WorldWideScience

Sample records for derived carbon products

  1. DEVELOPMENT OF CONTINUOUS SOLVENT EXTRACTION PROCESSES FOR COAL DERIVED CARBON PRODUCTS

    Energy Technology Data Exchange (ETDEWEB)

    Elliot B. Kennel; Philip L. Biedler; Chong Chen; Dady Dadyburjor; Liviu Magean; Peter G. Stansberry; Alfred H. Stiller; John W. Zondlo

    2005-04-13

    The purpose of this DOE-funded effort is to develop continuous processes for solvent extraction of coal for the production of carbon products. These carbon products include materials used in metals smelting, especially in the aluminum and steel industries, as well as porous carbon structural material referred to as ''carbon foam'' and carbon fibers. A process has been developed which results in high quality binder pitch suitable for use in graphite electrodes or carbon anodes. A detailed description of the protocol is given by Clendenin. Briefly, aromatic heavy oils are hydro-treated under mild conditions in order to increase their ability to dissolve coal. An example of an aromatic heavy oil is Koppers Carbon Black Base (CBB) oil. CBB oil has been found to be an effective solvent and acceptably low cost (i.e., significantly below the market price for binder pitch, or about $280 per ton at the time of this writing). It is also possible to use solvents derived from hydrotreated coal and avoid reliance on coke oven recovery products completely if so desired.

  2. DEVELOPMENT OF CONTINUOUS SOLVENT EXTRACTION PROCESSES FOR COAL DERIVED CARBON PRODUCTS

    Energy Technology Data Exchange (ETDEWEB)

    Elliot B. Kennel; R. Michael Bergen; Stephen P. Carpenter; Dady Dadyburjor; Manoj Katakdaunde; Liviu Magean; Alfred H. Stiller; W. Morgan Summers; John W. Zondlo

    2006-05-12

    The purpose of this DOE-funded effort is to develop continuous processes for solvent extraction of coal for the production of carbon products. The largest applications are those which support metals smelting, such as anodes for aluminum smelting and electrodes for arc furnaces. Other carbon products include materials used in creating fuels for the Direct Carbon Fuel Cell, metals smelting, especially in the aluminum and steel industries, as well as porous carbon structural material referred to as ''carbon foam'' and carbon fibers. During this reporting period, coking and composite fabrication continued using coal-derived samples. These samples were tested in direct carbon fuel cells. Methodology was refined for determining the aromatic character of hydro treated liquid, based on Nuclear Magnetic Resonance (NMR) and Fourier Transform Infrared (FTIR). Tests at GrafTech International showed that binder pitches produced using the WVU solvent extraction protocol can result in acceptable graphite electrodes for use in arc furnaces. These tests were made at the pilot scale.

  3. DEVELOPMENT OF CONTINUOUS SOLVENT EXTRACTION PROCESSES FOR COAL DERIVED CARBON PRODUCTS

    Energy Technology Data Exchange (ETDEWEB)

    Elliot B. Kennel; Stephen P. Carpenter; Dady Dadyburjor; Manoj Katakdaunde; Liviu Magean; Madhavi Nallani-Chakravartula; Peter G. Stansberry; Alfred H. Stiller; John W. Zondlo

    2006-03-27

    The purpose of this DOE-funded effort is to develop continuous processes for solvent extraction of coal for the production of carbon products. These carbon products include materials used in metals smelting, especially in the aluminum and steel industries, as well as porous carbon structural material referred to as ''carbon foam'' and carbon fibers. During this reporting period, efforts have focused on the development of continuous processes for hydrogenation as well as continuous production of carbon foam and coke.

  4. DEVELOPMENT OF CONTINUOUS SOLVENT EXTRACTION PROCESSES FOR COAL DERIVED CARBON PRODUCTS

    Energy Technology Data Exchange (ETDEWEB)

    Elliot B. Kennel; Stephen P. Carpenter; Dady Dadyburjor; Manoj Katakdaunde; Liviu Magean; Peter G. Stansberry; Alfred H. Stiller; John W. Zondlo

    2005-06-08

    The purpose of this DOE-funded effort is to develop continuous processes for solvent extraction of coal for the production of carbon products. These carbon products include materials used in metals smelting, especially in the aluminum and steel industries, as well as porous carbon structural material referred to as ''carbon foam'' and carbon fibers. During this reporting period, efforts have focused on the development of continuous processes for hydrogenation as well as continuous production of carbon foam and coke.

  5. DEVELOPMENT OF CONTINUOUS SOLVENT EXTRACTION PROCESSES FOR COAL DERIVED CARBON PRODUCTS

    Energy Technology Data Exchange (ETDEWEB)

    Elliot B. Kennel; Quentin C. Berg; Stephen P. Carpenter; Dady Dadyburjor; Jason C. Hissam; Manoj Katakdaunde; Liviu Magean; Abha Saddawi; Alfred H. Stiller; John W. Zondlo

    2006-03-07

    The purpose of this DOE-funded effort is to develop continuous processes for solvent extraction of coal for the production of carbon products. The largest applications are those which support metals smelting, such as anodes for aluminum smelting and electrodes for arc furnaces. Other carbon products include materials used in creating fuels for the Direct Carbon Fuel Cell, metals smelting, especially in the aluminum and steel industries, as well as porous carbon structural material referred to as ''carbon foam'' and carbon fibers. During this reporting period, efforts have focused on the development of carbon electrodes for Direct Carbon Fuel Cells (DCFC), and on carbon foam composites used in ballistic armor, as well as the hydrotreatment of solvents used in the basic solvent extraction process. A major goal is the production of 1500 pounds of binder pitch, corresponding to about 3000 pounds of hydrotreated solvent.

  6. DEVELOPMENT OF CONTINUOUS SOLVENT EXTRACTION PROCESSES FOR COAL DERIVED CARBON PRODUCTS

    Energy Technology Data Exchange (ETDEWEB)

    Elliot B. Kennel; Stephen P. Carpenter; Dady Dadyburjor; Manoj Katakdaunde; Liviu Magean; Peter G. Stansberry; Alfred H. Stiller; John W. Zondlo

    2005-08-11

    The purpose of this DOE-funded effort is to develop continuous processes for solvent extraction of coal for the production of carbon products. These carbon products include materials used in metals smelting, especially in the aluminum and steel industries, as well as porous carbon structural material referred to as ''carbon foam'' and carbon fibers. During this reporting period, efforts have focused on the facility modifications for continuous hydrotreating, as well as developing improved protocols for producing synthetic pitches.

  7. DEVELOPMENT OF CONTINUOUS SOLVENT EXTRACTION PROCESSES FOR COAL DERIVED CARBON PRODUCTS

    Energy Technology Data Exchange (ETDEWEB)

    Dady B. Dadyburjor; Mark E. Heavner; Manoj Katakdaunde; Liviu Magean; J. Joshua Maybury; Alfred H. Stiller; Joseph M. Stoffa; John W. Zondlo

    2006-08-01

    The purpose of this DOE-funded effort is to develop continuous processes for solvent extraction of coal for the production of carbon products. The largest applications are those which support metals smelting, such as anodes for aluminum smelting and electrodes for arc furnaces. Other carbon products include materials used in creating fuels for the Direct Carbon Fuel Cell, and porous carbon structural material referred to as ''carbon foam'' and carbon fibers. During this reporting period, hydrotreatment of solvent was completed in preparation for pitch fabrication for graphite electrodes. Coal digestion has lagged but is expected to be complete by next quarter. Studies are reported on coal dissolution, pitch production, foam synthesis using physical blowing agents, and alternate coking techniques.

  8. DEVELOPMENT OF CONTINUOUS SOLVENT EXTRACTION PROCESSES FOR COAL DERIVED CARBON PRODUCTS

    Energy Technology Data Exchange (ETDEWEB)

    Elliot B. Kennel; Chong Chen; Dady Dadyburjor; Liviu Magean; Peter G. Stansberry; Alfred H. Stiller; John W. Zondlo

    2005-07-13

    The purpose of this DOE-funded effort is to develop continuous processes for solvent extraction of coal for the production of carbon products. These carbon products include materials used in metals smelting, especially in the aluminum and steel industries, as well as porous carbon structural material referred to as ''carbon foam'' and carbon fibers. The Hydrotreatment Facility is being prepared for trials with coal liquids. Raw coal tar distillate trials have been carried out by heating coal tar in the holding tank in the Hydrotreatment Facility. The liquids are centrifuged to warm the system up in preparation for the coal liquids. The coal tar distillate is then recycled to keep the centrifuge hot. In this way, the product has been distilled such that a softening point of approximately 110 C is reached. Then an ash test is conducted.

  9. Wool Carpet Dye Adsorption on Nanoporous Carbon Materials Derived from Agro-Product

    Directory of Open Access Journals (Sweden)

    Raja Ram Pradhananga

    2017-04-01

    Full Text Available In this paper, wool carpet dye adsorption properties of nanoporous activated carbon materials (NCMs prepared from bamboo agro-product is reported. Bamboo cane powder was chemically activated with phosphoric acid at different temperatures (400, 500, and 600 °C at an impregnation ratio of 1:1. We found that the specific surface area and the total pore volume of NCM increases with temperature giving the highest surface area and pore volume ca. 2130 m2·g−1 and 2.69 cc·g−1 at 600 °C. Owing to superior surface textural properties, bamboo-derived NCM showed excellent adsorption capacity for wool carpet dyes Lanasyn orange (LO and Lanasyn gray (LG. The adsorption phenomena could be described by Langmuir/Freundlich adsorption isotherm models. The maximum adsorption capacity was ca. 2.60 × 103 and 3.04 × 103 mg·g−1 for LO and LG, respectively. The adsorption followed pseudo second order kinetics with the second order rate constant of 1.24 × 10−3 g·mg−1·min−1 (LO and 7.69 × 10−4 g·mg−1·min−1 (LG, respectively. This study demonstrated that the high surface area NCMs prepared from agro-product can be used as efficient and cost-effective adsorbent materials for the removal of dyes from industrial effluent.

  10. DEVELOPMENT OF CONTINUOUS SOLVENT EXTRACTION PROCESSES FOR COAL DERIVED CARBON PRODUCTS

    Energy Technology Data Exchange (ETDEWEB)

    Elliot B. Kennel; Philip L. Biedler; Chong Chen; Dady Dadyburjor; Liviu Magean; Peter G. Stansberry; Alfred H. Stiller; John W. Zondlo

    2005-06-23

    The purpose of this DOE-funded effort is to develop continuous processes for solvent extraction of coal for the production of carbon products. These carbon products include materials used in metals smelting, especially in the aluminum and steel industries, as well as porous carbon structural material referred to as ''carbon foam'' and carbon fibers. There are a number of parameters which are important for the production of acceptable cokes, including purity, structure, density, electrical resistivity, thermal conductivity etc. From the standpoint of a manufacturer of graphite electrodes such as GrafTech, one of the most important parameters is coefficient of thermal expansion (CTE). Because GrafTech material is usually fully graphitized (i.e., heat treated at 3100 C), very high purity is automatically achieved. The degree of graphitization controls properties such as CTE, electrical resistivity, thermal conductivity, and density. Thus it is usually possible to correlate these properties using a single parameter. CTE has proven to be a useful index for the quality of coke. Pure graphite actually has a slightly negative coefficient of thermal expansion, whereas more disordered carbon has a positive coefficient.

  11. Distinct Anaerobic Bacterial Consumers of Cellobiose-Derived Carbon in Boreal Fens with Different CO2/CH4 Production Ratios.

    Science.gov (United States)

    Juottonen, Heli; Eiler, Alexander; Biasi, Christina; Tuittila, Eeva-Stiina; Yrjälä, Kim; Fritze, Hannu

    2017-02-15

    Northern peatlands in general have high methane (CH4) emissions, but individual peatlands show considerable variation as CH4 sources. Particularly in nutrient-poor peatlands, CH4 production can be low and exceeded by carbon dioxide (CO2) production from unresolved anaerobic processes. To clarify the role anaerobic bacterial degraders play in this variation, we compared consumers of cellobiose-derived carbon in two fens differing in nutrient status and the ratio of CO2 to CH4 produced. After [(13)C]cellobiose amendment, the mesotrophic fen produced equal amounts of CH4 and CO2 The oligotrophic fen had lower CH4 production but produced 3 to 59 times more CO2 than CH4 RNA stable-isotope probing revealed that in the mesotrophic fen with higher CH4 production, cellobiose-derived carbon was mainly assimilated by various recognized fermenters of Firmicutes and by Proteobacteria The oligotrophic peat with excess CO2 production revealed a wider variety of cellobiose-C consumers, including Firmicutes and Proteobacteria, but also more unconventional degraders, such as Telmatobacter-related Acidobacteria and subphylum 3 of Verrucomicrobia Prominent and potentially fermentative Planctomycetes and Chloroflexi did not appear to process cellobiose-C. Our results show that anaerobic degradation resulting in different levels of CH4 production can involve distinct sets of bacterial degraders. By distinguishing cellobiose degraders from the total community, this study contributes to defining anaerobic bacteria that process cellulose-derived carbon in peat. Several of the identified degraders, particularly fermenters and potential Fe(III) or humic substance reducers in the oligotrophic peat, represent promising candidates for resolving the origin of excess CO2 production in peatlands.

  12. COAL DERIVED MATRIX PITCHES FOR CARBON-CARBON COMPOSITE MANUFACTURE/PRODUCTION OF FIBERS AND COMPOSITES FROM COAL-BASED PRECURSORS

    Energy Technology Data Exchange (ETDEWEB)

    Peter G. Stansberry; John W. Zondlo

    2001-07-01

    The Consortium for premium Carbon Products from Coal, with funding from the US Department of Energy, National Energy Technology Laboratory continue with the development of innovative technologies that will allow coal or coal-derived feedstocks to be used in the production of value-added carbon materials. In addition to supporting eleven independent projects during budget period 3, three meetings were held at two separate locations for the membership. The first was held at Nemacolin Woodlands Resort on May 15-16, 2000. This was followed by two meetings at Penn State, a tutorial on August 11, 2000 and a technical progress meeting on October 26-27.

  13. Development of Continuous Solvent Extraction Processes For Coal Derived Carbon Products

    Energy Technology Data Exchange (ETDEWEB)

    Elliot B. Kennel; Dady B. Dadyburjor; Gregory W. Hackett; Manoj Katakdaunde; Liviu Magean; Alfred H. Stiller; Robert C. Svensson; John W. Zondlo

    2006-09-30

    In this reporting period, tonnage quantities of coal extract were produced but solid separation was not accomplished in a timely manner. It became clear that the originally selected filtration process would not be effective enough for a serious commercial process. Accordingly, centrifugation was investigated as a superior means for removing solids from the extract. Results show acceptable performance. Petrographic analysis of filtered solids was carried out by R and D Carbon Petrography under the auspices of Koppers and consultant Ken Krupinski. The general conclusion is that the material appears to be amenable to centrifugation. Filtered solids shows a substantial pitch component as well as some mesophase, resulting in increased viscosity. This is likely a contributing reason for the difficulty in filtering the material. Cost estimates were made for the hydotreatment and digestion reactors that would be needed for a 20,000 ton per year demonstration plants, with the aid of ChemTech Inc. The estimates show that the costs of scaling up the existing tank reactors are acceptable. However, a strong recommendation was made to consider pipe reactors, which are thought to be more cost effective and potentially higher performance in large scale systems. The alternate feedstocks for coke and carbon products were used to fabricate carbon electrodes as described in the last quarterly report. Gregory Hackett successfully defended his MS Thesis on the use of these electrodes in Direct Carbon Fuel Cell (DCFC), which is excerpted in Section 2.4 of this quarterly report.

  14. Utilization of glycerin byproduct derived from soybean oil biodiesel as a carbon source for heterologous protein production in Pichia pastoris.

    Science.gov (United States)

    Anastácio, G S; Santos, K O; Suarez, P A Z; Torres, F A G; De Marco, J L; Parachin, N S

    2014-01-01

    Crude glycerol, also known as glycerin, is the main byproduct of the biodiesel industry. It has been estimated that up to 40,000 tons of glycerin will be produced each year by 2020. This study evaluated the value-added use of crude glycerol derived from soybean biodiesel preparation as a carbon source for heterologous protein production using the yeast Pichia pastoris. Eleven glycerin samples were obtained by methanolysis of soybean oil using different acids or bases as catalysts. Cell growth experiments showed that crude glycerol containing either potassium or sodium hydroxide resulted in 1.5-2 times higher final cell densities when compared to glycerol P.A. Finally, crude glycerol containing sodium hydroxide was successfully utilized for constitutive heterologous α-amylase production in P. pastoris. This study demonstrated that crude glycerol without any purification steps may be directly used as carbon source for protein production in P. pastoris.

  15. DEVELOPMENT OF CONTINUOUS SOLVENT EXTRACTION PROCESSES FOR COAL DERIVED CARBON PRODUCTS

    Energy Technology Data Exchange (ETDEWEB)

    Elliot Kennel; Chong Chen; Dady Dadyburjor; Mark Heavner; Manoj Katakdaunde; Liviu Magean; James Mayberry; Alfred Stiller; Joseph Stoffa; Christopher Yurchick; John Zondlo

    2009-12-31

    This NETL sponsored effort seeks to develop continuous technologies for the production of carbon products, which may be thought of as the heavier products currently produced from refining of crude petroleum and coal tars obtained from metallurgical grade coke ovens. This effort took binder grade pitch, produced from liquefaction of West Virginia bituminous grade coal, all the way to commercial demonstration in a state of the art arc furnace. Other products, such as crude oil, anode grade coke and metallurgical grade coke were demonstrated successfully at the bench scale. The technology developed herein diverged from the previous state of the art in direct liquefaction (also referred to as the Bergius process), in two major respects. First, direct liquefaction was accomplished with less than a percent of hydrogen per unit mass of product, or about 3 pound per barrel or less. By contrast, other variants of the Bergius process require the use of 15 pounds or more of hydrogen per barrel, resulting in an inherent materials cost. Second, the conventional Bergius process requires high pressure, in the range of 1500 psig to 3000 psig. The WVU process variant has been carried out at pressures below 400 psig, a significant difference. Thanks mainly to DOE sponsorship, the WVU process has been licensed to a Canadian Company, Quantex Energy Inc, with a commercial demonstration unit plant scheduled to be erected in 2011.

  16. Production and Optimization of Direct Coal Liquefaction derived Low Carbon-Footprint Transportation Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Steven Markovich

    2010-06-30

    This report summarizes works conducted under DOE Contract No. DE-FC26-05NT42448. The work scope was divided into two categories - (a) experimental program to pretreat and refine a coal derived syncrude sample to meet transportation fuels requirements; (b) system analysis of a commercial scale direct coal liquefaction facility. The coal syncrude was derived from a bituminous coal by Headwaters CTL, while the refining study was carried out under a subcontract to Axens North America. The system analysis included H{sub 2} production cost via six different options, conceptual process design, utilities requirements, CO{sub 2} emission and overall plant economy. As part of the system analysis, impact of various H{sub 2} production options was evaluated. For consistence the comparison was carried out using the DOE H2A model. However, assumptions in the model were updated using Headwaters database. Results of Tier 2 jet fuel specifications evaluation by the Fuels & Energy Branch, US Air Force Research Laboratory (AFRL/RZPF) located at Wright Patterson Air Force Base (Ohio) are also discussed in this report.

  17. Volatile fatty acids derived from waste organics provide an economical carbon source for microbial lipids/biodiesel production.

    Science.gov (United States)

    Park, Gwon Woo; Fei, Qiang; Jung, Kwonsu; Chang, Ho Nam; Kim, Yeu-Chun; Kim, Nag-jong; Choi, Jin-dal-rae; Kim, Sangyong; Cho, Jaehoon

    2014-12-01

    Volatile fatty acids (VFAs) derived from organic waste, were used as a low cost carbon source for high bioreactor productivity and titer. A multi-stage continuous high cell density culture (MSC-HCDC) process was employed for economic assessment of microbial lipids for biodiesel production. In a simulation study we used a lipid yield of 0.3 g/g-VFAs, cell mass yield of 0.5 g/g-glucose or wood hydrolyzates, and employed process variables including lipid contents from 10-90% of cell mass, bioreactor productivity of 0.5-48 g/L/h, and plant capacity of 20000-1000000 metric ton (MT)/year. A production cost of USD 1.048/kg-lipid was predicted with raw material costs of USD 0.2/kg for wood hydrolyzates and USD 0.15/kg for VFAs; 9 g/L/h bioreactor productivity; 100, 000 MT/year production capacity; and 75% lipids content. The variables having the highest impact on microbial lipid production costs were the cost of VFAs and lipid yield, followed by lipid content, fermenter cost, and lipid productivity. The cost of raw materials accounted for 66.25% of total operating costs. This study shows that biodiesel from microbial lipids has the potential to become competitive with diesels from other sources.

  18. Interconnected Hierarchical Porous Carbon from Lignin-Derived Byproducts of Bioethanol Production for Ultra-High Performance Supercapacitors.

    Science.gov (United States)

    Zhang, Liming; You, Tingting; Zhou, Tian; Zhou, Xia; Xu, Feng

    2016-06-08

    The advent of bioethanol production has generated abundant lignin-derived byproducts which contain proteins and polysaccharides. These byproducts are inapplicable for direct material applications. In this study, lignin-derived byproducts were used for the first time as carbon precursors to construct an interconnected hierarchical porous nitrogen-doped carbon (HPNC) via hydrothermal treatment and activation. The obtained HPNC exhibited favorable features for supercapacitor applications, such as hierarchical bowl-like pore structures, a large specific surface area of 2218 m(2) g(-1), a high electronic conductivity of 4.8 S cm(-1), and a nitrogen doping content of 3.4%. HPNC-based supercapacitors in a 6 M KOH aqueous electrolyte exhibited high-rate performance with a high specific capacitance of 312 F g(-1) at 1 A g(-1) and 81% retention at 80 A g(-1) as well as an excellent cyclic life of 98% initial capacitance after 20 000 cycles at 10 A g(-1). Moreover, HPNC-based supercapacitors in the ionic liquid electrolyte of EMI-BF4 displayed an enhanced energy density of 44.7 Wh kg(-1) (remaining 74% of max value) at an ultrahigh power density of 73.1 kW kg(-1). The proposed strategy may facilitate lignin utilization and lead to a green bioethanol production process.

  19. Prebiotic Synthesis of Autocatalytic Products From Formaldehyde-Derived Sugars as the Carbon and Energy Source

    Science.gov (United States)

    Weber, Arthur L.

    2003-01-01

    Our research objective is to understand and model the chemical processes on the primitive Earth that generated the first autocatalytic molecules and microstructures involved in the origin of life. Our approach involves: (a) investigation of a model origin-of-life process named the Sugar Model that is based on the reaction of formaldehyde- derived sugars (trioses and tetroses) with ammonia, and (b) elucidation of the constraints imposed on the chemistry of the origin of life by the fixed energies and rates of C,H,O-organic reactions under mild aqueous conditions. Recently, we demonstrated that under mild aqueous conditions the Sugar Model process yields autocatalytic products, and generates organic micropherules (2-20 micron dia.) that exhibit budding, size uniformity, and chain formation. We also discovered that the sugar substrates of the Sugar Model are capable of reducing nitrite to ammonia under mild aqueous conditions. In addition studies done in collaboration with Sandra Pizzarrello (Arizona State University) revealed that chiral amino acids (including meteoritic isovaline) catalyze both the synthesis and specific handedness of chiral sugars. Our systematic survey of the energies and rates of reactions of C,H,O-organic substrates under mild aqueous conditions revealed several general principles (rules) that govern the direction and rate of organic reactions. These reactivity principles constrain the structure of chemical pathways used in the origin of life, and in modern and primitive metabolism.

  20. Activated Carbon Derived from Fast Pyrolysis Liquids Production of Agricultural Residues and Energy Crops

    Science.gov (United States)

    Fast pyrolysis is a thermochemical method that can be used for processing energy crops such as switchgrass, alfalfa, soybean straw, corn stover as well as agricultural residuals (broiler litter) for bio-oil production. Researchers with the Agriculture Research Service (ARS) of the USDA developed a 2...

  1. Lignin-Derived Advanced Carbon Materials.

    Science.gov (United States)

    Chatterjee, Sabornie; Saito, Tomonori

    2015-12-07

    Lignin is a highly abundant source of renewable carbon that can be considered as a valuable sustainable source of biobased materials. By applying specific pretreatments and manufacturing methods, lignin can be converted into a variety of value-added carbon materials. However, the physical and chemical heterogeneities of lignin complicate its use as a feedstock. Herein lignin manufacturing process, the effects of pretreatments and manufacturing methods on the properties of product lignin, and structure-property relationships in various applications of lignin-derived carbon materials, such as carbon fibers, carbon mats, activated carbons, carbon films, and templated carbon, are discussed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Disparities between Phaeocystis in situ and optically-derived carbon biomass and growth rates: potential effect on remote-sensing primary production estimates

    Directory of Open Access Journals (Sweden)

    L. Peperzak

    2014-04-01

    Full Text Available The oceans play a pivotal role in the global carbon cycle. Unfortunately, the daily production of organic carbon, the product of phytoplankton standing stock and growth rate cannot be measured globally by discrete oceanographic methods. Instead, optical proxies from Earth-orbiting satellites must be used. To test the accuracy of optically-derived proxies of phytoplankton physiology and growth rate, standard ex situ data from the wax and wane of a Phaeocystis bloom in laboratory mesocosms were compared with hyperspectral reflectance data. Chlorophyll biomass could be estimated accurately from reflectance using specific chlorophyll absorption algorithms. However, the conversion of chlorophyll (Chl to carbon (C was obscured by the observed increase in C : Chl under nutrient-limited growth. C : Chl was inversely correlated (r2 = 0.88 with Photosystem II quantum efficiency (Fv/Fm, the in situ fluorometric oceanographic proxy for growth rate. In addition, the optical proxy for growth rate, the quantum efficiency of fluorescence ϕ was linearly correlated to Fv/Fm (r2 = 0.84, but not – as by definition – by using total phytoplankton absorption, because during nutrient-limited growth the concentrations of non-fluorescent light-absorbing pigments increased. As a consequence, none of the three proxies (C : Chl, Fv/Fm, φ was correlated to carbon or cellular phytoplankton growth rates. Therefore, it is concluded that although satellite derived estimates of chlorophyll biomass may be accurate, physiologically-induced non-linear shifts in growth rate proxies may obscure accurate phytoplankton growth rates and hence global carbon production estimates.

  3. Investigating the usefulness of satellite derived fluorescence data in inferring gross primary productivity within the carbon cycle data assimilation system

    Directory of Open Access Journals (Sweden)

    E. N. Koffi

    2015-01-01

    Full Text Available We investigate the utility of satellite measurements of chlorophyll fluorescence (Fs in constraining gross primary productivity (GPP. We ingest Fs measurements into the Carbon-Cycle Data Assimilation System (CCDAS which has been augmented by the fluorescence component of the Soil Canopy Observation, Photochemistry and Energy fluxes (SCOPE model. CCDAS simulates well the patterns of Fs suggesting the combined model is capable of ingesting these measurements. However simulated Fs is insensitive to the key parameter controlling GPP, the carboxylation capacity (Vcmax. Simulated Fs is sensitive to both the incoming absorbed photosynthetically active radiation (aPAR and leaf chlorophyll concentration both of which are treated as perfectly known in previous CCDAS versions. Proper use of Fs measurements therefore requires enhancement of CCDAS to include and expose these variables.

  4. Styrene production from a biomass-derived carbon source using a coculture system of phenylalanine ammonia lyase and phenylacrylic acid decarboxylase-expressing Streptomyces lividans transformants.

    Science.gov (United States)

    Fujiwara, Ryosuke; Noda, Shuhei; Tanaka, Tsutomu; Kondo, Akihiko

    2016-12-01

    To produce styrene from a biomass-derived carbon source, Streptomyces lividans was adopted as a host strain. The gene encoding ferulic acid decarboxylase from Saccharomyces cerevisiae (FDC1) was introduced into S. lividans, and the resulting S. lividans transformant successfully expressed FDC1 and converted trans-cinnamic acid (CA) to styrene. A key factor in styrene production using microbes is the recovery of volatile styrene. In the present study, we selected polystyrene resin beads XRD-4 as the absorbent agent to recover styrene produced using S. lividans transformants, which enabled recovery of styrene from the culture broth. For styrene production from biomass-derived carbon sources, S. lividans/FDC1 was cultured together with S. lividans/p-encP, which we previously reported as a CA-producing S. lividans strain. This coculture system combined with the recovery of styrene using XAD-4 allowed the production of styrene from glucose, cellobiose, or xylo-oligosaccharide, respectively.

  5. Production of carbon nanotubes

    Science.gov (United States)

    Journet, C.; Bernier, P.

    Carbon nanostructures such as single-walled and multi-walled nanotubes (SWNTs and MWNTs) or graphitic polyhedral nanoparticles can be produced using various methods. Most of them are based on the sublimation of carbon under an inert atmosphere, such as the electric arc discharge process, the laser ablation method, or the solar technique. But chemical methods can also be used to synthesize these kinds of carbon materials: the catalytic decomposition of hydrocarbons, the production by electrolysis, the heat treatment of a polymer, the low temperature solid pyrolysis, or the in situ catalysis.

  6. Carbon Isotope Measurements of Experimentally-Derived Hydrothermal Mineral-Catalyzed Organic Products by Pyrolysis-Isotope Ratio Mass Spectrometry

    Science.gov (United States)

    Socki, Richard A.; Fu, Qi; Niles, Paul B.

    2011-01-01

    We report results of experiments to measure the C isotope composition of mineral catalyzed organic compounds derived from high temperature and high pressure synthesis. These experiments make use of an innovative pyrolysis technique designed to extract and measure C isotopes. To date, our experiments have focused on the pyrolysis and C isotope ratio measurements of low-molecular weight intermediary hydrocarbons (organic acids and alcohols) and serve as a proof of concept for making C and H isotope measurements on more complicated mixtures of solid-phase hydrocarbons and intermediary products produced during high temperature and high pressure synthesis on mineral-catalyzed surfaces. The impetus for this work stems from recently reported observations of methane detected within the Martian atmosphere [1-4], coupled with evidence showing extensive water-rock interaction during Martian history [5-7]. Methane production on Mars could be the result of synthesis by mineral surface-catalyzed reduction of CO2 and/or CO by Fischer-Tropsch Type (FTT) reactions during serpentization reactions [8,9]. Others have conducted experimental studies to show that FTT reactions are plausible mechanisms for low-molecular weight hydrocarbon formation in hydrothermal systems at mid-ocean ridges [10-12]. Further, recent experiments by Fu et al. [13] focus on examining detailed C isotope measurements of hydrocarbons produced by surface-catalyzed mineral reactions. Work described in this paper details the experimental techniques used to measure intermediary organic reaction products (alcohols and organic acids).

  7. Platelet-derived growth factor stimulates heme oxygenase-1 gene expression and carbon monoxide production in vascular smooth muscle cells.

    Science.gov (United States)

    Durante, W; Peyton, K J; Schafer, A I

    1999-11-01

    Recent studies indicate that vascular smooth muscle cells (VSMCs) generate CO from the degradation of heme by the enzyme heme oxygenase-1 (HO-1). Because platelet-derived growth factor (PDGF) modulates various responses of VSMCs, we examined whether this peptide regulates the expression of HO-1 and the production of CO by rat aortic SMCs. Treatment of SMCs with PDGF resulted in a time- and concentration-dependent increase in the levels of HO-1 mRNA and protein. Both actinomycin D and cycloheximide blocked PDGF-stimulated HO-1 mRNA and protein. In addition, PDGF stimulated the production of reactive oxygen species by SMCs. Both the PDGF-mediated generation of reactive oxygen species and the induction of HO-1 protein was inhibited by the antioxidant N-acetyl-L-cysteine. Incubation of platelets with PDGF-treated SMCs resulted in a significant increase in platelet cGMP concentration that was reversed by treatment of SMCs with the HO-1 inhibitor tin protoporphyrin-IX or by addition of the CO scavenger hemoglobin to platelets. In contrast, the nitric oxide inhibitor methyl-L-arginine did not block the stimulatory effect of PDGF-treated SMCs on platelet cGMP. Finally, incubation of SMCs with the releasate from collagen-activated platelets induced HO-1 protein expression that was blocked by a neutralizing antibody to PDGF. These results demonstrate that either administered exogenously or released by platelets, PDGF stimulates HO-1 gene expression and CO synthesis in vascular smooth muscle. The ability of PDGF to induce HO-1-catalyzed CO release by VSMCs may represent a novel mechanism by which this growth factor regulates vascular cell and platelet function.

  8. Carbon-11 labeled stilbene derivatives from natural products for the imaging of Aβ plaques in the brain

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Mengchao; Tang, Ruikun; Li, Zijing; Jia, Hongmei; Liu, Boli [Beijing Normal Univ. (China). Key Laboratory of Radiopharmaceuticals; Zhang, Jinming; Zhang, Xiaojun [Chinese PLA General Hospital, Beijing (China). Dept. of Nuclear Medicine

    2014-04-01

    Four stilbene derivatives from natural products were screened as novel β-amyloid (Aβ) imaging ligands. In vitro binding assay showed that the methylated ligand, (E)-1-methoxy-4-styrylbenzene (8) displayed high binding affinity to Aβ{sub 1-42} aggregates (K{sub i} = 19.5 nM). Moreover, the {sup 11}C-labeled ligand, [{sup 11}C]8 was prepared through an O-methylation reaction using [{sup 11}C]CH{sub 3}OTf. In vitro autoradiography with sections of transgenic mouse brain also confirmed the high and specific binding of [{sup 11}C]8 to Aβ plaques. In vivo biodistribution experiments in normal mice indicated that [{sup 11}C]8 displayed high initial uptake (9.41 ± 0.51% ID/g at 5 min post-injection) into and rapid washout from the brain, with a brain{sub 5} {sub min}/brain{sub 30} {sub min} ratio of 6.63. These preliminary results suggest that [{sup 11}C]8 may be served as a novel Aβ imaging probe for PET. (orig.)

  9. Determination of Optimum Conditions for the Production of Activated Carbon Derived from Separate Varieties of Coconut Shells

    Directory of Open Access Journals (Sweden)

    E. S. Sanni

    2017-01-01

    Full Text Available Activated carbons were produced from coconut shells of tall and dwarf tree varieties. The activated carbon from the tall tree variety was initially synthesized using 1 M concentration of each of ZnCl2, H3PO4, and KOH solutions. From the adsorptive tests conducted using methylene blue solution, the activated carbon produced with H3PO4 gave the best absorbance and adsorptive performance. Coconut shells of dwarf tree variety were then obtained and treated with same mass of coconut shells of the tall tree variety using varied concentrations of the acid in order to determine whether the optimum concentration and temperature for producing carbon black from the coconut shells are distinct or similar for both varieties. The process was also modelled using the Differential Response Method (DRM in order to determine the yields and adsorptive performances of the activated carbons by varying the carbonization temperature and concentration. The results from experiment and the developed mathematical model were both found to be in agreement giving the optimum concentration of phosphoric acid and pH for producing activated carbon to be 0.67 M and 2.07 for the tall tree variety and 1 M and 1.98 for the dwarf variety at optimum temperatures in the range of 450–575°C and 575°C, respectively.

  10. Removal of free fatty acid in Palm Fatty Acid Distillate using sulfonated carbon catalyst derived from biomass wastefor biodiesel production

    Science.gov (United States)

    Hidayat, Arif; Rochmadi; Wijaya, Karna; Budiman, Arief

    2016-01-01

    In this research, the esterification of PFAD using the sulfonatedcoconut shell biochar catalyst was studied. Carbon solid catalysts were prepared by a sulfonation of carbonized coconut shells. The performances of the catalysts were evaluated in terms of the reaction temperatures, the molar ratios of methanol to PFAD, the catalyst loading and the reaction times. The reusability of the solid acid carbon catalysts was also studied in this work. The results indicated that the FFA conversion was significantly increased with increasing catalyst loading and reaction times. It can be concluded that the optimal conditions were an PFAD to methanol molar ratio of 1:12, the amount of catalyst of 10%w, and reaction temperature of 60oC.At this optimum condition, the conversion to biodieselreached 88%.

  11. Ancient and methane-derived carbon subsidizes contemporary food webs

    Science.gov (United States)

    Delvecchia, Amanda G.; Stanford, Jack A.; Xu, Xiaomei

    2016-11-01

    While most global productivity is driven by modern photosynthesis, river ecosystems are supplied by locally fixed and imported carbon that spans a range of ages. Alluvial aquifers of gravel-bedded river floodplains present a conundrum: despite no possibility for photosynthesis in groundwater and extreme paucity of labile organic carbon, they support diverse and abundant large-bodied consumers (stoneflies, Insecta: Plecoptera). Here we show that up to a majority of the biomass carbon composition of these top consumers in four floodplain aquifers of Montana and Washington is methane-derived. The methane carbon ranges in age from modern to up to >50,000 years old and is mostly derived from biogenic sources, although a thermogenic contribution could not be excluded. We document one of the most expansive ecosystems to contain site-wide macroinvertebrate biomass comprised of methane-derived carbon and thereby advance contemporary understanding of basal resources supporting riverine productivity.

  12. Overview of the carbon products consortium (CPC)

    Energy Technology Data Exchange (ETDEWEB)

    Irwin, C.L. [West Virginia Univ., Morgantown, WV (United States)

    1996-08-01

    The Carbon Products Consortium (CPC) is an industry, university, government cooperative research team which has evolved over the past seven years to produce and evaluate coal-derived feedstocks for carbon products. The members of the Carbon Products Consortium are UCAR Carbon Company, Koppers Industries, CONOCO, Aluminum Company of America, AMOCO Polymers, and West Virginia University. The Carbon and Insulation Materials Technology Group at Oak Ridge National Laboratory, Fiber Materials Inc., and BASF Corporation are affiliates of the CPC. The initial work on coal-derived nuclear graphites was supported by a grant to WVU, UCAR Carbon, and ORNL from the U.S. DOE New Production Reactor program. More recently, the CPC program has been supported through the Fossil Energy Materials program and through PETC`s Liquefaction program. The coal processing technologies involve hydrogenation, extraction by solvents such as N-methyl pyrolidone and toluene, material blending, and calcination. The breadth of carbon science expertise and manufacturing capability available in the CPC enables it to address virtually all research and development issues of importance to the carbon products industry.

  13. N-doped graphene grown on silk cocoon-derived interconnected carbon fibers for oxygen reduction reaction and photocatalytic hydrogen production

    Institute of Scientific and Technical Information of China (English)

    Yongpeng Lei; Qi Shi; Cheng Han; Bing Wang; Nan Wu; Hong Wang; Yingde Wang

    2016-01-01

    Carbon-based metal-free catalysts are a promising substitute for the rare and expensive platinum (Pt) used in the oxygen reduction reaction.We herein report N-doped graphene (NG) that is exquisitely integrated into highly conductive frameworks,simultaneously providing more active sites and higher conductivity.The NG was in situ grown on carbon fibers derived from silk cocoon (SCCf) using a simple one-step thermal treatment.The resulting product (NG-SCCf),possessing a meso-/macroporous structure with three-dimensional (3D) interconnected networks,exhibits an onset potential that is only 0.1 V less negative than that of Pt/C and shows stability and methanol tolerance superior to those of Pt/C in alkaline media.Moreover,in the absence of Pt as co-catalyst,NG-SCCf shows a photocatalytic H2 production rate of 66.0 μmol·h 1·g-1,4.4-fold higher than that of SCCf.This outstanding activity is intimately related to the in situ grown NG,hierarchically porous structure,and 3D interconnected networks,which not only introduce more active sites but also enable smooth electron transfer,mass transport,and effective separation of electron-hole pairs.Considering the abundance of the green raw material in combination with easy and low-cost preparation,this work contributes to the development of advanced sustainable catalysts in energy storage/conversion fields,such as electro-and photocatalysis.

  14. Functionalized carbon nanomaterials derived from carbohydrates.

    Science.gov (United States)

    Jagadeesan, Dinesh; Eswaramoorthy, Muthusamy

    2010-02-01

    A tremendous growth in the field of carbon nanomaterials has led to the emergence of carbon nanotubes, fullerenes, mesoporous carbon and more recently graphene. Some of these materials have found applications in electronics, sensors, catalysis, drug delivery, composites, and so forth. The high temperatures and hydrocarbon precursors involved in their synthesis usually yield highly inert graphitic surfaces. As some of the applications require functionalization of their inert graphitic surface with groups like -COOH, -OH, and -NH(2), treatment of these materials in oxidizing agents and concentrated acids become inevitable. More recent works have involved using precursors like carbohydrates to produce carbon nanostructures rich in functional groups in a single-step under hydrothermal conditions. These carbon nanostructures have already found many applications in composites, drug delivery, materials synthesis, and Li ion batteries. The review aims to highlight some of the recent developments in the application of carbohydrate derived carbon nanostructures and also provide an outlook of their future prospects.

  15. Carbon gels derived from natural resources

    Directory of Open Access Journals (Sweden)

    A. Celzard

    2012-12-01

    Full Text Available Most carbon gels investigated so far and reportedin the literature were prepared from resorcinolcrosslinked with formaldehyde in water, and weregenerally dried with supercritical CO2 before beingpyrolysed. In the present paper, through someselected examples, we show how valuable carbongels can be derived from other phenolic resourceshaving a natural origin. Special emphasis is givento tannin and lignin, both derived from wood, aspotential precursors of carbon aero- and cryogels.However, natural compounds not obeying the usualconcepts of sol-gel chemistry may also be used forpreparing carbon gels, such as cellulose, and evenglucose. In the latter case, hydrothermal treatmentforces the phase separation to occur, and leads tomonoliths which can be advantageously convertedinto carbon aerogels by supercritical drying andsubsequent pyrolysis.

  16. Reducing carbon dioxide to products

    Energy Technology Data Exchange (ETDEWEB)

    Cole, Emily Barton; Sivasankar, Narayanappa; Parajuli, Rishi; Keets, Kate A

    2014-09-30

    A method reducing carbon dioxide to one or more products may include steps (A) to (C). Step (A) may bubble said carbon dioxide into a solution of an electrolyte and a catalyst in a divided electrochemical cell. The divided electrochemical cell may include an anode in a first cell compartment and a cathode in a second cell compartment. The cathode may reduce said carbon dioxide into said products. Step (B) may adjust one or more of (a) a cathode material, (b) a surface morphology of said cathode, (c) said electrolyte, (d) a manner in which said carbon dioxide is bubbled, (e), a pH level of said solution, and (f) an electrical potential of said divided electrochemical cell, to vary at least one of (i) which of said products is produced and (ii) a faradaic yield of said products. Step (C) may separate said products from said solution.

  17. PRODUCTION OF CARBON PRODUCTS USING A COAL EXTRACTION PROCESS

    Energy Technology Data Exchange (ETDEWEB)

    Dady Dadyburjor; Philip R. Biedler; Chong Chen; L. Mitchell Clendenin; Manoj Katakdaunde; Elliot B. Kennel; Nathan D. King; Liviu Magean; Peter G. Stansberry; Alfred H. Stiller; John W. Zondlo

    2004-08-31

    This Department of Energy National Energy Technology Laboratory sponsored project developed carbon products, using mildly hydrogenated solvents to extract the organic portion of coal to create synthetic pitches, cokes, carbon foam and carbon fibers. The focus of this effort was on development of lower cost solvents, milder hydrogenation conditions and improved yield in order to enable practical production of these products. This technology is needed because of the long-term decline in production of domestic feedstocks such as petroleum pitch and coal tar pitch. Currently, carbon products represents a market of roughly 5 million tons domestically, and 19 million tons worldwide. Carbon products are mainly derived from feedstocks such as petroleum pitch and coal tar pitch. The domestic supply of petroleum pitch is declining because of the rising price of liquid fuels, which has caused US refineries to maximize liquid fuel production. As a consequence, the long term trend has a decline in production of petroleum pitch over the past 20 years. The production of coal tar pitch, as in the case of petroleum pitch, has likewise declined significantly over the past two decades. Coal tar pitch is a byproduct of metallurgical grade coke (metcoke) production. In this industry, modern metcoke facilities are recycling coal tar as fuel in order to enhance energy efficiency and minimize environmental emissions. Metcoke production itself is dependent upon the production requirements for domestic steel. Hence, several metcoke ovens have been decommissioned over the past two decades and have not been replaced. As a consequence sources of coal tar are being taken off line and are not being replaced. The long-term trend is a reduction in coal tar pitch production. Thus import of feedstocks, mainly from Eastern Europe and China, is on the rise despite the relatively large transportation cost. To reverse this trend, a new process for producing carbon products is needed. The process must be

  18. Carbon-13 and proton nuclear magnetic resonance analysis of shale-derived refinery products and jet fuels and of experimental referee broadened-specification jet fuels

    Science.gov (United States)

    Dalling, D. K.; Bailey, B. K.; Pugmire, R. J.

    1984-01-01

    A proton and carbon-13 nuclear magnetic resonance (NMR) study was conducted of Ashland shale oil refinery products, experimental referee broadened-specification jet fuels, and of related isoprenoid model compounds. Supercritical fluid chromatography techniques using carbon dioxide were developed on a preparative scale, so that samples could be quantitatively separated into saturates and aromatic fractions for study by NMR. An optimized average parameter treatment was developed, and the NMR results were analyzed in terms of the resulting average parameters; formulation of model mixtures was demonstrated. Application of novel spectroscopic techniques to fuel samples was investigated.

  19. Carbon nanomaterials: Biologically active fullerene derivatives

    Directory of Open Access Journals (Sweden)

    Bogdanović Gordana

    2016-01-01

    Full Text Available Since their discovery, fullerenes, carbon nanotubes, and graphene attract significant attention of researches in various scientific fields including biomedicine. Nano-scale size and a possibility for diverse surface modifications allow carbon nanoallotropes to become an indispensable nanostructured material in nanotechnologies, including nanomedicine. Manipulation of surface chemistry has created diverse populations of water-soluble derivatives of fullerenes, which exhibit different behaviors. Both non-derivatized and derivatized fullerenes show various biological activities. Cellular processes that underline their toxicity are oxidative, genotoxic, and cytotoxic responses. The antioxidant/cytoprotective properties of fullerenes and derivatives have been considered in the prevention of organ oxidative damage and treatment. The same unique physiochemical properties of nanomaterials may also be associated with potential health hazards. Non-biodegradability and toxicity of carbon nanoparticles still remain a great concern in the area of biomedical application. In this review, we report on basic physical and chemical properties of carbon nano-clusters - fullerenes, nanotubes, and graphene - their specificities, activities, and potential application in biological systems. Special emphasis is given to our most important results obtained in vitro and in vivo using polyhydroxylated fullerene derivative C60(OH24. [Projekat Ministarstva nauke Republike Srbije, br. III45005

  20. Sustainable biomass-derived hydrothermal carbons for energy applications

    Energy Technology Data Exchange (ETDEWEB)

    Falco, Camillo

    2012-01-15

    The need to reduce humankind reliance on fossil fuels by exploiting sustainably the planet renewable resources is a major driving force determining the focus of modern material research. For this reason great interest is nowadays focused on finding alternatives to fossil fuels derived products/materials. For the short term the most promising substitute is undoubtedly biomass, since it is the only renewable and sustainable alternative to fossil fuels as carbon source. As a consequence efforts, aimed at finding new synthetic approaches to convert biomass and its derivatives into carbon-based materials, are constantly increasing. In this regard, hydrothermal carbonisation (HTC) has shown to be an effective means of conversion of biomass-derived precursors into functional carbon materials. However the attempts to convert raw biomass, in particular lignocellulosic one, directly into such products have certainly been rarer. Unlocking the direct use of these raw materials as carbon precursors would definitely be beneficial in terms of HTC sustainability. For this reason, in this thesis the HTC of carbohydrate and protein-rich biomass was systematically investigated, in order to obtain more insights on the potentials of this thermochemical processing technique in relation to the production of functional carbon materials from crude biomass. First a detailed investigation on the HTC conversion mechanism of lignocellulosic biomass and its single components (i.e. cellulose, lignin) was developed based on a comparison with glucose HTC, which was adopted as a reference model. In the glucose case it was demonstrated that varying the HTC temperature allowed tuning the chemical structure of the synthesised carbon materials from a highly cross-linked furan-based structure (T = 180 C) to a carbon framework composed of polyaromatic arene-like domains. When cellulose or lignocellulosic biomass was used as carbon precursor, the furan rich structure could not be isolated at any of the

  1. Sustainable biomass-derived hydrothermal carbons for energy applications

    Energy Technology Data Exchange (ETDEWEB)

    Falco, Camillo

    2012-01-15

    The need to reduce humankind reliance on fossil fuels by exploiting sustainably the planet renewable resources is a major driving force determining the focus of modern material research. For this reason great interest is nowadays focused on finding alternatives to fossil fuels derived products/materials. For the short term the most promising substitute is undoubtedly biomass, since it is the only renewable and sustainable alternative to fossil fuels as carbon source. As a consequence efforts, aimed at finding new synthetic approaches to convert biomass and its derivatives into carbon-based materials, are constantly increasing. In this regard, hydrothermal carbonisation (HTC) has shown to be an effective means of conversion of biomass-derived precursors into functional carbon materials. However the attempts to convert raw biomass, in particular lignocellulosic one, directly into such products have certainly been rarer. Unlocking the direct use of these raw materials as carbon precursors would definitely be beneficial in terms of HTC sustainability. For this reason, in this thesis the HTC of carbohydrate and protein-rich biomass was systematically investigated, in order to obtain more insights on the potentials of this thermochemical processing technique in relation to the production of functional carbon materials from crude biomass. First a detailed investigation on the HTC conversion mechanism of lignocellulosic biomass and its single components (i.e. cellulose, lignin) was developed based on a comparison with glucose HTC, which was adopted as a reference model. In the glucose case it was demonstrated that varying the HTC temperature allowed tuning the chemical structure of the synthesised carbon materials from a highly cross-linked furan-based structure (T = 180 C) to a carbon framework composed of polyaromatic arene-like domains. When cellulose or lignocellulosic biomass was used as carbon precursor, the furan rich structure could not be isolated at any of the

  2. Fossil fuel derivatives with reduced carbon. Phase I final report

    Energy Technology Data Exchange (ETDEWEB)

    Kennel, E.B.; Zondlo, J.W.; Cessna, T.J.

    1999-06-30

    This project involves the simultaneous production of clean fossil fuel derivatives with reduced carbon and sulfur, along with value-added carbon nanofibers. This can be accomplished because the nanofiber production process removes carbon via a catalyzed pyrolysis reaction, which also has the effect of removing 99.9% of the sulfur, which is trapped in the nanofibers. The reaction is mildly endothermic, meaning that net energy production with real reductions in greenhouse emissions are possible. In Phase I research, the feasibility of generating clean fossil fuel derivatives with reduced carbon was demonstrated by the successful design, construction and operation of a facility capable of utilizing coal as well as natural gas as an inlet feedstock. In the case of coal, for example, reductions in CO{sub 2} emissions can be as much as 70% (normalized according to kilowatts produced), with the majority of carbon safely sequestered in the form of carbon nanofibers or coke. Both of these products are value-added commodities, indicating that low-emission coal fuel can be done at a profit rather than a loss as is the case with most clean-up schemes. The main results of this project were as follows: (1) It was shown that the nanofiber production process produces hydrogen as a byproduct. (2) The hydrogen, or hydrogen-rich hydrocarbon mixture can be consumed with net release of enthalpy. (3) The greenhouse gas emissions from both coal and natural gas are significantly reduced. Because coal consumption also creates coke, the carbon emission can be reduced by 75% per kilowatt-hour of power produced.

  3. Production of bio-based phenolic resin and activated carbon from bio-oil and biochar derived from fast pyrolysis of palm kernel shells.

    Science.gov (United States)

    Choi, Gyung-Goo; Oh, Seung-Jin; Lee, Soon-Jang; Kim, Joo-Sik

    2015-02-01

    A fraction of palm kernel shells (PKS) was pyrolyzed in a fluidized bed reactor. The experiments were performed in a temperature range of 479-555 °C to produce bio-oil, biochar, and gas. All the bio-oils were analyzed quantitatively and qualitatively by GC-FID and GC-MS. The maximum content of phenolic compounds in the bio-oil was 24.8 wt.% at ∼500 °C. The maximum phenol content in the bio-oil, as determined by the external standard method, was 8.1 wt.%. A bio-oil derived from the pyrolysis of PKS was used in the synthesis of phenolic resin, showing that the bio-oil could substitute for fossil phenol up to 25 wt.%. The biochar was activated using CO2 at a final activation temperature of 900 °C with different activation time (1-3 h) to produce activated carbon. Activated carbons produced were microporous, and the maximum surface area of the activated carbons produced was 807 m(2)/g.

  4. Minimizing activated carbons production cost

    Energy Technology Data Exchange (ETDEWEB)

    Stavropoulos, G.G.; Zabaniotou, A.A. [Department of Chemical Engineering, Aristotle University of Thessaloniki, Univ. P. O. Box 1520, 54006, Thessaloniki (Greece)

    2009-07-15

    A detailed economic evaluation of activated carbons production process from various raw materials is undertaken using the conventional economic indices (ROI, POT, and NPV). The fundamental factors that affect production cost were taken into account. It is concluded that for an attractive investment in activated carbons production one should select the raw material with the highest product yield, adopt a chemical activation production scheme and should base product price on product-surface area (or more generally on product adsorption capacity for the adsorbate in consideration). A raw material that well meets the above-mentioned criteria is petroleum coke but others are also promising (charcoals, and carbon black). Production cost then can be optimized by determining its minimum value of cost that results from the intercept between the curves of plant capacity and raw material cost - if any. Taking into account the complexity of such a techno-economic analysis, a useful suggestion could be to start the evaluations from a plant capacity corresponding to the break-even point, i. e. the capacity at which income equals production cost. (author)

  5. Coal-derived carbon nanotubes by thermal plasma jet

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Y.; Zhang, Y.L.; Wang, B.J.; Ji, W.J.; Zhang, Y.F.; Xie, K.C. [Nanjing University, Nanjing (China). Dept. of Physics

    2004-07-01

    A coal/arc-jet technique by directly and successively injecting coal fine particles into the arc plasma jet instead of arcing graphite or coal-based electrodes for producing carbon nanotubes (CNTs) from coal was developed. The derived carbon products by this technique were characterized by scanning electron microscope (SEM), transmission electron microscope (TEM), high-resolution TEM (HRTEM), X-ray energy dispersive spectrum (EDS), X-ray diffraction (XRD) and Raman spectrum. The experimental results clearly indicated that certain metal catalysts favored the growth of CNTs in the process, and the relevant growth mechanism was discussed in terms of the characterizations.

  6. Quality of poultry litter-derived granular activated carbon.

    Science.gov (United States)

    Qiu, Guannan; Guo, Mingxin

    2010-01-01

    Utilization of poultry litter as a source material for generating activated carbon is a value-added and environmentally beneficial approach to recycling organic waste. In this study, the overall quality of poultry litter-derived granular activated carbon was systematically evaluated based on its various physical and chemical properties. Granular activated carbon generated from pelletized poultry litter following a typical steam-activation procedure possessed numerous micropores in the matrix. The product exhibited a mean particle diameter of 2.59 mm, an apparent density of 0.45 g cm(-3), a ball-pan hardness of 91.0, an iodine number of 454 mg g(-1), and a BET surface area of 403 m(2) g(-1). It contained high ash, nitrogen, phosphorus contents and the trace elements Cu, Zn, and As. Most of the nutrients and toxic elements were solidified and solution-unextractable. In general, poultry litter-based activated carbon demonstrated overall quality comparable to that of low-grade commercial activated carbon derived from coconut shell and bituminous coal. It is promising to use poultry litter as a feedstock to manufacture activated carbon for wastewater treatment.

  7. THERMAL INSULATION FROM LIGNIN-DERIVED CARBON FIBERS

    Energy Technology Data Exchange (ETDEWEB)

    Albers, Tracy [GrafTech International; Chen, Chong [GrafTech International; Eberle, Cliff [ORNL; Webb, Daniel C [ORNL

    2014-01-01

    Oak Ridge National Laboratory (ORNL) and GrafTech International Holdings Inc. (GrafTech) have collaborated to develop and demonstrate the performance of high temperature thermal insulation prototypes made from lignin-based carbon fibers (LBCF). This was the first reported production of LBCF or resulting products at scale > 1 kg. The results will potentially lead to the first commercial application of LBCF. The goal of the commercial application is to replace expensive, foreign-sourced isotropic pitch carbon fibers with lower cost carbon fibers made from a domestically sourced, bio-derived (renewable) feedstock. LBCF can help resolve supply chain vulnerability and reduce the production cost for high temperature thermal insulation as well as create US jobs. The performance of the LBCF prototypes was measured and found to be comparable to that of the current commercial product. During production of the insulation prototypes, the project team demonstrated lignin compounding/pelletization, fiber production, heat treatment, and compositing at scales far surpassing those previously demonstrated in LBCF R&D or production.

  8. Speeding up Derivative Configuration from Product Platforms

    Directory of Open Access Journals (Sweden)

    Ruben Heradio

    2014-06-01

    Full Text Available To compete in the global marketplace, manufacturers try to differentiate their products by focusing on individual customer needs. Fulfilling this goal requires that companies shift from mass production to mass customization. Under this approach, a generic architecture, named product platform, is designed to support the derivation of customized products through a configuration process that determines which components the product comprises. When a customer configures a derivative, typically not every combination of available components is valid. To guarantee that all dependencies and incompatibilities among the derivative constituent components are satisfied, automated configurators are used. Flexible product platforms provide a big number of interrelated components, and so, the configuration of all, but trivial, derivatives involves considerable effort to select which components the derivative should include. Our approach alleviates that effort by speeding up the derivative configuration using a heuristic based on the information theory concept of entropy.

  9. Ophthalmic use of blood-derived products.

    Science.gov (United States)

    Nugent, Ryan B; Lee, Graham A

    2015-01-01

    There is a wide spectrum of blood-derived products that have been used in many different medical and surgical specialties with success. Blood-derived products for clinical use can be extracted from autologous or allogeneic specimens of blood, but recombinant products are also commonly used. A number of blood derivatives have been used for a wide range of ocular conditions, from the ocular surface to the retina. With stringent preparation guidelines, the potential risk of transmission of blood-borne diseases is minimized. We review blood-derived products and how they are improving the management of ocular disease.

  10. Photoelectrochemical hydrogen production from biomass derivatives and water.

    Science.gov (United States)

    Lu, Xihong; Xie, Shilei; Yang, Hao; Tong, Yexiang; Ji, Hongbing

    2014-11-21

    Hydrogen, a clean energy carrier with high energy capacity, is a very promising candidate as a primary energy source for the future. Photoelectrochemical (PEC) hydrogen production from renewable biomass derivatives and water is one of the most promising approaches to producing green chemical fuel. Compared to water splitting, hydrogen production from renewable biomass derivatives and water through a PEC process is more efficient from the viewpoint of thermodynamics. Additionally, the carbon dioxide formed can be re-transformed into carbohydrates via photosynthesis in plants. In this review, we focus on the development of photoanodes and systems for PEC hydrogen production from water and renewable biomass derivatives, such as methanol, ethanol, glycerol and sugars. We also discuss the future challenges and opportunities for the design of the state-of-the-art photoanodes and PEC systems for hydrogen production from biomass derivatives and water.

  11. Radiation Protection Using Carbon Nanotube Derivatives

    Science.gov (United States)

    Conyers, Jodie L., Jr.; Moore, Valerie C.; Casscells, S. Ward

    2010-01-01

    BHA and BHT are well-known food preservatives that are excellent radical scavengers. These compounds, attached to single-walled carbon nanotubes (SWNTs), could serve as excellent radical traps. The amino-BHT groups can be associated with SWNTs that have carbolyxic acid groups via acid-base association or via covalent association. The material can be used as a means of radiation protection or cellular stress mitigation via a sequence of quenching radical species using nano-engineered scaffolds of SWNTs and their derivatives. It works by reducing the number of free radicals within or nearby a cell, tissue, organ, or living organism. This reduces the risk of damage to DNA and other cellular components that can lead to chronic and/or acute pathologies, including (but not limited to) cancer, cardiovascular disease, immuno-suppression, and disorders of the central nervous system. These derivatives can show an unusually high scavenging ability, which could prove efficacious in protecting living systems from radical-induced decay. This technique could be used to protect healthy cells in a living biological system from the effects of radiation therapy. It could also be used as a prophylactic or antidote for radiation exposure due to accidental, terrorist, or wartime use of radiation- containing weapons; high-altitude or space travel (where radiation exposure is generally higher than desired); or in any scenario where exposure to radiation is expected or anticipated. This invention s ultimate use will be dependent on the utility in an overall biological system where many levels of toxicity have to be evaluated. This can only be assessed at a later stage. In vitro toxicity will first be assessed, followed by in vivo non-mammalian screening in zebra fish for toxicity and therapeutic efficacy.

  12. Derived crop management data for the LandCarbon Project

    Science.gov (United States)

    Schmidt, Gail; Liu, Shu-Guang; Oeding, Jennifer

    2011-01-01

    The LandCarbon project is assessing potential carbon pools and greenhouse gas fluxes under various scenarios and land management regimes to provide information to support the formulation of policies governing climate change mitigation, adaptation and land management strategies. The project is unique in that spatially explicit maps of annual land cover and land-use change are created at the 250-meter pixel resolution. The project uses vast amounts of data as input to the models, including satellite, climate, land cover, soil, and land management data. Management data have been obtained from the U.S. Department of Agriculture (USDA) National Agricultural Statistics Service (NASS) and USDA Economic Research Service (ERS) that provides information regarding crop type, crop harvesting, manure, fertilizer, tillage, and cover crop (U.S. Department of Agriculture, 2011a, b, c). The LandCarbon team queried the USDA databases to pull historic crop-related management data relative to the needs of the project. The data obtained was in table form with the County or State Federal Information Processing Standard (FIPS) and the year as the primary and secondary keys. Future projections were generated for the A1B, A2, B1, and B2 Intergovernmental Panel on Climate Change (IPCC) Special Report on Emissions Scenarios (SRES) scenarios using the historic data values along with coefficients generated by the project. The PBL Netherlands Environmental Assessment Agency (PBL) Integrated Model to Assess the Global Environment (IMAGE) modeling framework (Integrated Model to Assess the Global Environment, 2006) was used to develop coefficients for each IPCC SRES scenario, which were applied to the historic management data to produce future land management practice projections. The LandCarbon project developed algorithms for deriving gridded data, using these tabular management data products as input. The derived gridded crop type, crop harvesting, manure, fertilizer, tillage, and cover crop

  13. Determination of organic carbon and ionic accountability of various waste and product waters derived from ECLSS water recovery tests and Spacelab humidity condensate

    Science.gov (United States)

    Carter, Donald L.; Cole, Harold; Habercom, Mark; Griffith, Guy

    1992-01-01

    The development of a closed-loop water recovery system for Space Station Freedom involves many technical challenges associated with contaminant removal. Attention is presently given to the characterization of contaminants constituting total organic carbon (TOC), and to the Hubaux and Vos (1970) statistical model for low level TOC that has been employed. A tabulation is given for TOC accountability in the case of both potable and hygiene waters.

  14. Carbon dioxide production in animal houses

    DEFF Research Database (Denmark)

    Pedersen, Søren; Blanes-Vidal, Victoria; Joergensen, H.

    2008-01-01

    This article deals with carbon dioxide production from farm animals; more specifically, it addresses the possibilities of using the measured carbon dioxide concentration in animal houses as basis for estimation of ventilation flow (as the ventilation flow is a key parameter of aerial emissions from...... animal houses). The investigations include measurements in respiration chambers and in animal houses, mainly for growing pigs and broilers. Over the last decade a fixed carbon dioxide production of 185 litres per hour per heat production unit, hpu (i.e. 1000 W of the total animal heat production at 20o......C) has often been used. The article shows that the carbon dioxide production per hpu increases with increasing respiration quotient. As the respiration quotient increases with body mass for growing animals, the carbon dioxide production per heat production unit also increases with increased body mass...

  15. Carbon dioxide production in animal houses

    DEFF Research Database (Denmark)

    Pedersen, Søren; Blanes-Vidal, Victoria; Joergensen, H.

    2008-01-01

    This article deals with carbon dioxide production from farm animals; more specifically, it addresses the possibilities of using the measured carbon dioxide concentration in animal houses as basis for estimation of ventilation flow (as the ventilation flow is a key parameter of aerial emissions from...... animal houses). The investigations include measurements in respiration chambers and in animal houses, mainly for growing pigs and broilers. Over the last decade a fixed carbon dioxide production of 185 litres per hour per heat production unit, hpu (i.e. 1000 W of the total animal heat production at 20o......C) has often been used. The article shows that the carbon dioxide production per hpu increases with increasing respiration quotient. As the respiration quotient increases with body mass for growing animals, the carbon dioxide production per heat production unit also increases with increased body mass...

  16. The carbonate radical anion-induced covalent aggregation of human copper, zinc superoxide dismutase, and alpha-synuclein: intermediacy of tryptophan- and tyrosine-derived oxidation products.

    Science.gov (United States)

    Zhang, Hao; Andrekopoulos, Christopher; Joseph, Joy; Crow, John; Kalyanaraman, B

    2004-06-01

    In this review, we describe the free radical mechanism of covalent aggregation of human copper, zinc superoxide dismutase (hSOD1). Bicarbonate anion (HCO3-) enhances the covalent aggregation of hSOD1 mediated by the SOD1 peroxidase-dependent formation of carbonate radical anion (CO3*-), a potent and selective oxidant. This species presumably diffuses out the active site of hSOD1 and reacts with tryptophan residue located on the surface of hSOD1. The oxidative degradation of tryptophan to kynurenine and N-formyl kynurenine results in the covalent crosslinking and aggregation of hSOD1. Implications of oxidant-mediated aggregation of hSOD1 in the increased cytotoxicity of motor neurons in amyotrophic lateral sclerosis are discussed.

  17. A carbon sink pathway increases carbon productivity in cyanobacteria.

    Science.gov (United States)

    Oliver, John W K; Atsumi, Shota

    2015-05-01

    The burning of fossil reserves, and subsequent release of carbon into the atmosphere is depleting the supply of carbon-based molecules used for synthetic materials including plastics, oils, medicines, and glues. To provide for future society, innovations are needed for the conversion of waste carbon (CO2) into organic carbon useful for materials. Chemical production directly from photosynthesis is a nascent technology, with great promise for capture of CO2 using sunlight. To improve low yields, it has been proposed that photosynthetic capacity can be increased by a relaxation of bottlenecks inherent to growth. The limits of carbon partitioning away from growth within the cell and the effect of partitioning on carbon fixation are not well known. Here we show that expressing genes in a pathway between carbon fixation and pyruvate increases partitioning to 2,3-butanediol (23BD) and leads to a 1.8-fold increase in total carbon yield in the cyanobacterium Synechococcus elongatus PCC 7942. Specific 2,3-butanediol production increases 2.4-fold. As partitioning increases beyond 30%, it leads to a steep decline in total carbon yield. The data suggests a local maximum for carbon partitioning from the Calvin Benson cycle that is scalable with light intensity.

  18. Scale up of proteoliposome derived Cochleate production.

    Science.gov (United States)

    Zayas, Caridad; Bracho, Gustavo; Lastre, Miriam; González, Domingo; Gil, Danay; Acevedo, Reinaldo; del Campo, Judith; Taboada, Carlos; Solís, Rosa L; Barberá, Ramón; Pérez, Oliver

    2006-04-12

    Cochleate are highly stable structures with promising immunological features. Cochleate structures are usually obtaining from commercial lipids. Proteoliposome derived Cochleate are derived from an outer membrane vesicles of Neisseria meningitidis B. Previously, we obtained Cochleates using dialysis procedures. In order to increase the production process, we used a crossflow system (CFS) that allows easy scale up to obtain large batches in an aseptic environment. The raw material and solutions used in the production process are already approved for human application. This work demonstrates that CFS is very efficient process to obtain Cochleate structures with a yield of more than 80% and the immunogenicity comparable to that obtained by dialysis membrane.

  19. Create a Consortium and Develop Premium Carbon Products from Coal

    Energy Technology Data Exchange (ETDEWEB)

    Frank Rusinko; John Andresen; Jennifer E. Hill; Harold H. Schobert; Bruce G. Miller

    2006-01-01

    The objective of these projects was to investigate alternative technologies for non-fuel uses of coal. Special emphasis was placed on developing premium carbon products from coal-derived feedstocks. A total of 14 projects, which are the 2003 Research Projects, are reported herein. These projects were categorized into three overall objectives. They are: (1) To explore new applications for the use of anthracite in order to improve its marketability; (2) To effectively minimize environmental damage caused by mercury emissions, CO{sub 2} emissions, and coal impounds; and (3) To continue to increase our understanding of coal properties and establish coal usage in non-fuel industries. Research was completed in laboratories throughout the United States. Most research was performed on a bench-scale level with the intent of scaling up if preliminary tests proved successful. These projects resulted in many potential applications for coal-derived feedstocks. These include: (1) Use of anthracite as a sorbent to capture CO{sub 2} emissions; (2) Use of anthracite-based carbon as a catalyst; (3) Use of processed anthracite in carbon electrodes and carbon black; (4) Use of raw coal refuse for producing activated carbon; (5) Reusable PACs to recycle captured mercury; (6) Use of combustion and gasification chars to capture mercury from coal-fired power plants; (7) Development of a synthetic coal tar enamel; (8) Use of alternative binder pitches in aluminum anodes; (9) Use of Solvent Extracted Carbon Ore (SECO) to fuel a carbon fuel cell; (10) Production of a low cost coal-derived turbostratic carbon powder for structural applications; (11) Production of high-value carbon fibers and foams via the co-processing of a low-cost coal extract pitch with well-dispersed carbon nanotubes; (12) Use of carbon from fly ash as metallurgical carbon; (13) Production of bulk carbon fiber for concrete reinforcement; and (14) Characterizing coal solvent extraction processes. Although some of the

  20. Particle production in higher derivative theory

    Indian Academy of Sciences (India)

    G P Singh; A Beesham; R V Deshpande

    2000-05-01

    The effect of particle production on the evolution of the spatially flat Friedmann–Lemaitre–Robertson–Walker cosmological model during the early stages of the universe is analysed in the framework of higher derivative theory. The universe has been considered as an open thermodynamic system where particle production gives rise to a supplementary negative creation pressure in addition to the thermodynamic pressure. The dynamical behaviour of both exponential as well as power law solutions have been discussed.

  1. Exposure to multi-walled carbon nanotubes results in aggravation of airway inflammation and remodeling and in increased production of epithelium-derived innate cytokines in a mouse model of asthma.

    Science.gov (United States)

    Ronzani, Carole; Casset, Anne; Pons, Françoise

    2014-02-01

    With the development of nanotechnologies, the potential adverse effects of nanomaterials such as multi-walled carbon nanotubes (MWCNT) on the respiratory tract of asthmatics are questioned. Furthermore, investigations are necessary to understand how these effects might arise. In the present study, we hypothesized that epithelium-derived innate cytokines that are considered as important promoting factors in allergy may contribute to an aggravating effect of MWCNT on asthma. We investigated in the mouse the effect of MWCNT on systemic immune response and airway inflammation and remodeling induced by the most frequent allergen so far associated with asthma, house dust mite (HDM), and we examined the production of the innate cytokines thymic stromal lymphopoietin (TSLP), IL-25, IL-33, and GM-CSF. Mice exposed to HDM exhibited specific IgG1 in serum and inflammatory cell infiltration, and increased Th2 cytokine production, mucus hyperproduction, and collagen deposition in the airways when compared to naïve animals. Levels of total IgG1 and HDM-specific IgG1, influx of macrophages, eosinophils and neutrophils, production of collagen, TGF-β1, and mucus, as well as levels of IL-13, eotaxin, and TARC, were dose-dependently increased in mice exposed to HDM and MWCNT compared to HDM alone. These effects were associated with an increased production of TSLP, IL-25, IL-33, and GM-CSF in the airways. Our data demonstrate that MWCNT increase in a dose-dependent manner systemic immune response, as well as airway allergic inflammation and remodeling induced by HDM in the mouse. Our data suggest also a role for airway epithelium and innate cytokines in these effects.

