WorldWideScience

Sample records for deposition model radm

  1. The RADMED monitoring program: towards an ecosystem approach

    Directory of Open Access Journals (Sweden)

    J. L. López-Jurado

    2015-05-01

    Full Text Available In the Western Mediterranean, the IEO-RADMED monitoring program is already conducting many of the evaluations required under the Marine Strategy Framework Directive (MFSD along the Spanish Mediterranean coast. The different aspects of the ecosystem that are regularly sampled under this monitoring program are the physical environment and the chemical and biological variables of the water column, together with the planktonic communities, biomass and structure. Moreover, determinations of some anthropogenic stressors on the marine environment, as contaminants and microplastics, are under develop. Data are managed and stored at the IEO Data Center that works under the SeaDataNet infrastructure and are also stored under the IBAMar database. In combination with remote sensing data they are used to address open questions on the ecosystem in the Western Mediterranean sea.

  2. The RADMED monitoring program: towards an ecosystem approach

    Science.gov (United States)

    López-Jurado, J. L.; Balbín, R.; Amengual, B.; Aparicio-González, A.; Fernández de Puelles, M. L.; García-Martínez, M. C.; Gazá, M.; Jansá, J.; Morillas-Kieffer, A.; Moyá, F.; Santiago, R.; Serra, M.; Vargas-Yáñez, M.; Vicente, L.

    2015-05-01

    In the Western Mediterranean, the IEO-RADMED monitoring program is already conducting many of the evaluations required under the Marine Strategy Framework Directive (MFSD) along the Spanish Mediterranean coast. The different aspects of the ecosystem that are regularly sampled under this monitoring program are the physical environment and the chemical and biological variables of the water column, together with the planktonic communities, biomass and structure. Moreover, determinations of some anthropogenic stressors on the marine environment, as contaminants and microplastics, are under develop. Data are managed and stored at the IEO Data Center that works under the SeaDataNet infrastructure and are also stored under the IBAMar database. In combination with remote sensing data they are used to address open questions on the ecosystem in the Western Mediterranean sea.

  3. Deposit model for volcanogenic uranium deposits

    Science.gov (United States)

    Breit, George N.; Hall, Susan M.

    2011-01-01

    Volcanism is a major contributor to the formation of important uranium deposits both close to centers of eruption and more distal as a result of deposition of ash with leachable uranium. Hydrothermal fluids that are driven by magmatic heat proximal to some volcanic centers directly form some deposits. These fluids leach uranium from U-bearing silicic volcanic rocks and concentrate it at sites of deposition within veins, stockworks, breccias, volcaniclastic rocks, and lacustrine caldera sediments. The volcanogenic uranium deposit model presented here summarizes attributes of those deposits and follows the focus of the International Atomic Energy Agency caldera-hosted uranium deposit model. Although inferred by some to have a volcanic component to their origin, iron oxide-copper-gold deposits with economically recoverable uranium contents are not considered in this model.

  4. Modeled Wet Nitrate Deposition

    Data.gov (United States)

    U.S. Environmental Protection Agency — Modeled data on nitrate wet deposition was obtained from Dr. Jeff Grimm at Penn State Univ. Nitrate wet depostion causes acidification and eutrophication of surface...

  5. The RADMED monitoring programme as a tool for MSFD implementation: towards an ecosystem-based approach

    Science.gov (United States)

    López-Jurado, J. L.; Balbín, R.; Alemany, F.; Amengual, B.; Aparicio-González, A.; Fernández de Puelles, M. L.; García-Martínez, M. C.; Gazá, M.; Jansá, J.; Morillas-Kieffer, A.; Moyá, F.; Santiago, R.; Serra, M.; Vargas-Yáñez, M.

    2015-11-01

    In the western Mediterranean Sea, the RADMED monitoring programme is already conducting several of the evaluations required under the Marine Strategy Framework Directive (MFSD) along the Spanish Mediterranean coast. The different aspects of the ecosystem that are regularly sampled under this monitoring programme are the physical environment and the chemical and biological variables of the water column, together with the planktonic communities, biomass and structure. Moreover, determinations of some anthropogenic stressors on the marine environment, such as contaminants and microplastics, are under development. Data are managed and stored at the Instituto Español de Oceanografía (IEO) Data Centre that works under the SeaDataNet infrastructure, and are also stored in the IBAMar database. In combination with remote sensing data, they are used to address open questions on the ecosystems in the western Mediterranean Sea.

  6. A Radon Progeny Deposition Model

    CERN Document Server

    Guiseppe, V E; Hime, A; Rielage, K; Westerdale, S

    2011-01-01

    The next generation low-background detectors operating underground aim for unprecedented low levels of radioactive backgrounds. Although the radioactive decays of airborne radon (particularly Rn-222) and its subsequent progeny present in an experiment are potential backgrounds, also problematic is the deposition of radon progeny on detector materials. Exposure to radon at any stage of assembly of an experiment can result in surface contamination by progeny supported by the long half life (22 y) of Pb-210 on sensitive locations of a detector. An understanding of the potential surface contamination from deposition will enable requirements of radon-reduced air and clean room environments for the assembly of low background experiments. It is known that there are a number of environmental factors that govern the deposition of progeny onto surfaces. However, existing models have not explored the impact of some environmental factors important for low background experiments. A test stand has been constructed to depos...

  7. Ozone air quality simulations with WRF-Chem (v3.5.1) over Europe: model evaluation and chemical mechanism comparison

    Science.gov (United States)

    Mar, Kathleen A.; Ojha, Narendra; Pozzer, Andrea; Butler, Tim M.

    2016-10-01

    sensitive to increases in anthropogenic VOC emissions as MOZART-4. Additionally, we found that differences in reaction rate coefficients for inorganic gas-phase chemistry in MOZART-4 vs. RADM2 accounted for a difference of 8 µg m-3, or 40 % of the summertime difference in O3 predicted by the two mechanisms. Differences in deposition and photolysis schemes explained smaller differences in O3. Our results highlight the strong dependence of modeled surface O3 over Europe on the choice of gas-phase chemical mechanism, which we discuss in the context of overall uncertainties in prediction of ground-level O3 and its associated health impacts (via the health-related metrics MDA8 and SOMO35).

  8. Arc-related porphyry molybdenum deposit model: Chapter D in Mineral deposit models for resource assessment

    Science.gov (United States)

    Taylor, Ryan D.; Hammarstrom, Jane M.; Piatak, Nadine M.; Seal, Robert R., II

    2012-01-01

    This report provides a descriptive model for arc-related porphyry molybdenum deposits. Presented within are geological, geochemical, and mineralogical characteristics that differentiate this deposit type from porphyry copper and alkali-feldspar rhyolite-granite porphyry molybdenum deposits. The U.S. Geological Survey's effort to update existing mineral deposit models spurred this research, which is intended to supplement previously published models for this deposit type that help guide mineral-resource and mineral-environmental assessments.

  9. Preliminary Model of Porphyry Copper Deposits

    Science.gov (United States)

    Berger, Byron R.; Ayuso, Robert A.; Wynn, Jeffrey C.; Seal, Robert R., II

    2008-01-01

    The U.S. Geological Survey (USGS) Mineral Resources Program develops mineral-deposit models for application in USGS mineral-resource assessments and other mineral resource-related activities within the USGS as well as for nongovernmental applications. Periodic updates of models are published in order to incorporate new concepts and findings on the occurrence, nature, and origin of specific mineral deposit types. This update is a preliminary model of porphyry copper deposits that begins an update process of porphyry copper models published in USGS Bulletin 1693 in 1986. This update includes a greater variety of deposit attributes than were included in the 1986 model as well as more information about each attribute. It also includes an expanded discussion of geophysical and remote sensing attributes and tools useful in resource evaluations, a summary of current theoretical concepts of porphyry copper deposit genesis, and a summary of the environmental attributes of unmined and mined deposits.

  10. Review of Gaussian diffusion-deposition models

    Energy Technology Data Exchange (ETDEWEB)

    Horst, T.W.

    1979-01-01

    The assumptions and predictions of several Gaussian diffusion-deposition models are compared. A simple correction to the Chamberlain source depletion model is shown to predict ground-level airborne concentrations and dry deposition fluxes in close agreement with the exact solution of Horst.

  11. A Simplified Diffusion-Deposition Model

    DEFF Research Database (Denmark)

    Jensen, Niels Otto

    1980-01-01

    The use of a simple top hat plume model facilitates an analytical treatment of the deposition problem. A necessary constraint, however, is that the diffusion velocity (e.g., in terms of the plume growth-rate) is large compared to the deposition velocity. With these limitations, explicit formulae...

  12. Advanced deposition model for thermal activated chemical vapor deposition

    Science.gov (United States)

    Cai, Dang

    Thermal Activated Chemical Vapor Deposition (TACVD) is defined as the formation of a stable solid product on a heated substrate surface from chemical reactions and/or dissociation of gaseous reactants in an activated environment. It has become an essential process for producing solid film, bulk material, coating, fibers, powders and monolithic components. Global market of CVD products has reached multi billions dollars for each year. In the recent years CVD process has been extensively used to manufacture semiconductors and other electronic components such as polysilicon, AlN and GaN. Extensive research effort has been directed to improve deposition quality and throughput. To obtain fast and high quality deposition, operational conditions such as temperature, pressure, fluid velocity and species concentration and geometry conditions such as source-substrate distance need to be well controlled in a CVD system. This thesis will focus on design of CVD processes through understanding the transport and reaction phenomena in the growth reactor. Since the in situ monitor is almost impossible for CVD reactor, many industrial resources have been expended to determine the optimum design by semi-empirical methods and trial-and-error procedures. This approach has allowed the achievement of improvements in the deposition sequence, but begins to show its limitations, as this method cannot always fulfill the more and more stringent specifications of the industry. To resolve this problem, numerical simulation is widely used in studying the growth techniques. The difficulty of numerical simulation of TACVD crystal growth process lies in the simulation of gas phase and surface reactions, especially the latter one, due to the fact that very limited kinetic information is available in the open literature. In this thesis, an advanced deposition model was developed to study the multi-component fluid flow, homogeneous gas phase reactions inside the reactor chamber, heterogeneous surface

  13. A preliminary deposit model for lithium brines

    Science.gov (United States)

    Bradley, Dwight; Munk, LeeAnn; Jochens, Hillary; Hynek, Scott; Labay, Keith A.

    2013-01-01

    This report is part of an effort by the U.S. Geological Survey to update existing mineral deposit models and to develop new ones. The global transition away from hydrocarbons toward energy alternatives increases demand for many scarce metals. Among these is lithium, a key component of lithium-ion batteries for electric and hybrid vehicles. Lithium brine deposits account for about three-fourths of the world’s lithium production. Updating an earlier deposit model, we emphasize geologic information that might directly or indirectly help in exploration for lithium brine deposits, or for assessing regions for mineral resource potential. Special attention is given to the best-known deposit in the world—Clayton Valley, Nevada, and to the giant Salar de Atacama, Chile.

  14. Stratiform chromite deposit model: Chapter E in Mineral deposit models for resource assessment

    Science.gov (United States)

    Schulte, Ruth F.; Taylor, Ryan D.; Piatak, Nadine M.; Seal, Robert R., II

    2012-01-01

    A new descriptive stratiform chromite deposit model was prepared which will provide a framework for understanding the characteristics of stratiform chromite deposits worldwide. Previous stratiform chromite deposit models developed by the U.S. Geological Survey (USGS) have been referred to as Bushveld chromium, because the Bushveld Complex in South Africa is the only stratified, mafic-ultramafic intrusion presently mined for chromite and is the most intensely researched. As part of the on-going effort by the USGS Mineral Resources Program to update existing deposit models for the upcoming national mineral resource assessment, this revised stratiform chromite deposit model includes new data on the geological, mineralogical, geophysical, and geochemical attributes of stratiform chromite deposits worldwide. This model will be a valuable tool in future chromite resource and environmental assessments and supplement previously published models used for mineral resource evaluation.

  15. Interspecies modeling of inhaled particle deposition patterns

    Energy Technology Data Exchange (ETDEWEB)

    Martonen, T.B.; Zhang, Z.; Yang, Y.

    1992-01-01

    To evaluate the potential toxic effects of ambient contaminants or therapeutic effects of airborne drugs, inhalation exposure experiments can be performed with surrogate laboratory animals. Herein, an interspecies particle deposition theory is presented for physiologically based pharmacokinetic modeling. It is derived to improve animal testing protocols. The computer code describes the behavior and fate of particles in the lungs of human subjects and a selected surrogate, the laboratory rat. In the simulations CO2 is integrated with exposure chamber atmospheres, and its concentrations regulated to produce rat breathing profiles corresponding to selected levels of human physical activity. The dosimetric model is used to calculate total, compartmental (i.e., tracheobronchial and pulmonary), and localized distribution patterns of inhaled particles in rats and humans for comparable ventilatory conditions. It is demonstrated that the model can be used to predetermine the exposure conditions necessary to produce deposition patterns in rats that are equivalent to those in humans at prescribed physical activities.

  16. Radiative transfer modeling of surface chemical deposits

    Science.gov (United States)

    Reichardt, Thomas A.; Kulp, Thomas J.

    2016-05-01

    Remote detection of a surface-bound chemical relies on the recognition of a pattern, or "signature," that is distinct from the background. Such signatures are a function of a chemical's fundamental optical properties, but also depend upon its specific morphology. Importantly, the same chemical can exhibit vastly different signatures depending on the size of particles composing the deposit. We present a parameterized model to account for such morphological effects on surface-deposited chemical signatures. This model leverages computational tools developed within the planetary and atmospheric science communities, beginning with T-matrix and ray-tracing approaches for evaluating the scattering and extinction properties of individual particles based on their size and shape, and the complex refractive index of the material itself. These individual-particle properties then serve as input to the Ambartsumian invariant imbedding solution for the reflectance of a particulate surface composed of these particles. The inputs to the model include parameters associated with a functionalized form of the particle size distribution (PSD) as well as parameters associated with the particle packing density and surface roughness. The model is numerically inverted via Sandia's Dakota package, optimizing agreement between modeled and measured reflectance spectra, which we demonstrate on data acquired on five size-selected silica powders over the 4-16 μm wavelength range. Agreements between modeled and measured reflectance spectra are assessed, while the optimized PSDs resulting from the spectral fitting are then compared to PSD data acquired from independent particle size measurements.

  17. Model for erosion-deposition patterns

    CERN Document Server

    Maionchi, D O; Filho, R N Costa; Andrade, J S; Herrmann, H J

    2007-01-01

    We investigate through computational simulations with a pore network model the formation of patterns caused by erosion-deposition mechanisms. In this model, the geometry of the pore space changes dynamically as a consequence of the coupling between the fluid flow and the movement of particles due to local drag forces. Our results for this irreversible process show that the model is capable to reproduce typical natural patterns caused by well known erosion processes. Moreover, we observe that, within a certain range of porosity values, the grains form clusters that are tilted with respect to the horizontal with a characteristic angle. We compare our results to recent experiments for granular material in flowing water and show that they present a satisfactory agreement.

  18. Multiwalled Carbon Nanotube Deposition on Model Environmental Surfaces

    Science.gov (United States)

    Deposition of multiwalled carbon nanotubes (MWNTs) on model environmental surfaces was investigated using a quartz crystal microbalance with dissipation monitoring (QCM-D). Deposition behaviors of MWNTs on positively and negatively charged surfaces were in good agreement with Der...

  19. Multiwalled Carbon Nanotube Deposition on Model Environmental Surfaces

    Science.gov (United States)

    Deposition of multiwalled carbon nanotubes (MWNTs) on model environmental surfaces was investigated using a quartz crystal microbalance with dissipation monitoring (QCM-D). Deposition behaviors of MWNTs on positively and negatively charged surfaces were in good agreement with Der...

  20. Competitive growth model involving random deposition and random deposition with surface relaxation

    Energy Technology Data Exchange (ETDEWEB)

    Horowitz, Claudio M.; Monetti, Roberto A.; Albano, Ezequiel V.

    2001-06-01

    A deposition model that considers a mixture of random deposition with surface relaxation and a pure random deposition is proposed and studied. As the system evolves, random deposition with surface relaxation (pure random deposition) take place with probability p and (1{minus}p), respectively. The discrete (microscopic) approach to the model is studied by means of extensive numerical simulations, while continuous equations are used in order to investigate the mesoscopic properties of the model. A dynamic scaling ansatz for the interface width W(L,t,p) as a function of the lattice side L, the time t and p is formulated and tested. Three exponents, which can be linked to the standard growth exponent of random deposition with surface relaxation by means of a scaling relation, are identified. In the continuous limit, the model can be well described by means of a phenomenological stochastic growth equation with a p-dependent effective surface tension.

  1. Understanding error generation in fused deposition modeling

    Science.gov (United States)

    Bochmann, Lennart; Bayley, Cindy; Helu, Moneer; Transchel, Robert; Wegener, Konrad; Dornfeld, David

    2015-03-01

    Additive manufacturing offers completely new possibilities for the manufacturing of parts. The advantages of flexibility and convenience of additive manufacturing have had a significant impact on many industries, and optimizing part quality is crucial for expanding its utilization. This research aims to determine the sources of imprecision in fused deposition modeling (FDM). Process errors in terms of surface quality, accuracy and precision are identified and quantified, and an error-budget approach is used to characterize errors of the machine tool. It was determined that accuracy and precision in the y direction (0.08-0.30 mm) are generally greater than in the x direction (0.12-0.62 mm) and the z direction (0.21-0.57 mm). Furthermore, accuracy and precision tend to decrease at increasing axis positions. The results of this work can be used to identify possible process improvements in the design and control of FDM technology.

  2. A predictive model for dimensional errors in fused deposition modeling

    DEFF Research Database (Denmark)

    Stolfi, A.

    2015-01-01

    This work concerns the effect of deposition angle (a) and layer thickness (L) on the dimensional performance of FDM parts using a predictive model based on the geometrical description of the FDM filament profile. An experimental validation over the whole a range from 0° to 177° at 3° steps and two...

  3. Development of a Guinea Pig Lung Deposition Model

    Science.gov (United States)

    2016-01-01

    Development of a Guinea Pig Lung Deposition Model Distribution Statement A. Approved for public release; distribution is unlimited. January...4 Figure 2. Particle deposition in the lung of the guinea pig via endotracheal breathing...Particle deposition in the lungs of guinea pigs via nasal breathing. ......................................... 12 v PREFACE The research work

  4. A comparative study of aerosol deposition in different lung models.

    Science.gov (United States)

    Yu, C P; Diu, C K

    1982-01-01

    Theoretical calculations are made on total and regional deposition of inhaled particles in the human respiratory system based upon various current lung models. It is found that although total deposition does not vary appreciably from model to model, considerably large differences are present in regional deposition. Deposition profiles along the airways from different models also show very different patterns. These differences can be explained in terms of airway dimensions and the number of structures in different models. Extension to explain intersubject variability is also made.

  5. Porphyry copper deposit model: Chapter B in Mineral deposit models for resource assessment

    Science.gov (United States)

    Ayuso, Robert A.; Barton, Mark D.; Blakely, Richard J.; Bodnar, Robert J.; Dilles, John H.; Gray, Floyd; Graybeal, Fred T.; Mars, John L.; McPhee, Darcy K.; Seal, Robert R., II; Taylor, Ryan D.; Vikre, Peter G.; John, David A.

    2010-01-01

    This report contains a revised descriptive model of porphyry copper deposits (PCDs), the world's largest source (about 60 percent) and resource (about 65 percent) of copper and a major source of molybdenum, gold and silver. Despite relatively low grades (average 0.44 percent copper in 2008), PCDs have significant economic and societal impacts due to their large size (commonly hundreds of millions to billions of metric tons), long mine lives (decades), and high production rates (billions of kilograms of copper per year). The revised model describes the geotectonic setting of PCDs, and provides extensive regional- to deposit-scale descriptions and illustrations of geological, geochemical, geophysical, and geoenvironmental characteristics. Current genetic theories are reviewed and evaluated, knowledge gaps are identified, and a variety of exploration and assessment guides are presented. A summary is included for users seeking overviews of specific topics.

  6. Mesoscale Particle-Based Model of Electrophoretic Deposition

    Energy Technology Data Exchange (ETDEWEB)

    Giera, Brian; Zepeda-Ruiz, Luis A.; Pascall, Andrew J.; Weisgraber, Todd H.

    2017-01-17

    We present and evaluate a semiempirical particle-based model of electrophoretic deposition using extensive mesoscale simulations. We analyze particle configurations in order to observe how colloids accumulate at the electrode and arrange into deposits. In agreement with existing continuum models, the thickness of the deposit increases linearly in time during deposition. Resulting colloidal deposits exhibit a transition between highly ordered and bulk disordered regions that can give rise to an appreciable density gradient under certain simulated conditions. The overall volume fraction increases and falls within a narrow range as the driving force due to the electric field increases and repulsive intercolloidal interactions decrease. We postulate ordering and stacking within the initial layer(s) dramatically impacts the microstructure of the deposits. We find a combination of parameters, i.e., electric field and suspension properties, whose interplay enhances colloidal ordering beyond the commonly known approach of only reducing the driving force.

  7. A Review of Variable Slicing in Fused Deposition Modeling

    Science.gov (United States)

    Nadiyapara, Hitesh Hirjibhai; Pande, Sarang

    2016-06-01

    The paper presents a literature survey in the field of fused deposition of plastic wires especially in the field of slicing and deposition using extrusion of thermoplastic wires. Various researchers working in the field of computation of deposition path have used their algorithms for variable slicing. In the study, a flowchart has also been proposed for the slicing and deposition process. The algorithm already been developed by previous researcher will be used to be implemented on the fused deposition modelling machine. To demonstrate the capabilities of the fused deposition modeling machine a case study has been taken. It uses a manipulated G-code to be fed to the fused deposition modeling machine. Two types of slicing strategies, namely uniform slicing and variable slicing have been evaluated. In the uniform slicing, the slice thickness has been used for deposition is varying from 0.1 to 0.4 mm. In the variable slicing, thickness has been varied from 0.1 in the polar region to 0.4 in the equatorial region Time required and the number of slices required to deposit a hemisphere of 20 mm diameter have been compared with that using the variable slicing.

  8. Modeling of dust deposition in central Asia

    Science.gov (United States)

    The deposition of dust particles has a significant influence on the global bio-geochemical cycle. Currently, the lack of spatiotemporal data creates great uncertainty in estimating the global dust budget. To improve our understanding of the fate, transport and cycling of airborne dust, there is a ne...

  9. Development of Mouse Lung Deposition Models

    Science.gov (United States)

    2015-07-01

    et al. [9], the empirically-derived equation of Guyton [11] was used in equation (8) to find α = 3.96 and β = 0.117 with 98.0R 2 = . There is no...Deposition of Inhaled Particles in Small Laboratory Animals and Humans,” Aerosol Sci Tech, vol. 19, no. 1, pp. 51–56, 1993. [11] A. C. Guyton

  10. Asteroid fragmentation approaches for modeling atmospheric energy deposition

    Science.gov (United States)

    Register, Paul J.; Mathias, Donovan L.; Wheeler, Lorien F.

    2017-03-01

    During asteroid entry, energy is deposited in the atmosphere through thermal ablation and momentum-loss due to aerodynamic drag. Analytic models of asteroid entry and breakup physics are used to compute the energy deposition, which can then be compared against measured light curves and used to estimate ground damage due to airburst events. This work assesses and compares energy deposition results from four existing approaches to asteroid breakup modeling, and presents a new model that combines key elements of those approaches. The existing approaches considered include a liquid drop or "pancake" model where the object is treated as a single deforming body, and a set of discrete fragment models where the object breaks progressively into individual fragments. The new model incorporates both independent fragments and aggregate debris clouds to represent a broader range of fragmentation behaviors and reproduce more detailed light curve features. All five models are used to estimate the energy deposition rate versus altitude for the Chelyabinsk meteor impact, and results are compared with an observationally derived energy deposition curve. Comparisons show that four of the five approaches are able to match the overall observed energy deposition profile, but the features of the combined model are needed to better replicate both the primary and secondary peaks of the Chelyabinsk curve.

  11. Polymer Matrix Composites using Fused Deposition Modeling Technology Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Fused deposition modeling (FDM) is an additive manufacturing technology that allows fabrication of complex three-dimensional geometries layer-by-layer. The goal of...

  12. Simulating ozone dry deposition at a boreal forest with a multi-layer canopy deposition model

    Science.gov (United States)

    Zhou, Putian; Ganzeveld, Laurens; Rannik, Üllar; Zhou, Luxi; Gierens, Rosa; Taipale, Ditte; Mammarella, Ivan; Boy, Michael

    2017-01-01

    A multi-layer ozone (O3) dry deposition model has been implemented into SOSAA (a model to Simulate the concentrations of Organic vapours, Sulphuric Acid and Aerosols) to improve the representation of O3 concentration and flux within and above the forest canopy in the planetary boundary layer. We aim to predict the O3 uptake by a boreal forest canopy under varying environmental conditions and analyse the influence of different factors on total O3 uptake by the canopy as well as the vertical distribution of deposition sinks inside the canopy. The newly implemented dry deposition model was validated by an extensive comparison of simulated and observed O3 turbulent fluxes and concentration profiles within and above the boreal forest canopy at SMEAR II (Station to Measure Ecosystem-Atmosphere Relations II) in Hyytiälä, Finland, in August 2010. In this model, the fraction of wet surface on vegetation leaves was parametrised according to the ambient relative humidity (RH). Model results showed that when RH was larger than 70 % the O3 uptake onto wet skin contributed ˜ 51 % to the total deposition during nighttime and ˜ 19 % during daytime. The overall contribution of soil uptake was estimated about 36 %. The contribution of sub-canopy deposition below 4.2 m was modelled to be ˜ 38 % of the total O3 deposition during daytime, which was similar to the contribution reported in previous studies. The chemical contribution to O3 removal was evaluated directly in the model simulations. According to the simulated averaged diurnal cycle the net chemical production of O3 compensated up to ˜ 4 % of dry deposition loss from about 06:00 to 15:00 LT. During nighttime, the net chemical loss of O3 further enhanced removal by dry deposition by a maximum ˜ 9 %. Thus the results indicated an overall relatively small contribution of airborne chemical processes to O3 removal at this site.

  13. A Model for TSUnami FLow INversion from Deposits (TSUFLIND)

    CERN Document Server

    Tang, Hui

    2015-01-01

    Modern tsunami deposits are employed to estimate the overland flow characteristics of tsunamis. With the help of the overland-flow characteristics, the characteristics of the causative tsunami wave can be estimated. The understanding of tsunami deposits has tremendously improved over the last decades. There are three prominent inversion models: Moore advection model, Soulsby's model and TsuSedMod model. TSUFLIND incorporates all three models and adds new modules to better simulate tsunami deposit formation and calculate flow condition. TSUFLIND takes grain-size distribution, thickness, water depth and topography information as inputs. TSUFLIND computes sediment concentration, grain-size distribution of sediment source and initial flow condition to match the sediment thickness and grain size distribution from field observation. Furthermore, TSUFLIND estimates the flow speed, Froude number and representative wave amplitude. The model is tested by using field data collected at Ranganathapuram, India after the 20...

  14. A model of the Quaternary geological deposits of Bucharest City

    Science.gov (United States)

    Serpescu, Irina; Radu, Emil; Radu Gogu, Constantin; Amine Boukhemacha, Mohamed; Gaitanaru, Dragos; Bica, Ioan

    2013-04-01

    Bucharest city is located in the central part of the Moesic Platform, in the Romanian Plain with micro-relief resulting from erosion and sedimentary processes which extended along the valleys of the Dambovita River to the south and the Colentina River to the north. The city is located in the axial area of a syncline where the thickness of the sedimentary deposits is up to 1000 m. The area lies on a rigid base is made of metamorphites, and various igneous intrusions (granodiorite, granite). The sedimentary deposits covering this rigid base are made by different phases of erosion and sedimentary processes of marine, lacustrian or continental sediments ending with Quaternary sediments. As a result, different alluvial deposits (such as piedmont, deltaic, alluvial cones, terrace, waterside and lacustrine deposits) can be met. Furthermore one also can find loess deposits which in turn cover totally the older deposits where rivers dug the present relief. To highlight the spatial extent of these geological structures, a geological model of Bucharest city is developed. A set of information coming from different sources as geological and geotechnical boreholes showing a detailed geological and lithological description, geological and topographical maps, geological and hydrogeological reports have been used to develop the 3D geological model of this region. 33 geological cross sections were defined and interpreted by using lithological and sedimentological criteria. Using these geological cross sections and prior geological knowledge, the Quaternary deposits have been described and classified into 6 structural units given from top to down as follows: (1) Superficial deposits represented by loess and anthropogenic materials. The geological model indicates that these deposits show a sporadic development becoming more concentrated in the central west part of the city. (2) Colentina Formations composed by of poorly sorted, cross-stratified sand and gravel with clayey lens

  15. Ab initio determination of kinetics for atomic layer deposition modeling

    Science.gov (United States)

    Remmers, Elizabeth M.

    A first principles model is developed to describe the kinetics of atomic layer deposition (ALD) systems. This model requires no fitting parameters, as it is based on the reaction pathways, structures, and energetics obtained from quantum-chemical studies. Using transition state theory and partition functions from statistical mechanics, equilibrium constants and reaction rates can be calculated. Several tools were created in Python to aid in the calculation of these quantities, and this procedure was applied to two systems- zinc oxide deposition from diethyl zinc (DEZ) and water, and alumina deposition from trimethyl aluminum (TMA) and water. A Gauss-Jordan factorization is used to decompose the system dynamics, and the resulting systems of equations are solved numerically to obtain the temporal concentration profiles of these two deposition systems.

  16. Podiform chromite deposits--database and grade and tonnage models

    Science.gov (United States)

    Mosier, Dan L.; Singer, Donald A.; Moring, Barry C.; Galloway, John P.

    2012-01-01

    Chromite ((Mg, Fe++)(Cr, Al, Fe+++)2O4) is the only source for the metallic element chromium, which is used in the metallurgical, chemical, and refractory industries. Podiform chromite deposits are small magmatic chromite bodies formed in the ultramafic section of an ophiolite complex in the oceanic crust. These deposits have been found in midoceanic ridge, off-ridge, and suprasubduction tectonic settings. Most podiform chromite deposits are found in dunite or peridotite near the contact of the cumulate and tectonite zones in ophiolites. We have identified 1,124 individual podiform chromite deposits, based on a 100-meter spatial rule, and have compiled them in a database. Of these, 619 deposits have been used to create three new grade and tonnage models for podiform chromite deposits. The major podiform chromite model has a median tonnage of 11,000 metric tons and a mean grade of 45 percent Cr2O3. The minor podiform chromite model has a median tonnage of 100 metric tons and a mean grade of 43 percent Cr2O3. The banded podiform chromite model has a median tonnage of 650 metric tons and a mean grade of 42 percent Cr2O3. Observed frequency distributions are also given for grades of rhodium, iridium, ruthenium, palladium, and platinum. In resource assessment applications, both major and minor podiform chromite models may be used for any ophiolite complex regardless of its tectonic setting or ophiolite zone. Expected sizes of undiscovered podiform chromite deposits, with respect to degree of deformation or ore-forming process, may determine which model is appropriate. The banded podiform chromite model may be applicable for ophiolites in both suprasubduction and midoceanic ridge settings.

  17. Fractional Differencing Modeling and Forecasting of Eurocurrency Deposit Rates

    OpenAIRE

    John Barkoulas; Baum, Christopher F

    1996-01-01

    We investigate the low frequency properties of three- and six- month rates for Eurocurrency deposits denominated in eight major currencies with specific emphasis on fractional dynamics. Using the fractional integration testing procedure suggested by Geweke and Porter-Hudak (1983), we find that several of the Eurocurrency deposit rates are fractionally integrated processes with long memory. These findings have important implications for econometric modeling, forecasting, and cointegration test...

  18. Numerical Modelling of Suspended Transport and Deposition of Highway Deposited Sediments

    DEFF Research Database (Denmark)

    Bentzen, Thomas Ruby; Larsen, Torben; Bach, Christine;

    Good data for calibration and validation of numerical models are of high importance. In the natural environment data can be hard to archive and the stochastic nature have governing influence on the data archived. Hence for modelling of suspended transport and deposition of particles, originating...... from the highway surfaces, in highway detention ponds, four experiments are carried out. To simplify the complexity of a real pond and for easy control and measurement the sediment transports where carried out in two rectangular channels....

  19. Dry deposition modelling of air pollutants over urban areas

    Science.gov (United States)

    Cherin, N.; Roustan, Y.; Seigneur, C.; Musson Genon, L.

    2012-04-01

    More than one-half of the world's inhabitants lives in urban areas. Consequently, the evolution of pollutants inside these urban areas are problems of great concern in air quality studies. Though the dry deposition fluxes of air pollutants, which are known to be significant in the neighborhood of sources of pollution, like urban areas, have not been modeled precisely until recently within urban areas. By reviewing the physics of the processes leading to the dry deposition of air pollutants, it is clear that atmosphere turbulence is crucial for dry deposition. Urban areas, and particularly buildings, are known to significantly impact flow fields and then by extension the dry deposition fluxes. Numerous urban schemes have been developed in the past decades to approximate the effect of the local scale urban elements on drag, heat flux and radiative budget. The most recent urban canopy models are based on quite simple geometries, but sufficiently close to represent the aerodynamic and thermal characteristics of cities. These canopy models are generally intended to parameterize aerodynamic and thermal fields, but not dry deposition. For dry deposition, the current classical "roughness" approach, uses only two representative parameters, z0 and d, namely the roughness length and the zero-plane displacement height to represent urban areas. In this work, an innovative dry deposition model based on the urban canyon concept, is proposed. It considers a single road, bordered by two facing buildings, which are treated separately. It accounts for sub-grid effects of cities, especially a better parameterization of the turbulence scheme, through the use of local mixing length and a more detailled description of the urban area and key parameters within the urban canopy. Three different flow regimes are distinguished in the urban canyon according to the height-to-width ratio: isolated roughness flow, wake interference flow and skimming flow regime. The magnitude of differences in

  20. Growth Model for Pulsed-Laser Deposited Perovskite Oxide Films

    Institute of Scientific and Technical Information of China (English)

    WANG Xu; FEI Yi-Yan; ZHU Xiang-Dong; Lu Hui-Bin; YANG Guo-Zhen

    2008-01-01

    We present a multi-level growth model that yields some of the key features of perovskite oxide film growth as observed in the reflection high energy electron diffraction(RHEED)and ellipsometry studies.The model describes the effect of deposition,temperature,intra-layer transport,interlayer transport and Ostwald ripening on the morphology of a growth surface in terms of the distribution of terraces and step edges during and after deposition.The numerical results of the model coincide well with the experimental observation.

  1. Computational modeling of aerosol deposition in respiratory tract: a review.

    Science.gov (United States)

    Rostami, Ali A

    2009-02-01

    This review article is intended to serve as an overview of the current status of the computational tools and approaches available for predicting respiratory-tract dosimetry of inhaled particulate matter. There are two groups of computational models available, depending on the intended use. The whole-lung models are designed to provide deposition prediction for the whole lung, from the oronasal cavities to the pulmonary region. The whole-lung models are generally semi-empirical and hence provide more reliable results but within the range of parameters used for empirical correlations. The local deposition or computational fluid dynamics (CFD)-based models, on the other hand, utilize comprehensive theoretical and computational approaches but are often limited to upper respiratory tracts. They are based on theoretical principles and are applicable to a wider range of parameters, but less accurate. One of the difficulties with modeling of aerosol deposition in human lung is related to the complexity of the airways geometry and the limited morphometric data available. Another difficulty corresponds to simulation of the realistic physiological conditions of lung environment. Furthermore, complex physical and chemical phenomena associated with dense and multicomponent aerosols complicate the modeling tasks. All of these issues are addressed in this review. The progress made in each area in the last three decades and the challenges ahead are discussed along with some suggestions for future direction. The following subjects are covered in this review: introduction, aerosol deposition mechanisms, elements of a computational model, respiratory-tract geometry models, whole-lung models, CFD based models, cigarette smoke deposition models, and conclusion.

  2. Deposit 3D modeling and application

    Institute of Scientific and Technical Information of China (English)

    LUO Zhou-quan; LIU Xiao-ming; SU Jia-hong; WU Ya-bin; LIU Wang-ping

    2007-01-01

    By the aid of the international mining software SURPAC, a geologic database for a multi-metal mine was established, 3D models of the surface, geologic fault, ore body, cavity and the underground openings were built, and the volume of the cavity of the mine based on the cavity 3D model was calculated. In order to compute the reserves, a grade block model was built and each metal element grade was estimated using Ordinary Kriging. Then, the reserve of each metal element and every sublevel of the mine was worked out. Finally, the calculated result of each metal reserve to its actual prospecting reserve was compared, and the results show that they are all almost equal to each other. The absolute errors of Sn, Pb, and Zn reserves are only 1.45%, 1.59% and 1.62%,respectively. Obviously, the built models are reliable and the calculated results of reserves are correct. They can be used to assist the geologic and mining engineers of the mine to do research work of reserves estimation, mining design, plan making and so on.

  3. A nuclear fragmentation energy deposition model

    Science.gov (United States)

    Ngo, D. M.; Wilson, J. W.; Fogarty, T. N.; Buck, W. W.; Townsend, L. W. (Principal Investigator)

    1991-01-01

    A formalism for target fragment transport is presented with application to energy loss spectra in thin silicon devices. A nuclear data base is recommended that agrees well with the measurements of McNulty et al. using surface barrier detectors. High-energy events observed by McNulty et al., which are not predicted by intranuclear cascade models, are well represented by the present work.

  4. Energy deposition model for I-125 photon radiation in water

    Energy Technology Data Exchange (ETDEWEB)

    Fuss, M.C.; Garcia, G. [Instituto de Fisica Fundamental, Consejo Superior de Investigaciones Cientificas (CSIC), Madrid (Spain); Munoz, A.; Oller, J.C. [Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas (CIEMAT), Madrid (Spain); Blanco, F. [Departamento de Fisica Atomica, Molecular y Nuclear, Universidad Complutense de Madrid (Spain); Limao-Vieira, P. [Laboratorio de Colisoes Atomicas e Moleculares, Departamento de Fisica, CEFITEC, FCT-Universidade Nova de Lisboa, Caparica (Portugal); Williart, A.; Garcia, G. [Departamento de Fisica de los Materiales, Universidad Nacional de Educacion a Distancia, Madrid (Spain); Huerga, C.; Tellez, M. [Hospital Universitario La Paz, Madrid (Spain)

    2010-10-15

    In this study, an electron-tracking Monte Carlo algorithm developed by us is combined with established photon transport models in order to simulate all primary and secondary particle interactions in water for incident photon radiation. As input parameters for secondary electron interactions, electron scattering cross sections by water molecules and experimental energy loss spectra are used. With this simulation, the resulting energy deposition can be modelled at the molecular level, yielding detailed information about localization and type of single collision events. The experimental emission spectrum of I-125 seeds, as used for radiotherapy of different tumours, was used for studying the energy deposition in water when irradiating with this radionuclide. (authors)

  5. Thermal Modeling of Direct Digital Melt-Deposition Processes

    Science.gov (United States)

    Cooper, K. P.; Lambrakos, S. G.

    2011-02-01

    Additive manufacturing involves creating three-dimensional (3D) objects by depositing materials layer-by-layer. The freeform nature of the method permits the production of components with complex geometry. Deposition processes provide one more capability, which is the addition of multiple materials in a discrete manner to create "heterogeneous" objects with locally controlled composition and microstructure. The result is direct digital manufacturing (DDM) by which dissimilar materials are added voxel-by-voxel (a voxel is volumetric pixel) following a predetermined tool-path. A typical example is functionally gradient material such as a gear with a tough core and a wear-resistant surface. The inherent complexity of DDM processes is such that process modeling based on direct physics-based theory is difficult, especially due to a lack of temperature-dependent thermophysical properties and particularly when dealing with melt-deposition processes. In order to overcome this difficulty, an inverse problem approach is proposed for the development of thermal models that can represent multi-material, direct digital melt deposition. This approach is based on the construction of a numerical-algorithmic framework for modeling anisotropic diffusivity such as that which would occur during energy deposition within a heterogeneous workpiece. This framework consists of path-weighted integral formulations of heat diffusion according to spatial variations in material composition and requires consideration of parameter sensitivity issues.

  6. Deposition parameterizations for the Industrial Source Complex (ISC3) model

    Energy Technology Data Exchange (ETDEWEB)

    Wesely, Marvin L. [Argonne National Lab. (ANL), Argonne, IL (United States); Doskey, Paul V. [Argonne National Lab. (ANL), Argonne, IL (United States); Shannon, J. D. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2002-06-01

    Improved algorithms have been developed to simulate the dry and wet deposition of hazardous air pollutants (HAPs) with the Industrial Source Complex version 3 (ISC3) model system. The dry deposition velocities (concentrations divided by downward flux at a specified height) of the gaseous HAPs are modeled with algorithms adapted from existing dry deposition modules. The dry deposition velocities are described in a conventional resistance scheme, for which micrometeorological formulas are applied to describe the aerodynamic resistances above the surface. Pathways to uptake at the ground and in vegetative canopies are depicted with several resistances that are affected by variations in air temperature, humidity, solar irradiance, and soil moisture. The role of soil moisture variations in affecting the uptake of gases through vegetative plant leaf stomata is assessed with the relative available soil moisture, which is estimated with a rudimentary budget of soil moisture content. Some of the procedures and equations are simplified to be commensurate with the type and extent of information on atmospheric and surface conditions available to the ISC3 model system user. For example, standardized land use types and seasonal categories provide sets of resistances to uptake by various components of the surface. To describe the dry deposition of the large number of gaseous organic HAPS, a new technique based on laboratory study results and theoretical considerations has been developed providing a means of evaluating the role of lipid solubility in uptake by the waxy outer cuticle of vegetative plant leaves.

  7. Nickel-cobalt laterites: a deposit model: Chapter H in Mineral deposit models for resource assessment

    Science.gov (United States)

    Marsh, Erin; Anderson, Eric J.; Gray, Floyd

    2013-01-01

    Nickel-cobalt (Ni-Co) laterite deposits are supergene enrichments of Ni±Co that form from intense chemical and mechanical weathering of ultramafic parent rocks. These regolith deposits typically form within 26 degrees of the equator, although there are a few exceptions. They form in active continental margins and stable cratonic settings. It takes as little as one million years for a laterite profile to develop. Three subtypes of Ni-Co laterite deposits are classified according to the dominant Ni-bearing mineralogy, which include hydrous magnesium (Mg)-silicate, smectite, and oxide. These minerals form in weathering horizons that begin with the unweathered protolith at the base, saprolite next, a smectite transition zone only in profiles where drainage is very poor, followed by limonite, and then capped with ferricrete at the top. The saprolite contains Ni-rich hydrous Mg-silicates, the Ni-rich clays occur in the transition horizon, and Ni-rich goethite occurs in the limonite. Although these subtypes of deposits are the more widely used terms for classification of Ni-Co laterite deposits, most deposits have economic concentrations of Ni in more than one horizon. Because of their complex mineralogy and heterogeneous concentrations, mining of these metallurgically complex deposits can be challenging. Deposits range in size from 2.5 to about 400 million tonnes, with Ni and Co grades of 0.66–2.4 percent (median 1.3) and 0.01–0.15 percent (median 0.08), respectively. Modern techniques of ore delineation and mineralogical identification are being developed to aid in streamlining the Ni-Co laterite mining process, and low-temperature and low-pressure ore processing techniques are being tested that will treat the entire weathered profile. There is evidence that the production of Ni and Co from laterites is more energy intensive than that of sulfide ores, reflecting the environmental impact of producing a Ni-Co laterite deposit. Tailings may include high levels of

  8. Developing Depositional Models for Mercury Contaminated Floodplain Deposits Using Geomorphic Mapping and GIS in South River, Virginia

    Science.gov (United States)

    Barbieri, A.; Pizzuto, J.; O'Neal, M. A.; Rhoades, E.

    2007-12-01

    Mercury was introduced into the South River from the 1930s to the 1950s from an industrial plant in Waynesboro, Virginia. Mercury contamination in fish tissue continues to exceed acceptable levels. The contaminated sediments in the river's floodplains are probably the present source of mercury to the South River ecosystem. Locating and determining the extent and depositional history of these deposits are important for understanding the mercury cycle in the river as well as for remediation plans. The South River is a sinuous, single thread alluvial river with frequent bedrock exposures along its bed and banks. Overbank deposits are discontinuous and thin. Rates of lateral migration by the South River are extremely low, averaging 0.02 m/yr, and the river has been influenced by mill dams along a 19 km study reach. This 19 km section of the 37 km river reach was selected for the study because of its high concentration of Hg. Six different categories of floodplain deposits dating from 1937-2005 have been identified throughout the river using studies of historical aerial photographs in a GIS framework, field mapping, dendro- and radionuclide dating, grain size and Hg analysis. Not surprisingly, traditional depositional models of meandering rivers do not apply. Floodplain depositional units include mill dam deposits, point bar/bench deposits, concave bank bench deposits, islands, cattle deposits, and tributary confluences deposits. The most important deposits for sequestering historic mercury are those that also store the most silt and clay. These include mill dam deposits, point bar/bench deposits, concave bank deposits, and tributary confluence deposits. Many of these deposits represent reservoirs of mercury-contaminated sediments that could supply significant amounts of mercury into the river presently and in the future.

  9. Numerical modeling of consolidation processes in hydraulically deposited soils

    Science.gov (United States)

    Brink, Nicholas Robert

    Hydraulically deposited soils are encountered in many common engineering applications including mine tailing and geotextile tube fills, though the consolidation process for such soils is highly nonlinear and requires the use of advanced numerical techniques to provide accurate predictions. Several commercially available finite element codes poses the ability to model soil consolidation, and it was the goal of this research to assess the ability of two of these codes, ABAQUS and PLAXIS, to model the large-strain, two-dimensional consolidation processes which occur in hydraulically deposited soils. A series of one- and two-dimensionally drained rectangular models were first created to assess the limitations of ABAQUS and PLAXIS when modeling consolidation of highly compressible soils. Then, geotextile tube and TSF models were created to represent actual scenarios which might be encountered in engineering practice. Several limitations were discovered, including the existence of a minimum preconsolidation stress below which numerical solutions become unstable.

  10. Mathematical Modelling of Silica Scaling Deposition in Geothermal Wells

    Science.gov (United States)

    Nizami, M.; Sutopo

    2016-09-01

    Silica scaling is widely encountered in geothermal wells in which produce two-phase geothermal fluid. Silica scaling could be formed due to chemical reacting by mixing a geothermal fluid with other geothermal fluid in different compositions, or also can be caused by changes in fluid properties due to changes pressure and temperature. One of method to overcome silica scaling which is occurred around geothermal well is by workover operation. Modelling of silica deposition in porous medium has been modeled in previously. However, the growth of silica scaling deposition in geothermal wells has never been modeled. Modelling of silica deposition through geothermal is important aspects to determine depth of silica scaling growth and best placing for workover device to clean silica scaling. This study is attempted to develop mathematical models for predicting silica scaling through geothermal wells. The mathematical model is developed by integrating the solubility-temperature correlation and two-phase pressure drop coupled wellbore fluid temperature correlation in a production well. The coupled model of two-phase pressure drop and wellbore fluid temperature correlation which is used in this paper is Hasan-Kabir correlation. This modelling is divided into two categories: single and two phase fluid model. Modelling of silica deposition is constrained in temperature distribution effect through geothermal wells by solubility correlation for silica. The results of this study are visualizing the growth of silica scaling thickness through geothermal wells in each segment of depth. Sensitivity analysis is applied in several parameters, such as: bottom-hole pressure, temperature, and silica concentrations. Temperature is most impact factor for silica scaling through geothermal wellbore and depth of flash point. In flash point, silica scaling thickness has reached maximum because reducing of mole in liquid portion.

  11. Modelling airborne concentration and deposition rate of maize pollen

    Science.gov (United States)

    Jarosz, Nathalie; Loubet, Benjamin; Huber, Laurent

    2004-10-01

    The introduction of genetically modified (GM) crops has reinforced the need to quantify gene flow from crop to crop. This requires predictive tools which take into account meteorological conditions, canopy structure as well as pollen aerodynamic characteristics. A Lagrangian Stochastic (LS) model, called SMOP-2D (Stochastic Mechanistic model for Pollen dispersion and deposition in 2 Dimensions), is presented. It simulates wind dispersion of pollen by calculating individual pollen trajectories from their emission to their deposition. SMOP-2D was validated using two field experiments where airborne concentration and deposition rate of pollen were measured within and downwind from different sized maize (Zea mays) plots together with micrometeorological measurements. SMOP-2D correctly simulated the shapes of the concentration profiles but generally underestimated the deposition rates in the first 10 m downwind from the source. Potential explanations of this discrepancy are discussed. Incorrect parameterisation of turbulence in the transition from the crop to the surroundings is probably the most likely reason. This demonstrates that LS models for particle transfer need to be coupled with air-flow models under complex terrain conditions.

  12. New developments in fused deposition modeling of ceramics

    DEFF Research Database (Denmark)

    Bellini, Anna; Shor, L.; Guceri, S.I.

    2005-01-01

    Purpose - To shift from rapid prototyping (RP) to agile fabrication by broadening the material selection, e.g. using ceramics, hence improving the properties (e.g. mechanical properties) of fused deposition modeling (FDM) products. Design/methodology/approach - This paper presents the development...

  13. Underpotential deposition of metals - Progress and prospects in modelling

    Indian Academy of Sciences (India)

    V Sudha; M V Sangaranarayanan

    2005-05-01

    Underpotential deposition (UPD) of metals is analysed from the perspective of phenomenological and statistical thermodynamic considerations; the parameters influencing the UPD shift have been quantitatively indicated using a general formalism. The manner in which the macroscopic properties pertaining to the depositing ions and solvent dipoles and the nature of the metallic substrate influence the UPD process are highlighted; earlier correlations of the UPD shift with the work function differences are rationalised. Anion-induced phase transitions which manifest as sharp peaks in experimental cyclic voltammograms are discussed using statistical thermodynamic models.

  14. Occurrence model for volcanogenic beryllium deposits: Chapter F in Mineral deposit models for resource assessment

    Science.gov (United States)

    Foley, Nora K.; Hofstra, Albert H.; Lindsey, David A.; Seal, Robert R., II; Jaskula, Brian W.; Piatak, Nadine M.

    2012-01-01

    Current global and domestic mineral resources of beryllium (Be) for industrial uses are dominated by ores produced from deposits of the volcanogenic Be type. Beryllium deposits of this type can form where hydrothermal fluids interact with fluorine and lithophile-element (uranium, thorium, rubidium, lithium, beryllium, cesium, tantalum, rare earth elements, and tin) enriched volcanic rocks that contain a highly reactive lithic component, such as carbonate clasts. Volcanic and hypabyssal high-silica biotite-bearing topaz rhyolite constitutes the most well-recognized igneous suite associated with such Be deposits. The exemplar setting is an extensional tectonic environment, such as that characterized by the Basin and Range Province, where younger topaz-bearing igneous rock sequences overlie older dolomite, quartzite, shale, and limestone sequences. Mined deposits and related mineralized rocks at Spor Mountain, Utah, make up a unique economic deposit of volcanogenic Be having extensive production and proven and probable reserves. Proven reserves in Utah, as reported by the U.S. Geological Survey National Mineral Information Center, total about 15,900 tons of Be that are present in the mineral bertrandite (Be4Si2O7(OH)2). At the type locality for volcanogenic Be, Spor Mountain, the tuffaceous breccias and stratified tuffs that host the Be ore formed as a result of explosive volcanism that brought carbonate and other lithic fragments to the surface through vent structures that cut the underlying dolomitic Paleozoic sedimentary rock sequences. The tuffaceous sediments and lithic clasts are thought to make up phreatomagmatic base surge deposits. Hydrothermal fluids leached Be from volcanic glass in the tuff and redeposited the Be as bertrandite upon reaction of the hydrothermal fluid with carbonate clasts in lithic-rich sections of tuff. The localization of the deposits in tuff above fluorite-mineralized faults in carbonate rocks, together with isotopic evidence for the

  15. Modelling transport and deposition of caesium and iodine from the Chernobyl accident using the DREAM model

    Directory of Open Access Journals (Sweden)

    J. Brandt

    2002-01-01

    Full Text Available A tracer model, DREAM (the Danish Rimpuff and Eulerian Accidental release Model, has been developed for modelling transport, dispersion and deposition (wet and dry of radioactive material from accidental releases, as the Chernobyl accident. The model is a combination of a Lagrangian model, that includes the near source dispersion, and an Eulerian model describing the long-range transport. The performance of the transport model has previously been tested within the European Tracer Experiment, ETEX, which included transport and dispersion of an inert, non-depositing tracer from a controlled release. The focus of this paper is the model performance with respect to the total deposition of  137Cs, 134Cs and 131I from the Chernobyl accident, using different relatively simple and comprehensive parameterizations for dry- and wet deposition. The performance, compared to measurements, of using different combinations of two different wet deposition parameterizations and three different parameterizations of dry deposition has been evaluated, using different statistical tests. The best model performance, compared to measurements, is obtained when parameterizing the total deposition combined of a simple method for dry deposition and a subgrid-scale averaging scheme for wet deposition based on relative humidities. The same major conclusion is obtained for all the three different radioactive isotopes and using two different deposition measurement databases. Large differences are seen in the results obtained by using the two different parameterizations of wet deposition based on precipitation rates and relative humidities, respectively. The parameterization based on subgrid-scale averaging is, in all cases, performing better than the parameterization based on precipitation rates. This indicates that the in-cloud scavenging process is more important than the below cloud scavenging process for the submicron particles and that the precipitation rates are

  16. COMIDA: a radionuclide food chain model for acute fallout deposition.

    Science.gov (United States)

    Abbott, M L; Rood, A S

    1994-01-01

    A dynamic food chain model and computer code, named "COMIDA," has been developed to estimate radionuclide concentrations in agricultural food products following an acute fallout event. COMIDA estimates yearly harvest concentrations for five human crop types (Bq kg-1 crop per Bq m-2 deposited) and integrated concentrations for four animal products (Bq d kg-1 animal product per Bq m-2) for a unit deposition that occurs on any user-specified day of the year. COMIDA is structurally very similar to the PATHWAY model and includes the same seasonal transport processes and discrete events for soil and vegetation compartments. Animal product assimilation is modeled using simpler equilibrium models. Differential transport and ingrowth of up to three radioactive progeny are also evaluated. Benchmark results between COMIDA and PATHWAY for monthly fallout events show very similar seasonal agreement for integrated concentrations in milk and beef. Benchmark results between COMIDA and four international steady-state models show good agreement for deposition events that occur during the middle of the growing season. COMIDA will be implemented in the new Department of Energy version of the MELCOR Accident Consequence Code System for evaluation of accidental releases from nuclear power plants.

  17. Experimental Study of Aerosol Deposition in a Realistic Lung Model

    Directory of Open Access Journals (Sweden)

    František LÍZAL

    2010-12-01

    Full Text Available The inhalation route for administration of medicaments is becoming more and more popular in recent years. The reason is non-invasiveness of the method and instantaneous absorption of drugs to the blood circulation. It is necessary to deliver exact amount of drug to the specific segment because of occurrence of diverse diseases in different segments of lungs. The aim of our work is to contribute to better understanding of transport and deposition of aerosolized drugs in lungs and hence to more effective treatment of respiratory diseases due to the targeted drug delivery. We provided measurements of aerosol deposition in segmented realistic model of lungs without a mouth cavity. Monodisperse particles marked with fluorescein were supplied to the model. The model was then disassembled to segments and each segment was rinsed with isopropanol, whereby fluorescent samples were created. Each sample was analysed by fluorometer and an amount of aerosol deposited in the segment was calculated. Experiences obtained by this study were used for creation of a new model with the mouth cavity. This model will be used for future studies with porous and fiber aerosols.

  18. Deposit model for heavy-mineral sands in coastal environments: Chapter L in Mineral deposit models for resource assessment

    Science.gov (United States)

    Van Gosen, Bradley S.; Fey, David L.; Shah, Anjana K.; Verplanck, Philip L.; Hoefen, Todd M.

    2014-01-01

    This report provides a descriptive model of heavy-mineral sands, which are sedimentary deposits of dense minerals that accumulate with sand, silt, and clay in coastal environments, locally forming economic concentrations of the heavy minerals. This deposit type is the main source of titanium feedstock for the titanium dioxide (TiO2) pigments industry, through recovery of the minerals ilmenite (Fe2+TiO3), rutile (TiO2), and leucoxene (an alteration product of ilmenite). Heavy-mineral sands are also the principal source of zircon (ZrSiO4) and its zirconium oxide; zircon is often recovered as a coproduct. Other heavy minerals produced as coproducts from some deposits are sillimanite/kyanite, staurolite, monazite, and garnet. Monazite [(Ce,La,Nd,Th)PO4] is a source of rare earth elements as well as thorium, which is used in thorium-based nuclear power under development in India and elsewhere.

  19. A deposit model for magmatic iron-titanium-oxide deposits related to Proterozoic massif anorthosite plutonic suites: Chapter K in Mineral Deposit Models for Resource Assessment

    Science.gov (United States)

    Woodruff, Laurel G.; Nicholson, Suzanne W.; Fey, David L.

    2013-01-01

    This descriptive model for magmatic iron-titanium-oxide (Fe-Ti-oxide) deposits hosted by Proterozoic age massif-type anorthosite and related rock types presents their geological, mineralogical, geochemical, and geoenvironmental attributes. Although these Proterozoic rocks are found worldwide, the majority of known deposits are found within exposed rocks of the Grenville Province, stretching from southwestern United States through eastern Canada; its extension into Norway is termed the Rogaland Anorthosite Province. This type of Fe-Ti-oxide deposit dominated by ilmenite rarely contains more than 300 million tons of ore, with between 10- to 45-percent titanium dioxide (TiO2), 32- to 45-percent iron oxide (FeO), and less than 0.2-percent vanadium (V).

  20. Modelling transport and deposition of caesium and iodine from the Chernobyl accident using the DREAM model

    Directory of Open Access Journals (Sweden)

    J. Brandt

    2002-06-01

    Full Text Available A tracer model, DREAM (the Danish Rimpuff and Eulerian Accidental release Model, has been developed for modelling transport, dispersion and deposition (wet and dry of radioactive material from accidental releases, as the Chernobyl accident. The model is a combination of a Lagrangian model, that includes the near source dispersion, and an Eulerian model describing the long-range transport. The performance of the transport model has previously been tested within the European Tracer Experiment, ETEX, which included transport and dispersion of an inert, non-depositing tracer from a controlled release. The focus of this paper is the model performance with respect to the deposition of 137Cs, 134Cs and 131I from the Chernobyl accident, using different relatively simple and comprehensive parameterizations. The performance, compared to measurements, of different combinations of parameterizations of wet and dry deposition schemes has been evaluated, using different statistical tests.

  1. Accuracy of cuticular resistance parameterizations in ammonia dry deposition models

    Science.gov (United States)

    Schrader, Frederik; Brümmer, Christian; Richter, Undine; Fléchard, Chris; Wichink Kruit, Roy; Erisman, Jan Willem

    2016-04-01

    Accurate representation of total reactive nitrogen (Nr) exchange between ecosystems and the atmosphere is a crucial part of modern air quality models. However, bi-directional exchange of ammonia (NH3), the dominant Nr species in agricultural landscapes, still poses a major source of uncertainty in these models, where especially the treatment of non-stomatal pathways (e.g. exchange with wet leaf surfaces or the ground layer) can be challenging. While complex dynamic leaf surface chemistry models have been shown to successfully reproduce measured ammonia fluxes on the field scale, computational restraints and the lack of necessary input data have so far limited their application in larger scale simulations. A variety of different approaches to modelling dry deposition to leaf surfaces with simplified steady-state parameterizations have therefore arisen in the recent literature. We present a performance assessment of selected cuticular resistance parameterizations by comparing them with ammonia deposition measurements by means of eddy covariance (EC) and the aerodynamic gradient method (AGM) at a number of semi-natural and grassland sites in Europe. First results indicate that using a state-of-the-art uni-directional approach tends to overestimate and using a bi-directional cuticular compensation point approach tends to underestimate cuticular resistance in some cases, consequently leading to systematic errors in the resulting flux estimates. Using the uni-directional model, situations where low ratios of total atmospheric acids to NH3 concentration occur lead to fairly high minimum cuticular resistances, limiting predicted downward fluxes in conditions usually favouring deposition. On the other hand, the bi-directional model used here features a seasonal cycle of external leaf surface emission potentials that can lead to comparably low effective resistance estimates under warm and wet conditions, when in practice an expected increase in the compensation point due to

  2. Geological modelling of mineral deposits for prediction in mining

    Science.gov (United States)

    Sides, E. J.

    Accurate prediction of the shape, location, size and properties of the solid rock materials to be extracted during mining is essential for reliable technical and financial planning. This is achieved through geological modelling of the three-dimensional (3D) shape and properties of the materials present in mineral deposits, and the presentation of results in a form which is accessible to mine planning engineers. In recent years the application of interactive graphics software, offering 3D database handling, modelling and visualisation, has greatly enhanced the options available for predicting the subsurface limits and characteristics of mineral deposits. A review of conventional 3D geological interpretation methods, and the model struc- tures and modelling methods used in reserve estimation and mine planning software packages, illustrates the importance of such approaches in the modern mining industry. Despite the widespread introduction and acceptance of computer hardware and software in mining applications, in recent years, there has been little fundamental change in the way in which geology is used in orebody modelling for predictive purposes. Selected areas of current research, aimed at tackling issues such as the use of orientation data, quantification of morphological differences, incorporation of geological age relationships, multi-resolution models and the application of virtual reality hardware and software, are discussed.

  3. Modelling the surface deposition of meteoric smoke particles

    Science.gov (United States)

    Brooke, James S. A.; Feng, Wuhu; Mann, Graham W.; Dhomse, Sandip S.; Bardeen, Charles G.; Plane, John M. C.

    2016-04-01

    The flux of meteoric smoke particles (MSPs) in Greenland and Antarctica has been measured using Ir and Pt observations in ice cores, by Gabrielli et al. [1,2]. They obtained MSP deposition fluxes of 1.5 ± 0.45 × 10-4 g m-2 yr-1 (209 ± 63 t d-1) in Greenland and 3.9 ± 1.4 × 10-5 g m-2 yr-1 (55 ± 19 t d-1) in Antarctica, where the values in parentheses are total atmospheric inputs, assuming a uniform global deposition rate. These results show reasonable agreement with those of Lanci et al. [3], who used ice core magnetisation measurements, resulting in MSP fluxes of 1.7 ± 0.23 × 10-4 g m-2 yr-1 (236 ± 50 t d-1) (Greenland) and 2.0 ± 0.52 × 10-5 g m-2 yr-1 (29 ± 5.0 t d-1) (Antarctica). Atmospheric modelling studies have been performed to assess the transport and deposition of MSPs, using WACCM (Whole Atmosphere Community Climate Model), and the CARMA (Community Aerosol and Radiation Model) aerosol microphysics package. An MSP input function totalling 44 t d-1 was added between about 80 and 105 km. Several model runs have been performed in which the aerosol scavenging by precipitation was varied. Wet deposition is expected (and calculated here) to be the main deposition process; however, rain and snow aerosol scavenging coefficients have uncertainties spanning up to two and three orders of magnitude, respectively [4]. The model experiments that we have carried out include simple adjustments of the scavenging coefficients, full inclusion of a parametrisation reported by Wang et al. [4], and a scheme based on aerosol removal where relative humidity > 100 %. The MSP fluxes obtained vary between 1.4 × 10-5 and 2.6 × 10-5 g m-2 yr-1 for Greenland, and 5.1 × 10-6 and 1.7 × 10-5 g m-2 yr-1 for Antarctica. These values are about an order of magnitude lower than the Greenland observations, but show reasonable agreement for Antarctica. The UM (Unified Model), UKCA (United Kingdom Chemistry and Aerosols Model), and GLOMAP (GLObal Model of Aerosol Processes) have

  4. A model for underpotential deposition in the presence of anions

    Science.gov (United States)

    Giménez, M. C.; Ramirez-Pastor, A. J.; Leiva, E. P. M.

