parameters (K and w{sub max}) have been validated through the estimation of the adsorption heat (ΔH{sub ads}), which varies in the range 20–24 kJ/mol, in agreement with literature values. This result will allow to put the thermodynamical basis for a rational design of different process units devoted to dioxins removal.
Thermodynamic analysis of PBMR plant
Sen, S.; Kadiroglu, O.K.
2002-01-01
The thermodynamic analysis of a PBMR is presented for various pressures and temperatures values. The design parameters of the components of the power plant are calculated and an optimum cycle for the maximum thermal efficiency is sought for. (author)
Thermodynamic origin of nonimaging optics
Jiang, Lun; Winston, Roland
2016-10-01
Nonimaging optics is the theory of thermodynamically efficient optics and as such depends more on thermodynamics than on optics. Hence, in this paper, a condition for the "best" design is proposed based on purely thermodynamic arguments, which we believe has profound consequences for the designs of thermal and even photovoltaic systems. This way of looking at the problem of efficient concentration depends on probabilities, the ingredients of entropy and information theory, while "optics" in the conventional sense recedes into the background. Much of the paper is pedagogical and retrospective. Some of the development of flowline designs will be introduced at the end and the connection between the thermodynamics and flowline design will be graphically presented. We will conclude with some speculative directions of where the ideas might lead.
Navrotsky, Alexandra
Thermodynamics of Crystals is a gold mine of a references bargain with more derivations of useful equations per dollar, or per page, than almost any other book I know. Useful to whom? To the solid state physicist, the solid state chemist working the geophysicist, the rock mechanic, the mineral physicist. Useful for what? For lattice dynamics, crystal potentials, band structure. For elegant, rigorous, and concise derivations of fundamental equations. For comparison of levels of approximation. For some data and physical insights, especially for metals and simple halides. This book is a reissue, with some changes and additions, of a 1970 treatise. It ages well, since the fundamentals do not change.
Armen, Roger S; Schiller, Stefan M; Brooks, Charles L
2010-06-01
Orthogonal aminoacyl-tRNA synthetase/tRNA pairs from archaea have been evolved to facilitate site specific in vivo incorporation of unnatural amino acids into proteins in Escherichia coli. Using this approach, unnatural amino acids have been successfully incorporated with high translational efficiency and fidelity. In this study, CHARMM-based molecular docking and free energy calculations were used to evaluate rational design of specific protein-ligand interactions for aminoacyl-tRNA synthetases. A series of novel unnatural amino acid ligands were docked into the p-benzoyl-L-phenylalanine tRNA synthetase, which revealed that the binding pocket of the enzyme does not provide sufficient space for significantly larger ligands. Specific binding site residues were mutated to alanine to create additional space to accommodate larger target ligands, and then mutations were introduced to improve binding free energy. This approach was used to redesign binding sites for several different target ligands, which were then tested against the standard 20 amino acids to verify target specificity. Only the synthetase designed to bind Man-alpha-O-Tyr was predicted to be sufficiently selective for the target ligand and also thermodynamically stable. Our study suggests that extensive redesign of the tRNA synthatase binding pocket for large bulky ligands may be quite thermodynamically unfavorable.
Ben-Naim, Arieh
1987-01-01
This book deals with a subject that has been studied since the beginning of physical chemistry. Despite the thousands of articles and scores of books devoted to solvation thermodynamics, I feel that some fundamen tal and well-established concepts underlying the traditional approach to this subject are not satisfactory and need revision. The main reason for this need is that solvation thermodynamics has traditionally been treated in the context of classical (macroscopic) ther modynamics alone. However, solvation is inherently a molecular pro cess, dependent upon local rather than macroscopic properties of the system. Therefore, the starting point should be based on statistical mechanical methods. For many years it has been believed that certain thermodynamic quantities, such as the standard free energy (or enthalpy or entropy) of solution, may be used as measures of the corresponding functions of solvation of a given solute in a given solvent. I first challenged this notion in a paper published in 1978 b...
Glutamic acid and its derivatives: candidates for rational design of anticancer drugs.
Ali, Imran; Wani, Waseem A; Haque, Ashanul; Saleem, Kishwar
2013-05-01
Throughout the history of human civilizations, cancer has been a major health problem. Its treatment has been interesting but challenging to scientists. Glutamic acid and its derivative glutamine are known to play interesting roles in cancer genesis, hence, it was realized that structurally variant glutamic acid derivatives may be designed and developed and, might be having antagonistic effects on cancer. The present article describes the state-of-art of glutamic acid and its derivatives as anticancer agents. Attempts have been made to explore the effectivity of drug-delivery systems based on glutamic acid for the delivery of anticancer drugs. Moreover, efforts have also been made to discuss the mechanism of action of glutamic acid derivatives as anticancer agents, clinical applications of glutamic acid derivatives, as well as recent developments and future perspectives of glutamic acid drug development have also been discussed.
B. Kuldeep
2015-06-01
Full Text Available Fractional calculus has recently been identified as a very important mathematical tool in the field of signal processing. Digital filters designed by fractional derivatives give more accurate frequency response in the prescribed frequency region. Digital filters are most important part of multi-rate filter bank systems. In this paper, an improved method based on fractional derivative constraints is presented for the design of two-channel quadrature mirror filter (QMF bank. The design problem is formulated as minimization of L2 error of filter bank transfer function in passband, stopband interval and at quadrature frequency, and then Lagrange multiplier method with fractional derivative constraints is applied to solve it. The proposed method is then successfully applied for the design of two-channel QMF bank with higher order filter taps. Performance of the QMF bank design is then examined through study of various parameters such as passband error, stopband error, transition band error, peak reconstruction error (PRE, stopband attenuation (As. It is found that, the good design can be obtained with the change of number and value of fractional derivative constraint coefficients.
Olumayegun, Olumide; Wang, Meihong; Kelsall, Greg
2017-01-01
Highlights: • Nitrogen closed Brayton cycle for small modular sodium-cooled fast reactor studied. • Thermodynamic modelling and analysis of closed Brayton cycle performed. • Two-shaft configuration proposed and performance compared to single shaft. • Preliminary design of heat exchangers and turbomachinery carried out. - Abstract: Sodium-cooled fast reactor (SFR) is considered the most promising of the Generation IV reactors for their near-term demonstration of power generation. Small modular SFRs (SM-SFRs) have less investment risk, can be deployed more quickly, are easier to operate and are more flexible in comparison to large nuclear reactor. Currently, SFRs use the proven Rankine steam cycle as the power conversion system. However, a key challenge is to prevent dangerous sodium-water reaction that could happen in SFR coupled to steam cycle. Nitrogen gas is inert and does not react with sodium. Hence, intercooled closed Brayton cycle (CBC) using nitrogen as working fluid and with a single shaft configuration has been one common power conversion system option for possible near-term demonstration of SFR. In this work, a new two shaft nitrogen CBC with parallel turbines was proposed to further simplify the design of the turbomachinery and reduce turbomachinery size without compromising the cycle efficiency. Furthermore, thermodynamic performance analysis and preliminary design of components were carried out in comparison with a reference single shaft nitrogen cycle. Mathematical models in Matlab were developed for steady state thermodynamic analysis of the cycles and for preliminary design of the heat exchangers, turbines and compressors. Studies were performed to investigate the impact of the recuperator minimum terminal temperature difference (TTD) on the overall cycle efficiency and recuperator size. The effect of turbomachinery efficiencies on the overall cycle efficiency was examined. The results showed that the cycle efficiency of the proposed
Bernardo, Elena; de Oro, Raquel; Campos, Mónica; Torralba, José Manuel
2014-04-01
The possibility of tailoring the characteristics of a liquid metal is an important asset in a wide number of processing techniques. For most of these processes, the nature and degree of the interaction between liquid and solid phases are usually a focus of interest since they determine liquid properties such as wettability and infiltration capacity. Particularly, within the powder metallurgy (PM) technology, it is considered one of the key aspects to obtain high performance steels through liquid phase sintering. In this work, it is proved how thermodynamic and kinetics software is a powerful tool to study the liquid/solid interactions. The assessment of different liquid phase promoters for transient liquid phase sintering is addressed through the use of ThermoCalc and DICTRA calculations. Besides melting temperatures, particular attention is given to the solubility phenomena between the phases and the kinetics of these processes. Experimental validation of thermodynamic results is carried out by wetting and infiltration experiments at high temperatures. Compositions presenting different liquid/solid solubility are evaluated and directly correlated to the behavior of the liquid during a real sintering process. Therefore, this work opens the possibility to optimize liquid phase compositions and predict the liquid behavior from the design step, which is considered of high technological value for the PM industry.
Derivation of time dependent design-values for SNR 300 structural material
Lorenz, H.; Breitling, H.; de Heesen, E.
1976-01-01
Time-dependent design values were derived from long-term creep rupture data for steel X 6 CrNi 1811 in the unwelded and welded condition. The design values had to satisfy the ASME CC 1592 criterea with respect to creep rupture strength, time to reach 1% strain and transition to tertiary creep as well as the requirement of German regulatory rules to properly account for weld bahaviour. For the evaluation and extrapolation 2 proven computer programmes were used. The design data derived under consideration of weld joints show relative good agreement with the values of ASME CC 1592. Consideration of welds leads to lower design values above 550 0 C and 5x10 3 h with the difference between rolled and weld material becoming larger with increasing time and temperature. (author)
RNA Thermodynamic Structural Entropy.
Garcia-Martin, Juan Antonio; Clote, Peter
2015-01-01
Conformational entropy for atomic-level, three dimensional biomolecules is known experimentally to play an important role in protein-ligand discrimination, yet reliable computation of entropy remains a difficult problem. Here we describe the first two accurate and efficient algorithms to compute the conformational entropy for RNA secondary structures, with respect to the Turner energy model, where free energy parameters are determined from UV absorption experiments. An algorithm to compute the derivational entropy for RNA secondary structures had previously been introduced, using stochastic context free grammars (SCFGs). However, the numerical value of derivational entropy depends heavily on the chosen context free grammar and on the training set used to estimate rule probabilities. Using data from the Rfam database, we determine that both of our thermodynamic methods, which agree in numerical value, are substantially faster than the SCFG method. Thermodynamic structural entropy is much smaller than derivational entropy, and the correlation between length-normalized thermodynamic entropy and derivational entropy is moderately weak to poor. In applications, we plot the structural entropy as a function of temperature for known thermoswitches, such as the repression of heat shock gene expression (ROSE) element, we determine that the correlation between hammerhead ribozyme cleavage activity and total free energy is improved by including an additional free energy term arising from conformational entropy, and we plot the structural entropy of windows of the HIV-1 genome. Our software RNAentropy can compute structural entropy for any user-specified temperature, and supports both the Turner'99 and Turner'04 energy parameters. It follows that RNAentropy is state-of-the-art software to compute RNA secondary structure conformational entropy. Source code is available at https://github.com/clotelab/RNAentropy/; a full web server is available at http
RNA Thermodynamic Structural Entropy.
Juan Antonio Garcia-Martin
Full Text Available Conformational entropy for atomic-level, three dimensional biomolecules is known experimentally to play an important role in protein-ligand discrimination, yet reliable computation of entropy remains a difficult problem. Here we describe the first two accurate and efficient algorithms to compute the conformational entropy for RNA secondary structures, with respect to the Turner energy model, where free energy parameters are determined from UV absorption experiments. An algorithm to compute the derivational entropy for RNA secondary structures had previously been introduced, using stochastic context free grammars (SCFGs. However, the numerical value of derivational entropy depends heavily on the chosen context free grammar and on the training set used to estimate rule probabilities. Using data from the Rfam database, we determine that both of our thermodynamic methods, which agree in numerical value, are substantially faster than the SCFG method. Thermodynamic structural entropy is much smaller than derivational entropy, and the correlation between length-normalized thermodynamic entropy and derivational entropy is moderately weak to poor. In applications, we plot the structural entropy as a function of temperature for known thermoswitches, such as the repression of heat shock gene expression (ROSE element, we determine that the correlation between hammerhead ribozyme cleavage activity and total free energy is improved by including an additional free energy term arising from conformational entropy, and we plot the structural entropy of windows of the HIV-1 genome. Our software RNAentropy can compute structural entropy for any user-specified temperature, and supports both the Turner'99 and Turner'04 energy parameters. It follows that RNAentropy is state-of-the-art software to compute RNA secondary structure conformational entropy. Source code is available at https://github.com/clotelab/RNAentropy/; a full web server is available at http
Gomez Palacio, German Rau
1998-01-01
Ecology is no more a descriptive and self-sufficient science. Many viewpoints are needed simultaneously to give a full coverage of such complex systems: ecosystems. These viewpoints come from physics, chemistry, and nuclear physics, without a new far from equilibrium thermodynamics and without new mathematical tools such as catastrophe theory, fractal theory, cybernetics and network theory, the development of ecosystem science would never have reached the point of today. Some ideas are presented about the importance that concept such as energy, entropy, exergy information and none equilibrium have in the analysis of processes taking place in ecosystems
Irreversible thermodynamics of Poisson processes with reaction.
Méndez, V; Fort, J
1999-11-01
A kinetic model is derived to study the successive movements of particles, described by a Poisson process, as well as their generation. The irreversible thermodynamics of this system is also studied from the kinetic model. This makes it possible to evaluate the differences between thermodynamical quantities computed exactly and up to second-order. Such differences determine the range of validity of the second-order approximation to extended irreversible thermodynamics.
Quantum thermodynamics: a nonequilibrium Green's function approach.
Esposito, Massimiliano; Ochoa, Maicol A; Galperin, Michael
2015-02-27
We establish the foundations of a nonequilibrium theory of quantum thermodynamics for noninteracting open quantum systems strongly coupled to their reservoirs within the framework of the nonequilibrium Green's functions. The energy of the system and its coupling to the reservoirs are controlled by a slow external time-dependent force treated to first order beyond the quasistatic limit. We derive the four basic laws of thermodynamics and characterize reversible transformations. Stochastic thermodynamics is recovered in the weak coupling limit.
Morandin, Matteo; Maréchal, François; Mercangöz, Mehmet; Buchter, Florian
2012-01-01
The interest in large scale electricity storage (ES) with discharging time longer than 1 h and nominal power greater than 1 MW, is increasing worldwide as the increasing share of renewable energy, typically solar and wind energy, imposes severe load management issues. Thermo-electrical energy storage (TEES) based on thermodynamic cycles is currently under investigation at ABB corporate research as an alternative solution to pump hydro and compressed air energy storage. TEES is based on the conversion of electricity into thermal energy during charge by means of a heat pump and on the conversion of thermal energy into electricity during discharge by means of a thermal engine. The synthesis and the thermodynamic optimization of a TEES system based on hot water, ice storage and transcritical CO 2 cycles, is discussed in two papers. In this first paper a methodology for the conceptual design of a TEES system based on the analysis of the thermal integration between charging and discharging cycles through Pinch Analysis tools is introduced. According to such methodology, the heat exchanger network and temperatures and volumes of storage tanks are not defined a priori but are determined after the cycle parameters are optimized. For this purpose a heuristic procedure based on the interpretation of the composite curves obtained by optimizing the thermal integration between the cycles was developed. Such heuristic rules were implemented in a code that allows finding automatically the complete system design for given values of the intensive parameters of the charging and discharging cycles only. A base case system configuration is introduced and the results of its thermodynamic optimization are discussed here. A maximum roundtrip efficiency of 60% was obtained for the base case configuration assuming turbomachinery and heat exchanger performances in line with indications from manufacturers. -- Highlights: ► Energy storage based on water, ice, and transcritical CO 2 cycles is
Lange, Kyle J.; Anderson, W. Kyle
2010-01-01
The problem of applying sensitivity analysis to a one-dimensional atmospheric radio frequency plasma discharge simulation is considered. A fluid simulation is used to model an atmospheric pressure radio frequency helium discharge with a small nitrogen impurity. Sensitivity derivatives are computed for the peak electron density with respect to physical inputs to the simulation. These derivatives are verified using several different methods to compute sensitivity derivatives. It is then demonstrated how sensitivity derivatives can be used within a design cycle to change these physical inputs so as to increase the peak electron density. It is also shown how sensitivity analysis can be used in conjunction with experimental data to obtain better estimates for rate and transport parameters. Finally, it is described how sensitivity analysis could be used to compute an upper bound on the uncertainty for results from a simulation.
Braun, R.; Kusterer, K.; Sugimoto, T.; Tanimura, K.; Bohn, D.
2013-12-01
Concentrated Solar Power (CSP) technologies are considered to provide a significant contribution for the electric power production in the future. Different kinds of technologies are presently in operation or under development, e.g. parabolic troughs, central receivers, solar dish systems and Fresnel reflectors. This paper takes the focus on central receiver technologies, where the solar radiation is concentrated by a field of heliostats in a receiver on the top of a tall tower. To get this CSP technology ready for the future, the system costs have to reduce significantly. The main cost driver in such kind of CSP technologies are the huge amount of heliostats. To reduce the amount of heliostats, and so the investment costs, the efficiency of the energy conversion cycle becomes an important issue. An increase in the cycle efficiency results in a decrease of the solar heliostat field and thus, in a significant cost reduction. The paper presents the results of a thermodynamic model of an Organic Rankine Cycle (ORC) for combined cycle application together with a solar thermal gas turbine. The gas turbine cycle is modeled with an additional intercooler and recuperator and is based on a typical industrial gas turbine in the 2 MW class. The gas turbine has a two stage radial compressor and a three stage axial turbine. The compressed air is preheated within a solar receiver to 950°C before entering the combustor. A hybrid operation of the gas turbine is considered. In order to achieve a further increase of the overall efficiency, the combined operation of the gas turbine and an Organic Rankine Cycle is considered. Therefore an ORC has been set up, which is thermally connected to the gas turbine cycle at two positions. The ORC can be coupled to the solar-thermal gas turbine cycle at the intercooler and after the recuperator. Thus, waste heat from different cycle positions can be transferred to the ORC for additional production of electricity. Within this investigation
Thermodynamic scaling behavior in genechips
Van Hummelen Paul
2009-01-01
Full Text Available Abstract Background Affymetrix Genechips are characterized by probe pairs, a perfect match (PM and a mismatch (MM probe differing by a single nucleotide. Most of the data preprocessing algorithms neglect MM signals, as it was shown that MMs cannot be used as estimators of the non-specific hybridization as originally proposed by Affymetrix. The aim of this paper is to study in detail on a large number of experiments the behavior of the average PM/MM ratio. This is taken as an indicator of the quality of the hybridization and, when compared between different chip series, of the quality of the chip design. Results About 250 different GeneChip hybridizations performed at the VIB Microarray Facility for Homo sapiens, Drosophila melanogaster, and Arabidopsis thaliana were analyzed. The investigation of such a large set of data from the same source minimizes systematic experimental variations that may arise from differences in protocols or from different laboratories. The PM/MM ratios are derived theoretically from thermodynamic laws and a link is made with the sequence of PM and MM probe, more specifically with their central nucleotide triplets. Conclusion The PM/MM ratios subdivided according to the different central nucleotides triplets follow qualitatively those deduced from the hybridization free energies in solution. It is shown also that the PM and MM histograms are related by a simple scale transformation, in agreement with what is to be expected from hybridization thermodynamics. Different quantitative behavior is observed on the different chip organisms analyzed, suggesting that some organism chips have superior probe design compared to others.
Deriving guidelines for the design of plate evaporators in heat pumps using zeotropic mixtures
Mancini, Roberta; Zühlsdorf, Benjamin; Jensen, Jonas Kjær
2018-01-01
This paper presents a derivation of design guidelines for plate heat exchangers used for evaporation of zeotropic mixtures in heat pumps. A mapping of combined heat exchanger and cycle calculations for different combinations of geometrical parameters and working fluids allowed estimating the trade....... It was found that the pressure drop limit leading to infeasible designs was dependent on the working fluid, thereby making it impossible to define a guideline based on maximum allowable pressure drops. It was found that economically feasible designs could be obtained by correlating the vapour Reynolds number...
Thermodynamics of gas adsorption on solid adsorbents
Budrugeac, P.
1979-01-01
Starting with several hypotheses about the adsorbtion system and the adsorption phenomenon, a thermodynamic treatment of gas adsorption on solid adsorbants is presented. The relationships for determination from isotherms and calorimetric data of thermodynamic functions are derived. The problem of the phase changes in adsorbed layer is discussed. (author)
The scheme machine: A case study in progress in design derivation at system levels
Johnson, Steven D.
1995-01-01
The Scheme Machine is one of several design projects of the Digital Design Derivation group at Indiana University. It differs from the other projects in its focus on issues of system design and its connection to surrounding research in programming language semantics, compiler construction, and programming methodology underway at Indiana and elsewhere. The genesis of the project dates to the early 1980's, when digital design derivation research branched from the surrounding research effort in programming languages. Both branches have continued to develop in parallel, with this particular project serving as a bridge. However, by 1990 there remained little real interaction between the branches and recently we have undertaken to reintegrate them. On the software side, researchers have refined a mathematically rigorous (but not mechanized) treatment starting with the fully abstract semantic definition of Scheme and resulting in an efficient implementation consisting of a compiler and virtual machine model, the latter typically realized with a general purpose microprocessor. The derivation includes a number of sophisticated factorizations and representations and is also deep example of the underlying engineering methodology. The hardware research has created a mechanized algebra supporting the tedious and massive transformations often seen at lower levels of design. This work has progressed to the point that large scale devices, such as processors, can be derived from first-order finite state machine specifications. This is roughly where the language oriented research stops; thus, together, the two efforts establish a thread from the highest levels of abstract specification to detailed digital implementation. The Scheme Machine project challenges hardware derivation research in several ways, although the individual components of the system are of a similar scale to those we have worked with before. The machine has a custom dual-ported memory to support garbage collection
Thermodynamics of phase transitions
Cofta, H.
1972-01-01
The phenomenology of the phase transitions has been considered. The definitions of thermodynamic functions and parameters, as well as those of the phase transitions, are given and some of the relations between those quantities are discussed. The phase transitions classification proposed by Ehrenfest has been described. The most important features of phase transitions are discussed using the selected physical examples including the critical behaviour of ferromagnetic materials at the Curie temperature and antiferromagnetic materials at the Neel temperature. Some aspects of the Ehrenfest's equations, that have been derived, for the interfacial lines and surfaces are considered as well as the role the notion of interfaces. (S.B.)
Barkholtz, Heather M.; Liu, Di-Jia
2016-01-01
Over the past several years, metal-organic framework (MOF)-derived platinum group metal free (PGM-free) electrocatalysts have gained considerable attention due to their high efficiency and low cost as potential replacement for platinum in catalyzing oxygen reduction reaction (ORR). In this review, we summarize the recent advancements in design, synthesis and characterization of MOF-derived ORR catalysts and their performances in acidic and alkaline media. As a result, we also discuss the key challenges such as durability and activity enhancement critical in moving forward this emerging electrocatalyst science.
de Oliveira, Mário J
2017-01-01
This textbook provides an exposition of equilibrium thermodynamics and its applications to several areas of physics with particular attention to phase transitions and critical phenomena. The applications include several areas of condensed matter physics and include also a chapter on thermochemistry. Phase transitions and critical phenomena are treated according to the modern development of the field, based on the ideas of universality and on the Widom scaling theory. For each topic, a mean-field or Landau theory is presented to describe qualitatively the phase transitions. These theories include the van der Waals theory of the liquid-vapor transition, the Hildebrand-Heitler theory of regular mixtures, the Griffiths-Landau theory for multicritical points in multicomponent systems, the Bragg-Williams theory of order-disorder in alloys, the Weiss theory of ferromagnetism, the Néel theory of antiferromagnetism, the Devonshire theory for ferroelectrics and Landau-de Gennes theory of liquid crystals. This new edit...
Surov, Artem O.; Bui, Cong Trinh; Volkova, Tatyana V.; Proshin, Alexey N.; Perlovich, German L.
2016-01-01
Highlights: • Solubility processes of some 1,2,4-thiadiazoles in n-hexane and 1-octanol were investigated. • Solvation processes of some 1,2,4-thiadiazoles in n-hexane and 1-octanol were studied. • Transfer processes from n-hexane to 1-octanol were evaluated. • Impact of various substituents in 1,2,4-thiadiazoles on the mentioned processes was studied. - Abstract: Influence of a structural modification on thermodynamic aspects of solubility and solvation processes of the 1,2,4-thiadiazole drug-like compounds in pharmaceutically relevant solvents n-hexane and 1-octanol was investigated. The solubility of the compounds in 1-octanol does not substantially depend on the nature and position of the substituent in the phenyl moiety. In n-hexane, however, the introduction of any substituent in the phenyl ring of the 1,2,4-thiadiazole molecule reduces the solubility in the solvent. In order to rationalize the relationships between the structure of 1,2,4-thiadiazoles and their solubility, the latter was considered in terms of two fundamental processes: sublimation and solvation. It was found that for the most of the compounds the solubility change in both solvents is a consequence of competition between the sublimation and solvation contributions, i.e. the introduction of substituents leads to growth of the sublimation Gibbs energy and increase in the solvation Gibbs energy. Thermodynamic parameters of the transfer process of the compounds from n-hexane to 1-octanol, which is a model of the blood–brain barrier (BBB), were also analyzed.
Surface dependency in thermodynamics of ideal gases
Sisman, Altug
2004-01-01
The Casimir-like size effect rises in ideal gases confined in a finite domain due to the wave character of atoms. By considering this effect, thermodynamic properties of an ideal gas confined in spherical and cylindrical geometries are derived and compared with those in rectangular geometry. It is seen that an ideal gas exhibits an unavoidable quantum surface free energy and surface over volume ratio becomes a control variable on thermodynamic state functions in microscale. Thermodynamics turns into non-extensive thermodynamics and geometry difference becomes a driving force since the surface over volume ratio depends on the geometry
Jialong Sun
2015-03-01
Full Text Available In this study a series of diacylhydrazine and acylhydrazone derivatives were designed and synthesized according to the method of active group combination and the principles of aromatic group bioisosterism. The structures of the novel derivatives were determined on the basis on 1H-NMR, IR and ESI-MS spectral data. All of the compounds were evaluated for their in vivo insecticidal activity against the third instar larvae of Spodoptera exigua Hiibner, Helicoverpa armigera Hubner, Plutella xyllostella Linnaeus and Pieris rapae Linne, respectively, at a concentration of 10 mg/L. The results showed that all of the derivatives displayed high insecticidal activity. Most of the compounds presented higher insecticidal activity against S. exigua than the reference compounds tebufenozide, metaflumizone and tolfenpyrad, and approximately identical insecticidal activity against H. armigera, P. xyllostella and P. rapae as the references metaflumizone and tolfenpyrad.
Thermodynamic efficiency of solar concentrators.
Shatz, Narkis; Bortz, John; Winston, Roland
2010-04-26
The optical thermodynamic efficiency is a comprehensive metric that takes into account all loss mechanisms associated with transferring flux from the source to the target phase space, which may include losses due to inadequate design, non-ideal materials, fabrication errors, and less than maximal concentration. We discuss consequences of Fermat's principle of geometrical optics and review étendue dilution and optical loss mechanisms associated with nonimaging concentrators. We develop an expression for the optical thermodynamic efficiency which combines the first and second laws of thermodynamics. As such, this metric is a gold standard for evaluating the performance of nonimaging concentrators. We provide examples illustrating the use of this new metric for concentrating photovoltaic systems for solar power applications, and in particular show how skewness mismatch limits the attainable optical thermodynamic efficiency.
Lutz, Piotr
2012-01-01
Benzimidazole and benzimidazole derivatives play an important role in controlling various fungal pathogens. The benzimidazoles are also used to treat nematode and trematode infections in humans and animals. It acts by binding to the microtubules and stopping hyphal growth. It also binds to the spindle microtubules and blocks nuclear division. The most popular fungicide is carbendazim. The fungicide is used to control plant diseases in cereals and fruits. Laboratory studies have shown that carbendazim cause infertility and destroy the testicles of laboratory animals. Other benzimidazole derivatives are used as a preservative in paint, textile, papermaking, leather industry, and warehousing practices, as well as a preservative of fruits. Occupational exposure to benzimidazole may occur through inhalation and dermal contact with those compounds at workplaces where benzimidazole is used or produced. Some of the benzimidazoles are common environmental pollutants. They are often found in food and fruit products. Some of the benzimidazoles, like a astemizole or esomeprazole have found applications in diverse therapeutical areas. Despite of the clear advantages afforded by the use of benzimidazole derivatives, they share a danger potential. The most hazardous, however, are new illegally synthesed psychoactive drugs known as designer drugs. Some of them, like nitazene, etonitazene or clonitazene belong to benzimidazole derivatives. Laboratory animal studies revealed that etonitazene produced very similar effects in central nervous system as those observed after morphine administration. Considering etonitazene's properties, it seems reasonable to expected that long-term exposure to other benzimidazole derivatives may result in drug abuse and development of drug dependence.
Computational thermodynamics in electric current metallurgy
Bhowmik, Arghya; Qin, R.S.
2015-01-01
. The method has been validated against the analytical solution of current distribution and experimental observation of microstructure evolution. It provides a basis for the design, prediction and implementation of the electric current metallurgy. The applicability of the theory is discussed in the derivations.......A priori derivation for the extra free energy caused by the passing electric current in metal is presented. The analytical expression and its discrete format in support of the numerical calculation of thermodynamics in electric current metallurgy have been developed. This enables the calculation...... of electric current distribution, current induced temperature distribution and free energy sequence of various phase transitions in multiphase materials. The work is particularly suitable for the study of magnetic materials that contain various magnetic phases. The latter has not been considered in literature...
The thermodynamic properties of benzothiazole and benzoxazole
Steele, W. V.; Chirico, R. D.; Knipmeyer, S. E.; Nguyen, A.
1991-08-01
This research program, funded by the Department of Energy, Office of Fossil Energy, Advanced Extraction and Process Technology, provides accurate experimental thermochemical and thermophysical properties for key organic diheteroatom-containing compounds present in heavy petroleum feedstocks, and applies the experimental information to thermodynamic analyses of key hydrodesulfurization, hydrodenitrogenation, and hydrodeoxygenation reaction networks. Thermodynamic analyses, based on accurate information, provide insights for the design of cost-effective methods of heteroatom removal. The results reported here, and in a companion report to be completed, will point the way to the development of new methods of heteroatom removal from heavy petroleum. Measurements leading to the calculation of the ideal-gas thermodynamic properties are reported for benzothiazole and benzoxazole. Experimental methods included combustion calorimetry, adiabatic heat-capacity calorimetry, comparative ebulliometry, inclinded-piston gauge manometry, and differential-scanning calorimetry (d.s.c). Critical property estimates are made for both compounds. Entropies, enthalpies, and Gibbs energies of formation were derived for the ideal gas for both compounds for selected temperatures between 280 K and near 650 K. The Gibbs energies of formation will be used in a subsequent report in thermodynamic calculations to study the reaction pathways for the removal of the heteratoms by hydrogenolysis. The results obtained in this research are compared with values present in the literature. The failure of a previous adiabatic heat capacity study to see the phase transition in benzothiazole is noted. Literature vibrational frequency assignments were used to calculate ideal gas entropies in the temperature range reported here for both compounds. Resulting large deviations show the need for a revision of those assignments.
Thermodynamics of geothermal fluids
Rogers, P.S.Z.
1981-03-01
A model to predict the thermodynamic properties of geothermal brines, based on a minimum amount of experimental data on a few key systems, is tested. Volumetric properties of aqueous sodium chloride, taken from the literature, are represented by a parametric equation over the range 0 to 300{sup 0}C and 1 bar to 1 kbar. Density measurements at 20 bar needed to complete the volumetric description also are presented. The pressure dependence of activity and thermal properties, derived from the volumetric equation, can be used to complete an equation of state for sodium chloride solutions. A flow calorimeter, used to obtain heat capacity data at high temperatures and pressures, is described. Heat capacity measurements, from 30 to 200{sup 0}C and 1 bar to 200 bar, are used to derive values for the activity coefficient and other thermodynamic properties of sodium sulfate solutions as a function of temperature. Literature data on the solubility of gypsum in mixed electrolyte solutions have been used to evaluate model parameters for calculating gypsum solubility in seawater and natural brines. Predictions of strontium and barium sulfate solubility in seawater also are given.
Thermodynamics of Error Correction
Pablo Sartori
2015-12-01
Full Text Available Information processing at the molecular scale is limited by thermal fluctuations. This can cause undesired consequences in copying information since thermal noise can lead to errors that can compromise the functionality of the copy. For example, a high error rate during DNA duplication can lead to cell death. Given the importance of accurate copying at the molecular scale, it is fundamental to understand its thermodynamic features. In this paper, we derive a universal expression for the copy error as a function of entropy production and work dissipated by the system during wrong incorporations. Its derivation is based on the second law of thermodynamics; hence, its validity is independent of the details of the molecular machinery, be it any polymerase or artificial copying device. Using this expression, we find that information can be copied in three different regimes. In two of them, work is dissipated to either increase or decrease the error. In the third regime, the protocol extracts work while correcting errors, reminiscent of a Maxwell demon. As a case study, we apply our framework to study a copy protocol assisted by kinetic proofreading, and show that it can operate in any of these three regimes. We finally show that, for any effective proofreading scheme, error reduction is limited by the chemical driving of the proofreading reaction.
Cignitti, Stefano; Andreasen, Jesper Graa; Haglind, Fredrik
2017-01-01
recovery. Inthis paper, an organic Rankine cycle process and its pure working fluid are designed simultaneously forwaste heat recovery of the exhaust gas from a marine diesel engine. This approach can overcome designissues caused by the high sensitivity between the fluid and cycle design variables......Today, some established working fluids are being phased out due to new international regulations on theuse of environmentally harmful substances. With an ever-increasing cost to resources, industry wants toconverge on improved sustainability through resource recovery, and in particular waste heat...
Soumya Banerjee
2016-09-01
Full Text Available The adsorptive capability of superheated steam activated biochar (SSAB produced from Colocasia esculenta was investigated for removal of Cu2+, Fe2+ and As5+ from simulated coal mine wastewater. SSAB was characterized by scanning electron microscopy, Fourier transform infrared spectroscopy and Brunauer–Emmett–Teller analyser. Adsorption isotherm indicated monolayer adsorption which fitted best in Langmuir isotherm model. Thermodynamic study suggested the removal process to be exothermic, feasible and spontaneous in nature. Adsorption of Fe2+, Cu2+ and As5+ on to SSAB was found to be governed by pseudo-second order kinetic model. Efficacy of SSAB in terms of metal desorption, regeneration and reusability for multiple cycles was studied. Regeneration of metal desorbed SSAB with 1 N sodium hydroxide maintained its effectiveness towards multiple metal adsorption cycles. Cost estimation of SSAB production substantiated its cost effectiveness as compared to commercially available activated carbon. Hence, SSAB could be a promising adsorbent for metal ions removal from aqueous solution.
Placement by thermodynamic simulated annealing
Vicente, Juan de; Lanchares, Juan; Hermida, Roman
2003-01-01
Combinatorial optimization problems arise in different fields of science and engineering. There exist some general techniques coping with these problems such as simulated annealing (SA). In spite of SA success, it usually requires costly experimental studies in fine tuning the most suitable annealing schedule. In this Letter, the classical integrated circuit placement problem is faced by Thermodynamic Simulated Annealing (TSA). TSA provides a new annealing schedule derived from thermodynamic laws. Unlike SA, temperature in TSA is free to evolve and its value is continuously updated from the variation of state functions as the internal energy and entropy. Thereby, TSA achieves the high quality results of SA while providing interesting adaptive features
Applied Thermodynamics: Grain Boundary Segregation
Pavel Lejček
2014-03-01
Full Text Available Chemical composition of interfaces—free surfaces and grain boundaries—is generally described by the Langmuir–McLean segregation isotherm controlled by Gibbs energy of segregation. Various components of the Gibbs energy of segregation, the standard and the excess ones as well as other thermodynamic state functions—enthalpy, entropy and volume—of interfacial segregation are derived and their physical meaning is elucidated. The importance of the thermodynamic state functions of grain boundary segregation, their dependence on volume solid solubility, mutual solute–solute interaction and pressure effect in ferrous alloys is demonstrated.
Thermodynamics and statistical mechanics. [thermodynamic properties of gases
1976-01-01
The basic thermodynamic properties of gases are reviewed and the relations between them are derived from the first and second laws. The elements of statistical mechanics are then formulated and the partition function is derived. The classical form of the partition function is used to obtain the Maxwell-Boltzmann distribution of kinetic energies in the gas phase and the equipartition of energy theorem is given in its most general form. The thermodynamic properties are all derived as functions of the partition function. Quantum statistics are reviewed briefly and the differences between the Boltzmann distribution function for classical particles and the Fermi-Dirac and Bose-Einstein distributions for quantum particles are discussed.
Thermodynamic analysis of elastic-plastic deformation
Lubarda, V.
1981-01-01
The complete set of constitutive equations which fully describes the behaviour of material in elastic-plastic deformation is derived on the basis of thermodynamic analysis of the deformation process. The analysis is done after the matrix decomposition of the deformation gradient is introduced into the structure of thermodynamics with internal state variables. The free energy function, is decomposed. Derive the expressions for the stress response, entropy and heat flux, and establish the evolution equation. Finally, we establish the thermodynamic restrictions of the deformation process. (Author) [pt
Li, Mei; Gong, Maoqiong; Guo, Hao; Sun, Zhaohu; Wu, Jianfeng
2016-01-01
Highlights: • Good agreements and the feasibility of the MESH model were found. • Fine applicability and low energy consumption of the dephlegmator were addressed. • A clear and comprehensive three-dimensional dephlegmator model was shown. - Abstract: Dephlegmators can be used to reduce the energy consumption and simplify the layout of the mixed-refrigerant Joule–Thomson (MRJT) cycle. Heat-exchange characteristics and refrigeration design are currently based on highly simplified assumptions. Synthesis methods to efficiently solve all design issues of dephlegmators in MRJT cycle are insufficient. No suitable separation module is available for the simultaneous heat and mass transfer processes in Aspen Plus because the module should be programmed and incorporated into Aspen Plus as a user-defined unit. In this paper, a systematic steady-state method was proposed for the detailed design of dephlegmators for gas mixture separation, considering the simulation and heat exchanger design simultaneously. The material balance, vapor–liquid equilibrium, mole fraction summation and heat balance (MESH) model was programmed in FORTRAN language. Good agreements and the feasibility of the MESH model were found. Deviations between the simulation results and patent data were all within 5%. The errors in the predicted temperatures of vapor and liquid products were less than 2% and 10%, respectively. Fine applicability and low energy consumption of the dephlegmator were addressed. The mole fraction of n-butane in the liquid phase had high recovery ratio of 90%. The dephlegmator decreased more than 30% of energy consumption compared with the traditional distillation tower under similar separation effects. In the structural design process, the dephlegmator was divided into certain segments by baffle plates on the basis of segmented calculation. The heat transfer coefficient, heat transfer area, pressure drop, and structural parameters of the dephlegmator were evaluated. A clear
Thermodynamic theory of equilibrium fluctuations
Mishin, Y.