  2. Multifunctional Stiff Carbon Foam Derived from Bread.

    Science.gov (United States)

    Yuan, Ye; Ding, Yujie; Wang, Chunhui; Xu, Fan; Lin, Zaishan; Qin, Yuyang; Li, Ying; Yang, Minglong; He, Xiaodong; Peng, Qingyu; Li, Yibin

    2016-07-06

    The creation of stiff yet multifunctional three-dimensional porous carbon architecture at very low cost is still challenging. In this work, lightweight and stiff carbon foam (CF) with adjustable pore structure was prepared by using flour as the basic element via a simple fermentation and carbonization process. The compressive strength of CF exhibits a high value of 3.6 MPa whereas its density is 0.29 g/cm(3) (compressive modulus can be 121 MPa). The electromagnetic interference (EMI) shielding effectiveness measurements (specific EMI shielding effectiveness can be 78.18 dB·cm(3)·g(-1)) indicate that CF can be used as lightweight, effective shielding material. Unlike ordinary foam structure materials, the low thermal conductivity (lowest is 0.06 W/m·K) with high resistance to fire makes CF a good candidate for commercial thermal insulation material. These results demonstrate a promising method to fabricate an economical, robust carbon material for applications in industry as well as topics regarding environmental protection and improvement of energy efficiency.

  3. Alumina Carbon Refractory Products for Continuous Casting

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    @@ 1 Scope This standard specifies the classification.techni-cal requirements,test methods,inspection rules,packing,marking,transportation,storage and quality certificate of alumina carbon refractory products for continuous casting.

  4. How organic carbon derived from multiple sources contributes to carbon sequestration processes in a shallow coastal system?

    Science.gov (United States)

    Watanabe, Kenta; Kuwae, Tomohiro

    2015-04-16

    Carbon captured by marine organisms helps sequester atmospheric CO2 , especially in shallow coastal ecosystems, where rates of primary production and burial of organic carbon (OC) from multiple sources are high. However, linkages between the dynamics of OC derived from multiple sources and carbon sequestration are poorly understood. We investigated the origin (terrestrial, phytobenthos derived, and phytoplankton derived) of particulate OC (POC) and dissolved OC (DOC) in the water column and sedimentary OC using elemental, isotopic, and optical signatures in Furen Lagoon, Japan. Based on these data analysis, we explored how OC from multiple sources contributes to sequestration via storage in sediments, water column sequestration, and air-sea CO2 exchanges, and analyzed how the contributions vary with salinity in a shallow seagrass meadow as well. The relative contribution of terrestrial POC in the water column decreased with increasing salinity, whereas autochthonous POC increased in the salinity range 10-30. Phytoplankton-derived POC dominated the water column POC (65-95%) within this salinity range; however, it was minor in the sediments (3-29%). In contrast, terrestrial and phytobenthos-derived POC were relatively minor contributors in the water column but were major contributors in the sediments (49-78% and 19-36%, respectively), indicating that terrestrial and phytobenthos-derived POC were selectively stored in the sediments. Autochthonous DOC, part of which can contribute to long-term carbon sequestration in the water column, accounted for >25% of the total water column DOC pool in the salinity range 15-30. Autochthonous OC production decreased the concentration of dissolved inorganic carbon in the water column and thereby contributed to atmospheric CO2 uptake, except in the low-salinity zone. Our results indicate that shallow coastal ecosystems function not only as transition zones between land and ocean but also as carbon sequestration filters. They function

  5. Silicon Carbide Derived Carbons: Experiments and Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Kertesz, Miklos [Georgetown University, Washington DC 20057

    2011-02-28

    The main results of the computational modeling was: 1. Development of a new genealogical algorithm to generate vacancy clusters in diamond starting from monovacancies combined with energy criteria based on TBDFT energetics. The method revealed that for smaller vacancy clusters the energetically optimal shapes are compact but for larger sizes they tend to show graphitized regions. In fact smaller clusters of the size as small as 12 already show signatures of this graphitization. The modeling gives firm basis for the slit-pore modeling of porous carbon materials and explains some of their properties. 2. We discovered small vacancy clusters and their physical characteristics that can be used to spectroscopically identify them. 3. We found low barrier pathways for vacancy migration in diamond-like materials by obtaining for the first time optimized reaction pathways.

  6. Carbide Derived Carbon Super Capacitor Application

    Science.gov (United States)

    Appelgate, James; Bauer, Dave; Quirin, James; Lofland, S. E.; Hettinger, J. D.; Heon, M.; Gogotsi, Y.

    2010-02-01

    Supercapacitors can be applied into many different fields from nano-robots to high density energy storage. Growing TiC films from a know recipe and removing the transition metal element, Titanium, by chlorination leaves a carbon film that can then be applied as an electrode in a super capacitor. The problem is when the Titanium is removed from the film the stress induced by this process causes the films to fracture into isolated islands. The islands allow electrons to travel across them every easily, but there is no transfer of electrons from island to island. We present results of an investigation of a technique control the location of the fractures and use them to our benefit. Ideally, we want to create them to fracture in parallel lines. To force these fractures into straight lines we will purchase substrates with thermal SiO2 created on the surface of Si. Using an etching process we will removed a channel of SiO2 the same as the thickness of the TiC film we plan on growing. These channels will allow the fractures to form in a correlated way creating a straight line. )

  7. Growth enhancement by soil derived carbon dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Grodzinski, B.; Wallis, M.; O' Sullivan, J. (Univ. of Guelph, Ontario (Canada))

    1989-04-01

    The objective of this study was to investigate the role which naturally evolved CO{sub 2} from the soil can play in the early growth and establishment of vegetable transplants in the field. Two planting dates were utilized to examine the effects of the time of tunnel placement on development of a crop of bell peppers, Capsicum annuum L. Ambient CO{sub 2} levels were 340 {plus minus} 4 ppm. In the first 3 weeks of spring (May) CO levels 2 to 3 cm above the soil surface were 420 to 480 ppm. Inside plastic tunnels the upward flux of CO{sub 2} evolved from the soil was restricted effectively raising the tunnel atmosphere to over 3000 ppm even at midday. Data from parallel field and controlled environment chamber experiments support the view that 25-40% of the increase in seedling growth in the field tunnels in the spring was due to enhanced photosynthesis and carbon partitioning into both sugars and starch not merely the elevated temperatures associated with protected structures.

  8. Graphene quantum dots derived from carbon fibers.

    Science.gov (United States)

    Peng, Juan; Gao, Wei; Gupta, Bipin Kumar; Liu, Zheng; Romero-Aburto, Rebeca; Ge, Liehui; Song, Li; Alemany, Lawrence B; Zhan, Xiaobo; Gao, Guanhui; Vithayathil, Sajna Antony; Kaipparettu, Benny Abraham; Marti, Angel A; Hayashi, Takuya; Zhu, Jun-Jie; Ajayan, Pulickel M

    2012-02-08

    Graphene quantum dots (GQDs), which are edge-bound nanometer-size graphene pieces, have fascinating optical and electronic properties. These have been synthesized either by nanolithography or from starting materials such as graphene oxide (GO) by the chemical breakdown of their extended planar structure, both of which are multistep tedious processes. Here, we report that during the acid treatment and chemical exfoliation of traditional pitch-based carbon fibers, that are both cheap and commercially available, the stacked graphitic submicrometer domains of the fibers are easily broken down, leading to the creation of GQDs with different size distribution in scalable amounts. The as-produced GQDs, in the size range of 1-4 nm, show two-dimensional morphology, most of which present zigzag edge structure, and are 1-3 atomic layers thick. The photoluminescence of the GQDs can be tailored through varying the size of the GQDs by changing process parameters. Due to the luminescence stability, nanosecond lifetime, biocompatibility, low toxicity, and high water solubility, these GQDs are demonstrated to be excellent probes for high contrast bioimaging and biosensing applications.

  9. Neutron vibrational spectroscopic studies of novel tire-derived carbon materials.

    Science.gov (United States)

    Li, Yunchao; Cheng, Yongqiang; Daemen, Luke L; Veith, Gabriel M; Levine, Alan M; Lee, Richard J; Mahurin, Shannon M; Dai, Sheng; Naskar, Amit K; Paranthaman, Mariappan Parans

    2017-08-23

    Sulfonated tire-derived carbons have been demonstrated to be high value-added carbon products of tire recycling in several energy storage system applications including lithium, sodium, potassium ion batteries and supercapacitors. In this communication, we compared different temperature pyrolyzed sulfonated tire-derived carbons with commercial graphite and unmodified/non-functionalized tire-derived carbon by studying the surface chemistry and properties, vibrational spectroscopy of the molecular structure, chemical bonding such as C-H bonding, and intermolecular interactions of the carbon materials. The nitrogen adsorption-desorption studies revealed the tailored micro and meso pore size distribution of the carbon during the sulfonation process. XPS and neutron vibrational spectra showed that the sulfonation of the initial raw tire powders could remove the aliphatic hydrogen containing groups ([double bond splayed left]CH2 and -CH3 groups) and reduce the number of heteroatoms that connect to carbon. The absence of these functional groups could effectively improve the first cycle efficiency of the material in rechargeable batteries. Meanwhile, the introduced -SO3H functional group helped in producing terminal H at the edge of the sp(2) bonded graphite-like layers. This study reveals the influence of the sulfonation process on the recovered hard carbon from used tires and provides a pathway to develop and improve advanced energy storage materials.

  10. Carbon Footprint Analysis for a GRAPE Production Case Study

    Science.gov (United States)

    Sirca, C.; Marras, S.; Masia, S.; Duce, P.; Zara, P.; Spano, D.

    2013-12-01

    Agriculture activities can play a double role in emitting or sequestering carbon from the atmosphere. Mitigation of greenhouse gas (GHG) emissions in agriculture is one of the most urgent research subjects in the framework of enhancing environmental stewardship. However, little is known about the role of the agriculture in the global carbon balance, since most of the studies applied the Eddy Covariance technique in natural or semi-natural ecosystems to investigate their role in mitigate the anthropogenic carbon release. The application of the Eddy Covariance technique in agricultural systems could greatly improve our knowledge about their role on the global carbon budget and help in modeling the related processes. In addition, there is a growing request from producers, trade companies, and customers on the assessment of the environmental impact of a production process related to agricultural high quality products. In recent years, particular attention was put on the estimation of GHG emissions deriving from productive processes. In this context, a useful tool is the Life Cycle Assessment (LCA), which represents a methodology to estimate GHG emissions related to the entire life cycle of a product. The Carbon Footprint (CF) analysis represents a subset of the LCA, which only considers CO2 emissions with an impact on climate change. With respect to the wine industry, most of studies focused on the CF analysis related to the wine making process in the cellar, while a few studies analyzed the GHG emissions related to the grape production. The aim of this work was to quantify the CO2 emissions due to the grape production and emphasize the double role of a vineyard as a carbon sink or source. An Eddy Covariance station was set up in a representative vineyard located in the Mediterranean Basin (Sardinia, Italy) to measure the net carbon exchange between the surface and the atmosphere. The CF analysis was also conducted to compute the carbon balance of the grape production

  11. Biofuel production from plant biomass derived sugars

    Energy Technology Data Exchange (ETDEWEB)

    Cripps, R.

    2007-03-15

    This report details the results of a project that aimed to develop a recombinant thermophilic microorganism able to produce ethanol in a commercial yield from mixed C5 (xylose and arabinose) and C6 (mainly glucose) sugar substrates typically found in biomass hydrolysates. The main focus of the project was on producing a stable recombinant which formed ethanol as its major product and did not produce significant quantities of by-products. The costs of bioethanol could be substantially reduced if cheap plant-based feedstocks could be utilised. This study focussed on a strain of Geobacillus thermoglucosidasius known to be a thermophilic ethanol producer and developed the genetic manipulation techniques necessary to engineer its metabolism such that unwanted products (mainly organic acids) were no longer formed and ethanol became the overwhelming product. An appropriate genetic took kit to allow the required metabolic engineering was acquired and used to inactivate the genes of the metabolic pathways involved in the formation of the organic acids (e.g. lactic acid) and to up-regulate genes concerned with the formation of ethanol. This allowed the flow of metabolites derived from the sugar substrates to be redirected to the desired product. Stable mutants lacking the ability to form lactic acid were created and shown to give enhanced levels of ethanol, with yields from glucose approaching those achieved in yeast fermentations and low by-product formation.

  12. Activated carbons derived from oil palm empty-fruit bunches: Application to environmental problems

    Institute of Scientific and Technical Information of China (English)

    Md.Zahangir ALAM; Suleyman A.MUYIBI; Mariatul F.MANSOR; Radziah WAHID

    2007-01-01

    Activated carbons derived from oil palm empty fruit bunches (EFB) were investigated to find the suitability of its application for removal of phenol in aqueous solution through adsorption process. Two types of activation namely; thermal activation at 300, 500 and 800℃ and physical activation at 150℃ (boiling treatment) were used for the production of the activated carbons. A control (untreated EFB) was used to compare the adsorption capacity of the activated carbons produced from these processes. The results indicated that the activated carbon derived at the temperature of 800℃ showed maximum absorption capacity in the aqueous solution of phenol. Batch adsorption studies showed an equilibrium time of 6 h for the activated carbon at 800℃. It was observed that the adsorption capacity was higher at lower values of pH (2-3) and higher value of initial concentration of phenol (200-300 mg/L). The equilibrium data fitted better with the Freundlich adsorption isotherm compared to the Langmuir. Kinetic studies of phenol adsorption onto activated carbons were also studied to evaluate the adsorption rate. The estimated cost for production of activated carbon from EFB was shown in lower price (USD 0.50/kg of AC) compared the activated carbon from other sources and processes.

  13. Status of Biomass Derived Carbon Materials for Supercapacitor Application

    Directory of Open Access Journals (Sweden)

    Talam Kibona Enock

    2017-01-01

    Full Text Available Environmental concerns and energy security uncertainties associated with fossil fuels have driven the world to shift to renewable energy sources. However, most renewable energy sources with exception of hydropower are intermittent in nature and thus need storage systems. Amongst various storage systems, supercapacitors are the promising candidates for energy storage not only in renewable energies but also in hybrid vehicles and portable devices due to their high power density. Supercapacitor electrodes are almost invariably made of carbon derived from biomass. Several reviews had been focused on general carbon materials for supercapacitor electrode. This review is focused on understanding the extent to which different types of biomasses have been used as porous carbon materials for supercapacitor electrodes. It also details hydrothermal microwave assisted, ionothermal, and molten salts carbonization as techniques of synthesizing activated carbon from biomasses as well as their characteristics and their impacts on electrochemical performance.

  14. The production, storage, and flow of carbon in Amazonian forests

    Science.gov (United States)

    Malhi, Yadvinder; Saatchi, Sassan; Girardin, Cecile; Aragão, Luiz E. O. C.

    The carbon stores and dynamics of tropical forests are the subject of major international scientific and policy attention. Research associated with the Large-Scale Biosphere-Atmosphere Experiment in Amazonia (LBA) has generated substantial advances in our understanding of the cycling of carbon at selected forest sites in Brazilian Amazonia and generated new insights into how these processes may vary across the wider Amazonian region. Here we report on aspects of this new understanding. We present, in particular, a comprehensive synthesis of carbon cycling in three focal LBA sites (Manaus, Tapajõs, and Caxiuanã), drawing on studies of productivity, litterfall, respiration, physiology, and ecosystem fluxes. These studies are placed in the context of the wider Amazonian region by utilizing the results of the Amazon Forest Inventory Network (RAINFOR) and other forest plots. We discuss the basin-wide distribution of forest biomass derived by combining these plots and a suite of satellite data, and examine the dynamics of carbon cycling in the context of regional carbon stores in the forest. Particular attention is drawn to the strong relationship between forest productivity and turnover, which suggests that higher levels of forest productivity increase forest dynamism rather than forest biomass. We conclude by discussing what the scientific priorities should be for a synthetic region-wide understanding of the carbon dynamics and stores of Amazonian forests.

  15. Vegetable milks and their fermented derivative products

    Directory of Open Access Journals (Sweden)

    Neus Bernat

    2014-04-01

    Full Text Available The so-called vegetable milks are in the spotlight thanks to their lactose-free, animal protein-free and cholesterol-free features which fit well with the current demand for healthy food products. Nevertheless, and with the exception of soya, little information is available about these types of milks and their derivatives. The aims of this review, therefore, are to: highlight the main nutritional benefits of the nut and cereal vegetable milks available on the market, fermented or not; describe the basic processing steps involved in their manufacturing process; and analyze the major problems affecting their overall quality, together with the current feasible solutions. On the basis of the information gathered, vegetable milks and their derivatives have excellent nutritional properties which provide them a high potential and positive market expectation. Nevertheless, optimal processing conditions for each raw material or the application of new technologies have to be researched in order to improve the quality of the products. Hence, further studies need to be developed to ensure the physical stability of the products throughout their whole shelf-life. These studies would also allow for a reduction in the amount of additives (hydrocolloids and/or emulsifiers and thus reduce the cost of the products. In the particular case of fermented products, the use of starters which are able to both improve the quality (by synthesizing enhanced flavors and providing optimal textures and exert health benefits for consumers (i.e. probiotics is the main challenge to be faced in future studies.

  16. Carbon dioxide production during cardiopulmonary bypass: pathophysiology, measure and clinical relevance.

    Science.gov (United States)

    Ranucci, Marco; Carboni, Giovanni; Cotza, Mauro; de Somer, Filip

    2017-01-01

    Carbon dioxide production during cardiopulmonary bypass derives from both the aerobic metabolism and the buffering of lactic acid produced by tissues under anaerobic conditions. Therefore, carbon dioxide removal monitoring is an important measure of the adequacy of perfusion and oxygen delivery. However, routine monitoring of carbon dioxide removal is not widely applied. The present article reviews the main physiological and pathophysiological sources of carbon dioxide, the available techniques to assess carbon dioxide production and removal and the clinically relevant applications of carbon dioxide-related variables as markers of the adequacy of perfusion during cardiopulmonary bypass.

  17. Integrated electricity and carbon monoxide production

    Energy Technology Data Exchange (ETDEWEB)

    Griffiths, J.

    1994-03-23

    In a process for the production of carbon monoxide and electric power in an IGCC with the removal of sulphur compounds, between the outlet of quenched gas from a partial oxidation unit and a fuel inlet to a combined cycle gas turbine there is a permeable membrane unit to separate a non-permeable stream, which is utilised as a source of carbon monoxide, and a permeate stream, which is used as fuel for the gas turbine of the combined cycle unit. (author)

  18. Functionalized Activated Carbon Derived from Biomass for Photocatalysis Applications Perspective

    Directory of Open Access Journals (Sweden)

    Samira Bagheri

    2015-01-01

    Full Text Available This review highlighted the developments of safe, effective, economic, and environmental friendly catalytic technologies to transform lignocellulosic biomass into the activated carbon (AC. In the photocatalysis applications, this AC can further be used as a support material. The limits of AC productions raised by energy assumption and product selectivity have been uplifted to develop sustainable carbon of the synthesis process, where catalytic conversion is accounted. The catalytic treatment corresponding to mild condition provided a bulk, mesoporous, and nanostructure AC materials. These characteristics of AC materials are necessary for the low energy and efficient photocatalytic system. Due to the excellent oxidizing characteristics, cheapness, and long-term stability, semiconductor materials have been used immensely in photocatalytic reactors. However, in practical, such conductors lead to problems with the separation steps and loss of photocatalytic activity. Therefore, proper attention has been given to develop supported semiconductor catalysts and certain matrixes of carbon materials such as carbon nanotubes, carbon microspheres, carbon nanofibers, carbon black, and activated carbons have been recently considered and reported. AC has been reported as a potential support in photocatalytic systems because it improves the transfer rate of the interface charge and lowers the recombination rate of holes and electrons.

  19. Nanofiltration of plasma-derived biopharmaceutical products.

    Science.gov (United States)

    Burnouf, T; Radosevich, M

    2003-01-01

    This review presents the current status on the use and benefits of viral removal filtration systems--known as nanofiltration--in the manufacture of plasma-derived coagulation factor concentrates and other biopharmaceutical products from human blood origin. Nanofiltration of plasma products has been implemented at a production scale in the early 1990s to improve margin of viral safety, as a complement to the viral reduction treatments, such as solvent-detergent and heat treatments, already applied for the inactivation of human immunodeficiency virus, hepatitis B and hepatitis C virus. The main reason for the introduction of nanofiltration was the need to improve product safety against non-enveloped viruses and to provide a possible safeguard against new infectious agents potentially entering the human plasma pool. Nanofiltration has gained quick acceptance as it is a relatively simple manufacturing step that consists in filtering protein solution through membranes of a very small pore size (typically 15-40 nm) under conditions that retain viruses by a mechanism largely based on size exclusion. Recent large-scale experience throughout the world has now established that nanofiltration is a robust and reliable viral reduction technique that can be applied to essentially all plasma products. Many of the licensed plasma products are currently nanofiltered. The technology has major advantages as it is flexible and it may combine efficient and largely predictable removal of more than 4 to 6 logs of a wide range of viruses, with an absence of denaturing effect on plasma proteins. Compared with other viral reduction means, nanofiltration may be the only method to date permitting efficient removal of enveloped and non-enveloped viruses under conditions where 90-95% of protein activity is recovered. New data indicate that nanofiltration may also remove prions, opening new perspectives in the development and interest of this technique. Nanofiltration is increasingly becoming a

  20. Thermal conversion of municipal solid waste via hydrothermal carbonization: comparison of carbonization products to products from current waste management techniques.

    Science.gov (United States)

    Lu, Xiaowei; Jordan, Beth; Berge, Nicole D

    2012-07-01

    Hydrothermal carbonization (HTC) is a novel thermal conversion process that may be a viable means for managing solid waste streams while minimizing greenhouse gas production and producing residual material with intrinsic value. HTC is a wet, relatively low temperature (180-350 °C) thermal conversion process that has been shown to convert biomass to a carbonaceous residue referred to as hydrochar. Results from batch experiments indicate HTC of representative waste materials is feasible, and results in the majority of carbon (45-75% of the initially present carbon) remaining within the hydrochar. Gas production during the batch experiments suggests that longer reaction periods may be desirable to maximize the production of energy-favorable products. If using the hydrochar for applications in which the carbon will remain stored, results suggest that the gaseous products from HTC result in fewer g CO(2)-equivalent emissions than the gases associated with landfilling, composting, and incineration. When considering the use of hydrochar as a solid fuel, more energy can be derived from the hydrochar than from the gases resulting from waste degradation during landfilling and anaerobic digestion, and from incineration of food waste. Carbon emissions resulting from the use of the hydrochar as a fuel source are smaller than those associated with incineration, suggesting HTC may serve as an environmentally beneficial alternative to incineration. The type and extent of environmental benefits derived from HTC will be dependent on hydrochar use/the purpose for HTC (e.g., energy generation or carbon storage). Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Synthesis and Antioxidant Activity of Hydroxytyrosol Alkyl-Carbonate Derivatives.

    Science.gov (United States)

    Fernandez-Pastor, Ignacio; Fernandez-Hernandez, Antonia; Rivas, Francisco; Martinez, Antonio; Garcia-Granados, Andres; Parra, Andres

    2016-07-22

    Three procedures have been investigated for the isolation of tyrosol (1) and hydroxytyrosol (2) from a phenolic extract obtained from the solid residue of olive milling. These three methods, which facilitated the recovery of these phenols, were chemical or enzymatic acetylation, benzylation, and carbomethoxylation, and subsequent carbonylation or acetonation reactions. Several new lipophilic alkyl-carbonate derivatives of hydroxytyrosol have been synthesized, coupling the primary hydroxy group of this phenol, through a carbonate linker, using alcohols with different chain lengths. The antioxidant properties of these lipophilic derivatives have been evaluated by different methods and compared with free hydroxytyrosol (2) and also with the well-known antioxidants BHT and α-tocopherol. Three methods were used for the determination of this antioxidant activity: FRAP and ABTS assays, to test the antioxidant power in hydrophilic media, and the Rancimat test, to evaluate the antioxidant capacity in a lipophilic matrix. These new alkyl-carbonate derivatives of hydroxytyrosol enhanced the antioxidant activity of this natural phenol, with their antioxidant properties also being higher than those of the commercial antioxidants BHT and α-tocopherol. There was no clear influence of the side-chain length on the antioxidant properties of the alkyl-carbonate derivatives of 2, although the best results were achieved mainly by the compounds with a longer chain on the primary hydroxy group of this natural phenolic substance.

  2. In situ electrochemical dilatometry of carbide-derived carbons

    Energy Technology Data Exchange (ETDEWEB)

    Hantel, M M [Paul Scherrer Institut, Villigen, Switzerland; Presser, Volker [ORNL; Gogotsi, Yury [ORNL

    2011-01-01

    The long life durability and extraordinary stability of supercapacitors are ascribed to the common concept that the charge storage is purely based on double-layer charging. Therefore the ideal supercapacitor electrode should be free of charge induced microscopic structural changes. However, recent in-situ investigations on different carbon materials for supercapacitor electrodes have shown that the charge and discharge is accompanied by dimensional changes of the electrode up to several percent. This work studies the influence of the pore size on the expansion behavior of carbon electrodes derived from titanium carbide-derived carbons with an average pore size between 5 and 8 Using tetraethylammonium tetrafluoroborate in acetonitrile, the swelling of the electrodes was measured by in situ dilatometry. The experiments revealed an increased expansion on the negatively charged electrode for pores below 6 , which could be described with pore swelling.

  3. Nanoarchitectures for Metal-Organic Framework-Derived Nanoporous Carbons toward Supercapacitor Applications.

    Science.gov (United States)

    Salunkhe, Rahul R; Kaneti, Yusuf Valentino; Kim, Jeonghun; Kim, Jung Ho; Yamauchi, Yusuke

    2016-12-20

    The future advances of supercapacitors depend on the development of novel carbon materials with optimized porous structures, high surface area, high conductivity, and high electrochemical stability. Traditionally, nanoporous carbons (NPCs) have been prepared by a variety of methods, such as templated synthesis, carbonization of polymer precursors, physical and chemical activation, etc. Inorganic solid materials such as mesoporous silica and zeolites have been successfully utilized as templates to prepare NPCs. However, the hard-templating methods typically involve several synthetic steps, such as preparation of the original templates, formation of carbon frameworks, and removal of the original templates. Therefore, these methods are not favorable for large-scale production. Metal-organic frameworks (MOFs) with high surface areas and large pore volumes have been studied over the years, and recently, enormous efforts have been made to utilize MOFs for electrochemical applications. However, their low conductivity and poor stability still present major challenges toward their practical applications in supercapacitors. MOFs can be used as precursors for the preparation of NPCs with high porosity. Their parent MOFs can be prepared with endless combinations of organic and inorganic constituents by simple coordination chemistry, and it is possible to control their porous architectures, pore volumes, surface areas, etc. These unique properties of MOF-derived NPCs make them highly attractive for many technological applications. Compared with carbonaceous materials prepared using conventional precursors, MOF-derived carbons have significant advantages in terms of a simple synthesis with inherent diversity affording precise control over porous architectures, pore volumes, and surface areas. In this Account, we will summarize our recent research developments on the preparation of three-dimensional (3-D) MOF-derived carbons for supercapacitor applications. This Account will be

  4. Carbon isotope biogeochemistry of plant resins and derived hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Murray, A.P.; Edwards, D.; Hope, J.M.; Boreham, C.J. [Australian Geological Survey Organisation, Canberra (Australia)] [and others

    1998-12-31

    Hydrocarbons derived from plant resins are major components of some terrigenous oils and bitumens. These compounds are structurally distinct and this makes then useful biomarkers applicable in petroleum exploration as well as sources of biogeochemical information about palaeoenvironment and palaeobotany. Although recent studies have elucidated the molecular structure of resinites, very little information has been available for the carbon isotope composition of resinites and no studies of resin-derived compounds in oils had been performed prior to the present study. Hence, carbon stable isotope analyses were carried out on a suite of modern and fossil resins of diverse origins, including compound specific isotope analysis of individual hydrocarbons produced during resin pyrolysis. Oils derived from resinite source organic matter were also analysed. The results showed that ``Class I`` resinites derived from gymnosperms were enriched in the heavy carbon isotope compared with those from angiosperms (``Class I`` resinites). Furthermore, both fossil resinites themselves and individual hydrocarbons derived from them were isotopically heavy compared with modern plant resins. The isotopic signatures of diterpanes and triterpanes in various early Tertiary oils from Australasia and Southeast Asia reflect their origins from gymnosperms and angiosperms, respectively. (author)

  5. Derivations, Products of Derivations, and Commutativity in Near-rings

    Institute of Scientific and Technical Information of China (English)

    Howard E. Bell; Nurcan Argac

    2001-01-01

    For a zero-symmetric 3-prime near-ring N, we study three kinds of conditions: (a) conditions involving two derivations d1, d2 which imply that d1 = 0 or d2 = 0; (b) conditions involving derivations which force (N, +) to be abelian or N to be a commutative ring; (c) the condition that dn (S) is multiplicatively central for some derivation d and subset S of N.

  6. New PHA products using unrelated carbon sources.

    Science.gov (United States)

    Matias, Fernanda; de Andrade Rodrigues, Maria Filomena

    2011-10-01

    Polyhydroxyalkanoates (PHA) are natural polyesters stored by a wide range of bacteria as carbon source reserve. Due to its chemical characteristics and biodegradability PHA can be used in chemical, medical and pharmaceutical industry for many human purposes. Over the past years, few Burkholderia species have become known for production of PHA. Aside from that, these bacteria seem to be interesting for discovering new PHA compositions which is important to different industrial applications. In this paper, we introduce two new strains which belong either to Burkholderia cepacia complex (Bcc) or genomovar-type, Burkholderia cepacia SA3J and Burkholderia contaminans I29B, both PHA producers from unrelated carbon sources. The classification was based on 16S rDNA and recA partial sequence genes and cell wall fatty acids composition. These two strains were capable to produce different types of PHA monomers or precursors. Unrelated carbon sources were used for growth and PHA accumulation. The amount of carbon source evaluated, or mixtures of them, was increased with every new experiment until it reaches eighteen carbon sources. As first bioprospection experiments staining methods were used with colony fluorescent dye Nile Red and the cell fluorescent dye Nile Blue A. Gas chromatography analysis coupled to mass spectrometry was used to evaluate the PHA composition on each strain cultivated on different carbon sources. The synthesized polymers were composed by short chain length-PHA (scl-PHA), especially polyhydroxybutyrate, and medium chain length-PHA (mcl-PHA) depending on the carbon source used.

  7. High surface area carbon and process for its production

    Science.gov (United States)

    Romanos, Jimmy; Burress, Jacob; Pfeifer, Peter; Rash, Tyler; Shah, Parag; Suppes, Galen

    2016-12-13

    Activated carbon materials and methods of producing and using activated carbon materials are provided. In particular, biomass-derived activated carbon materials and processes of producing the activated carbon materials with prespecified surface areas and pore size distributions are provided. Activated carbon materials with preselected high specific surface areas, porosities, sub-nm (carbon consumption and metallic potassium intercalation into the carbon lattice during the activation process.

  8. Adsorption Properties of Lignin-derived Activated Carbon Fibers (LACF)

    Energy Technology Data Exchange (ETDEWEB)

    Contescu, Cristian I. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Gallego, Nidia C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Thibaud-Erkey, Catherine [United Technologies Research Center (UTRC), East Hartford, CT (United States); Karra, Reddy [United Technologies Research Center (UTRC), East Hartford, CT (United States)

    2016-04-01

    The object of this CRADA project between Oak Ridge National Laboratory (ORNL) and United Technologies Research Center (UTRC) is the characterization of lignin-derived activated carbon fibers (LACF) and determination of their adsorption properties for volatile organic compounds (VOC). Carbon fibers from lignin raw materials were manufactured at Oak Ridge National Laboratory (ORNL) using the technology previously developed at ORNL. These fibers were physically activated at ORNL using various activation conditions, and their surface area and pore-size distribution were characterized by gas adsorption. Based on these properties, ORNL did down-select five differently activated LACF materials that were delivered to UTRC for measurement of VOC adsorption properties. UTRC used standard techniques based on breakthrough curves to measure and determine the adsorption properties of indoor air pollutants (IAP) - namely formaldehyde and carbon dioxide - and to verify the extent of saturated fiber regenerability by thermal treatments. The results are summarized as follows: (1) ORNL demonstrated that physical activation of lignin-derived carbon fibers can be tailored to obtain LACF with surface areas and pore size distributions matching the properties of activated carbon fibers obtained from more expensive, fossil-fuel precursors; (2) UTRC investigated the LACF potential for use in air cleaning applications currently pursued by UTRC, such as building ventilation, and demonstrated their regenerability for CO2 and formaldehyde, (3) Both partners agree that LACF have potential for possible use in air cleaning applications.

  9. Nanoporous Carbide-Derived Carbon Material-Based Linear Actuators

    Directory of Open Access Journals (Sweden)

    Janno Torop

    2009-12-01

    Full Text Available Devices using electroactive polymer-supported carbon material can be exploited as alternatives to conventional electromechanical actuators in applications where electromechanical actuators have some serious deficiencies. One of the numerous examples is precise microactuators. In this paper, we show for first time the dilatometric effect in nanocomposite material actuators containing carbide-derived carbon (CDC and polytetrafluoroetylene polymer (PTFE. Transducers based on high surface area carbide-derived carbon electrode materials are suitable for short range displacement applications, because of the proportional actuation response to the charge inserted, and high Coulombic efficiency due to the EDL capacitance. The material is capable of developing stresses in the range of tens of N cm-2. The area of an actuator can be dozens of cm2, which means that forces above 100 N are achievable. The actuation mechanism is based on the interactions between the high-surface carbon and the ions of the electrolyte. Electrochemical evaluations of the four different actuators with linear (longitudinal action response are described. The actuator electrodes were made from two types of nanoporous TiC-derived carbons with surface area (SA of 1150 m2 g-1 and 1470 m2 g-1, respectively. Two kinds of electrolytes were used in actuators: 1.0 M tetraethylammonium tetrafluoroborate (TEABF4 solution in propylene carbonate and pure ionic liquid 1-ethyl-3-methylimidazolium trifluoromethanesulfonate (EMITf. It was found that CDC based actuators exhibit a linear movement of about 1% in the voltage range of 0.8 V to 3.0 V at DC. The actuators with EMITf electrolyte had about 70% larger movement compared to the specimen with TEABF4 electrolyte.

  10. Integrating Steel Production with Mineral Carbon Sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Klaus Lackner; Paul Doby; Tuncel Yegulalp; Samuel Krevor; Christopher Graves

    2008-05-01

    The objectives of the project were (i) to develop a combination iron oxide production and carbon sequestration plant that will use serpentine ores as the source of iron and the extraction tailings as the storage element for CO2 disposal, (ii) the identification of locations within the US where this process may be implemented and (iii) to create a standardized process to characterize the serpentine deposits in terms of carbon disposal capacity and iron and steel production capacity. The first objective was not accomplished. The research failed to identify a technique to accelerate direct aqueous mineral carbonation, the limiting step in the integration of steel production and carbon sequestration. Objective (ii) was accomplished. It was found that the sequestration potential of the ultramafic resource surfaces in the US and Puerto Rico is approximately 4,647 Gt of CO2 or over 500 years of current US production of CO2. Lastly, a computer model was developed to investigate the impact of various system parameters (recoveries and efficiencies and capacities of different system components) and serpentinite quality as well as incorporation of CO2 from sources outside the steel industry.

  11. Carbon-Nanotube-Reinforced Polymer-Derived Ceramic Composites

    Energy Technology Data Exchange (ETDEWEB)

    An, Linan; Xu, Weixing; Rajagopalan, Sudhir; Wang, Chong M.; Wang, Hsin; Fan, Yi; Zhang, Ligong; Jiang, Dapeng; Kapat, Jay; Chow, Louis; Guo, Baohua; Liang, Ji; Vaidyanathan, Raj

    2004-12-09

    Carbon nanotube reinforced ceramic composites were synthesized by using recently developed polymer-derived ceramics as matrices. Multi-wall carbon nanotubes, treated with a surfactant, were first dispersed in a liquid polymer precursor by sonication and mechanical stirring. The solution was then converted to fully dense ceramic composites with pressure-assist pyrolysis technique. Microstructural observation revealed that nanotubes were homogeneously dispersed throughout the ceramic matrix. Significant increases in mechanical and thermal properties were observed by adding only {approx}6vol% nanotubes. Strong nanotube pullout revealed by SEM observation suggested that the composites could possess high fracture toughness.

  12. Characterization and Oxidation Behavior of Rayon-Derived Carbon Fibers

    Science.gov (United States)

    Jacobson, Nathan; Hull, David

    2010-01-01

    Rayon-derived fibers are the central constituent of reinforced carbon/ carbon (RCC) composites. Optical, scanning electron, and transmission electron microscopy were used to characterize the as-fabricated fibers and the fibers after oxidation. Oxidation rates were measured with weight loss techniques in air and oxygen. The as-received fibers are approximately 10 micron in diameter and characterized by grooves or crenulations around the edges. Below 800 C, in the reaction-controlled region, preferential attack began in the crenulations and appeared to occur down fissures in the fibers.

  13. Facile preparation of hierarchically porous carbon using diatomite as both template and catalyst and methylene blue adsorption of carbon products.

    Science.gov (United States)

    Liu, Dong; Yuan, Peng; Tan, Daoyong; Liu, Hongmei; Wang, Tong; Fan, Mingde; Zhu, Jianxi; He, Hongping

    2012-12-15

    Hierarchically porous carbons were prepared using a facile preparation method in which diatomite was utilized as both template and catalyst. The porous structures of the carbon products and their formation mechanisms were investigated. The macroporosity and microporosity of the diatomite-templated carbons were derived from replication of diatom shell and structure-reconfiguration of the carbon film, respectively. The macroporosity of carbons was strongly dependent on the original morphology of the diatomite template. The macroporous structure composed of carbon plates connected by the pillar- and tube-like macropores resulted from the replication of the central and edge pores of the diatom shells with disk-shaped morphology, respectively. And another macroporous carbon tubes were also replicated from canoe-shaped diatom shells. The acidity of diatomite dramatically affected the porosity of the carbons, more acid sites of diatomite template resulted in higher surface area and pore volume of the carbon products. The diatomite-templated carbons exhibited higher adsorption capacity for methylene blue than the commercial activated carbon (CAC), although the specific surface area was much smaller than that of CAC, due to the hierarchical porosity of diatomite-templated carbons. And the carbons were readily reclaimed and regenerated. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. Improving the process of I carbonation in sugar production

    Directory of Open Access Journals (Sweden)

    V. A. Golybin

    2016-01-01

    Full Text Available Of the total effect of the removal of non-sugars 30–36 % achieved in modern schemes extract purification, a large proportion removed by adsorption of calcium carbonate particles formed in the process of carbonation. To improve the efficiency of the purification steps juice we have proposed a two-stage carbonation I cleaned juice. Holding two stages I saturation at high pH juice is justified in view of the efficiency of adsorption treatment with calcium carbonate. To quantify the proposed option saturation performed laboratory research on plant juices derived from beet varying quality, with the definition of quality indicators to be cleansed juice at all stages of processing the raw juice in warm preliming, the combined main liming, I and II carbonation. Indicators were evaluated for juice in the sugar industry accepted methods. In comparison with the standard version of the proposed two-stage version of I carbonation with intermediate filtration improves filtration performance carbonated juice on 24–26 %, reduce the color of the purified juice to 17–23 %, the content of calcium in the 22–24 %, improve the overall treatment effect 16–19 % (relative. Improving the quality of the purified juice ensures the production of white sugar of standard quality, an increase in the cleaning effect of diffusion juice reduces the loss of sucrose in the molasses and increases the yield of the final commercial product. The proposed version of the separation processes of thermochemical conversion of non-sugars will create conditions for maximum removal by adsorption of their decay products, particularly dyes.

  15. JV Task 90 - Activated Carbon Production from North Dakota Lignite

    Energy Technology Data Exchange (ETDEWEB)

    Steven Benson; Charlene Crocker; Rokan Zaman; Mark Musich; Edwin Olson

    2008-03-31

    The Energy & Environmental Research Center (EERC) has pursued a research program for producing activated carbon from North Dakota lignite that can be competitive with commercial-grade activated carbon. As part of this effort, small-scale production of activated carbon was produced from Fort Union lignite. A conceptual design of a commercial activated carbon production plant was drawn, and a market assessment was performed to determine likely revenue streams for the produced carbon. Activated carbon was produced from lignite coal in both laboratory-scale fixed-bed reactors and in a small pilot-scale rotary kiln. The EERC was successfully able to upgrade the laboratory-scale activated carbon production system to a pilot-scale rotary kiln system. The activated carbon produced from North Dakota lignite was superior to commercial grade DARCO{reg_sign} FGD and Rheinbraun's HOK activated coke product with respect to iodine number. The iodine number of North Dakota lignite-derived activated carbon was between 600 and 800 mg I{sub 2}/g, whereas the iodine number of DARCO FGD was between 500 and 600 mg I{sub 2}/g, and the iodine number of Rheinbraun's HOK activated coke product was around 275 mg I{sub 2}/g. The EERC performed both bench-scale and pilot-scale mercury capture tests using the activated carbon made under various optimization process conditions. For comparison, the mercury capture capability of commercial DARCO FGD was also tested. The lab-scale apparatus is a thin fixed-bed mercury-screening system, which has been used by the EERC for many mercury capture screen tests. The pilot-scale systems included two combustion units, both equipped with an electrostatic precipitator (ESP). Activated carbons were also tested in a slipstream baghouse at a Texas power plant. The results indicated that the activated carbon produced from North Dakota lignite coal is capable of removing mercury from flue gas. The tests showed that activated carbon with the greatest

  16. Sustainable biomass-derived hydrothermal carbons for energy applications

    Directory of Open Access Journals (Sweden)

    C. Falco

    2012-09-01

    Full Text Available The hydrothermal carbonisation of carbohydrate and protein-rich biomass was systematically investigated, in order to obtain more insights on the potentials of this thermochemical processing technique in relation to the production of functional carbon materials from crude biomass.

  17. Biomaterial-Derived Calcium Carbonate Nanoparticles for Enteric Drug Delivery

    OpenAIRE

    Diane Render; Temesgen Samuel; Howard King; Madan Vig; Shaik Jeelani; Ramapuram Jayachandra Babu; Vijaya Rangari

    2016-01-01

    Oral drug delivery systems provide the most convenient, noninvasive, readily acceptable alternatives to parenteral systems. In the current work, eggshell-derived calcium carbonate (CaCO3) nanoparticles were used to develop enteric drug delivery system in the form of tablets. CaCO3 nanoparticles were manufactured using top-down ball-milling method and characterized by X-ray diffractometry (XRD) and transmission electron microscopy (TEM) and loaded with 5-fluorouracil as a model drug. Tablets w...

  18. Carbon nanotube mass production: principles and processes.

    Science.gov (United States)

    Zhang, Qiang; Huang, Jia-Qi; Zhao, Meng-Qiang; Qian, Wei-Zhong; Wei, Fei

    2011-07-18

    Our society requires new materials for a sustainable future, and carbon nanotubes (CNTs) are among the most important advanced materials. This Review describes the state-of-the-art of CNT synthesis, with a focus on their mass-production in industry. At the nanoscale, the production of CNTs involves the self-assembly of carbon atoms into a one-dimensional tubular structure. We describe how this synthesis can be achieved on the macroscopic scale in processes akin to the continuous tonne-scale mass production of chemical products in the modern chemical industry. Our overview includes discussions on processing methods for high-purity CNTs, and the handling of heat and mass transfer problems. Manufacturing strategies for agglomerated and aligned single-/multiwalled CNTs are used as examples of the engineering science of CNT production, which includes an understanding of their growth mechanism, agglomeration mechanism, reactor design, and process intensification. We aim to provide guidelines for the production and commercialization of CNTs. Although CNTs can now be produced on the tonne scale, knowledge of the growth mechanism at the atomic scale, the relationship between CNT structure and application, and scale-up of the production of CNTs with specific chirality are still inadequate. A multidisciplinary approach is a prerequisite for the sustainable development of the CNT industry. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. CREAT A CONSORTIUM AND DEVELOP PREMIUM CARBON PRODUCTS FROM COAL

    Energy Technology Data Exchange (ETDEWEB)

    John M. Andresen

    2003-08-01

    The Consortium for Premium Carbon Products from Coal, with funding from the U.S. Department of Energy's National Energy Technology Laboratory and matching funds from industry and academic institutions continued to excel in developing innovative technologies to use coal and coal-derived feedstocks to produce premium carbon product. During Budget Period 5, eleven projects were supported and sub-contracted were awarded to seven organizations. The CPCPC held two meetings and one tutorial at various locations during the year. Budget Period 5 was a time of growth for CPCPC in terms of number of proposals and funding requested from members, projects funded and participation during meetings. Although the membership was stable during the first part of Budget Period 5 an increase in new members was registered during the last months of the performance period.

  20. Properties and degradability of hydrothermal carbonization products.

    Science.gov (United States)

    Eibisch, Nina; Helfrich, Mirjam; Don, Axel; Mikutta, Robert; Kruse, Andrea; Ellerbrock, Ruth; Flessa, Heinz

    2013-09-01

    Biomass carbonized via hydrothermal carbonization (HTC) yields a liquid and a carbon (C)-rich solid called hydrochar. In soil, hydrochars may act as fertilizers and promote C sequestration. We assumed that the chemical composition of the raw material (woodchips, straw, grass cuttings, or digestate) determines the properties of the liquid and solid HTC products, including their degradability. Additionally, we investigated whether easily mineralizable organic components adsorbed on the hydrochar surface influence the degradability of the hydrochars and could be removed by repetitive washing. Carbon mineralization was measured as CO production over 30 d in aerobic incubation experiments with loamy sand. Chemical analysis revealed that most nutrients were preferably enriched in the liquid phase. The C mineralization of hydrochars from woodchips (2% of total C added), straw (3%), grass (6%), and digestate (14%) were dependent on the raw material carbonized and were significantly lower (by 60-92%; < 0.05) than the mineralization of the corresponding raw materials. Washing of the hydrochars significantly decreased mineralization of digestate-hydrochar (up to 40%) but had no effect on mineralization rates of the other three hydrochars. Variations in C mineralization between different hydrochars could be explained by multiple factors, including differences in the O/C-H/C ratios, C/N ratios, lignin content, amount of oxygen-containing functional groups, and pH. In contrast to the solids, the liquid products were highly degradable, with 61 to 89% of their dissolved organic C being mineralized within 30 d. The liquids may be treated aerobically (e.g., for nutrient recovery).

  1. New PHA products using unrelated carbon sources

    Directory of Open Access Journals (Sweden)

    Fernanda Matias

    2011-12-01

    Full Text Available Polyhydroxyalkanoates (PHA are natural polyesters stored by a wide range of bacteria as carbon source reserve. Due to its chemical characteristics and biodegradability PHA can be used in chemical, medical and pharmaceutical industry for many human purposes. Over the past years, few Burkholderia species have become known for production of PHA. Aside from that, these bacteria seem to be interesting for discovering new PHA compositions which is important to different industrial applications. In this paper, we introduce two new strains which belong either to Burkholderia cepacia complex (Bcc or genomovar-type, Burkholderia cepacia SA3J and Burkholderia contaminans I29B, both PHA producers from unrelated carbon sources. The classification was based on 16S rDNA and recA partial sequence genes and cell wall fatty acids composition. These two strains were capable to produce different types of PHA monomers or precursors. Unrelated carbon sources were used for growth and PHA accumulation. The amount of carbon source evaluated, or mixtures of them, was increased with every new experiment until it reaches eighteen carbon sources. As first bioprospection experiments staining methods were used with colony fluorescent dye Nile Red and the cell fluorescent dye Nile Blue A. Gas chromatography analysis coupled to mass spectrometry was used to evaluate the PHA composition on each strain cultivated on different carbon sources. The synthesized polymers were composed by short chain length-PHA (scl-PHA, especially polyhydroxybutyrate, and medium chain length-PHA (mcl-PHA depending on the carbon source used.

  2. Graphene nanoribbons production from flat carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Melo, W. S.; Guerini, S.; Diniz, E. M., E-mail: eduardo.diniz@ufma.br [Departamento de Física, Universidade Federal do Maranhão, São Luís - MA 65080-805 (Brazil)

    2015-11-14

    Graphene nanoribbons are of great interest for pure and applied sciences due to their unique properties which depend on the nanoribbon edges, as, for example, energy gap and antiferromagnetic coupling. Nevertheless, the synthesis of nanoribbons with well-defined edges remains a challenge. To collaborate with this subject, here we propose a new route for the production of graphene nanoribbons from flat carbon nanotubes filled with a one-dimensional chain of Fe atoms by first principles calculations based on density functional theory. Our results show that Fe-filled flat carbon nanotubes are energetically more stable than non flattened geometries. Also we find that by hydrogenation or oxygenation of the most curved region of the Fe-filled flat armchair carbon nanotube, it occurred a spontaneous production of zigzag graphene nanoribbons which have metallic or semiconducting behavior depending on the edge and size of the graphene nanoribbon. Such findings can be used to create a new method of synthesis of regular-edge carbon nanoribbons.

  3. Three-dimensional polypyrrole-derived carbon nanotube framework for dye adsorption and electrochemical supercapacitor

    Science.gov (United States)

    Xin, Shengchang; Yang, Na; Gao, Fei; Zhao, Jing; Li, Liang; Teng, Chao

    2017-08-01

    Three-dimensional carbon nanotube frameworks have been prepared via pyrolysis of polypyrrole nanotube aerogels that are synthesized by the simultaneous self-degraded template synthesis and hydrogel assembly followed by freeze-drying. The microstructure and composition of the materials are investigated by thermal gravimetric analysis, Raman spectrum, X-ray photoelectron spectroscopy, transmission electron microscopy, and specific surface analyzer. The results confirm the formation of three-dimensional carbon nanotube frameworks with low density, high mechanical properties, and high specific surface area. Compared with PPy aerogel precursor, the as-prepared three-dimensional carbon nanotube frameworks exhibit outstanding adsorption capacity towards organic dyes. Moreover, electrochemical tests show that the products possess high specific capacitance, good rate capability and excellent cycling performance with no capacitance loss over 1000 cycles. These characteristics collectively indicate the potential of three-dimensional polypyrrole-derived carbon nanotube framework as a promising macroscopic device for the applications in environmental and energy storages.

  4. Processing methods, characteristics and adsorption behavior of tire derived carbons: a review.

    Science.gov (United States)

    Saleh, Tawfik A; Gupta, Vinod Kumar

    2014-09-01

    The remarkable increase in the number of vehicles worldwide; and the lack of both technical and economical mechanisms of disposal make waste tires to be a serious source of pollution. One potential recycling process is pyrolysis followed by chemical activation process to produce porous activated carbons. Many researchers have recently proved the capability of such carbons as adsorbents to remove various types of pollutants including organic and inorganic species. This review attempts to compile relevant knowledge about the production methods of carbon from waste rubber tires. The effects of various process parameters including temperature and heating rate, on the pyrolysis stage; activation temperature and time, activation agent and activating gas are reviewed. This review highlights the use of waste-tires derived carbon to remove various types of pollutants like heavy metals, dye, pesticides and others from aqueous media.

  5. Product carbon footprint developments and gaps

    DEFF Research Database (Denmark)

    Kronborg Jensen, Jesper

    2012-01-01

    to the existing literature of green supply chain management. Findings - The multiple initiatives for standardization each improve the understanding of standardized methods of conducting PCF. At the same time, however, important differences exist between the standards in terms of the modelling framework to be used......Purpose - Over the last decade, multiple initiatives have been undertaken to learn how to capture the carbon footprint of a supply chain at a product level. The purpose of this paper is to focus on the process of standardization to secure consistency of product carbon footprinting (PCF......) and to outline how the current developments in PCF support the need for a standardized method to measure and report environmental performance in supply chains. Design/methodology/approach - This paper is based on a literature review and a review of international standards for PCF which brings knowledge of PCF...

  6. Cascade Synthesis of Five-Membered Lactones using Biomass-Derived Sugars as Carbon Nucleophiles.

    Science.gov (United States)

    Yamaguchi, Sho; Matsuo, Takeaki; Motokura, Ken; Miyaji, Akimitsu; Baba, Toshihide

    2016-06-06

    We report the cascade synthesis of five-membered lactones from a biomass-derived triose sugar, 1,3-dihydroxyacetone, and various aldehydes. This achievement provides a new synthetic strategy to generate a wide range of valuable compounds from a single biomass-derived sugar. Among several examined Lewis acid catalysts, homogeneous tin chloride catalysts exhibited the best performance to form carbon-carbon bonds. The scope and limitations of the synthesis of five-membered lactones using aldehyde compounds are investigated. The cascade reaction led to high product selectivity as well as diastereoselectivity, and the mechanism leading to the diastereoselectivity was discussed based on isomerization experiments and density functional theory (DFT) calculations. The present results are expected to support new approaches for the efficient utilization of biomass-derived sugars.

  7. Widespread kelp-derived carbon in pelagic and benthic nearshore fishes suggested by stable isotope analysis

    Science.gov (United States)

    von Biela, Vanessa R.; Newsome, Seth D.; Bodkin, James L.; Kruse, Gordon H.; Zimmerman, Christian E.

    2016-11-01

    Kelp forests provide habitat for diverse and abundant fish assemblages, but the extent to which kelp provides a source of energy to fish and other predators is unclear. To examine the use of kelp-derived energy by fishes we estimated the contribution of kelp- and phytoplankton-derived carbon using carbon (δ13C) and nitrogen (δ15N) isotopes measured in muscle tissue. Benthic-foraging kelp greenling (Hexagrammos decagrammus) and pelagic-foraging black rockfish (Sebastes melanops) were collected at eight sites spanning ∼35 to 60°N from the California Current (upwelling) to Alaska Coastal Current (downwelling) in the northeast Pacific Ocean. Muscle δ13C values were expected to be higher for fish tissue primarily derived from kelp, a benthic macroalgae, and lower for tissue primarily derived from phytoplankton, pelagic microalgae. Muscle δ13C values were higher in benthic-feeding kelp greenling than in pelagic-feeding black rockfish at seven of eight sites, indicating more kelp-derived carbon in greenling as expected. Estimates of kelp carbon contributions ranged from 36 to 89% in kelp greenling and 32 to 65% in black rockfish using carbon isotope mixing models. Isotopic evidence suggests that these two nearshore fishes routinely derive energy from kelp and phytoplankton, across coastal upwelling and downwelling systems. Thus, the foraging mode of nearshore predators has a small influence on their ultimate energy source as energy produced by benthic macroalgae and pelagic microalgae were incorporated in fish tissue regardless of feeding mode and suggest strong and widespread benthic-pelagic coupling. Widespread kelp contributions to benthic- and pelagic-feeding fishes suggests that kelp energy provides a benefit to nearshore fishes and highlights the potential for kelp and fish production to be linked.

  8. Carbon-Based Functional Materials Derived from Waste for Water Remediation and Energy Storage.

    Science.gov (United States)

    Ma, Qinglang; Yu, Yifu; Sindoro, Melinda; Fane, Anthony G; Wang, Rong; Zhang, Hua

    2017-04-01

    Carbon-based functional materials hold the key for solving global challenges in the areas of water scarcity and the energy crisis. Although carbon nanotubes (CNTs) and graphene have shown promising results in various fields of application, their high preparation cost and low production yield still dramatically hinder their wide practical applications. Therefore, there is an urgent call for preparing carbon-based functional materials from low-cost, abundant, and sustainable sources. Recent innovative strategies have been developed to convert various waste materials into valuable carbon-based functional materials. These waste-derived carbon-based functional materials have shown great potential in many applications, especially as sorbents for water remediation and electrodes for energy storage. Here, the research progress in the preparation of waste-derived carbon-based functional materials is summarized, along with their applications in water remediation and energy storage; challenges and future research directions in this emerging research field are also discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Natural Product Polyamines That Inhibit Human Carbonic Anhydrases

    Directory of Open Access Journals (Sweden)

    Rohan A. Davis

    2014-01-01

    Full Text Available Natural product compound collections have proven an effective way to access chemical diversity and recent findings have identified phenolic, coumarin, and polyamine natural products as atypical chemotypes that inhibit carbonic anhydrases (CAs. CA enzymes are implicated as targets of variable drug therapeutic classes and the discovery of selective, drug-like CA inhibitors is essential. Just two natural product polyamines, spermine and spermidine, have until now been investigated as CA inhibitors. In this study, five more complex natural product polyamines 1–5, derived from either marine sponge or fungi, were considered for inhibition of six different human CA isozymes of interest in therapeutic drug development. All compounds share a simple polyamine core fragment, either spermine or spermidine, yet display substantially different structure activity relationships for CA inhibition. Notably, polyamines 1–5 were submicromolar inhibitors of the cancer drug target CA IX, this is more potent than either spermine or spermidine.

  10. Technique for production of graphite-carbon products

    Energy Technology Data Exchange (ETDEWEB)

    Antonov, A.N.; Bentsianovskaya, I.A.; Filatova, V.A.; Nabokov, V.S.; Nestor, V.P.; Zil' bergleyt, I.M.

    1982-01-01

    The technique for producing carbon-graphite products that includes filtration under a pressure of 0.1-015 MPa (through graphite stock) of an aqueous carbon material with the addition of surfactant, drying, and subsequent thermal treatment, is simplified and made less lengthy. Oxidized graphite is utilized with a prior addition of 1-10% water-soluble organic substance into the suspension -molasses, hemicellulose, sugar or polyacrylamide. A 0.03-1.5% suspension of oxidized graphite is utilized, with a particle size of 0.02-0.1 mkm. Thermal processing is done in a carbon fill, at a rate of 10-20 degrees/hour to 700-800/sup 0/, maintained 2-3 hours.

  11. High capacitance of coarse-grained carbide derived carbon electrodes

    Science.gov (United States)

    Dyatkin, Boris; Gogotsi, Oleksiy; Malinovskiy, Bohdan; Zozulya, Yuliya; Simon, Patrice; Gogotsi, Yury

    2016-02-01

    We report exceptional electrochemical properties of supercapacitor electrodes composed of large, granular carbide-derived carbon (CDC) particles. Using a titanium carbide (TiC) precursor, we synthesized 70-250 μm sized particles with high surface area and a narrow pore size distribution. Electrochemical cycling of these coarse-grained powders defied conventional wisdom that a small particle size is strictly required for supercapacitor electrodes and allowed high charge storage densities, rapid transport, and good rate handling ability. The material showcased capacitance above 100 F g-1 at sweep rates as high as 250 mV s-1 in organic electrolyte. 250-1000 micron thick dense CDC films with up to 80 mg cm-2 loading showed superior areal capacitances. The material significantly outperformed its activated carbon counterpart in organic electrolytes and ionic liquids. Furthermore, large internal/external surface ratio of coarse-grained carbons allowed the resulting electrodes to maintain high electrochemical stability up to 3.1 V in ionic liquid electrolyte. In addition to presenting novel insights into the electrosorption process, these coarse-grained carbons offer a pathway to low-cost, high-performance implementation of supercapacitors in automotive and grid-storage applications.

  12. Nanoporous carbide-derived carbon with tunable pore size

    Science.gov (United States)

    Gogotsi, Yury; Nikitin, Alexei; Ye, Haihui; Zhou, Wei; Fischer, John E.; Yi, Bo; Foley, Henry C.; Barsoum, Michel W.

    2003-09-01

    Porous solids are of great technological importance due to their ability to interact with gases and liquids not only at the surface, but throughout their bulk. Although large pores can be produced and well controlled in a variety of materials, nanopores in the range of 2 nm and below (micropores, according to IUPAC classification) are usually achieved only in carbons or zeolites. To date, major efforts in the field of porous materials have been directed towards control of the size, shape and uniformity of the pores. Here we demonstrate that porosity of carbide-derived carbons (CDCs) can be tuned with subångström accuracy in a wide range by controlling the chlorination temperature. CDC produced from Ti3SiC2 has a narrower pore-size distribution than single-wall carbon nanotubes or activated carbons; its pore-size distribution is comparable to that of zeolites. CDCs are produced at temperatures from 200-1,200 °C as a powder, a coating, a membrane or parts with near-final shapes, with or without mesopores. They can find applications in molecular sieves, gas storage, catalysts, adsorbents, battery electrodes, supercapacitors, water/air filters and medical devices.

  13. Increases in terrestrially derived carbon stimulate organic carbon processing and CO2 emissions in boreal aquatic ecosystems

    Science.gov (United States)

    Lapierre, Jean-François; Guillemette, François; Berggren, Martin; Del Giorgio, Paul A.

    2013-12-01

    The concentrations of terrestrially derived dissolved organic carbon have been increasing throughout northern aquatic ecosystems in recent decades, but whether these shifts have an impact on aquatic carbon emissions at the continental scale depends on the potential for this terrestrial carbon to be converted into carbon dioxide. Here, via the analysis of hundreds of boreal lakes, rivers and wetlands in Canada, we show that, contrary to conventional assumptions, the proportion of biologically degradable dissolved organic carbon remains constant and the photochemical degradability increases with terrestrial influence. Thus, degradation potential increases with increasing amounts of terrestrial carbon. Our results provide empirical evidence of a strong causal link between dissolved organic carbon concentrations and aquatic fluxes of carbon dioxide, mediated by the degradation of land-derived organic carbon in aquatic ecosystems. Future shifts in the patterns of terrestrial dissolved organic carbon in inland waters thus have the potential to significantly increase aquatic carbon emissions across northern landscapes.

  14. The advanced carbide-derived carbon based supercapacitor

    Science.gov (United States)

    Arulepp, M.; Leis, J.; Lätt, M.; Miller, F.; Rumma, K.; Lust, E.; Burke, A. F.

    The electrical double-layer (EDL) performance of three different TiC-derived nanoporous carbon materials was tested in prismatic capacitor assembly filled with 1.2 M triethylmethylammonium tetrafluoroborate (TEMA) acetonitrile solution. The electrical double-layer characteristics of supercapacitors were studied using the cyclic voltammetry (CV) and the electrochemical impedance spectroscopy (EIS) methods. Energy density versus power density, i.e. Ragone plots were constructed from the constant resistance and constant power (CP) charge/discharge data. The 1450F supercapacitor with novel nanoporous carbon made by halogen treatment of TiC/TiO 2 composite demonstrated the energy density of more than 10 Wh dm -3 at the cell voltage of 2.7 V.

  15. The advanced carbide-derived carbon based supercapacitor

    Energy Technology Data Exchange (ETDEWEB)

    Arulepp, M.; Leis, J.; Laett, M.; Miller, F.; Rumma, K. [Tartu Technologies Ltd., 185 Riia Str., 51014 Tartu (Estonia); Lust, E. [University of Tartu, 2 Jakobi Str., 51014 Tartu (Estonia); Burke, A.F. [University of California-Davis, 2003 Academic Surge, Davis, CA 95616 (United States)

    2006-11-22

    The electrical double-layer (EDL) performance of three different TiC-derived nanoporous carbon materials was tested in prismatic capacitor assembly filled with 1.2M triethylmethylammonium tetrafluoroborate (TEMA) acetonitrile solution. The electrical double-layer characteristics of supercapacitors were studied using the cyclic voltammetry (CV) and the electrochemical impedance spectroscopy (EIS) methods. Energy density versus power density, i.e. Ragone plots were constructed from the constant resistance and constant power (CP) charge/discharge data. The 1450F supercapacitor with novel nanoporous carbon made by halogen treatment of TiC/TiO{sub 2} composite demonstrated the energy density of more than 10Whdm{sup -3} at the cell voltage of 2.7V. (author)

  16. Response of the Amazon Carbon Balance to the 2010 Drought Derived with CarbonTracker South America

    Science.gov (United States)

    van der Laan-Luijkx, I. T.; van der Velde, I. R.; Krol, M. C.; Gatti, L. V.; Domingues, L. G.; Correia, C. S. C.; Miller, J. B.; Gloor, M.; van Leeuwen, T. T.; W Kaiser, J.; Wiedinmyer, C.; Basu, S.; Clerbaux, C.; Peters, W.

    2015-12-01

    Two major droughts in the past decade had large impacts on carbon exchange in the Amazon. Recent analysis of vertical profile measurements of atmospheric CO2 and CO by Gatti et al. [Nature, 506(7486), 76-80, 2014] suggests that the 2010 drought turned the normally close-to-neutral annual Amazon carbon balance into a substantial source of nearly 0.5 PgC/yr, revealing a strong drought response. In this study, we revisit this hypothesis and interpret not only the same CO2/CO vertical profile measurements, but also additional constraints on carbon exchange such as satellite observations of CO, burned area, and fire hotspots. The results from our CarbonTracker South America data assimilation system suggest that carbon uptake by vegetation was indeed reduced in 2010, but that the magnitude of the decrease strongly depends on the estimated 2010 and 2011 biomass burning emissions. We have used fire products based on burned area (GFED4), satellite-observed CO columns (IASI), fire radiative power (GFASv1) and fire hotspots (FINNv1), and found an increase in biomass burning emissions in 2010 compared to 2011 of 0.16 to 0.24 PgC/yr. We derived a decrease of biospheric uptake ranging from 0.08 to 0.26 PgC/yr, with the range determined from a set of alternative inversions using different biomass burning estimates. Our numerical analysis of the 2010 Amazon drought results in a total reduction of carbon uptake of 0.24 to 0.50 PgC/yr and turns the balance from carbon sink to source. Our findings support the suggestion that the hydrological cycle will be an important driver of future changes in Amazonian carbon exchange.

  17. Promising porous carbon derived from celtuce leaves with outstanding supercapacitance and CO₂ capture performance.

    Science.gov (United States)

    Wang, Rutao; Wang, Peiyu; Yan, Xingbin; Lang, Junwei; Peng, Chao; Xue, Qunji

    2012-11-01

    Business costs and energy/environmental concerns have increased interested in biomass materials for production of activated carbons, especially as electrode materials for supercapacitors or as solid-state adsorbents in CO₂ adsorption area. In this paper, waste celtuce leaves were used to prepare porous carbon by air-drying, pyrolysis at 600 °C in argon, followed by KOH activation. The as-prepared porous carbon have a very high specific surface area of 3404 m²/g and a large pore volume of 1.88 cm³/g. As an electroactive material, the porous carbon exhibits good capacitive performance in KOH aqueous electrolyte, with the specific capacitances of 421 and 273 F/g in three and two-electrode systems, respectively. As a solid-state adsorbent, the porous carbon has an excellent CO₂ adsorption capacity at ambient pressures of up to 6.04 and 4.36 mmol/g at 0 and 25 °C, respectively. With simple production process, excellent recyclability and regeneration stability, the porous carbon that was derived from celtuce leaves is among the most promising materials for high-performance supercapacitors and CO₂ capture.

  18. Catalytic Production of Ethanol from Biomass-Derived Synthesis Gas

    Energy Technology Data Exchange (ETDEWEB)

    Trewyn, Brian G. [Colorado School of Mines, Golden, CO (United States); Smith, Ryan G. [Iowa State Univ., Ames, IA (United States)

    2016-06-01

    Heterogeneous catalysts have been developed for the conversion of biomass-derived synthetic gas (syngas) to ethanol. The objectives of this project were to develop a clean synthesis gas from biomass and develop robust catalysts with high selectivity and lifetime for C2 oxygenate production from biomass-derived syngas and surrogate syngas. During the timeframe for this project, we have made research progress on the four tasks: (1) Produce clean bio-oil generated from biomass, such as corn stover or switchgrass, by using fast pyrolysis system, (2) Produce clean, high pressure synthetic gas (syngas: carbon monoxide, CO, and hydrogen, H2) from bio-oil generated from biomass by gasification, (3) Develop and characterize mesoporous mixed oxide-supported metal catalysts for the selective production of ethanol and other alcohols, such as butanol, from synthesis gas, and (4) Design and build a laboratory scale synthesis gas to ethanol reactor system evaluation of the process. In this final report, detailed explanations of the research challenges associated with this project are given. Progress of the syngas production from various biomass feedstocks and catalyst synthesis for upgrading the syngas to C2-oxygenates is included. Reaction properties of the catalyst systems under different reaction conditions and different reactor set-ups are also presented and discussed. Specifically, the development and application of mesoporous silica and mesoporous carbon supports with rhodium nanoparticle catalysts and rhodium nanoparticle with manganese catalysts are described along with the significant material characterizations we completed. In addition to the synthesis and characterization, we described the activity and selectivity of catalysts in our micro-tubular reactor (small scale) and fixed bed reactor (larger scale). After years of hard work, we are proud of the work done on this project, and do believe that this work will provide a solid

  19. Is marine dissolved organic matter the "missing sink" for soil-derived black carbon?

    Science.gov (United States)

    Dittmar, Thorsten; Suryaputra, I. Gusti N. A.; Niggemann, Jutta

    2010-05-01

    The thermal alteration of biomass during wildfires can be an important factor for the stabilization of organic matter in soils. Black carbon, i.e. biochars and soot, is more resistant to biodegradation than unaltered biomass, and it can therefore accumulate in soils and sediments. Our knowledge on the turnover of black carbon is still very fragmentary, and the known loss rates do not account for the estimated production rates. Major loss mechanisms remain unidentified or have been underestimated. Recently, we have identified a major thermogenic component in dissolved organic matter (DOM) of the deep ocean. We hypothesize that black carbon in soils is solubilized over time, probably via microbial interaction, and transported via rivers into the ocean. DOM, one of the largest organic carbon pools on earth, could therefore be an important transport medium of soil-derived black carbon. A case study was performed in the Suwannee River estuary and adjacent oceanic shelf (Florida, USA). The Suwannee River drains extensive wetlands and fire-impacted forests. The fate of dissolved black carbon was traced from the river through its estuary into the open Gulf of Mexico. Black carbon was molecularly quantified as benzenepolycarboxylic acids after nitric acid oxidation via a new UPLC method (ultra-performance liquid chromatography). The molecular analysis was accompanied by optical (excitation-emission matrix fluorescence and absorbance spectroscopy) and elemental characterization of DOM. A major component (approx. 10% on a carbon basis) of Suwannee River DOM could be identified as black carbon. The concentration of black carbon decreased offshore, and on the open ocean only about 1% of DOM could be identified as black carbon. In the deep ocean, the thermogenic component of DOM is higher and approx. 2.4% of DOM. The surface ocean must therefore be an efficient sink for dissolved black carbon. We hypothesize that sunlight may initiate photochemical reactions that cause a loss of

  20. Solubilities of some hydroxyxanthone derivatives in supercritical carbon dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Ghiasvand, A.R.; Hosseini, M.; Sharghi, H.; Yamini, Y.; Shamsipur, M.

    1999-12-01

    The equilibrium solubilities of four hydroxyxanthone derivatives have been measured in supercritical carbon dioxide using a simple and reliable static method. The measurements were performed in the pressure range 74.0--354.6 bar at the temperatures 32, 45, 55, 65, and 75 C. The order of solubility observed for the compounds used was discussed in terms of their possible intra- and intermolecular H-bonds and polarities. The measured solubilities were correlated using a semiempirical model. The calculated results show satisfactory agreement with the experimental data.

  1. Hierarchical porous carbon aerogel derived from bagasse for high performance supercapacitor electrode.

    Science.gov (United States)

    Hao, Pin; Zhao, Zhenhuan; Tian, Jian; Li, Haidong; Sang, Yuanhua; Yu, Guangwei; Cai, Huaqiang; Liu, Hong; Wong, C P; Umar, Ahmad

    2014-10-21

    Renewable, cost-effective and eco-friendly electrode materials have attracted much attention in the energy conversion and storage fields. Bagasse, the waste product from sugarcane that mainly contains cellulose derivatives, can be a promising candidate to manufacture supercapacitor electrode materials. This study demonstrates the fabrication and characterization of highly porous carbon aerogels by using bagasse as a raw material. Macro and mesoporous carbon was first prepared by carbonizing the freeze-dried bagasse aerogel; consequently, microporous structure was created on the walls of the mesoporous carbon by chemical activation. Interestingly, it was observed that the specific surface area, the pore size and distribution of the hierarchical porous carbon were affected by the activation temperature. In order to evaluate the ability of the hierarchical porous carbon towards the supercapacitor electrode performance, solid state symmetric supercapacitors were assembled, and a comparable high specific capacitance of 142.1 F g(-1) at a discharge current density of 0.5 A g(-1) was demonstrated. The fabricated solid state supercapacitor displayed excellent capacitance retention of 93.9% over 5000 cycles. The high energy storage ability of the hierarchical porous carbon was attributed to the specially designed pore structures, i.e., co-existence of the micropores and mesopores. This research has demonstrated that utilization of sustainable biopolymers as the raw materials for high performance supercapacitor electrode materials is an effective way to fabricate low-cost energy storage devices.