    2010-05-01

    A simple model to study the effect of on top coadsorption of anions in underpotential deposition is formulated. It considers a lattice-gas model with pair potential interactions between nearest neighbors. As test system, the electrodeposition of silver on gold is studied by means of grand canonical Monte Carlo simulations. The influence of anions on the adsorption isotherms is analyzed. It is found that as the interaction between silver atoms and anions increases, the monolayer adsorbs at more negative chemical potentials. For large interactions between silver atoms and anions, a expanded structure occurs for the silver monolayer.

  5. Particle deposition in a child respiratory tract model: in vivo regional deposition of fine and ultrafine aerosols in baboons.

    Science.gov (United States)

    Albuquerque-Silva, Iolanda; Vecellio, Laurent; Durand, Marc; Avet, John; Le Pennec, Déborah; de Monte, Michèle; Montharu, Jérôme; Diot, Patrice; Cottier, Michèle; Dubois, Francis; Pourchez, Jérémie

    2014-01-01

    To relate exposure to adverse health effects, it is necessary to know where particles in the submicron range deposit in the respiratory tract. The possibly higher vulnerability of children requires specific inhalation studies. However, radio-aerosol deposition experiments involving children are rare because of ethical restrictions related to radiation exposure. Thus, an in vivo study was conducted using three baboons as a child respiratory tract model to assess regional deposition patterns (thoracic region vs. extrathoracic region) of radioactive polydisperse aerosols ([d16-d84], equal to [0.15 µm-0.5 µm], [0.25 µm-1 µm], or [1 µm-9 µm]). Results clearly demonstrated that aerosol deposition within the thoracic region and the extrathoraic region varied substantially according to particle size. High deposition in the extrathoracic region was observed for the [1 µm-9 µm] aerosol (72% ± 17%). The [0.15 µm-0.5 µm] aerosol was associated almost exclusively with thoracic region deposition (84% ± 4%). Airborne particles in the range of [0.25 µm-1 µm] showed an intermediate deposition pattern, with 49% ± 8% in the extrathoracic region and 51% ± 8% in the thoracic region. Finally, comparison of baboon and human inhalation experiments for the [1 µm-9 µm] aerosol showed similar regional deposition, leading to the conclusion that regional deposition is species-independent for this airborne particle sizes.

  6. Particle deposition in a child respiratory tract model: in vivo regional deposition of fine and ultrafine aerosols in baboons.

    Directory of Open Access Journals (Sweden)

    Iolanda Albuquerque-Silva

    Full Text Available To relate exposure to adverse health effects, it is necessary to know where particles in the submicron range deposit in the respiratory tract. The possibly higher vulnerability of children requires specific inhalation studies. However, radio-aerosol deposition experiments involving children are rare because of ethical restrictions related to radiation exposure. Thus, an in vivo study was conducted using three baboons as a child respiratory tract model to assess regional deposition patterns (thoracic region vs. extrathoracic region of radioactive polydisperse aerosols ([d16-d84], equal to [0.15 µm-0.5 µm], [0.25 µm-1 µm], or [1 µm-9 µm]. Results clearly demonstrated that aerosol deposition within the thoracic region and the extrathoraic region varied substantially according to particle size. High deposition in the extrathoracic region was observed for the [1 µm-9 µm] aerosol (72% ± 17%. The [0.15 µm-0.5 µm] aerosol was associated almost exclusively with thoracic region deposition (84% ± 4%. Airborne particles in the range of [0.25 µm-1 µm] showed an intermediate deposition pattern, with 49% ± 8% in the extrathoracic region and 51% ± 8% in the thoracic region. Finally, comparison of baboon and human inhalation experiments for the [1 µm-9 µm] aerosol showed similar regional deposition, leading to the conclusion that regional deposition is species-independent for this airborne particle sizes.

  7. 3D modelling of transport, deposition and resuspension of highway deposited sediments in wet detention ponds.

    Science.gov (United States)

    Bentzen, T R

    2010-01-01

    The paper presents results from an experimental and numerical study of flows and transport of primarily particle bound pollutants in highway wet detention ponds. The study presented here is part of a general investigation on road runoff and pollution in respect to wet detention ponds. The objective is to evaluate the quality of long term simulation based on historical rains series of the pollutant discharges from roads and highways. A three-dimensional hydrodynamic and mud transport model is used for the investigation. The transport model has been calibrated and validated on e.g. experiments in a 30 m long concrete channel with width of 0.8 m and a water depth of approximately 0.8 m and in circular flume experiments in order to reproduce near-bed specific processes such as resuspension and consolidation. With a fairly good agreement with measurements, modelling of hydrodynamics, transport of dissolved pollutants and particles in wet detention ponds is possible with application of a three dimensional RANS model and the advection/dispersion equation taken physical phenomena like wind, waves, deposition, erosion and consolidation of the bottom sediment into account.

  8. Modelling of mineral matter transformation and deposition in furnaces

    Energy Technology Data Exchange (ETDEWEB)

    Magda, Adrian

    2012-07-01

    In this work, a CFD (Computational Fluid Dynamics) tool was developed to simulate the ash deposition on the heat transfer surfaces of furnaces. The effects of such slagging and fouling deposits on boiler operation and pollutants formation was investigated. Major particles physical transformations are reviewed in Chapter 2, while Chapter 3, encompasses an intensive literature review on the main mineral components in coals. Differentiating between mineral species is of great importance as minerals with low softening /melting temperature or eutectic points formed between different mineral inclusions facilitate deposition. For each individual mineral specie the known chemical and physical processes and effects with regard to deposition are presented in detail. The complexity and variability of the coal mineralogy points towards the use of chemical mechanisms that account for as many as possible chemical compounds and interactions. Reliable and accurate thermochemical data are therefore needed. For this purpose a mineral matter, coal and biomass and chemical activity databases were generated. Each mineral description is compiled into several subset databases. One subset refers to the polynomial format to calculate the mineral thermodynamic properties, e.g. enthalpy, entropy and specific heat capacity. The mineral database contains detailed descriptions for 200 individual mineral species, while the coal and biomass database contains 110 biomass and coal chemical analyses. The chemical reactions and their kinetic details sum up 70 entries, Chapter 4. Florean is a three-dimensional simulation program developed at the Institute for Fuel and Heat Technology. Besides conservation equations for mass, momentum and energy, FLOREAN has the capability to calculate chemical reactions and pollutants formation. The main conservation equations and program modelling capabilities are presented in Chapter 5. The EnSight Gold format and the ParaView post-processor are implemented for data

  9. A deposit model for Mississippi Valley-Type lead-zinc ores: Chapter A in Mineral deposit models for resource assessment

    Science.gov (United States)

    Leach, David L.; Taylor, Ryan D.; Fey, David L.; Diehl, Sharon F.; Saltus, Richard W.

    2010-01-01

    This report is a descriptive model of Mississippi Valley-Type (MVT) lead-zinc deposits that presents their geological, mineralogical and geochemical attributes and is part of an effort by the U.S. Geological Survey Mineral Resources Program to update existing models and develop new models that will be used for an upcoming national mineral resource assessment. This deposit modeling effort by the USGS is intended to supplement previously published models for use in mineral-resource and mineral-environmental assessments. Included in this report are geological, geophysical and geochemical assessment guides to assist in mineral resource estimation. The deposit attributes, including grade and tonnage of the deposits described in this report are based on a new mineral deposits data set of all known MVT deposits in the world.

  10. The Dielectric Breakdown Model applied to explain various morphologies of deposited metallic structures in thin gap metal electro-deposition

    Directory of Open Access Journals (Sweden)

    Aditya Chowdhury

    2015-06-01

    Full Text Available The phenomenon of metal electro-deposition in thin-gap geometry leads to very interesting and diverse two dimensional morphologies. This varies from dense ramified growth to thin dendritic projections. In this paper, we have proposed a stochastic model that incorporates such diversity. We carried out thin-gap electro-deposition of Copper and Zinc with varying electrolytic concentrations. A well known model, that until this work was used to explain dielectric breakdown patterns, was employed to explain the variation in deposition morphology with concentration. The sole parameter in the model was varied and the numerically obtained patterns was seen to correlate well with those obtained from electro-deposition. A linear relationship between the parameter and molar concentration was established. The established relationship was then analysed and interpreted.

  11. RANS modeling for particle transport and deposition in turbulent duct flows: Near wall model uncertainties

    Energy Technology Data Exchange (ETDEWEB)

    Jayaraju, S.T., E-mail: jayaraju@nrg.eu [Nuclear Research and Consultancy Group (NRG), 1755ZG Petten (Netherlands); Sathiah, P.; Roelofs, F. [Nuclear Research and Consultancy Group (NRG), 1755ZG Petten (Netherlands); Dehbi, A. [Paul Scherrer Institute (PSI), 5232 Villigen PSI (Switzerland)

    2015-08-15

    Highlights: • Near-wall modeling uncertainties in the RANS particle transport and deposition are addressed in a turbulent duct flow. • Discrete Random Walk (DRW) model and Continuous Random Walk (CRW) model performances are tested. • Several near-wall anisotropic model accuracy is assessed. • Numerous sensitivity studies are performed to recommend a robust, well-validated near-wall model for accurate particle deposition predictions. - Abstract: Dust accumulation in the primary system of a (V)HTR is identified as one of the foremost concerns during a potential accident. Several numerical efforts have focused on the use of RANS methodology to better understand the complex phenomena of fluid–particle interaction at various flow conditions. In the present work, several uncertainties relating to the near-wall modeling of particle transport and deposition are addressed for the RANS approach. The validation analyses are performed in a fully developed turbulent duct flow setup. A standard k − ε turbulence model with enhanced wall treatment is used for modeling the turbulence. For the Lagrangian phase, the performance of a continuous random walk (CRW) model and a discrete random walk (DRW) model for the particle transport and deposition are assessed. For wall bounded flows, it is generally seen that accounting for near wall anisotropy is important to accurately predict particle deposition. The various near-wall correlations available in the literature are either derived from the DNS data or from the experimental data. A thorough investigation into various near-wall correlations and their applicability for accurate particle deposition predictions are assessed. The main outcome of the present work is a well validated turbulence model with optimal near-wall modeling which provides realistic particle deposition predictions.

  12. Modeling debris-covered glaciers: response to steady debris deposition

    Science.gov (United States)

    Anderson, Leif S.; Anderson, Robert S.

    2016-05-01

    Debris-covered glaciers are common in rapidly eroding alpine landscapes. When thicker than a few centimeters, surface debris suppresses melt rates. If continuous debris cover is present, ablation rates can be significantly reduced leading to increases in glacier length. In order to quantify feedbacks in the debris-glacier-climate system, we developed a 2-D long-valley numerical glacier model that includes englacial and supraglacial debris advection. We ran 120 simulations on a linear bed profile in which a hypothetical steady state debris-free glacier responds to a step increase of surface debris deposition. Simulated glaciers advance to steady states in which ice accumulation equals ice ablation, and debris input equals debris loss from the glacier terminus. Our model and parameter selections can produce 2-fold increases in glacier length. Debris flux onto the glacier and the relationship between debris thickness and melt rate strongly control glacier length. Debris deposited near the equilibrium-line altitude, where ice discharge is high, results in the greatest glacier extension when other debris-related variables are held constant. Debris deposited near the equilibrium-line altitude re-emerges high in the ablation zone and therefore impacts melt rate over a greater fraction of the glacier surface. Continuous debris cover reduces ice discharge gradients, ice thickness gradients, and velocity gradients relative to initial debris-free glaciers. Debris-forced glacier extension decreases the ratio of accumulation zone to total glacier area (AAR). Our simulations reproduce the "general trends" between debris cover, AARs, and glacier surface velocity patterns from modern debris-covered glaciers. We provide a quantitative, theoretical foundation to interpret the effect of debris cover on the moraine record, and to assess the effects of climate change on debris-covered glaciers.

  13. Multiphysics modeling of porous CRUD deposits in nuclear reactors

    Science.gov (United States)

    Short, M. P.; Hussey, D.; Kendrick, B. K.; Besmann, T. M.; Stanek, C. R.; Yip, S.

    2013-11-01

    The formation of porous CRUD deposits on nuclear reactor fuel rods, a longstanding problem in the operation of pressurized water reactors (PWRs), is a significant challenge to science-based multiscale modeling and simulation. While existing, published studies have focused on individual or loosely coupled processes, such as heat transfer, fluid flow, and compound dissolution/precipitation, none have addressed their coupled effects sufficiently to enable a comprehensive, scientific understanding of CRUD. Here we present the formulation and results of a model, MAMBA-BDM, which begins to incorporate mechanistic details in describing CRUD in PWRs. CRUD is treated as a chemical deposition process in an environment of variable concentration, an arbitrary level of heating, and a complex fractal-based flow geometry. We present results on spatial distributions of temperature, pressure, velocity, and concentration that give insight into the interplay between these physical properties and geometrical parameters. We show the role of heat convection which has not been discussed previously. Furthermore, we suggest that the assumption of liquid saturation in the CRUD deserves scrutiny, as a result of our attempt to determine an effective CRUD thermal conductivity.

  14. Simulation model of erosion and deposition on a barchan dune

    Science.gov (United States)

    Howard, A. D.; Morton, J. B.; Gal-El-hak, M.; Pierce, D. B.

    1977-01-01

    Erosion and deposition over a barchan dune near the Salton Sea, California, are modeled by bookkeeping the quantity of sand in saltation following streamlines of transport. Field observations of near surface wind velocity and direction plus supplemental measurements of the velocity distribution over a scale model of the dune are combined as input to Bagnold type sand transport formulas corrected for slope effects. A unidirectional wind is assumed. The resulting patterns of erosion and deposition compare closely with those observed in the field and those predicted by the assumption of equilibrium (downwind translation of the dune without change in size or geometry). Discrepancies between the simulated results and the observed or predicted erosional patterns appear to be largely due to natural fluctuations in the wind direction. The shape of barchan dunes is a function of grain size, velocity, degree of saturation of the oncoming flow, and the variability in the direction of the oncoming wind. The size of the barchans may be controlled by natural atmospheric scales, by the age of the dunes, or by the upwind roughness. The upwind roughness can be controlled by fixed elements or by sand in the saltation. In the latter case, dune scale is determined by grain size and wind velocity.

  15. Mississippi Valley-Type Lead-Zinc Deposit Model

    Science.gov (United States)

    Leach, David L.; Taylor, Ryan D.

    2009-01-01

    Mississippi Valley-type (MVT) lead-zinc (Pb+Zn) deposits are found throughout the world, and these deposits are characteristically distributed over hundreds of square kilometers that define individual ore districts. The median size of individual MVT deposits is 7.0 million tonnes with grades of about 7.9 percent Pb+Zn metal. However, MVT deposits usually occur in extensive districts consisting of several to as many as 400 deposits. Nearly one-quarter of the world's sedimentary and volcanic rock-hosted Pb+Zn resources are found in these deposits, with by-product commodities including silver (Ag), copper (Cu), and indium (In) for some deposits. Environmentally, MVT deposits are less of a concern than other types of mineral deposits since the carbonate-host rocks mitigate many environmental concerns.

  16. Watermarking for Fused Deposition Modeling by Seam Placement

    Directory of Open Access Journals (Sweden)

    Baumann Felix W.

    2017-01-01

    Full Text Available With the increased usage and application of 3D-printing or Additive Manufacturing (AM the question arises of how content providers or creators can ensure their intellectual property on such model data. Similar to other digital media such object information that is represented in a number of file formats is easy to copy and reproduce lossless. This research contributes by a proposition of a watermarking schema for Fused Deposition Modeling (FDM type 3D-printers. This system embeds information into the 3D-printed object without alterations to the structure or geometry by altering the entry points of each layer in a specific manner. With such a watermarking schema employed objects can be embedded with additional information such as a serial number or other traceable information.

  17. Volcanogenic massive sulfide deposits of the world: Database and grade and tonnage models

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Information on VMS deposits from around the world. It also presents new grade and tonnage models for three subtypes of VMS deposits and a text file allowing...

  18. Modelling deposition of dioxin in Denmark; Modellering af dioxindeposition i Danmark

    Energy Technology Data Exchange (ETDEWEB)

    Mantzius Hansen, K.; Christensen, Jesper H.

    2008-06-15

    We have estimated the deposition of dioxin in Denmark for the years 1970, 1975, 1980, 1985, 1990, 1995, 2000 and 2004 as well as the contribution to air concentrations and depositions from Danish sources relative to the contribution from other European sources. The estimate is based on model simulations with the high-resolution atmospheric chemistry transport model DEHM, where dioxin is modelled as one compound in form of particles. Two different expert emission estimates from EMEP's Meteorological Synthesizing Centre East were used as model input. There are large differences in estimated emissions for some countries from 1990 and onwards, which has a large influence on the simulated depositions. However, it has not been possible to determine which estimate is the most realistic. The concentrations of dioxin in air as well as the depositions increase slightly up to 1980, from where they decrease until 2004. The simulated air concentrations in 2004 are 3,2 fg I-TEQ/m3 and 0,8 fg I-TEQ/m3 for the two emission estimates. The deposited amount of dioxin to Danish land surfaces are 36 g I-TEQ and 9 g I-TEQ for the two emission estimates for 2004. The relative contribution from Danish sources to the deposition of dioxin to Danish land surfaces are 14% and 15% for the two emission estimates for 2004. Despite of large differences in emissions and simulated air concentrations and depositions between the two applied emission estimates, the relative contribution of the Danish sources to the deposition in Denmark does not differ much between the two emission estimates. The contribution of Danish sources to the deposition to Danish land surfaces is estimated to be between 10% and 20%, although there is a large regional variation, from less than 5% to more than 40%. It should be kept in mind that there are sources that are not included in this estimate, such as sources outside Europe and re-emission from previously deposited dioxin, which potentially can give a large

  19. Nucleation and electrolytic deposition of lead on model carbon electrodes

    Science.gov (United States)

    Cericola, D.; Spahr, M.

    2016-08-01

    There is a general consensus in the lead acid battery industry for the use of carbon additives as a functional component in the negative paste to boost the battery performance with regards to charge acceptance and cycle life especially for upcoming automotive and energy storage applications. Several mechanisms are discussed in the scientific literature and the affinity of the carbon surfaces to lead species seems to play a key role. With a set of experiments on model carbon electrodes we gave evidence to the fact that some carbon materials promote spontaneous nucleation of lead crystals. We propose a mechanism such that the carbon, as soon as in a lead containing environment, immobilizes some lead on its surface. Such immobilized lead acts as nucleation seed for the deposition of lead when a current is passed through the material. It is therefore possible to differentiate and select the carbon materials based on their ability to form nucleation seeds.

  20. Modeling of time dependent subsidence for coal and ore deposits

    Institute of Scientific and Technical Information of China (English)

    Ryszard Hejmanowski

    2015-01-01

    Coal and ore underground mining generates subsidence and deformation of the land surface. Those defor-mations may cause damage to buildings and infrastructures. The environmental impact of subsidence will not be accepted in the future by the society in many countries. Especially there, where the mining regions are densely urbanized, the acceptance of the ground deformations decreases every year. The only solution is to limit the subsidence or its impact on the infrastructure. The first is not rentable for the mining industry, the second depends on the precise subsidence prediction and good preventing management involved in the mining areas. The precision of the subsidence prediction depends strictly on the mathematical model of the deformation phenomenon and on the uncertainty of the input data. The subsidence prediction in the geological conditions of the raw materials used to be made on the basis of numerical modeling or the stochastic models. A modified solution of the stochastic model by Knothe will be presented in the paper. The author focuses on the precise description of the deposit shape and on the time dependent displacements of the rock mass. A two parameters’ time function has been introduced in the algorithm.

  1. Vegetation succession as affected by decreasing nitrogen deposition, soil characteristics and site management: A modelling approach

    NARCIS (Netherlands)

    Wamelink, G.W.W.; Dobben, van H.F.; Berendse, F.

    2009-01-01

    After many years of increasing nitrogen deposition, the deposition rates are now decreasing. A major question is whether this will result in the expected positive effects on plant species diversity. Long-term experiments that investigate the effects of decreasing deposition are not available. Model

  2. Base cation deposition in Europe - Part I. Model description, results and uncertainties

    NARCIS (Netherlands)

    Draaijers, G.P.J.; Leeuwen, E.P. van; Jong, P.G.H. de; Erisman, J.W.

    1997-01-01

    Deposition of base cations (Na+, Mg2+, Ca2+, K+) in Europe was mapped for 1989 with a spatial resolution of 10 x 20 km using the so-called inferential modeling technique. Deposition fields resembled the geographic variability of sources, land-use and climate. Dry deposition constituted on average 45

  3. Metallogenic Features and Metalogenic Model of Laterite Gold Deposits in Southern China

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The modern laterite gold deposits in southern China, which belong to reworked laterite deposits, can be further divided into three subclasses and seven types. Their geological features, ore-forming conditions and regularities are discussed. A geologic-geochemical metallogenic model for laterite gold deposits has been established.

  4. A framework for modeling the liquidity and interest rate risk of demand deposits

    OpenAIRE

    2016-01-01

    The objective of this report is to carry out a pre-study and develop a framework for how the liquidity and interest rate risk of a bank's demand deposits can be modeled. This is done by first calibrating a Vasicek short rate model and then deriving models for the bank's deposit volume and deposit rate using multiple regression. The volume model and the deposit rate model are used to determine the liquidity and interest rate risk, which is done separately. The liquidity risk is determined by a...

  5. On The Stability Of Model Flows For Chemical Vapour Deposition

    Science.gov (United States)

    Miller, Robert

    2016-11-01

    The flow in a chemical vapour deposition (CVD) reactor is assessed. The reactor is modelled as a flow over an infinite-radius rotating disk, where the mean flow and convective instability of the disk boundary layer are measured. Temperature-dependent viscosity and enforced axial flow are used to model the steep temperature gradients present in CVD reactors and the pumping of the gas towards the disk, respectively. Increasing the temperature-dependence parameter of the fluid viscosity (ɛ) results in an overall narrowing of the fluid boundary layer. Increasing the axial flow strength parameter (Ts) accelerates the fluid both radially and axially, while also narrowing the thermal boundary layer. It is seen that when both effects are imposed, the effects of axial flow generally dominate those of the viscosity temperature dependence. A local stability analysis is performed and the linearized stability equations are solved using a Galerkin projection in terms of Chebyshev polynomials. The neutral stability curves are then plotted for a range of ɛ and Ts values. Preliminary results suggest that increasing Ts has a stabilising effect on both type I and type II stationary instabilities, while small increases in ɛ results in a significant reduction to the critical Reynolds number.

  6. Accelerating thermal deposition modeling at terahertz frequencies using GPUs

    Science.gov (United States)

    Doroski, Michael; Knight, Michael; Payne, Jason; Grundt, Jessica E.; Ibey, Bennett L.; Thomas, Robert; Roach, William P.; Wilmink, Gerald J.

    2011-03-01

    Finite-difference time-domain (FDTD) methods are widely used to model the propagation of electromagnetic radiation in biological tissues. High-performance central processing units (CPUs) can execute FDTD simulations for complex problems using 3-D geometries and heterogeneous tissue material properties. However, when FDTD simulations are employed at terahertz (THz) frequencies excessively long processing times are required to account for finer resolution voxels and larger computational modeling domains. In this study, we developed and tested the performance of 2-D and 3-D FDTD thermal propagation code executed on a graphics processing unit (GPU) device, which was coded using an extension of the C language referred to as CUDA. In order to examine the speedup provided by GPUs, we compared the performance (speed, accuracy) for simulations executed on a GPU (Tesla C2050), a high-performance CPU (Intel Xeon 5504), and supercomputer. Simulations were conducted to model the propagation and thermal deposition of THz radiation in biological materials for several in vitro and in vivo THz exposure scenarios. For both the 2-D and 3-D in vitro simulations, we found that the GPU performed 100 times faster than runs executed on a CPU, and maintained comparable accuracy to that provided by the supercomputer. For the in vivo tissue damage studies, we found that the GPU executed simulations 87x times faster than the CPU. Interestingly, for all exposure duration tested, the CPU, GPU, and supercomputer provided comparable predictions for tissue damage thresholds (ED50). Overall, these results suggest that GPUs can provide performance comparable to a supercomputer and at speeds significantly faster than those possible with a CPU. Therefore, GPUs are an affordable tool for conducting accurate and fast simulations for computationally intensive modeling problems.

  7. Numerical modeling of Po-218 deposition in a physiologically realistic lung bifurcation model

    Science.gov (United States)

    Mously-Soroujy, Khalid Ahmad

    Experimental data for lung bifurcations reveals complex geometries and distinct asymmetrical characteristic, which affects the localized distribution of particles deposited in the lung. This study is based on recently published numerical results for a symmetric physiological realistic bifurcation geometry Heistracher and Hofmann (1995) which has been extended here to the case of a asymmetric geometry. The asymmetric PRB model was used to study the flow field and the deposition of ultrafine particles for inspiratory and expiratory conditions. In the present study, we investigated the effect of different flow rates, representing human activity and deposition of different ultrafine particles representing radon daughter (Po-218), in the PRB model. Numerical results were compared with the limited available experimental and numerical data. The fluid dynamic computer program FIDAP was used for this purpose.

  8. Modeling Planetary Atmospheric Energy Deposition By Energetic Ions

    Science.gov (United States)

    Parkinson, Christopher; Bougher, Stephen; Gronoff, Guillaume; Barthelemy, Mathieu

    2016-07-01

    The structure, dynamics, chemistry, and evolution of planetary upper atmospheres are in large part determined by the available sources of energy. In addition to the solar EUV flux, the solar wind and solar energetic particle (SEP) events are also important sources. Both of these particle populations can significantly affect an atmosphere, causing atmospheric loss and driving chemical reactions. Attention has been paid to these sources from the standpoint of the radiation environment for humans and electronics, but little work has been done to evaluate their impact on planetary atmospheres. At unmagnetized planets or those with crustal field anomalies, in particular, the solar wind and SEPs of all energies have direct access to the atmosphere and so provide a more substantial energy source than at planets having protective global magnetic fields. Additionally, solar wind and energetic particle fluxes should be more significant for planets orbiting more active stars, such as is the case in the early history of the solar system for paleo-Venus and Mars. Therefore quantification of the atmospheric energy input from the solar wind and SEP events is an important component of our understanding of the processes that control their state and evolution. We have applied a full Lorentz motion particle transport model to study the effects of particle precipitation in the upper atmospheres of Mars and Venus. Such modeling has been previously done for Earth and Mars using a guiding center precipitation model. Currently, this code is only valid for particles with small gyroradii in strong uniform magnetic fields. There is a clear necessity for a Lorentz formulation, hence, a systematic study of the ionization, excitation, and energy deposition has been conducted, including a comparison of the influence relative to other energy sources (namely EUV photons). The result is a robust examination of the influence of energetic ion transport on the Venus and Mars upper atmosphere which

  9. A New Occurrence Model for National Assessment of Undiscovered Volcanogenic Massive Sulfide Deposits

    Science.gov (United States)

    Shanks, W.C. Pat; Dusel-Bacon, Cynthia; Koski, Randolph; Morgan, Lisa A.; Mosier, Dan; Piatak, Nadine M.; Ridley, Ian; Seal, Robert R., II; Schulz, Klaus J.; Slack, John F.; Thurston, Roland

    2009-01-01

    Volcanogenic massive sulfide (VMS) deposits are very significant current and historical resources of Cu-Pb-Zn-Au-Ag, are active exploration targets in several areas of the United States and potentially have significant environmental effects. This new USGS VMS deposit model provides a comprehensive review of deposit occurrence and ore genesis, and fully integrates recent advances in the understanding of active seafloor VMS-forming environments, and integrates consideration of geoenvironmental consequences of mining VMS deposits. Because VMS deposits exhibit a broad range of geological and geochemical characteristics, a suitable classification system is required to incorporate these variations into the mineral deposit model. We classify VMS deposits based on compositional variations in volcanic and sedimentary host rocks. The advantage of the classification method is that it provides a closer linkage between tectonic setting and lithostratigraphic assemblages, and an increased predictive capability during field-based studies.

  10. Interdiffusion of Polycarbonate in Fused Deposition Modeling Welds

    Science.gov (United States)

    Seppala, Jonathan; Forster, Aaron; Satija, Sushil; Jones, Ronald; Migler, Kalman

    2015-03-01

    Fused deposition modeling (FDM), a now common and inexpensive additive manufacturing method, produces 3D objects by extruding molten polymer layer-by-layer. Compared to traditional polymer processing methods (injection, vacuum, and blow molding), FDM parts have inferior mechanical properties, surface finish, and dimensional stability. From a polymer processing point of view the polymer-polymer weld between each layer limits the mechanical strength of the final part. Unlike traditional processing methods, where the polymer is uniformly melted and entangled, FDM welds are typically weaker due to the short time available for polymer interdiffusion and entanglement. To emulate the FDM process thin film bilayers of polycarbonate/d-polycarbonate were annealed using scaled times and temperatures accessible in FDM. Shift factors from Time-Temperature Superposition, measured by small amplitude oscillatory shear, were used to calculate reasonable annealing times (min) at temperatures below the actual extrusion temperature. The extent of interdiffusion was then measured using neutron reflectivity. Analogous specimens were prepared to characterize the mechanical properties. FDM build parameters were then related to interdiffusion between welded layers and mechanical properties. Understating the relationship between build parameters, interdiffusion, and mechanical strength will allow FDM users to print stronger parts in an intelligent manner rather than using trial-and-error and build parameter lock-in.

  11. Mechanical analysis of lightweight constructions manufactured with fused deposition modeling

    Science.gov (United States)

    Bagsik, A.; Josupeit, S.; Schoeppner, V.; Klemp, E.

    2014-05-01

    Additive production techniques have the advantage of manufacturing parts without needing a forming tool. One of the most used additive manufacturing processes is "Fused Deposition Modeling" (FDM) which allows the production of prototypes and end-use parts. Due to the manufacture layer by layer, also complex part geometries can be created in one working step. Furthermore, lightweight parts with specific inner core structures can be manufactured in order to achieve good weightrelated strength properties. In this paper the mechanical behavior of lightweight parts manufactured with the 3D production system Fortus 400mc from Stratasys and the material Polyetherimide (PEI) with the trade name Ultem*9085 is analyzed. The test specimens were built up with different inner structures and building directions. Therefore, test specimens with known lightweight core geometries (e.g. corrugated and honeycomb cores) were designed. A four-point bending test was conducted to analyze the strength properties as well as the weight-related strength properties. Additionally the influence of the structure width, the structure wall thickness and the top layer thickness was analyzed using a honeycomb structure.

  12. Plasticized protein for 3D printing by fused deposition modeling

    Science.gov (United States)

    Chaunier, Laurent; Leroy, Eric; Della Valle, Guy; Lourdin, Denis

    2016-10-01

    The developments of Additive Manufacturing (AM) by Fused Deposition Modeling (FDM) now target new 3D printable materials, leading to novel properties like those given by biopolymers such as proteins: degradability, biocompatibility and edibility. Plasticized materials from zein, a storage protein issued from corn, present interesting thermomechanical and rheological properties, possibly matching with AM-FDM specifications. Thus commercial zein plasticized with 20% glycerol has a glass transition temperature (Tg) at about 42°C, after storage at intermediate relative humidity (RH=59%). Its principal mechanical relaxation at Tα ≈ 50°C leads to a drop of the elastic modulus from about 1.1 GPa, at ambient temperature, to 0.6 MPa at Tα+100°C. These values are in the same range as values obtained in the case of standard polymers for AM-FDM processing, as PLA and ABS, although relaxation mechanisms are likely different in these materials. Such results lead to the setting up of zein-based compositions printable by AM-FDM and allow processing bioresorbable printed parts, with designed 3D geometry and structure.

  13. Geology and Mineralogy of Uranium Deposits from Mount Isa, Australia: Implications for Albitite Uranium Deposit Models

    Directory of Open Access Journals (Sweden)

    Nick Wilson

    2013-06-01

    Full Text Available New geological, bulk chemical and mineralogical (QEMSCAN and FEG-EPMA data are presented for albitite-type uranium deposits of the Mount Isa region of Queensland, Australia. Early albitisation of interbedded metabasalt and metasiltstone predated intense deformation along D2 high strain (mylonite zones. The early sodic alteration paragenetic stage includes albite, riebeckite, aegirine, apatite, zircon and magnetite. This paragenetic stage was overprinted by potassic microveins, containing K-feldspar, biotite, coffinite, brannerite, rare uraninite, ilmenite and rutile. An unusual U-Zr phase has also been identified which exhibits continuous solid solution with a uranium silicate possibly coffinite or nenadkevite. Calcite, epidote and sulphide veinlets represent the latest stage of mineralisation. This transition from ductile deformation and sodic alteration to vein-controlled uranium is mirrored in other examples of the deposit type. The association of uranium with F-rich minerals and a suite of high field strength elements; phosphorous and zirconium is interpreted to be indicative of a magmatic rather than metamorphic or basinal fluid source. No large intrusions of appropriate age outcrop near the deposits; but we suggest a relationship with B- and Be-rich pegmatites and quartz-tourmaline veins.

  14. A dynamical system of deposit and loan volumes based on the Lotka-Volterra model

    Science.gov (United States)

    Sumarti, N.; Nurfitriyana, R.; Nurwenda, W.

    2014-02-01

    In this research, we proposed a dynamical system of deposit and loan volumes of a bank using a predator-prey paradigm, where the predator is loan volumes, and the prey is deposit volumes. The existence of loan depends on the existence of deposit because the bank will allocate the loan volume from a portion of the deposit volume. The dynamical systems have been constructed are a simple model, a model with Michaelis-Menten Response and a model with the Reserve Requirement. Equilibria of the systems are analysed whether they are stable or unstable based on their linearised system.

  15. Inclusion of Floc Growth in a Simple River Mouth Plume Model and Its Effect on Deposition Rate and Deposit Pattern

    Science.gov (United States)

    Strom, K.

    2014-12-01

    Rivers are the primary conduits for delivery of sediments and organic matter to the sea. This is visually evident when sediment-laden rivers enter coastal waters, producing sediment plumes. The sediment and organic material from such plumes may deposit and be preserved in estuarine and deltaic zones, or may be carried and mixed by ocean currents to deposit elsewhere on the shelf. Both of these outcomes are governed in large part by depositional mechanics that are dependent, at least in part, on the settling velocity of the sediment. This is especially true in modeling, where the settling velocity has been noted to be the primary controlling parameter for accurate prediction of depositional patters from river plumes. Settling velocity is largely controlled by grain size, shape, and density, which for mud can be quite dynamic due to the process of flocculation. Flocculation yields mud aggregates of variable size and density that may be dependent on the turbulent energy and salt levels under which they were formed. Since turbulent energy and salinity both change in river mouth jet/plumes, the dynamic flocculation process may exert significant control on the eventual distribution of sediment in these zones. In this study, two different approaches to floc modeling are integrated into a steady-state river mouth plume integral model. The two floc models are (1) a version of the Winterwerp (1998) model, and (2) a condition-dependent equilibrium floc size model similar to what is typically used in large-scale 2 and 3D hydraulic and sediment transport simulations. Inclusion of these two models into the buoyant river-mouth plume equations allows for the settling velocity of the mud to be functionally tied to the turbulent shear rate and suspended sediment concentration. The concentration and deposition rates are then compared through the plume both without and with the inclusion of the two different floc treatments. The role that entrainment of ambient fluid plays in the

  16. A Model for Sequential First Order Phage Transitions Occurring in the Underpotential Deposition of Metals,

    Science.gov (United States)

    1991-04-29

    22217-5000 1 1 1 11. TITLE (incde Securiy Clasicaton) A MODEL FOR SEQUENTIAL FIRST ORDER PHAGE TRANSITIONS OCCURRING IN THE UNDERPOTENTIAL DEPOSITION ...block number) FIELD GROUP SUB-GROUP 3 RACT (Continue on reverse if necessary and identify by block number) A model for the underpotential deposition of...this application we study the underpotential deposition of Cu on a Au(III) surface in the presence of sulfate ions. The voltammogram of the

  17. Modeling the influence of incident angle and deposition rate on a nanostructure grown by oblique angle deposition

    Science.gov (United States)

    Li, Kun-Dar; Dong, Yu-Wei

    2017-02-01

    In this study, numerical approaches were applied to theoretically investigate the influence of process parameters, such as the incident angle and the deposition rate, on the nanostructural formation of thin films by oblique angle deposition (OAD). A continuum model was first developed, and the atomic diffusion, shadowing effect and steering effect were incorporated in the formation mechanisms of the surface morphology and nanostructure of the deposited films. A characteristic morphology of columnar nanorods corresponding to an OAD was well reproduced through this kinetic model. With the increase of the incident angle, the shadowing effect played a significant role in the columnar structures and the ratio of the surface area to volume was raised, implying a high level of voids in the nanostructures. When the deposition rate decreased, the porosity was notably suppressed due to the atomic diffusion in the growth process. These simulation results coincide well with many experimental observations. With the manipulation of the numerical simulations, the underlying mechanisms of the morphological formation during OAD were revealed, which also provided plentiful information to stimulate the process designs for manufacturing advanced materials.

  18. MEASUREMENT AND MODELING OF THE DRY DEPOSITION OF PEROXIDES

    Science.gov (United States)

    Measurements of the dry deposition velocity (Vd) of hydrogen peroxide (H2O2) and total organic peroxides (ROOH) were made during four experiments at three forested sites. Details and uncertainties associated with the measurement of peroxide...

  19. Modeling and mapping of atmospheric mercury deposition in adirondack park, new york.

    Directory of Open Access Journals (Sweden)

    Xue Yu

    Full Text Available The Adirondacks of New York State, USA is a region that is sensitive to atmospheric mercury (Hg deposition. In this study, we estimated atmospheric Hg deposition to the Adirondacks using a new scheme that combined numerical modeling and limited experimental data. The majority of the land cover in the Adirondacks is forested with 47% of the total area deciduous, 20% coniferous and 10% mixed. We used litterfall plus throughfall deposition as the total atmospheric Hg deposition to coniferous and deciduous forests during the leaf-on period, and wet Hg deposition plus modeled atmospheric dry Hg deposition as the total Hg deposition to the deciduous forest during the leaf-off period and for the non-forested areas year-around. To estimate atmospheric dry Hg deposition we used the Big Leaf model. The average atmospheric Hg deposition to the Adirondacks was estimated as 17.4 [Formula: see text]g m[Formula: see text] yr[Formula: see text] with a range of -3.7-46.0 [Formula: see text]g m[Formula: see text] yr[Formula: see text]. Atmospheric Hg dry deposition (370 kg yr[Formula: see text] was found to be more important than wet deposition (210 kg yr[Formula: see text] to the entire Adirondacks (2.4 million ha. The spatial pattern showed a large variation in atmospheric Hg deposition with scattered areas in the eastern Adirondacks having total Hg deposition greater than 30 μg m(-2 yr(-1, while the southwestern and the northern areas received Hg deposition ranging from 25-30 μg m(-2 yr(-1.

  20. Grade and Tonnage Model of Contact Metasomatic Copper Deposit in China

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Grade-tonnage model is one of the research frontiers of systematical exploration theory. Based on the “Reserve Database of Mineral Resources in China (1997)”, this paper establishes the geological model, grade model, tonnage model, grade-tonnage model and tonnage-sequence model of contact metasomatic copper deposits in China. The mathematical properties of these models are described in detail.

  1. Predicting paleohydraulics from storm surge and tsunami deposits: Using experiments to improve inverse model accuracy

    Science.gov (United States)

    Johnson, Joel P. L.; Delbecq, Katie; Kim, Wonsuck

    2017-04-01

    How accurately can flow depths and velocities of storm surges and tsunamis be predicted from sedimentary deposits? Inverse models have been proposed to quantify hydrodynamics from suspended sediment deposits, but assumptions about how deposit grain size distributions (GSDs) are influenced by flow characteristics remain largely untested. Using laboratory experiments, we evaluate an existing advection-settling model in which suspended sediment transport is assumed to reflect horizontal advection (constraining flow velocity) and vertical settling from the water surface (constraining depth). While the original model assumed that depth and velocity would be best predicted by the deposit D95 (the diameter for which 95% of the cumulative GSD is finer), we find that the median deposit size (D50) tends to better predict mean flow hydraulics. Two key factors influencing how flow characteristics control deposit GSDs are (a) dispersion caused by turbulence and (b) the transport distance required for suspension and settling to effectively sort grains. Deposits proximal to sediment sources primarily reflect the source GSD, while deposits farther from the source preferentially represent transport-dependent sorting. In our experimental data, transport distances longer than 1-2 advection length scales are required for the deposit GSD to reasonably predict flow depths and velocities. These results suggest ways that event deposits can be used to more accurately assess coastal risks from tsunamis and storm waves.

  2. Sedimentary exhalative (sedex) zinc-lead-silver deposit model

    Science.gov (United States)

    Emsbo, Poul; Seal, Robert R.; Breit, George N.; Diehl, Sharon F.; Shah, Anjana K.

    2016-10-28

    This report draws on previous syntheses and basic research studies of sedimentary exhalative (sedex) deposits to arrive at the defining criteria, both descriptive and genetic, for sedex-type deposits. Studies of the tectonic, sedimentary, and fluid evolution of modern and ancient sedimentary basins have also been used to select defining criteria. The focus here is on the geologic characteristics of sedex deposit-hosting basins that contain greater than 10 million metric tons of zinc and lead. The enormous size of sedex deposits strongly suggests that basin-scale geologic processes are involved in their formation. It follows that mass balance constraints of basinal processes can provide a conceptual underpinning for the evaluation of potential ore-forming mechanisms and the identification of geologic indicators for ore potential in specific sedimentary basins. Empirical data and a genetic understanding of the physicochemical, geologic, and mass balance conditions required for each of these elements are used to establish a hierarchy of quantifiable geologic criteria that can be used in U.S. Geological Survey national assessments.  In addition, this report also provides a comprehensive evaluation of environmental considerations associated with the mining of sedex deposits.

  3. Advanced optical modelling of dynamically deposited silicon nitride layers

    Science.gov (United States)

    Borojevic, N.; Hameiri, Z.; Winderbaum, S.

    2016-07-01

    Dynamic deposition of silicon nitrides using in-line plasma enhanced chemical vapor deposition systems results in non-uniform structure of the dielectric layer. Appropriate analysis of such layers requires the optical characterization to be performed as a function of the layer's depth. This work presents a method to characterize dynamically deposited silicon nitride layers. The method is based on the fitting of experimental spectroscopic ellipsometry data via grading of Tauc-Lorentz optical parameters through the depth of the layer. When compared with the standard Tauc-Lorentz fitting procedure, used in previous studies, the improved method is demonstrating better quality fits to the experimental data and revealing more accurate optical properties of the dielectric layers. The most significant advantage of the method is the ability to extract the depth profile of the optical properties along the direction of the layer normal. This is enabling a better understanding of layers deposited using dynamic plasma enhanced chemical vapor deposition systems frequently used in the photovoltaic industry.

  4. METHODS FOR MODELING PARTICLE DEPOSITION AS A FUNCTION OF AGE. (R827352C004)

    Science.gov (United States)

    The purpose of this paper is to review the application of mathematical models of inhaled particle deposition to people of various ages. The basic considerations of aerosol physics, biological characteristics and model structure are presented along with limitations inherent in ...

  5. A depositional model for organic-rich Duvernay Formation mudstones

    Science.gov (United States)

    Knapp, Levi J.; McMillan, Julia M.; Harris, Nicholas B.

    2017-01-01

    The Upper Devonian Duvernay Formation of western Canada is an organic-rich shale formation now targeted as a hydrocarbon reservoir. We present a detailed sedimentological analysis of the Duvernay Formation in order to better understand organic-rich mudstone depositional processes and conditions and to characterize the vertical and lateral heterogeneity of mudstone lithofacies that affect petrophysical and geomechanical rock properties. Organic-rich mudstone facies of the Duvernay Formation were deposited in a dynamic depositional environment by a variety of sediment transport mechanisms, including suspension settling, turbidity currents, and bottom water currents in variably oxygenated bottom waters. Suspension settling dominated in distal relatively deep areas of the basin, but evidence for weak turbidity currents and bottom water currents was observed in the form of graded beds and thin grain-supported siltstone laminae. Organic enrichment primarily occurred in distal areas as a result of bottom water anoxia and low depositional rates of inorganic sediment. In deep water locations near platform margins, alternating silty-sandy contourite beds and organic-rich mudstone beds are present, the former interpreted to have been deposited and reworked by bottom water currents flowing parallel to slope. In shallower, more oxygenated settings, mudstone lithologies vary from calcareous to argillaceous. These sediments were deposited from suspension settling, turbidity currents, and bottom water currents, although primary sedimentary structures are often obscured by extensive bioturbation. Locally, organic enrichment in dysoxic rather than anoxic bottom waters was driven by a slightly increased sedimentation rate and possibly also by aggregation of sedimentary particles in the water column due to interaction between organic matter and clay minerals. Large variations observed in sediment composition, from siliceous to calcareous to argillaceous, reflect multiple biogenic

  6. Modelling loans and deposits during electoral years i n Romania

    Directory of Open Access Journals (Sweden)

    Nicolae - Marius JULA

    2015-06-01

    Full Text Available This paper analyzes the effect of electoral years on loans and deposits for population in Romania. Using monthly data regarding the total loans and deposits, we identify the significance of the electoral timing on population´s behavior regarding financial decisions. We estimate that there are small changes in population´s affinity for increase in the indebtedness or for savings. We use dummy variables for electoral periods, and when these are econometrically significant there is an evidence of the influence of the electoral timings in population´s financial decisions.

  7. The adsorptive-kinetic model of in-situ phosphorus doped film polysilicon deposition process

    Directory of Open Access Journals (Sweden)

    Nalivaiko O. Yu.

    2009-11-01

    Full Text Available The investigation of deposition kinetics of in-situ phosphorus doped polysilicon films has been performed. The adsorptive-kinetic model of in-situ phosphorus doped polysilicon deposition has been developed. The values of heterogeneous reaction constants and constants, which describe the desorption process for monosilane and phosphine, have been defined. The optimal process conditions, which provide the acceptable deposition rate, thickness uniformity, high doping level and conformal step coverage, have been founded.

  8. A deposit model for magmatic iron-titanium-oxide deposits related to Proterozoic massif anorthosite plutonic suites

    Science.gov (United States)

    Woodruff, Laurel G.; Nicholson, Suzanne W.; Fey, David L.

    2013-01-01

    This descriptive model for magmatic iron-titanium-oxide (Fe-Ti-oxide) deposits hosted by Proterozoic age massif-type anorthosite and related rock types presents their geological, mineralogical, geochemical, and geoenvironmental attributes. Although these Proterozoic rocks are found worldwide, the majority of known deposits are found within exposed rocks of the Grenville Province, stretching from southwestern United States through eastern Canada; its extension into Norway is termed the Rogaland Anorthosite Province. This type of Fe-Ti-oxide deposit dominated by ilmenite rarely contains more than 300 million tons of ore, with between 10- to 45-percent titanium dioxide (TiO2), 32- to 45-percent iron oxide (FeO), and less than 0.2-percent vanadium (V). The origin of these typically discordant ore deposits remains as enigmatic as the magmatic evolution of their host rocks. The deposits clearly have a magmatic origin, hosted by an age-constrained unique suite of rocks that likely are the consequence of a particular combination of tectonic circumstances, rather than any a priori temporal control. Principal ore minerals are ilmenite and hemo-ilmenite (ilmenite with extensive hematite exsolution lamellae); occurrences of titanomagnetite, magnetite, and apatite that are related to this deposit type are currently of less economic importance. Ore-mineral paragenesis is somewhat obscured by complicated solid solution and oxidation behavior within the Fe-Ti-oxide system. Anorthosite suites hosting these deposits require an extensive history of voluminous plagioclase crystallization to develop plagioclase-melt diapirs with entrained Fe-Ti-rich melt rising from the base of the lithosphere to mid- and upper-crustal levels. Timing and style of oxide mineralization are related to magmatic and dynamic evolution of these diapiric systems and to development and movement of oxide cumulates and related melts. Active mines have developed large open pits with extensive waste-rock piles, but

  9. Carbonatites of the World, Explored Deposits of Nb and REE - Database and Grade and Tonnage Models

    Science.gov (United States)

    Berger, Vladimir I.; Singer, Donald A.; Orris, Greta J.

    2009-01-01

    This report is based on published tonnage and grade data on 58 Nb- and rare-earth-element (REE)-bearing carbonatite deposits that are mostly well explored and are partially mined or contain resources of these elements. The deposits represent only a part of the known 527 carbonatites around the world, but they are characterized by reliable quantitative data on ore tonnages and grades of niobium and REE. Grade and tonnage models are an important component of mineral resource assessments. Carbonatites present one of the main natural sources of niobium and rare-earth elements, the economic importance of which grows consistently. A purpose of this report is to update earlier publications. New information about known deposits, as well as data on new deposits published during the last decade, are incorporated in the present paper. The compiled database (appendix 1; linked to right) contains 60 explored Nb- and REE-bearing carbonatite deposits - resources of 55 of these deposits are taken from publications. In the present updated grade-tonnage model we have added 24 deposits comparing with the previous model of Singer (1998). Resources of most deposits are residuum ores in the upper part of carbonatite bodies. Mineral-deposit models are important in exploration planning and quantitative resource assessments for two reasons: (1) grades and tonnages among deposit types vary significantly, and (2) deposits of different types are present in distinct geologic settings that can be identified from geologic maps. Mineral-deposit models combine the diverse geoscience information on geology, mineral occurrences, geophysics, and geochemistry used in resource assessments and mineral exploration. Globally based deposit models allow recognition of important features and demonstrate how common different features are. Well-designed deposit models allow geologists to deduce possible mineral-deposit types in a given geologic environment, and the grade and tonnage models allow economists to

  10. 3D Geological Model of Nihe ore deposit Constrained by Gravity and Magnetic Modeling

    Science.gov (United States)

    Qi, Guang; Yan, Jiayong; Lv, Qingtan; Zhao, Jinhua

    2016-04-01

    We present a case study on using integrated geologic model in mineral exploration at depth. Nihe ore deposit in Anhui Province, is deep hidden ore deposit which was discovered in recent years, this finding is the major driving force of deep mineral exploration work in Luzong. Building 3D elaborate geological model has the important significance for prospecting to deep or surround in this area, and can help us better understand the metallogenic law and ore-controlling regularity. A 3D geological model, extending a depth from +200m to -1500m in Nihe ore deposit, has been compiled from surface geological map, cross-section, borehole logs and amounts of geological inference. And then the 3D geological models have been given physical property parameter for calculating the potential field. Modelling the potential response is proposed as means of evaluating the viability of the 3D geological models, and the evidence of making small changes to the uncertain parts of the original 3D geological models. It is expected that the final models not only reproduce supplied prior geological knowledge, but also explain the observed geophysical data. The workflow used to develop the 3D geologic model in this study includes the three major steps, as follows: (1) Determine the basic information of Model: Defining the 3D limits of the model area, the basic geological and structural unit, and the tectonic contact relations and the sedimentary sequences between these units. (2) 3D model construction: Firstly, a series of 2D geological cross sections over the model area are built by using all kinds of prior information, including surface geology, borehole data, seismic sections, and local geologists' knowledge and intuition. Lastly, we put these sections into a 3D environment according to their profile locations to build a 3D model by using geostatistics method. (3) 3D gravity and magnetic modeling: we calculate the potential field responses of the 3D model, and compare the predicted and

  11. Prediction Model Based on the Grey Theory for Tackling Wax Deposition in Oil Pipelines

    Institute of Scientific and Technical Information of China (English)

    Ming Wu; Shujuan Qiu; Jianfeng Liu; Ling Zhao

    2005-01-01

    Problems involving wax deposition threaten seriously crude pipelines both economically and operationally. Wax deposition in oil pipelines is a complicated problem having a number of uncertainties and indeterminations. The Grey System Theory is a suitable theory for coping with systems in which some information is clear and some is not, so it is an adequate model for studying the process of wax deposition.In order to predict accurately wax deposition along a pipeline, the Grey Model was applied to fit the data of wax deposition rate and the thickness of the deposited wax layer on the pipe-wall, and to give accurate forecast on wax deposition in oil pipelines. The results showed that the average residential error of the Grey Prediction Model is smaller than 2%. They further showed that this model exhibited high prediction accuracy. Our investigation proved that the Grey Model is a viable means for forecasting wax deposition.These findings offer valuable references for the oil industry and for firms dealing with wax cleaning in oil pipelines.

  12. PRACTICAL AND PREDICTIVE MODELLING OF ORE DEPOSITS IN HYDROTHERMAL SYSTEMS

    Institute of Scientific and Technical Information of China (English)

    ZHAO Chong-bin; B.E.Hobbs; H.B.Muhlhaus; A.Ord

    2001-01-01

    @@ Over the past five years,we have been making efforts to develop a practical and predictive tool to explore for giant ore deposits in hydrothermal systems.Towards this goal,a significant progress has been made towards a better understanding of the basic physical and chemical processes behind ore body formation and mineralization in hydrothermal systems.

  13. PRACTICAL AND PREDICTIVE MODELLING OF ORE DEPOSITS IN HYDROTHERMAL SYSTEMS

    Institute of Scientific and Technical Information of China (English)

    ZHAO; Chong-bin; B.E.Hobbs; H.B.Muhlhaus; A.Ord

    2001-01-01

    Over the past five years,we have been making efforts to develop a practical and predictive tool to explore for giant ore deposits in hydrothermal systems.Towards this goal,a significant progress has been made towards a better understanding of the basic physical and chemical processes behind ore body formation and mineralization in hydrothermal systems.……

  14. Observation- and model-based estimates of particulate dry nitrogen deposition to the oceans

    Science.gov (United States)

    Baker, Alex R.; Kanakidou, Maria; Altieri, Katye E.; Daskalakis, Nikos; Okin, Gregory S.; Myriokefalitakis, Stelios; Dentener, Frank; Uematsu, Mitsuo; Sarin, Manmohan M.; Duce, Robert A.; Galloway, James N.; Keene, William C.; Singh, Arvind; Zamora, Lauren; Lamarque, Jean-Francois; Hsu, Shih-Chieh; Rohekar, Shital S.; Prospero, Joseph M.

    2017-07-01

    Anthropogenic nitrogen (N) emissions to the atmosphere have increased significantly the deposition of nitrate (NO3-) and ammonium (NH4+) to the surface waters of the open ocean, with potential impacts on marine productivity and the global carbon cycle. Global-scale understanding of the impacts of N deposition to the oceans is reliant on our ability to produce and validate models of nitrogen emission, atmospheric chemistry, transport and deposition. In this work, ˜ 2900 observations of aerosol NO3- and NH4+ concentrations, acquired from sampling aboard ships in the period 1995-2012, are used to assess the performance of modelled N concentration and deposition fields over the remote ocean. Three ocean regions (the eastern tropical North Atlantic, the northern Indian Ocean and northwest Pacific) were selected, in which the density and distribution of observational data were considered sufficient to provide effective comparison to model products. All of these study regions are affected by transport and deposition of mineral dust, which alters the deposition of N, due to uptake of nitrogen oxides (NOx) on mineral surfaces. Assessment of the impacts of atmospheric N deposition on the ocean requires atmospheric chemical transport models to report deposition fluxes; however, these fluxes cannot be measured over the ocean. Modelling studies such as the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP), which only report deposition flux, are therefore very difficult to validate for dry deposition. Here, the available observational data were averaged over a 5° × 5° grid and compared to ACCMIP dry deposition fluxes (ModDep) of oxidised N (NOy) and reduced N (NHx) and to the following parameters from the Tracer Model 4 of the Environmental Chemical Processes Laboratory (TM4): ModDep for NOy, NHx and particulate NO3- and NH4+, and surface-level particulate NO3- and NH4+ concentrations. As a model ensemble, ACCMIP can be expected to be more robust than

  15. A MIXED BOOLEAN AND DEPOSIT MODEL FOR THE MODELING OF METAL PIGMENTS IN PAINT LAYERS

    Directory of Open Access Journals (Sweden)

    Enguerrand Couka

    2015-06-01

    Full Text Available Pigments made of metal particles of around 10 µm or 20 µm produce sparkling effects in paints, due to the specular reflection that occurs at this scale. Overall, the optical aspect of paints depend on the density and distribution in space of the particles. In this work, we model the dispersion of metal particles of size up to 50 µm, visible to the eyes, in a paint layer. Making use of optical and scanning electron microscopy (SEM images, we estimate the dispersion of particles in terms of correlation functions. Particles tend to aggregate into clusters, as shown by the presence of oscillations in the correlation functions. Furthermore, the volume fraction of particles is non-uniform in space. It is highest in the middle of the layer and lowest near the surfaces of the layer. To model this microstructure, we explore two models. The first one is a deposit model where particles fall onto a surface. It is unable to reproduce the observed measurements. We then introduce a "stack" model where clusters are first modeled by a 2D Poisson point process, and a bi-directional deposit model is used to implant particles in each cluster. Good agreement is found with respect to SEM images in terms of correlation functions and density of particles along the layer height.

  16. Distributed Modeling of soil erosion and deposition affected by buffer strips

    DEFF Research Database (Denmark)

    Khademalrasoul, Ataalah; Heckrath, Goswin Johann; Iversen, Bo Vangsø

    and dimension of buffer zones in the landscape can be optimized by means of spatially distributed erosion and deposition modeling. During the period from 1998 to 2000 field campaigns were done on a range of agricultural land in Denmark. On 21 slope units and adjacent buffer zones, rill erosion and deposition...

  17. Modeling and sensitivity analysis of transport and deposition of radionuclides from the Fukushima Daiichi accident

    Directory of Open Access Journals (Sweden)

    X. Hu

    2014-01-01

    Full Text Available The atmospheric transport and ground deposition of radioactive isotopes 131I and 137Cs during and after the Fukushima Daiichi Nuclear Power Plant (FDNPP accident (March 2011 are investigated using the Weather Research and Forecasting/Chemistry (WRF/Chem model. The aim is to assess the skill of WRF in simulating these processes and the sensitivity of the model's performance to various parameterizations of unresolved physics. The WRF/Chem model is first upgraded by implementing a radioactive decay term into the advection-diffusion solver and adding three parameterizations for dry deposition and two parameterizations for wet deposition. Different microphysics and horizontal turbulent diffusion schemes are then tested for their ability to reproduce observed meteorological conditions. Subsequently, the influence on the simulated transport and deposition of the characteristics of the emission source, including the emission rate, the gas partitioning of 131I and the size distribution of 137Cs, is examined. The results show that the model can predict the wind fields and rainfall realistically. The ground deposition of the radionuclides can also potentially be captured well but it is very sensitive to the emission characterization. It is found that the total deposition is most influenced by the emission rate for both 131I and 137Cs; while it is less sensitive to the dry deposition parameterizations. Moreover, for 131I, the deposition is also sensitive to the microphysics schemes, the horizontal diffusion schemes, gas partitioning and wet deposition parameterizations; while for 137Cs, the deposition is very sensitive to the microphysics schemes and wet deposition parameterizations, and it is also sensitive to the horizontal diffusion schemes and the size distribution.

  18. Towards a CFD-based mechanistic deposit formation model for straw-fired boilers

    DEFF Research Database (Denmark)

    Kær, Søren Knudsen; Rosendahl, Lasse Aistrup; Baxter, L.L.

    2006-01-01

    in the reminder of the paper. The growth of deposits on furnace walls and super heater tubes is treated including the impact on heat transfer rates determined by the CFD code. Based on the commercial CFD code FLUENTe, the overall model is fully implemented through the User Defined Functions. The model...... is configured entirely through a graphical user interface integrated in the standard FLUENTe interface. The model considers fine and coarse mode ash deposition and sticking mechanisms for the complete deposit growth, as well as an influence on the local boundary conditions for heat transfer due to thermal...

  19. A Mathematical Model for Non-monotonic Deposition Profiles in Deep Bed Filtration Systems

    DEFF Research Database (Denmark)

    Yuan, Hao; Shapiro, Alexander

    2011-01-01

    A mathematical model for suspension/colloid flow in porous media and non-monotonic deposition is proposed. It accounts for the migration of particles associated with the pore walls via the second energy minimum (surface associated phase). The surface associated phase migration is characterized...... by advection and diffusion/dispersion. The proposed model is able to produce a nonmonotonic deposition profile. A set of methods for estimating the modeling parameters is provided in the case of minimal particle release. The estimation can be easily performed with available experimental information...... condition for producing non-monotonic deposition profiles. The described physics by the additional equation may be different in different experimental settings....

  20. A new two-phase erosion-deposition model for mass flows

    Science.gov (United States)

    Pudasaini, Shiva P.; Fischer, Jan-Thomas

    2016-04-01

    Erosion, entrainment and deposition are complex and dominant, but yet poorly understood, mechanical processes in geophysical mass flows. Here, we propose a novel, two-phase, erosion-deposition model capable of adequately describing these complex phenomena commonly observed in landslides, avalanches, debris flows and bedload transports. The model enhances an existing general two-phase mass flow model (Pudasaini, 2012) by introducing a two-phase variably saturated erodible basal morphology. The adaptive basal morphology allows for the evolution of erosion-deposition-depths, incorporating the inherent physical process and rheological changes of the flowing mixture. With rigorous derivation, we show that appropriate incorporation of the mass and momentum productions and losses in conservative model formulation is essential for the physically correct and mathematically consistent description of erosion-entrainment-deposition processes. Simulation indicates a sharp erosion-front and steady-state-rear erosion depth. The model appropriately captures the emergence and propagation of complex frontal surge dynamics associated with the frontal ambient-drag which is a new hypothesis associated with erosion. The novel enhanced real two-phase model also allows for simulating fluid-run-off during the deposition process. The model resembles laboratory experiments for particle-fluid mixture flows and reveals some major aspects of the mechanics associated with erosion, entrainment and deposition. Reference: Shiva P. Pudasaini (2012): A general two-phase debris flow model. J. Geophys. Res., 117, F03010, doi: 10.1029/2011JF002186.

  1. Improved Formulations for Air-Surface Exchanges Related to National Security Needs: Dry Deposition Models

    Energy Technology Data Exchange (ETDEWEB)

    Droppo, James G.

    2006-07-01

    The Department of Homeland Security and others rely on results from atmospheric dispersion models for threat evaluation, event management, and post-event analyses. The ability to simulate dry deposition rates is a crucial part of our emergency preparedness capabilities. Deposited materials pose potential hazards from radioactive shine, inhalation, and ingestion pathways. A reliable characterization of these potential exposures is critical for management and mitigation of these hazards. A review of the current status of dry deposition formulations used in these atmospheric dispersion models was conducted. The formulations for dry deposition of particulate materials from am event such as a radiological attack involving a Radiological Detonation Device (RDD) is considered. The results of this effort are applicable to current emergency preparedness capabilities such as are deployed in the Interagency Modeling and Atmospheric Assessment Center (IMAAC), other similar national/regional emergency response systems, and standalone emergency response models. The review concludes that dry deposition formulations need to consider the full range of particle sizes including: 1) the accumulation mode range (0.1 to 1 micron diameter) and its minimum in deposition velocity, 2) smaller particles (less than .01 micron diameter) deposited mainly by molecular diffusion, 3) 10 to 50 micron diameter particles deposited mainly by impaction and gravitational settling, and 4) larger particles (greater than 100 micron diameter) deposited mainly by gravitational settling. The effects of the local turbulence intensity, particle characteristics, and surface element properties must also be addressed in the formulations. Specific areas for improvements in the dry deposition formulations are 1) capability of simulating near-field dry deposition patterns, 2) capability of addressing the full range of potential particle properties, 3) incorporation of particle surface retention/rebound processes, and

  2. CFD modeling of particle dispersion and deposition coupled with particle dynamical models in a ventilated room

    Science.gov (United States)

    Xu, Guangping; Wang, Jiasong

    2017-10-01

    Two dynamical models, the traditional method of moments coupled model (MCM) and Taylor-series expansion method of moments coupled model (TECM) for particle dispersion distribution and gravitation deposition are developed in three-dimensional ventilated environments. The turbulent airflow field is modeled with the renormalization group (RNG) k-ε turbulence model. The particle number concentration distribution in a ventilated room is obtained by solving the population balance equation coupled with the airflow field. The coupled dynamical models are validated using experimental data. A good agreement between the numerical and experimental results can be achieved. Both models have a similar characteristic for the spatial distribution of particle concentration. Relative to the MCM model, the TECM model presents a more close result to the experimental data. The vortex structure existed in the air flow makes a relative large concentration difference at the center region and results in a spatial non-uniformity of concentration field. With larger inlet velocity, the mixing level of particles in the room is more uniform. In general, the new dynamical models coupled with computational fluid dynamics (CFD) in the current study provide a reasonable and accurate method for the temporal and spatial evolution of particles effected by the deposition and dispersion behaviors. In addition, two ventilation modes with different inlet velocities are proceeded to study the effect on the particle evolution. The results show that with the ceiling ventilation mode (CVM), the particles can be better mixed and the concentration level is also higher. On the contrast, with the side ceiling ventilation mode (SVM), the particle concentration has an obvious stratified distribution with a relative lower level and it makes a much better environment condition to the human exposure.