2015-01-01
The postulational basis of classical thermodynamics has been expanded to incorporate equilibrium fluctuations. The main additional elements of the proposed thermodynamic theory are the concept of quasi-equilibrium states, a definition of non-equilibrium entropy, a fundamental equation of state in the entropy representation, and a fluctuation postulate describing the probability distribution of macroscopic parameters of an isolated system. Although these elements introduce a statistical component that does not exist in classical thermodynamics, the logical structure of the theory is different from that of statistical mechanics and represents an expanded version of thermodynamics. Based on this theory, we present a regular procedure for calculations of equilibrium fluctuations of extensive parameters, intensive parameters and densities in systems with any number of fluctuating parameters. The proposed fluctuation formalism is demonstrated by four applications: (1) derivation of the complete set of fluctuation relations for a simple fluid in three different ensembles; (2) fluctuations in finite-reservoir systems interpolating between the canonical and micro-canonical ensembles; (3) derivation of fluctuation relations for excess properties of grain boundaries in binary solid solutions, and (4) derivation of the grain boundary width distribution for pre-melted grain boundaries in alloys. The last two applications offer an efficient fluctuation-based approach to calculations of interface excess properties and extraction of the disjoining potential in pre-melted grain boundaries. Possible future extensions of the theory are outlined.
Thermodynamics of Radiation Modes
Pina, Eduardo; de la Selva, Sara Maria Teresa
2010-01-01
We study the equilibrium thermodynamics of the electromagnetic radiation in a cavity of a given volume and temperature. We found three levels of description, the thermodynamics of one mode, the thermodynamics of the distribution of frequencies in a band by summing over the frequencies in it and the global thermodynamics by summing over all the…
Thermal physics kinetic theory and thermodynamics
Singh, Devraj; Yadav, Raja Ram
2016-01-01
THERMAL PHYSICS: Kinetic Theory and Thermodynamics is designed for undergraduate course in Thermal Physics and Thermodynamics. The book provides thorough understanding of the fundamental principles of the concepts in Thermal Physics. The book begins with kinetic theory, then moves on liquefaction, transport phenomena, the zeroth, first, second and third laws, thermodynamics relations and thermal conduction. The book concluded with radiation phenomenon. KEY FEATURES: * Include exercises * Short Answer Type Questions * Long Answer Type Questions * Numerical Problems * Multiple Choice Questions
Design of a universal two-layered neural network derived from the PLI theory
Hu, Chia-Lun J.
2004-05-01
The if-and-only-if (IFF) condition that a set of M analog-to-digital vector-mapping relations can be learned by a one-layered-feed-forward neural network (OLNN) is that all the input analog vectors dichotomized by the i-th output bit must be positively, linearly independent, or PLI. If they are not PLI, then the OLNN just cannot learn no matter what learning rules is employed because the solution of the connection matrix does not exist mathematically. However, in this case, one can still design a parallel-cascaded, two-layered, perceptron (PCTLP) to acheive this general mapping goal. The design principle of this "universal" neural network is derived from the major mathematical properties of the PLI theory - changing the output bits of the dependent relations existing among the dichotomized input vectors to make the PLD relations PLI. Then with a vector concatenation technique, the required mapping can still be learned by this PCTLP system with very high efficiency. This paper will report in detail the mathematical derivation of the general design principle and the design procedures of the PCTLP neural network system. It then will be verified in general by a practical numerical example.
Chakraborty, Anutosh; Saha, Bidyut Baran; Ng, Kim Choon; Koyama, Shigeru; Srinivasan, Kandadai
2009-01-01
Thermodynamic property surfaces for a single-component adsorbent + adsorbate system are derived and developed from the viewpoint of classical thermodynamics, thermodynamic requirements of chemical equilibrium, Gibbs law, and Maxwell relations
Thermodynamics Far from the Thermodynamic Limit.
de Miguel, Rodrigo; Rubí, J Miguel
2017-11-16
Understanding how small systems exchange energy with a heat bath is important to describe how their unique properties can be affected by the environment. In this contribution, we apply Landsberg's theory of temperature-dependent energy levels to describe the progressive thermalization of small systems as their spectrum is perturbed by a heat bath. We propose a mechanism whereby the small system undergoes a discrete series of excitations and isentropic spectrum adjustments leading to a final state of thermal equilibrium. This produces standard thermodynamic results without invoking system size. The thermal relaxation of a single harmonic oscillator is analyzed as a model example of a system with a quantized spectrum than can be embedded in a thermal environment. A description of how the thermal environment affects the spectrum of a small system can be the first step in using environmental factors, such as temperature, as parameters in the design and operation of nanosystem properties.
Design and application of cationic amphiphilic β-cyclodextrin derivatives as gene delivery vectors
Wan, Ning; Huan, Meng-Lei; Ma, Xi-Xi; Jing, Zi-Wei; Zhang, Ya-Xuan; Li, Chen; Zhou, Si-Yuan; Zhang, Bang-Le
2017-11-01
The nano self-assembly profiles of amphiphilic gene delivery vectors could improve the density of local cationic head groups to promote their DNA condensation capability and enhance the interaction between cell membrane and hydrophobic tails, thus increasing cellular uptake and gene transfection. In this paper, two series of cationic amphiphilic β-cyclodextrin (β-CD) derivatives were designed and synthesized by using 6-mono-OTs-β-CD (1) as the precursor to construct amphiphilic gene vectors with different building blocks in a selective and controlled manner. The effect of different type and degree of cationic head groups on transfection and the endocytic mechanism of β-CD derivatives/DNA nanocomplexes were also investigated. The results demonstrated that the designed β-cyclodextrin derivatives were able to compact DNA to form stable nanocomplexes and exhibited low cytotoxicity. Among them, PEI-1 with PEI head group showed enhanced transfection activity, significantly higher than commercially available agent PEI25000 especially in the presence of serum, showing potential application prospects in clinical trials. Moreover, the endocytic uptake mechanism involved in the gene transfection of PEI-1 was mainly through caveolae-mediated endocytosis, which could avoid the lysosomal degradation of loaded gene, and had great importance for improving gene transfection activity.
Mathematical foundations of thermodynamics
Giles, R; Stark, M; Ulam, S
2013-01-01
Mathematical Foundations of Thermodynamics details the core concepts of the mathematical principles employed in thermodynamics. The book discusses the topics in a way that physical meanings are assigned to the theoretical terms. The coverage of the text includes the mechanical systems and adiabatic processes; topological considerations; and equilibrium states and potentials. The book also covers Galilean thermodynamics; symmetry in thermodynamics; and special relativistic thermodynamics. The book will be of great interest to practitioners and researchers of disciplines that deal with thermodyn
Kaiyong Tang
2014-07-01
Full Text Available New six C6-celastrol derivatives were designed, synthesized, and evaluated for their in vitro cytotoxic activities against nine human cancer cell lines (BGC-823, H4, Bel7402, H522, Colo 205, HepG2 and MDA-MB-468. The results showed that most of the compounds displayed potent inhibition against BGC823, H4, and Bel7402, with IC50s of 1.84–0.39 μM. The best compound NST001A was tested in an in vivo antitumor assay on nude mice bearing Colo 205 xenografts, and showed significant inhibition of tumor growth at low concentrations. Therefore, celastrol C-6 derivatives are potential drug candidates for treating cancer.
Hu, Xiuqin; Wang, Disha; Tong, Yi; Tong, Linjiang; Wang, Xia; Zhu, Lili; Xie, Hua; Li, Shiliang; Yang, You; Xu, Yufang
2017-11-01
The synthesis of a series of ribose-modified anilinopyrimidine derivatives was efficiently achieved by utilizing DBU or tBuOLi-promoted coupling of ribosyl alcohols with 2,4,5-trichloropyrimidine as key step. Preliminary biological evaluation of this type of compounds as new EGFR tyrosine kinase inhibitors for combating EGFR L858R/T790M mutant associated with drug resistance in the treatment of non-small cell lung cancer revealed that 3-N-acryloyl-5-O-anilinopyrimidine ribose derivative 1a possessed potent and specific inhibitory activity against EGFR L858R/T790M over WT EGFR. Based upon molecular docking studies of the binding mode between compound 1a and EGFR, the distance between the Michael receptor and the pyrimidine scaffold is considered as an important factor for the inhibitory potency and future design of selective EGFR tyrosine kinase inhibitors against EGFR L858R/T790M mutants.
Jenkins, H Donald Brooke; Glasser, Leslie
2004-12-08
We present a quite general thermodynamic "difference" rule, derived from thermochemical first principles, quantifying the difference between the standard thermodynamic properties, P, of a solid n-solvate (or n-hydrate), n-S, containing n molecules of solvate, S (water or other) and the corresponding solid parent (unsolvated) salt: [P[n-solvate] - P[parent
Santoshi, Seneha; Manchukonda, Naresh Kumar; Suri, Charu; Sharma, Manya; Sridhar, Balasubramanian; Joseph, Silja; Lopus, Manu; Kantevari, Srinivas; Baitharu, Iswar; Naik, Pradeep Kumar
2015-03-01
We have strategically designed a series of noscapine derivatives by inserting biaryl pharmacophore (a major structural constituent of many of the microtubule-targeting natural anticancer compounds) onto the scaffold structure of noscapine. Molecular interaction of these derivatives with α,β-tubulin heterodimer was investigated by molecular docking, molecular dynamics simulation, and binding free energy calculation. The predictive binding affinity indicates that the newly designed noscapinoids bind to tubulin with a greater affinity. The predictive binding free energy (ΔGbind, pred) of these derivatives (ranging from -5.568 to -5.970 kcal/mol) based on linear interaction energy (LIE) method with a surface generalized Born (SGB) continuum solvation model showed improved binding affinity with tubulin compared to the lead compound, natural α-noscapine (-5.505 kcal/mol). Guided by the computational findings, these new biaryl type α-noscapine congeners were synthesized from 9-bromo-α-noscapine using optimized Suzuki reaction conditions for further experimental evaluation. The derivatives showed improved inhibition of the proliferation of human breast cancer cells (MCF-7), human cervical cancer cells (HeLa) and human lung adenocarcinoma cells (A549), compared to natural noscapine. The cell cycle analysis in MCF-7 further revealed that these compounds alter the cell cycle profile and cause mitotic arrest at G2/M phase more strongly than noscapine. Tubulin binding assay revealed higher binding affinity to tubulin, as suggested by dissociation constant (Kd) of 126 ± 5.0 µM for 5a, 107 ± 5.0 µM for 5c, 70 ± 4.0 µM for 5d, and 68 ± 6.0 µM for 5e compared to noscapine (Kd of 152 ± 1.0 µM). In fact, the experimentally determined value of ΔGbind, expt (calculated from the Kd value) are consistent with the predicted value of ΔGbind, pred calculated based on LIE-SGB. Based on these results, one of the derivative 5e of this series was used for further toxicological
Siskou, Ioanna C; Rekka, Eleni A; Kourounakis, Angeliki P; Chrysselis, Michael C; Tsiakitzis, Kariofyllis; Kourounakis, Panos N
2007-01-15
Six novel ibuprofen derivatives and related structures, incorporating a proline moiety and designed for neurodegenerative disorders, are studied. They possess anti-inflammatory properties and three of them inhibited lipoxygenase. One compound was found to inhibit cyclooxygenase (COX)-2 production in spleenocytes from arthritic rats. The HS-containing compounds are potent antioxidants and one of them protected against glutathione loss after cerebral ischemia/reperfusion. They demonstrated lipid-lowering ability and seem to acquire low gastrointestinal toxicity. Acetylcholinesterase inhibitory activity, found in two of these compounds, may be an asset to their actions.
Haase, Christian; Tang, Florian; Wilms, Markus B.; Weisheit, Andreas; Hallstedt, Bengt
2017-01-01
High-entropy alloys have gained high interest of both academia and industry in recent years due to their excellent properties and large variety of possible alloy systems. However, so far prediction of phase constitution and stability is based on empirical rules that can only be applied to selected alloy systems. In the current study, we introduce a methodology that enables high-throughput theoretical and experimental alloy screening and design. As a basis for thorough thermodynamic calculations, a new database was compiled for the Co–Cr–Fe–Mn–Ni system and used for Calphad and Scheil simulations. For bulk sample production, laser metal deposition (LMD) of an elemental powder blend was applied to build up the equiatomic CoCrFeMnNi Cantor alloy as a first demonstrator. This production approach allows high flexibility in varying the chemical composition and, thus, renders itself suitable for high-throughput alloy production. The microstructure, texture, and mechanical properties of the material processed were characterized using optical microscopy, EBSD, EDX, XRD, hardness and compression testing. The LMD-produced alloy revealed full density, strongly reduced segregation compared to conventionally cast material, pronounced texture, and excellent mechanical properties. Phase constitution and elemental distribution were correctly predicted by simulations. The applicability of the introduced methodology to high-entropy alloys and extension to compositionally complex alloys is discussed.
Haase, Christian, E-mail: christian.haase@iehk.rwth-aachen.de [Department of Ferrous Metallurgy, RWTH Aachen University, 52072 Aachen (Germany); Tang, Florian [Institute for Materials Applications in Mechanical Engineering, RWTH Aachen University, 52062 Aachen (Germany); Wilms, Markus B.; Weisheit, Andreas [Fraunhofer Institute for Laser Technology ILT, 52074 Aachen (Germany); Hallstedt, Bengt [Institute for Materials Applications in Mechanical Engineering, RWTH Aachen University, 52062 Aachen (Germany)
2017-03-14
High-entropy alloys have gained high interest of both academia and industry in recent years due to their excellent properties and large variety of possible alloy systems. However, so far prediction of phase constitution and stability is based on empirical rules that can only be applied to selected alloy systems. In the current study, we introduce a methodology that enables high-throughput theoretical and experimental alloy screening and design. As a basis for thorough thermodynamic calculations, a new database was compiled for the Co–Cr–Fe–Mn–Ni system and used for Calphad and Scheil simulations. For bulk sample production, laser metal deposition (LMD) of an elemental powder blend was applied to build up the equiatomic CoCrFeMnNi Cantor alloy as a first demonstrator. This production approach allows high flexibility in varying the chemical composition and, thus, renders itself suitable for high-throughput alloy production. The microstructure, texture, and mechanical properties of the material processed were characterized using optical microscopy, EBSD, EDX, XRD, hardness and compression testing. The LMD-produced alloy revealed full density, strongly reduced segregation compared to conventionally cast material, pronounced texture, and excellent mechanical properties. Phase constitution and elemental distribution were correctly predicted by simulations. The applicability of the introduced methodology to high-entropy alloys and extension to compositionally complex alloys is discussed.
Hye-sung Na
2018-01-01
Full Text Available In the 21st century, there is an increasing need for high-capacity, high-efficiency, and environmentally friendly power generation systems. The environmentally friendly integrated gasification combined-cycle (IGCC technology has received particular attention. IGCC pressure vessels require a high-temperature strength and creep strength exceeding those of existing pressure vessels because the operating temperature of the reactor is increased for improved capacity and efficiency. Therefore, high-pressure vessels with thicker walls than those in existing pressure vessels (≤200 mm must be designed. The primary focus of this research is the development of an IGCC pressure vessel with a fully bainitic structure in the middle portion of the 300 mm thick Cr-Mo steel walls. For this purpose, the effects of the alloy content and cooling rates on the ferrite precipitation and phase transformation behaviors were investigated using JMatPro modeling and thermodynamic calculation; the results were then optimized. Candidate alloys from the simulated results were tested experimentally.
Thermodynamic tables to accompany Modern engineering thermodynamics
Balmer, Robert T
2011-01-01
This booklet is provided at no extra charge with new copies of Balmer's Modern Engineering Thermodynamics. It contains two appendices. Appendix C contains 40 thermodynamic tables, and Appendix D consists of 6 thermodynamic charts. These charts and tables are provided in a separate booklet to give instructors the flexibility of allowing students to bring the tables into exams. The booklet may be purchased separately if needed.
Classical and statistical thermodynamics
Rizk, Hanna A
2016-01-01
This is a text book of thermodynamics for the student who seeks thorough training in science or engineering. Systematic and thorough treatment of the fundamental principles rather than presenting the large mass of facts has been stressed. The book includes some of the historical and humanistic background of thermodynamics, but without affecting the continuity of the analytical treatment. For a clearer and more profound understanding of thermodynamics this book is highly recommended. In this respect, the author believes that a sound grounding in classical thermodynamics is an essential prerequisite for the understanding of statistical thermodynamics. Such a book comprising the two wide branches of thermodynamics is in fact unprecedented. Being a written work dealing systematically with the two main branches of thermodynamics, namely classical thermodynamics and statistical thermodynamics, together with some important indexes under only one cover, this treatise is so eminently useful.
Thermodynamic Database for Zirconium Alloys
Jerlerud Perez, Rosa
2003-05-01
For many decades zirconium alloys have been commonly used in the nuclear power industry as fuel cladding material. Besides their good corrosion resistance and acceptable mechanical properties the main reason of using these alloys is the low neutron absorption. Zirconium alloys are exposed to a very severe environment during the nuclear fission process and there is a demand for better design of this material. To meet this requirement a thermodynamic database is developed to support material designers. In this thesis some aspects about the development of a thermodynamic database for zirconium alloys are presented. A thermodynamic database represents an important facility in applying thermodynamic equilibrium calculations for a given material providing: 1) relevant information about the thermodynamic properties of the alloys e.g. enthalpies, activities, heat capacity, and 2) significant information for the manufacturing process e.g. heat treatment temperature. The basic information in the database is first the unary data, i.e. pure elements; those are taken from the compilation of the Scientific Group Thermodata Europe (SGTE) and then the binary and ternary systems. All phases present in those binary and ternary systems are described by means of the Gibbs energy dependence on composition and temperature. Many of those binary systems have been taken from published or unpublished works and others have been assessed in the present work. All the calculations have been made using Thermo C alc software and the representation of the Gibbs energy obtained by applying Calphad technique
Detonation Jet Engine. Part 1--Thermodynamic Cycle
Bulat, Pavel V.; Volkov, Konstantin N.
2016-01-01
We present the most relevant works on jet engine design that utilize thermodynamic cycle of detonative combustion. The efficiency advantages of thermodynamic detonative combustion cycle over Humphrey combustion cycle at constant volume and Brayton combustion cycle at constant pressure were demonstrated. An ideal Ficket-Jacobs detonation cycle, and…
Chemical thermodynamic representation of
Lindemer, T.B.; Besmann, T.M.
1984-01-01
The entire data base for the dependence of the nonstoichiometry, x, on temperature and chemical potential of oxygen (oxygen potential) was retrieved from the literature and represented. This data base was interpreted by least-squares analysis using equations derived from the classical thermodynamic theory for the solid solution of a solute in a solvent. For hyperstoichiometric oxide at oxygen potentials more positive than -266700 + 16.5T kJ/mol, the data were best represented by a [UO 2 ]-[U 3 O 7 ] solution. For O/U ratios above 2 and oxygen potentials below this boundary, a [UO 2 ]-[U 2 O 4 . 5 ] solution represented the data. The data were represented by a [UO 2 ]-[U 1 / 3 ] solution. The resulting equations represent the experimental ln(PO 2 ) - ln(x) behavior and can be used in thermodynamic calculations to predict phase boundary compositions consistent with the literature. Collectively, the present analysis permits a mathematical representation of the behavior of the total data base
Kuldeep, B; Singh, V K; Kumar, A; Singh, G K
2015-01-01
In this article, a novel approach for 2-channel linear phase quadrature mirror filter (QMF) bank design based on a hybrid of gradient based optimization and optimization of fractional derivative constraints is introduced. For the purpose of this work, recently proposed nature inspired optimization techniques such as cuckoo search (CS), modified cuckoo search (MCS) and wind driven optimization (WDO) are explored for the design of QMF bank. 2-Channel QMF is also designed with particle swarm optimization (PSO) and artificial bee colony (ABC) nature inspired optimization techniques. The design problem is formulated in frequency domain as sum of L2 norm of error in passband, stopband and transition band at quadrature frequency. The contribution of this work is the novel hybrid combination of gradient based optimization (Lagrange multiplier method) and nature inspired optimization (CS, MCS, WDO, PSO and ABC) and its usage for optimizing the design problem. Performance of the proposed method is evaluated by passband error (ϕp), stopband error (ϕs), transition band error (ϕt), peak reconstruction error (PRE), stopband attenuation (As) and computational time. The design examples illustrate the ingenuity of the proposed method. Results are also compared with the other existing algorithms, and it was found that the proposed method gives best result in terms of peak reconstruction error and transition band error while it is comparable in terms of passband and stopband error. Results show that the proposed method is successful for both lower and higher order 2-channel QMF bank design. A comparative study of various nature inspired optimization techniques is also presented, and the study singles out CS as a best QMF optimization technique. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
Intensive mutagenesis of the nisin hinge leads to the rational design of enhanced derivatives.
Brian Healy
Full Text Available Nisin A is the most extensively studied lantibiotic and has been used as a preservative by the food industry since 1953. This 34 amino acid peptide contains three dehydrated amino acids and five thioether rings. These rings, resulting from one lanthionine and four methyllanthionine bridges, confer the peptide with its unique structure. Nisin A has two mechanisms of action, with the N-terminal domain of the peptide inhibiting cell wall synthesis through lipid II binding and the C-terminal domain responsible for pore-formation. The focus of this study is the three amino acid 'hinge' region (N 20, M 21 and K 22 which separates these two domains and allows for conformational flexibility. As all lantibiotics are gene encoded, novel variants can be generated through manipulation of the corresponding gene. A number of derivatives in which the hinge region was altered have previously been shown to possess enhanced antimicrobial activity. Here we take this approach further by employing simultaneous, indiscriminate site-saturation mutagenesis of all three hinge residues to create a novel bank of nisin derivative producers. Screening of this bank revealed that producers of peptides with hinge regions consisting of AAK, NAI and SLS displayed enhanced bioactivity against a variety of targets. These and other results suggested a preference for small, chiral amino acids within the hinge region, leading to the design and creation of producers of peptides with hinges consisting of AAA and SAA. These producers, and the corresponding peptides, exhibited enhanced bioactivity against Lactococcus lactis HP, Streptococcus agalactiae ATCC 13813, Mycobacterium smegmatis MC2155 and Staphylococcus aureus RF122 and thus represent the first example of nisin derivatives that possess enhanced activity as a consequence of rational design.
Horizon thermodynamics in fourth-order gravity
Meng-Sen Ma
2017-03-01
Full Text Available In the framework of horizon thermodynamics, the field equations of Einstein gravity and some other second-order gravities can be rewritten as the thermodynamic identity: dE=TdS−PdV. However, in order to construct the horizon thermodynamics in higher-order gravity, we have to simplify the field equations firstly. In this paper, we study the fourth-order gravity and convert it to second-order gravity via a so-called “Legendre transformation” at the cost of introducing two other fields besides the metric field. With this simplified theory, we implement the conventional procedure in the construction of the horizon thermodynamics in 3 and 4 dimensional spacetime. We find that the field equations in the fourth-order gravity can also be written as the thermodynamic identity. Moreover, we can use this approach to derive the same black hole mass as that by other methods.
[Thermodynamics of the origin of life, evolution and aging].
Gladyshev, G P
2014-01-01
Briefly discusses the history of the search of thermodynamic approach to explain the origin of life, evolution and aging of living beings. The origin of life is the result of requirement by the quasi-equilibrium hierarchical thermodynamics, in particular, the supramolecular thermodynamics. The evolution and aging of living beings is accompanied with changes of chemical and supramolecular compositions of living bodies, as well as with changes in the composition and structure of all hierarchies of the living world. The thermodynamic principle of substance stability predicts the existence of a single genetic code in our universe. The thermodynamic theory optimizes physiology and medicine and recommends antiaging diets and medicines. Hierarchical thermodynamics forms the design diversity of culture and art. The thermodynamic theory of origin of life, evolution and aging is the development of Clausius-Gibbs thermodynamics. Hierarchical thermodynamics is the mirror of Darwin-Wallace's-theory.
Thermodynamical properties of dark energy
Gong Yungui; Wang Bin; Wang Anzhong
2007-01-01
We have investigated the thermodynamical properties of dark energy. Assuming that the dark energy temperature T∼a -n and considering that the volume of the Universe enveloped by the apparent horizon relates to the temperature, we have derived the dark energy entropy. For dark energy with constant equation of state w>-1 and the generalized Chaplygin gas, the derived entropy can be positive and satisfy the entropy bound. The total entropy, including those of dark energy, the thermal radiation, and the apparent horizon, satisfies the generalized second law of thermodynamics. However, for the phantom with constant equation of state, the positivity of entropy, the entropy bound, and the generalized second law cannot be satisfied simultaneously
Chen, Qun; Xu, Yun-Chao; Hao, Jun-Hong
2014-01-01
Highlights: • An optimization method for practical thermodynamic cycle is developed. • The entransy-based heat transfer analysis and thermodynamic analysis are combined. • Theoretical relation between system requirements and design parameters is derived. • The optimization problem can be converted into conditional extremum problem. • The proposed method provides several useful optimization criteria. - Abstract: A thermodynamic cycle usually consists of heat transfer processes in heat exchangers and heat-work conversion processes in compressors, expanders and/or turbines. This paper presents a new optimization method for effective improvement of thermodynamic cycle performance with the combination of entransy theory and thermodynamics. The heat transfer processes in a gas refrigeration cycle are analyzed by entransy theory and the heat-work conversion processes are analyzed by thermodynamics. The combination of these two analysis yields a mathematical relation directly connecting system requirements, e.g. cooling capacity rate and power consumption rate, with design parameters, e.g. heat transfer area of each heat exchanger and heat capacity rate of each working fluid, without introducing any intermediate variable. Based on this relation together with the conditional extremum method, we theoretically derive an optimization equation group. Simultaneously solving this equation group offers the optimal structural and operating parameters for every single gas refrigeration cycle and furthermore provides several useful optimization criteria for all the cycles. Finally, a practical gas refrigeration cycle is taken as an example to show the application and validity of the newly proposed optimization method
Thermodynamics in Einstein's thought
Klein, M.J.
1983-01-01
The role of the thermodynamical approach in the Einstein's scientific work is analyzed. The Einstein's development of a notion about statistical fluctuations of thermodynamical systems that leads him to discovery of corpuscular-wave dualism is retraced
Nanofluidics thermodynamic and transport properties
Michaelides, Efstathios E (Stathis)
2014-01-01
This volume offers a comprehensive examination of the subject of heat and mass transfer with nanofluids as well as a critical review of the past and recent research projects in this area. Emphasis is placed on the fundamentals of the transport processes using particle-fluid suspensions, such as nanofluids. The nanofluid research is examined and presented in a holistic way using a great deal of our experience with the subjects of continuum mechanics, statistical thermodynamics, and non-equilibrium thermodynamics of transport processes. Using a thorough database, the experimental, analytical, and numerical advances of recent research in nanofluids are critically examined and connected to past research with medium and fine particles as well as to functional engineering systems. Promising applications and technological issues of heat/mass transfer system design with nanofluids are also discussed. This book also: Provides a deep scientific analysis of nanofluids using classical thermodynamics and statistical therm...
Saxena, A K
2014-01-01
Heat and thermodynamics aims to serve as a textbook for Physics, Chemistry and Engineering students. The book covers basic ideas of Heat and Thermodynamics, Kinetic Theory and Transport Phenomena, Real Gases, Liquafaction and Production and Measurement of very Low Temperatures, The First Law of Thermodynamics, The Second and Third Laws of Thermodynamics and Heat Engines and Black Body Radiation. KEY FEATURES Emphasis on concepts Contains 145 illustrations (drawings), 9 Tables and 48 solved examples At the end of chapter exercises and objective questions
Student Opinions and Perceptions of Undergraduate Thermodynamics Courses in Engineering
Ugursal, V. Ismet; Cruickshank, Cynthia A.
2015-01-01
Thermodynamics is a fundamental foundation of all engineering disciplines. A vast majority of engineering undergraduate programmes contain one or more courses on thermodynamics, and many engineers use thermodynamics every day to analyse or design energy systems. However, there is extensive anecdotal evidence as well as a wide range of published…
Design of Novel 4-Hydroxy-chromene-2-one Derivatives as Antimicrobial Agents
Milan Mladenović
2010-06-01
Full Text Available This paper presents the design of novel 4-hydroxy-chromene-2 one derivatives, based on previously obtained minimal inhibitory concentration values (MICs, against twenty four microorganism cultures, Gram positive and negative bacteria and fungi. Two of our compounds, 3b (MIC range 130–500 μg/mL and 9c (31.25–62.5 μg/mL, presented high potential antimicrobial activity. The compound 9c had equal activity to the standard ketoconazole (31.25 μg/mL against M. mucedo. Enlarged resistance of S. aureus, E. coli and C. albicans on the effect of potential drugs and known toxicity of coumarin antibiotics, motivated us to establish SAR and QSAR models of activity against these cultures and correlate biological activity, molecular descriptors and partial charges of functional groups to explain activity and use for the design of new compounds. The QSAR study presents essential relation of antimicrobial activity and dominant substituents, 4-hydroxy, 3-acetyl and thiazole functional groups, also confirmed through molecular docking. The result was ten new designed compounds with much improved predicted inhibition constants and average biological activity.
Design of proportional-integral-derivative type optimal controller for a nuclear reactor
Pal, Jayanta
1976-01-01
A theoretic approach to the design of a proportional integral derivative (PID) type optimal controller for a nuclear reactor is considered. A linearized version of the state-space model of a nuclear-reactor-plant is investigated which shows very 'sluggish' response (settling time of the order of 600 seconds) to changes in the power demand and frequency. It is shown that with a judicious choice of state variables a PID type optimal controller realisation is possible. A controller is designed to minimise the effects of (a) a sudden increase or decrease in the electrical power demand (b) change in frequency at grid. The above controller, designed for a tracking problem, reduces the steady-state error (in response to a step input) to zero and the dynamics of the system become 'faster' (setting time of the order of 100 seconds). The controller is also insensitive to changes in system parameters. The superiority in the performance of the system with the optimal PID controller as compared with that of the conventional regulator is conclusively established. (author)
Advanced classical thermodynamics
Emanuel, G.
1987-01-01
The theoretical and mathematical foundations of thermodynamics are presented in an advanced text intended for graduate engineering students. Chapters are devoted to definitions and postulates, the fundamental equation, equilibrium, the application of Jacobian theory to thermodynamics, the Maxwell equations, stability, the theory of real gases, critical-point theory, and chemical thermodynamics. Diagrams, graphs, tables, and sample problems are provided. 38 references
Thermodynamical stability of the Bardeen black hole
Bretón, Nora [Dpto. de Física, Centro de Investigación y de Estudios Avanzados del I. P. N., Apdo. 14-740, D.F. (Mexico); Perez Bergliaffa, Santiago E. [Dpto. de Física, U. Estado do Rio de Janeiro (Brazil)
2014-01-14
We analyze the stability of the regular magnetic Bardeen black hole both thermodynamically and dynamically. For the thermodynamical analysis we consider a microcanonical ensemble and apply the turning point method. This method allows to decide a change in stability (or instability) of a system, requiring only the assumption of smoothness of the area functional. The dynamical stability is asserted using criteria based on the signs of the Lagrangian and its derivatives. It turns out from our analysis that the Bardeen black hole is both thermodynamically and dynamically stable.
Entropy and energy quantization: Planck thermodynamic calculation
Mota e Albuquerque, Ivone Freire da.
1988-01-01
This dissertation analyses the origins and development of the concept of entropy and its meaning of the second Law of thermodynamics, as well as the thermodynamics derivation of the energy quantization. The probabilistic interpretation of that law and its implication in physics theory are evidenciated. Based on Clausius work (which follows Carnot's work), we analyse and expose in a original way the entropy concept. Research upon Boltzmann's work and his probabilistic interpretation of the second Law of thermodynamics is made. The discuss between the atomistic and the energeticist points of view, which were actual at that time are also commented. (author). 38 refs., 3 figs
Thermodynamic modeling of direct injection methanol fueled engines
Shen Yuan; Bedford, Joshua; Wichman, Indrek S.
2009-01-01
In-cylinder pressure is an important parameter that is used to investigate the combustion process in internal combustion (IC) engines. In this paper, a thermodynamic model of IC engine combustion is presented and examined. A heat release function and an empirical conversion efficiency factor are introduced to solve the model. The pressure traces obtained by solving the thermodynamic model are compared with measured pressure data for a fully instrumented laboratory IC spark ignition (SI) engine. Derived scaling parameters for time to peak pressure, peak pressure, and maximum rate of pressure rise (among others) are developed and compared with the numerical simulations. The models examined here may serve as pedagogic tools and, when suitably refined, as preliminary design tools.
Statistical thermodynamics of supercapacitors and blue engines
van Roij, René
2012-01-01
We study the thermodynamics of electrode-electrolyte systems, for instance supercapacitors filled with an ionic liquid or blue-energy devices filled with river- or sea water. By a suitable mapping of thermodynamic variables, we identify a strong analogy with classical heat engines. We introduce several Legendre transformations and Maxwell relations. We argue that one should distinguish between the differential capacity at constant ion number and at constant ion chemical potential, and derive ...
Senchuan Song
2013-12-01
Full Text Available Attempting to improve the anticancer activity and solubility of evodiamine in simulated gastric fluid (SGF and simulated intestinal fluid (SIF solutions, thirty-eight N13-substituted evodiamine derivatives were designed, synthesized and tested for antitumor activities against six kinds of human cancer cell lines, namely prostate cancer (DU-145 and PC-3, lung cancer (H460, breast cancer (MCF-7, colon cancer (HCT-5 and glioblastoma (SF-268. The solubility of these compounds in SGF and SIF solutions was evaluated, and apoptosis induced by 2-2, 2-3, 2-16 and 3-2 was determined. The results showed: (1 among all compounds examined, 2-16 showed the highest antitumor activity and a broader spectrum of activity, with IC50 values ranging from 1–2 µM; (2 their solubility was obviously improved; (3 2-3, 2-16 and 3-2 had a significant impact inducing apoptosis in some cancer cell lines. The preliminary structure-activity relationships of these derivatives were discussed.
Satyajit Dutta
2014-08-01
Full Text Available In the present work few novel 2-(4-methylbenzenesulphonamidopentanedioic acid amide derivatives and the basic compound 2-(4-methylphenylsulfon-amidopentanedioic acid have been designed, synthesized, characterized and screened for their possible antineoplastic activity both in vitro and in vivo. The modified drugs were docked against the protein histone deacetylase the energy value obtained was o-iodoanilide (-10.370504 and m-iodoanilide (-10.218276 of the titled compound. The in vitro activity was performed against five human cell lines like human breast cancer (MCF-7, leukemia (K-562, ova-rian cancer (OVACAR-3, human colon adenocarcinoma (HT-29 and Human kidney carcinoma (A-498. The in vivo activity was performed in female Swiss albino mice against Ehrlich Ascites Carcinoma (EAC. Among the synthesized compounds, o-iodoanilide, m-iodoanilide and p-iodoanilide derivatives of 2-(4-methyl benzene sulphonyl-pentanedioic acid amides showed encouraging activity in both the in vitro and in vivo compared to other compounds.
Lushan Yu
2013-03-01
Full Text Available Three series of 3-(2-aminoheterocycle-4-benzyloxyphenylbenzamide derivatives, 2-aminooxazoles, 2-aminothiazoles, and 2-amino-6H-1,3,4-thiadizines were designed, synthesized and evaluated as β-secretase (BACE-1 inhibitors. Preliminary structure-activity relationships revealed that the existence of a 2-amino-6H-1,3,4-thiadizine moiety and α-naphthyl group were favorable for BACE-1 inhibition. Among the synthesized compounds, 5e exhibited the most potent BACE-1 inhibitory activity, with an IC50 value of 9.9 μΜ and it exhibited high brain uptake potential in Madin-Darby anine kidney cell lines (MDCK and a Madin-Darby canine kidney-multidrug resistance 1 (MDCK-MDR1 model.
Shangguan, Shihao; Wang, Fei; Liao, Yong; Yu, Haiping; Li, Jia; Huang, Wenhai; Hu, Haihong; Yu, Lushan; Hu, Yongzhou; Sheng, Rong
2013-03-20
Three series of 3-(2-aminoheterocycle)-4-benzyloxyphenylbenzamide derivatives, 2-aminooxazoles, 2-aminothiazoles, and 2-amino-6H-1,3,4-thiadizines were designed, synthesized and evaluated as β-secretase (BACE-1) inhibitors. Preliminary structure-activity relationships revealed that the existence of a 2-amino-6H-1,3,4-thiadizine moiety and α-naphthyl group were favorable for BACE-1 inhibition. Among the synthesized compounds, 5e exhibited the most potent BACE-1 inhibitory activity, with an IC50 value of 9.9 μΜ and it exhibited high brain uptake potential in Madin-Darby anine kidney cell lines (MDCK) and a Madin-Darby canine kidney-multidrug resistance 1 (MDCK-MDR1) model.