  2. Extensive methane-derived authigenic carbonates in the Irish Sea

    Science.gov (United States)

    Judd, Alan; Croker, Peter; Tizzard, Louise; Voisey, Carolyn

    2007-06-01

    Extensive areas of methane-derived authigenic carbonate (MDAC) have been mapped in the Irish Sea. In the Irish Sector, 23 seabed mounds associated with the Codling Fault Zone were identified by multi-beam echo sounder mapping. Inspection by ROV-mounted video showed that these mounds are rocky features rising 5-10 m above the normal seabed; sampling showed that they are comprised of quartz grains bound together by carbonate cement, probably MDAC. Two separate locations have been mapped in the UK Sector. At Texel 11, seabed mounds and a 6-8 m high cliff were mapped geophysically (MBES, SSS and seismic profiler surveys). Video surveys showed that both the mounds and the cliff are rocky reefs colonised by a prolific fauna. Samples proved to be carbonate-cemented sediments, and carbon isotope analysis (δ13C -41 to -46% PDB) showed that the cement was MDAC. Similar surveys of the Holden’s Reefs area proved the presence of similar rocky reefs which are also cemented by MDAC. The total area covered by these two MDAC occurrences is estimated to be >500,000 m2. These MDAC occurrences are comparable in nature and formation to the ‘bubbling reefs’ of the Kattegat. As the bubbling reefs are “seabed features formed by leaking gas”, one of the marine habitats identified by the European Commission’s Habitats Directive as being sensitive and worthy of protection, it is suggested that the Irish Sea carbonate reefs should also be considered as special habitats.

  3. Catalysts for Efficient Production of Carbon Nanotubes

    Science.gov (United States)

    Sun, Ted X.; Dong, Yi

    2009-01-01

    Several metal alloys have shown promise as improved catalysts for catalytic thermal decomposition of hydrocarbon gases to produce carbon nanotubes (CNTs). Heretofore almost every experiment on the production of carbon nanotubes by this method has involved the use of iron, nickel, or cobalt as the catalyst. However, the catalytic-conversion efficiencies of these metals have been observed to be limited. The identification of better catalysts is part of a continuing program to develop means of mass production of high-quality carbon nanotubes at costs lower than those achieved thus far (as much as $100/g for purified multi-wall CNTs or $1,000/g for single-wall CNTs in year 2002). The main effort thus far in this program has been the design and implementation of a process tailored specifically for high-throughput screening of alloys for catalyzing the growth of CNTs. The process includes an integral combination of (1) formulation of libraries of catalysts, (2) synthesis of CNTs from decomposition of ethylene on powders of the alloys in a pyrolytic chemical-vapor-decomposition reactor, and (3) scanning- electron-microscope screening of the CNTs thus synthesized to evaluate the catalytic efficiencies of the alloys. Information gained in this process is put into a database and analyzed to identify promising alloy compositions, which are to be subjected to further evaluation in a subsequent round of testing. Some of these alloys have been found to catalyze the formation of carbon nano tubes from ethylene at temperatures as low as 350 to 400 C. In contrast, the temperatures typically required for prior catalysts range from 550 to 750 C.

  4. Production of activated carbon from TCR char

    Science.gov (United States)

    Stenzel, Fabian; Heberlein, Markus; Klinner, Tobias; Hornung, Andreas

    2016-04-01

    The utilization of char for adsorptive purposes is known since the 18th century. At that time the char was made of wood or bones and used for decoloration of fluids. In the 20th century the production of activated carbon in an industrial scale was started. The today's raw materials for activated carbon production are hard coal, peat, wood or coconut shells. All these materials entail costs especially the latter. Thus, the utilization of carbon rich residues (biomass) is an interesting economic opportunity because it is available for no costs or even can create income. The char is produced by thermo-catalytic reforming (TCR®). This process is a combination of an intermediate pyrolysis and subsequently a reforming step. During the pyrolysis step the material is decomposed in a vapor and a solid carbon enriched phase. In the second step the vapor and the solid phase get in an intensive contact and the quality of both materials is improved via the reforming process. Subsequently, the condensables are precipitated from the vapor phase and a permanent gas as well as oil is obtained. Both are suitable for heat and power production which is a clear advantage of the TCR® process. The obtained biochar from the TCR® process has special properties. This material has a very low hydrogen and oxygen content. Its stability is comparable to hard coal or anthracite. Therefore it consists almost only of carbon and ash. The latter depends from input material. Furthermore the surface structure and area can be influenced during the reforming step. Depending from temperature and residence time the number of micro pores and the surface area can be increased. Preliminary investigations with methylene blue solution have shown that a TCR® char made of digestate from anaerobic digestion has adsorptive properties. The decoloration of the solution was achieved. A further influencing factor of the adsorption performance is the particle size. Based on the results of the preliminary tests a

  5. Special steel production on common carbon steel production line

    Science.gov (United States)

    Pi, Huachun; Han, Jingtao; Hu, Haiping; Bian, Ruisheng; Kang, Jianjun; Xu, Manlin

    2004-06-01

    The equipment and technology of small bar tandem rolling line of Shijiazhuang Iron & Steel Co. in China has reached the 90's international advanced level in the 20th century, but products on the line are mostly of common carbon steel. Currently there are few steel plants in China to produce 45 steel bars for cold drawing, which is a kind of shortage product. Development of 45 steel for cold drawing has a wide market outlook in China. In this paper, continuous cooling transformation (CCT) curve of 45 steel for cold drawing used for rolling was set out first. According to the CCT curve, we determined some key temperature points such as Ac3 temperature and Ac1 temperature during the cooling procedure and discussed the precipitation microstructure at different cooling rate. Then by studying thermal treatment process of 45 steel bars for cold drawing, the influence of cooling time on microstructure was analyzed and the optimum cooling speed has been found. All results concluded from the above studies are the basis of regulating controlled cooling process of 45 steel bars for cold drawing. Finally, the feasible production process of 45 steel bars for cold drawing on common carbon steel production line combined with the field condition was recommended.

  6. High surface area carbon and process for its production

    Energy Technology Data Exchange (ETDEWEB)

    Romanos, Jimmy; Burress, Jacob; Pfeifer, Peter; Rash, Tyler; Shah, Parag; Suppes, Galen

    2016-12-13

    Activated carbon materials and methods of producing and using activated carbon materials are provided. In particular, biomass-derived activated carbon materials and processes of producing the activated carbon materials with prespecified surface areas and pore size distributions are provided. Activated carbon materials with preselected high specific surface areas, porosities, sub-nm (<1 nm) pore volumes, and supra-nm (1-5 nm) pore volumes may be achieved by controlling the degree of carbon consumption and metallic potassium intercalation into the carbon lattice during the activation process.

  7. The production of carbon nanotubes from carbon dioxide: challenges and opportunities

    Institute of Scientific and Technical Information of China (English)

    Geoffrey S. Simate; Sunny E. Iyuke; Sehliselo Ndlovu; Clarence S. Yah; Lubinda F. Walubita

    2010-01-01

    Recent advances in the production of carbon nanotubes (CNTs) are reviewed with an emphasis on the use of carbon dioxide (CO2) as a sole source of carbon. Compared to the most widely used carbon precursors such as graphite, methane, acetylene, ethanol, ethylene,and coal-derived hydrocarbons, CO2 is competitively cheaper with relatively high carbon yield content. However, CNT synthesis from CO2 is a newly emerging technology, and hence it needs to be explored further. A theoretical and analytical comparison of the currently existing CNT-CO2 synthesis techniques is given including a review of some of the process parameters (i.e., temperature, pressure, catalyst, etc.) that affect the CO2 reduction rate. Such analysis indicates that there is still a fundamental need to further explore the following aspects so as to realize the full potential of CO2 based CNT technology: (1) the CNT-CO2 synthesis and formation mechanism,(2) catalytic effects of transitional metals and mechanisms, (3) utilization of metallocenes in the CNT-CO2 reactions, (4) applicability of ferrite-organometallic compounds in the CNT-CO2 synthesis reactions, and (5) the effects of process parameters such as temperature,etc.

  8. Carbide-Derived Carbon Films for Integrated Electrochemical Energy Storage

    Science.gov (United States)

    Heon, Min

    Active RFID tags, which can communicate over tens or even hundreds of meters, MEMS devices of several microns in size, which are designed for the medical and pharmaceutical purposes, and sensors working in wireless monitoring systems, require microscale power sources that are able to provide enough energy and to satisfy the peak power demands in those applications. Supercapacitors have not been an attractive candidate for micro-scale energy storage, since most nanoporous carbon electrode materials are not compatible with micro-fabrication techniques and have failed to meet the requirements of high volumetric energy density and small form factor for power supplies for integrated circuits or microelectronic devices or sensors. However, supercapacitors can provide high power density, because of fast charging/discharging, which can enable self-sustaining micro-modules when combined with energy-harvesting devices, such as solar cell, piezoelectric or thermoelectric micro-generators. In this study, carbide-derived carbon (CDC) films were synthesized via vacuum decomposition of carbide substrates and gas etching of sputtered carbide thin films. This approach allowed manufacturing of porous carbon films on SiC and silicon substrates. CDC films were studied for micro-supercapacitor electrodes, and showed good double layer capacitance. Since the gas etching technique is compatible with conventional micro-device fabrication processes, it can be implemented to manufacture integrated on-chip supercapacitors on silicon wafers.

  9. Carbon Footprint of Tree Nuts Based Consumer Products

    Directory of Open Access Journals (Sweden)

    Roberto Volpe

    2015-11-01

    Full Text Available This case study shows results of a calculation of carbon footprint (CFP resulting from the production of nuts added value products for a large consumer market. Nuts consumption is increasing in the world and so is the consumer awareness of the environmental impact of goods, hence the calculation of greenhouse gas (GHG emissions of food production is of growing importance for producers. Calculation of CO2eq emissions was performed for all stages of the production chain to the final retail point for flour, grains, paste, chocolate covered nuts and spreadable cream produced from almonds, pistachios and hazelnuts grown and transformed in Italy and for peanuts grown in Argentina and transformed in Italy. Data from literature was used to evaluate CFP of raw materials, emissions from transport and packing were calculated using existing models, while emissions deriving from transformation were calculated empirically by multiplying the power of production lines (electrical and/or thermal by its productivity. All values were reported in kg of CO2 equivalent for each kg of packed product (net weight. Resulting values ranged between 1.2 g of CO2/kg for a 100 g bag of almond to 4.8 g of CO2/kg for the 100 g bag of chocolate covered almond. The calculation procedure can be well used for similar cases of large consumer food productions.

  10. Composite electrodes of activated carbon derived from cassava peel and carbon nanotubes for supercapacitor applications

    Science.gov (United States)

    Taer, E.; Iwantono, Yulita, M.; Taslim, R.; Subagio, A.; Salomo, Deraman, M.

    2013-09-01

    In this paper, a composite electrode was prepared from a mixture of activated carbon derived from precarbonization of cassava peel (CP) and carbon nanotubes (CNTs). The activated carbon was produced by pyrolysis process using ZnCl2 as an activation agent. A N2 adsorption-desorption analysis for the sample indicated that the BET surface area of the activated carbon was 1336 m2 g-1. Difference percentage of CNTs of 0, 5, 10, 15 and 20% with 5% of PVDF binder were added into CP based activated carbon in order to fabricate the composite electrodes. The morphology and structure of the composite electrodes were investigated by scanning electron microscopy (SEM) and X-ray diffraction (XRD) techniques. The SEM image observed that the distribution of CNTs was homogeneous between carbon particles and the XRD pattern shown the amorphous structure of the sample. The electrodes were fabricated for supercapacitor cells with 316L stainless steel as current collector and 1 M sulfuric acid as electrolyte. An electrochemical characterization was performed by using an electrochemical impedance spectroscopy (EIS) method using a Solatron 1286 instrument and the addition of CNTs revealed to improve the resistant and capacitive properties of supercapacitor cell.

  11. Catalytic carbon membranes for hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Damle, A.S.; Gangwal, S.K.

    1992-01-01

    Commercial carbon composite microfiltration membranes may be modified for gas separation applications by providing a gas separation layer with pores in the 1- to 10-nm range. Several organic polymeric precursors and techniques for depositing a suitable layer were investigated in this project. The in situ polymerization technique was found to be the most promising, and pure component permeation tests with membrane samples prepared with this technique indicated Knudsen diffusion behavior. The gas separation factors obtained by mixed-gas permeation tests were found to depend strongly on gas temperature and pressure indicating significant viscous flow at high-pressure conditions. The modified membranes were used to carry out simultaneous water gas shift reaction and product hydrogen separation. These tests indicated increasing CO conversions with increasing hydrogen separation. A simple process model was developed to simulate a catalytic membrane reactor. A number of simulations were carried out to identify operating conditions leading to product hydrogen concentrations over 90 percent. (VC)

  12. First class feature abstractions for product derivation

    NARCIS (Netherlands)

    Jansen, A.G.J.; Smedinga, R.; Gurp, J. van; Bosch, J.

    2004-01-01

    The authors have observed that large software systems are increasingly defined in terms of the features they implement. Consequently, there is a need to express the commonalities and variability between products of a product family in terms of features. Unfortunately, technology support for the earl

  13. The Sensitivity of Simulated Ocean Biogeochemistry to Forcing Fields Derived from NCEP and MERRA Reanalysis Products

    Science.gov (United States)

    Gregg, Watson; Casey, Nancy

    2010-01-01

    Ocean biogeochemistry models are typically forced by atmospheric and oceanic data derived from reanalysis products. For the NASA Ocean Biogeochemistry Model (NOBM) such reanalysis forcing fields include: surface wind stress, sea surface temperature, ice distributions, shortwave radiation, surface wind speeds and surface atmospheric pressure. Additionally, proper computation of ocean irradiance requires reanalysis products of relative humidity and precipitable water (in addition to aerosol and cloud information which is derived from satellite data). The question posed here is, does the choice of reanalysis products make a difference in the representation of ocean biology and biogeochemistry? NOBM was forced by NCEP and MERRA reanalysis products for the period 2002-2009. We find that in 2009 global distributions and abundances of biological variables (total chlorophyll and nutrients) and carbon (dissolved inorganic and organic carbon and surface pCO2) were similar between the two different forcing fields. Global statistical comparisons with satellite and in situ data also showed negligible differences.

  14. MOLTEN CARBONATE FUEL CELL PRODUCT DESIGN IMPROVEMENT

    Energy Technology Data Exchange (ETDEWEB)

    H.C. Maru; M. Farooque

    2003-03-01

    The program efforts are focused on technology and system optimization for cost reduction, commercial design development, and prototype system field trials. The program is designed to advance the carbonate fuel cell technology from full-size field test to the commercial design. FuelCell Energy, Inc. (FCE) is in the later stage of the multiyear program for development and verification of carbonate fuel cell based power plants supported by DOE/NETL with additional funding from DOD/DARPA and the FuelCell Energy team. FCE has scaled up the technology to full-size and developed DFC{reg_sign} stack and balance-of-plant (BOP) equipment technology to meet product requirements, and acquired high rate manufacturing capabilities to reduce cost. FCE has designed submegawatt (DFC300A) and megawatt (DFC1500 and DFC3000) class fuel cell products for commercialization of its DFC{reg_sign} technology. A significant progress was made during the reporting period. The reforming unit design was optimized using a three-dimensional stack simulation model. Thermal and flow uniformities of the oxidant-In flow in the stack module were improved using computational fluid dynamics based flow simulation model. The manufacturing capacity was increased. The submegawatt stack module overall cost was reduced by {approx}30% on a per kW basis. An integrated deoxidizer-prereformer design was tested successfully at submegawatt scale using fuels simulating digester gas, coal bed methane gas and peak shave (natural) gas.

  15. An Update on Natural Products with Carbonic Anhydrase Inhibitory Activity.

    Science.gov (United States)

    Karioti, Anastasia; Carta, Fabrizio; Supuran, Claudiu T

    2016-01-01

    Carbonic anhydrases (CAs, EC 4.2.1.1) catalyze the fundamental reaction of CO2 hydration in all living organisms, being actively involved in the regulation of a plethora of patho/physiological processes. They represent a typical example of enzyme convergent evolution, as six genetically unrelated families of such enzymes were described so far. It is more than 70 years that synthetic compounds, mainly sulfonamides, have been used in clinical practice as diuretics and systemic acting antiglaucoma drugs. Recent studies using natural product libraries and isolated constituents from natural sources (such as fungi and plants) have disclosed novel chemotypes possessing carbonic anhydrase inhibition activities. These natural sources offer new opportunities in the search for new and more effective carbonic anhydrase inhibitors, and may serve as new leads for the design and development of future drugs. This review will discuss the most recent advances in the search of naturally occurring products and their synthetic derivatives that inhibit the CAs and their mechanisms of action at molecular level. Plant extracts are not considered in the present review.

  16. Characteristics of lignin precipitated with organic acids as a source for valorisation carbon products

    CSIR Research Space (South Africa)

    Namane, M

    2015-06-01

    Full Text Available biomass derived industries. It’s richness in carbon appropriates it for far more than the industry is currently utilizing it for, therefore production of high value products (and energy) from lignin could be a significant step towards appreciating...

  17. Metabolic engineering for microbial production of aromatic amino acids and derived compounds.

    Science.gov (United States)

    Bongaerts, J; Krämer, M; Müller, U; Raeven, L; Wubbolts, M

    2001-10-01

    Metabolic engineering to design and construct microorganisms suitable for the production of aromatic amino acids and derivatives thereof requires control of a complicated network of metabolic reactions that partly act in parallel and frequently are in rapid equilibrium. Engineering the regulatory circuits, the uptake of carbon, the glycolytic pathway, the pentose phosphate pathway, and the common aromatic amino acid pathway as well as amino acid importers and exporters that have all been targeted to effect higher productivities of these compounds are discussed.

  18. Improved production efficiency in cattle to reduce their carbon ...

    African Journals Online (AJOL)

    Improved production efficiency in cattle to reduce their carbon footprint for beef ... is the second most important greenhouse gas (GHG) after carbon dioxide (CO2). ... to climate change, since enteric fermentation is responsible for 28% of global ...

  19. Photobiological hydrogen production and carbon dioxide sequestration

    Science.gov (United States)

    Berberoglu, Halil

    Photobiological hydrogen production is an alternative to thermochemical and electrolytic technologies with the advantage of carbon dioxide sequestration. However, it suffers from low solar to hydrogen energy conversion efficiency due to limited light transfer, mass transfer, and nutrient medium composition. The present study aims at addressing these limitations and can be divided in three parts: (1) experimental measurements of the radiation characteristics of hydrogen producing and carbon dioxide consuming microorganisms, (2) solar radiation transfer modeling and simulation in photobioreactors, and (3) parametric experiments of photobiological hydrogen production and carbon dioxide sequestration. First, solar radiation transfer in photobioreactors containing microorganisms and bubbles was modeled using the radiative transport equation (RTE) and solved using the modified method of characteristics. The study concluded that Beer-Lambert's law gives inaccurate results and anisotropic scattering must be accounted for to predict the local irradiance inside a photobioreactor. The need for accurate measurement of the complete set of radiation characteristics of microorganisms was established. Then, experimental setup and analysis methods for measuring the complete set of radiation characteristics of microorganisms have been developed and successfully validated experimentally. A database of the radiation characteristics of representative microorganisms have been created including the cyanobacteria Anabaena variabilis, the purple non-sulfur bacteria Rhodobacter sphaeroides and the green algae Chlamydomonas reinhardtii along with its three genetically engineered strains. This enabled, for the first time, quantitative assessment of the effect of genetic engineering on the radiation characteristics of microorganisms. In addition, a parametric experimental study has been performed to model the growth, CO2 consumption, and H 2 production of Anabaena variabilis as functions of

  20. Method for production of carbon nanofiber mat or carbon paper

    Science.gov (United States)

    Naskar, Amit K.

    2015-08-04

    Method for the preparation of a non-woven mat or paper made of carbon fibers, the method comprising carbonizing a non-woven mat or paper preform (precursor) comprised of a plurality of bonded sulfonated polyolefin fibers to produce said non-woven mat or paper made of carbon fibers. The preforms and resulting non-woven mat or paper made of carbon fiber, as well as articles and devices containing them, and methods for their use, are also described.

  1. Method for production of carbon nanofiber mat or carbon paper

    Energy Technology Data Exchange (ETDEWEB)

    Naskar, Amit K.

    2015-08-04

    Method for the preparation of a non-woven mat or paper made of carbon fibers, the method comprising carbonizing a non-woven mat or paper preform (precursor) comprised of a plurality of bonded sulfonated polyolefin fibers to produce said non-woven mat or paper made of carbon fibers. The preforms and resulting non-woven mat or paper made of carbon fiber, as well as articles and devices containing them, and methods for their use, are also described.

  2. Asphalt-derived high surface area activated porous carbons for carbon dioxide capture.

    Science.gov (United States)

    Jalilov, Almaz S; Ruan, Gedeng; Hwang, Chih-Chau; Schipper, Desmond E; Tour, Josiah J; Li, Yilun; Fei, Huilong; Samuel, Errol L G; Tour, James M

    2015-01-21

    Research activity toward the development of new sorbents for carbon dioxide (CO2) capture have been increasing quickly. Despite the variety of existing materials with high surface areas and high CO2 uptake performances, the cost of the materials remains a dominant factor in slowing their industrial applications. Here we report preparation and CO2 uptake performance of microporous carbon materials synthesized from asphalt, a very inexpensive carbon source. Carbonization of asphalt with potassium hydroxide (KOH) at high temperatures (>600 °C) yields porous carbon materials (A-PC) with high surface areas of up to 2780 m(2) g(-1) and high CO2 uptake performance of 21 mmol g(-1) or 93 wt % at 30 bar and 25 °C. Furthermore, nitrogen doping and reduction with hydrogen yields active N-doped materials (A-NPC and A-rNPC) containing up to 9.3% nitrogen, making them nucleophilic porous carbons with further increase in the Brunauer-Emmett-Teller (BET) surface areas up to 2860 m(2) g(-1) for A-NPC and CO2 uptake to 26 mmol g(-1) or 114 wt % at 30 bar and 25 °C for A-rNPC. This is the highest reported CO2 uptake among the family of the activated porous carbonaceous materials. Thus, the porous carbon materials from asphalt have excellent properties for reversibly capturing CO2 at the well-head during the extraction of natural gas, a naturally occurring high pressure source of CO2. Through a pressure swing sorption process, when the asphalt-derived material is returned to 1 bar, the CO2 is released, thereby rendering a reversible capture medium that is highly efficient yet very inexpensive.

  3. Radiation Protection Using Single-Wall Carbon Nanotube Derivatives

    Science.gov (United States)

    Tour, James M.; Lu, Meng; Lucente-Schultz, Rebecca; Leonard, Ashley; Doyle, Condell Dewayne; Kosynkin, Dimitry V.; Price, Brandi Katherine

    2011-01-01

    This invention is a means of radiation protection, or cellular oxidative stress mitigation, via a sequence of quenching radical species using nano-engineered scaffolds, specifically single-wall carbon nanotubes (SWNTs) and their derivatives. The material can be used as a means of radiation protection by reducing the number of free radicals within, or nearby, organelles, cells, tissue, organs, or living organisms, thereby reducing the risk of damage to DNA and other cellular components (i.e., RNA, mitochondria, membranes, etc.) that can lead to chronic and/or acute pathologies, including but not limited to cancer, cardiovascular disease, immuno-suppression, and disorders of the central nervous system. In addition, this innovation could be used as a prophylactic or antidote for accidental radiation exposure, during high-altitude or space travel where exposure to radiation is anticipated, or to protect from exposure from deliberate terrorist or wartime use of radiation- containing weapons.

  4. Structural properties of carbon nanotubes derived from 13C NMR

    KAUST Repository

    Abou-Hamad, E.

    2011-10-10

    We present a detailed experimental and theoretical study on how structural properties of carbon nanotubes can be derived from 13C NMR investigations. Magic angle spinning solid state NMR experiments have been performed on single- and multiwalled carbon nanotubes with diameters in the range from 0.7 to 100 nm and with number of walls from 1 to 90. We provide models on how diameter and the number of nanotube walls influence NMR linewidth and line position. Both models are supported by theoretical calculations. Increasing the diameter D, from the smallest investigated nanotube, which in our study corresponds to the inner nanotube of a double-walled tube to the largest studied diameter, corresponding to large multiwalled nanotubes, leads to a 23.5 ppm diamagnetic shift of the isotropic NMR line position δ. We show that the isotropic line follows the relation δ = 18.3/D + 102.5 ppm, where D is the diameter of the tube and NMR line position δ is relative to tetramethylsilane. The relation asymptotically tends to approach the line position expected in graphene. A characteristic broadening of the line shape is observed with the increasing number of walls. This feature can be rationalized by an isotropic shift distribution originating from different diamagnetic shielding of the encapsulated nanotubes together with a heterogeneity of the samples. Based on our results, NMR is shown to be a nondestructive spectroscopic method that can be used as a complementary method to, for example, transmission electron microscopy to obtain structural information for carbon nanotubes, especially bulk samples.

  5. Photoresist Derived Carbon for Growth and Differentiation of Neuronal Cells

    Directory of Open Access Journals (Sweden)

    Tie Zou

    2007-08-01

    Full Text Available Apoptosis or necrosis of neurons in the central nervous system (CNS is thehallmark of many neurodegenerative diseases and Traumatic Brain Injury (TBI. Theinability to regenerate in CNS offers little hope for naturally repairing the damagedneurons. However, with the rapid development of new technologies, regenerative medicineoffers great promises to patients with these disorders. Among many events for furtheradvancement of regenerative medicine, extracellular matrix (ECM plays a critical role forcellular migration and differentiation. To develop a biocompatible and electricallyconductive substrate that can be potentially used to promote growth and regeneration ofneurons and to record intracellular and multisite signals from brain as a probe, a polymericprecursor – SPR 220.7 was fabricated by pyrolysis at temperatures higher than 700 oC.Human Neuroblastoma cells - SK-N-MC, SY5Y, mouse teratocarcinoma cells P-19 and ratPC12 cells were found to attach and proliferate on photoresist derived carbon film.Significantly, neuronal differentiation of PC12 cells induced by NGF was demonstrated byobserving cell shape and size, and measuring the length of neurites under SEM. Our resultsindicated that fabricated carbon could potentially be explored in regenerative medicine forpromoting neuronal growth and differentiation in CNS with neurodegeneration.

  6. Tire-derived carbon composite anodes for sodium-ion batteries

    Science.gov (United States)

    Li, Yunchao; Paranthaman, M. Parans; Akato, Kokouvi; Naskar, Amit K.; Levine, Alan M.; Lee, Richard J.; Kim, Sang-Ok; Zhang, Jinshui; Dai, Sheng; Manthiram, Arumugam

    2016-06-01

    Hard-carbon materials are considered as one of the most promising anodes for the emerging sodium-ion batteries. Here, we report a low-cost, scalable waste tire-derived carbon as an anode for sodium-ion batteries (SIBs). Tire-derived carbons obtained by pyrolyzing acid-treated tire at 1100 °C, 1400 °C and 1600 °C show capacities of 179, 185 and 203 mAh g-1, respectively, after 100 cycles at a current density of 20 mA g-1 in sodium-ion batteries with good electrochemical stability. The portion of the low-voltage plateau region in the charge-discharge curves increases as the heat-treatment temperature increases. The low-voltage plateau is beneficial to enhance the energy density of the full cell. This study provides a new pathway for inexpensive, environmentally benign and value-added waste tire-derived products towards large-scale energy storage applications.

  7. Carbon production in comet West 1975n

    Energy Technology Data Exchange (ETDEWEB)

    Feldman, P.D.; Brune, W.H.

    1976-10-01

    Ultraviolet spectra of comet West at moderate resolution in the wavelength range 1200--3200 A were obtained with scanning spectrophotometers aboard an Aerobee 200 rocket launched 1976 March 5.49. The principal emission features observed are lines of C, O, and C/sup +/ and bands of OH, CO, CO/sup +/, and CO/sub 2//sup +/. Estimates of the production rates of OH (and thus H/sub 2/O), C, CO, and O are 9.6, 3.1, 4.2, and 11 (all in units of 10/sup 29/ s/sup -1/), respectively. These rates are consistent with photodissociation of H/sub 2/O and CO from a source in which the CO is one-third as abundant as water. The C I (/sup 1/D--/sup 1/P/sup 0/) line at 1931 A indicates that a large fraction of the carbon is produced in the metastable /sup 1/D state. While CO/sub 2/ cannot be definitively excluded, the spectroscopic evidence favors CO as the major carbon constituent of the comet. (AIP)

  8. Spatial Estimation of Timber Production and Carbon in Harvested Wood Products Using Remote Sensing

    Science.gov (United States)

    Ling, P. Y.; Baiocchi, G.; Huang, C.

    2014-12-01

    Accurate estimation of the annual production of different kinds of timbers at different locations has many science and policy implications. For example, timber type information is needed for accurate estimation of the amount and life cycle of carbon stored in the harvested wood product (HWP) pool, and possible transport of carbon in wood products through trade. Several attempts have been made to estimate the carbon storage in the HWP, regardless which approach to use, information of the annual timber production are required. A statistic model has been developed to estimate the annual roundwood production at the county level. The inputs of the model includes forest disturbance area calculated using the VCT algorithm derived from the Landsat time series stack, a forest type map, and timber product output (TPO) data collected from wood processing mills by the USFS. The model is applied to North Carolina, a state with a large forestry sector and where harvesting and logging are a primary forest disturbance type. Ten-fold cross validation were done to the preliminary estimation for each type of HWP. The root mean square errors range between 13.6 and 31.5 for hardwood types; and between 1.3 and 55.6 for softwood types. The model is empirical as it depends on the local information on forest disturbance, forest types, and the amount of the roundwood output. However, the approach of the model can be used to apply to other areas with the local information provided. The result can be served as a starting point in spatial estimation of carbon storage in HWP.

  9. A GOES imager-derived microburst product

    CERN Document Server

    Pryor, Kenneth L

    2008-01-01

    A new multispectral Geostationary Operational Environmental Satellite (GOES) imager product has been developed to assess downburst potential over the western United States employing brightness temperature differences (BTD) between band 3 (upper level water vapor), band 4 (longwave infrared window), and split window band 5. Band 3 is intended to indicate mid to upper-level moisture content and advection while band 5 indicates low-level moisture content. Large BTDs between bands 3 and 5 imply a large relative humidity gradient between the mid-troposphere and the surface, a condition favorable for strong convective downdraft generation due to evaporational cooling of precipitation in the deep sub-cloud layer. In addition, small BTDs between bands 4 and 5 indicate a relatively dry surface layer with solar heating in progress. This paper will outline the development of the GOES-West imager microburst product and present case studies that feature example images, outline potential operational use and assess performa...

  10. Biomaterial-Derived Calcium Carbonate Nanoparticles for Enteric Drug Delivery

    Directory of Open Access Journals (Sweden)

    Diane Render

    2016-01-01

    Full Text Available Oral drug delivery systems provide the most convenient, noninvasive, readily acceptable alternatives to parenteral systems. In the current work, eggshell-derived calcium carbonate (CaCO3 nanoparticles were used to develop enteric drug delivery system in the form of tablets. CaCO3 nanoparticles were manufactured using top-down ball-milling method and characterized by X-ray diffractometry (XRD and transmission electron microscopy (TEM and loaded with 5-fluorouracil as a model drug. Tablets with varying CaCO3 core and binder compositions were fabricated and coated with Eudragit S100 or Eudragit L100. Suitability for enteric delivery of the tablets was tested by oral administration to rabbits and radiography. Radiograph images showed that the tablet remained in the stomach of the rabbit for up to 3 hours. Further modifications of these biomaterial-derived nanoparticles and the coatings will enable manufacturing of stable formulations for slow or controlled release of pharmaceuticals for enteric delivery.

  11. Solubility correlation of anthraquinone derivatives in supercritical carbon dioxide

    Science.gov (United States)

    Alwi, Ratna Surya; Tamura, Kazuhiro; Tanaka, Tatsuro; Shimizu, Keisuke

    2017-05-01

    In this work, solubilites of anthraquinone dyestuffs in supercritical carbon dioxide (sc-CO2) were correlated by semiempirical models, expressed in terms of CO2 density. All solubility data used, experimentally measured by us, and were described in details elsewhere; namely, 1,4-diaminoanthraquinone and 1,4-bis(ethylamino)anthraquinone [J. Chem. Thermo-dyn. 74, 119-125 (2014)]; 1-amino-4-hydroxyanthraquinone and 1-hydroxy-4-nitroanthraquionone [Dyes Pigm.113, 351-356 (2015)]; 1,4-diamino-2,3-dichloroanthraquinone and 1,8-dihydroxy-4,5-dinitroanthraquinone [J. Chem. Eng. Data 60, 3046-3052 (2015)], and 1-aminoanthraquinone and 1-nitroanthraquinone [J. Chem. Thermodyn. 104, 162-168 (2017)]. It was found that 1-aminoanthraquinone shows the highest solubility at 383,15 K and pressure of 25 MPa, and the solubility of anthraquinone derivatives in sc-CO2 changed by the substituent groups. Satisfactory agreement between the experimental data used and calculated solubilities of the anthraquinone derivatives was obtained.

  12. Low-cost formation of bulk and localized polymer-derived carbon nanodomains from polydimethylsiloxane

    Directory of Open Access Journals (Sweden)

    Juan Carlos Castro Alcántara

    2015-03-01

    Full Text Available We present two simple alternative methods to form polymer-derived carbon nanodomains in a controlled fashion and at low cost, using custom-made chemical vapour deposition and selective laser ablation with a commercial CD-DVD platform. Both processes presented shiny and dark residual materials after the polymer combustion and according to micro-Raman spectroscopy of the domains, graphitic nanocrystals and carbon nanotubes have successfully been produced by the combustion of polydimethylsiloxane layers. The fabrication processes and characterization of the byproduct materials are reported. We demonstrate that CVD led to bulk production of graphitic nanocrystals and single-walled carbon nanotubes while direct laser ablation may be employed for the formation of localized fluorescent nanodots. In the latter case, graphitic nanodomains and multi-wall carbon nanotubes are left inside microchannels and preliminary results seem to indicate that laser ablation could offer a tuning control of the nature and optical properties of the nanodomains that are left inside micropatterns with on-demand geometries. These low-cost methods look particularly promising for the formation of carbon nanoresidues with controlled properties and in applications where high integration is desired.

  13. Nanoporous carbon derived from agro-waste pineapple leaves for supercapacitor electrode

    Science.gov (United States)

    Sodtipinta, Jedsada; Amornsakchai, Taweechai; Pakawatpanurut, Pasit

    2017-09-01

    By using KOH as the chemical activating agent in the synthesis, the activated carbon derived from pineapple leaf fiber (PALF) was prepared. The structure, morphology, and the surface functional groups of the as-prepared activated carbon were investigated using x-ray diffraction, field emission scanning electron microscope equipped with energy dispersive x-ray spectroscopy, and x-ray photoelectron spectroscopy. The electrochemical behavior and performance of the as-synthesized activated carbon electrode were measured using the cyclic voltammetry and the electrochemical impedance spectroscopy in 1 M Na2SO4 electrolyte solution in three-electrode setup. The activated carbon electrode exhibited the specific capacitance of 131.3 F g-1 at a scan rate of 5 mV s-1 with excellent cycling stability. The capacitance retention after 1000 cycles was about 97% of the initial capacitance at a scan rate of 30 mV s-1. Given these good electrochemical properties along with the high abundance of PALF, this activated carbon electrode has the potential to be one of the materials for future large-scale production of the electrochemical capacitors. Invited talk at 5th Thailand International Nanotechnology Conference (Nano Thailand-2016), 27-29 November 2016, Nakhon Ratchasima, Thailand.

  14. Carbon footprints and carbon stocks reveal climate-friendly coffee production

    OpenAIRE

    Rikxoort, Henk; Schroth, Götz; Läderach, Peter; Rodríguez-Sánchez, Beatriz

    2014-01-01

    International audience; Coffee production is impacting the climate by emitting greenhouse gasses. Coffee production is also vulnerable to climate change. As a consequence, the coffee sector is interested in climate-friendly forms of coffee production, but there is no consensus of what exactly this implies. Therefore, we studied two aspects of the climate impact of coffee production: the standing carbon stocks in the production systems and the product carbon footprint, which measures the green...

  15. Hierarchical porous carbon aerogel derived from bagasse for high performance supercapacitor electrode

    Science.gov (United States)

    Hao, Pin; Zhao, Zhenhuan; Tian, Jian; Li, Haidong; Sang, Yuanhua; Yu, Guangwei; Cai, Huaqiang; Liu, Hong; Wong, C. P.; Umar, Ahmad

    2014-09-01

    Renewable, cost-effective and eco-friendly electrode materials have attracted much attention in the energy conversion and storage fields. Bagasse, the waste product from sugarcane that mainly contains cellulose derivatives, can be a promising candidate to manufacture supercapacitor electrode materials. This study demonstrates the fabrication and characterization of highly porous carbon aerogels by using bagasse as a raw material. Macro and mesoporous carbon was first prepared by carbonizing the freeze-dried bagasse aerogel; consequently, microporous structure was created on the walls of the mesoporous carbon by chemical activation. Interestingly, it was observed that the specific surface area, the pore size and distribution of the hierarchical porous carbon were affected by the activation temperature. In order to evaluate the ability of the hierarchical porous carbon towards the supercapacitor electrode performance, solid state symmetric supercapacitors were assembled, and a comparable high specific capacitance of 142.1 F g-1 at a discharge current density of 0.5 A g-1 was demonstrated. The fabricated solid state supercapacitor displayed excellent capacitance retention of 93.9% over 5000 cycles. The high energy storage ability of the hierarchical porous carbon was attributed to the specially designed pore structures, i.e., co-existence of the micropores and mesopores. This research has demonstrated that utilization of sustainable biopolymers as the raw materials for high performance supercapacitor electrode materials is an effective way to fabricate low-cost energy storage devices.Renewable, cost-effective and eco-friendly electrode materials have attracted much attention in the energy conversion and storage fields. Bagasse, the waste product from sugarcane that mainly contains cellulose derivatives, can be a promising candidate to manufacture supercapacitor electrode materials. This study demonstrates the fabrication and characterization of highly porous carbon

  16. Derivational Morphophonology: Exploring Errors in Third Graders' Productions

    Science.gov (United States)

    Jarmulowicz, Linda; Hay, Sarah E.

    2009-01-01

    Purpose: This study describes a post hoc analysis of segmental, stress, and syllabification errors in third graders' productions of derived English words with the stress-changing suffixes "-ity" and "-ic." We investigated whether (a) derived word frequency influences error patterns, (b) stress and syllabification errors always co-occur, and (c)…

  17. Utilization of spent activated carbon to enhance the combustion efficiency of organic sludge derived fuel.

    Science.gov (United States)

    Chen, Wei-Sheng; Lin, Chang-Wen; Chang, Fang-Chih; Lee, Wen-Jhy; Wu, Jhong-Lin

    2012-06-01

    This study examines the heating value and combustion efficiency of organic sludge derived fuel, spent activated carbon derived fuel, and derived fuel from a mixture of organic sludge and spent activated carbon. Spent activated carbon was sampled from an air pollution control device of an incinerator and characterized by XRD, XRF, TG/DTA, and SEM. The spent activated carbon was washed with deionized water and solvent (1N sulfuric acid) and then processed by the organic sludge derived fuel manufacturing process. After washing, the salt (chloride) and sulfide content could be reduced to 99% and 97%, respectively; in addition the carbon content and heating value were increased. Different ratios of spent activated carbon have been applied to the organic sludge derived fuel to reduce the NO(x) emission of the combustion.

  18. Tribology of carbide derived carbon films synthesized on tungsten carbide

    Science.gov (United States)

    Tlustochowicz, Marcin

    Tribologically advantageous films of carbide derived carbon (CDC) have been successfully synthesized on binderless tungsten carbide manufactured using the plasma pressure compaction (P2CRTM) technology. In order to produce the CDC films, tungsten carbide samples were reacted with chlorine containing gas mixtures at temperatures ranging from 800°C to 1000°C in a sealed tube furnace. Some of the treated samples were later dechlorinated by an 800°C hydrogenation treatment. Detailed mechanical and structural characterizations of the CDC films and sliding contact surfaces were done using a series of analytical techniques and their results were correlated with the friction and wear behavior of the CDC films in various tribosystems, including CDC-steel, CDC-WC, CDC-Si3N4 and CDC-CDC. Optimum synthesis and treatment conditions were determined for use in two specific environments: moderately humid air and dry nitrogen. It was found that CDC films first synthesized at 1000°C and then hydrogen post-treated at 800°C performed best in air with friction coefficient values as low as 0.11. However, for dry nitrogen applications, no dechlorination was necessary and both hydrogenated and as-synthesized CDC films exhibited friction coefficients of approximately 0.03. A model of tribological behavior of CDC has been proposed that takes into consideration the tribo-oxidation of counterface material, the capillary forces from adsorbed water vapor, the carbon-based tribofilm formation, and the lubrication effect of both chlorine and hydrogen.

  19. RESEARCH OF LIMY AND CARBONATE SYSTEM OF SUGAR PRODUCTION

    Directory of Open Access Journals (Sweden)

    N. G. Kulneva

    2012-01-01

    Full Text Available Influence of рН and temperature on activity of suspension of lime and carbonate in sugar production is investigated. Possibility of decrease in a consumption of reagents on purification of production sugar solutions is established.

  20. HyFlux - Part II: Subsurface sequestration of methane-derived carbon in gas-hydrate- bearing marine sediments

    Science.gov (United States)

    Naehr, T. H.; Asper, V. L.; Garcia, O.; Kastner, M.; Leifer, I.; MacDonald, I. R.; Solomon, E. A.; Yvon-Lewis, S.; Zimmer, B.

    2008-12-01

    The recently funded DOE/NETL study "HyFlux: Remote sensing and sea-truth measurements of methane flux to the atmosphere" (see MacDonald et al.: HyFlux - Part I) will combine sea surface, water column and shallow subsurface observations to improve our estimates of methane flux from submarine seeps and associated gas hydrate deposits to the water column and atmosphere along the Gulf of Mexico continental margin and other selected areas world-wide. As methane-rich fluids rise towards the sediment-water interface, they will interact with sulfate-rich pore fluids derived from overlying bottom water, which results in the formation of an important biogeochemical redox boundary, the so-called sulfate-methane interface, or SMI. Both methane and sulfate are consumed within the SMI and dissolved inorganic carbon, mostly bicarbonate (HCO3-) and hydrogen sulfide are produced, stimulating authigenic carbonate precipitation at and immediately below the SMI. Accordingly, the formation of authigenic carbonates in methane- and gas-hydrate-rich sediments will sequester a portion of the methane-derived carbon. To date, however, little is known about the quantitative aspects of these reactions. Rates of DIC production are not well constrained, but recent biogeochemical models indicate that CaCO3 precipitation rates may be as high as 120 μmol cm-2a-1. Therefore, AOM-driven carbonate precipitation must be considered when assessing the impact of gas-hydrate-derived methane on the global carbon cycle. As part of HyFlux, we will conduct pore water analyses (DOC, DIC, CH4, δ13CDIC, δ13CDOC, δ13CCH4, δ18O, and δD isotope ratios) to evaluate the importance of authigenic carbonate precipitation as a sequestration mechanism for methane- derived carbon. In addition, sediment and seafloor carbonate samples will be analyzed for bulk sedimentary carbonate (δ13C and δ18O) and bulk sedimentary organic matter (δ13C and δ15N), as well as sulfur, bulk mineralogy, texture and morphological

  1. Carbon Quantum Dots and Their Derivative 3D Porous Carbon Frameworks for Sodium-Ion Batteries with Ultralong Cycle Life.

    Science.gov (United States)

    Hou, Hongshuai; Banks, Craig E; Jing, Mingjun; Zhang, Yan; Ji, Xiaobo

    2015-12-16

    A new methodology for the synthesis of carbon quantum dots (CQDs) for large production is proposed. The as-obtained CQDs can be transformed into 3D porous carbon frameworks exhibiting superb sodium storage properties with ultralong cycle life and ultrahigh rate capability, comparable to state-of-the-art carbon anode materials for sodium-ion batteries.

  2. Product carbon footprints and their uncertainties in comparative decision contexts.

    Directory of Open Access Journals (Sweden)

    Patrik J G Henriksson

    Full Text Available In response to growing awareness of climate change, requests to establish product carbon footprints have been increasing. Product carbon footprints are life cycle assessments restricted to just one impact category, global warming. Product carbon footprint studies generate life cycle inventory results, listing the environmental emissions of greenhouse gases from a product's lifecycle, and characterize these by their global warming potentials, producing product carbon footprints that are commonly communicated as point values. In the present research we show that the uncertainties surrounding these point values necessitate more sophisticated ways of communicating product carbon footprints, using different sizes of catfish (Pangasius spp. farms in Vietnam as a case study. As most product carbon footprint studies only have a comparative meaning, we used dependent sampling to produce relative results in order to increase the power for identifying environmentally superior products. We therefore argue that product carbon footprints, supported by quantitative uncertainty estimates, should be used to test hypotheses, rather than to provide point value estimates or plain confidence intervals of products' environmental performance.

  3. Product carbon footprints and their uncertainties in comparative decision contexts.

    Science.gov (United States)

    Henriksson, Patrik J G; Heijungs, Reinout; Dao, Hai M; Phan, Lam T; de Snoo, Geert R; Guinée, Jeroen B

    2015-01-01

    In response to growing awareness of climate change, requests to establish product carbon footprints have been increasing. Product carbon footprints are life cycle assessments restricted to just one impact category, global warming. Product carbon footprint studies generate life cycle inventory results, listing the environmental emissions of greenhouse gases from a product's lifecycle, and characterize these by their global warming potentials, producing product carbon footprints that are commonly communicated as point values. In the present research we show that the uncertainties surrounding these point values necessitate more sophisticated ways of communicating product carbon footprints, using different sizes of catfish (Pangasius spp.) farms in Vietnam as a case study. As most product carbon footprint studies only have a comparative meaning, we used dependent sampling to produce relative results in order to increase the power for identifying environmentally superior products. We therefore argue that product carbon footprints, supported by quantitative uncertainty estimates, should be used to test hypotheses, rather than to provide point value estimates or plain confidence intervals of products' environmental performance.

  4. Intensification to reduce the carbon footprint of smallholder milk production

    NARCIS (Netherlands)

    Udo, Henk; Weiler, Viola; Modupeore, Ogun; Viets, Theo; Oosting, Simon

    2016-01-01

    Will the intensification of cattle-keeping lower the carbon footprint of milk production in resource-poor environments? The authors included the multiple functions of cattle in carbon footprint estimates of milk production in farming systems with different degrees of intensification in Kenya. The

  5. Carbon dioxide free production of hydrogen

    Science.gov (United States)

    Stoppel, L.; Fehling, T.; Geißler, T.; Baake, E.; Wetzel, T.

    2017-07-01

    The present report summarizes the theoretical modelling and experimental investigation results of the study on the direct thermal methane cracking. This work is a part of the LIMTECH-Project (Liquid Metal Technologies) funded of Helmholtz Alliance and was carried out from 2012 to 2017. The Project-part B5 “CO2-free production of hydrogen” focused on experimental testing and particularly on modelling the novel methane cracking method based on liquid metal technology. The new method uses a bubble column reactor, filled with liquid metal, where both the chemical reaction of methane decomposition and the separation of gas fraction from solid carbon occur. Such reactor system was designed and built in the liquid metal laboratory (KALLA) at KIT. The influences of liquid metal temperature distribution in reactor and feed gas flow rate on methane conversion ratio were investigated experimentally at the temperature range from 930°C to 1175 °C and methane flow rate at the reactor inlet from 50 to 200 mLn/min. In parallel with experimental investigations, a thermochemical model, giving insight in the influence of the above mentioned parameters has been developed at KIT and a CFD model was developed at LUH to get an overview about the bubble dynamics in the reaction system. The influence of different bubble sizes and shapes, multi-inlet coalescence effects as well as the potential of electromagnetic stirring have been investigated.

  6. Beneficial Use of Carbon Dioxide in Precast Concrete Production

    Energy Technology Data Exchange (ETDEWEB)

    Shao, Yixin [McGill Univ., Montreal, QC (Canada)

    2014-06-26

    The feasibility of using carbon dioxide as feedstock in precast concrete production is studied. Carbon dioxide reacts with calcium compounds in concrete, producing solid calcium carbonates in binding matrix. Two typical precast products are examined for their capacity to store carbon dioxide during the production. They are concrete blocks and fiber-cement panels. The two products are currently mass produced and cured by steam. Carbon dioxide can be used to replace steam in curing process to accelerate early strength, improve the long-term durability and reduce energy and emission. For a reaction within a 24-hour process window, the theoretical maximum possible carbon uptake in concrete is found to be 29% based on cement mass in the product. To reach the maximum uptake, a special process is developed to promote the reaction efficiency to 60-80% in 4-hour carbon dioxide curing and improve the resistance to freeze-thaw cycling and sulfate ion attack. The process is also optimized to meet the project target of $10/tCO2 in carbon utilization. By the use of self-concentrating absorption technology, high purity CO2 can be produced at a price below $40/t. With low cost CO2 capture and utilization technologies, it is feasible to establish a network for carbon capture and utilization at the vicinity of carbon sources. If all block produces and panel producers in United States could adopt carbon dioxide process in their production in place of steam, carbon utilization in these two markets alone could consume more than 2 Mt CO2/year. This capture and utilization process can be extended to more precast products and will continue for years to come.

  7. Utilization of porous carbons derived from coconut shell and wood in natural rubber

    Science.gov (United States)

    The porous carbons derived from cellulose are renewable and environmentally friendly. Coconut shell and wood derived porous carbons were characterized with elemental analysis, ash content, x-ray diffraction, infrared absorbance, particle size, surface area, and pore volume. The results were compared...

  8. Metal Ions Extraction with Glucose Derivatives as Chelating Reagents in Supercritical Carbon Dioxide

    Institute of Scientific and Technical Information of China (English)

    Guo Chen YANG; Hai Jian YANG

    2006-01-01

    A series of glucose derivatives have been used as chelating reagents to extract metal ions in supercritical carbon dioxide. With perfluoro-1-octanesulfonic acid tetraethylammonium salt as additive, glucose derivatives were selective for Sr2+ and Pb2+ extraction in supercritical carbon dioxide.

  9. PRODUCTION AND SCREENING OF CARBON PRODUCTS PRECURSORS FROM COAL

    Energy Technology Data Exchange (ETDEWEB)

    Caulton L. Irwin

    2001-05-31

    The authors have examined effects of blending a raw coal extract (EXT) with an extracted coal-tar pitch (ECTP). Previous reports were concerned with the addition of 15 wt% EXT, or less, on the physical characteristics of the blend and on the development of optical texture following carbonization. Two additional blends of ECTP and EXT were prepared at the 30 and 50 wt% EXT content using a procedure already described. The characteristics of the blends are presented. The density for these blended materials is not much different than the density for the blends reported earlier. The softening point temperature for the 30 wt% EXT increased to over 200 C while the softening point temperature for the 50 wt% EXT blend was too high to be determined by the Mettler method. Coke yields approximately follow the law of mixtures. The optical texture of the green cokes for the 30 and 50 wt% EXT blends is shown. Though the optical texture of the green cokes was not significantly affected where the level of EXT is 15 wt% or less, larger proportions of EXT exert a marked reduction in anisotropy. The co-processing of coal with petroleum residues or other heavy hydrocarbons at elevated temperature and pressure has received considerable attention in the research community as a means to upgrade simultaneously coal and byproducts. Heavy hydrocarbons can function as sources of hydrogen, as well as performing as a medium for dissolution and dispersion of coal fragments. However, the focus of much of the prior research has been on developing fuels, distillable liquids, or synthetic crudes. Comparatively little effort has been deliberately directed toward the production of heavier, non-distillable materials which could perform as binder and extender pitches, impregnants, or feedstocks for cokes and other carbons.

  10. Production of activated carbons from pyrolysis of waste tires impregnated with potassium hydroxide.

    Science.gov (United States)

    Teng, H; Lin, Y C; Hsu, L Y

    2000-11-01

    Activated carbons were produced from waste tires using a chemical activation method. The carbon production process consisted of potassium hydroxide (KOH) impregnation followed by pyrolysis in N2 at 600-900 degrees C for 0-2 hr. The activation method can produce carbons with a surface area (SA) and total pore volume as high as 470 m2/g and 0.57 cm3/g, respectively. The influence of different parameters during chemical activation, such as pyrolysis temperature, holding time, and KOH/tire ratio, on the carbon yield and the surface characteristics was explored, and the optimum preparation conditions were recommended. The pore volume of the resulting carbons generally increases with the extent of carbon gasified by KOH and its derivatives, whereas the SA increases with degree of gasification to reach a maximum value, and then decreases upon further gasification.

  11. Engineered Nanoscale Materials and Derivative Products: Regulatory Challenges

    Science.gov (United States)

    2008-01-22

    of gold can be red , yellow, or blue, depending on size and shape. Even when the properties of nanoscale and bulk materials are similar, they may be...incorporating nanoengineered materials being marketed. Currently available products that incorporate nanomaterials include certain cosmetics ...carbon, silicon, or another substance); metal oxides; quantum dots; and naturally occurring clays .14 The physical, electrical, magnetic, and other

  12. Detailed Carbon Isotopic Characterization of Aerosol-Derived Organic Carbon Deposited to two Temperate Watersheds

    Science.gov (United States)

    Wozniak, A. S.; Bauer, J. E.; Keesee, E. E.; McNichol, A. P.; Xu, L.; Dickhut, R. M.

    2008-12-01

    Atmospheric deposition of carbonaceous aerosols can be a quantitatively significant flux in the carbon budgets of temperate watersheds. Characterizing the sources and fates of this material is therefore critical for assessing its role in carbon and organic matter cycling in these systems. Aerosol samples were collected in the Hudson and York River watersheds throughout 2006-2007 and analyzed for quantities and isotopic signatures (δ13C, Δ14C) of total and water-soluble organic carbon (TOC, WSOC, respectively). On average ~2.4 and 2.1 mg m-2 d-1 of aerosol TOC were deposited to the Hudson and York River watersheds, respectively, and nearly half of this material was water-soluble. δ13C analyses indicated that both the TOC and the WSOC were primarily terrestrial in nature. TOC Δ14C signatures covered a broad range for both watersheds, with calculated contributions from fossil sources (e.g., anthropogenic combustion of petroleum, coal, etc.) ranging from 0% for samples collected during the summer of 2007 to approximately 50% for samples collected in the winter of 2007. Aerosol-derived WSOC Δ14C values were less variable and were nearly always enriched in 14C with respect to the corresponding TOC, indicating that contemporary aerosol material tends to partition into the aqueous phase, while fossil-derived aerosol OC is more likely to remain insoluble. However, WSOC still often showed considerable contributions from fossil OC (up to 20%). Thus, some portion of the anthropogenic fossil-derived aerosol OC is relatively soluble and may be transported hydrologically through watersheds and aquatic systems. A subset of aerosol samples from each watershed was selected for more thorough isotopic analysis of operationally-defined components of the carbonaceous material. Isotopic signatures were obtained for TOC, WSOC, total solvent-extract, and the aliphatic, aromatic, and polar components. Isotopic information on these fractions allows us to determine which components

  13. CO2 Adsorption by para-Nitroaniline Sulfuric Acid-Derived Porous Carbon Foam

    Directory of Open Access Journals (Sweden)

    Enrico Andreoli

    2016-12-01

    Full Text Available The expansion product from the sulfuric acid dehydration of para-nitroaniline has been characterized and studied for CO2 adsorption. The X-ray photoelectron spectroscopy (XPS characterization of the foam indicates that both N and S contents (15 and 9 wt%, respectively are comparable to those separately reported for nitrogen- or sulfur-containing porous carbon materials. The analysis of the XPS signals of C1s, O1s, N1s, and S2p reveals the presence of a large number of functional groups and chemical species. The CO2 adsorption capacity of the foam is 7.9 wt% (1.79 mmol/g at 24.5 °C and 1 atm in 30 min, while the integral molar heat of adsorption is 113.6 kJ/mol, indicative of the fact that chemical reactions characteristic of amine sorbents are observed for this type of carbon foam. The kinetics of adsorption is of pseudo-first-order with an extrapolated activation energy of 18.3 kJ/mol comparable to that of amine-modified nanocarbons. The richness in functionalities of H2SO4-expanded foams represents a valuable and further pursuable approach to porous carbons alternative to KOH-derived activated carbons.

  14. A REVIEW ON REGULATORY ASPECTS OF BIOTECHNOLOGY DERIVED PRODUCT

    OpenAIRE

    Modh Nehal M; Patel P.M; Patel N. M.

    2011-01-01

    Biotechnology-derived pharmaceuticals are a well established and growing part of the therapeutic armamentarium. Beginning with recombinant versions of products such as insulin that were previously manufactured by extraction from animal and human sources, licensed biotechnology drugs and those in development now span an ever-increasing range of product types and therapeutic categories. As a consequence of this diversity, both general and product class-specific scientific guidelines have been d...

  15. DEVELOPMENT OF ACTIVATED CARBONS FROM COAL COMBUSTION BY-PRODUCTS

    Energy Technology Data Exchange (ETDEWEB)

    Harold H. Schobert; M. Mercedes Maroto-Valer; Zhe Lu

    2003-09-30

    The increasing role of coal as a source of energy in the 21st century will demand environmental and cost-effective strategies for the use of coal combustion by-products (CCBPs), mainly unburned carbon in fly ash. Unburned carbon is nowadays regarded as a waste product and its fate is mainly disposal, due to the present lack of efficient routes for its utilization. However, unburned carbon is a potential precursor for the production of adsorbent carbons, since it has gone through a devolatilization process while in the combustor, and therefore, only requires to be activated. Accordingly, the principal objective of this work was to characterize and utilize the unburned carbon in fly ash for the production of activated carbons. The unburned carbon samples were collected from different combustion systems, including pulverized utility boilers, a utility cyclone, a stoker, and a fluidized bed combustor. LOI (loss-on-ignition), proximate, ultimate, and petrographic analyses were conducted, and the surface areas of the samples were characterized by N2 adsorption isotherms at 77K. The LOIs of the unburned carbon samples varied between 21.79-84.52%. The proximate analyses showed that all the samples had very low moisture contents (0.17 to 3.39 wt %), while the volatile matter contents varied between 0.45 to 24.82 wt%. The elemental analyses show that all the unburned carbon samples consist mainly of carbon with very little hydrogen, nitrogen, sulfur and oxygen In addition, the potential use of unburned carbon as precursor for activated carbon (AC) was investigated. Activated carbons with specific surface area up to 1075m{sup 2}/g were produced from the unburned carbon. The porosity of the resultant activated carbons was related to the properties of the unburned carbon feedstock and the activation conditions used. It was found that not all the unburned carbon samples are equally suited for activation, and furthermore, their potential as activated carbons precursors could be

  16. Adsorption of ultra-low concentration malodorous substances using coal-derived granular activated carbons

    Energy Technology Data Exchange (ETDEWEB)

    Urano, K.; Maeda, T.; Yamashita, H.; Hagio, S.; Arioka, A.

    1986-01-01

    The experimental adsorption is reported of diosmin and 2-methylisoborneol using two types of coal-derived granular activated carbon and one derived from coconut husk. It was discovered that carbons with more pores below 15 angstroms in size gave a higher equilibrium adsorption of malodorous substances at mg/l concentrations. It was also found that the coal-derived materials, which contained more pores larger than 15 angstroms, gave faster adsorption. Given that the coal-derived carbons have a longer service life, it is concluded that they are suitable for use in full-scale adsorption plant where contact times are short. 3 references, 5 figures, 5 tables.

  17. Plant-Derived Natural Products for Parkinson's Disease Therapy.

    Science.gov (United States)

    Sengupta, T; Vinayagam, J; Singh, R; Jaisankar, P; Mohanakumar, K P

    2016-01-01

    Plant-derived natural products have made their own niche in the treatment of neurological diseases since time immemorial. Parkinson's disease (PD), the second most prevalent neurodegenerative disorder, has no cure and the treatment available currently is symptomatic. This chapter thoughtfully and objectively assesses the scientific basis that supports the increasing use of these plant-derived natural products for the treatment of this chronic and progressive disorder. Proper considerations are made on the chemical nature, sources, preclinical tests and their validity, and mechanisms of behavioural or biochemical recovery observed following treatment with various plants derived natural products relevant to PD therapy. The scientific basis underlying the neuroprotective effect of 6 Ayurvedic herbs/formulations, 12 Chinese medicinal herbs/formulations, 33 other plants, and 5 plant-derived molecules have been judiciously examined emphasizing behavioral, cellular, or biochemical aspects of neuroprotection observed in the cellular or animal models of the disease. The molecular mechanisms triggered by these natural products to promote cell survivability and to reduce the risk of cellular degeneration have also been brought to light in this study. The study helped to reveal certain limitations in the scenario: lack of preclinical studies in all cases barring two; heavy dependence on in vitro test systems; singular animal or cellular model to establish any therapeutic potential of drugs. This strongly warrants further studies so as to reproduce and confirm these reported effects. However, the current literature offers scientific credence to traditionally used plant-derived natural products for the treatment of PD.

  18. Modernized Techniques for Dealing with Quality Data and Derived Products

    Science.gov (United States)

    Neiswender, C.; Miller, S. P.; Clark, D.

    2008-12-01

    "I just want a picture of the ocean floor in this area" is expressed all too often by researchers, educators, and students in the marine geosciences. As more sophisticated systems are developed to handle data collection and processing, the demand for quality data, and standardized products continues to grow. Data management is an invisible bridge between science and researchers/educators. The SIOExplorer digital library presents more than 50 years of ocean-going research. Prior to publication, all data is checked for quality using standardized criterion developed for each data stream. Despite the evolution of data formats and processing systems, SIOExplorer continues to present derived products in well- established formats. Standardized products are published for each cruise, and include a cruise report, MGD77 merged data, multi-beam flipbook, and underway profiles. Creation of these products is made possible by processing scripts, which continue to change with ever-evolving data formats. We continue to explore the potential of database-enabled creation of standardized products, such as the metadata-rich MGD77 header file. Database-enabled, automated processing produces standards-compliant metadata for each data and derived product. Metadata facilitates discovery and interpretation of published products. This descriptive information is stored both in an ASCII file, and a searchable digital library database. SIOExplorer's underlying technology allows focused search and retrieval of data and products. For example, users can initiate a search of only multi-beam data, which includes data-specific parameters. This customization is made possible with a synthesis of database, XML, and PHP technology. The combination of standardized products and digital library technology puts quality data and derived products in the hands of scientists. Interoperable systems enable distribution these published resources using technology such as web services. By developing modernized

  19. Factors influencing high voltage performance of coconut char derived carbon based electrical double layer capacitor made using acetonitrile and propylene carbonate based electrolytes

    Science.gov (United States)

    Hu, Changzheng; Qu, Weiguo; Rajagopalan, Ramakrishnan; Randall, Clive

    2014-12-01

    Symmetric EDLCs made using high purity carbon electrodes derived from coconut char were tested using 1 M Tetraethylammonium hexafluorophosphate dissolved in two different solvents namely acetonitrile and propylene carbonate. The cell voltage of the capacitor made using propylene carbonate can be extended to 3.5 V and it exhibited good cycling and thermal stability upto 70 °C while the voltage was limited to below 3.0 V in acetonitrile. XPS analysis of the positive and negative electrodes of EDLCs post cycling showed that the primary degradation products were related to ring opening reactions in propylene carbonate based electrolytes while water played a key role in degradation of acetonitrile based EDLCs.

  20. MOLTEN CARBONATE FUEL CELL PRODUCT DESIGN IMPROVEMENT

    Energy Technology Data Exchange (ETDEWEB)

    H.C. Maru; M. Farooque

    2005-03-01

    The program was designed to advance the carbonate fuel cell technology from full-size proof-of-concept field test to the commercial design. DOE has been funding Direct FuelCell{reg_sign} (DFC{reg_sign}) development at FuelCell Energy, Inc. (FCE, formerly Energy Research Corporation) from an early state of development for stationary power plant applications. The current program efforts were focused on technology and system development, and cost reduction, leading to commercial design development and prototype system field trials. FCE, in Danbury, CT, is a world-recognized leader for the development and commercialization of high efficiency fuel cells that can generate clean electricity at power stations, or at distributed locations near the customers such as hospitals, schools, universities, hotels and other commercial and industrial applications. FCE has designed three different fuel cell power plant models (DFC300A, DFC1500 and DFC3000). FCE's power plants are based on its patented DFC{reg_sign} technology, where a hydrocarbon fuel is directly fed to the fuel cell and hydrogen is generated internally. These power plants offer significant advantages compared to the existing power generation technologies--higher fuel efficiency, significantly lower emissions, quieter operation, flexible siting and permitting requirements, scalability and potentially lower operating costs. Also, the exhaust heat by-product can be used for cogeneration applications such as high-pressure steam, district heating and air conditioning. Several sub-MW power plants based on the DFC design are currently operating in Europe, Japan and the US. Several one-megawatt power plant design was verified by operation on natural gas at FCE. This plant is currently installed at a customer site in King County, WA under another US government program and is currently in operation. Because hydrogen is generated directly within the fuel cell module from readily available fuels such as natural gas and

  1. Forest and wood products role in carbon sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Sampson, R.N.

    1997-12-31

    An evaluation of the use of U.S. forests and forest products for carbon emission mitigation is presented. The current role of forests in carbon sequestration is described in terms of regional differences and forest management techniques. The potential for increasing carbon storage by converting marginal crop and pasture land, increasing timberland growth, reducing wildfire losses, and changing timber harvest methods is examined. Post-harvest carbon flows, environmental impacts of wood products, biomass energy crops, and increased use of energy-conserving trees are reviewed for their potential in reducing or offsetting carbon emissions. It is estimated that these techniques could offset 20 to 40 percent of the carbon emitted annually in the U.S. 39 refs., 5 tabs.

  2. The Natural Terrestrial Carbon Sequestration Potential of Rocky Mountain Soils Derived From Volcanic Bedrock

    Science.gov (United States)

    Yager, D. B.; Burchell, A.; Johnson, R. H.

    2008-12-01

    The possible economic and environmental ramifications of climate change have stimulated a range of atmospheric carbon mitigation actions, as well as, studies to understand and quantify potential carbon sinks. However, current carbon management strategies for reducing atmospheric emissions underestimate a critical component. Soils represent between 18 - 30% of the terrestrial carbon sink needed to prevent atmospheric doubling of CO2 by 2050 and a crucial element in mitigating climate change, natural terrestrial sequestration (NTS), is required. NTS includes all naturally occurring, cumulative, biologic and geologic processes that either remove CO2 from the atmosphere or prevent net CO2 emissions through photosynthesis and microbial fixation, soil formation, weathering and adsorption or chemical reactions involving principally alumino- ferromagnesium minerals, volcanic glass and clays. Additionally, NTS supports ecosystem services by improving soil productivity, moisture retention, water purification and reducing erosion. Thus, 'global climate triage' must include the protection of high NTS areas, purposeful enhancement of NTS processes and reclamation of disturbed and mined lands. To better understand NTS, we analyzed soil-cores from Colorado, Rocky Mountain Cordillera sites. North-facing, high-plains to alpine sites in non-wetland environments were selected to represent temperate soils that may be less susceptible to carbon pool declines due to global warming than soils in warmer regions. Undisturbed soils sampled have 2 to 6 times greater total organic soil carbon (TOSC) than global TOSC averages (4 - 5 Wt. %). Forest soils derived from weathering of intermediate to mafic volcanic bedrock have the highest C (34.15 Wt. %), C:N (43) and arylsulfatase (ave. 278, high 461 μg p-nitrophenol/g/h). Intermediate TOSC was identified in soils derived from Cretaceous shale (7.2 Wt. %) and Precambrian, felsic gneiss (6.2 Wt. %). Unreclaimed mine-sites have the lowest C (0

  3. MOLTEN CARBONATE FUEL CELL PRODUCT DESIGN IMPROVEMENT

    Energy Technology Data Exchange (ETDEWEB)

    H.C. Maru; M. Farooque

    2002-02-01

    The carbonate fuel cell promises highly efficient, cost-effective and environmentally superior power generation from pipeline natural gas, coal gas, biogas, and other gaseous and liquid fuels. FuelCell Energy, Inc. has been engaged in the development of this unique technology, focusing on the development of the Direct Fuel Cell (DFC{reg_sign}). The DFC{reg_sign} design incorporates the unique internal reforming feature which allows utilization of a hydrocarbon fuel directly in the fuel cell without requiring any external reforming reactor and associated heat exchange equipment. This approach upgrades waste heat to chemical energy and thereby contributes to a higher overall conversion efficiency of fuel energy to electricity with low levels of environmental emissions. Among the internal reforming options, FuelCell Energy has selected the Indirect Internal Reforming (IIR)--Direct Internal Reforming (DIR) combination as its baseline design. The IIR-DIR combination allows reforming control (and thus cooling) over the entire cell area. This results in uniform cell temperature. In the IIR-DIR stack, a reforming unit (RU) is placed in between a group of fuel cells. The hydrocarbon fuel is first fed into the RU where it is reformed partially to hydrogen and carbon monoxide fuel using heat produced by the fuel cell electrochemical reactions. The reformed gases are then fed to the DIR chamber, where the residual fuel is reformed simultaneously with the electrochemical fuel cell reactions. FuelCell Energy plans to offer commercial DFC power plants in various sizes, focusing on the subMW as well as the MW-scale units. The plan is to offer standardized, packaged DFC power plants operating on natural gas or other hydrocarbon-containing fuels for commercial sale. The power plant design will include a diesel fuel processing option to allow dual fuel applications. These power plants, which can be shop-fabricated and sited near the user, are ideally suited for distributed power

  4. Solubility Products of M(II) - Carbonates

    Energy Technology Data Exchange (ETDEWEB)

    Grauer, Rolf; Berner, Urs [ed.

    1999-01-01

    Many solubility data for M(II) carbonates commonly compiled in tables are contradictory and sometimes obviously wrong. The quality of such data has been evaluated based on the original publications and reliable solubility constants have been selected for the carbonates of Mn, Fe, Co, Ni, Cu, Zn, Cd and Pb with the help of cross-comparisons. (author) translated from a PSI internal report written in German in 1994 (TM-44-94-05). 5 figs., 1 tab., 68 refs.

  5. Synthesis and Evaluation of New Phthalazine Urea and Thiourea Derivatives as Carbonic Anhydrase Inhibitors

    Directory of Open Access Journals (Sweden)

    Nurcan Berber

    2013-01-01

    Full Text Available A new series of phthalazine substituted urea and thiourea derivatives were synthesized, and their inhibitory effects on the activity of purified human carbonic anhydrases (hCAs I and II were evaluated. 2H-Indazolo[2,1-b]phthalazine-trione derivative (1 was prepared with 4-nitrobenzaldehyde, dimedone, and phthalhydrazide in the presence of TFA in DMF, and nitro group was reduced to amine derivative (2 with SnCl2·2H2O. The compound was reacted with isocyanates and isothiocyanates to get the final products (3a–p. The results showed that all the synthesized compounds inhibited the CA isoenzymes activity. 3a (IC50 = 6.40 µM for hCA I and 6.13 µM for hCA II has the most inhibitory effect. The synthesized compounds are very bulky to be able to bind near the zinc ion, and they much more probably bind as the coumarin derivatives.

  6. Marine natural products sourced from marine-derived Penicillium fungi.

    Science.gov (United States)

    Ma, Hong-Guang; Liu, Qiang; Zhu, Guo-Liang; Liu, Hai-Shan; Zhu, Wei-Ming

    2016-01-01

    Marine micro-organisms have been proven to be a major source of marine natural products (MNPs) in recent years, in which filamentous fungi are a vital source of bioactive natural products for their large metagenomes and more complex genetic backgrounds. This review highlights the 390 new MNPs from marine-derived Penicillium fungi during 1991 to 2014. These new MNPs are categorized based on the environment sources of the fungal hosts and their bioactivities are summarized.

  7. Process for the production of sodium carbonate anhydrate

    NARCIS (Netherlands)

    Oosterhof, H.; Van Rosmalen, G.M.; Witkamp, G.J.; De Graauw, J.

    2000-01-01

    The invention is directed to a process for the production of sodium carbonate-anhydrate having a bulk density of at least 800 kg/m<3>, said process comprising: providing a suspension of solid sodium carbonate and/or solid sodium bicarbonate and/or solid double salts at least comprising one of

  8. Wastewater treatment--adsorption of organic micropollutants on activated HTC-carbon derived from sewage sludge.

    Science.gov (United States)

    Kirschhöfer, Frank; Sahin, Olga; Becker, Gero C; Meffert, Florian; Nusser, Michael; Anderer, Gilbert; Kusche, Stepan; Klaeusli, Thomas; Kruse, Andrea; Brenner-Weiss, Gerald

    2016-01-01

    Organic micropollutants (MPs), in particular xenobiotics and their transformation products, have been detected in the aquatic environment and the main sources of these MPs are wastewater treatment plants. Therefore, an additional cleaning step is necessary. The use of activated carbon (AC) is one approach to providing this additional cleaning. Industrial AC derived from different carbonaceous materials is predominantly produced in low-income countries by polluting processes. In contrast, AC derived from sewage sludge by hydrothermal carbonization (HTC) is a regional and sustainable alternative, based on waste material. Our experiments demonstrate that the HTC-AC from sewage sludge was able to remove most of the applied MPs. In fact more than 50% of sulfamethoxazole, diclofenac and bezafibrate were removed from artificial water samples. With the same approach carbamazepine was eliminated to nearly 70% and atrazine more than 80%. In addition a pre-treated (phosphorus-reduced) HTC-AC was able to eliminate 80% of carbamazepine and diclofenac. Atrazine, sulfamethoxazole and bezafibrate were removed to more than 90%. Experiments using real wastewater samples with high organic content (11.1 g m(-3)) succeeded in proving the adsorption capability of phosphorus-reduced HTC-AC.