  3. Comparison of simulated forest soil response to acid deposition reduction with two models of differing complexity

    Directory of Open Access Journals (Sweden)

    J. P. Mol-Dijkstra

    1998-01-01

    Full Text Available Great effort has been dedicated to developing soil acidification models for use on different scales. This paper focuses on the changes in model performance of a site scale soil acidification model (NUCSAM and a national to European scale soil acidification model (SMART 2. This was done to gain insight into the effects of model simplification. Because these models aim to predict the response to reduction in acid deposition, these models must be tested under such circumstances. A straightforward calibration and validation of the regional model, however, is hampered by lack of observations over a sufficient time period. Consequently, NUCSAM was calibrated and validated to a manipulation experiment involving reduced acid deposition in the Speuld forest, the Netherlands. SMART 2 was then used with calibrated input data from NUCSAM. The acid deposition was excluded by a roof beneath the canopy. The roofed area consists of a plot receiving pristine deposition levels of nitrogen (N and sulphur (S and a control plot receiving ambient deposition. NUCSAM was calibrated on the ambient plot, followed by a validation of both models on the pristine plot. Both models predicted soil solution concentrations within the 95% confidence interval of the observed responses for both the ambient plot and the pristine plot at 90 cm depth. Despite the large seasonal and vertical (spatial variation in soil solution chemistry, the trends in annual flux- weighted soil solution chemistry, as predicted by SMART 2 and NUCSAM, corresponded well.The annual leaching fluxes below the root zone were also similar although differences exist for the topsoil. For the topsoil, NUCSAM simulated the nutrients and acid related constituents better than SMART 2. Both models overestimated the ammonium (NH4 concentration at 10 cm depth. SMART 2 underestimated calcium and magnesium (BC2+ concentration at 10 depth, whereas NUCSAM overestimated BC2+ concentration at 90 cm depth. NUCSAM predicted

  4. Sand deposit-detecting method and its application in model test of sand flow

    Institute of Scientific and Technical Information of China (English)

    黎伟; 房营光; 莫海鸿; 谷任国; 陈俊生

    2013-01-01

    Against the background of the sand-flow foundation treatment engineering of Guangzhou Zhoutouzui variable cross-section immersed tunnel, a kind of sand deposit-detecting method was devised on the basis of full-scale model test of sand-flow method. The real-time data of sand-deposit height and radius were obtained by the self-developed sand-deposit detectors. The test results show that the detecting method is simple and has high precision. In the use of sand-flow method, the sand-carrying capability of fluid is limited, and sand particles are all transported to the sand-deposit periphery through crater, gap and chutes after the sand deposit formed. The diffusion range of the particles outside the sand-deposit does not exceed 2.0 m. Severe sorting of sand particles is not observed because of the unique oblique-layered depositing process. The temporal and spatial distributions of gap and chutes directly affect the sand-deposit expansion, and the expansion trend of the average sand-deposit radius accords with quadratic time-history curve.

  5. Osseointegration of porous titanium implants with and without electrochemically deposited DCPD coating in an ovine model

    National Research Council Canada - National Science Library

    Chen, Dong; Bertollo, Nicky; Lau, Abe; Taki, Naoya; Nishino, Tomofumi; Mishima, Hajime; Kawamura, Haruo; Walsh, William R

    2011-01-01

    .... In this study the effects of an electrochemically-deposited dicalcium phosphate dihydrate (DCPD) coating of a porous substrate on implant osseointegration was assessed using a standard uncemented implant fixation model in sheep...

  6. The respiratory tract deposition model proposed by the ICRP Task Group

    Energy Technology Data Exchange (ETDEWEB)

    James, A.C.; Briant, J.K. (Pacific Northwest Lab., Richland, WA (USA)); Stahlhofen, W.; Rudolf, G. (Gesellschaft fuer Strahlen- und Umweltforschung mbH Muenchen, Frankfurt am Main (Germany, F.R.). Abt. fuer Biophysikalische Strahlenforschung); Egan, M.J.; Nixon, W. (AEA Safety and Reliability, Culcheth (UK)); Gehr, P. (Bern Univ. (Switzerland). Anatomisches Inst.)

    1990-11-01

    The Task Group has developed a new model of the deposition of inhaled aerosols in each anatomical region of the respiratory tract. The model is used to evaluate the fraction of airborne activity that is deposited in respiratory regions having distinct retention characteristics and clearance pathways: the anterior nares, the extrathoracic airways of the naso- and oropharynx and larynx, the bronchi, the bronchioles, and the alveolated airways of the lung. Drawn from experimental data on total and regional deposition in human subjects, the model is based on extrapolation of these data by means of a detailed theoretical model of aerosol transport and deposition within the lung. The Task Group model applies to all practical conditions, and for aerosol particles and vapors from atomic size up to very coarse aerosols with an activity median aerodynamic diameter of 100 {mu}m. The model is designed to predict regional deposition in different subjects, including adults of either sex, children of various ages, and infants, and also to account for anatomical differences among Caucasian and non-Caucasian subjects. The Task Group model represents aerosol inhalability and regional deposition in different subjects by algebraic expressions of aerosol size, breathing rates, standard lung volumes, and scaling factors for airway dimensions. 35 refs., 13 figs., 2 tabs.

  7. Iron deposition is independent of cellular inflammation in a cerebral model of multiple sclerosis

    OpenAIRE

    Lee Phil; Choi In-Young; Wang Wen-Tung; Rohr Aaron M; Williams Rachel; Berman Nancy EJ; Lynch Sharon G; LeVine Steven M

    2011-01-01

    Abstract Background Perivenular inflammation is a common early pathological feature in multiple sclerosis (MS). A recent hypothesis stated that CNS inflammation is induced by perivenular iron deposits that occur in response to altered blood flow in MS subjects. In order to evaluate this hypothesis, an animal model was developed, called cerebral experimental autoimmune encephalomyelitis (cEAE), which presents with CNS perivascular iron deposits. This model was used to investigate the relations...

  8. Predictive models for deposition of inhaled diesel exhaust particles in humans and laboratory species

    Energy Technology Data Exchange (ETDEWEB)

    Yu, C.P.; Xu, G.B. (State Univ. of New York at Buffalo, Amherst (USA))

    1987-01-01

    Mathematical and computer models of the respiratory tracts of human beings and of laboratory animals (rats, hamsters, guinea pigs) were used to estimate the deposition patterns of inhaled diesel exhaust particles from automobile emissions. Our goal was to be able to predict the relation between exposure to diesel exhaust particles and the deposition of these particles in the lungs of humans of various ages. Diesel exhaust particles are aggregates with a mass median aerodynamic diameter of approximately 0.2 micron. Their actual size depends on the conditions under which they are generated. Using an appropriate particle model, we derived mathematical expressions that describe the effects of diffusion, sedimentation, impaction, and interception on the deposition of these particles. Because of their small size, we found that most diesel exhaust particles deposited through diffusion, and that the role of the other mechanisms was minor. Anatomical models of the human lung from birth to adulthood, as well as models of the lungs of laboratory species were formulated mathematically using available morphometric data. We used these lung models, together with the corresponding ventilation conditions of each species, to calculate deposition of diesel exhaust particles in the lungs. Under normal breathing conditions, we calculated that 7 to 13 percent (depending on particle size) of inhaled diesel exhaust particles deposit in the alveolar region of the adult human lung. Although the breathing mode (nose or mouth breathing) did not appear to affect alveolar deposition, increasing the minute ventilation increased alveolar deposition significantly. The calculated deposition patterns for diesel exhaust particles in younger humans (under age 25) were similar.

  9. A fragment-cloud model for asteroid breakup and atmospheric energy deposition

    Science.gov (United States)

    Wheeler, Lorien F.; Register, Paul J.; Mathias, Donovan L.

    2017-10-01

    As asteroids break up during atmospheric entry, they deposit energy that can be seen in flares of light and, if substantial enough, can produce damaging blast waves. Analytic models of asteroid breakup and energy deposition processes are needed in order to assess potential airburst hazards, and to enable inferences about asteroid properties or breakup physics to be made from comparisons with observed meteors. This paper presents a fragment-cloud model (FCM) that is able to represent a broad range of breakup behaviors and the resulting variations in energy deposition in ways that make it a useful tool for both applications. Sensitivity studies are performed to investigate how variations the model's fragmentation parameters affect the energy deposition results for asteroids 20-500 m in diameter. The model is also used to match observational data from the Chelyabinsk meteor and infer potential asteroid properties and representative modeling parameter ranges. Results illustrate how the model's fragmentation parameters can introduce different energy deposition features, and how much they affect the overall energy deposition rates, magnitudes, and altitudes that would drive ground damage for risk assessment applications.

  10. Development of a Zealand white rabbit deposition model to study inhalation anthrax

    Energy Technology Data Exchange (ETDEWEB)

    Asgharian, Bahman; Price, Owen; Kabilan, Senthil; Jacob, Richard E.; Einstein, Daniel R.; Kuprat, Andrew P.; Corley, Richard A.

    2016-01-28

    Despite using rabbits in several inhalation exposure experiments to study diseases such as anthrax, there is a lack of understanding regarding deposition characteristics and fate of inhaled particles (bio-aerosols and viruses) in the respiratory tracts of rabbits. Such information allows dosimetric extrapolation to humans to inform human outcomes. The lung geometry of the New Zealand white rabbit (referred to simply as rabbits throughout the article) was constructed using recently acquired scanned images of the conducting airways of rabbits and available information on its acinar region. In addition, functional relationships were developed for the lung and breathing parameters of rabbits as a function of body weight. The lung geometry and breathing parameters were used to extend the existing deposition model for humans and several other species to rabbits. Evaluation of the deposition model for rabbits was made by comparing predictions with available measurements in the literature. Deposition predictions in the lungs of rabbits indicated smaller deposition fractions compared to those found in humans across various particle diameter ranges. The application of the deposition model for rabbits was demonstrated by extrapolating deposition predictions in rabbits to find equivalent human exposure concentrations assuming the same dose-response relationship between the two species. Human equivalent exposure concentration levels were found to be much smaller than those for rabbits.

  11. Development of a Zealand white rabbit deposition model to study inhalation anthrax.

    Science.gov (United States)

    Asgharian, Bahman; Price, Owen; Kabilan, Senthil; Jacob, Richard E; Einstein, Daniel R; Kuprat, Andrew P; Corley, Richard A

    2016-01-01

    Despite using rabbits in several inhalation exposure experiments to study diseases such as anthrax, there is a lack of understanding regarding deposition characteristics and fate of inhaled particles (bio-aerosols and viruses) in the respiratory tracts of rabbits. Such information allows dosimetric extrapolation to humans to inform human outcomes. The lung geometry of the New Zealand white rabbit (referred to simply as rabbits throughout the article) was constructed using recently acquired scanned images of the conducting airways of rabbits and available information on its acinar region. In addition, functional relationships were developed for the lung and breathing parameters of rabbits as a function of body weight. The lung geometry and breathing parameters were used to extend the existing deposition model for humans and several other species to rabbits. Evaluation of the deposition model for rabbits was made by comparing predictions with available measurements in the literature. Deposition predictions in the lungs of rabbits indicated smaller deposition fractions compared to those found in humans across various particle diameter ranges. The application of the deposition model for rabbits was demonstrated by extrapolating deposition predictions in rabbits to find equivalent human exposure concentrations assuming the same dose-response relationship between the two species. Human equivalent exposure concentration levels were found to be much smaller than those for rabbits.

  12. Modelling of deposited black carbon with the Lagrangian particle dispersion model FLEXPART in backward mode

    Science.gov (United States)

    Eckhardt, Sabine; Cassiani, Massimo; Sollum, Espen; Evangeliou, Nikolaos; Stohl, Andreas

    2017-04-01

    Lagrangian particle dispersion models are popular tools to simulate the dispersion of trace gases, aerosols or radionuclides in the atmosphere. If they consider only linear processes, they are self-adjoint, i.e., they can be run forward and backward in time without changes to the source code. Backward simulations are very efficient if the number of receptors is smaller than the number of sources, and they are well suited to establish source-receptor (s-r) relationships for measurements of various trace substances in air. However, not only the air concentrations are of interest, but also the s-r relationships for deposition are important for interpreting measurement data. E.g., deposition of dust is measured regularly in ice cores, partly also as a proxy to understand changes in aridity in dust source regions. Contamination of snow by black carbon (BC) aerosols has recently become a hot topic because of the potential impact of BC on the snow albedo. To interpret such deposition measurements and study the sources of the deposited substance, it would be convenient to have a model that is capable of efficient s-r relationship calculations for such types of measurements. We present here the implementation of such an algorithm into the Lagrangian particle dispersion model FLEXPART, and test the new scheme by comparisons with results from forward simulations as well as comparisons with measurements. As an application, we analyse source regions for elemental carbon (EC) measured in snow over the years 2014-2016 in the Russian Arctic. Simulations using an annual constant black carbon inventory based on ECLIPSE V5 and GFED (Global Fire Emission Database), have been performed. The meteorological data used in the simulation are 3 hourly operational data from the European Centre of Medium Range Weather Forecast (ECMWF) on a 1 degree grid resolution and 138 vertical levels. The model is able to capture very well the measured concentrations. Gas flaring and residential

  13. Sediment-hosted gold deposits of the world: database and grade and tonnage models

    Science.gov (United States)

    Berger, Vladimir I.; Mosier, Dan L.; Bliss, James D.; Moring, Barry C.

    2014-01-01

    All sediment-hosted gold deposits (as a single population) share one characteristic—they all have disseminated micron-sized invisible gold in sedimentary rocks. Sediment-hosted gold deposits are recognized in the Great Basin province of the western United States and in China along with a few recognized deposits in Indonesia, Iran, and Malaysia. Three new grade and tonnage models for sediment-hosted gold deposits are presented in this paper: (1) a general sediment-hosted gold type model, (2) a Carlin subtype model, and (3) a Chinese subtype model. These models are based on grade and tonnage data from a database compilation of 118 sediment-hosted gold deposits including a total of 123 global deposits. The new general grade and tonnage model for sediment-hosted gold deposits (n=118) has a median tonnage of 5.7 million metric tonnes (Mt) and a gold grade of 2.9 grams per tonne (g/t). This new grade and tonnage model is remarkable in that the estimated parameters of the resulting grade and tonnage distributions are comparable to the previous model of Mosier and others (1992). A notable change is in the reporting of silver in more than 10 percent of deposits; moreover, the previous model had not considered deposits in China. From this general grade and tonnage model, two significantly different subtypes of sediment-hosted gold deposits are differentiated: Carlin and Chinese. The Carlin subtype includes 88 deposits in the western United States, Indonesia, Iran, and Malaysia, with median tonnage and grade of 7.1 Mt and 2.0 g/t Au, respectively. The silver grade is 0.78 g/t Ag for the 10th percentile of deposits. The Chinese subtype represents 30 deposits in China, with a median tonnage of 3.9 Mt and medium grade of 4.6 g/t Au. Important differences are recognized in the mineralogy and alteration of the two sediment-hosted gold subtypes such as: increased sulfide minerals in the Chinese subtype and decalcification alteration dominant in the Carlin type. We therefore

  14. Modeling the global atmospheric transport and deposition of mercury to the Great Lakes

    Directory of Open Access Journals (Sweden)

    Mark D. Cohen

    2016-07-01

    Full Text Available Abstract Mercury contamination in the Great Lakes continues to have important public health and wildlife ecotoxicology impacts, and atmospheric deposition is a significant ongoing loading pathway. The objective of this study was to estimate the amount and source-attribution for atmospheric mercury deposition to each lake, information needed to prioritize amelioration efforts. A new global, Eulerian version of the HYSPLIT-Hg model was used to simulate the 2005 global atmospheric transport and deposition of mercury to the Great Lakes. In addition to the base case, 10 alternative model configurations were used to examine sensitivity to uncertainties in atmospheric mercury chemistry and surface exchange. A novel atmospheric lifetime analysis was used to characterize fate and transport processes within the model. Model-estimated wet deposition and atmospheric concentrations of gaseous elemental mercury (Hg(0 were generally within ∼10% of measurements in the Great Lakes region. The model overestimated non-Hg(0 concentrations by a factor of 2–3, similar to other modeling studies. Potential reasons for this disagreement include model inaccuracies, differences in atmospheric Hg fractions being compared, and the measurements being biased low. Lake Erie, downwind of significant local/regional emissions sources, was estimated by the model to be the most impacted by direct anthropogenic emissions (58% of the base case total deposition, while Lake Superior, with the fewest upwind local/regional sources, was the least impacted (27%. The U.S. was the largest national contributor, followed by China, contributing 25% and 6%, respectively, on average, for the Great Lakes. The contribution of U.S. direct anthropogenic emissions to total mercury deposition varied between 46% for the base case (with a range of 24–51% over all model configurations for Lake Erie and 11% (range 6–13% for Lake Superior. These results illustrate the importance of atmospheric

  15. Computational fluid dynamics modeling of Bacillus anthracis spore deposition in rabbit and human respiratory airways

    Energy Technology Data Exchange (ETDEWEB)

    Kabilan, S.; Suffield, S. R.; Recknagle, K. P.; Jacob, R. E.; Einstein, D. R.; Kuprat, A. P.; Carson, J. P.; Colby, S. M.; Saunders, J. H.; Hines, S. A.; Teeguarden, J. G.; Straub, T. M.; Moe, M.; Taft, S. C.; Corley, R. A.

    2016-09-01

    Three-dimensional computational fluid dynamics and Lagrangian particle deposition models were developed to compare the deposition of aerosolized Bacillus anthracis spores in the respiratory airways of a human with that of the rabbit, a species commonly used in the study of anthrax disease. The respiratory airway geometries for each species were derived respectively from computed tomography (CT) and µCT images. Both models encompassed airways that extended from the external nose to the lung with a total of 272 outlets in the human model and 2878 outlets in the rabbit model. All simulations of spore deposition were conducted under transient, inhalation–exhalation breathing conditions using average species-specific minute volumes. Two different exposure scenarios were modeled in the rabbit based upon experimental inhalation studies. For comparison, human simulations were conducted at the highest exposure concentration used during the rabbit experimental exposures. Results demonstrated that regional spore deposition patterns were sensitive to airway geometry and ventilation profiles. Due to the complex airway geometries in the rabbit nose, higher spore deposition efficiency was predicted in the nasal sinus compared to the human at the same air concentration of anthrax spores. In contrast, higher spore deposition was predicted in the lower conducting airways of the human compared to the rabbit lung due to differences in airway branching pattern. This information can be used to refine published and ongoing biokinetic models of inhalation anthrax spore exposures, which currently estimate deposited spore concentrations based solely upon exposure concentrations and inhaled doses that do not factor in species-specific anatomy and physiology for deposition.

  16. Modelling unfrozen water content in a silty clay permafrost deposit

    DEFF Research Database (Denmark)

    Agergaard, Frederik Ancker; Ingeman-Nielsen, Thomas

    2011-01-01

    The mechanical properties of both unfrozen soils and permafrost soils are influenced by the amount of unfrozen water in the pore space. When dealing with foundation engineering in permafrost areas it is essential to estimate the unfrozen water content (wu). This paper deals with the establishing...... of a calibration equation for determining the unfrozen water content of a Greenlandic silty clay permafrost deposit. Calibration experiments have been conducted for water contents in the interval 0 – 10 % at both 5 °C and 22 °C. Calibration equations are verified against permittivity data from a permafrost core...... of material properties similar to the test soil. The calibration for 5°C is seen to make a good fit to the permafrost core data. Further experiments should be performed in order to extend the range of water contents tested and hence the range of validity of the calibration equation....

  17. Iron deposition is independent of cellular inflammation in a cerebral model of multiple sclerosis

    Directory of Open Access Journals (Sweden)

    Lee Phil

    2011-06-01

    Full Text Available Abstract Background Perivenular inflammation is a common early pathological feature in multiple sclerosis (MS. A recent hypothesis stated that CNS inflammation is induced by perivenular iron deposits that occur in response to altered blood flow in MS subjects. In order to evaluate this hypothesis, an animal model was developed, called cerebral experimental autoimmune encephalomyelitis (cEAE, which presents with CNS perivascular iron deposits. This model was used to investigate the relationship of iron deposition to inflammation. Methods In order to generate cEAE, mice were given an encephalitogen injection followed by a stereotactic intracerebral injection of TNF-α and IFN-γ. Control animals received encephalitogen followed by an intracerebral injection of saline, or no encephalitogen plus an intracerebral injection of saline or cytokines. Laser Doppler was used to measure cerebral blood flow. MRI and iron histochemistry were used to localize iron deposits. Additional histological procedures were used to localize inflammatory cell infiltrates, microgliosis and astrogliosis. Results Doppler analysis revealed that cEAE mice had a reduction in cerebral blood flow compared to controls. MRI revealed T2 hypointense areas in cEAE animals that spatially correlated with iron deposition around vessels and at some sites of inflammation as detected by iron histochemistry. Vessels with associated iron deposits were distributed across both hemispheres. Mice with cEAE had more iron-labeled vessels compared to controls, but these vessels were not commonly associated with inflammatory cell infiltrates. Some iron-laden vessels had associated microgliosis that was above the background microglial response, and iron deposits were observed within reactive microglia. Vessels with associated astrogliosis were more commonly observed without colocalization of iron deposits. Conclusion The findings indicate that iron deposition around vessels can occur independently of

  18. Hydromechanical modelling with application in sealing for underground waste deposition

    Energy Technology Data Exchange (ETDEWEB)

    Hasal, Martin, E-mail: martin.hasal@vsb.cz; Michalec, Zdeněk; Blaheta, Radim [Institute of Geonics AS CR, Studentska 1768, 70800 Ostrava-Poruba (Czech Republic)

    2015-03-10

    Hydro-mechanical models appear in simulation of many environmental problems related to construction of engineering barriers for contaminant spreading. The presented work aims in modelling bentonite-sand barriers, which can be used for nuclear waste isolation and similar problems. Particularly, we use hydro-mechanical model coupling unsaturated flow and (nonlinear) elasticity, implement such model in COMSOL software and show application in simulation of an infiltration test (2D axisymmetric model) and the SEALEX Water test WT1 experiment (3D model). Finally, we discuss the needs and possibilities of parallel high performance computing.

  19. Simulation of nitrogen deposition in the North China Plain by the FRAME model

    Directory of Open Access Journals (Sweden)

    Y. Zhang

    2011-08-01

    Full Text Available Simulation of atmospheric nitrogen (N deposition in the North China Plain (NCP at high resolution, 5 × 5 km2, was conducted for the first time by the Fine Resolution Atmospheric Multi-pollutant Exchange (FRAME model. The total N deposition budget was 1481 Gg in this region, with 77 % from reduced N and 23 % from oxidized N, and the annual deposition rate (47 kg ha−1 was much higher than previously reported values for other parts of the world such as the UK (13 kg ha−1, Poland (7.3 kg ha−1 and EU27 (8.6 kg ha−1. The exported N budget (1981 Gg was much higher than the imported N budget (584 Gg, suggesting that the NCP is an important net emission source of N pollutants. Seven provinces in the region contributed N deposition budgets that were proportional to their area ratios. The calculated spatial distributions of N deposition displayed high rates of reduced N deposition in the south and of oxidized N deposition in the eastern part. The N deposition exceeded an upper limit of 30 kg N ha−1 for natural ecosystems over more than 90 % of the region, resulting in terrestrial ecosystem deterioration, impaired air quality and coastal eutrophication not only in the NCP itself but also in surrounding areas including the Bohai Sea and the Yellow Sea.

  20. Modelled transport and deposition of sulphur over Southern Africa

    CSIR Research Space (South Africa)

    Zunckel, M

    2000-01-01

    Full Text Available , developed at the Swedish Meteorological and Hydrological Institute (SMHI), and compared with an inferential model driven by measured input quantities. Modelled SO, concentrations on the central highveld mostly range between 10 and 50 ppb, exceeding 50 ppb...

  1. The giant Jiaodong gold province: The key to a unified model for orogenic gold deposits?

    Directory of Open Access Journals (Sweden)

    David I. Groves

    2016-05-01

    Full Text Available Although the term orogenic gold deposit has been widely accepted for all gold-only lode-gold deposits, with the exception of Carlin-type deposits and rare intrusion-related gold systems, there has been continuing debate on their genesis. Early syngenetic models and hydrothermal models dominated by meteoric fluids are now clearly unacceptable. Magmatic-hydrothermal models fail to explain the genesis of orogenic gold deposits because of the lack of consistent spatially – associated granitic intrusions and inconsistent temporal relationships. The most plausible, and widely accepted, models involve metamorphic fluids, but the source of these fluids is hotly debated. Sources within deeper segments of the supracrustal successions hosting the deposits, the underlying continental crust, and subducted oceanic lithosphere and its overlying sediment wedge all have their proponents. The orogenic gold deposits of the giant Jiaodong gold province of China, in the delaminated North China Craton, contain ca. 120 Ma gold deposits in Precambrian crust that was metamorphosed over 2000 million years prior to gold mineralization. The only realistic source of fluid and gold is a subducted oceanic slab with its overlying sulfide-rich sedimentary package, or the associated mantle wedge. This could be viewed as an exception to a general metamorphic model where orogenic gold has been derived during greenschist- to amphibolite-facies metamorphism of supracrustal rocks: basaltic rocks in the Precambrian and sedimentary rocks in the Phanerozoic. Alternatively, if a holistic view is taken, Jiaodong can be considered the key orogenic gold province for a unified model in which gold is derived from late-orogenic metamorphic devolatilization of stalled subduction slabs and oceanic sediments throughout Earth history. The latter model satisfies all geological, geochronological, isotopic and geochemical constraints but the precise mechanisms of auriferous fluid release, like many

  2. The giant Jiaodong gold province:The key to a unified model for orogenic gold deposits?

    Institute of Scientific and Technical Information of China (English)

    David I. Groves; M. Santosh

    2016-01-01

    Although the term orogenic gold deposit has been widely accepted for all gold-only lode-gold deposits, with the exception of Carlin-type deposits and rare intrusion-related gold systems, there has been continuing debate on their genesis. Early syngenetic models and hydrothermal models dominated by meteoric fluids are now clearly unacceptable. Magmatic-hydrothermal models fail to explain the genesis of orogenic gold deposits because of the lack of consistent spatially e associated granitic intrusions and inconsistent temporal relationships. The most plausible, and widely accepted, models involve meta-morphic fluids, but the source of these fluids is hotly debated. Sources within deeper segments of the supracrustal successions hosting the deposits, the underlying continental crust, and subducted oceanic lithosphere and its overlying sediment wedge all have their proponents. The orogenic gold deposits of the giant Jiaodong gold province of China, in the delaminated North China Craton, contain ca. 120 Ma gold deposits in Precambrian crust that was metamorphosed over 2000 million years prior to gold mineralization. The only realistic source of fluid and gold is a subducted oceanic slab with its overlying sulfide-rich sedimentary package, or the associated mantle wedge. This could be viewed as an exception to a general metamorphic model where orogenic gold has been derived during greenschist- to amphibolite-facies metamorphism of supracrustal rocks: basaltic rocks in the Precambrian and sedi-mentary rocks in the Phanerozoic. Alternatively, if a holistic view is taken, Jiaodong can be considered the key orogenic gold province for a unified model in which gold is derived from late-orogenic metamorphic devolatilization of stalled subduction slabs and oceanic sediments throughout Earth history. The latter model satisfies all geological, geochronological, isotopic and geochemical constraints but the precise mechanisms of auriferous fluid release, like many other subduction

  3. Modelling and optimization of film thickness variation for plasma enhanced chemical vapour deposition processes

    Science.gov (United States)

    Waddell, Ewan; Gibson, Des; Lin, Li; Fu, Xiuhua

    2011-09-01

    This paper describes a method for modelling film thickness variation across the deposition area within plasma enhanced chemical vapour deposition (PECVD) processes. The model enables identification and optimization of film thickness uniformity sensitivities to electrode configuration, temperature, deposition system design and gas flow distribution. PECVD deposition utilizes a co-planar 300mm diameter electrodes with separate RF power matching to each electrode. The system has capability to adjust electrode separation and electrode temperature as parameters to optimize uniformity. Vacuum is achieved using dry pumping with real time control of butterfly valve position for active pressure control. Comparison between theory and experiment is provided for PECVD of diamond-like-carbon (DLC) deposition onto flat and curved substrate geometries. The process utilizes butane reactive feedstock with an argon carrier gas. Radiofrequency plasma is used. Deposited film thickness sensitivities to electrode geometry, plasma power density, pressure and gas flow distribution are demonstrated. Use of modelling to optimise film thickness uniformity is demonstrated. Results show DLC uniformity of 0.30% over a 200 mm flat zone diameter within overall electrode diameter of 300mm. Thickness uniformity of 0.75% is demonstrated over a 200mm diameter for a non-conformal substrate geometry. Use of the modelling method for PECVD using metal-organic chemical vapour deposition (MOCVD) feedstock is demonstrated, specifically for deposition of silica films using metal-organic tetraethoxy-silane. Excellent agreement between experimental and theory is demonstrated for conformal and non-conformal geometries. The model is used to explore scalability of PECVD processes and trade-off against film thickness uniformity. Application to MEMS, optical coatings and thin film photovoltaics is discussed.

  4. Analog-experiment analysis of ash-deposition monitoring model of boiler economizers in power plants

    Institute of Scientific and Technical Information of China (English)

    CHENG Wei-liang; XIA Guo-dong; XU Shou-chen

    2005-01-01

    Ash deposition is a form of particulate fouling, and appears usually in boiler economizers. The ash deposition increases capital expenditure, energy input and maintenance costs. An analog experiment for monitoring ash deposition was performed from the analogous objective of a 410 t/h boiler economizer to verify the rationality and reliability of the ash-deposition-monitoring model presented in order to increase the security and economy in economizer running. The analog experiment platform is a tube-shell exchanger that conforms well to the conditions of a self-modeling area. The analog flue gas in the shell side is the heated air mixed with ash,and in the tube side the fluid is water heated by the flue gas. The fluid state in the water side and the flue gas side follows the second self-modeling area. A 4-factor-3 level orthogonal table was used to schedule 9 operation conditions of orthogonal experiment, with the 4 factors being heat power, flue gas velocity, ashes grain diameter and adding ashes quantity while the three levels are different values due to different position classes in every factor. The ash deposition thermal resistances is calculated by the model with the measure parameters of temperature and pressure drop. It shows that the values of the ash deposition thermal resistances gradually increase up to a stable state. And the experimental results are reliable by F testing method at α = 0. 001. Therefore, the model can be applied in online monitoring of ash deposition in a boiler economizers in power plants and provides scientific decision on ash deposition prediction and sootblowing.

  5. Development of a dust deposition forecast model for a mine tailings impoundment

    Science.gov (United States)

    Stovern, Michael

    Wind erosion, transport and deposition of particulate matter can have significant impacts on the environment. It is observed that about 40% of the global land area and 30% of the earth's population lives in semiarid environments which are especially susceptible to wind erosion and airborne transport of contaminants. With the increased desertification caused by land use changes, anthropogenic activities and projected climate change impacts windblown dust will likely become more significant. An important anthropogenic source of windblown dust in this region is associated with mining operations including tailings impoundments. Tailings are especially susceptible to erosion due to their fine grain composition, lack of vegetative coverage and high height compared to the surrounding topography. This study is focused on emissions, dispersion and deposition of windblown dust from the Iron King mine tailings in Dewey-Humboldt, Arizona, a Superfund site. The tailings impoundment is heavily contaminated with lead and arsenic and is located directly adjacent to the town of Dewey-Humboldt. The study includes in situ field measurements, computational fluid dynamic modeling and the development of a windblown dust deposition forecasting model that predicts deposition patterns of dust originating from the tailings impoundment. Two instrumented eddy flux towers were setup on the tailings impoundment to monitor the aeolian and meteorological conditions. The in situ observations were used in conjunction with a computational fluid dynamic (CFD) model to simulate the transport of windblown dust from the mine tailings to the surrounding region. The CFD model simulations include gaseous plume dispersion to simulate the transport of the fine aerosols, while individual particle transport was used to track the trajectories of larger particles and to monitor their deposition locations. The CFD simulations were used to estimate deposition of tailings dust and identify topographic mechanisms

  6. Atmospheric Nitrogen Deposition to the Oceans: Observation- and Model-Based Estimates

    Science.gov (United States)

    Baker, Alex

    2016-04-01

    The reactive nitrogen (Nr) burden of the atmosphere has been increased by a factor of 3-4 by anthropogenic activity since the Industrial Revolution. This has led to large increases in the deposition of nitrate and ammonium to the surface waters of the open ocean, particularly downwind of major human population centres, such as those in North America, Europe and Southeast Asia. In oligotrophic waters, this deposition has the potential to significantly impact marine productivity and the global carbon cycle. Global-scale understanding of N deposition to the oceans is reliant on our ability to produce effective models of reactive nitrogen emission, atmospheric chemistry, transport and deposition (including deposition to the land surface). Over land, N deposition models can be assessed using comparisons to regional monitoring networks of precipitation chemistry (notably those located in North America, Europe and Southeast Asia). No similar datasets exist which would allow observation - model comparisons of wet deposition for the open oceans, because long-term wet deposition records are available for only a handful of remote island sites and rain collection over the open ocean itself is logistically very difficult. In this work we attempt instead to use ~2800 observations of aerosol nitrate and ammonium concentrations, acquired from sampling aboard ships in the period 1995 - 2012, to assess the performance of modelled N deposition fields over the remote ocean. This database is non-uniformly distributed in time and space. We selected three ocean regions (the eastern tropical North Atlantic, the northern Indian Ocean and northwest Pacific) where we considered the density and distribution of observational data is sufficient to provide effective comparison to the model ensemble. Our presentation will focus on the eastern tropical North Atlantic region, which has the best data coverage of the three. We will compare dry deposition fluxes calculated from the observed nitrate

  7. Stochastic modelling of deep magmatic controls on porphyry copper deposit endowment

    Science.gov (United States)

    Chiaradia, Massimo; Caricchi, Luca

    2017-03-01

    Porphyry deposits, our main source of copper and of significant amounts of Mo, Re and Au, form at convergent margins in association with intermediate-felsic magmas. Although it is accepted that copper is transported and precipitated by fluids released by these magmas, the magmatic processes leading to the formation of economic deposits remain elusive. Here we perform Monte Carlo petrological and geochemical modelling to quantitatively link crustal magmatic processes and the geochemical signatures of magmas (i.e., Sr/Y) to the formation of porphyry Cu deposits of different sizes. Our analysis shows that economic deposits (particularly the largest ones) may only form in association with magma accumulated in the lower-middle crust (P > ~0.5 GPa) during ≥2–3 Ma, and subsequently transferred to and degassed in the upper crust over periods of up to ~2.0 Ma. Magma accumulation and evolution at shallower depths (<~0.4 GPa) dramatically reduces the potential of magmatic systems to produce economic deposits. Our modelling also predicts the association of the largest porphyry deposits with a specific Sr/Y interval (~100 ± 50) of the associated magmatic rocks, which is virtually identical to the range measured in giant porphyry copper deposits.

  8. Particles deposition induced by the magnetic field in the coronary bypass graft model

    Energy Technology Data Exchange (ETDEWEB)

    Bernad, Sandor I., E-mail: sandor.bernad@upt.ro [Centre of Advanced Research in Engineering Sciences, Romanian Academy, Timisoara Branch, 300223 Timisoara (Romania); Totorean, Alin F. [Department of Mechanical Machines, Equipment and Transportation, Politehnica University of Timisoara, RO-300222 Timisoara (Romania); Vekas, Ladislau, E-mail: vekas.ladislau@gmail.com [Centre of Advanced Research in Engineering Sciences, Romanian Academy, Timisoara Branch, 300223 Timisoara (Romania)

    2016-03-01

    Bypass graft failures is a complex process starting with intimal hyperplasia development which involve many hemodynamic and biological factors. This work presents experimental results regarding the possibility to use magnetic drug delivery to prevent the development of the intimal hyperplasia using a simplified but intuitive model. The primary goal is to understand the magnetic particle deposition in the anastomosis region of the bypass graft taking into account the complex flow field created in this area which involves recirculation region, flow mixing and presence of particles with high residence time. The three-dimensional geometry model was used to simulate the motion and accumulation of the particles under the magnetic field influence in anastomotic region of the coronary bypass graft. The flow patterns are evaluated both numerically and experimentally and show a good correlation in term of flow parameters like vortex length and flow stagnation point positions. Particle depositions are strongly dependent on the magnet position and consequently of the magnetic field intensity and field gradient. Increased magnetic field controlled by the magnet position induces increased particle depositions in the bypass graft anastomosis. The result shows that particle depositions depend on the bypass graft angle, and the deposition shape and particle accumulation respectively, depend by the flow pattern in the anastomosis region. - Highlights: • Particularity of the particle targeting in the bypass graft anastomosis. • Hemodynamic characteristics influence about the particle deposition. • Particle accumulation induces changes of the flow field in the graft anastomosis. • Bypass graft geometries influence the particle deposition.

  9. Investigation of effects of varying model inputs on mercury deposition estimates in the Southwest US

    Directory of Open Access Journals (Sweden)

    T. Myers

    2012-04-01

    Full Text Available The Community Multiscale Air Quality (CMAQ model version 4.7.1 was used to simulate mercury wet and dry deposition for a domain covering the contiguous United States (US. The simulations used MM5-derived meteorological input fields and the US Environmental Protection Agency (EPA Clear Air Mercury Rule (CAMR emissions inventory. Using sensitivity simulations with different boundary conditions and tracer simulations, this investigation focuses on the contributions of boundary concentrations to deposited mercury in the Southwest (SW US. Concentrations of oxidized mercury species along the boundaries of the domain, in particular the upper layers of the domain, can make significant contributions to the simulated wet and dry deposition of mercury in the SW US. In order to better understand the contributions of boundary conditions to deposition, inert tracer simulations were conducted to quantify the relative amount of an atmospheric constituent transported across the boundaries of the domain at various altitudes and to quantify the amount that reaches and potentially deposits to the land surface in the SW US. Simulations using alternate sets of boundary concentrations, including estimates from global models (Goddard Earth Observing System-Chem (GEOS-Chem and the Global/Regional Atmospheric Heavy Metals (GRAHM model, and alternate meteorological input fields (for different years are analyzed in this paper. CMAQ dry deposition in the SW US is sensitive to differences in the atmospheric dynamics and atmospheric mercury chemistry parameterizations between the global models used for boundary conditions.

  10. Modeling and simulation of NiO dissolution and Ni deposition in molten carbonate fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Suk Woo; Choi, Hyung-Joon; Lim, Tae Hoon [Korea Institute of Science & Technology, Seoul (Korea, Republic of)] [and others

    1996-12-31

    Dissolution of NiO cathode into the electrolyte matrix is an important phenomena limiting the lifetime of molten carbonate fuel cell (MCFC). The dissolved nickel diffuses into the matrix and is reduced by dissolved hydrogen leading to the formation of metallic nickel films in the pores of the matrix. The growth of Ni films in the electrolyte matrix during the continuous cell operation results eventually in shorting between cathode and anode. Various mathematical and empirical models have been developed to describe the NiO dissolution and Ni deposition processes, and these models have some success in estimating the lifetime of MCFC by correlating the amount of Ni deposited in the matrix with shorting time. Since the exact mechanism of Ni deposition was not well understood, deposition reaction was assumed to be very fast in most of the models and the Ni deposition region was limited around a point in the matrix. In fact, formation of Ni films takes place in a rather broad region in the matrix, the location and thickness of the film depending on operating conditions as well as matrix properties. In this study, we assumed simple reaction kinetics for Ni deposition and developed a mathematical model to get the distribution of nickel in the matrix.

  11. An occurrence model for the national assessment of volcanogenic beryllium deposits

    Science.gov (United States)

    Foley, Nora K.; Seal, Robert R., II; Piatak, Nadine M.; Hetland, Brianna

    2010-01-01

    The general occurrence model summarized here is intended to provide a descriptive basis for the identification and assessment of undiscovered beryllium deposits of a type and style similar to those found at Spor Mountain, Juab County, Utah. The assessment model is restricted in its application in order to provide a coherent basis for assessing the probability of the occurrence of similar economic deposits using the current U.S. Geological Survey methodology. The model is intended to be used to identify tracts of land where volcanogenic epithermal replacement-type beryllium deposits hosted by metaluminous to peraluminous rhyolite are most likely to occur. Only a limited number of deposits or districts of this type are known, and only the ores of the Spor Mountain district have been studied in detail. The model highlights those distinctive aspects and features of volcanogenic epithermal beryllium deposits that pertain to the development of assessment criteria and puts forward a baseline analysis of the geoenvironmental consequences of mining deposits of this type.

  12. Investigation of effects of varying model inputs on mercury deposition estimates in the Southwest US

    Directory of Open Access Journals (Sweden)

    T. Myers

    2013-01-01

    Full Text Available The Community Multiscale Air Quality (CMAQ model version 4.7.1 was used to simulate mercury wet and dry deposition for a domain covering the continental United States (US. The simulations used MM5-derived meteorological input fields and the US Environmental Protection Agency (EPA Clear Air Mercury Rule (CAMR emissions inventory. Using sensitivity simulations with different boundary conditions and tracer simulations, this investigation focuses on the contributions of boundary concentrations to deposited mercury in the Southwest (SW US. Concentrations of oxidized mercury species along the boundaries of the domain, in particular the upper layers of the domain, can make significant contributions to the simulated wet and dry deposition of mercury in the SW US. In order to better understand the contributions of boundary conditions to deposition, inert tracer simulations were conducted to quantify the relative amount of an atmospheric constituent transported across the boundaries of the domain at various altitudes and to quantify the amount that reaches and potentially deposits to the land surface in the SW US. Simulations using alternate sets of boundary concentrations, including estimates from global models (Goddard Earth Observing System-Chem (GEOS-Chem and the Global/Regional Atmospheric Heavy Metals (GRAHM model, and alternate meteorological input fields (for different years are analyzed in this paper. CMAQ dry deposition in the SW US is sensitive to differences in the atmospheric dynamics and atmospheric mercury chemistry parameterizations between the global models used for boundary conditions.

  13. Ore-forming and Exploration Models of the Baguamiao Gold Deposit, Shaanxi Province

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The Baguamiao superlarge gold deposit in Shaanxi Province is one of the typical cases in China that are hosted by sedimentary rocks. Explorers and researchers have discussed the gold mineralization enrichment conditions by studying sulphur, oxygen, carbon, silicon stable isotopes and mineralizing fluid features of the Baguamiao gold deposit and proposed a hydrothermal sedimentation-magmatic reconstructing gold mineralization model featuring multi-sources of ore-forming materials and multistage mineralizations. In addition, prospecting for "Baguamiao-type"gold deposits was started in the Fengtai Basin and a great number of important prospecting targets such as Tonglinggou, Simaoling, Guoansi and Dachaigou were discovered.

  14. Modeling of stable and metastable structures of Co, Cr, or Fe deposited on Ag(100) substrates

    Energy Technology Data Exchange (ETDEWEB)

    Canzian, A. [Grupo de Caracterizacion y Modelacion de Materiales, UTN, FRGP, H. Yrigoyen 288, (B1617FRP) Gral. Pacheco (Argentina); Bozzolo, G., E-mail: guille_bozzolo@yahoo.co [Loyola University of Maryland, 4501 N. Charles St, Baltimore, MD 21210 (United States); Mosca, H.O. [Gerencia de Investigacion y Aplicaciones, Comision Nacional de Energia Atomica, Av. Gral. Paz 1499 (B1650KNA), San Martin (Argentina)

    2011-01-31

    Atomistic modeling of the deposition of Co, Cr, or Fe on a Ag(100) substrate is performed using the Bozzolo-Ferrante-Smith method for alloys, in order to describe the similarities and differences between the three cases. An atom-by-atom description of the deposition process explains the growth patterns from an early stage, establishing a criterion for the determination of the ensuing growth modes.

  15. A simple stochastic quadrant model for the transport and deposition of particles in turbulent boundary layers

    Energy Technology Data Exchange (ETDEWEB)

    Jin, C.; Potts, I.; Reeks, M. W., E-mail: mike.reeks@ncl.ac.uk [School of Mechanical and Systems Engineering, Newcastle University, Stephenson Building, Claremont Road, Newcastle upon Tyne NE1 7RU (United Kingdom)

    2015-05-15

    We present a simple stochastic quadrant model for calculating the transport and deposition of heavy particles in a fully developed turbulent boundary layer based on the statistics of wall-normal fluid velocity fluctuations obtained from a fully developed channel flow. Individual particles are tracked through the boundary layer via their interactions with a succession of random eddies found in each of the quadrants of the fluid Reynolds shear stress domain in a homogeneous Markov chain process. In this way, we are able to account directly for the influence of ejection and sweeping events as others have done but without resorting to the use of adjustable parameters. Deposition rate predictions for a wide range of heavy particles predicted by the model compare well with benchmark experimental measurements. In addition, deposition rates are compared with those obtained from continuous random walk models and Langevin equation based ejection and sweep models which noticeably give significantly lower deposition rates. Various statistics related to the particle near wall behavior are also presented. Finally, we consider the model limitations in using the model to calculate deposition in more complex flows where the near wall turbulence may be significantly different.

  16. Sensitivity study of the wet deposition schemes in the modelling of the Fukushima accident.

    Science.gov (United States)

    Quérel, Arnaud; Quélo, Denis; Roustan, Yelva; Mathieu, Anne; Kajino, Mizuo; Sekiyama, Thomas; Adachi, Kouji; Didier, Damien; Igarashi, Yasuhito

    2016-04-01

    The Fukushima-Daiichi release of radioactivity is a relevant event to study the atmospheric dispersion modelling of radionuclides. Actually, the atmospheric deposition onto the ground may be studied through the map of measured Cs-137 established consecutively to the accident. The limits of detection were low enough to make the measurements possible as far as 250km from the nuclear power plant. This large scale deposition has been modelled with the Eulerian model ldX. However, several weeks of emissions in multiple weather conditions make it a real challenge. Besides, these measurements are accumulated deposition of Cs-137 over the whole period and do not inform of deposition mechanisms involved: in-cloud, below-cloud, dry deposition. A comprehensive sensitivity analysis is performed in order to understand wet deposition mechanisms. It has been shown in a previous study (Quérel et al, 2016) that the choice of the wet deposition scheme has a strong impact on the assessment of the deposition patterns. Nevertheless, a "best" scheme could not be highlighted as it depends on the selected criteria: the ranking differs according to the statistical indicators considered (correlation, figure of merit in space and factor 2). A possibility to explain the difficulty to discriminate between several schemes was the uncertainties in the modelling, resulting from the meteorological data for instance. Since the move of the plume is not properly modelled, the deposition processes are applied with an inaccurate activity in the air. In the framework of the SAKURA project, an MRI-IRSN collaboration, new meteorological fields at higher resolution (Sekiyama et al., 2013) were provided and allows to reconsider the previous study. An updated study including these new meteorology data is presented. In addition, a focus on several releases causing deposition in located areas during known period was done. This helps to better understand the mechanisms of deposition involved following the

  17. Computational Fluid Dynamics Modeling of Bacillus anthracis Spore Deposition in Rabbit and Human Respiratory Airways

    Energy Technology Data Exchange (ETDEWEB)

    Kabilan, Senthil; Suffield, Sarah R.; Recknagle, Kurtis P.; Jacob, Rick E.; Einstein, Daniel R.; Kuprat, Andrew P.; Carson, James P.; Colby, Sean M.; Saunders, James H.; Hines, Stephanie; Teeguarden, Justin G.; Straub, Tim M.; Moe, M.; Taft, Sarah; Corley, Richard A.

    2016-09-30

    Three-dimensional computational fluid dynamics and Lagrangian particle deposition models were developed to compare the deposition of aerosolized Bacillus anthracis spores in the respiratory airways of a human with that of the rabbit, a species commonly used in the study of anthrax disease. The respiratory airway geometries for each species were derived from computed tomography (CT) or µCT images. Both models encompassed airways that extended from the external nose to the lung with a total of 272 outlets in the human model and 2878 outlets in the rabbit model. All simulations of spore deposition were conducted under transient, inhalation-exhalation breathing conditions using average species-specific minute volumes. The highest exposure concentration was modeled in the rabbit based upon prior acute inhalation studies. For comparison, human simulation was also conducted at the same concentration. Results demonstrated that regional spore deposition patterns were sensitive to airway geometry and ventilation profiles. Due to the complex airway geometries in the rabbit nose, higher spore deposition efficiency was predicted in the upper conducting airways compared to the human at the same air concentration of anthrax spores. As a result, higher particle deposition was predicted in the conducting airways and deep lung of the human compared to the rabbit lung due to differences in airway branching pattern. This information can be used to refine published and ongoing biokinetic models of inhalation anthrax spore exposures, which currently estimate deposited spore concentrations based solely upon exposure concentrations and inhaled doses that do not factor in species-specific anatomy and physiology.

  18. Mineral-deposit model for lithium-cesium-tantalum pegmatites

    Science.gov (United States)

    Bradley, Dwight C.; McCauley, Andrew D.; Stillings, Lisa M.

    2017-06-20

    Lithium-cesium-tantalum (LCT) pegmatites comprise a compositionally defined subset of granitic pegmatites. The major minerals are quartz, potassium feldspar, albite, and muscovite; typical accessory minerals include biotite, garnet, tourmaline, and apatite. The principal lithium ore minerals are spodumene, petalite, and lepidolite; cesium mostly comes from pollucite; and tantalum mostly comes from columbite-tantalite. Tin ore as cassiterite and beryllium ore as beryl also occur in LCT pegmatites, as do a number of gemstones and high-value museum specimens of rare minerals. Individual crystals in LCT pegmatites can be enormous: the largest spodumene was 14 meters long, the largest beryl was 18 meters long, and the largest potassium feldspar was 49 meters long.Lithium-cesium-tantalum pegmatites account for about one-fourth of the world’s lithium production, most of the tantalum production, and all of the cesium production. Giant deposits include Tanco in Canada, Greenbushes in Australia, and Bikita in Zimbabwe. The largest lithium pegmatite in the United States, at King’s Mountain, North Carolina, is no longer being mined although large reserves of lithium remain. Depending on size and attitude of the pegmatite, a variety of mining techniques are used, including artisanal surface mining, open-pit surface mining, small underground workings, and large underground operations using room-and-pillar design. In favorable circumstances, what would otherwise be gangue minerals (quartz, potassium feldspar, albite, and muscovite) can be mined along with lithium and (or) tantalum as coproducts.Most LCT pegmatites are hosted in metamorphosed supracrustal rocks in the upper greenschist to lower amphibolite facies. Lithium-cesium-tantalum pegmatite intrusions generally are emplaced late during orogeny, with emplacement being controlled by pre-existing structures. Typically, they crop out near evolved, peraluminous granites and leucogranites from which they are inferred to be

  19. Modeling of droplet dynamic and thermal behaviour during spray deposition

    Indian Academy of Sciences (India)

    N S Mahesh; Johnson Mendonca; M K Muralidhara; B K Muralidhara; C Ramachandra

    2003-04-01

    Mathematical modeling of supersonic gas atomization for spray forming has been investigated. Influence of the droplet dynamic and thermal behaviour on the resultant microstructure has been studied. Analytical models have been constructed taking into account the higher Reynolds number owing to supersonic gas flow. The impact velocity profiles of the droplets lend credence to the evolution of equiaxed grain morphology through dendrite fragmentation. The thermal history profile along with the fraction solid plot could yield optimized standoff distance to obtain a mushy droplet. A comparison of secondary dendrite arm spacing obtained from the mathematical model showed good agreement with experimental observations.

  20. Influences of parameter uncertainties within the ICRP 66 respiratory tract model: particle deposition.

    Science.gov (United States)

    Bolch, W E; Farfán, E B; Huh, C; Huston, T E; Bolch, W E

    2001-10-01

    Risk assessment associated with the inhalation of radioactive aerosols requires as an initial step the determination of particle deposition within the various anatomic regions of the respiratory tract. The model outlined in ICRP Publication 66 represents to date one of the most complete overall descriptions of not only particle deposition, but of particle clearance and local radiation dosimetry of lung tissues. In this study, a systematic review of the deposition component within the ICRP 66 respiratory tract model was conducted in which probability density functions were assigned to all input parameters. These distributions were subsequently incorporated within a computer code LUDUC (LUng Dose Uncertainty Code) in which Latin hypercube sampling techniques are used to generate multiple (e.g., 1,000) sets of input vectors (i.e., trials) for all of the model parameters needed to assess particle deposition within the extrathoracic (anterior and posterior), bronchial, bronchiolar, and alveolar-interstitial regions of the ICRP 66 respiratory tract model. Particle deposition values for the various trial simulations were shown to be well described by lognormal probability distributions. Geometric mean deposition fractions from LUDUC were found to be within approximately +/- 10% of the single-value estimates from the LUDEP computer code for each anatomic region and for particle diameters ranging from 0.001 to 50 microm. In all regions of the respiratory tract, LUDUC simulations for an adult male at light exertion show that uncertainties in particle deposition fractions are distributed only over a range of about a factor of approximately 2-4 for particle sizes between 0.005 to 0.2 microm. Below 0.005 microm, uncertainties increase only for deposition within the alveolar region. At particle sizes exceeding 1 microm, uncertainties in the deposition fraction within the extrathoracic regions are relatively small, but approach a factor of 20 for deposition in the bronchial

  1. Modeling dry deposition of reactive nitrogen in China with RAMS-CMAQ

    Science.gov (United States)

    Han, Xiao; Zhang, Meigen; Skorokhod, Andrei; Kou, Xingxia

    2017-10-01

    China has the world highest production of reactive nitrogen (Nr), and the Nr consumption increased sharply during the last decade. However, the potential environmental influence of dry nitrogen (N) deposition in China remains uncertain due to that the long-term measurement or remote sensing of various N species are difficult. This requires a better understanding of dry N deposition over China in its various forms and including magnitude and distribution features. Thus, the air quality modeling system RAMS-CMAQ was applied to simulate dry deposition of Nr over China from 2010 to 2014. The model results were then analyzed to investigate the long-term spatial and temporal distributions of major inorganic nitrogen (N) components (10 species) and selected organic N components (5 species). Comparisons between modeled and observed deposition rates and surface mass concentrations showed generally good agreement. Model results indicated a total dry N deposition budget of 9.31 Tg N yr-1 in China, including 4.29 Tg N yr-1 as NOy and 4.43 Tg N yr-1 as NH3. NOy was the main component of dry N deposition in the Beijing-Tianjin-Hebei area (0.31 Tg N yr-1), the Yangtze River Delta (0.29 Tg N yr-1), and the Pearl River Delta (0.09 Tg N yr-1), where the major megacity clusters of China are located. NH3 was the main component of dry N deposition in Shandong province (0.24 Tg N yr-1), Northeast China (0.46 Tg N yr-1), the Sichuan Basin (0.48 Tg N yr-1), and central China (0.95 Tg N yr-1), where the major agricultural regions are located. The highest values of the deposition flux for NH3 occurred in Shandong province (19.40 kg N ha-1 yr-1) and Beijing-Tianjin-Hebei (17.20 kg N ha-1 yr-1). The seasonal variation of total dry N deposition was obvious in the east part of China, and was higher in July and lower in January. The spatio-temporal variations and major sources of dry N deposition were strongly heterogeneous, implying that the comprehensive pollution control strategies should be

  2. Modeling of asphaltene particle deposition from turbulent oil flow in tubing: Model validation and a parametric study

    Directory of Open Access Journals (Sweden)

    Peyman Kor

    2016-12-01

    Full Text Available The deposition of asphaltenes on the inner wall of oil wells and pipelines causes flow blockage and significant production loss in these conduits. The major underlying mechanism(s for the deposition of asphaltene particles from the oil stream are still under investigation as an active research topic in the literature. In this work, a new deposition model considering both diffusional and inertial transport of asphaltene toward the tubing surface was developed. Model predictions were compared and verified with two sound experimental data available in the literature to evaluate the model's performance. A parametric study was done using the validated model in order to investigate the effect of the asphaltene particle size, flow velocity and oil viscosity on the magnitude of asphaltene deposition rate. Results of the study revealed that increasing the oil velocity causes more drag force on wall's inner surface; consequently, particles tend to transport away from the surface and the rate of asphaltene deposition is decreased. In addition, the developed model predicts that at low fluid velocity (∼0.7 m/s, the less viscous oil is more prone to asphaltene deposition problem.

  3. Modelling atmospheric dry deposition in urban areas using an urban canopy approach

    Directory of Open Access Journals (Sweden)

    N. Cherin

    2014-12-01

    Full Text Available Atmospheric dry deposition is typically modelled using an average roughness length, which depends on land use. This classical roughness-length approach cannot account for the spatial variability of dry deposition in complex settings such as urban areas. Urban canopy models have been developed to parametrise momentum and heat transfer. We extend this approach here to mass transfer and a new dry deposition model based on the urban canyon concept is presented. It uses a local mixing length parametrisation of turbulence within the canopy, and a description of the urban canopy via key parameters to provide spatially-distributed dry deposition fluxes. Three different flow regimes are distinguished in the urban canyon depending on the height-to-width ratio of built areas: isolated roughness flow, wake interference flow and skimming flow. Differences between the classical roughness-length model and the model developed here are investigated. Sensitivity to key parameters are discussed. This approach provides spatially-distributed dry deposition fluxes that depend on surfaces (streets, walls, roofs and flow regimes (recirculation and ventilation within the urban area.

  4. Modelling atmospheric dry deposition in urban areas using an urban canopy approach

    Directory of Open Access Journals (Sweden)

    N. Cherin

    2015-03-01

    Full Text Available Atmospheric dry deposition is typically modelled using an average roughness length, which depends on land use. This classical roughness-length approach cannot account for the spatial variability of dry deposition in complex settings such as urban areas. Urban canopy models have been developed to parametrise momentum and heat transfer. We extend this approach here to mass transfer, and a new dry deposition model based on the urban canyon concept is presented. It uses a local mixing-length parametrisation of turbulence within the canopy, and a description of the urban canopy via key parameters to provide spatially distributed dry deposition fluxes. Three different flow regimes are distinguished in the urban canyon depending on the height-to-width ratio of built areas: isolated roughness flow, wake interference flow and skimming flow. Differences between the classical roughness-length model and the model developed here are investigated. Sensitivity to key parameters are discussed. This approach provides spatially distributed dry deposition fluxes that depend on surfaces (streets, walls, roofs and flow regimes (recirculation and ventilation within the urban area.

  5. Drilling the Messinian Salinity Crisis as a Model Analogue for Dolomite Deposition at the End of Massive Salt Deposition Events

    Science.gov (United States)

    McKenzie, Judith A.; Aloisi, Giovanni; Anjos, Sylvia; Latgé, Ricardo; Matsuda, Nilo; Bontognali, Tomaso; Vasconcelos, Crisogono

    2015-04-01

    Sedimentologic and stratigraphic studies of the Lower Cretaceous sequence, deposited in the economically important Campos Basin, southeast Brazil, document the occurrence of ~20-m-thick dolomite intervals overlying the "massive salt" megasequences of the Lagoa Feia Formation. This stratigaphic succession marks the Aptian/Albian transition from extreme evaporitic conditions of the Lagoa Feia Formation to shallow marine conditions of the Macaé Formation, related to the early opening of the South Atlantic. The facies change from evaporites to dolomite is interpreted as a product of dolomitization resulting from the refuxing of hypersaline fluids from shallow embayments with intense evaporation (Latgé, 2001). Although the reflux model provides a mechanism to produce fluids with geochemical composition favorable for dolomite precipitation, it cannot account for all of the factors required to promote dolomite precipitation. In this study, we propose a different model to explain the post-evaporite deposition of massive dolomite based on the study of sequences deposited at the end Messinian Salinity Crisis, which were recovered from the deep basins of the Mediterranean Sea during DSDP/ODP drilling campaigns. At most of these deep-water sites, the cored interval contained unusual dolomite deposits overlying the uppermost evaporite sections. For example, the upper Messinian sedimentary sequence at DSDP Site 374 comprises non-fossiliferous dolomitic mudstone overlying dolomitic mudstone/gypsum cycles, which in turn overlie anhydrite and halite (Hsü, Montadert et al., 1978). We postulate that the end Messinian dolomite is a product of microbial activity under extreme hypersaline conditions. In the last 20 years, research into the factors controlling dolomite precipitation under Earth surface conditions has led to the development of new models involving the metabolism of microorganisms and associated biofilms to overcome the kinetic inhibitions associated with primary

  6. A mathematical model and simulation results of plasma enhanced chemical vapor deposition of silicon nitride films

    NARCIS (Netherlands)

    Konakov, S.A.; Krzhizhanovskaya, V.V.

    2015-01-01

    We developed a mathematical model of Plasma Enhanced Chemical Vapor Deposition (PECVD) of silicon nitride thin films from SiH4-NH3-N2-Ar mixture, an important application in modern materials science. Our multiphysics model describes gas dynamics, chemical physics, plasma physics and electrodynamics.

  7. A Physically Based Theoretical Model of Spore Deposition for Predicting Spread of Plant Diseases.

    Science.gov (United States)

    Isard, Scott A; Chamecki, Marcelo

    2016-03-01

    A physically based theory for predicting spore deposition downwind from an area source of inoculum is presented. The modeling framework is based on theories of turbulence dispersion in the atmospheric boundary layer and applies only to spores that escape from plant canopies. A "disease resistance" coefficient is introduced to convert the theoretical spore deposition model into a simple tool for predicting disease spread at the field scale. Results from the model agree well with published measurements of Uromyces phaseoli spore deposition and measurements of wheat leaf rust disease severity. The theoretical model has the advantage over empirical models in that it can be used to assess the influence of source distribution and geometry, spore characteristics, and meteorological conditions on spore deposition and disease spread. The modeling framework is refined to predict the detailed two-dimensional spatial pattern of disease spread from an infection focus. Accounting for the time variations of wind speed and direction in the refined modeling procedure improves predictions, especially near the inoculum source, and enables application of the theoretical modeling framework to field experiment design.

  8. An electroplating topography model based on layout-dependent variation of copper deposition rate

    Institute of Scientific and Technical Information of China (English)

    Wang Qiang; Chen Lan; Li Zhigang; Ruan Wenbiao

    2011-01-01

    A layout-pattern-dependent electroplating model is developed based on the physical mechanism of the electroplating process.Our proposed electroplating model has an advantage over former ones due to a consideration of the variation of copper deposition rate with different layout parameters during the process.The simulation results compared with silicon data demonstrate the improvement in accuracy.