Zhang, Xiang; Geo, Yongxin; Liu, Huijun; Guo, Baoyuan; Wang, Huili [Research Center for Eco-Environmental Sciences/Chinese Academy of Sciences, Beijing (China)
2012-04-15
Strobilurins are one of the most important classes of agricultural fungicides. To discover new strobilurin derivatives with high activity against resistant pathogens, a series of novel β-methoxy acrylate analogues were designed and synthesized by integrating substituted pyrimidine with a strobilurin pharmacophore. The compounds were confirmed and characterized by infrared, {sup 1}H nuclear magnetic resonance, elemental analysis and mass spectroscopy. The bioassays indicated that most of the compounds (1a-1h) exhibited potent antifungal activities against Colletotrichum orbicular, Botrytis cinerea Pers and Protoporphyria caps ici Leon ian at the concentration of 50 μg/mL. Exhilaratingly, compound 1d (R=3-trifluoromethylphenyl) showed better antifungal activity against all the tested fungi than the commercial stilbenetriol fungicide azoxystrobin.
Design, synthesis and evaluation of aromatic heterocyclic derivatives as potent antifungal agents.
Zhao, Shizhen; Zhang, Xiangqian; Wei, Peng; Su, Xin; Zhao, Liyu; Wu, Mengya; Hao, Chenzhou; Liu, Chunchi; Zhao, Dongmei; Cheng, Maosheng
2017-09-08
To further enhance the anti-Aspergillus efficacy of our previously discovered antifungal lead compounds (1), a series of aromatic heterocyclic derivatives were designed, synthesized and evaluated for in vitro antifungal activity. Many of the target compounds showed good inhibitory activity against Candida albicans and Cryptococcus neoformans. In particular, the isoxazole nuclei were more suited for improving the activity against Aspergillus spp. Among these compounds, 2-F substituted analogues 23g and 23h displayed the most remarkable in vitro activity against Candida spp., C. neoformans, A. fumigatus and fluconazole-resistant C.alb. strains, which is superior or comparable to the activity of the reference drugs fluconazole and voriconazole. Notably, the compounds 23g and 23h exhibited low inhibition profiles for various isoforms of human cytochrome P450 and excellent blood plasma stability. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Yiming Xu
2017-11-01
Full Text Available Using sophoridine 1 and chalcone 3 as the lead compounds, a series of novel α, β-unsaturated sophoridinic derivatives were designed, synthesized, and evaluated for their in vitro cytotoxicity. Structure-activity relationship (SAR analysis indicated that introduction of α, β-unsaturated ketone moiety and heterocyclic group might significantly enhance anticancer activity. Among the compounds, 2f and 2m exhibited potential effects against HepG-2 and CNE-2 human cancer cell lines. Furthermore, molecular docking studies were performed to understand possible docking sites of the molecules on the target proteins and the mode of binding. This work provides a theoretical basis for structural optimizations and exploring anticancer pathways of this kind of compound.
Design, Synthesis and Antifungal/Insecticidal Evaluation of Novel Cinnamide Derivatives
Yanjun Xu
2011-10-01
Full Text Available Twenty novel cinnamamide derivatives were designed and synthesized using as lead compound pyrimorph, whose morpholine moiety was replaced by β-phenylethylamine. All the compounds were characterized by their spectroscopic data. The fungicidal and insecticidal activities were also evaluated. The preliminary results showed that all the title compounds had certain fungicidal activities against seven plant pathogens at a concentration of 50 μg/mL, and compounds 11a and 11l showed inhibition ratios of up to 90% against R. solani. Most of the title compounds exhibited moderate nematicidal activities. In general, the morpholine ring may be replaced by other amines and a chlorine atom in the pyridine ring is helpful to fungicidal activity.
Mrugalla, Florian; Kast, Stefan M
2016-01-01
Complex formation between molecules in solution is the key process by which molecular interactions are translated into functional systems. These processes are governed by the binding or free energy of association which depends on both direct molecular interactions and the solvation contribution. A design goal frequently addressed in pharmaceutical sciences is the optimization of chemical properties of the complex partners in the sense of minimizing their binding free energy with respect to a change in chemical structure. Here, we demonstrate that liquid-state theory in the form of the solute–solute equation of the reference interaction site model provides all necessary information for such a task with high efficiency. In particular, computing derivatives of the potential of mean force (PMF), which defines the free-energy surface of complex formation, with respect to potential parameters can be viewed as a means to define a direction in chemical space toward better binders. We illustrate the methodology in the benchmark case of alkali ion binding to the crown ether 18-crown-6 in aqueous solution. In order to examine the validity of the underlying solute–solute theory, we first compare PMFs computed by different approaches, including explicit free-energy molecular dynamics simulations as a reference. Predictions of an optimally binding ion radius based on free-energy derivatives are then shown to yield consistent results for different ion parameter sets and to compare well with earlier, orders-of-magnitude more costly explicit simulation results. This proof-of-principle study, therefore, demonstrates the potential of liquid-state theory for molecular design problems. (paper)
Introduction to applied thermodynamics
Helsdon, R M; Walker, G E
1965-01-01
Introduction to Applied Thermodynamics is an introductory text on applied thermodynamics and covers topics ranging from energy and temperature to reversibility and entropy, the first and second laws of thermodynamics, and the properties of ideal gases. Standard air cycles and the thermodynamic properties of pure substances are also discussed, together with gas compressors, combustion, and psychrometry. This volume is comprised of 16 chapters and begins with an overview of the concept of energy as well as the macroscopic and molecular approaches to thermodynamics. The following chapters focus o
Twenty lectures on thermodynamics
Buchdahl, H A
2013-01-01
Twenty Lectures on Thermodynamics is a course of lectures, parts of which the author has given various times over the last few years. The book gives the readers a bird's eye view of phenomenological and statistical thermodynamics. The book covers many areas in thermodynamics such as states and transition; adiabatic isolation; irreversibility; the first, second, third and Zeroth laws of thermodynamics; entropy and entropy law; the idea of the application of thermodynamics; pseudo-states; the quantum-static al canonical and grand canonical ensembles; and semi-classical gaseous systems. The text
Some problems in relativistic thermodynamics
Veitsman, E. V.
2007-01-01
The relativistic equations of state for ideal and real gases, as well as for various interface regions, have been derived. These dependences help to eliminate some controversies in the relativistic thermodynamics based on the special theory of relativity. It is shown, in particular, that the temperature of system whose velocity tends to the velocity of light in vacuum varies in accordance with the Ott law T = T 0 /√1 - v 2 /c 2 . Relativistic dependences for heat and mass transfer, for Ohm's law, and for a viscous flow of a liquid have also been derived
Rational extended thermodynamics
Müller, Ingo
1998-01-01
Ordinary thermodynamics provides reliable results when the thermodynamic fields are smooth, in the sense that there are no steep gradients and no rapid changes. In fluids and gases this is the domain of the equations of Navier-Stokes and Fourier. Extended thermodynamics becomes relevant for rapidly varying and strongly inhomogeneous processes. Thus the propagation of high frequency waves, and the shape of shock waves, and the regression of small-scale fluctuation are governed by extended thermodynamics. The field equations of ordinary thermodynamics are parabolic while extended thermodynamics is governed by hyperbolic systems. The main ingredients of extended thermodynamics are • field equations of balance type, • constitutive quantities depending on the present local state and • entropy as a concave function of the state variables. This set of assumptions leads to first order quasi-linear symmetric hyperbolic systems of field equations; it guarantees the well-posedness of initial value problems and f...
Thermodynamic Property Needs for the Oleochemical Industry
Ana Perederic, Olivia; Kalakul, Sawitree; Sarup, Bent
The oleochemical industry cover mainly the food and pharmaceutical reactions but production offuels (biodiesel) and other speciality chemical production processes also handle oleochemicals (inother words, lipids). The core of process synthesis and design depend on availability of properties data...... and/or reliable thermodynamic models for the chemicals involved. Limited availability ofconsistent physical and thermodynamic properties of lipids compounds and their mixtures lead to difficulties with the use of process simulators for process synthesis and design, since all themodels to be used...
RF cavity design exploiting a new derivative-free trust region optimization approach
Abdel-Karim S.O. Hassan
2015-11-01
Full Text Available In this article, a novel derivative-free (DF surrogate-based trust region optimization approach is proposed. In the proposed approach, quadratic surrogate models are constructed and successively updated. The generated surrogate model is then optimized instead of the underlined objective function over trust regions. Truncated conjugate gradients are employed to find the optimal point within each trust region. The approach constructs the initial quadratic surrogate model using few data points of order O(n, where n is the number of design variables. The proposed approach adopts weighted least squares fitting for updating the surrogate model instead of interpolation which is commonly used in DF optimization. This makes the approach more suitable for stochastic optimization and for functions subject to numerical error. The weights are assigned to give more emphasis to points close to the current center point. The accuracy and efficiency of the proposed approach are demonstrated by applying it to a set of classical bench-mark test problems. It is also employed to find the optimal design of RF cavity linear accelerator with a comparison analysis with a recent optimization technique.
Designed Surface Topographies Control ICAM-1 Expression in Tonsil-Derived Human Stromal Cells
Aliaksei S. Vasilevich
2018-06-01
Full Text Available Fibroblastic reticular cells (FRCs, the T-cell zone stromal cell subtype in the lymph nodes, create a scaffold for adhesion and migration of immune cells, thus allowing them to communicate. Although known to be important for the initiation of immune responses, studies about FRCs and their interactions have been impeded because FRCs are limited in availability and lose their function upon culture expansion. To circumvent these limitations, stromal cell precursors can be mechanotranduced to form mature FRCs. Here, we used a library of designed surface topographies to trigger FRC differentiation from tonsil-derived stromal cells (TSCs. Undifferentiated TSCs were seeded on a TopoChip containing 2176 different topographies in culture medium without differentiation factors, then monitored cell morphology and the levels of ICAM-1, a marker of FRC differentiation. We identified 112 and 72 surfaces that upregulated and downregulated, respectively, ICAM-1 expression. By monitoring cell morphology, and expression of the FRC differentiation marker ICAM-1 via image analysis and machine learning, we discovered correlations between ICAM-1 expression, cell shape and design of surface topographies and confirmed our findings by using flow cytometry. Our findings confirmed that TSCs are mechano-responsive cells and identified particular topographies that can be used to improve FRC differentiation protocols.
A methodology to derive Synthetic Design Hydrographs for river flood management
Tomirotti, Massimo; Mignosa, Paolo
2017-12-01
The design of flood protection measures requires in many cases not only the estimation of the peak discharges, but also of the volume of the floods and its time distribution. A typical solution to this kind of problems is the formulation of Synthetic Design Hydrographs (SDHs). In this paper a methodology to derive SDHs is proposed on the basis of the estimation of the Flow Duration Frequency (FDF) reduction curve and of a Peak-Duration (PD) relationship furnishing respectively the quantiles of the maximum average discharge and the average peak position in each duration. The methodology is intended to synthesize the main features of the historical floods in a unique SDH for each return period. The shape of the SDH is not selected a priori but is a result of the behaviour of FDF and PD curves, allowing to account in a very convenient way for the variability of the shapes of the observed hydrographs at local time scale. The validation of the methodology is performed with reference to flood routing problems in reservoirs, lakes and rivers. The results obtained demonstrate the capability of the SDHs to describe the effects of different hydraulic systems on the statistical regime of floods, even in presence of strong modifications induced on the probability distribution of peak flows.
Stacey, Frank D
2010-01-01
Applications of elementary thermodynamic principles to the dynamics of the Earth lead to robust, quantitative conclusions about the tectonic effects that arise from convection. The grand pattern of motion conveys deep heat to the surface, generating mechanical energy with a thermodynamic efficiency corresponding to that of a Carnot engine operating over the adiabatic temperature gradient between the heat source and sink. Referred to the total heat flux derived from the Earth's silicate mantle, the efficiency is 24% and the power generated, 7.7 x 10 12 W, causes all the material deformation apparent as plate tectonics and the consequent geological processes. About 3.5% of this is released in seismic zones but little more than 0.2% as seismic waves. Even major earthquakes are only localized hiccups in this motion. Complications that arise from mineral phase transitions can be used to illuminate details of the motion. There are two superimposed patterns of convection, plate subduction and deep mantle plumes, driven by sources of buoyancy, negative and positive respectively, at the top and bottom of the mantle. The patterns of motion are controlled by the viscosity contrasts (>10 4 : 1) at these boundaries and are self-selected as the least dissipative mechanisms of heat transfer for convection in a body with very strong viscosity variation. Both are subjects of the thermodynamic efficiency argument. Convection also drives the motion in the fluid outer core that generates the geomagnetic field, although in that case there is an important energy contribution by compositional separation, as light solute is rejected by the solidifying inner core and mixed into the outer core, a process referred to as compositional convection. Uncertainty persists over the core energy balance because thermal conduction is a drain on core energy that has been a subject of diverse estimates, with attendant debate over the need for radiogenic heat in the core. The geophysical approach to
Thermodynamics of the Schwarzschild-de Sitter black hole: Thermal stability of the Nariai black hole
Myung, Yun Soo
2008-01-01
We study the thermodynamics of the Schwarzschild-de Sitter black hole in five dimensions by introducing two temperatures based on the standard and Bousso-Hawking normalizations. We use the first-law of thermodynamics to derive thermodynamic quantities. The two temperatures indicate that the Nariai black hole is thermodynamically unstable. However, it seems that black hole thermodynamics favors the standard normalization and does not favor the Bousso-Hawking normalization
Silva, Diego; Natalello, Antonino; Sanii, Babak; Vasita, Rajesh; Saracino, Gloria; Zuckermann, Ronald N; Doglia, Silvia Maria; Gelain, Fabrizio
2013-01-21
The importance of self-assembling peptides (SAPs) in regenerative medicine is becoming increasingly recognized. The propensity of SAPs to form nanostructured fibers is governed by multiple forces including hydrogen bonds, hydrophobic interactions and π-π aromatic interactions among side chains of the amino acids. Single residue modifications in SAP sequences can significantly affect these forces. BMHP1-derived SAPs is a class of biotinylated oligopeptides, which self-assemble in β-structured fibers to form a self-healing hydrogel. In the current study, selected modifications in previously described BMHP1-derived SAPs were designed in order to investigate the influence of modified residues on self-assembly kinetics and scaffold formation properties. The Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) analysis demonstrated the secondary structure (β-sheet) formation in all modified SAP sequences, whereas atomic force microscopy (AFM) analysis further confirmed the presence of nanofibers. Furthermore, the fiber shape and dimension analysis by AFM showed flattened and twisted fiber morphology ranging from ∼8 nm to ∼70 nm. The mechanical properties of the pre-assembled and post assembled solution were investigated by rheometry. The shear-thinning behavior and rapid re-healing properties of the pre-assembled solutions make them a preferable choice for injectable scaffolds. The wide range of stiffnesses (G')--from ∼1000 to ∼27,000 Pa--exhibited by the post-assembled scaffolds demonstrated their potential for a variety of tissue engineering applications. The extra cellular matrix (ECM) mimicking (physically and chemically) properties of SAP scaffolds enhanced cell adhesion and proliferation. The capability of the scaffold to facilitate murine neural stem cell (mNSC) proliferation was evaluated in vitro: the increased mNSCs adhesion and proliferation demonstrated the potential of newly synthesized SAPs for regenerative medicine
Evaluation of 8-Hydroxyquinoline Derivatives as Hits for Antifungal Drug Design.
Pippi, Bruna; Reginatto, Paula; Machado, Gabriella da Rosa Monte; Bergamo, Vanessa Zafaneli; Lana, Daiane Flores Dalla; Teixeira, Mario Lettieri; Franco, Lucas Lopardi; Alves, Ricardo José; Andrade, Saulo Fernandes; Fuentefria, Alexandre Meneghello
2017-10-01
Clioquinol is an 8-hydroxyquinoline derivative that was widely used from the 1950s to 1970s as an oral antiparasitic agent. In 1970, the oral forms were withdrawn from the market due to reports of toxicity, but topical formulations for antifungal treatment remained available. Thus, the purpose of this study was to evaluate the toxicity, anti-Candida and antidermatophyte activity and to determine pharmacodynamic characteristics of clioquinol and other 8-hydroxyquinoline derivatives (8-hydroxy-5-quinolinesulfonic acid and 8-hydroxy-7-iodo-5-quinolinesulfonic acid). Antifungal activity was tested by broth microdilution and the fungicidal or fungistatic effect was checked by a time-kill assay. Permeation and histopathological evaluation were performed in Franz diffusion cells with ear skin of pigs and examined under light microscopy. An HET-CAM test was used to determine the potential irritancy. The three compounds were active against all isolates showing anti-Candida and antidermatophyte activity, with MIC ranges of 0.031-2 μg/ml, 1-512 μg/ml, and 2-1024 μg/ml for clioquinol, 8-hydroxy-5-quinolinesulfonic acid, and 8-hydroxy-7-iodo-5-quinolinesulfonic acid, respectively. All compounds showed fungistatic effect for Candida, 8-hydroxy-5-quinolinesulfonic acid, and 8-hydroxy-7-iodo-5-quinolinesulfonic acid showed a fungicidal effect for M. canis and T. mentagrophytes, and clioquinol showed a fungicidal effect only for T. mentagrophytes. Furthermore, they presented a fungicidal effect depending on the time and concentration. The absence of lesions was observed in histopathological evaluation and no compound was irritating. Moreover, clioquinol and 8-hydroxy-5-quinolinesulfonic acid accumulated in the epithelial tissue, and 8-hydroxy-7-iodo-5-quinolinesulfonic acid had a high degree of permeation. In conclusion, 8-hydroxyquinoline derivatives showed antifungal activity and 8-hydroxy-5-quinolinesulfonic acid demonstrated the potential for antifungal drug design.
Microcanonical ensemble extensive thermodynamics of Tsallis statistics
Parvan, A.S.
2005-01-01
The microscopic foundation of the generalized equilibrium statistical mechanics based on the Tsallis entropy is given by using the Gibbs idea of statistical ensembles of the classical and quantum mechanics.The equilibrium distribution functions are derived by the thermodynamic method based upon the use of the fundamental equation of thermodynamics and the statistical definition of the functions of the state of the system. It is shown that if the entropic index ξ = 1/q - 1 in the microcanonical ensemble is an extensive variable of the state of the system, then in the thermodynamic limit z bar = 1/(q - 1)N = const the principle of additivity and the zero law of thermodynamics are satisfied. In particular, the Tsallis entropy of the system is extensive and the temperature is intensive. Thus, the Tsallis statistics completely satisfies all the postulates of the equilibrium thermodynamics. Moreover, evaluation of the thermodynamic identities in the microcanonical ensemble is provided by the Euler theorem. The principle of additivity and the Euler theorem are explicitly proved by using the illustration of the classical microcanonical ideal gas in the thermodynamic limit
Microcanonical ensemble extensive thermodynamics of Tsallis statistics
Parvan, A.S.
2006-01-01
The microscopic foundation of the generalized equilibrium statistical mechanics based on the Tsallis entropy is given by using the Gibbs idea of statistical ensembles of the classical and quantum mechanics. The equilibrium distribution functions are derived by the thermodynamic method based upon the use of the fundamental equation of thermodynamics and the statistical definition of the functions of the state of the system. It is shown that if the entropic index ξ=1/(q-1) in the microcanonical ensemble is an extensive variable of the state of the system, then in the thermodynamic limit z-bar =1/(q-1)N=const the principle of additivity and the zero law of thermodynamics are satisfied. In particular, the Tsallis entropy of the system is extensive and the temperature is intensive. Thus, the Tsallis statistics completely satisfies all the postulates of the equilibrium thermodynamics. Moreover, evaluation of the thermodynamic identities in the microcanonical ensemble is provided by the Euler theorem. The principle of additivity and the Euler theorem are explicitly proved by using the illustration of the classical microcanonical ideal gas in the thermodynamic limit
Statistical thermodynamics of nonequilibrium processes
Keizer, Joel
1987-01-01
The structure of the theory ofthermodynamics has changed enormously since its inception in the middle of the nineteenth century. Shortly after Thomson and Clausius enunciated their versions of the Second Law, Clausius, Maxwell, and Boltzmann began actively pursuing the molecular basis of thermo dynamics, work that culminated in the Boltzmann equation and the theory of transport processes in dilute gases. Much later, Onsager undertook the elucidation of the symmetry oftransport coefficients and, thereby, established himself as the father of the theory of nonequilibrium thermodynamics. Com bining the statistical ideas of Gibbs and Langevin with the phenomenological transport equations, Onsager and others went on to develop a consistent statistical theory of irreversible processes. The power of that theory is in its ability to relate measurable quantities, such as transport coefficients and thermodynamic derivatives, to the results of experimental measurements. As powerful as that theory is, it is linear and...
An introduction to equilibrium thermodynamics
Morrill, Bernard; Hartnett, James P; Hughes, William F
1973-01-01
An Introduction to Equilibrium Thermodynamics discusses classical thermodynamics and irreversible thermodynamics. It introduces the laws of thermodynamics and the connection between statistical concepts and observable macroscopic properties of a thermodynamic system. Chapter 1 discusses the first law of thermodynamics while Chapters 2 through 4 deal with statistical concepts. The succeeding chapters describe the link between entropy and the reversible heat process concept of entropy; the second law of thermodynamics; Legendre transformations and Jacobian algebra. Finally, Chapter 10 provides a
Thermodynamics for scientists and engineers
Lim, Gyeong Hui
2011-02-01
This book deals with thermodynamics for scientists and engineers. It consists of 11 chapters, which are concept and background of thermodynamics, the first law of thermodynamics, the second law of thermodynamics and entropy, mathematics related thermodynamics, properties of thermodynamics on pure material, equilibrium, stability of thermodynamics, the basic of compound, phase equilibrium of compound, excess gibbs energy model of compound and activity coefficient model and chemical equilibrium. It has four appendixes on properties of pure materials and thermal mass.
A constitutive model for magnetostriction based on thermodynamic framework
Ho, Kwangsoo
2016-01-01
This work presents a general framework for the continuum-based formulation of dissipative materials with magneto–mechanical coupling in the viewpoint of irreversible thermodynamics. The thermodynamically consistent model developed for the magnetic hysteresis is extended to include the magnetostrictive effect. The dissipative and hysteretic response of magnetostrictive materials is captured through the introduction of internal state variables. The evolution rate of magnetostrictive strain as well as magnetization is derived from thermodynamic and dissipative potentials in accordance with the general principles of thermodynamics. It is then demonstrated that the constitutive model is competent to describe the magneto-mechanical behavior by comparing simulation results with the experimental data reported in the literature. - Highlights: • A thermodynamically consistent model is proposed to describe the magneto-mechanical coupling effect. • Internal state variables are introduced to capture the dissipative material response. • The evolution rate of the magnetostrictive strain is derived through thermodynamic and dissipation potentials.
Local thermodynamics of a magnetized, anisotropic plasma
Hazeltine, R. D.; Mahajan, S. M.; Morrison, P. J.
2013-01-01
An expression for the internal energy of a fluid element in a weakly coupled, magnetized, anisotropic plasma is derived from first principles. The result is a function of entropy, particle density and magnetic field, and as such plays the role of a thermodynamic potential: it determines in principle all thermodynamic properties of the fluid element. In particular it provides equations of state for the magnetized plasma. The derivation uses familiar fluid equations, a few elements of kinetic theory, the MHD version of Faraday's law, and certain familiar stability and regularity conditions.
Gao, Mingxiang; Li, Jinyu; Nie, Cunbin; Song, Beibei; Yan, Lin; Qian, Hai
2018-05-15
Capsaicin (CAP), the prototypical TRPV1 agonist, is the major active component in chili peppers with health-promoting benefits. However, its use is limited by the low bioavailability and irritating quality. In this study, for improving the activity of CAP and alleviating its irritating effects, a series of H 2 S-releasing CAPs were designed and synthesized by combining capsaicin and dihydro capsaicin with various hydrogen sulfide donors. The resulting compounds were evaluated their TRPV1 agonist activity, analgesic activity, anticancer activities, H 2 S-releasing ability, and gastric mucosa irritation. Biological evaluation indicated that the most active compound B 9 , containing 5-(4-hydroxyphenyl)-3H-1,2-dithiole-3-thione moiety as H 2 S donor, had better analgesic activity and displayed more potent cytotoxic effects on the test cell lines than the lead compound CAP. Furthermore, the preferred compound, B 9 reduced rat gastric mucosa irritation caused by CAP. Notably, the improved properties of this derivative are associated with its H 2 S-releasing capability. Copyright © 2018 Elsevier Ltd. All rights reserved.
Ivanova, Bojidarka; Spiteller, Michael
2013-02-01
The paper presented a comprehensive theoretical and experimental study on the molecular drugs-design, synthesis, isolation, physical spectroscopic and mass spectrometric elucidation of novel functionalization derivatives of Cytisine (Cyt), using nucleosidic residues. Since these alkaloids have established biochemical profile, related the binding affinity of the nicotinic acetylcholine receptors (nAChRs), particularly α7 sub-type, the presented correlation between the molecular structure and properties allowed to evaluated the highlights of the biochemical hypothesises related the Schizophrenia. The anticancer activity of α7 subtype agonists and the crucial role of the nucleoside-based medications in the cancer therapy provided opportunity for further study on the biochemical relationship between Schizophrenia and few kinds of cancers, which has been hypothesized recently. The physical electronic absorptions (EAs), circular dichroic (CD) and Raman spectroscopic (RS) properties as well as mass spectrometric (MS) data, obtained using electrospray ionization (ESI) and atmospheric-pressure chemical ionization (APCI) methods under the positive single (MS) and tandem (MS/MS) modes of operation are discussed. Taking into account reports on a fatal intoxication of Cyt, the presented data would be of interest in the field of forensic chemistry, through development of highly selective and sensitive analytical protocols. Quantum chemical method is used to predict the physical properties of the isolated alkaloids, their affinity to the receptor loop and gas-phase stabilized species, observed mass spectrometrically.
Daniel Ken Inaoka
2015-07-01
Full Text Available Recent studies on the respiratory chain of Ascaris suum showed that the mitochondrial NADH-fumarate reductase system composed of complex I, rhodoquinone and complex II plays an important role in the anaerobic energy metabolism of adult A. suum. The system is the major pathway of energy metabolism for adaptation to a hypoxic environment not only in parasitic organisms, but also in some types of human cancer cells. Thus, enzymes of the pathway are potential targets for chemotherapy. We found that flutolanil is an excellent inhibitor for A. suum complex II (IC50 = 0.058 μM but less effectively inhibits homologous porcine complex II (IC50 = 45.9 μM. In order to account for the specificity of flutolanil to A. suum complex II from the standpoint of structural biology, we determined the crystal structures of A. suum and porcine complex IIs binding flutolanil and its derivative compounds. The structures clearly demonstrated key interactions responsible for its high specificity to A. suum complex II and enabled us to find analogue compounds, which surpass flutolanil in both potency and specificity to A. suum complex II. Structures of complex IIs binding these compounds will be helpful to accelerate structure-based drug design targeted for complex IIs.
Inaoka, Daniel Ken; Shiba, Tomoo; Sato, Dan; Balogun, Emmanuel Oluwadare; Sasaki, Tsuyoshi; Nagahama, Madoka; Oda, Masatsugu; Matsuoka, Shigeru; Ohmori, Junko; Honma, Teruki; Inoue, Masayuki; Kita, Kiyoshi; Harada, Shigeharu
2015-07-07
Recent studies on the respiratory chain of Ascaris suum showed that the mitochondrial NADH-fumarate reductase system composed of complex I, rhodoquinone and complex II plays an important role in the anaerobic energy metabolism of adult A. suum. The system is the major pathway of energy metabolism for adaptation to a hypoxic environment not only in parasitic organisms, but also in some types of human cancer cells. Thus, enzymes of the pathway are potential targets for chemotherapy. We found that flutolanil is an excellent inhibitor for A. suum complex II (IC50 = 0.058 μM) but less effectively inhibits homologous porcine complex II (IC50 = 45.9 μM). In order to account for the specificity of flutolanil to A. suum complex II from the standpoint of structural biology, we determined the crystal structures of A. suum and porcine complex IIs binding flutolanil and its derivative compounds. The structures clearly demonstrated key interactions responsible for its high specificity to A. suum complex II and enabled us to find analogue compounds, which surpass flutolanil in both potency and specificity to A. suum complex II. Structures of complex IIs binding these compounds will be helpful to accelerate structure-based drug design targeted for complex IIs.
Design, synthesis and activity of BBI608 derivatives targeting on stem cells.
Zhou, Qifan; Peng, Chen; Du, Fangyu; Zhou, Linbo; Shi, Yajie; Du, Yang; Liu, Dongdong; Sun, Wenjiao; Zhang, Meixia; Chen, Guoliang
2018-05-10
STAT3 plays a vital role in maintaining the self-renewal of tumor stem cells. BBI608, a small molecule identified by its ability to inhibit gene transcription driven by STAT3 and cancer stemness properties, can inhibit stemness gene expression and kill stemness-high cancer cells isolated from a variety of cancer types. In order to improve the pharmacokinetic properties of BBI608 and the antitumor activity, a series of BBI608 derivatives were designed and synthesized here. Most of these compounds were more potent than BBI608 on HepG2 cells, compound LD-8 had the most potent inhibitory activity among them and was 5.4-fold more potent than BBI608 (IC 50 = 11.2 μM), but had considerable activity on normal liver cells L-02. Compounds LD-17 (IC 50 = 3.5 μM) and LD-19 (IC 50 = 2.9 μM) were found to possess significant inhibitory activities and good selectivity. The results showed that compound LD-19 was worthy to investigate further as a lead compound according to its potent inhibitory activity, ideal ClogP value and better water solubility. Copyright © 2018 Elsevier Masson SAS. All rights reserved.
Design, synthesis, and application of novel flame retardants derived from biomass
Yan Liu
2012-11-01
Full Text Available Biomass represents an abundant and relatively low cost carbon resource that can be utilized to produce platform chemicals such as levulinic acid. Novel oligomeric flame retardants, the poly(MDP-PDCP-MAs (PMPMs, were designed and synthesized using diphenolic acid as one of the raw materials, which is derived from levulinic acid. To change the molar ratio of reactants, a series of PMPM samples with different nitrogen contents were obtained and characterized by FTIR and solid-state 13C NMR spectroscopy. The solubility test and thermogravimetric analysis (TGA indicated a good solvent-resistant property and thermal stability. The flame retardancy and thermal behavior of ABS with 30% loading of different PMPM samples were investigated by limiting oxygen index test (LOI, TGA, and microscale combustion colorimeter (MCC. The results showed that PMPMs are effective charring agents that can increase the thermal stability and flame retardancy of ABS. Scanning electron microscopy (SEM observations of the residue of ABS/PMPM blends indicated the compact charred layer formed was responsible for improving the thermal stability and char yield of ABS with low nitrogen content in PMPM-1 flame retardant.
Dev, Sanal; Dhaneshwar, Sunil R; Mathew, Bijo
2018-01-01
For the development of new class of anticancer agents, a series of novel 2-amino-3-cyanopyridine derivatives were designed from virtual screening with Glide program by setting Topoisomerase II as the target. The top ranked ten molecules from the virtual screening were synthesized by microwave assisted technique and investigated for their cytotoxic activity against MCF-7 and A- 549 cell lines by using sulforhodamine B assay method. The most active compound 2-amino-4-(3,5-dibromo-4-hydroxyphenyl)-6-(2,4- dichlorophenyl) nicotinonitrile (CG-5) showed significant cytotoxic profile with (LC50 = 97.1, TGI = 29.9 and GI50 = <0.1 µM) in MCF-7 and (LC50= 93.0, TGI= 50.0 and GI50= <7 µM) in A-549 cell lines. A molecular docking study was performed to explore the binding interaction of CG-5with the active site of Topoisomerase II. It can be concluded that halogen substituent pyridine ring was benefit for cytotoxicity. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Gao, Jian; Qiu, Shengzhi; Liang, Li; Hao, Zhixiang; Zhou, Qianqian; Wang, Fanfan; Mou, Jie; Lin, Qisi
2018-01-01
Infectious disease is increasingly hampering human health, which challenge the discovery of new antibacterial target. Peptide deformylase (PDF), a metalloenzyme responsible for catalyzing the removal of the N-formyl group from nascent proteins, was considered as an important target in antibacterial drug discovery. Reported here are the design, synthesis and biological evaluation of vanillin hydroxamic acid derivatives. Analysis of the structure-activity relationships lead to the discovery of compound 8, which exhibits promising antibacterial activity against Escherichia coli, Staphylococcus aureus, Aspergillus oryzae, and Aspergillus foetidus with the MIC value of 0.32 µg/ml, 0.32 µg/ml, 0.16 µg/ml and 0.16 µg/ml, respectively. Furthermore, molecular docking study was applied to elucidate binding interaction between compound 8 and PDF, which indicate that compound 8 not only shares the same binding pocket with actinonin, but also has a similar binding pattern. In silico pharmacokinetic and toxicity prediction studies also suggested that compound 8 has a relatively high drug score of 0.80, and has no risk of toxicity. Compound 8 might represent a promising scaffold for the further development of novel antibacterial drugs. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Muhammad Hanafi
2017-06-01
Full Text Available P-glycoprotein (P-gp resistance in cancer cells decreases intracellular accumulation of various anticancer drugs. This multidrug resistance (MDR protein can be modulated by a number of non-cytotoxic drugs. We have screened 30 chincona alkaloids derivatives as a potent P-gp inhibitor agent in silico. Hereby, we report the highest potential inhibitions of P-gp is Cinchonidine isobutanoate through molecular docking approach. with affinity energy -8.6 kcal/mol and inhibition constant, Ki is 4.89 x 10-7 M. Cinchonidine isobutanoate is also known has molecular weight below 500, Log P value 3.5, which is indicated violation free of Lipinski`s rule of five. Thus, Cinchonidine isobutanoate is the most potent compound as anticancer compare to other Cinchona alkaloids. Ultimately, we design Cinchonidine isobutanoate for further lead synthesis by using DBSA, act as a combined Brønsted acid-surfactant-catalyst (BASC to obtain high concentration of organic product by forming micellar aggregates which is very powerful catalytic application in water environment.
Xie, Yong; Chi, Hui-Wei; Guan, Ai-Ying; Liu, Chang-Ling; Ma, Hong-Juan; Cui, Dong-Liang
2014-12-31
A series of novel substituted 3-(pyridin-2-yl)benzenesulfonamide derivatives were designed and synthesized using 2-phenylpridines as the lead compound by intermediate derivatization methods in an attempt to obtain novel compound candidates for weed control. The herbicidal activity assay in glasshouse tests showed several compounds (II6, II7, II8, II9, II10, II11, III2, III3, III4, and III5) could efficiently control velvet leaf, youth-and-old age, barnyard grass, and foxtail at the 37.5 g/ha active substance. Especially, the activities of II6, II7, III2, and III4 were proved roughly equivalent to the saflufenacil and better than 95% sulcotrione at the same concentration. The result of the herbicidal activity assay in field tests demonstrated that II7 at 60 g/ha active substance could give the same effect as bentazon at 1440 g/ha active substance to control dayflower and nightshade, meanwhile II7 showed better activity than oxyfluorfen to control arrowhead and security to rice. The present work indicates that II7 may be a novel compound candidate for potential herbicide.
A study in cosmology and causal thermodynamics
Oliveira, H.P. de.
1986-01-01
The especial relativity of thermodynamic theories for reversible and irreversible processes in continuous medium is studied. The formalism referring to equilibrium and non-equilibrium configurations, and theories which includes the presence of gravitational fields are discussed. The nebular model in contraction with dissipative processes identified by heat flux and volumetric viscosity is thermodymically analysed. This model is presented by a plane conformal metric. The temperature, pressure, entropy and entropy production within thermodynamic formalism which adopts the hypothesis of local equilibrium, is calculated. The same analysis is carried out considering a causal thermodynamics, which establishes a local entropy of non-equilibrium. Possible homogeneous and isotropic cosmological models, considering the new phenomenological equation for volumetric viscosity deriving from cause thermodynamics are investigated. The found out models have plane spatial section (K=0) and some ones do not have singularities. The energy conditions are verified and the entropy production for physically reasobable models are calculated. (M.C.K.) [pt
Black hole thermodynamics with conical defects
Appels, Michael [Centre for Particle Theory, Durham University,South Road, Durham, DH1 3LE (United Kingdom); Gregory, Ruth [Centre for Particle Theory, Durham University,South Road, Durham, DH1 3LE (United Kingdom); Perimeter Institute,31 Caroline Street North, Waterloo, ON, N2L 2Y5 (Canada); Kubiznák, David [Perimeter Institute,31 Caroline Street North, Waterloo, ON, N2L 2Y5 (Canada)
2017-05-22
Recently we have shown https://www.doi.org/10.1103/PhysRevLett.117.131303 how to formulate a thermodynamic first law for a single (charged) accelerated black hole in AdS space by fixing the conical deficit angles present in the spacetime. Here we show how to generalise this result, formulating thermodynamics for black holes with varying conical deficits. We derive a new potential for the varying tension defects: the thermodynamic length, both for accelerating and static black holes. We discuss possible physical processes in which the tension of a string ending on a black hole might vary, and also map out the thermodynamic phase space of accelerating black holes and explore their critical phenomena.
Stochastic approach to equilibrium and nonequilibrium thermodynamics.
Tomé, Tânia; de Oliveira, Mário J
2015-04-01
We develop the stochastic approach to thermodynamics based on stochastic dynamics, which can be discrete (master equation) and continuous (Fokker-Planck equation), and on two assumptions concerning entropy. The first is the definition of entropy itself and the second the definition of entropy production rate, which is non-negative and vanishes in thermodynamic equilibrium. Based on these assumptions, we study interacting systems with many degrees of freedom in equilibrium or out of thermodynamic equilibrium and how the macroscopic laws are derived from the stochastic dynamics. These studies include the quasiequilibrium processes; the convexity of the equilibrium surface; the monotonic time behavior of thermodynamic potentials, including entropy; the bilinear form of the entropy production rate; the Onsager coefficients and reciprocal relations; and the nonequilibrium steady states of chemical reactions.