  9. Bioassays for evaluation of medical products derived from bacterial toxins.

    Science.gov (United States)

    Sesardic, Thea

    2012-06-01

    Bioassays play central role in evaluation of biological products and those derived from bacterial toxins often rely exclusively on in vivo models for assurance of safety and potency. This chapter reviews existing regulatory approved methods designed to provide information on potency and safety of complex biological medicines with an insight into strategies considered for alternative procedures.

  10. RESEARCH ON CARBON PRODUCTS FROM COAL USING AN EXTRACTIVE PROCESS

    Energy Technology Data Exchange (ETDEWEB)

    Peter G. Stansberry; Alfred H. Stiller; John W. Zondlo; Chong Chen; Brian Bland; David Fenton

    2002-03-31

    This report presents the results of a one-year effort directed at the exploration of the use of coal as a feedstock for a variety of industrially-relevant carbon products. The work was basically divided into three focus areas. The first area dealt with the acquisition of laboratory equipment to aid in the analysis and characterization of both the raw coal and the coal-derived feedstocks. Improvements were also made on the coal-extraction pilot plant which will now allow larger quantities of feedstock to be produced. Mass and energy balances were also performed on the pilot plant in an attempt to evaluate the scale-up potential of the process. The second focus area dealt with exploring hydrogenation conditions specifically aimed at testing several less-expensive candidate hydrogen-donor solvents. Through a process of filtration and vacuum distillation, viable pitch products were produced and evaluated. Moreover, a recycle solvent was also isolated so that the overall solvent balance in the system could be maintained. The effect of variables such as gas pressure and gas atmosphere were evaluated. The pitch product was analyzed and showed low ash content, reasonable yield, good coking value and a coke with anisotropic optical texture. A unique plot of coke yield vs. pitch softening point was discovered to be independent of reaction conditions or hydrogen-donor solvent. The third area of research centered on the investigation of alternate extraction solvents and processing conditions for the solvent extraction step. A wide variety of solvents, co-solvents and enhancement additives were tested with varying degrees of success. For the extraction of raw coal, the efficacy of the alternate solvents when compared to the benchmark solvent, N-methyl pyrrolidone, was not good. However when the same coal was partially hydrogenated prior to solvent extraction, all solvents showed excellent results even for extractions performed at room temperature. Standard analyses of the

  11. The NOAA Carbon America Program A Focus on Products for Decision- Support

    Science.gov (United States)

    Butler, J. H.; Hofmann, D. J.; Tans, P. P.; Peters, W.; Andrews, A. E.; Sweeny, C.; Montzka, S. A.

    2006-12-01

    If society is to manage or reduce carbon emissions in the future, reliable and accurate information on atmospheric carbon dioxide levels for verification of emission reductions will be needed on local, regional, and global scales. The current global carbon dioxide observing network operated by NOAA/ESRL provides a foundation for monitoring and understanding carbon dioxide. For example, atmospheric measurements in Europe suggest that emissions inventories of methane are substantial underestimates. An expanded U.S. Carbon Cycle Atmospheric Observing System is being implemented. Carbon America will consist of approximately 24 aircraft and 12 tall towers obtaining concentrations of carbon gases and other trace species. This observing system needs to be capable of quantitative attribution of all major contributors to the carbon budget of the continent, both manmade and natural. Successful mitigation strategies need independent and credible assessments of their efficacy. Managing carbon emissions will require the involvement of industry, financial markets, and governments at all levels. Without good information, governments will be slow to act, private investments will likely be less than optimal, and financial markets will not develop as they might need to. The atmospheric data and the methods used to derive sources and sinks will be fully open and available in up-to-date form to scientists, the general public, and policymakers. This presentation will provide an overview of NOAA`s role in the North American Carbon Program, our current accomplishments, our plans for the future network, and the currently expected products, services, and information that derive from these and other associated studies. Today's products, while useful, will be eclipsed by those of tomorrow, which will focus heavily on regional emissions expressed on seasonal or shorter time-scales, and will provide needed information for improved predictions in the future.

  12. Life Cycle Assessment in the Cereal and Derived Products Sector

    DEFF Research Database (Denmark)

    Bacenetti, Jacopo; Benedetto, Graziella; Fusi, Alessandra

    2015-01-01

    environmental improvement in such systems. Following a brief introduction to the cereal sector and supply chain, this chapter reviews some of the current cereal-based life cycle thinking literature, with a particular emphasis on LCA. Next, an analysis of the LCA methodological issues emerging from...... of the main hot spots in the cereal supply chain.......This chapter discusses the application of life cycle assessment methodologies to rice, wheat, corn and some of their derived products. Cereal product systems are vital for the production of commodities of worldwide importance that entail particular environmental hot spots originating from...

  13. Natural product derived insecticides: discovery and development of spinetoram.

    Science.gov (United States)

    Galm, Ute; Sparks, Thomas C

    2016-03-01

    This review highlights the importance of natural product research and industrial microbiology for product development in the agricultural industry, based on examples from Dow AgroSciences. It provides an overview of the discovery and development of spinetoram, a semisynthetic insecticide derived by a combination of a genetic block in a specific O-methylation of the rhamnose moiety of spinosad coupled with neural network-based QSAR and synthetic chemistry. It also emphasizes the key role that new technologies and multidisciplinary approaches play in the development of current spinetoram production strains.

  14. Effects of Globalisation on Carbon Footprints of Products

    DEFF Research Database (Denmark)

    Herrmann, Ivan Tengbjerg; Hauschild, Michael Zwicky

    2009-01-01

    Outsourcing of production from the industrialised countries to the newly industrialised economies holds the potential to increase wealth in both places, but what are the environmental costs of the globalised manufacturing systems? This paper looks into the changes in carbon footprint...... of manufactured products when production is moved from United Kingdom or Denmark to China and uses environmental input-output analysis to calculate the carbon footprint in the bilateral trade between these countries. The results show that differences between the European and Chinese production systems can lead...

  15. Briquetting and carbonization of biomass products for the sustainable productions of activated carbons

    Science.gov (United States)

    Khorasgani, Nasrin B.; Karimibavani, Bahareh; Alamir, Mohammed; Alzahrani, Naif; McClain, Amy P.; Asmatulu, Ramazan

    2017-04-01

    One of the most environmental concerns is the climate change because of the greenhouse gasses, such as CO2, N2O, CH4, and fluorinated gases. The big majority of CO2 is coming from burning of fossil fuels to generate steam, heat and power. In order to address some of the major environmental concerns of fossil fuels, a number of different alternatives for renewable energy sources have been considered, including sunlight, wind, rain, tides and geothermal heat and biomass. In the present study, two different biomass products (three leaves and grasses) were collected from the local sources, cleaned, chopped, and mixed with corn starch as a binder prior to the briquetting process at different external loads in a metallic mold. A number of tests, including drop, ignition and mechanical compression were conducted on the prepared briquettes before and after stabilizations and carbonization processes at different conditions. The test results indicated that briquetting pressure and carbonizations are the primary factors to produce stable and durable briquettes for various industrial applications. Undergraduate students have been involved in every step of the project and observed all the details of the process during the laboratory studies, as well as data collection, analysis and presentation. This study will be useful for the future trainings of the undergraduate engineering students on the renewable energy and related technologies.

  16. Capacity and production planning with carbon emission constraints

    DEFF Research Database (Denmark)

    Govindan, Kannan; Song, Shuang; Xu, Lei

    2017-01-01

    This paper builds a two-stage, stochastic model to study capacity expansion problem in logistics under cap-and-trade and carbon tax regulations. The optimal capacity expansion and production decisions are obtained, and the effects of carbon emission regulations on capacity expansion are studied....... Through analytical study and a real case numerical analysis, we find that the carbon tax exhibits different impacts on optimal capacity expansion decisions in low tax rate and high tax rate, and the volatility of capacity investment cost has a larger impact on optimal capacity expansion than...... that of production cost....

  17. Future productivity and carbon storage limited by terrestrial nutrient availability

    Science.gov (United States)

    Wieder, William R.; Cleveland, Cory C.; Smith, W. Kolby; Todd-Brown, Katherine

    2015-06-01

    The size of the terrestrial sink remains uncertain. This uncertainty presents a challenge for projecting future climate-carbon cycle feedbacks. Terrestrial carbon storage is dependent on the availability of nitrogen for plant growth, and nitrogen limitation is increasingly included in global models. Widespread phosphorus limitation in terrestrial ecosystems may also strongly regulate the global carbon cycle, but explicit considerations of phosphorus limitation in global models are uncommon. Here we use global state-of-the-art coupled carbon-climate model projections of terrestrial net primary productivity and carbon storage from 1860-2100 estimates of annual new nutrient inputs from deposition, nitrogen fixation, and weathering; and estimates of carbon allocation and stoichiometry to evaluate how simulated CO2 fertilization effects could be constrained by nutrient availability. We find that the nutrients required for the projected increases in net primary productivity greatly exceed estimated nutrient supply rates, suggesting that projected productivity increases may be unrealistically high. Accounting for nitrogen and nitrogen-phosphorus limitation lowers projected end-of-century estimates of net primary productivity by 19% and 25%, respectively, and turns the land surface into a net source of CO2 by 2100. We conclude that potential effects of nutrient limitation must be considered in estimates of the terrestrial carbon sink strength through the twenty-first century.

  18. Importance of kelp-derived organic carbon to the scallop Chlamys farreri in an integrated multi-trophic aquaculture system

    Science.gov (United States)

    Xu, Qiang; Gao, Fei; Yang, Hongsheng

    2016-03-01

    Bivalves and seaweeds are important cleaners that are widely used in integrated multi-trophic aquaculture (IMTA) systems. A beneficial relationship between seaweed and bivalve in the seaweed-based IMTA system has been confirmed, but the trophic importance of seaweed-derived particulate organic materials to the co-cultured bivalve is still unclear. We evaluated the trophic importance of the kelp Saccharina japonica to the co-cultured scallop Chlamys farreri in a typical IMTA farm in Sungo Bay (Weihai, North China). The dynamics of detritus carbon in the water were monitored during the culturing period. The proportion of kelp-derived organic matter in the diet of the co-cultured scallop was assessed via the stable carbon isotope method. Results showed that the detritus carbon in the water ranged from 75.52 to 265.19 μg/L, which was 25.6% to 73.8% of total particulate organic carbon (TPOC) during the study period. The amount of detritus carbon and its proportion in the TPOC changed throughout the culture cycle of the kelp. Stable carbon isotope analysis showed that the cultured scallop obtained 14.1% to 42.8% of its tissue carbon from the kelp, and that the percentages were closely correlated with the proportion of detritus carbon in the water ( F =0.993, P= 0.003). Evaluation showed that for 17 000 tons (wet weight) of annual scallop production, the kelp contributed about 139.3 tons of carbon (535.8 tons of dry mass). This confirms that cultured kelp plays a similar trophic role in IMTA systems as it does in a natural kelp bed. It is a major contributor to the detritus pool and supplies a vital food source to filter-feeding scallops in the IMTA system, especially during winter and early spring when phytoplankton are scarce.

  19. Acetate production enhancement from carbon dioxide reduction by using modified cathode materials in microbial electrosynthesis

    DEFF Research Database (Denmark)

    Aryal, Nabin; Halder, Arnab; Zhang, Minwei

    in the bioelectrochemical System (BES). The MES reactor can power with the solar photovoltaic system and harvest light energy to multi-carbon compounds to make it artificial photosynthesis system. Nevertheless, chemical production rate should be optimized for the commercialization of MES technology. Interestingly, it has......Microbial electrosynthesis (MES) is one of the emerging biosustainable technologies for the biological conversion of carbon dioxide to the value-added chemical precursor. The electro autotrophic bacteria fix CO2 via Wood-Ljungdahl pathway, accepting the electron derived from the cathode...... been demonstrated that the productivity was enhanced with the modified cathode surfaces by improving microbe-electrode electron transfer. Here, we have tested the different cathode materials for the improvement of acetate production from carbon dioxide and their behavior for the biofilm formation...

  20. Sustainable hybrid photocatalysts: titania immobilized on carbon materials derived from renewable and biodegradable resources

    Science.gov (United States)

    This review comprises the preparation, properties and heterogeneous photocatalytic applications of TiO2 immobilized on carbon materials derived from earth-abundant, renewable and biodegradable agricultural residues and sea food waste resources. The overview provides key scientifi...

  1. Synthesis of templated carbons starting from clay and clay-derived zeolites for hydrogen storage applications

    CSIR Research Space (South Africa)

    Musyoka, Nicholas M

    2014-10-01

    Full Text Available Clay and its recrystallized zeolitic derivatives were used in this study as templating agents for carbon nanostructured materials. The conventional nanocasting process that involves impregnation with furfural alcohol and subsequent chemical vapour...

  2. Sustainable hybrid photocatalysts: titania immobilized on carbon materials derived from renewable and biodegradable resources

    Science.gov (United States)

    This review comprises the preparation, properties and heterogeneous photocatalytic applications of TiO2 immobilized on carbon materials derived from earth-abundant, renewable and biodegradable agricultural residues and sea food waste resources. The overview provides key scientifi...

  3. High efficiency dye sensitized solar cell made by carbon derived from sucrose

    Science.gov (United States)

    Kumar, Rahul; Nemala, Siva Sankar; Mallick, Sudhanshu; Bhargava, Parag

    2017-02-01

    Carbon materials represent an attractive alternative to platinum based counter electrodes in DSSCs. Graphitic carbon produced from carbonization of sucrose has been used for making counter electrode for DSSCs. It was observed that increment in thickness of carbon counter electrode improves the performance of DSSCs. Electrochemical impedance spectroscopy, Tafel polarization and cyclic voltammetry measurements suggest that sucrose derived carbon based counter electrode shows fast reduction rate of I3- compare with platinum based counter electrode. DSSCs based on sucrose derived carbon exhibit high power conversion efficiency (PCE) of 9.96% and fill factor (FF) of 0.72 which is higher than PCE of 9.39% and FF of 0.67 of the cells with platinum (Pt) based counter electrode.

  4. Management options to reduce the carbon footprint of livestock products

    DEFF Research Database (Denmark)

    Hermansen, John Erik; Kristensen, Troels

    2011-01-01

    conclude that the most important mitigation options include - better feed conversion at the system level, - use of feeds that increase soil carbon sequestration versus carbon emission, - ensure that the manure produced substitutes for synthetic fertilizer, and - use manure for bio-energy production......Livestock products carry a large carbon footprint compared with other foods, and thus there is a need to focus on how to reduce it. The major contributing factors are emissions related to feed use and manure handling as well as the nature of the land required to produce the feed in question. We can....... Basically, it is important to make sure that all beneficial interactions in the livestock system are optimized instead of focusing only on animal productivity. There is an urgent need to arrive at a sound framework for considering the interaction between land use and carbon footprints of foods....

  5. Management options to reduce the carbon footprint of livestock products

    DEFF Research Database (Denmark)

    Hermansen, John Erik; Kristensen, Troels

    2011-01-01

    conclude that the most important mitigation options include - better feed conversion at the system level, - use of feeds that increase soil carbon sequestration versus carbon emission, - ensure that the manure produced substitutes for synthetic fertilizer, and - use manure for bio-energy production......Livestock products carry a large carbon footprint compared with other foods, and thus there is a need to focus on how to reduce it. The major contributing factors are emissions related to feed use and manure handling as well as the nature of the land required to produce the feed in question. We can....... Basically, it is important to make sure that all beneficial interactions in the livestock system are optimized instead of focusing only on animal productivity. There is an urgent need to arrive at a sound framework for considering the interaction between land use and carbon footprints of foods....

  6. Structural and Compositional Characterization of Fungus-Derived Pyrolytic Carbon Architectures

    Directory of Open Access Journals (Sweden)

    Brennan Campbell

    2016-01-01

    Full Text Available Three distinctive pyrolytic carbon structures, derived from three specific tissues of Agaricus bisporus mushroom, were studied and characterized. The three structures discovered within the stalk, cap, and cap skin tissues were found to contain unique microarchitectures, which were preserved upon anoxic carbonization. Experiments also revealed the formation of salt pockets and deposits within each microarchitecture, leading to a potential natural hard-template method for porous carbon structures.

  7. Heteroatom-Doped Carbon Nanostructures Derived from Conjugated Polymers for Energy Applications

    Directory of Open Access Journals (Sweden)

    Yanzhen He

    2016-10-01

    Full Text Available Heteroatom-doped carbon materials have been one of the most remarkable families of materials with promising applications in fuel cells, supercapacitors, and batteries. Among them, conjugated polymer (CP-derived heteroatom-doped carbon materials exhibit remarkable electrochemical performances because the heteroatoms can be preserved at a relatively high content and keep stable under harsh working conditions. In this review, we summarized recent advances in the rational design and various applications of CP-derived heteroatom-doped carbon materials, including polyaniline (PANI, polypyrrole (PPy, and their ramification-derived carbons, as well as transition metal-carbon nanocomposites. The key point of considering CP-derived heteroatom-doped carbon materials as important candidates of electrode materials is that CPs contain only nonmetallic elements and some key heteroatoms in their backbones which provide great chances for the synthesis of metal-free heteroatom-doped carbon nanostructures. The presented examples in this review will provide new insights in designing and optimizing heteroatom-doped carbon materials for the development of anode and cathode materials for electrochemical device applications.

  8. Ancient low–molecular-weight organic acids in permafrost fuel rapid carbon dioxide production upon thaw

    Science.gov (United States)

    Drake, Travis W.; Wickland, Kimberly P.; Spencer, Robert G. M.; McKnight, Diane M.; Striegl, Robert G.

    2015-01-01

    Northern permafrost soils store a vast reservoir of carbon, nearly twice that of the present atmosphere. Current and projected climate warming threatens widespread thaw of these frozen, organic carbon (OC)-rich soils. Upon thaw, mobilized permafrost OC in dissolved and particulate forms can enter streams and rivers, which are important processors of OC and conduits for carbon dioxide (CO2) to the atmosphere. Here, we demonstrate that ancient dissolved organic carbon (DOC) leached from 35,800 y B.P. permafrost soils is rapidly mineralized to CO2. During 200-h experiments in a novel high–temporal-resolution bioreactor, DOC concentration decreased by an average of 53%, fueling a more than sevenfold increase in dissolved inorganic carbon (DIC) concentration. Eighty-seven percent of the DOC loss to microbial uptake was derived from the low–molecular-weight (LMW) organic acids acetate and butyrate. To our knowledge, our study is the first to directly quantify high CO2 production rates from permafrost-derived LMW DOC mineralization. The observed DOC loss rates are among the highest reported for permafrost carbon and demonstrate the potential importance of LMW DOC in driving the rapid metabolism of Pleistocene-age permafrost carbon upon thaw and the outgassing of CO2 to the atmosphere by soils and nearby inland waters.

  9. Hepatic zonation of carbon and nitrogen fluxes derived from glutamine and ammonia transformations

    Directory of Open Access Journals (Sweden)

    Constantin Jorgete

    2010-01-01

    Full Text Available Abstract Background Glutaminase predominates in periportal hepatocytes and it has been proposed that it determines the glutamine-derived nitrogen flow through the urea cycle. Glutamine-derived urea production should, thus, be considerably faster in periportal hepatocytes. This postulate, based on indirect observations, has not yet been unequivocally demonstrated, making a direct investigation of ureogenesis from glutamine highly desirable. Methods Zonation of glutamine metabolism was investigated in the bivascularly perfused rat liver with [U-14C]glutamine infusion (0.6 mM into the portal vein (antegrade perfusion or into the hepatic vein (retrograde perfusion. Results Ammonia infusion into the hepatic artery in retrograde and antegrade perfusion allowed to promote glutamine metabolism in the periportal region and in the whole liver parenchyma, respectively. The results revealed that the space-normalized glutamine uptake, indicated by 14CO2 production, gluconeogenesis, lactate production and the associated oxygen uptake, predominates in the periportal region. Periportal predominance was especially pronounced for gluconeogenesis. Ureogenesis, however, tended to be uniformly distributed over the whole liver parenchyma at low ammonia concentrations (up to 1.0 mM; periportal predominance was found only at ammonia concentrations above 1 mM. The proportions between the carbon and nitrogen fluxes in periportal cells are not the same along the liver acinus. Conclusions In conclusion, the results of the present work indicate that the glutaminase activity in periportal hepatocytes is not the rate-controlling step of the glutamine-derived nitrogen flow through the urea cycle. The findings corroborate recent work indicating that ureogenesis is also an important ammonia-detoxifying mechanism in cells situated downstream to the periportal region.

  10. Greater soil carbon stocks and faster turnover rates with increasing agricultural productivity

    Science.gov (United States)

    Sanderman, Jonathan; Creamer, Courtney; Baisden, W. Troy; Farrell, Mark; Fallon, Stewart

    2017-01-01

    Devising agricultural management schemes that enhance food security and soil carbon levels is a high priority for many nations. However, the coupling between agricultural productivity, soil carbon stocks and organic matter turnover rates is still unclear. Archived soil samples from four decades of a long-term crop rotation trial were analyzed for soil organic matter (SOM) cycling-relevant properties: C and N content, bulk composition by nuclear magnetic resonance (NMR) spectroscopy, amino sugar content, short-term C bioavailability assays, and long-term C turnover rates by modeling the incorporation of the bomb spike in atmospheric 14C into the soil. After > 40 years under consistent management, topsoil carbon stocks ranged from 14 to 33 Mg C ha-1 and were linearly related to the mean productivity of each treatment. Measurements of SOM composition demonstrated increasing amounts of plant- and microbially derived SOM along the productivity gradient. Under two modeling scenarios, radiocarbon data indicated overall SOM turnover time decreased from 40 to 13 years with increasing productivity - twice the rate of decline predicted from simple steady-state models or static three-pool decay rates of measured C pool distributions. Similarly, the half-life of synthetic root exudates decreased from 30.4 to 21.5 h with increasing productivity, indicating accelerated microbial activity. These findings suggest that there is a direct feedback between accelerated biological activity, carbon cycling rates and rates of carbon stabilization with important implications for how SOM dynamics are represented in models.

  11. Microbial production of amino acids and derived chemicals: synthetic biology approaches to strain development.

    Science.gov (United States)

    Wendisch, Volker F

    2014-12-01

    Amino acids are produced at the multi-million-ton-scale with fermentative production of l-glutamate and l-lysine alone being estimated to amount to more than five million tons in the year 2013. Metabolic engineering constantly improves productivities of amino acid producing strains, mainly Corynebacterium glutamicum and Escherichia coli strains. Classical mutagenesis and screening have been accelerated by combination with intracellular metabolite sensing. Synthetic biology approaches have allowed access to new carbon sources to realize a flexible feedstock concept. Moreover, new pathways for amino acid production as well as fermentative production of non-native compounds derived from amino acids or their metabolic precursors were developed. These include dipeptides, α,ω-diamines, α,ω-diacids, keto acids, acetylated amino acids and ω-amino acids.

  12. Direct electrospray tandem mass spectrometry of the unstable hydroperoxy bishemiacetal product derived from cholesterol ozonolysis.

    Science.gov (United States)

    Pulfer, Melissa K; Harrison, Kathleen; Murphy, Robert C

    2004-02-01

    Cholesterol is the most abundant neutral lipid in the epithelial lining fluid of the lower airways of the lung also known as pulmonary surfactant and a potential target for reaction with ambient ozone when inspired into the human lung. The isolated double bond of cholesterol has been shown to be susceptible to attack by ozone, but the major reaction product from cholesterol ozonolysis had been remarkably difficult to structurally characterize. Recently, NMR and X-ray crystallography have been used to suggest the formation of a hydroperoxy, hydroxy hemiacetal product, using various derivatives and models of cholesterol to stabilize this chemically reactive product. Electrospray ionization mass spectrometry was used to study the somewhat unstable ozonolysis product of cholesterol which was found to display unique ionization and fragmentation properties when collisionally activated. The electron-deficient carbon atoms of this highly oxygenated product permitted covalent attachment of an acetate anion during negative ion electrospray ionization, leading to the formation of abundant adduct ions at m/z 511. Surprisingly, positive ions were not readily formed. Collision induced dissociation of the adduct anion yielded a major ion at m/z 477, corresponding to the loss of hydrogen peroxide. The most abundant fragment ion following collisional activation was observed at m/z 93, resulting from a complex rearrangement subsequent to the attack of the hydroperoxide anion on the carbon center of the acetate adduct. Based on the interpretation of the tandem mass spectral data, the major cholesterol ozonization product was characterized as a hydroperoxy, hydroxy hemiacetal derivative, which was consistent with the NMR and X-ray crystallographic studies which were carried out on the more stable methyl ether derivative.

  13. A comparison of hydrogen storage capacity of commercial and fly ash-derived zeolite X together with their respective templated carbon derivatives

    CSIR Research Space (South Africa)

    Musyoka, Nicholas M

    2015-10-01

    Full Text Available –6]. Among the many studied porous materials (such as zeolites, metal organic frameworks (MOFs), activated carbons etc.), templated carbons have been identified and ear-marked as having attractive properties for hydrogen storage [11–15]. Templated carbons... diffraction pattern (SAED) is indicative of scattering from an amorphous material meaning that, unlike the parent zeolite, the templated carbon derivative was amorphous in nature. elsevier_HE_16341 Comparing the XRD pattern of fly ash-derived zeolite X...

  14. Use of Activated Carbon Derived from Maize Cob and Mahogany ...

    African Journals Online (AJOL)

    MBI

    2015-12-28

    Dec 28, 2015 ... Shell for the Removal of Colour from Textile Effluent. Gumel, S. M. ... In the present study natural adsorbents Maize Cob (MC) and Mahogany Shells (MS) were carbonized and activated ... remove even minute amount of dyes in wastewaters. (Yakubu et .... were prepared by putting 10, 20, 30, 40 and 50 ml.

  15. LiDAR-derived carbon estimates in encroaching juniper woodlands

    Science.gov (United States)

    Woody encroachment is thought to contribute significantly to the global carbon (C) sink. The global- and continental-scale estimates of this contribution, however, have large uncertainties. The woody encroachment contribution to the C sink needs to be estimated at regional and local scales to addres...

  16. Whey-derived valuable products obtained by microbial fermentation.

    Science.gov (United States)

    Pescuma, Micaela; de Valdez, Graciela Font; Mozzi, Fernanda

    2015-08-01

    Whey, the main by-product of the cheese industry, is considered as an important pollutant due to its high chemical and biological oxygen demand. Whey, often considered as waste, has high nutritional value and can be used to obtain value-added products, although some of them need expensive enzymatic synthesis. An economical alternative to transform whey into valuable products is through bacterial or yeast fermentations and by accumulation during algae growth. Fermentative processes can be applied either to produce individual compounds or to formulate new foods and beverages. In the first case, a considerable amount of research has been directed to obtain biofuels able to replace those derived from petrol. In addition, the possibility of replacing petrol-derived plastics by biodegradable polymers synthesized during bacterial fermentation of whey has been sought. Further, the ability of different organisms to produce metabolites commonly used in the food and pharmaceutical industries (i.e., lactic acid, lactobionic acid, polysaccharides, etc.) using whey as growth substrate has been studied. On the other hand, new low-cost functional whey-based foods and beverages leveraging the high nutritional quality of whey have been formulated, highlighting the health-promoting effects of fermented whey-derived products. This review aims to gather the multiple uses of whey as sustainable raw material for the production of individual compounds, foods, and beverages by microbial fermentation. This is the first work to give an overview on the microbial transformation of whey as raw material into a large repertoire of industrially relevant foods and products.

  17. Net carbon flux in organic and conventional olive production systems

    Science.gov (United States)

    Saeid Mohamad, Ramez; Verrastro, Vincenzo; Bitar, Lina Al; Roma, Rocco; Moretti, Michele; Chami, Ziad Al

    2014-05-01

    Agricultural systems are considered as one of the most relevant sources of atmospheric carbon. However, agriculture has the potentiality to mitigate carbon dioxide mainly through soil carbon sequestration. Some agricultural practices, particularly fertilization and soil management, can play a dual role in the agricultural systems regarding the carbon cycle contributing to the emissions and to the sequestration process in the soil. Good soil and input managements affect positively Soil Organic Carbon (SOC) changes and consequently the carbon cycle. The present study aimed at comparing the carbon footprint of organic and conventional olive systems and to link it to the efficiency of both systems on carbon sequestration by calculating the net carbon flux. Data were collected at farm level through a specific and detailed questionnaire based on one hectare as a functional unit and a system boundary limited to olive production. Using LCA databases particularly ecoinvent one, IPCC GWP 100a impact assessment method was used to calculate carbon emissions from agricultural practices of both systems. Soil organic carbon has been measured, at 0-30 cm depth, based on soil analyses done at the IAMB laboratory and based on reference value of SOC, the annual change of SOC has been calculated. Substracting sequestrated carbon in the soil from the emitted on resulted in net carbon flux calculation. Results showed higher environmental impact of the organic system on Global Warming Potential (1.07 t CO2 eq. yr-1) comparing to 0.76 t CO2 eq. yr-1 in the conventional system due to the higher GHG emissions caused by manure fertilizers compared to the use of synthetic foliar fertilizers in the conventional system. However, manure was the main reason behind the higher SOC content and sequestration in the organic system. As a resultant, the organic system showed higher net carbon flux (-1.7 t C ha-1 yr-1 than -0.52 t C ha-1 yr-1 in the conventional system reflecting higher efficiency as a

  18. In situ Diagnostics During Carbon Nanotube Production by Laser Ablation

    Science.gov (United States)

    Arepalli, Sivaram

    1999-01-01

    The preliminary results of spectral analysis of the reaction zone during the carbon nanotube production by laser ablation method indicate synergetic dependence on dual laser setup. The emission spectra recorded from different regions of the laser ablated plume at different delay times from the laser pulses are used to map the temperatures of C2 and C3. These are compared with Laser Induced Fluorescence (LIF) spectra also obtained during production to model the growth mechanism of carbon nanotubes. Experiments conducted to correlate the spectral features with nanotube yields as a function of different production parameters will be discussed.

  19. Size fraction analysis of fish-derived carbonates in shallow sub-tropical marine environments and a potentially unrecognised origin for peloidal carbonates

    Science.gov (United States)

    Salter, Michael A.; Perry, Chris T.; Wilson, Rod W.

    2014-12-01

    Marine bony fish are now known as primary producers of calcium carbonate. Furthermore, within the shallow sub-tropical platform settings of the Bahamas, this production process has been shown to occur at rates relevant to carbonate sediment production budgets. Fish excrete these carbonates as loosely aggregated pellets which, post-excretion, exhibit a range of distinctive crystal morphologies and have mineralogies ranging from low (0-4 mol% MgCO3) to high (4-40 mol% MgCO3) Mg-calcites, aragonite and amorphous carbonate phases. Here we provide the first quantitative assessment of the size fractions of the carbonates produced by a range of tropical fish species, and document the extent of post-excretion carbonate pellet break down under a range of physical agitation conditions. Specifically, we document the morphologies and size fractions of: i) intact pellets at the point of excretion; ii) intact pellets after agitation in seawater; and iii) the particles released from pellets post-disaggregation. Results indicate that fish-derived pellets initially fall within the very fine to very coarse sand fractions. Exposure to conditions of moderate seawater agitation for 30 days results in significant pellet diminution; 66% of initial pellet mass being released as individual particles, whilst 34% is retained as partially intact pellets that are smaller (fine sand-grade) and more rounded than initial pellets. In contrast, pellets exposed to very gently agitated conditions for up to 200 days show little change. Where pellet disaggregation does occur, particles are commonly released as individual clay- and silt-grade crystals. However, some morphotypes (e.g., polycrystalline spheres) can be intergrown and are released as strongly cohesive particle clusters falling within the coarse silt to fine sand fractions. Only very vigorous agitation may disaggregate such particles, resulting in the release of their component clay-grade crystals. We conclude that fish-derived carbonates

  20. Domino Michael-Michael and Aldol-Aldol Reactions: Diastereoselective Synthesis of Functionalized Cyclohexanone Derivatives Containing Quaternary Carbon Center.

    Science.gov (United States)

    Ghorai, Manas K; Halder, Sandipan; Das, Subhomoy

    2015-10-02

    A simple strategy for the synthesis of highly functionalized cyclohexanone derivatives containing an all-carbon quaternary center from α-(aryl/alkyl)methylidene-β-keto esters or β-diketones via a K-enolate mediated domino Michael-Michael reaction sequence with moderate to good yield and excellent diastereoselectivity (de > 99%) is described. Interestingly, Li-base mediated reaction of α-arylmethylidene-β-diketones affords functionalized 3,5-dihydroxy cyclohexane derivatives as the kinetically controlled products via a domino aldol-aldol reaction sequence with excellent diastereoselectivity. Li-enolates of the β-keto esters or β-diketones undergo facile domino Michael-Michael reaction with nitro-olefins to afford the corresponding nitrocyclohexane derivatives in good yields and excellent diastereoselectivity (de > 99%). The formation of the products and the observed stereoselectivity were explained by plausible mechanisms and supported by extensive computational study. An asymmetric version of the protocol was explored with (L)-menthol derived nonracemic substrates, and the corresponding nonracemic cyclohexanone derivatives containing an all-carbon quaternary center were obtained with excellent stereoselectivity (de, ee > 99%).

  1. Production of activated carbon from rice husk Vietnam

    Science.gov (United States)

    Korobochkin, V. V.; Tu, N. V.; Hieu, N. M.

    2016-09-01

    This work is dedicated to the production of activated carbon from rice husk from Delta of the Red River in Viet Nam. At the first stage, carbonization of a rice husk was carried out to obtain material containing 43.1% carbon and 25 % silica with a specific surface area of 51.5 m2/g. After separating of silica (the second stage), the specific surface area of the product increased to 204 m2/g and the silica content decreased to 1.23% by weight as well. The most important stage in the formation of the porous structure of the material is the activation. The products with the high specific surface area in the range of 800-1345 m2/g were obtained by activation of carbonized product with water vapour or carbon dioxide at temperatures of 700 °C and 850 °C, with varying the flow rate of the activating agent and activation time. The best results were achieved by activation of carbon material with water vapour at the flow rate of 0.08 dm3/min per 500 g of material and the temperature of 850 °C.

  2. Add value products of honeybee plant-derived origin

    OpenAIRE

    Iop, Silvia C.F.; Ramalhosa, Elsa; Dotto, Dalva M.R.; Cirolini, Andreia; Beltrami, Naiane

    2016-01-01

    Although honey extraction is an ancient practíce, its use as a source of income is more recent. Over the years several techniques have been developed to achieve greater amounts of honey and also to ensure the quality of the product. Furthermore, bees during their life cycle produce wax, royal jelly, pollen and propolis besides honey. Pollen and propolis are such as honey, plant derivatives, while the wax and royal jelly are products secreted by glands of the bees. This chapter aims to pres...

  3. Carbon sequestration potential of soils in southeast Germany derived from stable soil organic carbon saturation.

    Science.gov (United States)

    Wiesmeier, Martin; Hübner, Rico; Spörlein, Peter; Geuß, Uwe; Hangen, Edzard; Reischl, Arthur; Schilling, Bernd; von Lützow, Margit; Kögel-Knabner, Ingrid

    2014-02-01

    Sequestration of atmospheric carbon (C) in soils through improved management of forest and agricultural land is considered to have high potential for global CO2 mitigation. However, the potential of soils to sequester soil organic carbon (SOC) in a stable form, which is limited by the stabilization of SOC against microbial mineralization, is largely unknown. In this study, we estimated the C sequestration potential of soils in southeast Germany by calculating the potential SOC saturation of silt and clay particles according to Hassink [Plant and Soil 191 (1997) 77] on the basis of 516 soil profiles. The determination of the current SOC content of silt and clay fractions for major soil units and land uses allowed an estimation of the C saturation deficit corresponding to the long-term C sequestration potential. The results showed that cropland soils have a low level of C saturation of around 50% and could store considerable amounts of additional SOC. A relatively high C sequestration potential was also determined for grassland soils. In contrast, forest soils had a low C sequestration potential as they were almost C saturated. A high proportion of sites with a high degree of apparent oversaturation revealed that in acidic, coarse-textured soils the relation to silt and clay is not suitable to estimate the stable C saturation. A strong correlation of the C saturation deficit with temperature and precipitation allowed a spatial estimation of the C sequestration potential for Bavaria. In total, about 395 Mt CO2 -equivalents could theoretically be stored in A horizons of cultivated soils - four times the annual emission of greenhouse gases in Bavaria. Although achieving the entire estimated C storage capacity is unrealistic, improved management of cultivated land could contribute significantly to CO2 mitigation. Moreover, increasing SOC stocks have additional benefits with respect to enhanced soil fertility and agricultural productivity.

  4. Production of distillate fuels from biomass-derived polyoxygenates

    Energy Technology Data Exchange (ETDEWEB)

    Kania, John; Blommel, Paul; Woods, Elizabeth; Dally, Brice; Lyman, Warren; Cortright, Randy

    2017-03-14

    The present invention provides methods, reactor systems and catalysts for converting biomass and biomass-derived feedstocks to C.sub.8+ hydrocarbons using heterogenous catalysts. The product stream may be separated and further processed for use in chemical applications, or as a neat fuel or a blending component in jet fuel and diesel fuel, or as heavy oils for lubricant and/or fuel oil applications.

  5. Production of distillate fuels from biomass-derived polyoxygenates

    Science.gov (United States)

    Kania, John; Blommel, Paul; Woods, Elizabeth; Dally, Brice; Lyman, Warren; Cortright, Randy

    2017-03-14

    The present invention provides methods, reactor systems and catalysts for converting biomass and biomass-derived feedstocks to C.sub.8+ hydrocarbons using heterogenous catalysts. The product stream may be separated and further processed for use in chemical applications, or as a neat fuel or a blending component in jet fuel and diesel fuel, or as heavy oils for lubricant and/or fuel oil applications.

  6. [Suspected anaphylaxis by wound treatment with polyhexanide derivate wound products].

    Science.gov (United States)

    Schrøder, Morten A; Kirketerp-Møller, Klaus; Winther, Lone

    2014-12-15

    Only four cases of anaphylaxis triggered by polyhexanide have been reported in the literature. We report a case of anaphylaxis in a Danish patient treated with polyhexanide derivate (Prontosan) wound products. We emphasise the importance of intramuscular injection of adrenaline as part of the treatment protocol in the initial phase of anaphylaxis and stress the importance of being aware of polyhexanide as a potential trigger of anaphylaxis.

  7. Cytotoxic Natural Products from Marine Sponge-Derived Microorganisms

    Directory of Open Access Journals (Sweden)

    Huawei Zhang

    2017-03-01

    Full Text Available A growing body of evidence indicates that marine sponge-derived microbes possess the potential ability to make prolific natural products with therapeutic effects. This review for the first time provides a comprehensive overview of new cytotoxic agents from these marine microbes over the last 62 years from 1955 to 2016, which are assorted into seven types: terpenes, alkaloids, peptides, aromatics, lactones, steroids, and miscellaneous compounds.

  8. Activated carbons prepared from refuse derived fuel and their gold adsorption characteristics.

    Science.gov (United States)

    Buah, William K; Williams, Paul T

    2010-02-01

    Activated carbons produced from refuse derived fuel (RDF), which had been prepared from municipal solid waste have been characterized and evaluated for their potential for gold adsorption from gold chloride solution. Pyrolysis of the RDF produced a char, which was then activated via steam gasification to produce activated carbons. Steam gasification of the char at 900 degrees C for 3 h yielded 73 wt% activated carbon. The derived activated carbon had a surface area of 500 m2 g(-1) and a total pore volume of 0.19 cm3 g(-1). The gold adsorption capacity of the activated carbon was 32.1 mg Au g(-1) of carbon when contacted with an acidified gold chloride solution. The gold adsorption capacity was comparable to that of a commercial activated carbon tested under the same conditions and was well in the range of values of activated carbons used in the gold industry. Demineralization of the RDF activated carbon in a 5 M HCl solution resulted in enhancement of its textural properties but a reduction in the gold adsorption rate, indicating that the metal content of the RDF activated carbon influenced its gold adsorption rate.

  9. Formalizing Traceability and Derivability in Software Product Lines

    CERN Document Server

    Krishna, Shankara Narayanan; S., Ramesh; Mohalik, Swarup; Millo, Jean-Vivien

    2012-01-01

    In the literature, the definition of product in a Software Product Line (SPL) is based upon the notion of consistency of the constraints, imposed by variability and traceability relations on the elements of the SPL. In this paper, we contend that consistency does not model the natural semantics of the implementability relation between problem and solution spaces correctly. Therefore, we define when a feature can be {\\em derived} from a set of components . Using this, we define a product of the SPL by a pair, where all the features in the specification are derived from the components in the architecture. This notion of derivability is formulated in a simple yet expressive, abstract model of a productline with traceability relation. We then define a set of SPL analysis problems and show that these problems can be encoded as Quantified Boolean Formulas. Then, QSAT solvers like QUBE can be used to solve the analysis problems. We illustrate the methodology on a small fragment of a realistic productline.

  10. New natural product carbonic anhydrase inhibitors incorporating phenol moieties.

    Science.gov (United States)

    Karioti, Anastasia; Ceruso, Mariangela; Carta, Fabrizio; Bilia, Anna-Rita; Supuran, Claudiu T

    2015-11-15

    Carbonic anhydrases (CAs, EC 4.2.1.1) catalyze the fundamental reaction of CO2 hydration in all living organisms, being actively involved in the regulation of a plethora of patho/physiological conditions. They represent a typical example of enzyme convergent evolution, as six genetically unrelated families of such enzymes were described so far. The need to find selective CA inhibitors (CAIs) triggered the investigation of natural product libraries, which proved to be a valid source of agents with such an activity, as demonstrated for the phenols, polyamines and coumarins. Herein we report an in vitro inhibition study of human (h) CA isoforms hCAs I, II, IV, VII and XII with a panel of natural polyphenols including flavones, flavonols, flavanones, flavanols, isoflavones and depsides, some of which extracted from Quercus ilex and Salvia miltiorrhiza. Several of the investigated derivatives showed interesting inhibition activity and selectivities for inhibiting some important isoforms over the off-target ones hCA I and II.

  11. The Impact of Surface Chemistry on Bio-derived Carbon Performance as Supercapacitor Electrodes

    Science.gov (United States)

    Alshareef, Niman H.; Whitehair, Daniel; Xia, Chuan

    2017-03-01

    In this study, we demonstrate that highly functionalized and porous carbons can be derived from palm-leaf waste using the template-free facile synthesis process. The derived carbons have high content of nitrogen dopant, high surface area, and various defects. Moreover, these carbons exhibit a high electrical conductivity (107 S m-1). Thanks to the high content of edge N (64.3%) and highly microporous nature (82% of microspores), these biomass-derived carbons show promising performance when used as supercapacitor electrodes. To be specific, these carbonaceous materials show a specific capacitance as high as 197 and 135 F g-1 at 2 and 20 A g-1 in three-electrode configuration, respectively. Furthermore, the symmetrical cells using palm-leaf-derived carbon show an energy density of 8.4 Wh Kg-1 at a power density of 0.64 kW Kg-1, with high cycling life stability (˜8% loss after 10,000 continuous charge-discharge cycles at 20 A g-1). Interestingly, as the power density increases from 4.4 kW kg-1 to 36.8 kW kg-1, the energy density drops slowly from 8.4 Wh kg-1 to 3.4 Wh kg-1. Getting such extremely high power density without significant loss of energy density indicates that these palm-leaf-derived carbons have excellent electrode performance as supercapacitor electrodes.

  12. The Impact of Surface Chemistry on Bio-derived Carbon Performance as Supercapacitor Electrodes

    Science.gov (United States)

    Alshareef, Niman H.; Whitehair, Daniel; Xia, Chuan

    2016-12-01

    In this study, we demonstrate that highly functionalized and porous carbons can be derived from palm-leaf waste using the template-free facile synthesis process. The derived carbons have high content of nitrogen dopant, high surface area, and various defects. Moreover, these carbons exhibit a high electrical conductivity (107 S m-1). Thanks to the high content of edge N (64.3%) and highly microporous nature (82% of microspores), these biomass-derived carbons show promising performance when used as supercapacitor electrodes. To be specific, these carbonaceous materials show a specific capacitance as high as 197 and 135 F g-1 at 2 and 20 A g-1 in three-electrode configuration, respectively. Furthermore, the symmetrical cells using palm-leaf-derived carbon show an energy density of 8.4 Wh Kg-1 at a power density of 0.64 kW Kg-1, with high cycling life stability (˜8% loss after 10,000 continuous charge-discharge cycles at 20 A g-1). Interestingly, as the power density increases from 4.4 kW kg-1 to 36.8 kW kg-1, the energy density drops slowly from 8.4 Wh kg-1 to 3.4 Wh kg-1. Getting such extremely high power density without significant loss of energy density indicates that these palm-leaf-derived carbons have excellent electrode performance as supercapacitor electrodes.

  13. The Impact of Surface Chemistry on Bio-derived Carbon Performance as Supercapacitor Electrodes

    KAUST Repository

    Alshareef, Husam N.

    2016-12-23

    In this study, we demonstrate that highly functionalized and porous carbons can be derived from palm-leaf waste using the template-free facile synthesis process. The derived carbons have high content of nitrogen dopant, high surface area, and various defects. Moreover, these carbons exhibit a high electrical conductivity (107 S m−1). Thanks to the high content of edge N (64.3%) and highly microporous nature (82% of microspores), these biomass-derived carbons show promising performance when used as supercapacitor electrodes. To be specific, these carbonaceous materials show a specific capacitance as high as 197 and 135 F g−1 at 2 and 20 A g−1 in three-electrode configuration, respectively. Furthermore, the symmetrical cells using palm-leaf-derived carbon show an energy density of 8.4 Wh Kg−1 at a power density of 0.64 kW Kg−1, with high cycling life stability (∼8% loss after 10,000 continuous charge–discharge cycles at 20 A g−1). Interestingly, as the power density increases from 4.4 kW kg−1 to 36.8 kW kg−1, the energy density drops slowly from 8.4 Wh kg−1 to 3.4 Wh kg−1. Getting such extremely high power density without significant loss of energy density indicates that these palm-leaf-derived carbons have excellent electrode performance as supercapacitor electrodes.

  14. Nanotube-derived carbon foam for hydrogen sorption.

    Science.gov (United States)

    Ding, Feng; Lin, Yu; Krasnov, Pavel O; Yakobson, Boris I

    2007-10-28

    A new kind of carbon foam, which is based on the welding of single-walled carbon nanotubes, is built in a computer simulation. Its precisely defined architecture and all atomic positions allow one to perform detailed theoretical analysis of the properties. Such foam is as light as 19 of steel, while its stiffness is similar and nearly isotropic, and it represents a strong three-dimensional material with various possible applications. Furthermore, its nanoporous structure is accessible to molecular hydrogen and the potential surface analysis indicates that it should be an excellent hydrogen storage medium. Importantly, such foam is a feasible structure that can be produced based on the known tube/fullerene welding techniques.

  15. Bimodal activated carbons derived from resorcinol-formaldehyde cryogels

    Energy Technology Data Exchange (ETDEWEB)

    Szczurek, Andrzej; Amaral-Labat, Gisele; Fierro, Vanessa; Celzard, Alain [Institut Jean Lamour-UMR CNRS 7198, CNRS-Nancy-Universite-UPV-Metz, Departement Chimie et Physique des Solides et des Surfaces. ENSTIB, 27 rue Philippe Seguin, BP 1041, 88051 Epinal cedex 9 (France); Pizzi, Antonio, E-mail: Alain.Celzard@enstib.uhp-nancy.fr [ENSTIB-LERMAB, Nancy-Universite, 27 rue Philippe Seguin, BP1041, 88051 Epinal cedex 9 (France)

    2011-06-15

    Resorcinol-formaldehyde cryogels prepared at different dilution ratios have been activated with phosphoric acid at 450 deg. C and compared with their carbonaceous counterparts obtained by pyrolysis at 900 deg. C. Whereas the latter were, as expected, highly mesoporous carbons, the former cryogels had very different pore textures. Highly diluted cryogels allowed preparation of microporous materials with high surface areas, but activation of initially dense cryogels led to almost non-porous carbons, with much lower surface areas than those obtained by pyrolysis. The optimal acid concentration for activation, corresponding to stoichiometry between molecules of acid and hydroxyl groups, was 2 M l{sup -1}, and the acid-cryogel contact time also had an optimal value. Such optimization allowed us to achieve surface areas and micropore volumes among the highest ever obtained by activation with H{sub 3}PO{sub 4}, close to 2200 m{sup 2} g{sup -1} and 0.7 cm{sup 3} g{sup -1}, respectively. Activation of diluted cryogels with a lower acid concentration of 1.2 M l{sup -1} led to authentic bimodal activated carbons, having a surface area as high as 1780 m{sup 2} g{sup -1} and 0.6 cm{sup 3} g{sup -1} of microporous volume easily accessible through a widely developed macroporosity.

  16. Significance of the carbonization of volatile pyrolytic products on the properties of activated carbons from phosphoric acid activation of lignocellulosic material

    Energy Technology Data Exchange (ETDEWEB)

    Zuo, Songlin; Yang, Jianxiao; Cai, Xuan [Faculty of Chemical Engineering, Nanjing Forestry University, Nanjing 210037 (China); Liu, Junli [Institute of Chemical Industry of Forest Products, CAF, Nanjing 210042 (China)

    2009-07-15

    Two series of activated carbons derived from China fir (Cunninghamia lanceolata) wood impregnated with phosphoric acid were prepared in a cylindrical container that was kept in a closed state covered with a lid (the covered case) or in an open state. The effects of the carbonization of volatile pyrolytic products of starting materials on the properties of activated carbon were investigated in the process of phosphoric acid activation. Elemental analysis and SEM observation showed that both activating in the covered case and increasing the mass of starting material used favored the carbonization of volatile pyrolytic products. An investigation of N{sub 2} adsorption isotherms revealed that the carbonization of volatile pyrolytic products significantly enhanced mesopore development in the final carbons, especially pores with a size range from 2.5 to 30 nm, with little influence on micropores, and therefore produced a large increase in the adsorption capacity to Vitamin B12 (with a molecular size of 2.09 nm). Activated carbons with highly developed mesopores could be obtained in the covered case. The carbonization mechanism of volatiles was discussed and two different carbonization pathways (in solid and gas phases) were proposed during phosphoric acid activation. (author)

  17. On the mechanism of reactive adsorption of dibenzothiophene on organic waste derived carbons

    Science.gov (United States)

    Ania, C. O.; Parra, J. B.; Arenillas, A.; Rubiera, F.; Bandosz, T. J.; Pis, J. J.

    2007-04-01

    The mechanism of reactive adsorption of dibenzothiophene (DBT) on a series of modified carbons derived from the recycled PET was investigated. The influence of the oxygen functionalities of the adsorbent on the DBT adsorption capacity was explored. The results revealed that adsorption of DBT on activated carbons is governed by two types of contributions: physisorption on the microporous network of the carbons and chemisorption. Introduction of surface acidic groups enhanced the performance of the carbons as a result of their specific interactions with DBT. The nature of the acidic groups is a decisive factor in the selectivity of the reactive adsorption process.

  18. Data of microstructure and mechanical properties of carbon foams derived from sucrose/polyacrylamide hydrogel

    Directory of Open Access Journals (Sweden)

    Yao Yao

    2016-06-01

    Full Text Available An easy method that combined gel casting and physical foaming was used to fabricate modified carbon foams. The design of carbon foams from sucrose/polyacrylamide hydrogel is a new concept for controlling the microstructure and improving the compressive properties of carbon foams. This article provides the micrographs obtained from optical and scanning electron microscope for foaming solution and carbon foams. Weight loss data used to construct the thermo-gravimetric curves are included. Load–displacement data constructing the stress–strain curves and the derived compressive properties are also included.

  19. Low carbon fuel and chemical production from waste gases

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, S.; Liew, F.M.; Daniell, J.; Koepke, M. [LanzaTech, Ltd., Auckland (New Zealand)

    2012-07-01

    LanzaTech has developed a gas fermentation platform for the production of alter native transport fuels and commodity chemicals from carbon monoxide, hydrogen and carbon dioxide containing gases. LanzaTech technology uses these gases in place of sugars as the carbon and energy source for fermentation thereby allowing a broad spectrum of resources to be considered as an input for product synthesis. At the core of the Lanzatech process is a proprietary microbe capable of using gases as the only carbon and energy input for product synthesis. To harness this capability for the manufacture of a diverse range of commercially valuable products, the company has developed a robust synthetic biology platform to enable a variety of novel molecules to be synthesised via gas fermentation. LanzaTech initially focused on the fermentation of industrial waste gases for fuel ethanol production. The company has been operating pilot plant that uses direct feeds of steel making off gas for ethanol production for over 24 months. This platform technology has been further successfully demonstrated using a broad range of gas inputs including gasified biomass and reformed natural gas. LanzaTech has developed the fermentation, engineering and control systems necessary to efficiently convert gases to valuable products. A precommercial demonstration scale unit processing steel mill waste gases was commissioned in China during the 2{sup nd} quarter of 2012. Subsequent scale-up of this facility is projected for the 2013 and will represent the first world scale non-food based low carbon ethanol project. More recently LanzaTech has developed proprietary microbial catalysts capable of converting carbon dioxide in the presence of hydrogen directly to value added chemicals, where-in CO{sub 2} is the sole source of carbon for product synthesis. Integrating the LanzaTech technology into a number of industrial facilities, such as steel mills, oil refineries and other industries that emit Carbon bearing

  20. Waste Tire Derived Carbon-Polymer Composite Paper as Pseudocapacitive Electrode with Long Cycle Life

    Energy Technology Data Exchange (ETDEWEB)

    Boota, M. [A. J. Drexel Nanomaterials Institute and Department of Materials Science and Engineering, Drexel University, Philadelphia PA 19104 USA; Paranthaman, M. Parans [Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge Tennessee 37831 USA; The Bredesen Center for Interdisciplinary Research and Graduate Education, The University of Tennessee, Knoxville Tennessee 37996 USA; Naskar, Amit K. [The Bredesen Center for Interdisciplinary Research and Graduate Education, The University of Tennessee, Knoxville Tennessee 37996 USA; Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge Tennessee 37831 USA; Li, Yunchao [Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge Tennessee 37831 USA; The Bredesen Center for Interdisciplinary Research and Graduate Education, The University of Tennessee, Knoxville Tennessee 37996 USA; Akato, Kokouvi [Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge Tennessee 37831 USA; Gogotsi, Y. [A. J. Drexel Nanomaterials Institute and Department of Materials Science and Engineering, Drexel University, Philadelphia PA 19104 USA

    2015-09-25

    Recycling hazardous wastes to produce value-added products is becoming essential for the sustainable progress of our society. Herein, highly porous carbon (1625 m2 g-1) is synthesized using waste tires as the precursor and used as a supercapacitor electrode material. The narrow pore-size distribution and high surface area led to good charge storage capacity, especially when used as a three-dimensional nanoscaffold to polymerize polyaniline (PANI). The composite paper was highly flexible, conductive, and exhibited a capacitance of 480 F g-1 at 1 mV s-1 with excellent capacitance retention of up to 98 % after 10 000 charge/discharge cycles. The high capacitance and long cycle life were ascribed to the short diffusional paths, uniform PANI coating, and tight confinement of the PANI in the inner pores of the tire-derived carbon through π–π interactions, which minimized the degradation of the PANI upon cycling. We anticipate that the same strategy can be applied to deposit other pseudocapacitive materials to achieve even higher electrochemical performance and longer cycle life—a key challenge for redox active polymers.

  1. Waste Tire Derived Carbon-Polymer Composite Paper as Pseudocapacitive Electrode with Long Cycle Life.

    Science.gov (United States)

    Boota, M; Paranthaman, M Parans; Naskar, Amit K; Li, Yunchao; Akato, Kokouvi; Gogotsi, Y

    2015-11-01

    Recycling hazardous wastes to produce value-added products is becoming essential for the sustainable progress of our society. Herein, highly porous carbon (1625 m(2)  g(-1)) is synthesized using waste tires as the precursor and used as a supercapacitor electrode material. The narrow pore-size distribution and high surface area led to good charge storage capacity, especially when used as a three-dimensional nanoscaffold to polymerize polyaniline (PANI). The composite paper was highly flexible, conductive, and exhibited a capacitance of 480 F g(-1) at 1 mV s(-1) with excellent capacitance retention of up to 98% after 10,000 charge/discharge cycles. The high capacitance and long cycle life were ascribed to the short diffusional paths, uniform PANI coating, and tight confinement of the PANI in the inner pores of the tire-derived carbon through π-π interactions, which minimized the degradation of the PANI upon cycling. We anticipate that the same strategy can be applied to deposit other pseudocapacitive materials to achieve even higher electrochemical performance and longer cycle life-a key challenge for redox active polymers. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Combined hydrogen production and storage with subsequent carbon crystallization.

    Science.gov (United States)

    Lueking, Angela D; Gutierrez, Humberto R; Fonseca, Dania A; Narayanan, Deepa L; Van Essendelft, Dirk; Jain, Puja; Clifford, Caroline E B

    2006-06-21

    We provide evidence of low-temperature hydrogen evolution and possible hydrogen trapping in an anthracite coal derivative, formed via reactive ball milling with cyclohexene. No molecular hydrogen is added to the process. Raman-active molecular hydrogen vibrations are apparent in samples at atmospheric conditions (300 K, 1 bar) for samples prepared 1 year previously and stored in ambient air. Hydrogen evolves slowly at room temperature and is accelerated upon sample heating, with a first increase in hydrogen evolution occurring at approximately 60 degrees C. Subsequent chemical modification leads to the observation of crystalline carbons, including nanocrystalline diamond surrounded by graphene ribbons, other sp2-sp3 transition regions, purely graphitic regions, and a previously unidentified crystalline carbon form surrounded by amorphous carbon. The combined evidence for hydrogen trapping and carbon crystallization suggests hydrogen-induced crystallization of the amorphous carbon materials, as metastable hydrogenated carbons formed via the high-energy milling process rearrange into more thermodynamically stable carbon forms and molecular hydrogen.

  3. A microalgae residue based carbon solid acid catalyst for biodiesel production.

    Science.gov (United States)

    Fu, Xiaobo; Li, Dianhong; Chen, Jie; Zhang, Yuanming; Huang, Weiya; Zhu, Yi; Yang, Jun; Zhang, Chengwu

    2013-10-01

    Biodiesel production from microalgae is recognized as one of the best solutions to deal with the energy crisis issues. However, after the oil extraction from the microalgae, the microalgae residue was generally discarded or burned. Here a novel carbon-based solid acid catalyst derived from microalgae residue by in situ hydrothermal partially carbonization were synthesized. The obtained catalyst was characterized and subjected to both the esterification of oleic acid and transesterification of triglyceride to produce biodiesel. The catalyst showed high catalytic activity and can be regenerated while its activity can be well maintained after five cycles.

  4. The production of phytolith-occluded carbon in China's forests: implications to biogeochemical carbon sequestration.

    Science.gov (United States)

    Song, Zhaoliang; Liu, Hongyan; Li, Beilei; Yang, Xiaomin

    2013-09-01

    The persistent terrestrial carbon sink regulates long-term climate change, but its size, location, and mechanisms remain uncertain. One of the most promising terrestrial biogeochemical carbon sequestration mechanisms is the occlusion of carbon within phytoliths, the silicified features that deposit within plant tissues. Using phytolith content-biogenic silica content transfer function obtained from our investigation, in combination with published silica content and aboveground net primary productivity (ANPP) data of leaf litter and herb layer in China's forests, we estimated the production of phytolith-occluded carbon (PhytOC) in China's forests. The present annual phytolith carbon sink in China's forests is 1.7 ± 0.4 Tg CO2  yr(-1) , 30% of which is contributed by bamboo because the production flux of PhytOC through tree leaf litter for bamboo is 3-80 times higher than that of other forest types. As a result of national and international bamboo afforestation and reforestation, the potential of phytolith carbon sink for China's forests and world's bamboo can reach 6.8 ± 1.5 and 27.0 ± 6.1 Tg CO2  yr(-1) , respectively. Forest management practices such as bamboo afforestation and reforestation may significantly enhance the long-term terrestrial carbon sink and contribute to mitigation of global climate warming. © 2013 John Wiley & Sons Ltd.

  5. Aldehydic lipid peroxidation products derived from linoleic acid.

    Science.gov (United States)

    Spiteller, P; Kern, W; Reiner, J; Spiteller, G

    2001-04-30

    Lipid peroxidation (LPO) processes observed in diseases connected with inflammation involve mainly linoleic acid. Its primary LPO products, 9-hydroperoxy-10,12-octadecadienoic acid (9-HPODE) and 13-hydroperoxy-9,11-octadecadienoic acid (13-HPODE), decompose in multistep degradation reactions. These reactions were investigated in model studies: decomposition of either 9-HPODE or 13-HPODE by Fe(2+) catalyzed air oxidation generates (with the exception of corresponding hydroxy and oxo derivatives) identical products in often nearly equal amounts, pointing to a common intermediate. Pairs of carbonyl compounds were recognized by reacting the oxidation mixtures with pentafluorobenzylhydroxylamine. Even if a pure lipid hydroperoxide is subjected to decomposition a great variety of products is generated, since primary products suffer further transformations. Therefore pure primarily decomposition products of HPODEs were exposed to stirring in air with or without addition of iron ions. Thus we observed that primary products containing the structural element R-CH=CH-CH=CH-CH=O add water and then they are cleaved by retroaldol reactions. 2,4-Decadienal is degraded in the absence of iron ions to 2-butenal, hexanal and 5-oxodecanal. Small amounts of buten-1,4-dial were also detected. Addition of m-chloroperbenzoic acid transforms 2,4-decadienal to 4-hydroxy-2-nonenal. 4,5-Epoxy-2-decenal, synthetically available by treatment of 2,4-decadienal with dimethyldioxirane, is hydrolyzed to 4,5-dihydroxy-2-decenal.

  6. Analysis on Availability of the Carbon Element in Alcohol Production

    Institute of Scientific and Technical Information of China (English)

    郭素荣; 蒋大和; 寇刘秀; 陆雍森

    2006-01-01

    According to the concept of circular economy, the mass integration of alcohol production was investigated though the analysis of the carbon element contained in raw material cassava. Through the mass integration, the distillage wastewater turned into carbon resource and produced a great deal of by-product biogas while its chemical oxygen demand (COD) was reduced from 50000 mg/L to not more than 300 mg/L, the local secondary effluent standards, and other by-products such as CO2 (liquidized) and fusel oil were recovered. In the way, the consumption of raw material was only 2.2 tons cassava to produce 1 ton alcohol (96%, ψ) in the case study, much lower than the average level 2.92 t/t in China. The carbon element balance for production of alcohol was made through testing the concentrations of the carbon element of all mass flows. The results showed that the mass integration helped the availability of the carbon element increased from 44.74% to 64.75%.

  7. Eroding forest carbon sinks following thinning for combined fire prevention and bioenergy production

    Science.gov (United States)

    Hudiburg, T. W.; Law, B. E.; Luyssaert, S.

    2010-12-01

    Temperate forest annual net uptake of CO2 from the atmosphere is equivalent to ~16% of the annual fossil fuel emissions in the United States. Mitigation strategies to reduce emissions of carbon dioxide have lead to investigation of alternative sources of energy including forest biomass. The prospect of forest derived bioenergy has led to implementation of new forest management strategies based on the assumption that they will reduce total CO2 emissions to the atmosphere by simultaneously reducing the risk of wildfire and substituting for fossil fuels. Using Forest Inventory Analysis (FIA) plot data, regional supplemental plot data, and remote sensing products we determined the carbon stocks and fluxes of West Coast forests under current and proposed management scenarios for a 20 year treatment period. Varying biofuels thinning treatments designed to meet multiple objectives emphasizing fire prevention, economic gain, or energy production were applied to determine the resulting net carbon balance and bioenergy potential. Contrary to the management objectives, we find that increased removals result in substantial decreases in forest carbon stocks and Net Biome Production (NBP) and increased emissions. Thinning forests for energy production is not carbon neutral. Emissions are estimated to increase over the 20-year period because preventive thinning removals exceed the CO2 that would have been emitted due to wildfires, fossil fuel inputs are required for harvest and manufacturing, and use of woody biomass in short-lived products emits large quantities of CO2 to the atmosphere. It has the net effect of releasing otherwise sequestered carbon to the atmosphere, which may effectively reduce ongoing carbon uptake by forests and as a result, increase net greenhouse gas emissions, undermining the objective of greenhouse gas reductions over the next several decades.

  8. Carbon dioxide production during mechanical ventilation

    DEFF Research Database (Denmark)

    Henneberg, S; Söderberg, D; Groth, T

    1987-01-01

    studied CO2 production (VCO2) and oxygen consumption (VO2) in mechanically ventilated ICU patients, where CO2 stores were altered by: a) changing minute ventilation by 15%, b) reducing body temperature, and c) changing the level of sedation. Expired gases went through a mixing chamber and were analyzed...

  9. Magneto-carbonization method for production of carbon fiber, and high performance carbon fibers made thereby

    Energy Technology Data Exchange (ETDEWEB)

    Naskar, Amit K.; Ozcan, Soydan; Eberle, Claude C.; Abdallah, Mohamed Gabr; Mackiewicz, Ludtka Gail; Ludtka, Gerard Michael; Paulauskas, Felix Leonard; Rivard, John Daniel Kennedy

    2017-08-08

    Method for the preparation of carbon fiber from fiber precursor, wherein the fiber precursor is subjected to a magnetic field of at least 3 Tesla during a carbonization process. The carbonization process is generally conducted at a temperature of at least 400.degree. C. and less than 2200.degree. C., wherein, in particular embodiments, the carbonization process includes a low temperature carbonization step conducted at a temperature of at least or above 400.degree. C. or 500.degree. C. and less than or up to 1000.degree. C., 1100.degree. C., or 1200.degree. C., followed by a high temperature carbonization step conducted at a temperature of at least or above 1200.degree. C. In particular embodiments, particularly in the case of a polyacrylonitrile (PAN) fiber precursor, the resulting carbon fiber may possess a minimum tensile strength of at least 600 ksi, a tensile modulus of at least 30 Msi, and an ultimate elongation of at least 1.5%.

  10. Biological productivity and carbon cycling in the Arctic Ocean

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Primary production, bacterial production, particulate organic carbon fluxes and organic carbon burial rates were quantified during the summer period of 1999 in the Arctic Ocean via 14C uptake, 3H uptake, 234Th/238U disequilibrium and 210Pbex dating, respectively. The integrated primary production in the water column was as high as 197 mmolC/(m2@d) in the Chukchi shelf and was 3.8 mmolC/(m2@d) in the Canada Basin. These rates are higher than those reported previously. The ratios of bacterial production to primary production in the study region were higher than 0.5, indicating that microbial activity is not depressed but important in cold Arctic waters. 234Th/238U disequilibria were evident at the station in the Canada Basin. The presence of significant 234Th deficiency suggested that scavenging and removal processes are also important to biogeochemical cycles of trace elements in the Arctic Ocean. Particulate organic carbon export flux was estimated to be 1.0 mmolC/(m2@d). Measurements of sediment excess 210Pb profile in the Chukchi shelf allowed us to estimate the amount of organic carbon buried in the bottom sediment, which ranged from 25 to 35 mmolC/(m2@d) and represented about 59%-82% of the mean primary production in the euphotic zone. Overall, our results indicated that the Arctic Ocean has active carbon cycling and is not a biological desert as previously believed. Therefore, the Arctic Ocean may play an important role in the global carbon cycle and climate change.

  11. Carbon nano structures: Production and characterization

    Science.gov (United States)

    Beig Agha, Rosa

    L'objectif de ce memoire est de preparer et de caracteriser des nanostructures de carbone (CNS -- Carbon Nanostructures, en licence a l'Institut de recherche sur l'hydrogene, Quebec, Canada), un carbone avec un plus grand degre de graphitisation et une meilleure porosite. Le Chapitre 1 est une description generale des PEMFCs (PEMFC -- Polymer Electrolyte Membrane Fuel Cell) et plus particulierement des CNS comme support de catalyseurs, leur synthese et purification. Le Chapitre 2 decrit plus en details la methode de synthese et la purification des CNS, la theorie de formation des nanostructures et les differentes techniques de caracterisation que nous avons utilises telles que la diffraction aux rayons-X (XRD -- X-ray diffraction), la microscopie electronique a transmission (TEM -- transmission electron microscope ), la spectroscopie Raman, les isothermes d'adsorption d'azote a 77 K (analyse BET, t-plot, DFT), l'intrusion au mercure, et l'analyse thermogravimetrique (TGA -- thermogravimetric analysis). Le Chapitre 3 presente les resultats obtenus a chaque etape de la synthese des CNS et avec des echantillons produits a l'aide d'un broyeur de type SPEXRTM (SPEX/CertiPrep 8000D) et d'un broyeur de type planetaire (Fritsch Pulverisette 5). La difference essentielle entre ces deux types de broyeur est la facon avec laquelle les materiaux sont broyes. Le broyeur de type SPEX secoue le creuset contenant les materiaux et des billes d'acier selon 3 axes produisant ainsi des impacts de tres grande energie. Le broyeur planetaire quant a lui fait tourner et deplace le creuset contenant les materiaux et des billes d'acier selon 2 axes (plan). Les materiaux sont donc broyes differemment et l'objectif est de voir si les CNS produits ont les memes structures et proprietes. Lors de nos travaux nous avons ete confrontes a un probleme majeur. Nous n'arrivions pas a reproduire les CNS dont la methode de synthese a originellement ete developpee dans les laboratoires de l'Institut de

  12. Calcium Carbonate Production by Coccolithophorid Alge in Long Term Carbon Dioxide Sequestration

    Energy Technology Data Exchange (ETDEWEB)

    V. J. Fabry

    2006-09-30

    Predictions of increasing levels of anthropogenic carbon dioxide (CO{sub 2}) and the specter of global warming have intensified research efforts to identify ways to sequester carbon. A number of novel avenues of research are being considered, including bioprocessing methods to promote and accelerate biosequestration of CO{sub 2} from the environment through the growth of organisms such as coccolithophorids, which are capable of sequestering CO{sub 2} relatively permanently. Calcium and magnesium carbonates are currently the only proven, long-term storage reservoirs for carbon. Whereas organic carbon is readily oxidized and releases CO{sub 2} through microbial decomposition on land and in the sea, carbonates can sequester carbon over geologic time scales. This proposal investigates the use of coccolithophorids--single-celled, marine algae that are the major global producers of calcium carbonate--to sequester CO{sub 2} emissions from power plants. Cultivation of coccolithophorids for calcium carbonate (CaCO{sub 3}) precipitation is environmentally benign and results in a stable product with potential commercial value. Because this method of carbon sequestration does not impact natural ecosystem dynamics, it avoids controversial issues of public acceptability and legality associated with other options such as direct injection of CO{sub 2} into the sea and ocean fertilization. Consequently, cultivation of coccolithophorids could be carried out immediately and the amount of carbon sequestered as CaCO{sub 3} could be readily quantified. The significant advantages of this approach warrant its serious investigation. The major goals of the proposed research are to identify the growth conditions that will result in the maximum amount of CO{sub 2} sequestration through coccolithophorid calcite production and to evaluate the costs/benefits of using coccolithophorid cultivation ponds to abate CO{sub 2} emissions from power plants.

  13. CALCIUM CARBONATE PRODUCTION BY COCCOLITHOPHORID ALGAE IN LONG TERM, CARBON DIOXIDE SEQUESTRATION

    Energy Technology Data Exchange (ETDEWEB)

    V.J. Fabry

    2004-10-30

    Predictions of increasing levels of anthropogenic carbon dioxide (CO{sub 2}) and the specter of global warming have intensified research efforts to identify ways to sequester carbon. A number of novel avenues of research are being considered, including bioprocessing methods to promote and accelerate biosequestration of CO{sub 2} from the environment through the growth of organisms such as coccolithophorids, which are capable of sequestering CO{sub 2} relatively permanently. Calcium and magnesium carbonates are currently the only proven, long-term storage reservoirs for carbon. Whereas organic carbon is readily oxidized and releases CO{sub 2} through microbial decomposition on land and in the sea, carbonates can sequester carbon over geologic time scales. This proposal investigates the use of coccolithophorids--single-celled, marine algae that are the major global producers of calcium carbonate--to sequester CO{sub 2} emissions from power plants. Cultivation of coccolithophorids for calcium carbonate (CaCO{sub 3}) precipitation is environmentally benign and results in a stable product with potential commercial value. Because this method of carbon sequestration does not impact natural ecosystem dynamics, it avoids controversial issues of public acceptability and legality associated with other options such as direct injection of CO{sub 2} into the sea and ocean fertilization. Consequently, cultivation of coccolithophorids could be carried out immediately and the amount of carbon sequestered as CaCO{sub 3} could be readily quantified. The significant advantages of this approach warrant its serious investigation. The major goals of the proposed research are to identify the growth conditions that will result in the maximum amount of CO{sub 2} sequestration through coccolithophorid calcite production and to evaluate the costs/benefits of using coccolithophorid cultivation ponds or bioreactors to abate CO{sub 2} emissions from power plants.