  9. Rapid solidification in thermal spary deposition: Microstructure and modelling

    Indian Academy of Sciences (India)

    Guo-Xiang Wang; V Prasad; S Sampath

    2001-02-01

    Mechanical, thermal, and adhesive properties of thermal spray coatings are primarily determined by the phase and microstructure of single splats, which ultimately depend on rapid solidification of each splat and on the interactions between the splats and between the splat and the substrate. Significant efforts are being made to develop a better understanding of the physical mechanisms underlying these phenomena. This paper reviews a series of work in the area of mathematical modelling of phase and microstructure formation during the rapid solidification of single splats and coatings. The model development has been complimented by special experiments. Conditions under which plariar interface solidification occurs, columnar cellular or dendriric growth takes place, or banded structure forms, have been identified. A microstructure map can therefore be built using the model presented here. The process parameters that promote crystalline nucleation and grain structure formation can be isolated and the effect of interfacial heat transfer, splat substrate temperature difference, and substrate melting and resolidification can be examined using the model. The model predictions agree qualitatively well with the experimental data for alumina, yttria, partially-stabilized zirconia, and molybdenum.

  10. Solution processed deposition of electron transport layers on perovskite crystal surface-A modeling based study

    Science.gov (United States)

    Mortuza, S. M.; Taufique, M. F. N.; Banerjee, Soumik

    2017-02-01

    The power conversion efficiency (PCE) of planar perovskite solar cells (PSCs) has reached up to ∼20%. However, structural and chemicals defects that lead to hysteresis in the perovskite based thin film pose challenges. Recent work has shown that thin films of [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) deposited on the photo absorption layer, using solution processing techniques, minimize surface pin holes and defects thereby increasing the PCE. We developed and employed a multiscale model based on molecular dynamics (MD) and kinetic Monte Carlo (kMC) to establish a relationship between deposition rate and surface coverage on perovskite surface. The MD simulations of PCBMs dispersed in chlorobenzene, sandwiched between (110) perovskite substrates, indicate that PCBMs are deposited through anchoring of the oxygen atom of carbonyl group to the exposed lead (Pb) atom of (110) perovskite surface. Based on rates of distinct deposition events calculated from MD, kMC simulations were run to determine surface coverage at much larger time and length scales than accessible by MD alone. Based on the model, a generic relationship is established between deposition rate of PCBMs and surface coverage on perovskite crystal. The study also provides detailed insights into the morphology of the deposited film.

  11. Tsunami characteristics and formation potential of sandy tsunami deposit in Sanriku Coast: implications from numerical modeling

    Science.gov (United States)

    Sugawara, D.; Haraguchi, T.; Takahashi, T.

    2013-12-01

    Geological investigation of paleotsunami deposit is crucial for knowing the history and magnitude of tsunami events in the past. Among various kinds of grain sizes, sandy tsunami deposit has been best investigated by previous studies, because of its potential for identification in the sedimentary column. Many sandy tsunami deposits have been found from coastal plains, which have sandy beach and low-lying wetlands. However, sandy tsunami deposits in narrow valleys at rocky ria coast have rarely been found. It may be presumed that formation potential of sandy tsunami layer in the rocky coasts is generally lower than coastal plains, because of the absence of sandy beach, tsunami run-up on steeper slope and stronger return flow. In this presentation, characteristics of the 2011 Tohoku-oki earthquake tsunami in Sanriku Coast, a continuous rocky ria coast located in the northeast Japan, is investigated based on numerical modeling. In addition, the formation potential of sandy tsunami deposit is also investigated based on numerical modeling of sediment transport. Preliminary result of tsunami hydrodynamics showed that the waveform and amplification of the tsunami are clearly affected by the local bathymetry, which is associated with submerged topography formed during the last glacial stage. Although the tsunami height in the offshore of each bay is around 8.0 m, the tsunami height at the bay head was increased in different way. The amplification factor at the bay head was typically 2.0 among most of V-shaped narrow embayments; meanwhile the amplification factor is much lower than 1.0 at some cases. The preliminary result of the modeling of sediment transport predicted huge amount of sediments may be suspended into the water column, given that sandy deposit is available there. Massive erosion and deposition of sea bottom sediments may commonly take place in the bays. However, formation of onshore tsunami deposit differs from each other. Whether the suspended sediments

  12. Erosion and deposition in depth-averaged models of dense, dry, inclined, granular flows

    Science.gov (United States)

    Jenkins, James T.; Berzi, Diego

    2016-11-01

    We derive expressions for the rates of erosion and deposition at the interface between a dense, dry, inclined granular flow and an erodible bed. In obtaining these, we assume that the interface between the flowing grains and the bed moves with the speed of a pressure wave in the flow, for deposition, or with the speed of a disturbance through the contacting particles in the bed, for erosion. We employ the expressions for the rates of erosion and deposition to show that after an abrupt change in the angle of inclination of the bed the characteristic time for the motion of the interface is much shorter than the characteristic time of the flow. This eliminates the need for introducing models of erosion and deposition rate in the mass balance; and the instantaneous value of the particle flux is the same function of the instantaneous value of the flow depth as in a steady, uniform flow.

  13. Regional deposition of thoron progeny in models of the human tracheobronchial tree

    Energy Technology Data Exchange (ETDEWEB)

    Smith, S.M.; Cheng, Yung-Sung; Yeh, Hsu-Chi

    1995-12-01

    Models of the human tracheobronchial tree have been used to determine total and regional aerosol deposition of inhaled particles. Particle sizes measured in these studies have all been > 40 nm in diameter. The deposition of aerosols < 40 nm in diameter has not been measured. Particles in the ultrafine aerosol size range include some combustion aerosols and indoor radon progeny. Also, the influence of reduced lung size and airflow rates on particle deposition in young children has not been determined. With their smaller lung size and smaller minute volumes, children may be at increased risk from ultrafine pollutants. In order to accurately determine dose of inhaled aerosols, the effects of particle size, minute volume, and age at exposure must be quantified. The purpose of this study was to determine the deposition efficiency of ultrafine aerosols smaller than 40 nm in diameter in models of the human tracheobronchia tree. This study demonstrates that the deposition efficiency of aerosols in the model of the child`s tracheobronchial tree may be slightly higher than in the adult models.

  14. Comparison of methods for evaluation of aerosol deposition in the model of human lungs

    Directory of Open Access Journals (Sweden)

    Belka Miloslav

    2014-03-01

    Full Text Available It seems to be very convenient to receive a medicine by inhalation instead of injection. Unfortunately transport of particles and targeted delivery of a drug in human respiratory airways is very complicated task. Therefore we carried out experiments and tested different methods for evaluation of particle deposition in a model of human lungs. The model included respiratory airways from oral cavity to 7th generation of branching. Particles were dispersed by TSI Small-scale Powder Disperser 3433 and delivered to the model. The model was disassembled into segments after the deposition of the particles and local deposition was measured. Two methods were used to analyse the samples, fluorescence spectroscopy and optical microscopy. The first method was based on measuring the intensity of luminescence, which represented the particle deposition. The second method used the optical microscope with phase-contrast objective. A dispersion of isopropanol and particles was filtrated using a vacuum filtration unit, a filter was placed on glass slide and made transparent. The particles on the filter were counted manually and the deposition was calculated afterwards. The results of the methods were compared and both methods proved to be useful.

  15. Particle Deposition in Oral-tracheal Airway Models with Very Low Inhalation Profiles

    Institute of Scientific and Technical Information of China (English)

    Zheng Li

    2012-01-01

    Considerable progress has been made on modeling particle deposition in the oral-tracheal airway under some normal breathing conditions,i.e.,resting,light activity and moderate exercise.None of these standard breathing patterns correspond to very low inhalation profiles.It is known that particle deposition in the oral-tracheal airway is greatly influenced by flow and particle inlet conditions.In this work,very low inhalation flow rates are considered.Particle deposition is numerically investigated in different oral-tracheal airway models,i.e.,circular,elliptic and realistic oral-tracheal airway models.Both micro- and nano-particles that are normally present in cigarette smoke are considered.Results show that inhalation profiles greatly influence the particle deposition.Due to relatively low flow rate,for ultra-fine particles,the oral deposition is enhanced due to longer residence time in oral cavity and stronger Brownian motion.However,for larger particles,less particles deposit in the oral-tracheal airway due to the weaker impaction.The transition happens when particle size changes from 0.01 μm to 0.1 μm.The influence of the limited entrance area is shown and discussed.Under the low inhalation profiles,the highest deposition fraction could be in either circular or realistic models depending on the particle property and the geometric characteristic of oral cavity.The knowledge obtained in this study may be beneficial for the design of bionic inhaler and understanding of health effect from smoke particle on human being.

  16. Manual for Dynamic Modelling of Soil Response to Atmospheric Deposition

    NARCIS (Netherlands)

    Posch MB; Hettelingh J-P; Slootweg J; LED; UNECE Working Group on Effects; ICP M&M Coordination Center for Effects

    2003-01-01

    The objective of this manual is to inform the network of National Focal Centers (NFCs) about the requirements of methodologies for the dynamic modelling of geochemical processes in soils in particular. This information is necessary to support European air quality policies with knowledge on time dela

  17. High-resolution modelling of air pollution and deposition over the Netherlands with plume, grid and hybrid modelling

    Science.gov (United States)

    van der Swaluw, Eric; de Vries, Wilco; Sauter, Ferd; Aben, Jan; Velders, Guus; van Pul, Addo

    2017-04-01

    We present high-resolution model results of air pollution and deposition over the Netherlands with three models, the Eulerian grid model LOTOS-EUROS, the Gaussian plume model OPS and the hybrid model LEO. The latter combines results from LOTOS-EUROS and OPS using source apportionment techniques. The hybrid modelling combines the efficiency of calculating at high-resolution around sources with the plume model, and the accuracy of taking into account long-range transport and chemistry with a Eulerian grid model. We compare calculations from all three models with measurements for the period 2009-2011 for ammonia, NOx, secondary inorganic aerosols, particulate matter (PM10) and wet deposition of acidifying and eutrophying components (ammonium, nitrate and sulfate). It is found that concentrations of ammonia, NOx and the wet deposition components are best represented by the Gaussian plume model OPS. Secondary inorganic aerosols are best modelled with the LOTOS-EUROS model, and PM10 is best described with the LEO model. Subsequently for the year 2011, PM10 concentration and reduced nitrogen dry deposition maps are presented with respectively the OPS and LEO model. Using the LEO calculations for the production of the PM10 map, yields an overall better result than using the OPS calculations for this application. This is mainly due to the fact that the spatial distribution of the secondary inorganic aerosols is better described in the LEO model than in OPS, and because more (natural induced) PM10 sources are included in LEO, i.e. the contribution to PM10 of sea-salt and wind-blown dust as calculated by the LOTOS-EUROS model. Finally, dry deposition maps of reduced nitrogen over the Netherlands are compared as calculated by respectively the OPS and LEO model. The differences between both models are overall small (±100 mol/ha) with respect to the peak values observed in the maps (>2000 mol/ha). This is due to the fact that the contribution of dry deposition of reduced

  18. Numerical modelling of the erosion and deposition of sand inside a filter layer

    DEFF Research Database (Denmark)

    Jacobsen, Niels Gjøl; van Gent, Marcel R. A.; Fredsøe, Jørgen

    2017-01-01

    prediction method to assure that the amount of erosion remains within acceptable limits. This work presents a numerical model that is capable of describing the erosion and deposition patterns inside of an open filter of rock on top of sand. The hydraulic loading is that of incident irregular waves...... additional data sets on the erosion and deposition patterns inside of an open filter. A few cases are defined to study the effect of the sinking of the filter into the erosion hole. The numerical model is also applied to several application cases. The response of the core material (sand) to changes......This paper treats the numerical modelling of the behaviour of a sand core covered by rocks and exposed to waves. The associated displacement of the rock is also studied. A design that allows for erosion and deposition of the sand core beneath a rock layer in a coastal structure requires an accurate...

  19. Magmatic sulfide-rich nickel-copper deposits related to picrite and (or) tholeiitic basalt dike-sill complexes-A preliminary deposit model

    Science.gov (United States)

    Schulz, Klaus J.; Chandler, Val W.; Nicholson, Suzanne W.; Piatak, Nadine M.; Seal, Robert R., II; Woodruff, Laurel G.; Zientek, Michael L.

    2010-01-01

    Magmatic sulfide deposits containing nickel (Ni) and copper (Cu), with or without (?) platinum-group elements (PGEs), account for approximately 60 percent of the world's Ni production and are active exploration targets in the United States and elsewhere. On the basis of their principal metal production, magmatic sulfide deposits in mafic rocks can be divided into two major types: those that are sulfide-rich, typically with 10 to 90 percent sulfide minerals, and have economic value primarily because of their Ni and Cu contents; and those that are sulfide-poor, typically with 0.5 to 5 percent sulfide minerals, and are exploited principally for PGE. Because the purpose of this deposit model is to facilitate the assessment for undiscovered, potentially economic magmatic Ni-Cu?PGE sulfide deposits in the United States, it addresses only those deposits of economic significance that are likely to occur in the United States on the basis of known geology. Thus, this model focuses on deposits hosted by small- to medium-sized mafic and (or) ultramafic dikes and sills that are related to picrite and tholeiitic basalt magmatic systems generally emplaced in continental settings as a component of large igneous provinces (LIPs). World-class examples (those containing greater than 1 million tons Ni) of this deposit type include deposits at Noril'sk-Talnakh (Russia), Jinchuan (China), Pechenga (Russia), Voisey's Bay (Canada), and Kabanga (Tanzania). In the United States, this deposit type is represented by the Eagle deposit in northern Michigan, currently under development by Kennecott Minerals.

  20. The Limit Deposit Velocity model, a new approach

    Directory of Open Access Journals (Sweden)

    Miedema Sape A.

    2015-12-01

    Full Text Available In slurry transport of settling slurries in Newtonian fluids, it is often stated that one should apply a line speed above a critical velocity, because blow this critical velocity there is the danger of plugging the line. There are many definitions and names for this critical velocity. It is referred to as the velocity where a bed starts sliding or the velocity above which there is no stationary bed or sliding bed. Others use the velocity where the hydraulic gradient is at a minimum, because of the minimum energy consumption. Most models from literature are one term one equation models, based on the idea that the critical velocity can be explained that way.

  1. Computer Modeling of Flow, Thermal Condition and Ash Deposition in a Hot-Gas Filtration Device

    Energy Technology Data Exchange (ETDEWEB)

    Ahmadi, G.; Mazaheri, A.; Liu, C.; Gamwo, I.K.

    2002-09-19

    The objective of the present study is to develop a computational model for simulating the gas flow, thermal condition and ash transport and deposition pattern in the hot-gas filtration systems. The computational model is to provide a virtual tool for design and operation modifications. Particular attention is given to the Particle Control Device (PCD) at the Power Systems Development Facility (PSDF) in Wilsonville, Alabama. For evaluation of gas velocity and temperature field in the vessel, the FLUENT commercial CFD computer code is used. Ash particle transport and deposition pattern was analyzed with the Lagrangian particle tracking approach.

  2. Distribution and Orientation of Carbon Fibers in Polylactic Acid Parts Produced by Fused Deposition Modeling

    DEFF Research Database (Denmark)

    Hofstätter, Thomas; W. Gutmann, Ingomar; Koch, Thomas

    2016-01-01

    The aim of this paper is the understanding of the fiber orientation by investigations in respect to the inner configuration of a polylactic acid matrix reinforced with short carbon fibers after a fused deposition modeling extrusion process. The final parts were analyzed by X-ray, tomography, and ......, and magnetic resonance imaging allowing a resolved orientation of the fibers and distribution within the part. The research contributes to the understanding of the fiber orientation and fiber reinforcement of fused deposition modeling parts in additive manufacturing....

  3. Sensitivity of the modelled deposition of Caesium-137 from the Fukushima Dai-ichi nuclear power plant to the wet deposition parameterisation in NAME.

    Science.gov (United States)

    Leadbetter, Susan J; Hort, Matthew C; Jones, Andrew R; Webster, Helen N; Draxler, Roland R

    2015-01-01

    This paper describes an investigation into the impact of different meteorological data sets and different wet scavenging coefficients on the model predictions of radionuclide deposits following the accident at the Fukushima Dai-ichi nuclear power plant in March 2011. Three separate operational meteorological data sets, the UK Met Office global meteorology, the ECMWF global meteorology and the Japan Meteorological Agency (JMA) mesoscale meteorology as well as radar rainfall analyses from JMA were all used as inputs to the UK Met Office's dispersion model NAME (the Numerical Atmospheric-dispersion Modelling Environment). The model predictions of Caesium-137 deposits based on these meteorological models all showed good agreement with observations of deposits made in eastern Japan with correlation coefficients ranging from 0.44 to 0.80. Unexpectedly the NAME run using radar rainfall data had a lower correlation coefficient (R = 0.66), when compared to observations, than the run using the JMA mesoscale model rainfall (R = 0.76) or the run using ECMWF met data (R = 0.80). Additionally the impact of modifying the wet scavenging coefficients used in the parameterisation of wet deposition was investigated. The results showed that modifying the scavenging parameters had a similar impact to modifying the driving meteorology on the rank calculated from comparing the modelled and observed deposition. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.

  4. Atmospheric nitrogen deposition to China: A model analysis on nitrogen budget and critical load exceedance

    Science.gov (United States)

    Zhao, Yuanhong; Zhang, Lin; Chen, Youfan; Liu, Xuejun; Xu, Wen; Pan, Yuepeng; Duan, Lei

    2017-03-01

    We present a national-scale model analysis on the sources and processes of inorganic nitrogen deposition over China using the GEOS-Chem model at 1/2° × 1/3° horizontal resolution. Model results for 2008-2012 are evaluated with an ensemble of surface measurements of wet deposition flux and gaseous ammonia (NH3) concentration, and satellite measurements of tropospheric NO2 columns. Annual total inorganic nitrogen deposition fluxes are simulated to be generally less than 10 kg N ha-1 a-1 in western China (less than 2 kg N ha-1 a-1 over Tibet), 15-50 kg N ha-1 a-1 in eastern China, and 16.4 kg N ha-1 a-1 averaged over China. Annual total deposition to China is 16.4 Tg N, with 10.2 Tg N (62%) from reduced nitrogen (NHx) and 6.2 Tg N from oxidized nitrogen (NOy). Domestic anthropogenic sources contribute 86% of the total deposition; foreign anthropogenic sources 7% and natural sources 7%. Annually 23% of domestically emitted NH3 and 36% for NOx are exported outside the terrestrial land of China. We find that atmospheric nitrogen deposition is about half of the nitrogen input from fertilizer application (29.6 Tg N a-1), and is much higher than that from natural biological fixation (7.3 Tg N a-1) over China. A comparison of nitrogen deposition with critical load estimates for eutrophication indicates that about 15% of the land over China experiences critical load exceedances, demonstrating the necessity of nitrogen emission controls to avoid potential negative ecological effects.

  5. Prediction of Ozone Concentrations over the Sea of Japan Coastal Area Using WRF/Chem Model

    Directory of Open Access Journals (Sweden)

    Khandakar Md Habib Al Razi

    2012-01-01

    Full Text Available The fully coupled WRF/Chem (Weather Research and Forecasting/Chemistry model is used to simulate air quality over the Sea of Japan coastal area. Anthropogenic surface emissions database used as input for this model are mainly based on Global hourly emissions data (dust, sea salt, biomass burning, RETRO (REanalysis of the TROpospheric chemical composition, GEIA (Global Emissions Inventory Activity and POET (Precursors of ozone and their Effects in the Troposphere. Climatologic concentrations of particulate matters derived from Regional acid Deposition Model (RADM2 chemical mechanism and Secondary Organic Aerosol Model (MADE/SORGAM with aqueous reaction were used to deduce the corresponding aerosols fluxes for input to the WRF/Chem. The model was firstly integrated for 48 hours continuously starting from 00:00 UTC of 14 March 2008 to evaluate ozone concentrations and other precursor pollutants were analyzed. WPS meteorological data were used for the simulation of WRF/Chem model in this study. Despite the low resolution of the area global emissions and the weak density of the local point emissions, it has been found that WRF/Chem simulates quite well with the diurnal variation of the chemical species concentrations over the Sea of Japan coastal area. The simulations conducted in this study showed that due to the geographical and climatologically characteristics, it is still environmentally friendly by the transported pollutants in this region.

  6. The influence of temperature on ozone production under varying NOx conditions - a modelling study

    Science.gov (United States)

    Coates, Jane; Mar, Kathleen A.; Ojha, Narendra; Butler, Tim M.

    2016-09-01

    Surface ozone is a secondary air pollutant produced during the atmospheric photochemical degradation of emitted volatile organic compounds (VOCs) in the presence of sunlight and nitrogen oxides (NOx). Temperature directly influences ozone production through speeding up the rates of chemical reactions and increasing the emissions of VOCs, such as isoprene, from vegetation. In this study, we used an idealised box model with different chemical mechanisms (Master Chemical Mechanism, MCMv3.2; Common Representative Intermediates, CRIv2; Model for OZone and Related Chemical Tracers, MOZART-4; Regional Acid Deposition Model, RADM2; Carbon Bond Mechanism, CB05) to examine the non-linear relationship between ozone, NOx and temperature, and we compared this to previous observational studies. Under high-NOx conditions, an increase in ozone from 20 to 40 °C of up to 20 ppbv was due to faster reaction rates, while increased isoprene emissions added up to a further 11 ppbv of ozone. The largest inter-mechanism differences were obtained at high temperatures and high-NOx emissions. CB05 and RADM2 simulated more NOx-sensitive chemistry than MCMv3.2, CRIv2 and MOZART-4, which could lead to different mitigation strategies being proposed depending on the chemical mechanism. The increased oxidation rate of emitted VOC with temperature controlled the rate of Ox production; the net influence of peroxy nitrates increased net Ox production per molecule of emitted VOC oxidised. The rate of increase in ozone mixing ratios with temperature from our box model simulations was about half the rate of increase in ozone with temperature observed over central Europe or simulated by a regional chemistry transport model. Modifying the box model set-up to approximate stagnant meteorological conditions increased the rate of increase of ozone with temperature as the accumulation of oxidants enhanced ozone production through the increased production of peroxy radicals from the secondary degradation of

  7. Aerosol dry deposition on vegetative canopies. Part II: A new modelling approach and applications

    Science.gov (United States)

    Petroff, Alexandre; Mailliat, Alain; Amielh, Muriel; Anselmet, Fabien

    2008-05-01

    This paper presents a new approach for the modelling of aerosol dry deposition on vegetation. It follows a companion article, in which a review of the current knowledge highlights the need for a better description of the aerosol behaviour within the canopy [Petroff, A., Mailliat, A., Amielh, M., Anselmet, F., 2008. Aerosol dry deposition on vegetative canopies. Part I: Review of present knowledge. Atmospheric Environment, in press, doi:10.1016/j.atmosenv.2007.09.043]. Concepts from multi-phase flow studies are used for describing the canopy medium and deriving a time and space-averaged aerosol balance equation and the associated deposition terms. The closure of the deposition terms follows an up-scaling procedure based on the statistical distribution of the collecting elements. This aerosol transport model is then applied in a stationary and mono-dimensional configuration and takes into account the properties of the vegetation, the aerosol and the turbulent flow. Deposition mechanisms are Brownian diffusion, interception, inertial and turbulent impactions, and gravitational settling. For each of them, a parameterisation of the particle collection is derived and the quality of their predictions is assessed by comparison with wind-tunnel deposition measurements on coniferous twigs [Belot, Y., Gauthier, D., 1975. Transport of micronic particles from atmosphere to foliar surfaces. In: De Vries, D.A., Afgan, N.H. (Eds.), Heat and Mass Transfer in the Biosphere. Scripta Book, Washington, DC, pp. 583-591; Belot, Y., 1977. Etude de la captation des polluants atmosphériques par les végétaux. CEA, R-4786, Fontenay-aux-Roses; Belot, Y., Camus, H., Gauthier, D., Caput, C., 1994. Uptake of small particles by canopies. The Science of the Total Environment 157, 1-6]. Under a real canopy configuration, the predictions of the aerosol transport model compare reasonably well with detailed on-site deposition measurements of Aitken mode particles [Buzorius, G., Rannik, Ü., M

  8. Observation- and model-based estimates of particulate dry nitrogen deposition to the oceans

    Directory of Open Access Journals (Sweden)

    A. R. Baker

    2017-07-01

    Full Text Available Anthropogenic nitrogen (N emissions to the atmosphere have increased significantly the deposition of nitrate (NO3− and ammonium (NH4+ to the surface waters of the open ocean, with potential impacts on marine productivity and the global carbon cycle. Global-scale understanding of the impacts of N deposition to the oceans is reliant on our ability to produce and validate models of nitrogen emission, atmospheric chemistry, transport and deposition. In this work,  ∼  2900 observations of aerosol NO3− and NH4+ concentrations, acquired from sampling aboard ships in the period 1995–2012, are used to assess the performance of modelled N concentration and deposition fields over the remote ocean. Three ocean regions (the eastern tropical North Atlantic, the northern Indian Ocean and northwest Pacific were selected, in which the density and distribution of observational data were considered sufficient to provide effective comparison to model products. All of these study regions are affected by transport and deposition of mineral dust, which alters the deposition of N, due to uptake of nitrogen oxides (NOx on mineral surfaces. Assessment of the impacts of atmospheric N deposition on the ocean requires atmospheric chemical transport models to report deposition fluxes; however, these fluxes cannot be measured over the ocean. Modelling studies such as the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP, which only report deposition flux, are therefore very difficult to validate for dry deposition. Here, the available observational data were averaged over a 5° × 5° grid and compared to ACCMIP dry deposition fluxes (ModDep of oxidised N (NOy and reduced N (NHx and to the following parameters from the Tracer Model 4 of the Environmental Chemical Processes Laboratory (TM4: ModDep for NOy, NHx and particulate NO3− and NH4+, and surface-level particulate NO3− and NH4+ concentrations. As a model ensemble, ACCMIP can be

  9. Quantification of collagen and proteoglycan deposition in a murine model of airway remodelling

    Directory of Open Access Journals (Sweden)

    Laurent Geoffrey J

    2005-04-01

    Full Text Available Abstract Background Sub-epithelial extracellular matrix deposition is a feature of asthmatic airway remodelling associated with severity of disease, decline in lung function and airway hyperresponsiveness. The composition of, and mechanisms leading to, this increase in subepithelial matrix, and its importance in the pathogenesis of asthma are unclear. This is partly due to limitations of the current models and techniques to assess airway remodelling. Methods In this study we used a modified murine model of ovalbumin sensitisation and challenge to reproduce features of airway remodelling, including a sustained increase in sub-epithelial matrix deposition. In addition, we have established techniques to accurately and specifically measure changes in sub-epithelial matrix deposition, using histochemical and immunohistochemical staining in conjunction with digital image analysis, and applied these to the measurement of collagen and proteoglycans. Results 24 hours after final ovalbumin challenge, changes similar to those associated with acute asthma were observed, including inflammatory cell infiltration, epithelial cell shedding and goblet cell hyperplasia. Effects were restricted to the bronchial and peribronchial regions with parenchymal lung of ovalbumin sensitised and challenged mice appearing histologically normal. By 12 days, the acute inflammatory changes had largely resolved and increased sub-epithelial staining for collagen and proteoglycans was observed. Quantitative digital image analysis confirmed the increased deposition of sub-epithelial collagen (33%, p Conclusion This animal model reproduces many of the features of airway remodelling found in asthma and allows accurate and reproducible measurement of sub-epithelial extra-cellular matrix deposition. As far as we are aware, this is the first demonstration of increased sub-epithelial proteoglycan deposition in an animal model of airway remodelling. This model will be useful for

  10. Toward a Facies Model for AMS Fabrics in Deposits from Pyroclastic Currents

    Science.gov (United States)

    Ort, M. H.; Newkirk, T.; Vilas, J. F.; Vazquez, J. A.

    2011-12-01

    Studies of the anisotropy of magnetic susceptibility (AMS) in deposits from pyroclastic density currents have been made for 30 years. Early studies sought to find vent locations, but later studies have also used AMS to interpret flow and depositional processes. These studies show that AMS fabrics reflect shear directions at the base of the depositional regime and thoughtful interpretations of the directions, coupled with good observations of the deposits, can lead to a better understanding of depositional and flow processes in the currents. Here, we compare the AMS fabrics and deposit characteristics of deposits of dense and dilute pyroclastic density currents in order to develop an AMS facies model for such deposits. Deposits from individual phreatomagmatic density currents produced in the NE Hopi Buttes volcanic field, NE Arizona, can be traced from the maar edge laterally for 1.5 km or more. This allows the depositional facies to be described and sampled for AMS. The most proximal facies, consisting of tuff breccias, is characterized by a disorganized AMS fabric, marked by some grouping of the AMS axes but a very weak foliation. By about 350 m from the maar rim and extending out over a kilometer, a well lineated and foliated fabric develops in the stratified to sand-wave-bearing lapilli-tuffs, reflecting the shear within the well-developed current. At distances over a km from the vent, where the deposits are plane-parallel tuffs, a girdled fabric develops, with overlapping K1 and K2 axes. This likely reflects weak shearing within the slowing flow. At Caviahue caldera, Neuquen, Argentina, lateral sampling of ignimbrites from within the caldera and on a SE transect to ~25 km from the caldera rim, reveals systematic changes in the AMS fabric, with less obvious changes in the sedimentary characteristics. Intracaldera ignimbrites are rheomorphic and very densely welded, and their AMS fabrics are very strongly foliated but with a weak lineation. Moving out from the

  11. Osteopontin expression and localization of Ca++ deposits in early stages of osteoarthritis in a rat model.

    Science.gov (United States)

    Martínez-Calleja, América; Velasquillo, Cristina; Vega-López, Marco; Arellano-Jiménez, M Josefina; Tsutsumi-Fujiyoshi, Victor K; Mondragón-Flores, Ricardo; Kouri-Flores, Juan B

    2014-07-01

    Calcium deposits have been related to articular cartilage (AC) degeneration and have been observed in late stages of osteoarthritis (OA). However, the role of those deposits, whether they induce the OA pathogenesis or they appear as a consequence of such process, is still unknown. In this work, we present the kinetics of expression and tissue localisation of osteopontin (OPN), a mineralisation biomarker, and calcium deposits in samples from (normal, sham) and osteoarthritic cartilage (in a rat model). Immunohistochemical and Western blot assays for OPN, as well as Alizarin red staining for calcium deposits were performed; superficial, middle, and deep zones of AC were analysed. An increased expression of OPN and calcium deposits was found in the osteoarthritic cartilage compared with that of control groups, particularly in the superficial zone of AC in early stages of OA. In addition, the expression and localisation of OPN and calcium deposits during the OA pathogenesis suggest that the pathological AC mineralisation starts in the superficial zone during OA pathogenesis.

  12. CFD Modeling of Sodium-Oxide Deposition in Sodium-Cooled Fast Reactor Compact Heat Exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Tatli, Emre; Ferroni, Paolo; Mazzoccoli, Jason

    2015-09-02

    The possible use of compact heat exchangers (HXs) in sodium-cooled fast reactors (SFR) employing a Brayton cycle is promising due to their high power density and resulting small volume in comparison with conventional shell-and-tube HXs. However, the small diameter of their channels makes them more susceptible to plugging due to Na2O deposition during accident conditions. Although cold traps are designed to reduce oxygen impurity levels in the sodium coolant, their failure, in conjunction with accidental air ingress into the sodium boundary, could result in coolant oxygen levels that are above the saturation limit in the cooler parts of the HX channels. This can result in Na2O crystallization and the formation of solid deposits on cooled channel surfaces, limiting or even blocking coolant flow. The development of analysis tools capable of modeling the formation of these deposits in the presence of sodium flow will allow designers of SFRs to properly size the HX channels so that, in the scenario mentioned above, the reactor operator has sufficient time to detect and react to the affected HX. Until now, analytical methodologies to predict the formation of these deposits have been developed, but never implemented in a high-fidelity computational tool suited to modern reactor design techniques. This paper summarizes the challenges and the current status in the development of a Computational Fluid Dynamics (CFD) methodology to predict deposit formation, with particular emphasis on sensitivity studies on some parameters affecting deposition.

  13. Acid deposition critical loads modeling for the simulation of sulfur exceedance and reduction in Guangdong, China

    Institute of Scientific and Technical Information of China (English)

    QIU Rongliang; WANG Shizhong; QIU Hao; WANG Xuemei; LIAO Jin; ZHANG Zhentian

    2009-01-01

    In this study, the current acid deposition critical loads in Guangdong, China were calculated using the PROFILE model with a 3×3 km resolution.Calculations were carried out for critical loads of potential acidity, actual acidity, sulfur and nitrogen, with values in extents of 0-3.5, 0-14.0, 0-26.0 and 0-3.5 kmol/(hm2·year), respectively.These values were comparable to previously reported results and reflected the influences of vegetation and soil characteristics on the soil acid buffering capacity.Simulations of SO2 emission and sulfur deposition in this study showed that sulfur deposition core areas mirrored SO2 emission centers.The prediction of sulfur deposition after 20% and 40% reduction of SO2 emission suggested that the reduction of area sources contributed greatly to the decrease of sulfur deposition.Thus, abatement of area source emissions could be the primary way to mitigate sulfur deposition in Guangdong so as to meet both the provincial and national regulations of air pollution control.

  14. Subretinal Pigment Epithelial Deposition of Drusen Components Including Hydroxyapatite in a Primary Cell Culture Model

    Science.gov (United States)

    Pilgrim, Matthew G.; Lengyel, Imre; Lanzirotti, Antonio; Newville, Matt; Fearn, Sarah; Emri, Eszter; Knowles, Jonathan C.; Messinger, Jeffrey D.; Read, Russell W.; Guidry, Clyde; Curcio, Christine A.

    2017-01-01

    Purpose Extracellular deposits containing hydroxyapatite, lipids, proteins, and trace metals that form between the basal lamina of the RPE and the inner collagenous layer of Bruch's membrane are hallmarks of early AMD. We examined whether cultured RPE cells could produce extracellular deposits containing all of these molecular components. Methods Retinal pigment epithelium cells isolated from freshly enucleated porcine eyes were cultured on Transwell membranes for up to 6 months. Deposit composition and structure were characterized using light, fluorescence, and electron microscopy; synchrotron x-ray diffraction and x-ray fluorescence; secondary ion mass spectroscopy; and immunohistochemistry. Results Apparently functional primary RPE cells, when cultured on 10-μm-thick inserts with 0.4-μm-diameter pores, can produce sub-RPE deposits that contain hydroxyapatite, lipids, proteins, and trace elements, without outer segment supplementation, by 12 weeks. Conclusions The data suggest that sub-RPE deposit formation is initiated, and probably regulated, by the RPE, as well as the loss of permeability of the Bruch's membrane and choriocapillaris complex associated with age and early AMD. This cell culture model of early AMD lesions provides a novel system for testing new therapeutic interventions against sub-RPE deposit formation, an event occurring well in advance of the onset of vision loss. PMID:28146236

  15. Acid deposition critical loads modeling for the simulation of sulfur exceedance and reduction in Guangdong, China.

    Science.gov (United States)

    Qiu, Rongliang; Wang, Shizhong; Qiu, Hao; Wang, Xuemei; Liao, Jin; Zhang, Zhentian

    2009-01-01

    The current acid deposition critical loads in Guangdong, China were calculated using the PROFILE model with a 3 km x 3 km resolution. Calculations were carried out for critical loads of potential acidity, actual acidity, sulfur and nitrogen, with values in extents of 0-3.5, 0-14.0, 0-26.0 and 0-3.5 kmol/(hm2 x year), respectively. These values were comparable to previously reported results and reflected the influences of vegetation and soil characteristics on the soil acid buffering capacity. Simulations of SO2 emission and sulfur deposition in this study showed that sulfur deposition core areas mirrored SO2 emission centers. The prediction of sulfur deposition after 20% and 40% reduction of SO2 emission suggested that the reduction of area sources contributed greatly to the decrease of sulfur deposition. Thus, abatement of area source emissions could be the primary way to mitigate sulfur deposition in Guangdong to meet both the provincial and national regulations of air pollution control.

  16. Model catalysis by size-selected cluster deposition

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Scott [Univ. of Utah, Salt Lake City, UT (United States)

    2015-11-20

    This report summarizes the accomplishments during the last four years of the subject grant. Results are presented for experiments in which size-selected model catalysts were studied under surface science and aqueous electrochemical conditions. Strong effects of cluster size were found, and by correlating the size effects with size-dependent physical properties of the samples measured by surface science methods, it was possible to deduce mechanistic insights, such as the factors that control the rate-limiting step in the reactions. Results are presented for CO oxidation, CO binding energetics and geometries, and electronic effects under surface science conditions, and for the electrochemical oxygen reduction reaction, ethanol oxidation reaction, and for oxidation of carbon by water.

  17. Backtrack modeling to locate the origin of tar balls depositing along the west coast of India.

    Science.gov (United States)

    Suneel, V; Ciappa, A; Vethamony, P

    2016-11-01

    Tar ball (TB) deposition along the West Coast of India (WCI) is a common phenomenon during the southwest monsoon season, particularly along the coast of Goa and Gujarat, and it is a major concern to the stake holders. Our earlier studies showed that the source oil for the TBs deposited on the Goa coast in August 2010 is the tanker wash, and the source for subsequent TBs deposited on the Gujarat coast during July 2012 and June 2013 and Goa coast in May 2013 is from Bombay High (BH) oil fields. In the present study, the TBs that were deposited during May 2013 and May 2014 on the Goa coast were backtracked through a trajectory model, primarily to simulate their pathways and identify the reason for the occurrence of TBs only in May, and eventually to identify the origin and the source. The backtracking results re-confirmed that the TBs deposited in 2010 were originated from the tanker routes and that of both 2013 and 2014 TBs from the BH oil fields. The climatology of wind and surface circulation showed that the TBs deposited on the Goa coast during May/June only are from the oil fields and those during August from the tanker route. The results of backtracking simulations showed that the residence time of the oil residues/TBs is approximately 22days for August 2010 TBs, ≈30days for May 2013 TBs and 65days for May 2014 TBs. The residence time (in water) of TBs that deposit (on the coast) in the month of May could be as much as 7months, and could be around one month if deposit in August, primarily because of winds and hydrodynamic conditions of the Arabian Sea.

  18. Simulation of nitrogen deposition in the North China Plain by the FRAME model

    Directory of Open Access Journals (Sweden)

    Y. Zhang

    2011-11-01

    Full Text Available Simulation of atmospheric nitrogen (N deposition in the North China Plain (NCP at high resolution, 5 × 5 km2, was conducted for the first time by the Fine Resolution Atmospheric Multi-pollutant Exchange (FRAME model. The total N deposition budget was 1481 Gg in this region, with 77 % from reduced N and 23 % from oxidized N, and the annual deposition rate (47 kg N ha−1 was much higher than previously reported values for other parts of the world such as the UK (13 kg N ha−1, Poland (7.3 kg N ha−1 and EU27 (8.6 kg N ha−1. The exported N component (1981 Gg was much higher than the imported N component (584 Gg, suggesting that the NCP is an important net emission source of N pollutants. Contributions of N deposition budgets from the seven provinces in this region were proportional to their area ratios. The calculated spatial distributions of N deposition displayed high rates of reduced N deposition in the south and of oxidized N deposition in the eastern part. The N deposition exceeded an upper limit of 30 kg N ha−1 for natural ecosystems over more than 90 % of the region, resulting in terrestrial ecosystem deterioration, impaired air quality and coastal eutrophication not only in the NCP itself but also in surrounding areas including the Bohai Sea and the Yellow Sea.

  19. Modeling Nitrogen Deposition for the Santa Clara County Habitat Conservation Plan

    Science.gov (United States)

    Weiss, S. B.; Meyers, T.; Held, T.; Zippen, D.

    2009-12-01

    Nutrient-poor serpentine soils in Santa Clara County, CA, support numerous rare, threatened, and endangered species such as the Bay checkerspot butterfly. Serpentine grasslands are particularly vulnerable to atmospheric nitrogen deposition, which provides a competitive advantage to invasive annual grasses which overrun the flower-filled grasslands and degrade habitat for the protected species. The effects of N-deposition on these grasslands was first scientifically documented in 1999, and led to a series of mitigation projects for powerplants and road improvements that include habitat acquisition, monitoring, and grazing management. In 2005, a Habitat Conservation Plan/Natural Communities Conservation Plan (HCP/NCCP) was initiated to consolidate project-by-project mitigation into a regional plan covering impacts, especially indirect impacts on N-deposition, from development within the 209,500 ha study area (62% of Santa Clara County) and the cities therein. This HCP/NCCP is the first to address N-deposition effects on biodiversity. To understand the origins of the nitrogen being deposited in Santa Clara grasslands, IFC Jones & Stokes used multiple air quality modeling approaches including Gaussian line-source modeling of major highways and regional Community Multiscale Air Quality (CMAQ) modeling. Line-source modeling allowed for the estimation of N-deposition resulting from increased traffic. Gaussian modeling results indicate that the major highways closest to serpentine habitats result in the greatest environmental impact. The CMAQ modeling used the Particle and Precursor Tagging Methodology (PPTM) source apportionment technique to partition sources. In the base period (Dec 2000- Jan 2001), the CMAQ PPTM simulation estimates that 30% of the total nitrogen deposition is associated with mobile sources operating within the study area; an additional 16% emanates from stationary sources in the study area. Therefore, 46% of nitrogen deposition on the habitat areas

  20. Sediment Deposition Pattern and Flow Conditions in the Three Gorges Reservoir: A Physical Model Study

    Institute of Scientific and Technical Information of China (English)

    王兴奎; 邵学军; 李丹勋

    2003-01-01

    Sedimentation in the Three Gorges Reservoir will greatly affect future project functions, such as power generation and navigation, after 50 years of operation. This paper presents results of a physical model study, which indicate that the capacity of both the discharge tunnel and the power plant outlet could be impaired by sediment deposition in front of the dam after 50 years, affecting both the hydropower head and navigation. A flow training scheme based on the third-stage cofferdam for the dam construction is proposed to regulate the flow pattern and control deposition in the near-dam region of the reservoir. This flow training scenario can effectively reduce deposition in the physical model.

  1. Dynamic Modeling for the Design and Cyclic Operation of an Atomic Layer Deposition (ALD Reactor

    Directory of Open Access Journals (Sweden)

    Curtisha D. Travis

    2013-08-01

    Full Text Available A laboratory-scale atomic layer deposition (ALD reactor system model is derived for alumina deposition using trimethylaluminum and water as precursors. Model components describing the precursor thermophysical properties, reactor-scale gas-phase dynamics and surface reaction kinetics derived from absolute reaction rate theory are integrated to simulate the complete reactor system. Limit-cycle solutions defining continuous cyclic ALD reactor operation are computed with a fixed point algorithm based on collocation discretization in time, resulting in an unambiguous definition of film growth-per-cycle (gpc. A key finding of this study is that unintended chemical vapor deposition conditions can mask regions of operation that would otherwise correspond to ideal saturating ALD operation. The use of the simulator for assisting in process design decisions is presented.

  2. A modelling study of regional deposition of inspired aerosols with reference to dosimetric assessments

    Energy Technology Data Exchange (ETDEWEB)

    Egan, M.J.; Nixon, W. (UKAEA Safety and Reliability Directorate, Culcheth (UK))

    1988-01-01

    An improved lung deposition model, agreeing well with a wide range of total and regional deposition data, was used to investigate some assumptions embodied in current ICRP recommendations. Following a comparison between predictions of the new model and the original ICRP Task Group deposition model, the possible influence upon dosimetric calculations caused by various different effects were investigated. Some significant differences between regional deposition predictions of the new model and the current ICRP recommendations embodied in Publication 30 were found, up to a factor of approx 4 in some cases. The impact of improved modelling, aerosol polydispersity, the possibility of mouth as compared to nose breathing and exercise level (especially if there is transition from nose to mouth breathing at high work rates) were observed to be the most important. The impact of different breathing patterns was found to be less significant while the effect of different particle densities could be relatively successfully accounted for via a suitable transition from geometric to aerodynamic diameter. (author).

  3. Atmospheric mercury simulation using the CMAQ model: formulation description and analysis of wet deposition results

    Science.gov (United States)

    Bullock, O. Russell; Brehme, Katherine A.

    The community multiscale air quality (CMAQ) modeling system has been adapted to simulate the emission, transport, transformation and deposition of atmospheric mercury (Hg) in three distinct forms: elemental Hg gas, reactive gaseous Hg, and particulate Hg. Emissions of Hg are currently defined from information published in the Environmental Protection Agency's Mercury Study Report to Congress. The atmospheric transport of these three forms of Hg is simulated in the same manner as for all other substances simulated by the CMAQ model to date. Transformations of Hg are simulated with four new chemical reactions within the standard CMAQ gaseous chemistry framework and a highly modified cloud chemistry mechanism which includes a compound-specific speciation for oxidized forms of Hg, seven new aqueous-phase Hg reactions, six aqueous Hg chemical equilibria, and a two-way mechanism for the sorption of dissolved oxidized Hg to elemental carbon particles. The CMAQ Hg model simulates the partitioning of reactive gaseous Hg between air and cloud water based on the Henry's constant for mercuric chloride. Henry's equilibrium is assumed for elemental Hg also. Particulate Hg is assumed to be incorporated into the aqueous medium during cloud nucleation. Wet and dry deposition is simulated for each of the three forms of Hg. Wet deposition rate is calculated based on precipitation information from the CMAQ meteorological processor and the physicochemical Hg speciation in the cloud chemistry mechanism. Dry deposition rate is calculated based on dry deposition velocity and air concentration information for each of the three forms of Hg. The horizontal modeling domain covers the central and eastern United States and adjacent southern Canada. An analysis of simulated Hg wet deposition versus weekly observations is performed. The results are described for two evaluation periods: 4 April-2 May 1995, and 20 June-18 July 1995.

  4. Carbonatite and alkaline intrusion-related rare earth element deposits–A deposit model

    Science.gov (United States)

    Verplanck, Philip L.; Van Gosen, Bradley S.

    2011-01-01

    The rare earth elements are not as rare in nature as their name implies, but economic deposits with these elements are not common and few deposits have been large producers. In the past 25 years, demand for rare earth elements has increased dramatically because of their wide and diverse use in high-technology applications. Yet, presently the global production and supply of rare earth elements come from only a few sources. China produces more than 95 percent of the world's supply of rare earth elements. Because of China's decision to restrict exports of these elements, the price of rare earth elements has increased and industrial countries are concerned about supply shortages. As a result, understanding the distribution and origin of rare earth elements deposits, and identifying and quantifying our nation's rare earth elements resources have become priorities. Carbonatite and alkaline intrusive complexes, as well as their weathering products, are the primary sources of rare earth elements. The general mineral deposit model summarized here is part of an effort by the U.S. Geological Survey's Mineral Resources Program to update existing models and develop new descriptive mineral deposit models to supplement previously published models for use in mineral-resource and mineral-environmental assessments. Carbonatite and alkaline intrusion-related REE deposits are discussed together because of their spatial association, common enrichment in incompatible elements, and similarities in genesis. A wide variety of commodities have been exploited from carbonatites and alkaline igneous rocks, such as rare earth elements, niobium, phosphate, titanium, vermiculite, barite, fluorite, copper, calcite, and zirconium. Other enrichments include manganese, strontium, tantalum, thorium, vanadium, and uranium.

  5. Risk Management Model in Surface Exploitation of Mineral Deposits

    Science.gov (United States)

    Stojanović, Cvjetko

    2016-06-01

    Risk management is an integrative part of all types of project management. One of the main tasks of pre-investment studies and other project documentation is the tendency to protect investment projects as much as possible against investment risks. Therefore, the provision and regulation of risk information ensure the identification of the probability of the emergence of adverse events, their forms, causes and consequences, and provides a timely measures of protection against risks. This means that risk management involves a set of management methods and techniques used to reduce the possibility of realizing the adverse events and consequences and thus increase the possibilities of achieving the planned results with minimal losses. Investment in mining projects are of capital importance because they are very complex projects, therefore being very risky, because of the influence of internal and external factors and limitations arising from the socio-economic environment. Due to the lack of a risk management system, numerous organizations worldwide have suffered significant financial losses. Therefore, it is necessary for any organization to establish a risk management system as a structural element of system management system as a whole. This paper presents an approach to a Risk management model in the project of opening a surface coal mine, developed based on studies of extensive scientific literature and personal experiences of the author, and which, with certain modifications, may find use for any investment project, both in the mining industry as well as in investment projects in other areas.

  6. Mechanistic Model for Ash Deposit Formation in Biomass Suspension Firing. Part 1: Model Verification by Use of Entrained Flow Reactor Experiments

    DEFF Research Database (Denmark)

    Hansen, Stine Broholm; Jensen, Peter Arendt; Jappe Frandsen, Flemming

    2017-01-01

    Two models for deposit formation in suspension firing of biomass have been developed. Both models describe deposit buildup by diffusion and subsequent condensation of vapors, thermophoresis of aerosols, convective diffusion of small particles, impaction of large particles, and reaction. The models...... used to describe the deposit formation rates and deposit chemistry observed in a series of entrained flow reactor (EFR) experiments using straw and wood as fuels. It was found that model #1 was not able to describe the observed influence of temperature on the deposit buildup rates, predicting a much...

  7. Particles deposition induced by the magnetic field in the coronary bypass graft model

    Science.gov (United States)

    Bernad, Sandor I.; Totorean, Alin F.; Vekas, Ladislau

    2016-03-01

    Bypass graft failures is a complex process starting with intimal hyperplasia development which involve many hemodynamic and biological factors. This work presents experimental results regarding the possibility to use magnetic drug delivery to prevent the development of the intimal hyperplasia using a simplified but intuitive model. The primary goal is to understand the magnetic particle deposition in the anastomosis region of the bypass graft taking into account the complex flow field created in this area which involves recirculation region, flow mixing and presence of particles with high residence time. The three-dimensional geometry model was used to simulate the motion and accumulation of the particles under the magnetic field influence in anastomotic region of the coronary bypass graft. The flow patterns are evaluated both numerically and experimentally and show a good correlation in term of flow parameters like vortex length and flow stagnation point positions. Particle depositions are strongly dependent on the magnet position and consequently of the magnetic field intensity and field gradient. Increased magnetic field controlled by the magnet position induces increased particle depositions in the bypass graft anastomosis. The result shows that particle depositions depend on the bypass graft angle, and the deposition shape and particle accumulation respectively, depend by the flow pattern in the anastomosis region.

  8. The OML-SprayDrift model for predicting pesticide drift and deposition from ground boom sprayers

    DEFF Research Database (Denmark)

    Løfstrøm, Per; Bruus, Marianne; Andersen, Helle Vibeke

    2013-01-01

    at increasing distances. The vertical concentration profile downwind has a maximum just above the ground in our observations and calculations. The model accounts for the meteorological conditions, droplet ejection velocity and size spectrum. Model validation led to an R2 value of 0.78, and 91% of the calculated......In order to predict the exposure of hedgerows and other neighboring biotopes to pesticides from field-spray applications, an existing Gaussian atmospheric dispersion and deposition model was developed to model the changes in droplet size due to evaporation affecting the deposition velocity....... The Gaussian tilting plume principle was applied inside the stayed track. The model was developed on one set of field experiments using a flat-fan nozzle and validated against another set of field experiments using an air-induction nozzle. The vertical spray-drift profile was measured using hair curlers...

  9. Multi-model mean nitrogen and sulfur deposition from the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP): evaluation historical and projected changes

    OpenAIRE

    J.-F. Lamarque; Dentener, F.; Mcconnell, J.; C.-U. Ro; M. Shaw; Vet, R.; D. Bergmann; Cameron-Smith, P.; Doherty, R.; Faluvegi, G.; Ghan, S. J.; B. Josse; Lee, Y. H.; I. A. MacKenzie; Plummer, D.

    2013-01-01

    We present multi-model global datasets of nitrogen and sulfate deposition covering time periods from 1850 to 2100, calculated within the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP). The computed deposition fluxes are compared to surface wet deposition and ice-core measurements. We use a new dataset of wet deposition for 2000–2002 based on critical assessment of the quality of existing regional network data. We show that for present-day (year 2000 ACCMIP time-slice...

  10. Multi-model mean nitrogen and sulfur deposition from the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP): evaluation of historical and projected future changes

    OpenAIRE

    Lamarque, J.-F.; Dentener, F.; Mcconnell, J.; Ro, C.-U.; M. Shaw; Vet, R.; D. Bergmann; Cameron-Smith, P.; Dalsoren, S.; Doherty, R.; Faluvegi, G.; Ghan, S. J.; B. Josse; Lee, Y. H.; I. A. MacKenzie

    2013-01-01

    We present multi-model global datasets of nitrogen and sulfate deposition covering time periods from 1850 to 2100, calculated within the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP). The computed deposition fluxes are compared to surface wet deposition and ice core measurements. We use a new dataset of wet deposition for 2000–2002 based on critical assessment of the quality of existing regional network data. We show that for present day (year 2000...

  11. Integrated assessment of acid deposition impacts using reduced-form modeling. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Sinha, R.; Small, M.J.

    1996-05-01

    Emissions of sulfates and other acidic pollutants from anthropogenic sources result in the deposition of these acidic pollutants on the earth`s surface, downwind of the source. These pollutants reach surface waters, including streams and lakes, and acidify them, resulting in a change in the chemical composition of the surface water. Sometimes the water chemistry is sufficiently altered so that the lake can no longer support aquatic life. This document traces the efforts by many researchers to understand and quantify the effect of acid deposition on the water chemistry of populations of lakes, in particular the improvements to the MAGIC (Model of Acidification of Groundwater in Catchments) modeling effort, and describes its reduced-form representation in a decision and uncertainty analysis tool. Previous reduced-form approximations to the MAGIC model are discussed in detail, and their drawbacks are highlighted. An improved reduced-form model for acid neutralizing capacity is presented, which incorporates long-term depletion of the watershed acid neutralization fraction. In addition, improved fish biota models are incorporated in the integrated assessment model, which includes reduced-form models for other physical and chemical processes of acid deposition, as well as the resulting socio-economic and health related effects. The new reduced-form lake chemistry and fish biota models are applied to the Adirondacks region of New York.

  12. Evaluation of DUSTRAN Software System for Modeling Chloride Deposition on Steel Canisters

    Energy Technology Data Exchange (ETDEWEB)

    Tran, Tracy T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Jensen, Philip J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Fritz, Brad G. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Rutz, Frederick C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Devanathan, Ram [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-07-29

    The degradation of steel by stress corrosion cracking (SCC) when exposed to atmospheric conditions for decades is a significant challenge in the fossil fuel and nuclear industries. SCC can occur when corrosive contaminants such as chlorides are deposited on a susceptible material in a tensile stress state. The Nuclear Regulatory Commission has identified chloride-induced SCC as a potential cause for concern in stainless steel used nuclear fuel (UNF) canisters in dry storage. The modeling of contaminant deposition is the first step in predictive multiscale modeling of SCC that is essential to develop mitigation strategies, prioritize inspection, and ensure the integrity and performance of canisters, pipelines, and structural materials. A multiscale simulation approach can be developed to determine the likelihood that a canister would undergo SCC in a certain period of time. This study investigates the potential of DUSTRAN, a dust dispersion modeling system developed by Pacific Northwest National Laboratory, to model the deposition of chloride contaminants from sea salt aerosols on a steel canister. Results from DUSTRAN simulations run with historical meteorological data were compared against measured chloride data at a coastal site in Maine. DUSTRAN’s CALPUFF model tended to simulate concentrations higher than those measured; however, the closest estimations were within the same order of magnitude as the measured values. The decrease in discrepancies between measured and simulated values as the level of abstraction in wind speed decreased suggest that the model is very sensitive to wind speed. However, the influence of other parameters such as the distinction between open-ocean and surf-zone sources needs to be explored further. Deposition values predicted by the DUSTRAN system were not in agreement with concentration values and suggest that the deposition calculations may not fully represent physical processes. Overall, results indicate that with parameter

  13. Modeling of Ammonia Dry Deposition to a Pocosin Landscape Downwind of a Large Poultry Facility

    Science.gov (United States)

    A semi-empirical bi-directional flux modeling approach is used to estimate NH3 air concentrations and dry deposition fluxes to a portion of the Pocosin Lakes National Wildlife Refuge (PLNWR) downwind of a large poultry facility. Meteorological patterns at PLNWR are such that som...

  14. Comparisons of measured and modelled ozone deposition to forests in northern Europe

    DEFF Research Database (Denmark)

    Touvinen, J. P.; Simpson, D.; Mikkelsen, Teis Nørgaard

    2001-01-01

    The performance of a new dry deposition module, developedfor the European-scale mapping and modelling of ozone flux to vegetation, was tested against micrometeorological ozone and water vapour flux measurements. The measurement data are for twoconiferous (Scots pine in Finland, Norway spruce in D...

  15. Fused Deposition Modeling 3D Printing for (Bio)analytical Device Fabrication : Procedures, Materials, and Applications

    NARCIS (Netherlands)

    Salentijn, Gert Ij; Oomen, Pieter E; Grajewski, Maciej; Verpoorte, Elisabeth

    2017-01-01

    In this work, the use of fused deposition modeling (FDM) in a (bio)analytical/lab-on-a-chip research laboratory is described. First, the specifications of this 3D printing method that are important for the fabrication of (micro)devices were characterized for a benchtop FDM 3D printer. These include

  16. Modeling of Ammonia Dry Deposition to a Pocosin Landscape Downwind of a Large Poultry Facility

    Science.gov (United States)

    A semi-empirical bi-directional flux modeling approach is used to estimate NH3 air concentrations and dry deposition fluxes to a portion of the Pocosin Lakes National Wildlife Refuge (PLNWR) downwind of a large poultry facility. Meteorological patterns at PLNWR are such that som...

  17. Distribution and Orientation of Carbon Fibers in Polylactic Acid Parts Produced by Fused Deposition Modeling

    DEFF Research Database (Denmark)

    Hofstätter, Thomas; W. Gutmann, Ingomar; Koch, Thomas

    2016-01-01

    The aim of this paper is the understanding of the fiber orientation by investigations in respect to the inner configuration of a polylactic acid matrix reinforced with short carbon fibers after a fused deposition modeling extrusion process. The final parts were analyzed by X-ray, tomography, and ...

  18. Modelling the impact of climate change and atmospheric N deposition on French forests biodiversity.

    Science.gov (United States)

    Rizzetto, Simon; Belyazid, Salim; Gégout, Jean-Claude; Nicolas, Manuel; Alard, Didier; Corcket, Emmanuel; Gaudio, Noémie; Sverdrup, Harald; Probst, Anne

    2016-06-01

    A dynamic coupled biogeochemical-ecological model was used to simulate the effects of nitrogen deposition and climate change on plant communities at three forest sites in France. The three sites had different forest covers (sessile oak, Norway spruce and silver fir), three nitrogen loads ranging from relatively low to high, different climatic regions and different soil types. Both the availability of vegetation time series and the environmental niches of the understory species allowed to evaluate the model for predicting the composition of the three plant communities. The calibration of the environmental niches was successful, with a model performance consistently reasonably high throughout the three sites. The model simulations of two climatic and two deposition scenarios showed that climate change may entirely compromise the eventual recovery from eutrophication of the simulated plant communities in response to the reductions in nitrogen deposition. The interplay between climate and deposition was strongly governed by site characteristics and histories in the long term, while forest management remained the main driver of change in the short term.

  19. Modeling Mechanism and Growth Reactions for New Nanofabrication Processes by Atomic Layer Deposition.

    Science.gov (United States)

    Elliott, Simon D; Dey, Gangotri; Maimaiti, Yasheng; Ablat, Hayrensa; Filatova, Ekaterina A; Fomengia, Glen N

    2016-07-01

    Recent progress in the simulation of the chemistry of atomic layer deposition (ALD) is presented for technologically important materials such as alumina, silica, and copper metal. Self-limiting chemisorption of precursors onto substrates is studied using density functional theory so as to determine reaction pathways and aid process development. The main challenges for the future of ALD modeling are outlined.

  20. Dry deposition model for a microscale aerosol dispersion solver based on the moment method

    CERN Document Server

    Šíp, Viktor

    2016-01-01

    A dry deposition model suitable for use in the moment method has been developed. Contributions from five main processes driving the deposition - Brownian diffusion, interception, impaction, turbulent impaction, and sedimentation - are included in the model. The deposition model was employed in the moment method solver implemented in the OpenFOAM framework. Applicability of the developed expression and the moment method solver was tested on two example problems of particle dispersion in the presence of a vegetation on small scales: a flow through a tree patch in 2D and a flow through a hedgerow in 3D. Comparison with the sectional method showed that the moment method using the developed deposition model is able to reproduce the shape of the particle size distribution well. The relative difference in terms of the third moment of the distribution was below 10\\% in both tested cases, and decreased away from the vegetation. Main source of this difference is a known overprediction of the impaction efficiency. When ...

  1. The interconnection of wet and dry deposition and the alteration of deposition budgets due to incorporation of new process understanding in regional models

    Science.gov (United States)

    Dennis, R. L.; Bash, J. O.; Foley, K. M.; Gilliam, R.; Pinder, R. W.

    2013-12-01

    Deposition is affected by the chemical and physical processes represented in the regional models as well as source strength. The overall production and loss budget (wet and dry deposition) is dynamically connected and adjusts internally to changes in process representation. In addition, the scrubbing of pollutants from the atmosphere by precipitation is one of several processes that remove pollutants, creating a coupling with the atmospheric aqueous and gas phase chemistry that can influence wet deposition rates in a nonlinear manner. We explore through model sensitivities with the regional Community Multiscale Air Quality (CMAQ) model the influence on wet and dry deposition, and the overall continental nitrogen budget, of changes in three process representations in the model: (1) incorporation of lightning generated NO, (2) improved representation of convective precipitation, and (3) replacement of the typical unidirectional dry deposition of NH3 with a state of the science representation of NH3 bi-directional air-surface exchange. Results of the sensitivity studies will be presented. (1) Incorporation of lightning generated NO significantly reduces a negative bias in summer wet nitrate deposition, but is sensitive to the choice of convective parameterization. (2) Use of a less active trigger of convective precipitation in the WRF meteorological model to reduce summertime precipitation over prediction bias reduces the generation of NO from lightning. It also reduces the wet deposition of nitrate and increases the dry deposition of oxidized nitrogen, as well as changing (reducing) the surface level exposure to ozone. Improvements in the convective precipitation processes also result in more non-precipitating clouds leading to an increase in SO4 production through the aqueous pathway resulting in improvements in summertime SO4 ambient aerosol estimates.(3) Incorporation of state of the science ammonia bi-directional air surface exchange affects both the dry

  2. Modeling of the deposition of Ni and Pd on Mo(1 1 0)

    Energy Technology Data Exchange (ETDEWEB)

    Canzian, Adrian [Grupo de Caracterizacion y Modelacion de Materiales, UTN, FRGP, H. Yrigoyen 288, (B1617FRP) Gral. Pacheco (Argentina); Mosca, Hugo [Grupo de Caracterizacion y Modelacion de Materiales, UTN, FRGP, H. Yrigoyen 288, (B1617FRP) Gral. Pacheco (Argentina); Comision Nacional de Energia Atomica, U.A. Fisica, Av. Gral Paz 1499, (B1650KNA) San Martin (Argentina); Bozzolo, Guillermo [NASA Glenn Research Center, Cleveland, OH 44135 (United States); Ohio Aerospace Institute, 22800 Cedar Point Road, Cleveland, OH 44142 (United States)], E-mail: Guillermo.H.Bozzolo@grc.nasa.gov

    2007-10-31

    Recent experimental work on the deposition of fcc metals on a bcc substrate motivates this atomistic modeling analysis of Ni and Pd deposition on Mo(1 1 0). A detailed atom-by-atom analysis of the early stages of growth, focusing on the formation of surface alloys and 3D islands is presented, identifying the interactions leading to each type of behavior. Further analysis describes the growth pattern as a function of coverage. Temperature effects are studied via Monte Carlo simulations using the Bozzolo-Ferrante-Smith (BFS) method for alloys for the energetics.