Quantum thermodynamics of general quantum processes.
Binder, Felix; Vinjanampathy, Sai; Modi, Kavan; Goold, John
2015-03-01
Accurately describing work extraction from a quantum system is a central objective for the extension of thermodynamics to individual quantum systems. The concepts of work and heat are surprisingly subtle when generalizations are made to arbitrary quantum states. We formulate an operational thermodynamics suitable for application to an open quantum system undergoing quantum evolution under a general quantum process by which we mean a completely positive and trace-preserving map. We derive an operational first law of thermodynamics for such processes and show consistency with the second law. We show that heat, from the first law, is positive when the input state of the map majorizes the output state. Moreover, the change in entropy is also positive for the same majorization condition. This makes a strong connection between the two operational laws of thermodynamics.
Thermodynamic efficiency of nonimaging concentrators
Shatz, Narkis; Bortz, John; Winston, Roland
2009-08-01
The purpose of a nonimaging concentrator is to transfer maximal flux from the phase space of a source to that of a target. A concentrator's performance can be expressed relative to a thermodynamic reference. We discuss consequences of Fermat's principle of geometrical optics. We review étendue dilution and optical loss mechanisms associated with nonimaging concentrators, especially for the photovoltaic (PV) role. We introduce the concept of optical thermodynamic efficiency which is a performance metric combining the first and second laws of thermodynamics. The optical thermodynamic efficiency is a comprehensive metric that takes into account all loss mechanisms associated with transferring flux from the source to the target phase space, which may include losses due to inadequate design, non-ideal materials, fabrication errors, and less than maximal concentration. As such, this metric is a gold standard for evaluating the performance of nonimaging concentrators. Examples are provided to illustrate the use of this new metric. In particular we discuss concentrating PV systems for solar power applications.
Black Holes and Thermodynamics
Wald, Robert M.
1997-01-01
We review the remarkable relationship between the laws of black hole mechanics and the ordinary laws of thermodynamics. It is emphasized that - in analogy with the laws of thermodynamics - the validity the laws of black hole mechanics does not appear to depend upon the details of the underlying dynamical theory (i.e., upon the particular field equations of general relativity). It also is emphasized that a number of unresolved issues arise in ``ordinary thermodynamics'' in the context of gener...
A thermodynamic assessment of the La-Al system
Yin, F.; Su, X.; Li, Z.; Huang, M.; Shi, Y.
2000-01-01
The optimized descriptions of the phase diagram and thermodynamic properties of the La-Al system have been obtained from experimental thermodynamic and phase diagram data by means of the computer program thermo-calc based on the least squares method, using models for the Gibbs energy of individual phases. The system contains six intermetallic compounds. A consistent set of thermodynamic parameters was derived. Optimized and experimental data are in good agreement (orig.)
Reiss, Howard
1997-01-01
Since there is no shortage of excellent general books on elementary thermodynamics, this book takes a different approach, focusing attention on the problem areas of understanding of concept and especially on the overwhelming but usually hidden role of ""constraints"" in thermodynamics, as well as on the lucid exposition of the significance, construction, and use (in the case of arbitrary systems) of the thermodynamic potential. It will be especially useful as an auxiliary text to be used along with any standard treatment.Unlike some texts, Methods of Thermodynamics does not use statistical m
Thermodynamics of nuclear materials
Rand, M.H.
1975-01-01
A report is presented of the Fourth International Symposium on Thermodynamics of Nuclear Materials held in Vienna, 21-25 October 1974. The technological theme of the Symposium was the application of thermodynamics to the understanding of the chemistry of irradiated nuclear fuels and to safety assessments for hypothetical accident conditions in reactors. The first four sessions were devoted to these topics and they were followed by four more sessions on the more basic thermodynamics, phase diagrams and the thermodynamic properties of a wide range of nuclear materials. Sixty-seven papers were presented
Zarghami, Zabihullah; Akbari, Ahmad; Latifi, Ali Mohammad; Amani, Mohammad Ali
2016-04-01
In this research, different generations of PAMAM-grafted chitosan as integrated biosorbents were successfully synthesized via step by step divergent growth approach of dendrimer. The synthesized products were utilized as adsorbents for heavy metals (Pb(2+) in this study) removing from aqueous solution and their reactive Pb(2+) removal potential was evaluated. The results showed that as-synthesized products with higher generations of dendrimer, have more adsorption capacity compared to products with lower generations of dendrimer and sole chitosan. Adsorption capacity of as-prepared product with generation 3 of dendrimer is 18times more than sole chitosan. Thermodynamic and kinetic studies were performed for understanding equilibrium data of the uptake capacity and kinetic rate uptake, respectively. Thermodynamic and kinetic studies showed that Langmuir isotherm model and pseudo second order kinetic model are more compatible for describing equilibrium data of the uptake capacity and kinetic rate of the Pb(2+) uptake, respectively. Copyright © 2016 Elsevier Ltd. All rights reserved.
Thermodynamic and Quantum Thermodynamic Analyses of Brownian Movement
Gyftopoulos, Elias P.
2006-01-01
Thermodynamic and quantum thermodynamic analyses of Brownian movement of a solvent and a colloid passing through neutral thermodynamic equilibrium states only. It is shown that Brownian motors and E. coli do not represent Brownian movement.
Ahmad, Anis; Ahmad, Aiman; Sudhakar, Raja; Varshney, Himani; Subbarao, Naidu; Ansari, Saba; Rauf, Abdul; Khan, Asad U
2017-11-01
In this study, a novel series of oxazoline and thiazoline were designed as inhibitors of cytochrome P450 14 alpha-sterol demethylase (CYP51) from Candida albicans and peptide deformylase (PDF) of Escherichia coli. The long chain dibromo derivative of fatty acid esters on reaction with urea and thiourea gave their corresponding oxazolines and thiazolines, respectively. All the compounds were characterized by their spectral data (IR, 1 H NMR, 13 C NMR and MS) and tested for antibacterial and antifungal activity by disk diffusion assay and minimum inhibitory concentration by the broth microdilution method against gram-positive and gram-negative strains of bacteria as well as fungus strains. The investigation into antimicrobial screening revealed that all the compounds were found to be potent antimicrobial agents. After calculating likeness drug properties of the compounds by Prediction of Activity Spectra for Substances software, ADMET-related descriptors were computed to predict the pharmacokinetic properties for the active and bioavailable compounds by discovery studio 2.5. Molecular docking studies have been performed on PDF of E. coli and CYP 450-14DM of C. albicans to understand the mode of binding of the molecules in the active site of the receptor. Compounds (2-amino-5-(carbomethoxyoctyl)-1,3-oxazoline, 2-amino-5-(carbomethoxyoctyl)-1,3-thiazoline and 2-amino-4-pentyl-5-[(8'R)-8' hydroxy (carbomethoxydecyl)-1,3-oxazoline) showed excellent antimicrobial activity nearly equivalent to the control compounds and compounds, 2-amino-4-octyl-5-(carbomethoxyheptyl)-1,3-oxazolin, 2-amino-4-(2'R)(2'-hydroxy octyl)-5-(carbomethoxyheptyl)-1,3-oxazoline and 2-amino-4-pentyl-5-[(8'R)-8'-hydroxy(carbomethoxy decyl)-1,3-oxazolineshowed vasodilation and antihypertensive properties. Furthermore, a computational analysis of physicochemical parameters revealed that the most of the compounds possessed drug-like attributes. Using Bioinformatics approach, we found a correlation
Choongsang Cho; Sangkeun Lee
2016-04-01
Image smoothing has been used for image segmentation, image reconstruction, object classification, and 3D content generation. Several smoothing approaches have been used at the pre-processing step to retain the critical edge, while removing noise and small details. However, they have limited performance, especially in removing small details and smoothing discrete regions. Therefore, to provide fast and accurate smoothing, we propose an effective scheme that uses a weighted combination of the gradient, Laplacian, and diagonal derivatives of a smoothed image. In addition, to reduce computational complexity, we designed and implemented a parallel processing structure for the proposed scheme on a graphics processing unit (GPU). For an objective evaluation of the smoothing performance, the images were linearly quantized into several layers to generate experimental images, and the quantized images were smoothed using several methods for reconstructing the smoothly changed shape and intensity of the original image. Experimental results showed that the proposed scheme has higher objective scores and better successful smoothing performance than similar schemes, while preserving and removing critical and trivial details, respectively. For computational complexity, the proposed smoothing scheme running on a GPU provided 18 and 16 times lower complexity than the proposed smoothing scheme running on a CPU and the L0-based smoothing scheme, respectively. In addition, a simple noise reduction test was conducted to show the characteristics of the proposed approach; it reported that the presented algorithm outperforms the state-of-the art algorithms by more than 5.4 dB. Therefore, we believe that the proposed scheme can be a useful tool for efficient image smoothing.
Relativistic thermodynamics of Fluids. l
Havas, P.; Swenson, R.J.
1979-01-01
In 1953, Stueckelberg and Wanders derived the basic laws of relativistic linear nonequilibrium thermodynamics for chemically reacting fluids from the relativistic local conservation laws for energy-momentum and the local laws of production of substances and of nonnegative entropy production by the requirement that the corresponding currents (assumed to depend linearly on the derivatives of the state variables) should not be independent. Generalizing their method, we determine the most general allowed form of the energy-momentum tensor T/sup alphabeta/ and of the corresponding rate of entropy production under the same restriction on the currents. The problem of expressing this rate in terms of thermodynamic forces and fluxes is discussed in detail; it is shown that the number of independent forces is not uniquely determined by the theory, and seven possibilities are explored. A number of possible new cross effects are found, all of which persist in the Newtonian (low-velocity) limit. The treatment of chemical reactions is incorporated into the formalism in a consistent manner, resulting in a derivation of the law for rate of production, and in relating this law to transport processes differently than suggested previously. The Newtonian limit is discussed in detail to establish the physical interpretation of the various terms of T/sup alphabeta/. In this limit, the interpretation hinges on that of the velocity field characterizing the fluid. If it is identified with the average matter velocity following from a consideration of the number densities, the usual local conservation laws of Newtonian nonequilibrium thermodynamics are obtained, including that of mass. However, a slightly different identification allows conversion of mass into energy even in this limit, and thus a macroscopic treatment of nuclear or elementary particle reactions. The relation of our results to previous work is discussed in some detail
Thermodynamical stability for a perfect fluid
Fang, Xiongjun; Jing, Jiliang [Hunan Normal University, Department of Physics, Key Laboratory of Low Dimensional Quantum Structures and Quantum Control of Ministry of Education, and Synergetic Innovation Center for Quantum Effects and Applications, Changsha, Hunan (China); He, Xiaokai [Hunan Normal University, Department of Physics, Key Laboratory of Low Dimensional Quantum Structures and Quantum Control of Ministry of Education, and Synergetic Innovation Center for Quantum Effects and Applications, Changsha, Hunan (China); Hunan First Normal University, School of Mathematics and Computational Science, Changsha (China)
2017-12-15
According to the maximum entropy principle, it has been proved that the gravitational field equations could be derived by the extrema of the total entropy for a perfect fluid, which implies that thermodynamic relations contain information as regards gravity. In this manuscript, we obtain a criterion for the thermodynamical stability of an adiabatic, self-gravitating perfect fluid system by the second variation of the total entropy. We show, for Einstein's gravity with spherical symmetry spacetime, that the criterion is consistent with that for the dynamical stability derived by Chandrasekhar and Wald. We also find that the criterion could be applied to cases without spherical symmetry, or under general perturbations. The result further establishes the connection between thermodynamics and gravity. (orig.)
Thermodynamic laws and equipartition theorem in relativistic Brownian motion.
Koide, T; Kodama, T
2011-06-01
We extend the stochastic energetics to a relativistic system. The thermodynamic laws and equipartition theorem are discussed for a relativistic Brownian particle and the first and the second law of thermodynamics in this formalism are derived. The relation between the relativistic equipartition relation and the rate of heat transfer is discussed in the relativistic case together with the nature of the noise term.
Granet, Irving
2014-01-01
Fundamental ConceptsIntroductionThermodynamic SystemsTemperatureForce and MassElementary Kinetic Theory of GasesPressureReviewKey TermsEquations Developed in This ChapterQuestionsProblemsWork, Energy, and HeatIntroductionWorkEnergyInternal EnergyPotential EnergyKinetic EnergyHeatFlow WorkNonflow WorkReviewKey TermsEquations Developed in This ChapterQuestionsProblemsFirst Law of ThermodynamicsIntroductionFirst Law of ThermodynamicsNonflow SystemSteady-Flow SystemApplications of First Law of ThermodynamicsReviewKey TermsEquations Developed in This ChapterQuestionsProblemsThe Second Law of ThermodynamicsIntroductionReversibility-Second Law of ThermodynamicsThe Carnot CycleEntropyReviewKey TermsEquations Developed in This ChapterQuestionsProblemsProperties of Liquids and GasesIntroductionLiquids and VaporsThermodynamic Properties of SteamComputerized PropertiesThermodynamic DiagramsProcessesReviewKey TermsEquations Developed in This ChapterQuestionsProblemsThe Ideal GasIntroductionBasic ConsiderationsSpecific Hea...
The thermodynamic solar energy
Rivoire, B.
2002-04-01
The thermodynamic solar energy is the technic in the whole aiming to transform the solar radiation energy in high temperature heat and then in mechanical energy by a thermodynamic cycle. These technic are most often at an experimental scale. This paper describes and analyzes the research programs developed in the advanced countries, since 1980. (A.L.B.)
Quasiparticles and thermodynamical consistency
Shanenko, A.A.; Biro, T.S.; Toneev, V.D.
2003-01-01
A brief and simple introduction into the problem of the thermodynamical consistency is given. The thermodynamical consistency relations, which should be taken into account under constructing a quasiparticle model, are found in a general manner from the finite-temperature extension of the Hellmann-Feynman theorem. Restrictions following from these relations are illustrated by simple physical examples. (author)
Equilibrium thermodynamics - Callen's postulational approach
Jongschaap, R.J.J.; Öttinger, Hans Christian
2001-01-01
In order to provide the background for nonequilibrium thermodynamics, we outline the fundamentals of equilibrium thermodynamics. Equilibrium thermodynamics must not only be obtained as a special case of any acceptable nonequilibrium generalization but, through its shining example, it also elucidates
Applied chemical engineering thermodynamics
Tassios, Dimitrios P
1993-01-01
Applied Chemical Engineering Thermodynamics provides the undergraduate and graduate student of chemical engineering with the basic knowledge, the methodology and the references he needs to apply it in industrial practice. Thus, in addition to the classical topics of the laws of thermodynamics,pure component and mixture thermodynamic properties as well as phase and chemical equilibria the reader will find: - history of thermodynamics - energy conservation - internmolecular forces and molecular thermodynamics - cubic equations of state - statistical mechanics. A great number of calculated problems with solutions and an appendix with numerous tables of numbers of practical importance are extremely helpful for applied calculations. The computer programs on the included disk help the student to become familiar with the typical methods used in industry for volumetric and vapor-liquid equilibria calculations.
Thermodynamics an engineering approach
Cengel, Yunus A
2014-01-01
Thermodynamics, An Engineering Approach, eighth edition, covers the basic principles of thermodynamics while presenting a wealth of real-world engineering examples so students get a feel for how thermodynamics is applied in engineering practice. This text helps students develop an intuitive understanding by emphasizing the physics and physical arguments. Cengel and Boles explore the various facets of thermodynamics through careful explanations of concepts and use of numerous practical examples and figures, having students develop necessary skills to bridge the gap between knowledge and the confidence to properly apply their knowledge. McGraw-Hill is proud to offer Connect with the eighth edition of Cengel/Boles, Thermodynamics, An Engineering Approach. This innovative and powerful new system helps your students learn more efficiently and gives you the ability to assign homework problems simply and easily. Problems are graded automatically, and the results are recorded immediately. Track individual stude...
Thermodynamic estimation: Ionic materials
Glasser, Leslie
2013-01-01
Thermodynamics establishes equilibrium relations among thermodynamic parameters (“properties”) and delineates the effects of variation of the thermodynamic functions (typically temperature and pressure) on those parameters. However, classical thermodynamics does not provide values for the necessary thermodynamic properties, which must be established by extra-thermodynamic means such as experiment, theoretical calculation, or empirical estimation. While many values may be found in the numerous collected tables in the literature, these are necessarily incomplete because either the experimental measurements have not been made or the materials may be hypothetical. The current paper presents a number of simple and relible estimation methods for thermodynamic properties, principally for ionic materials. The results may also be used as a check for obvious errors in published values. The estimation methods described are typically based on addition of properties of individual ions, or sums of properties of neutral ion groups (such as “double” salts, in the Simple Salt Approximation), or based upon correlations such as with formula unit volumes (Volume-Based Thermodynamics). - Graphical abstract: Thermodynamic properties of ionic materials may be readily estimated by summation of the properties of individual ions, by summation of the properties of ‘double salts’, and by correlation with formula volume. Such estimates may fill gaps in the literature, and may also be used as checks of published values. This simplicity arises from exploitation of the fact that repulsive energy terms are of short range and very similar across materials, while coulombic interactions provide a very large component of the attractive energy in ionic systems. Display Omitted - Highlights: • Estimation methods for thermodynamic properties of ionic materials are introduced. • Methods are based on summation of single ions, multiple salts, and correlations. • Heat capacity, entropy
Thermodynamic properties of sea air
R. Feistel
2010-02-01
Full Text Available Very accurate thermodynamic potential functions are available for fluid water, ice, seawater and humid air covering wide ranges of temperature and pressure conditions. They permit the consistent computation of all equilibrium properties as, for example, required for coupled atmosphere-ocean models or the analysis of observational or experimental data. With the exception of humid air, these potential functions are already formulated as international standards released by the International Association for the Properties of Water and Steam (IAPWS, and have been adopted in 2009 for oceanography by IOC/UNESCO.
In this paper, we derive a collection of formulas for important quantities expressed in terms of the thermodynamic potentials, valid for typical phase transitions and composite systems of humid air and water/ice/seawater. Particular attention is given to equilibria between seawater and humid air, referred to as "sea air" here. In a related initiative, these formulas will soon be implemented in a source-code library for easy practical use. The library is primarily aimed at oceanographic applications but will be relevant to air-sea interaction and meteorology as well.
The formulas provided are valid for any consistent set of suitable thermodynamic potential functions. Here we adopt potential functions from previous publications in which they are constructed from theoretical laws and empirical data; they are briefly summarized in the appendix. The formulas make use of the full accuracy of these thermodynamic potentials, without additional approximations or empirical coefficients. They are expressed in the temperature scale ITS-90 and the 2008 Reference-Composition Salinity Scale.
Thermodynamics of small systems two volumes bound as one
Hill, Terrel L
1994-01-01
This authoritative summary of the basics of small system, or nonmacroscopic, thermodynamics was written by the field's founder. Originally published in two volumes, the text remains essential reading in an area in which the practical aim is to derive equations that provide interconnections among various thermodynamic functions. Part I introduces the basics of small system thermodynamics, exploring environmental variables, noting throughout the ways in which small thermodynamic systems differ operationally from macroscopic systems. Part II explores binding on macromolecules and aggregation, completes the discussion of environmental variables, and includes brief summaries of certain special topics, including electric and magnetic fields, spherical drops and bubbles, and polydisperse systems.
Optimization of powered Stirling heat engine with finite speed thermodynamics
Ahmadi, Mohammad H.; Ahmadi, Mohammad Ali; Pourfayaz, Fathollah; Bidi, Mokhtar; Hosseinzade, Hadi; Feidt, Michel
2016-01-01
Highlights: • Based on finite speed method and direct method, the optimal performance is investigated. • The effects of major parameters on the optimal performance are investigated. • The accuracy of the results was compared with previous works. - Abstract: Popular thermodynamic analyses including finite time thermodynamic analysis was lately developed based upon external irreversibilities while internal irreversibilities such as friction, pressure drop and entropy generation were not considered. The aforementioned disadvantage reduces the reliability of the finite time thermodynamic analysis in the design of an accurate Stirling engine model. Consequently, the finite time thermodynamic analysis could not sufficiently satisfy researchers for implementing in design and optimization issues. In this study, finite speed thermodynamic analysis was employed instead of finite time thermodynamic analysis for studying Stirling heat engine. The finite speed thermodynamic analysis approach is based on the first law of thermodynamics for a closed system with finite speed and the direct method. The effects of heat source temperature, regenerating effectiveness, volumetric ratio, piston stroke as well as rotational speed are included in the analysis. Moreover, maximum output power in optimal rotational speed was calculated while pressure losses in the Stirling engine were systematically considered. The result reveals the accuracy and the reliability of the finite speed thermodynamic method in thermodynamic analysis of Stirling heat engine. The outcomes can help researchers in the design of an appropriate and efficient Stirling engine.
Thermodynamic properties of aqueous hydroxyurea solutions
Kumar, Shekhar; Sinha, Pranay Kumar; Kamachi Mudali, U.; Natarajan, R.
2011-01-01
Hydroxyurea is a novel reductant for uranium-plutonium separation in PUREX process. Little information on its thermophysical properties is available in published literature. In this work, its contributions to aqueous density, apparent molal volume, vapour pressure and thermodynamic water activity values, derived from in-house experiments, are reported. (author)
A thermodynamic model of sliding friction
Lasse Makkonen
2012-03-01
Full Text Available A first principles thermodynamic model of sliding friction is derived. The model predictions are in agreement with the observed friction laws both in macro- and nanoscale. When applied to calculating the friction coefficient the model provides a quantitative agreement with recent atomic force microscopy measurements on a number of materials.
Wu, Qing-Xi; Lin, Dong-Qiang; Yao, Shan-Jing
2014-01-01
Chitosan, the cationic polysaccharide derived from the natural polysaccharide chitin, has been studied as a biomaterial for more than two decades. As a polycationic polymer with favorable properties, it has been widely used to form polyelectrolyte complexes with polyanions for various applications in drug delivery fields. In recent years, a growing number of studies have been focused on the preparation of polyelectrolyte complexes based on chitosan and its water soluble derivatives. They have...
Wang R
2018-05-01
Full Text Available Rui Wang,1,* Yang Li,2,* Xu-Dong Huai,3 Qing-Xuan Zheng,1 Wei Wang,1 Hui-Jing Li,4 Qi-Yong Huai1 1Marine College, Shandong University, Weihai, China; 2Zhong Yuan Academy of Biological Medicine, Liaocheng People’s Hospital/Affiliated Liaocheng Hospital, Taishan Medical University, Liaocheng, China; 3School of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, China; 4School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, China *These authors contributed equally to this work Background: The structural modification of natural products with the aim to improve the anticancer activity is a popular current research direction. The pentacyclic triterpenoid compounds oleanolic acid (OA and glycyrrhetinic acid (GA are distributed widely in nature. Methods: In this study, various oleanolic acids and glycyrrhetinic acids were designed and synthesized by using the combination principle. The in vitro anticancer activities of new OA and GA derivatives were tested by the 3-(4, 5-dimethylthiazol-2-yl-2, 5-diphenyltetrazolium bromide (MTT method with SGC-7901 (gastric cancer, MCF-7 (breast cancer, Eca-109 (esophageal cancer, HeLa (cervical cancer, Hep-G2 (hepatoma cancer and HSF (normal human skin fibroblast cells. Results and conclusion: The screening results showed that the compound 3m presented the highest inhibitory activities against SGC-7901, MCF-7 and Eca-109 cell lines with IC50 values of 7.57±0.64 µM, 5.51±0.41 µM and 5.03±0.56 µM, respectively. In addition, this compound also showed effective inhibition of Hep-G2 cells with an IC50 value of 4.11±0.73 µM. Moreover, compound 5b showed the strongest inhibitory activity against Hep-G2 cells with an IC50 value of 3.74±0.18 µM and compound 3l showed strong selective inhibition of the HeLa cells with the lowest IC50 value of 4.32±0.89 µM. A series of pharmacology experiments indicated that compound 5b could induce Hep-G2
Asfaram, Arash; Ghaedi, Mehrorang; Ghezelbash, Gholam Reza; Pepe, Francesco
2017-05-01
Simultaneous biosorption of malachite green (MG) and crystal violet (CV) on biosorbent Yarrowia lipolytica ISF7 was studied. An appropriate derivative spectrophotometry technique was used to evaluate the concentration of each dye in binary solutions, despite significant interferences in visible light absorbances. The effects of pH, temperature, growth time, initial MG and CV concentration in batch experiments were assessed using Design of Experiment (DOE) according to central composite second order response surface methodology (RSM). The analysis showed that the greatest biosorption efficiency (>99% for both dyes) can be obtained at pH 7.0, T=28°C, 24h mixing and 20mgL -1 initial concentrations for both MG and CV dyes. The quadratic constructed equation ability for fitting experimental data is judged based on criterions like R 2 values, significant p and lack-of-fit value strongly confirm its high adequacy and applicability for prediction of revel behavior of the system under study. The proposed model showed very high correlation coefficients (R 2 =0.9997 for CV and R 2 =0.9989 for MG), while supported by closeness of predicted and experimental value. A kinetic analysis was carried out, showing that for both dyes a pseudo-second order kinetic model adequately describes the available data. The Langmuir isotherm model in single and binary components has better performance for description of dyes biosorption with maximum monolayer biosorption capacity of 59.4 and 62.7mgg -1 in single component and 46.4 and 50.0mgg -1 for CV and MB in binary components, respectively. The surface structure of biosorbents and the possible biosorbents-dyes interactions between were also evaluated by Fourier transform infrared (FT-IR) spectroscopy and scanning electron microscopy (SEM). The values of thermodynamic parameters including ΔG° and ΔH° strongly confirm which method is spontaneous and endothermic. Copyright © 2017. Published by Elsevier Inc.
Thermodynamic properties of potassium chloride aqueous solutions
Zezin, Denis; Driesner, Thomas
2017-04-01
Potassium chloride is a ubiquitous salt in natural fluids, being the second most abundant dissolved salt in many geological aqueous solutions after sodium chloride. It is a simple solute and strong electrolyte easily dissociating in water, however the thermodynamic properties of KCl aqueous solutions were never correlated with sufficient accuracy for a wide range of physicochemical conditions. In this communication we propose a set of parameters for a Pitzer-type model which allows calculation of all necessary thermodynamic properties of KCl solution, namely excess Gibbs free energy and derived activity coefficient, apparent molar enthalpy, heat capacity and volume, as well as osmotic coefficient and activity of water in solutions. The system KCl-water is one of the best studied aqueous systems containing electrolytes. Although extensive experimental data were collected for thermodynamic properties of these solutions over the years, the accurate volumetric data became available only recently, thus making possible a complete thermodynamic formulation including a pressure dependence of excess Gibbs free energy and derived properties of the KCl-water liquids. Our proposed model is intended for calculation of major thermodynamic properties of KCl aqueous solutions at temperatures ranging from freezing point of a solution to 623 K, pressures ranging from saturated water vapor up to 150 MPa, and concentrations up to the salt saturation. This parameterized model will be further implemented in geochemical software packages and can facilitate the calculation of aqueous equilibrium for reactive transport codes.
Thermodynamics of Inozemtsev's elliptic spin chain
Klabbers, Rob
2016-01-01
We study the thermodynamic behaviour of Inozemtsev's long-range elliptic spin chain using the Bethe ansatz equations describing the spectrum of the model in the infinite-length limit. We classify all solutions of these equations in that limit and argue which of these solutions determine the spectrum in the thermodynamic limit. Interestingly, some of the solutions are not selfconjugate, which puts the model in sharp contrast to one of the model's limiting cases, the Heisenberg XXX spin chain. Invoking the string hypothesis we derive the thermodynamic Bethe ansatz equations (TBA-equations) from which we determine the Helmholtz free energy in thermodynamic equilibrium and derive the associated Y-system. We corroborate our results by comparing numerical solutions of the TBA-equations to a direct computation of the free energy for the finite-length hamiltonian. In addition we confirm numerically the interesting conjecture put forward by Finkel and González-López that the original and supersymmetric versions of Inozemtsev's elliptic spin chain are equivalent in the thermodynamic limit.
Thermodynamics of quasi-topological cosmology
Dehghani, M.H.; Sheykhi, A.; Dehghani, R.
2013-01-01
In this Letter, we study thermodynamical properties of the apparent horizon in a universe governed by quasi-topological gravity. Our aim is twofold. First, by using the variational method we derive the general form of Friedmann equation in quasi-topological gravity. Then, by applying the first law of thermodynamics on the apparent horizon, after using the entropy expression associated with the black hole horizon in quasi-topological gravity, and replacing the horizon radius, r + , with the apparent horizon radius, r -tilde A , we derive the corresponding Friedmann equation in quasi-topological gravity. We find that these two different approaches yield the same result which shows the profound connection between the first law of thermodynamics and the gravitational field equations of quasi-topological gravity. We also study the validity of the generalized second law of thermodynamics in quasi-topological cosmology. We find that, with the assumption of the local equilibrium hypothesis, the generalized second law of thermodynamics is fulfilled for the universe enveloped by the apparent horizon for the late time cosmology
Mansson, B.A.
1990-01-01
Economics, as the social science most concerned with the use and distribution of natural resources, must start to make use of the knowledge at hand in the natural sciences about such resources. In this, thermodynamics is an essential part. In a physicists terminology, human economic activity may be described as a dissipative system which flourishes by transforming and exchanging resources, goods and services. All this involves complex networks of flows of energy and materials. This implies that thermodynamics, the physical theory of energy and materials flows, must have implications for economics. On another level, thermodynamics has been recognized as a physical theory of value, with value concepts similar to those of economic theory. This paper discusses some general aspects of the significance of non-equilibrium thermodynamics for economics. The role of exergy, probably the most important of the physical measures of value, is elucidated. Two examples of integration of thermodynamics with economic theory are reviewed. First, a simple model of a steady-state production system is sued to illustrate the effects of thermodynamic process constraints. Second, the framework of a simple macroeconomic growth model is used to illustrate how some thermodynamic limitations may be integrated in macroeconomic theory
Quantum thermodynamics of nanoscale steady states far from equilibrium
Taniguchi, Nobuhiko
2018-04-01
We develop an exact quantum thermodynamic description for a noninteracting nanoscale steady state that couples strongly with multiple reservoirs. We demonstrate that there exists a steady-state extension of the thermodynamic function that correctly accounts for the multiterminal Landauer-Büttiker formula of quantum transport of charge, energy, or heat via the nonequilibrium thermodynamic relations. Its explicit form is obtained for a single bosonic or fermionic level in the wide-band limit, and corresponding thermodynamic forces (affinities) are identified. Nonlinear generalization of the Onsager reciprocity relations are derived. We suggest that the steady-state thermodynamic function is also capable of characterizing the heat current fluctuations of the critical transport where the thermal fluctuations dominate. Also, the suggested nonequilibrium steady-state thermodynamic relations seemingly persist for a spin-degenerate single level with local interaction.
Computer program for calculation of ideal gas thermodynamic data
Gordon, S.; Mc Bride, B. J.
1968-01-01
Computer program calculates ideal gas thermodynamic properties for any species for which molecular constant data is available. Partial functions and derivatives from formulas based on statistical mechanics are provided by the program which is written in FORTRAN 4 and MAP.
Buchholz, Hannes; Emel'yanenko, Vladimir N; Lorenz, Heike; Verevkin, Sergey P
2016-05-01
A detailed experimental analysis of the phase transition thermodynamics of (S)-naproxen and (RS)-naproxen is reported. Vapor pressures were determined experimentally via the transpiration method. Sublimation enthalpies were obtained from the vapor pressures and from independent TGA measurements. Thermodynamics of fusion which have been well-studied in the literature were systematically remeasured by DSC. Both sublimation and fusion enthalpies were adjusted to one reference temperature, T = 298 K, using measured heat capacities of the solid and the melt phase by DSC. Average values from the measurements and from literature data were suggested for the sublimation and fusion enthalpies. In order to prove consistency of the proposed values the vaporization enthalpies obtained by combination of both were compared to vaporization enthalpies obtained by the group-additivity method and the correlation-gas chromatography method. The importance of reliable and precise phase transition data for thermochemical calculations such as the prediction of solid/liquid phase behaviour of chiral compounds is highlighted. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
Advanced thermodynamics engineering
Annamalai, Kalyan; Jog, Milind A
2011-01-01
Thermolab Excel-Based Software for Thermodynamic Properties and Flame Temperatures of Fuels IntroductionImportance, Significance and LimitationsReview of ThermodynamicsMathematical BackgroundOverview of Microscopic/NanothermodynamicsSummaryAppendix: Stokes and Gauss Theorems First Law of ThermodynamicsZeroth LawFirst Law for a Closed SystemQuasi Equilibrium (QE) and Nonquasi-equilibrium (NQE) ProcessesEnthalpy and First LawAdiabatic Reversible Process for Ideal Gas with Constant Specific HeatsFirst Law for an Open SystemApplications of First Law for an Open SystemIntegral and Differential Form
REA, The Editors of
2012-01-01
REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Thermodynamics I includes review of properties and states of a pure substance, work and heat, energy and the first law of thermodynamics, entropy and the second law of thermodynamics
Non-equilibrium thermodynamics
De Groot, Sybren Ruurds
1984-01-01
The study of thermodynamics is especially timely today, as its concepts are being applied to problems in biology, biochemistry, electrochemistry, and engineering. This book treats irreversible processes and phenomena - non-equilibrium thermodynamics.S. R. de Groot and P. Mazur, Professors of Theoretical Physics, present a comprehensive and insightful survey of the foundations of the field, providing the only complete discussion of the fluctuating linear theory of irreversible thermodynamics. The application covers a wide range of topics: the theory of diffusion and heat conduction, fluid dyn
Thermodynamics of quantum strings
Morgan, M J
1994-01-01
A statistical mechanical analysis of an ideal gas of non-relativistic quantum strings is presented, in which the thermodynamic properties of the string gas are calculated from a canonical partition function. This toy model enables students to gain insight into the thermodynamics of a simple 'quantum field' theory, and provides a useful pedagogical introduction to the more complicated relativistic string theories. A review is also given of the thermodynamics of the open bosonic string gas and the type I (open) superstring gas. (author)
Calculation of thermodynamic properties using the random-phase approximation: alpha-N2
Jansen, A.P.J.; Schoorl, R.
1988-01-01
The random-phase approximation (RPA) for molecular crystals is extended in order to calculate thermodynamic properties. A recursion formula for thermodynamic averages of products of mean-field excitation and deexcitation operators is derived. With this formula the thermodynamic average of any
Hughesman, Curtis; Fakhfakh, Kareem; Bidshahri, Roza; Lund, H Louise; Haynes, Charles
2015-02-17
Advances in real-time polymerase chain reaction (PCR), as well as the emergence of digital PCR (dPCR) and useful modified nucleotide chemistries, including locked nucleic acids (LNAs), have created the potential to improve and expand clinical applications of PCR through their ability to better quantify and differentiate amplification products, but fully realizing this potential will require robust methods for designing dual-labeled hydrolysis probes and predicting their hybridization thermodynamics as a function of their sequence, chemistry, and template complementarity. We present here a nearest-neighbor thermodynamic model that accurately predicts the melting thermodynamics of a short oligonucleotide duplexed either to its perfect complement or to a template containing mismatched base pairs. The model may be applied to pure-DNA duplexes or to duplexes for which one strand contains any number and pattern of LNA substitutions. Perturbations to duplex stability arising from mismatched DNA:DNA or LNA:DNA base pairs are treated at the Gibbs energy level to maintain statistical significance in the regressed model parameters. This approach, when combined with the model's accounting of the temperature dependencies of the melting enthalpy and entropy, permits accurate prediction of T(m) values for pure-DNA homoduplexes or LNA-substituted heteroduplexes containing one or two independent mismatched base pairs. Terms accounting for changes in solution conditions and terminal addition of fluorescent dyes and quenchers are then introduced so that the model may be used to accurately predict and thereby tailor the T(m) of a pure-DNA or LNA-substituted hydrolysis probe when duplexed either to its perfect-match template or to a template harboring a noncomplementary base. The model, which builds on classic nearest-neighbor thermodynamics, should therefore be of use to clinicians and biologists who require probes that distinguish and quantify two closely related alleles in either a
Thermodynamical description of excited nuclei
Bonche, P.
1989-01-01
In heavy ion collisions it has been possible to obtain composite systems at rather high excitation energies corresponding to temperatures of several MeV. The theoretical studies of these systems are based on concepts borrowed from thermodynamics or statistical physics, such as the temperature. In these lectures, we present the concepts of statistical physics which are involved in the physics of heavy ion as they are produced nowadays in the laboratory and also during the final stage of a supernova collapse. We do not attempt to describe the reaction mechanisms which yield such nuclear systems nor their decay by evaporation or fragmentation. We shall only study their static properties. The content of these lectures is organized in four main sections. The first one gives the basic features of statistical physics and thermodynamics necessary to understand quantum mechanics at finite temperature. In the second one, we present a study of the liquid-gas phase transition in nuclear physics. A phenomenological approach of the stability of hot nuclei follows. The microscopic point of view is proposed in the third part. Starting from the basic concepts derived in the first part, it provides a description of excited or hot nuclei which confirms the qualitative results of the second part. Furthermore it gives a full description of most properties of these nuclei as a function of temperature. Finally in the last part, a microscopic derivation of the equation of state of nuclear matter is proposed to study the collapse of a supernova core
Qing-Xi Wu
2014-12-01
Full Text Available Chitosan, the cationic polysaccharide derived from the natural polysaccharide chitin, has been studied as a biomaterial for more than two decades. As a polycationic polymer with favorable properties, it has been widely used to form polyelectrolyte complexes with polyanions for various applications in drug delivery fields. In recent years, a growing number of studies have been focused on the preparation of polyelectrolyte complexes based on chitosan and its water soluble derivatives. They have been considered well-suited as biomaterials for a number of vital drug carriers with targeted/controlled release profiles, e.g., films, capsules, microcapsules. In this work, an overview highlights not only the favorable properties of chitosan and its water soluble derivatives but also the good performance of the polyelectrolyte complexes produced based on chitosan. Their various types of applications as drug carriers are reviewed in detail.