  14. CALCIUM CARBONATE PRODUCTION BY COCCOLITHOPHORID ALGAE IN LONG TERM CARBON DIOXIDE SEQUESTRATION

    Energy Technology Data Exchange (ETDEWEB)

    V. J. Fabry

    2003-10-30

    Predictions of increasing levels of anthropogenic carbon dioxide (CO{sub 2}) and the specter of global warming have intensified research efforts to identify ways to sequester carbon. A number of novel avenues of research are being considered, including bioprocessing methods to promote and accelerate biosequestration of CO{sub 2} from the environment through the growth of organisms such as coccolithophorids, which are capable of sequestering CO{sub 2} relatively permanently. Calcium and magnesium carbonates are currently the only proven, long-term storage reservoirs for carbon. Whereas organic carbon is readily oxidized and releases CO{sub 2} through microbial decomposition on land and in the sea, carbonates can sequester carbon over geologic time scales. This proposal investigates the use of coccolithophorids--single-celled, marine algae that are the major global producers of calcium carbonate--to sequester CO{sub 2} emissions from power plants. Cultivation of coccolithophorids for calcium carbonate (CaCO{sub 3}) precipitation is environmentally benign and results in a stable product with potential commercial value. Because this method of carbon sequestration does not impact natural ecosystem dynamics, it avoids controversial issues of public acceptability and legality associated with other options such as direct injection of CO{sub 2} into the sea and ocean fertilization. Consequently, cultivation of coccolithophorids could be carried out immediately and the amount of carbon sequestered as CaCO{sub 3} could be readily quantified. The significant advantages of this approach warrant its serious investigation. The major goals of the proposed research are to identify the growth conditions that will result in the maximum amount of CO{sub 2} sequestration through coccolithophorid calcite production and to evaluate the costs/benefits of using coccolithophorid cultivation ponds or bioreactors to abate CO{sub 2} emissions from power plants.

  15. CALCIUM CARBONATE PRODUCTION BY COCCOLITHAPHORID ALGAE IN LONG TERM, CARBON DIOXIDE SEQUESTRATION

    Energy Technology Data Exchange (ETDEWEB)

    V. J.Fabry

    2004-01-30

    Predictions of increasing levels of anthropogenic carbon dioxide (CO{sub 2}) and the specter of global warming have intensified research efforts to identify ways to sequester carbon. A number of novel avenues of research are being considered, including bioprocessing methods to promote and accelerate biosequestration of CO{sub 2} from the environment through the growth of organisms such as coccolithophorids, which are capable of sequestering CO{sub 2} relatively permanently. Calcium and magnesium carbonates are currently the only proven, long-term storage reservoirs for carbon. Whereas organic carbon is readily oxidized and releases CO{sub 2} through microbial decomposition on land and in the sea, carbonates can sequester carbon over geologic time scales. This proposal investigates the use of coccolithophorids--single-celled, marine algae that are the major global producers of calcium carbonate--to sequester CO{sub 2} emissions from power plants. Cultivation of coccolithophorids for calcium carbonate (CaCO{sub 3}) precipitation is environmentally benign and results in a stable product with potential commercial value. Because this method of carbon sequestration does not impact natural ecosystem dynamics, it avoids controversial issues of public acceptability and legality associated with other options such as direct injection of CO{sub 2} into the sea and ocean fertilization. Consequently, cultivation of coccolithophorids could be carried out immediately and the amount of carbon sequestered as CaCO{sub 3} could be readily quantified. The significant advantages of this approach warrant its serious investigation. The major goals of the proposed research are to identify the growth conditions that will result in the maximum amount of CO{sub 2} sequestration through coccolithophorid calcite production and to evaluate the costs/benefits of using coccolithophorid cultivation ponds to abate CO{sub 2} emissions from power plants.

  16. CALCIUM CARBONATE PRODUCTION BY COCCOLITHOPHORID ALGAE IN LONG TERM, CARBON DIOXIDE SEQUESTRATION

    Energy Technology Data Exchange (ETDEWEB)

    V.J. Fabry

    2004-04-26

    Predictions of increasing levels of anthropogenic carbon dioxide (CO{sub 2}) and the specter of global warming have intensified research efforts to identify ways to sequester carbon. A number of novel avenues of research are being considered, including bioprocessing methods to promote and accelerate biosequestration of CO{sub 2} from the environment through the growth of organisms such as coccolithophorids, which are capable of sequestering CO{sub 2} relatively permanently. Calcium and magnesium carbonates are currently the only proven, long-term storage reservoirs for carbon. Whereas organic carbon is readily oxidized and releases CO{sub 2} through microbial decomposition on land and in the sea, carbonates can sequester carbon over geologic time scales. This proposal investigates the use of coccolithophorids single-celled, marine algae that are the major global producers of calcium carbonate to sequester CO{sub 2} emissions from power plants. Cultivation of coccolithophorids for calcium carbonate (CaCO{sub 3}) precipitation is environmentally benign and results in a stable product with potential commercial value. Because this method of carbon sequestration does not impact natural ecosystem dynamics, it avoids controversial issues of public acceptability and legality associated with other options such as direct injection of CO{sub 2} into the sea and ocean fertilization. Consequently, cultivation of coccolithophorids could be carried out immediately and the amount of carbon sequestered as CaCO{sub 3} could be readily quantified. The significant advantages of this approach warrant its serious investigation. The major goals of the proposed research are to identify the growth conditions that will result in the maximum amount of CO{sub 2} sequestration through coccolithophorid calcite production and to evaluate the costs/benefits of using coccolithophorid cultivation ponds to abate CO{sub 2} emissions from power plants.

  17. 3D hybrid-porous carbon derived from carbonization of metal organic frameworks for high performance supercapacitors

    Science.gov (United States)

    Bao, Weizhai; Mondal, Anjon Kumar; Xu, Jing; Wang, Chengyin; Su, Dawei; Wang, Guoxiu

    2016-09-01

    We report a rational design and synthesis of 3D hybrid-porous carbon with a hierarchical pore architecture for high performance supercapacitors. It contains micropores (<2 nm diameter) and mesopores (2-4 nm), derived from carbonization of unique porous metal organic frameworks (MOFs). Owning to the synergistic effect of micropores and mesopores, the hybrid-porous carbon has exceptionally high ion-accessible surface area and low ion diffusion resistance, which is desired for supercapacitor applications. When applied as electrode materials in supercapacitors, 3D hybrid-porous carbon demonstrates a specific capacitance of 332 F g-1 at a constant charge/discharge current of 500 mA g-1. The supercapacitors can endure more than 10,000 cycles without degradation of capacitance.

  18. Carbon footprint and ammonia emissions of California beef production systems.

    Science.gov (United States)

    Stackhouse-Lawson, K R; Rotz, C A; Oltjen, J W; Mitloehner, F M

    2012-12-01

    Beef production is a recognized source of greenhouse gas (GHG) and ammonia (NH(3)) emissions; however, little information exists on the net emissions from beef production systems. A partial life cycle assessment (LCA) was conducted using the Integrated Farm System Model (IFSM) to estimate GHG and NH(3) emissions from representative beef production systems in California. The IFSM is a process-level farm model that simulates crop growth, feed production and use, animal growth, and the return of manure nutrients back to the land to predict the environmental impacts and economics of production systems. Ammonia emissions are determined by summing the emissions from animal housing facilities, manure storage, field applied manure, and direct deposits of manure on pasture and rangeland. All important sources and sinks of methane, nitrous oxide, and carbon dioxide are predicted from primary and secondary emission sources. Primary sources include enteric fermentation, manure, cropland used in feed production, and fuel combustion. Secondary emissions occur during the production of resources used on the farm, which include fuel, electricity, machinery, fertilizer, and purchased animals. The carbon footprint is the net exchange of all GHG in carbon dioxide equivalent (CO(2)e) units per kg of HCW produced. Simulated beef production systems included cow-calf, stocker, and feedlot phases for the traditional British beef breeds and calf ranch and feedlot phases for Holstein steers. An evaluation of differing production management strategies resulted in ammonia emissions ranging from 98 ± 13 to 141 ± 27 g/kg HCW and carbon footprints of 10.7 ± 1.4 to 22.6 ± 2.0 kg CO(2)e/kg HCW. Within the British beef production cycle, the cow-calf phase was responsible for 69 to 72% of total GHG emissions with 17 to 27% from feedlot sources. Holstein steers that entered the beef production system as a by-product of dairy production had the lowest carbon footprint because the emissions

  19. Production Scale-Up or Activated Carbons for Ultracapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Steven D. Dietz

    2007-01-10

    Transportation use accounts for 67% of the petroleum consumption in the US. Electric and hybrid vehicles are promising technologies for decreasing our dependence on petroleum, and this is the objective of the FreedomCAR & Vehicle Technologies Program. Inexpensive and efficient energy storage devices are needed for electric and hybrid vehicle to be economically viable, and ultracapacitors are a leading energy storage technology being investigated by the FreedomCAR program. The most important parameter in determining the power and energy density of a carbon-based ultracapacitor is the amount of surface area accessible to the electrolyte, which is primarily determined by the pore size distribution. The major problems with current carbons are that their pore size distribution is not optimized for liquid electrolytes and the best carbons are very expensive. TDA Research, Inc. (TDA) has developed methods to prepare porous carbons with tunable pore size distributions from inexpensive carbohydrate based precursors. The use of low-cost feedstocks and processing steps greatly lowers the production costs. During this project with the assistance of Maxwell Technologies, we found that an impurity was limiting the performance of our carbon and the major impurity found was sulfur. A new carbon with low sulfur content was made and found that the performance of the carbon was greatly improved. We also scaled-up the process to pre-production levels and we are currently able to produce 0.25 tons/year of activated carbon. We could easily double this amount by purchasing a second rotary kiln. More importantly, we are working with MeadWestvaco on a Joint Development Agreement to scale-up the process to produce hundreds of tons of high quality, inexpensive carbon per year based on our processes.

  20. Tracking urban carbon footprints from production and consumption perspectives

    Science.gov (United States)

    Lin, Jianyi; Hu, Yuanchao; Cui, Shenghui; Kang, Jiefeng; Ramaswami, Anu

    2015-05-01

    Cities are hotspots of socio-economic activities and greenhouse gas emissions. The aim of this study was to extend the research range of the urban carbon footprint (CF) to cover emissions embodied in products traded among regions and intra-city sectors. Using Xiamen City as a study case, the total urban-related emissions were evaluated, and the carbon flows among regions and intra-city sectors were tracked. Then five urban CF accountings were evaluated, including purely geographic accounting (PGA), community-wide infrastructure footprint (CIF), and consumption-based footprint (CBF) methods, as well as the newly defined production-based footprint (PBF) and purely production footprint (PPF). Research results show that the total urban-related emissions of Xiamen City in 2010 were 55.2 Mt CO2e/y, of which total carbon flow among regions or intra-city sectors accounted for 53.7 Mt CO2e/y. Within the total carbon flow, import and export respectively accounted for 59 and 65%, highlighting the importance of emissions embodied in trade. By regional trade balance, North America and Europe were the largest net carbon exported-to regions, and Mainland China and Taiwan the largest net carbon imported-from regions. Among intra-sector carbon flows, manufacturing was the largest emission-consuming sector of the total urban carbon flow, accounting for 77.4, and 98% of carbon export was through industrial products trade. By the PBF, PPF, CIF, PGA and CBF methods, the urban CFs were respectively 53.7 Mt CO2e/y, 44.8 Mt CO2e/y, 28.4 Mt CO2e/y, 23.7 Mt CO2e/y, and 19.0 Mt CO2e/y, so all of the other four CFs were higher than the CBF. All of these results indicate that urban carbon mitigation must consider the supply chain management of imported goods, the production efficiency within the city, the consumption patterns of urban consumers, and the responsibility of the ultimate consumers outside the city.

  1. Online Assessment of Satellite-Derived Global Precipitation Products

    Science.gov (United States)

    Liu, Zhong; Ostrenga, D.; Teng, W.; Kempler, S.

    2012-01-01

    Precipitation is difficult to measure and predict. Each year droughts and floods cause severe property damages and human casualties around the world. Accurate measurement and forecast are important for mitigation and preparedness efforts. Significant progress has been made over the past decade in satellite precipitation product development. In particular, products' spatial and temporal resolutions as well as timely availability have been improved by blended techniques. Their resulting products are widely used in various research and applications. However biases and uncertainties are common among precipitation products and an obstacle exists in quickly gaining knowledge of product quality, biases and behavior at a local or regional scale, namely user defined areas or points of interest. Current online inter-comparison and validation services have not addressed this issue adequately. To address this issue, we have developed a prototype to inter-compare satellite derived daily products in the TRMM Online Visualization and Analysis System (TOVAS). Despite its limited functionality and datasets, users can use this tool to generate customized plots within the United States for 2005. In addition, users can download customized data for further analysis, e.g. comparing their gauge data. To meet increasing demands, we plan to increase the temporal coverage and expanded the spatial coverage from the United States to the globe. More products have been added as well. In this poster, we present two new tools: Inter-comparison of 3B42RT and 3B42 Inter-comparison of V6 and V7 TRMM L-3 monthly products The future plans include integrating IPWG (International Precipitation Working Group) Validation Algorithms/statistics, allowing users to generate customized plots and data. In addition, we will expand the current daily products to monthly and their climatology products. Whenever the TRMM science team changes their product version number, users would like to know the differences by

  2. Deep plant-derived carbon storage in Amazonian podzols

    Directory of Open Access Journals (Sweden)

    C. R. Montes

    2010-10-01

    Full Text Available Equatorial podzols are soils characterized by thick sandy horizons overlying more clayey horizons. Organic matter produced in the topsoil is transferred in depth through the sandy horizons and accumulate at the transition, at a depth varying from 1 to more than 3 m, forming deep horizons rich in organic matter (Bh horizons. Although they cover great surfaces in the equatorial zone, these soils are still poorly known. Studying podzols from Amazonia, we found out that the deep Bh horizons in poorly drained podzol areas have a thickness higher than 1 m and store unexpected amounts of carbon. The average for the studied area was 66.7 ± 5.8 kg C m−2 for the deep Bh and 86.8 ± 7.1 kg C m−2 for the whole profile. Extrapolating to the podzol areas of the whole Amazonian Basin has been possible thanks to digital maps, giving an order of magnitude around 13.6 ± 1.1 Pg C, at least 12.3 Pg C higher than previous estimates. This assessment should be refined by additional investigations, not only in Amazonia but in all equatorial areas where podzols have been identified. Because of the lack of knowledge on the quality and behaviour of the podzol organic matter, the question of the feedback between the climate and the equatorial podzol carbon cycle is open.

  3. Improvements in Production of Single-Walled Carbon Nanotubes

    Science.gov (United States)

    Balzano, Leandro; Resasco, Daniel E.

    2009-01-01

    A continuing program of research and development has been directed toward improvement of a prior batch process in which single-walled carbon nanotubes are formed by catalytic disproportionation of carbon monoxide in a fluidized-bed reactor. The overall effect of the improvements has been to make progress toward converting the process from a batch mode to a continuous mode and to scaling of production to larger quantities. Efforts have also been made to optimize associated purification and dispersion post processes to make them effective at large scales and to investigate means of incorporating the purified products into composite materials. The ultimate purpose of the program is to enable the production of high-quality single-walled carbon nanotubes in quantities large enough and at costs low enough to foster the further development of practical applications. The fluidized bed used in this process contains mixed-metal catalyst particles. The choice of the catalyst and the operating conditions is such that the yield of single-walled carbon nanotubes, relative to all forms of carbon (including carbon fibers, multi-walled carbon nanotubes, and graphite) produced in the disproportionation reaction is more than 90 weight percent. After the reaction, the nanotubes are dispersed in various solvents in preparation for end use, which typically involves blending into a plastic, ceramic, or other matrix to form a composite material. Notwithstanding the batch nature of the unmodified prior fluidized-bed process, the fluidized-bed reactor operates in a continuous mode during the process. The operation is almost entirely automated, utilizing mass flow controllers, a control computer running software specific to the process, and other equipment. Moreover, an important inherent advantage of fluidized- bed reactors in general is that solid particles can be added to and removed from fluidized beds during operation. For these reasons, the process and equipment were amenable to

  4. Photochemical production of carbon disulphide in seawater

    Science.gov (United States)

    Xie, Huixiang; Moore, Robert M.; Miller, William L.

    1998-03-01

    It is generally accepted that the ocean is an important source for atmospheric CS2, which makes a major contribution to the formation of COS in the atmosphere. The processes producing CS2 in seawater, however, are essentially unknown. We report for the first time to our knowledge that marine photochemical reactions are identified as a significant source for oceanic CS2. Apparent quantum yield spectra of CS2 production were obtained using water samples collected in the northeast Atlantic. Results indicate that it is mainly UV solar radiation (290-340 nm) which is responsible for CS2 photoproduction. The photoproduction rate of CS2 is positively correlated with absorbance at 350 nm, suggesting that the reactions are mediated by chromophoric dissolved organic matter (CDOM). Laboratory irradiations have confirmed that cysteine and cystine are efficient precursors of CS2 and that OH radicals are likely to be important intermediates. Both the field survey and laboratory work point to similar mechanisms for photochemical production of CS2 and COS in marine waters. A CS2 production rate of 0.49 Tg yr-1 for the world oceans has been estimated using the quantum yield spectra from this work and the sea surface light field provided by Leifer [1988]. This estimate is of the same order of magnitude as the present estimate of the CS2 flux from the ocean to the atmosphere based on surface saturation and wind speed.

  5. Methane-derived authigenic carbonates from the northern Gulf of Mexico - MD02 Cruise

    Science.gov (United States)

    Chen, Y.; Matsumoto, R.; Paull, C.K.; Ussler, W.; Lorenson, T.; Hart, P.; Winters, W.

    2007-01-01

    Authigenic carbonates were sampled in piston cores collected from both the Tunica Mound and the Mississippi Canyon area on the continental slope of the northern Gulf of Mexico during a Marion Dufresne cruise in July 2002. The carbonates are present as hardgrounds, porous crusts, concretions or nodules and shell fragments with or without carbonate cements. Carbonates occurred at gas venting sites which are likely to overlie gas hydrates bearing sediments. Electron microprobe, X-ray diffraction (XRD) and thinsection investigations show that these carbonates are high-Mg calcite (6-21??mol% MgCO3), with significant presence of framboidal pyrite. All carbonates are depleted in 13C (??13C = - 61.9 to - 31.5??? PDB) indicating that the carbon is derived mainly from anaerobic methane oxidation (AMO). Age estimates based on 14C dating of shell fragments and on regional sedimentation rates indicate that these authigenic carbonates formed within the last 1000??yr in the Mississippi Canyon and within 5500??yr at the Tunica Mound. The oxygen isotopic composition of carbonates ranges from + 3.4 to + 5.9??? PDB. Oxygen isotopic compositions and Mg2+ contents of carbonates, and present in-situ temperatures of bottom seawater/sediments, show that some of these carbonates, especially from a core associated with underlying massive gas hydrates precipitated in or near equilibrium with bottom-water. On the other hand, those carbonates more enriched in 18O are interpreted to have precipitated from 18O-rich fluids which are thought to have been derived from the dissociation of gas hydrates. The dissociation of gas hydrates in the northern Gulf of Mexico within the last 5500??yr may be caused by nearby salt movement and related brines. ?? 2007 Elsevier B.V. All rights reserved.

  6. Using Carbon Isotopes in Cenozoic Soil Carbonates to Quantify Primary Productivity from Mid-Latitude Regions

    Science.gov (United States)

    Caves, J. K.; Kramer, S. H.; Ibarra, D. E.; Chamberlain, C. P.

    2015-12-01

    The carbon isotope composition of pedogenic carbonates (δ13Ccarb) from paleosols has been extensively used as a proxy to estimate atmospheric pCO2 over the Phanerozoic. However, a number of other factors - including the concentration of plant-respired CO2 and the isotopic composition of both atmospheric and plant-respired carbon - influence the δ13C of pedogenic carbonates. For example, δ13Ccarb records from the mid-latitudes in central Asia and western North America show increasing trends in δ13Ccarb despite decreasing pCO2 during the late Cenozoic, which suggests that other factors play an important role in determining the isotopic composition of pedogenic carbonates. Instead, we suggest that these records are primarily recording changes in primary productivity rather than changes in atmospheric pCO2 and therefore propose a novel use of paleosol carbonate records to understand paleo-ecosystem dynamics. Here, we compile existing paleosol carbonate records, and present three new records from Wyoming, to estimate soil respiration and primary productivity in western North America during the Paleogene and early Neogene. We observe both an overall increase in δ13Ccarb after the early Eocene, and spatially heterogeneous δ13Ccarb values across western US basins. We combine this δ13Ccarb data with compilations of atmospheric pCO2 to estimate soil respiration and plant productivity. The long-term increase in δ13Ccarb indicates a decrease in plant productivity as conditions became more arid across much of the western US, congruent with both records of regional uplift and of global cooling. Furthermore, significant spatial heterogeneity in δ13Ccarb indicates that regional factors, such as the presence of paleolakes and/or local paleotopography may have provided a second-order control on local and regional productivity. Thus, our results provide a first-order estimate linking changes in primary productivity with regional tectonics and global climatic change.

  7. CO2碳酸化石灰岩酸解产物回收乙酸及副产沉淀碳酸钙%CO2 carbonation of calcium acetate derived from acidolysis of natural CaCO3 for recycling of acetic acid and production of precipitated calcium carbonate

    Institute of Scientific and Technical Information of China (English)

    杨政; 岳海荣; 周向葛; 梁斌; 谢和平

    2014-01-01

    Acetic acid dissolution of limestone for formation of cavity is a kind of environmental approach to fabricating underground storage and preparing precipitated calcium carbonate. This process is an integrated technology consisting of acetic acid dissolution of limestone and CO2 carbonation of calcium acetate. The kinetics of limestone acidolysis with acetic acid was investigated. Orthogonal experiments were conducted with emphasis on operation conditions (i.e., concentration of calcium acetate, pressure of CO2, reaction temperature, and reaction time) of the carbonation reaction. The highest conversion of calcium acetate (23.13%) was achieved at the calcium acetate concentration of 0.631 mol·L-1, CO2 pressure of 5 MPa, reaction temperature of 80℃ and reaction for 50 min. The product of calcium carbonate was analyzed and could meet the requirements of Chinese national standard.%乙酸酸解石灰石造腔是一种建造地下储库同时环保地开采石灰岩制备沉淀碳酸钙的新方法。通过耦合乙酸酸解石灰石及酸解产物乙酸钙 CO2碳酸化的工艺过程,研究了乙酸酸解石灰岩的表面反应动力学和乙酸钙 CO2碳酸化的工艺技术条件。采用正交实验分析法,研究了CO2碳酸化反应中乙酸钙浓度、反应温度、CO2压力、反应时间对乙酸钙碳酸化反应制沉淀碳酸钙的影响,并通过正交实验确定了最优化操作条件。实验结果表明,乙酸酸解反应速率主要受乙酸浓度控制。CO2碳酸化反应在当乙酸钙溶液浓度为0.631 mol·L-1,CO2压力为5.0 MPa,温度为80℃,反应时间为50 min时CO2碳酸化效率达到最高(23.13%),生成的沉淀碳酸钙产品各项指标均符合中国国标优级要求。

  8. A Carbon Arc Apparatus For Production Of Nanotubes In Microgravity

    Science.gov (United States)

    Alford, J. M.; Mason, G. R.; Feikema, D. A.

    2003-01-01

    Although many methods are available for production of single-walled carbon nanotubes (SWNTs), the conventional carbon arc process remains the most popular due to its simplicity and large production rate. However, high temperatures inside the carbon arc generate strong buoyancy driven convection, and it is hypothesized that the non-uniform environment created by this flow will have large effects on the growth and morphology of SWNTs produced by the arc process. Indeed, using normal gravity experiments, Marin et al. have demonstrated that changes in the buoyant convection plume produced by altering the arc electrode orientation can be used to change the diameter distribution of the SWNTs produced; an effect they attribute to changes in the temperature of the local nanotube growth environment. While these experiments present convincing evidence that buoyant convection has a strong effect on nanotube growth, normal gravity experiments are severely limited in scope. The ideal way to study the effect of buoyancy on SWNT production is to remove it completely. Toward this goal, a microgravity carbon arc reactor has been designed for use in the NASA Glenn 2.2 and 5 second drop towers. Although simple in principle, conventional carbon arc machines, which generally employ large reaction chambers and require heavy duty welding power supplies capable of supplying kilowatts of power, are not suitable for microgravity experiments. Here we describe a miniature carbon arc machine for SWNT production that fits into a conventional drop rig for use on the NASA Glenn 2.2 and 5 second drop towers, but that has a performance (production rate) that is better than most large ground-based machines.

  9. Waste polyvinylchloride derived pitch as a precursor to develop carbon fibers and activated carbon fibers.

    Science.gov (United States)

    Qiao, W M; Yoon, S H; Mochida, I; Yang, J H

    2007-01-01

    Polyvinylchloride (PVC) was successfully recycled through the solvent extraction from waste pipe with an extraction yield of ca. 86%. The extracted PVC was pyrolyzed by a two-stage process (260 and 410 degrees C) to obtain free-chlorine PVC based pitch through an effective removal of chlorine from PVC during the heat-treatment. As-prepared pitch (softening point: 220 degrees C) was spun, stabilized, carbonized into carbon fibers (CFs), and further activated into activated carbon fibers (ACFs) in a flow of CO2. As-prepared CFs show comparable mechanical properties to commercial CFs, whose maximum tensile strength and modulus are 862 MPa and 62 GPa, respectively. The resultant ACFs exhibit a high surface area of 1200 m2/g, narrow pore size distribution and a low oxygen content of 3%. The study provides an effective insight to recycle PVC from waste PVC and develop a carbon precursor for high performance carbon materials such as CFs and ACFs.

  10. Monolithic carbide-derived carbon films for micro-supercapacitors.

    Science.gov (United States)

    Chmiola, John; Largeot, Celine; Taberna, Pierre-Louis; Simon, Patrice; Gogotsi, Yury

    2010-04-23

    Microbatteries with dimensions of tens to hundreds of micrometers that are produced by common microfabrication techniques are poised to provide integration of power sources onto electronic devices, but they still suffer from poor cycle lifetime, as well as power and temperature range of operation issues that are alleviated with the use of supercapacitors. There have been a few reports on thin-film and other micro-supercapacitors, but they are either too thin to provide sufficient energy or the technology is not scalable. By etching supercapacitor electrodes into conductive titanium carbide substrates, we demonstrate that monolithic carbon films lead to a volumetric capacity exceeding that of micro- and macroscale supercapacitors reported thus far, by a factor of 2. This study also provides the framework for integration of high-performance micro-supercapacitors onto a variety of devices.

  11. Structural Analysis of Novel Lignin-derived Carbon Composite Anodes

    Energy Technology Data Exchange (ETDEWEB)

    McNutt, Nicholas W [ORNL; Rios, Orlando [ORNL; Feygenson, Mikhail [ORNL; Proffen, Thomas E [ORNL; Keffer, David J [ORNL

    2014-01-01

    The development of novel lignin-based carbon composite anodes consisting of nanocrystalline and amorphous domains motivates the understanding of a relationship of the structural properties characterizing these materials, such as crystallite size, intracrystallite dspacing, crystalline volume fraction and composite density, with their pair distribution functions (PDF), obtained from both molecular dynamics simulation and neutron scattering. A model for these composite materials is developed as a function of experimentally measurable parameters and realized in fifteen composite systems, three of which directly match all parameters of their experimental counterparts. The accurate reproduction of the experimental PDFs using the model systems validates the model. The decomposition of the simulated PDFs provides an understanding of each feature in the PDF and allows for the development of a mapping between the defining characteristics of the PDF and the material properties of interest.

  12. Preparation of porous carbon nanofibers derived from PBI/PLLA for supercapacitor electrodes

    Science.gov (United States)

    Jung, Kyung-Hye; Ferraris, John P.

    2016-10-01

    Porous carbon nanofibers were prepared by electrospinning blend solutions of polybenzimidazole/poly-L-lactic acid (PBI/PLLA) and carbonization. During thermal treatment, PLLA was decomposed, resulting in the creation of pores in the carbon nanofibers. From SEM images, it is shown that carbon nanofibers had diameters in the range of 100-200 nm. The conversion of PBI to carbon was confirmed by Raman spectroscopy, and the surface area and pore volume of carbon nanofibers were determined using nitrogen adsorption/desorption analyses. To investigate electrochemical performances, coin-type cells were assembled using free-standing carbon nanofiber electrodes and ionic liquid electrolyte. cyclic voltammetry studies show that the PBI/PLLA-derived porous carbon nanofiber electrodes have higher capacitance due to lower electrochemical impedance compared to carbon nanofiber electrode from PBI only. These porous carbon nanofibers were activated using ammonia for further porosity improvement and annealed to remove the surface functional groups to better match the polarity of electrode and electrolyte. Ragone plots, correlating energy density with power density calculated from galvanostatic charge-discharge curves, reveal that activation/annealing further improves energy and power densities.

  13. Preparation of porous carbon nanofibers derived from PBI/PLLA for supercapacitor electrodes.

    Science.gov (United States)

    Jung, Kyung-Hye; Ferraris, John P

    2016-10-21

    Porous carbon nanofibers were prepared by electrospinning blend solutions of polybenzimidazole/poly-L-lactic acid (PBI/PLLA) and carbonization. During thermal treatment, PLLA was decomposed, resulting in the creation of pores in the carbon nanofibers. From SEM images, it is shown that carbon nanofibers had diameters in the range of 100-200 nm. The conversion of PBI to carbon was confirmed by Raman spectroscopy, and the surface area and pore volume of carbon nanofibers were determined using nitrogen adsorption/desorption analyses. To investigate electrochemical performances, coin-type cells were assembled using free-standing carbon nanofiber electrodes and ionic liquid electrolyte. cyclic voltammetry studies show that the PBI/PLLA-derived porous carbon nanofiber electrodes have higher capacitance due to lower electrochemical impedance compared to carbon nanofiber electrode from PBI only. These porous carbon nanofibers were activated using ammonia for further porosity improvement and annealed to remove the surface functional groups to better match the polarity of electrode and electrolyte. Ragone plots, correlating energy density with power density calculated from galvanostatic charge-discharge curves, reveal that activation/annealing further improves energy and power densities.

  14. Studies on supercapacitor electrode material from activated lignin-derived mesoporous carbon.

    Science.gov (United States)

    Saha, Dipendu; Li, Yunchao; Bi, Zhonghe; Chen, Jihua; Keum, Jong K; Hensley, Dale K; Grappe, Hippolyte A; Meyer, Harry M; Dai, Sheng; Paranthaman, M Parans; Naskar, A K

    2014-01-28

    We synthesized mesoporous carbon from pre-cross-linked lignin gel impregnated with a surfactant as the pore-forming agent and then activated the carbon through physical and chemical methods to obtain activated mesoporous carbon. The activated mesoporous carbons exhibited 1.5- to 6-fold increases in porosity with a maximum Brunauer-Emmett-Teller (BET) specific surface area of 1148 m(2)/g and a pore volume of 1.0 cm(3)/g. Both physical and chemical activation enhanced the mesoporosity along with significant microporosity. Plots of cyclic voltammetric data with the capacitor electrode made from these carbons showed an almost rectangular curve depicting the behavior of ideal double-layer capacitance. Although the pristine mesoporous carbon exhibited a range of surface-area-based capacitance similar to that of other known carbon-based supercapacitors, activation decreased the surface-area-based specific capacitance and enhanced the gravimetric specific capacitance of the mesoporous carbons. A vertical tail in the lower-frequency domain of the Nyquist plot provided additional evidence of good supercapacitor behavior for the activated mesoporous carbons. We have modeled the equivalent circuit of the Nyquist plot with the help of two constant phase elements (CPE). Our work demonstrated that biomass-derived mesoporous carbon materials continue to show potential for use in specific electrochemical applications.

  15. Studies on Supercapacitor Electrode Material from Activated Lignin-Derived Mesoporous Carbon

    Energy Technology Data Exchange (ETDEWEB)

    Saha, Dipendu [ORNL; Li, Yunchao [ORNL; Bi, Zhonghe [ORNL; Chen, Jihua [ORNL; Keum, Jong Kahk [ORNL; Hensley, Dale K [ORNL; Grappe, Hippolyte A. [Oak Ridge Institute for Science and Education (ORISE); Meyer III, Harry M [ORNL; Dai, Sheng [ORNL; Paranthaman, Mariappan Parans [ORNL; Naskar, Amit K [ORNL

    2014-01-01

    We synthesized mesoporous carbon from pre-cross-linked lignin gel impregnated with a surfactant as the pore-forming agent, and then activated the carbon through physical and chemical methods to obtain activated mesoporous carbon. The activated mesoporous carbons exhibited 1.5- to 6-fold increases in porosity with a maximum BET specific surface area of 1148 m2/g and a pore volume of 1.0 cm3/g. Slow physical activation helped retain dominant mesoporosity; however, aggressive chemical activation caused some loss of the mesopore volume fraction. Plots of cyclic voltammetric data with the capacitor electrode made from these carbons showed an almost rectangular curve depicting the behavior of ideal double-layer capacitance. Although the pristine mesoporous carbon exhibited the same range of surface-area-based capacitance as that of other known carbon-based supercapacitors, activation decreased the surface-area-based specific capacitance and increased the gravimetric-specific capacitance of the mesoporous carbons. Surface activation lowered bulk density and electrical conductivity. Warburg impedance as a vertical tail in the lower frequency domain of Nyquist plots supported good supercapacitor behavior for the activated mesoporous carbons. Our work demonstrated that biomass-derived mesoporous carbon materials continue to show potential for use in specific electrochemical applications.

  16. Molten carbonate fuel cell product design improvement

    Energy Technology Data Exchange (ETDEWEB)

    P. Voyentzie; T. Leo; A. Kush; L. Christner; G. Carlson; C. Yuh

    1998-12-20

    Drawing on the manufacture, field test, and post-test experience of the sixteen Santa Clara Demonstration Project (SCDP) stacks, ERC is finalizing the next generation commercial entry product design. The second generation cells are 50% larger in area, 40% lighter on equal geometric area basis, and 30% thinner than the earlier design. These improvements have resulted in doubling of the full-height stack power. A low-cost and high-strength matrix has also been developed for improving product ruggedness. The low-cost advanced cell design incorporating these improvements has been refined through six short stack tests. Power production per cell of two times the SCDP maximum power operation, over ten thermal cycles, and overall operating flexibility with respect to load and thermal changes have been demonstrated in these short stack tests. An internally insulated stack enclosure has been designed and fabricated to eliminate the need for an inert gas environment during operation. ERC has acquired the capability for testing 400kW full-height direct fuel ceil (DFC) stack and balance-of-plant equipment. With the readiness of the power plant test facility, the cell package design, and the stack module, full-height stack testing has begun. The first full- height stack incorporating the post-SCDP second generation design was completed. The stack reached a power level of 253 kW, setting a world record for the highest power production from the advanced fuel cell system. Excellent performance uniformity at this power level affirmed manufacturing reproducibility of the components at the factory. This unoptimized small size test has achieved pipeline natural gas to DC electricity conversion efficiency of 47% (based on lower heating value - LHV) including the parasitic power consumed by the BOP equipment; that should translate to more than 50% efficiency in commercial operation, before employing cogeneration. The power plant system also operated smoothly. With the success of this

  17. Elevated carbon dioxide and ozone alter productivity and ecosystem carbon content in northern temperate forests

    OpenAIRE

    Talhelm, Alan F.; Pregitzer, Kurt S.; Kubiske, Mark E.; Zak, Donald R.; Campany, Courtney E.; Burton, Andrew J; Dickson, Richard E; Hendrey, George R; Isebrands, J G; Lewin, Keith F; Nagy, John; Karnosky, David F.

    2014-01-01

    Three young northern temperate forest communities in the north-central United States were exposed to factorial combinations of elevated carbon dioxide (CO2) and tropospheric ozone (O3) for 11 years. Here, we report results from an extensive sampling of plant biomass and soil conducted at the conclusion of the experiment that enabled us to estimate ecosystem carbon (C) content and cumulative net primary productivity (NPP). Elevated CO2 enhanced ecosystem C content by 11%, whereas elevated O3 d...

  18. Sequestration of carbon dioxide with hydrogen to useful products

    Energy Technology Data Exchange (ETDEWEB)

    Adams, Michael W. W.; Kelly, Robert M.; Hawkins, Aaron B.; Menon, Angeli Lal; Lipscomb, Gina Lynette Pries; Schut, Gerrit Jan

    2017-03-07

    Provided herein are genetically engineered microbes that include at least a portion of a carbon fixation pathway, and in one embodiment, use molecular hydrogen to drive carbon dioxide fixation. In one embodiment, the genetically engineered microbe is modified to convert acetyl CoA, molecular hydrogen, and carbon dioxide to 3-hydroxypropionate, 4-hydroxybutyrate, acetyl CoA, or the combination thereof at levels greater than a control microbe. Other products may also be produced. Also provided herein are cell free compositions that convert acetyl CoA, molecular hydrogen, and carbon dioxide to 3-hydroxypropionate, 4-hydroxybutyrate, acetyl CoA, or the combination thereof. Also provided herein are methods of using the genetically engineered microbes and the cell free compositions.

  19. Assessment of carbon pools in production forest, Pahang, Malaysia

    Science.gov (United States)

    Azian, M.; Nizam, M. S.; Samsudin, M.; Ismail, P.

    2016-11-01

    Forest is one of the main sources of carbon stock. Forest plays a key role in sustainable management by providing different aspects of forest ecosystem such as source of timber products, provide of clean water, food sources, etc. A study was conducted to assess carbon pools in selected production forest of Pahang, Malaysia. There are five main types of carbon pools that are recognized available in the forest, i.e. aboveground biomass (AGB), belowground biomass (BGB), deadwood, litter and soil; that these components of carbon pools can accumulate and release carbon into the atmosphere. Five sites with different years of logging period representing status of the forest were selected (i.e. before logging (PU), immediate after logging (P0), after 10 (P10), 20 (P20) and 30 (P30) years of logging). Twenty plots of 0.25 ha (50 m × 50 m) each were established with a total sampling area of 1.0 ha at each site. All trees with ≥10 cm diameter at breast height (dbh) were tagged, identified and measured. Soil at 0-30 cm, litter and dead wood were sampled and collected in every each of sub-plots to determine and assess carbon stocks within sites. The results indicated that AGB carbon had highest portion of carbon compared to soil, BGB, deadwood and litter, which comprised about 63% of the total carbon pools. It was followed by soil and BGB that comprised about 22% and 13%, respectively. Deadwood and litter contributes the same percentage which is about 1%. In terms of status of the forest, AGB contained the highest carbon which is range from 110.49 tC ha-1 to 164.49 tC ha-1 compared with soil (33.72 tC ha-1 to 68.51 tC ha-1), BGB tC ha-1 to 34 tC ha-1), deadwood (1.57 tC ha-1 to 5.55 tC ha-1) and litter (1.42 tC ha-1 to 2.19 tC ha-1). Results from this study will be very helpful as baseline of carbon storage in different status of forest from before harvesting to logged-over forest and the impact of harvesting on the carbon stock in Pahang and Peninsular Malaysia as a whole.

  20. Nano-Structured Carbide-Derived Carbon Films and Their Tribology

    Institute of Scientific and Technical Information of China (English)

    Michael McNallan; Daniel Ersoy; Ranyi Zhu; Allen Lee; Christopher White; Sascha Welz; Yury Gogotsi; Ali Erdemir; Andriy Kovalchenko

    2005-01-01

    Carbide-derived carbon (CDC) is a form of carbon produced by reacting metal carbides, such as SiC or TiC, with halogens at temperatures high enough to produce fast kinetics, but too low to permit the rearrangement of the carbon atoms into an equilibrium graphitic structure. The structure of CDC is derivative of the original carbide structure and contains nanoscale porosity and both sp2 and sp3 bonded carbon in a variety of nanoscale structures. CDC can be produced as a thin film on hard carbides to improve their tribological performance. CDC coatings are distinguished by their low friction coefficients and high wear resistance in many important industrial environments and by their resistance to spallation and delamination. The tribology of CDC coatings on SiC surfaces is described in detail.

  1. Removal of the Fermentation Inhibitor, Furfural, Using Activated Carbon in Cellulosic-Ethanol Production

    KAUST Repository

    Zhang, Kuang

    2011-12-21

    Ethanol can be produced from lignocellulosic biomass through fermentation; however, some byproducts from lignocellulosics, such as furfural compounds, are highly inhibitory to the fermentation and can substantially reduce the efficiency of ethanol production. In this study, commercial and polymer-derived activated carbons were utilized to selectively remove the model fermentation inhibitor, furfural, from water solution during bioethanol production. The oxygen functional groups on the carbon surface were found to influence the selectivity of sorbents between inhibitors and sugars during the separation. After inhibitors were selectively removed from the broth, the cell growth and ethanol production efficiency was recovered noticeably in the fermentation. A sorption/desorption cycle was designed, and the sorbents were regenerated in a fixed-bed column system using ethanol-containing standard solution. Dynamic mass balance was obtained after running four or five cycles, and regeneration results were stable even after twenty cycles. © 2011 American Chemical Society.

  2. Method for creating high carbon content products from biomass oil

    Science.gov (United States)

    Parker, Reginald; Seames, Wayne

    2012-12-18

    In a method for producing high carbon content products from biomass, a biomass oil is added to a cracking reactor vessel. The biomass oil is heated to a temperature ranging from about 100.degree. C. to about 800.degree. C. at a pressure ranging from about vacuum conditions to about 20,700 kPa for a time sufficient to crack the biomass oil. Tar is separated from the cracked biomass oil. The tar is heated to a temperature ranging from about 200.degree. C. to about 1500.degree. C. at a pressure ranging from about vacuum conditions to about 20,700 kPa for a time sufficient to reduce the tar to a high carbon content product containing at least about 50% carbon by weight.

  3. Roll-to-Roll production of carbon nanotubes based supercapacitors

    Science.gov (United States)

    Zhu, Jingyi; Childress, Anthony; Karakaya, Mehmet; Roberts, Mark; Arcilla-Velez, Margarita; Podila, Ramakrishna; Rao, Apparao

    2014-03-01

    Carbon nanomaterials provide an excellent platform for electrochemical double layer capacitors (EDLCs). However, current industrial methods for producing carbon nanotubes are expensive and thereby increase the costs of energy storage to more than 10 Wh/kg. In this regard, we developed a facile roll-to-roll production technology for scalable manufacturing of multi-walled carbon nanotubes (MWNTs) with variable density on run-of-the-mill kitchen Al foils. Our method produces MWNTs with diameter (heights) between 50-100 nm (10-100 μm), and a specific capacitance as high as ~ 100 F/g in non-aqueous electrolytes. In this talk, the fundamental challenges involved in EDLC-suitable MWNT growth, roll-to-roll production, and device manufacturing will be discussed along with electrochemical characteristics of roll-to-roll MWNTs. Research supported by NSF CMMI Grant1246800.

  4. Honeysuckle-derived hierarchical porous nitrogen, sulfur, dual-doped carbon for ultra-high rate lithium ion battery anodes

    Science.gov (United States)

    Ou, Junke; Yang, Lin; Zhang, Zhen; Xi, Xianghui

    2016-11-01

    Nowadays, developing functional carbon materials from cheap natural materials is a highly compelling topic. Different from most explored biomass, honeysuckle is inherently rich in nitrogen and sulfur heteroatoms, and it has many advantages for production on a large scale. Here, hierarchical porous carbon (HPC), derived from waste honeysuckle via an environmentally friendly and economically viable method, has been reported as an anode for rechargeable lithium ion batteries. The as-fabricated HPC exhibits favorable features for electrochemical energy storage performance such as high specific surface area (830 m2 g-1), hierarchical three-dimensional (3D) pore network and heteroatoms (N and S) doping effects. HPC, when evaluated as an anode material for lithium ion batteries, shows superior cycling stability (maintaining a reversible capacity of 1215 mAh g-1 at the current density of 100 mA g-1 after 100 cycles) and excellent rate capability (370 mAh g-1 at the current density of 20 A g-1). Furthermore, owing to the appropriate heteroatoms doping, a high initial coulombic efficiency of 64.7% can be achieved. A widespread comparison with the literature also showed that the honeysuckle derived porous carbon was one of the most promising carbon-based anodes for high-rate lithium ion batteries.

  5. Physical characteristics of carbon materials derived from pyrolysed vascular plants

    Energy Technology Data Exchange (ETDEWEB)

    Krzesinska, Marta; Pilawa, Barbara; Pusz, Slawomira [Institute of Coal Chemistry, Polish Academy of Sciences, Sowinskiego 5, 44-121 Gliwice (Poland); Ng, Jonathan [Department of Chemical Engineering, McMaster University, Hamilton, Ont. (Canada)

    2006-02-15

    The purpose of this study was to develop new monolithic porous carbon materials from vascular plants using highly controlled pyrolysis. Perennial plants belonging to the grass family Poaceae such as bamboo (Bambusa vulgaris) and to the family Agavaceae such as yucca (Yucca flaccida) characterized by a homogeneous profile and homogenous vessel distribution were selected for the study. They were heat-treated at temperatures 550 and 950{sup o}C in a nitrogen atmosphere to produce a crack-free monolithic porous carbon materials for which physical characteristics such as density, porosity, yield and dimensional changes were determined. The EPR spectroscopy, ultrasonic technique and optical microscopy were applied for further characterization. All samples studied demonstrated a reduction in apparent density and dimensions due to carbonisation. It was found that similarly as in the case of hardwoods, the higher the carbonisation temperature, the greater the dimensional shrinkage. The greatest changes were observed in 'transverse' to plant fibres directions, i.e., for radial and tangential. It was found that the dimensional changes under heat-treatment exhibited transverse isotropy. Carbonised plants were characterised by elastic moduli almost independent of apparent density in contrast to elasticity of precursors. Elastic moduli of samples carbonised to 950{sup o}C were higher than those heat-treated to 550{sup o}C. Results showed that materials carbonised at higher temperature were more stiff-more ordered in structure. Microscopic observations showed that during heat-treatment of yucca and bamboo, their tissue structure remained unaltered. There was the increase in order of aromatic layers in the walls of fibres expressed by the increase of optical reflectance values through the carbonisation process. It was found that heating plants to 950{sup o}C quenched paramagnetic centres in carbonised samples. This effect resulted from an increase of multi-ring aromatic

  6. Trade, production fragmentation, and China's carbon dioxide emissions

    NARCIS (Netherlands)

    Dietzenbacher, Erik; Pei, Jiansuo; Yang, Cuihong

    2012-01-01

    An input-output framework is adopted to estimate China's carbon dioxide (CO2) emissions as generated by its exports in 2002. More than one half of China's exports are related to international production fragmentation. These processing exports generate relatively little value added but also relativel

  7. Field windbreaks for bioenergy production and carbon sequestration

    Science.gov (United States)

    Tree windbreaks are a multi-benefit land use with the ability to mitigate climate change by modifying the local microclimate for improved crop growth and sequestering carbon in soil and biomass. Agroforestry practices are also being considered for bioenergy production by direct combustion or produci...

  8. Enhanced mercuric chloride adsorption onto sulfur-modified activated carbons derived from waste tires.

    Science.gov (United States)

    Yuan, Chung-Shin; Wang, Guangzhi; Xue, Sheng-Han; Ie, Iau-Ren; Jen, Yi-Hsiu; Tsai, Hsieh-Hung; Chen, Wei-Jin

    2012-07-01

    A number of activated carbons derived from waste tires were further impregnated by gaseous elemental sulfur at temperatures of 400 and 650 degrees C, with a carbon and sulfur mass ratio of 1:3. The capabilities of sulfur diffusing into the micropores of the activated carbons were significantly different between 400 and 650 degrees C, resulting in obvious dissimilarities in the sulfur content of the activated carbons. The sulfur-impregnated activated carbons were examined for the adsorptive capacity of gas-phase mercuric chloride (HgC1) by thermogravimetric analysis (TGA). The analytical precision of TGA was up to 10(-6) g at the inlet HgCl2 concentrations of 100, 300, and 500 microg/m3, for an adsorption time of 3 hr and an adsorption temperature of 150 degrees C, simulating the flue gas emitted from municipal solid waste (MSW) incinerators. Experimental results showed that sulfur modification can slightly reduce the specific surface area of activated carbons. High-surface-area activated carbons after sulfur modification had abundant mesopores and micropores, whereas low-surface-area activated carbons had abundant macropores and mesopores. Sulfur molecules were evenly distributed on the surface of the inner pores after sulfur modification, and the sulfur content of the activated carbons increased from 2-2.5% to 5-11%. After sulfur modification, the adsorptive capacity of HgCl2 for high-surface-area sulfurized activated carbons reached 1.557 mg/g (22 times higher than the virgin activated carbons). The injection of activated carbons was followed by fabric filtration, which is commonly used to remove HgCl2 from MSW incinerators. The residence time of activated carbons collected in the fabric filter is commonly about 1 hr, but the time required to achieve equilibrium is less than 10 min. Consequently, it is worthwhile to compare the adsorption rates of HgCl2 in the time intervals of < 10 and 10-60 min.

  9. Colloidal and micro-carbon spheres derived from low-temperature polymerization reactions.

    Science.gov (United States)

    Moreno-Castilla, Carlos

    2016-10-01

    Carbon spheres (CSs) have recently attracted major interest due to their new applications, mainly in energy storage and conversion but also in hard-templating, sorption/catalysis processes, and drug delivery systems. This is attributable to their physico-chemical properties, including their tunable morphology (solid, hollow and core-shell), size, surface area/porosity, good electrical conductivity, low external surface-to-volume ratio, high packing density, enhanced mass transport, robust mechanical stability, low cytotoxicity, and excellent biocompatibility. They can be obtained from a wide variety of carbon precursors and methods. This review covers their production by carbonization of polymer spheres from low-temperature polymerization reactions, considered here as below 250°C. This is a very important method because it allows the synthesis of CSs with different morphologies and doped with other elements or chemical compounds. The preparation of polymer spheres by this technique is well documented in the literature, and the objective of this review is to summarize and give an overview of the most significant publications, proposing a novel classification based on the formation mechanism of the polymer spheres. This classification includes the following polymerization processes: emulsion polymerization and its derivatives, seeded emulsion and inverse emulsion polymerization; precipitation polymerization and its derivative, dispersion polymerization; hard-templating; spray-drying; and hydrothermal or solvothermal treatment of carbohydrates and biomass in general. This review also reports on the morphology and surface characteristics of the CSs obtained by different synthetic approaches. The final section of the review describes the current applications of these CSs, notably in energy storage (supercapacitors and rechargeable batteries) and energy conversion (fuel cells and dye-sensitized solar cells). Besides the numerous applications listed above, they are

  10. Boron-nitrogen doped carbon scaffolding: organic chemistry, self-assembly and materials applications of borazine and its derivatives.

    Science.gov (United States)

    Bonifazi, Davide; Fasano, Francesco; Lorenzo-Garcia, M Mercedes; Marinelli, Davide; Oubaha, Hamid; Tasseroul, Jonathan

    2015-10-25

    Discovered by Stock and Pohland in 1926, borazine is the isoelectronic and isostructural inorganic analogue of benzene, where the C[double bond, length as m-dash]C bonds are substituted by B-N bonds. The strong polarity of such heteroatomic bonds widens the HOMO-LUMO gap of the molecule, imparting strong UV-emitting/absorption and electrical insulating properties. These properties make borazine and its derivatives valuable molecular scaffolds to be inserted as doping units in graphitic-based carbon materials to tailor their optoelectronic characteristics, and specifically their semiconducting properties. By guiding the reader through the most significant examples in the field, in this feature paper we describe the past and recent developments in the organic synthesis and functionalisation of borazine and its derivatives. These boosted the production of a large variety of tailored derivatives, broadening their use in optoelectronics, H2 storage and supramolecular functional architectures, to name a few.

  11. Development of an ensemble-adjoint optimization approach to derive uncertainties in net carbon fluxes

    Directory of Open Access Journals (Sweden)

    T. Ziehn

    2011-11-01

    Full Text Available Accurate modelling of the carbon cycle strongly depends on the parametrization of its underlying processes. The Carbon Cycle Data Assimilation System (CCDAS can be used as an estimator algorithm to derive posterior parameter values and uncertainties for the Biosphere Energy Transfer and Hydrology scheme (BETHY. However, the simultaneous optimization of all process parameters can be challenging, due to the complexity and non-linearity of the BETHY model. Therefore, we propose a new concept that uses ensemble runs and the adjoint optimization approach of CCDAS to derive the full probability density function (PDF for posterior soil carbon parameters and the net carbon flux at the global scale. This method allows us to optimize only those parameters that can be constrained best by atmospheric carbon dioxide (CO2 data. The prior uncertainties of the remaining parameters are included in a consistent way through ensemble runs, but are not constrained by data. The final PDF for the optimized parameters and the net carbon flux are then derived by superimposing the individual PDFs for each ensemble member. We find that the optimization with CCDAS converges much faster, due to the smaller number of processes involved. Faster convergence also gives us much increased confidence that we find the global minimum in the reduced parameter space.

  12. Correlation between the carbonization temperature and the physical parameters of porous carbons derived from Yucca flaccida

    Energy Technology Data Exchange (ETDEWEB)

    Krzesinska, M [Centre of Polymer and Carbon Materials, Polish Academy of Sciences, Marii Curie-Sklodowskiej 34, 41-819 Zabrze (Poland); Zachariasz, J [Centre of Polymer and Carbon Materials, Polish Academy of Sciences, Marii Curie-Sklodowskiej 34, 41-819 Zabrze (Poland)

    2007-08-15

    The purpose of the study was to develop monolithic ecological carbon materials of high porosity from the woody stems of yucca (Yucca flaccida). Monolithic blocks cut from the stem were carbonized in a nitrogen atmosphere, at the temperature range from 300{sup 0}C to 950{sup 0}C with the constant heating rate. The resultant carbon materials were characterized by dimensional changes, yield of char, elemental analysis, and various physical parameters: the true density, the bulk porosity, the longitudinal ultrasonic wave velocity and elastic anisotropy. The thermal decomposition study (TGA) was also performed. The microstructure of longitudinal and transverse sections of stems of raw and carbonized yucca were analysed by SEM. All parameters studied and the microscopic observations were discussed in relation to the pyrolysis temperature.

  13. Supercapacitors based on ordered mesoporous carbon derived from furfuryl alcohol: effect of the carbonized temperature.

    Science.gov (United States)

    Li, Na; Xu, Jianxiong; Chen, Han; Wang, Xianyou

    2014-07-01

    Supercapacitors are successfully prepared from ordered mesoporous carbon (OMC) synthesized by employing the mesoporous silica, SBA-15 as template and furfuryl alcohol as carbon source. It is found that the carbonized temperature greatly influences the physical properties of the synthesized mesoporous carbon materials. The optimal carbonized temperature is measured to be 600 degrees C under which OMC with the specific surface area of 1219 m2/g and pore volume of 1.31 cm3/g and average pore diameter of - 3 nm are synthesized. The OMC materials synthesized under different carbonized temperature are used as electrode material of supercapacitors and the electrochemical properties of the OMC materials are compared by using cyclic voltammetry, electrochemical impedance spectroscopy, galvanostatic charge-discharge and self-discharge tests. The results show that the electrochemical properties of the OMC materials are directly related to the specific surface area and pore volume of the mesoporous carbon and the electrode prepared from the OMC synthesized under the carbonized temperature of 600 degrees C (OMC-600) exhibits the most excellent electrochemical performance with the specific capacitance of 207.08 F/g obtained from cyclic voltammetry at the scan rate of 1 mV/s, small resistance and low self-discharge rate. Moreover, the supercapacitor based on the OMC-600 material exhibits good capacitance properties and stable cycle behavior with the specific capacitance of 105 F/g at the current density of 700 mA/g, and keeps a specific capacitance of 98 F/g after 20000 consecutive charge/discharge cycles.

  14. Entotheonella Bacteria as Source of Sponge-Derived Natural Products: Opportunities for Biotechnological Production.

    Science.gov (United States)

    Bhushan, Agneya; Peters, Eike E; Piel, Jörn

    2017-01-01

    Marine sponges belong to the oldest animals existing today. Apart from their role in recycling of carbon and nitrogen in the ocean, they are also an important source of a wide variety of structurally diverse bioactive natural products. Over the past few decades, a multitude of compounds from sponges have been discovered exhibiting diverse, pharmacologically promising activities. However, in many cases the low substance quantities present in the sponge tissue would require the collection of large amounts of sponge material, thus impeding further drug development. Recent research has focused on understanding natural product biosynthesis in sponges and on investigating symbiotic bacteria as possible production sources in order to develop sustainable production systems. This chapter covers research efforts that have taken place over the past few years involving the identification of 'Entotheonella' symbionts responsible for production of sponge compounds, as well as the elucidation of their biosynthetic routes, highlighting future biotechnological applications.

  15. Theoretical study of amino derivatives and anticancer platinum drug grafted on various carbon nanostructures.

    Science.gov (United States)

    Kraszewski, S; Duverger, E; Ramseyer, C; Picaud, F

    2013-11-07

    Density functional theory calculations with van der Waals approximation have been conducted to analyze the functionalization of various carbon-based nanostructures (fullerene, metallic, and semi-conducting nanotubes) with amino derivative groups. The results obtained with azomethine, show the formation of a five membered ring on fullerenes, and on nanotubes consistent with experimental observations. The attachment of an azomethine plus subsequent drug like a Pt(IV) complex does not perturb the cycloaddition process. Moreover, all theoretical results show that the length of different amino derivatives with subsequent Pt(IV) complex does not affect the complexed therapeutic agent when it is attached onto these carbon-based nanostructures.

  16. Theoretical study of amino derivatives and anticancer platinum drug grafted on various carbon nanostructures

    Science.gov (United States)

    Kraszewski, S.; Duverger, E.; Ramseyer, C.; Picaud, F.

    2013-11-01

    Density functional theory calculations with van der Waals approximation have been conducted to analyze the functionalization of various carbon-based nanostructures (fullerene, metallic, and semi-conducting nanotubes) with amino derivative groups. The results obtained with azomethine, show the formation of a five membered ring on fullerenes, and on nanotubes consistent with experimental observations. The attachment of an azomethine plus subsequent drug like a Pt(IV) complex does not perturb the cycloaddition process. Moreover, all theoretical results show that the length of different amino derivatives with subsequent Pt(IV) complex does not affect the complexed therapeutic agent when it is attached onto these carbon-based nanostructures.

  17. Activated carbon derived from carbon residue from biomass gasification and its application for dye adsorption: Kinetics, isotherms and thermodynamic studies.

    Science.gov (United States)

    Maneerung, Thawatchai; Liew, Johan; Dai, Yanjun; Kawi, Sibudjing; Chong, Clive; Wang, Chi-Hwa

    2016-01-01

    In this work, activated carbon (AC) as an effective and low-cost adsorbent was successfully prepared from carbon residue (or char, one of the by-products from woody biomass gasification) via physical activation. The surface area of char was significantly increased from 172.24 to 776.46m(2)/g after steam activation at 900°C. The obtained activated carbons were then employed for the adsorption of dye (Rhodamine B) and it was found that activated carbon obtained from steam activation exhibited the highest adsorption capability, which is mainly attributed to the higher surface area and the abundance of hydroxyl (-OH) and carboxyl (-COOH) groups on the activated carbon surface. Moreover, it was also found that the adsorption capability significantly increased under the basic condition, which can be attributed to the increased electrostatic interaction between the deprotonated (negatively charged) activated carbon and dye molecules. Furthermore, the equilibrium data were fitted into different adsorption isotherms and found to fit well with Langmuir model (indicating that dye molecules form monolayer coverage on activated carbon) with a maximum monolayer adsorption capability of 189.83mg/g, whereas the adsorption kinetics followed the pseudo-second-order kinetics.

  18. Clean Hydrogen Production. Carbon Dioxide Free Alternatives. Project Phisico2

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Fierro, J. L.; Gonzalez, C.; Serrano, D.; Penelas, G.; Romero, M.; Marcos, M. J.; Rodriguez, C.

    2006-07-01

    The main goal of the PHISICO2 project, funded and promoted by Comunidad de Madrid, is the evaluation and optimisation of three different processes for the clean hydrogen production without carbon dioxide emission. Solar energy and associated Technologies are proposed to be jointly employed with the aim of improving the process efficiency and reducing the production costs. As a transition to the non-fossil fuel hydrogen economy, the thermocatalytic CO2-free production of hydrogen from natural gas will be considered. One of the most promising alternatives of this process is to develop a cheap and stable carbon-based catalyst able to efficiently decompose methane into a CO2-free hydrogen stream and solid carbon. Thus, not only pure hydrogen can be obtained through but also carbon with specific properties and commercial value can be produced. Another option to be explored is the splitting of water by means of solar light by means of two different approaches: (i) photodissociation promoted by semiconductor catalysts and (ii) thermochemical cycles in which a specific mixed oxide is first thermally reduced by sunlight and then reoxidized by steam in a second step with the parallel production of hydrogen. Indeed, option (i) implies necessarily the development of semiconductors with appropriate band-gap able to decompose water into hydrogen and oxygen in an efficient manner. Another critical issue will be the development of a strategy/concept that allows efficient separation of hydrogen and oxygen within the cell. In option (ii), the development of stable ferrites which act as the redox element of the cycle is also an important challenge. Finally, a 5 kW prototype solar engine water splitting, based on the mentioned thermochemical cycle, will developed and tested using concentrated solar light as an energy source. Moreover, thermodynamic and kinetic studies, reactor design, process optimisation, economical studies and comparison with conventional hydrogen production systems

  19. Integrated synthesis of poly(o-phenylenediamine)-derived carbon materials for high performance supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Hui; Wang, Xiaolei; Liu, Xuexia; Yang, Xiurong [State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 (China)

    2012-12-18

    Poly(o-phenylenediamine) (POPD)-derived functional carbon materials with excellent capacitive performance are successfully synthesized by means of an integrated one-step process, in which FeCl{sub 3} not only oxidizes the polymerization of the organic monomers but also activates the carbonization. Furthermore, extensive research has proved that this strategy to discover novel carbons is useful not only for capacitors but also for other energy storage/conversion devices. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  20. ZIF-Derived Nitrogen-Doped Porous Carbons for Xe Adsorption and Separation

    Science.gov (United States)

    Zhong, Shan; Wang, Qian; Cao, Dapeng

    2016-02-01

    Currently, finding high capacity adsorbents with large selectivity to capture Xe is still a great challenge. In this work, nitrogen-doped porous carbons were prepared by programmable temperature carbonization of zeolitic imidazolate framework-8 (ZIF-8) and ZIF-8/xylitol composite precursors and the resultant samples are marked as Carbon-Z and Carbon-ZX, respectively. Further adsorption measurements indicate that ZIF-derived nitrogen-doped Carbon-ZX exhibits extremely high Xe capacity of 4.42 mmol g-1 at 298 K and 1 bar, which is higher than almost all other pristine MOFs such as CuBTC, Ni/DOBDC, MOF-5 and Al-MIL-53, and even more than three times of the matrix ZIF-8 at similar conditions. Moreover, Carbon-ZX also shows the highest Xe/N2 selectivity about ~120, which is much larger than all other reported MOFs. These remarkable features illustrate that ZIF-derived nitrogen-doped porous carbon is an excellent adsorbent for Xe adsorption and separation at room temperature.

  1. ZIF-Derived Nitrogen-Doped Porous Carbons for Xe Adsorption and Separation

    Science.gov (United States)

    Zhong, Shan; Wang, Qian; Cao, Dapeng

    2016-01-01

    Currently, finding high capacity adsorbents with large selectivity to capture Xe is still a great challenge. In this work, nitrogen-doped porous carbons were prepared by programmable temperature carbonization of zeolitic imidazolate framework-8 (ZIF-8) and ZIF-8/xylitol composite precursors and the resultant samples are marked as Carbon-Z and Carbon-ZX, respectively. Further adsorption measurements indicate that ZIF-derived nitrogen-doped Carbon-ZX exhibits extremely high Xe capacity of 4.42 mmol g−1 at 298 K and 1 bar, which is higher than almost all other pristine MOFs such as CuBTC, Ni/DOBDC, MOF-5 and Al-MIL-53, and even more than three times of the matrix ZIF-8 at similar conditions. Moreover, Carbon-ZX also shows the highest Xe/N2 selectivity about ~120, which is much larger than all other reported MOFs. These remarkable features illustrate that ZIF-derived nitrogen-doped porous carbon is an excellent adsorbent for Xe adsorption and separation at room temperature. PMID:26883471

  2. Marine-derived fungus Aspergillus cf. tubingensis LAMAI 31: a new genetic resource for xylanase production.

    Science.gov (United States)

    Dos Santos, Juliana A; Vieira, Juliana M F; Videira, Alexandre; Meirelles, Lucas A; Rodrigues, André; Taniwaki, Marta H; Sette, Lara D

    2016-03-01

    Marine-derived fungi have been reported as relevant producers of enzymes, which can have different properties in comparison with their terrestrial counterparts. The aim of the present study was to select from a collection of 493 marine-derived fungi the best producer of xylanase in order to evaluate the enzymatic production under different conditions. A total of 112 isolates produced xylanase in solid medium containing xylan as the carbon source, with 31 of them able to produce at least 10 U/mL of the enzyme. The best production (49.41 U/mL) was achieved by the strain LAMAI 31, identified as Aspergillus cf. tubingensis. After confirming the lack of pathogenicity (absence of ochratoxin A and fumonisin B2 production) this fungus was submitted to the experimental design in order to evaluate the effect of different variables on the enzymatic production, with the aim of optimizing culture conditions. Three experimental designs (two Plackett-Burman and one factorial fractional) were applied. The best condition for the enzymatic production was defined, resulting in an increase of 12.7 times in comparison with the initial production during the screening experiments. In the validation assay, the peak of xylanase production (561.59 U/mL) was obtained after 96 h of incubation, being the best specific activity achieved after 72 h of incubation. Xylanase from A. cf. tubingensis LAMAI 31 had optimum pH and temperature at 5.0 and 55 °C, respectively, and was shown to be stable at a range of 40-50 °C, and in pH from 3.6 to 7.0. Results from the present work indicate that A. cf. tubingensis LAMAI 31 can be considered as a new genetic resource for xylanase production.

  3. Variations in phytodetritus derived carbon uptake of the intertidal foraminifera Ammonia tepida and Haynesina germanica

    Science.gov (United States)

    Wukovits, Julia; Bukenberger, Patrick; Enge, Annekatrin; Wanek, Wolfgang; Watzka, Margarete; Heinz, Petra

    2016-04-01

    Phytodetritus represents a major component of particulate organic carbon in intertidal mudflats. Estuaries and tidal currents yield an extensive amount of these particles that display a substantial nutrient source for littoral food webs. For benthic foraminifera, a group of marine protists, phytodetritus serves as the main food source. Foraminifera are considered to play a significant role in marine carbon turnover processes and show seasonally very high population densities in intertidal sediments. Therefore, it is important to gather explicit data about the specific carbon uptake behavior of intertidal foraminiferal species. In this study, laboratory feeding experiments were carried out to observe phytodetrital carbon uptake of foraminiferal specimen collected in the German Wadden Sea. Artificially produced phytodetritus was labelled with 13C to follow carbon ingestion into foraminiferal cytoplasm over time at different simulated conditions. The experiments were performed with monocultures under exclusion of other meiofauna. Chlorophyte detritus (Dunaliella tertiolecta) was fed to the two common species Ammonia tepida and Haynesina germanica. Ammonia tepida showed a significantly higher affinity to this food source than H. germanica. Testing the effect of temperature revealed a significant decrease of carbon ingestion with increasing temperature in H. germanica. Observations focusing on A. tepida showed a rising phytodetrital carbon content in the biomass of juvenile individuals in contrast to adult foraminifera. In general, carbon uptake reaches saturation levels a few hours after food supply. Furthermore, A. tepida benefits from constant availability of fresh food rather than from a high amount of phytodetritus derived from a single food pulse. Our investigations showed that the foraminiferal impact on intertidal processing of phytodetrital carbon sources is species specific, temperature related and depends on developmental stage and input dynamics

  4. Biogenic carbon fluxes from global agricultural production and consumption

    Energy Technology Data Exchange (ETDEWEB)

    Wolf, Julie; West, Tristram O.; Le Page, Yannick LB; Kyle, G. Page; Zhang, Xuesong; Collatz, George; Imhoff, Marc L.

    2015-10-01

    Quantification of biogenic carbon fluxes from agricultural lands is needed to generate comprehensive bottom-up estimates of net carbon exchange for global and regional carbon monitoring. We estimated global agricultural carbon fluxes associated with annual crop net primary production (NPP), harvested biomass, and consumption of biomass by humans and livestock. These estimates were combined for a single estimate of net carbon exchange (NCE) and spatially distributed to 0.05 degree resolution using MODIS satellite land cover data. Global crop NPP in 2011 was estimated at 5.25 ± 0.46 Pg C yr-1, of which 2.05 ± 0.05 Pg C yr-1 was harvested and 0.54 Pg C yr-1 was collected from crop residues for livestock fodder. Total livestock feed intake in 2011 was 2.42 ± 0.21 Pg C yr-1, of which 2.31 ± 0.21 Pg C yr-1 was emitted as CO2, 0.07 ± 0.01 Pg C yr-1 was emitted as CH4, and 0.04 Pg C yr-1 was contained within milk and egg production. Livestock grazed an estimated 1.27 Pg C yr-1 in 2011, which constituted 52.4% of total feed intake. Global human food intake was 0.57 ± 0.03 Pg C yr-1 in 2011, the majority of which is respired as CO2. Completed global cropland carbon budgets accounted for the ultimate use of ca. 80% of harvested biomass. The spatial distribution of these fluxes may be used for global carbon monitoring, estimation of regional uncertainty, and for use as input to Earth system models.

  5. Production and characterization of granular activated carbon from activated sludge

    Directory of Open Access Journals (Sweden)

    Z. Al-Qodah

    2009-03-01

    Full Text Available In this study, activated sludge was used as a precursor to prepare activated carbon using sulfuric acid as a chemical activation agent. The effect of preparation conditions on the produced activated carbon characteristics as an adsorbent was investigated. The results indicate that the produced activated carbon has a highly porous structure and a specific surface area of 580 m²/g. The FT-IR analysis depicts the presence of a variety of functional groups which explain its improved adsorption behavior against pesticides. The XRD analysis reveals that the produced activated carbon has low content of inorganic constituents compared with the precursor. The adsorption isotherm data were fitted to three adsorption isotherm models and found to closely fit the BET model with R² equal 0.948 at pH 3, indicating a multilayer of pesticide adsorption. The maximum loading capacity of the produced activated carbon was 110 mg pesticides/g adsorbent and was obtained at this pH value. This maximum loading was found experimentally to steeply decrease as the solution pH increases. The obtained results show that activated sludge is a promising low cost precursor for the production of activated carbon.

  6. Impact of bioenergy production on carbon storage and soil functions

    Science.gov (United States)

    Prays, Nadia; Franko, Uwe

    2016-04-01

    An important renewable energy source is methane produced in biogas plants (BGPs) that convert plant material and animal excrements to biogas and a residue (BGR). If the plant material stems from crops produced specifically for that purpose, a BGP have a 'footprint' that is defined by the area of arable land needed for the production of these energy crops and the area for distributing the BGRs. The BGR can be used to fertilize these lands (reducing the need for carbon and nitrogen fertilizers), and the crop land can be managed to serve as a carbon sink, capturing atmospheric CO2. We focus on the ecological impact of different BGPs in Central Germany, with a specific interest in the long-term effect of BGR-fertilization on carbon storage within the footprint of a BGP. We therefore studied nutrient fluxes using the CANDY (CArbon and Nitrogen Dynamics) model, which processes site-specific information on soils, crops, weather, and land management to compute stocks and fluxes of carbon and nitrogen for agricultural fields. We used CANDY to calculated matter fluxes within the footprints of BGPs of different sizes, and studied the effect of the substrate mix for the BGP on the carbon dynamics of the soil. This included the land requirement of the BGR recycling when used as a fertilizer: the footprint of a BGP required for the production of the energy crop generally differs from its footprint required to take up its BGR. We demonstrate how these findings can be used to find optimal cropping choices and land management for sustainable soil use, maintaining soil fertility and other soil functions. Furthermore, site specific potentials and limitations for agricultural biogas production can be identified and applied in land-use planning.