  3. Model reduction and temperature uniformity control for rapid thermal chemical vapor deposition reactors

    Science.gov (United States)

    Theodoropoulou, Artemis-Georgia

    The consideration of Rapid Thermal Processing (RTP) in semiconductor manufacturing has recently been increasing. As a result, control of RTP systems has become of great importance since it is expected to help in addressing uniformity problems that, so far, have been obstructing the acceptance of the method. The spatial distribution appearing in RTP models necessitates the use of model reduction in order to obtain models of a size suitable for use in control algorithms. This dissertation addresses model reduction as well as control issues for RTP systems. A model of a three-zone Rapid Thermal Chemical Vapor Deposition (RTCVD) system is developed to study the effects of spatial wafer temperature patterns on polysilicon deposition uniformity. A sequence of simulated runs is performed, varying the lamp power profiles so that different wafer temperature modes are excited. The dominant spatial wafer thermal modes are extracted via Proper Orthogonal Decomposition and subsequently used as a set of trial functions to represent both the wafer temperature and deposition thickness. A collocation formulation of Galerkin's method is used to discretize the original modeling equations, giving a low-order model which loses little of the original, high-order model's fidelity. We make use of the excellent predictive capabilities of the reduced model to optimize power inputs to the lamp banks to achieve a desired polysilicon deposition thickness at the end of a run with minimal deposition spatial nonuniformity. Since the results illustrate that the optimization procedure benefits from the use of the reduced-order model, we further utilize the reduced order model for real time Model Based Control. The feedback controller is designed using the Internal Model Control (IMC) structure especially modified to handle systems described by ordinary differential and algebraic equations. The IMC controller is obtained using optimal control theory on singular arcs extended for multi input systems

  4. Experimental Study and Mathematical Modeling of Asphaltene Deposition Mechanism in Core Samples

    Directory of Open Access Journals (Sweden)

    Jafari Behbahani T.

    2015-11-01

    Full Text Available In this work, experimental studies were conducted to determine the effect of asphaltene deposition on the permeability reduction and porosity reduction of carbonate, sandstone and dolomite rock samples using an Iranian bottom hole live oil sample which is close to reservoir conditions, whereas in the majority of previous work, a mixture of recombined oil (a mixture of dead oil and associated gas was injected into a core sample which is far from reservoir conditions. The effect of the oil injection rate on asphaltene deposition and permeability reduction was studied. The experimental results showed that an increase in the oil injection flow rate can result in an increase in asphaltene deposition and permeability reduction. Also, it can be observed that at lower injection flow rates, a monotonic decrease in permeability of the rock samples can be attained upon increasing the injection flow rate, while at higher injection rates, after a decrease in rock permeability, an increasing trend is observed before a steady-state condition can be reached. The experimental results also showed that the rock type can affect the amount of asphaltene deposition, and the asphaltene deposition has different mechanisms in sandstone and carbonate core samples. It can be seen that the adsorption and plugging mechanisms have a more important role in asphaltene deposition in carbonate core samples than sandstone core samples. From the results, it can be observed that the pore volumes of the injected crude oil are higher for sandstone cores compared with the carbonate cores. Also, it can be inferred that three depositional types may take place during the crude oil injection, i.e., continuous deposition for low-permeability cores, slow, steady plugging for high-permeability cores and steady deposition for medium-permeability cores. It can be seen from the experimental results that damage to the core samples was found to increase when the production pressures were

  5. A COMPARISON OF THE TENSILE STRENGTH OF PLASTIC PARTS PRODUCED BY A FUSED DEPOSITION MODELING DEVICE

    Directory of Open Access Journals (Sweden)

    Juraj Beniak

    2015-12-01

    Full Text Available Rapid Prototyping systems are nowadays increasingly used in many areas of industry, not only for producing design models but also for producing parts for final use. We need to know the properties of these parts. When we talk about the Fused Deposition Modeling (FDM technique and FDM devices, there are many possible settings for devices and models which could influence the properties of a final part. In addition, devices based on the same principle may use different operational software for calculating the tool path, and this may have a major impact. The aim of this paper is to show the tensile strength value for parts produced from different materials on the Fused Deposition Modeling device when the horizontal orientation of the specimens is changed.

  6. Modeling of Crystal Orientations in Laser Powder Deposition of Single Crystal Material

    Science.gov (United States)

    Qi, Huan; Liu, Zhaoyang

    This paper presents a numerical model which simulates the dynamic molten pool formation and the crystal orientations of solidified SX alloy in a multi-layer laser powder deposition process. Based on the mathematical model of coaxial laser direct deposition, the effect of parameters (laser power, scanning speed, powder feed rate) on the tendency to form [001] direction expitaxial grains during solidification was evaluated. In the transient three- dimensional model, physical phenomena including heat transfer, melting, grain formation during solidification, mass addition, and fluid flow in the melt pool, were modeled in a self-consistent manner. The temperature fields, fluid flow velocity, clad geometry (width, height and melt pool depth) and grain formation in melting pool of single layer are predicted.

  7. Experimental investigation of particle deposition mechanisms in the lung acinus using microfluidic models.

    Science.gov (United States)

    Fishler, Rami; Mulligan, Molly; Dubowski, Yael; Sznitman, Josue; Sznitman Lab-department of Biomedical Engineering Team; Dubowski Lab-faculty of Civil; Environmental Engineering Team

    2014-11-01

    In order to experimentally investigate particle deposition mechanisms in the deep alveolated regions of the lungs, we have developed a novel microfluidic device mimicking breathing acinar flow conditions directly at the physiological scale. The model features an anatomically-inspired acinar geometry with five dichotomously branching airway generations lined with periodically expanding and contracting alveoli. Deposition patterns of airborne polystyrene microspheres (spanning 0.1 μm to 2 μm in diameter) inside the airway tree network compare well with CFD simulations and reveal the roles of gravity and Brownian motion on particle deposition sites. Furthermore, measured trajectories of incense particles (0.1-1 μm) inside the breathing device show a critical role for Brownian diffusion in determining the fate of inhaled sub-micron particles by enabling particles to cross from the acinar ducts into alveolar cavities, especially during the short time lag between inhalation and exhalation phases.

  8. Evaluation of atmospheric nitrogen deposition model performance in the context of U.S. critical load assessments

    Science.gov (United States)

    Williams, Jason J.; Chung, Serena H.; Johansen, Anne M.; Lamb, Brian K.; Vaughan, Joseph K.; Beutel, Marc

    2017-02-01

    Air quality models are widely used to estimate pollutant deposition rates and thereby calculate critical loads and critical load exceedances (model deposition > critical load). However, model operational performance is not always quantified specifically to inform these applications. We developed a performance assessment approach designed to inform critical load and exceedance calculations, and applied it to the Pacific Northwest region of the U.S. We quantified wet inorganic N deposition performance of several widely-used air quality models, including five different Community Multiscale Air Quality Model (CMAQ) simulations, the Tdep model, and 'PRISM x NTN' model. Modeled wet inorganic N deposition estimates were compared to wet inorganic N deposition measurements at 16 National Trends Network (NTN) monitoring sites, and to annual bulk inorganic N deposition measurements at Mount Rainier National Park. Model bias (model - observed) and error (|model - observed|) were expressed as a percentage of regional critical load values for diatoms and lichens. This novel approach demonstrated that wet inorganic N deposition bias in the Pacific Northwest approached or exceeded 100% of regional diatom and lichen critical load values at several individual monitoring sites, and approached or exceeded 50% of critical loads when averaged regionally. Even models that adjusted deposition estimates based on deposition measurements to reduce bias or that spatially-interpolated measurement data, had bias that approached or exceeded critical loads at some locations. While wet inorganic N deposition model bias is only one source of uncertainty that can affect critical load and exceedance calculations, results demonstrate expressing bias as a percentage of critical loads at a spatial scale consistent with calculations may be a useful exercise for those performing calculations. It may help decide if model performance is adequate for a particular calculation, help assess confidence in

  9. Multiscale modeling, simulations, and experiments of coating growth on nanofibers. Part II. Deposition

    Science.gov (United States)

    Buldum, A.; Clemons, C. B.; Dill, L. H.; Kreider, K. L.; Young, G. W.; Zheng, X.; Evans, E. A.; Zhang, G.; Hariharan, S. I.

    2005-08-01

    This work is Part II of an integrated experimental/modeling investigation of a procedure to coat nanofibers and core-clad nanostructures with thin-film materials using plasma-enhanced physical vapor deposition. In the experimental effort, electrospun polymer nanofibers are coated with aluminum materials under different operating conditions to observe changes in the coating morphology. This procedure begins with the sputtering of the coating material from a target. Part I [J. Appl. Phys. 98, 044303 (2005)] focused on the sputtering aspect and transport of the sputtered material through the reactor. That reactor level model determines the concentration field of the coating material. This field serves as input into the present species transport and deposition model for the region surrounding an individual nanofiber. The interrelationships among processing factors for the transport and deposition are investigated here from a detailed modeling approach that includes the salient physical and chemical phenomena. Solution strategies that couple continuum and atomistic models are used. At the continuum scale, transport dynamics near the nanofiber are described. At the atomic level, molecular dynamics (MD) simulations are used to study the deposition and sputtering mechanisms at the coating surface. Ion kinetic energies and fluxes are passed from the continuum sheath model to the MD simulations. These simulations calculate sputtering and sticking probabilities that in turn are used to calculate parameters for the continuum transport model. The continuum transport model leads to the definition of an evolution equation for the coating-free surface. This equation is solved using boundary perturbation and level set methods to determine the coating morphology as a function of operating conditions.

  10. STUDY OF DYNAMIC MECHANICAL PROPERTIES OF FUSED DEPOSITION MODELLING PROCESSED ULTEM MATERIAL

    OpenAIRE

    Adhiyamaan Arivazhagan; Ammar Saleem; S. H. Masood; Mostafa Nikzad; K. A. JAGADEESH

    2014-01-01

    Fused Deposition Modelling (FDM), a renowned Rapid Prototyping (RP) process, has been successfully implemented in several industries to fabricate concept models and prototypes for rapid manufacturing. This study furnishes terse notes about the material damping properties of FDM made ULTEM samples considering the effect of FDM process parameters. Dynamic Mechanical Analysis (DMA) is carried out using DMA 2980 equipment to study the dynamic response of the FDM material subjected to single canti...

  11. A corrected formulation of the Multilayer Model (MLM) for inferring gaseous dry deposition to vegetated surfaces

    Science.gov (United States)

    Saylor, Rick D.; Wolfe, Glenn M.; Meyers, Tilden P.; Hicks, Bruce B.

    2014-08-01

    The Multilayer Model (MLM) has been used for many years to infer dry deposition fluxes from measured trace species concentrations and standard meteorological measurements for national networks in the U.S., including the U.S. Environmental Protection Agency's Clean Air Status and Trends Network (CASTNet). MLM utilizes a resistance analogy to calculate deposition velocities appropriate for whole vegetative canopies, while employing a multilayer integration to account for vertically varying meteorology, canopy morphology and radiative transfer within the canopy. However, the MLM formulation, as it was originally presented and as it has been subsequently employed, contains a non-physical representation related to the leaf-level quasi-laminar boundary layer resistance that affects the calculation of the total canopy resistance. In this note, the non-physical representation of the canopy resistance as originally formulated in MLM is discussed and a revised, physically consistent, formulation is suggested as a replacement. The revised canopy resistance formulation reduces estimates of HNO3 deposition velocities by as much as 38% during mid-day as compared to values generated by the original formulation. Inferred deposition velocities for SO2 and O3 are not significantly altered by the change in formulation (<3%). Inferred deposition loadings of oxidized and total nitrogen from CASTNet data may be reduced by 10-20% and 5-10%, respectively, for the Eastern U. S. when employing the revised formulation of MLM as compared to the original formulation.

  12. A Corrected Formulation of the Multilayer Model (MLM) for Inferring Gaseous Dry Deposition to Vegetated Surfaces

    Science.gov (United States)

    Saylor, Rick D.; Wolfe, Glenn M.; Meyers, Tilden P.; Hicks, Bruce B.

    2014-01-01

    The Multilayer Model (MLM) has been used for many years to infer dry deposition fluxes from measured trace species concentrations and standard meteorological measurements for national networks in the U.S., including the U.S. Environmental Protection Agency's Clean Air Status and Trends Network (CASTNet). MLM utilizes a resistance analogy to calculate deposition velocities appropriate for whole vegetative canopies, while employing a multilayer integration to account for vertically varying meteorology, canopy morphology and radiative transfer within the canopy. However, the MLM formulation, as it was originally presented and as it has been subsequently employed, contains a non-physical representation related to the leaf-level quasi-laminar boundary layer resistance that affects the calculation of the total canopy resistance. In this note, the non-physical representation of the canopy resistance as originally formulated in MLM is discussed and a revised, physically consistent, formulation is suggested as a replacement. The revised canopy resistance formulation reduces estimates of HNO3 deposition velocities by as much as 38% during mid-day as compared to values generated by the original formulation. Inferred deposition velocities for SO2 and O3 are not significantly altered by the change in formulation (less than 3%). Inferred deposition loadings of oxidized and total nitrogen from CASTNet data may be reduced by 10-20% and 5-10%, respectively, for the Eastern U. S. when employing the revised formulation of MLM as compared to the original formulation.

  13. Atomistic modeling of the low-temperature atom-beam deposition of magnesium fluoride.

    Science.gov (United States)

    Neelamraju, Sridhar; Schön, Johann Christian; Jansen, Martin

    2015-02-02

    We model the deposition and growth of MgF(2) on a sapphire substrate as it occurs in a low-temperature atom-beam-deposition experiment. In the experiment, an (X-ray) amorphous film of MgF(2) is obtained at low temperatures of 170-180 K, and upon heating, this transforms to the expected rutile phase via the CaCl(2)-type structure. We confirm this from our simulations and propose a mechanism for this transformation. The growth process is analyzed as a function of the synthesis parameters, which include the substrate temperature, deposition rate of clusters, and types of clusters deposited. Upon annealing an initially amorphous deposit, we observe the formation of two competing nanocrystalline modifications during this process, which exhibit the CaCl(2) and CdI(2) structure types, respectively. We argue that this joint growth of the two nanocrystalline polymorphs stabilizes the kinetically unstable CaCl(2)-type structure on the macroscopic level long enough to be observed in the experiment.

  14. Reactive flow models of the Anarraaq Zn-Pb-Ag deposit, Red Dog district, Alaska

    Science.gov (United States)

    Schardt, C.; Garven, G.; Kelley, K.D.; Leach, D.L.

    2008-01-01

    The Red Dog ore deposit district in the Brooks Range of northern Alaska is host to several high-grade, shale-hosted Zn + Pb deposits. Due to the complex history and deformation of these ore deposits, the geological and hydrological conditions at the time of formation are poorly understood. Using geological observations and fluid inclusion data as constraints, numerical heat and fluid flow simulations of the Anarraaq ore deposit environment and coupled reactive flow simulations of a section of the ore body were conducted to gain more insight into the conditions of ore body formation. Results suggest that the ore body and associated base metal zonation may have formed by the mixing of oxidized, saline, metal-bearing hydrothermal fluids (source. Forward modeling results also predict the distribution of pyrite and quartz in agreement with field observations and indicate a reaction front moving from the initial mixing interface into the radiolarite rocks. Heuristic mass calculations suggest that ore grades and base metal accumulation comparable to those found in the field (18% Zn, 5% Pb) are predicted to be reached after about 0.3 My for initial conditions (30 ppm Zn, 3 ppm Pb; 20% deposition efficiency). ?? Springer-Verlag 2008.

  15. Reactive flow models of the Anarraaq Zn-Pb-Ag deposit, Red Dog district, Alaska

    Science.gov (United States)

    Schardt, Christian; Garven, Grant; Kelley, Karen D.; Leach, David L.

    2008-09-01

    The Red Dog ore deposit district in the Brooks Range of northern Alaska is host to several high-grade, shale-hosted Zn + Pb deposits. Due to the complex history and deformation of these ore deposits, the geological and hydrological conditions at the time of formation are poorly understood. Using geological observations and fluid inclusion data as constraints, numerical heat and fluid flow simulations of the Anarraaq ore deposit environment and coupled reactive flow simulations of a section of the ore body were conducted to gain more insight into the conditions of ore body formation. Results suggest that the ore body and associated base metal zonation may have formed by the mixing of oxidized, saline, metal-bearing hydrothermal fluids (<200°C) with reducing, HS-rich pore fluids within radiolarite-rich host rocks. Sphalerite and galena concentrations and base metal sulfide distribution are primarily controlled by the nature of the pore fluids, i.e., the extent and duration of the HS- source. Forward modeling results also predict the distribution of pyrite and quartz in agreement with field observations and indicate a reaction front moving from the initial mixing interface into the radiolarite rocks. Heuristic mass calculations suggest that ore grades and base metal accumulation comparable to those found in the field (18% Zn, 5% Pb) are predicted to be reached after about 0.3 My for initial conditions (30 ppm Zn, 3 ppm Pb; 20% deposition efficiency).

  16. Aerosol deposition in the respiratory tract of the rat. Experimental results and mathematical modelling.

    Science.gov (United States)

    Halík, J; Lenger, V; Kliment, V; Voboril, P

    1980-01-01

    The deposition fraction in the respiratory tract of rats were determined experimentally using aerosol 85Srl2 in saline. The dimensions of the particles [MMD 1.63 /+- /+- 0.47 micron, Sg = 1.29] were measured by two independent methods. Rats weighing 200 g were exposed for a period of 60 min [t] in the inhalation apparatus PIANO 3 with a generator according to Lauterbach. From the volume activity [A] of 3 - 11 Bq/litre air a depot of 35-129 kBq was formed in the animals. Spirometric values measured with a modified Jäger ergospirometer were: V = 178.8 /+- 42.9 ml, VT = = 1.18 /+- 0.24 ml. f = 163.1 /+- 28.1 cycles/min. The total amount inhaled [Q] was calculated [Q = V.A.t], the deposited amount [D] was measured by a whole body counter. THe mean deposition fraction was 0.570 /+- 0.052 and was not related either to exposure time or to aerosol activity. In view of the broad validity of the conclusions for aerosols of round-shaped particles, the mean deposition fraction was determined with the help of a mathematical model according to Landahl. The theoretical values amounted to 0.609 [from 0.522 to 0.686]. The good agreement between the mean deposition fractions estimated by two independent methods indicates that on the basis of the probability theory and dimensional analysis, the mathematical model can also be used in humans for simulation deposition as one of the basis foundations for a quantitative evaluation of inhalation risk from any kind of aerosol.

  17. A Model-Based Analysis of Nitrogen Deposition: Effects on Forest Carbon Sequestration

    Science.gov (United States)

    Dezi, S.; Medlyn, B. E.; Tonon, G.; Magnani, F.

    2009-04-01

    Over the last 150 years nitrogen deposition has increased, especially in the northern hemisphere, mainly due to the use of fossil fuels, deforestation and agricultural practices. Although the impact of this increase on the terrestrial carbon cycle is still uncertain, it is likely that this large perturbation of the global nitrogen cycle will have important effects on carbon cycling, particularly via impacts on forest carbon storage. In the present work we investigated qualitatively the overall response of forest carbon sequestration to nitrogen deposition, and the relative importance of different mechanisms that bring about this response. For this purpose we used the G'DAY forest carbon-nitrogen cycling model (Comins and McMurtrie 1993), introducing some new assumptions which focus on the effect of nitrogen deposition. Specifically the new assumptions are: (i) foliar litterfall and specific leaf area (SLA) are functions of leaf nitrogen concentration; (ii) belowground C allocation is a function of net primary production (NPP); (iii) forest canopies can directly take up nitrogen; (iv) management of forests occurs; (v) leaching occurs only for nitrate nitrogen. We investigated the effect of each assumption on net ecosystem production (NEP), with a step increase in nitrogen deposition from a steady state of 0.4 gN m-2 yr-1 to 2 gN m-2 yr-1, and then running the old and new model versions for different nitrogen deposition levels. Our analysis showed that nitrogen deposition can have a large effect on forest carbon storage at ecosystem level. In particular the effect of the assumptions (ii), (iii) and (iv) seem to be of greater importance, giving rise to a markedly higher level of forest carbon sequestration than in their absence. On the contrary assumptions (i) and (v) seem not to have any particular effect on the NEP simulated. Finally, running the models for different levels of nitrogen deposition showed that estimating forest carbon exchange without taking into

  18. Dust deposition in Antarctica in glacial and interglacial climate conditions: a modelling study

    Directory of Open Access Journals (Sweden)

    N. Sudarchikova

    2014-09-01

    Full Text Available The mineral dust cycle responds to climate variations and plays an important role in the climate system by affecting the radiative balance of the atmosphere and modifying biogeochemistry. Polar ice cores provide a unique information about deposition of aeolian dust particles transported over long distance. These cores are a paleoclimate proxy archive of climate variability thousands of years ago. The current study is a first attempt to simulate past interglacial dust cycles with a global aerosol-climate model ECHAM5-HAM. The results are used to explain the dust deposition changes in Antarctica in terms of quantitative contribution of different processes, such as emission, atmospheric transport and precipitation, which will help to interpret paleodata from Antarctic ice cores. The investigated periods include four interglacial time-slices such as the pre-industrial control (CTRL, mid-Holocene (6000 yr BP, last glacial inception (115 000 yr BP and Eemian (126 000 yr BP. One glacial time interval, which is Last Glacial Maximum (LGM (21 000 yr BP was simulated as well as to be a reference test for the model. Results suggest an increase of mineral dust deposition globally, and in Antarctica, in the past interglacial periods relative to the pre-industrial CTRL simulation. Approximately two thirds of the increase in the mid-Holocene and Eemian is attributed to enhanced Southern Hemisphere dust emissions. Slightly strengthened transport efficiency causes the remaining one third of the increase in dust deposition. The moderate change of dust deposition in Antarctica in the last glacial inception period is caused by the slightly stronger poleward atmospheric transport efficiency compared to the pre-industrial. Maximum dust deposition in Antarctica was simulated for the glacial period. LGM dust deposition in Antarctica is substantially increased due to 2.6 times higher Southern Hemisphere dust emissions, two times stronger atmospheric transport towards

  19. Proceedings for a Workshop on Deposit Modeling, Mineral Resource Assessment, and Their Role in Sustainable Development

    Science.gov (United States)

    Briskey, Joseph A.; Schulz, Klaus J.

    2007-01-01

    Preface The world's use of nonfuel mineral resources continues to increase to support a growing population and increasing standards of living. The ability to meet this increasing demand is affected especially by concerns about possible environmental degradation associated with minerals production and by competing land uses. What information does the world need to support global minerals development in a sustainable way? Informed planning and decisions concerning sustainability and future mineral resource supply require a long-term perspective and an integrated approach to resource, land use, economic, and environmental management worldwide. Such perspective and approach require unbiased information on the global distribution of identified and especially undiscovered resources, the economic and political factors influencing their development, and the potential environmental consequences of their exploitation. The U.S. Geological Survey and the former Deposit Modeling Program of the International Union of Geological Sciences (IUGS) of the United Nations Educational, Scientific and Cultural Organization (UNESCO) sponsored a workshop on 'Deposit Modeling, Mineral Resource Assessment, and Their Role in Sustainable Development' at the 31st International Geological Congress (IGC) in Rio de Janeiro, Brazil, on August 18-19, 2000. The purpose of the workshop was to review the state-of-the-art in mineral deposit modeling and resource assessment and to examine the role of global assessments of nonfuel mineral resources in sustainable development. The workshop addressed questions such as the following: Which of the available mineral deposit models and assessment methods are best suited for predicting the locations, deposit types, and amounts of undiscovered nonfuel mineral resources remaining in the world? What is the availability of global geologic, mineral deposit, and mineral exploration information? How can mineral resource assessments be used to address economic and

  20. Erosion Modeling of the Pyroclastic Flow Deposits From the 1991 Eruption of Mt. Pinatubo, Philippines

    Science.gov (United States)

    Daag, A. S.; Daag, A. S.

    2001-12-01

    The June 15-16 1991 eruption of Mt. Pinatubo had emplaced approximately 6km3 of sand-size pumiceous pyroclastic flow deposits that affected 8 major watersheds surrounding the volcano. These deposits attained thickness of about 200m on deep channels and remained unconsolidated, when it rains they are the main source of lahars for several years. This study focuses on the eastern watersheds namely, Sacobia-Pasig-Abacan, because it posed the greatest risk due to lahar flow hazards being the highly developed and the most populated. In order to study and monitor the erosions of the pyroclastic flow deposits, several methods were used. Yearly direct quantification of erosions were made using multi-temporal Digital Elevation Models (DEMs), aerial photos and satellite imageries. GIS and image processing software were used to compute erosion volumes and in determining geomorphic changes. To understand the different parameters affecting the erosiveness of in-situ deposits, a portable rainfall simulator was used. Regression modeling was utilized to determine the effect of the different parameters in the erosion such as, slope, rainfall intensity, grain size and shear strength of the deposits. Yearly rainfall events that yielded lahars were all analyzed to get the yearly deviations and relationships of the rainfall-lahar triggering thresholds. A physically based distributed simulation model was developed using PCRaster program that simulates the catchments' response on a certain rainfall and predicts the lahar hydrographs. This model utilizes DEM and other catchment's physical parameters. The flow predicts the volumetric ratio of sediments and water using Meunier mudflow equation.

  1. Volcanogenic massive sulfide occurrence model: Chapter C in Mineral deposit models for resource assessment

    Science.gov (United States)

    Shanks, W.C. Pat; Koski, Randolph A.; Mosier, Dan L.; Schulz, Klaus J.; Morgan, Lisa A.; Slack, John F.; Ridley, W. Ian; Dusel-Bacon, Cynthia; Seal, Robert R., II; Piatak, Nadine M.; Shanks, W.C. Pat; Thurston, Roland

    2012-01-01

    Volcanogenic massive sulfide deposits, also known as volcanic-hosted massive sulfide, volcanic-associated massive sulfide, or seafloor massive sulfide deposits, are important sources of copper, zinc, lead, gold, and silver (Cu, Zn, Pb, Au, and Ag). These deposits form at or near the seafloor where circulating hydrothermal fluids driven by magmatic heat are quenched through mixing with bottom waters or porewaters in near-seafloor lithologies. Massive sulfide lenses vary widely in shape and size and may be podlike or sheetlike. They are generally stratiform and may occur as multiple lenses.

  2. Adjusting particle-size distributions to account for aggregation in tephra-deposit model forecasts

    Science.gov (United States)

    Mastin, Larry G.; Van Eaton, Alexa; Durant, A.J.

    2016-01-01

    Volcanic ash transport and dispersion (VATD) models are used to forecast tephra deposition during volcanic eruptions. Model accuracy is limited by the fact that fine-ash aggregates (clumps into clusters), thus altering patterns of deposition. In most models this is accounted for by ad hoc changes to model input, representing fine ash as aggregates with density ρagg, and a log-normal size distribution with median μagg and standard deviation σagg. Optimal values may vary between eruptions. To test the variance, we used the Ash3d tephra model to simulate four deposits: 18 May 1980 Mount St. Helens; 16–17 September 1992 Crater Peak (Mount Spurr); 17 June 1996 Ruapehu; and 23 March 2009 Mount Redoubt. In 192 simulations, we systematically varied μagg and σagg, holding ρagg constant at 600 kg m−3. We evaluated the fit using three indices that compare modeled versus measured (1) mass load at sample locations; (2) mass load versus distance along the dispersal axis; and (3) isomass area. For all deposits, under these inputs, the best-fit value of μagg ranged narrowly between  ∼  2.3 and 2.7φ (0.20–0.15 mm), despite large variations in erupted mass (0.25–50 Tg), plume height (8.5–25 km), mass fraction of fine ( operational model forecasts. Further research may indicate whether this narrow range also reflects physical constraints on processes in the evolving cloud.

  3. Adjusting particle-size distributions to account for aggregation in tephra-deposit model forecasts

    Science.gov (United States)

    Mastin, Larry G.; Van Eaton, Alexa R.; Durant, Adam J.

    2016-07-01

    Volcanic ash transport and dispersion (VATD) models are used to forecast tephra deposition during volcanic eruptions. Model accuracy is limited by the fact that fine-ash aggregates (clumps into clusters), thus altering patterns of deposition. In most models this is accounted for by ad hoc changes to model input, representing fine ash as aggregates with density ρagg, and a log-normal size distribution with median μagg and standard deviation σagg. Optimal values may vary between eruptions. To test the variance, we used the Ash3d tephra model to simulate four deposits: 18 May 1980 Mount St. Helens; 16-17 September 1992 Crater Peak (Mount Spurr); 17 June 1996 Ruapehu; and 23 March 2009 Mount Redoubt. In 192 simulations, we systematically varied μagg and σagg, holding ρagg constant at 600 kg m-3. We evaluated the fit using three indices that compare modeled versus measured (1) mass load at sample locations; (2) mass load versus distance along the dispersal axis; and (3) isomass area. For all deposits, under these inputs, the best-fit value of μagg ranged narrowly between ˜ 2.3 and 2.7φ (0.20-0.15 mm), despite large variations in erupted mass (0.25-50 Tg), plume height (8.5-25 km), mass fraction of fine ( water content between these eruptions. This close agreement suggests that aggregation may be treated as a discrete process that is insensitive to eruptive style or magnitude. This result offers the potential for a simple, computationally efficient parameterization scheme for use in operational model forecasts. Further research may indicate whether this narrow range also reflects physical constraints on processes in the evolving cloud.

  4. Inverse modeling of the Chernobyl source term using atmospheric concentration and deposition measurements

    Directory of Open Access Journals (Sweden)

    N. Evangeliou

    2017-07-01

    Full Text Available This paper describes the results of an inverse modeling study for the determination of the source term of the radionuclides 134Cs, 137Cs and 131I released after the Chernobyl accident. The accident occurred on 26 April 1986 in the Former Soviet Union and released about 1019 Bq of radioactive materials that were transported as far away as the USA and Japan. Thereafter, several attempts to assess the magnitude of the emissions were made that were based on the knowledge of the core inventory and the levels of the spent fuel. More recently, when modeling tools were further developed, inverse modeling techniques were applied to the Chernobyl case for source term quantification. However, because radioactivity is a sensitive topic for the public and attracts a lot of attention, high-quality measurements, which are essential for inverse modeling, were not made available except for a few sparse activity concentration measurements far from the source and far from the main direction of the radioactive fallout. For the first time, we apply Bayesian inversion of the Chernobyl source term using not only activity concentrations but also deposition measurements from the most recent public data set. These observations refer to a data rescue attempt that started more than 10 years ago, with a final goal to provide available measurements to anyone interested. In regards to our inverse modeling results, emissions of 134Cs were estimated to be 80 PBq or 30–50 % higher than what was previously published. From the released amount of 134Cs, about 70 PBq were deposited all over Europe. Similar to 134Cs, emissions of 137Cs were estimated as 86 PBq, on the same order as previously reported results. Finally, 131I emissions of 1365 PBq were found, which are about 10 % less than the prior total releases. The inversion pushes the injection heights of the three radionuclides to higher altitudes (up to about 3 km than previously assumed (≈ 2.2 km in order

  5. Origin and Superposition Metallogenic Model of the Sandstone-type Uranium Deposit in the Northeastern Ordos Basin, China

    Institute of Scientific and Technical Information of China (English)

    LI Ziying; CHEN Anping; FANG Xiheng; OU Guangxi; XIA Yuliang; SUN Ye

    2008-01-01

    This paper deals with the metallogenic model of the sandstone type uranium deposit in thenortheastern Ordos Basin from aspects of uranium source, migration and deposition. A superpositionmetallogenie model has been established due to complex uranium mineralization processes withsuperposition of oil-gas reduction and thermal reformation.

  6. MESOI Version 2. 0: an interactive mesoscale Lagrangian puff dispersion model with deposition and decay

    Energy Technology Data Exchange (ETDEWEB)

    Ramsdell, J.V.; Athey, G.F.; Glantz, C.S.

    1983-11-01

    MESOI Version 2.0 is an interactive Lagrangian puff model for estimating the transport, diffusion, deposition and decay of effluents released to the atmosphere. The model is capable of treating simultaneous releases from as many as four release points, which may be elevated or at ground-level. The puffs are advected by a horizontal wind field that is defined in three dimensions. The wind field may be adjusted for expected topographic effects. The concentration distribution within the puffs is initially assumed to be Gaussian in the horizontal and vertical. However, the vertical concentration distribution is modified by assuming reflection at the ground and the top of the atmospheric mixing layer. Material is deposited on the surface using a source depletion, dry deposition model and a washout coefficient model. The model also treats the decay of a primary effluent species and the ingrowth and decay of a single daughter species using a first order decay process. This report is divided into two parts. The first part discusses the theoretical and mathematical bases upon which MESOI Version 2.0 is based. The second part contains the MESOI computer code. The programs were written in the ANSI standard FORTRAN 77 and were developed on a VAX 11/780 computer. 43 references, 14 figures, 13 tables.

  7. Assessment of erosion and deposition in steep mountain basins by differencing sequential digital terrain models

    Science.gov (United States)

    Cavalli, Marco; Goldin, Beatrice; Comiti, Francesco; Brardinoni, Francesco; Marchi, Lorenzo

    2017-08-01

    Digital elevation models (DEMs) built from repeated topographic surveys permit producing DEM of Difference (DoD) that enables assessment of elevation variations and estimation of volumetric changes through time. In the framework of sediment transport studies, DEM differencing enables quantitative and spatially-distributed representation of erosion and deposition within the analyzed time window, at both the channel reach and the catchment scale. In this study, two high-resolution Digital Terrain Models (DTMs) derived from airborne LiDAR data (2 m resolution) acquired in 2005 and 2011 were used to characterize the topographic variations caused by sediment erosion, transport and deposition in two adjacent mountain basins (Gadria and Strimm, Vinschgau - Venosta valley, Eastern Alps, Italy). These catchments were chosen for their contrasting morphology and because they feature different types and intensity of sediment transfer processes. A method based on fuzzy logic, which takes into account spatially variable DTMs uncertainty, was used to derive the DoD of the study area. Volumes of erosion and deposition calculated from the DoD were then compared with post-event field surveys to test the consistency of two independent estimates. Results show an overall agreement between the estimates, with differences due to the intrinsic approximations of the two approaches. The consistency of DoD with post-event estimates encourages the integration of these two methods, whose combined application may permit to overcome the intrinsic limitations of the two estimations. The comparison between 2005 and 2011 DTMs allowed to investigate the relationships between topographic changes and geomorphometric parameters expressing the role of topography on sediment erosion and deposition (i.e., slope and contributing area) and describing the morphology influenced by debris flows and fluvial processes (i.e., curvature). Erosion and deposition relations in the slope-area space display substantial

  8. Computational fluid dynamics modeling of transport and deposition of pesticides in an aircraft cabin.

    Science.gov (United States)

    Isukapalli, Sastry S; Mazumdar, Sagnik; George, Pradeep; Wei, Binnian; Jones, Byron; Weisel, Clifford P

    2013-04-01

    Spraying of pesticides in aircraft cabins is required by some countries as part of a disinsection process to kill insects that pose a public health threat. However, public health concerns remain regarding exposures of cabin crew and passengers to pesticides in aircraft cabins. While large scale field measurements of pesticide residues and air concentrations in aircraft cabins scenarios are expensive and time consuming, Computational Fluid Dynamics (CFD) models provide an effective alternative for characterizing concentration distributions and exposures. This study involved CFD modeling of a twin-aisle 11 row cabin mockup with heated manikins, mimicking a part of a fully occupied Boeing 767 cabin. The model was applied to study the flow and deposition of pesticides under representative scenarios with different spraying patterns (sideways and overhead) and cabin air exchange rates (low and high). Corresponding spraying experiments were conducted in the cabin mockup, and pesticide deposition samples were collected at the manikin's lap and seat top for a limited set of five seats. The CFD model performed well for scenarios corresponding to high air exchange rates, captured the concentration profiles for middle seats under low air exchange rates, and underestimated the concentrations at window seats under low air exchange rates. Additionally, both the CFD and experimental measurements showed no major variation in deposition characteristics between sideways and overhead spraying. The CFD model can estimate concentration fields and deposition profiles at very high resolutions, which can be used for characterizing the overall variability in air concentrations and surface loadings. Additionally, these model results can also provide a realistic range of surface and air concentrations of pesticides in the cabin that can be used to estimate potential exposures of cabin crew and passengers to these pesticides.

  9. Modelling impacts of temperature, and acidifying and eutrophying deposition on DOC trends

    Science.gov (United States)

    Sawicka, Kasia; Rowe, Ed; Evans, Chris; Monteith, Don; Vanguelova, Elena; Wade, Andrew; Clark, Joanna

    2017-04-01

    Surface water dissolved organic carbon (DOC) concentrations in large parts of the northern hemisphere have risen over the past three decades, raising concern about enhanced contributions of carbon to the atmosphere and seas and oceans. The effect of declining acid deposition has been identified as a key control on DOC trends in soil and surface waters, since pH and ionic strength affect sorption and desorption of DOC. However, since DOC is derived mainly from recently-fixed carbon, and organic matter decomposition rates are considered sensitive to temperature, uncertainty persists regarding the extent to the relative importance of different drivers that affect these upward trends. We ran the dynamic model MADOC (Model of Acidity and Soil Organic Carbon) for a range of UK soils (podzols, gleysols and peatland), for which the time-series were available, to consider the likely relative importance of decreased deposition of sulphate and chloride, accumulation of reactive N, and higher temperatures, on DOC production in different soils. Modelled patterns of DOC change generally agreed favourably with measurements collated over 10-20 years, but differed markedly between sites. While the acidifying effect of sulphur deposition appeared to be the predominant control on the observed soil water DOC trends in all the soils considered other than a blanket peat, the model suggested that over the long term, the effects of nitrogen deposition on N-limited soils may have been sufficient to elevate the DOC recovery trajectory significantly. The second most influential cause of rising DOC in the model simulations was N deposition in ecosystems that are N-limited and respond with stimulated plant growth. Although non-marine chloride deposition made some contribution to acidification and recovery, it was not amongst the main drivers of DOC change. Warming had almost no effect on modelled historic DOC trends, but may prove to be a significant driver of DOC in future via its influence

  10. 3D geological modeling for mineral resource assessment of the Tongshan Cu deposit, Heilongjiang Province, China

    Directory of Open Access Journals (Sweden)

    Gongwen Wang

    2012-07-01

    Full Text Available Three-dimensional geological modeling (3DGM assists geologists to quantitatively study in three-dimensional (3D space structures that define temporal and spatial relationships between geological objects. The 3D property model can also be used to infer or deduce causes of geological objects. 3DGM technology provides technical support for extraction of diverse geoscience information, 3D modeling, and quantitative calculation of mineral resources. Based on metallogenic concepts and an ore deposit model, 3DGM technology is applied to analyze geological characteristics of the Tongshan Cu deposit in order to define a metallogenic model and develop a virtual borehole technology; a BP neural network and a 3D interpolation technique were combined to integrate multiple geoscience information in a 3D environment. The results indicate: (1 on basis of the concept of magmatic-hydrothermal Cu polymetallic mineralization and a porphyry Cu deposit model, a spatial relational database of multiple geoscience information for mineralization in the study area (geology, geophysics, geochemistry, borehole, and cross-section data was established, and 3D metallogenic geological objects including mineralization stratum, granodiorite, alteration rock, and magnetic anomaly were constructed; (2 on basis of the 3D ore deposit model, 23,800 effective surveys from 94 boreholes and 21 sections were applied to establish 3D orebody models with a kriging interpolation method; (3 combined 23,800 surveys involving 21 sections, using VC++ and OpenGL platform, virtual borehole and virtual section with BP network, and an improved inverse distance interpolation (IDW method were used to predict and delineate mineralization potential targets (Cu-grade of cell not less than 0.1%; (4 comparison of 3D ore bodies, metallogenic geological objects of mineralization, and potential targets of mineralization models in the study area, delineated the 3D spatial and temporal relationship and causal

  11. DYNAMICS OF CHANGES IN VEGETATION OF A MODEL EXPERIMENT ON COAL COMBUSTION WASTE DEPOSITS

    Directory of Open Access Journals (Sweden)

    Kazimierz H. Dyguś

    2014-11-01

    Full Text Available The paper contains the evaluation of the reclamation efficiencyon coal combustion waste deposits fertilized with composts and sewage sludge. Based on multiannual studies, the dynamics of changes in vegetation in the performed experiment have been shown. The firstphase of the experiment concerning the reclamation efficiencyof the employed fertilizers was carried out from 2006 to 2007. The second phase was carried out between 2011 and 2012. In order to show a broader spectrum of dynamics of changes in vegetation, the floristicobservation was repeated in 2013 and this paper is the presentation of its outcome. Based on the observation (2011–2013 and its results it was found that apart from plants cultivated in experimental containers also a self-sown florahas had a significantcontribution in shap-ing the vegetation cover. The results of floristic and ecological research have proven that composts and sewage sludge constitute a favorable environment for the development of spontaneous vegetation cover on coal combustion waste deposits. Based on the evaluation of the vegetation cover level in particular models it was shown that models with Complex composts (kC and Radiowo ones (kRa as well as the model with sewage sludge have pre-sented the highest reclamation efficienc. The lowest efficiencyhas been shown in models with ZUSOK composts (kZ and the plant ones (kr. The conclusions have highlighted the share of ecological, systematic and syntaxonomic plant groups in the process of reclamation of combustion waste deposits.

  12. Modeling of atmospheric iron processing carried by mineral dust and its deposition to ocean

    Science.gov (United States)

    Nickovic, Slobodan; Vukovic, Ana; Vujadinovic, Mirjam

    2014-05-01

    Relatively insoluble iron in dust originating from desert soils increases its solubility after Fe carried by mineral dust is chemically processed by the atmosphere. After dust is deposited deposition to the ocean, soluble Fe as a nutrient could enhance the marine primary production. The atmospheric dust cycle is driven by the atmospheric processes often of smaller, meso-scales. The soil mineralogy of dust emitted from sources determines also how much Fe in the aerosol will be finding. Once Fe is exposed to the atmospheric processes, the atmospheric radiation, clouds and polluted air will chemically affect the iron in dust. Global dust-iron models, having typical horizontal resolutions of 100-300 km which are mostly used to numerically simulate the fate of iron in the atmosphere can provide rather global picture of the dust and iron transport, but not details. Such models often introduce simplistic approximation on the Fe content in dust-productive soils. To simulate the Fe processing we instead implemented a high resolution regional atmospheric dust-iron model with detailed 1km global map for the geographic distribution of Fe content in soil. We also introduced a parameterization of the Fe processing caused by dust mineralogy, cloud processes and solar radiation. We will present results from simulation experiments in order to explore the model capability to reproduce major observed patterns of deposited Fe into the Atlantic cruises.

  13. Multiphysics modeling of two-phase film boiling within porous corrosion deposits

    Science.gov (United States)

    Jin, Miaomiao; Short, Michael

    2016-07-01

    Porous corrosion deposits on nuclear fuel cladding, known as CRUD, can cause multiple operational problems in light water reactors (LWRs). CRUD can cause accelerated corrosion of the fuel cladding, increase radiation fields and hence greater exposure risk to plant workers once activated, and induce a downward axial power shift causing an imbalance in core power distribution. In order to facilitate a better understanding of CRUD's effects, such as localized high cladding surface temperatures related to accelerated corrosion rates, we describe an improved, fully-coupled, multiphysics model to simulate heat transfer, chemical reactions and transport, and two-phase fluid flow within these deposits. Our new model features a reformed assumption of 2D, two-phase film boiling within the CRUD, correcting earlier models' assumptions of single-phase coolant flow with wick boiling under high heat fluxes. This model helps to better explain observed experimental values of the effective CRUD thermal conductivity. Finally, we propose a more complete set of boiling regimes, or a more detailed mechanism, to explain recent CRUD deposition experiments by suggesting the new concept of double dryout specifically in thick porous media with boiling chimneys.

  14. National implementation of the UNECE convention on long-range transboundary air pollution (effects). Pt. 1. Deposition loads: methods, modelling and mapping results, trends

    Energy Technology Data Exchange (ETDEWEB)

    Gauger, Thomas [Federal Agricultural Research Centre, Braunschweig (DE). Inst. of Agroecology (FAL-AOE); Stuttgart Univ. (Germany). Inst. of Navigation; Haenel, Hans-Dieter; Roesemann, Claus [Federal Agricultural Research Centre, Braunschweig (DE). Inst. of Agroecology (FAL-AOE)] (and others)

    2008-09-15

    The report on the implementation of the UNECE convention on long-range transboundary air pollution Pt.1, deposition loads (methods, modeling and mapping results, trends) includes the following chapters: Introduction, deposition on air pollutants used for the input for critical loads in exceeding calculations, methods applied for mapping total deposition loads, mapping wet deposition, wet deposition mapping results, mapping dry deposition, dry deposition mapping results, cloud and fog mapping results, total deposition mapping results, modeling the air concentration of acidifying components and heavy metals, agricultural emissions of acidifying and eutrophying species.

  15. PARTICLE TRANSPORTATION AND DEPOSITION IN HOT GAS FILTER VESSELS - A COMPUTATIONAL AND EXPERIMENTAL MODELING APPROACH

    Energy Technology Data Exchange (ETDEWEB)

    Goodarz Ahmadi

    2002-07-01

    In this project, a computational modeling approach for analyzing flow and ash transport and deposition in filter vessels was developed. An Eulerian-Lagrangian formulation for studying hot-gas filtration process was established. The approach uses an Eulerian analysis of gas flows in the filter vessel, and makes use of the Lagrangian trajectory analysis for the particle transport and deposition. Particular attention was given to the Siemens-Westinghouse filter vessel at Power System Development Facility in Wilsonville in Alabama. Details of hot-gas flow in this tangential flow filter vessel are evaluated. The simulation results show that the rapidly rotation flow in the spacing between the shroud and the vessel refractory acts as cyclone that leads to the removal of a large fraction of the larger particles from the gas stream. Several alternate designs for the filter vessel are considered. These include a vessel with a short shroud, a filter vessel with no shroud and a vessel with a deflector plate. The hot-gas flow and particle transport and deposition in various vessels are evaluated. The deposition patterns in various vessels are compared. It is shown that certain filter vessel designs allow for the large particles to remain suspended in the gas stream and to deposit on the filters. The presence of the larger particles in the filter cake leads to lower mechanical strength thus allowing for the back-pulse process to more easily remove the filter cake. A laboratory-scale filter vessel for testing the cold flow condition was designed and fabricated. A laser-based flow visualization technique is used and the gas flow condition in the laboratory-scale vessel was experimental studied. A computer model for the experimental vessel was also developed and the gas flow and particle transport patterns are evaluated.

  16. Magmatic Conduit Metallogenic System - A New Model for the Origin of Ore-deposits

    Science.gov (United States)

    Su, S.; Tang, Z.; Wu, G.; Deng, J.; Xiao, Q.; Luo, Z.; Cui, Y.

    2013-12-01

    Origin and emplacement processes of ore-deposits connected with intrusions remains poorly understood. Here we propose a new model 'Magmatic Conduit Metallogenic System' to explain the origin of ore-deposits. Magmatic flow (or Melt-fluid flow) bearing metals will finally settle in the conduits at later stage of magma evolved in magma metallogenic system. Magmatic flow (or Melt-fluid flow) bearing metals include many types, such as sulfide melts and iron melts bearing fluids. Conduits will form along the zones of structural weakness, such as fault zone and interface of two different types of rocks. These conduits are usually very complicated in the magmatic system, exemplified by two typical ore-deposits, detailed as follows. The Jinchuan sulfide deposit, located in Gansu Province, China, is the third largest magmatic Cu-Ni Platinum Group Elements (PGE) in the world. There are mainly four orebodies (orebody 58, 24, 1, and 2) from west to east, with Ni/Cu value at 1.24, 1.56, 1.83 and 2.06 respectively; the content of Pt+Pd ranges from 0.4 to 10.3 ppm, with the highest value occurs in the west. This suggests that the direction of the melt flow bearing sulfide is from west to east and the front of the conduit system is in the east part of the deposit. Sulfide segregation in the magmatic chamber or in the conduits might have caused ore content to change in different part of the conduit systems. Another typical example is the Xishimen iron deposit, which is located in the South of Hebei Province, China. It has been considered as a skarn-type iron deposit conventionally. However, many geological evidence suggests that Xishimen iron deposit is a magmatic iron deposit instead. Such evidence includes: 1. The boundaries between iron orebodies and country rocks are obvious, no transitional relationship; 2. Iron ore body injected into the country rocks (including genesis, diorite, and marble); 3. There are some vesicular in the iron ores; 4. Magnetite as an interstitial mineral

  17. Advanced Computational Modeling of Vapor Deposition in a High-Pressure Reactor

    Science.gov (United States)

    Cardelino, Beatriz H.; Moore, Craig E.; McCall, Sonya D.; Cardelino, Carlos A.; Dietz, Nikolaus; Bachmann, Klaus

    2004-01-01

    In search of novel approaches to produce new materials for electro-optic technologies, advances have been achieved in the development of computer models for vapor deposition reactors in space. Numerical simulations are invaluable tools for costly and difficult processes, such as those experiments designed for high pressures and microgravity conditions. Indium nitride is a candidate compound for high-speed laser and photo diodes for optical communication system, as well as for semiconductor lasers operating into the blue and ultraviolet regions. But InN and other nitride compounds exhibit large thermal decomposition at its optimum growth temperature. In addition, epitaxy at lower temperatures and subatmospheric pressures incorporates indium droplets into the InN films. However, surface stabilization data indicate that InN could be grown at 900 K in high nitrogen pressures, and microgravity could provide laminar flow conditions. Numerical models for chemical vapor deposition have been developed, coupling complex chemical kinetics with fluid dynamic properties.

  18. Characterization of particle deposition in a lung model using an individual path

    Directory of Open Access Journals (Sweden)

    Ferrera C.

    2013-04-01

    Full Text Available Suspended particles can cause a wide range of chronic respiratory illnesses such as asthma and chronic obstructive pulmonary diseases, as well as worsening heart conditions and other conditions. To know the particle depositions in realistic models of the human respiratory system is fundamental to prevent these diseases. The main objective of this work is to study the lung deposition of inhaled particles through a numerical model using UDF (User Defined Function to impose the boundary conditions in the truncated airways. For each generation, this UDF puts the values of velocity profile of the flow path to symmetrical truncated outlet. The flow rates tested were 10, 30 and 60 ℓ/min, with a range of particles between 0.1 µm and 20 µm.

  19. Chronic sleep fragmentation exacerbates amyloid β deposition in Alzheimer's disease model mice.

    Science.gov (United States)

    Minakawa, Eiko N; Miyazaki, Koyomi; Maruo, Kazushi; Yagihara, Hiroko; Fujita, Hiromi; Wada, Keiji; Nagai, Yoshitaka

    2017-07-13

    Sleep fragmentation due to intermittent nocturnal arousal resulting in a reduction of total sleep time and sleep efficiency is a common symptom among people with Alzheimer's disease (AD) and elderly people with normal cognitive function. Although epidemiological studies have indicated an association between sleep fragmentation and elevated risk of AD, a relevant disease model to elucidate the underlying mechanisms was lacking owing to technical limitations. Here we successfully induced chronic sleep fragmentation in AD model mice using a recently developed running-wheel-based device and demonstrate that chronic sleep fragmentation increases amyloid β deposition. Notably, the severity of amyloid β deposition exhibited a significant positive correlation with the extent of sleep fragmentation. These findings provide a useful contribution to the development of novel treatments that decelerate the disease course of AD in the patients, or decrease the risk of developing AD in healthy elderly people through the improvement of sleep quality. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Estimation of aerial deposition and foliar uptake of xenobiotics: Assessment of current models

    Energy Technology Data Exchange (ETDEWEB)

    Link, S.O.; Fellows, R.J.; Cataldo, D.A.; Droppo, J.G.; Van Voris, P.

    1987-10-01

    This report reviews existing mathematical and/or computer simulation models that estimate xenobiotic deposition to and transport through (both curricular and stomatal) vegetative surfaces. The report evaluates the potential for coupling the best of those models to the existing Uptake, Translocation, Accumulation, and Biodegradation model to be used for future xenobiotic exposure assessments. Here xenobiotic compounds are defined as airborne contaminants, both organic and gaseous pollutants, that are introduced into the environment by man. Specifically this document provides a detailed review of the state-of-the-art models that addressed aerial deposition of particles and gases to foliage; foliar and cuticular transport, metabolism, and uptake of organic xenobiotics; and stomatal transport of gaseous and volatile organic xenobiotic pollutants. Where detailed information was available, parameters for each model are provided on a chemical by chemical as well as species by species basis. Sufficient detail is provided on each model to assess the potential for adapting or coupling the model to the existing UTAB plant exposure model. 126 refs., 6 figs., 10 tabs.

  1. Sediment Deposition Risk Analysis and PLSR Model Research for Cascade Reservoirs Upstream of the Yellow River

    Directory of Open Access Journals (Sweden)

    Jie Yang

    2015-01-01

    Full Text Available It is difficult to effectively identify and eliminate the multiple correlation influence among the independent factors by least-squares regression. Focusing on this insufficiency, the sediment deposition risk of cascade reservoirs and fitting model of sediment flux into the reservoir are studied. The partial least-squares regression (PLSR method is adopted for modeling analysis; the model fitting is organically combined with the non-model-style data content analysis, so as to realize the regression model, data structure simplification, and multiple correlations analysis among factors; meanwhile the accuracy of the model is ensured through cross validity check. The modeling analysis of sediment flux into the cascade reservoirs of Long-Liu section upstream of the Yellow River indicates that partial least-squares regression can effectively overcome the multiple correlation influence among factors, and the isolated factor variables have better ability to explain the physical cause of measured results.

  2. The anthropogenic influence on Iron deposition over the oceans: a 3-D global modeling

    Science.gov (United States)

    Myriokefalitakis, Stelios; Mihalopoulos, Nikos; Baker, Alex; Kanakidou, Maria

    2014-05-01

    Iron (Fe) deposition over oceans is directly linked to the marine biological productivity and consequently to atmospheric CO2 concentrations. Experimental and modeling results support that both inorganic (sulphate, ammonium and nitrate) and organic (e.g. oxalate) ligands can increase the Fe mobilization. Mineral dust deposition is considered as the most important supply of bioavailable Fe in the oceans. Although, due to the low soil soluble iron fractions, atmospheric processes which are also related to anthropogenic emissions, can convert iron to more soluble forms in the atmosphere. Recent studies also support that anthropogenic emissions of Fe from combustion sources also significantly contribute to the dissolved Fe atmospheric pool. The evaluation of the impact of humans on atmospheric soluble or bioavailable Fe deposition remains challenging, since Fe mobilization due to changes in anthropogenic emissions is largely uncertain. In the present study, the global atmospheric Fe cycle is parameterized in the 3-D chemical transport global model TM4-ECPL and the model is used to calculate the Fe deposition over the oceans. The model considers explicitly organic, sulfur and nitrogen gas-phase chemistry, aqueous-phase organic chemistry, including oxalate and all major aerosol constituents. TM4-ECPL simulates the organic and inorganic ligand-promoted mineral Fe dissolution and also aqueous-phase photochemical reactions between different forms of Fe (III/II). Primary emissions of Fe associated with dust and soluble Fe from combustion processes as well as atmospheric processing of the emitted Fe is taken into account in the model Sensitivity simulations are performed to study the impact of anthropogenic emissions on Fe deposition. For this preindustrial, present and future emission scenarios are used in the model in order to examine the response of chemical composition of iron-containing aerosols to environmental changes. The release of soluble iron associated with

  3. Modelling the response of soil and soil solution chemistry upon roofing a forest in an area with high nitrogen deposition

    OpenAIRE

    Van Der Salm, C.; Groenenberg, B.-J.; Boxman, A. W.

    1998-01-01

    International audience; In the Speuld forest, the Netherlands, the dynamic soil acidification model NuCSAM has been applied to a manipulation experiment in which part of the forest was roofed to control nitrogen (N) and sulphur (S) deposition. The roofed area was divided into two subplots watered artificially; one received ambient N and S deposition and one with pristine N and S deposition. Concentration measurements on each plots showed a high (time-dependent) spatial variability. Statistica...

  4. Modelling the power deposition into a spherical tokamak fusion power plant

    Science.gov (United States)

    Windsor, C. G.; Morgan, J. G.; Buxton, P. F.; Costley, A. E.; Smith, G. D. W.; Sykes, A.

    2017-03-01

    Numerical studies have been made to improve the performance of the central column of a superconducting spherical tokamak fusion pilot plant. The assumed neutron shield includes concentric layers of tungsten carbide and water. The relative thickness of the water layers was varied and a minimum power deposition was found at about 17% of water. It was found advantageous to have an approximately 1.7 times thicker water layer next to the core and a similarly thinner layer next to the plasma. The use of tungsten boride instead of tungsten carbide was shown to make an improvement especially if placed close to the central superconducting core, the inner layer alone reducing the power deposition by 29%. Engineering features such as a central steel tie-bar, an insulating thermal vacuum gap, a wall gap next to the plasma and knowledge of the vertical energy distribution are essential to a successful design and their effects on the power deposition are shown in an appendix. The results have been fitted to model distributions and incorporated into the Tokamak Energy System Code, which can then give predictions of the power deposition as a function of other parameters such as the plasma major radius and the maximum magnetic field permitted on the superconductors.

  5. A high power impulse magnetron sputtering model to explain high deposition rate magnetic field configurations

    Science.gov (United States)

    Raman, Priya; Weberski, Justin; Cheng, Matthew; Shchelkanov, Ivan; Ruzic, David N.

    2016-10-01

    High Power Impulse Magnetron Sputtering (HiPIMS) is one of the recent developments in the field of magnetron sputtering technology that is capable of producing high performance, high quality thin films. Commercial implementation of HiPIMS technology has been a huge challenge due to its lower deposition rates compared to direct current Magnetron Sputtering. The cylindrically symmetric "TriPack" magnet pack for a 10 cm sputter magnetron that was developed at the Center for Plasma Material Interactions was able to produce higher deposition rates in HiPIMS compared to conventional pack HiPIMS for the same average power. The "TriPack" magnet pack in HiPIMS produces superior substrate uniformity without the need of substrate rotation in addition to producing higher metal ion fraction to the substrate when compared to the conventional pack HiPIMS [Raman et al., Surf. Coat. Technol. 293, 10 (2016)]. The films that are deposited using the "TriPack" magnet pack have much smaller grains compared to conventional pack DC and HiPIMS films. In this paper, the reasons behind the observed increase in HiPIMS deposition rates from the TriPack magnet pack along with a modified particle flux model is discussed.

  6. Modeling of deposition and clearance of inhaled Ni compounds in the human lung.

    Science.gov (United States)

    Hsieh, T H; Yu, C P; Oberdörster, G

    1999-08-01

    By extrapolation from the rat study, a mathematical model of deposition, clearance, and retention kinetics for inhaled Ni compounds (high-temperature (green) NiO, Ni(3)S(2), and NiSO(4). 6H(2)O) in the alveolar region of the human lung has been developed. For human deposition, an updated version of an earlier model (C. P. Yu and C. K. Diu, 1982, Am. Ind. Hyg. Assoc. J.) was used in this study. Because of the profound differences in physiological and ventilation conditions between humans and rats, humans were found to have a higher alveolar deposition fraction than rats when exposed to the same Ni compounds. However, when normalized to the lung weight, the deposition rate per gram of lung in humans is much smaller than in rats. In the development of a clearance model, a single-compartment model in the lung was used and a general assumption was made that the clearance of the insoluble and moderately soluble nickel compounds (high-temperature (green) NiO and Ni(3)S(2), respectively) depends highly on the volume of retained particles in the lungs. As for the highly soluble nickel compound (NiSO(4). 6H(2)O), the clearance rate coefficient was assumed to depend on the retained particle mass and total alveolar surface. These clearance rate coefficients were extrapolated from the rat data. The retention half-times for high temperature (green) NiO and Ni(3)S(2) particles in humans were found to be much longer than in rats, whereas the retention half-time for NiSO(4). 6H(2)O particles was about the same for both species. The lung burden results in humans for various exposure conditions are predicted and the equivalent exposure concentrations for humans which lead to the same lung burdens found in rats were calculated.

  7. On model materials designed by atomic layer deposition for catalysis purposes

    OpenAIRE

    Diskus, Madeleine

    2011-01-01

    The aim of this work was to investigate the potential of model materials designed by atomic layer deposition toward applications in catalysis research. Molybdenum based catalysts promoted with cobalt were selected as target materials, considering their important roles in various industrial processes. Particular attention was paid to understand the growth dynamics of the ALD processes involved and further to characterize the obtained materials carefully. It was of main concern to verify the fe...

  8. How relevant is the deposition of mercury onto snowpacks? – Part 2: A modeling study

    Directory of Open Access Journals (Sweden)

    D. Durnford

    2012-01-01

    Full Text Available An unknown fraction of mercury that is deposited onto snowpacks is revolatilized to the atmosphere. Determining the revolatilized fraction is important since mercury that enters the snowpack meltwater may be converted to highly toxic bioaccumulating methylmercury. In this study, we present a new dynamic physically-based snowpack/meltwater model for mercury that is suitable for large-scale atmospheric models for mercury. It represents the primary physical and chemical processes that determine the fate of mercury deposited onto snowpacks. The snowpack/meltwater model was implemented in Environment Canada's atmospheric mercury model GRAHM. For the first time, observed snowpack-related mercury concentrations are used to evaluate and constrain an atmospheric mercury model. We find that simulated concentrations of mercury in both snowpacks and the atmosphere's surface layer agree closely with observations. The simulated concentration of mercury in both in the top 30 cm and the top 150 cm of the snowpack, averaged over 2005–2009, is predominantly below 6 ng l−1 over land south of 66.5° N but exceeds 18 ng l−1 over sea ice in extensive areas of the Arctic Ocean and Hudson Bay. The average simulated concentration of mercury in snowpack meltwater runoff tends to be higher on the Russian/European side (>20 ng l−1 of the Arctic Ocean than on the Canadian side (<10 ng l−1. The correlation coefficient between observed and simulated monthly mean atmospheric surface-level GEM concentrations increased significantly with the inclusion of the new snowpack/meltwater model at two of the three stations (midlatitude, subarctic studied and remained constant at the third (arctic. Oceanic emissions are postulated to produce the observed summertime maximum in concentrations of surface-level atmospheric GEM at Alert in the Canadian Arctic and to generate the summertime volatility observed in these concentrations at

  9. How relevant is the deposition of mercury onto snowpacks? – Part 2: A modeling study

    Directory of Open Access Journals (Sweden)

    D. Durnford

    2012-10-01

    Full Text Available An unknown fraction of mercury that is deposited onto snowpacks is revolatilized to the atmosphere. Determining the revolatilized fraction is important since mercury that enters the snowpack meltwater may be converted to highly toxic bioaccumulating methylmercury. In this study, we present a new dynamic physically-based snowpack/meltwater model for mercury that is suitable for large-scale atmospheric models for mercury. It represents the primary physical and chemical processes that determine the fate of mercury deposited onto snowpacks. The snowpack/meltwater model was implemented in Environment Canada's atmospheric mercury model GRAHM. For the first time, observed snowpack-related mercury concentrations are used to evaluate and constrain an atmospheric mercury model. We find that simulated concentrations of mercury in both snowpacks and the atmosphere's surface layer agree closely with observations. The simulated concentration of mercury in both in the top 30 cm and the top 150 cm of the snowpack, averaged over 2005–2009, is predominantly below 6 ng L−1 over land south of 66.5° N but exceeds 18 ng L−1 over sea ice in extensive areas of the Arctic Ocean and Hudson Bay. The average simulated concentration of mercury in snowpack meltwater runoff tends to be higher on the Russian/European side (>20 ng L−1 of the Arctic Ocean than on the Canadian side (<10 ng L−1. The correlation coefficient between observed and simulated monthly mean atmospheric surface-level gaseous elemental mercury (GEM concentrations increased significantly with the inclusion of the new snowpack/meltwater model at two of the three stations (midlatitude, subarctic studied and remained constant at the third (arctic. Oceanic emissions are postulated to produce the observed summertime maximum in concentrations of surface-level atmospheric GEM at Alert in the Canadian Arctic and to generate the summertime volatility observed in

  10. Modelling wet deposition in simulations of volcanic ash dispersion from hypothetical eruptions of Merapi, Indonesia

    Science.gov (United States)

    Dare, Richard A.; Potts, Rodney J.; Wain, Alan G.