Wu, Qing-Xi; Lin, Dong-Qiang; Yao, Shan-Jing
2014-12-19
Chitosan, the cationic polysaccharide derived from the natural polysaccharide chitin, has been studied as a biomaterial for more than two decades. As a polycationic polymer with favorable properties, it has been widely used to form polyelectrolyte complexes with polyanions for various applications in drug delivery fields. In recent years, a growing number of studies have been focused on the preparation of polyelectrolyte complexes based on chitosan and its water soluble derivatives. They have been considered well-suited as biomaterials for a number of vital drug carriers with targeted/controlled release profiles, e.g., films, capsules, microcapsules. In this work, an overview highlights not only the favorable properties of chitosan and its water soluble derivatives but also the good performance of the polyelectrolyte complexes produced based on chitosan. Their various types of applications as drug carriers are reviewed in detail.
Wu, Qing-Xi; Lin, Dong-Qiang; Yao, Shan-Jing
2014-01-01
Chitosan, the cationic polysaccharide derived from the natural polysaccharide chitin, has been studied as a biomaterial for more than two decades. As a polycationic polymer with favorable properties, it has been widely used to form polyelectrolyte complexes with polyanions for various applications in drug delivery fields. In recent years, a growing number of studies have been focused on the preparation of polyelectrolyte complexes based on chitosan and its water soluble derivatives. They have been considered well-suited as biomaterials for a number of vital drug carriers with targeted/controlled release profiles, e.g., films, capsules, microcapsules. In this work, an overview highlights not only the favorable properties of chitosan and its water soluble derivatives but also the good performance of the polyelectrolyte complexes produced based on chitosan. Their various types of applications as drug carriers are reviewed in detail. PMID:25532565
Parallel calculation of sensitivity derivatives for aircraft design using automatic differentiation
Bischof, C.H.; Knauff, T.L. Jr. [Argonne National Lab., IL (United States); Green, L.L.; Haigler, K.J. [National Aeronautics and Space Administration, Hampton, VA (United States). Langley Research Center
1994-01-01
Realistic multidisciplinary design optimization (MDO) of advanced aircraft using state-of-the-art computers is an extremely challenging problem from both the physical modelling and computer science points of view. In order to produce an efficient aircraft design, many trade-offs must be made among the various physical design variables. Similarly, in order to produce an efficient design scheme, many trade-offs must be made among the various MDO implementation options. In this paper, we examine the effects of vectorization and coarse-grained parallelization on the SD calculation using a representative example taken from a transonic transport design problem.
Design and synthesis of an indol derivative as antibacterial agent against Staphylococcus aureus.
Lenin, Hau-Heredia; Lauro, Figueroa-Valverde; Marcela, Rosas-Nexticapa; Socorro, Herrera-Meza; Maria, López-Ramos; Francisco, Díaz-Cedillo; Elodia, García-Cervera; Eduardo, Pool-Gómez; Josefa, Paat-Estrella; Regina, Cauich-Carrillo; Saidy, Euan-Hau
2017-10-01
Several indole derivatives with antibacterial activity have been prepared using different protocols; however, some require special reagents and conditions. The aim of this study involved the synthesis of some indole derivatives using estrone and OTBS-estrone as chemical tools. The synthesis of the indole derivatives involves reactions such as follows: (1) synthesis of two indol derivatives ( 4 or 5 ) by reaction of estrone or OTBS-estrone with phenylhydrazine in medium acid; (2) reaction of 4 or 5 with 6-cloro-1-hexyne in medium basic to form two hexynyl-indol ( 7 or 8 ); (3) preparation of indol-propargylic alcohol derivatives ( 10 or 11 ) by reaction of benzaldehyde with 7 or 8 in medium basic; (4) synthesis of indol-aldehydes ( 12 or 13 ) via oxidation of 10 or 11 with DMSO; (5) synthesis of indeno-indol-carbaldehyde ( 15 or 16 ) via alkynylation/cyclization of 12 or 13 with hexyne in presence of copper(II); (6) preparation indeno-indol-carbaldehyde complex ( 19 or 20 ) via alkynylation/cyclization of 12 or 13 with 1-(hex-5-yn-1-yl)-2-phenyl-1 H -imidazole. The antibacterial effect exerted by the indol-steroid derivatives against Streptococcus pneumoniae and Staphylococcus aureus bacteria was evaluated using dilution method and the minimum inhibitory concentration (MIC). The results showed that only the compound 19 inhibit the growth bacterial of S. aureus . In conclusion, these data indicate that antibacterial activity of 19 can be due mainly to functional groups involved in the chemical structure in comparison with the compounds studied.
Changjiang Xu
2016-01-01
Full Text Available Design flood hydrograph (DFH for a dam is the flood of suitable probability and magnitude adopted to ensure safety of the dam in accordance with appropriate design standards. Estimated quantiles of peak discharge and flood volumes are necessary for deriving the DFH, which are mutually correlated and need to be described by multivariate analysis methods. The joint probability distributions of peak discharge and flood volumes were established using copula functions. Then the general formulae of conditional most likely composition (CMLC and conditional expectation composition (CEC methods that consider the inherent relationship between flood peak and volumes were derived for estimating DFH. The Danjiangkou reservoir in Hanjiang basin was selected as a case study. The design values of flood volumes and 90% confidence intervals with different peak discharges were estimated by the proposed methods. The performance of CMLC and CEC methods was also compared with conventional flood frequency analysis, and the results show that CMLC method performs best for both bivariate and trivariate distributions which has the smallest relative error and root mean square error. The proposed CMLC method has strong statistical basis with unique design flood composition scheme and provides an alternative way for deriving DFH.
An open-source thermodynamic software library
Ritschel, Tobias Kasper Skovborg; Gaspar, Jozsef; Capolei, Andrea
This is a technical report which accompanies the article ”An open-source thermodynamic software library” which describes an efficient Matlab and C implementation for evaluation of thermodynamic properties. In this technical report we present the model equations, that are also presented in the paper......, together with a full set of first and second order derivatives with respect to temperature and pressure, and in cases where applicable, also with respect to mole numbers. The library is based on parameters and correlations from the DIPPR database and the Peng-Robinson and the Soave-Redlich-Kwong equations...
Elements of chemical thermodynamics
Nash, Leonard K
2005-01-01
This survey of purely thermal data in calculating the position of equilibrium in a chemical reaction highlights the physical content of thermodynamics, as distinct from purely mathematical aspects. 1970 edition.
Elements of statistical thermodynamics
Nash, Leonard K
2006-01-01
Encompassing essentially all aspects of statistical mechanics that appear in undergraduate texts, this concise, elementary treatment shows how an atomic-molecular perspective yields new insights into macroscopic thermodynamics. 1974 edition.
Electrochemical thermodynamic measurement system
Reynier, Yvan [Meylan, FR; Yazami, Rachid [Los Angeles, CA; Fultz, Brent T [Pasadena, CA
2009-09-29
The present invention provides systems and methods for accurately characterizing thermodynamic and materials properties of electrodes and electrochemical energy storage and conversion systems. Systems and methods of the present invention are configured for simultaneously collecting a suite of measurements characterizing a plurality of interconnected electrochemical and thermodynamic parameters relating to the electrode reaction state of advancement, voltage and temperature. Enhanced sensitivity provided by the present methods and systems combined with measurement conditions that reflect thermodynamically stabilized electrode conditions allow very accurate measurement of thermodynamic parameters, including state functions such as the Gibbs free energy, enthalpy and entropy of electrode/electrochemical cell reactions, that enable prediction of important performance attributes of electrode materials and electrochemical systems, such as the energy, power density, current rate and the cycle life of an electrochemical cell.
Workshop on Teaching Thermodynamics
1985-01-01
It seemed appropriate to arrange a meeting of teachers of thermodynamics in the United Kingdom, a meeting held in the pleasant surroundings of Emmanuel College, Cambridge, in Sept~mber, 1984. This volume records the ideas put forward by authors, the discussion generated and an account of the action that discussion has initiated. Emphasis was placed on the Teaching of Thermodynamics to degree-level students in their first and second years. The meeting, a workshop for practitioners in which all were expected to take part, was remarkably well supported. This was notable in the representation of essentially every UK university and polytechnic engaged in teaching engineering thermodynamics and has led to a stimulating spread of ideas. By intention, the emphasis for attendance was put on teachers of engineering concerned with thermodynamics, both mechanical and chemical engineering disciplines. Attendance from others was encouraged but limited as follows: non-engineering acad emics, 10%, industrialists, 10%. The ...
Bekenstein, J.D.
1980-01-01
Including black holes in the scheme of thermodynamics has disclosed a deep-seated connection between gravitation, heat and the quantum that may lead us to a synthesis of the corresponding branches of physics
Polyelectrolytes thermodynamics and rheology
P M, Visakh; Picó, Guillermo Alfredo
2014-01-01
This book discusses current development of theoretical models and experimental findings on the thermodynamics of polyelectrolytes. Particular emphasis is placed on the rheological description of polyelectrolyte solutions and hydrogels.
Svoboda, Karel; Leitner, J.; Havlica, Jaromír; Pohořelý, Michael; Brynda, Jiří; Šyc, Michal; Chyou, Y.-P.; Chen, P.-Ch.
2017-01-01
Roč. 197, JUN 1 (2017), s. 277-289 ISSN 0016-2361 R&D Projects: GA ČR GC14-09692J Institutional support: RVO:67985858 Keywords : cerium oxides * dehalogenation * thermodynamics Subject RIV: DI - Air Pollution ; Quality OBOR OECD: Environmental sciences (social aspects to be 5.7) Impact factor: 4.601, year: 2016
Svoboda, Karel; Leitner, J.; Havlica, Jaromír; Pohořelý, Michael; Brynda, Jiří; Šyc, Michal; Chyou, Y.-P.; Chen, P.-Ch.
2017-01-01
Roč. 197, JUN 1 (2017), s. 277-289 ISSN 0016-2361 R&D Projects: GA ČR GC14-09692J Institutional support: RVO:67985858 Keywords : cerium oxides * dehalogenation * thermodynamic s Subject RIV: DI - Air Pollution ; Quality OBOR OECD: Environmental sciences (social aspects to be 5.7) Impact factor: 4.601, year: 2016
Li-Jun Wang
2015-02-01
Full Text Available A series of bromophenol derivatives containing indolin-2-one moiety were designed and evaluated that for their anticancer activities against A549, Bel7402, HepG2, HeLa and HCT116 cancer cell lines using MTT assay in vitro. Among them, seven compounds (4g–4i, 5h, 6d, 7a, 7b showed potent activity against the tested five human cancer cell lines. Wound-healing assay demonstrated that compound 4g can be used as a potent compound for inactivating invasion and metastasis by inhibiting the migration of cancer cells. The structure–activity relationships (SARs of bromophenol derivatives had been discussed, which were useful for exploring and developing bromophenol derivatives as novel anticancer drugs.
Biochemical thermodynamics: applications of Mathematica.
Alberty, Robert A
2006-01-01
The most efficient way to store thermodynamic data on enzyme-catalyzed reactions is to use matrices of species properties. Since equilibrium in enzyme-catalyzed reactions is reached at specified pH values, the thermodynamics of the reactions is discussed in terms of transformed thermodynamic properties. These transformed thermodynamic properties are complicated functions of temperature, pH, and ionic strength that can be calculated from the matrices of species values. The most important of these transformed thermodynamic properties is the standard transformed Gibbs energy of formation of a reactant (sum of species). It is the most important because when this function of temperature, pH, and ionic strength is known, all the other standard transformed properties can be calculated by taking partial derivatives. The species database in this package contains data matrices for 199 reactants. For 94 of these reactants, standard enthalpies of formation of species are known, and so standard transformed Gibbs energies, standard transformed enthalpies, standard transformed entropies, and average numbers of hydrogen atoms can be calculated as functions of temperature, pH, and ionic strength. For reactions between these 94 reactants, the changes in these properties can be calculated over a range of temperatures, pHs, and ionic strengths, and so can apparent equilibrium constants. For the other 105 reactants, only standard transformed Gibbs energies of formation and average numbers of hydrogen atoms at 298.15 K can be calculated. The loading of this package provides functions of pH and ionic strength at 298.15 K for standard transformed Gibbs energies of formation and average numbers of hydrogen atoms for 199 reactants. It also provides functions of temperature, pH, and ionic strength for the standard transformed Gibbs energies of formation, standard transformed enthalpies of formation, standard transformed entropies of formation, and average numbers of hydrogen atoms for 94
Osonga, Francis Juma
Flavonoids exhibit arrays of biological effects that are beneficial to humans, including anti-viral, anti-oxidative, anti-inflammatory and anti-carcinogenic effects. However, these applications have been hindered by their poor stability and solubility in common solvents. Consequently, there is significant interest in the modification of flavonoids to improve their solubility. This poor solubility is also believed to be responsible for its permeability and bioavailability. Hence the central goal of this work is to design synthetic strategies for the sequential protection of the -OH groups in order to produce phosphorylated quercetin and apigenin derivatives. This work is divided into two parts: the first part presents the design, synthesis, and characterization of novel flavonoid derivatives via global and sequential phosphorylation. The second part focuses on the application of the synthesized derivatives for greener nanoparticle synthesis. This work shows for the first time that sequential phosphorylation of Quercetin is feasible through the design of 4 new derivatives namely: 5,4'-O-Quercetin Diphosphate (QDPI), 4'-O-phosphate Quercetin (4'-QPI), 5,4'-Quercetin Diphosphate (5,4'-QDP) and monophosphate 4-QP. The synthesis of 4'-QP and 5, 4'-QDP was successful with 85% and 60.5% yields respectively. In addition, the progress towards the total synthesis of apigenin phosphate derivatives (7, 4'-ADP and 7-AP) is presented. The synthesized derivatives were characterized using 1H, 13C, and 31P NMR. The phosphorylated derivatives were subsequently explored as reducing agents for sustainable synthesis of gold, silver and copper nanoparticles. We have successfully demonstrated the photochemical synthesis of gold nanoplates of sizes ranging from 10 - 200 nm using water soluble QDP in the presence of sunlight. This work contributes immensely in promoting the ideals of green nanosynthesis by (i) eliminating the use of organic solvents in the nanosynthesis, (ii) exploiting the
van der Velde, Jasper H M; Oelerich, Jens; Huang, Jingyi; Smit, Jochem H; Aminian Jazi, Atieh; Galiani, Silvia; Kolmakov, Kirill; Guoridis, Giorgos; Eggeling, Christian; Herrmann, Andreas; Roelfes, Gerard; Cordes, Thorben
2016-01-01
Intramolecular photostabilization via triple-state quenching was recently revived as a tool to impart synthetic organic fluorophores with 'self-healing' properties. To date, utilization of such fluorophore derivatives is rare due to their elaborate multi-step synthesis. Here we present a general
Positive Nonlinear Dynamical Group Uniting Quantum Mechanics and Thermodynamics
Beretta, Gian Paolo
2006-01-01
We discuss and motivate the form of the generator of a nonlinear quantum dynamical group 'designed' so as to accomplish a unification of quantum mechanics (QM) and thermodynamics. We call this nonrelativistic theory Quantum Thermodynamics (QT). Its conceptual foundations differ from those of (von Neumann) quantum statistical mechanics (QSM) and (Jaynes) quantum information theory (QIT), but for thermodynamic equilibrium (TE) states it reduces to the same mathematics, and for zero entropy stat...
A New Perspective on Thermodynamics
Lavenda, Bernard H
2010-01-01
Dr. Bernard H. Lavenda has written A New Perspective on Thermodynamics to combine an old look at thermodynamics with a new foundation. The book presents a historical perspective, which unravels the current presentation of thermodynamics found in standard texts, and which emphasizes the fundamental role that Carnot played in the development of thermodynamics. A New Perspective on Thermodynamics will: Chronologically unravel the development of the principles of thermodynamics and how they were conceived by their discoverers Bring the theory of thermodynamics up to the present time and indicate areas of further development with the union of information theory and the theory of means and their inequalities. New areas include nonextensive thermodynamics, the thermodynamics of coding theory, multifractals, and strange attractors. Reintroduce important, yet nearly forgotten, teachings of N.L. Sardi Carnot Highlight conceptual flaws in timely topics such as endoreversible engines, finite-time thermodynamics, geometri...
Seltzer, S. M.
1976-01-01
The problem discussed is to design a digital controller for a typical satellite. The controlled plant is considered to be a rigid body acting in a plane. The controller is assumed to be a digital computer which, when combined with the proposed control algorithm, can be represented as a sampled-data system. The objective is to present a design strategy and technique for selecting numerical values for the control gains (assuming position, integral, and derivative feedback) and the sample rate. The technique is based on the parameter plane method and requires that the system be amenable to z-transform analysis.
Gravity as a thermodynamic phenomenon
Moustos, Dimitris
2017-01-01
The analogy between the laws of black hole mechanics and the laws of thermodynamics led Bekenstein and Hawking to argue that black holes should be considered as real thermodynamic systems that are characterised by entropy and temperature. Black hole thermodynamics indicates a deeper connection between thermodynamics and gravity. We review and examine in detail the arguments that suggest an interpretation of gravity itself as a thermodynamic theory.
Black hole thermodynamics under the microscope
Falls, Kevin; Litim, Daniel F.
2014-04-01
A coarse-grained version of the effective action is used to study the thermodynamics of black holes, interpolating from largest to smallest masses. The physical parameters of the black hole are linked to the running couplings by thermodynamics, and the corresponding equation of state includes quantum corrections for temperature, specific heat, and entropy. If quantum gravity becomes asymptotically safe, the state function predicts conformal scaling in the limit of small horizon area and bounds on black hole mass and temperature. A metric-based derivation for the equation of state and quantum corrections to the thermodynamical, statistical, and phenomenological definition of entropy are also given. Further implications and limitations of our study are discussed.
Gadjeva, Vesselina
2002-04-01
Two new nitrosoureas (TNUs), containing tyrosine derivatives as carriers of nitrosourea cytotoxic group have been synthesised. The physicochemical properties such as half-life time (tau(0.5)), alkylating and carbamoylating activities were determined. The nitrosoureas showed a higher inhibiting effect on the DOPA-oxidase activity of mushroom tyrosinase than that of the antitumour drug N'-cyclohexyl-N-(2-chloroethyl)-N-nitrosourea (lomustine, CCNU). In vitro cytotoxic effects of newly synthesised tyrosine containing nitrosoureas have been studied and compared to those of CCNU. A higher cytotoxicity to B16 melanoma cells than to YAC-1 and to lymphocytes was demonstrated for the tyrosine containing nitrosoureas in comparison with CCNU. Based on the results presented, we accept that a new trend for synthesis of more selective and less toxic nitrosourea derivatives as potential antimelanomic drugs might be developed.
Hai-Chao Wang
2016-08-01
Full Text Available A series of novel benzohydrazide derivatives containing dihydropyrazoles have been synthesized as potential epidermal growth factor receptor (EGFR kinase inhibitors and their biological activities as potential antiproliferative agents have been evaluated. Among these compounds, compound H20 exhibited the most potent antiproliferative activity against four cancer cell line variants (A549, MCF-7, HeLa, HepG2 with IC50 values of 0.46, 0.29, 0.15 and 0.21 μM respectively, which showed the most potent EGFR inhibition activities (IC50 = 0.08 μM for EGFR. Molecular modeling simulation studies were performed in order to predict the biological activity and activity relationship (SAR of these benzohydrazide derivatives. These results suggested that compound H20 may be a promising anticancer agent.
Design and application of natural product derived probes for activity based protein profiling
Battenberg, Oliver Alexander
2015-01-01
The identification of new antibacterial protein targets by activity based protein profiling (ABPP) is an important approach to face the increasing emergence of resistant bacteria. The scope of this work focuses on three new strategies for the labeling of antibacterial protein-targets with natural product derived ABPP-probes: A.) Evaluation of the intrinsic photo-reactivity of α-pyrones and pyrimidones for use as photo-crosslinkers. B.) Synthesis of a benzophenone-tag that combines photo-cross...
Manjunath, S V; Kumar, S Mathava; Ngo, Huu Hao; Guo, Wenshan
2017-12-06
Metronidazole (MNZ) removal by two adsorbents, i.e., concrete-containing graphene (CG) and powder-activated carbon (PAC), was investigated via batch-mode experiments and the outcomes were used to analyze the kinetics, equilibrium and thermodynamics of MNZ adsorption. MNZ sorption on CG and PAC has followed the pseudo-second-order kinetic model, and the thermodynamic parameters revealed that MNZ adsorption was spontaneous on PAC and non-spontaneous on CG. Subsequently, two-parameter isotherm models, i.e., Langmuir, Freundlich, Temkin, Dubinin-Radushkevich and Elovich models, were applied to evaluate the MNZ adsorption capacity. The maximum MNZ adsorption capacities ([Formula: see text]) of PAC and CG were found to be between 25.5-32.8 mg/g and 0.41-0.002 mg/g, respectively. Subsequently, the effects of pH, temperature and adsorbent dosage on MNZ adsorption were evaluated by a central composite design (CCD) approach. The CCD experiments have pointed out the complete removal of MNZ at a much lower PAC dosage by increasing the system temperature (i.e., from 20°C to 40°C). On the other hand, a desorption experiment has shown 3.5% and 1.7% MNZ removal from the surface of PAC and CG, respectively, which was insignificant compared to the sorbed MNZ on the surface by adsorption. The overall findings indicate that PAC and CG with higher graphene content could be useful in MNZ removal from aqueous systems.
Tan, Wenqiang; Zhang, Jingjing; Luan, Fang; Wei, Lijie; Chen, Yuan; Dong, Fang; Li, Qing; Guo, Zhanyong
2017-09-01
Two novel chitosan derivatives modified with quaternary phosphonium salts were successfully synthesized, including tricyclohexylphosphonium acetyl chitosan chloride (TCPACSC) and triphenylphosphonium acetyl chitosan chloride (TPPACSC), and characterized by FTIR, 1 H NMR, and 13 C NMR spectra. The degree of substitution was also calculated by elemental analysis results. Their antifungal activities against Colletotrichum lagenarium, Watermelon fusarium, and Fusarium oxysporum were investigated in vitro using the radial growth assay, minimal inhibitory concentration, and minimum bactericidal concentration assay. The fungicidal assessment revealed that the synthesized chitosan derivatives had superior antifungal activity compared with chitosan. Especially, TPPACSC exhibited the best antifungal property with inhibitory indices of over 75% at 1.0mg/mL. The results obviously showed that quaternary phosphonium groups could effectively enhance antifungal activity of the synthesized chitosan derivatives. Meanwhile, it was also found that their antifungal activity was influenced by electron-withdrawing ability of the quaternary phosphonium salts. The synthetic strategy described here could be utilized for the development of chitosan as antifungal biomaterials. Copyright © 2017 Elsevier B.V. All rights reserved.
Molecular design of new P3HT derivatives: Adjusting electronic energy levels for blends with PCBM
Oliveira, Eliezer Fernando [UNESP – Univ Estadual Paulista, POSMAT – Programa de Pós-Graduação em Ciência e Tecnologia de Materiais, Bauru, SP (Brazil); Lavarda, Francisco Carlos, E-mail: lavarda@fc.unesp.br [UNESP – Univ Estadual Paulista, POSMAT – Programa de Pós-Graduação em Ciência e Tecnologia de Materiais, Bauru, SP (Brazil); Faculdade de Ciências, UNESP – Univ Estadual Paulista, Departamento de Física, Av. Eng. Luiz Edmundo Carrijo Coube, 14-01, 17033-360 Bauru, SP (Brazil)
2014-12-15
An intensive search is underway for new materials to make more efficient organic solar cells through improvements in thin film morphology, transport properties, and adjustments to the energy of frontier electronic levels. The use of chemical modifications capable of modifying the electronic properties of materials already known is an interesting approach, as it can, in principle, provide a more adequate adjustment of the frontier electronic levels while preserving properties such as solubility. Based on this idea, we performed a theoretical study of poly(3-hexylthiophene) (P3HT) and 13 new derivatives obtained by substitution with electron acceptor and donor groups, in order to understand how the energy levels of the frontier orbitals are modified. The results show that it is possible to deduce the modification of the electronic levels in accordance with the substituent's acceptor/donor character. We also evaluated how the substituents influence the open circuit voltage and the exciton binding energy. - Highlights: • Prediction of P3HT derivatives properties for bulk-heterojunction solar cells. • Correlating substituent properties with electronic levels of P3HT derivatives. • Fluorinated P3HT improves open circuit voltage and stability.
Thermodynamics of nanoadsorption from solution: Theoretical and experimental research
Wen, Yan-Zhen; Xue, Yong-Qiang; Cui, Zi-Xiang; Wang, Yan
2015-01-01
Highlights: • The thermodynamic theory of nanoadsorption was proposed. • The thermodynamic relations of nanoadsorption were derived. • The results of the experiments are accord with the theory. - Abstract: In this study, the effect of nanoparticle size on adsorption thermodynamics was investigated. The results of theoretical and experimental studies show that particle size significantly affects the equilibrium constant and thermodynamic properties of nanoadsorption. Relationships between the equilibrium constant, thermodynamic properties and particle size were derived using the thermodynamic theory of nanoadsorption. The equilibrium constant and thermodynamic properties were obtained by investigating the adsorption of Cu 2+ onto different sizes of nano-ZnO and the adsorption of Ag + onto different sizes of nano-TiO 2 . Good agreement was achieved between results obtained by experiments and predicted by theoretical analyses. The equilibrium constant and the molar Gibbs free energy of nanoadsorption were found to increase with smaller nanoparticle size. However, the effects of particle size on the molar enthalpy and the molar entropy are uncertain. In addition, the molar Gibbs free energy, the molar enthalpy, the molar entropy and the logarithm of the equilibrium constant are linearly related to the reciprocal of the diameter of the nanoparticle. The thermodynamic properties revealed in this study may provide important guidelines for research and application in the field of nanoadsorption
Stability of black holes based on horizon thermodynamics
Meng-Sen Ma
2015-12-01
Full Text Available On the basis of horizon thermodynamics we study the thermodynamic stability of black holes constructed in general relativity and Gauss–Bonnet gravity. In the framework of horizon thermodynamics there are only five thermodynamic variables E, P, V, T, S. It is not necessary to consider concrete matter fields, which may contribute to the pressure of black hole thermodynamic system. In non-vacuum cases, we can derive the equation of state, P=P(V,T. According to the requirements of stable equilibrium in conventional thermodynamics, we start from these thermodynamic variables to calculate the heat capacity at constant pressure and Gibbs free energy and analyze the local and global thermodynamic stability of black holes. It is shown that P>0 is the necessary condition for black holes in general relativity to be thermodynamically stable, however this condition cannot be satisfied by many black holes in general relativity. For black hole in Gauss–Bonnet gravity negative pressure can be feasible, but only local stable black hole exists in this case.
The calculation of thermodynamic properties of molecules
van Speybroeck, Veronique; Gani, Rafiqul; Meier, Robert Johan
2010-01-01
Thermodynamic data are key in the understanding and design of chemical processes. Next to the experimental evaluation of such data, computational methods are valuable and sometimes indispensable tools in obtaining heats of formation and Gibbs free energies. The major toolboxes to obtain such quan......Thermodynamic data are key in the understanding and design of chemical processes. Next to the experimental evaluation of such data, computational methods are valuable and sometimes indispensable tools in obtaining heats of formation and Gibbs free energies. The major toolboxes to obtain...... molecules the combination of group contribution methods with group additive values that are determined with the best available computational ab initio methods seems to be a viable alternative to obtain thermodynamic properties near chemical accuracy. New developments and full use of existing tools may lead...
Molecular thermodynamics using fluctuation solution theory
Ellegaard, Martin Dela
. The framework relates thermodynamic variables to molecular pair correlation functions of liquid mixtures. In this thesis, application of the framework is illustrated using two approaches: 1. Solubilities of solid solutes in mixed solvent systems are determined from fluctuation solution theory application......Properties of chemicals and their mutual phase equilibria are critical variables in process design. Reliable estimates of relevant equilibrium properties, from thermodynamic models, can form the basis of good decision making in the development phase of a process design, especially when access...... to relevant experimental data is limited. This thesis addresses the issue of generating and using simple thermodynamic models within a rigorous statistical mechanical framework, the so-called fluctuation solution theory, from which relations connecting properties and phase equilibria can be obtained...
Saleem, Hira; Maryam, Arooma; Bokhari, Saleem Ahmed; Ashiq, Ayesha; Rauf, Sadaf Abdul; Khalid, Rana Rehan; Qureshi, Fahim Ashraf; Siddiqi, Abdul Rauf
2018-01-01
This study reports three novel sulfonamide derivatives 4-Chloro-N-[(4-methylphenyl) sulphonyl]-N-propyl benzamide ( 1A ), N-(2-hydroxyphenyl)-4-methyl benzene sulfonamide ( 1B ) and 4-methyl-N-(2-nitrophenyl) benzene sulfonamide ( 1C ). The compounds were synthesised from starting material 4-methylbenzenesulfonyl chloride and their structure was studied through 1 H-NMR and 13 C-NMR spectra. Computational docking was performed to estimate their binding energy against bacterial p -amino benzoic acid (PABA) receptor, the dihydropteroate synthase (DHPS). The derivatives were tested in vitro for their antimicrobial activity against Gram+ and Gram- bacteria including E. coli, B. subtilis, B. licheniformis and B. linen. 1A was found active only against B. linen ; 1B was effective against E. coli, B. subtilis and B. linen whereas 1C showed activity against E. coli, B. licheniformis and B. linen . 1C showed maximum activity with minimum inhibitory concentration (MIC) of 50, 100 and 150 µg/mL against E. coli, B. licheniformis and B. linen respectively. 1C exhibited maximum affinity to DHPS with binding free energy of -8.1 kcal/mol. It enriched in the top 0.5 % of a library of 7663 compounds, ranked in order of their binding affinity against DHPS. 1C was followed by 1B which showed a moderate to low level MIC of 100, 250 and 150 µg/mL against E. coli, B. subtilis and B. linen respectively, whereas 1A showed a moderate level MIC of 100 µg/mL but only against B. linen . These derivatives may thus serve as potential anti-bacterial alternatives against resistant pathogens.
Derivation of design response spectra for analysis and testing of components and systems
Krutzik, N.
1996-01-01
Some institutions participating in the Benchmark Project performed parallel calculations for the WWER-1000 Kozloduy NPP. The investigations were based on various mathematical models and procedures for consideration of soil-structure interaction effects, simultaneously applying uniform soil dynamic and seismological input data. The methods, mathematical models and dynamic response results were evaluated and discussed in detail and finally compared by means of different structural models and soil representations with the aim of deriving final enveloped and smoothed dynamic response data (benchmark response spectra). This should be used for requalification by analysis testing of the mechanical and electrical components and systems located in this type of reactor building
Novel amide derivatives as inhibitors of histone deacetylase: design, synthesis and SAR
Andrianov, V.; Gailite, V.; Lola, D.
2009-01-01
Enzymatic inhibition of histone deacetylase (HDAC) activity is emerging as an innovative and effective approach for the treatment of cancer. A series of novel amide derivatives have been synthesized and evaluated for their ability to inhibit human HDACs. Multiple compounds were identified as potent...... HDAC inhibitors (HDACi), with IC(50) values in the low nanomolar (nM) range against enzyme activity in HeLa cell extracts and sub-microM for their in vitro anti-proliferative effect on cell lines. The introduction of an unsaturated linking group between the terminal aryl ring and the amide moiety...
Thermodynamics of nuclear materials
1962-01-01
The first session of the symposium discussed in general the thermodynamic properties of actinides, including thorium, uranium and Plutonium which provide reactor fuel. The second session was devoted to applications of thermodynamic theory to the study of nuclear materials, while the experimental techniques for the determination of thermodynamic data were examined at the next session. The thermodynamic properties of alloys were considered at a separate session, and another session was concerned with solids other than alloys. Vaporization processes, which are of special interest in the development of high-temperature reactors, were discussed at a separate session. The discussions on the methods of developing the data and ascertaining their accuracy were especially useful in highlighting the importance of determining whether any given data are reliable before they can be put to practical application. Many alloys and refractory materials (i. e. materials which evaporate only at very high temperatures) are of great importance in nuclear technology, and some of these substances are extremely complex in their chemical composition. For example, until recently the phase composition of the oxides of thorium, uranium and plutonium had been only very imperfectly understood, and the same was true of the carbides of these elements. Recent developments in experimental techniques have made it possible to investigate the phase composition of these complex materials as well as the chemical species of these materials in the gaseous phase. Recent developments in measuring techniques, such as fluorine bomb calorimetry and Knudsen effusion technique, have greatly increased the accuracy of thermodynamic data
Ramadan, A.A.T.; Abdel-Moez, M.S.; El-Shetary, B.A.; Seleim, H.S.
1993-01-01
Equilibrium between DCPHD, DC-4-Cl-PHD, and DC-4-Me-PHD and protons, transition, and lanthanide ions have been investigated at 30 o C by means of potentiometric titration in 75%(v/v) methanol-water mixture containing 0.10M KNO 3 as a constant ionic medium. Thermodynamic parameters(ΔG,ΔH and ΔS) referring to the formation of species HL - ,L -- ,ML +n-2 and ML 2 +n-4 (L -- denotes the ligand anion) have been determined in solutions. The solvent effects on the thermodynamic parameters of the complex formation are discussed in terms of differences in the donor ability of methanol and water solvents. The plots of thermodynamic parameters versus ionic potential (Z 2 /r) of the lanthanide elements is not linear as expected from ionic theory. The obtained curve can be resolved in an initial group (the lighter lanthanides), an intermediate group (Sm-Dy), and a final group (the heavier ones, Tb-Lu). This behavior was explained in terms of differences in the dehydration of lighter lanthanide(III) from that of heavier ones
Bhatt, Darshak R.; Maheria, Kalpana C. [Applied Chemistry Department, Sardar Vallabhbhai National Institute of Technology, Surat 395007, Gujarat (India); Parikh, Jigisha K., E-mail: jk_parikh@yahoo.co.in [Chemical Engineering Department, Sardar Vallabhbhai National Institute of Technology, Surat 395007, Gujarat (India)
2015-12-30
Highlights: • Picric acid is a toxic compound. • DIL significantly improves CPE efficiency of PA. • Higher extraction efficiency obtained in both nearly neutral and acidic condition. • The extraction process – spontaneous and endothermic in nature. - Abstract: A simple and new approach in cloud point extraction (CPE) method was developed for removal of picric acid (PA) by the addition of N,N,N,N’,N’,N’-hexaethyl-ethane-1,2-diammonium dibromide ionic liquid (IL) in non-ionic surfactant Triton X-114 (TX-114). A significant increase in extraction efficiency was found upon the addition of dicationic ionic liquid (DIL) at both nearly neutral and high acidic pH. The effects of different operating parameters such as pH, temperature, time, concentration of surfactant, PA and DIL on extraction of PA were investigated and optimum conditions were established. The extraction mechanism was also proposed. A developed Langmuir isotherm was used to compute the feed surfactant concentration required for the removal of PA up to an extraction efficiency of 90%. The effects of temperature and concentration of surfactant on various thermodynamic parameters were examined. It was found that the values of ΔG° increased with temperature and decreased with surfactant concentration. The values of ΔH° and ΔS° increased with surfactant concentration. The developed approach for DIL mediated CPE has proved to be an efficient and green route for extraction of PA from water sample.
Qimao Liu
2012-01-01
Full Text Available This paper developed an effective optimization method, i.e., gradient-Hessian matrix-based method or second order method, of frame structures subjected to the transient loads. An algorithm of first and second derivatives of dynamic displacement and stress with respect to design variables is formulated based on the Newmark method. The inequality time-dependent constraint problem is converted into a sequence of appropriately formed time-independent unconstrained problems using the integral interior point penalty function method. The gradient and Hessian matrixes of the integral interior point penalty functions are also computed. Then the Marquardt's method is employed to solve unconstrained problems. The numerical results show that the optimal design method proposed in this paper can obtain the local optimum design of frame structures and sometimes is more efficient than the augmented Lagrange multiplier method.
Chandravadivelu Gopi
2017-12-01
Full Text Available The purpose of the study is to design, synthesise and assess the antipsychotic activity of a set of the novel (5-(10-(3-N, N-Dimethylamino propyl-10H-phenothiazine-3-yl-1,3,4-thiadiazo-2-yl Azodye/Schiff base/Chalcone derivatives. The newly synthesised compound structure was characterised by FT-IR, 1H NMR, Mass spectroscopy and elemental analysis. Each compound has been shown an excellent anti-psychotic activity in a haloperidol-induced catalepsy metallic bar test. The results found are firmly similar to docking study. Among the synthesised derivatives, compound 2-Amino-6-(3-hydroxy-4-methylphenyl pyrimidine-4-yl (7-chloro-10-(3-(N, N-dimethylamino propyl-10H-phenothiazine-3-yl methanone (GC8 exhibiting high potency of catalepsy induction. Therefore, the derivative of GC8 has been considered that a potent anti-psychotic agent among the synthesised compounds. Keywords: Design, MVD, Catalepsy, Antipsychotic agent, X-ray crystallography
Song, Kee Nam; Kang, Heung Seok; Yoon, Kyung Ho; Suh, Jung Min; Lee, Jin Seok
1997-12-01
Based on the strain energy method and Euler beam theory, an elastic stiffness formula for the leaf type HDS, now widely used as the holddown spring for the FA of Westinghouse type PWRs, has been derived. Through comparisons with the characteristic test results of the test produced HDSs, it has been found that the derived formula is useful to reliably estimate an elastic stiffness with material properties and the geometric data of an HDS. Through sensitivity analysis of HDS`s elastic stiffness, the elastic stiffness sensitivity with respect to different design variables was identified, as well as the design variables having remarkable sensitivity. In addition, finite element analysis using surface-to-surface contact elements on the contact surface between the leaves shows that the analysis results are in good agreement with the elastic stiffness determined from the derived formula. It is therefore expected that the finite element model and the analysis method will be useful in the analysis of the elasto-plastic behavior of the leaf type HDS in the future. To both reduce the cobalt content, which is considered to be the source of radioactive contamination in the reactor core, and to design the HDS to meet the holddown requirements of the SMART FA, a conceptual design for the HDS of the SMART FA has been performed through two analyses of the elastic characteristics of the HDS : the possibility of substitution of the leaf spring`s material from Inconel 718 to Zircaloy and the effects on the HDS`s elastic characteristics according to the variation of leaf thickness and the number of leaves composing the HDS. (author). 34 refs., 33 tabs., 37 figs.