  7. Product selectivity in plasmonic photocatalysis for carbon dioxide hydrogenation

    Science.gov (United States)

    Zhang, Xiao; Li, Xueqian; Zhang, Du; Su, Neil Qiang; Yang, Weitao; Everitt, Henry O.; Liu, Jie

    2017-01-01

    Photocatalysis has not found widespread industrial adoption, in spite of decades of active research, because the challenges associated with catalyst illumination and turnover outweigh the touted advantages of replacing heat with light. A demonstration that light can control product selectivity in complex chemical reactions could prove to be transformative. Here, we show how the recently demonstrated plasmonic behaviour of rhodium nanoparticles profoundly improves their already excellent catalytic properties by simultaneously reducing the activation energy and selectively producing a desired but kinetically unfavourable product for the important carbon dioxide hydrogenation reaction. Methane is almost exclusively produced when rhodium nanoparticles are mildly illuminated as hot electrons are injected into the anti-bonding orbital of a critical intermediate, while carbon monoxide and methane are equally produced without illumination. The reduced activation energy and super-linear dependence on light intensity cause the unheated photocatalytic methane production rate to exceed the thermocatalytic rate at 350 °C. PMID:28230100

  8. Mechanisms of Carbon Nanotube Production by Laser Ablation Process

    Science.gov (United States)

    Scott, Carl D.; Arepalli, Sivaram; Nikolaev, Pavel; Smalley, Richard E.; Nocholson, Leonard S. (Technical Monitor)

    2000-01-01

    We will present possible mechanisms for nanotube production by laser oven process. Spectral emission of excited species during laser ablation of a composite graphite target is compared with that of laser irradiated C60 vapor. The similarities in the transient and spectral data suggest that fullerenes are intermediate precursors for nanotube formation. The confinement of the ablation products by means of a 25-mm diameter tube placed upstream of the target seems to improve the production and purity of nanotubes. Repeated laser pulses vaporize the amorphous/graphitic carbon and possibly catalyst particles, and dissociate fullerenes yielding additional feedstock for SWNT growth.

  9. Carbon dioxide emissions from agricultural soils amended with livestock-derived organic materials

    Science.gov (United States)

    Pezzolla, D.; Said-Pullicino, D.; Gigliotti, G.

    2009-04-01

    Carbon dioxide gas xchange between terrestrial ecosystems and the atmosphere, as well as the carbon sink strength of various arable land ecosystems, is of primary interest for global change research. Measures for increasing soil C inputs include the preferential use of livestock-derived organic materials (e.g. animal manure and slurries, digestate from biogas production plants and compost). The application of such materials to agricultural soils returns essential nutrients for plant growth and organic matter to maintain long-term fertility. Whether or not such practices ultimately result in sustained C sequestration at the ecosystem level will depend on their mineralization rates. This work presents preliminary results from a laboratory incubation trial to evaluate carbon dioxide fluxes from two agricultural soils (a calcareous silt loam and a silty clay loam) amended with agricultural doses of (i) pig slurry (PSL), (ii) the digestate from the anaerobic fermentation of pig slurries (AAS) and (ii) a compost from the aerobic stabilisation of the digestate (LDC). These subsequent steps of slurry stabilisation resulted in a decrease in the content of labile organic matter which was reflected in a reduction in maximum carbon dioxide emission rates from amended soils. Measurements have shown that peak emissions from soils occur immediately after application of these organic materials (within 5 days) and decrease in the order PSL > AAS > LDC. Moreover, mean cumulative emissions over the first 40 days showed that a higher percentage (about 44%) of the C added with PSL was mineralised respect to C added with AAS (39%) and LDC (25%). Although it was hypothesised that apart from the quantity and stability of the added organic materials, even soil characteristics could influence C mineralisation rates, no significant differences were observed between emission fluxes for similarly treated soils. Mean cumulative emission fluxes after 40 days from treatment were of 114, 103 and

  10. Production of fumaric acid from biodiesel-derived crude glycerol by Rhizopus arrhizus.

    Science.gov (United States)

    Zhou, Yuqing; Nie, Kaili; Zhang, Xin; Liu, Shihong; Wang, Meng; Deng, Li; Wang, Fang; Tan, Tianwei

    2014-07-01

    This work investigated the capability of Rhizopus arrhizus to assimilate biodiesel-derived crude glycerol and convert it into fumaric acid. After optimizing the initial glycerol concentration, spore inoculum and yeast extract concentration, smaller pellets (0.7 mm) and higher biomass (3.11 g/L) were obtained when R. arrhizus grew on crude glycerol. It was found that crude glycerol was more suitable than glucose for smaller R. arrhizus pellet forming. When 80 g/L crude glycerol was used as carbon source, the fumaric acid production of 4.37 g/L was obtained at 192 h. With a highest concentration of 22.81 g/L achieved in the co-fermentation of crude glycerol (40 g/L) and glucose (40 g/L) at 144 h, the fumaric acid production was enhanced by 553.6%, compared to the fermentation using glycerol (80 g/L) as sole carbon source. Moreover, the production cost of fumaric acid in co-fermentation was reduced by approximately 14% compared to glucose fermentation.

  11. Highly efficient production of D-lactic acid from chicory-derived inulin by Lactobacillus bulgaricus.

    Science.gov (United States)

    Xu, Qianqian; Zang, Ying; Zhou, Jie; Liu, Peng; Li, Xin; Yong, Qiang; Ouyang, Jia

    2016-11-01

    Inulin is a readily available feedstock for cost-effective production of biochemicals. To date, several studies have explored the production of bioethanol, high-fructose syrup and fructooligosaccharide, but there are no studies regarding the production of D-lactic acid using inulin as a carbon source. In the present study, chicory-derived inulin was used for D-lactic acid biosynthesis by Lactobacillus bulgaricus CGMCC 1.6970. Compared with separate hydrolysis and fermentation processes, simultaneous saccharification and fermentation (SSF) has demonstrated the best performance of D-lactic acid production. Because it prevents fructose inhibition and promotes the complete hydrolysis of inulin, the highest D-lactic acid concentration (123.6 ± 0.9 g/L) with a yield of 97.9 % was obtained from 120 g/L inulin by SSF. Moreover, SSF by L. bulgaricus CGMCC 1.6970 offered another distinct advantage with respect to the higher optical purity of D-lactic acid (>99.9 %) and reduced number of residual sugars. The excellent performance of D-lactic acid production from inulin by SSF represents a high-yield method for D-lactic acid production from non-food grains.

  12. Biological Production of a Hydrocarbon Fuel Intermediate Polyhydroxybutyrate (Phb) from a Process Relevant Lignocellulosic Derived Sugar

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Wei; Mohagheghi, Ali; Mittal, Ashutosh; Pilath, Heidi; Johnson, David K.

    2015-03-22

    PHAs are synthesized by many microorganisms to serve as intracellular carbon storage molecules. In some bacterial strains, PHB can account for up to 80% of cell mass. In addition to its application in the packaging sector, PHB also has great potential as an intermediate in the production of hydrocarbon fuels. PHB can be thermally depolymerized and decarboxylated to propene which can be upgraded to hydrocarbon fuels via commercial oligomerization technologies. In recent years a great effort has been made in bacterial production of PHB, yet the production cost of the polymer is still much higher than conventional petrochemical plastics. The high cost of PHB is because the cost of the substrates can account for as much as half of the total product cost in large scale fermentation. Thus searching for cheaper and better substrates is very necessary for PHB production. In this study, we demonstrate production of PHB by Cupriavidus necator from a process relevant lignocellulosic derived sugar stream, i.e., saccharified hydrolysate slurry from pretreated corn stover. Good cell growth was observed on slurry saccharified with advanced enzymes and 40~60% of PHB was accumulated in the cells. The mechanism of inhibition in the toxic hydrolysate generated by pretreatment and saccharification of biomass, will be discussed.

  13. Predicting long-term carbon mineralization and trace gas production from thawing permafrost of Northeast Siberia.

    Science.gov (United States)

    Knoblauch, Christian; Beer, Christian; Sosnin, Alexander; Wagner, Dirk; Pfeiffer, Eva-Maria

    2013-04-01

    The currently observed Arctic warming will increase permafrost degradation followed by mineralization of formerly frozen organic matter to carbon dioxide (CO2 ) and methane (CH4 ). Despite increasing awareness of permafrost carbon vulnerability, the potential long-term formation of trace gases from thawing permafrost remains unclear. The objective of the current study is to quantify the potential long-term release of trace gases from permafrost organic matter. Therefore, Holocene and Pleistocene permafrost deposits were sampled in the Lena River Delta, Northeast Siberia. The sampled permafrost contained between 0.6% and 12.4% organic carbon. CO2 and CH4 production was measured for 1200 days in aerobic and anaerobic incubations at 4 °C. The derived fluxes were used to estimate parameters of a two pool carbon degradation model. Total CO2 production was similar in Holocene permafrost (1.3 ± 0.8 mg CO2 -C gdw(-1) aerobically, 0.25 ± 0.13 mg CO2 -C gdw(-1) anaerobically) as in 34 000-42 000-year-old Pleistocene permafrost (1.6 ± 1.2 mg CO2 -C gdw(-1) aerobically, 0.26 ± 0.10 mg CO2 -C gdw(-1) anaerobically). The main predictor for carbon mineralization was the content of organic matter. Anaerobic conditions strongly reduced carbon mineralization since only 25% of aerobically mineralized carbon was released as CO2 and CH4 in the absence of oxygen. CH4 production was low or absent in most of the Pleistocene permafrost and always started after a significant delay. After 1200 days on average 3.1% of initial carbon was mineralized to CO2 under aerobic conditions while without oxygen 0.55% were released as CO2 and 0.28% as CH4 . The calibrated carbon degradation model predicted cumulative CO2 production over a period of 100 years accounting for 15.1% (aerobic) and 1.8% (anaerobic) of initial organic carbon, which is significantly less than recent estimates. The multiyear time series from the incubation experiments helps to more reliably constrain projections of future

  14. Cellulase activity and dissolved organic carbon release from lignocellulose macrophyte-derived in four trophic conditions.

    Science.gov (United States)

    Bottino, Flávia; Cunha-Santino, Marcela Bianchessi; Bianchini, Irineu

    2016-01-01

    Considering the importance of lignocellulose macrophyte-derived for the energy flux in aquatic ecosystems and the nutrient concentrations as a function of force which influences the decomposition process, this study aims to relate the enzymatic activity and lignocellulose hydrolysis in different trophic statuses. Water samples and two macrophyte species were collected from the littoral zone of a subtropical Brazilian Reservoir. A lignocellulosic matrix was obtained using aqueous extraction of dried plant material (≈40°C). Incubations for decomposition of the lignocellulosic matrix were prepared using lignocelluloses, inoculums and filtered water simulating different trophic statuses with the same N:P ratio. The particulate organic carbon and dissolved organic carbon (POC and DOC, respectively) were quantified, the cellulase enzymatic activity was measured by releasing reducing sugars and immobilized carbon was analyzed by filtration. During the cellulose degradation indicated by the cellulase activity, the dissolved organic carbon daily rate and enzyme activity increased. It was related to a fast hydrolysable fraction of cellulose that contributed to short-term carbon immobilization (ca. 10 days). After approximately 20 days, the dissolved organic carbon and enzyme activity were inversely correlated suggesting that the respiration of microorganisms was responsible for carbon mineralization. Cellulose was an important resource in low nutrient conditions (oligotrophic). However, the detritus quality played a major role in the lignocelluloses degradation (i.e., enzyme activity) and carbon release.

  15. Cellulase activity and dissolved organic carbon release from lignocellulose macrophyte-derived in four trophic conditions

    Directory of Open Access Journals (Sweden)

    Flávia Bottino

    2016-06-01

    Full Text Available Abstract Considering the importance of lignocellulose macrophyte-derived for the energy flux in aquatic ecosystems and the nutrient concentrations as a function of force which influences the decomposition process, this study aims to relate the enzymatic activity and lignocellulose hydrolysis in different trophic statuses. Water samples and two macrophyte species were collected from the littoral zone of a subtropical Brazilian Reservoir. A lignocellulosic matrix was obtained using aqueous extraction of dried plant material (≈40 °C. Incubations for decomposition of the lignocellulosic matrix were prepared using lignocelluloses, inoculums and filtered water simulating different trophic statuses with the same N:P ratio. The particulate organic carbon and dissolved organic carbon (POC and DOC, respectively were quantified, the cellulase enzymatic activity was measured by releasing reducing sugars and immobilized carbon was analyzed by filtration. During the cellulose degradation indicated by the cellulase activity, the dissolved organic carbon daily rate and enzyme activity increased. It was related to a fast hydrolysable fraction of cellulose that contributed to short-term carbon immobilization (ca. 10 days. After approximately 20 days, the dissolved organic carbon and enzyme activity were inversely correlated suggesting that the respiration of microorganisms was responsible for carbon mineralization. Cellulose was an important resource in low nutrient conditions (oligotrophic. However, the detritus quality played a major role in the lignocelluloses degradation (i.e., enzyme activity and carbon release.

  16. Adsorption of phenol and reactive dye from aqueous solution on activated carbons derived from solid wastes.

    Science.gov (United States)

    Nakagawa, Kyuya; Namba, Akio; Mukai, Shin R; Tamon, Hajime; Ariyadejwanich, Pisit; Tanthapanichakoon, Wiwut

    2004-04-01

    Activated carbons were produced from several solid wastes, namely, waste PET, waste tires, refuse derived fuel and wastes generated during lactic acid fermentation from garbage. Activated carbons having various pore size distributions were obtained by the conventional steam-activation method and via the pre-treatment method (i.e., mixture of raw materials with a metal salt, carbonization and acid treatment prior to steam-activation) that was proposed by the authors. The liquid-phase adsorption characteristics of organic compounds from aqueous solution on the activated carbons were determined to confirm the applicability of these carbons, where phenol and a reactive dye, Black5, were employed as representative adsorbates. The hydrophobic surface of the carbons prepared was also confirmed by water vapor adsorption. The characteristics of a typical commercial activated carbon were also measured and compared. It was found that the activated carbons with plentiful mesopores prepared from PET and waste tires had quite high adsorption capacity for large molecules. Therefore they are useful for wastewater treatment, especially, for removal of bulky adsorbates.

  17. Large Scale Production of Stem Cells and Their Derivatives

    Science.gov (United States)

    Zweigerdt, Robert

    Stem cells have been envisioned to become an unlimited cell source for regenerative medicine. Notably, the interest in stem cells lies beyond direct therapeutic applications. They might also provide a previously unavailable source of valuable human cell types for screening platforms, which might facilitate the development of more efficient and safer drugs. The heterogeneity of stem cell types as well as the numerous areas of application suggests that differential processes are mandatory for their in vitro culture. Many of the envisioned applications would require the production of a high number of stem cells and their derivatives in scalable, well-defined and potentially clinical compliant manner under current good manufacturing practice (cGMP). In this review we provide an overview on recent strategies to develop bioprocesses for the expansion, differentiation and enrichment of stem cells and their progenies, presenting examples for adult and embryonic stem cells alike.

  18. Culture strategies for lipid production using acetic acid as sole carbon source by Rhodosporidium toruloides.

    Science.gov (United States)

    Huang, Xiang-Feng; Liu, Jia-Nan; Lu, Li-Jun; Peng, Kai-Ming; Yang, Gao-Xiang; Liu, Jia

    2016-04-01

    Rhodosporidium toruloides AS 2.1389 was tested using different concentrations of acetic acid as a low-cost carbon source for the production of microbial lipids, which are good raw materials for biodiesel production. It grew and had higher lipid contents in media containing 4-20 g/L acetic acid as the sole carbon source, compared with that in glucose-containing media under the same culture conditions. At acetic acid concentrations as high as 20 g/L and the optimal carbon-to-nitrogen ratio (C/N) of 200 in a batch culture, the highest biomass production was 4.35 g/L, with a lipid content of 48.2%. At acetic acid concentrations as low as 4 g/L, a sequencing batch culture (SBC) with a C/N of 100 increased biomass production to 4.21 g/L, with a lipid content of 38.6%. These results provide usable culture strategies for lipid production by R. toruloides AS 2.1389 when using diverse waste-derived volatile fatty acids.

  19. Efficient solar-driven synthesis, carbon capture, and desalinization, STEP: solar thermal electrochemical production of fuels, metals, bleach.

    Science.gov (United States)

    Licht, S

    2011-12-15

    STEP (solar thermal electrochemical production) theory is derived and experimentally verified for the electrosynthesis of energetic molecules at solar energy efficiency greater than any photovoltaic conversion efficiency. In STEP the efficient formation of metals, fuels, chlorine, and carbon capture is driven by solar thermal heated endothermic electrolyses of concentrated reactants occuring at a voltage below that of the room temperature energy stored in the products. One example is CO(2) , which is reduced to either fuels or storable carbon at a solar efficiency of over 50% due to a synergy of efficient solar thermal absorption and electrochemical conversion at high temperature and reactant concentration. CO(2) -free production of iron by STEP, from iron ore, occurs via Fe(III) in molten carbonate. Water is efficiently split to hydrogen by molten hydroxide electrolysis, and chlorine, sodium, and magnesium from molten chlorides. A pathway is provided for the STEP decrease of atmospheric carbon dioxide levels to pre-industial age levels in 10 years.

  20. Continuous fermentation of food waste leachate for the production of volatile fatty acids and potential as a denitrification carbon source.

    Science.gov (United States)

    Kim, Hakchan; Kim, Jaai; Shin, Seung Gu; Hwang, Seokhwan; Lee, Changsoo

    2016-05-01

    This study investigated the simultaneous effects of hydraulic retention time (HRT) and pH on the continuous production of VFAs from food waste leachate using response surface analysis. The response surface approximations (R(2)=0.895, pwaste-derived VFAs, an alternative carbon source for denitrification.

  1. Storage of Miscanthus-derived carbon in rhizomes, roots, and soil

    DEFF Research Database (Denmark)

    Christensen, Bent Tolstrup; Lærke, Poul Erik; Jørgensen, Uffe

    2016-01-01

    Compared with annual crops, dedicated perennial bioenergy crops are ascribed additional benefits in terms of reduced greenhouse gas emissions; these benefits include increased carbon (C) storage in soil. We measured Miscanthus-derived C in rhizomes, roots, and 0–100 cm soil beneath three 16-yr-ol...

  2. Citrus pectin derived porous carbons as a superior adsorbent toward removal of methylene blue

    Science.gov (United States)

    Zhang, Wenlin; Zhang, Lian Ying; Zhao, Xi Juan; Zhou, Zhiqin

    2016-11-01

    An adsorbent, citrus pectin derived porous carbons with ultra-high adsorption capacity, rapid adsorption rate and good reusability toward removal of methylene blue, was synthesized by a facile zinc chloride activation approach in this study. The materials hold a great potential for treatment of dye wastewater.

  3. Mesoporous carbon derived from vitamin B12: a high-performance bifunctional catalyst for imine formation.

    Science.gov (United States)

    Chen, Bo; Shang, Sensen; Wang, Lianyue; Zhang, Yi; Gao, Shuang

    2016-01-11

    Mesoporous carbon derived from natural vitamin B12 is applied for the first time in organic synthesis and exhibits exceptionally high dual activity for imine formation via the cross-coupling of alcohols with amines and the self-coupling of primary amines using molecular oxygen or air as the terminal oxidant.

  4. Hydrocarbon-Derived Carbonate Cements of Subsurface Origin in the Vulcan Sub-Basin, Timor Sea

    Directory of Open Access Journals (Sweden)

    Shou-Yeh Gong

    2010-01-01

    Full Text Available Localized carbonate cementation occurs in the Eocene Grebe Sandstone of the Vulcan Sub-basin, Timor Sea, Australia. The cements have been previously interpreted as originating from microbial methane oxidation and sulfate reduction in a shallow subsurface environment and were related to hydrocarbon leakage. Here we reassess these localized carbonate cements in the Grebe Sandstone, and reported new findings. Petrography shows that there are two facies of sands in the Grebe Sandstone: (1 cemented, mostly fine-grained sands; and (2 loose, often coarse-grained sands. In addition, two types of carbonate matrix occur in the Grebe Sandstone: (1 spars to microspars in calcareous, fine-grained sandstones; and (2 micritic to microsparry matrix associated with limestone grains. Stable carbon isotopic values reveal that only the cements associated with sandstones were probably hydrocarbon-derived, and the resultant mineral is mainly calcite. Petrographic attributes and Mn+2 and Co+2 compositions of these cements differ significantly from those of modern cold-seep carbonates at or near the sea floor. Moreover, the hydrocarbon-derived carbonate mineralization only occurs in the fine-grained sands, not in the coarse-grained sands. In other word, the cementation was not only dependent on hydrocarbon leakage but also on the lithofacies of the host rock. We propose that the extent of hydrocarbon-related cementation alone cannot be used to evaluate the trap integrity as has been previously suggested.

  5. Straw application in paddy soil enhances methane production also from other carbon sources

    Directory of Open Access Journals (Sweden)

    Q. Yuan

    2013-08-01

    Full Text Available Flooded rice fields are an important source of the greenhouse gas methane. Methane is produced from rice straw (RS, soil organic matter (SOM, and rice root organic carbon (ROC. Addition of RS is widely used for ameliorating soil fertility. However, this practice provides additional substrate for CH4 production and results in increased CH4 emission. Here, we found that decomposing RS is not only a substrate of CH4 production, but in addition stimulates CH4 production from SOM and ROC. Apart from accelerating the creation of reduced conditions in the soil environment, RS decomposition exerted a positive priming effect on SOM-derived CH4 production. In particular, hydrogenotrophic methanogenesis from SOM-derived CO2 was stimulated, presumably by H2 released from RS decomposition. On the other hand, the positive priming effect of RS on ROC-derived CH4 production was probably caused by the significant increase of the abundance of methanogenic archaea in the RS treatment compared with the untreated control. Our results show that traditional management of rice residues exerts a positive feedback on CH4 production from rice fields, thus exacerbating its effect on the global CH4 budget.

  6. Straw application in paddy soil enhances methane production also from other carbon sources

    Science.gov (United States)

    Yuan, Q.; Pump, J.; Conrad, R.

    2013-08-01

    Flooded rice fields are an important source of the greenhouse gas methane. Methane is produced from rice straw (RS), soil organic matter (SOM), and rice root organic carbon (ROC). Addition of RS is widely used for ameliorating soil fertility. However, this practice provides additional substrate for CH4 production and results in increased CH4 emission. Here, we found that decomposing RS is not only a substrate of CH4 production, but in addition stimulates CH4 production from SOM and ROC. Apart from accelerating the creation of reduced conditions in the soil environment, RS decomposition exerted a positive priming effect on SOM-derived CH4 production. In particular, hydrogenotrophic methanogenesis from SOM-derived CO2 was stimulated, presumably by H2 released from RS decomposition. On the other hand, the positive priming effect of RS on ROC-derived CH4 production was probably caused by the significant increase of the abundance of methanogenic archaea in the RS treatment compared with the untreated control. Our results show that traditional management of rice residues exerts a positive feedback on CH4 production from rice fields, thus exacerbating its effect on the global CH4 budget.

  7. Preparation and evaluation of coal extracts as precursors for carbon and graphite products

    Energy Technology Data Exchange (ETDEWEB)

    Zondlo, J.W.; Stiller, A.W.; Stansberry, P.G. [West Virginia Univ., Morgantown, WV (United States)] [and others

    1996-08-01

    A coal extraction process coupled with coal hydrotreatment has been shown capable of producing suitable precursors for a variety of commercially important carbon and graphite products. The N-methylpyrolidone (NMP) extracts of hydrotreated coals have been analytically and chemically characterized and shown to have properties acceptable for use as binder and impregnation pitch. Mesophase formation studies have demonstrated their capability for producing both needle and anode grade coke as well as precursors for mesophase pitch fibers. A graphite artifact has been produced using a coal extract as a binder and coke derived from the extract as a filler. Further evaluation of the extract materials is being carried out by industrial members of the Carbon Products Consortium.

  8. Extraction of microalgae derived lipids with supercritical carbon dioxide in an industrial relevant pilot plant.

    Science.gov (United States)

    Lorenzen, Jan; Igl, Nadine; Tippelt, Marlene; Stege, Andrea; Qoura, Farah; Sohling, Ulrich; Brück, Thomas

    2017-06-01

    Microalgae are capable of producing up to 70% w/w triglycerides with respect to their dry cell weight. Since microalgae utilize the greenhouse gas CO2, they can be cultivated on marginal lands and grow up to ten times faster than terrestrial plants, the generation of algae oils is a promising option for the development of sustainable bioprocesses, that are of interest for the chemical lubricant, cosmetic and food industry. For the first time we have carried out the optimization of supercritical carbon dioxide (SCCO2) mediated lipid extraction from biomass of the microalgae Scenedesmus obliquus and Scenedesmus obtusiusculus under industrrially relevant conditions. All experiments were carried out in an industrial pilot plant setting, according to current ATEX directives, with batch sizes up to 1.3 kg. Different combinations of pressure (7-80 MPa), temperature (20-200 °C) and CO2 to biomass ratio (20-200) have been tested on the dried biomass. The most efficient conditions were found to be 12 MPa pressure, a temperature of 20 °C and a CO2 to biomass ratio of 100, resulting in a high extraction efficiency of up to 92%. Since the optimized CO2 extraction still yields a crude triglyceride product that contains various algae derived contaminants, such as chlorophyll and carotenoids, a very effective and scalable purification procedure, based on cost efficient bentonite based adsorbers, was devised. In addition to the sequential extraction and purification procedure, we present a consolidated online-bleaching procedure for algae derived oils that is realized within the supercritical CO2 extraction plant.

  9. Mineral carbonation of phosphogypsum waste for production of useful carbonate and sulfate salts

    Directory of Open Access Journals (Sweden)

    Hannu-Petteri eMattila

    2015-11-01

    Full Text Available Phosphogypsum (CaSO4·2H2O waste is produced in large amounts during phosphoric acid (H3PO4 production. Minor quantities are utilized in construction or agriculture, while most of the material is stockpiled, creating an environmental challenge to prevent pollution of natural waters. In principle, the gypsum waste could be used to capture several hundred Mt of carbon dioxide (CO2. For example, when gypsum is converted to ammonium sulfate ((NH42SO4 with ammonia (NH3 and CO2, also solid calcium carbonate (CaCO3 is generated. The ammonium sulfate can be utilized as a fertilizer or in other mineral carbonation processes that use magnesium silicate-based rock as feedstock, while calcium carbonate has various uses as e.g. filler material. The reaction extent of the described process was studied by thermodynamic modeling and experimentally as a function of reactant concentrations and temperature. Other essential properties such as purity and quality of the solid products are also followed. Conversion efficiencies of >95% calcium from phosphogypsum to calcium carbonate are obtained. Scalenohedral, rhombohedral and prismatic calcite particles can be produced, though the precipitates contain certain contaminants such as rare earth metals and sulfur from the gypsum. A reverse osmosis membrane cartridge is also tested as an alternative and energy-efficient method of concentrating the ammonium sulfate salt solution instead of the traditional evaporation of the process solution.

  10. Effect of nitric acid treatment on activated carbon derived from oil palm shell

    Science.gov (United States)

    Allwar, Allwar; Hartati, Retno; Fatimah, Is

    2017-03-01

    The primary object of this work is to study the effect of nitric acid on the porous and morphology structure of activated carbon. Production of activated carbon from oil palm shell was prepared with pyrolysis process at temperature 900°C and by introduction of 10 M nitric acid. Determination of surface area, pore volume and pore size distribution of activated carbon was conducted by the N2 adsorption-desorption isotherm at 77 K. Morphology structure and elemental micro-analysis of activated carbon were estimated by Scanning Electron Microscopy (SEM) and energy dispersive X-ray (EDX), respectively. The result shows that activated carbon after treating with nitric acid proved an increasing porous characteristics involving surface area, pore volume and pore size distribution. It also could remove the contaminants including metals and exhibit an increasing of pores and crevices all over the surface.

  11. Environmental remediation and conversion of carbon dioxide (CO(2)) into useful green products by accelerated carbonation technology.

    Science.gov (United States)

    Lim, Mihee; Han, Gi-Chun; Ahn, Ji-Whan; You, Kwang-Suk

    2010-01-01

    This paper reviews the application of carbonation technology to the environmental industry as a way of reducing carbon dioxide (CO(2)), a green house gas, including the presentation of related projects of our research group. An alternative technology to very slow natural carbonation is the co-called 'accelerated carbonation', which completes its fast reaction within few hours by using pure CO(2). Carbonation technology is widely applied to solidify or stabilize solid combustion residues from municipal solid wastes, paper mill wastes, etc. and contaminated soils, and to manufacture precipitated calcium carbonate (PCC). Carbonated products can be utilized as aggregates in the concrete industry and as alkaline fillers in the paper (or recycled paper) making industry. The quantity of captured CO(2) in carbonated products can be evaluated by measuring mass loss of heated samples by thermo-gravimetric (TG) analysis. The industrial carbonation technology could contribute to both reduction of CO(2) emissions and environmental remediation.

  12. Engineering nonphosphorylative metabolism to generate lignocellulose-derived products.

    Science.gov (United States)

    Tai, Yi-Shu; Xiong, Mingyong; Jambunathan, Pooja; Wang, Jingyu; Wang, Jilong; Stapleton, Cole; Zhang, Kechun

    2016-04-01

    Conversion of lignocellulosic biomass into value-added products provides important environmental and economic benefits. Here we report the engineering of an unconventional metabolism for the production of tricarboxylic acid (TCA)-cycle derivatives from D-xylose, L-arabinose and D-galacturonate. We designed a growth-based selection platform to identify several gene clusters functional in Escherichia coli that can perform this nonphosphorylative assimilation of sugars into the TCA cycle in less than six steps. To demonstrate the application of this new metabolic platform, we built artificial biosynthetic pathways to 1,4-butanediol (BDO) with a theoretical molar yield of 100%. By screening and engineering downstream pathway enzymes, 2-ketoacid decarboxylases and alcohol dehydrogenases, we constructed E. coli strains capable of producing BDO from D-xylose, L-arabinose and D-galacturonate. The titers, rates and yields were higher than those previously reported using conventional pathways. This work demonstrates the potential of nonphosphorylative metabolism for biomanufacturing with improved biosynthetic efficiencies.

  13. Production, quality and quality assurance of Refuse Derived Fuels (RDFs).

    Science.gov (United States)

    Sarc, R; Lorber, K E

    2013-09-01

    This contribution describes characterization, classification, production, application and quality assurance of Refuse Derived Fuels (RDFs) that are increasingly used in a wide range of co-incineration plants. It is shown in this paper, that the fuel-parameter, i.e. net calorific value [MJ/kg(OS)], particle size d(90) or d(95) [mm], impurities [w%], chlorine content [w%], sulfur content [w%], fluorine content [w%], ash content [w%], moisture [w%] and heavy metals content [mg/kg(DM)], can be preferentially used for the classification of different types of RDF applied for co-incineration and substitution of fossil-fuel in different industial sectors. Describing the external production of RDF by processing and confectioning of wastes as well as internal processing of waste at the incineration plant, a case study is reported on the application of RDF made out of different household waste fractions in a 120,000t/yr Waste to Energy (WtE) circulating fluidized bed (CFB) incinerator. For that purpose, delivered wastes, as well as incinerator feedstock material (i.e. after internal waste processing) are extensively investigated. Starting with elaboration of sampling plan in accordance with the relevant guidelines and standards, waste from different suppliers was sampled. Moreover, manual sorting analyses and chemical analyses were carried out. Finally, results of investigations are presented and discussed in the paper.

  14. Cameroonian medicinal plants: Pharmacology and derived natural products

    Directory of Open Access Journals (Sweden)

    Thomas Efferth

    2010-10-01

    Full Text Available Many developing countries including Cameroon have mortality patterns that reflect high levels of infectious diseases and the risk of death during pregnancy and childbirth, in addition to cancers, cardiovascular diseases and chronic respiratory diseases that account for most deaths in the developed world. Several medicinal plants are used traditionally for their treatment. In this review, plants used in Cameroonian traditional medicine with evidence for the activities of their crude extracts and/or derived products have been discussed. A considerable number of plant extracts and isolated compounds possess significant antimicrobial, antiparasitic including anti-malarial, anti-proliferative, anti-inflammatory, anti-diabetes, and antioxidant effects. Most of the biologically active compounds belong to terpenoids, phenolics and alkaloids. Terpenoids from Cameroonian plants showed best activities as anti-parasitic, but rather poor antimicrobial effects. The best antimicrobial, anti-proliferative and antioxidant compounds were phenolics. In conclusion, many medicinal plants traditionally used in Cameroon to treat various ailments displayed good activities in vitro. This explains the endeavor of Cameroonian research institutes in drug discovery from indigenous medicinal plants. However, much work is still to be done to standardize methodologies and to study the mechanisms of action of isolated natural products.

  15. Treatment of naphthalene derivatives with iron-carbon micro-electrolysis

    Institute of Scientific and Technical Information of China (English)

    WANG Yu-ping; WANG Lian-jun; PENG Pan-ying; LU Tian-hong

    2006-01-01

    The degradation of five naphthalene derivatives in the simulated wastewater was investigated using the iron-carbon micro-electrolysis method. The optimal initial pH of solution and adsorption of iron-carbon and removal efficiency of the total organic carbon(TOC) were investigated. The results show that the removal efficiency of the naphthalene derivatives can reach 48.9%-92.6% and the removal efficiency of TOC is 42.8%-78.0% for the simulated wastewater with 200 mg/L naphthalene derivatives at optimal pH of 2.0-2.5 after 120 min treatment. The degradation of five naphthalene derivatives with the micro-electrolysis shows the apparent first-order kinetics and the order of removal efficiency of the naphthalene derivatives is sodium 2-naphthalenesulfonate, 2-naphthol, 2, 7-dihydroxynaphthalene, 1-naphthamine, 1-naphthol-8-sulfonic acid in turn. It is illustrated that the substituents of the naphthalene ring can affect the removal efficiency of naphthalene due to their electron-withdrawing or electron-donating ability.

  16. The role of carbonic anhydrase in hepatic glucose production.

    Science.gov (United States)

    Ismail, Ibrahim Salihu

    2016-12-14

    Considerable efforts are being made daily to discover novel therapeutic targets to better understand the mechanism for designing drugs in treating diabetes. Inhibition of hepatic gluconeogenesis by metformin remains the first line of oral therapy for managing type 2 diabetes. The link between rise in blood lactate level and reduction of hepatic glucose production with metformin usage remains to be determined. Carbonic anhydrase is proposed to be the link connecting blood lactate accumulation and inhibition of hepatic gluconeogenesis and thus could serve as a new therapeutic target for reducing hepatic glucose production. Understanding the link between rise in blood lactate level and the role of carbonic anhydrase in lactate uptake will be essential towards the development of a promising new antidiabetic medication.

  17. Activated carbon derived from waste coffee grounds for stable methane storage

    Science.gov (United States)

    Kemp, K. Christian; Baek, Seung Bin; Lee, Wang-Geun; Meyyappan, M.; Kim, Kwang S.

    2015-09-01

    An activated carbon material derived from waste coffee grounds is shown to be an effective and stable medium for methane storage. The sample activated at 900 °C displays a surface area of 1040.3 m2 g-1 and a micropore volume of 0.574 cm3 g-1 and exhibits a stable CH4 adsorption capacity of ˜4.2 mmol g-1 at 3.0 MPa and a temperature range of 298 ± 10 K. The same material exhibits an impressive hydrogen storage capacity of 1.75 wt% as well at 77 K and 100 kPa. Here, we also propose a mechanism for the formation of activated carbon from spent coffee grounds. At low temperatures, the material has two distinct types with low and high surface areas; however, activation at elevated temperatures drives off the low surface area carbon, leaving behind the porous high surface area activated carbon.

  18. Activated carbon derived from waste coffee grounds for stable methane storage.

    Science.gov (United States)

    Kemp, K Christian; Baek, Seung Bin; Lee, Wang-Geun; Meyyappan, M; Kim, Kwang S

    2015-09-25

    An activated carbon material derived from waste coffee grounds is shown to be an effective and stable medium for methane storage. The sample activated at 900 °C displays a surface area of 1040.3 m(2) g(-1) and a micropore volume of 0.574 cm(3) g(-1) and exhibits a stable CH4 adsorption capacity of ∼4.2 mmol g(-1) at 3.0 MPa and a temperature range of 298 ± 10 K. The same material exhibits an impressive hydrogen storage capacity of 1.75 wt% as well at 77 K and 100 kPa. Here, we also propose a mechanism for the formation of activated carbon from spent coffee grounds. At low temperatures, the material has two distinct types with low and high surface areas; however, activation at elevated temperatures drives off the low surface area carbon, leaving behind the porous high surface area activated carbon.

  19. A novel synthesis of ethyl carbonate derivatives of β-cyclodextrin.

    Science.gov (United States)

    Huang, Dechao; Zhang, Yimin; Zhang, Huiying

    2013-04-05

    The carbonate ester derivatives of β-cyclodextrin play a very important role in several fields, such as catalytic reaction and enantiomer separation. In this work, a novel synthesis process of the β-cyclodextrin carbonate ester has been investigated through the reaction between β-cyclodextrin and diethyl carbonate with anhydrous potassium carbonate as catalyst. The compounds were separated by semi-preparative chromatography and characterized by FT-IR, MS, (1)H NMR, and (13)C NMR spectroscopy. The position of the substituent was confirmed by (13)C NMR and this conclusion coincides with the analyses of MS and (1)H NMR in the main. The yield of the mono-6-O-ethoxycarbonyl β-CD is 65.8%. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Carbon attrition during the circulating fluidized bed combustion of a waste-derived fuel

    Energy Technology Data Exchange (ETDEWEB)

    Arena, U. [Consiglio Nazionale delle Ricerche, Naples (Italy). Inst. for Combustion Research; Naples Univ. (Italy). Dept. of Environmental Sciences; Mastellone, M.L. [Naples Univ. Federico II (Italy). Dept. of Chemical Engineering

    1999-07-01

    A biomass obtained as residue from food manufacturing of pine nuts was batchwise fed in a laboratory scale circulating fluidized bed combustor. The apparatus was operated under both inert and oxidizing conditions in order to establish the relative importance of purely mechanical attrition and combustion-assisted attrition in generating carbon fines. For each run, carbon load and carbon particle size distribution in the riser and rates of attrited carbon fines escaping from the combustor were determined as a function of time. A parallel investigation was carried out with a bubbling fluidized bed combustor in order to point out peculiarities of attrition in the two apparatus. Results were compared with those obtained by burning in the same combustor a bituminous coal and a packaging-derived fuel, obtained from monomaterial collections of polyethylene terephtalate bottles. A different attrition phenomenology was found for each fuel and its peculiar features were taken into account. (orig.)

  1. Zeolitic imidazolate framework-8 derived nanoporous carbon as an effective and recyclable adsorbent for removal of ciprofloxacin antibiotics from water.

    Science.gov (United States)

    Li, Siqi; Zhang, Xiaodan; Huang, Yuming

    2017-01-05

    The nanoporous carbons (NPC) derived from a one-step carbonization of zeolitic imidazolate framework-8 (ZIF-8) were synthesized and used for ciprofloxacin (CIP) removal from water. The resultant products were characterized by SEM, TEM, FT-IR, Raman, N2 adsorption-desorption analysis, XRD, TGA and Zeta potential. The optimized NPC-700 (carbonized at 700°C for 2h) exhibited an optimal performance in CIP adsorption removal. CIP adsorption on NPC-700 as a function of contact time, initial CIP concentration, adsorbent dosage, pH, ionic strength and humic acid concentration were investigated. Kinetics of CIP removal was found to follow pseudo-second-order rate equation. Both Langmuir and Freundlich models fitted the adsorption data well and gave similar correlation coefficients (>0.96). However, Freundlich isotherm gave a better fit (r(2)=0.9969), suggesting a multilayer adsorption of CIP onto surface of NPC-700 adsorbent. The maximum adsorption capacity for CIP based on Langmuir model was 416.7mg/g, which was higher than those of other adsorbents. The NPC-700 material showed no apparent loss in CIP adsorption after seven cycles. These features reveal that the metal-organic framework (MOF) derived NPC may be a promising adsorbent for CIP removal from water. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Carbonate phosphonium salts as catalysts for the transesterification of dialkyl carbonates with diols. The competition between cyclic carbonates and linear dicarbonate products.

    Science.gov (United States)

    Selva, Maurizio; Caretto, Alessio; Noè, Marco; Perosa, Alvise

    2014-06-28

    At 90-120 °C, in the presence of methylcarbonate and bicarbonate methyltrioctylphosphonium salts as catalysts ([P8881][A]; [A] = MeOCO2 and HOCO2), the transesterification of non-toxic dimethyl- and diethyl-carbonate (DMC and DEC, respectively) with 1,X-diols (2 ≤ X ≤ 6) proceeds towards the formation of cyclic and linear products. In particular, 1,2-propanediol and ethylene glycol afford propylene- and ethylene-carbonate with selectivity and yields up to 95 and 90%, respectively; while, the reaction of DMC with higher diols such 1,3-butanediol, 2-methyl-1,3-propanediol, 1,3-propanediol, 2,2-dimethyl, 1,3-propanediol, 1,4-butanediol and 1,6-hexanediol produce linear C8-C10 dicarbonates of general formula MeOC(O)O∼∼∼OC(O)OMe as the almost exclusive products. Of note, these dicarbonate derivatives are not otherwise accessible in good yields by other conventional base catalyzed methods. Among 1,3-diols, the only exception was 2-methyl 2,4-pentandiol that yields the corresponding cyclic carbonate, i.e. 4,4,6-trimethyl-1,3-dioxan-2-one. In no one case, polycarbonates are observed. Such remarkable differences of product distributions are ascribed to the structure (branching and relative position of OH groups) of diols and to the role of cooperative (nucleophilic and electrophilic) catalysis which has been proved for onium salts. The investigated carbonate salts are not only effective in amounts as low as 0.5 mol%, but they are highly stable and recyclable.

  3. Enhanced adsorption of perfluorooctane sulfonate and perfluorooctanoate by bamboo-derived granular activated carbon.

    Science.gov (United States)

    Deng, Shubo; Nie, Yao; Du, Ziwen; Huang, Qian; Meng, Pingping; Wang, Bin; Huang, Jun; Yu, Gang

    2015-01-23

    A bamboo-derived granular activated carbon with large pores was successfully prepared by KOH activation, and used to remove perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) from aqueous solution. The granular activated carbon prepared at the KOH/C mass ratio of 4 and activation temperature of 900°C had fast and high adsorption for PFOS and PFOA. Their adsorption equilibrium was achieved within 24h, which was attributed to their fast diffusion in the micron-sized pores of activated carbon. This granular activated carbon exhibited the maximum adsorbed amount of 2.32mmol/g for PFOS and 1.15mmol/g for PFOA at pH 5.0, much higher than other granular and powdered activated carbons reported. The activated carbon prepared under the severe activation condition contained many enlarged pores, favorable for the adsorption of PFOS and PFOA. In addition, the spent activated carbon was hardly regenerated in NaOH/NaCl solution, while the regeneration efficiency was significantly enhanced in hot water and methanol/ethanol solution, indicating that hydrophobic interaction was mainly responsible for the adsorption. The regeneration percent was up to 98% using 50% ethanol solution at 45°C.

  4. Estimating crop net primary production using inventory data and MODIS-derived parameters

    Energy Technology Data Exchange (ETDEWEB)

    Bandaru, Varaprasad; West, Tristram O.; Ricciuto, Daniel M.; Izaurralde, Roberto C.

    2013-06-03

    National estimates of spatially-resolved cropland net primary production (NPP) are needed for diagnostic and prognostic modeling of carbon sources, sinks, and net carbon flux. Cropland NPP estimates that correspond with existing cropland cover maps are needed to drive biogeochemical models at the local scale and over national and continental extents. Existing satellite-based NPP products tend to underestimate NPP on croplands. A new Agricultural Inventory-based Light Use Efficiency (AgI-LUE) framework was developed to estimate individual crop biophysical parameters for use in estimating crop-specific NPP. The method is documented here and evaluated for corn and soybean crops in Iowa and Illinois in years 2006 and 2007. The method includes a crop-specific enhanced vegetation index (EVI) from the Moderate Resolution Imaging Spectroradiometer (MODIS), shortwave radiation data estimated using Mountain Climate Simulator (MTCLIM) algorithm and crop-specific LUE per county. The combined aforementioned variables were used to generate spatially-resolved, crop-specific NPP that correspond to the Cropland Data Layer (CDL) land cover product. The modeling framework represented well the gradient of NPP across Iowa and Illinois, and also well represented the difference in NPP between years 2006 and 2007. Average corn and soybean NPP from AgI-LUE was 980 g C m-2 yr-1 and 420 g C m-2 yr-1, respectively. This was 2.4 and 1.1 times higher, respectively, for corn and soybean compared to the MOD17A3 NPP product. Estimated gross primary productivity (GPP) derived from AgI-LUE were in close agreement with eddy flux tower estimates. The combination of new inputs and improved datasets enabled the development of spatially explicit and reliable NPP estimates for individual crops over large regional extents.

  5. Bulk scale production of carbon nanofibers in an economical way

    Science.gov (United States)

    Rajarao, Ravindra; Bhat, Badekai Ramachandra

    2012-12-01

    An economical route for the scalable production of carbon nanofibers (CNFs) on a sodium chloride support has been developed. CNFs have been synthesized by chemical vapor deposition (CVD) method by using metal formate as catalyst precursors at 680°C. Products were characterized by SEM, TEM, Raman spectroscopy and XRD method. By thermal analysis, the purity of the as grown products and purified products were determined. This method avoids calcination and reduction process which was employed in commercial catalysts such as metal oxide or nitrate. The problems such as detrimental effect, environmental and even cost have been overcome by using sodium chloride as support. The yield of CNFs up to 7800 wt.% relative to the nickel catalyst has been achieved in the growth time of 15 min. The advantage of this synthesis technique is the simplicity and use of easily available low cost precursors.

  6. Ratio of Pion Kaon Production in Proton Carbon Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Lebedev, Andrey V. [Harvard Univ., Cambridge, MA (United States)

    2007-05-01

    The ratio of pion-kaon production by 120 GeV/c protons incident on carbon target is presented. The data was recorded with the Main Injector Particle Production experiment at Fermi National Accelerator Laboratory. Production ratios of K++, K--, K-/K+, and π-+ are measured in 24 bins in longitudinal momentum from 20 to 90 GeV/c and transverse momentum up to 2 GeV/c. The measurement is compared to existing data sets, particle production Monte Carlo results from FLUKA-06, parametrization of proton-beryllium data at 400/450 GeV/c, and ratios measured by the MINOS experiment on the NuMI target.

  7. Modeled Climate and Disturbance Impacts to Carbon Sequestration of Recent Interior Boreal Alaska Ecosystem Productivity Declines

    Science.gov (United States)

    Neigh, C. S.; Carvalhais, N.; Collatz, G. J.; Tucker, C. J.

    2010-12-01

    Terrestrial Higher Northern Latitude Boreal ecosystems over the past half century have and are expected to incur substantial future climate warming altering long-term biophysical processes that mediate carbon sink status. Boreal ecosystems are one of the primary terrestrial pools with high organic and mineral soil carbon concentrations due to reduced decomposition from extended periods below freezing. Direct impacts of changing local to regional climate have altered Interior Alaska disturbance regimes shifting patterns of net primary production (NPP), soil heterotrophic respiration (Rh), net ecosystem production (NEP = NPP - Rh) and net biome production (NBP = NEP - De) which includes disturbance events (De). We investigated ecosystem dynamics with a satellite remote sensing driven model accounting for fine-scale heterogeneous events observed from multi temporal-spectral index vectors derived from Landsat. Our intent was to elucidate local to regional processes which have resulted in negative trends observed from the NOAA series of Advanced Very High Resolution Radiometers (AVHRR) over the past decade. The Carnegie-Ames-Stanford approach (CASA) model was run with changing fractional burned area to simulate bi-monthly patterns of net plant carbon fixation, biomass and nutrient allocation, litterfall, soil nitrogen mineralization, combustion emissions, and microbial CO2 production. Carbon reallocation was based on fire disturbances identified with remote sensing data (Landsat, IKONOS, and aerial photography) and disturbance perimeter maps from land management agencies. Warming coupled with insect and fire disturbance emissions reduced interior Boreal forest recalcitrant carbon pools for which losses greatly exceed the North Slope Tundra sink. Our multi spatial-temporal approach confirms substantial forested NPP declines in Landsat and AVHRR while distinguishing abiotic and biophysical disturbance frequency impacts upon NBP.

  8. The Synthesis of Imidazoline Derivative Compounds as Corrosion Inhibitor towards Carbon Steel in 1% NaCl Solution

    Directory of Open Access Journals (Sweden)

    Deana Wahyuningrum

    2008-03-01

    Full Text Available Oleic imidazoline is one of the nitrogen containing heterocyclic compounds that has been widely used as commercial corrosion inhibitor, especially in minimizing the carbon dioxide induced corrosion process in oilfield mining. In this present work, some imidazoline derivative compounds have been synthesized utilizing both conventional and microwave assisted organic synthesis (MAOS methods, in order to determine their corrosion inhibition properties on carbon steel surface. The MAOS method is more effective in synthesizing these compounds than the conventional method regarding to the higher chemical yields of products (91% to 94% and the shorter reaction times (7 to 10 minutes. The characterization of corrosion inhibition activities of the synthesized products towards carbon steel in 1% NaCl solution was determined by the Tafel plot method. The corrosion inhibition activities of compound 1b ((Z-2-(2-(heptadec-8-enyl-4,5-dihydroimidazol-1-ylethanamine, 2b ((Z-2-(2-(heptadec-8-enyl-4,5-dihydroimidazol-1-ylethanol and 3b (2-(2-heptadecyl-4,5-dihydroimidazol-1-ylethanamine at 8 ppm concentration in 1% NaCl solution are, respectively, 32.18%, 39.59% and 12.73%. The heptadec-8-enyl and hydroxyethyl substituents at C(2 and N(1 position of imidazoline ring, respectively, gave the most effective corrosion inhibition activity towards carbon steel compared to the presence of other substituents. The increase in concentrations of compound 1b, 2b and 3b in 1% NaCl solution tends to improve their corrosion inhibition activities. Based on the analysis of the free Gibbs adsorption energy (DG0ads values of compound 1b, 2b and 3b (-32.97, -34.34 and -31.27 kJ/mol, respectively, these compounds have the potential to interact with carbon steel through semi-physiosorption or semi-chemisorption.

  9. Microstructure of carbon derived from mangrove charcoal and its application in Li-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Liu Tao [School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100083 (China); Luo Ruiying, E-mail: ryluo@buaa.edu.c [School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100083 (China); Qiao Wenming [College of Chemical Engineering, East China University of Science and Technology, Shanghai 200237 (China); Yoon, Seong-Ho; Mochida, Isao [Institute for Materials Chemistry and Engineering, Kyushu University, Kasuga, Fukuoka 816-8580 (Japan)

    2010-02-01

    In this study, the microstructure of mangrove-charcoal-derived carbon (MC) was studied using XRD, STM and TEM. MC was found to consist of aligned quasi-spherical structural units with diameters of around 5-20 nm. It shows typical hard carbon characteristics, including a strongly disoriented single graphene layer and BSU, formed by two or three graphene layers stacked nearly parallel. Some curved and faceted graphene layers, especially closed carbon nanoparticles with fullerene-like, were observed in the as-prepared samples. MC was also evaluated as an anodic material for Li-ion batteries. MC carbonized at 1000 deg. C possessed the highest available discharge capacity (below 0.5 V) of 335 mAh g{sup -1}, the high first-cycle coulombic efficiency of 73.7%, good rate and cyclic capability and PC-based electrolyte compatibility. {sup 7}Li nuclear magnetic resonance (NMR) spectra of fully lithiated mangrove charcoal-derived carbons indicated the co-existence of three Li species.

  10. Microstructural investigations of carbon foams derived from modified coal-tar pitch.

    Science.gov (United States)

    Tzvetkov, George; Tsyntsarski, Boyko; Balashev, Konstantin; Spassov, Tony

    2016-10-01

    This work reports the microstructural evaluation of carbon foams derived from coal-tar pitch precursors treated with H2SO4 and HNO3 and finally annealed at 1000°C and 2000°C. Our experimental investigations combine scanning electron microscopy (SEM), transmission electron microscopy (TEM), atomic force microscopy (AFM) imaging, X-ray photoelectron spectroscopy (XPS) and micro-spot near-edge X-ray absorption fine structure (μ-NEXAFS) spectroscopy. This set of complementary techniques provides detailed structural and chemical information of the surface and the bulk of the carbon foams. The high-resolution microscopy data indicate the formation of carbonaceous amorphous microspheres (average diameters of 0.28±0.01μm) embedded in the partially graphitized carbon foam matrix at 1000°C. The microspheres are enriched with sp-bonded species and their microstructural characteristics depend on the reagent (nitric vs. sulfuric acid) used for pitch treatment. A complete chemical transformation of the microspheres at temperatures >1000°C occurs and at 2000°C they are spectroscopically identical with the bulk material (sp(2)- and sp(3)-hybridised forms of carbon). The microstructure-property relationship is exemplified by the compressive strength measurements. These results allow a better description of coal-tar pitch-derived carbon foams at the atomic level, and may account for a better understanding of the processes during graphitization step.

  11. Characterization of chlorinated tire-derived mesoporous activated carbon for adsorptive removal of toluene

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Jianzhong [College of Environment, HoHai University, Nanjing (China); Department of Civil and Environmental Engineering, University of Missouri, Columbia, MO (United States); Liang, Hao [Logistic Department of Guangzhou Military District, Guangzhou (China); Fang, Jun [Delon Hampton and Associates District of Columbia Water and Sewer Authority, Washington, DC (United States); Zhu, Jianguo [Wistron NeWeb (Kunshan) Corporation, Kunshan, Jiangsu Province (China); Shi, Buchang [Department of Chemistry, Western Kentucky University, Bowling Green, KY (United States)

    2011-06-15

    A series of chlorinated mesoporous activated carbons were derived from waste tires by pyrolysis, activation, and chlorination at different temperatures. The physical and chemical properties of the samples were studied by Brunauer-Emmett-Teller (BET) analysis, Fourier Transform IR Spectroscopy (FT-IR), point of zero charge measurement, thermogravimetric analysis, and by testing their behavior as adsorbents for toluene removal. Our results showed that the tire-derived activated carbon samples have highly mesoporous volumes and surface areas, and chlorination treatment has a slight effect on the pore structure. Lewis acidity of the sample increases after chlorination and the chlorine content increases from 0.24 to 2.32% with chlorination temperature increasing from 50 to 400 C. The higher the chlorine content, the more is the toluene adsorption. In comparison with the commercial carbon (F-400), all the samples have significantly higher adsorption capacity for toluene due to the presence of mesopores, inductive effect of the partial positive chemisorbed chlorine and resonance effects of C-Cl structures. The mesopores probably render easier diffusion of toluene molecule to inner carbon matrix and the strong {pi}-{pi} interaction between toluene and C-Cl resonance structure in the carbon significantly affects the interplay bonding process thus enhances the toluene removal. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  12. 40 CFR 415.300 - Applicability; description of the calcium carbonate production subcategory.

    Science.gov (United States)

    2010-07-01

    ... resulting from the production of calcium carbonate by the milk of lime process and by the recovery process... calcium carbonate production subcategory. 415.300 Section 415.300 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Calcium Carbonate Production Subcategory § 415.300 Applicability; description of...

  13. 78 FR 15376 - Determinations: Corrosion-Resistant Carbon Steel Flat Products From Germany and Korea

    Science.gov (United States)

    2013-03-11

    ... COMMISSION Determinations: Corrosion-Resistant Carbon Steel Flat Products From Germany and Korea On the basis... Korea and the antidumping duty orders on corrosion-resistant carbon steel flat products from Germany and... Corrosion-Resistant Carbon Steel Flat Products from Germany and Korea: Investigation Nos. 701-TA-350 and...

  14. Apparatus for hydrogen and carbon production via carbon aerosol-catalyzed dissociation of hydrocarbons

    Science.gov (United States)

    Muradov, Nazim Z. (Inventor); Smith, Franklyn (Inventor); Tabatabaie-Raissi, Ali (Inventor)

    2012-01-01

    A novel process and apparatus is disclosed for sustainable, continuous production of hydrogen and carbon by catalytic dissociation or decomposition of hydrocarbons at elevated temperatures using in-situ generated carbon particles. Carbon particles are produced by decomposition of carbonaceous materials in response to an energy input. The energy input can be provided by at least one of a non-oxidative and oxidative means. The non-oxidative means of the energy input includes a high temperature source, or different types of plasma, such as, thermal, non-thermal, microwave, corona discharge, glow discharge, dielectric barrier discharge, or radiation sources, such as, electron beam, gamma, ultraviolet (UV). The oxidative means of the energy input includes oxygen, air, ozone, nitrous oxide (NO.sub.2) and other oxidizing agents. The method, apparatus and process of the present invention is applicable to any gaseous or liquid hydrocarbon fuel and it produces no or significantly less CO.sub.2 emissions compared to conventional processes.

  15. Short and Long Term Impacts of Forest Bioenergy Production on Atmospheric Carbon Dioxide Emissions

    Science.gov (United States)

    Hudiburg, T.; Law, B. E.; Luyssaert, S.; Thornton, P. E.

    2011-12-01

    Temperate forest annual net uptake of CO2 from the atmosphere is equivalent to ~16% of the annual fossil fuel emissions in the United States. Mitigation strategies to reduce emissions of carbon dioxide have lead to investigation of alternative sources of energy including forest biomass. The prospect of forest derived bioenergy has led to implementation of new forest management strategies based on the assumption that they will reduce total CO2 emissions to the atmosphere by simultaneously reducing the risk of wildfire and substituting for fossil fuels. The benefit of managing forests for bioenergy substitution of fossil fuels versus potential carbon sequestration by reducing harvest needs to be evaluated. This study uses a combination of Federal Forest Inventory data (FIA), remote sensing, and a coupled carbon-nitrogen ecosystem process model (CLM4-CN) to predict net atmospheric CO2 emissions from forest thinning for bioenergy production in Oregon under varying future management and climate scenarios. We use life-cycle assessment (LCA) incorporating both the forest and forest product sinks and sources of carbon dioxide. Future modeled results are compared with a reduced harvest scenario to determine the potential for increased carbon sequestration in forest biomass. We find that Oregon forests are a current strong sink of 7.5 ± 1.7 Tg C yr-1 or 61 g C m-2 yr-1. (NBP; NEP minus removals from fire and harvest). In the short term, we find that carbon dynamics following harvests for fire prevention and large-scale bioenergy production lead to 2-15% higher emissions over the next 20 years compared to current management, assuming 100% effectiveness of fire prevention. Given the current sink strength, analysis of the forest sector in Oregon demonstrates that increasing harvest levels by all practices above current business-as-usual levels increases CO2 emissions to the atmosphere as long as the region's sink persists. In the long-term, we find that projected changes in

  16. Large variability in continental shelf production of phytoplankton carbon revealed by satellite

    Directory of Open Access Journals (Sweden)

    B. F. Jönsson

    2010-12-01

    Full Text Available We estimate the net production of phytoplankton in the Gulf of Maine (GoM over a 3-year period using satellite ocean color data in conjunction with surface velocities from a high-resolution operational ocean circulation model. Chlorophyll (chl-a and light attenuation (K490 products are combined with a carbon to chlorophyll model to estimate the phytoplankton carbon (PC stock in the euphotic layer. A satellite-based productivity, termed NCPe in analogy with net community production (NCP, is derived by tracking changes in satellite-derived PC from one satellite image to the next, along water parcel trajectories calculated with surface velocities from the ocean circulation model. Such an along-trajectory analysis of satellite data discounts the effect of advection that would otherwise contribute to the temporal change between consecutive images viewed in the fixed reference frame. Our results show a high variability of up to ± 500 mg C m−2 d−1 in NCPe on spatial scales of 10–100 km. A region-wide median NCPe of 40–50 mg C m−2 d−1 is often prevalent in the Gulf, while blooms attain peak values of 400 mg C m−2 d−1 for a few days. The spatio-temporal variability of NCPe in this region, though conditioned by seasonality, is dominated by events lasting a few days, which if integrated, lead to large inter-annual variability in the annual carbon budget. This study is a step toward achieving synoptic and time-dependent estimates of oceanic productivity and NCP from satellite data.

  17. Kinetics and equilibrium adsorption study of p-nitrophenol onto activated carbon derived from walnut peel.

    Science.gov (United States)

    Liu, Xiaohong; Wang, Fang; Bai, Song

    2015-01-01

    An original activated carbon prepared from walnut peel, which was activated by zinc chloride, was modified with ammonium hydroxide or sodium hydroxide in order to contrast the adsorption property of the three different activated carbons. The experiment used a static adsorption test for p-nitrophenol. The effects of parameters such as initial concentration, contact time and pH value on amount adsorbed and removal are discussed in depth. The thermodynamic data of adsorption were analyzed by Freundlich and Langmuir models. The kinetic data of adsorption were measured by the pseudo-first-order kinetics and the pseudo-second-order kinetics models. The results indicated that the alkalized carbon samples derived from walnut peel had a better performance than the original activated carbon treated with zinc chloride. It was found that adsorption equilibrium time was 6 h. The maximum removal rate of activated carbon treated with zinc chloride for p-nitrophenol was 87.3% at pH 3,whereas the maximum removal rate of the two modified activated carbon materials was found to be 90.8% (alkalized with ammonium hydroxide) and 92.0% (alkalized with sodium hydroxide) at the same pH. The adsorption data of the zinc chloride activated carbon were fitted to the Langmuir isotherm model. The two alkalized activated carbon samples were fitted well to the Freundlich model. The pseudo-second-order dynamics equation provided better explanation of the adsorption dynamics data of the three activated carbons than the pseudo-first-order dynamics equation.

  18. Contribution of petroleum-derived organic carbon to sedimentary organic carbon pool in the eastern Yellow Sea (the northwestern Pacific).

    Science.gov (United States)

    Kim, Jung-Hyun; Lee, Dong-Hun; Yoon, Suk-Hee; Jeong, Kap-Sik; Choi, Bohyung; Shin, Kyung-Hoon

    2017-02-01

    We investigated molecular distributions and stable carbon isotopic compositions (δ(13)C) of sedimentary n-alkanes (C15C35) in the riverbank and marine surface sediments to trace natural and anthropogenic organic carbon (OC) sources in the eastern Yellow Sea which is a river dominated marginal sea. Molecular distributions of n-alkanes are overall dominated by odd-carbon-numbered high molecular weight n-C27, n-C29, and n-C31. The δ(13)C signatures of n-C27, n-C29, and n-C31 indicate a large contribution of C3 gymnosperms as the main source of n-alkanes, with the values of -29.5 ± 1.3‰, -30.3 ± 2.0‰, and -30.0 ± 1.7‰, respectively. However, the contribution of thermally matured petroleum-derived OC to the sedimentary OC pool is also evident, especially in the southern part of the study area as shown by the low carbon preference index (CPI25-33, petroleum-induced OC on benthic food webs in this ecosystem. However, the relative proportions of the natural and petroleum-derived OC sources are not calculated due to the lack of biogeochemical end-member data in the study area. Hence, more works are needed to constrain the end-member values of the organic material supplied from the rivers to the eastern Yellow Sea and thus to better understand the source and depositional process of sedimentary OC in the eastern Yellow Sea. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Tracking small mountainous river derived terrestrial organic carbon across the active margin marine environment

    Science.gov (United States)

    Childress, L. B.; Blair, N. E.; Orpin, A. R.

    2015-12-01

    Active margins are particularly efficient in the burial of organic carbon due to the close proximity of highland sources to marine sediment sinks and high sediment transport rates. Compared with passive margins, active margins are dominated by small mountainous river systems, and play a unique role in marine and global carbon cycles. Small mountainous rivers drain only approximately 20% of land, but deliver approximately 40% of the fluvial sediment to the global ocean. Unlike large passive margin systems where riverine organic carbon is efficiently incinerated on continental shelves, small mountainous river dominated systems are highly effective in the burial and preservation of organic carbon due to the rapid and episodic delivery of organic carbon sourced from vegetation, soil, and rock. To investigate the erosion, transport, and burial of organic carbon in active margin small mountainous river systems we use the Waipaoa River, New Zealand. The Waipaoa River, and adjacent marine depositional environment, is a system of interest due to a large sediment yield (6800 tons km-2 yr-1) and extensive characterization. Previous studies have considered the biogeochemistry of the watershed and tracked the transport of terrestrially derived sediment and organics to the continental shelf and slope by biogeochemical proxies including stable carbon isotopes, lignin phenols, n-alkanes, and n-fatty acids. In this work we expand the spatial extent of investigation to include deep sea sediments of the Hikurangi Trough. Located in approximately 3000 m water depth 120 km from the mouth of the Waipaoa River, the Hikurangi Trough is the southern extension of the Tonga-Kermadec-Hikurangi subduction system. Piston core sediments collected by the National Institute of Water and Atmospheric Research (NIWA, NZ) in the Hikurangi Trough indicate the presence of terrestrially derived material (lignin phenols), and suggest a continuum of deposition, resuspension, and transport across the margin

  20. Environmental Remediation and Conversion of Carbon Dioxide (CO2 into Useful Green Products by Accelerated Carbonation Technology

    Directory of Open Access Journals (Sweden)

    Kwang-Suk You

    2010-01-01

    Full Text Available This paper reviews the application of carbonation technology to the environmental industry as a way of reducing carbon dioxide (CO2, a green house gas, including the presentation of related projects of our research group. An alternative technology to very slow natural carbonation is the co-called ‘accelerated carbonation’, which completes its fast reaction within few hours by using pure CO2. Carbonation technology is widely applied to solidify or stabilize solid combustion residues from municipal solid wastes, paper mill wastes, etc. and contaminated soils, and to manufacture precipitated calcium carbonate (PCC. Carbonated products can be utilized as aggregates in the concrete industry and as alkaline fillers in the paper (or recycled paper making industry. The quantity of captured CO2 in carbonated products can be evaluated by measuring mass loss of heated samples by thermo-gravimetric (TG analysis. The industrial carbonation technology could contribute to both reduction of CO2 emissions and environmental remediation.

  1. Ectoine production from lignocellulosic biomass-derived sugars by engineered Halomonas elongata.

    Science.gov (United States)

    Tanimura, Kosuke; Nakayama, Hideki; Tanaka, Tsutomu; Kondo, Akihiko

    2013-08-01

    In this study, the water-retaining cyclic amino acid ectoine was produced from a variety of sugars, including glucose, xylose, cellobiose, and glucose/xylose mixture using engineered Halomonas elongata. When grown on xylose as the sole carbon source, H. elongata produced 333 mmol/kg fresh cell weight (FW) of ectoine, which was 1.4-fold higher than that produced from glucose. To improve ectoine production, an ectD deficient H. elongata mutant was constructed. The engineered H. elongata produced 377 mmol/kg FW of ectoine from a glucose/xylose mixture. Ectoine was also produced from rice straw hydrolysate. These results show that H. elongata can produce ectoine from a variety of sugars derived from lignocellulosic biomass and thus has tremendous potential as a host for producing useful compounds from biomass resources.

  2. A new technology for production of high thickness carbon/carbon composites for launchers application

    Science.gov (United States)

    Albano, Marta; Delfini, Andrea; Pastore, Roberto; Micheli, Davide; Marchetti, Mario

    2016-11-01

    Carbon-Carbon (C/C) composites are known for their extraordinary stability and excellent mechanical properties, almost unchanged at high temperatures. Among the several advanced applications, C/C based materials can be used in engines as nozzle throat section for launchers. In particular, the main feature for such employment is the material high resistance in extreme thermal environment. On the other hand, large-size items are required for this kind of purposes, thus introducing criticalities in terms of material uniformity and final overall properties. Up to now, there no standard for the production of high thickness C/C structures. In this paper a novel manufacturing method is analyzed, following each phase of the process, from the carbon fiber preform design and preparation to the carbon densification by chemical vapor infiltration method. Five preforms of large dimensions with different characteristics have been manufactured and infiltrated. The realized prototypes have been then analyzed by means of mechanical, physical and morphological tests. Aim of the results of this preliminary work is to establish a set of guidelines for a well-defined high thickness C/C production method.

  3. Popcorn-Derived Porous Carbon for Energy Storage and CO2 Capture.

    Science.gov (United States)

    Liang, Ting; Chen, Chunlin; Li, Xing; Zhang, Jian

    2016-08-16

    Porous carbon materials have drawn tremendous attention due to its applications in energy storage, gas/water purification, catalyst support, and other important fields. However, producing high-performance carbons via a facile and efficient route is still a big challenge. Here we report the synthesis of microporous carbon materials by employing a steam-explosion method with subsequent potassium activation and carbonization of the obtained popcorn. The obtained carbon features a large specific surface area, high porosity, and doped nitrogen atoms. Using as an electrode material in supercapacitor, it displays a high specific capacitance of 245 F g(-1) at 0.5 A g(-1) and a remarkable stability of 97.8% retention after 5000 cycles at 5 A g(-1). The product also exhibits a high CO2 adsorption capacity of 4.60 mmol g(-1) under 1066 mbar and 25 °C. Both areal specific capacitance and specific CO2 uptake are directly proportional to the surface nitrogen content. This approach could thus enlighten the batch production of porous nitrogen-doped carbons for a wide range of energy and environmental applications.

  4. Fluorinated carbide-derived carbon: more hydrophilic, yet apparently more hydrophobic.

    Science.gov (United States)

    Farmahini, Amir H; Sholl, David S; Bhatia, Suresh K

    2015-05-13

    We explore the effect of fluorine doping on hydrophobicity of nanoporous silicon carbide-derived carbon (SiCDC), and investigate the underlying barriers for adsorption and diffusion of water vapor and CO2 in the fluorinated and nonfluorinated structures. We develop atomistic models of fluorine-doped SiCDC at three different levels of fluorination, based on a hybrid reverse Monte Carlo constructed model of SiCDC, and develop a novel first-principles force field for the simulation of adsorption and transport of water and CO2 in the fluorine-doped carbon materials. We demonstrate an apparent dual effect of fluorination, showing that while fluorination generates more hydrophilic carbon surfaces, they actually act as more hydrophobic structures due to enhanced energy barriers in the disordered network of microporous carbon. While an increase in adsorption energy and in water uptake is seen for fluorine-doped carbon, large internal free energy barriers as well as the results of MD simulations demonstrate that the increased adsorption is kinetically limited and not experimentally observable on practical time scales. We show that an increase in apparent hydrophobicity due to fluorination is mediated by larger free energy barriers arising from stronger binding of fluid molecules inside the pore network, as opposed to repulsion or steric hindrance to the diffusion of molecules through narrow pore entries. For carbon dioxide, adsorption enthalpies and activation energy barriers are both decreased on fluorination, indicating weakened solid-fluid binding energies in the fluorinated systems.

  5. Room-temperature Electrochemical Synthesis of Carbide-derived Carbons and Related Materials

    Energy Technology Data Exchange (ETDEWEB)

    Gogotsi, Yury [Drexel Univ., Philadelphia, PA (United States). Nanomaterials Group. Materials Science and Engineering Dept.

    2015-02-28

    This project addresses room-temperature electrochemical etching as an energy-efficient route to synthesis of 3D nanoporous carbon networks and layered 2D carbons and related structures, as well as provides fundamental understanding of structure and properties of materials produced by this method. Carbide-derived-carbons (CDCs) are a growing class of nanostructured carbon materials with properties that are desirable for many applications, such as electrical energy and gas storage. The structure of these functional materials is tunable by the choice of the starting carbide precursor, synthesis method, and process parameters. Moving from high-temperature synthesis of CDCs through vacuum decomposition above 1400°C and chlorination above 400°C, our studies under the previous DOE BES support led to identification of precursor materials and processing conditions for CDC synthesis at temperatures as low as 200°C, resulting in amorphous and highly reactive porous carbons. We also investigated synthesis of monolithic CDC films from carbide films at 250-1200°C. The results of our early studies provided new insights into CDC formation, led to development of materials for capacitive energy storage, and enabled fundamental understanding of the electrolyte ions confinement in nanoporous carbons.