    2016-10-01

    The statistical impact of including the process of wet deposition in dispersion model predictions of the movement of volcanic ash is assessed. Based on hypothetical eruptions of Merapi, Indonesia, sets of dispersion model simulations were generated, each containing four simulations per day over a period of three years, to provide results based on a wide range of atmospheric conditions. While on average dry sedimentation removes approximately 10% of the volcanic ash from the atmosphere during the first 24 h, wet deposition removes an additional 30% during seasons with highest rainfall (December and January) but only an additional 1% during August and September. The majority of the wet removal is due to in-cloud rather than below-cloud collection of volcanic ash particles. The largest uncertainties in the amount of volcanic ash removed by the process of wet deposition result from the choice of user-defined parameters used to compute the scavenging coefficient, and from the definition of the cloud top height. Errors in the precipitation field provided by the numerical weather prediction model utilised here have relatively less impact.

  11. An analytical model of beam attenuation and powder heating during coaxial laser direct metal deposition

    Science.gov (United States)

    Pinkerton, Andrew J.

    2007-12-01

    In the laser direct metal deposition process, interaction between the laser beam and powder from a coaxial powder delivery nozzle alters the temperature of powder and the amount and spatial distribution of laser intensity reaching the deposition melt pool. These factors significantly affect the process and are also important input parameters for any finite element or analytical models of the melt pool and deposition tracks. The analytical model in this paper presents a method to calculate laser attenuation and powder temperatures at every point below such a nozzle. It is applicable to laser beams that are approximately parallel over the beam-powder interaction distance of any initial intensity distribution (Top Hat, Gaussian, TEM01ast or other). The volume below the nozzle is divided into the region above the powder consolidation plane, where the powder stream is annular, and below it, where it is a single Gaussian stream, and expressions derived for each region. Modelled and measured results are reasonably matched. Results indicate that attenuation is more severe once the annular powder stream has consolidated into a single stream but is not zero before that point. The temperature of powder reaching any point is not constant but the mean value is a maximum at the centre of the stream.

  12. Predictive models for deposition of inhaled diesel exhaust particles in humans and laboratory species. Research report, July 1984-January 1987

    Energy Technology Data Exchange (ETDEWEB)

    Yu, C.P.; Xu, G.B.

    1987-07-01

    A deposition model for diesel-exhaust particles was formulated mathematically from available scientific data, and was used to predict the deposition of particles in the airways of laboratory animals and of humans of different ages. In addition, a lung-growth model was formulated for humans, from infancy to adulthood, to predict the effect of age on deposition. The investigators predicted from their models that: (1) deposition in the alveoli is markedly affected by changes in the size distribution of particles; (2) nose- versus mouth-breathing had little effect on deposition in the alveoli; (3) increased minute ventilation substantially increased the rate of particle deposition; and (4) age (in humans) influenced the levels of deposition observed in the unciliated regions of the airways (the highest levels of deposition occurred in infants under two years, decreased in children over two years, and decreased again in adults aged 25 years or older); and (5) the deposition rate in laboratory animals was higher than in humans of all ages.

  13. A mathematical model and simulation results of plasma enhanced chemical vapor deposition of silicon nitride films

    Science.gov (United States)

    Konakov, S. A.; Krzhizhanovskaya, V. V.

    2015-01-01

    We developed a mathematical model of Plasma Enhanced Chemical Vapor Deposition (PECVD) of silicon nitride thin films from SiH4-NH3-N2-Ar mixture, an important application in modern materials science. Our multiphysics model describes gas dynamics, chemical physics, plasma physics and electrodynamics. The PECVD technology is inherently multiscale, from macroscale processes in the chemical reactor to atomic-scale surface chemistry. Our macroscale model is based on Navier-Stokes equations for a transient laminar flow of a compressible chemically reacting gas mixture, together with the mass transfer and energy balance equations, Poisson equation for electric potential, electrons and ions balance equations. The chemical kinetics model includes 24 species and 58 reactions: 37 in the gas phase and 21 on the surface. A deposition model consists of three stages: adsorption to the surface, diffusion along the surface and embedding of products into the substrate. A new model has been validated on experimental results obtained with the "Plasmalab System 100" reactor. We present the mathematical model and simulation results investigating the influence of flow rate and source gas proportion on silicon nitride film growth rate and chemical composition.

  14. A new interpolation method to model thickness, isopachs, extent, and volume of tephra fall deposits

    Science.gov (United States)

    Yang, Qingyuan; Bursik, Marcus

    2016-10-01

    Tephra thickness distribution is the primary piece of information used to reconstruct the histories of past explosive volcanic eruptions. We present a method for modeling tephra thickness with less subjectivity than is the case with hand-drawn isopachs, the current, most frequently used method. The algorithm separates the thickness of a tephra fall deposit into a trend and local variations and models them separately using segmented linear regression and ordinary kriging. The distance to the source vent and downwind distance are used to characterize the trend model. The algorithm is applied to thickness datasets for the Fogo Member A and North Mono Bed 1 tephras. Simulations on subsets of data and cross-validation are implemented to test the effectiveness of the algorithm in the construction of the trend model and the model of local variations. The results indicate that model isopach maps and volume estimations are consistent with previous studies and point to some inconsistencies in hand-drawn maps and their interpretation. The most striking feature noticed in hand-drawn mapping is a lack of adherence to the data in drawing isopachs locally. Since the model assumes a stable wind field, divergences from the predicted decrease in thickness with distance are readily noticed. Hence, wind direction, although weak in the case of Fogo A, was not unidirectional during deposition. A combination of the isopach algorithm with a new, data transformation can be used to estimate the extent of fall deposits. A limitation of the algorithm is that one must estimate "by hand" the wind direction based on the thickness data.

  15. A model for simulating the deposition of water-lain sediments in dryland environments

    Directory of Open Access Journals (Sweden)

    M. A. Bunch

    2004-01-01

    Full Text Available A numerical process-imitating model, the Discrete Storm Event Sedimentation Simulator (DSESS, has been developed to represent the climatic and hydraulic conditions of drylands in modelling their geomorphological development and sedimentary facies distributions. The ultimate aim is to provide insights into the lateral variability of permeability in the Triassic Sandstone aquifers of the UK for the study of solute movement. DSESS employs discrete storm-flood automata, released across a cellular landscape, to model sediment transport: erosion, migration and deposition. Sediment classes with different grain sizes can be modelled. Empirical process-based equations are used to quantify the movement of the automata, their erosion potential, sediment-carrying capacity and interaction with the underlying sediments. The approach emphasises the sequence of dryland storm events and associated floods rather than their timing. Flood events are assumed to be discrete in time. Preliminary tests carried out with DSESS using simple systems and idealised initial conditions produce lithological and land surface features characteristic of dryland settings and indicate the potential of the model for large-scale, long-time modelling of sedimentary facies development. Markedly different results are observed across the range of tests carried out in response to the non-linear interactions between the different elements of the landscape and the floodwaters simulated with DSESS. Simulations show that sediment accumulations develop concave upward radial profiles, plano-convex cross-profiles and possess a general lateral grading of sediment with distance from source. The internal grain size architecture shows evidence of both persistent and rapidly changing flow conditions, with both lateral and longitudinal stepping of coarse bodies produced by ‘scour and fill’ events and random avulsions. Armoured layers form so that near-surface sediments have increased likelihood of

  16. Multiphysics modeling of two-phase film boiling within porous corrosion deposits

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Miaomiao, E-mail: mmjin@mit.edu; Short, Michael, E-mail: hereiam@mit.edu

    2016-07-01

    Porous corrosion deposits on nuclear fuel cladding, known as CRUD, can cause multiple operational problems in light water reactors (LWRs). CRUD can cause accelerated corrosion of the fuel cladding, increase radiation fields and hence greater exposure risk to plant workers once activated, and induce a downward axial power shift causing an imbalance in core power distribution. In order to facilitate a better understanding of CRUD's effects, such as localized high cladding surface temperatures related to accelerated corrosion rates, we describe an improved, fully-coupled, multiphysics model to simulate heat transfer, chemical reactions and transport, and two-phase fluid flow within these deposits. Our new model features a reformed assumption of 2D, two-phase film boiling within the CRUD, correcting earlier models' assumptions of single-phase coolant flow with wick boiling under high heat fluxes. This model helps to better explain observed experimental values of the effective CRUD thermal conductivity. Finally, we propose a more complete set of boiling regimes, or a more detailed mechanism, to explain recent CRUD deposition experiments by suggesting the new concept of double dryout specifically in thick porous media with boiling chimneys. - Highlights: • A two-phase model of CRUD's effects on fuel cladding is developed and improved. • This model eliminates the formerly erroneous assumption of wick boiling. • Higher fuel cladding temperatures are predicted when accounting for two-phase flow. • Double-peaks in thermal conductivity vs. heat flux in experiments are explained. • A “double dryout” mechanism in CRUD is proposed based on the model and experiments.

  17. Numerical modeling of heat transfer and fluid flow in laser metal deposition by powder injection

    Science.gov (United States)

    Fan, Zhiqiang

    Laser metal deposition is an additive manufacturing technique which allows quick fabrication of fully-dense metallic components directly from Computer Aided Design (CAD) solid models. A self-consistent three-dimensional model was developed for the laser metal deposition process by powder injection, which simulates heat transfer, phase changes, and fluid flow in the melt pool. The governing equations for solid, liquid and gas phases in the calculation domain have been formulated using the continuum model. The free surface in the melt pool has been tracked by the Volume of Fluid (VOF) method, while the VOF transport equation was solved using the Piecewise Linear Interface Calculation (PLIC) method. Surface tension was modeled by taking the Continuum Surface Force (CSF) model combined with a force-balance flow algorithm. Laser-powder interaction was modeled to account for the effects of laser power attenuation and powder temperature rise during the laser metal deposition process. The governing equations were discretized in the physical space using the finite volume method. The advection terms were approximated using the MUSCL flux limiter scheme. The fluid flow and energy equations were solved in a coupled manner. The incompressible flow equations were solved using a two-step projection method, which requires a solution of a Poisson equation for the pressure field. The discretized pressure Poisson equation was solved using the ICCG (Incomplete Cholesky Conjugate Gradient) solution technique. The energy equation was solved by an enthalpy-based method. Temperature-dependent thermal-physical material properties were considered in the numerical implementation. The numerical model was validated by comparing simulations with experimental measurements.

  18. A High Fidelity Multiphysics Framework for Modeling CRUD Deposition on PWR Fuel Rods

    Science.gov (United States)

    Walter, Daniel John

    Corrosion products on the fuel cladding surfaces within pressurized water reactor fuel assemblies have had a significant impact on reactor operation. These types of deposits are referred to as CRUD and can lead to power shifts, as a consequence of the accumulation of solid boron phases on the fuel rod surfaces. Corrosion deposits can also lead to fuel failure resulting from localized corrosion, where the increased thermal resistance of the deposit leads to higher cladding temperatures. The prediction of these occurrences requires a comprehensive model of local thermal hydraulic and chemical processes occurring in close proximity to the cladding surface, as well as their driving factors. Such factors include the rod power distribution, coolant corrosion product concentration, as well as the feedbacks between heat transfer, fluid dynamics, chemistry, and neutronics. To correctly capture the coupled physics and corresponding feedbacks, a high fidelity framework is developed that predicts three-dimensional CRUD deposition on a rod-by-rod basis. Multiphysics boundary conditions resulting from the coupling of heat transfer, fluid dynamics, coolant chemistry, CRUD deposition, neutron transport, and nuclide transmutation inform the CRUD deposition solver. Through systematic parametric sensitivity studies of the CRUD property inputs, coupled boundary conditions, and multiphysics feedback mechanisms, the most important variables of multiphysics CRUD modeling are identified. Moreover, the modeling framework is challenged with a blind comparison of plant data to predictions by a simulation of a sub-assembly within the Seabrook nuclear plant that experienced CRUD induced fuel failures. The physics within the computational framework are loosely coupled via an operator-splitting technique. A control theory approach is adopted to determine the temporal discretization at which to execute a data transfer from one physics to another. The coupled stepsize selection is viewed as a

  19. Improving Landslide Susceptibility Modeling Using an Empirical Threshold Scheme for Excluding Landslide Deposition

    Science.gov (United States)

    Tsai, F.; Lai, J. S.; Chiang, S. H.

    2015-12-01

    Landslides are frequently triggered by typhoons and earthquakes in Taiwan, causing serious economic losses and human casualties. Remotely sensed images and geo-spatial data consisting of land-cover and environmental information have been widely used for producing landslide inventories and causative factors for slope stability analysis. Landslide susceptibility, on the other hand, can represent the spatial likelihood of landslide occurrence and is an important basis for landslide risk assessment. As multi-temporal satellite images become popular and affordable, they are commonly used to generate landslide inventories for subsequent analysis. However, it is usually difficult to distinguish different landslide sub-regions (scarp, debris flow, deposition etc.) directly from remote sensing imagery. Consequently, the extracted landslide extents using image-based visual interpretation and automatic detections may contain many depositions that may reduce the fidelity of the landslide susceptibility model. This study developed an empirical thresholding scheme based on terrain characteristics for eliminating depositions from detected landslide areas to improve landslide susceptibility modeling. In this study, Bayesian network classifier is utilized to build a landslide susceptibility model and to predict sequent rainfall-induced shallow landslides in the Shimen reservoir watershed located in northern Taiwan. Eleven causative factors are considered, including terrain slope, aspect, curvature, elevation, geology, land-use, NDVI, soil, distance to fault, river and road. Landslide areas detected using satellite images acquired before and after eight typhoons between 2004 to 2008 are collected as the main inventory for training and verification. In the analysis, previous landslide events are used as training data to predict the samples of the next event. The results are then compared with recorded landslide areas in the inventory to evaluate the accuracy. Experimental results

  20. Induction of complement proteins in a mouse model for cerebral microvascular Aβ deposition

    Directory of Open Access Journals (Sweden)

    DeFilippis Kelly

    2007-09-01

    Full Text Available Abstract The deposition of amyloid β-protein (Aβ in cerebral vasculature, known as cerebral amyloid angiopathy (CAA, is a common pathological feature of Alzheimer's disease and related disorders. In familial forms of CAA single mutations in the Aβ peptide have been linked to the increase of vascular Aβ deposits accompanied by a strong localized activation of glial cells and elevated expression of neuroinflammatory mediators including complement proteins. We have developed human amyloid-β precursor protein transgenic mice harboring two CAA Aβ mutations (Dutch E693Q and Iowa D694N that mimic the prevalent cerebral microvascular Aβ deposition observed in those patients, and the Swedish mutations (K670N/M671L to increase Aβ production. In these Tg-SwDI mice, we have reported predominant fibrillar Aβ along microvessels in the thalamic region and diffuse plaques in cortical region. Concurrently, activated microglia and reactive astrocytes have been detected primarily in association with fibrillar cerebral microvascular Aβ in this model. Here we show that three native complement components in classical and alternative complement pathways, C1q, C3, and C4, are elevated in Tg-SwDI mice in regions rich in fibrillar microvascular Aβ. Immunohistochemical staining of all three proteins was increased in thalamus, hippocampus, and subiculum, but not frontal cortex. Western blot analysis showed significant increases of all three proteins in the thalamic region (with hippocampus as well as the cortical region, except C3 that was below detection level in cortex. Also, in the thalamic region (with hippocampus, C1q and C3 mRNAs were significantly up-regulated. These complement proteins appeared to be expressed largely by activated microglial cells associated with the fibrillar microvascular Aβ deposits. Our findings demonstrate that Tg-SwDI mice exhibit elevated complement protein expression in response to fibrillar vascular Aβ deposition that is

  1. Induction of complement proteins in a mouse model for cerebral microvascular A beta deposition.

    Science.gov (United States)

    Fan, Rong; DeFilippis, Kelly; Van Nostrand, William E

    2007-09-18

    The deposition of amyloid beta-protein (A beta) in cerebral vasculature, known as cerebral amyloid angiopathy (CAA), is a common pathological feature of Alzheimer's disease and related disorders. In familial forms of CAA single mutations in the A beta peptide have been linked to the increase of vascular A beta deposits accompanied by a strong localized activation of glial cells and elevated expression of neuroinflammatory mediators including complement proteins. We have developed human amyloid-beta precursor protein transgenic mice harboring two CAA A beta mutations (Dutch E693Q and Iowa D694N) that mimic the prevalent cerebral microvascular A beta deposition observed in those patients, and the Swedish mutations (K670N/M671L) to increase A beta production. In these Tg-SwDI mice, we have reported predominant fibrillar A beta along microvessels in the thalamic region and diffuse plaques in cortical region. Concurrently, activated microglia and reactive astrocytes have been detected primarily in association with fibrillar cerebral microvascular A beta in this model. Here we show that three native complement components in classical and alternative complement pathways, C1q, C3, and C4, are elevated in Tg-SwDI mice in regions rich in fibrillar microvascular A beta. Immunohistochemical staining of all three proteins was increased in thalamus, hippocampus, and subiculum, but not frontal cortex. Western blot analysis showed significant increases of all three proteins in the thalamic region (with hippocampus) as well as the cortical region, except C3 that was below detection level in cortex. Also, in the thalamic region (with hippocampus), C1q and C3 mRNAs were significantly up-regulated. These complement proteins appeared to be expressed largely by activated microglial cells associated with the fibrillar microvascular A beta deposits. Our findings demonstrate that Tg-SwDI mice exhibit elevated complement protein expression in response to fibrillar vascular A beta deposition

  2. Dry deposition profile of small particles within a model spruce canopy

    Energy Technology Data Exchange (ETDEWEB)

    Ould-Dada, Zitouni [Centre for Analytical Research in the Environment, (now EAS T.H. Huxley School), Imperial College of Science Technology and Medicine, Silwood Park, Ascot, SL57TE Berkshire (United Kingdom)

    2002-03-08

    Data on dry deposition of 0.82 {mu}m MMAD uranium particles to a small scale, 'model' Norway spruce (Picea abies) canopy have been determined by means of wind tunnel experiments. These are presented for both the total canopy and for five horizontal layers within the canopy. The results show a complex pattern of deposition within the canopy. The highest deposition velocity V{sub g} (0.19 cm s{sup -1}) was recorded for the topmost layer within the canopy (i.e. the layer in direct contact with the boundary layer) whereas the lowest V{sub g} (0.02 cm s{sup -1}) occurred at the soil surface. Vertical penetration of depositing aerosol through the canopy was influenced by variations in biomass, wind velocity and turbulence within the canopy. A total canopy V{sub g} of 0.5 cm s{sup -1} was obtained and this is in line with field measurements of V{sub g} reported in literature for both anthropogenic and radionuclide aerosols of similar size ranges. Extrapolation of wind tunnel data to 'real' forest canopies is discussed. The information presented here is of importance in predicting the likely contribution of dry deposition of aerosols to pollutant inputs to forest ecosystems, particularly in the context of radioactive aerosol releases from nuclear installations. The application of the present data may also be appropriate for other pollutant aerosols such as SO{sub 4}, NO{sub 3} and NH{sub 4}, which are characterised by particle sizes in the range used in this study.

  3. Numerical analysis of synthetic granulate deposition in a physical model study

    Institute of Scientific and Technical Information of China (English)

    Gabriele HARB; Stefan HAUN; Josef SCHNEIDER; Nils Reidar B. OLSEN

    2014-01-01

    The current study focuses on the application of a three-dimensional numerical model for the prediction of morphological bed changes. The sediment deposition in a reservoir during a 10-year-flood was investigated and the results of the simulation were validated with data derived from a physical model study. Because of the small grain sizes in the prototype, synthetic granulate was used in the physical model. The numerical computation domain was a reproduction of the physical model, including the grain sizes and the density of the particles, in order to ensure comparability. The CFD code SSIIM, which solves the RANS-equations in three-dimensions, was used for the simulations. The sediment transport in SSIIM is divided into suspended sediment transport, computed by solving the convection-diffusion equation, and bed-load transport, calculated by an empirical formula. The results of the numerical simulation correspond well to the results of the physical model study. The simulated location and the pattern of the sediment deposition in the reservoir are an accurate representation of the observed distribution in the physical model.

  4. Modelling impacts of atmospheric deposition, nutrient cycling and soil weathering on the sustainability of nine forest ecosystems

    DEFF Research Database (Denmark)

    Salm, C. van der; Vries, W.de; Olsson, M.

    1999-01-01

    To assess the impact of acid deposition on the long-term sustainability of nine oak, pine and spruce stands on sandy to loamy sandy parent material in Sweden, Denmark and The Netherlands, a dynamic soil acidification model (ReSAM) was applied. Two deposition scenarios For the period 1990-2090 were...

  5. Modelling impacts of atmospheric deposition, nutrient cycling and soil weathering on the sustainability of nine forest ecosystems

    DEFF Research Database (Denmark)

    Salm, C. van der; Vries, W.de; Olsson, M.;

    1999-01-01

    To assess the impact of acid deposition on the long-term sustainability of nine oak, pine and spruce stands on sandy to loamy sandy parent material in Sweden, Denmark and The Netherlands, a dynamic soil acidification model (ReSAM) was applied. Two deposition scenarios For the period 1990-2090 wer...

  6. Modelling impacts of changes in nitrogen deposition and climate on ecosystem services in the period 1900-2050

    NARCIS (Netherlands)

    Vries, de W.; Posch, M.

    2010-01-01

    We modelled the combined effects of past and expected future changes in climate and nitrogen deposition on tree carbon sequestration by European forests for the period 1900-2050. Two scenarios for deposition (current legislation and maximum technically feasible reductions) and two climate scenarios

  7. INFLUENCE OF PROCESS PARAMETERS ON DIMENSIONAL ACCURACY OF PARTS MANUFACTURED USING FUSED DEPOSITION MODELLING TECHNOLOGY

    Directory of Open Access Journals (Sweden)

    Filip Górski

    2013-09-01

    Full Text Available The paper presents the results of experimental study – part of research of additive technology using thermoplastics as a build material, namely Fused Deposition Modelling (FDM. Aim of the study was to identify the relation between basic parameter of the FDM process – model orientation during manufacturing – and a dimensional accuracy and repeatability of obtained products. A set of samples was prepared – they were manufactured with variable process parameters and they were measured using 3D scanner. Significant differences in accuracy of products of the same geometry, but manufactured with different set of process parameters were observed.

  8. Toward an integrated genetic model for vent-distal SEDEX deposits

    Science.gov (United States)

    Sangster, D. F.

    2017-07-01

    Although genetic models have been proposed for vent-proximal SEDEX deposits, an equivalent model for vent-distal deposits has not yet appeared. In view of this, it is the object of this paper to present a preliminary integrated vent-distal genetic model through exploration of four major components: (i) nature of the ore-forming fluid, (ii) role of density of the unconsolidated host sediments, (iii) dynamics of sulfate reduction and (iv) depositional environment. Two sub-groups of SEDEX Pb-Zn deposits, vent-proximal and vent-distal, are widely recognized today. Of the two, the latter is by far the largest in terms of metal content with each of the 13 largest containing in excess of 7.5 M (Zn+Pb) metal. In contrast, only one vent-proximal deposit (Sullivan) falls within this size range. Vent-proximal deposits are characteristically underlain by local networks of sulfide-filled veins (commonly regarded as feeder veins) surrounded by a discordant complex of host rock alteration. These attributes are missing in vent-distal deposits, which has led to the widespread view that vent-distal ore-forming fluids have migrated unknown distances away from their vent sites. Because of the characteristic fine grain size of ore minerals, critical fluid inclusion data are lacking for vent-distal ore-stage sulfides. Consequently, hypothetical fluids such as those which formed MVT deposits (120 °C, 20% NaCl equiv.) are considered to represent vent-distal fluids as well. Such high-salinity fluids are capable of carrying significant concentrations of Pb and Zn as chloride complexes while the relatively low temperatures preclude high Cu contents. Densities of such metalliferous brines result in bottom-hugging fluids that collect in shallow saucer-shaped depressions (collector basins). Lateral metal zoning in several deposits reveals the direction from which the brines came. Relative densities of the ore-forming fluid and sediment determine whether the ore-forming fluid stabilizes on top

  9. TSUNAMI DEPOSITS AT QUEEN’S BEACH, OAHU, HAWAII – INITIALRESULTS AND WAVE MODELING

    Directory of Open Access Journals (Sweden)

    Dr. Barbara Keating

    2004-01-01

    Full Text Available Photographs taken immediately after the 1946 Aleutian Tsunami inundated Queen’s Beach, southeastern Oahu, show the major highway around the island was inundated and the road bed was destroyed. That road bed remains visible today, in an undeveloped coastline that shows like change in sedimentary deposits between 1946 and today (based on photographic evidence. Tsunami catalog records however indicate that the beach was repeatedly inundated by tsunami in 1946, 1952, 1957, and 1960. Tsunami runup was reported to have reached between 3 and 11 m elevation. Eyewitness accounts however indicate inundations of up to 20 m in Kealakipapa Valley (Makapu’u Lookout during 1946 and photographic evidence indicated inundation reached 9 m in 1957. The inundation of Kealakipapa Valley has been successfully modeled using a 10-m tsunami wave model.A comparison of the modern beach deposits to those near the remains of the destroyed highway demonstrate that the sedimentary deposits within the two areas have very different rock characteristics. We conclude the modern beach is dominated by the rounding of rocks (mostly coral by wave activity. However, in the area that has experienced prior tsunami inundations, the rocks are characterized by fracturing and a high component of basaltic material. We conclude the area near the destroyed highway reflects past tsunami inundations combined with inevitable anthropogenic alteration.

  10. Progranulin protects against amyloid β deposition and toxicity in Alzheimer's disease mouse models.

    Science.gov (United States)

    Minami, S Sakura; Min, Sang-Won; Krabbe, Grietje; Wang, Chao; Zhou, Yungui; Asgarov, Rustam; Li, Yaqiao; Martens, Lauren H; Elia, Lisa P; Ward, Michael E; Mucke, Lennart; Farese, Robert V; Gan, Li

    2014-10-01

    Haploinsufficiency of the progranulin (PGRN) gene (GRN) causes familial frontotemporal lobar degeneration (FTLD) and modulates an innate immune response in humans and in mouse models. GRN polymorphism may be linked to late-onset Alzheimer's disease (AD). However, the role of PGRN in AD pathogenesis is unknown. Here we show that PGRN inhibits amyloid β (Aβ) deposition. Selectively reducing microglial expression of PGRN in AD mouse models impaired phagocytosis, increased plaque load threefold and exacerbated cognitive deficits. Lentivirus-mediated PGRN overexpression lowered plaque load in AD mice with aggressive amyloid plaque pathology. Aβ plaque load correlated negatively with levels of hippocampal PGRN, showing the dose-dependent inhibitory effects of PGRN on plaque deposition. PGRN also protected against Aβ toxicity. Lentivirus-mediated PGRN overexpression prevented spatial memory deficits and hippocampal neuronal loss in AD mice. The protective effects of PGRN against Aβ deposition and toxicity have important therapeutic implications. We propose enhancing PGRN as a potential treatment for PGRN-deficient FTLD and AD.

  11. Sediment depositions upstream of open check dams: new elements from small scale models

    Science.gov (United States)

    Piton, Guillaume; Le Guern, Jules; Carbonari, Costanza; Recking, Alain

    2015-04-01

    numbers that the flows tend to adopt? New small scale model experiments have been undertaken focusing on depositions processes and their related hydraulics. Accurate photogrammetric measurements allowed us to better describe the deposition processes3. Large Scale Particle Image Velocimetry (LS-PIV) was performed to determine surface velocity fields in highly active channels with low grain submersion4. We will present preliminary results of our experiments showing the new elements we observed in massive deposit dynamics. REFERENCES 1.Armanini, A., Dellagiacoma, F. & Ferrari, L. From the check dam to the development of functional check dams. Fluvial Hydraulics of Mountain Regions 37, 331-344 (1991). 2.Piton, G. & Recking, A. Design of sediment traps with open check dams: a review, part I: hydraulic and deposition processes. (Accepted by the) Journal of Hydraulic Engineering 1-23 (2015). 3.Le Guern, J. Ms Thesis: Modélisation physique des plages de depot : analyse de la dynamique de remplissage.(2014) . 4.Carbonari, C. Ms Thesis: Small scale experiments of deposition processes occuring in sediment traps, LS-PIV measurments and geomorphological descriptions. (in preparation).

  12. Depositional models and reservoir properties of Miocene reefs, Visayan Islands, Philippines

    Energy Technology Data Exchange (ETDEWEB)

    Carozzi, A.V. [Illinois Univ., Urbana, IL (United States)

    1995-01-01

    Recent commercial discoveries offshore Palawan have propelled the Philippines into the list of oil- and gas-producing countries, and have focussed on the importance of Miocene reefs as reservoirs. This new situation has motivated the update of earlier depositional-diagenetic models for the Miocene reefs in the Visayan Islands, which is presented in this paper. These reefs consisted of an association of corals, red algae, bryozoans, and encrusting foraminifers, which formed wave-resistant, constructed, barrier-and-atoll systems along the edge of narrow shelves, with associated back-reef patch reefs and frontal pinnacle reefs. The latter also grew on structural and depositional highs and platforms among deeper water carbonate mudstones and shales. Reservoirs developed in all the various types of buildups by extensive burial dissolution, often preceded (with the exception of some pinnacle reefs) by subaerial exposure generating secondary porosity by vadose to phreatic undersaturated dissolution. (author)

  13. Application of Fused Deposition Modelling (FDM) Method of 3D Printing in Drug Delivery.

    Science.gov (United States)

    Long, Jingjunjiao; Gholizadeh, Hamideh; Lu, Jun; Bunt, Craig; Seyfoddin, Ali

    2017-01-01

    Three-dimensional (3D) printing is an emerging manufacturing technology for biomedical and pharmaceutical applications. Fused deposition modelling (FDM) is a low cost extrusion-based 3D printing technique that can deposit materials layer-by-layer to create solid geometries. This review article aims to provide an overview of FDM based 3D printing application in developing new drug delivery systems. The principle methodology, suitable polymers and important parameters in FDM technology and its applications in fabrication of personalised tablets and drug delivery devices are discussed in this review. FDM based 3D printing is a novel and versatile manufacturing technique for creating customised drug delivery devices that contain accurate dose of medicine( s) and provide controlled drug released profiles. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  14. Modeling dependence of moraine deposition on climate history: the effect of seasonality

    Science.gov (United States)

    Vacco, David A.; Alley, Richard B.; Pollard, David

    2009-04-01

    A simple shallow-ice flowline glacier model coupled to a model of sediment transport and deposition is used to simulate formation and preservation of moraines. The number, positions, and volume of moraines formed all are sensitive to the climate history assumed. We drive the model with the GISP2 central-Greenland temperature record, and with reduced-millennial-amplitude versions of that record, to test the hypothesis that the Younger Dryas and other millennial oscillations were primarily wintertime events and thus had less influence on glacier behavior than did the Last Glacial Maximum with its strong summertime as well as wintertime signal. We find that forcing the model by GISP2, with dampened strength of the millennial-scale signal, provides modeled moraine configurations that reflect observed moraine records in the Northern Hemisphere.

  15. Mechanistic Model for Ash Deposit Formation in Biomass Suspension-Fired Boilers. Part 2: Model Verification by Use of Full Scale Tests

    DEFF Research Database (Denmark)

    Hansen, Stine Broholm; Jensen, Peter Arendt; Jappe Frandsen, Flemming

    2017-01-01

    describes particle sticking or rebound by a combination of the description of (visco)elsatic particles impacting a solid surface and particle capture by a viscous surface. The model is used to predict deposit formation rates measured during tests conducted with probes in full-scale suspension-fired biomass...... of some physical parameters related to the description of surface capture are suggested. Based on these examinations of the model ability to describe observed deposit formation rates, the proposed model can be regarded as a promising tool for description of deposit formation in full-scale biomass......A model for deposit formation in suspension firing of biomass has been developed. The model describes deposit build-up by diffusion and subsequent condensation of vapors, thermoforesis of aerosols, convective diffusion of small particles, impaction of large particles and reaction. The model...

  16. Design and Analysis of Fused Deposition Modeling 3D Printer Nozzle for Color Mixing

    Directory of Open Access Journals (Sweden)

    Shanling Han

    2017-01-01

    Full Text Available Fused deposition modeling (FDM has been one of the most widely used rapid prototyping (RP technologies leading to the increase in market attention. Obviously it is desirable to print 3D objects; however, existing FDM printers are restricted to printing only monochrome objects because of the entry-level nozzle structure, and literature on the topic is also sparse. In this paper, the CAD model of the nozzle is established first by UG (Unigraphics NX software to show the structure of fused deposition modeling 3D printer nozzle for color mixing. Second, the flow channel model of the nozzle is extracted and simplified. Then, the CAD and finite element model are established by UG and ICEM CFD software, respectively, to prepare for the simulation. The flow field is simulated by Fluent software. The nozzle’s suitable temperature at different extrusion speeds is obtained, and the reason for the blockage at the intersection of the heating block is revealed. Finally, test verification of the nozzle is performed, which can produce mixed-color artifacts stably.

  17. Modelling of marine base cation emissions, concentrations and deposition in the UK

    Directory of Open Access Journals (Sweden)

    M. Werner

    2011-02-01

    Full Text Available Base cations exert a large impact on various geochemical and geophysical processes both in the atmosphere and at the Earth surface. One of the essential roles of these compounds is impact on surface pH causing an increase in alkalinity and neutralizing the effects of acidity generated by sulphur and nitrogen deposition. During recent years anthropogenic emissions of base cations in the UK have decreased substantially, by about 70%, 78%, 75% and 48% for Na+, Mg2+, Ca2+ and K+, respectively, over the period 1990–2006. For the island regions, such as the UK, the main source of base cation particles is the aerosol produced from the sea surface. Here, the sea salt aerosol (SSA emissions are calculated with parameterisations proposed by Mårtensson et al. (2003 for ultra fine particles, Monahan et al. (1986 for fine particles and Smith and Harisson (1998 for coarse particles continuously with a 0.1 μm size step using WRF-modelled wind speed data at a 5 km × 5 km grid square resolution with a 3 h time step for two selected years 2003 and 2006. SSA production has been converted into base cation emissions, with the assumption that the chemical composition of the particle emitted from the sea surface is equal to the chemical composition of sea water, and used as input data in the Fine Resolution Atmospheric Multi-pollutant Exchange Model (FRAME. FRAME model annual mean concentrations and total wet deposition at a 5 km × 5 km grid resolution, are compared with concentrations in air and wet deposition from the National Monitoring Network and measurements based estimates of UK deposition budget. The correlation coefficient for wet deposition achieves high values (R = 0.8 for Na+ and Mg2+, whereas for Ca2+ the correlation is poor (R < 0.3. Base cation concentrations are also represented well, with some overestimations on the west coast and underestimations in the

  18. Modelling deposition and air concentration of reduced nitrogen in Poland and sensitivity to variability in annual meteorology.

    Science.gov (United States)

    Kryza, Maciej; Dore, Anthony J; Błaś, Marek; Sobik, Mieczysław

    2011-04-01

    The relative contribution of reduced nitrogen to acid and eutrophic deposition in Europe has increased recently as a result of European policies which have been successful in reducing SO(2) and NO(x) emissions but have had smaller impacts on ammonia (NH(3)) emissions. In this paper the Fine Resolution Atmospheric Multi-pollutant Exchange (FRAME) model was used to calculate the spatial patterns of annual average ammonia and ammonium (NH(4)(+)) air concentrations and reduced nitrogen (NH(x)) dry and wet deposition with a 5 km × 5 km grid for years 2002-2005. The modelled air concentrations of NH(3) and dry deposition of NH(x) show similar spatial patterns for all years considered. The largest year to year changes were found for wet deposition, which vary considerably with precipitation amount. The FRAME modelled air concentrations and wet deposition are in reasonable agreement with available measurements (Pearson's correlation coefficients above 0.6 for years 2002-2005), and with spatial patterns of concentrations and deposition of NH(x) reported with the EMEP results, but show larger spatial gradients. The error statistics show that the FRAME model results are in better agreement with measurements if compared with EMEP estimates. The differences in deposition budgets calculated with FRAME and EMEP do not exceed 17% for wet and 6% for dry deposition, with FRAME estimates higher than for EMEP wet deposition for modelled period and lower or equal for dry deposition. The FRAME estimates of wet deposition budget are lower than the measurement-based values reported by the Chief Inspectorate of Environmental Protection of Poland, with the differences by approximately 3%. Up to 93% of dry and 53% of wet deposition of NH(x) in Poland originates from national sources. Over the western part of Poland and mountainous areas in the south, transboundary transport can contribute over 80% of total (dry + wet) NH(x) deposition. The spatial pattern of the relative contribution of

  19. New simple deposition model based on reassessment of global fallout data 1954 – 1976

    DEFF Research Database (Denmark)

    Pálsson, Sigurður Emil; Bergan, Tone D.; Howard, Brenda J.;

    by not assuming the traditional proportional relationship, but instead a non-linear power function. The predictions obtained using this new model may not be significantly different from those obtained using the traditional model, when using a limited data set such as from one country as a test in this report...... showed. But for larger data sets and understanding of underlying processes the new model should be an improvement....... such as (a) over how large area can it be assumed that the concentration in precipitation is the same at any given time; (b) how does this agree with the observed latitude dependency of deposition density and (c) are the any other parameters that could be of use in a simple model describing global fallout...

  20. Dynamic order reduction of thin-film deposition kinetics models: A reaction factorization approach

    Energy Technology Data Exchange (ETDEWEB)

    Adomaitis, Raymond A., E-mail: adomaiti@umd.edu [Department of Chemical and Biomolecular Engineering, Institute for Systems Research, University of Maryland, College Park, Maryland 20742 (United States)

    2016-01-15

    A set of numerical tools for the analysis and dynamic dimension reduction of chemical vapor and atomic layer deposition (ALD) surface reaction models is developed in this work. The approach is based on a two-step process where in the first, the chemical species surface balance dynamic equations are factored to effectively decouple the (nonlinear) reaction rates, a process that eliminates redundant dynamic modes and that identifies conserved quantities. If successful, the second phase is implemented to factor out redundant dynamic modes when species relatively minor in concentration are omitted; if unsuccessful, the technique points to potential model structural problems. An alumina ALD process is used for an example consisting of 19 reactions and 23 surface and gas-phase species. Using the approach developed, the model is reduced by nineteen modes to a four-dimensional dynamic system without any knowledge of the reaction rate values. Results are interpreted in the context of potential model validation studies.

  1. Competition between surface relaxation and ballistic deposition models in scale free networks

    CERN Document Server

    La Rocca, Cristian E; Braunstein, Lidia A

    2012-01-01

    In this paper we study the scaling behavior of the fluctuations in the steady state $W_S$ with the system size $N$ for a surface growth process given by the competition between the surface relaxation (SRM) and the Ballistic Deposition (BD) models on degree uncorrelated Scale Free networks (SF), characterized by a degree distribution $P(k)\\sim k^{-\\lambda}$, where $k$ is the degree of a node. It is known that the fluctuations of the SRM model above the critical dimension ($d_c=2$) scales logarithmically with $N$ on euclidean lattices. However, Pastore y Piontti {\\it et. al.} [A. L. Pastore y Piontti {\\it et. al.}, Phys. Rev. E {\\bf 76}, 046117 (2007)] found that the fluctuations of the SRM model in SF networks scale logarithmically with $N$ for $\\lambda <3$ and as a constant for $\\lambda \\geq 3$. In this letter we found that for a pure ballistic deposition model on SF networks $W_S$ scales as a power law with an exponent that depends on $\\lambda$. On the other hand when both processes are in competition, we...

  2. Estuarine Sediment Deposition during Wetland Restoration: A GIS and Remote Sensing Modeling Approach

    Science.gov (United States)

    Newcomer, Michelle; Kuss, Amber; Kentron, Tyler; Remar, Alex; Choksi, Vivek; Skiles, J. W.

    2011-01-01

    Restoration of the industrial salt flats in the San Francisco Bay, California is an ongoing wetland rehabilitation project. Remote sensing maps of suspended sediment concentration, and other GIS predictor variables were used to model sediment deposition within these recently restored ponds. Suspended sediment concentrations were calibrated to reflectance values from Landsat TM 5 and ASTER using three statistical techniques -- linear regression, multivariate regression, and an Artificial Neural Network (ANN), to map suspended sediment concentrations. Multivariate and ANN regressions using ASTER proved to be the most accurate methods, yielding r2 values of 0.88 and 0.87, respectively. Predictor variables such as sediment grain size and tidal frequency were used in the Marsh Sedimentation (MARSED) model for predicting deposition rates for three years. MARSED results for a fully restored pond show a root mean square deviation (RMSD) of 66.8 mm (<1) between modeled and field observations. This model was further applied to a pond breached in November 2010 and indicated that the recently breached pond will reach equilibrium levels after 60 months of tidal inundation.

  3. Mechanistic modeling study on process optimization and precursor utilization with atmospheric spatial atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Zhang; He, Wenjie; Duan, Chenlong [State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); Chen, Rong, E-mail: rongchen@mail.hust.edu.cn [State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); Shan, Bin [State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China)

    2016-01-15

    Spatial atomic layer deposition (SALD) is a promising technology with the aim of combining the advantages of excellent uniformity and conformity of temporal atomic layer deposition (ALD), and an industrial scalable and continuous process. In this manuscript, an experimental and numerical combined model of atmospheric SALD system is presented. To establish the connection between the process parameters and the growth efficiency, a quantitative model on reactant isolation, throughput, and precursor utilization is performed based on the separation gas flow rate, carrier gas flow rate, and precursor mass fraction. The simulation results based on this model show an inverse relation between the precursor usage and the carrier gas flow rate. With the constant carrier gas flow, the relationship of precursor usage and precursor mass fraction follows monotonic function. The precursor concentration, regardless of gas velocity, is the determinant factor of the minimal residual time. The narrow gap between precursor injecting heads and the substrate surface in general SALD system leads to a low Péclet number. In this situation, the gas diffusion act as a leading role in the precursor transport in the small gap rather than the convection. Fluid kinetics from the numerical model is independent of the specific structure, which is instructive for the SALD geometry design as well as its process optimization.

  4. A dynamical model on deposit and loan of banking: A bifurcation analysis

    Science.gov (United States)

    Sumarti, Novriana; Hasmi, Abrari Noor

    2015-09-01

    A dynamical model, which is one of sophisticated techniques using mathematical equations, can determine the observed state, for example bank profits, for all future times based on the current state. It will also show small changes in the state of the system create either small or big changes in the future depending on the model. In this research we develop a dynamical system of the form: d/D d t =f (D ,L ,rD,rL,r ), d/L d t =g (D ,L ,rD,rL,r ), Here D and rD are the volume of deposit and its rate, L and rL are the volume of loan and its rate, and r is the interbank market rate. There are parameters required in this model which give connections between two variables or between two derivative functions. In this paper we simulate the model for several parameters values. We do bifurcation analysis on the dynamics of the system in order to identify the appropriate parameters that control the stability behaviour of the system. The result shows that the system will have a limit cycle for small value of interest rate of loan, so the deposit and loan volumes are fluctuating and oscillating extremely. If the interest rate of loan is too high, the loan volume will be decreasing and vanish and the system will converge to its carrying capacity.

  5. Deposition times in the northeastern United States during the Holocene: establishing valid priors for Bayesian age models

    Science.gov (United States)

    Goring, S.; Williams, J. W.; Blois, J. L.; Jackson, S. T.; Paciorek, C. J.; Booth, R. K.; Marlon, J. R.; Blaauw, M.; Christen, J. A.

    2012-08-01

    Age-depth relationships in sedimentary archives such as lakes, wetlands and bogs are non-linear with irregular probability distributions associated with calibrated radiocarbon dates. Bayesian approaches are thus well-suited to understanding relationships between age and depth for use in paleoecological studies. Bayesian models for the accumulation of sediment and organic matter within basins combine dated material from one or more records with prior information about the behavior of deposition times (yr/cm) based on expert knowledge. Well-informed priors are essential to good modeling of the age-depth relationship, but are particularly important in cases where data may be sparse (e.g., few radiocarbon dates), or unclear (e.g., age-reversals, coincident dates, age offsets, outliers and dates within a radiocarbon plateau). Here we assessed Holocene deposition times using 204 age-depth models obtained from the Neotoma Paleoecology Database (www.neotomadb.org) for both lacustrine and palustrine environments across the northeastern United States. These age-depth models were augmented using biostratigraphic events identifiable within pollen records from the northeastern United States during the Holocene and late-Pleistocene. Deposition times are significantly related to depositional environment (palustrine and lacustrine), sediment age, and sediment depth. Spatial variables had non-significant relationships with deposition time when site effects were considered. The best-fit model was a generalized additive mixed model that relates deposition time to age, stratified by depositional environment with site as a random factor. The best-fit model accounts for 63.3% of the total deviance in deposition times. The strongly increasing accumulation rates of the last 500-1000 years indicate that gamma distributions describing lacustrine deposition times (α = 1.08, β = 18.28) and palustrine deposition times (α = 1.23, β = 22.32) for the entire Holocene may be insufficient for

  6. Imaging Quaternary glacial deposits and basement topography using the transient electromagnetic method for modeling aquifer environments

    Science.gov (United States)

    Simard, Patrick Tremblay; Chesnaux, Romain; Rouleau, Alain; Daigneault, Réal; Cousineau, Pierre A.; Roy, Denis W.; Lambert, Mélanie; Poirier, Brigitte; Poignant-Molina, Léo

    2015-08-01

    Aquifer formations along the northern shore of the Saint-Lawrence River in Quebec (Canada) mainly consist of glacial and coastal deposits of variable thickness overlying Precambrian bedrock. These deposits are important because they provide the main water supply for many communities. As part of a continuing project aimed at developing an inventory of the groundwater resources in the Charlevoix and Haute-Côte-Nord (CHCN) regions of the province of Quebec in Canada, the central loop transient electromagnetic (TEM) method was used to map the principal hydrogeological environments in these regions. One-dimensional smooth inversion models of the TEM soundings have been used to construct two-dimensional electrical resistivity sections, which provided images for hydrogeological validation. Electrical contour lines of aquifer environments were compared against available well logs and Quaternary surface maps in order to interpret TEM soundings. A calibration table was achieved to represent common deposits and basements. The calibration table was then exported throughout the CHCN region. This paper presents three case studies; one in the Forestville site, another in the Les Escoumins site and the other in the Saint-Urbain site. These sites were selected as targets for geophysical surveys because of the general lack of local direct hydrogeological data related to them.

  7. Modelling of carbon erosion and re-deposition for the EAST movable limiter

    Science.gov (United States)

    Xie, Hai; Ding, Rui; Chen, Junling; Sun, Jizhong

    2017-04-01

    The movable limiter at the mid-plane of the Experimental Advanced Superconducting Tokamak (EAST) with carbon coatings on the surface was exposed to edge plasma to study the material erosion and re-deposition. After the experiments, the carbon erosion and re-deposition is modelled using the 3D Monte Carlo code ERO. The geometry of the movable limiter, 3D configuration of the plasma parameters and electromagnetic fields under both limiter and divertor configurations have been implemented into the code. In the simulations, the main uncertain parameters such as carbon concentration ρ c in the background plasma and cross-field transport coefficient D ⊥ in the vicinity of surface according to the ‘funneling model’, have been studied in comparison with experiments. The parameter ρ c mainly influences the net erosion and deposition profiles of the two sides of the movable limiter, while D ⊥ mostly changes the profiles on the top surface. Supported by the National Magnetic Confinement Fusion Science Program of China (Nos. 2013GB107004 and 2013GB105003), National Natural Science Foundation of China (Nos. 11375010, 11675218 and 11005125), and the Sino-German Center for Research Promotion under contract No GZ769.

  8. Modelling of carbon erosion and re-deposition for the EAST movable limiter

    Science.gov (United States)

    Hai, XIE; Rui, DING; Junling, CHEN; Jizhong, SUN

    2017-04-01

    The movable limiter at the mid-plane of the Experimental Advanced Superconducting Tokamak (EAST) with carbon coatings on the surface was exposed to edge plasma to study the material erosion and re-deposition. After the experiments, the carbon erosion and re-deposition is modelled using the 3D Monte Carlo code ERO. The geometry of the movable limiter, 3D configuration of the plasma parameters and electromagnetic fields under both limiter and divertor configurations have been implemented into the code. In the simulations, the main uncertain parameters such as carbon concentration ρ c in the background plasma and cross-field transport coefficient D ⊥ in the vicinity of surface according to the ‘funneling model’, have been studied in comparison with experiments. The parameter ρ c mainly influences the net erosion and deposition profiles of the two sides of the movable limiter, while D ⊥ mostly changes the profiles on the top surface. Supported by the National Magnetic Confinement Fusion Science Program of China (Nos. 2013GB107004 and 2013GB105003), National Natural Science Foundation of China (Nos. 11375010, 11675218 and 11005125), and the Sino-German Center for Research Promotion under contract No GZ769.

  9. Measurements and modeling of emissions, dispersion and dry deposition of ammonia from swine facilities

    Science.gov (United States)

    Bajwa, Kanwardeep Singh

    Ammonia has recently gained importance for its increasing atmospheric concentrations and its role in the formation of aerosols. Studies have shown increasing atmospheric concentration levels of NH3 and NH 4+, especially in the regions of concentrated animal feeding operations. Atmospheric inputs of reduced nitrogen as ammonia and ammonium by dry and wet deposition may represent a substantial contribution to the acidification of semi natural ecosystems and could also affect sensitive coastal ecosystems and estuaries. The anaerobic lagoon and spray method, commonly used for waste storage and disposal in confined animal feeding operations (CAFO), is a significant source of ammonia emissions. An accurate emission model for ammonia from aqueous surfaces can help in the development of emission factors. Study of dispersion and dry deposition patterns of ammonia downwind of a hog farm will help us to understand how much ammonia gets dry deposited near the farm, and how remaining ammonia gets transported farther away. An experimental and modeling study is conducted of emissions, dispersion and dry deposition of ammonia taking one swine farm as a unit. Measurements of ammonia flux were made at 11 swine facilities in North Carolina using dynamic flow-through chamber system over the anaerobic waste treatment lagoons. Continuous measurements of ammonia flux, meteorological and lagoon parameters were made for 8-10 days at each farm during each of the warm and cold seasons. Ammonia concentrations were continuously measured in the chamber placed over the lagoon using a Thermo Environmental Instrument Incorporated (TECO) Model 17c chemiluminescnce ammonia analyzer. A similar ammonia analyzer was used to measure ammonia concentrations at selected locations on the farm. Barn emissions were measured using open-path Fourier transform infrared (OP-FTIR) spectroscopy. A 10 m meteorological tower was erected at each site to measure wind speed and direction, temperature, relative humidity

  10. Entrainment and deposition modeling of liquid films with applications for BWR fuel rod dryout

    Science.gov (United States)

    Ratnayake, Ruwan Kumara

    While best estimate computer codes provide the licensing basis for nuclear power facilities, they also serve as analytical tools in overall plant and component design procedures. An ideal best estimate code would comprise of universally applicable mechanistic models for all its components. However, due to the limited understanding in these specific areas, many of the models and correlations used in these codes reflect high levels of empiricism. As a result, the use of such models is strictly limited to the range of parameters within which the experiments have been conducted. Disagreements between best estimate code predictions and experimental results are often explained by the mechanistic inadequacies of embedded models. Significant mismatches between calculated and experimental critical power values are common observations in the analyses of Boiling Water Reactors (BWR). Based on experimental observations and calculations, these mismatches are attributed to the additional entrainment and deposition caused by spacer grids in BWR fuel assemblies. In COBRA-TF (Coolant Boiling in Rod Arrays-Two Fluid); a state of the art industrial best estimate code, these disagreements are hypothesized to occur due the absence of an appropriate spacer grid model. In this thesis, development of a suitably detailed spacer grid model and integrating it to COBRA-TF is documented. The new spacer grid model is highly mechanistic so that the applicability of it is not seriously affected by geometric variations in different spacer grid designs. COBRA-TF (original version) simulations performed on single tube tests and BWR rod bundles with spacer grids showed that single tube predictions were more accurate than those of the rod bundles. This observation is understood to arise from the non-availability of a suitable spacer grid model in COBRA-TF. Air water entrainment experiments were conducted in a test section simulating two adjacent BWR sub channels to visualize the flow behavior at

  11. Partial rescue of memory deficits induced by calorie restriction in a mouse model of tau deposition.

    Science.gov (United States)

    Brownlow, Milene L; Joly-Amado, Aurelie; Azam, Sana; Elza, Mike; Selenica, Maj-Linda; Pappas, Colleen; Small, Brent; Engelman, Robert; Gordon, Marcia N; Morgan, Dave

    2014-09-01

    Calorie restriction (CR) was shown previously to improve cognition and decrease pathology in transgenic mouse models with Alzheimer-like amyloid deposition. In the present study, we investigated the effects of CR on the Tg4510 model of tau deposition. Mice in the calorie restriction group had food intake gradually decreased until they reached an average of 35% body weight reduction. Body weight and food intake were monitored throughout the study. After being on their respective diets for 3 months, all animals were submitted to behavioral testing. Tg4510 mice fed ad libitum showed lower body weight than nontransgenic littermates despite their increased food intake. Additionally, Tg4510 showed increased locomotor activity in the open field regardless of diet. Calorie restricted Tg4510 mice performed significantly better than ad libitum fed mice in the novel object recognition test, suggesting improved short-term memory. CR Tg4510 mice also performed significantly better in contextual fear conditioning than mice fed ad libitum. However, in a modified version of the novelty test that allows for interaction with other mice instead of inanimate objects, CR was not able to rescue the deficit found in Tg4510 mice in this ethologically more salient version of the task. No treatment differences in motor performance or spatial memory were observed in the rotarod or radial arm water maze tests, respectively. Histopathological and biochemical assessments showed no diet-induced changes in total or phospho-tau levels. Moreover, increased activation of both astrocytes and microglia in Tg4510 mice was not rescued by calorie restriction. Taken together, our data suggests that, despite an apparent rescue of associative memory, CR had no consistent effects on pathological outcomes of a mouse model of tau deposition.

  12. Clinical and MRI models predicting amyloid deposition in progressive aphasia and apraxia of speech.

    Science.gov (United States)

    Whitwell, Jennifer L; Weigand, Stephen D; Duffy, Joseph R; Strand, Edythe A; Machulda, Mary M; Senjem, Matthew L; Gunter, Jeffrey L; Lowe, Val J; Jack, Clifford R; Josephs, Keith A

    2016-01-01

    Beta-amyloid (Aβ) deposition can be observed in primary progressive aphasia (PPA) and progressive apraxia of speech (PAOS). While it is typically associated with logopenic PPA, there are exceptions that make predicting Aβ status challenging based on clinical diagnosis alone. We aimed to determine whether MRI regional volumes or clinical data could help predict Aβ deposition. One hundred and thirty-nine PPA (n = 97; 15 agrammatic, 53 logopenic, 13 semantic and 16 unclassified) and PAOS (n = 42) subjects were prospectively recruited into a cross-sectional study and underwent speech/language assessments, 3.0 T MRI and C11-Pittsburgh Compound B PET. The presence of Aβ was determined using a 1.5 SUVR cut-point. Atlas-based parcellation was used to calculate gray matter volumes of 42 regions-of-interest across the brain. Penalized binary logistic regression was utilized to determine what combination of MRI regions, and what combination of speech and language tests, best predicts Aβ (+) status. The optimal MRI model and optimal clinical model both performed comparably in their ability to accurately classify subjects according to Aβ status. MRI accurately classified 81% of subjects using 14 regions. Small left superior temporal and inferior parietal volumes and large left Broca's area volumes were particularly predictive of Aβ (+) status. Clinical scores accurately classified 83% of subjects using 12 tests. Phonological errors and repetition deficits, and absence of agrammatism and motor speech deficits were particularly predictive of Aβ (+) status. In comparison, clinical diagnosis was able to accurately classify 89% of subjects. However, the MRI model performed well in predicting Aβ deposition in unclassified PPA. Clinical diagnosis provides optimum prediction of Aβ status at the group level, although regional MRI measurements and speech and language testing also performed well and could have advantages in predicting Aβ status in unclassified PPA subjects.

  13. Clinical and MRI models predicting amyloid deposition in progressive aphasia and apraxia of speech

    Directory of Open Access Journals (Sweden)

    Jennifer L. Whitwell

    2016-01-01

    Full Text Available Beta-amyloid (Aβ deposition can be observed in primary progressive aphasia (PPA and progressive apraxia of speech (PAOS. While it is typically associated with logopenic PPA, there are exceptions that make predicting Aβ status challenging based on clinical diagnosis alone. We aimed to determine whether MRI regional volumes or clinical data could help predict Aβ deposition. One hundred and thirty-nine PPA (n = 97; 15 agrammatic, 53 logopenic, 13 semantic and 16 unclassified and PAOS (n = 42 subjects were prospectively recruited into a cross-sectional study and underwent speech/language assessments, 3.0 T MRI and C11-Pittsburgh Compound B PET. The presence of Aβ was determined using a 1.5 SUVR cut-point. Atlas-based parcellation was used to calculate gray matter volumes of 42 regions-of-interest across the brain. Penalized binary logistic regression was utilized to determine what combination of MRI regions, and what combination of speech and language tests, best predicts Aβ (+ status. The optimal MRI model and optimal clinical model both performed comparably in their ability to accurately classify subjects according to Aβ status. MRI accurately classified 81% of subjects using 14 regions. Small left superior temporal and inferior parietal volumes and large left Broca's area volumes were particularly predictive of Aβ (+ status. Clinical scores accurately classified 83% of subjects using 12 tests. Phonological errors and repetition deficits, and absence of agrammatism and motor speech deficits were particularly predictive of Aβ (+ status. In comparison, clinical diagnosis was able to accurately classify 89% of subjects. However, the MRI model performed well in predicting Aβ deposition in unclassified PPA. Clinical diagnosis provides optimum prediction of Aβ status at the group level, although regional MRI measurements and speech and language testing also performed well and could have advantages in predicting Aβ status in unclassified

  14. Modeling the global emission, transport and deposition of trace elements associated with mineral dust

    Directory of Open Access Journals (Sweden)

    Y. Zhang

    2014-12-01

    Full Text Available Trace element deposition from desert dust has important impacts on ocean primary productivity. In this study, emission inventories for 8 elements, which are primarily of soil origin, Mg, P, Ca, Mn, Fe, K, Al, and Si were determined based on a global mineral dataset and a soils dataset. Datasets of elemental fractions were used to drive the desert dust model in the Community Earth System Model (CESM in order to simulate the elemental concentrations of atmospheric dust. Spatial variability of mineral dust elemental fractions was evident on a global scale, particularly for Ca. Simulations of global variations in the Ca / Al ratio, which typically ranged from around 0.1 to 5.0 in soil sources, were consistent with observations, suggesting this ratio to be a good signature for dust source regions. The simulated variable fractions of chemical elements are sufficiently different that estimates of deposition should include elemental variations, especially for Ca, Al and Fe. The model results have been evaluated with observational elemental aerosol concentration data from desert regions and dust events in non-dust regions, providing insights into uncertainties in the modeling approach. The ratios between modeled and observed elemental fractions ranged from 0.7 to 1.6 except for 3.4 and 3.5 for Mg and Mn, respectivly. Using the soil data base improved the correspondence of the spatial hetereogeneity in the modeling of several elements (Ca, Al and Fe compared to observations. Total and soluble dust associated element fluxes into different ocean basins and ice sheets regions have been estimated, based on the model results. Annual inputs of soluble Mg, P, Ca, Mn, Fe and K associated with dust using mineral dataset were 0.28 Tg, 16.89 Gg, 1.32 Tg, 22.84 Gg, 0.068 Tg, and 0.15 Tg to global oceans and ice sheets.

  15. Analogue modelling of rock avalanches and structural analysis of the deposits

    Science.gov (United States)

    Longchamp, C.; Charrière, M.; Jaboyedoff, M.

    2012-04-01

    Rock avalanches are catastrophic events in which granular masses of rock debris flow at high speeds, commonly with unusual runout. A great volume of material (>106 m3) is involved and the flowing mass can reach velocities up to ten meters per second. Rock avalanches can travel long distances on the order of kilometres and covering an area over 0.1 km2. These are extremely destructive and uncontrollable events. Due to the rarity of these events, analogue modelling plays a fundamental role in the understanding of the behaviour such events. The main objective of this research is to link the granular physics with the modelling of rock avalanches. Firstly, we attempt to model the debris avalanche and its spreading on a slope with different substratum to understand the relationship between the volume and the reach angle, or Fahrböschung, i.e. angle of the line joining the top of the scar and the end of the deposit. For a better understanding of the sliding mass motion and its spreading, the deposit is scanned with a micro Lidar Minolta. The different datasets are compared in order to see how the grainsize and volume influence a debris avalanche. In a general way, the travel distance is greater with coarse material and varies between 32° for the coarser grainsize and 37° for the finer one. It is interesting to note that the highest Fahrböschung, 41°, is reached for the highest slope angle (60°) and varies between 32 and 34.5° for a slope of 40°. Secondly, a detailed structural analysis of the deposit is performed in order to understand how the sliding mass stops. Several authors (e.g. Shea and van Wyk de Vries (2008)) highlighted that faults and folds are present in rock avalanches deposits and reproduced these features in analogue modelling. Our experiments are recorded by a height speed precision camera to see the development of these structures during the flowing of the mass. The most important impacts of this study is a better understanding of the effects of

  16. Global cloud and precipitation chemistry and wet deposition: tropospheric model simulations with ECHAM5/MESSy1

    Directory of Open Access Journals (Sweden)

    J. Lelieveld

    2007-05-01

    Full Text Available The representation of cloud and precipitation chemistry and subsequent wet deposition of trace constituents in global atmospheric chemistry models is associated with large uncertainties. To improve the simulated trace gas distributions we apply the new submodel SCAV, which includes detailed cloud and precipitation chemistry and present results of the atmospheric chemistry general circulation model ECHAM5/MESSy1. A good agreement with observed wet deposition fluxes for species causing acid rain is obtained. The new scheme enables prognostic calculations of the pH of clouds and precipitation, and these results are also in accordance with observations. We address the influence of detailed cloud and precipitation chemistry on trace constituents based on sensitivity simulations. The results confirm previous results from regional scale and box models, and we extend the analysis to the role of aqueous phase chemistry on the global scale. Some species are directly affected through multiphase removal processes, and many also indirectly through changes in oxidant concentrations, which in turn have an impact on the species lifetime. While the overall effect on tropospheric ozone is relatively small (3 can reach ≈20%, and several important compounds (e.g., H2O2, HCHO are substantially depleted by clouds and precipitation.

  17. Global cloud and precipitation chemistry and wet deposition: tropospheric model simulations with ECHAM5/MESSy1

    Directory of Open Access Journals (Sweden)

    H. Tost

    2007-01-01

    Full Text Available The representation of cloud and precipitation chemistry and subsequent wet deposition of trace constituents in global atmospheric chemistry models is associated with large uncertainties. To improve the simulated trace gas distributions we apply the new submodel SCAV, which includes detailed cloud and precipitation chemistry and present results of the atmospheric chemistry general circulation model ECHAM5/MESSy1. A good agreement with observed wet deposition fluxes for species causing acid rain is obtained. The new scheme enables prognostic calculations of the pH of clouds and precipitation, and these results are also in accordance with observations. We address the influence of detailed cloud and precipitation chemistry on trace constituents based on sensitivity simulations. The results confirm previous results from regional scale and box models, and we extend the analysis to the role of aqueous phase chemistry on the global scale. Some species are directly affected through multiphase removal processes, and many also indirectly through changes in oxidant concentrations, which in turn have an impact on the species lifetime. While the overall effect on tropospheric ozone is relatively small (<10%, regional effects on O3 can reach ~20%, and several important compounds (e.g., H2O2, HCHO are substantially depleted by clouds and precipitation.