Thermodynamics of a periodically driven qubit
Donvil, Brecht
2018-04-01
We present a new approach to the open system dynamics of a periodically driven qubit in contact with a temperature bath. We are specifically interested in the thermodynamics of the qubit. It is well known that by combining the Markovian approximation with Floquet theory it is possible to derive a stochastic Schrödinger equation in for the state of the qubit. We follow here a different approach. We use Floquet theory to embed the time-non autonomous qubit dynamics into time-autonomous yet infinite dimensional dynamics. We refer to the resulting infinite dimensional system as the dressed-qubit. Using the Markovian approximation we derive the stochastic Schrödinger equation for the dressed-qubit. The advantage of our approach is that the jump operators are ladder operators of the Hamiltonian. This simplifies the formulation of the thermodynamics. We use the thermodynamics of the infinite dimensional system to recover the thermodynamical description for the driven qubit. We compare our results with the existing literature and recover the known results.
Thermodynamic optimization of geometry in engineering flow systems
Bejan, A.; Jones, J.A. [Duke Univ., Durham, NC (United States)
2000-07-01
This review draws attention to an emerging body of work that relies on global thermodynamic optimization in the pursuit of flow system architecture. Exergy analysis establishes the theoretical performance limit. Thermodynamic optimization (or entropy generation minimization) brings the design as closely as permissible to the theoretical limit. The design is destined to remain imperfect because of constraints (finite sizes, times, and costs). Improvements are registered by spreading the imperfection (e.g., flow resistances) through the system. Resistances compete against each other and must be optimized together. Optimal spreading means spatial distribution, geometric form, topology, and geography. System architecture springs out of constrained global optimization. The principle is illustrated by simple examples: the optimization of dimensions, spacings, and the distribution (allocation) of heat transfer surface to the two heat exchangers of a power plant. Similar opportunities for deducing flow architecture exist in more complex systems for power and refrigeration. Examples show that the complete structure of heat exchangers for environmental control systems of aircraft can be derived based on this principle. (authors)
Statistical black-hole thermodynamics
Bekenstein, J.D.
1975-01-01
Traditional methods from statistical thermodynamics, with appropriate modifications, are used to study several problems in black-hole thermodynamics. Jaynes's maximum-uncertainty method for computing probabilities is used to show that the earlier-formulated generalized second law is respected in statistically averaged form in the process of spontaneous radiation by a Kerr black hole discovered by Hawking, and also in the case of a Schwarzschild hole immersed in a bath of black-body radiation, however cold. The generalized second law is used to motivate a maximum-entropy principle for determining the equilibrium probability distribution for a system containing a black hole. As an application we derive the distribution for the radiation in equilibrium with a Kerr hole (it is found to agree with what would be expected from Hawking's results) and the form of the associated distribution among Kerr black-hole solution states of definite mass. The same results are shown to follow from a statistical interpretation of the concept of black-hole entropy as the natural logarithm of the number of possible interior configurations that are compatible with the given exterior black-hole state. We also formulate a Jaynes-type maximum-uncertainty principle for black holes, and apply it to obtain the probability distribution among Kerr solution states for an isolated radiating Kerr hole
Spacetime thermodynamics in the presence of torsion
Dey, Ramit; Liberati, Stefano; Pranzetti, Daniele
2017-12-01
It was shown by Jacobson in 1995 that the Einstein equation can be derived as a local constitutive equation for an equilibrium spacetime thermodynamics. With the aim to understand if such thermodynamical description is an intrinsic property of gravitation, many attempts have been made so far to generalize this treatment to a broader class of gravitational theories. Here we consider the case of the Einstein-Cartan theory as a prototype of theories with nonpropagating torsion. In doing so, we study the properties of Killing horizons in the presence of torsion, establish the notion of local causal horizon in Riemann-Cartan spacetimes, and derive the generalized Raychaudhuri equation for these kinds of geometries. Then, starting with the entropy that can be associated to these local causal horizons, we derive the Einstein-Cartan equation by implementing the Clausius equation. We outline two ways of proceeding with the derivation depending on whether we take torsion as a geometric field or as a matter field. In both cases we need to add internal entropy production terms to the Clausius equation as the shear and twist cannot be taken to be 0 a priori for our setup. This fact implies the necessity of a nonequilibrium thermodynamics treatment for the local causal horizon. Furthermore, it implies that a nonzero twist at the horizon in general contributes to the Hartle-Hawking tidal heating for black holes with possible implications for future observations.
Westerhoff, Hans V.; Jensen, Peter Ruhdal; Snoep, Jacky L.
1998-01-01
-called emergent properties. Tendency towards increased entropy is an essential determinant for the behaviour of ideal gas mixtures, showing that even in the simplest physical/chemical systems, (dys)organisation of components is crucial for the behaviour of systems. This presentation aims at illustrating...... that the behaviour of two functionally interacting biological components (molecules, protein domains, pathways, organelles) differs from the behaviour these components would exhibit in isolation from one another, where the difference should be essential for the maintenance and growth of the living state, For a true...... understanding of this BioComplexity, modem thermodynamic concepts and methods (nonequilibrium thermodynamics, metabolic and hierarchical control analysis) will be needed. We shall propose to redefine nonequilibrium thermodynamics as: The science that aims at understanding the behaviour of nonequilibrium systems...
Statistical thermodynamics of alloys
Gokcen, N A
1986-01-01
This book is intended for scientists, researchers, and graduate students interested in solutions in general, and solutions of metals in particular. Readers are assumed to have a good background in thermodynamics, presented in such books as those cited at the end of Chapter 1, "Thermo dynamic Background." The contents of the book are limited to the solutions of metals + metals, and metals + metalloids, but the results are also appli cable to numerous other types of solutions encountered by metallurgists, materials scientists, geologists, ceramists, and chemists. Attempts have been made to cover each topic in depth with numerical examples whenever necessary. Chapter 2 presents phase equilibria and phase diagrams as related to the thermodynamics of solutions. The emphasis is on the binary diagrams since the ternary diagrams can be understood in terms of the binary diagrams coupled with the phase rule, and the Gibbs energies of mixing. The cal culation of thermodynamic properties from the phase diagrams is ...
Thermodynamics of Crystalline States
Fujimoto, Minoru
2010-01-01
Thermodynamics is a well-established discipline of physics for properties of matter in thermal equilibrium surroundings. Applying to crystals, however, the laws encounter undefined properties of crystal lattices, which therefore need to be determined for a clear and well-defined description of crystalline states. Thermodynamics of Crystalline States explores the roles played by order variables and dynamic lattices in crystals in a wholly new way. This book is divided into three parts. The book begins by clarifying basic concepts for stable crystals. Next, binary phase transitions are discussed to study collective motion of order variables, as described mostly as classical phenomena. In the third part, the multi-electron system is discussed theoretically, as a quantum-mechanical example, for the superconducting state in metallic crystals. Throughout the book, the role played by the lattice is emphasized and examined in-depth. Thermodynamics of Crystalline States is an introductory treatise and textbook on meso...
Azad, Iqbal; Nasibullah, Malik; Khan, Tahmeena; Hassan, Firoj; Akhter, Yusuf
2018-05-01
This paper deals with in silico evaluation of newly proposed heterocyclic derivatives in search of potential anticancer activity. Best possible drug candidates have been proposed using a rational approach employing a pipeline of computational techniques namely MetaPrint2D prediction, molinspiration, cheminformatics, Osiris Data warrior, AutoDock and iGEMDOCK. Lazar toxicity prediction, AdmetSAR predictions, and targeted docking studies were also performed. 27 heterocyclic derivatives were selected for bioactivity prediction and drug likeness score on the basis of Lipinski's rule, Viber rule, Ghose filter, leadlikeness and Pan Assay Interference Compounds (PAINS) rule. Bufuralol, Sunitinib, and Doxorubicin were selected as reference standard drug for the comparison of molecular descriptors and docking. Bufuralol is a known non-selective adreno-receptor blocking agent. Studies showed that beta blockers are also used against different types of cancers. Sunitinib is well known Food and Drug administration (FDA) approved pyrrole containing tyrosine kinase inhibitor and our proposed molecules possess similarities with both drug and doxorubicin is another moiety having anticancer activity. All heterocyclic derivatives were found to obey the drug filters except standard drug Doxorubicin. Bioactivity score of the compounds was predicted for drug targets including enzymes, nuclear receptors, kinase inhibitors, G protein-coupled receptor (GPCR) ligands and ion channel modulators. Absorption, distribution, metabolism and toxicity (ADMET) prediction of all proposed compound showed good Blood-brain barrier (BBB) penetration, Human intestinal absorption (HIA), Caco-2 cell permeability except compound-11 and was found to have no AdmetSAR toxicity as well as carcinogenic effect. Compounds 1-9 were slightly mutagenic while compound 2, 11, 20 and 21 showed carcinogenic effect according to Lazar toxicity prediction. Rests of the compounds were predicted to have no side effect
Computer-based teaching module design: principles derived from learning theories.
Lau, K H Vincent
2014-03-01
The computer-based teaching module (CBTM), which has recently gained prominence in medical education, is a teaching format in which a multimedia program serves as a single source for knowledge acquisition rather than playing an adjunctive role as it does in computer-assisted learning (CAL). Despite empirical validation in the past decade, there is limited research into the optimisation of CBTM design. This review aims to summarise research in classic and modern multimedia-specific learning theories applied to computer learning, and to collapse the findings into a set of design principles to guide the development of CBTMs. Scopus was searched for: (i) studies of classic cognitivism, constructivism and behaviourism theories (search terms: 'cognitive theory' OR 'constructivism theory' OR 'behaviourism theory' AND 'e-learning' OR 'web-based learning') and their sub-theories applied to computer learning, and (ii) recent studies of modern learning theories applied to computer learning (search terms: 'learning theory' AND 'e-learning' OR 'web-based learning') for articles published between 1990 and 2012. The first search identified 29 studies, dominated in topic by the cognitive load, elaboration and scaffolding theories. The second search identified 139 studies, with diverse topics in connectivism, discovery and technical scaffolding. Based on their relative representation in the literature, the applications of these theories were collapsed into a list of CBTM design principles. Ten principles were identified and categorised into three levels of design: the global level (managing objectives, framing, minimising technical load); the rhetoric level (optimising modality, making modality explicit, scaffolding, elaboration, spaced repeating), and the detail level (managing text, managing devices). This review examined the literature in the application of learning theories to CAL to develop a set of principles that guide CBTM design. Further research will enable educators to
Pechousek, J.; Prochazka, R.; Mashlan, M.; Jancik, D.; Frydrych, J.
2009-01-01
The digital proportional-integral-derivative (PID) velocity controller used in the Mössbauer spectrometer implemented in field programmable gate array (FPGA) is based on the National Instruments CompactRIO embedded system and LabVIEW graphical programming tools. The system works as a remote system accessible via the Ethernet. The digital controller operates in real-time conditions, and the maximum sampling frequency is approximately 227 kS s-1. The system was tested with standard sample measurements of α-Fe and α-57Fe2O3 on two different electromechanical velocity transducers. The nonlinearities of the velocity scales in the relative form are better than 0.2%. The replacement of the standard analog PID controller by the new system brings the possibility of optimizing the control process more precisely.
Luo, Wen; Zhao, Yong-mei; Tian, Run-guo; Su, Ya-bin; Hong, Chen
2013-11-01
A novel series of bis-nicotine derivatives (3a-3i) were designed, synthesized and evaluated as bivalent anti-Alzheimer's disease agents. The pharmacological results indicated that compounds 3e-3i inhibited both acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) in the micromolar range (IC50, 2.28-117.86 micromol x L(-1) for AChE and 1.67-125 micromol x L(-1) for BChE), which was at the same potency as rivastigmine. A Lineweaver-Burk plot and molecular modeling study showed that these derivatives targeted both the catalytic active site (CAS) and the peripheral anionic site (PAS) of AChE. Besides, these compounds could significantly inhibit the self-induced Abeta aggregation with inhibition activity (11.85%-62.14%) at the concentration of 20 micromol x L(-1).
Concise chemical thermodynamics
Peters, APH
2010-01-01
EnergyThe Realm of ThermodynamicsEnergy BookkeepingNature's Driving ForcesSetting the Scene: Basic IdeasSystem and SurroundingsFunctions of StateMechanical Work and Expanding GasesThe Absolute Temperature Scale Forms of Energy and Their Interconversion Forms of Renewable Energy Solar Energy Wind Energy Hydroelectric Power Geothermal Energy Biomass Energy References ProblemsThe First Law of Thermodynamics Statement of the First Law Reversible Expansion of an Ideal GasConstant-Volume ProcessesConstant-Pressure ProcessesA New Function: EnthalpyRelationship between ?H and ?UUses and Conventions of
REA, The Editors of
2013-01-01
REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Thermodynamics II includes review of thermodynamic relations, power and refrigeration cycles, mixtures and solutions, chemical reactions, chemical equilibrium, and flow through nozzl
Wong, Kaufui Vincent
2011-01-01
Praise for the First Edition from Students: "It is a great thermodynamics text…I loved it!-Mathew Walters "The book is comprehensive and easy to understand. I love the real world examples and problems, they make you feel like you are learning something very practical."-Craig Paxton"I would recommend the book to friends."-Faure J. Malo-Molina"The clear diction, as well as informative illustrations and diagrams, help convey the material clearly to the reader."-Paul C. Start"An inspiring and effective tool for any aspiring scientist or engineer. Definitely the best book on Classical Thermodynamics out."-Seth Marini.
Mechanics, Waves and Thermodynamics
Ranjan Jain, Sudhir
2016-05-01
Figures; Preface; Acknowledgement; 1. Energy, mass, momentum; 2. Kinematics, Newton's laws of motion; 3. Circular motion; 4. The principle of least action; 5. Work and energy; 6. Mechanics of a system of particles; 7. Friction; 8. Impulse and collisions; 9. Central forces; 10. Dimensional analysis; 11. Oscillations; 12. Waves; 13. Sound of music; 14. Fluid mechanics; 15. Water waves; 16. The kinetic theory of gases; 17. Concepts and laws of thermodynamics; 18. Some applications of thermodynamics; 19. Basic ideas of statistical mechanics; Bibliography; Index.
Small Systems and Limitations on the Use of Chemical Thermodynamics
Tovbin, Yu. K.
2018-01-01
Limitations on using chemical thermodynamics to describe small systems are formulated. These limitations follow from statistical mechanics for equilibrium and nonequilibrium processes and reflect (1) differences between characteristic relaxation times in momentum, energy, and mass transfer in different aggregate states of investigated systems; (2) achievements of statistical mechanics that allow us to determine criteria for the size of smallest region in which thermodynamics can be applied and the scale of the emergence of a new phase, along with criteria for the conditions of violating a local equilibrium. Based on this analysis, the main thermodynamic results are clarified: the phase rule for distorted interfaces, the sense and area of applicability of Gibbs's concept of passive forces, and the artificiality of Kelvin's equation as a result of limitations on the thermodynamic approach to considering small bodies. The wrongness of introducing molecular parameters into thermodynamic derivations, and the activity coefficient for an activated complex into the expression for a reaction rate constant, is demonstrated.
A thermodynamic evaluation of the Fe-Nb system
Srikanth, S.; Petric, A.
1994-01-01
An optimised set of thermodynamic functions consistent with the phase diagram was derived for the Fe-Nb system from information on phase equilibria and thermodynamic data available in the literature. The thermodynamic properties of the intermediate ε (Fe 2 Nb) phase were described using the sublattice model. A Redlich-Kister equation was used to describe the excess thermodynamic functions of the liquid, bcc and fcc phases. For the μ phase, the enthalpy of formation was estimated from Miedema's model. The interaction coefficients were evaluated using an optimisation procedure employing a conjugate gradient method. The phase diagram and the thermodynamic functions calculated from the evaluated parameters are in good agreement with experimental data. (orig.)
Thermodynamic studies of different black holes with modifications of entropy
Haldar, Amritendu; Biswas, Ritabrata
2018-02-01
In recent years, the thermodynamic properties of black holes are topics of interests. We investigate the thermodynamic properties like surface gravity and Hawking temperature on event horizon of regular black holes viz. Hayward Class and asymptotically AdS (Anti-de Sitter) black holes. We also analyze the thermodynamic volume and naive geometric volume of asymptotically AdS black holes and show that the entropy of these black holes is simply the ratio of the naive geometric volume to thermodynamic volume. We plot the different graphs and interpret them physically. We derive the `cosmic-Censorship-Inequality' for both type of black holes. Moreover, we calculate the thermal heat capacity of aforesaid black holes and study their stabilities in different regimes. Finally, we compute the logarithmic correction to the entropy for both the black holes considering the quantum fluctuations around the thermal equilibrium and study the corresponding thermodynamics.
Thermodynamics of perfect fluids from scalar field theory
Ballesteros, Guillermo; Pilo, Luigi
2016-01-01
The low-energy dynamics of relativistic continuous media is given by a shift-symmetric effective theory of four scalar fields. These scalars describe the embedding in spacetime of the medium and play the role of Stuckelberg fields for spontaneously broken spatial and time translations. Perfect fluids are selected imposing a stronger symmetry group or reducing the field content to a single scalar. We explore the relation between the field theory description of perfect fluids to thermodynamics. By drawing the correspondence between the allowed operators at leading order in derivatives and the thermodynamic variables, we find that a complete thermodynamic picture requires the four Stuckelberg fields. We show that thermodynamic stability plus the null energy condition imply dynamical stability. We also argue that a consistent thermodynamic interpretation is not possible if any of the shift symmetries is explicitly broken.
Shuang Cao
2016-07-01
Full Text Available A novel series of PI3Kβ (Phosphatidylinositol-3-kinases beta subunit inhibitors with the structure of benzothiazole scaffold have been designed and synthesized. All the compounds have been evaluated for inhibitory activities against PI3Kα, β, γ, δ and mTOR (Mammalian target of rapamycin. Two superior compounds have been further evaluated for the IC50 values against PI3Ks/mTOR. The most promising compound 11 displays excellent anti-proliferative activity and selectivity in multiple cancer cell lines, especially in the prostate cancer cell line. Docking studies indicate the morpholine group in 2-position of benzothiazole is necessary for the potent antitumor activity, which confirms our design is reasonable.
A unified approach for proportional-integral-derivative controller design for time delay processes
Shamsuzzoha, Mohammad
2015-01-01
An analytical design method for PI/PID controller tuning is proposed for several types of processes with time delay. A single tuning formula gives enhanced disturbance rejection performance. The design method is based on the IMC approach, which has a single tuning parameter to adjust the performance and robustness of the controller. A simple tuning formula gives consistently better performance as compared to several well-known methods at the same degree of robustness for stable and integrating process. The performance of the unstable process has been compared with other recently published methods which also show significant improvement in the proposed method. Furthermore, the robustness of the controller is investigated by inserting a perturbation uncertainty in all parameters simultaneously, again showing comparable results with other methods. An analysis has been performed for the uncertainty margin in the different process parameters for the robust controller design. It gives the guidelines of the M s setting for the PI controller design based on the process parameters uncertainty. For the selection of the closed-loop time constant, (τ c ), a guideline is provided over a broad range of θ/τ ratios on the basis of the peak of maximum uncertainty (M s ). A comparison of the IAE has been conducted for the wide range of θ/τ ratio for the first order time delay process. The proposed method shows minimum IAE in compared to SIMC, while Lee et al. shows poor disturbance rejection in the lag dominant process. In the simulation study, the controllers were tuned to have the same degree of robustness by measuring the M s , to obtain a reasonable comparison
Farkoosh, A.R.; Javidani, M.; Hoseini, M.; Larouche, D.; Pekguleryuz, M.
2013-01-01
Highlights: ► Phase formation in Al–Si–Ni–Cu–Mg–Fe system have been investigated. ► T-Al 9 FeNi, γ-Al 7 Cu 4 Ni, δ-Al 3 CuNi and ε-Al 3 Ni are formed at different Ni levels. ► Thermally stable Ni-bearing precipitates improved the overaged hardness. ► It was found that Ni:Cu and Ni:Fe ratios control the precipitation. ► δ-Al 3 CuNi phase has more contribution to strength compare to other precipitates. - Abstract: Thermodynamic simulations based on the CALPHAD method have been carried out to assess the phase formation in Al–7Si–(0–1)Ni–0.5Cu–0.35Mg alloys (in wt.%) under equilibrium and non-equilibrium (Scheil cooling) conditions. Calculations showed that the T-Al 9 FeNi, γ-Al 7 Cu 4 Ni, δ-Al 3 CuNi and ε-Al 3 Ni phases are formed at different Ni levels. By analyzing the calculated isothermal sections of the phase diagrams it was revealed that the Ni:Cu and Ni:Fe ratios control precipitation in this alloy system. In order to verify the simulation results, microstructural investigations in as-cast, solution treated and aged conditions were carried out using electron probe microanalysis (EPMA), scanning electron microscopy (SEM), X-ray diffraction (XRD) and transmission electron microscopy (TEM). Furthermore, cooling curve analysis (CCA) was also performed to determine the freezing range of the new alloys and porosity formation during solidification. Hardness measurements of the overaged samples showed that in this alloy system the δ-Al 3 CuNi phase has a greater influence on the overall strength of the alloys compared to the other Ni-bearing precipitates.
Thermodynamic condition for ''Gamma'' flotation
Kaoma, J.; Yarar, B.
1989-01-01
Using the definition of the critical surface tension of wetting solids (Γc) and Gibb's adsorption isotherm, coupled with Young-Dupre's equation, the equilibrium thermodynamic condition for 'GAMMA' flotation has been derived. It is defined by the relation, Cos Oe=Γc/Γlg. At equilibrium for 'Gamma' flotation to occur, the liquid/gas interfacial tension (9γlg) should be larger than the critical surface tension of wetting of the solid surface, meaning that the equilibrium contact angle (Oe) should be greater than Zero, or cos Oe < 1, a Pre- requisite for the solid/gas bubble attachment. This definition holds for solid surfaces in the absence of any specific adsorption at the solid/liquid and solid/gas inter faces. Contact angle and flotation data are presented to sustain this definition. (author)., 15 refs., 9 figs
Entropy: From Thermodynamics to Hydrology
Demetris Koutsoyiannis
2014-02-01
Full Text Available Some known results from statistical thermophysics as well as from hydrology are revisited from a different perspective trying: (a to unify the notion of entropy in thermodynamic and statistical/stochastic approaches of complex hydrological systems and (b to show the power of entropy and the principle of maximum entropy in inference, both deductive and inductive. The capability for deductive reasoning is illustrated by deriving the law of phase change transition of water (Clausius-Clapeyron from scratch by maximizing entropy in a formal probabilistic frame. However, such deductive reasoning cannot work in more complex hydrological systems with diverse elements, yet the entropy maximization framework can help in inductive inference, necessarily based on data. Several examples of this type are provided in an attempt to link statistical thermophysics with hydrology with a unifying view of entropy.
Experimental thermodynamics experimental thermodynamics of non-reacting fluids
Neindre, B Le
2013-01-01
Experimental Thermodynamics, Volume II: Experimental Thermodynamics of Non-reacting Fluids focuses on experimental methods and procedures in the study of thermophysical properties of fluids. The selection first offers information on methods used in measuring thermodynamic properties and tests, including physical quantities and symbols for physical quantities, thermodynamic definitions, and definition of activities and related quantities. The text also describes reference materials for thermometric fixed points, temperature measurement under pressures, and pressure measurements. The publicatio
Black Hole Thermodynamics in an Undergraduate Thermodynamics Course.
Parker, Barry R.; McLeod, Robert J.
1980-01-01
An analogy, which has been drawn between black hole physics and thermodynamics, is mathematically broadened in this article. Equations similar to the standard partial differential relations of thermodynamics are found for black holes. The results can be used to supplement an undergraduate thermodynamics course. (Author/SK)
Correct thermodynamic forces in Tsallis thermodynamics: connection with Hill nanothermodynamics
Garcia-Morales, Vladimir; Cervera, Javier; Pellicer, Julio
2005-01-01
The equivalence between Tsallis thermodynamics and Hill's nanothermodynamics is established. The correct thermodynamic forces in Tsallis thermodynamics are pointed out. Through this connection we also find a general expression for the entropic index q which we illustrate with two physical examples, allowing in both cases to relate q to the underlying dynamics of the Hamiltonian systems
Understanding first law of thermodynamics through activities
Pathare, Shirish; Huli, Saurabhee; Ladage, Savita; Pradhan, H. C.
2018-03-01
The first law of thermodynamics involves several types of energies and many studies have shown that students lack awareness of them. They have difficulties in applying the law to different thermodynamic processes. These observations were confirmed in our pilot studies, carried out with students from undergraduate colleges across the whole of India. We, then, decided to develop an activity-based module to address students’ conceptual difficulties in this area. In particular, we took up the cases of both adiabatic and isothermal compression of an ideal gas. We tested, through a two-group pre and post test design, the effectiveness of the module.
Thermodynamics and statistical mechanics an integrated approach
Hardy, Robert J
2014-01-01
This textbook brings together the fundamentals of the macroscopic and microscopic aspects of thermal physics by presenting thermodynamics and statistical mechanics as complementary theories based on small numbers of postulates. The book is designed to give the instructor flexibility in structuring courses for advanced undergraduates and/or beginning graduate students and is written on the principle that a good text should also be a good reference. The presentation of thermodynamics follows the logic of Clausius and Kelvin while relating the concepts involved to familiar phenomena and the mod
Closed power cycles thermodynamic fundamentals and applications
Invernizzi, Costante Mario
2013-01-01
With the growing attention to the exploitation of renewable energies and heat recovery from industrial processes, the traditional steam and gas cycles are showing themselves often inadequate. The inadequacy is due to the great assortment of the required sizes power and of the large kind of heat sources. Closed Power Cycles: Thermodynamic Fundamentals and Applications offers an organized discussion about the strong interaction between working fluids, the thermodynamic behavior of the cycle using them and the technological design aspects of the machines. A precise treatment of thermal engines op
Recent Progress in Design of Biomass-Derived Hard Carbons for Sodium Ion Batteries
Joanna Górka
2016-12-01
Full Text Available Sodium ion batteries (SIBs have attracted lots of attention over last few years due to the abundance and wide availability of sodium resources, making SIBs the most cost-effective alternative to the currently used lithium ion batteries (LIBs. Many efforts are underway to find effective anodes for SIBs since the commercial anode for LIBs, graphite, has shown very limited capacity for SIBs. Among many different types of carbons, hard carbons—especially these derived from biomass—hold a great deal of promise for SIB technology thanks to their constantly improving performance and low cost. The main scope of this mini-review is to present current progress in preparation of negative electrodes from biomass including aspects related to precursor types used and their impact on the final carbon characteristics (structure, texture and composition. Another aspect discussed is how certain macro- and microstructure characteristics of the materials translate to their performance as anode for Na-ion batteries. In the last part, current understanding of factors governing sodium insertion into hard carbons is summarized, specifically those that could help solve existing performance bottlenecks such as irreversible capacity, initial low Coulombic efficiency and poor rate performance.
Li, Xiang-Qian; Xu, Qi; Luo, Jiao; Wang, Li-Jun; Jiang, Bo; Zhang, Ren-Shuai; Shi, Da-Yong
2017-08-18
Protein tyrosine phosphatases 1B (PTP1B) is a promising and validated therapeutic target to effectively treat T2DM and obesity. However, the development of charged PTP1B inhibitors was restricted due to their low cell permeability and poor bioavailability. Based on active natural products, two series of uncharged catechol derivatives were identified as PTP1B inhibitors by targeting a secondary aryl phosphate-binding site as well as the catalytic site. The most potent inhibitor 22 showed an IC 50 of 0.487 μM against PTP1B and strong selectivity (27-fold) over TCPTP. Kinetic studies were also performed that 22 act as a competitive PTP1B inhibitor. The treatment of C2C12 myotubes with 22 markedly increased the phosphorylation levels of IRβ, Akt and IRS1 phosphorylation. The similarity of its action profiling with that produced by insulin suggested its potential as a new non-insulin-dependent drug candidate. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Zheng, Kaiwen; Li, Yuanyuan; Zhu, Ming; Yu, Xi; Zhang, Mengyan; Shi, Ling; Cheng, Jue
2017-10-01
A hierarchical porous water hyacinth-derived carbon (WHC) is fabricated by pre-carbonization and KOH activation for supercapacitors. The physicochemical properties of WHC are researched by scanning electron microscopy (SEM), N2 adsorption-desorption measurements, X-ray diffraction (XRD), Raman spectroscopy and X-ray photoelectron spectroscopy (XPS). The results indicate that WHC exhibits hierarchical porous structure and high specific surface area of 2276 m2/g. And the electrochemical properties of WHC are studied by cyclic voltammetry (CV), galvanostatic charge-discharge and electrochemical impedance spectroscopy (EIS) tests. In a three-electrode test system, WHC shows considerable specific capacitance of 344.9 F/g at a current density of 0.5 A/g, good rate performance with 225.8 F/g even at a current density of 30 A/g, and good cycle stability with 95% of the capacitance retention after 10000 cycles of charge-discharge at a current density of 5 A/g. Moreover, WHC cell delivers an energy density of 23.8 Wh/kg at 0.5 A/g and a power density of 15.7 kW/kg at 10 A/g. Thus, using water hyacinth as carbon source to fabricate supercapacitors electrodes is a promising approach for developing inexpensive, sustainable and high-performance carbon materials. Additionally, this study supports the sustainable development and the control of biological invasion.
Controlled manipulation of the Co-Alq3 interface by rational design of Alq3 derivatives.
Großmann, Nicolas; Magri, Andrea; Laux, Martin; Stadtmüller, Benjamin; Thielen, Philip; Schäfer, Bernhard; Fuhr, Olaf; Ruben, Mario; Cinchetti, Mirko; Aeschlimann, Martin
2016-11-15
Recently, research has revealed that molecules can be used to steer the local spin properties of ferromagnetic surfaces. One possibility to manipulate ferromagnetic-metal-molecule interfaces in a controlled way is to synthesize specific, non-magnetic molecules to obtain a desired interaction with the ferromagnetic substrate. Here, we have synthesized derivatives of the well-known semiconductor Alq 3 (with q = 8-hydroxyquinolinate), in which the 8-hydroxyquinolinate ligands are partially or completely replaced by similar ligands bearing O- or N-donor sets. The goal of this study was to investigate how the presence of (i) different donor atom sets and (ii) aromaticity in different conjugated π-systems influences the spin properties of the metal-molecule interface formed with a Co(100) surface. The spin-dependent metal-molecule-interface properties have been measured by spin-resolved photoemission spectroscopy, backed up by DFT calculations. Overall, our results show that, in the case of the Co-molecule interface, chemical synthesis of organic ligands leads to specific electronic properties of the interface, such as exciton formation or highly spin-polarized interface states. We find that these properties are even additive, i.e. they can be engineered into one single molecular system that incorporates all the relevant ligands.
Mehul M. Patel
2014-01-01
Full Text Available Objective. Quinolone moiety is an important class of nitrogen containing heterocycles widely used as key building blocks for medicinal agents. It exhibits a wide spectrum of pharmacophores and has bactericidal, antiviral, antimalarial, and anticancer activities. In view of the reported antimicrobial activity of various fluoroquinolones, the importance of the C-7 substituents is that they exhibit potent antimicrobial activities. Our objective was to synthesize newer quinolone analogues with increasing bulk at C-7 position of the main 6-fluoroquinolone scaffold to produce the target compounds which have potent antimicrobial activity. Methods. A novel series of 1-ethyl-6-fluoro-4-oxo-7-{4-[2-(4-substituted phenyl-2-(substituted-ethyl]-1-piperazinyl}-1,4-dihydroquinoline-3-carboxylic acid derivatives were synthesized. To understand the interaction of binding sites with bacterial protein receptor, the docking study was performed using topoisomerase II DNA gyrase enzymes (PDB ID: 2XCT by Schrodinger’s Maestro program. In vitro antibacterial activity of the synthesized compounds was studied and the MIC value was calculated by the broth dilution method. Results. Among all the synthesized compounds, some compounds showed potent antimicrobial activity. The compound 8g exhibited good antibacterial activity. Conclusion. This investigation identified the potent antibacterial agents against certain infections.
Dinparast, Leila; Valizadeh, Hassan; Bahadori, Mir Babak; Soltani, Somaieh; Asghari, Behvar; Rashidi, Mohammad-Reza
2016-06-01
In this study the green, one-pot, solvent-free and selective synthesis of benzimidazole derivatives is reported. The reactions were catalyzed by ZnO/MgO containing ZnO nanoparticles as a highly effective, non-toxic and environmentally friendly catalyst. The structure of synthesized benzimidazoles was characterized using spectroscopic technics (FT-IR, 1HNMR, 13CNMR). Synthesized compounds were evaluated for their α-glucosidase inhibitory potential. Compounds 3c, 3e, 3l and 4n were potent inhibitors with IC50 values ranging from 60.7 to 168.4 μM. In silico studies were performed to explore the binding modes and interactions between enzyme and synthesized benzimidazoles. Developed linear QSAR model based on density and molecular weight could predict bioactivity of newly synthesized compounds well. Molecular docking studies revealed the availability of some hydrophobic interactions. In addition, the bioactivity of most potent compounds had good correlation with estimated free energy of binding (ΔGbinding) which was calculated according to docked best conformations.
Pierce, Laurence Thomas
2011-01-01
This thesis describes work carried out on the design of new routes to a range of bisindolylmaleimide and indolo[2,3-a]carbazole analogs, and investigation of their potential as successful anti-cancer agents. Following initial investigation of classical routes to indolo[2,3-a]pyrrolo[3,4-c]carbazole aglycons, a new strategy employing base-mediated condensation of thiourea and guanidine with a bisindolyl β-ketoester intermediate afforded novel 5,6-bisindolylpyrimidin-4(3H)-ones in moderat...
Fluctuating Thermodynamics for Biological Processes
Ham, Sihyun
Because biomolecular processes are largely under thermodynamic control, dynamic extension of thermodynamics is necessary to uncover the mechanisms and driving factors of fluctuating processes. The fluctuating thermodynamics technology presented in this talk offers a practical means for the thermodynamic characterization of conformational dynamics in biomolecules. The use of fluctuating thermodynamics has the potential to provide a comprehensive picture of fluctuating phenomena in diverse biological processes. Through the application of fluctuating thermodynamics, we provide a thermodynamic perspective on the misfolding and aggregation of the various proteins associated with human diseases. In this talk, I will present the detailed concepts and applications of the fluctuating thermodynamics technology for elucidating biological processes. This work was supported by Samsung Science and Technology Foundation under Project Number SSTF-BA1401-13.
A Hamiltonian approach to Thermodynamics
Baldiotti, M.C., E-mail: baldiotti@uel.br [Departamento de Física, Universidade Estadual de Londrina, 86051-990, Londrina-PR (Brazil); Fresneda, R., E-mail: rodrigo.fresneda@ufabc.edu.br [Universidade Federal do ABC, Av. dos Estados 5001, 09210-580, Santo André-SP (Brazil); Molina, C., E-mail: cmolina@usp.br [Escola de Artes, Ciências e Humanidades, Universidade de São Paulo, Av. Arlindo Bettio 1000, CEP 03828-000, São Paulo-SP (Brazil)
2016-10-15
In the present work we develop a strictly Hamiltonian approach to Thermodynamics. A thermodynamic description based on symplectic geometry is introduced, where all thermodynamic processes can be described within the framework of Analytic Mechanics. Our proposal is constructed on top of a usual symplectic manifold, where phase space is even dimensional and one has well-defined Poisson brackets. The main idea is the introduction of an extended phase space where thermodynamic equations of state are realized as constraints. We are then able to apply the canonical transformation toolkit to thermodynamic problems. Throughout this development, Dirac’s theory of constrained systems is extensively used. To illustrate the formalism, we consider paradigmatic examples, namely, the ideal, van der Waals and Clausius gases. - Highlights: • A strictly Hamiltonian approach to Thermodynamics is proposed. • Dirac’s theory of constrained systems is extensively used. • Thermodynamic equations of state are realized as constraints. • Thermodynamic potentials are related by canonical transformations.
A Hamiltonian approach to Thermodynamics
Baldiotti, M.C.; Fresneda, R.; Molina, C.
2016-01-01
In the present work we develop a strictly Hamiltonian approach to Thermodynamics. A thermodynamic description based on symplectic geometry is introduced, where all thermodynamic processes can be described within the framework of Analytic Mechanics. Our proposal is constructed on top of a usual symplectic manifold, where phase space is even dimensional and one has well-defined Poisson brackets. The main idea is the introduction of an extended phase space where thermodynamic equations of state are realized as constraints. We are then able to apply the canonical transformation toolkit to thermodynamic problems. Throughout this development, Dirac’s theory of constrained systems is extensively used. To illustrate the formalism, we consider paradigmatic examples, namely, the ideal, van der Waals and Clausius gases. - Highlights: • A strictly Hamiltonian approach to Thermodynamics is proposed. • Dirac’s theory of constrained systems is extensively used. • Thermodynamic equations of state are realized as constraints. • Thermodynamic potentials are related by canonical transformations.
New perspectives in thermodynamics
Serrin, J.