  6. Adsorption of Paraquat dichloride from aqueous solution by activated carbon derived from used tires.

    Science.gov (United States)

    Hamadi, Nadhem K; Sri Swaminathan; Chen, Xiao Dong

    2004-08-09

    The removal of pesticide from wastewater under different batch experimental conditions, using a car tire derived activated carbon was investigated. The pesticide utilized in the study was Paraquat dichloride (1,1-dimethyl-4,4-bipyridyl dichloride), which is a well known herbicide. The adsorbent was produced from the pyrolysis and activation of used tires (TAC). The performances of this adsorbent and a commercial activated carbon F300 (CAC) have been compared. It was determined that the adsorption of Paraquat was weakly pH dependent. The effects of particle size, carbon dosage, temperature and the initial concentration of the Paraquat were studied. Further experiments investigating the regeneration capabilities of the tire-supplied carbon were performed. The regenerated carbons that were washed with basic pH solution were found to have the best sorption capacity recovery. It was found that the rate of sorption of Paraquat onto the carbon is very fast with almost 90% of the maximum possible adsorption taking place in the first 5 min. Nevertheless, the batch sorption kinetics was fitted for a first-order reversible reaction, a pseudo-first-order reaction and a pseudo-second-order reaction. The pseudo-second-order chemical reaction model appears to provide the best correlation. The applicability of the Langmuir isotherm for the present system has been evaluated at different temperatures. The isotherms show that the sorption capacity of CAC decreases with temperature and the dominant mechanism of CAC adsorption is physical sorption.

  7. Carbon and oxygen isotopic composition of coal and carbon dioxide derived from laboratory coal combustion: A preliminary study

    Science.gov (United States)

    Warwick, Peter; Ruppert, Leslie F.

    2016-01-01

    The concentration of carbon dioxide (CO2) in the atmosphere has dramatically increased from the start of the industrial revolution in the mid-1700s to present levels exceeding 400 ppm. Carbon dioxide derived from fossil fuel combustion is a greenhouse gas and a major contributor to on-going climate change. Carbon and oxygen stable isotope geochemistry is a useful tool to help model and predict the contributions of anthropogenic sources of CO2 in the global carbon cycle. Surprisingly few studies have addressed the carbon and oxygen isotopic composition of CO2 derived from coal combustion. The goal of this study is to document the relationships between the carbon and oxygen isotope signatures of coal and signatures of the CO2 produced from laboratory coal combustion in atmospheric conditions.Six coal samples were selected that represent various geologic ages (Carboniferous to Tertiary) and coal ranks (lignite to bituminous). Duplicate splits of the six coal samples were ignited and partially combusted in the laboratory at atmospheric conditions. The resulting coal-combustion gases were collected and the molecular composition of the collected gases and isotopic analyses of δ13C of CO2, δ13C of CH4, and δ18O of CO2 were analysed by a commercial laboratory. Splits (~ 1 g) of the un-combusted dried ground coal samples were analyzed for δ13C and δ18O by the U.S. Geological Survey Reston Stable Isotope Laboratory.The major findings of this preliminary work indicate that the isotopic signatures of δ13C (relative to the Vienna Pee Dee Belemnite scale, VPDB) of CO2 resulting from coal combustion are similar to the δ13CVPDB signature of the bulk coal (− 28.46 to − 23.86 ‰) and are not similar to atmospheric δ13CVPDB of CO2 (~ − 8 ‰, see http://www.esrl.noaa.gov/gmd/outreach/isotopes/c13tellsus.html). The δ18O values of bulk coal are strongly correlated to the coal dry ash yields and appear to have little or no influence on the δ18O values of CO2

  8. Solar production of catalytic filamentous carbon by thermal decomposition of hydrocarbons and carbon monoxide

    Energy Technology Data Exchange (ETDEWEB)

    Kirillov, V.A.; Kuvshinov, G.G.; Mogilnykh, Yu.I. [Boreskov Institute of Catalysis, Novosibirsk (Russian Federation); Reller, A. [University of Hamburg (Germany); Steinfeld, A.; Weidenkaff, A.; Meier, A. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    Concentrated solar radiation was used as the clean source of process heat for the production of Catalytic Filamentous Carbon (CFC) by thermal decomposition of gaseous hydrocarbons and by CO disproportionation in the presence of small metal catalyst particles. Depending on the catalyst, two different types of CFC, namely nano tubes and nano fibers, were obtained in solar experiments at the PSI solar furnace. (author) 2 figs., 1 tab., 7 refs.

  9. Soft and wrinkled carbon membranes derived from petals for flexible supercapacitors

    Science.gov (United States)

    Yu, Xiuxiu; Wang, Ying; Li, Li; Li, Hongbian; Shang, Yuanyuan

    2017-01-01

    Biomass materials are promising precursors for the production of carbonaceous materials due to their abundance, low cost and renewability. Here, a freestanding wrinkled carbon membrane (WCM) electrode material for flexible supercapacitors (SCs) was obtained from flower petal. The carbon membrane was fabricated by a simple thermal pyrolysis process and further activated by heating the sample in air. As a binder and current collector-free electrode, the activated wrinkled carbon membrane (AWCM) exhibited a high specific capacitance of 332.7 F/g and excellent cycling performance with 92.3% capacitance retention over 10000 cycles. Moreover, a flexible all-solid supercapacitor with AWCM electrode was fabricated and showed a maximum specific capacitance of 154 F/g and great bending stability. The development of this flower petal based carbon membrane provides a promising cost-effective and environmental benign electrode material for flexible energy storage. PMID:28361914

  10. Production of carbon molecular sieves from illinois coals. An assessment

    Science.gov (United States)

    Lizzio, Anthony A.; Rostam-Abadi, Massoud

    1991-01-01

    Chars were produced from an Illinois No. 2 bituminous coal under various pyrolysis and activation conditions and tested for their molecular sieve properties. The amount of N2 compared to the amount of CO2 adsorbed by each char was used as a preliminary indicator of its molecular sieve properties. This relatively simple, but apparently useful test was confirmed by successfully characterizing the well-known molecular sieve properties of a commercial zeolite and molecular sieve carbon. In addition, coal chars having relatively high surface areas (800-1800 m2/g) were produced and tested for their molecular sieving capabilities. These carbon materials, which have high adsorption capacities and relatively narrow pore size distributions, should be ideal candidates for the commercial production of CMS.

  11. Calcium carbonate production response to future ocean warming and acidification

    Directory of Open Access Journals (Sweden)

    A. J. Pinsonneault

    2012-06-01

    Full Text Available Anthropogenic carbon dioxide (CO2 emissions are acidifying the ocean, affecting calcification rates in pelagic organisms, and thereby modifying the oceanic carbon and alkalinity cycles. However, the responses of pelagic calcifying organisms to acidification vary widely between species, contributing uncertainty to predictions of atmospheric CO2 and the resulting climate change. At the same time, ocean warming caused by rising CO2 is expected to drive increased growth rates of all pelagic organisms, including calcifiers. It thus remains unclear whether anthropogenic CO2 emissions will ultimately increase or decrease pelagic calcification rates. Here, we assess the importance of this uncertainty by introducing a dependence of calcium carbonate (CaCO3 production on calcite saturation state (ΩCaCO3 in an intermediate complexity coupled carbon-climate model. In a series of model simulations, we examine the impact of several variants of this dependence on global ocean carbon cycling between 1800 and 3500 under two different CO2 emissions scenarios. Introducing a calcification-saturation state dependence has a significant effect on the vertical and surface horizontal alkalinity gradients, as well as on the removal of alkalinity from the ocean through CaCO3 burial. These changes result in an additional oceanic uptake of carbon when calcification depends on ΩCaCO3 (of up to 270 Pg C, compared to the case where calcification does not depend on acidification. In turn, this response causes a reduction of global surface air temperature of up to 0.4 °C in year 3500. Different versions of the model produced varying results, and narrowing this range of uncertainty will require better understanding of both temperature and acidification effects on pelagic calcifiers. Nevertheless, our results suggest that alkalinity observations can be used

  12. Calcium carbonate production response to future ocean warming and acidification

    Directory of Open Access Journals (Sweden)

    A. J. Pinsonneault

    2011-12-01

    Full Text Available Anthropogenic carbon dioxide (CO2 emissions are acidifying the ocean, affecting calcification rates in pelagic organisms and thereby modifying the oceanic alkalinity cycle. However, the responses of pelagic calcifying organisms to acidification vary widely between species, contributing uncertainty to predictions of atmospheric CO2 and the resulting climate change. Meanwhile, ocean warming caused by rising CO2 is expected to drive increased growth rates of all pelagic organisms, including calcifiers. It thus remains unclear whether anthropogenic CO2 will ultimately increase or decrease the globally-integrated pelagic calcification rate. Here, we assess the importance of this uncertainty by introducing a variable dependence of calcium carbonate (CaCO3 production on calcite saturation state (ΩCaCO3 in the University of Victoria Earth System Climate Model, an intermediate complexity coupled carbon-climate model. In a series of model simulations, we examine the impact of this parameterization on global ocean carbon cycling under two CO2 emissions scenarios, both integrated to the year 3500. The simulations show a significant sensitivity of the vertical and surface horizontal alkalinity gradients to the parameterization, as well as the removal of alkalinity from the ocean through CaCO3 burial. These sensitivities result in an additional oceanic uptake of carbon when calcification depends on ΩCaCO3 (of up to 13 % of total carbon emissions, compared to the case where calcification is insensitive to acidification. In turn, this response causes a reduction of global surface air temperature of up to 0.4 °C in year 3500, a 13 % reduction in the amplitude of warming. Narrowing these uncertainties will require better understanding of both temperature and acidification effects on pelagic calcifiers. Preliminary examination suggests that

  13. Natural gas adsorption on biomass derived activated carbons: A mini review

    Directory of Open Access Journals (Sweden)

    Hamza Usman D.

    2016-01-01

    Full Text Available Activated carbon materials are good candidates for natural gas storage due excellent textural properties that are easy to enhance and modify. Natural gas is much cleaner fuel than coal and other petroleum derivatives. Storage of natural gas on porous sorbents at lower pressure is safer and cheaper compared to compressed and liquefied natural gas. This article reviews some works conducted on natural gas storage on biomass based activated carbon materials. Methane storage capacities and deliveries of the various sorbents were given. The effect of factors such as surface area, pore characteristic, heat of adsorption, packing density on the natural gas storage capacity on the activated carbons are discussed. Challenges, improvements and future directions of natural gas storage on porous carbonaceous materials are highlighted.

  14. Room-temperature carbide-derived carbon synthesis by electrochemical etching of MAX phases.

    Science.gov (United States)

    Lukatskaya, Maria R; Halim, Joseph; Dyatkin, Boris; Naguib, Michael; Buranova, Yulia S; Barsoum, Michel W; Gogotsi, Yury

    2014-05-05

    Porous carbons are widely used in energy storage and gas separation applications, but their synthesis always involves high temperatures. Herein we electrochemically selectively extract, at ambient temperature, the metal atoms from the ternary layered carbides, Ti3 AlC2 , Ti2 AlC and Ti3 SiC2 (MAX phases). The result is a predominantly amorphous carbide-derived carbon, with a narrow distribution of micropores. The latter is produced by placing the carbides in HF, HCl or NaCl solutions and applying anodic potentials. The pores that form when Ti3 AlC2 is etched in dilute HF are around 0.5 nm in diameter. This approach forgoes energy-intensive thermal treatments and presents a novel method for developing carbons with finely tuned pores for a variety of applications, such as supercapacitor, battery electrodes or CO2 capture.

  15. Study on activated carbon derived from sewage sludge for adsorption of gaseous formaldehyde.

    Science.gov (United States)

    Wen, Qingbo; Li, Caiting; Cai, Zhihong; Zhang, Wei; Gao, Hongliang; Chen, Lijun; Zeng, Guangming; Shu, Xin; Zhao, Yapei

    2011-01-01

    The aim of this work is to evaluate the adsorption performances of activated carbon derived from sewage sludge (ACSS) for gaseous formaldehyde removal compared with three commercial activated carbons (CACs) using self-designing adsorption and distillation system. Formaldehyde desorption of the activated carbons for regeneration was also studied using thermogravimetric (TG) analysis. The porous structure and surface characteristics were studied using N2 adsorption and desorption isotherms, scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR). The results show that ACSS has excellent adsorption performance, which is overall superior to the CACs. Adsorption theory indicates that the ACSS outperforms the CACs due to its appropriate porous structure and surface chemistry characteristics for formaldehyde adsorption. The TG analysis of desorption shows that the optimum temperature to regenerate ACSS is 75°C, which is affordable and economical for recycling.

  16. [Environmental behavior and effect of biomass-derived black carbon in soil: a review].

    Science.gov (United States)

    Liu, Yu-Xue; Liu, Wei; Wu, Wei-Xiang; Zhong, Zhe-Ke; Chen, Ying-Xu

    2009-04-01

    Biomass-derived black carbon, also named biochar, has the characteristics of high stability against decay and high capability of adsorption, and can affect the environment through its interactions with climate and geology, playing a significant role in global climate change, carbon biogeochemical cycle, and environmental system. In recent years, more and more researchers in the fields of atmospheric sciences, geology, and environmental science focused on the environmental behavior and effect of biochar. As one possible source of the components with high aromatic structure in soil humus, biochar is of great importance in increasing soil carbon storage and improving soil fertility, and in maintaining the balance of soil ecosystem. This paper offered the latest information regarding the characteristics and biotic and abiotic oxidation mechanisms of biochar, its effects on global climate change, and the environmental effect of biochar in soil. Research prospects were briefly discussed on the environmental behavior and effect of biochar in soil ecosystem.

  17. Tunable multicolor carbon dots prepared from well-defined polythiophene derivatives and their emission mechanism.

    Science.gov (United States)

    Guo, Liang; Ge, Jiechao; Liu, Weimin; Niu, Guangle; Jia, Qingyan; Wang, Hui; Wang, Pengfei

    2016-01-14

    Various functional precursors based on polythiophene derivatives are designed to prepare carbon dots (C-dots) with tunable emissions ranging from blue to near-infrared (NIR) at a single excitation wavelength (400 nm). The as-prepared C-dots demonstrate homogeneous size, superior optical properties, excellent water solubility, and low cytotoxicity. Thus, the C-dots are candidates for bio-imaging. A tunable photoluminescence mechanism is proposed to result from variations in the surface state and N content.

  18. Lidar-derived estimate and uncertainty of carbon sink in successional phases of woody encroachment

    Science.gov (United States)

    Sankey, Temuulen; Shrestha, Rupesh; Sankey, Joel B.; Hardgree, Stuart; Strand, Eva

    2013-01-01

    Woody encroachment is a globally occurring phenomenon that contributes to the global carbon sink. The magnitude of this contribution needs to be estimated at regional and local scales to address uncertainties present in the global- and continental-scale estimates, and guide regional policy and management in balancing restoration activities, including removal of woody plants, with greenhouse gas mitigation goals. The objective of this study was to estimate carbon stored in various successional phases of woody encroachment. Using lidar measurements of individual trees, we present high-resolution estimates of aboveground carbon storage in juniper woodlands. Segmentation analysis of lidar point cloud data identified a total of 60,628 juniper tree crowns across four watersheds. Tree heights, canopy cover, and density derived from lidar were strongly correlated with field measurements of 2613 juniper stems measured in 85 plots (30 × 30 m). Aboveground total biomass of individual trees was estimated using a regression model with lidar-derived height and crown area as predictors (Adj. R2 = 0.76, p 2. Uncertainty in carbon storage estimates was examined with a Monte Carlo approach that addressed major error sources. Ranges predicted with uncertainty analysis in the mean, individual tree, aboveground woody C, and associated standard deviation were 0.35 – 143.6 kg and 0.5 – 1.25 kg, respectively. Later successional phases of woody encroachment had, on average, twice the aboveground carbon relative to earlier phases. Woody encroachment might be more successfully managed and balanced with carbon storage goals by identifying priority areas in earlier phases of encroachment where intensive treatments are most effective.

  19. Changes in Fire-Derived Soil Black Carbon Storage in a Sub-humid Woodland

    Science.gov (United States)

    White, J. D.; Yao, J.; Murray, D. B.; Hockaday, W. C.

    2014-12-01

    Fire-derived black carbon (BC) in soil, including charcoal, represents a potentially important fraction of terrestrial carbon cycling due to its presumed long persistence in soil. Interpretation of site BC retention is important for assessing feedbacks to ecosystem processes including nutrient and water cycling. However, interaction between vegetation disturbance, BC formation, and off site transport may exist that complicate interpretation of BC addition to soils from wildfire or prescribed burns directly. To investigate the relationship between disturbance and site retention on soil BC, we determined BC concentrations for a woodland in central Texas, USA, from study plots in hilly terrain with a fire scar dendrochronology spanning 100 years. BC values were determined from 13C nuclear magnetic resonance (NMR) spectroscopy. Estimated values showed mean BC concentration of 2.73 ± 3.06 g BC kg-1 (0.91 ± 0.51 kg BC m-2) for sites with fire occurrence within the last 40 years compared with BC values of1.21 ± 1.70 g BC kg-1 soil (0.18 ± 0.14 kg BC m-2) for sites with fire 40 - 100 years ago. Sites with no tree ring evidence of fire during the last 100 years had the lowest mean soil BC concentration of 0.05 ± 0.11 g BC kg-1 (0.02 ± 0.03 kg BC m-2). Molecular proxies of stability (lignin/N) and decomposition (Alkyl C/O-Alky C) showed no differences across the sites, indicating that low potential for BC mineralization. Modeled soil erosion and time since fire from fire scar data showed that soil BC concentrations were inversely correlated. A modified the ecosystem process model, Biome-BGC, was also used simulate the effects of fire disturbance with different severities and seasonality on C cycling related to the BC production, effect on soil water availability, and off-site transport. Results showed that BC impacts on ecosystem processes, including net ecosystem exchange and leaf area development, were predominantly related to fire frequency. Site BC loss rates were

  20. Micro-supercapacitors from carbide derived carbon (CDC) films on silicon chips

    Science.gov (United States)

    Huang, Peihua; Heon, Min; Pech, David; Brunet, Magali; Taberna, Pierre-Louis; Gogotsi, Yury; Lofland, Samuel; Hettinger, Jeffrey D.; Simon, Patrice

    2013-03-01

    Interdigitated on-chip micro-supercapacitors based on Carbide Derived Carbon (CDC) films were fabricated and tested. A titanium carbide (TiC) film was patterned and treated with chlorine to obtain a TiC derived carbon (TiC-CDC) film, followed by the deposition of two types of current collectors (Ti/Au and Al) using standard micro-fabrication processes. CDC based micro-supercapacitors were electrochemically characterized by cyclic voltammetry and impedance spectroscopy using a 1 M tetraethylammonium tetrafluoroborate, NEt4BF4, in propylene carbonate (PC) electrolyte. A capacitance of 0.78 mF for the device and 1.5 mF cm-2 as the specific capacitance for the footprint of the device was measured for a 2 V potential range at 100 mV s-1. A specific energy of 3.0 mJ cm-2 and a specific power of 84 mW cm-2 were calculated for the devices. These devices provide a pathway for fabricating pure carbon-based micro-supercapacitors by micro-fabrication, and can be used for powering micro-electromechanical systems (MEMS) and electronic devices.

  1. Hierarchically porous and heteroatom doped carbon derived from tobacco rods for supercapacitors

    Science.gov (United States)

    Zhao, Yong-Qing; Lu, Min; Tao, Peng-Yu; Zhang, Yun-Jie; Gong, Xiao-Ting; Yang, Zhi; Zhang, Guo-Qing; Li, Hu-Lin

    2016-03-01

    A novel tobacco rods-derived carbon (TC) has been prepared by hydrothermal carbonization and potassium hydroxide activation strategy for supercapacitors application. The physicochemical properties of TC are investigated by X-ray diffraction, Raman spectra, Scanning electron microscopy, Nitrogen adsorption-desorption isotherms, X-ray photoelectron spectroscopy, and four-probe tests. Results show TC derived from different tobacco rods possesses similar properties, such as amorphous state, high specific surface area, hierarchical porous structure, numerous heteroatom groups, and good electrical conductivity. The electrochemical characteristics of TC are examined via cyclic voltammetry, galvanostatic charge-discharge, and electrochemical impedance spectroscopy measurements. In a three-electrode system, TC exhibits high capacitance with 286.6 F g-1 at 0.5 A g-1, excellent rate performance with 212.1 F g-1 even at 30 A g-1, and outstanding cyclic stability with 96% capacitance retention after 10,000 cycles at 5 A g-1. Furthermore, TC supercapacitor devices can deliver an energy density of 31.3 Wh kg-1 at 0.5 A g-1 and power density of 11.8 kW kg-1 at 15 A g-1. Therefore, this novel concept of tobacco use, namely tobacco rods from cigarette (the harmful) to high-performance carbon for supercapacitors (the beneficial), is an extremely promising strategy for developing high-performance carbon from renewable sources, and supporting the tobacco control.

  2. Modelling and computation in the valuation of carbon derivatives with stochastic convenience yields.

    Directory of Open Access Journals (Sweden)

    Shuhua Chang

    Full Text Available The anthropogenic greenhouse gas (GHG emission has risen dramatically during the last few decades, which mainstream researchers believe to be the main cause of climate change, especially the global warming. The mechanism of market-based carbon emission trading is regarded as a policy instrument to deal with global climate change. Although several empirical researches about the carbon allowance and its derivatives price have been made, theoretical results seem to be sparse. In this paper, we theoretically develop a mathematical model to price the CO2 emission allowance derivatives with stochastic convenience yields by the principle of absence of arbitrage opportunities. In the case of American options, we formulate the pricing problem to a linear parabolic variational inequality (VI in two spatial dimensions and develop a power penalty method to solve it. Then, a fitted finite volume method is designed to solve the nonlinear partial differential equation (PDE resulting from the power penalty method and governing the futures, European and American option valuation. Moreover, some numerical results are performed to illustrate the efficiency and usefulness of this method. We find that the stochastic convenience yield does effect the valuation of carbon emission derivatives. In addition, some sensitivity analyses are also made to examine the effects of some parameters on the valuation results.

  3. Modelling and computation in the valuation of carbon derivatives with stochastic convenience yields.

    Science.gov (United States)

    Chang, Shuhua; Wang, Xinyu

    2015-01-01

    The anthropogenic greenhouse gas (GHG) emission has risen dramatically during the last few decades, which mainstream researchers believe to be the main cause of climate change, especially the global warming. The mechanism of market-based carbon emission trading is regarded as a policy instrument to deal with global climate change. Although several empirical researches about the carbon allowance and its derivatives price have been made, theoretical results seem to be sparse. In this paper, we theoretically develop a mathematical model to price the CO2 emission allowance derivatives with stochastic convenience yields by the principle of absence of arbitrage opportunities. In the case of American options, we formulate the pricing problem to a linear parabolic variational inequality (VI) in two spatial dimensions and develop a power penalty method to solve it. Then, a fitted finite volume method is designed to solve the nonlinear partial differential equation (PDE) resulting from the power penalty method and governing the futures, European and American option valuation. Moreover, some numerical results are performed to illustrate the efficiency and usefulness of this method. We find that the stochastic convenience yield does effect the valuation of carbon emission derivatives. In addition, some sensitivity analyses are also made to examine the effects of some parameters on the valuation results.

  4. Ordered hierarchical mesoporous/microporous carbon derived from mesoporous titanium-carbide/carbon composites and its electrochemical performance in supercapacitor

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hai-Jing; Wang, Jie; Wang, Cong-Xiao; Xia, Yong-Yao [Department of Chemistry and Shanghai Key Laboratory of Molecular, Catalysis and Innovative Materials, Institute of New Energy, Fudan University, Shanghai (China)

    2011-11-15

    Novel ordered hierarchical mesoporous/microporous carbon (OHMMC) derived from mesoporous titanium-carbide/carbon composites was prepared for the first time by synthesizing ordered mesoporous nanocrystalline titanium-carbide/carbon composites, followed by chlorination of titanium carbides. The mesostructure and microstructure can be conveniently tuned by controlling the TiC contents of mesoporous TiC/C composite precursor, and chlorination temperature. By optimal condition, the OHMMC has a high surface area (1917 m{sup 2}g{sup -1}), large pore volumes (1.24 cm{sup 3}g{sup -1}), narrow mesopore-size distributions (centered at about 3 nm), and micropore size of 0.69 and 1.25 nm, and shows a great potential as electrode for supercapacitor applications: it exhibits a high capacitance of 146 Fg{sup -1} in noaqueous electrolyte and excellent rate capability. The ordered mesoporous channel pores are favorable for retention and immersion of the electrolyte, providing a more favorable path for electrolyte penetration and transportation to achieve promising rate capability performance. Meanwhile, the micropores drilled on the mesopore-walls can increase the specific surface area to provide more sites for charge storage. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. Carbon black nanoparticles promote the maturation and function of mouse bone marrow-derived dendritic cells.

    Science.gov (United States)

    Koike, Eiko; Takano, Hirohisa; Inoue, Ken-Ichiro; Yanagisawa, Rie; Kobayashi, Takahiro

    2008-09-01

    Particulate matter including carbon black (CB) nanoparticles can enhance antigen-related inflammation and immunoglobulin production in vivo. Dendritic cells (DC) as antigen-presenting cells (APC) are the most capable inducers of immune responses. The present study was designed to determine whether CB nanoparticles affect the maturation/activation and function of DC in vitro. DC were differentiated from bone marrow (BM) cells of BALB/c mice by culture with granulocyte macrophage colony stimulating factor (GM-CSF). At day 8 of culture, BM-derived DC (BMDC) were exposed to CB nanoparticles with a diameter of 14nm or 56nm for 24h. The expression of major histocompatibility complex (MHC) class II, DEC205, CD80, and CD86 (maturation/activation markers of BMDC) was measured by flow cytometry. BMDC function was evaluated by an allogeneic mixed lymphocyte reaction (MLR) assay. CB nanoparticles significantly increased the expression of DEC205 and CD86 in BMDC and tended to increase MHC class II and CD80 expression; however, a size-dependent effect was not observed. On the other hand, BMDC-mediated MLR was significantly enhanced by the CB nanoparticles and the enhancement was greater by 14nm CB nanoparticles than by 56nm CB nanoparticles. Taken together, CB nanoparticles can promote the maturation/activation and function of BMDC, which could be related to their effects on allergic diseases and/or responses. In addition, BMDC-mediated MLR might be useful assay for in vitro screening for adjuvant activity of environmental toxicants.

  6. Operation Mechanism of Farmers’ Professional Cooperatives from the Point of Low-Carbon Agricultural Products

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    We firstly take a look at internal logic of cluster development of low-carbon agricultural products.In combination with operation features of farmers’ professional cooperatives and actual requirements for cluster development of low-carbon agricultural products;we elaborate establishing benefit allocation mechanism,bearing education and training functions,forming low-carbon value,building low-carbon identification system,as well as realizing low-carbon value.According to these situations,we systematically analyze operation mechanism of farmers’ professional cooperatives suitable for cluster development of low-carbon agricultural products.To promote cluster development of low-carbon agricultural products,we put forward following suggestions,including government guidance and encouragement,social acceptance and active cooperation,and integration into global low-carbon development system to share benefit of low-carbon development.

  7. 17 CFR 39.4 - Procedures for implementing derivatives clearing organization rules and clearing new products.

    Science.gov (United States)

    2010-04-01

    ... derivatives clearing organization rules and clearing new products. 39.4 Section 39.4 Commodity and Securities... implementing derivatives clearing organization rules and clearing new products. (a) Request for approval of... of § 40.6 of this chapter. (c) Acceptance of new products for clearing. (1) A dormant...

  8. Comparative study on composition, structure, and adsorption behavior of activated carbons derived from different synthetic waste polymers.

    Science.gov (United States)

    Lian, Fei; Xing, Baoshan; Zhu, Lingyan

    2011-08-15

    The composition, structure, and adsorption behavior of activated carbons (ACs) derived from three different types of waste polymers, i.e., tire rubber (TR), polyvinyl chloride (PVC), and polyethyleneterephtalate (PET), by KOH activation were compared. The AC derived from PET exhibited the largest surface area (2831 m(2)/g) and pore volume (1.68 cm(3)/g) due to the homogenous aromatic composition of PET. The AC derived from PVC exhibited relatively lower surface area (2666 m(2)/g) but more narrowed pore size distribution (2-3 nm). The complex composition and high ash content of tire particles resulted in AC product with significantly lower surface area (398.5 m(2)/g) and heterogeneous pore width. Adsorption data of methylene blue (MB) were fitted well by Langmuir equation, indicating monolayer coverage on the ACs. The high oxygen content of PET-derived AC heavily affected its adsorption to MB and iodine. Due to the remarkable surface area and highly mesoporous structures, ACs based on both PET and PVC exhibited much higher adsorption capacities than that of TR and commercial coal-based AC (F400). This study demonstrates that the properties of ACs are highly dependent on their starting polymers and the potential of converting synthetic polymer waste into effective adsorbents for environmental remediation and cleanup.

  9. Phase heterogeneity in carbonate production by marine fish influences their roles in sediment generation and the inorganic carbon cycle.

    Science.gov (United States)

    Salter, Michael A; Harborne, Alastair R; Perry, Chris T; Wilson, Rod W

    2017-04-10

    Marine teleost fish are important carbonate producers in neritic and oceanic settings. However, the fates of the diverse carbonate phases (i.e., mineral and amorphous forms of CaCO3) they produce, and their roles in sediment production and marine inorganic carbon cycling, remain poorly understood. Here we quantify the carbonate phases produced by 22 Bahamian fish species and integrate these data with regional fish biomass data from The Bahamas to generate a novel platform-scale production model that resolves these phases. Overall carbonate phase proportions, ordered by decreasing phase stability, are: ~20% calcite, ~6% aragonite, ~60% high-Mg calcite, and ~14% amorphous carbonate. We predict that these phases undergo differing fates, with at least ~14% (amorphous carbonate) likely dissolving rapidly. Results further indicate that fisheries exploitation in The Bahamas has potentially reduced fish carbonate production by up to 58% in certain habitats, whilst also driving a deviation from natural phase proportions. These findings have evident implications for understanding sedimentary processes in shallow warm-water carbonate provinces. We further speculate that marked phase heterogeneity may be a hitherto unrecognised feature of fish carbonates across a wide range of neritic and oceanic settings, with potentially major implications for understanding their role in global marine inorganic carbon cycling.

  10. Production of carbon molecular sieves from palm shell through carbon deposition from methane

    Directory of Open Access Journals (Sweden)

    Mohammadi Maedeh

    2011-01-01

    Full Text Available The possibility of production of carbon molecular sieve (CMS from palm shell as a waste lignocellulosic biomass was investigated. CMS samples were prepared through heat treatment processes including carbonization, physiochemical activation and chemical vapor deposition (CVD from methane. Methane was pyrolyzed to deposit fine carbon on the pore mouth of palm shell-based activated carbon to yield CMS. All the deposition experiments were performed at 800 ºC, while the methane flow rate (100, 200, 300 mL min-1 CH4 diluted in 500 mL min-1 N2 and deposition time (30 to 60 min were the investigated parameters. The textural characteristics of the CMSs were assessed by N2 adsorption. The largest BET surface area (752 m2 g-1, micropore surface area (902.2 m2 g-1 and micropore volume (0.3466 cm3 g-1 was obtained at the CH4 flow rate of 200 mL min-1 and deposition time of 30 min. However, prolonging the deposition time to 45 min yielded in a micropouros CMS with a narrow pore size distribution.

  11. Bio-Derived, Binderless, Hierarchically Porous Carbon Anodes for Li-ion Batteries.

    Science.gov (United States)

    Campbell, Brennan; Ionescu, Robert; Favors, Zachary; Ozkan, Cengiz S; Ozkan, Mihrimah

    2015-09-29

    Here we explore the electrochemical performance of pyrolyzed skins from the species A. bisporus, also known as the Portobello mushroom, as free-standing, binder-free, and current collector-free Li-ion battery anodes. At temperatures above 900 °C, the biomass-derived carbon nanoribbon-like architectures undergo unique processes to become hierarchically porous. During heat-treatment, the oxygen and heteroatom-rich organics and potassium compounds naturally present in the mushroom skins play a mutual role in creating inner void spaces throughout the resulting carbon nanoribbons, which is a process analogous to KOH-activation of carbon materials seen in literature. The pores formed in the pyrolytic carbon nanoribbons range in size from sub-nanometer to tens of nanometers, making the nanoribbons micro, meso, and macroporous. Detailed studies were conducted on the carbon nanoribbons using SEM and TEM to study morphology, as well as XRD and EDS to study composition. The self-supporting nanoribbon anodes demonstrate significant capacity increase as they undergo additional charge/discharge cycles. After a pyrolysis temperature of 1100 °C, the pristine anodes achieve over 260 mAh/g after 700 cycles and a Coulombic efficiency of 101.1%, without the use of harmful solvents or chemical activation agents.

  12. Synthesis of selenium/EDTA-derived porous carbon composite as a Li-Se battery cathode

    Science.gov (United States)

    Zhao, Chenhao; Fang, Shuzhen; Hu, Zhibiao; Qiu, Sheng'en; Liu, Kaiyu

    2016-07-01

    The carbon substrate with unique 3D macroporous structure has been prepared through the immediate carbonization of ethylenediaminetetraacetic acid (EDTA) and KOH mixture. The porous carbon composed of micro- and small mesoporous (2-5 nm) structure has a BET specific surface area of 1824.8 m2 g-1. The amorphous and nanosized Se is uniformly encapsulated into the porous structure of porous carbon using melting diffusion route, and the weight content of Se in target Se/C composite can be as high as 50 %. As an Li-Se battery cathode, the Se/C composite delivers a reversible (2nd) discharge capacity of 597.4 mAh g-1 at 0.24C and retains a discharge capacity of 538.4 mAh g-1 at 0.24C after 100 cycles. Furthermore, the composite also has a stable capacity of 291.0 mAh g-1 at a high current of 4.8C. The high specific area and good porous size of EDTA-derived carbon substrate may a be responsibility for the excellent electrochemical performances of Se/C composite.

  13. Properties of pyrolytic chars and activated carbons derived from pilot-scale pyrolysis of used tires.

    Science.gov (United States)

    Li, S Q; Yao, Q; Wen, S E; Chi, Y; Yan, J H

    2005-09-01

    Used tires were pyrolyzed in a pilot-scale quasi-inert rotary kiln. Influences of variables, such as time, temperature, and agent flow, on the activation of obtained char were subsequently investigated in a laboratory-scale fixed bed. Mesoporous pores are found to be dominant in the pore structures of raw char. Brunauer-Emmett-Teller (BET) surfaces of activated chars increased linearly with carbon burnoff. The carbon burnoff of tire char achieved by carbon dioxide (CO2) under otherwise identical conditions was on average 75% of that achieved by steam, but their BET surfaces are almost the same. The proper activation greatly improved the aqueous adsorption of raw char, especially for small molecular adsorbates, for example, phenol from 6 to 51 mg/g. With increasing burnoff, phenol adsorption exhibited a first-stage linear increase followed by a rapid drop after 30% burnoff. Similarly, iodine adsorption first increased linearly, but it held as the burnoff exceeded 40%, which implied that the reduction of iodine adsorption due to decreasing micropores was partially made up by increasing mesopores. Both raw chars and activated chars showed appreciable adsorption capacity of methylene-blue comparable with that of commercial carbons. Thus, tire-derived activated carbons can be used as an excellent mesoporous adsorbent for larger molecular species.

  14. Bio-Derived, Binderless, Hierarchically Porous Carbon Anodes for Li-ion Batteries

    Science.gov (United States)

    Campbell, Brennan; Ionescu, Robert; Favors, Zachary; Ozkan, Cengiz S.; Ozkan, Mihrimah

    2015-09-01

    Here we explore the electrochemical performance of pyrolyzed skins from the species A. bisporus, also known as the Portobello mushroom, as free-standing, binder-free, and current collector-free Li-ion battery anodes. At temperatures above 900 °C, the biomass-derived carbon nanoribbon-like architectures undergo unique processes to become hierarchically porous. During heat-treatment, the oxygen and heteroatom-rich organics and potassium compounds naturally present in the mushroom skins play a mutual role in creating inner void spaces throughout the resulting carbon nanoribbons, which is a process analogous to KOH-activation of carbon materials seen in literature. The pores formed in the pyrolytic carbon nanoribbons range in size from sub-nanometer to tens of nanometers, making the nanoribbons micro, meso, and macroporous. Detailed studies were conducted on the carbon nanoribbons using SEM and TEM to study morphology, as well as XRD and EDS to study composition. The self-supporting nanoribbon anodes demonstrate significant capacity increase as they undergo additional charge/discharge cycles. After a pyrolysis temperature of 1100 °C, the pristine anodes achieve over 260 mAh/g after 700 cycles and a Coulombic efficiency of 101.1%, without the use of harmful solvents or chemical activation agents.

  15. Large Differences in Terrestrial Vegetation Production Derived from Satellite-Based Light Use Efficiency Models

    Directory of Open Access Journals (Sweden)

    Wenwen Cai

    2014-09-01

    Full Text Available Terrestrial gross primary production (GPP is the largest global CO2 flux and determines other ecosystem carbon cycle variables. Light use efficiency (LUE models may have the most potential to adequately address the spatial and temporal dynamics of GPP, but recent studies have shown large model differences in GPP simulations. In this study, we investigated the GPP differences in the spatial and temporal patterns derived from seven widely used LUE models at the global scale. The result shows that the global annual GPP estimates over the period 2000–2010 varied from 95.10 to 139.71 Pg C∙yr−1 among models. The spatial and temporal variation of global GPP differs substantially between models, due to different model structures and dominant environmental drivers. In almost all models, water availability dominates the interannual variability of GPP over large vegetated areas. Solar radiation and air temperature are not the primary controlling factors for interannual variability of global GPP estimates for most models. The disagreement among the current LUE models highlights the need for further model improvement to quantify the global carbon cycle.

  16. Animal derived products may conflict with religious patients’ beliefs

    DEFF Research Database (Denmark)

    Eriksson, Axelina; Burcharth, Jakob; Rosenberg, Jacob

    2013-01-01

    Implants and drugs with animal and human derived content are widely used in medicine and surgery, but information regarding ingredients is rarely obtainable by health practitioners. A religious perspective concerning the use of animal and human derived drug ingredients has not thoroughly been...

  17. Production and characterization of carbonized sorbent products optimized for anionic contaminants

    Science.gov (United States)

    Viglasova, Eva; Fristak, Vladimir; Galambos, Michal; Hood-Nowotny, Rebecca; Soja, Gerhard

    2017-04-01

    Processing conditions, production methods and feedstock characteristics have been shown to affect the final sorption properties of biochar-based sorbents that have been produced in pyrolysis reactors. The content of O-containing carboxyl, phenolic and hydroxyl functional groups on the biochar surfaces plays a crucial role in sorption chemistry of hazardous materials. The sorption process can be affected by the presence of non-carbonized fractions in biochar matter as well. All these characteristics indicate that biochar shows good potential as a new tool in removal and separation technologies of various pollutants from waste water or contaminated soils. The sorption potential of wood-based biochars for cationic forms of heavy metals has been studied intensively and has already led to successful pilot applications in the field. However, anionic compounds (e.g. phosphate, nitrate, sulphate, As-, Cr-compounds) do not sorb well to unmodified biochar and need specific surface modification of biochar. Based on this fact, we try to obtain data about the sorptive separation of anionic forms of various contaminants from model aqueous solutions by different types of biochar-derived sorbents, or mineral-enriched biochar-derived sorbents. An important part of this research is the assesment of the effects of varying process parameters during biomass carbonisation, the role of biomass feedstock and pre-and/or post-treatment of the biochars onto sorption processes. We specify the most appropriate application strategies with biochar for remediation purposes of waste water or contaminated waters with elevated toxic metal concentrations that might compromise the quality of surface waters. The main aim of research is the preparation of modified biochar sorbent, the characterization of its surface and the investigation about new possibilities of modified biochar sorbent applications for sorption of various contaminants, mainly their anionic forms (e.g. phosphates, nitrates, arsenates

  18. Life Cycle Analysis of Carbon Flow and Carbon Footprint of Harvested Wood Products of Larix principis-rupprechtii in China

    Directory of Open Access Journals (Sweden)

    Fei Lun

    2016-03-01

    Full Text Available Larix principis-rupprechtii is a native tree species in North China with a large distribution; and its harvested timbers can be used for producing wood products. This study focused on estimating and comparing carbon flows and carbon footprints of different harvested wood products (HWPs from Larix principis-ruppechtii based on the life cycle analysis (from seedling cultivation to HWP final disposal. Based on our interviews and surveys, the system boundary in this study was divided into three processes: the forestry process, the manufacturing process, and the use and disposal process. By tracking carbon flows of HWPs along the entire life cycle, we found that, for one forest rotation period, a total of 26.81 tC/ha sequestered carbon was transferred into these HWPs, 66.2% of which were still stored in the HWP when the rotation period had ended; however, the HWP carbon storage decreased to 0.25 tC/ha (only 0.9% left in the 100th year after forest plantation. The manufacturing process contributed more than 90% of the total HWP carbon footprint, but it was still smaller than the HWP carbon storage. In terms of the carbon storage and the carbon footprint, construction products had the largest net positive carbon balance compared to furniture and panel products. In addition, HWP are known to have a positive impact on global carbon mitigation because they can store parts of the sequestered carbon for a certain period of time and they have a substitution effect on carbon mitigation. Furthermore, there still exist great opportunities for carbon mitigation from HWPs through the use of cleaner energy and increasing the utilization efficiency of wood fuel.

  19. Neutron Scattering Studies of Liquid on or Confined in Nano- and Mesoporous Carbons, Including Carbide-Derived Carbons

    Energy Technology Data Exchange (ETDEWEB)

    Wesolowski, David J [ORNL

    2014-07-01

    This project involved the synthesis of microporous graphitic-carbon powders with subnanometer average pore size, and very narrow pore size distributions, and the use of these materials in experimental studies of pore-fluid structure and dynamics. Samples of carbide-derived carbon powder, synthesized by extraction of the metal cations from TiC by a high temperature chlorination process, followed by high temperature vacuum annealing, were prepared by Ranjan Dash and his associates at CRADA partner Y-Carbon, Inc. The resulting material had average pore sizes ranging from 5 to 8 . These powders were used in two experiments conducted by researchers involved in the Energy Frontier Research Center Directed by David J. Wesolowski at ORNL, the Fluid Interface Reactions, Structures and Transport (FIRST) Center. FIRST-funded researchers at Drexel University collaborated with scientists at the Paul Scherrer Institute, Switzerland, to measure the expansion and contraction of the microporous carbon particles during charging and discharging of supercapactor electrodes composed of these particles (Hantell et al., 2011, Electrochemistry Communications, v. 13, pp. 1221-1224.) in an electrolyte composed of tetraethylammonium tetrafluoroborate dissolved in acetonitrile. In the second experiment, researchers at Oak Ridge National Laboratory and Drexel University conducted quasielastic neutron scattering studies of the diffusional dynamics of water imbibed into the micropores of the same material (Chathoth et al., 2011, EuroPhysics Journal, v. 95, pp. 56001/1-6). These studies helped to establish the role of pores approaching the size of the solvent and dissolved ions in altering diffusional dynamics, ion transport and physical response of conducting substrates to ion desolvation and entry into subnamometer pores.

  20. Carbide-Derived Carbons with Tunable Porosity Optimized for Hydrogen Storage

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, John E.; Gogotsi, Yury; Yildirim, Taner

    2010-01-07

    On-board hydrogen storage is a key requirement for fuel cell-powered cars and trucks. Porous carbon-based materials can in principle adsorb more hydrogen per unit weight at room temperature than liquid hydrogen at -176 oC. Achieving this goal requires interconnected pores with very high internal surface area, and binding energies between hydrogen and carbon significantly enhanced relative to H2 on graphite. In this project a systematic study of carbide-derived carbons, a novel form of porous carbon, was carried out to discover a high-performance hydrogen sorption material to meet the goal. In the event we were unable to improve on the state of the art in terms of stored hydrogen per unit weight, having encountered the same fundamental limit of all porous carbons: the very weak interaction between H2 and the carbon surface. On the other hand we did discover several strategies to improve storage capacity on a volume basis, which should be applicable to other forms of porous carbon. Further discoveries with potentially broader impacts include • Proof that storage performance is not directly related to pore surface area, as had been previously claimed. Small pores (< 1.5 nm) are much more effective in storing hydrogen than larger ones, such that many materials with large total surface areas are sub-par performers. • Established that the distribution of pore sizes can be controlled during CDC synthesis, which opens the possibility of developing high performance materials within a common family while targeting widely disparate applications. Examples being actively pursued with other funding sources include methane storage, electrode materials for batteries and supercapacitors with record high specific capacitance, and perm-selective membranes which bind cytokines for control of infections and possibly hemodialysis filters.

  1. Phytoplankton Productivity in an Arctic Fjord (West Greenland): Estimating Electron Requirements for Carbon Fixation and Oxygen Production.

    Science.gov (United States)

    Hancke, Kasper; Dalsgaard, Tage; Sejr, Mikael Kristian; Markager, Stiig; Glud, Ronnie Nøhr

    2015-01-01

    Accurate quantification of pelagic primary production is essential for quantifying the marine carbon turnover and the energy supply to the food web. Knowing the electron requirement (Κ) for carbon (C) fixation (ΚC) and oxygen (O2) production (ΚO2), variable fluorescence has the potential to quantify primary production in microalgae, and hereby increasing spatial and temporal resolution of measurements compared to traditional methods. Here we quantify ΚC and ΚO2 through measures of Pulse Amplitude Modulated (PAM) fluorometry, C fixation and O2 production in an Arctic fjord (Godthåbsfjorden, W Greenland). Through short- (2h) and long-term (24h) experiments, rates of electron transfer (ETRPSII), C fixation and/or O2 production were quantified and compared. Absolute rates of ETR were derived by accounting for Photosystem II light absorption and spectral light composition. Two-hour incubations revealed a linear relationship between ETRPSII and gross 14C fixation (R2 = 0.81) during light-limited photosynthesis, giving a ΚC of 7.6 ± 0.6 (mean ± S.E.) mol é (mol C)-1. Diel net rates also demonstrated a linear relationship between ETRPSII and C fixation giving a ΚC of 11.2 ± 1.3 mol é (mol C)-1 (R2 = 0.86). For net O2 production the electron requirement was lower than for net C fixation giving 6.5 ± 0.9 mol é (mol O2)-1 (R2 = 0.94). This, however, still is an electron requirement 1.6 times higher than the theoretical minimum for O2 production [i.e. 4 mol é (mol O2)-1]. The discrepancy is explained by respiratory activity and non-photochemical electron requirements and the variability is discussed. In conclusion, the bio-optical method and derived electron requirement support conversion of ETR to units of C or O2, paving the road for improved spatial and temporal resolution of primary production estimates.

  2. Phytoplankton Productivity in an Arctic Fjord (West Greenland: Estimating Electron Requirements for Carbon Fixation and Oxygen Production.

    Directory of Open Access Journals (Sweden)

    Kasper Hancke

    Full Text Available Accurate quantification of pelagic primary production is essential for quantifying the marine carbon turnover and the energy supply to the food web. Knowing the electron requirement (Κ for carbon (C fixation (ΚC and oxygen (O2 production (ΚO2, variable fluorescence has the potential to quantify primary production in microalgae, and hereby increasing spatial and temporal resolution of measurements compared to traditional methods. Here we quantify ΚC and ΚO2 through measures of Pulse Amplitude Modulated (PAM fluorometry, C fixation and O2 production in an Arctic fjord (Godthåbsfjorden, W Greenland. Through short- (2h and long-term (24h experiments, rates of electron transfer (ETRPSII, C fixation and/or O2 production were quantified and compared. Absolute rates of ETR were derived by accounting for Photosystem II light absorption and spectral light composition. Two-hour incubations revealed a linear relationship between ETRPSII and gross 14C fixation (R2 = 0.81 during light-limited photosynthesis, giving a ΚC of 7.6 ± 0.6 (mean ± S.E. mol é (mol C-1. Diel net rates also demonstrated a linear relationship between ETRPSII and C fixation giving a ΚC of 11.2 ± 1.3 mol é (mol C-1 (R2 = 0.86. For net O2 production the electron requirement was lower than for net C fixation giving 6.5 ± 0.9 mol é (mol O2-1 (R2 = 0.94. This, however, still is an electron requirement 1.6 times higher than the theoretical minimum for O2 production [i.e. 4 mol é (mol O2-1]. The discrepancy is explained by respiratory activity and non-photochemical electron requirements and the variability is discussed. In conclusion, the bio-optical method and derived electron requirement support conversion of ETR to units of C or O2, paving the road for improved spatial and temporal resolution of primary production estimates.

  3. One carbon metabolism in anaerobic bacteria: Regulation of carbon and electron flow during organic acid production

    Energy Technology Data Exchange (ETDEWEB)

    Zeikus, J.G.; Jain, M.

    1993-12-31

    The project deals with understanding the fundamental biochemical mechanisms that physiologically control and regulate carbon and electron flow in anaerobic chemosynthetic bacteria that couple metabolism of single carbon compounds and hydrogen to the production of organic acids (formic, acetic, butyric, and succinic) or methane. The authors compare the regulation of carbon dioxide and hydrogen metabolism by fermentation, enzyme, and electron carrier analysis using Butyribacterium methylotrophicum, Anaeroblospirillum succiniciproducens, Methanosarcina barkeri, and a newly isolated tri-culture composed of a syntrophic butyrate degrader strain IB, Methanosarcina mazei and Methanobacterium formicicum as model systems. To understand the regulation of hydrogen metabolism during butyrate production or acetate degradation, hydrogenase activity in B. methylotrophicum or M. barkeri is measured in relation to growth substrate and pH; hydrogenase is purified and characterized to investigate number of hydrogenases; their localization and functions; and, their sequences are determined. To understand the mechanism for catabolic CO{sub 2} fixation to succinate the PEP carboxykinase enzyme and gene of A. succiniciproducens are purified and characterized. Genetically engineered strains of Escherichia coli containing the phosphoenolpyruvate (PEP) carboxykinase gene are examined for their ability to produce succinate in high yield. To understand the mechanism of fatty acid degradation by syntrophic acetogens during mixed culture methanogenesis formate and hydrogen production are characterized by radio tracer studies. It is intended that these studies provide strategies to improve anaerobic fermentations used for the production of organic acids or methane and, new basic understanding on catabolic CO{sub 2} fixation mechanisms and on the function of hydrogenase in anaerobic bacteria.

  4. Organic carbon fluxes in the Atlantic and the Southern Ocean: relationship to primary production compiled from satellite radiometer data

    Science.gov (United States)

    Fischer, G.; Ratmeyer, V.; Wefer, G.

    Fluxes of organic carbon normalised to a depth of 1000 m from 18 sites in the Atlantic and the Southern Ocean are presented, comprising nine biogeochemical provinces as defined by Longhurst et al. (1995. Journal of Plankton Research 17, 1245-1271). For comparison with primary production, we used a recent compilation of primary production values derived from CZCS data (Antoine et al., 1996. Global Biogeochemical Cycles 10, 57-69). In most cases, the seasonal patterns stood reasonably well in accordance with the carbon fluxes. Particularly, organic carbon flux records from two coastal sites off northwest and southwest Africa displayed a more distinct correlation to the primary production in sectors (1×1°) which are situated closer to the coastal environments. This was primarily caused by large upwelling filaments streaming far offshore, resulting in a cross-shelf carbon transport. With respect to primary production, organic carbon export to a water depth of 1000 m, and the fraction of primary production exported to a depth of 1000 m (export fraction=EF 1000), we were able to distinguish between: (1) the coastal environments with highest values (EF 1000=1.75-2.0%), (2) the eastern equatorial upwelling area with moderately high values (EF 1000=0.8-1.1%), (3) and the subtropical oligotrophic gyres that yielded lowest values (EF 1000=0.6%). Carbon export in the Southern Ocean was low to moderate, and the EF 1000 value seems to be quite low in general. Annual organic carbon fluxes were proportional to primary production, and the export fraction EF 1000 increased with primary production up to 350 gC m -2 yr-1. Latitudinal variations in primary production were reflected in the carbon flux pattern. A high temporal variability of primary production rates and a pronounced seasonality of carbon export were observed in the polar environments, in particular in coastal domains, although primary production (according to Antoine et al., 1996. Global Biogeochemical Cycles 10, 57

  5. Production of carbon molecular sieves from Illinois coal

    Science.gov (United States)

    Lizzio, A.A.; Rostam-Abadi, M.

    1993-01-01

    Carbon molecular sieves (CMS) have become an increasingly important class of adsorbents for application in the separation of gas molecules that vary in size and shape. A study is in progress at the Illinois State Geological Survey to determine whether Illinois basin coals are suitable feedstocks for the production of CMS and to evaluate their potential application in gas separation processes of commercial importance. Chars were prepared from Illinois coal in a fixed-bed reactor under a wide range of heat treatment and activation conditions. The effects of various coal/char pretreatments, including coal demineralization, preoxidation, char activation, and carbon deposition, on the molecular sieve properties of the chars were also investigated. Chars with commercially significant BET surface areas of 1500 m2/g were produced by chemical activation using potassium hydroxide as the activant. These high-surface-area (HSA) chars had more than twice the adsorption capacity of commercial carbon and zeolite molecular sieves. The kinetics of adsorption of various gases, e.g., N2, O2, CO2, CH4, CO and H2, on these chars at 25??C was measured. The O2/N2 molecular sieve properties of one char prepared without chemical activation were similar to those of a commercial CMS. On the other hand, the O2/N2 selectivity of the HSA char was comparable to that of a commercial activated carbon, i.e., essentially unity. Carbon deposition, using methane as the cracking gas, increased the O2/N2 selectivity of the HSA char, but significantly decreased its adsorption capacity. Several chars showed good potential for efficient CO2/CH4 separation; both a relatively high CO2 adsorption capacity and CO2/CH4 selectivity were achieved. The micropore size distribution of selected chars was estimated by equilibrium adsorption of carbon dioxide, n-butane and iso-butane at O??C. The extent of adsorption of each gas corresponded to the effective surface area contained in pores with diameters greater than 3

  6. DEVELOPMENT OF CARBON PRODUCTS FROM LOW-RANK COALS

    Energy Technology Data Exchange (ETDEWEB)

    Edwin S. Olson

    2001-07-01

    The goal of this project is to facilitate the production of carbon fibers from low-rank coal (LRC) tars. To this end, the effect of demineralization on the tar yields and composition was investigated using high-sodium and high-calcium lignites commonly mined in North Dakota. These coals were demineralized by ion exchange with ammonium acetate and by cation dissolution with nitric acid. Two types of thermal processing were investigated for obtaining suitable precursors for pitch and fiber production. Initially, tars were produced by simple pyrolysis of the set of samples at 650 C. Since these experiments produced little usable material from any of the samples, the coals were heated at moderate temperatures (380 and 400 C) in tetralin solvent to form and extract the plastic material (metaplast) that forms at these temperatures.

  7. Catalytic carbon membranes for hydrogen production. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Damle, A.S.; Gangwal, S.K.

    1992-01-01

    Commercial carbon composite microfiltration membranes may be modified for gas separation applications by providing a gas separation layer with pores in the 1- to 10-nm range. Several organic polymeric precursors and techniques for depositing a suitable layer were investigated in this project. The in situ polymerization technique was found to be the most promising, and pure component permeation tests with membrane samples prepared with this technique indicated Knudsen diffusion behavior. The gas separation factors obtained by mixed-gas permeation tests were found to depend strongly on gas temperature and pressure indicating significant viscous flow at high-pressure conditions. The modified membranes were used to carry out simultaneous water gas shift reaction and product hydrogen separation. These tests indicated increasing CO conversions with increasing hydrogen separation. A simple process model was developed to simulate a catalytic membrane reactor. A number of simulations were carried out to identify operating conditions leading to product hydrogen concentrations over 90 percent. (VC)

  8. Sustainable production of green feed from carbon dioxide and hydrogen.

    Science.gov (United States)

    Landau, Miron V; Vidruk, Roxana; Herskowitz, Moti

    2014-03-01

    Carbon dioxide hydrogenation to form hydrocarbons was conducted on two iron-based catalysts, prepared according to procedures described in the literature, and on a new iron spinel catalyst. The CO2 conversion measured in a packed-bed reactor was limited to about 60% because of excessive amounts of water produced in this process. Switching to a system of three packed-bed reactors in series with interim removal of water and condensed hydrocarbons increased CO2 conversion to as much as 89%. The pure spinel catalyst displayed a significantly higher activity and selectivity than those of the other iron catalysts. This process produces a product called green feed, which is similar in composition to the product of a high-temperature, iron-based Fischer–Tropsch process from syngas. The green feed can be readily converted into renewable fuels by well-established technologies.

  9. An eddy covariance derived annual carbon budget for an arctic terrestrial ecosystem (Disko, Greenland)

    Science.gov (United States)

    McConnell, Alistair; Lund, Magnus; Friborg, Thomas

    2016-04-01

    Ecosystems with underlying permafrost cover nearly 25% of the ice-free land area in the northern hemisphere and store almost half of the global soil carbon. Future climate changes are predicted to have the most pronounced effect in northern latitudes. These Arctic ecosystems are therefore subject to dramatic changes following thawing of permafrost, glacial retreat, and coastal erosion. The most dramatic effect of permafrost thawing is the accelerated decomposition and potential mobilization of organic matter stored in the permafrost. This will impact global climate through the mobilization of carbon and nitrogen accompanied by release of greenhouses gases, including carbon dioxide. This study presents the initial findings and first full annual carbon (CO2) budget, derived from eddy covariance measurements, for an Arctic landscape in West Greenland. The study site, a terrestrial Arctic maritime climate, is located at Østerlien, near Qeqertarsuaq, on the southern coast of Disko Island in central West Greenland (69° 15' N, 53° 34' W) within the transition zone from continuous to discontinuous permafrost. The mean annual air temperature is -5 C and the annual precipitation as rain is 150-200 mm. Arctic ecosystem feedback mechanisms and processes interact on micro, local and regional scales. This is further complicated by several potential feedback mechanisms likely to occur in permafrost-affected ecosystems, involving the interactions of microorganisms, vegetation and soil. The eddy covariance method allows us to interrogate the processes and drivers of land-atmosphere carbon exchange at extremely high temporary frequency (10 Hz), providing landscape-scale measurements of CO2, H2O and heat fluxes for the site, which are processed to derive daily, monthly and now, annual carbon fluxes. We discuss the scientific methodology, challenges, and analysis, as well as the practical and logistic challenges of working in the Arctic, and present an annual carbon budget

  10. Hepatic zonation of carbon and nitrogen fluxes derived from glutamine and ammonia transformations

    OpenAIRE

    Constantin Jorgete; Suzuki-Kemmelmeier Fumie; Comar Jurandir F; Bracht Adelar

    2010-01-01

    Abstract Background Glutaminase predominates in periportal hepatocytes and it has been proposed that it determines the glutamine-derived nitrogen flow through the urea cycle. Glutamine-derived urea production should, thus, be considerably faster in periportal hepatocytes. This postulate, based on indirect observations, has not yet been unequivocally demonstrated, making a direct investigation of ureogenesis from glutamine highly desirable. Methods Zonation of glutamine metabolism was investig...

  11. Photorespiration and carbon limitation determine productivity in temperate seagrasses.

    Directory of Open Access Journals (Sweden)

    Pimchanok Buapet

    Full Text Available The gross primary productivity of two seagrasses, Zostera marina and Ruppia maritima, and one green macroalga, Ulva intestinalis, was assessed in laboratory and field experiments to determine whether the photorespiratory pathway operates at a substantial level in these macrophytes and to what extent it is enhanced by naturally occurring shifts in dissolved inorganic carbon (DIC and O2 in dense vegetation. To achieve these conditions in laboratory experiments, seawater was incubated with U. intestinalis in light to obtain a range of higher pH and O2 levels and lower DIC levels. Gross photosynthetic O2 evolution was then measured in this pretreated seawater (pH, 7.8-9.8; high to low DIC:O2 ratio at both natural and low O2 concentrations (adjusted by N2 bubbling. The presence of photorespiration was indicated by a lower gross O2 evolution rate under natural O2 conditions than when O2 was reduced. In all three macrophytes, gross photosynthetic rates were negatively affected by higher pH and lower DIC. However, while both seagrasses exhibited significant photorespiratory activity at increasing pH values, the macroalga U. intestinalis exhibited no such activity. Rates of seagrass photosynthesis were then assessed in seawater collected from the natural habitats (i.e., shallow bays characterized by high macrophyte cover and by low DIC and high pH during daytime and compared with open baymouth water conditions (where seawater DIC is in equilibrium with air, normal DIC, and pH. The gross photosynthetic rates of both seagrasses were significantly higher when incubated in the baymouth water, indicating that these grasses can be significantly carbon limited in shallow bays. Photorespiration was also detected in both seagrasses under shallow bay water conditions. Our findings indicate that natural carbon limitations caused by high community photosynthesis can enhance photorespiration and cause a significant decline in seagrass primary production in shallow

  12. Photorespiration and carbon limitation determine productivity in temperate seagrasses.

    Science.gov (United States)

    Buapet, Pimchanok; Rasmusson, Lina M; Gullström, Martin; Björk, Mats

    2013-01-01

    The gross primary productivity of two seagrasses, Zostera marina and Ruppia maritima, and one green macroalga, Ulva intestinalis, was assessed in laboratory and field experiments to determine whether the photorespiratory pathway operates at a substantial level in these macrophytes and to what extent it is enhanced by naturally occurring shifts in dissolved inorganic carbon (DIC) and O2 in dense vegetation. To achieve these conditions in laboratory experiments, seawater was incubated with U. intestinalis in light to obtain a range of higher pH and O2 levels and lower DIC levels. Gross photosynthetic O2 evolution was then measured in this pretreated seawater (pH, 7.8-9.8; high to low DIC:O2 ratio) at both natural and low O2 concentrations (adjusted by N2 bubbling). The presence of photorespiration was indicated by a lower gross O2 evolution rate under natural O2 conditions than when O2 was reduced. In all three macrophytes, gross photosynthetic rates were negatively affected by higher pH and lower DIC. However, while both seagrasses exhibited significant photorespiratory activity at increasing pH values, the macroalga U. intestinalis exhibited no such activity. Rates of seagrass photosynthesis were then assessed in seawater collected from the natural habitats (i.e., shallow bays characterized by high macrophyte cover and by low DIC and high pH during daytime) and compared with open baymouth water conditions (where seawater DIC is in equilibrium with air, normal DIC, and pH). The gross photosynthetic rates of both seagrasses were significantly higher when incubated in the baymouth water, indicating that these grasses can be significantly carbon limited in shallow bays. Photorespiration was also detected in both seagrasses under shallow bay water conditions. Our findings indicate that natural carbon limitations caused by high community photosynthesis can enhance photorespiration and cause a significant decline in seagrass primary production in shallow waters.

  13. Burners and combustion apparatus for carbon nanomaterial production

    Science.gov (United States)

    Alford, J. Michael; Diener, Michael D.; Nabity, James; Karpuk, Michael

    2007-10-09

    The invention provides improved burners, combustion apparatus, and methods for carbon nanomaterial production. The burners of the invention provide sooting flames of fuel and oxidizing gases. The condensable products of combustion produced by the burners of this invention produce carbon nanomaterials including without limitation, soot, fullerenic soot, and fullerenes. The burners of the invention do not require premixing of the fuel and oxidizing gases and are suitable for use with low vapor pressure fuels such as those containing substantial amounts of polyaromatic hydrocarbons. The burners of the invention can operate with a hot (e.g., uncooled) burner surface and require little, if any, cooling or other forms of heat sinking. The burners of the invention comprise one or more refractory elements forming the outlet of the burner at which a flame can be established. The burners of the invention provide for improved flame stability, can be employed with a wider range of fuel/oxidizer (e.g., air) ratios and a wider range of gas velocities, and are generally more efficient than burners using water-cooled metal burner plates. The burners of the invention can also be operated to reduce the formation of undesirable soot deposits on the burner and on surfaces downstream of the burner.

  14. NOAA/NESDIS Satellite Derived Surface Oil Analysis Products

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NESDIS Experimental Marine Pollution Surveillance Report (EMPSR) and the Daily Composite product are new products of the NOAA Satellite Analysis Branch and...

  15. Biome-specific scaling of ocean productivity, temperature, and carbon export efficiency

    Science.gov (United States)

    Britten, Gregory L.; Primeau, François W.

    2016-05-01

    Mass conservation and metabolic theory place constraints on how marine export production (EP) scales with net primary productivity (NPP) and sea surface temperature (SST); however, little is empirically known about how these relationships vary across ecologically distinct ocean biomes. Here we compiled in situ observations of EP, NPP, and SST and used statistical model selection theory to demonstrate significant biome-specific scaling relationships among these variables. Multiple statistically similar models yield a threefold variation in the globally integrated carbon flux (~4-12 Pg C yr-1) when applied to climatological satellite-derived NPP and SST. Simulated NPP and SST input variables from a 4×CO2 climate model experiment further show that biome-specific scaling alters the predicted response of EP to simulated increases of atmospheric CO2. These results highlight the need to better understand distinct pathways of carbon export across unique ecological biomes and may help guide proposed efforts for in situ observations of the ocean carbon cycle.

  16. Chinese plasma-derived products supply under the lot release management system in 2007-2011.

    Science.gov (United States)

    Zhang, Xuejun; Ye, Shengliang; Du, Xi; Yuan, Jing; Zhao, Chaoming; Li, Changqing

    2013-11-01

    In 2007, the Chinese State Food and Drug Administration (SFDA) implemented a management system for lot release of all plasma-derived products. Since then, there have been only a few systematic studies of the blood supply, which is a concern when considering the small amount of plasma collected per capita (approximately 3 L/1000 people). As a result, there may be a threat to the safety of the available blood supply. In this study, we examined the characteristics of the supply of Chinese plasma-derived products. We investigated the reports of lot-released biological products derived from all 8 national or regional regulatory authorities in China from 2007 to 2011. The market supply characteristics of Chinese plasma-derived products were analyzed by reviewing the changes in supply varieties, the batches of lot-released plasma-derived products and the actual supply. As a result, the national regulatory authorities can more accurately develop a specific understanding of the production and quality management information provided by Chinese plasma product manufacturers. The implementation of the lot release system further ensures the clinical validity of the plasma-derived products in China and improves the safety of using plasma-derived products. This work provides an assessment of the future Chinese market supply of plasma-derived products and can function as a theoretical basis for the establishment of hemovigilance. Copyright © 2013 The International Alliance for Biological Standardization. Published by Elsevier Ltd. All rights reserved.

  17. Managing Commercial Tree Species for Timber Production and Carbon Sequestration: Management Guidelines and Financial Returns

    Energy Technology Data Exchange (ETDEWEB)

    Gary D. Kronrad

    2006-09-19

    A carbon credit market is developing in the United States. Information is needed by buyers and sellers of carbon credits so that the market functions equitably and efficiently. Analyses have been conducted to determine the optimal forest management regime to employ for each of the major commercial tree species so that profitability of timber production only or the combination of timber production and carbon sequestration is maximized. Because the potential of a forest ecosystem to sequester carbon depends on the tree species, site quality and management regimes utilized, analyses have determined how to optimize carbon sequestration by determining how to optimally manage each species, given a range of site qualities, discount rates, prices of carbon credits and other economic variables. The effects of a carbon credit market on the method and profitability of forest management, the cost of sequestering carbon, the amount of carbon that can be sequestered, and the amount of timber products produced has been determined.

  18. Electrochemical and spectroelectrochemical behavior of the main photodegradation product of nifedipine: the nitrosopyridine derivative.

    Science.gov (United States)

    Núñez-Vergara, L J; Bollo, S; Fuentealba, J; Sturm, J C; Squella, J A

    2002-04-01

    To characterize the electrochemical behavior of the photodegradation product of nifedipine, i.e., 2,6-dimethyl-4-(2-nitrosophenyl)-3,5-pyridine-carboxylic acid dimethyl ester (NPD) in different electrolytic media. We also evaluated the interaction between free radicals generated from NPD and xeno/endobiotics. Tast polarography, differential pulse polarography, and cyclic voltammetry were used for the characterization. Controlled potential electrolysis and ultraviolet-visible spectroscopy were used to generate and to detect the nitroso radical anion. In protic media, the NPD derivative gave a reversible well-defined peak either on Hg or glassy carbon electrodes in a reaction involving two electrons and two protons to give the hydroxylamine derivative. In mixed aqueous-organic media (pH 9) and in aprotic media, nitroso radical anion was isolated and characterized, exhibiting second-order dimerization rate constant (k2) values of 11,300 +/- 210 [Ms](-1) and 8,820 +/- 78 [Ms](-1), respectively. Reactivity of the nitroso radical anion with relevant pharmacologic targets revealed a significant interaction with the tested endo/xenobiotics (cysteamine, GSH, N-acetylcysteine, and adenine). Both in mixed and aprotic media, NPD generated free-radical species, the nitroso radical anion. Taking into account their respective interaction rate constants, the following tentative rank order of reactivity can be established as follows: cysteamine > N-acetylcysteine > GSH > adenine.

  19. Carbon footprint of Canadian dairy products: calculations and issues.

    Science.gov (United States)

    Vergé, X P C; Maxime, D; Dyer, J A; Desjardins, R L; Arcand, Y; Vanderzaag, A

    2013-09-01

    The Canadian dairy sector is a major industry with about 1 million cows. This industry emits about 20% of the total greenhouse gas (GHG) emissions from the main livestock sectors (beef, dairy, swine, and poultry). In 2006, the Canadian dairy herd produced about 7.7 Mt of raw milk, resulting in about 4.4 Mt of dairy products (notably 64% fluid milk and 12% cheese). An integrated cradle-to-gate model (field to processing plant) has been developed to estimate the carbon footprint (CF) of 11 Canadian dairy products. The on-farm part of the model is the Unified Livestock Industry and Crop Emissions Estimation System (ULICEES). It considers all GHG emissions associated with livestock production but, for this study, it was run for the dairy sector specifically. Off-farm GHG emissions were estimated using the Canadian Food Carbon Footprint calculator, (cafoo)(2)-milk. It considers GHG emissions from the farm gate to the exit gate of the processing plants. The CF of the raw milk has been found lower in western provinces [0.93 kg of CO2 equivalents (CO2e)/L of milk] than in eastern provinces (1.12 kg of CO2e/L of milk) because of differences in climate conditions and dairy herd management. Most of the CF estimates of dairy products ranged between 1 and 3 kg of CO2e/kg of product. Three products were, however, significantly higher: cheese (5.3 kg of CO2e/kg), butter (7.3 kg of CO2e/kg), and milk powder (10.1 kg of CO2e/kg). The CF results depend on the milk volume needed, the co-product allocation process (based on milk solids content), and the amount of energy used to manufacture each product. The GHG emissions per kilogram of protein ranged from 13 to 40 kg of CO2e. Two products had higher values: cream and sour cream, at 83 and 78 kg of CO2e/kg, respectively. Finally, the highest CF value was for butter, at about 730 kg of CO2e/kg. This extremely high value is due to the fact that the intensity indicator per kilogram of product is high and that butter is almost exclusively

  20. Method of carbon dioxide-free hydrogen production from hydrocarbon decomposition over metal salts

    Energy Technology Data Exchange (ETDEWEB)

    Erlebacher, Jonah; Gaskey, Bernard

    2017-10-03

    A process to decompose methane into carbon (graphitic powder) and hydrogen (H.sub.2 gas) without secondary production of carbon dioxide, employing a cycle in which a secondary chemical is recycled and reused, is disclosed.