  18. Finite element modeling of deposition of ceramic material during SLM additive manufacturing

    Directory of Open Access Journals (Sweden)

    Chen Qiang

    2016-01-01

    Full Text Available A three dimensional model for material deposition in Selective Laser Melting (SLM with application to Al2O3-ZrO2 eutectic ceramic is presented. As the material is transparent to laser, dopants are added to increase the heat absorption efficiency. Based on Beer-Lambert law, a volumetric heat source model taking into account the material absorption is derived. The Level Set method with multiphase homogenization is used to track the shape of deposed bead and the thermodynamic is coupled to calculate the melting-solidification path. The shrinkage during consolidation from powder to compact medium is modeled by a compressible Newtonian constitutive law. A semi-implicit formulation of surface tension is used, which permits a stable resolution to capture the gas-liquid interface. The formation of droplets is obtained and slight waves of melt pool are observed. The influence of different process parameters on temperature distribution, melt pool profiles and bead shapes is discussed.

  19. Energy and nutrient deposition and excretion in the reproducing sow: model development and evaluation

    DEFF Research Database (Denmark)

    Hansen, A V; Strathe, A B; Theil, Peter Kappel;

    2014-01-01

    Air and nutrient emissions from swine operations raise environmental concerns. During the reproduction phase, sows consume and excrete large quantities of nutrients. The objective of this study was to develop a mathematical model to describe energy and nutrient partitioning and predict manure...... excretion and composition and methane emissions on a daily basis. The model was structured to contain gestation and lactation modules, which can be run separately or sequentially, with outputs from the gestation module used as inputs to the lactation module. In the gestating module, energy and protein...... production, and maternal growth with body tissue losses constrained within biological limits. Global sensitivity analysis showed that nonlinearity in the parameters was small. The model outputs considered were the total protein and fat deposition, average urinary and fecal N excretion, average methane...

  20. Evaluating Ammonia Deposition Rates for Deciduous Forest using Measurements and Modelling

    DEFF Research Database (Denmark)

    Hansen, Kristina; Geels, Camilla; Hertel, Ole

    micrometeorological measuring technique, Relaxed Eddy Accumulation (REA), for 26 October – 11 November 2010. Measurements of atmospheric NH3 concentrations and fluxes are compared to local-scale model simulations using the Danish Ammonia Modelling System (DAMOS). It was found that long-term measured and modelled......-agricultural areas (Skjøth et al. 2011, ACPD). New atmospheric NH3 flux measurements for Lille Bøgeskov have been conducted throughout 2011 and these data are presented and discussed in relation to the 2010 data of atmospheric NH3. Future studies aim to improve the description of dry deposition of NH3 for vegetative......Atmospheric ammonia (NH3) is a major contributor to soil acidification and eutrophication of natural terrestrial ecosystem leading to e.g. reduced biodiversity (Erisman et al. 2007, Environmental Pollution, Stevens et al. 2004, Science, Sutton et al. 2009, Biogeoscience). In order to assess...

  1. Modelling the ecosystem effects of nitrogen deposition: Model of Ecosystem Retention and Loss of Inorganic Nitrogen (MERLIN

    Directory of Open Access Journals (Sweden)

    B. J. Cosby

    1997-01-01

    Full Text Available A catchment-scale mass-balance model of linked carbon and nitrogen cycling in ecosystems has been developed for simulating leaching losses of inorganic nitrogen. The model (MERLIN considers linked biotic and abiotic processes affecting the cycling and storage of nitrogen. The model is aggregated in space and time and contains compartments intended to be observable and/or interpretable at the plot or catchment scale. The structure of the model includes the inorganic soil, a plant compartment and two soil organic compartments. Fluxes in and out of the ecosystem and between compartments are regulated by atmospheric deposition, hydrological discharge, plant uptake, litter production, wood production, microbial immobilization, mineralization, nitrification, and denitrification. Nitrogen fluxes are controlled by carbon productivity, the C:N ratios of organic compartments and inorganic nitrogen in soil solution. Inputs required are: 1 temporal sequences of carbon fluxes and pools- 2 time series of hydrological discharge through the soils, 3 historical and current external sources of inorganic nitrogen; 4 current amounts of nitrogen in the plant and soil organic compartments; 5 constants specifying the nitrogen uptake and immobilization characteristics of the plant and soil organic compartments; and 6 soil characteristics such as depth, porosity, bulk density, and anion/cation exchange constants. Outputs include: 1 concentrations and fluxes of NO3 and NH4 in soil solution and runoff; 2 total nitrogen contents of the organic and inorganic compartments; 3 C:N ratios of the aggregated plant and soil organic compartments; and 4 rates of nitrogen uptake and immobilization and nitrogen mineralization. The behaviour of the model is assessed for a combination of land-use change and nitrogen deposition scenarios in a series of speculative simulations. The results of the simulations are in broad agreement with observed and hypothesized behaviour of nitrogen

  2. A model for simulating the deposition of water-lain sediments in dryland environments

    Science.gov (United States)

    Bunch, M. A.; Mackay, R.; Tellam, J. H.; Turner, P.

    A numerical process-imitating model, the Discrete Storm Event Sedimentation Simulator (DSESS), has been developed to represent the climatic and hydraulic conditions of drylands in modelling their geomorphological development and sedimentary facies distributions. The ultimate aim is to provide insights into the lateral variability of permeability in the Triassic Sandstone aquifers of the UK for the study of solute movement. DSESS employs discrete storm-flood automata, released across a cellular landscape, to model sediment transport: erosion, migration and deposition. Sediment classes with different grain sizes can be modelled. Empirical process-based equations are used to quantify the movement of the automata, their erosion potential, sediment-carrying capacity and interaction with the underlying sediments. The approach emphasises the sequence of dryland storm events and associated floods rather than their timing. Flood events are assumed to be discrete in time. Preliminary tests carried out with DSESS using simple systems and idealised initial conditions produce lithological and land surface features characteristic of dryland settings and indicate the potential of the model for large-scale, long-time modelling of sedimentary facies development. Markedly different results are observed across the range of tests carried out in response to the non-linear interactions between the different elements of the landscape and the floodwaters simulated with DSESS. Simulations show that sediment accumulations develop concave upward radial profiles, plano-convex cross-profiles and possess a general lateral grading of sediment with distance from source. The internal grain size architecture shows evidence of both persistent and rapidly changing flow conditions, with both lateral and longitudinal stepping of coarse bodies produced by ‘scour and fill’ events and random avulsions. Armoured layers form so that near-surface sediments have increased likelihood of preservation

  3. Modeling wet deposition and concentration of inorganics over Northeast Asia with MRI-PM/c

    Directory of Open Access Journals (Sweden)

    M. Kajino

    2012-11-01

    Full Text Available We conducted a regional-scale simulation over Northeast Asia for the year 2006 using an aerosol chemical transport model, with time-varying lateral and upper boundary concentrations of gaseous species predicted by a global stratospheric and tropospheric chemistry-climate model. The present one-way nested global-through-regional-scale model is named the Meteorological Research Institute–Passive-tracers Model system for atmospheric Chemistry (MRI-PM/c. We evaluated the model's performance with respect to the major anthropogenic and natural inorganic components, SO42−, NH4+, NO3, Na+ and Ca2+ in the air, rain and snow measured at the Acid Deposition Monitoring Network in East Asia (EANET stations. Statistical analysis showed that approximately 40–50 % and 70–80 % of simulated concentration and wet deposition of SO42−, NH4+, NO3and Ca2+ are within factors of 2 and 5 of the observations, respectively. The prediction of the sea-salt originated component Na+ was not successful at near-coastal stations (where the distance from the coast ranged from 150 to 700 m, because the model grid resolution (Δx=60 km is too coarse to resolve it. The simulated Na+ in precipitation was significantly underestimated by up to a factor of 30.

  4. Interception of wet deposited atmospheric pollutants by herbaceous vegetation: Data review and modelling

    Energy Technology Data Exchange (ETDEWEB)

    Gonze, M.-A., E-mail: marc-andre.gonze@irsn.fr; Sy, M.M.

    2016-09-15

    Better understanding and predicting interception of wet deposited pollutants by vegetation remains a key issue in risk assessment studies of atmospheric pollution. We develop different alternative models, following either empirical or semi-mechanistic descriptions, on the basis of an exhaustive dataset consisting of 440 observations obtained in controlled experiments, from 1970 to 2014, for a wide variety of herbaceous plants, radioactive substances and rainfall conditions. The predictive performances of the models and the uncertainty/variability of the parameters are evaluated under Hierarchical Bayesian modelling framework. It is demonstrated that the variability of the interception fraction is satisfactorily explained and quite accurately modelled by a process-based alternative in which absorption of ionic substances onto the foliage surfaces is determined by their electrical valence. Under this assumption, the 95% credible interval of the predicted interception fraction encompasses 81% of the observations, including situations where either plant biomass or rainfall intensity are unknown. This novel approach is a serious candidate to challenge existing empirical relationships in radiological or chemical risk assessment tools. - Highlights: • Literature data on the interception of atmospheric pollutants by herbs were reviewed • Predictive models were developed and evaluated in the Bayesian modelling framework • Sensitivity of interception to environmental conditions was satisfactorily explained • 81% of the observations were satisfactorily predicted by a semi-mechanistic model • This model challenges empirical relationships currently used in risk assessment tools.

  5. Projecting Ammonia Dry Deposition Using Passive Samplers and a Bi-Directional Exchange Model

    Science.gov (United States)

    Robarge, W. P.; Walker, J. T.; Austin, R. E.

    2011-12-01

    Animal agriculture within the United States is known to be a source of ammonia (NH3) emissions. Dry deposition of NH3 to terrestrial ecosystems immediately surrounding large local sources of NH3 emissions (e.g. animal feeding operations) is difficult to measure, and is best estimated via models. Presented here are results for a semi-empirical modeling approach for estimating air-surface exchange fluxes of NH3 downwind of a large poultry facility (~ 3.5 million layers) using a bi-directional air-surface exchange model. The modeling domain is the western section of the Pocosin Lakes National Wildlife Refuge in Tyrrell, Washington, and Hyde Counties of eastern North Carolina in the South Atlantic Coastal Plain physiographic region. Vegetation within the modeling domain is primarily pocosin wetlands, characterized by acid (pH 3.6) peat soils and a thick canopy of shrub vegetation (leatherwood (Cyrilla racemiflora), inkberry (Ilex glabra), wax myrtle (Morella cerifera)). Land surrounding the refuge is primarily used for crop production: ~ 28%, 24%, and 45% agricultural in Tyrell, Hyde, and Washington counties, respectively. Ammonia air-surface exchange (flux) was calculated using a two-layer canopy compensation point model developed by Nemitz et al. (2001. Quart. J. Roy. Met. Soc. 127, 815 - 833.) as implemented by Walker et al. (2008. Atmos. Environ., 42, 3407 - 3418.), in which the competing processes of emission and deposition within the foliage-soil system were taken into account by relating the net canopy-scale NH3 flux to the net emission potential of the canopy (i.e., foliage and soil). Ammonia air concentrations were measured using ALPHA passive samplers (Center for Ecology and Hydrology, Edinburgh) along transects to the north and northeast of the poultry facility at distances of 800, 2000 and 3200 m, respectively. Samplers were deployed in duplicate at each location at a height of 5.8 m from July 2008 to July 2010 weekly during warm months and bi-weekly curing

  6. Modelling Strategy of Loan and Deposit Activity of a Commercial Bank

    Directory of Open Access Journals (Sweden)

    Ilchenko Kseniia O.

    2014-01-01

    Full Text Available The article considers development of strategy of loan-deposit strategy of a bank, which could be presented by relevant rates. Bank activity is described with goodwill and liquidity indicators that characterise tangible and intangible resources of an institution. Goodwill indicator is calculated on the basis of the previous period data. Liquidity is a relation of assets to liabilities at a certain moment of time. On the basis of these indicators the article develops a mathematical model, which includes an assumption about dependence of the rate of growth of deposits on liquidity and goodwill functions. There is a task of two criteria optimisation, the solution of which is a set of rates. The article considers cases when a bank does not change rates during a set period of time and when a bank changes them frequently under condition that rates are independent from each other. If we make an assumption that each change of rates is accompanied with costs, which are not reflected in the model, changing rates is inexpedient. The article offers to use partially constant average values of rates. The article considers the use of the ideal point for selection of one value out of the set of Pareto efficient solutions. Using presentation of the task of one criterion optimisation with respect to the liquidity ratio, the article shows that the use of the goodwill indicator influences the rate of growth of deposits. This task is a special case of the previous one, which means that this solution is within the set of the presented Pareto efficient point. But in the event of non-strict correspondence with the extreme value of the liquidity ratio, the solution worsens. The necessity of use of both criteria is important and improves the south for solution.

  7. Three-dimensional fuse deposition modeling of tissue-simulating phantom for biomedical optical imaging

    Science.gov (United States)

    Dong, Erbao; Zhao, Zuhua; Wang, Minjie; Xie, Yanjun; Li, Shidi; Shao, Pengfei; Cheng, Liuquan; Xu, Ronald X.

    2015-12-01

    Biomedical optical devices are widely used for clinical detection of various tissue anomalies. However, optical measurements have limited accuracy and traceability, partially owing to the lack of effective calibration methods that simulate the actual tissue conditions. To facilitate standardized calibration and performance evaluation of medical optical devices, we develop a three-dimensional fuse deposition modeling (FDM) technique for freeform fabrication of tissue-simulating phantoms. The FDM system uses transparent gel wax as the base material, titanium dioxide (TiO2) powder as the scattering ingredient, and graphite powder as the absorption ingredient. The ingredients are preheated, mixed, and deposited at the designated ratios layer-by-layer to simulate tissue structural and optical heterogeneities. By printing the sections of human brain model based on magnetic resonance images, we demonstrate the capability for simulating tissue structural heterogeneities. By measuring optical properties of multilayered phantoms and comparing with numerical simulation, we demonstrate the feasibility for simulating tissue optical properties. By creating a rat head phantom with embedded vasculature, we demonstrate the potential for mimicking physiologic processes of a living system.

  8. Combining electrospinning and fused deposition modeling for the fabrication of a hybrid vascular graft.

    Science.gov (United States)

    Centola, M; Rainer, A; Spadaccio, C; De Porcellinis, S; Genovese, J A; Trombetta, M

    2010-03-01

    Tissue engineering of blood vessels is a promising strategy in regenerative medicine with a broad spectrum of potential applications. However, many hurdles for tissue-engineered vascular grafts, such as poor mechanical properties, thrombogenicity and cell over-growth inside the construct, need to be overcome prior to the clinical application. To surmount these shortcomings, we developed a poly-L-lactide (PLLA)/poly-epsilon-caprolactone (PCL) scaffold releasing heparin by a combination of electrospinning and fused deposition modeling technique. PLLA/heparin scaffolds were produced by electrospinning in tubular shape and then fused deposition modeling was used to armor the tube with a single coil of PCL on the outer layer to improve mechanical properties. Scaffolds were then seeded with human mesenchymal stem cells (hMSCs) and assayed in terms of morphology, mechanical tensile strength, cell viability and differentiation. This particular scaffold design allowed the generation of both a drug delivery system amenable to surmount thrombogenic issues and a microenvironment able to induce endothelial differentiation. At the same time, the PCL external coiling improved mechanical resistance of the microfibrous scaffold. By the combination of two notable techniques in biofabrication--electrospinning and FDM--and exploiting the biological effects of heparin, we developed an ad hoc differentiating device for hMSCs seeding, able to induce differentiation into vascular endothelium.

  9. A depositional model for the Taylor coal bed, Martin and Johnson counties, eastern Kentucky

    Science.gov (United States)

    Andrews, W.M.; Hower, J.C.; Ferm, J.C.; Evans, S.D.; Sirek, N.S.; Warrell, M.; Eble, C.F.

    1996-01-01

    This study investigated the Taylor coal bed in Johnson and Martin counties, eastern Kentucky, using field and petrographic techniques to develop a depositional model of the coal bed. Petrography and chemistry of the coal bed were examined. Multiple benches of the Taylor coal bed were correlated over a 10 km distance. Three sites were studied in detail. The coal at the western and eastern sites were relatively thin and split by thick clastic partings. The coal at the central site was the thickest and unsplit. Two major clastic partings are included in the coal bed. Each represents a separate and distinct fluvial splay. The Taylor is interpreted to have developed on a coastal plain with periodic flooding from nearby, structurally-controlled fluvial systems. Doming is unlikely due to the petrographic and chemical trends, which are inconsistent with modern Indonesian models. The depositional history and structural and stratigraphic setting suggest contemporaneous structural influence on thickness and quality of the Taylor coal bed in this area.

  10. Modelling of atmospheric transport and deposition of toxaphene into the great lakes ecosystem

    Science.gov (United States)

    Voldner, E. C.; Schroeder, W. H.

    Toxaphene, not extensively used in the Great Lakes basin, has been found in fish, lake water, ambient air and precipitation in this region. It has been suggested that the atmosphere constitutes a primary transport route of toxaphene to the Great Lakes from the major source regions in the southern U.S. Environmental measurements are too few to estimate the input of toxaphene to the Great Lakes basins. The ASTRAP model, used in acid rain research, was modified for simulation of the atmospheric pathway of toxaphene. Based on emission inventories, derived from use patterns in North America for 1976 and 1980, air concentration and deposition of toxaphene to the Great Lakes were estimated. The results confirm that the atmosphere is a major transport route of toxaphene to the Great Lakes region. They also show that toxaphene can be transported to the North Atlantic. Total deposition to the Lakes in 1980 was 3-10 t and annual average air concentrations about 0.5ngm -3. Although the information on physical/chemical properties and emissions is incomplete and air quality and precipitation chemistry measurements of toxaphene are few and uncertain, model predictions show good agreement with the measurements.

  11. A stochastic model of solid state thin film deposition: Application to chalcopyrite growth

    Directory of Open Access Journals (Sweden)

    Robert J. Lovelett

    2016-04-01

    Full Text Available Developing high fidelity quantitative models of solid state reaction systems can be challenging, especially in deposition systems where, in addition to the multiple competing processes occurring simultaneously, the solid interacts with its atmosphere. In this work, we develop a model for the growth of a thin solid film where species from the atmosphere adsorb, diffuse, and react with the film. The model is mesoscale and describes an entire film with thickness on the order of microns. Because it is stochastic, the model allows us to examine inhomogeneities and agglomerations that would be impossible to characterize with deterministic methods. We demonstrate the modeling approach with the example of chalcopyrite Cu(InGa(SeS2 thin film growth via precursor reaction, which is a common industrial method for fabricating thin film photovoltaic modules. The model is used to understand how and why through-film variation in the composition of Cu(InGa(SeS2 thin films arises and persists. We believe that the model will be valuable as an effective quantitative description of many other materials systems used in semiconductors, energy storage, and other fast-growing industries.

  12. Voxel modelling of sands and gravels of Pleistocene Rhine and Meuse deposits in Flanders (Belgium)

    Science.gov (United States)

    van Haren, Tom; Dirix, Katrijn; De Koninck, Roel

    2017-04-01

    Voxel modelling or 3D volume modelling of Quaternary raw materials is VITO's next step in the geological layer modelling of the Flanders and Brussels Capital Region in Belgium (G3D - Matthijs et al., 2013). The aim is to schematise deposits as voxels ('volumetric pixels') that represent lithological information on a grid in three-dimensional space (25 x 25 x 0.5 m). A new voxel model on Pleistocene Meuse and Rhine sands and gravels will be illustrated succeeding a voxel model on loess resources (van Haren et al., 2016). The model methodology is based on a geological 'skeleton' extracted from the regional geological layer model of Flanders. This framework holds the 3D interpolated lithological information of 5.000 boreholes. First a check on quality and spatial location filtered out significant and usable lithological information. Subsequently a manual geological interpretation was performed to analyse stratigraphical arrangement and identify the raw materials of interest. Finally, a workflow was developed that automatically encodes and classifies the borehole descriptions in a standardized manner. This workflow was implemented by combining Microsoft Access® and ArcMap® and is able to convert borehole descriptions into specific geological parameters. An analysis of the conversed lithological data prior to interpolation improves the understanding of the spatial distribution, to fine tune the modelling process and to know the limitations of the data. The converted lithological data were 3D interpolated in Voxler using IDW and resulted in a model containing 52 million voxels. It gives an overview on the regional distribution and thickness variation of interesting Pleistocene aggregates of Meuse and Rhine. Much effort has been put in setting up a database structure in Microsoft Access® and Microsoft SQL Server® in order to arrange and analyse the lithological information, link the voxel model with the geological layer model and handle and analyse the resulting

  13. Progress on geoenvironmental models for selected mineral deposit types, edited by R. R. Seal, II and N. K. Foley

    Science.gov (United States)

    Seal, Robert R., II; Foley, Nora K.

    2002-01-01

    Since the beginning of economic geology as a subdiscipline of the geological sciences, economic geologists have tended to classify mineral deposits on the basis of geological, mineralogical, and geochemical criteria, in efforts to systematize our understanding of mineral deposits as an aid to exploration. These efforts have led to classifications based on commodity, geologic setting (Cox and Singer, 1986), inferred temperatures and pressures of ore formation (Lindgren, 1933), and genetic setting (Park and MacDiarmid, 1975; Jensen and Bateman, 1979). None of these classification schemes is mutually exclusive; instead, there is considerable overlap among all of these classifications. A natural outcome of efforts to classify mineral deposits is the development of “mineral deposit models.” A mineral deposit model is a systematically arranged body of information that describes some or all of the essential characteristics of a selected group of mineral deposits; it presents a concept within which essential attributes may be distinguished and from which extraneous, coincidental features may be recognized and excluded (Barton, 1993). Barton (1993) noted that the grouping of deposits on the basis of common characteristics forms the basis for a classification, but the specification of the characteristics required for belonging to the group is the basis for a model. Models range from purely descriptive to genetic. A genetic model is superior to a descriptive model because it provides a basis to distinguish essential from extraneous attributes, and it has flexibility to accommodate variability in sources, processes, and local controls. In general, a descriptive model is a necessary prerequisite to a genetic model.

  14. Hydrological response to Black Carbon deposition in seasonally snow covered catchments in Norway using two different atmospheric transport models

    Science.gov (United States)

    Matt, F.; Burkhart, J. F.; Pietikäinen, J. P.

    2015-12-01

    Black Carbon (BC) has been shown to significantly impact snow melt through lowering the albedo of snow and increasing the absorption rate of short wave radiation. Yet few studies have investigated the effect of the enhanced melt on hydrological variability. BC sources for Norway are rather remote and deposition rates low. However, once deposited on snow even low concentrations of BC can have a detectable effect on the snow melt. Variations in snow melt have a direct impact on the snow cover duration and the timing and magnitude of peak outflow. In this study, we use two different atmospheric transport models (the Lagrangian transport and dispersion model FELXPART and the regional aerosol-climate model REMO-HAM) and GAINS emissions to simulate deposition rates over Norway and Statkraft's Hydrologic Forecasting Toolbox (ShyFT) to simulate the impact of BC deposition on the seasonal snow melt. The Snow, Ice, and Aerosol Radiation (SNICAR) model coupled to the snow routine of the hydrological model is used to determine the albedo of the snow as a function of the BC concentration in two snow layers. To investigate the impact range of BC on the seasonal snow melt, we simulate the catchment hydrology of catchments in south-east, south-west and northern Norway under the impact of deposition rates from both transport models, respectively. Comparing the deposition rates from the two transport models, we observe large differences in the seasonal cycle which in turn results in a significantly different response in the snow melt. Furthermore, we investigate the overall impact of BC deposition on the snow melt and duration on a catchment scale for both transport models.

  15. Particulate-phase mercury emissions from biomass burning and impact on resulting deposition: a modelling assessment

    Science.gov (United States)

    De Simone, Francesco; Artaxo, Paulo; Bencardino, Mariantonia; Cinnirella, Sergio; Carbone, Francesco; D'Amore, Francesco; Dommergue, Aurélien; Feng, Xin Bin; Gencarelli, Christian N.; Hedgecock, Ian M.; Landis, Matthew S.; Sprovieri, Francesca; Suzuki, Noriuki; Wängberg, Ingvar; Pirrone, Nicola

    2017-02-01

    Mercury (Hg) emissions from biomass burning (BB) are an important source of atmospheric Hg and a major factor driving the interannual variation of Hg concentrations in the troposphere. The greatest fraction of Hg from BB is released in the form of elemental Hg (Hg0(g)). However, little is known about the fraction of Hg bound to particulate matter (HgP) released from BB, and the factors controlling this fraction are also uncertain. In light of the aims of the Minamata Convention to reduce intentional Hg use and emissions from anthropogenic activities, the relative importance of Hg emissions from BB will have an increasing impact on Hg deposition fluxes. Hg speciation is one of the most important factors determining the redistribution of Hg in the atmosphere and the geographical distribution of Hg deposition. Using the latest version of the Global Fire Emissions Database (GFEDv4.1s) and the global Hg chemistry transport model, ECHMERIT, the impact of Hg speciation in BB emissions, and the factors which influence speciation, on Hg deposition have been investigated for the year 2013. The role of other uncertainties related to physical and chemical atmospheric processes involving Hg and the influence of model parametrisations were also investigated, since their interactions with Hg speciation are complex. The comparison with atmospheric HgP concentrations observed at two remote sites, Amsterdam Island (AMD) and Manaus (MAN), in the Amazon showed a significant improvement when considering a fraction of HgP from BB. The set of sensitivity runs also showed how the quantity and geographical distribution of HgP emitted from BB has a limited impact on a global scale, although the inclusion of increasing fractions HgP does limit Hg0(g) availability to the global atmospheric pool. This reduces the fraction of Hg from BB which deposits to the world's oceans from 71 to 62 %. The impact locally is, however, significant on northern boreal and tropical forests, where fires are

  16. World Meteorological Organization's model simulations of the radionuclide dispersion and deposition from the Fukushima Daiichi nuclear power plant accident.

    Science.gov (United States)

    Draxler, Roland; Arnold, Dèlia; Chino, Masamichi; Galmarini, Stefano; Hort, Matthew; Jones, Andrew; Leadbetter, Susan; Malo, Alain; Maurer, Christian; Rolph, Glenn; Saito, Kazuo; Servranckx, René; Shimbori, Toshiki; Solazzo, Efisio; Wotawa, Gerhard

    2015-01-01

    Five different atmospheric transport and dispersion model's (ATDM) deposition and air concentration results for atmospheric releases from the Fukushima Daiichi nuclear power plant accident were evaluated over Japan using regional (137)Cs deposition measurements and (137)Cs and (131)I air concentration time series at one location about 110 km from the plant. Some of the ATDMs used the same and others different meteorological data consistent with their normal operating practices. There were four global meteorological analyses data sets available and two regional high-resolution analyses. Not all of the ATDMs were able to use all of the meteorological data combinations. The ATDMs were configured identically as much as possible with respect to the release duration, release height, concentration grid size, and averaging time. However, each ATDM retained its unique treatment of the vertical velocity field and the wet and dry deposition, one of the largest uncertainties in these calculations. There were 18 ATDM-meteorology combinations available for evaluation. The deposition results showed that even when using the same meteorological analysis, each ATDM can produce quite different deposition patterns. The better calculations in terms of both deposition and air concentration were associated with the smoother ATDM deposition patterns. The best model with respect to the deposition was not always the best model with respect to air concentrations. The use of high-resolution mesoscale analyses improved ATDM performance; however, high-resolution precipitation analyses did not improve ATDM predictions. Although some ATDMs could be identified as better performers for either deposition or air concentration calculations, overall, the ensemble mean of a subset of better performing members provided more consistent results for both types of calculations.

  17. Structure and tensile properties evaluation of samples produced by Fused Deposition Modeling

    Science.gov (United States)

    Gajdoš, Ivan; Slota, Ján; Spišák, Emil; Jachowicz, Tomasz; Tor-Swiatek, Aneta

    2016-05-01

    This paper presents the result of a study evaluating the influence of alternative path generation strategy on structure and some mechanical properties of parts produced by Fused Deposition Modeling (FDM) technology. Several scientific investigations focused on resolving issues in FDM parts by modifying a path generation strategy to optimize its mechanical properties. In this study, an alternative strategy was proposed with the intention of minimizing internal voids and, thus, to improve mechanical properties. Polycarbonate samples made by this alternative path generation strategy were subjected to tensile strength test and metro-tomography structure evaluation. The results reveal that the structure observed on build models differs from a structure expected from path generation predicted by software Insight 9.1. This difference affected the tensile strength of samples.

  18. Modeling Non-Fickian Transport and Hyperexponential Deposition for Deep Bed Filtration

    DEFF Research Database (Denmark)

    Yuan, Hao; Shapiro, Alexander

    2010-01-01

    An integral model of the deep bed filtration process has been developed. It incorporates pore and particle size distributions, as well as the particle residence time distribution in the framework of the continuous time random walk theory. Numerical modeling is carried out to study the factors...... influencing breakthrough curves and deposition profiles for the deep bed filtration systems. Results are compared with a large set of experimental observations. Our findings show that highly dispersed breakthrough curves, e.g. those with early arrivals and large ending tails, correspond to large dispersion......: particle population in connection with the distribution of the filtration coefficients, heterogeneity in connection with non-Fickian transport, and heterogeneity in connection with the spatial distribution of the filtration coefficients. The influence and interaction of all three mechanisms have been...

  19. Quench Limit Model and Measurements for Steady State Heat Deposits in LHC Magnets

    CERN Document Server

    Bocian, D; Siemko, A

    2009-01-01

    A quench, transition of a conductor from the superconducting to the normal conducting state, occurs irreversibly in accelerator magnets if one of the three parameters: temperature, magnetic field or current density, exceeds its critical value. The protons lost from the beam and impacting on the vacuum chamber, create a secondary particle shower that deposes its energy in the magnet coil. Energy deposited in the superconductor by these particles can provoke quenches that can be detrimental for the accelerator operation. A network model is developed to study the thermodynamic behavior of the LHC magnets. The results of the heat flow simulation in the main dipole and quadrupole LHC magnets calculated by means of the network model were validated with measurements performed at superfluid helium temperatures in the CERN magnet test facility. A steady state heat flow was introduced in the magnet coil by using a dedicated internal heating apparatus (IHA) installed inside the magnet cold bore. The value of the heat so...

  20. Extrapolation modeling of aerosol deposition in human and laboratory rat lungs

    Energy Technology Data Exchange (ETDEWEB)

    Martonen, T.B.; Zhang, Z.; Yang, Y.

    1992-01-01

    Laboratory test animals are often used as surrogates in exposure studies to assess the potential threat to human health following inhalation of airborne contaminants. To aid in the interpretation and extrapolation of data to man, dosimetric considerations need to be addressed. Therefore, a mathematical model describing the behavior and fate of inhaled particulate matter within the respiratory tracts of man and rats has been developed. In the computer simulations, the CO2 concentrations of inhalation exposure chamber atmospheres are controlled to produce desired breathing patterns in the rat which mimic human breathing patterns as functions of physical activity levels. Herein, deposition patterns in human and rat lung airways are specifically examined as functions of respiratory intensities and particle parameters. The model provides a basis for the re-evaluation of data from past experiments, and, perhaps most importantly, permits new inhalation exposure tests to be designed and conducted in a sound scientific manner regarding this endpoint: the extrapolation of results to human conditions.

  1. Modeling and optimization of atomic layer deposition processes on vertically aligned carbon nanotubes.

    Science.gov (United States)

    Yazdani, Nuri; Chawla, Vipin; Edwards, Eve; Wood, Vanessa; Park, Hyung Gyu; Utke, Ivo

    2014-01-01

    Many energy conversion and storage devices exploit structured ceramics with large interfacial surface areas. Vertically aligned carbon nanotube (VACNT) arrays have emerged as possible scaffolds to support large surface area ceramic layers. However, obtaining conformal and uniform coatings of ceramics on structures with high aspect ratio morphologies is non-trivial, even with atomic layer deposition (ALD). Here we implement a diffusion model to investigate the effect of the ALD parameters on coating kinetics and use it to develop a guideline for achieving conformal and uniform thickness coatings throughout the depth of ultra-high aspect ratio structures. We validate the model predictions with experimental data from ALD coatings of VACNT arrays. However, the approach can be applied to predict film conformality as a function of depth for any porous topology, including nanopores and nanowire arrays.

  2. Modeling and optimization of atomic layer deposition processes on vertically aligned carbon nanotubes

    Directory of Open Access Journals (Sweden)

    Nuri Yazdani

    2014-03-01

    Full Text Available Many energy conversion and storage devices exploit structured ceramics with large interfacial surface areas. Vertically aligned carbon nanotube (VACNT arrays have emerged as possible scaffolds to support large surface area ceramic layers. However, obtaining conformal and uniform coatings of ceramics on structures with high aspect ratio morphologies is non-trivial, even with atomic layer deposition (ALD. Here we implement a diffusion model to investigate the effect of the ALD parameters on coating kinetics and use it to develop a guideline for achieving conformal and uniform thickness coatings throughout the depth of ultra-high aspect ratio structures. We validate the model predictions with experimental data from ALD coatings of VACNT arrays. However, the approach can be applied to predict film conformality as a function of depth for any porous topology, including nanopores and nanowire arrays.

  3. Depositional sequence analysis and sedimentologic modeling for improved prediction of Pennsylvanian reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Watney, W.L.

    1994-12-01

    Reservoirs in the Lansing-Kansas City limestone result from complex interactions among paleotopography (deposition, concurrent structural deformation), sea level, and diagenesis. Analysis of reservoirs and surface and near-surface analogs has led to developing a {open_quotes}strandline grainstone model{close_quotes} in which relative sea-level stabilized during regressions, resulting in accumulation of multiple grainstone buildups along depositional strike. Resulting stratigraphy in these carbonate units are generally predictable correlating to inferred topographic elevation along the shelf. This model is a valuable predictive tool for (1) locating favorable reservoirs for exploration, and (2) anticipating internal properties of the reservoir for field development. Reservoirs in the Lansing-Kansas City limestones are developed in both oolitic and bioclastic grainstones, however, re-analysis of oomoldic reservoirs provides the greatest opportunity for developing bypassed oil. A new technique, the {open_quotes}Super{close_quotes} Pickett crossplot (formation resistivity vs. porosity) and its use in an integrated petrophysical characterization, has been developed to evaluate extractable oil remaining in these reservoirs. The manual method in combination with 3-D visualization and modeling can help to target production limiting heterogeneities in these complex reservoirs and moreover compute critical parameters for the field such as bulk volume water. Application of this technique indicates that from 6-9 million barrels of Lansing-Kansas City oil remain behind pipe in the Victory-Northeast Lemon Fields. Petroleum geologists are challenged to quantify inferred processes to aid in developing rationale geologically consistent models of sedimentation so that acceptable levels of prediction can be obtained.

  4. On the Genesis of Uranium Deposit 720 with Special Reference to the Double Solution—Mixing Model

    Institute of Scientific and Technical Information of China (English)

    李振球; 胡中林

    1991-01-01

    Presented in this paper is an approach to the analysis of "series-stage"division.The processes of hydrothermal evolution involved in ore deposition,the factors affecting the enrichment of uranium and the source of ore forming elements in uranium deposit 720 are also discussed .In addition,the ore-forming tem-perature and pressure as well as the pH,Eh and chemical composition of ore-forming medium are studied with reference to the fluid inclusion data available.A double solution-mixing model has been proposed to explain the genesis of the uranium deposit studied.

  5. 3D CFD Modeling of Local Scouring, Bed Armoring and Sediment Deposition

    Directory of Open Access Journals (Sweden)

    Gergely T. Török

    2017-01-01

    Full Text Available 3D numerical models are increasingly used to simulate flow, sediment transport and morphological changes of rivers. For the simulation of bedload transport, the numerical flow model is generally coupled with an empirical sediment transport model. The application range of the most widely used empirical models is, however, often limited in terms of hydraulic and sedimentological features and therefore the numerical model can hardly be applied to complex situations where different kinds of morphological processes take place at the same time, such as local scouring, bed armoring and aggradation of finer particles. As a possible solution method for this issue, we present the combined application of two bedload transport formulas that widens the application range and thus gives more appropriate simulation results. An example of this technique is presented in the paper by combining two bedload transport formulas. For model validation, the results of a laboratory experiment, where bed armoring, local scouring and local sediment deposition processes occurred, were used. The results showed that the combined application method can improve the reliability of the numerical simulations.

  6. Modelling the response of soil and runoff chemistry to forest harvesting in a low deposition area (Kangasvaara, eastern Finland

    Directory of Open Access Journals (Sweden)

    J. Kämäri

    1998-01-01

    Full Text Available A simple dynamic soil model developed to analyse the effects of atmospheric deposition and nutrient cycling on terrestrial ecosystems, SMART 2, was applied to the Kangasvaara catchment in eastern Finland. Given the historical deposition and forest growth patterns and reasonable values for the input parameters, SMART 2 was calibrated successfully to reproduce present-day soil and Kangasvaara catchment on the soil and runoff water chemistry under a future deposition scenario (GRP scenario. These impacts were also compared to the effects of further reducing the deposition of sulphur and nitrate under the maximum feasible reduction (MFR scenario. The model demonstrates the consequences of breaking the nutrient cycle, and predicts that final cutting results in increased leaching of inorganic nitrogen and base cations from the cut part of the catchment for about 10 years. The resulting concentrations in the stream will depend on the ability of the buffer zones surrounding the stream to capture and utilize these nutrients.

  7. Comparisons of calculated respiratory tract deposition of particles based on the NCRP/ITRI model and the new ICRP66 model

    Energy Technology Data Exchange (ETDEWEB)

    Yeh, Hsu-Chi; Phalen, R.F. [Univ. of California, Irvine, CA (United States); Chang, I. [Lovelace Inst., Albuquerque, NM (United States)] [and others

    1995-12-01

    The National Council on Radiation Protection and Measurements (NCRP) in the United States and the International Commission on Radiological Protection (ICRP) have been independently reviewing and revising respiratory tract dosimetry models for inhaled radioactive aerosols. The newly proposed NCRP respiratory tract dosimetry model represents a significant change in philosophy from the old ICRP Task Group model. The proposed NCRP model describes respiratory tract deposition, clearance, and dosimetry for radioactive substances inhaled by workers and the general public and is expected to be published soon. In support of the NCRP proposed model, ITRI staff members have been developing computer software. Although this software is still incomplete, the deposition portion has been completed and can be used to calculate inhaled particle deposition within the respiratory tract for particle sizes as small as radon and radon progeny ({approximately} 1 nm) to particles larger than 100 {mu}m. Recently, ICRP published their new dosimetric model for the respiratory tract, ICRP66. Based on ICRP66, the National Radiological Protection Board of the UK developed PC-based software, LUDEP, for calculating particle deposition and internal doses. The purpose of this report is to compare the calculated respiratory tract deposition of particles using the NCRP/ITRI model and the ICRP66 model, under the same particle size distribution and breathing conditions. In summary, the general trends of the deposition curves for the two models were similar.

  8. Development and evaluation of an ozone deposition scheme for coupling to a terrestrial biosphere model

    Science.gov (United States)

    Franz, Martina; Simpson, David; Arneth, Almut; Zaehle, Sönke

    2017-01-01

    Ozone (O3) is a toxic air pollutant that can damage plant leaves and substantially affect the plant's gross primary production (GPP) and health. Realistic estimates of the effects of tropospheric anthropogenic O3 on GPP are thus potentially important to assess the strength of the terrestrial biosphere as a carbon sink. To better understand the impact of ozone damage on the terrestrial carbon cycle, we developed a module to estimate O3 uptake and damage of plants for a state-of-the-art global terrestrial biosphere model called OCN. Our approach accounts for ozone damage by calculating (a) O3 transport from 45 m height to leaf level, (b) O3 flux into the leaf, and (c) ozone damage of photosynthesis as a function of the accumulated O3 uptake over the lifetime of a leaf. A comparison of modelled canopy conductance, GPP, and latent heat to FLUXNET data across European forest and grassland sites shows a general good performance of OCN including ozone damage. This comparison provides a good baseline on top of which ozone damage can be evaluated. In comparison to literature values, we demonstrate that the new model version produces realistic O3 surface resistances, O3 deposition velocities, and stomatal to total O3 flux ratios. A sensitivity study reveals that key metrics of the air-to-leaf O3 transport and O3 deposition, in particular the stomatal O3 uptake, are reasonably robust against uncertainty in the underlying parameterisation of the deposition scheme. Nevertheless, correctly estimating canopy conductance plays a pivotal role in the estimate of cumulative O3 uptake. We further find that accounting for stomatal and non-stomatal uptake processes substantially affects simulated plant O3 uptake and accumulation, because aerodynamic resistance and non-stomatal O3 destruction reduce the predicted leaf-level O3 concentrations. Ozone impacts on GPP and transpiration in a Europe-wide simulation indicate that tropospheric O3 impacts the regional carbon and water cycling less

  9. New simple deposition model based on reassessment of global fallout data 1954 - 1976

    Energy Technology Data Exchange (ETDEWEB)

    Palsson, S.E. [Icelandic Radiation Safety Authority, Reykjavik (Iceland); Bergan, T.D. [Directorate for Civil Protection and Emergency Planning, Toensberg (Norway); Howard, B.J. [Centre for Ecology and Hydrology, Lancaster Environment Centre, Lancaster (United Kingdom); Ikaeheimonen, T.K. [STUK - Radiation and Nuclear Safety Authority, Helsinki (Finland); Isaksson, M. [Univ. of Gothenburg. Dept. of Radiation Physics, Institute of Clinical Sciences, Sahlgren Academy, Gothenburg (Sweden); Nielsen, Sven P. [Technical Univ. of Denmark. DTU Nutech, Roskilde (Denmark); Paatero, J. [Finnish Meteorological Institute. Observation Services, Helsinki (Finland)

    2012-12-15

    Atmospheric testing of nuclear weapons began in 1945 and largely ceased in 1963. This testing is the major cause of distribution of man-made radionuclides over the globe and constitutes a background that needs to be considered when effects of other sources are estimated. The main radionuclides of long term (after the first months) concern are generally assumed to be {sup 137}Cs and {sup 90}Sr. It has been known for a long time that the deposition density of {sup 137}Cs and {sup 90}Sr is approximately proportional to the amount of precipitation. But the use of this proportional relationship raised some questions such as (a) over how large area can it be assumed that the concentration in precipitation is the same at any given time; (b) how does this agree with the observed latitude dependency of deposition density and (c) are the any other parameters that could be of use in a simple model describing global fallout? These issues were amongst those taken up in the NKS-B EcoDoses activity. The preliminary results for {sup 137}Cs and {sup 90}Sr showed for each that the measured concentration had been similar at many European and N-American sites at any given time and that the change with time had been similar. These finding were followed up in a more thorough study in this (DepEstimates) activity. Global data (including the US EML and UK AERE data sets) from 1954 - 1976 for {sup 90}Sr and {sup 137}Cs were analysed testing how well different potential explanatory variables could describe the deposition density. The best fit was obtained by not assuming the traditional proportional relationship, but instead a non-linear power function. The predictions obtained using this new model may not be significantly different from those obtained using the traditional model, when using a limited data set such as from one country as a test in this report showed. But for larger data sets and understanding of underlying processes the new model should be an improvement. (Author)

  10. Uncertainty and Sensitivity Analysis of Filtration Models for Non-Fickian transport and Hyperexponential deposition

    DEFF Research Database (Denmark)

    Yuan, Hao; Sin, Gürkan

    2011-01-01

    filtration coefficients, while deposition is more sensitive to filtration coefficients. More experimental measurements at these moments are suggested to determine dispersion coefficients more accurately. More measurements of the steady-state effluent concentration or deposition are suggested to determine...

  11. Development Of Advanced Sandwich Core Topologies Using Fused Deposition Modeling And Electroforming Processes

    Science.gov (United States)

    Storck, Steven M.

    New weight efficient materials are needed to enhance the performance of vehicle systems allowing increased speed, maneuverability and fuel economy. This work leveraged a multi-length-scale composite approach combined with hybrid material methodology to create new state-of-the-art additive manufactured sandwich core material. The goal of the research was to generate a new material to expands material space for strength versus density. Fused-Deposition-Modeling (FDM) was used to remove geometric manufacturing constraints, and electrodepositing was used to generate a high specific-strength, bio-inspired hybrid material. Microtension samples (3mm x 1mm with 250mum x 250mum gage) were used to investigate the electrodeposited coatings in the transverse (TD) and growth (GD) directions. Three bath chemistries were tested: copper, traditional nickel sulfamate (TNS) nickel, and nickel deposited with a platinum anode (NDPA). NDPA shows tensile strength exceeding 1600 MPa, significantly beyond the literature reported values of 60MPa. This strengthening was linked to grain size refinement into the sub-30nm range, in addition to grain texture refinement resulting in only 17% of the slip systems for nickel being active. Anisotropy was observed in nickel deposits, which was linked to texture evolution inside of the coating. Microsample testing guided the selection of 15mum layer of copper deposition followed by a 250 mum NDPA layer. Classical formulas for structural collapse were used to guide an experimental parametric study to establish a weight/volume efficient strut topology. Length, diameter and thickness were all investigated to determine the optimal column topology. The most optimal topology exists when Eulerian buckling, shell micro buckling and yielding failure modes all exist in a single geometric topology. Three macro-scale sandwich topologies (pyramidal, tetrahedral, and strut-reinforced-tetrahedral (SRT) were investigated with respect to strength-per-unit-weight. The

  12. Development of a direct feed fused deposition modelling technology for multi-material manufacturing

    Science.gov (United States)

    Zhou, Zuoxin; Salaoru, Iulia; Morris, Peter; Gibbons, Gregory J.

    2016-10-01

    Fused Deposition Modelling (FDM) is one of the most widely used Additive Manufacturing (AM) technologies to fabricate a three-dimensional (3D) object via melt processing of a thermoplastic filament. However, it is limited in the variety of materials that can be fed and mixed during the process. In this study, a concept of direct feed FDM technology was presented, which allowed co-feeding of multiple materials in any available form. Different materials were mixed at predetermined ratios and deposited together to form a 3D object with variable properties and functionalities that meet specific requirements. To demonstrate the capability of this AM system, heat-sensitive polyvinyl alcohol (PVOH) and its additives were processed. A geometry with various features was successfully manufactured with dimensions closely matching those of the design specification. The FDM processed PVOH showed insignificant thermal decomposition as it retained its original colour, flexibility, and water solubility. During the process, a fluorescent whitening agent was successfully incorporated into the polymer melt. Therefore, the printed sample exhibited a strong fluorescence effect from the UV-visible and fluorimeter results.

  13. Fabrication of dielectric elastomer stack transducers (DEST) by liquid deposition modeling

    Science.gov (United States)

    Klug, Florian; Solano-Arana, Susana; Mößinger, Holger; Förster-Zügel, Florentine; Schlaak, Helmut F.

    2017-04-01

    Established fabrication methods for dielectric elastomer stack transducers (DEST) are mostly based on twodimensional thin-film technology. Because of this, DEST are based on simple two-dimensionally structured shapes. For certain applications, like valves or Braille displays, these structures are suited well enough. However, a more flexible fabrication method allows for more complex actuator designs, which would otherwise require extra processing steps. Fabrication methods with the possibility of three-dimensional structuring allow e.g. the integration of electrical connections, cavities, channels, sensor and other structural elements during the fabrication. This opens up new applications, as well as the opportunity for faster prototype production of individually designed DEST for a given application. In this work, a manufacturing system allowing three dimensional structuring is described. It enables the production of multilayer and three-dimensional structured DEST by liquid deposition modelling. The system is based on a custom made dual extruder, connected to a commercial threeaxis positioning system. It allows a computer controlled liquid deposition of two materials. After tuning the manufacturing parameters the production of thin layers with at thickness of less than 50 μm, as well as stacking electrode and dielectric materials is feasible. With this setup a first DEST with dielectric layer thickness less than 50 μm is build successfully and its performance is evaluated.

  14. Modelling of heat and mass transfer in the laser cladding during direct metal deposition

    Science.gov (United States)

    Bedenko, D. V.; Kovalev, O. B.

    2013-06-01

    A physical and mathematical model has been proposed for computing the thermal state and shape of the individual deposited track at the laser powder cladding. A three-dimensional statement of the two-phase problem of Stefan type with curved moving boundaries is considered. One of the boundaries is the melting-crystallization boundary, and the other is the boundary of the deposited layer, where the conservation laws are written from the condition of the inflow of the additional mass and energy. To describe the track shape the equation of kinematic compatibility of the points of a surface is used, the motion of which occurs at the expense of the mass of powder particles supplied to the radiation spot. An explicit finite difference scheme on a rectangular nonuniform grid is used for numerical solution of equations. The computations are carried out by through computation without an explicit identification of curved boundaries by using a modification of the immersed boundary method. The computational results are presented for the thermal state and the shape of the surface of the forming individual track depending on physical parameters: the substrate initial temperature, laser radiation intensity, scanning speed, powder feeding rate, etc.

  15. An improved parameterisation of ozone dry deposition to the ocean and its impact in a global climate-chemistry model

    Science.gov (United States)

    Luhar, Ashok K.; Galbally, Ian E.; Woodhouse, Matthew T.; Thatcher, Marcus

    2017-03-01

    Schemes used to parameterise ozone dry deposition velocity at the oceanic surface mainly differ in terms of how the dominant term of surface resistance is parameterised. We examine three such schemes and test them in a global climate-chemistry model that incorporates meteorological nudging and monthly-varying reactive-gas emissions. The default scheme invokes the commonly used assumption that the water surface resistance is constant. The other two schemes, named the one-layer and two-layer reactivity schemes, include the simultaneous influence on the water surface resistance of ozone solubility in water, waterside molecular diffusion and turbulent transfer, and a first-order chemical reaction of ozone with dissolved iodide. Unlike the one-layer scheme, the two-layer scheme can indirectly control the degree of interaction between chemical reaction and turbulent transfer through the specification of a surface reactive layer thickness. A comparison is made of the modelled deposition velocity dependencies on sea surface temperature (SST) and wind speed with recently reported cruise-based observations. The default scheme overestimates the observed deposition velocities by a factor of 2-4 when the chemical reaction is slow (e.g. under colder SSTs in the Southern Ocean). The default scheme has almost no temperature, wind speed, or latitudinal variations in contrast with the observations. The one-layer scheme provides noticeably better variations, but it overestimates deposition velocity by a factor of 2-3 due to an enhancement of the interaction between chemical reaction and turbulent transfer. The two-layer scheme with a surface reactive layer thickness specification of 2.5 µm, which is approximately equal to the reaction-diffusive length scale of the ozone-iodide reaction, is able to simulate the field measurements most closely with respect to absolute values as well as SST and wind-speed dependence. The annual global oceanic deposition of ozone determined using this

  16. Modelling and Optimization for Deposition of SiOxNy Films by Radio-Frequency Reactive Sputtering

    Institute of Scientific and Technical Information of China (English)

    XU Wen-Bin; DONG Shu-Rong; WANG De-Miao

    2007-01-01

    SiOxNy films are deposited by reactive sputtering from a Si target in Ar/O2/N2 atmospheres. In order to achieve the control of film composition and to keep a high deposition rate at the same time, a new sputtering model based on Berg's work is provided for the condition of double reactive gases. Analysis based on this model shows that the deposition process can easily enter the target-poisoning mode when the preset gas flow (N2 in this work)is too high, and the film composition will change from nitrogen-rich to SiO2-like with the increase of oxygen supply while keeping the N2 supply constant. The modelling results are confirmed in the deposition process of SiOxNy. Target self-bias voltages during sputtering are measured to characterize the different sputtering modes.FTIR-spectra and dielectric measurements are used to testify the model prediction of composition. Finally, an optimized sputtering condition is selected with the O2/N2 flow ratio varying from 0 to 1 and N2 supply fixed at 1 sccm. Average deposition rate of 17nm/min is obtained under this selected condition, which has suggested the model validity and potential for industry applications.

  17. A dermal model for spray painters, part I : subjective exposure modelling of spray paint deposition

    NARCIS (Netherlands)

    Brouwer, D.H.; Semple, S.; Marquart, J.; Cherrie, J.W.

    2001-01-01

    The discriminative power of existing dermal exposure models is limited. Most models only allow occupational hygienists to rank workers between and within workplaces according to broad bands of dermal exposure. No allowance is made for the work practices of different individuals. In this study a

  18. Depositional ''cyclicity'' on carbonate platforms: Real-world limits on computer-model output

    Energy Technology Data Exchange (ETDEWEB)

    Boss, S.K.; Neumann, A.C. (Univ. of North Carolina, Chapel Hill, NC (United States)); Rasmussen, K.A. (Northern Virginia Community Coll., Annandale, VA (United States))

    1994-03-01

    Computer-models which attempt to define interactions among dynamic parameters believed to influence the development of ''cyclic'' carbonate platform sequences have been popularized over the past few years. These models typically utilize vectors for subsidence (constant) and cyclical (sinusoidal) eustatic sea-level to create accommodation space which is filled by sedimentation (depth-dependent rates) following an appropriate lag time (non-depositional episode during initial platform flooding). Since these models are intended to reflect general principles of cyclic carbonate deposition, it is instructive to test their predictive utility by comparing typical model outputs with an actively evolving depositional cycle on a modern carbonate platform where rates of subsidence, eustatic sea-level and sediment accumulation are known. Holocene carbonate deposits across northern Great Bahama Bank provide such an ideal test-platform for model-data comparisons. On Great Bahama Bank, formation of accommodation space depends on eustatic sea-level rise because tectonic subsidence is very slow. Contrary to typical model input parameters, however, the rate of formation of accommodation space varies irregularly across the bank-top because irregular bank-top topography (produced by subaerial erosion and karstification) results in differential flooding of the platform surface. Results of this comparison indicate that typical computer-model input variables (subsidence, sea-level, sedimentation, lag-time) and output depositional geometries are poorly correlated with real depositional patterns across Great Bahama Bank. Since other modern carbonate platforms and ancient carbonate sequences display similarly complex stratigraphies, it is suggested that present computer-modeling results have little predictive value for stratigraphic interpretation.

  19. Energy deposition model based on electron scattering cross section data from water molecules

    Energy Technology Data Exchange (ETDEWEB)

    Munoz, A; Oiler, J C [Centra de Investigaciones Energeticas, Medioambientales y Tecnologicas (CIEMAT), Avenida Complutense 22, 28040 Madrid (Spain); Blanco, F [Departamento de Fisica Atomica, Molecular y Nuclear, Universidad Complutense de Madrid, Avenida Complutense s.n., 28040 Madrid (Spain); Gorfinkiel, J D [Department of Physiscs and Astronomy, The Open University, Walton Hall, Milton Keynes MK7 6AA (United Kingdom); Limao-Vieira, P [Departamento de Fisica, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); Maira-Vidal, A; Borge, M J G; Tengblad, O [Instituto de Estructura de la Materia, Consejo Superior de Investigaciones Cientificas (CSIC), Serrano 113-bis, 28006 Madrid, Spam (Spain); Huerga, C; Tellez, M [Hospital Universitario La Paz, paseo de la Castellana 261, 28046 Madrid (Spain); Garcia, G [Instituto de Matematicas y Fisica Fundamental, Consejo Superior de Investigaciones CientifIcas (CSIC), Serrano 113-bis, 28006 Madrid (Spain)], E-mail: g.garcia@imaff.cfmac.csic.es

    2008-10-01

    A complete set of electrons scattering cross sections by water molecules over a broad energy range, from the me V to the Me V ranges, is presented in this study. These data have been obtained by combining experiments and calculations and cover most relevant processes, both elastic and inelastic, which can take place in the considered energy range. A new Monte Carlo simulation programme has been developed using as input parameter these cross sectional data as well as experimental energy loss spectra. The simulation procedure has been applied to obtain electron tracks and energy deposition plots in water when irradiated by a Ru-106 plaque as those used for brachytherapy of ocular tumours. Finally, the low energy electron tracks provided by the present model have been compared with those obtained with other codes available in the literature.

  20. On the Strain Rate Sensitivity of Abs and Abs Plus Fused Deposition Modeling Parts

    Science.gov (United States)

    Vairis, A.; Petousis, M.; Vidakis, N.; Savvakis, K.

    2016-09-01

    In this work the effect of strain rate on the tensile strength of fused deposition modeling parts built with Acrylonitrile-butadiene-styrene (ABS) and ABS plus material is presented. ASTM D638-02a specimens were built with ABS and ABS plus and they were tested on a Schenck Trebel Co. tensile test machine at three different test speeds, equal, lower, and higher to the test speed required by the ASTM D638-02a standard. The experimental tensile strength results were compared and evaluated. The fracture surfaces of selected specimens were examined with a scanning electron microscope, to determine failure mode of the filament strands. It was found that, as the test speed increases, specimens develop higher tensile strength and have higher elastic modulus. Specimens tested in the highest speed of the experiment had on average about 10% higher elastic modulus and developed on average about 11% higher tensile strength.

  1. Measurement of competitiveness degree in Tunisian deposit banks: An application of the Panzar and Rosse model

    Directory of Open Access Journals (Sweden)

    Mensi Sami

    2010-01-01

    Full Text Available This paper explores the use of the Panzar-Rosse statistic as a basis for empirical assessment of competitive conditions among Tunisian deposit banks. The elaborated model has been tested with an interest revenues equation and a total revenues equation. Proceeding by means of an Ordinary Least Square analysis, the H-statistics is respectively estimated at 0.87 and 0.91. The computations undertaken using bank fixed effects and bank random effects General Least Square methods yield similar results. With reference to the reviewed literature, we are inclined to believe that Tunisian banks implement neither a joint monopoly nor a collusive competition context, and that they evolve within an oligopolistic competition context in a contestable market. Thus, it confirms the presence of a competitive environment.

  2. IFP technologies for flow assurance. Modeling, thermal insulation, deposit prevention, additives, testing facilities

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    Flow assurance has become one of the central topics covering the choice of a given field architecture and the specification of its production process. The relevant analysis includes the evaluation of risks and uncertainties associated with operational procedures, and contributes to a better estimate of the economics of a specific hydrocarbon production. This brochure presents an overview of innovative technologies, either available through IFP licensees or still under development by IFP and its industrial partners. The purpose of these technologies, related to Flow Assurance, is to secure the production operations, minimizing the down times, and reducing the production costs, particularly in the field of thermal insulation, deposit prevention and remediation. All these technologies benefit from the input of highly skilled teams from the Applied Mechanics, Applied Chemistry and Physical Chemistry Divisions of IFP, and rely on the design and use of sophisticated experimental laboratory and pilot equipment as well as advanced simulations and predictive modeling.

  3. Scenario and parameter studies on global deposition of radioactivity using the computer model GLODEP2

    Energy Technology Data Exchange (ETDEWEB)

    Shapiro, C.S.

    1984-08-01

    The GLODEP2 computer code was utilized to determine biological impact to humans on a global scale using up-to-date estimates of biological risk. These risk factors use varied biological damage models for assessing effects. All the doses reported are the unsheltered, unweathered, smooth terrain, external gamma dose. We assume the unperturbed atmosphere in determining injection and deposition. Effects due to ''nuclear winter'' may invalidate this assumption. The calculations also include scenarios that attempt to assess the impact of the changing nature of the nuclear stockpile. In particular, the shift from larger to smaller yield nuclear devices significantly changes the injection pattern into the atmosphere, and hence significantly affects the radiation doses that ensue. We have also looked at injections into the equatorial atmosphere. In total, we report here the results for 8 scenarios. 10 refs., 6 figs., 11 tabs.

  4. Characterization and Optimization of Mechanical Properties of ABS Parts Manufactured by the Fused Deposition Modelling Process

    Directory of Open Access Journals (Sweden)

    Godfrey C. Onwubolu

    2014-01-01

    Full Text Available While fused deposition modelling (FDM is one of the most used additive manufacturing (AM techniques today due to its ability to manufacture very complex geometries, the major research issues have been to balance ability to produce aesthetically appealing looking products with functionality. In this study, five important process parameters such as layer thickness, part orientation, raster angle, raster width, and air gap have been considered to study their effects on tensile strength of test specimen, using design of experiment (DOE. Using group method of data handling (GMDH, mathematical models relating the response with the process parameters have been developed. Using differential evolution (DE, optimal process parameters have been found to achieve good strength simultaneously for the response. The optimization of the mathematical model realized results in maximized tensile strength. Consequently, the additive manufacturing part produced is improved by optimizing the process parameters. The predicted models obtained show good correlation with the measured values and can be used to generalize prediction for process conditions outside the current study. Results obtained are very promising and hence the approach presented in this paper has practical applications for design and manufacture of parts using additive manufacturing technologies.

  5. VALDRIFT 1.0: A valley atmospheric dispersion model with deposition

    Energy Technology Data Exchange (ETDEWEB)

    Allwine, K.J.; Bian, X.; Whiteman, C.D.

    1995-05-01

    VALDRIFT version 1.0 is an atmospheric transport and diffusion model for use in well-defined mountain valleys. It is designed to determine the extent of ddft from aedal pesticide spraying activities, but can also be applied to estimate the transport and diffusion of various air pollutants in valleys. The model is phenomenological -- that is, the dominant meteorological processes goveming the behavior of the valley atmosphere are formulated explicitly in the model, albeit in a highly parameterized fashion. The key meteorological processes treated are: (1) nonsteady and nonhomogeneous along-valley winds and turbulent diffusivities, (2) convective boundary layer growth, (3) inversion descent, (4) noctumal temperature inversion breakup, and (5) subsidence. The model is applicable under relatively cloud-free, undisturbed synoptic conditions and is configured to operate through one diumal cycle for a single valley. The inputs required are the valley topographical characteristics, pesticide release rate as a function of time and space, along-valley wind speed as a function of time and space, temperature inversion characteristics at sunrise, and sensible heat flux as a function of time following sunrise. Default values are provided for certain inputs in the absence of detailed observations. The outputs are three-dimensional air concentration and ground-level deposition fields as a function of time.

  6. VALDRIFT 1.0: A valley atmospheric dispersion model with deposition

    Energy Technology Data Exchange (ETDEWEB)

    Allwine, K.J.; Bian, X.; Whiteman, C.D.

    1995-05-01

    VALDRIFT version 1.0 is an atmospheric transport and diffusion model for use in well-defined mountain valleys. It is designed to determine the extent of ddft from aedal pesticide spraying activities, but can also be applied to estimate the transport and diffusion of various air pollutants in valleys. The model is phenomenological -- that is, the dominant meteorological processes goveming the behavior of the valley atmosphere are formulated explicitly in the model, albeit in a highly parameterized fashion. The key meteorological processes treated are: (1) nonsteady and nonhomogeneous along-valley winds and turbulent diffusivities, (2) convective boundary layer growth, (3) inversion descent, (4) noctumal temperature inversion breakup, and (5) subsidence. The model is applicable under relatively cloud-free, undisturbed synoptic conditions and is configured to operate through one diumal cycle for a single valley. The inputs required are the valley topographical characteristics, pesticide release rate as a function of time and space, along-valley wind speed as a function of time and space, temperature inversion characteristics at sunrise, and sensible heat flux as a function of time following sunrise. Default values are provided for certain inputs in the absence of detailed observations. The outputs are three-dimensional air concentration and ground-level deposition fields as a function of time.

  7. Modelling of soil acidity and nitrogen availability in natural ecosystems in response to changes in acid deposition and hydrology

    NARCIS (Netherlands)

    Kros, J.; Reinds, G.J.; Vries, de W.