1986-01-01
The last decade has seen a unity of method and approach in the foundations of thermodynamics and continuum mechanics, in which rigorous laws of thermodynamics have been combined with invariance notions of mechanics to produce new and deep understanding. Real progress has been made in finding a set of appropriate concepts for classical thermodynamics, by which energy conservation and the Clausius inequality can be given well-defined meanings for arbitrary processes and which allow an approach to the entropy concept which is free of traditional ambiguities. There has been, moreover, a careful scrutiny of long established but nevertheless not sharply defined concepts such as the Maxwell equal-area rule, the famous Gibbs phase rule, and the equivalence of work and heat. The thirteen papers in this volume accordingly gather together for the first time the many ideas and concepts which have raised classical thermodynamics from a heuristic and intuitive science to the level of precision presently demanded of other branches of mathematical physics
Thermodynamics and statistical mechanics
Landsberg, Peter T
1990-01-01
Exceptionally articulate treatment combines precise mathematical style with strong physical intuition. Wide range of applications includes negative temperatures, negative heat capacities, special and general relativistic effects, black hole thermodynamics, gravitational collapse, more. Over 100 problems with worked solutions. Advanced undergraduate, graduate level. Table of applications. Useful formulas and other data.
Thermodynamic stabilization of colloids
Stol, R.J.; Bruyn, P.L. de
An analysis is given of the conditions necessary for obtaining a thermodynamically stable dispersion (TSD) of solid particles in a continuous aqueous solution phase. The role of the adsorption of potential-determining ions at the planar interface in lowering the interfacial free energy (γ) to
Thermodynamics applied. Where? Why?
Hirs, Gerard
2003-01-01
In recent years, thermodynamics has been applied in a number of new fields leading to a greater societal impact. This paper gives a survey of these new fields and the reasons why these applications are important. In addition, it is shown that the number of fields could be even greater in the future
Thermodynamics, applied. : Where? why?
Hirs, Gerard
1999-01-01
In recent years thermodynamics has been applied in a number of new fields leading to a greater societal impact. The paper gives a survey of these new fields and the reasons why these applications are important. In addition it is shown that the number of fields could be even greater in the future and
Nonequilibrium thermodynamics of nucleation
Schweizer, M.; Sagis, L.M.C.
2014-01-01
We present a novel approach to nucleation processes based on the GENERIC framework (general equation for the nonequilibrium reversible-irreversible coupling). Solely based on the GENERIC structure of time-evolution equations and thermodynamic consistency arguments of exchange processes between a
Debbasch, F.
2011-01-01
The logical structure of classical thermodynamics is presented in a modern, geometrical manner. The first and second law receive clear, operatively oriented statements and the Gibbs free energy extremum principle is fully discussed. Applications relevant to chemistry, such as phase transitions, dilute solutions theory and, in particular, the law…
Black hole thermodynamical entropy
Tsallis, Constantino; Cirto, Leonardo J.L.
2013-01-01
As early as 1902, Gibbs pointed out that systems whose partition function diverges, e.g. gravitation, lie outside the validity of the Boltzmann-Gibbs (BG) theory. Consistently, since the pioneering Bekenstein-Hawking results, physically meaningful evidence (e.g., the holographic principle) has accumulated that the BG entropy S BG of a (3+1) black hole is proportional to its area L 2 (L being a characteristic linear length), and not to its volume L 3 . Similarly it exists the area law, so named because, for a wide class of strongly quantum-entangled d-dimensional systems, S BG is proportional to lnL if d=1, and to L d-1 if d>1, instead of being proportional to L d (d ≥ 1). These results violate the extensivity of the thermodynamical entropy of a d-dimensional system. This thermodynamical inconsistency disappears if we realize that the thermodynamical entropy of such nonstandard systems is not to be identified with the BG additive entropy but with appropriately generalized nonadditive entropies. Indeed, the celebrated usefulness of the BG entropy is founded on hypothesis such as relatively weak probabilistic correlations (and their connections to ergodicity, which by no means can be assumed as a general rule of nature). Here we introduce a generalized entropy which, for the Schwarzschild black hole and the area law, can solve the thermodynamic puzzle. (orig.)
Kim, Hyun Jun; Cho, Hoon; Son, Young Tak; Suh, Myung Won; Kim, Hye Kyung; Kim, Hae Ryong
2010-01-01
Elimination of noise caused by the permanent deformation of interior plastic parts has been one of the major factors driving the design of automotive interior assemblies. Noise, indeed, is one of the main criteria affecting the perception of vehicle quality. Traditionally, noise issues have been identified and rectified through extensive hardware testing. However, to shorten the product development cycle and minimize the amount of costly hardware manufactured, hardware testing must rely on engineering analysis and upfront simulation in the design cycle. In this paper, an analytical study conducted to reduce permanent deformation in a cockpit module is discussed. The analytical investigation utilized a novel and practical methodology, implemented through the software tools ABAQUS and iSight, for the identification and minimization of permanent deformation. Here, the emphasis was placed on evaluating the software for issues relating to the prediction of permanent deformation. The analytical results were compared with the experimental findings for two types of deformation location, and the qualitative correlation was found to be very good. We also developed a methodology for the determination of the optimal guide and mount locations of the cockpit module that minimizes permanent deformation. To this end, the methodology implements and integrates nonlinear finite element analysis with sensitivity-analysis techniques
Xing, Junhao; Yang, Lingyun; Li, Hui; Li, Qing; Zhao, Leilei; Wang, Xinning; Zhang, Yuan; Zhou, Muxing; Zhou, Jinpei; Zhang, Huibin
2015-05-05
The coagulation enzyme factor Xa (fXa) plays a crucial role in the blood coagulation cascade. In this study, three-dimensional fragment based drug design (FBDD) combined with structure-based pharmacophore (SBP) model and structural consensus docking were employed to identify novel fXa inhibitors. After a multi-stage virtual screening (VS) workflow, two hit compounds 3780 and 319 having persistent high performance were identified. Then, these two hit compounds and several analogs were synthesized and screened for in-vitro inhibition of fXa. The experimental data showed that most of the designed compounds displayed significant in vitro potency against fXa. Among them, compound 9b displayed the greatest in vitro potency against fXa with the IC50 value of 23 nM and excellent selectivity versus thrombin (IC50 = 40 μM). Moreover, the prolongation of the prothrombin time (PT) was measured for compound 9b to evaluate its in vitro anticoagulant activity. As a result, compound 9b exhibited pronounced anticoagulant activity with the 2 × PT value of 8.7 μM. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
Thermodynamics principles characterizing physical and chemical processes
Honig, Jurgen M
1999-01-01
This book provides a concise overview of thermodynamics, and is written in a manner which makes the difficult subject matter understandable. Thermodynamics is systematic in its presentation and covers many subjects that are generally not dealt with in competing books such as: Carathéodory''s approach to the Second Law, the general theory of phase transitions, the origin of phase diagrams, the treatment of matter subjected to a variety of external fields, and the subject of irreversible thermodynamics.The book provides a first-principles, postulational, self-contained description of physical and chemical processes. Designed both as a textbook and as a monograph, the book stresses the fundamental principles, the logical development of the subject matter, and the applications in a variety of disciplines. This revised edition is based on teaching experience in the classroom, and incorporates many exercises in varying degrees of sophistication. The stress laid on a didactic, logical presentation, and on the relat...
Consistent thermodynamic properties of lipids systems
Cunico, Larissa; Ceriani, Roberta; Sarup, Bent
different pressures, with azeotrope behavior observed. Available thermodynamic consistency tests for TPx data were applied before performing parameter regressions for Wilson, NRTL, UNIQUAC and original UNIFAC models. The relevance of enlarging experimental databank of lipids systems data in order to improve......Physical and thermodynamic properties of pure components and their mixtures are the basic requirement for process design, simulation, and optimization. In the case of lipids, our previous works[1-3] have indicated a lack of experimental data for pure components and also for their mixtures...... the performance of predictive thermodynamic models was confirmed in this work by analyzing the calculated values of original UNIFAC model. For solid-liquid equilibrium (SLE) data, new consistency tests have been developed [2]. Some of the developed tests were based in the quality tests proposed for VLE data...
2013-01-01
Background The emergence of Plasmodium falciparum resistance to artemisinins in Southeast Asia threatens the control of malaria worldwide. The pharmacodynamic hallmark of artemisinin derivatives is rapid parasite clearance (a short parasite half-life), therefore, the in vivo phenotype of slow clearance defines the reduced susceptibility to the drug. Measurement of parasite counts every six hours during the first three days after treatment have been recommended to measure the parasite clearance half-life, but it remains unclear whether simpler sampling intervals and frequencies might also be sufficient to reliably estimate this parameter. Methods A total of 2,746 parasite density-time profiles were selected from 13 clinical trials in Thailand, Cambodia, Mali, Vietnam, and Kenya. In these studies, parasite densities were measured every six hours until negative after treatment with an artemisinin derivative (alone or in combination with a partner drug). The WWARN Parasite Clearance Estimator (PCE) tool was used to estimate “reference” half-lives from these six-hourly measurements. The effect of four alternative sampling schedules on half-life estimation was investigated, and compared to the reference half-life (time zero, 6, 12, 24 (A1); zero, 6, 18, 24 (A2); zero, 12, 18, 24 (A3) or zero, 12, 24 (A4) hours and then every 12 hours). Statistical bootstrap methods were used to estimate the sampling distribution of half-lives for parasite populations with different geometric mean half-lives. A simulation study was performed to investigate a suite of 16 potential alternative schedules and half-life estimates generated by each of the schedules were compared to the “true” half-life. The candidate schedules in the simulation study included (among others) six-hourly sampling, schedule A1, schedule A4, and a convenience sampling schedule at six, seven, 24, 25, 48 and 49 hours. Results The median (range) parasite half-life for all clinical studies combined was 3.1 (0
Theoretical investigation of the thermodynamic properties of metallic thin films
Hung, Vu Van; Phuong, Duong Dai; Hoa, Nguyen Thi; Hieu, Ho Khac
2015-01-01
The thermodynamic properties of metallic thin films with face-centered cubic structure at ambient conditions were investigated using the statistical moment method including the anharmonicity effects of thermal lattice vibrations. The analytical expressions of Helmholtz free energy, lattice parameter, linear thermal expansion coefficient, specific heats at the constant volume and constant pressure were derived in terms of the power moments of the atomic displacements. Numerical calculations of thermodynamic properties have been performed for Au and Al thin films and compared with those of bulk metals. This research proposes that thermodynamic quantities of thin films approach the values of bulk when the thickness of thin film is about 70 nm. - Highlights: • Thermodynamic properties of thin films were investigated using the moment method. • Expressions of Helmholtz energy, expansion coefficient, specific heats were derived. • Calculations for Au, Al thin films were performed and compared with those of bulks
Theoretical investigation of the thermodynamic properties of metallic thin films
Hung, Vu Van [Vietnam Education Publishing House, 81 Tran Hung Dao, Hanoi (Viet Nam); Phuong, Duong Dai [Hanoi National University of Education, 136 Xuan Thuy, Hanoi (Viet Nam); Hoa, Nguyen Thi [University of Transport and Communications, Lang Thuong, Dong Da, Hanoi (Viet Nam); Hieu, Ho Khac, E-mail: hieuhk@duytan.edu.vn [Institute of Research and Development, Duy Tan University, K7/25 Quang Trung, Danang (Viet Nam)
2015-05-29
The thermodynamic properties of metallic thin films with face-centered cubic structure at ambient conditions were investigated using the statistical moment method including the anharmonicity effects of thermal lattice vibrations. The analytical expressions of Helmholtz free energy, lattice parameter, linear thermal expansion coefficient, specific heats at the constant volume and constant pressure were derived in terms of the power moments of the atomic displacements. Numerical calculations of thermodynamic properties have been performed for Au and Al thin films and compared with those of bulk metals. This research proposes that thermodynamic quantities of thin films approach the values of bulk when the thickness of thin film is about 70 nm. - Highlights: • Thermodynamic properties of thin films were investigated using the moment method. • Expressions of Helmholtz energy, expansion coefficient, specific heats were derived. • Calculations for Au, Al thin films were performed and compared with those of bulks.
Thermodynamics for the practicing engineer
Theodore, Louis; Vanvliet, Timothy
2009-01-01
This book concentrates specifically on the applications of thermodynamics, rather than the theory. It addresses both technical and pragmatic problems in the field, and covers such topics as enthalpy effects, equilibrium thermodynamics, non-ideal thermodynamics and energy conversion applications. Providing the reader with a working knowledge of the principles of thermodynamics, as well as experience in their application, it stands alone as an easy-to-follow self-teaching aid to practical applications and contains worked examples.
Ihsanul Arief
2016-11-01
Full Text Available Study on cytotoxicity of diarylaniline derivatives by using quantitative structure-activity relationship (QSAR has been done. The structures and cytotoxicities of diarylaniline derivatives were obtained from the literature. Calculation of molecular and electronic parameters was conducted using Austin Model 1 (AM1, Parameterized Model 3 (PM3, Hartree-Fock (HF, and density functional theory (DFT methods. Artificial neural networks (ANN analysis used to produce the best equation with configuration of input data-hidden node-output data = 5-8-1, value of r2 = 0.913; PRESS = 0.069. The best equation used to design and predict new diarylaniline derivatives. The result shows that compound N1-(4′-Cyanophenyl-5-(4″-cyanovinyl-2″,6″-dimethyl-phenoxy-4-dimethylether benzene-1,2-diamine is the best-proposed compound with cytotoxicity value (CC50 of 93.037 μM.
Farkoosh, A.R., E-mail: amir.rezaeifarkoosh@mail.mcgill.ca [Department of Mining and Materials Engineering, McGill University, 3610 University, Aluminum Research Center - REGAL, Montreal, Quebec, Canada H3A 2B2 (Canada); Javidani, M. [Laval University, Department of Mining, Metallurgy and Materials Engineering, Aluminum Research Center - REGAL, 1065 Ave de la Medecine, Quebec, Canada G1V 0A6 (Canada); Hoseini, M. [Department of Mining and Materials Engineering, McGill University, 3610 University, Aluminum Research Center - REGAL, Montreal, Quebec, Canada H3A 2B2 (Canada); Larouche, D. [Laval University, Department of Mining, Metallurgy and Materials Engineering, Aluminum Research Center - REGAL, 1065 Ave de la Medecine, Quebec, Canada G1V 0A6 (Canada); Pekguleryuz, M. [Department of Mining and Materials Engineering, McGill University, 3610 University, Aluminum Research Center - REGAL, Montreal, Quebec, Canada H3A 2B2 (Canada)
2013-02-25
Highlights: Black-Right-Pointing-Pointer Phase formation in Al-Si-Ni-Cu-Mg-Fe system have been investigated. Black-Right-Pointing-Pointer T-Al{sub 9}FeNi, {gamma}-Al{sub 7}Cu{sub 4}Ni, {delta}-Al{sub 3}CuNi and {epsilon}-Al{sub 3}Ni are formed at different Ni levels. Black-Right-Pointing-Pointer Thermally stable Ni-bearing precipitates improved the overaged hardness. Black-Right-Pointing-Pointer It was found that Ni:Cu and Ni:Fe ratios control the precipitation. Black-Right-Pointing-Pointer {delta}-Al{sub 3}CuNi phase has more contribution to strength compare to other precipitates. - Abstract: Thermodynamic simulations based on the CALPHAD method have been carried out to assess the phase formation in Al-7Si-(0-1)Ni-0.5Cu-0.35Mg alloys (in wt.%) under equilibrium and non-equilibrium (Scheil cooling) conditions. Calculations showed that the T-Al{sub 9}FeNi, {gamma}-Al{sub 7}Cu{sub 4}Ni, {delta}-Al{sub 3}CuNi and {epsilon}-Al{sub 3}Ni phases are formed at different Ni levels. By analyzing the calculated isothermal sections of the phase diagrams it was revealed that the Ni:Cu and Ni:Fe ratios control precipitation in this alloy system. In order to verify the simulation results, microstructural investigations in as-cast, solution treated and aged conditions were carried out using electron probe microanalysis (EPMA), scanning electron microscopy (SEM), X-ray diffraction (XRD) and transmission electron microscopy (TEM). Furthermore, cooling curve analysis (CCA) was also performed to determine the freezing range of the new alloys and porosity formation during solidification. Hardness measurements of the overaged samples showed that in this alloy system the {delta}-Al{sub 3}CuNi phase has a greater influence on the overall strength of the alloys compared to the other Ni-bearing precipitates.
DISTRIBUTION OF PARASTATISTICS FUNCTIONS: AN OVERVIEW OF THERMODYNAMICS PROPERTIES
R. Yosi Aprian Sari
2016-05-01
Full Text Available This study aims to determine the thermodynamic properties of the parastatistics system of order two. The thermodynamic properties to be searched include the Grand Canonical Partition Function (GCPF Z, and the average number of particles N. These parastatistics systems is in a more general form compared to quantum statistical distribution that has been known previously, i.e.: the Fermi-Dirac (FD and Bose-Einstein (BE. Starting from the recursion relation of grand canonical partition function for parastatistics system of order two that has been known, recuresion linkages for some simple thermodynamic functions for parastatistics system of order two are derived. The recursion linkages are then used to calculate the thermodynamic functions of the model system of identical particles with limited energy levels which is similar to the harmonic oscillator. From these results we concluded that from the Grand Canonical Partition Function (GCPF, Z, the thermodynamics properties of parastatistics system of order two (paraboson and parafermion can be derived and have similar shape with parastatistics system of order one (Boson and Fermion. The similarity of the graph shows similar thermodynamic properties. Keywords: parastatistics, thermodynamic properties
Size- and shape-dependent surface thermodynamic properties of nanocrystals
Fu, Qingshan; Xue, Yongqiang; Cui, Zixiang
2018-05-01
As the fundamental properties, the surface thermodynamic properties of nanocrystals play a key role in the physical and chemical changes. However, it remains ambiguous about the quantitative influence regularities of size and shape on the surface thermodynamic properties of nanocrystals. Thus by introducing interface variables into the Gibbs energy and combining Young-Laplace equation, relations between the surface thermodynamic properties (surface Gibbs energy, surface enthalpy, surface entropy, surface energy and surface heat capacity), respectively, and size of nanocrystals with different shapes were derived. Theoretical estimations of the orders of the surface thermodynamic properties of nanocrystals agree with available experimental values. Calculated results of the surface thermodynamic properties of Au, Bi and Al nanocrystals suggest that when r > 10 nm, the surface thermodynamic properties linearly vary with the reciprocal of particle size, and when r < 10 nm, the effect of particle size on the surface thermodynamic properties becomes greater and deviates from linear variation. For nanocrystals with identical equivalent diameter, the more the shape deviates from sphere, the larger the surface thermodynamic properties (absolute value) are.
Nikalje, Anna Pratima G; Ghodke, Mangesh; Girbane, Amol
2012-01-01
A series of novel N(1) -substituted-N(2) ,N(2) -diphenyl oxalamides 3a-l were synthesized in good yield by stirring diphenylcarbamoyl formyl chloride (2) and various substituted aliphatic, alicyclic, aromatic, heterocyclic amines in DMF and K(2) CO(3) . Also 2-substituted amino-N,N-diphenylacetamides 5a-m were designed by pharmacophore generation and synthesized by stirring 2-chloro-N,N-diphenylacetamide (4) and various substituted amines in acetone using triethyl amine as a catalyst. All the synthesized compounds were screened for anticonvulsant activity in Swiss albino mice by MES and ScPTZ induced seizure tests. Neurotoxicity screening and behavioral testing was also carried out. Some of the synthesized test compounds were found to be more potent than the standard drug. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
On-design solutions of hypersonic flows past elliptic-cone derived waveriders
Yoon, Bok Hyun
1992-01-01
The hypersonic flows past a class of elliptic-conederived waverider at the on-design condition are analyzed. A CFD(Computational Fluid Dynamics) algorithm due to Lawrence is utilized to numerically integrate the steady Euler equations. The singular behavior at the sharp leading-edge of a waverider where a bow shock is to be attached for the ideal situation makes the computation extremely difficult for convergence of numerical solution. Various types of grids are generated and tested for converged solutions. A new formula for more accurate waverider shape is established and by means of this new waverider configuration the reason for the shock stand-off which was detected in previous investigations is clarified in this paper. (Author)
Xu K
2015-03-01
Full Text Available Kehan Xu,1,* Lei Huang,1,* Zheng Xu,2 Yanwei Wang,1,3 Guojing Bai,1 Qiuye Wu,1 Xiaoyan Wang,1 Shichong Yu,1 Yuanying Jiang1 1School of Pharmacy, Second Military Medical University, Shanghai, 2Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, 3Number 422 Hospital of PLA, Zhanjiang, People’s Republic of China *These authors contributed equally to this work Abstract: In previous studies undertaken by our group, a series of 1-(1H-1,2,4-triazole-1-yl-2-(2,4-difluorophenyl-3-substituted-2-propanols (1a–r, which were analogs of fluconazole, was designed and synthesized by click chemistry. In the study reported here, the in vitro antifungal activities of all the target compounds were evaluated against eight human pathogenic fungi. Compounds 1a, 1q, and 1r showed the more antifungal activity than the others. Keywords: triazole, synthesis, antifungal activity, CYP51
Choice of the thermodynamic variables
Balian, R.
1985-09-01
Some basic ideas of thermodynamics and statistical mechanics, both at equilibrium and off equilibrium, are recalled. In particular, the selection of relevant variables which underlies any macroscopic description is discussed, together with the meaning of the various thermodynamic quantities, in order to set the thermodynamic approaches used in nuclear physics in a general prospect [fr
Thermodynamic Product Relations for Generalized Regular Black Hole
Pradhan, Parthapratim
2016-01-01
We derive thermodynamic product relations for four-parametric regular black hole (BH) solutions of the Einstein equations coupled with a nonlinear electrodynamics source. The four parameters can be described by the mass (m), charge (q), dipole moment (α), and quadrupole moment (β), respectively. We study its complete thermodynamics. We compute different thermodynamic products, that is, area product, BH temperature product, specific heat product, and Komar energy product, respectively. Furthermore, we show some complicated function of horizon areas that is indeed mass-independent and could turn out to be universal.
Quantum corrections to thermodynamics of quasitopological black holes
Sudhaker Upadhyay
2017-12-01
Full Text Available Based on the modification to area-law due to thermal fluctuation at small horizon radius, we investigate the thermodynamics of charged quasitopological and charged rotating quasitopological black holes. In particular, we derive the leading-order corrections to the Gibbs free energy, charge and total mass densities. In order to analyze the behavior of the thermal fluctuations on the thermodynamics of small black holes, we draw a comparative analysis between the first-order corrected and original thermodynamical quantities. We also examine the stability and bound points of such black holes under effect of leading-order corrections.
Thermodynamic analysis of a pulse tube engine
Moldenhauer, Stefan; Thess, André; Holtmann, Christoph; Fernández-Aballí, Carlos
2013-01-01
Highlights: ► Numerical model of the pulse tube engine process. ► Proof that the heat transfer in the pulse tube is out of phase with the gas velocity. ► Proof that a free piston operation is possible. ► Clarifying the thermodynamic working principle of the pulse tube engine. ► Studying the influence of design parameters on the engine performance. - Abstract: The pulse tube engine is an innovative simple heat engine based on the pulse tube process used in cryogenic cooling applications. The working principle involves the conversion of applied heat energy into mechanical power, thereby enabling it to be used for electrical power generation. Furthermore, this device offers an opportunity for its wide use in energy harvesting and waste heat recovery. A numerical model has been developed to study the thermodynamic cycle and thereby help to design an experimental engine. Using the object-oriented modeling language Modelica, the engine was divided into components on which the conservation equations for mass, momentum and energy were applied. These components were linked via exchanged mass and enthalpy. The resulting differential equations for the thermodynamic properties were integrated numerically. The model was validated using the measured performance of a pulse tube engine. The transient behavior of the pulse tube engine’s underlying thermodynamic properties could be evaluated and studied under different operating conditions. The model was used to explore the pulse tube engine process and investigate the influence of design parameters.
An extended rational thermodynamics model for surface excess fluxes
Sagis, L.M.C.
2012-01-01
In this paper, we derive constitutive equations for the surface excess fluxes in multiphase systems, in the context of an extended rational thermodynamics formalism. This formalism allows us to derive Maxwell–Cattaneo type constitutive laws for the surface extra stress tensor, the surface thermal
Belavagi, Ningaraddi S; Deshapande, Narahari; Pujar, G H; Wari, M N; Inamdar, S R; Khazi, Imtiyaz Ahmed M
2015-09-01
A series of novel unsymmetrically substituted indene-oxadiazole derivatives (3a-f) have been designed and synthesized by employing palladium catalysed Suzuki cross coupling reaction in high yields. The structural integrity of all the novel compounds was established by (1)H, (13)C NMR and LC/MS analysis. These compounds are amorphous in nature and are remarkably stable to long term storage under ambient conditions. The optoelectronic properties have been studied in detail using UV-Vis absorption and Fluorescence spectroscopy. All compounds emit intense blue to green-blue fluoroscence with high quantum yields. Time resolved measurments have shown life times in the range of 1.28 to 4.51 ns. The density functional theory (DFT) calculations were carried out for all the molecules to understand their structure-property relationships. Effect of concentration studies has been carried out in different concentrations for both absorption and emission properties and from this we have identified the optimized fluoroscence concentrations for all these compounds. The indene substituted anthracene-oxadiazole derivative (3f) showed significant red shift (λmax (emi) = 490 nm) and emits intense green-blue fluoroscence with largest stokes shift of 145 nm. This compound also exhibited highest fluoroscence life time (τ) of 4.51 ns, which is very close to the standard dye coumarin-540A (4.63 ns) and better than fluorescein-548 (4.10 ns). The results demonstrated that the novel unsymmetrical indene-substituted oxadiazole derivatives could play important role in organic optoelectronic applications, such as organic light-emitting diodes (OLEDs) or as models for investigating the fluorescent structure-property relationship of the indene-functionalized oxadiazole derivatives.
Orjuela, Alvaro; Orjuela, Andrea; Lira, Carl T; Miller, Dennis J
2013-07-01
Recovery and purification of organic acids produced in fermentation constitutes a significant fraction of total production cost. In this paper, the design and economic analysis of a process to recover succinic acid (SA) via dissolution and acidification of succinate salts in ethanol, followed by reactive distillation to form succinate esters, is presented. Process simulation was performed for a range of plant capacities (13-55 million kg/yr SA) and SA fermentation titers (50-100 kg/m(3)). Economics were evaluated for a recovery system installed within an existing fermentation facility producing succinate salts at a cost of $0.66/kg SA. For a SA processing capacity of 54.9 million kg/yr and a titer of 100 kg/m(3) SA, the model predicts a capital investment of $75 million and a net processing cost of $1.85 per kg SA. Required selling price of diethyl succinate for a 30% annual return on investment is $1.57 per kg. Copyright © 2013 Elsevier Ltd. All rights reserved.
Tu, Zhi-Shan; Wang, Qi; Sun, Dan-Dan; Dai, Fang; Zhou, Bo
2017-07-07
Activation of nuclear factor erythroid-2-related factor 2 (Nrf2) has been proven to be an effective means to prevent the development of cancer, and natural curcumin stands out as a potent Nrf2 activator and cancer chemopreventive agent. In this study, we synthesized a series of curcumin analogs by introducing the geminal dimethyl substituents on the active methylene group to find more potent Nrf2 activators and cytoprotectors against oxidative death. The geminally dimethylated and catechol-type curcumin analog (compound 3) was identified as a promising lead molecule in terms of its increased stability and cytoprotective activity against the tert-butyl hydroperoxide (t-BHP)-induced death of HepG2 cells. Mechanism studies indicate that its cytoprotective effects are mediated by activating the Nrf2 signaling pathway in the Michael acceptor- and catechol-dependent manners. Additionally, we verified by using copper and iron ion chelators that the two metal ion-mediated oxidations of compound 3 to its corresponding electrophilic o-quinone, contribute significantly to its Nrf2-dependent cytoprotection. This work provides an example of successfully designing natural curcumin-directed Nrf2 activators by a stability-increasing and proelectrophilic strategy. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Design, synthesis and DNA-binding study of some novel morpholine linked thiazolidinone derivatives.
War, Javeed Ahmad; Srivastava, Santosh Kumar; Srivastava, Savitri Devi
2017-02-15
The emergence of multiple drug resistance amongst bacterial strains resulted in many clinical drugs to be ineffective. Being vulnerable to bacterial infections any lack in the development of new antimicrobial drugs could pose a serious threat to public health. Here we report design and synthesis of a novel class of morpholine linked thiazolidinone hybrid molecules. The compounds were characterized by FT-IR, NMR and HRMS techniques. Susceptibility tests showed that most of the synthesized molecules were highly active against multiple bacterial strains. Compound 3f displayed MIC values which were better than the standard drug for most of the tested strains. DNA being a well defined target for many antimicrobial drugs was probed as possible target for these synthetic molecules. DNA-binding study of 3f with sm-DNA was probed through UV-vis absorption, fluorescence quenching, gel electrophoresis and molecular docking techniques. The studies revealed that compound 3f has strong affinity towards DNA and binds at the minor groove. The docking studies revealed that the compound 3f shows preferential binding towards A/T residues. Copyright © 2016 Elsevier B.V. All rights reserved.
Design, synthesis and DNA-binding study of some novel morpholine linked thiazolidinone derivatives
War, Javeed Ahmad; Srivastava, Santosh Kumar; Srivastava, Savitri Devi
2017-02-01
The emergence of multiple drug resistance amongst bacterial strains resulted in many clinical drugs to be ineffective. Being vulnerable to bacterial infections any lack in the development of new antimicrobial drugs could pose a serious threat to public health. Here we report design and synthesis of a novel class of morpholine linked thiazolidinone hybrid molecules. The compounds were characterized by FT-IR, NMR and HRMS techniques. Susceptibility tests showed that most of the synthesized molecules were highly active against multiple bacterial strains. Compound 3f displayed MIC values which were better than the standard drug for most of the tested strains. DNA being a well defined target for many antimicrobial drugs was probed as possible target for these synthetic molecules. DNA-binding study of 3f with sm-DNA was probed through UV-vis absorption, fluorescence quenching, gel electrophoresis and molecular docking techniques. The studies revealed that compound 3f has strong affinity towards DNA and binds at the minor groove. The docking studies revealed that the compound 3f shows preferential binding towards A/T residues.
Rastogi, Tushar; Leder, Christoph; Kümmerer, Klaus
2014-09-01
The presences of micro-pollutants (active pharmaceutical ingredients, APIs) are increasingly seen as a challenge of the sustainable management of water resources worldwide due to ineffective effluent treatment and other measures for their input prevention. Therefore, novel approaches are needed like designing greener pharmaceuticals, i.e. better biodegradability in the environment. This study addresses a tiered approach of implementing green and sustainable chemistry principles for theoretically designing better biodegradable and pharmacologically improved pharmaceuticals. Photodegradation process coupled with LC-MS(n) analysis and in silico tools such as quantitative structure-activity relationships (QSAR) analysis and molecular docking proved to be a very significant approach for the preliminary stages of designing chemical structures that would fit into the "benign by design" concept in the direction of green and sustainable pharmacy. Metoprolol (MTL) was used as an example, which itself is not readily biodegradable under conditions found in sewage treatment and the aquatic environment. The study provides the theoretical design of new derivatives of MTL which might have the same or improved pharmacological activity and are more degradable in the environment than MTL. However, the in silico toxicity prediction by QSAR of those photo-TPs indicated few of them might be possibly mutagenic and require further testing. This novel approach of theoretically designing 'green' pharmaceuticals can be considered as a step forward towards the green and sustainable pharmacy field. However, more knowledge and further experience have to be collected on the full scope, opportunities and limitations of this approach. Copyright © 2014 Elsevier Ltd. All rights reserved.
Ammonia-water system : Part I. Thermodynamic properties
Goomer, N.C.; Dave, S.M.; Sadhukhan, H.K.
1980-01-01
The various thermodynamic properties which have direct bearing on design calculations and separation factor calculations for gaseous ammonia water system have been calculated and compiled in tabular form for easy reference. (auth.)
Thermodynamic Bethe ansatz with Haldane statistics
Bytsko, A.G.; Fring, A.
1998-01-01
We derive the thermodynamic Bethe ansatz equation for the situation in which the statistical interaction of a multi-particle system is governed by Haldane statistics. We formulate a macroscopical equivalence principle for such systems. Particular CDD ambiguities play a distinguished role in compensating the ambiguity in the exclusion statistics. We derive Y-systems related to generalized statistics. We discuss several fermionic, bosonic and anyonic versions of affine Toda field theories and Calogero-Sutherland type models in the context of generalized statistics. (orig.)
Thermodynamic Optimality criteria for biological systems in linear irreversible thermodynamics
Chimal, J C; Sánchez, N; Ramírez, PR
2017-01-01
In this paper the methodology of the so-called Linear Irreversible Thermodynamics (LIT) is applied; although traditionally used locally to study general systems in non-equilibrium states in which it is consider both internal and external contributions to the entropy increments in order to analyze the efficiency of two coupled processes with generalized fluxes J 1 , J 2 and their corresponding forces X 1 , X 2 . We extend the former analysis to takes into account two different operating regimes namely: Omega Function and Efficient Power criterion, respectively. Results show analogies in the optimal performance between and we can say that there exist a criteria of optimization which can be used specially for biological systems where a good design of the biological parameters made by nature at maximum efficient power conditions lead to more efficient engines than those at the maximum power conditions or ecological conditions. (paper)
Contact symmetries and Hamiltonian thermodynamics
Bravetti, A.; Lopez-Monsalvo, C.S.; Nettel, F.
2015-01-01
It has been shown that contact geometry is the proper framework underlying classical thermodynamics and that thermodynamic fluctuations are captured by an additional metric structure related to Fisher’s Information Matrix. In this work we analyse several unaddressed aspects about the application of contact and metric geometry to thermodynamics. We consider here the Thermodynamic Phase Space and start by investigating the role of gauge transformations and Legendre symmetries for metric contact manifolds and their significance in thermodynamics. Then we present a novel mathematical characterization of first order phase transitions as equilibrium processes on the Thermodynamic Phase Space for which the Legendre symmetry is broken. Moreover, we use contact Hamiltonian dynamics to represent thermodynamic processes in a way that resembles the classical Hamiltonian formulation of conservative mechanics and we show that the relevant Hamiltonian coincides with the irreversible entropy production along thermodynamic processes. Therefore, we use such property to give a geometric definition of thermodynamically admissible fluctuations according to the Second Law of thermodynamics. Finally, we show that the length of a curve describing a thermodynamic process measures its entropy production
Statistical Thermodynamics and Microscale Thermophysics
Carey, Van P.
1999-08-01
Many exciting new developments in microscale engineering are based on the application of traditional principles of statistical thermodynamics. In this text Van Carey offers a modern view of thermodynamics, interweaving classical and statistical thermodynamic principles and applying them to current engineering systems. He begins with coverage of microscale energy storage mechanisms from a quantum mechanics perspective and then develops the fundamental elements of classical and statistical thermodynamics. Subsequent chapters discuss applications of equilibrium statistical thermodynamics to solid, liquid, and gas phase systems. The remainder of the book is devoted to nonequilibrium thermodynamics of transport phenomena and to nonequilibrium effects and noncontinuum behavior at the microscale. Although the text emphasizes mathematical development, Carey includes many examples and exercises to illustrate how the theoretical concepts are applied to systems of scientific and engineering interest. In the process he offers a fresh view of statistical thermodynamics for advanced undergraduate and graduate students, as well as practitioners, in mechanical, chemical, and materials engineering.
Bernhoeft, N.; Lander, G.H.; Colineau, E.
2003-01-01
An asymmetric shift in the position of the magnetic Bragg peak with respect to the fiducial lattice has been observed by resonant X-ray scattering in a diverse series of antiferromagnetic compounds. This apparent violation of Bragg's law is interpreted in terms of a dynamically phased order parameter. We demonstrate the use of this effect as a novel probe of fragile or dynamic thermodynamic order in strongly correlated electronic systems. In particular, fresh light is shed on the paradoxical situation encountered in URu 2 Si 2 where the measured entropy gain on passing through T Neel is incompatible with the ground state moment estimated by neutron diffraction. The intrinsic space-time averaging of the probe used to characterise the thermodynamic macroscopic state may play a crucial and previously neglected role. In turn, this suggests the further use of resonant X-ray scattering in investigations of systems dominated by quantum fluctuations. (author)
Demtröder, Wolfgang
2017-01-01
This introduction to classical mechanics and thermodynamics provides an accessible and clear treatment of the fundamentals. Starting with particle mechanics and an early introduction to special relativity this textbooks enables the reader to understand the basics in mechanics. The text is written from the experimental physics point of view, giving numerous real life examples and applications of classical mechanics in technology. This highly motivating presentation deepens the knowledge in a very accessible way. The second part of the text gives a concise introduction to rotational motion, an expansion to rigid bodies, fluids and gases. Finally, an extensive chapter on thermodynamics and a short introduction to nonlinear dynamics with some instructive examples intensify the knowledge of more advanced topics. Numerous problems with detailed solutions are perfect for self study.
Thermodynamical quantum information sharing
Wiesniak, M.; Vedral, V.; Brukner, C.
2005-01-01
Full text: Thermodynamical properties fully originate from classical physics and can be easily measured for macroscopic systems. On the other hand, entanglement is a widely spoken feature of quantum physics, which allows to perform certain task with efficiency unavailable with any classical resource. Therefore an interesting question is whether we can witness entanglement in a state of a macroscopic sample. We show, that some macroscopic properties, in particular magnetic susceptibility, can serve as an entanglement witnesses. We also study a mutual relation between magnetic susceptibility and magnetisation. Such a complementarity exhibits quantum information sharing between these two thermodynamical quantities. Magnetization expresses properties of individual spins, while susceptibility might reveal non-classical correlations as a witness. Therefore, a rapid change of one of these two quantities may mean a phase transition also in terms of entanglement. The complementarity relation is demonstrated by an analytical solution of an exemplary model. (author)
A commentary on thermodynamics
Day, William Alan
1988-01-01
The aim of this book is to comment on, and clarify, the mathematical aspects of the theory of thermodynamics. The standard presentations of the subject are often beset by a number of obscurities associated with the words "state", "reversible", "irreversible", and "quasi-static". This book is written in the belief that such obscurities are best removed not by the formal axiomatization of thermodynamics, but by setting the theory in the wider context of a genuine field theory which incorporates the effects of heat conduction and intertia, and proving appropriate results about the governing differential equations of this field theory. Even in the simplest one-dimensional case it is a nontrivial task to carry through the details of this program, and many challenging problems remain open.