  1. Nanoporous carbons derived from binary carbides and their optimization for hydrogen storage

    Science.gov (United States)

    Dash, Ranjan Kumar

    On-board hydrogen storage is one of the major hurdles for success of hydrogen economy. Hydrogen storage using physisorption technique demands highly porous materials. Carbide derived carbons (CDC), a new class of porous carbons produced by thermo chemical etching of metal atoms from carbides were selected as a method for producing highly porous material for hydrogen storage. In order to synthesize tunable nanoporous carbon and to establish a structure-property relation between initial metal carbide and resultant nanoporous carbon, CDCs were synthesized from four metal carbides, two that have uniform carbon to carbon distance in the lattice structure (ZrC, TiC and SiC) and one that has a non-uniform carbon distribution in the lattice (B4C). It was shown that a uniform distribution of carbon atoms in the carbide is important for obtaining a narrow pore size distribution (PSD). CDC derived from B 4C had a relatively broad PSD and contained mesopores even at the lowest synthesis temperature, while the CDC produced from SiC maintained a narrow PSD even at the synthesis temperature of 1200°C. CDC produced from ZrC and TiC has a narrow PSD at low synthesis temperature and pores gets wider at higher temperatures. Comparison of CDCs produced from ZrC, TiC and B 4C shows that CDCs produced from ZrC and TiC show a lower degree of ordering than that from B4C at high temperatures. Unlike CDCs produced from ZrC and TiC, the PSD of CDCs from B4C does not change appreciably in the 600-1200°C range. CDCs produced from ZrC and TiC can have both narrowly distributed micropores (pores smaller than 2 nm) and mesopores (pores larger than 2 nm), depending on synthesis temperature. In this work, it is demonstrated that porosity of CDC can be fine tuned with a high accuracy by using different starting carbides and varying the synthesis temperatures. This is very important in many applications of porous carbon, especially for gas storage. CDC from ZrC, TiC, B4C and SiC resulted in a

  2. Advances in Production and Applications of Carbon Nanotubes.

    Science.gov (United States)

    Jia, Xilai; Wei, Fei

    2017-02-01

    Recent decades have witnessed many breakthroughs in research on carbon nanotubes (CNTs), particularly regarding controllable synthesis, production scale-up, and application advances for this material. This sp (2)-bonded nanocarbon uniquely combines extreme mechanical strength, exceptionally high electrical conductivity, as well as many other superior properties, making it highly attractive for fundamental research and industrial applications. Synthesis and mass production form the solid basis for high-volume applications of CNTs. During recent decades, CNT production capacity has reached more than thousands of tons per year, greatly decreasing the price of CNTs. Although the unique physiochemical properties of an individual CNT are stated repeatedly, manifestation of such unique properties in a macroscopic material, e.g., realization of high-strength CNT fibers, remains a great challenge. If such challenges are solved, many critical applications will be enabled. Herein we review the critical progress in the development of synthesis and scaled-up production methods for CNTs, and discuss advances in their applications. Scientific problems and technological challenges are discussed together.

  3. A biomass derived N/C-catalyst for the electrochemical production of hydrogen peroxide.

    Science.gov (United States)

    Yang, Yiran; He, Fei; Shen, Yanfei; Chen, Xinghua; Mei, Hao; Liu, Songqin; Zhang, Yuanjian

    2017-09-16

    Pomelo peel, a waste biomass, was used as an all-in-one (carbon source, self-template, and heteroatom) precursor to develop a nanoporous N/C-electrocatalyst for highly selective and energy-saving H2O2 production, in which disordered carbonous defects and five-membered rings (pyrrolic-N) played vital roles.

  4. Archaeal Production of Polyhydroxyalkanoate (PHA Co- and Terpolyesters from Biodiesel Industry-Derived By-Products

    Directory of Open Access Journals (Sweden)

    Carmen Hermann-Krauss

    2013-01-01

    Full Text Available The archaeon Haloferax mediterranei was selected for production of PHA co- and terpolyesters using inexpensive crude glycerol phase (CGP from biodiesel production as carbon source. CGP was assessed by comparison with the application of pure glycerol. Applying pure glycerol, a copolyester with a molar fraction of 3-hydroxybutyrate (3HB of 0.90 mol/mol and 3-hydroxyvalerate (3HV of 0.10 mol/mol, was produced at a volumetric productivity of 0.12 g/Lh and an intracellular PHA content of 75.4 wt.-% in the sum of biomass protein plus PHA. Application of CGP resulted in the same polyester composition and volumetric productivity, indicating the feasibility of applying CGP as feedstock. Analysis of molar mass distribution revealed a weight average molar mass Mw of 150 kDa and polydispersity Pi of 2.1 for pure glycerol and 253 kDa and 2.7 for CGP, respectively; melting temperatures ranged between 130 and 140°C in both setups. Supplying γ-butyrolactone as 4-hydroxybutyrate (4HB precursor resulted in a poly[(R-3-hydroxybutyrate-co-(R-3-hydroxyvalerate-co-4-hydroxybutyrate] (PHBHV4HB terpolyester containing 3HV (0.12 mol/mol and 4HB (0.05 mol/mol in the poly[(R-3-hydroxybutyrate] (PHB matrix; in addition, this process runs without sterilization of the bioreactor. The terpolyester displayed reduced melting (melting endotherms at 122 and 137°C and glass transition temperature (2.5°C, increased molar mass (391 kDa, and a polydispersity similar to the copolyesters.

  5. Anatomy of methane-derived carbonate concretions and associated microbial communities in Black Sea sediments

    Science.gov (United States)

    Reitner, J.; Peckmann, J.; Reimer, A.; Schumann, G.; Blumenberg, M.; Thiel, V.

    2003-04-01

    Methane seeps on the northwestern shelf and slope of the Black Sea were investigated during the GHOSTDABS expedition with RV "Professor Logachev" and the research submersible "Jago" in July/August 2001. Seep areas close to the Dniepr Canyon are sites of intense carbonate formation. In anoxic waters, at depths between 200 and 400m, we found different modes of carbonate precipitation, such as cavernous chimney-like buildups projecting up to 4 m into the anoxic water column (Michaelis et al., Science 297, 813-815) and, lenticular concretions abundantly forming within the sediment. Isotope analyses of the concretionary Mg-calcite yielded δ13C values as low as -31 ppm PDB, suggesting that the carbonate predominantly derives from the anaerobic oxidation of methane (AOM). The concretions are surrounded by grey, pink, or orange colored microbial mats. These mats apparently mediate the formation of ca. 100 μm sized aggregates of fibrous calcite that fuse together to form the concretions. Surrounding sediment and concretional carbonates are clearly distinguishable by a strong UV-epifluorescence induced by large amounts of organic matter enclosed in the calcite aggregates. The conspicious angular arrangement of the crystallites appears to be controlled by the spatial organization of extracellular polymeric substances (EPS). Fluorescence in situ hybridization, TEM, and field emission electron microscopy reveal that the microbial mats harbour numerous types of microorganisms. Prominent members are large colonies of sulfate reducing bacteria (DSS 658 probe, Desulfosarcina group), surrounded by sheeted, rod-shaped archaea (ANME-1 probe, Methanosaeta group) and further ones. Three different types of AOM consortia are distinguishable. The metabolism of sulfate reducing bacteria apparently accounts for the observed, significant enrichment of the concretions in framboidal Fe-sulfides. In organic extracts from mat samples and concretional carbonate, we found distinctive, isoprene

  6. Effect of dissolved carbon dioxide on penicillin fermentations: mycelial growth and penicillin production. [Penicillium chrysogenum

    Energy Technology Data Exchange (ETDEWEB)

    Ho, C.S.; Smith, M.D.

    1986-01-01

    The effect of dissolved carbon dioxide on the specific growth rate and the penicillin production rate of Penicillium chrysogenum was examined experimentally. The dissolved carbon dioxide was found to inhibit the specific growth rate and the penicillin production rate when the aerated submerged penicillin fermentation was exposed to influent gases of 12.6 and 20% carbon dioxide, respectively. Upon exposure to influent gases of 3 and 5% carbon dioxide, no pronounced metabolic inhibition was noted.

  7. The formation of weathering products on the LEW 85320 ordinary chondrite - Evidence from carbon and oxygen stable isotope compositions and implications for carbonates in SNC meteorites

    Science.gov (United States)

    Grady, Monica M.; Wright, I. P.; Pillinger, C. T.; Gibson, E. K., Jr.

    1989-01-01

    Isotopic analysis of nesquehonite recovered from the surface of the LEW 85320 H5 ordinary chondrite shows that the delta C-13 and delta O-18 values of the two generations of bicarbonate (Antarctic and Texas) are different: delta C-13 = + 7.9 per mil and + 4.2 per mil; delta O-18 = + 17.9 per mil and + 12.1 per mil, respectively. Carbon isotopic compositions are consistent with equilibrium formation from atmospheric carbon dioxide at - 2 + or - 4 C (Antarctic) and + 16 + or - 4 C (Texas). Oxygen isotopic data imply that the water required for nesquehonite precipitation was derived from atmospheric water vapor or glacial meltwater which had locally exchanged with silicates, either in the meteorite or in underlying bedrock. Although carbonates with similar delta C-13 values have been identified in the SNC meteorites EETA 79001 and Nakhla, petrographic and temperature constraints argue against their simply being terrestrial weathering products.

  8. Enhanced Lithium Storage in Hierarchically Porous Carbon Derived from Waste Tea Leaves

    Science.gov (United States)

    Choi, Changhoon; Seo, Seung-Deok; Kim, Byung-Kook; Kim, Dong-Wan

    2016-12-01

    In this study, highly nanoporous carbon (HCl-TW-Car) was successfully synthesized using a facile procedure combining acid treatment with a carbonization process that uses waste tea leaves from spent tea bags as raw materials. The acid treatment not only promotes the efficient removal of unnecessary inorganic impurities but also increases the product porosity to enable synthesis of hierarchically porous carbon materials with various micro-, meso-, and macropores. When used as an anode material for lithium-ion batteries, HCl-TW-Car demonstrated a much higher discharge capacity than is theoretically possible using graphite [479 mAh g-1 after the 200th cycle at a rate of 0.2C (1C = 372 mA g-1)] and exhibited greater rate capabilities compared with those of carbonated products from tea waste without acid treatment. It was shown that the good electrochemical properties of HCl-TW-Car can be ascribed to large Brunauer-Emmett-Teller (BET) surface area, well-formed hierarchical pores, and the prevention of unexpected electrochemical reactions from the reduction of metallic atoms.

  9. Tuning of ZIF-Derived Carbon with High Activity, Nitrogen Functionality, and Yield - A Case for Superior CO2 Capture.

    Science.gov (United States)

    Gadipelli, Srinivas; Guo, Zheng Xiao

    2015-06-22

    A highly effective and facile synthesis route is developed to create and tailor metal-decorated and nitrogen-functionalized active microporous carbon materials from ZIF-8. Clear metal- and pyrrolic-N-induced enhancements of the cyclic CO2 uptake capacities and binding energies are achieved, particularly at a much lower carbonization temperature of 700 °C than those often reported (1000 °C). The high-temperature carbonization can enhance the porosity but only at the expense of considerable losses of sample yield and metal and N functional sites. The findings are comparatively discussed with carbons derived from metal-organic frameworks (MOFs) reported previously. Furthermore, the porosity of the MOF-derived carbon is critically dependent on the structure of the precursor MOF and the crystal growth. The current strategy offers a new and effective route for the creation and tuning of highly active and functionalized carbon structures in high yields and with low energy consumption.

  10. Age of riverine carbon suggests rapid export of terrestrial primary production in tropics

    OpenAIRE

    Martin, Erin E; Ingalls, Anitra E; Richey, Jeffrey E.; Keil, Richard G.; Santos, Guaciara M.; Truxal, Laura T.; Alin, Simone R.; Druffel, Ellen R M

    2013-01-01

    The balance between the storage of vascular plant carbon in soils, oxidation to carbon dioxide, and export via rivers affects calculations of the strength of terrestrial ecosystems as carbon sinks. The magnitude and timescale of the riverine export pathway are not well constrained. Here we use radiocarbon dating of lignin phenols to show that plant-derived carbon carried by suspended sediment of the Mekong River is very young, having been produced within the last 18 years. Further, this plant...

  11. Morphological and Electrochemical Properties of the Lactose-derived Carbon Electrode Materials

    Directory of Open Access Journals (Sweden)

    I.F. Myronyuk

    2016-11-01

    Full Text Available The article explores the morphological and electrochemical properties of carbon electrode materials derived from D-lactose by mixing of carbon precursor with activating reagent selected from a number КОН, K2CO3, ZnCl2, SnCl2∙2H2O, and calcining the composite mixture at 800 °С. After dissolution and removal of K2O, ZnO or SnO from volume of prototypes specific surface of carbon materials increases in 1,7-4,2 times, and electrical conductivity - in 1,4-2,8 times. The activating reagents for effective influence on the properties of carbon structures can be placed in the following order: ZnCl2  КОН  K2CO3  SnCl2∙2H2O. It is set that the highest specific capacity as an electrode material for supercapacitor has a sample with the highest electrical conductivity (78 Оhm – 1∙m – 1 obtained using KOH activating reagent. The electrode material capacity was 176-157 F∙g – 1 at discharge currents of 10-100 mA. It was found that the difference in the values of capacitance of prototypes caused by different chemical state of their surface.

  12. Morphological and Electrochemical Properties of the Lactose-derived Carbon Electrode Materials

    Directory of Open Access Journals (Sweden)

    I.F. Myronyuk

    2016-10-01

    Full Text Available The article explores the morphological and electrochemical properties of carbon electrode materials derived from D-lactose by mixing of carbon precursor with activating reagent selected from a number КОН, K2CO3, ZnCl2, SnCl2∙2H2O, and calcining the composite mixture at 800 °С. After dissolution and removal of K2O, ZnO or SnO from volume of prototypes specific surface of carbon materials increases in 1,7-4,2 times, and electrical conductivity - in 1,4-2,8 times. The activating reagents for effective influence on the properties of carbon structures can be placed in the following order: ZnCl2 > КОН > K2CO3 > SnCl2∙2H2O. It is set that the highest specific capacity as an electrode material for supercapacitor has a sample with the highest electrical conductivity (78 Оhm – 1∙m – 1 obtained using KOH activating reagent. The electrode material capacity was 176-157 F∙g – 1 at discharge currents of 10-100 mA. It was found that the difference in the values of capacitance of prototypes caused by different chemical state of their surface.

  13. The porous carbon derived from water hyacinth with well-designed hierarchical structure for supercapacitors

    Science.gov (United States)

    Zheng, Kaiwen; Li, Yuanyuan; Zhu, Ming; Yu, Xi; Zhang, Mengyan; Shi, Ling; Cheng, Jue

    2017-10-01

    A hierarchical porous water hyacinth-derived carbon (WHC) is fabricated by pre-carbonization and KOH activation for supercapacitors. The physicochemical properties of WHC are researched by scanning electron microscopy (SEM), N2 adsorption-desorption measurements, X-ray diffraction (XRD), Raman spectroscopy and X-ray photoelectron spectroscopy (XPS). The results indicate that WHC exhibits hierarchical porous structure and high specific surface area of 2276 m2/g. And the electrochemical properties of WHC are studied by cyclic voltammetry (CV), galvanostatic charge-discharge and electrochemical impedance spectroscopy (EIS) tests. In a three-electrode test system, WHC shows considerable specific capacitance of 344.9 F/g at a current density of 0.5 A/g, good rate performance with 225.8 F/g even at a current density of 30 A/g, and good cycle stability with 95% of the capacitance retention after 10000 cycles of charge-discharge at a current density of 5 A/g. Moreover, WHC cell delivers an energy density of 23.8 Wh/kg at 0.5 A/g and a power density of 15.7 kW/kg at 10 A/g. Thus, using water hyacinth as carbon source to fabricate supercapacitors electrodes is a promising approach for developing inexpensive, sustainable and high-performance carbon materials. Additionally, this study supports the sustainable development and the control of biological invasion.

  14. Preparation and characterization of hierarchical porous carbons derived from solid leather waste for supercapacitor applications.

    Science.gov (United States)

    Konikkara, Niketha; Kennedy, L John; Vijaya, J Judith

    2016-11-15

    Utilization of crust leather waste (CLW) as precursors for the preparation of hierarchical porous carbons (HPC) were investigated. HPCs were prepared from CLW by pre-carbonization followed by chemical activation using KOH at relatively high temperatures. Textural properties of HPC's showed an extent of micro-and mesoporosity with maximum BET surface area of 716m(2)/g. Inducements of graphitic planes in leather waste derived carbons were observed from X-ray diffraction and HR-TEM analysis. Microstructure, thermal behavior and surface functional groups were identified using FT-Raman, thermo gravimetric analysis and FT-IR techniques. HPCs were evaluated for electrochemical properties by cyclic voltammetry (CV), galvanostatic charge/discharge (GCD) and electrochemical impedance spectroscopy (EIS) by three electrode system. CLC9 sample showed a maximum capacitance of 1960F/g in 1M KCl electrolyte. Results achieved from rectangular curves of CV, GCD symmetric curves and Nyquist plots show that the leather waste carbon is suitable to fabricate supercapacitors as it possess high specific capacitance and electrochemical cycle stability. The present study proposes an effective method for solid waste management in leather industry by the way of converting toxic leather waste to new graphitic porous carbonaceous materials as a potential candidate for energy storage devices.

  15. ONIOM studies of interaction between single-walled carbon nanotube and gallates derivatives as anticancer agents

    Directory of Open Access Journals (Sweden)

    Nosrat Madadi Mahani

    2017-01-01

    Full Text Available Objective(s: The novel 7-hydroxycoumarinyl gallates derivatives are detected in many pharmaceutical compounds like anticancer and antimicrobial agents. Whereas carbon nanotubes (CNTs have been discussed for nanomedicine applications and in particular as drug delivery systems. The capability of armchair (5, 5 SWCNT -based drug delivery system in the therapy of anticancer has been investigated by quantum mechanics/molecular mechanics method.Materials and Methods: Theoretical investigation of the interaction between armchair (5, 5 SWCNT with gallates derivatives has been fulfilled by quantum mechanics/molecular mechanics (QM/MM method by ONIOM2 (DFT: UFF using the program of GAUSSIAN 03 suite.Results: The results derived from this study, demonstrate  that armchair (5, 5 SWCNT has weak interaction that these interactions contain Vander Waals interactions and indicated clearly that these systems have relatively low durability and so armchair (5, 5 SWCNT is appropriate drug delivery that have been investigated for anti-cancer drug.Conclusion: Analysis of ONIOM2 calculations and the interaction energies of the armchair (5, 5 SWCNT and gallates derivatives represented that this carrier can be utilized to improve the biological and anti-cancer activity of gallates derivatives.

  16. Deriving vulnerability indicators for crop production regions in Indonesia

    Science.gov (United States)

    Perdinan; Atmaja, Tri; Sehabuddin, Ujang; Sugiarto, Yon; Febrianti, Lina; Farysca Adi, Ryco

    2017-01-01

    Food supply is considered as one of the most vulnerable to the effects of climate change. Higher temperature and changes in rainfall patterns and intensity may adversely impact crop production, which will eventually affect the food supply. Consequently, adaptation strategies should be devised to minimize the potential adverse impacts and maximize its potential benefits. The adaptation strategies should be devised by considering factors contributed to causing vulnerability following the concept of food supply chain, starting from production to consumption. This study focuses on identifying the contributed factors to vulnerability of crop production regions in Indonesia. The contributed factors were identified by defining indicators for each component of the food supply chain using an example of crop production centers in Indonesia, the West Java Province. The identification considers existing issues of the food supply chain, covering aspects of production, post-harvest and storage, distribution, and consumption, based on the field surveys conducted in Indramayu district of the West Java, the main grower of paddy production, and Garut district of the West Java, the main grower of corn production. The selection of the vulnerability indicators was also considered the data availability for the study area. The analysis proposed a list of indicators classified into production, post-harvest and storage, distribution and consumption that are proposed to assess the regional vulnerability of crop production regions in Indonesia. This result is expected to contribute in understanding the process of devising climate change adaptation intended for enhancing food supply resilience to climate change.

  17. Corrosion inhibition efficiency of linear alkyl benzene derivatives for carbon steel pipelines in 1M HCl

    Directory of Open Access Journals (Sweden)

    A.M. Al-Sabagh

    2011-06-01

    Full Text Available Linear alkyl benzene sulfonic acid (L and three of its ester derivatives (L1, L2, L3 were prepared, followed by quaternization of these esters (L1Q, L2Q, L3Q. The corrosion inhibition effect on carbon steel in 1 M HCl was studied using weight loss and potentiodynamic polarization measurements. The adsorption of the inhibitors on carbon steel surface obeyed the Langmuir’s adsorption isotherm. The associated activation energy of corrosion and other thermodynamic parameters such as enthalpy (ΔH∗, entropy (ΔS∗ of activation, adsorption–desorption equilibrium constant (Kads, standard free energy of adsorption (ΔGoads, heat (ΔHoads, and entropy of adsorption (ΔSoads were calculated to elaborate the corrosion inhibition mechanism.

  18. Discovery of Potent Carbonic Anhydrase and Acetylcholinesterase Inhibitors: 2-Aminoindan β-Lactam Derivatives

    Directory of Open Access Journals (Sweden)

    Hayriye Genç

    2016-10-01

    Full Text Available β-Lactams are pharmacologically important compounds because of their various biological uses, including antibiotic and so on. β-Lactams were synthesized from benzylidene-inden derivatives and acetoxyacetyl chloride. The inhibitory effect of these compounds was examined for human carbonic anhydrase I and II (hCA I, and II and acetylcholinesterase (AChE. The results reveal that β-lactams are inhibitors of hCA I, II and AChE. The Ki values of β-lactams (2a–k were 0.44–6.29 nM against hCA I, 0.93–8.34 nM against hCA II, and 0.25–1.13 nM against AChE. Our findings indicate that β-lactams (2a–k inhibit both carbonic anhydrases (CA isoenzymes and AChE at low nanomolar concentrations.

  19. Production and detection of carbon dioxide on Iapetus

    Science.gov (United States)

    Palmer, Eric E.; Brown, Robert H.

    2011-04-01

    Cassini VIMS detected carbon dioxide on the surface of Iapetus during its insertion orbit. We evaluated the CO 2 distribution on Iapetus and determined that it is concentrated almost exclusively on Iapetus' dark material. VIMS spectra show a 4.27-μm feature with an absorption depth of 24%, which, if it were in the form of free ice, requires a layer 31 nm thick. Extrapolating for all dark material on Iapetus, the total observable CO 2 would be 2.3 × 10 8 kg. Previous studies note that free CO 2 is unstable at 10 AU over geologic timescales. Carbon dioxide could, however, be stable if trapped or complexed, such as in inclusions or clathrates. While complexed CO 2 has a lower thermal volatility, loss due to photodissociation by UV radiation and gravitational escape would occur at a rate of 2.6 × 10 7 kg year -1. Thus, Iapetus' entire inventory of surface CO 2 could be lost within a few decades. The high loss/destruction rate of CO 2 requires an active source. We conducted experiments that generated CO 2 by UV radiation of simulated icy regolith under Iapetus-like conditions. The simulated regolith was created by flash-freezing degassed water, crushing it into sub-millimeter sized particles, and then mixing it with isotopically labeled amorphous carbon ( 13C) dust. These samples were placed in a vacuum chamber and cooled to temperatures between 50 K and 160 K. The samples were irradiated with UV light, and the products were measured using a mass spectrometer, from which we measured 13CO 2 production at a rate of 2.0 × 10 12 mol s -1. Extrapolating to Iapetus and adjusting for the solar UV intensity and Iapetus' surface area, we calculated that CO 2 production for the entire surface would be 1.1 × 10 7 kg year -1, which is only a factor of two less than the loss rate. As such, UV photochemical generation of CO 2 is a plausible source of the detected CO 2.

  20. How drought severity constrains gross primary production(GPP) and its partitioning among carbon pools in a Quercus ilex coppice?

    Science.gov (United States)

    Rambal, S.; Lempereur, M.; Limousin, J. M.; Martin-StPaul, N. K.; Ourcival, J. M.; Rodríguez-Calcerrada, J.

    2014-12-01

    The partitioning of photosynthates toward biomass compartments plays a crucial role in the carbon (C) sink function of forests. Few studies have examined how carbon is allocated toward plant compartments in drought-prone forests. We analyzed the fate of gross primary production (GPP) in relation to yearly water deficit in an old evergreen Mediterranean Quercus ilex coppice severely affected by water limitations. Carbon fluxes between the ecosystem and the atmosphere were measured with an eddy covariance flux tower running continuously since 2001. Discrete measurements of litterfall, stem growth and fAPAR allowed us to derive annual productions of leaves, wood, flowers and acorns, and an isometric relationship between stem and belowground biomass has been used to estimate perennial belowground growth. By combining eddy covariance fluxes with annual net primary productions (NPP), we managed to close a C budget and derive values of autotrophic, heterotrophic respirations and carbon-use efficiency (CUE; the ratio between NPP and GPP). Average values of yearly net ecosystem production (NEP), GPP and Reco were 282, 1259 and 977 g C m-2. The corresponding aboveground net primary production (ANPP) components were 142.5, 26.4 and 69.6 g C m-2 for leaves, reproductive effort (flowers and fruits) and stems, respectively. NEP, GPP and Reco were affected by annual water deficit. Partitioning to the different plant compartments was also impacted by drought, with a hierarchy of responses going from the most affected - the stem growth - to the least affected - the leaf production. The average CUE was 0.40, which is well in the range for Mediterranean-type forest ecosystems. CUE tended to decrease less drastically in response to drought than GPP and NPP did, probably due to drought acclimation of autotrophic respiration. Overall, our results provide a baseline for modeling the inter-annual variations of carbon fluxes and allocation in this widespread Mediterranean ecosystem, and

  1. Fluorescent carbon nanoparticles derived from natural materials of mango fruit for bio-imaging probes

    Science.gov (United States)

    Jeong, Chan Jin; Roy, Arup Kumer; Kim, Sung Han; Lee, Jung-Eun; Jeong, Ji Hoon; Insik; Park, Sung Young

    2014-11-01

    Water soluble fluorescent carbon nanoparticles (FCP) obtained from a single natural source, mango fruit, were developed as unique materials for non-toxic bio-imaging with different colors and particle sizes. The prepared FCPs showed blue (FCP-B), green (FCP-G) and yellow (FCP-Y) fluorescence, derived by the controlled carbonization method. The FCPs demonstrated hydrodynamic diameters of 5-15 nm, holding great promise for clinical applications. The biocompatible FCPs demonstrated great potential in biological fields through the results of in vitro imaging and in vivo biodistribution. Using intravenously administered FCPs with different colored particles, we precisely defined the clearance and biodistribution, showing rapid and efficient urinary excretion for safe elimination from the body. These findings therefore suggest the promising possibility of using natural sources for producing fluorescent materials.Water soluble fluorescent carbon nanoparticles (FCP) obtained from a single natural source, mango fruit, were developed as unique materials for non-toxic bio-imaging with different colors and particle sizes. The prepared FCPs showed blue (FCP-B), green (FCP-G) and yellow (FCP-Y) fluorescence, derived by the controlled carbonization method. The FCPs demonstrated hydrodynamic diameters of 5-15 nm, holding great promise for clinical applications. The biocompatible FCPs demonstrated great potential in biological fields through the results of in vitro imaging and in vivo biodistribution. Using intravenously administered FCPs with different colored particles, we precisely defined the clearance and biodistribution, showing rapid and efficient urinary excretion for safe elimination from the body. These findings therefore suggest the promising possibility of using natural sources for producing fluorescent materials. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr04805a

  2. Effects of coal-derived trace species on performance of molten carbonate fuel cells. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1992-05-01

    The Carbonate Fuel Cell is a very promising option for highly efficient generation of electricity from many fuels. If coal-gas is to be used, the interactions of coal-derived impurities on various fuel cell components need to be understood. Thus the effects on Carbonate Fuel Cell performance due to ten different coal-derived contaminants viz., NH{sub 3}, H{sub 2}S, HC{ell}, H{sub 2}Se, AsH{sub 3}, Zn, Pb, Cd, Sn, and Hg, have been studied at Energy Research Corporation. Both experimental and theoretical evaluations were performed, which have led to mechanistic insights and initial estimation of qualitative tolerance levels for each species individually and in combination with other species. The focus of this study was to investigate possible coal-gas contaminant effects on the anode side of the Carbonate Fuel Cell, using both out-of-cell thermogravimetric analysis by isothermal TGA, and fuel cell testing in bench-scale cells. Separate experiments detailing performance decay in these cells with high levels of ammonia contamination (1 vol %) and with trace levels of Cd, Hg, and Sn, have indicated that, on the whole, these elements do not affect carbonate fuel cell performance. However, some performance decay may result when a number of the other six species are present, singly or simultaneously, as contaminants in fuel gas. In all cases, tolerance levels have been estimated for each of the 10 species and preliminary models have been developed for six of them. At this stage the models are limited to isothermal, benchscale (300 cm{sup 2} size) single cells. The information obtained is expected to assist in the development of coal-gas cleanup systems, while the contaminant performance effects data will provide useful basic information for modeling fuel cell endurance in conjunction with integrated gasifier/fuel-cell systems (IGFC).

  3. Effects of coal-derived trace species on performance of molten carbonate fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    1992-05-01

    The Carbonate Fuel Cell is a very promising option for highly efficient generation of electricity from many fuels. If coal-gas is to be used, the interactions of coal-derived impurities on various fuel cell components need to be understood. Thus the effects on Carbonate Fuel Cell performance due to ten different coal-derived contaminants viz., NH{sub 3}, H{sub 2}S, HC{ell}, H{sub 2}Se, AsH{sub 3}, Zn, Pb, Cd, Sn, and Hg, have been studied at Energy Research Corporation. Both experimental and theoretical evaluations were performed, which have led to mechanistic insights and initial estimation of qualitative tolerance levels for each species individually and in combination with other species. The focus of this study was to investigate possible coal-gas contaminant effects on the anode side of the Carbonate Fuel Cell, using both out-of-cell thermogravimetric analysis by isothermal TGA, and fuel cell testing in bench-scale cells. Separate experiments detailing performance decay in these cells with high levels of ammonia contamination (1 vol %) and with trace levels of Cd, Hg, and Sn, have indicated that, on the whole, these elements do not affect carbonate fuel cell performance. However, some performance decay may result when a number of the other six species are present, singly or simultaneously, as contaminants in fuel gas. In all cases, tolerance levels have been estimated for each of the 10 species and preliminary models have been developed for six of them. At this stage the models are limited to isothermal, benchscale (300 cm{sup 2} size) single cells. The information obtained is expected to assist in the development of coal-gas cleanup systems, while the contaminant performance effects data will provide useful basic information for modeling fuel cell endurance in conjunction with integrated gasifier/fuel-cell systems (IGFC).

  4. Breakdown kinetics of C-hydroxymethyl beta-dicarbonyl derivatives of carbon acids: implications in the bioconversion rate of C-phosphoryloxymethyl prodrugs of carbon acids.

    Science.gov (United States)

    Dhareshwar, Sundeep S; Stella, Valentino J

    2009-05-01

    The kinetics of conversion of C-hydroxymethyl derivatives of pharmaceutically relevant beta-dicarbonyl carbon acids of two series, pyrazolidin-3,5-diones and inden-1,3-diones, and a model carbon acid back to the respective carbon acids were studied as a function of pH at 25 degrees C and an ionic strength of 0.15 M. This is a somewhat surprising reaction since it involves the facile breakdown of a carbon-carbon bond. The slopes of the pH-rate profiles for the dehydroxymethylation were approximately unity, which along with the lack of buffer catalysis, indicates a specific-base mechanism involving spontaneous breakdown of the oxymethyl anion. This breakdown generates the conjugate base of the respective carbon acids. Thus within a series, there exists a correlation between the second-order rate constant for dehydroxymethylation and the pK(a) of the corresponding carbon acid with a shorter conversion/dehydroxymethylation half-life (at all given pH values) with decreasing pK(a) of the parent carbon acid. The increasing acidity of the carbon acid affords an increase in the leaving group ability of the carbanion, and therefore facilitation of the rate-determining unimolecular carbon-carbon bond cleavage. Since the hydroxymethyl derivative is an intermediate in the bioconversion of C-phosphoryloxymethyl prodrugs of carbon acids, also under study, the relationship allows one to reasonably predict how facile the dehydroxymethylation would be for any new beta-dicarbonyl carbon acid.

  5. Literature review of toxicological properties of petroleum and coal-derived oil products

    Energy Technology Data Exchange (ETDEWEB)

    Greenley, W.B.; Barta, W.D.; Eddinger, R.T.

    1982-04-01

    The recent development of synthetic liquid fuel products from coal has raised the question of their relative health hazard compared with natural petroleum products. A review of the literature of natural petroleum products and coal-derived synthetic liquid fuels shows some level of mutagenic activity for each. In general, the coal-derived petroleum substitutes tend to be more mutagenic and carcinogenic than the natural petroleum products. Increased hydrotreatment of the coal-derived oil reduces the mutagenicity to levels comparable to the natural petroleum products. The COED syncrude product consistently shows a lower level of mutagenicity and carcinogenicity than all of the other coal-derived products that appear in the literature. (23 refs.)

  6. New global observations of the terrestrial carbon cycle from GOSAT: Patterns of plant fluorescence with gross primary productivity

    Science.gov (United States)

    Frankenberg, Christian; Fisher, Joshua B.; Worden, John; Badgley, Grayson; Saatchi, Sassan S.; Lee, Jung-Eun; Toon, Geoffrey C.; Butz, André; Jung, Martin; Kuze, Akihiko; Yokota, Tatsuya

    2011-09-01

    Our ability to close the Earth's carbon budget and predict feedbacks in a warming climate depends critically on knowing where, when and how carbon dioxide is exchanged between the land and atmosphere. Terrestrial gross primary production (GPP) constitutes the largest flux component in the global carbon budget, however significant uncertainties remain in GPP estimates and its seasonality. Empirically, we show that global spaceborne observations of solar induced chlorophyll fluorescence - occurring during photosynthesis - exhibit a strong linear correlation with GPP. We found that the fluorescence emission even without any additional climatic or model information has the same or better predictive skill in estimating GPP as those derived from traditional remotely-sensed vegetation indices using ancillary data and model assumptions. In boreal summer the generally strong linear correlation between fluorescence and GPP models weakens, attributable to discrepancies in savannas/croplands (18-48% higher fluorescence-based GPP derived by simple linear scaling), and high-latitude needleleaf forests (28-32% lower fluorescence). Our results demonstrate that retrievals of chlorophyll fluorescence provide direct global observational constraints for GPP and open an entirely new viewpoint on the global carbon cycle. We anticipate that global fluorescence data in combination with consolidated plant physiological fluorescence models will be a step-change in carbon cycle research and enable an unprecedented robustness in the understanding of the current and future carbon cycle.

  7. One-step fabrication of carbon fiber derived from waste paper and its application for catalyzing tri-iodide reduction

    Science.gov (United States)

    Xu, Shunjian

    2017-01-01

    Two carbon fibers were first fabricated by one-step pyrolysis of papers (filter paper and facial tissue), and then employed as catalytic materials for counter electrodes in dye-sensitized solar cells (DSCs) to investigate their potential application. The results show that the microstructure transformation and main weight loss of both the papers are mainly happened in the temperature range of 300–400 °C. After pyrolysis at 800°C, the weight remaining of the filter paper and facial tissue is 1.92% and 4.95%, respectively. The obtained carbon fibers belong to an amorphous carbon consisting of the randomly oriented stacks of graphene sheets. The diameters of both the carbon fibers are about 10 μm, on which there are a certain amount of fine carbon nanofibers. The amorphous microstructure and unique fine nanofibers of the carbon fibers induce more excellent catalytic activity for triiodide ion reduction compared with the biochar (derived from poplar leaf) and the graphite. As a result, the carbon fiber based DSCs display obviously higher efficiency than the biochar or graphite based ones. The conversion efficiency of the DSCs employing the filter paper derived carbon fiber, facial tissue derived carbon fiber, biochar and graphite is 4.72%, 4.70%, 1.33% and 0.77%, respectively.

  8. Caffeic Acid Derivatives in Dried Lamiaceae and Echinacea purpurea Products

    Science.gov (United States)

    The concentrations of caffeic acid derivatives within Lamiaceae and Echinacea (herb, spice, tea, and dietary supplement forms) readily available in the U.S. marketplace (n=72) were determined. After the first identification of chicoric acid in Ocimum basilicum (basil), the extent to which chicoric a...

  9. MEDIA OPTIMIZATION FOR BIOPROTEINS PRODUCTION FROM CHEAPER CARBON SOURCE

    Directory of Open Access Journals (Sweden)

    P. JAMAL

    2008-08-01

    Full Text Available There are high demands for animal and human food supply especially protein, which is an important dietary component. Agricultural wastes, cheap carbon sources- which are rich and have high energy, can be used for producing the value added bioprotein. A lab scale study was carried out to optimize the media composition for bioprotein production from a cheaper carbon source - wheat flour using potential strain, which was selected earlier by screening different microorganisms. The performance of the selected strain was enhanced by media optimization with varied substrate concentration, nitrogen sources and nutrient supplementation according to the central composite design from STATISTICA software. Statistical optimization was carried out to evaluate the polynomial regression model through effect of linear, quadratic and interaction of the factors. The maximum biomass produced was 21.89 g/L with optimum fermentation conditions of wheat flour (4 g/L, nitrogen concentration (0.5 g/L, nutrient concentration (0.1 g/L, and four days of fermentation.

  10. Electrochemical device for converting carbon dioxide to a reaction product

    Energy Technology Data Exchange (ETDEWEB)

    Masel, Richard I.; Chen, Qingmei; Liu, Zengcai; Kutz, Robert

    2016-11-01

    An electrochemical device converts carbon dioxide to a reaction product. The device includes an anode and a cathode, each comprising a quantity of catalyst. The anode and cathode each has reactant introduced thereto. A polymer electrolyte membrane is interposed between the anode and the cathode. At least a portion of the cathode catalyst is directly exposed to gaseous carbon dioxide during electrolysis. The average current density at the membrane is at least 20 mA/cm.sup.2, measured as the area of the cathode gas diffusion layer that is covered by catalyst, and CO selectivity is at least 50% at a cell potential of 3.0 V. In some embodiments, the polymer electrolyte membrane comprises a polymer in which a constituent monomer is (p-vinylbenzyl)-R, where R is selected from the group consisting of imidazoliums, pyridiniums and phosphoniums. In some embodiments, the polymer electrolyte membrane is a Helper Membrane comprising a polymer containing an imidazolium ligand, a pyridinium ligand, or a phosphonium ligand.

  11. India's iron and steel industry: Productivity, energy efficiency and carbon emissions

    Energy Technology Data Exchange (ETDEWEB)

    Schumacher, Katja; Sathaye, Jayant

    1998-10-01

    Historical estimates of productivity growth in India's iron and steel sector vary from indicating an improvement to a decline in the sector's productivity. The variance may be traced to the time period of study, source of data for analysis, and type of indices and econometric specifications used for reporting productivity growth. The authors derive both growth accounting and econometric estimates of productivity growth for this sector. Their results show that over the observed period from 1973--74 to 1993--94 productivity declined by 1.71{percent} as indicated by the Translog index. Calculations of the Kendrick and Solow indices support this finding. Using a translog specification the econometric analysis reveals that technical progress in India's iron and steel sector has been biased towards the use of energy and material, while it has been capital and labor saving. The decline in productivity was caused largely by the protective policy regarding price and distribution of iron and steel as well as by large inefficiencies in public sector integrated steel plants. Will these trends continue into the future, particularly where energy use is concerned? Most likely they will not. The authors examine the current changes in structure and energy efficiency undergoing in the sector. Their analysis shows that with the liberalization of the iron and steel sector, the industry is rapidly moving towards world-best technology, which will result in fewer carbon emissions and more efficient energy use in existing and future plants.

  12. Electrooxidation of carbo/thiocarbohydrazide and their hydrazone derivatives at a glassy carbon electrode

    Indian Academy of Sciences (India)

    G P Mamatha; B S Sherigara; K M Mahadevan

    2007-05-01

    Electrochemical oxidation of thio/carbohydrazide and their hydrazone derivatives Benzaldehyde thiocarbohydrazone [BTCH] diacetylene thiocarbohydrazone [DATCH] have been studied in Britton Robinson buffer in aqueous and nonaqueous media at a glassy carbon electrode. The effects of pH, sweep rate, concentration, temperature and surfactants have been studied. The complex bis (carbo/thiocabohydrazide) Zn(II) chloride was also subjected to voltammetric analysis in order to understand the reactivity both in free and metal bound states. The reaction conditions were optimized for the determination of above compounds in micrograms quantities by differential pulse voltammetry, analytical utility of this investigation is also highlighted.

  13. p-doped multiwall carbon nanotube/perylene diimide derivative photoelectrochemical cells for photocurrent generation

    Energy Technology Data Exchange (ETDEWEB)

    Troeger, Anna; Ledendecker, Marc; Margraf, Johannes T.; Sgobba, Vito; Guldi, Dirk M. [Department of Chemistry and Pharmacy and Interdisciplinary Center for Molecular Materials, Friedrich Alexander University Erlangen-Nuremberg, Erlangen (Germany); Vieweg, Benito F.; Spiecker, Erdmann [Center for Nanoanalysis and Electron Microscopy (CENEM) and Department Werkstoffwissenschaften/VII, Friedrich Alexander University Erlangen-Nuremberg, Erlangen (Germany); Suraru, Sabin-Lucian; Wuerthner, Frank [Institut fuer Organische Chemie and Roentgen Research Center for Complex Material Systems, Universitaet Wuerzburg, Wuerzburg (Germany)

    2012-05-15

    A perylene diimide (PDI) derivative bearing four chlorine substituents in the bay area is deposited together with pristine multiwall carbon nanotubes (MWNTs) and/or Nafion p-doped MWNTs (p-MWNTs) onto indium tin oxide (ITO) solid substrates by means of air-brushing. The resulting photoanodes are studied in photoelectrochemical cells and reveal highest photocurrent efficiencies when PDI and p-MWNT are combined as photoactive materials, indicating the beneficial effect of Nafion. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. Carbon dioxide gas sensor derived from a 547-hole microstructured polymer optical fiber preform.

    Science.gov (United States)

    Wang, Jian; Wang, Lili

    2010-10-01

    In this Letter, we report a carbon dioxide gas sensor having 547 pieces of thin-film modified capillaries, which are derived from a microstructured polymer optical fiber preform. Compared with the conventional absorption-based sensor, the monolithic polymer capillary waveguide arrays have better sensitivity, because the huge sensing surfaces, composed of 547 pieces of dye-indicator-doped porous ethyl cellulose layers, interact directly with the gas molecules. As far as we know, a gas sensor based on multichannel capillary waveguide arrays has not been reported before.

  15. Establishment of the carbon label mechanism of coal chemical products based oncarbon footprint

    Directory of Open Access Journals (Sweden)

    Wu Bishan

    Full Text Available ABSTRACT After redefining the carbon footprint and carbon label, the paper analyzesthe significance of the carbon labels under the background of the low carbon economy development, and establishes the concept of model of the carbon labels mechanism to chemical products. At the same time, the paper quantitatively studies carbon label data sourceof three kinds of coal chemical industry power products, which are fromhaving not CCS technologies of supercritical boiler of coal, using CCS technologies of supercritical boiler of coal and adopting CCS and IGCC technologies to power generation in CCI. Based on the three kinds of differences, the paper puts forward of establishing the carbon labels mechanism of chemical products under the low carbon consumption.

  16. Improving Jet Reactor Configuration for Production of Carbon Nanotubes

    Science.gov (United States)

    Povitsky, Alex

    2000-01-01

    The jet mixing reactor has been proposed for the industrial production of fullerene carbon nanotubes. Here we study the flowfield of this reactor using the SIMPLER algorithm. Hot peripheral jets are used to enhance heating of the central jet by mixing with the ambiance of reactor. Numerous configurations of peripheral jets with various number of jets, distance between nozzles, angles between the central jet and a peripheral jets, and twisted configuration of nozzles are considered. Unlike the previous studies of jet mixing, the optimal configuration of peripheral jets produces strong non-uniformity of the central jet in a cross-section. The geometrical shape of reactor is designed to obtain a uniform temperature of a catalyst.

  17. Lactulose production from cheese whey using recyclable catalyst ammonium carbonate.

    Science.gov (United States)

    Seo, Yeong Hwan; Sung, Mina; Han, Jong-In

    2016-04-15

    Ammonium carbonate ((NH4)2CO3) was used as an alkaline catalyst of lactulose production from cheese whey. Maximum yield of 29.6% was obtained at reaction time of 28.44 min, (NH4)2CO3 of 0.76% at 97°C. During reaction, (NH4)2CO3 was fully decomposed to NH3 and CO2, and these gases were recovered. To boost up NH3 recovery, various methods such as heating, aeration, and pH adjustment were applied. The optimal condition for the purpose of NH3 retrieval was temperature of up to 60°C alongside aeration. Easy separation and recovery make (NH4)2CO3 a catalyst alternative to common alkaline chemicals especially for the weak alkaline reaction.

  18. Carbon disulphide production in laboratory cultures of marine phytoplankton

    Science.gov (United States)

    Xie, Huixiang; Scarratt, Michael G.; Moore, Robert M.

    Carbon disulphide (CS 2) data were collected from axenic monocultures of six species of marine phytoplankton. The tested species included Chaetoceros calcitrans, Phaeodactylum tricornutum, Phaeocystis sp., Porphyridium purpureum, Synechococcus sp. and Isochrysis sp. For a period of between two weeks and forty days, substantial accumulation of CS 2 was found in the cultures of C. calcitrans, P. tricornutum and Phaeocystis sp., whereas the change of CS 2 concentration in the remaining cultures was insignificant. C. calcitrans had a potential for CS 2 production about 10 times higher than P. tricornutum or Phaeocystis sp. The formation of the compound was strongly dependent on the physiological state of the cultured species. More investigation is needed to elucidate the mechanisms responsible for the formation of this sulphur compound in these cultures.

  19. Mass Production of Carbon Nanofibers Using Microwave Technology.

    Science.gov (United States)

    Mubarak, N M; Abdullah, E C; Sahu, J N; Jayakumar, N S; Ganesan, P

    2015-12-01

    Carbon nanotubes (CNFs) were produced by gas phase single stage microwave assisted chemical vapour deposition (MA-CVD) using ferrocene as a catalyst and acetylene (C2H2) and hydrogen (H2) as precursor gases. The effect of the process parameters such as microwave power, radiation time, and gas ratio of C2H2/H2 was investigated. The CNFs were characterized using scanning and transmission electron microscopy (TEM), and by thermogravimetric analysis (TGA). Results reveal that the optimized conditions for CNF production were 1000 W reaction power, 35 min radiation time, and 0.8 gas ratio of C2H2/H2. TEM analyses revealed that the uniformly dispersed CNFs diameters ranging from 115-131 nm. The TGA analysis showed that the purity of CNF produced was 93%.

  20. Relationships between net primary productivity and forest stand age derived from Forest Inventory and Analysis data and remote sensing imagery

    Science.gov (United States)

    He, L.; Chen, J. M.; Pan, Y.; Birdsey, R.

    2010-12-01

    Forest net primary productivity (NPP) varies greatly with stand age, and quantitative information on NPP-age relationship is therefore fundamentally important for forest carbon cycle modeling. We may use four terms to calculate NPP: annual accumulation of live biomass, annual mortality of aboveground and belowground biomass, foliage turnover to soil, and fine root turnover in soil. To derive NPP-age relationships for US forests, the Forest Inventory and Analysis (FIA) data are used to estimate the first two terms. The last two terms make up more than 50% of total NPP, but their estimates are highly uncertain based on limited available empirical relationships between aboveground biomass and foliage or fine root biomass. These estimates are mostly confounded by unknown variations of the turnover rates (TR) related to stand age because such field information is rare. To resolve this problem, we developed a new approach by using a leaf area index (LAI) map and a forest age map at 1 km resolution to derive LAI-age relationships for 18 major forest species groups in the USA. These relationships are then used to derive foliage TR using species-specific leaf longevity values. These relationships are also used for estimating the fine root TR based on reliable relationships between fine root and foliage TR. This combination of FIA and remote sensing data allows us for the first time to derive reliable NPP-age relationships for different forest types in USA (Figure 1). The derived relationships show a general temporal pattern of rapid increase in NPP in early ages, peak growth in mid-ages, and slow decline in old ages. The patterns are subjected to climate conditions, and can also be influenced by forest management. These relationships are further generalized for three major forest biomes for continental-scale carbon cycle modeling in conjunction with remotely sensed land cover types. The NPP relationships derived here may have many uses for analysis of management and climate

  1. Flexible nano-felts of carbide-derived carbon with ultra-high power handling capability

    Energy Technology Data Exchange (ETDEWEB)

    Presser, Volker; Zhang, Lifeng; Niu, Jun Jie; McDonough, John; Perez, Carlos; Gogotsi, Yury [Department of Materials Science and Engineering and A.J. Drexel, Nanotechnology Institute, Drexel University, Philadelphia, PA 19104 (United States); Fong, Hao [Department of Chemistry, South Dakota School of Mines and Technology, Rapid City, SD 57701 (United States)

    2011-05-15

    Nano-fibrous felts (nano-felts) of carbide-derived carbon (CDC) have been developed from the precursor of electrospun titanium carbide (TiC) nano-felts. Conformal transformation of TiC into CDC conserves main features of the precursor including the high interconnectivity and structural integrity; the developed TiC-CDC nano-felts are mechanically flexible/resilient, and can be used as electrode material for supercapacitor application without the addition of any binder. After synthesis through chlorination of the precursor at 600 C, the TiC-CDC nano-fibers show an average pore size of {proportional_to}1nm, a high specific surface area of 1390 m{sup 2}/g; and the nano-fibers have graphitic carbon ribbons embedded in a highly disordered carbon matrix. Graphitic carbon is preserved from the precursor nano-fibers where a few graphene layers surround TiC nanocrystallites. Electrochemical measurements show a high gravimetric capacitance of 110 F/g in aqueous electrolyte (1 M H{sub 2}SO{sub 4}) and 65 F/g in organic electrolyte (1.5 M TEA-BF{sub 4} in acetonitrile). Because of the unique microstructure of TiC-CDC nano-felts, a fade of the capacitance of merely 50% at a high scan rate of 5 V/s is observed. A fade of just 15% is observed for nano-felt film electrodes tested in 1 M H{sub 2} SO{sub 4} at 1 V/s, resulting in a high gravimetric capacitance of 94 F/g. Such a high rate performance is only known for graphene or carbon-onion based supercapacitors, whereas binders have to be used for the fabrication of those supercapacitors. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  2. The Orbiting Carbon Observatory-2: first 18 months of science data products

    Science.gov (United States)

    Eldering, Annmarie; O'Dell, Chris W.; Wennberg, Paul O.; Crisp, David; Gunson, Michael R.; Viatte, Camille; Avis, Charles; Braverman, Amy; Castano, Rebecca; Chang, Albert; Chapsky, Lars; Cheng, Cecilia; Connor, Brian; Dang, Lan; Doran, Gary; Fisher, Brendan; Frankenberg, Christian; Fu, Dejian; Granat, Robert; Hobbs, Jonathan; Lee, Richard A. M.; Mandrake, Lukas; McDuffie, James; Miller, Charles E.; Myers, Vicky; Natraj, Vijay; O'Brien, Denis; Osterman, Gregory B.; Oyafuso, Fabiano; Payne, Vivienne H.; Pollock, Harold R.; Polonsky, Igor; Roehl, Coleen M.; Rosenberg, Robert; Schwandner, Florian; Smyth, Mike; Tang, Vivian; Taylor, Thomas E.; To, Cathy; Wunch, Debra; Yoshimizu, Jan

    2017-02-01

    The Orbiting Carbon Observatory-2 (OCO-2) is the first National Aeronautics and Space Administration (NASA) satellite designed to measure atmospheric carbon dioxide (CO2) with the accuracy, resolution, and coverage needed to quantify CO2 fluxes (sources and sinks) on regional scales. OCO-2 was successfully launched on 2 July 2014 and has gathered more than 2 years of observations. The v7/v7r operational data products from September 2014 to January 2016 are discussed here. On monthly timescales, 7 to 12 % of these measurements are sufficiently cloud and aerosol free to yield estimates of the column-averaged atmospheric CO2 dry air mole fraction, XCO2, that pass all quality tests. During the first year of operations, the observing strategy, instrument calibration, and retrieval algorithm were optimized to improve both the data yield and the accuracy of the products. With these changes, global maps of XCO2 derived from the OCO-2 data are revealing some of the most robust features of the atmospheric carbon cycle. This includes XCO2 enhancements co-located with intense fossil fuel emissions in eastern US and eastern China, which are most obvious between October and December, when the north-south XCO2 gradient is small. Enhanced XCO2 coincident with biomass burning in the Amazon, central Africa, and Indonesia is also evident in this season. In May and June, when the north-south XCO2 gradient is largest, these sources are less apparent in global maps. During this part of the year, OCO-2 maps show a more than 10 ppm reduction in XCO2 across the Northern Hemisphere, as photosynthesis by the land biosphere rapidly absorbs CO2. As the carbon cycle science community continues to analyze these OCO-2 data, information on regional-scale sources (emitters) and sinks (absorbers) which impart XCO2 changes on the order of 1 ppm, as well as far more subtle features, will emerge from this high-resolution global dataset.

  3. Carbon and water footprint of pork supply chain in Catalonia: From feed to final products.

    Science.gov (United States)

    Noya, Isabel; Aldea, Xavier; Gasol, Carles M; González-García, Sara; Amores, Maria José; Colón, Joan; Ponsá, Sergio; Roman, Isabel; Rubio, Miguel A; Casas, Eudald; Moreira, María Teresa; Boschmonart-Rives, Jesús

    2016-04-15

    A systematic tool to assess the Carbon Footprint (CF) and Water Footprint (WF) of pork production companies was developed and applied to representative Catalan companies. To do so, a cradle-to-gate environmental assessment was carried out by means of the LCA methodology, taking into account all the stages involved in the pork chain, from feed production to the processing of final products, ready for distribution. In this approach, the environmental results are reported based on eight different functional units (FUs) according to the main pork products obtained. With the aim of ensuring the reliability of the results and facilitating the comparison with other available reports, the Product Category Rules (PCR) for Catalan pork sector were also defined as a basis for calculations. The characterization results show fodder production as the main contributor to the global environmental burdens, with contributions higher than 76% regardless the environmental indicator or the life cycle stage considered, which is in agreement with other published data. In contrast, the results in terms of CF and WF lay above the range of values reported elsewhere. However, major discrepancies are mainly due to the differences in the co-products allocation criteria. In this sense, economic/physical allocation and/or system expansion have been mostly considered in literature. In contrast, no allocation was considered appropriate in this study, according to the characteristics of the industries and products under assessment; thus, the major impacts fall on the main product, which derives on comparatively higher environmental burdens. Finally, due to the relevance of fodder production in the overall impact assessment results, strategies to reduce greenhouse gases (GHG) emissions as well as water use associated to this stage were proposed in the pork supply chain. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Carbon footprint of dairy goat milk production in New Zealand.

    Science.gov (United States)

    Robertson, Kimberly; Symes, Wymond; Garnham, Malcolm

    2015-07-01

    The aim of this study was to assess the cradle-to-farm gate carbon footprint of indoor and outdoor dairy goat farming systems in New Zealand, identifying hotspots and discussing variability and methodology. Our study was based on the International Organization for Standardization standards for life cycle assessment, although only results for greenhouse gas emissions are presented. Two functional units were included: tonnes of CO2-equivalents (CO2e) per hectare (ha) and kilograms of CO2e per kilogram of fat- and protein-corrected milk (FPCM). The study covered 5 farms, 2 farming systems, and 3yr. Two methods for the calculation of enteric methane emissions were assessed. The Lassey method, as used in the New Zealand greenhouse gas inventory, provided a more robust estimate of emissions from enteric fermentation and was used in the final calculations. The alternative dry matter intake method was shown to overestimate emissions due to use of anecdotal assumptions around actual consumption of feed. Economic allocation was applied to milk and co-products. Scenario analysis was performed on the allocation method, nitrogen content of manure, manure management, and supplementary feed choice. The average carbon footprint for the indoor farms (n=3) was 11.05 t of CO2e/ha and 0.81kg of CO2e/kg of FPCM. For the outdoor farms (n=2), the average was 5.38 t of CO2e/ha and 1.03kg of CO2e/kg of FPCM. The average for all 5 farms was 8.78 t of CO2e/ha and 0.90kg of CO2e/kg of FPCM. The results showed relatively high variability due to differences in management practices between farms. The 5 farms covered 10% of the total dairy goat farms but may not be representative of an average farm. Methane from enteric fermentation was a major emission source. The use of supplementary feed was highly variable but an important contributor to the carbon footprint. Nitrous oxide can contribute up to 18% of emissions. Indoor goat farming systems produced milk with a significantly higher carbon

  5. Carbon footprint calculation of Finnish greenhouse products; Kasvihuonetuotteiden ilmastovaikutuslaskenta. Loppuraportti

    Energy Technology Data Exchange (ETDEWEB)

    Yrjaenaeinen, H.; Silvenius, F.; Kaukoranta, T.; Naekkilae, J.; Saerkkae, L.; Tuhkanen, E.-M.

    2013-02-01

    This report presents the results of climate impact calculations for five products produced in Finnish greenhouses: tomatoes, cucumbers, salad crops, tulips and Elatior begonias. The study employed 16 greenhouses for the investigation; two greenhouses each for the tulips and the begonias and four each for the tomatoes, cucumbers and salad crops. Based on these calculations a greenhouse gas calculator was developed for greenhouse cultivators. The calculator is available at internet in www.kauppapuutarhaliitto.fi {yields} hiilijalanjaelki. In terms of environmental impacts this study concentrated on the climate impacts of the investigated products, and the calculations were made for the most significant greenhouse gases: carbon dioxide, methane and nitrous oxide. The following processes were included in the system boundaries: plant growing, manufacturing of lime, fertilizers and pesticides, manufacturing and disposal of pots, carbon dioxide production, irrigation, lighting, thermal curtains and cooling systems, the production and use of electricity and heat energy, distribution of products by the growers, other transportation, end-of-life and recycling. Processes excluded from the study were: distribution by other actors, retail functions, the consumer stage, and maintenance and manufacturing of infrastructure. The study used MTT's calculation model for the climate impact of food products excluding distribution and retail processes. The greenhouses selected for the study had some variation in their energy profiles and growing seasons. In addition, scenarios were created for different energy sources by using the average figures from this study. Monthly energy consumption values were also obtained from a number of the greenhouses and these were used to assess the variations in climate impact for different seasons. According to the results of the study the use of energy is the most significant source of climate impact of greenhouse products. In the tomato farms the

  6. The Carbon Reduction Effect of the Trade of Paper Products in China

    Institute of Scientific and Technical Information of China (English)

    Feng; FENG; Heliang; HUANG; Pei; ZHANG; Siying; CHEN

    2015-01-01

    Through using the data of import and export trading of China’s paper products in 2012,we utilize the method of volume source biomass equation and net primary productivity( NPP) to calculate the carbon reduction effect of papermaking raw materials trade,and utilize the method of IPCC guidelines for inventories to calculate the carbon emission effect of paper and paper products trade. The results show that the distinctive characteristics of China’s paper products trade has resulted in the dual effects on the domestic carbon emissions. On the one hand,large imports of paper-making raw materials make China reduce domestic forest felling,with the effect of carbon emission reduction. On the other hand,net exports of paper and paper products increase the domestic carbon emissions,with the effect of carbon emission. The carbon emission reduction effect of China’s paper-making raw materials trade is obvious and up to 19. 0211 million tons. This is equal to the total volume of 180. 5709 million cubic meters forest’s annual carbon sequestration. The carbon emission effect of paper and paper products trade is only 0. 5136 million tons,which is not significant compared with the former. In general,China’s paper product trade causes the significant effect on carbon emission reduction.

  7. Elevated carbon dioxide and ozone alter productivity and ecosystem carbon content in northern temperate forests.

    Science.gov (United States)

    Talhelm, Alan F; Pregitzer, Kurt S; Kubiske, Mark E; Zak, Donald R; Campany, Courtney E; Burton, Andrew J; Dickson, Richard E; Hendrey, George R; Isebrands, J G; Lewin, Keith F; Nagy, John; Karnosky, David F

    2014-08-01

    Three young northern temperate forest communities in the north-central United States were exposed to factorial combinations of elevated carbon dioxide (CO2 ) and tropospheric ozone (O3 ) for 11 years. Here, we report results from an extensive sampling of plant biomass and soil conducted at the conclusion of the experiment that enabled us to estimate ecosystem carbon (C) content and cumulative net primary productivity (NPP). Elevated CO2 enhanced ecosystem C content by 11%, whereas elevated O3 decreased ecosystem C content by 9%. There was little variation in treatment effects on C content across communities and no meaningful interactions between CO2 and O3 . Treatment effects on ecosystem C content resulted primarily from changes in the near-surface mineral soil and tree C, particularly differences in woody tissues. Excluding the mineral soil, cumulative NPP was a strong predictor of ecosystem C content (r(2) = 0.96). Elevated CO2 enhanced cumulative NPP by 39%, a consequence of a 28% increase in canopy nitrogen (N) content (g N m(-2) ) and a 28% increase in N productivity (NPP/canopy N). In contrast, elevated O3 lowered NPP by 10% because of a 21% decrease in canopy N, but did not impact N productivity. Consequently, as the marginal impact of canopy N on NPP (∆NPP/∆N) decreased through time with further canopy development, the O3 effect on NPP dissipated. Within the mineral soil, there was less C in the top 0.1 m of soil under elevated O3 and less soil C from 0.1 to 0.2 m in depth under elevated CO2 . Overall, these results suggest that elevated CO2 may create a sustained increase in NPP, whereas the long-term effect of elevated O3 on NPP will be smaller than expected. However, changes in soil C are not well-understood and limit our ability to predict changes in ecosystem C content.

  8. Carbon neutral? No change in mineral soil carbon stock under oil palm plantations derived from forest or non-forest in Indonesia

    NARCIS (Netherlands)

    Khasanah, N.; Noordwijk, van M.; Ningsih, H.; Rahayu, S.

    2015-01-01

    Sustainability criteria for palm oil production guide new planting toward non-forest land cover on mineral soil, avoiding carbon debts caused by forest and peat conversion. Effects on soil carbon stock (soil Cstock) of land use change trajectories from forest and non-forest to oil palm on mineral so

  9. An integrated new product development framework - an application on green and low-carbon products

    Science.gov (United States)

    Lin, Chun-Yu; Lee, Amy H. I.; Kang, He-Yau

    2015-03-01

    Companies need to be innovative to survive in today's competitive market; thus, new product development (NPD) has become very important. This research constructs an integrated NPD framework for developing new products. In stage one, customer attributes (CAs) and engineering characteristics (ECs) for developing products are collected, and fuzzy interpretive structural modelling (FISM) is applied to understand the relationships among these critical factors. Based on quality function deployment (QFD), a house of quality is then built, and fuzzy analytic network process (FANP) is adopted to calculate the relative importance of ECs. In stage two, fuzzy failure mode and effects analysis (FFMEA) is applied to understand the potential failures of the ECs and to determine the importance of ECs with respect to risk control. In stage three, a goal programming (GP) model is constructed to consider the outcome from the FANP-QFD, FFMEA and other objectives, in order to select the most important ECs. Due to pollution and global warming, environmental protection has become an important topic. With both governments and consumers developing environmental consciousness, successful green and low-carbon NPD provides an important competitive advantage, enabling the survival or renewal of firms. The proposed framework is implemented in a panel manufacturing firm for designing a green and low-carbon product.

  10. Snapshot prediction of carbon productivity, carbon and protein content in a Southern Ocean diatom using FTIR spectroscopy.

    Science.gov (United States)

    Sackett, Olivia; Petrou, Katherina; Reedy, Brian; Hill, Ross; Doblin, Martina; Beardall, John; Ralph, Peter; Heraud, Philip

    2016-02-01

    Diatoms, an important group of phytoplankton, bloom annually in the Southern Ocean, covering thousands of square kilometers and dominating the region's phytoplankton communities. In their role as the major food source to marine grazers, diatoms supply carbon, nutrients and energy to the Southern Ocean food web. Prevailing environmental conditions influence diatom phenotypic traits (for example, photophysiology, macromolecular composition and morphology), which in turn affect the transfer of energy, carbon and nutrients to grazers and higher trophic levels, as well as oceanic biogeochemical cycles. The paucity of phenotypic data on Southern Ocean phytoplankton limits our understanding of the ecosystem and how it may respond to future environmental change. Here we used a novel approach to create a 'snapshot' of cell phenotype. Using mass spectrometry, we measured nitrogen (a proxy for protein), total carbon and carbon-13 enrichment (carbon productivity), then used this data to build spectroscopy-based predictive models. The models were used to provide phenotypic data for samples from a third sample set. Importantly, this approach enabled the first ever rate determination of carbon productivity from a single time point, circumventing the need for time-series measurements. This study showed that Chaetoceros simplex was less productive and had lower protein and carbon content during short-term periods of high salinity. Applying this new phenomics approach to natural phytoplankton samples could provide valuable insight into understanding phytoplankton productivity and function in the marine system.

  11. Superior supercapacitive performance of hollow activated carbon nanomesh with hierarchical structure derived from poplar catkins

    Science.gov (United States)

    Su, Xiao-Li; Cheng, Ming-Yu; Fu, Lin; Yang, Jing-He; Zheng, Xiu-Cheng; Guan, Xin-Xin

    2017-09-01

    The hollow activated carbon nanomesh (PCACM) with a hierarchical porous structure is derived from biowaste-poplar catkins by in-situ calcination etching with Ni(NO3)2·6H2O and KOH in N2 flow combined with an acid dissolution technique. This procedure not only inherits the natural tube morphology of poplar catkins, but also generates a fascinating nanomesh structure on the walls. PCACM possesses a large specific surface area (SBET = 1893.0 m2 g-1) and high total pore volume (Vp = 1.495 cm3 g-1), and displays an exciting meso-macoporous structure with a concentrated pore size distribution of 4.53 nm. The specific capacitance of PCACM is as high as 314.6 F g-1 at 1.0 A g-1 when used as the electrode materials for supercapacitor. Furthermore, the symmetric supercapacitor of PCACM with 1.0 M Na2SO4 solution as the electrolyte displays a high energy density of 20.86 Wh kg-1 at a power density of 180.13 W kg-1 within a wide voltage rage of 0-1.8 V, which is comparable or even obviously higher than those of other biomass derived carbon reported. It is noteworthy that PCACM also exhibits superior cycling stability and coulombic efficiency. The excellent electrochemical behaviors enable PCACM to be a promising electrode material for supercapacitors.

  12. Catalytically Active Bimetallic Nanoparticles Supported on Porous Carbon Capsules Derived From Metal-Organic Framework Composites.

    Science.gov (United States)

    Yang, Hui; Bradley, Siobhan J; Chan, Andrew; Waterhouse, Geoffrey I N; Nann, Thomas; Kruger, Paul E; Telfer, Shane G

    2016-09-14

    We report a new methodology for producing monometallic or bimetallic nanoparticles confined within hollow nitrogen-doped porous carbon capsules. The capsules are derived from metal-organic framework (MOF) crystals that are coated with a shell of a secondary material comprising either a metal-tannic acid coordination polymer or a resorcinol-formaldehyde polymer. Platinum nanoparticles are optionally sandwiched between the MOF core and the shell. Pyrolysis of the MOF-shell composites produces hollow capsules of porous nitrogen-doped carbon that bear either monometallic (Pt, Co, and Ni) or alloyed (PtCo and PtNi) metal nanoparticles. The Co and Ni components of the bimetallic nanoparticles are derived from the shell surrounding the MOF crystals. The hollow capsules prevent sintering and detachment of the nanoparticles, and their porous walls allow for efficient mass transport. Alloyed PtCo nanoparticles embedded in the capsule walls are highly active, selective, and recyclable catalysts for the hydrogenation of nitroarenes to anilines.

  13. Preparation and supercapacitive behaviors of the ordered mesoporous/microporous chromium carbide-derived carbons

    Science.gov (United States)

    Wu, Chun; Gao, Jiao; Zhao, Qinglan; Zhang, Youwei; Bai, Yansong; Wang, Xingyan; Wang, Xianyou

    2014-12-01

    A series of ordered mesoporous/microporous carbon materials derived from chromium carbide-derived carbons (CDCs) are prepared by nanocasting the chromic acetate and furfuryl alcohol precursor into SBA-15 and subsequent chlorination. The structure and morphology of the CDCs are characterized by N2 adsorption/desorption isotherm, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The results show that all of the synthesized CDCs present large specific surface area and pore volume. Especially, the CDCs-2 prepared at the mass ratio of 1/1 (chromic acetate/furfuryl alcohol) exhibits the chain-like morphology with high surface area (1236 m2 g-1), large pore volume (0.76 cm3 g-1), and the good mesopore size centered at 3.43 nm. The electrochemical properties of all the CDCs are studied by cyclic voltammetry, constant current charge/discharge, electrochemical impedance spectroscopy and cycle life measurements in 6 M KOH electrolyte. The results display that the sample CDCs-2 exhibits a high capacitance of 242.7 F g-1 at the current density of 1 A g-1 and good cycling stability with coulombic efficiency of 100% over 10000 cycles.

  14. Highly sensitive electrochemical sensor for chloramphenicol based on MOF derived exfoliated porous carbon.

    Science.gov (United States)

    Xiao, Lili; Xu, Ruiyu; Yuan, Qunhui; Wang, Fu

    2017-05-15

    Benefit from the advantages in costless, simplicity and efficiency, solvent exfoliation has been widely used in preparation of two-dimensional nanosheets with enhanced performances in electronics, photonics, and catalysis. In this work, solvent exfoliation was first applied to prepare exfoliated porous carbon (EPC) from an isoreticular metal-organic framework-8 (IRMOF-8) derived porous carbon (DPC). The obtained EPC with high surface area (1854m(2)g(-1)) and improved dispersibility was used as electrode modifier for glassy carbon electrode (GCE) in square wave voltammetry (SWV) detection of chloramphenicol (CAP). The sensitivity of EPC modified GCE (EPC/GCE) was greatly improved in compare with that of the DPC modification. The corresponding linear ranges are 1×10(-8)-1×10(-6)molL(-1) and 1×10(-6)-4×10(-6)molL(-1). The detection limit was calculated to be 2.9×10(-9)molL(-1) (at a signal-to-noise ratio of 3, S/N=3). In addition, the proposed sensor was successfully applied in the analysis of CAP in honey and achieved satisfying recovery.

  15. EDLC performance of carbide-derived carbons in aprotic and acidic electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, J.A.; Centeno, T.A. [Instituto Nacional del Carbon-CSIC, Apartado 73, 33080 Oviedo (Spain); Arulepp, M. [Tartu Technologies Ltd., 185 Riia Street, 51014 Tartu (Estonia); Leis, J. [University of Tartu, 2 Jakobi Street, 51014 Tartu (Estonia); Stoeckli, F. [IMT-Chimie des Surfaces, Universite de Neuchatel, Rue Emile Argand 11, CH-2009 Neuchatel (Switzerland)

    2008-10-15

    This study shows that carbide-derived carbons (CDCs) with average pore size distributions around 0.9-1 nm and effective surface areas of 1300-1400 m{sup 2} g{sup -1} provide electrochemical double-layer capacitors with high performances in both aqueous (2M H{sub 2}SO{sub 4}) and aprotic (1M (C{sub 2}H{sub 5}){sub 4}NBF{sub 4} in acetonitrile) electrolytes. In the acidic electrolytic solution, the gravimetric capacitance at low current density (1 mA cm{sup -2}) can exceed 200 F g{sup -1}, whereas the volumetric capacitance reaches 90 F cm{sup -3}. In the aprotic electrolyte they reach 150 F g{sup -1} and 60 F cm{sup -3}. A detailed comparison of the capacitive behaviour of CDCs at high current density (up to 100 mA cm{sup -2}) with other microporous and mesoporous carbons indicates better rate capabilities for the present materials in both electrolytes. This is due to the high surface area, the accessible porosity and the relatively low oxygen content. It also appears that the surface-related capacitances of the present CDCs in the aprotic electrolyte are in line with other carbons and show no anomalous behaviour. (author)

  16. Enhanced transfer of terrestrially derived carbon to the atmosphere in a flooding event

    Science.gov (United States)

    Bianchi, Thomas S.; Garcia-Tigreros, Fenix; Yvon-Lewis, Shari A.; Shields, Michael; Mills, Heath J.; Butman, David; Osburn, Christopher; Raymond, Peter A.; Shank, G. Christopher; DiMarco, Steven F.; Walker, Nan; Kiel Reese, Brandi; Mullins-Perry, Ruth; Quigg, Antonietta; Aiken, George R.; Grossman, Ethan L.

    2013-01-01

    Rising CO2 concentration in the atmosphere, global climate change, and the sustainability of the Earth's biosphere are great societal concerns for the 21st century. Global climate change has, in part, resulted in a higher frequency of flooding events, which allow for greater exchange between soil/plant litter and aquatic carbon pools. Here we demonstrate that the summer 2011 flood in the Mississippi River basin, caused by extreme precipitation events, resulted in a “flushing” of terrestrially derived dissolved organic carbon (TDOC) to the northern Gulf of Mexico. Data from the lower Atchafalaya and Mississippi rivers showed that the DOC flux to the northern Gulf of Mexico during this flood was significantly higher than in previous years. We also show that consumption of radiocarbon-modern TDOC by bacteria in floodwaters in the lower Atchafalaya River and along the adjacent shelf contributed to northern Gulf shelf waters changing from a net sink to a net source of CO2 to the atmosphere in June and August 2011. This work shows that enhanced flooding, which may or may not be caused by climate change, can result in rapid losses of stored carbon in soils to the atmosphere via processes in aquatic ecosystems.

  17. Recent Progress in Design of Biomass-Derived Hard Carbons for Sodium Ion Batteries

    Directory of Open Access Journals (Sweden)

    Joanna Górka

    2016-12-01

    Full