Thermodynamics of Crystalline States
Fujimoto, Minoru
2013-01-01
Thermodynamics is a well-established discipline of physics for properties of matter in thermal equilibrium with the surroundings. Applying to crystals, however, the laws encounter undefined properties of crystal lattice, which therefore need to be determined for a clear and well-defined description of crystalline states. Thermodynamics of Crystalline States explores the roles played by order variables and dynamic lattices in crystals in a wholly new way. The book begins by clarifying basic concepts for stable crystals. Next, binary phase transitions are discussed to study collective motion of order variables, as described mostly as classical phenomena. New to this edition is the examination of magnetic crystals, where magnetic symmetry is essential for magnetic phase transitions. The multi-electron system is also discussed theoretically, as a quantum-mechanical example, for superconductivity in metallic crystals. Throughout the book, the role played by the lattice is emphasized and studied in-depth. Thermod...
Glavatskiy, K S
2015-10-28
Validity of local equilibrium has been questioned for non-equilibrium systems which are characterized by delayed response. In particular, for systems with non-zero thermodynamic inertia, the assumption of local equilibrium leads to negative values of the entropy production, which is in contradiction with the second law of thermodynamics. In this paper, we address this question by suggesting a variational formulation of irreversible evolution of a system with non-zero thermodynamic inertia. We introduce the Lagrangian, which depends on the properties of the normal and the so-called "mirror-image" systems. We show that the standard evolution equations, in particular, the Maxwell-Cattaneo-Vernotte equation, can be derived from the variational procedure without going beyond the assumption of local equilibrium. We also argue that the second law of thermodynamics in non-equilibrium should be understood as a consequence of the variational procedure and the property of local equilibrium. For systems with instantaneous response this leads to the standard requirement of the local instantaneous entropy production being always positive. However, if a system is characterized by delayed response, the formulation of the second law of thermodynamics should be altered. In particular, the quantity, which is always positive, is not the instantaneous entropy production, but the entropy production averaged over a proper time interval.
Glavatskiy, K. S.
2015-01-01
Validity of local equilibrium has been questioned for non-equilibrium systems which are characterized by delayed response. In particular, for systems with non-zero thermodynamic inertia, the assumption of local equilibrium leads to negative values of the entropy production, which is in contradiction with the second law of thermodynamics. In this paper, we address this question by suggesting a variational formulation of irreversible evolution of a system with non-zero thermodynamic inertia. We introduce the Lagrangian, which depends on the properties of the normal and the so-called “mirror-image” systems. We show that the standard evolution equations, in particular, the Maxwell-Cattaneo-Vernotte equation, can be derived from the variational procedure without going beyond the assumption of local equilibrium. We also argue that the second law of thermodynamics in non-equilibrium should be understood as a consequence of the variational procedure and the property of local equilibrium. For systems with instantaneous response this leads to the standard requirement of the local instantaneous entropy production being always positive. However, if a system is characterized by delayed response, the formulation of the second law of thermodynamics should be altered. In particular, the quantity, which is always positive, is not the instantaneous entropy production, but the entropy production averaged over a proper time interval
The Theory of Thermodynamics for Chemical Reactions in Dispersed Heterogeneous Systems
Yongqiang; Baojiao; Jianfeng
1997-07-01
In this paper, the expressions of Gibbs energy change, enthalpy change, entropy change, and equilibrium constant for chemical reactions in dispersed heterogeneous systems are derived using classical thermodynamics theory. The thermodynamical relations for the same reaction system between the dispersed and the block state are also derived. The effects of degree of dispersion on thermodynamical properties, reaction directions, and chemical equilibria are discussed. The results show that the present equation of thermodynamics for chemical reactions is only a special case of the above-mentioned formulas and that the effect of the dispersity of a heterogeneous system on the chemical reaction obeys the Le Chatelier principle of movement of equilibria.
Thermodynamics of clan production
Giovannini, Alberto; Lupia, Sergio; Ugoccioni, Roberto
2002-01-01
Scenarios for particle production in the GeV and TeV regions are reviewed. The expected increase with the c.m. energy of the average number of clans for the soft component and the decrease for the semihard one indicate possible classical and quantum behavior of gluons, respectively. Clan thermodynamics, discussed in the paper, appears as the natural framework to deal with such phenomena
Work reservoirs in thermodynamics
Anacleto, Joaquim
2010-01-01
We stress the usefulness of the work reservoir in the formalism of thermodynamics, in particular in the context of the first law. To elucidate its usefulness, the formalism is then applied to the Joule expansion and other peculiar and instructive experimental situations, clarifying the concepts of configuration and dissipative work. The ideas and discussions presented in this study are primarily intended for undergraduate students, but they might also be useful to graduate students, researchers and teachers.
Work reservoirs in thermodynamics
Anacleto, Joaquim
2010-05-01
We stress the usefulness of the work reservoir in the formalism of thermodynamics, in particular in the context of the first law. To elucidate its usefulness, the formalism is then applied to the Joule expansion and other peculiar and instructive experimental situations, clarifying the concepts of configuration and dissipative work. The ideas and discussions presented in this study are primarily intended for undergraduate students, but they might also be useful to graduate students, researchers and teachers.
Bonasera, A.; Latora, V.; Ploszajczak, M.
1996-07-01
The maximal Lyapunov exponents (LE) are calculated, starting from concepts of hydrodynamics. Analytical expressions for the LE can be found in ergodic limit by using results of the classical thermodynamics for a Boltzmann gas and for systems undergoing a second order phase transition. A recipe is given to measure LE in systems which might have a critical behavior, such as a Bose-Einstein condensation or a transition to a quark-gluon plasma. (author)
Advanced thermodynamic (exergetic) analysis
Tsatsaronis, G; Morosuk, T
2012-01-01
Exergy analysis is a powerful tool for developing, evaluating and improving an energy conversion system. However, the lack of a formal procedure in using the results obtained by an exergy analysis is one of the reasons for exergy analysis not being very popular among energy practitioners. Such a formal procedure cannot be developed as long as the interactions among components of the overall system are not being taken properly into account. Splitting the exergy destruction into unavoidable and avoidable parts in a component provides a realistic measure of the potential for improving the thermodynamic efficiency of this component. Alternatively splitting the exergy destruction into endogenous and exogenous parts provides information on the interactions among system components. Distinctions between avoidable and unavoidable exergy destruction on one side and endogenous and exogenous exergy destruction on the other side allow the engineer to focus on the thermodynamic inefficiencies that can be avoided and to consider the interactions among system components. The avoidable endogenous and the avoidable exogenous exergy destruction provide the best guidance for improving the thermodynamic performance of energy conversion systems.
The discovery of thermodynamics
Weinberger, Peter
2013-07-01
Based on the idea that a scientific journal is also an "agora" (Greek: market place) for the exchange of ideas and scientific concepts, the history of thermodynamics between 1800 and 1910 as documented in the Philosophical Magazine Archives is uncovered. Famous scientists such as Joule, Thomson (Lord Kelvin), Clausius, Maxwell or Boltzmann shared this forum. Not always in the most friendly manner. It is interesting to find out, how difficult it was to describe in a scientific (mathematical) language a phenomenon like "heat", to see, how long it took to arrive at one of the fundamental principles in physics: entropy. Scientific progress started from the simple rule of Boyle and Mariotte dating from the late eighteenth century and arrived in the twentieth century with the concept of probabilities. Thermodynamics was the driving intellectual force behind the industrial revolution, behind the enormous social changes caused by this revolution. The history of thermodynamics is a fascinating story, which also gives insights into the mechanism that seem to govern science.
Thermodynamic potential in quantum electrodynamics
Morley, P.D.
1978-01-01
The thermodynamic potential, Ω, in quantum electrodynamics (QED) is derived using the path-integral formalism. Renormalization of Ω is shown by proving the following theorem: Ω/sub B/(e/sub B/,m/sub B/,T,μ) - Ω/sub B/(e/sub B/,m/sub B/,T = 0,μ = 0) = Ω/sub R/(e/sub R/,m/sub R/,T,μ,S), where B and R refer to bare and renormalized quantities, respectively, and S is the Euclidean subtraction momentum squared. This theorem is proved explicitly to e/sub R/ 4 order and could be analogously extended to any higher order. Renormalization-group equations are derived for Ω/sub R/, and it is shown that perturbation theory in a medium is governed by effective coupling constants which are functions of the density. The behavior of the theory at high densities is governed by the Euclidean ultraviolet behavior of the theory in the vacuum
Modeling the thermodynamics of QCD
Hell, Thomas
2010-07-26
Strongly interacting (QCD) matter is expected to exhibit a multifaceted phase structure: a hadron gas at low temperatures, a quark-gluon plasma at very high temperatures, nuclear matter in the low-temperature and high-density region, color superconductors at asymptotically high densities. Most of the conjectured phases cannot yet be scrutinized by experiments. Much of the present picture - particularly concerning the intermediate temperature and density area of the phase diagram of QCD matter - is based on model calculations. Further insights come from Lattice-QCD computations. The present thesis elaborates a nonlocal covariant extension of the Nambu and Jona-Lasinio (NJL) model with built-in constraints from the running coupling of QCD at high-momentum and instanton physics at low-momentum scales. We present this model for two and three quark flavors (in the latter case paying particular attention to the axial anomaly). At finite temperatures and densities, gluon dynamics is incorporated through a gluonic background field, expressed in terms of the Polyakov loop (P). The thermodynamics of this nonlocal PNJL model accounts for both chiral and deconfinement transitions. We obtain results in mean-field approximation and beyond, including additional pionic and kaonic contributions to the chiral condensate, the pressure and other thermodynamic quantities. Finally, the nonlocal PNJL model is applied to the finite-density region of the QCD phase diagram; for three quark flavors we investigate, in particular, the dependence of the critical point appearing in the models on the axial anomaly. The thesis closes with a derivation of the nonlocal PNJL model from first principles of QCD. (orig.)
Takeshi Kumazawa
2011-01-01
Full Text Available Methamphetamine (MA, amphetamine (AM, and the methylenedioxyphenylalkylamine designer drugs, such as 3,4-methylenedioxymethamphetamine (MDMA, 3,4-methylenedioxyethylamphetamine (MDEA, N-methyl-1-(3,4-methylenedioxyphenyl-2-butanamine (MBDB, 3,4-methylenedioxyamphetamine (MDA, and 3,4-(methylenedioxyphenyl-2-butanamine (BDB, are widely abused as psychedelics. In this paper, these compounds were derivatized with trifluoroacetic (TFA anhydride and analyzed by gas chromatography/mass spectrometry using electron ionization in positive mode. Gas chromatographic separation for TFA derivatives of all compounds was successfully resolved using an Equity-5 fused silica capillary column with a poly (5% diphenyl-95% dimethylsiloxane stationary phase. Base peaks or prominent peaks of MA, AM, MDMA, MDEA, MBDB, MDA, and BDB appeared at m/z 154, 140, 154, 168, 168, 135, and 135, respectively. These occurred due to α-cleavage from the amide nitrogen, splitting into the TFA imine species and benzyl or methylenedioxybenzyl cations. Further prominent fragment ions at m/z 118 for MA and AM, m/z 162 for MDMA, MDEA, and MDA, and m/z 176 for MBDB and BDB were produced by cleavage of the phenylpropane or methylenedioxypropane hydrocarbon radical cation via a hydrogen rearrangement. These fragmentation pathways for the TFA derivatives of all the compounds are summarized and illustrated in this paper.
Di Santo, Roberto; Costi, Roberta; Roux, Alessandra; Artico, Marino; Lavecchia, Antonio; Marinelli, Luciana; Novellino, Ettore; Palmisano, Lucia; Andreotti, Mauro; Amici, Roberta; Galluzzo, Clementina Maria; Nencioni, Lucia; Palamara, Anna Teresa; Pommier, Yves; Marchand, Christophe
2008-01-01
The virally encoded integrase protein is an essential enzyme in the life cycle of the HIV-1 virus and represents an attractive and validated target in the development of therapeutics against HIV infection. Drugs that selectively inhibit this enzyme, when used in combination with inhibitors of reverse transcriptase and protease, are believed to be highly effective in suppressing the viral replication. Among the HIV-1 integrase inhibitors, the β-diketo acids (DKAs) represent a major lead for anti-HIV-1drug development. In this study, novel bifunctional quinolonyl diketo acid derivatives were designed, synthesized and tested for their inhibitory ability against HIV-1 integrase. The compounds are potent inhibitors of integrase activity. Particularly, derivative 8 is a potent IN inhibitor for both steps of the reaction (3′-processing and strand transfer) and exhibits both high antiviral activity against HIV-1 infected cells and low cytotoxicity. Molecular modeling studies provide a plausible mechanism of action, which is consistent with ligand SARs and enzyme photo-crosslinking experiments. PMID:16539381
Kumazawa, T.; Xiao-Pen, L.; Sato, K.
2011-01-01
Methamphetamine (MA), amphetamine (AM), and the methylenedioxyphenyl alkylamine designer drugs, such as 3,4-methylenedioxymethamphetamine (MDMA), 3,4-methylenedioxy ethylamphetamine (MDEA), N-methyl-1-(3,4-methylenedioxyphenyl)-2-butanamine (MBDB), 3,4-methylenedioxyamphetamine (MDA), and 3,4-(methylenedioxyphenyl)-2-butanamine (BDB), are widely abused as psychedelics. In this paper, these compounds were derivatized with trifluoroacetic (TFA) anhydride and analyzed by gas chromatography/mass spectrometry using electron ionization in positive mode. Gas chromatographic separation for TFA derivatives of all compounds was successfully resolved using an Equity-5 fused silica capillary column with a poly (5% diphenyl-95% dimethylsiloxane) stationary phase. Base peaks or prominent peaks of MA, AM, MDMA, MDEA, MBDB, MDA, and BDB appeared at m/z 154, 140, 154, 168, 168, 135, and 135, respectively. These occurred due to a-cleavage from the amide nitrogen, splitting into the TFA imine species and benzyl or methylenedioxybenzyl cations. Further prominent fragment ions at m/z 118 for MA and AM, m/z 162 for MDMA, MDEA, and MDA, and m/z 176 for MBDB and BDB were produced by cleavage of the phenylpropane or methylenedioxy propane hydrocarbon radical cation via a hydrogen rearrangement. These fragmentation pathways for the TFA derivatives of all the compounds are summarized and illustrated in this paper.
Jean-Edouard Ombetta
Full Text Available Group IIA secreted/synovial phospholipase A(2 (GIIAPLA(2 is an enzyme involved in the synthesis of eicosanoids such as prostaglandin E(2 (PGE(2, the main eicosanoid contributing to pain and inflammation in rheumatic diseases. We designed, by molecular modeling, 7 novel analogs of 3-{4-[5(indol-1-ylpentoxy]benzyl}-4H-1,2,4-oxadiazol-5-one, denoted C1, an inhibitor of the GIIAPLA(2 enzyme. We report the results of molecular dynamics studies of the complexes between these derivatives and GIIAPLA(2, along with their chemical synthesis and results from PLA(2 inhibition tests. Modeling predicted some derivatives to display greater GIIAPLA(2 affinities than did C1, and such predictions were confirmed by in vitro PLA(2 enzymatic tests. Compound C8, endowed with the most favorable energy balance, was shown experimentally to be the strongest GIIAPLA(2 inhibitor. Moreover, it displayed an anti-inflammatory activity on rabbit articular chondrocytes, as shown by its capacity to inhibit IL-1beta-stimulated PGE(2 secretion in these cells. Interestingly, it did not modify the COX-1 to COX-2 ratio. C8 is therefore a potential candidate for anti-inflammatory therapy in joints.
Lee, Moonyong [Yeungnam University, Gyeongsan (Korea, Republic of); Vu, Truong Nguyen Luan [University of Technical Education of Ho Chi Minh City, Ho Chi Minh (China)
2013-03-15
A unified approach for the design of proportional-integral-derivative (PID) controllers cascaded with first-order lead-lag filters is proposed for various time-delay processes. The proposed controller’s tuning rules are directly derived using the Padé approximation on the basis of internal model control (IMC) for enhanced stability against disturbances. A two-degrees-of-freedom (2DOF) control scheme is employed to cope with both regulatory and servo problems. Simulation is conducted for a broad range of stable, integrating, and unstable processes with time delays. Each simulated controller is tuned to have the same degree of robustness in terms of maximum sensitivity (Ms). The results demonstrate that the proposed controller provides superior disturbance rejection and set-point tracking when compared with recently published PID-type controllers. Controllers’ robustness is investigated through the simultaneous introduction of perturbation uncertainties to all process parameters to obtain worst-case process-model mismatch. The process-model mismatch simulation results demonstrate that the proposed method consistently affords superior robustness.
Thermodynamics of the near field
Apps, J.A.
1985-01-01
The near field is normally taken to mean the part of the geologic setting of a repository that is affected by mechanical or thermal perturbations resulting from repository excavations and emplacement of radioactive waste. The near-field host rocks, the waste package, and the intervening backfill constitute a series of engineered and natural barriers that should be designed to initially prevent and subsequently control radionuclide release. Nuclear Regulatory Commission regulations 10 CFR part 60 specify that the waste package must not allow any release of radionuclides for at least 300 years, and preferably 1000 years. Thereafter, the release rate of any radionuclide is not to exceed on part in 100,000 per year of the inventory that is calculated to be present 1000 years after closure. In this paper, the author briefly outlines recent developments and identifies important fundamental research in thermodynamics and related areas that is needed to resolve some of the current uncertainties
Kraemer, Thomas; Maurer, Hans H
2002-04-01
This paper reviews the toxicokinetics of amphetamines. The designer drugs MDA (methylenedioxy-amphetamine, R,S-1-(3;,4;-methylenedioxyphenyl)2-propanamine), MDMA (R,S-methylenedioxymethamphetamine), and MDE (R,S-methylenedioxyethylamphetamine), as well as BDB (benzodioxolylbutanamine; R,S-1-(1;,3;-benzodioxol-5;-yl)-2-butanamine or R,S-1-(3;,4;-methylenedioxyphenyl)-2-butanamine) and MBDB (R,S-N-methyl-benzodioxolylbutanamine), were taken into consideration, as were the following N-alkylated amphetamine derivatives: amphetaminil, benzphetamine, clobenzorex, dimethylamphetamine, ethylamphetamine, famprofazone, fencamine, fenethylline, fenproporex, furfenorex, mefenorex, mesocarb, methamphetamine, prenylamine, and selegiline. English-language publications from 1995 to 2000 were reviewed. Papers describing identification of metabolites or cytochrome P450 isoenzyme-dependent metabolism and papers containing pharmacokinetic/toxicokinetic data were considered and summarized. The implications of toxicokinetics for toxicologic assessment or for interpretation in forensic cases are discussed.
Sraa Abu-Melha
2018-02-01
Full Text Available A new series of 2-amino-5-arylazothiazole derivatives has been designed and synthesized in 61–78% yields and screened as potential antibacterial drug candidates against the Gram negative bacterium Escherichia coli. The geometry of the title compounds were being studied using the Material Studio package and semi-core pseudopods calculations (dspp were performed with the double numerica basis sets plus polarization functional (DNP to predict the properties of materials using the hybrid FT/B3LYP method. Modeling calculations, especially the (EH-EL difference and the energetic parameters revealed that some of the title compounds may be promising tools for further research work and the activity is structure dependent.
Hu, Suwen; Nian, Siyun; Qin, Kuiyou; Xiao, Tong; Li, Lingna; Qi, Xiaolu; Ye, Faqing; Liang, Guang; Hu, Guoxin; He, Jincai; Yu, Yinfei; Song, Bo
2012-01-01
The design and synthesis of two series of 8-(substituted styrol-formamido)phenyl-xanthine derivatives are described. Their in vitro monoamine oxidase B (MAO-B) inhibition were tested and the effect of substituents on the N-7, phenyl and the substituted positions are discussed. It was observed that compound 9b displayed significant MAO-B inhibition activity and selectivity, fluorine substitution plays a key role in the selectivity of MAO-B inhibition, and the styrol-formamido group at position-3' may enhance the activity and selectivity of 8-phenyl-xanthine analogues. These results suggest that such compounds may be utilized for the development of new candidate MAO-B inhibitors for treatment of Parkinson's disease.
Fang, Xue-Jie; Jeyakkumar, Ponmani; Avula, Srinivasa Rao; Zhou, Qian; Zhou, Cheng-He
2016-06-01
A series of 5-fluorouracil benzimidazoles as novel type of potential antimicrobial agents were designed and synthesized for the first time. Bioactive assay manifested that some of the prepared compounds exhibited good or even stronger antibacterial and antifungal activities against the tested strains in comparison with reference drugs norfloxacin, chloromycin and fluconazole. Noticeably, 3-fluorobenzyl benzimidazole derivative 5c gave remarkable antimicrobial activities against Saccharomyces cerevisiae, MRSA and Bacillus proteus with MIC values of 1, 2 and 4μg/mL, respectively. Experimental research revealed that compound 5c could effectively intercalate into calf thymus DNA to form compound 5c-DNA complex which might block DNA replication and thus exert antimicrobial activities. Molecular docking indicated that compound 5c should bind with DNA topoisomerase IA through three hydrogen bonds by the use of fluorine atom and oxygen atoms in 5-fluorouracil with the residue Lys 423. Copyright © 2016 Elsevier Ltd. All rights reserved.
Nakajima, Yutaka; Aoyama, Naohiro; Takahashi, Fumie; Sasaki, Hiroshi; Hatanaka, Keiko; Moritomo, Ayako; Inami, Masamichi; Ito, Misato; Nakamura, Koji; Nakamori, Fumihiro; Inoue, Takayuki; Shirakami, Shohei
2016-10-01
In organ transplantation, T cell-mediated immune responses play a key role in the rejection of allografts. Janus kinase 3 (JAK3) is specifically expressed in hematopoietic cells and associated with regulation of T cell development via interleukin-2 signaling pathway. Here, we designed novel 4,6-diaminonicotinamide derivatives as immunomodulators targeting JAK3 for prevention of transplant rejection. Our optimization of C4- and C6-substituents and docking calculations to JAK3 protein confirmed that the 4,6-diaminonicotinamide scaffold resulted in potent inhibition of JAK3. We also investigated avoidance of human ether-a-go-go related gene (hERG) inhibitory activity. Selected compound 28 in combination with tacrolimus prevented allograft rejection in a rat heterotopic cardiac transplantation model. Copyright © 2016 Elsevier Ltd. All rights reserved.
Dark matter influence on black objects thermodynamics
Rogatko, Marek; Wojnar, Aneta
2018-05-01
Physical process version of the first law of black hole thermodynamics in Einstein-Maxwell dark matter gravity was derived. The dark matter sector is mimicked by the additional U(1)-gauge field coupled to the ordinary Maxwell one. By considering any cross section of the black hole event horizon to the future of the bifurcation surface, the equilibrium state version of the first law of black hole mechanics was achieved. The considerations were generalized to the case of Einstein-Yang-Mills dark matter gravity theory. The main conclusion is that the influence of dark matter is crucial in the formation process of black objects. This fact may constitute the explanation of the recent observations of the enormous mass of the super luminous quasars formed in a relatively short time after Big Bang. We also pay attention to the compact binaries thermodynamics, when dark matter sector enters the game.
Moeller, R.; Weinberg, D.; Trippe, G.; Tschoeke, H.
1978-01-01
The reliable design of reactor core elements calls for precise knowledge of the 3D-temperature fields of the different components; this primarily applies to the fuel element cladding tubes, these being the first safety barrier. This paper describes and discusses where and how the 3D-temperature fields so far determined exclusively with the help of global thermohydraulic computer codes (SUBCHANNEL-Codes) have to be determined more accurately by local investigations. The basis of these investigations is the measurement of local velocities and temperatures in 19-rod bundle models of the SNR-300 fuel element performed at the Kernforschungszentrum Karlsruhe (KfK). Some important results of the extensive experimental investigations are reported and compared with global and local recalculations. Open problems are pointed out. The influence of the uncertainties in the thermohydraulic design with respect to the strength analysis are discussed. The most significant results and conclusions are: (1) The peripheral bundle region is the critical zone, which has to be investigated with priority. Here the maximal azimuthal temperature differences of the claddings are ten times higher than those in the central bundle region. (2) The present deviations between thermal experiments and global as well as local calculations are much too high. Within the parameters investigated a careful code adaptation to the experiments is of high priority. (3) The knowledge gaps concerning liquid metal heat transfer in irregular geometries have to be closed. (4) The hot-channel analysis has to be checked with respect to the latest more detailed knowledge of thermohydraulics. (author)
Nemirsky, Kristofer Kevin
In this thesis, the history and evolution of rotor aircraft with simulated annealing-based PID application were reviewed and quadcopter dynamics are presented. The dynamics of a quadcopter were then modeled, analyzed, and linearized. A cascaded loop architecture with PID controllers was used to stabilize the plant dynamics, which was improved upon through the application of simulated annealing (SA). A Simulink model was developed to test the controllers and verify the functionality of the proposed control system design. In addition, the data that the Simulink model provided were compared with flight data to present the validity of derived dynamics as a proper mathematical model representing the true dynamics of the quadcopter system. Then, the SA-based global optimization procedure was applied to obtain optimized PID parameters. It was observed that the tuned gains through the SA algorithm produced a better performing PID controller than the original manually tuned one. Next, we investigated the uncertain dynamics of the quadcopter setup. After adding uncertainty to the gyroscopic effects associated with pitch-and-roll rate dynamics, the controllers were shown to be robust against the added uncertainty. A discussion follows to summarize SA-based algorithm PID controller design and performance outcomes. Lastly, future work on SA application on multi-input-multi-output (MIMO) systems is briefly discussed.
Thermodynamics: The Unique Universal Science
Wassim M. Haddad
2017-11-01
Full Text Available Thermodynamics is a physical branch of science that governs the thermal behavior of dynamical systems from those as simple as refrigerators to those as complex as our expanding universe. The laws of thermodynamics involving conservation of energy and nonconservation of entropy are, without a doubt, two of the most useful and general laws in all sciences. The first law of thermodynamics, according to which energy cannot be created or destroyed, merely transformed from one form to another, and the second law of thermodynamics, according to which the usable energy in an adiabatically isolated dynamical system is always diminishing in spite of the fact that energy is conserved, have had an impact far beyond science and engineering. In this paper, we trace the history of thermodynamics from its classical to its postmodern forms, and present a tutorial and didactic exposition of thermodynamics as it pertains to some of the deepest secrets of the universe.
Thermodynamics of adaptive molecular resolution.
Delgado-Buscalioni, R
2016-11-13
A relatively general thermodynamic formalism for adaptive molecular resolution (AMR) is presented. The description is based on the approximation of local thermodynamic equilibrium and considers the alchemic parameter λ as the conjugate variable of the potential energy difference between the atomistic and coarse-grained model Φ=U (1) -U (0) The thermodynamic formalism recovers the relations obtained from statistical mechanics of H-AdResS (Español et al, J. Chem. Phys. 142, 064115, 2015 (doi:10.1063/1.4907006)) and provides relations between the free energy compensation and thermodynamic potentials. Inspired by this thermodynamic analogy, several generalizations of AMR are proposed, such as the exploration of new Maxwell relations and how to treat λ and Φ as 'real' thermodynamic variablesThis article is part of the themed issue 'Multiscale modelling at the physics-chemistry-biology interface'. © 2016 The Author(s).
Thermodynamic theory of transport in magnetized plasmas
Misguich, J.H.
1990-10-01
Transport laws relating thermodynamic flows to forces by means of transport coefficients in a magnetized plasma are derived here from basic plasmadynamics and nonequilibrium thermodynamics. Macroscopic balance equations are derived in the first part, taking into account the energy of relative diffusion between species in an exact way. The resulting plasmadynamical equations appear to be more general than the usual ones. In the second part, the particular features of a two-temperature diffusing plasma are taken into account in deriving the balance equation for the entropy density, the differences with thermodynamics of neutral fluid mixtures or metals are explained. The general expressions obtained for the entropy production rate are used in part III to derive transport laws. Onsager symmetry relations are applied to interrelate crossed transport coefficients. Basic transport coefficients are the electrical conductivity, the thermo-electric coefficient, along with the thermal conductivities and the viscosities for each species. The slight difference between thermo-electric effect and thermo-diffusion is explained. An important resistive thermo-electric effect appears which describes crossed transport coefficients between thermal and electric flows. Because of the anisotropy introduced by the magnetic field, the transport coefficients are tensors, with non diagonal elements associated with the Hall, Nernst and Ettinghausen effects in the plasma. The field geometry and applications to several particular cases are treated explicitly in part IV, namely the neo-classical transport laws. The Ettinghausen effect appears to play an important role in the transport laws for radial electron heat flow and particle flow in confined plasmas. Practical prescriptions are given to apply the Onsager symmetry relations in a correct way
Chemical thermodynamics of uranium
Grenthe, I.; Fuger, J.; Lemire, R.J.; Muller, A.B.; Nguyen-Trung Cregu, C.; Wanner, H.
1992-01-01
A comprehensive overview on the chemical thermodynamics of those elements that are of particular importance in the safety assessment of radioactive waste disposal systems is provided. This is the first volume in a series of critical reviews to be published on this subject. The book provides an extensive compilation of chemical thermodynamic data for uranium. A description of procedures for activity corrections and uncertainty estimates is given. A critical discussion of data needed for nuclear waste management assessments, including areas where significant gaps of knowledge exist is presented. A detailed inventory of chemical thermodynamic data for inorganic compounds and complexes of uranium is listed. Data and their uncertainty limits are recommended for 74 aqueous complexes and 199 solid and 31 gaseous compounds containing uranium, and on 52 aqueous and 17 solid auxiliary species containing no uranium. The data are internally consistent and compatible with the CODATA Key Values. The book contains a detailed discussion of procedures used for activity factor corrections in aqueous solution, as well as including methods for making uncertainty estimates. The recommended data have been prepared for use in environmental geochemistry. Containing contributions written by experts the chapters cover various subject areas such a s: oxide and hydroxide compounds and complexes, the uranium nitrides, the solid uranium nitrates and the arsenic-containing uranium compounds, uranates, procedures for consistent estimation of entropies, gaseous and solid uranium halides, gaseous uranium oxides, solid phosphorous-containing uranium compounds, alkali metal uranates, uncertainties, standards and conventions, aqueous complexes, uranium minerals dealing with solubility products and ionic strength corrections. The book is intended for nuclear research establishments and consulting firms dealing with uranium mining and nuclear waste disposal, as well as academic and research institutes
Lagrangian formulation of irreversible thermodynamics and the second law of thermodynamics.
Glavatskiy, K S
2015-05-28
We show that the equations which describe irreversible evolution of a system can be derived from a variational principle. We suggest a Lagrangian, which depends on the properties of the normal and the so-called "mirror-image" system. The Lagrangian is symmetric in time and therefore compatible with microscopic reversibility. The evolution equations in the normal and mirror-imaged systems are decoupled and describe therefore independent irreversible evolution of each of the systems. The second law of thermodynamics follows from a symmetry of the Lagrangian. Entropy increase in the normal system is balanced by the entropy decrease in the mirror-image system, such that there exists an "integral of evolution" which is a constant. The derivation relies on the property of local equilibrium, which states that the local relations between the thermodynamic quantities in non-equilibrium are the same as in equilibrium.
On Equivalence of Nonequilibrium Thermodynamic and Statistical Entropies
Purushottam D. Gujrati
2015-02-01
Full Text Available We review the concept of nonequilibrium thermodynamic entropy and observables and internal variables as state variables, introduced recently by us, and provide a simple first principle derivation of additive statistical entropy, applicable to all nonequilibrium states by treating thermodynamics as an experimental science. We establish their numerical equivalence in several cases, which includes the most important case when the thermodynamic entropy is a state function. We discuss various interesting aspects of the two entropies and show that the number of microstates in the Boltzmann entropy includes all possible microstates of non-zero probabilities even if the system is trapped in a disjoint component of the microstate space. We show that negative thermodynamic entropy can appear from nonnegative statistical entropy.
Thermodynamics of de Sitter black holes: Thermal cosmological constant
Sekiwa, Y.
2006-01-01
We study the thermodynamic properties associated with the black hole event horizon and the cosmological horizon for black hole solutions in asymptotically de Sitter spacetimes. We examine thermodynamics of these horizons on the basis of the conserved charges according to Teitelboim's method. In particular, we have succeeded in deriving the generalized Smarr formula among thermodynamical quantities in a simple and natural way. We then show that cosmological constant must decrease when one takes into account the quantum effect. These observations have been obtained if and only if the cosmological constant plays the role of a thermodynamical state variable. We also touch upon the relation between inflation of our universe and a phase transition of black holes
Non-Equilibrium Thermodynamics of Self-Replicating Protocells
Fellermann, Harold; Corominas-Murtra, Bernat; Hansen, Per Lyngs
2018-01-01
We provide a non-equilibrium thermodynamic description of the life-cycle of a droplet based, chemically feasible, system of protocells. By coupling the protocells metabolic kinetics with its thermodynamics, we demonstrate how the system can be driven out of equilibrium to ensure protocell growth...... and replication. This coupling allows us to derive the equations of evolution and to rigorously demonstrate how growth and replication life-cycle can be understood as a non-equilibrium thermodynamic cycle. The process does not appeal to genetic information or inheritance, and is based only on non......-equilibrium physics considerations. Our non-equilibrium thermodynamic description of simple, yet realistic, processes of protocell growth and replication, represents an advance in our physical understanding of a central biological phenomenon both in connection to the origin of life and for modern biology....
Biswas, S. N.
1980-07-01
The application of quantum statistical mechanics to a system of particles consisting of quarks is considered. Realistic theoretical investigations have been underway to understand highly dense objects such as white dwarfs and neutron stars. The various possibilities in the case of very high densities such as 10/sup 15/ or 10/sup 16/ g/cm/sup 3/ are enumerated. The thermodynamics of a phase transition from neutron matter phase to quark matter phase is analysed. Preliminary results based on quantum chromodynamics and other phenomenological models are reported.
Kirkland, Kyle
2007-01-01
Temperature is vital to the health and welfare of all living beings, and Earth's temperature varies considerably from place to place. Early humans could only live in warm areas such as the tropics. Although modern humans have the technology to keep their houses and offices warm even in cold environments, the growth and development of civilization has created unintentional effects. Cities are warmer than their surrounding regions, and on a global scale, Earth is experiencing rising temperatures. Thus, the science of thermodynamics offers an important tool to study these effects. "Time and
Interfacial solvation thermodynamics
Ben-Amotz, Dor
2016-01-01
Previous studies have reached conflicting conclusions regarding the interplay of cavity formation, polarizability, desolvation, and surface capillary waves in driving the interfacial adsorptions of ions and molecules at air–water interfaces. Here we revisit these questions by combining exact potential distribution results with linear response theory and other physically motivated approximations. The results highlight both exact and approximate compensation relations pertaining to direct (solute–solvent) and indirect (solvent–solvent) contributions to adsorption thermodynamics, of relevance to solvation at air–water interfaces, as well as a broader class of processes linked to the mean force potential between ions, molecules, nanoparticles, proteins, and biological assemblies. (paper)
Kaufman, Myron
2002-01-01
Ideal for one- or two-semester courses that assume elementary knowledge of calculus, This text presents the fundamental concepts of thermodynamics and applies these to problems dealing with properties of materials, phase transformations, chemical reactions, solutions and surfaces. The author utilizes principles of statistical mechanics to illustrate key concepts from a microscopic perspective, as well as develop equations of kinetic theory. The book provides end-of-chapter question and problem sets, some using Mathcad™ and Mathematica™; a useful glossary containing important symbols, definitions, and units; and appendices covering multivariable calculus and valuable numerical methods.
Gravitation, Thermodynamics, and Quantum Theory
Wald, Robert M.
1999-01-01
During the past 30 years, research in general relativity has brought to light strong hints of a very deep and fundamental relationship between gravitation, thermodynamics, and quantum theory. The most striking indication of such a relationship comes from black hole thermodynamics, where it appears that certain laws of black hole mechanics are, in fact, simply the ordinary laws of thermodynamics applied to a system containing a black hole. This article will review the present status of black h...
On thermodynamic and microscopic reversibility
Crooks, Gavin E
2011-01-01
The word 'reversible' has two (apparently) distinct applications in statistical thermodynamics. A thermodynamically reversible process indicates an experimental protocol for which the entropy change is zero, whereas the principle of microscopic reversibility asserts that the probability of any trajectory of a system through phase space equals that of the time reversed trajectory. However, these two terms are actually synonymous: a thermodynamically reversible process is microscopically reversible, and vice versa
Thermodynamic fingerprints of ligand binding to human telomeric G-quadruplexes
Bon?ina, Matja?; Podlipnik, ?rtomir; Piantanida, Ivo; Eilmes, Julita; Teulade-Fichou, Marie-Paule; Vesnaver, Gorazd; Lah, Jurij
2015-01-01
Thermodynamic studies of ligand binding to human telomere (ht) DNA quadruplexes, as a rule, neglect the involvement of various ht-DNA conformations in the binding process. Therefore, the thermodynamic driving forces and the mechanisms of ht-DNA G-quadruplex-ligand recognition remain poorly understood. In this work we characterize thermodynamically and structurally binding of netropsin (Net), dibenzotetraaza[14]annulene derivatives (DP77, DP78), cationic porphyrin (TMPyP4) and two bisquinolini...
Wu, S. Q.; Cai, X.
2000-01-01
Four classical laws of black hole thermodynamics are extended from exterior (event) horizon to interior (Cauchy) horizon. Especially, the first law of classical thermodynamics for Kerr-Newman black hole (KNBH) is generalized to those in quantum form. Then five quantum conservation laws on the KNBH evaporation effect are derived in virtue of thermodynamical equilibrium conditions. As a by-product, Bekenstein-Hawking's relation $ S=A/4 $ is exactly recovered.