    1995-01-01

    Changes in vegetation are often caused by changes in abiotic site factors. The SMART2 model has been developed to evaluate the effects of changes in ion inputs by atmospheric deposition and seepage on these site factors. Linkage with the Multiple Stress Model for Vegetation (MOVE) enables evaluation

  8. Chemical models for martian weathering profiles: Insights into formation of layered phyllosilicate and sulfate deposits

    Science.gov (United States)

    Zolotov, Mikhail Yu.; Mironenko, Mikhail V.

    2016-09-01

    Numerical chemical models for water-basalt interaction have been used to constrain the formation of stratified mineralogical sequences of Noachian clay-bearing rocks exposed in the Mawrth Vallis region and in other places on cratered martian highlands. The numerical approaches are based on calculations of water-rock type chemical equilibria and models which include rates of mineral dissolution. Results show that the observed clay-bearing sequences could have formed through downward percolation and neutralization of acidic H2SO4-HCl solutions. A formation of weathering profiles by slightly acidic fluids equilibrated with current atmospheric CO2 requires large volumes of water and is inconsistent with observations. Weathering by solutions equilibrated with putative dense CO2 atmospheres leads to consumption of CO2 to abundant carbonates which are not observed in clay stratigraphies. Weathering by H2SO4-HCl solutions leads to formation of amorphous silica, Al-rich clays, ferric oxides/oxyhydroxides, and minor titanium oxide and alunite at the top of weathering profiles. Mg-Fe phyllosilicates, Ca sulfates, zeolites, and minor carbonates precipitate from neutral and alkaline solutions at depth. Acidic weathering causes leaching of Na, Mg, and Ca from upper layers and accumulation of Mg-Na-Ca sulfate-chloride solutions at depth. Neutral MgSO4 type solutions dominate in middle parts of weathering profiles and could occur in deeper layers owing to incomplete alteration of Ca minerals and a limited trapping of Ca to sulfates. Although salts are not abundant in the Noachian geological formations, the results suggest the formation of Noachian salty solutions and their accumulation at depth. A partial freezing and migration of alteration solutions could have separated sulfate-rich compositions from low-temperature chloride brines and contributed to the observed diversity of salt deposits. A Hesperian remobilization and release of subsurface MgSO4 type solutions into newly

  9. Modeling grain size variations of aeolian gypsum deposits at White Sands, New Mexico, using AVIRIS imagery

    Science.gov (United States)

    Ghrefat, H.A.; Goodell, P.C.; Hubbard, B.E.; Langford, R.P.; Aldouri, R.E.

    2007-01-01

    Visible and Near-Infrared (VNIR) through Short Wavelength Infrared (SWIR) (0.4-2.5????m) AVIRIS data, along with laboratory spectral measurements and analyses of field samples, were used to characterize grain size variations in aeolian gypsum deposits across barchan-transverse, parabolic, and barchan dunes at White Sands, New Mexico, USA. All field samples contained a mineralogy of ?????100% gypsum. In order to document grain size variations at White Sands, surficial gypsum samples were collected along three Transects parallel to the prevailing downwind direction. Grain size analyses were carried out on the samples by sieving them into seven size fractions ranging from 45 to 621????m, which were subjected to spectral measurements. Absorption band depths of the size fractions were determined after applying an automated continuum-removal procedure to each spectrum. Then, the relationship between absorption band depth and gypsum size fraction was established using a linear regression. Three software processing steps were carried out to measure the grain size variations of gypsum in the Dune Area using AVIRIS data. AVIRIS mapping results, field work and laboratory analysis all show that the interdune areas have lower absorption band depth values and consist of finer grained gypsum deposits. In contrast, the dune crest areas have higher absorption band depth values and consist of coarser grained gypsum deposits. Based on laboratory estimates, a representative barchan-transverse dune (Transect 1) has a mean grain size of 1.16 ??{symbol} (449????m). The error bar results show that the error ranges from - 50 to + 50????m. Mean grain size for a representative parabolic dune (Transect 2) is 1.51 ??{symbol} (352????m), and 1.52 ??{symbol} (347????m) for a representative barchan dune (Transect 3). T-test results confirm that there are differences in the grain size distributions between barchan and parabolic dunes and between interdune and dune crest areas. The t-test results

  10. Erosion, Transportation, and Deposition on Outer Solar System Satellites: Landform Evolution Modeling Studies

    Science.gov (United States)

    Moore, Jeffrey Morgan; Howard, Alan D.; Schenk, Paul M.

    2013-01-01

    Mass movement and landform degradation reduces topographic relief by moving surface materials to a lower gravitational potential. In addition to the obvious role of gravity, abrasive mechanical erosion plays a role, often in combination with the lowering of cohesion, which allows disaggregation of the relief-forming material. The identification of specific landform types associated with mass movement and landform degradation provides information about local sediment particle size and abundance and transportation processes. Generally, mass movements can be classified in terms of the particle sizes of the transported material and the speed the material moved during transport. Most degradation on outer planet satellites appears consistent with sliding or slumping, impact erosion, and regolith evolution. Some satellites, such as Callisto and perhaps Hyperion and Iapetus, have an appearance that implies that some additional process is at work, most likely sublimation-driven landform modification and mass wasting. A variant on this process is thermally driven frost segregation as seen on all three icy Galilean satellites and perhaps elsewhere. Titan is unique among outer planet satellites in that Aeolian and fluvial processes also operate to erode, transport, and deposit material. We will evaluate the sequence and extent of various landform-modifying erosional and volatile redistribution processes that have shaped these icy satellites using a 3-D model that simulates the following surface and subsurface processes: 1) sublimation and re-condensation of volatiles; 2) development of refractory lag deposits; 3) disaggregation and downward sloughing of surficial material; 4) radiative heating/cooling of the surface (including reflection, emission, and shadowing by other surface elements); 5) thermal diffusion; and 6) vapor diffusion. The model will provide explicit simulations of landform development and thusly predicts the topographic and volatile evolution of the surface

  11. Diamond-like carbon films deposited on three-dimensional shape substrate model by liquid electrochemical technique

    Energy Technology Data Exchange (ETDEWEB)

    He, Y.Y. [Institute of Nano-photonics, School of Physics and Materials Engineering, Dalian Nationalities University, 116600 Dalian (China); Zhang, G.F. [School of Materials Science and Engineering, Dalian University of Technology, 116024, Dalian China (China); Zhao, Y.; Liu, D.D. [Institute of Nano-photonics, School of Physics and Materials Engineering, Dalian Nationalities University, 116600 Dalian (China); Cong, Y., E-mail: congyan@ciomp.ac.cn [Institute of Nano-photonics, School of Physics and Materials Engineering, Dalian Nationalities University, 116600 Dalian (China); Buck, V. [Thin Film Technology Group, Faculty of Physics, University Duisburg-Essen and CeNIDE, 47057 Duisburg (Germany)

    2015-09-01

    Diamond-like carbon (DLC) films were deposited on three-dimensional (3D) shape substrate model by electrolysis of 2-propanol solution at low temperature (60 °C). This 3D shape model was composed of a horizontally aligned stainless steel wafer and vertically aligned stainless steel rods. Morphology and microstructure of the films were analyzed by scanning electron microscopy (SEM), atomic force microscopy (AFM) and Raman spectroscopy, respectively. The results suggested there were only differences in film uniformity and thickness for two kinds of samples. The hydrogenated amorphous carbon films deposited on horizontally aligned substrate were smooth and homogeneous. And the film thickness of DLC films gained on the vertical substrates decreased along vertical direction. It is believed that bubble formation could enhance nucleation on the wetted capillary area. This experiment shows that deposition of DLC films by liquid phase deposition on 3D shape conductive substrates is possible. - Highlights: • DLC film is expected to be deposited on complex surface/shape substrate. • DLC film is deposited on 3D shape substrate by liquid electrochemical method. • Horizontal substrate is covered by smooth and homogeneous DLC films. • Film thickness decreases along vertical direction due to boiling effect.

  12. Pilot‐scale investigation and CFD modeling of particle deposition in low‐dust monolithic SCR DeNOx catalysts

    DEFF Research Database (Denmark)

    Heiredal, Michael Lykke; Jensen, Anker Degn; Thøgersen, Joakim Reimer

    2013-01-01

    Deposition of particles in selective catalytic reduction DeNOx monolithic catalysts was studied by low‐dust pilot‐scale experiments. The experiments showed a total deposition efficiency of about 30%, and the deposition pattern was similar to that observed in full‐scale low‐dust applications....... On extended exposure to the dust‐laden flue gas, complete blocking of channels was observed, showing that also in low‐dust applications soot blowing is necessary to keep the catalyst clean. A particle deposition model was developed in computational fluid dynamics, and simulations were carried out assuming...... either laminar or turbulent flow. Assuming laminar flow, the accumulated mass was underpredicted with a factor of about 17, whereas assuming turbulent flow overpredicted the experimental result with a factor of about 2. The simulations showed that turbulent diffusion in the monolith channels and inertial...

  13. Multi-model Mean Nitrogen and Sulfur Deposition from the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP): Evaluation Historical and Projected Changes

    Science.gov (United States)

    Lamarque, J.-F.; Dentener, F.; McConnell, J.; Ro, C.-U.; Shaw, M.; Vet, R.; Bergmann, D.; Cameron-Smith, P.; Doherty, R.; Faluvegi, G.; hide

    2013-01-01

    We present multi-model global datasets of nitrogen and sulfate deposition covering time periods from 1850 to 2100, calculated within the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP). The computed deposition fluxes are compared to surface wet deposition and ice-core measurements. We use a new dataset of wet deposition for 2000-2002 based on critical assessment of the quality of existing regional network data. We show that for present-day (year 2000 ACCMIP time-slice), the ACCMIP results perform similarly to previously published multi-model assessments. For this time slice, we find a multi-model mean deposition of 50 Tg(N) yr1 from nitrogen oxide emissions, 60 Tg(N) yr1 from ammonia emissions, and 83 Tg(S) yr1 from sulfur emissions. The analysis of changes between 1980 and 2000 indicates significant differences between model and measurements over the United States but less so over Europe. This difference points towards misrepresentation of 1980 NH3 emissions over North America. Based on ice-core records, the 1850 deposition fluxes agree well with Greenland ice cores but the change between 1850 and 2000 seems to be overestimated in the Northern Hemisphere for both nitrogen and sulfur species. Using the Representative Concentration Pathways to define the projected climate and atmospheric chemistry related emissions and concentrations, we find large regional nitrogen deposition increases in 2100 in Latin America, Africa and parts of Asia under some of the scenarios considered. Increases in South Asia are especially large, and are seen in all scenarios, with 2100 values more than double 2000 in some scenarios and reaching 1300 mg(N) m2 yr1 averaged over regional to continental scale regions in RCP 2.6 and 8.5, 3050 larger than the values in any region currently (2000). The new ACCMIP deposition dataset provides novel, consistent and evaluated global gridded deposition fields for use in a wide range of climate and ecological studies.

  14. TLR4 mutation reduces microglial activation, increases Aβ deposits and exacerbates cognitive deficits in a mouse model of Alzheimer's disease

    Directory of Open Access Journals (Sweden)

    Song Min

    2011-08-01

    Full Text Available Abstract Background Amyloid plaques, a pathological hallmark of Alzheimer's disease (AD, are accompanied by activated microglia. The role of activated microglia in the pathogenesis of AD remains controversial: either clearing Aβ deposits by phagocytosis or releasing proinflammatory cytokines and cytotoxic substances. Microglia can be activated via toll-like receptors (TLRs, a class of pattern-recognition receptors in the innate immune system. We previously demonstrated that an AD mouse model homozygous for a loss-of-function mutation of TLR4 had increases in Aβ deposits and buffer-soluble Aβ in the brain as compared with a TLR4 wild-type AD mouse model at 14-16 months of age. However, it is unknown if TLR4 signaling is involved in initiation of Aβ deposition as well as activation and recruitment of microglia at the early stage of AD. Here, we investigated the role of TLR4 signaling and microglial activation in early stages using 5-month-old AD mouse models when Aβ deposits start. Methods Microglial activation and amyloid deposition in the brain were determined by immunohistochemistry in the AD models. Levels of cerebral soluble Aβ were determined by ELISA. mRNA levels of cytokines and chemokines in the brain and Aβ-stimulated monocytes were quantified by real-time PCR. Cognitive functions were assessed by the Morris water maze. Results While no difference was found in cerebral Aβ load between AD mouse models at 5 months with and without TLR4 mutation, microglial activation in a TLR4 mutant AD model (TLR4M Tg was less than that in a TLR4 wild-type AD model (TLR4W Tg. At 9 months, TLR4M Tg mice had increased Aβ deposition and soluble Aβ42 in the brain, which were associated with decrements in cognitive functions and expression levels of IL-1β, CCL3, and CCL4 in the hippocampus compared to TLR4W Tg mice. TLR4 mutation diminished Aβ-induced IL-1β, CCL3, and CCL4 expression in monocytes. Conclusion This is the first demonstration of TLR4

  15. Numerical simulation of micro-particle deposition in a realistic human upper respiratory tract model during transient breathing cycle

    Institute of Scientific and Technical Information of China (English)

    Jian hua Huang; Lian zhong Zhang

    2011-01-01

    An more reliable human upper respiratory tract model that consisted of an oropharynx and four generations of asymmetric tracheo-bronchial (TB) airways has been constructed to investigate the micro-particle deposition pattern and mass distribution in five lobes under steady inspiratory condition in former work by Huang and Zhang (2011 ).In the present work,transient airflow patterns and particle deposition during both inspiratory and expiratory processes were numerically simulated in the realistic human upper respiratory tract model with 14 cartilaginous rings (CRs) in the tracheal tube.The present model was validated under steady inspiratory flow rates by comparing current results with the theoretical models and published experimental data.The transient deposition fraction was found to strongly depend on breathing flow rate and particle diameter but slightly on turbulence intensity.Particles were mainly distributed in the high axial speed zones and traveled basically following the secondary flow.“Hot spots” of deposition were found in the lower portion of mouth cavity and posterior wall of pharynx/larynx during inspiration,but transferred to upper portion of mouth and interior wall of pharynx/larynx during expiration.The deposition fraction in the trachea during expiration was found to be much higher than that during inspiration because of the stronger secondary flow.

  16. Lithospheric flexure and sedimentary basin evolution: depositional cycles in the steer's head model

    Science.gov (United States)

    Moore, James; Watts, Tony

    2016-04-01

    Backstripping studies of biostratigraphic data from deep wells show that sediment loading is one of the main factors controlling the subsidence and uplift history of sedimentary basins. Previous studies based on single layer models of elastic and viscoelastic plates overlying an inviscid fluid have shown that sediment loading, together with a tectonic subsidence that decreases exponentially with time, can explain the large-scale 'architecture' of rift-type basins and, in some cases, details of their internal stratigraphy such as onlap and offlap patterns. One problem with these so-called 'steer's head' models is that they were based on a simple rheological model in which the long-term strength of the lithosphere increased with thermal age. Recent oceanic flexure studies, however, reveal that the long-term strength of the lithosphere depends not only on thermal age, but also load age. We have used the thermal structure based on plate cooling models, together with recent experimentally-derived flow laws, to compute the viscosity structure of the lithosphere and a new analytical model to compute the flexure of a multilayer viscoelastic plate by a trapezoid-shaped sediment load at different times since basin initiation. The combination of basin subsidence and viscoelastic flexural response results in the fluctuation of the depositional surface with time. If we define the nondimensional number Dw= τm/τt, where τm is the Maxwell time constant and τt is the thermal time constant, we find that for Dw>1 the flexure approximates that of a viscoelastic plate and is dominated by "offlapping" stratigraphy, with the basin edges evolving through shallow marine facies; though erosion late in the basin formation prevents much of this from being recorded in the stratigraphy. Interestingly Dw~1 produces a basin in which onlap dominates its early evolution while offlap dominates its later evolution with an unconformity separating the two different stratal patterns. This case lends

  17. Non-linear, non-monotonic effect of nano-scale roughness on particle deposition in absence of an energy barrier: Experiments and modeling

    Science.gov (United States)

    Jin, Chao; Glawdel, Tomasz; Ren, Carolyn L.; Emelko, Monica B.

    2015-12-01

    Deposition of colloidal- and nano-scale particles on surfaces is critical to numerous natural and engineered environmental, health, and industrial applications ranging from drinking water treatment to semi-conductor manufacturing. Nano-scale surface roughness-induced hydrodynamic impacts on particle deposition were evaluated in the absence of an energy barrier to deposition in a parallel plate system. A non-linear, non-monotonic relationship between deposition surface roughness and particle deposition flux was observed and a critical roughness size associated with minimum deposition flux or “sag effect” was identified. This effect was more significant for nanoparticles (surface roughness on particle deposition by unifying hydrodynamic forces (using the most current approaches for describing flow field profiles and hydrodynamic retardation effects) with appropriately modified expressions for DLVO interaction energies, and gravity forces in one model and 2) a foundation for further describing the impacts of more complicated scales of deposition surface roughness on particle deposition.

  18. Modeling Cape- and Ridge-Associated Marine Sand Deposits; A Focus on the U.S. Atlantic Continental Shelf

    Science.gov (United States)

    Bliss, James D.; Williams, S. Jeffress; Bolm, Karen S.

    2009-01-01

    Cape- and ridge-associated marine sand deposits, which accumulate on storm-dominated continental shelves that are undergoing Holocene marine transgression, are particularly notable in a segment of the U.S. Atlantic Continental Shelf that extends southward from the east tip of Long Island, N.Y., and eastward from Cape May at the south end of the New Jersey shoreline. These sand deposits commonly contain sand suitable for shore protection in the form of beach nourishment. Increasing demand for marine sand raises questions about both short- and long-term potential supply and the sustainability of beach nourishment with the prospects of accelerating sea-level rise and increasing storm activity. To address these important issues, quantitative assessments of the volume of marine sand resources are needed. Currently, the U.S. Geological Survey is undertaking these assessments through its national Marine Aggregates and Resources Program (URL http://woodshole.er.usgs.gov/project-pages/aggregates/). In this chapter, we present a hypothetical example of a quantitative assessment of cape-and ridge-associated marine sand deposits in the study area, using proven tools of mineral-resource assessment. Applying these tools requires new models that summarize essential data on the quantity and quality of these deposits. Two representative types of model are descriptive models, which consist of a narrative that allows for a consistent recognition of cape-and ridge-associated marine sand deposits, and quantitative models, which consist of empirical statistical distributions that describe significant deposit characteristics, such as volume and grain-size distribution. Variables of the marine sand deposits considered for quantitative modeling in this study include area, thickness, mean grain size, grain sorting, volume, proportion of sand-dominated facies, and spatial density, of which spatial density is particularly helpful in estimating the number of undiscovered deposits within an

  19. Melt flow behaviour of poly-epsilon-caprolactone in fused deposition modelling.

    Science.gov (United States)

    Ramanath, H S; Chua, C K; Leong, K F; Shah, K D

    2008-07-01

    Fused deposition modelling (FDM) is an extrusion based Rapid prototyping (RP) technique which can be used to fabricate tissue engineering scaffolds. The present work focuses on the study of the melt flow behaviour (MFB) of Poly-epsilon-caprolactone (PCL) as a representative biomaterial, on the FDM. The MFB significantly affects the quality of the scaffold which depends not only on the pressure gradient, its velocity, and the temperature gradients but also physical properties like the melt temperature and rheology. The MFB is studied using two methods: mathematical modelling and finite element analysis (FEA) using Ansys(R). The MFB is studied using accurate channel geometry by varying filament velocity at the entry and by varying nozzle diameters and angles at the exit. The comparative results of both mathematical modelling and FEA suggest that the pressure drop and the velocities of the melt flow depend on the flow channel parameters. One inference of particular interest is the temperature gradient of the PCL melt, which shows that it liquefies within 35% of the channel length. These results are invaluable to better understand the MFB of biomaterials that affects the quality of the scaffold built via FDM and can also be used to predict the MFB of other biomaterials.

  20. Ash3d: A finite-volume, conservative numerical model for ash transport and tephra deposition

    Science.gov (United States)

    Schwaiger, Hans F.; Denlinger, Roger P.; Mastin, Larry G.

    2012-01-01

    We develop a transient, 3-D Eulerian model (Ash3d) to predict airborne volcanic ash concentration and tephra deposition during volcanic eruptions. This model simulates downwind advection, turbulent diffusion, and settling of ash injected into the atmosphere by a volcanic eruption column. Ash advection is calculated using time-varying pre-existing wind data and a robust, high-order, finite-volume method. Our routine is mass-conservative and uses the coordinate system of the wind data, either a Cartesian system local to the volcano or a global spherical system for the Earth. Volcanic ash is specified with an arbitrary number of grain sizes, which affects the fall velocity, distribution and duration of transport. Above the source volcano, the vertical mass distribution with elevation is calculated using a Suzuki distribution for a given plume height, eruptive volume, and eruption duration. Multiple eruptions separated in time may be included in a single simulation. We test the model using analytical solutions for transport. Comparisons of the predicted and observed ash distributions for the 18 August 1992 eruption of Mt. Spurr in Alaska demonstrate to the efficacy and efficiency of the routine.

  1. Geophysical modeling in gold deposit through DC Resistivity and Induced Polarization methods

    Directory of Open Access Journals (Sweden)

    César Augusto Moreira

    Full Text Available Abstract Ore mining fundamentally depends on the definition of its tenor and volume, something extremely complex in disseminated mineralization, as in the case of certain types of deposits of gold and sulfites. This article proposes the use of electrical tomography for definition of a geophysical signature in terms of electrical resistivity and chargeability, in an outcrop of mineralized quartz lode at the end of an inactive gold mine. One of the targets was to analyze the continuity of the mineralized body, the occurrence of new outcrops and the applicability of the method as an auxiliary tool in mineral extraction. Three parallel lines of electrical tomography in a dipole-dipole arrangement, being orthogonal to the orientation of the gold lode, were installed in an area outside the mine. The results allowed the geophysical characterization of the mineralized zone by high resistivity (above 1000Ω.m and high chargeability (above 30mV/V. The results of the 2D inversion models were interpolated in 3D visualization models, which allowed definition of the contour surfaces for the physical parameters measured, and the morphological pattern modeling of the mineralization. The data reveal the existence of a new lode in subsurface, localized 30m to the south of the lode outcrop. The versatility of the acquisition and data processing indicate the application potential of electrical tomography as a criterion for sampling and tenor definition in ore extraction activities, since it is objective and low cost.

  2. The Influence of Internal Structures in Fused Deposition Modeling Method on Dimensional Accuracy of Components

    Directory of Open Access Journals (Sweden)

    Milde Ján

    2016-09-01

    Full Text Available The paper investigates the influence of infill (internal structures of components in the Fused Deposition Modeling (FDM method on dimensional and geometrical accuracy of components. The components in this case were real models of human mandible, which were obtained by Computed Tomography (CT mostly used in medical applications. In the production phase, the device used for manufacturing, was a 3D printer Zortrax M200 based on the FDM technology. In the second phase, the mandibles made by the printer, were digitized using optical scanning device of GOM ATOS Triple Scan II. They were subsequently evaluated in the final phase. The practical part of this article describes the procedure of jaw model modification, the production of components using a 3D printer, the procedure of digitization of printed parts by optical scanning device and the procedure of comparison. The outcome of this article is a comparative analysis of individual printed parts, containing tables with mean deviations for individual printed parts, as well as tables for groups of printed parts with the same infill parameter.

  3. Dynamic Model for Flow and Droplet Deposition in Direct Ceramic Ink-jet Printing

    Directory of Open Access Journals (Sweden)

    Vijay Soundararajan Mythili

    2004-01-01

    Full Text Available A rapid fabrication technique, for building microceramic parts, using a dropon-demand ceramic ink-jet printer is currently under development. This finds application in producing ceramic cores for gas turbines, space applications, and ceramic hybrid electromechanical systems. Another application is in the use of intelligent inks, in which particles assemble themselves so as to interrupt the signals in a particular direction and to produce a suitable output for tactical applications. An attempt has been made to develo~a mathematical model for dro~leflo rmation from orifice and itsdewsition on subsmate. The distributidn of energy supplied to the pi~zoelectrica ctuator in the ink-jet p&t head is modelled and ejected droplet parameters (diameter and velocity were related to the force imparted by the piezodisc. This model was extended to develop a relation for maxlmum droplet spread that occurs during impact. h p l e t spread determines the lateral resolution of the system and the thickness of each deposited layer.

  4. 2D fluid model analysis for the effect of 3D gas flow on a capacitively coupled plasma deposition reactor

    Science.gov (United States)

    Kim, Ho Jun; Lee, Hae June

    2016-06-01

    The wide applicability of capacitively coupled plasma (CCP) deposition has increased the interest in developing comprehensive numerical models, but CCP imposes a tremendous computational cost when conducting a transient analysis in a three-dimensional (3D) model which reflects the real geometry of reactors. In particular, the detailed flow features of reactive gases induced by 3D geometric effects need to be considered for the precise calculation of radical distribution of reactive species. Thus, an alternative inclusive method for the numerical simulation of CCP deposition is proposed to simulate a two-dimensional (2D) CCP model based on the 3D gas flow results by simulating flow, temperature, and species fields in a 3D space at first without calculating the plasma chemistry. A numerical study of a cylindrical showerhead-electrode CCP reactor was conducted for particular cases of SiH4/NH3/N2/He gas mixture to deposit a hydrogenated silicon nitride (SiN x H y ) film. The proposed methodology produces numerical results for a 300 mm wafer deposition reactor which agree very well with the deposition rate profile measured experimentally along the wafer radius.

  5. PUBLISHER'S NOTE: Microfabrication by localized electrochemical deposition: experimental investigation and theoretical modelling

    Science.gov (United States)

    Said, R. A.

    2004-07-01

    During 2003, Dr R A Said published essentially duplicate versions of a paper in two archival journals: Nanotechnology and the Journal of The Electrochemical Society. The papers in question were: `Microfabrication by localized electrochemical deposition: experimental investigation and theoretical modelling' (2003 Nanotechnology 14 523) and `Shape formation of microstructures fabricated by localized electrochemical deposition' (2003 J. Electrochem. Soc. 150 C549). The two papers were submitted, revised, and published at essentially the same time. The papers used the same figures and neither paper referenced the other. Nanotechnology requires a signed copyright-transfer form assigning copyright in articles published to Institute of Physics Publishing, and the Journal of The Electrochemical Society requires the same for The Electrochemical Society. It is a tradition of long standing, stated in the information for contributors, that submission implies that the work has not been submitted, copyrighted, or accepted for publication elsewhere. Hence, duplicate publication not only raises legal questions and represents a serious breach of scientific ethics, but also leads to an unnecessary imposition on readers', referees', and editors' time. We regard this infraction as a serious matter. An apology from the author for this grave error is printed below. Author's apology I have mistakenly published similar results in two manuscripts in Nanotechnology and in the Journal of The Electrochemical Society, as stated above. I am responsible for this error. I agree with the Editors that such a practice should not have occurred, and I would like to sincerely apologize to Nanotechnology and the Journal of The Electrochemical Society, their publishers, and their readers for this matter. I will take actions in the future to prevent the occurrence of similar incidents. R A Said

  6. Fibroblast migration and collagen deposition during dermal wound healing: mathematical modelling and clinical implications.

    Science.gov (United States)

    McDougall, Steven; Dallon, John; Sherratt, Jonathan; Maini, Philip

    2006-06-15

    The extent to which collagen alignment occurs during dermal wound healing determines the severity of scar tissue formation. We have modelled this using a multiscale approach, in which extracellular materials, for example collagen and fibrin, are modelled as continua, while fibroblasts are considered as discrete units. Within this model framework, we have explored the effects that different parameters have on the alignment process, and we have used the model to investigate how manipulation of transforming growth factor-beta levels can reduce scar tissue formation. We briefly review this body of work, then extend the modelling framework to investigate the role played by leucocyte signalling in wound repair. To this end, fibroblast migration and collagen deposition within both the wound region and healthy peripheral tissue are considered. Trajectories of individual fibroblasts are determined as they migrate towards the wound region under the combined influence of collagen/fibrin alignment and gradients in a paracrine chemoattractant produced by leucocytes. The effects of a number of different physiological and cellular parameters upon the collagen alignment and repair integrity are assessed. These parameters include fibroblast concentration, cellular speed, fibroblast sensitivity to chemoattractant concentration and chemoattractant diffusion coefficient. Our results show that chemoattractant gradients lead to increased collagen alignment at the interface between the wound and the healthy tissue. Results show that there is a trade-off between wound integrity and the degree of scarring. The former is found to be optimized under conditions of a large chemoattractant diffusion coefficient, while the latter can be minimized when repair takes place in the presence of a competitive inhibitor to chemoattractants.

  7. A simple semi-empirical approach to model thickness of ash-deposits for different eruption scenarios

    Science.gov (United States)

    González-Mellado, A. O.; de La Cruz-Reyna, S.

    2010-11-01

    The impact of ash-fall on people, buildings, crops, water resources, and infrastructure depends on several factors such as the thickness of the deposits, grain size distribution and others. Preparedness against tephra falls over large regions around an active volcano requires an understanding of all processes controlling those factors, and a working model capable of predicting at least some of them. However, the complexity of tephra dispersion and sedimentation makes the search of an integral solution an almost unapproachable problem in the absence of highly efficient computing facilities due to the large number of equations and unknown parameters that control the process. An alternative attempt is made here to address the problem of modeling the thickness of ash deposits as a primary impact factor that can be easily communicated to the public and decision-makers. We develop a semi-empirical inversion model to estimate the thickness of non-compacted deposits produced by an explosive eruption around a volcano in the distance range 4-150 km from the eruptive source. The model was elaborated from the analysis of the geometric distribution of deposit thickness of 14 world-wide well-documented eruptions. The model was initially developed to depict deposits of potential eruptions of Popocatépetl and Colima volcanoes in México, but it can be applied to any volcano. It has been designed to provide planners and Civil Protection authorities of an accurate perception of the ash-fall deposit thickness that may be expected for different eruption scenarios. The model needs to be fed with a few easy-to-obtain parameters, namely, height of the eruptive column, duration of the explosive phase, and wind speed and direction, and its simplicity allows it to run in any platform, including a personal computers and even a notebook. The results may be represented as tables, two dimensional thickness-distance plots, or isopach maps using any available graphic interface. The model has

  8. A simple semi-empirical approach to model thickness of ash-deposits for different eruption scenarios

    Directory of Open Access Journals (Sweden)

    A. O. González-Mellado

    2010-11-01

    Full Text Available The impact of ash-fall on people, buildings, crops, water resources, and infrastructure depends on several factors such as the thickness of the deposits, grain size distribution and others. Preparedness against tephra falls over large regions around an active volcano requires an understanding of all processes controlling those factors, and a working model capable of predicting at least some of them. However, the complexity of tephra dispersion and sedimentation makes the search of an integral solution an almost unapproachable problem in the absence of highly efficient computing facilities due to the large number of equations and unknown parameters that control the process. An alternative attempt is made here to address the problem of modeling the thickness of ash deposits as a primary impact factor that can be easily communicated to the public and decision-makers. We develop a semi-empirical inversion model to estimate the thickness of non-compacted deposits produced by an explosive eruption around a volcano in the distance range 4–150 km from the eruptive source.

    The model was elaborated from the analysis of the geometric distribution of deposit thickness of 14 world-wide well-documented eruptions. The model was initially developed to depict deposits of potential eruptions of Popocatépetl and Colima volcanoes in México, but it can be applied to any volcano. It has been designed to provide planners and Civil Protection authorities of an accurate perception of the ash-fall deposit thickness that may be expected for different eruption scenarios. The model needs to be fed with a few easy-to-obtain parameters, namely, height of the eruptive column, duration of the explosive phase, and wind speed and direction, and its simplicity allows it to run in any platform, including a personal computers and even a notebook. The results may be represented as tables, two dimensional thickness-distance plots, or isopach maps using any available

  9. Resistance training improves hemodynamic function, collagen deposition and inflammatory profiles: experimental model of heart failure

    National Research Council Canada - National Science Library

    Alves, Jadson P; Nunes, Ramiro B; Stefani, Giuseppe P; Dal Lago, Pedro

    2014-01-01

    .... Therefore, this study evaluated the influence of a resistance training program on hemodynamic function, maximum strength gain, collagen deposition and inflammatory profile in chronic heart failure rats...

  10. Metallogenic Model and Prospecting Indicators of the Boron Deposits in East Liaoning Area

    Institute of Scientific and Technical Information of China (English)

    Qu Hongxiang; Zhang Guoren; Li Xiandong; Chen Shuliang; Yang Zhongzhu; Wang Zhongjiang

    2001-01-01

    The Paleoproterozoic boron deposits in east Liaoning occur in Mg- rich marble of Li' eryu Formation of Liaohe group. The mineralization was controlled by stratigraphic lithology. The volcano ~ sedimentation is the material base of ore-formation. Boron mainly derived from volcanic source. Boron in Li' eryu formation was activated and transferred by migmatization and then deposited into ore when metasomatism occurrs in Mg - rich marble. Structural deformation reconstructed the boron ore bodies. Meanwhile, ore - bearing hyd~othermal solution produced by structural deformation and remetasomated the host - ore rocks or filled in fissure of ore. Boron deposit is a stratabound deposit, which formed by migmatization and structural deformation mineralization.

  11. Numerical modeling study of the momentum deposition of small amplitude gravity waves in the thermosphere

    Directory of Open Access Journals (Sweden)

    X. Liu

    2013-01-01

    Full Text Available We study the momentum deposition in the thermosphere from the dissipation of small amplitude gravity waves (GWs within a wave packet using a fully nonlinear two-dimensional compressible numerical model. The model solves the nonlinear propagation and dissipation of a GW packet from the stratosphere into the thermosphere with realistic molecular viscosity and thermal diffusivity for various Prandtl numbers. The numerical simulations are performed for GW packets with initial vertical wavelengths (λz ranging from 5 to 50 km. We show that λz decreases in time as a GW packet dissipates in the thermosphere, in agreement with the ray trace results of Vadas and Fritts (2005 (VF05. We also find good agreement for the peak height of the momentum flux (zdiss between our simulations and VF05 for GWs with initial λz ≤ 2π H in an isothermal, windless background, where H is the density scale height. We also confirm that zdiss increases with increasing Prandtl number. We include eddy diffusion in the model, and find that the momentum deposition occurs at lower altitudes and has two separate peaks for GW packets with small initial λz. We also simulate GW packets in a non-isothermal atmosphere. The net λz profile is a competition between its decrease from viscosity and its increase from the increasing background temperature. We find that the wave packet disperses more in the non-isothermal atmosphere, and causes changes to the momentum flux and λz spectra at both early and late times for GW packets with initial λz ≥ 10 km. These effects are caused by the increase in T in the thermosphere, and the decrease in T near the mesopause.

  12. An effective model for entropy deposition in high-energy pp, pA, and AA collisions

    CERN Document Server

    Moreland, J Scott; Bass, Steffen A

    2014-01-01

    We introduce TRENTO, a new initial condition model for high-energy nuclear collisions based on eikonal entropy deposition via a "reduced thickness" function. The model simultaneously predicts the shapes of experimental proton-proton, proton-nucleus, and nucleus-nucleus multiplicity distributions, and generates nucleus-nucleus eccentricity harmonics consistent with experimental flow constraints. In addition, the model provides a possible resolution to the "knee" puzzle in ultra-central uranium-uranium collisions.

  13. In situ thermal imaging and three-dimensional finite element modeling of tungsten carbide-cobalt during laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Xiong Yuhong [Department of Chemical Engineering and Materials Science, University of California, Davis, CA 95616 (United States); Hofmeister, William H. [Center for Laser Applications, University of Tennessee Space Institute, Tullahoma, TN 37388 (United States); Cheng Zhao [Earth Mechanics Inc., Oakland, CA 94621 (United States); Smugeresky, John E. [Sandia National Laboratories, Livermore, CA 94551 (United States); Lavernia, Enrique J. [Department of Chemical Engineering and Materials Science, University of California, Davis, CA 95616 (United States); Schoenung, Julie M., E-mail: jmschoenung@ucdavis.edu [Department of Chemical Engineering and Materials Science, University of California, Davis, CA 95616 (United States)

    2009-10-15

    Laser deposition is being used for the fabrication of net shapes from a broad range of materials, including tungsten carbide-cobalt (WC-Co) cermets (composites composed of a metallic phase and a hard refractory phase). During deposition, an unusual thermal condition is created for cermets, resulting in rather complex microstructures. To provide a fundamental insight into the evolution of such microstructures, we studied the thermal behavior of WC-Co cermets during laser deposition involving complementary results from in situ high-speed thermal imaging and three-dimensional finite element modeling. The former allowed for the characterization of temperature gradients and cooling rates in the vicinity of the molten pool, whereas the latter allowed for simulation of the entire sample. By combining the two methods, a more robust analysis of the thermal behavior was achieved. The model and the imaging results correlate well with each other and with the alternating sublayers observed in the microstructure.

  14. Predictive modeling of slope deposits and comparisons of two small areas in Northern Germany

    Science.gov (United States)

    Shary, Peter A.; Sharaya, Larisa S.; Mitusov, Andrew V.

    2017-08-01

    Methods for correct quantitative comparison of several terrains are important in the development and use of quantitative landscape evolution models, and they need to introduce specific modeling parameters. We introduce such parameters and compare two small terrains with respect to the link slope-valley for the description of slope deposits (colluvium) in them. We show that colluvium accumulation in small areas cannot be described by linear models and thus introduce non-linear models. Two small areas, Perdoel (0.29 ha) and Bornhöved (3.2 ha), are studied. Slope deposits in the both are mainly in dry valleys, with a total thickness Mtotal up to 2.0 m in Perdoel and up to 1.2 m in Bornhöved. Parent materials are mainly Pleistocene sands aged 30 kyr BP. Exponential models of multiple regression that use a 1-m LiDAR DEM (digital elevation model) explained 70-93% of spatial variability in Mtotal. Parameters DH12 and DV12 of horizontal and vertical distances are introduced that permit to characterize and compare conditions of colluvium formation for various terrains. The study areas differ 3.7 times by the parameter DH12 that describes a horizontal distance from thalwegs at which Mtotal diminishes 2.72 times. DH12 is greater in Bornhöved (29.7 m) than in Perdoel (8.12 m). We relate this difference in DH12 to the distinction between types of the link slope-valley: a regional type if catchment area of a region outside a given small area plays an important role, and a local type when accumulation of colluvium from valley banks within a small area is of more importance. We argue that the link slope-valley is regional in Perdoel and local in Bornhöved. Peaks of colluvium thickness were found on thalwegs of three studied valleys by both direct measurements in a trench, and model surfaces of Mtotal. A hypothesis on the formation mechanism of such peaks is discussed. The parameter DV12 describes a vertical distance from a peak of colluvium thickness along valley bottom at

  15. Effects of build parameters on linear wear loss in plastic part produced by fused deposition modeling

    Science.gov (United States)

    Mohamed, Omar Ahmed; Masood, Syed Hasan; Bhowmik, Jahar Lal

    2017-07-01

    Fused Deposition Modeling (FDM) is one of the prominent additive manufacturing technologies for producing polymer products. FDM is a complex additive manufacturing process that can be influenced by many process conditions. The industrial demands required from the FDM process are increasing with higher level product functionality and properties. The functionality and performance of FDM manufactured parts are greatly influenced by the combination of many various FDM process parameters. Designers and researchers always pay attention to study the effects of FDM process parameters on different product functionalities and properties such as mechanical strength, surface quality, dimensional accuracy, build time and material consumption. However, very limited studies have been carried out to investigate and optimize the effect of FDM build parameters on wear performance. This study focuses on the effect of different build parameters on micro-structural and wear performance of FDM specimens using definitive screening design based quadratic model. This would reduce the cost and effort of additive manufacturing engineer to have a systematic approachto make decision among the manufacturing parameters to achieve the desired product quality.

  16. Kinetic Monte-Carlo modeling of hydrogen retention and re-emission from Tore Supra deposits

    Energy Technology Data Exchange (ETDEWEB)

    Rai, A. [Max-Planck-Institut fuer Plasmaphysik, D-17491 Greifswald (Germany)], E-mail: Abha.Rai@ipp.mpg.de; Schneider, R. [Max-Planck-Institut fuer Plasmaphysik, D-17491 Greifswald (Germany); Warrier, M. [Computational Analysis Division, BARC, Trombay, Mumbai 400085 (India); Roubin, P.; Martin, C.; Richou, M. [PIIM, Universite de Provence, Centre Saint-Jerome, (service 242) F-13397 Marseille cedex 20 (France)

    2009-04-30

    A multi-scale model has been developed to study the reactive-diffusive transport of hydrogen in porous graphite [A. Rai, R. Schneider, M. Warrier, J. Nucl. Mater. (submitted for publication). http://dx.doi.org/10.1016/j.jnucmat.2007.08.013.]. The deposits found on the leading edge of the neutralizer of Tore Supra are multi-scale in nature, consisting of micropores with typical size lower than 2 nm ({approx}11%), mesopores ({approx}5%) and macropores with a typical size more than 50 nm [C. Martin, M. Richou, W. Sakaily, B. Pegourie, C. Brosset, P. Roubin, J. Nucl. Mater. 363-365 (2007) 1251]. Kinetic Monte-Carlo (KMC) has been used to study the hydrogen transport at meso-scales. Recombination rate and the diffusion coefficient calculated at the meso-scale was used as an input to scale up and analyze the hydrogen transport at macro-scale. A combination of KMC and MCD (Monte-Carlo diffusion) method was used at macro-scales. Flux dependence of hydrogen recycling has been studied. The retention and re-emission analysis of the model has been extended to study the chemical erosion process based on the Kueppers-Hopf cycle [M. Wittmann, J. Kueppers, J. Nucl. Mater. 227 (1996) 186].

  17. Mesoscopic Modeling of Thrombus Formation and Growth: Platelet Deposition in Complex Geometries

    Science.gov (United States)

    Yazdani, Alireza; Karniadakis, George

    2014-11-01

    Haemodynamics and blood rheology are important contributing factors to thrombus formation at a vulnerable vessel wall, and adhesion of platelets to a vascular surface, particularly in regions of flow stagnation, recirculation and reattachment is significantly important in formation of thrombi. For example, haemodynamic micro-environment can have effects on thrombosis inside the atherosclerotic plaques and aneurysms. To study these effects, we have developed and validated a model for platelet aggregation in blood flow using Dissipative Particle Dynamics (DPD) method. In this model platelets are considered as single DPD particles interacting with each other via Morse potential once activated. We assign an activation delay time to each platelet such that they remain passive during that time. We investigate the effect of different geometries on platelet aggregation by considering arterial stenosis at different levels of occlusion, and aneurysms of different shapes and sizes. The results show a marked increase in platelet aggregation within the boundaries of deceleration zone by increasing the degree of stenosis. Further, we observe enhanced platelet margination and wall deposition in the presence of red blood cells.

  18. STUDY OF DYNAMIC MECHANICAL PROPERTIES OF FUSED DEPOSITION MODELLING PROCESSED ULTEM MATERIAL

    Directory of Open Access Journals (Sweden)

    Adhiyamaan Arivazhagan

    2014-01-01

    Full Text Available Fused Deposition Modelling (FDM, a renowned Rapid Prototyping (RP process, has been successfully implemented in several industries to fabricate concept models and prototypes for rapid manufacturing. This study furnishes terse notes about the material damping properties of FDM made ULTEM samples considering the effect of FDM process parameters. Dynamic Mechanical Analysis (DMA is carried out using DMA 2980 equipment to study the dynamic response of the FDM material subjected to single cantilever loading under periodic stress. Three FDM process parameters namely Build Style, Raster Width and Raster Angle were contemplated. ULTEM parts are fabricated using solid normal build style and three values each of raster width and raster angle. DMA is performed with temperature sweep at three different fixed frequencies of 1, 50 and 100 Hz. Results were obtained for dynamic properties such as Maximum Storage Modulus, Maximum Loss Modulus, Maximum Tan Delta and Maximum Complex Viscosity. The present work discusses the effect of increasing the frequencies and temperature on FDM made ULTEM samples using different FDM process parameters.

  19. A simple model to estimate deposition based on a statistical reassessment of global fallout data

    DEFF Research Database (Denmark)

    Palsson, S.E.; Howard, B.J.; Bergan, T.D.

    2013-01-01

    Atmospheric testing of nuclear weapons began in 1945 and largely ceased in 1963. Monitoring of the resulting global fallout was carried out globally by the Environmental Measurements Laboratory and the UK Atomic Energy Research Establishment as well as at national level by some countries. A corre......, allowing comparison with time series of activity concentrations for different environmental compartments, which is important for model validation. © 2012 Elsevier Ltd. All rights reserved.......Atmospheric testing of nuclear weapons began in 1945 and largely ceased in 1963. Monitoring of the resulting global fallout was carried out globally by the Environmental Measurements Laboratory and the UK Atomic Energy Research Establishment as well as at national level by some countries...... relationship has been the outcome of some studies linking wash-out and rain-out coefficients with rain intensity. Our results showed that the precipitation rate was an important parameter, not just the total amount. The simple model presented here allows the recreation of the deposition history at a site...

  20. TSUFLIND-EnKF inversion model applied to tsunami deposits for estimation of transient flow depth and speed with quantified uncertainties

    CERN Document Server

    Tang, Hui; Weiss, Robert; Xiao, Heng

    2016-01-01

    Tsunami deposits are recordings of tsunami events that contain information about flow conditions. Deciphering quantitative information from tsunami deposits is especially important for analyzing paleo-tsunami events in which deposits comprise the only leftover physical evidence. The physical meaning of the deciphered quantities depends on the physical assumptions that are applied. The aim of our study is to estimate the characteristics of tsunamis and quantify the errors and uncertainties that inherent within them. To achieve this goal, we apply the TSUFLIND-EnKF inversion model to study the deposition of an idealized deposit created by a single tsunami wave and one real case from 2004 India ocean tsunami. TSUFLIND-EnKF model combines TSUFLIND for the deposition module with the Ensemble Kalman Filtering (EnKF) method. In our modeling, we assume that grain-size distribution and thickness from the idealized deposits at different depths can be used as an observational variable. Our tentative results indicate tha...

  1. Optical modeling of plasma-deposited ZnO films: Electron scattering at different length scales

    Energy Technology Data Exchange (ETDEWEB)

    Knoops, Harm C. M., E-mail: H.C.M.Knoops@tue.nl; Loo, Bas W. H. van de; Smit, Sjoerd; Ponomarev, Mikhail V.; Weber, Jan-Willem; Sharma, Kashish [Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands); Kessels, Wilhelmus M. M.; Creatore, Mariadriana, E-mail: M.Creatore@tue.nl [Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands and Solliance, High Tech Campus 5, 5656 AE Eindhoven (Netherlands)

    2015-03-15

    In this work, an optical modeling study on electron scattering mechanisms in plasma-deposited ZnO layers is presented. Because various applications of ZnO films pose a limit on the electron carrier density due to its effect on the film transmittance, higher electron mobility values are generally preferred instead. Hence, insights into the electron scattering contributions affecting the carrier mobility are required. In optical models, the Drude oscillator is adopted to represent the free-electron contribution and the obtained optical mobility can be then correlated with the macroscopic material properties. However, the influence of scattering phenomena on the optical mobility depends on the considered range of photon energy. For example, the grain-boundary scattering is generally not probed by means of optical measurements and the ionized-impurity scattering contribution decreases toward higher photon energies. To understand this frequency dependence and quantify contributions from different scattering phenomena to the mobility, several case studies were analyzed in this work by means of spectroscopic ellipsometry and Fourier transform infrared (IR) spectroscopy. The obtained electrical parameters were compared to the results inferred by Hall measurements. For intrinsic ZnO (i-ZnO), the in-grain mobility was obtained by fitting reflection data with a normal Drude model in the IR range. For Al-doped ZnO (Al:ZnO), besides a normal Drude fit in the IR range, an Extended Drude fit in the UV-vis range could be used to obtain the in-grain mobility. Scattering mechanisms for a thickness series of Al:ZnO films were discerned using the more intuitive parameter “scattering frequency” instead of the parameter “mobility”. The interaction distance concept was introduced to give a physical interpretation to the frequency dependence of the scattering frequency. This physical interpretation furthermore allows the prediction of which Drude models can be used in a specific

  2. Modelling of transformation and deposition of alkaline compounds under combustion conditions

    Energy Technology Data Exchange (ETDEWEB)

    Magda, Silvia-Ioana

    2012-07-01

    the alkali thickness layer. Based on empirical models, the physical and thermal properties of deposited layer and their influence on heat flux is discussed. The obtained results should be regarded as qualitative information. At the moment, a direct model validation cannot be undertaken.

  3. Connectivity estimation between turbiditic channels and overbank deposits from the modelling of an outcrop analogue (Pab Formation, Maastrichitan, Pakistan).

    Science.gov (United States)

    Eschard, R.; Deschamps, R.; Doligez, B.; Lerat, O.

    2012-04-01

    Conceptual models showing the sedimentary architecture of the turbidite depositional systems and their evolution trough time, such as those published by E. Mutti and his school, were first established in the outcrop. At the reservoir scale, the field development of turbidite reservoirs now requires detailed reservoir models finely describing the distribution of the heterogeneity which may influence the reservoir dynamic behaviour during production. Information derived from quantified outcrop models can then be used to better constrain the reservoir models in the subsurface. Outcrops models first focused on the heterogeneity distribution within the channel conduits, emphasizing the diversity of the channel architecture regarding to the complexity of the depositional processes. The facies architecture of turbiditic overbank deposits laterally to the channels are even less understood than within the channels. If the general geometry of levees can be easily seen on seismic, their facies, and the sand/shale ratio close to the channel border, are poorly known as overflow deposits are rarely drilled in the subsurface, and crevasse lobes are below seismic resolution. The conceptual models of the overbank distribution at the reservoir scale must then rely on outcrops models. The questions on which we would like to focus are the followings: 1) What kind of facies model can we expect in the overbank deposits laterally to the channel conduits? 2) Do these facies constitute reservoir bodies with a significant volume? 3) Is there any heterogeneity between the channel conduits and the levees which may reduce their connectivity 4) Can overbank deposits, such as crevasses or spill over lobes, insure connectivity between two channel conduits and homogenise the pressure regime during the reservoir production? The relationship between channels and overbank are well exposed in the Pab mountain range outcrops, in Pakistan. In this paper, we propose to characterize the relationships

  4. Age models for peat deposits on the basis of coupled lead-210 and radiocarbon data.

    Science.gov (United States)

    Piotrowska, Natalia; de Vleeschouwer, François; Sikorski, Jarosław; Sensuła, Barbara; Michczyński, Adam; Fiałkiewicz-Kozieł, Barbara; Palowski, Bernard

    2010-05-01

    The study presents three examples of age-model construction based on the results of 210Pb and 14C dating methods applied to peat deposits. The three sites are ombrotrophic peat bogs: the Misten (Belgium), Slowinskie Bloto (N Poland) and Puscizna Mala (S Poland). All sites have been subjected to multiproxy studies aimed at reconstructing paleoenvironment and human activity, covering the last 1500, 1300 and 1800 years, respectively (De Vleeschouwer et al. 2009A, 2009B, in prep., Fialkiewicz-Koziel, ongoing PhD). A detailed comparison between 210Pb and post-bomb 14C results in the Misten bog has also been carried out by Piotrowska et al. (2009). In all cores, the 210Pb activity was calculated using 210Po and 208Po activities after acid-extraction from bulk samples, subsequent deposition on silver discs and measurements by alpha spectrometry. Unsupported 210Pb was detected until 35cm in Slowinskie Bloto, 15cm in the Misten and 19cm in Puscizna Mala. Constant Rate of Supply (CRS) model was then applied to compute ages of each 1-cm core interval. For the Misten and Slowinskie Bloto, radiocarbon measurements were performed on selected aboveground plant macrofossils, mainly Sphagnum spp. or Calluna vulgaris, Erica tetralix, and Andromeda polyfolia. Radiocarbon ages were determined using accelerator mass spectrometry (AMS) after acid-alkali-acid wash, combustion, purification of carbon dioxide and graphitisation. For Puscizna Mala bulk samples were dated after chemical preparation of benzene for liquid scintillation counting (LSC) or CO2 for gas proportional counting (GPC). Radiocarbon calibration was undertaken using the Intcal04 calibration curve and OxCal 4 software. As a priori information the 210Pb-derived ages were used in a P_Sequence model (Bronk Ramsey, 2008). A number of dates characterized by low agreement with stratigraphical order had to be considered as outliers and rejected from the final age model. For building a continuous age models a non-linear approach

  5. Depositional models of sandy debrites and turbidites of Palaeogene reservoir sands in deep-lacustrine environments, South China

    Science.gov (United States)

    Li, Y.; Chen, G.

    2013-12-01

    Two depositional models are proposed for deep-lacustrine petroleum reservior sands (Palaeogene) in the Fushan Sag, Beibuwan Basin, South China. This facies trend is used as a template for predicting the distribution of reservoir facies of the Fushan oilfield. Based on examination of 150m of conventional cores from 13 drilled wells, four depositional facies have been interpreted: (1) fine-grained massive sandstone with floating mudstone clasts and planar clast fabric (sandy debrite); (2) fine-grained sandstone and siltstone showing contorted bedding, sand injection, and ptygmatic folding (sandy slump), (3) fine-grained sandstone with thin layers of normal grading and flute casts (turbidite), and (4) mudstone with faint laminae (suspension fallout). Combined with multiple seismic attributes, two depositional models are characterized by (1) sublacustrine fan: thick turbidite units occur at the bottom of the western sag beneath a series of normal faults slope. (2) Thinner deposition of sandy debrites mainly distribute at the bottom of eastern sag far from sandy slump at the lake margin slope, which interpreted to be controlled by "two-step" flexure slope break. The transfer zone located in the centre area is confirmed to be the primary origin for such differential depositions. In our study area, sandy debrites constitute the producing petroleum reservoirs, but turbidites are non reservoirs. This dramatic understanding will well account for "eastern much more than western" distribution of proven petroleum reserves and be applicable to predicting reservoir distribution.

  6. The Influence of Climate Change on Atmospheric Deposition of Mercury in the Arctic—A Model Sensitivity Study

    Directory of Open Access Journals (Sweden)

    Kaj M. Hansen

    2015-09-01

    Full Text Available Mercury (Hg is a global pollutant with adverse health effects on humans and wildlife. It is of special concern in the Arctic due to accumulation in the food web and exposure of the Arctic population through a rich marine diet. Climate change may alter the exposure of the Arctic population to Hg. We have investigated the effect of climate change on the atmospheric Hg transport to and deposition within the Arctic by making a sensitivity study of how the atmospheric chemistry-transport model Danish Eulerian Hemispheric Model (DEHM reacts to climate change forcing. The total deposition of Hg to the Arctic is 18% lower in the 2090s compared to the 1990s under the applied Special Report on Emissions Scenarios (SRES-A1B climate scenario. Asia is the major anthropogenic source area (25% of the deposition to the Arctic followed by Europe (6% and North America (5%, with the rest arising from the background concentration, and this is independent of the climate. DEHM predicts between a 6% increase (Status Quo scenario and a 37% decrease (zero anthropogenic emissions scenario in Hg deposition to the Arctic depending on the applied emission scenario, while the combined effect of future climate and emission changes results in up to 47% lower Hg deposition.

  7. The Influence of Climate Change on Atmospheric Deposition of Mercury in the Arctic—A Model Sensitivity Study.

    Science.gov (United States)

    Hansen, Kaj M; Christensen, Jesper H; Brandt, Jørgen

    2015-09-10

    Mercury (Hg) is a global pollutant with adverse health effects on humans and wildlife. It is of special concern in the Arctic due to accumulation in the food web and exposure of the Arctic population through a rich marine diet. Climate change may alter the exposure of the Arctic population to Hg. We have investigated the effect of climate change on the atmospheric Hg transport to and deposition within the Arctic by making a sensitivity study of how the atmospheric chemistry-transport model Danish Eulerian Hemispheric Model (DEHM) reacts to climate change forcing. The total deposition of Hg to the Arctic is 18% lower in the 2090s compared to the 1990s under the applied Special Report on Emissions Scenarios (SRES-A1B) climate scenario. Asia is the major anthropogenic source area (25% of the deposition to the Arctic) followed by Europe (6%) and North America (5%), with the rest arising from the background concentration, and this is independent of the climate. DEHM predicts between a 6% increase (Status Quo scenario) and a 37% decrease (zero anthropogenic emissions scenario) in Hg deposition to the Arctic depending on the applied emission scenario, while the combined effect of future climate and emission changes results in up to 47% lower Hg deposition.

  8. An automatic modeling system of the reaction mechanisms for chemical vapor deposition processes using real-coded genetic algorithms.

    Science.gov (United States)

    Takahashi, Takahiro; Nakai, Hiroyuki; Kinpara, Hiroki; Ema, Yoshinori

    2011-09-01

    The identification of appropriate reaction models is very helpful for developing chemical vapor deposition (CVD) processes. In this study, we have developed an automatic system to model reaction mechanisms in the CVD processes by analyzing the experimental results, which are cross-sectional shapes of the deposited films on substrates with micrometer- or nanometer-sized trenches. We designed the inference engine to model the reaction mechanism in the system by the use of real-coded genetic algorithms (RCGAs). We studied the dependence of the system performance on two methods using simple genetic algorithms (SGAs) and the RCGAs; the one involves the conventional GA operators and the other involves the blend crossover operator (BLX-alpha). Although we demonstrated that the systems using both the methods could successfully model the reaction mechanisms, the RCGAs showed the better performance with respect to the accuracy and the calculation cost for identifying the models.

  9. Multi-model Mean Nitrogen and Sulfur Deposition from the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP): Evaluation of Historical and Projected Future Changes

    Energy Technology Data Exchange (ETDEWEB)

    Lamarque, Jean-Francois; Dentener, Frank; McConnell, J.R.; Ro, C-U; Shaw, Mark; Vet, Robert; Bergmann, D.; Cameron-Smith, Philip; Dalsoren, S.; Doherty, R.; Faluvegi, G.; Ghan, Steven J.; Josse, B.; Lee, Y. H.; MacKenzie, I. A.; Plummer, David; Shindell, Drew; Skeie, R. B.; Stevenson, D. S.; Strode, S.; Zeng, G.; Curran, M.; Dahl-Jensen, D.; Das, S.; Fritzsche, D.; Nolan, M.

    2013-08-20

    We present multi-model global datasets of nitrogen and sulfate deposition covering time periods from 1850 to 2100, calculated within the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP). The computed deposition fluxes are compared to surface wet deposition and ice-core measurements. We use a new dataset of wet deposition for 2000-2002 based on critical assessment of the quality of existing regional network data. We show that for present-day (year 2000 ACCMIP time-slice), the ACCMIP results perform similarly to previously published multi-model assessments. The analysis of changes between 1980 and 2000 indicates significant differences between model and measurements over the United States, but less so over Europe. This difference points towards misrepresentation of 1980 NH3 emissions over North America. Based on ice-core records, the 1850 deposition fluxes agree well with Greenland ice cores but the change between 1850 and 2000 seems to be overestimated in the Northern Hemisphere for both nitrogen and sulfur species. Using the Representative Concentration Pathways to define the projected climate and atmospheric chemistry related emissions and concentrations, we find large regional nitrogen deposition increases in 2100 in Latin America, Africa and parts of Asia under some of the scenarios considered. Increases in South Asia are especially large, and are seen in all scenarios, with 2100 values more than double 2000 in some scenarios and reaching >1300 mgN/m2/yr averaged over regional to continental scale regions in RCP 2.6 and 8.5, ~30-50% larger than the values in any region currently (2000). Despite known issues, the new ACCMIP deposition dataset provides novel, consistent and evaluated global gridded deposition fields for use in a wide range of climate and ecological studies.

  10. Characterization and modeling of atomic layer deposited high-density trench capacitors in silicon

    NARCIS (Netherlands)

    Matters-Kammerer, M.K.; Jinesh, K.B.; Rijks, T.G.S.M.; Roozeboom, F.; Klootwijk, J.H.

    2012-01-01

    A detailed electrical analysis of multiple layer trench capacitors fabricated in silicon with atomic-layer-deposited Al 2O 3 and TiN is presented. It is shown that in situ ozone annealing of the Al 2O 3 layers prior to the TiN electrode deposition significantly improves the electric properties of th

  11. Modeling preferential flow and its consequences on solute transfer in a strongly heterogeneous deposit

    Science.gov (United States)

    Ben Slimene, Erij; Lassabatere, Laurent; Winiarski, Thierry; Gourdon, Remy

    2016-04-01

    The understanding of the fate of pollutants in the vadose zone is a prerequisite to manage soil and groundwater quality. Water infiltrates into the soil and carries a large amount of pollutants (heavy metals, organic compounds, etc.). The quality of groundwater depends on the capability of soils to remove pollutants while water infiltrates. The capability of soils to remove pollutants depends not only on their geochemical properties and affinity with pollutants but also on the quality of the contact between the reactive particles of the soil and pollutants. In such a context, preferential flows are the worst scenario since they prevent pollutants from reaching large parts of the soil including reactive zones that could serve for pollutant removal. The negative effects of preferential flow have already been pointed out by several studies. In this paper, we investigate numerically the effect of the establishment of preferential flow in a numerical section (13.5m long and 2.5m deep) that mimics a strongly heterogeneous deposit. The modelled deposit is made of several lithofacies with contrasting hydraulic properties. The numerical study proves that this strong contrast in hydraulic properties triggers the establishment of preferential flow (capillary barriers and funneled flow). Preferential flow develops mainly for low initial water contents and low fluxes imposed at the soil surface. The impact of these flows on solute transfer is also investigated as a function of solute reactivity and affinity to soil sorption sites. Modeled results clearly show that solute transport is greatly impacted by flow heterogeneity. Funneled flows have the same impacts as water fractionation into mobile and immobile transfer with a fast transport of solutes by preferential flow and solute diffusion to zones where the flow is slower. Such a pattern greatly impacts retention and reduces the access of pollutants into large parts of the soil. Retention is thus greatly reduced at the section

  12. Predictions of U.K. regulated power station contributions to regional air pollution and deposition: a model comparison exercise.

    Science.gov (United States)

    Chemel, Charles; Sokhi, Ranjeet S; Dore, Anthony J; Sutton, Paul; Vincent, Keith J; Griffiths, Stephen J; Hayman, Garry D; Wright, Raymond D; Baggaley, Matthew; Hallsworth, Stephen; Prain, H Douglas; Fisher, Bernard E A

    2011-11-01

    Contributions of the emissions from a U.K. regulated fossil-fuel power station to regional air pollution and deposition are estimated using four air quality modeling systems for the year 2003. The modeling systems vary in complexity and emphasis in the way they treat atmospheric and chemical processes, and include the Community Multiscale Air Quality (CMAQ) modeling system in its versions 4.6 and 4.7, a nested modeling system that combines long- and short-range impacts (referred to as TRACK-ADMS [Trajectory Model with Atmospheric Chemical Kinetics-Atmospheric Dispersion Modelling System]), and the Fine Resolution Atmospheric Multi-pollutant Exchange (FRAME) model. An evaluation of the baseline calculations against U.K. monitoring network data is performed. The CMAQ modeling system version 4.6 data set is selected as the reference data set for the model footprint comparison. The annual mean air concentration and total deposition footprints are summarized for each modeling system. The footprints of the power station emissions can account for a significant fraction of the local impacts for some species (e.g., more than 50% for SO2 air concentration and non-sea-salt sulfur deposition close to the source) for 2003. The spatial correlation and the coefficient of variation of the root mean square error (CVRMSE) are calculated between each model footprint and that calculated by the CMAQ modeling system version 4.6. The correlation coefficient quantifies model agreement in terms of spatial patterns, and the CVRMSE measures the magnitude of the difference between model footprints. Possible reasons for the differences between model results are discussed. Finally, implications and recommendations for the regulatory assessment of the impact of major industrial sources using regional air quality modeling systems are discussed in the light of results from this case study.

  13. Modelling the long-term soil response to atmospheric deposition at intensively monitored forest plots in Europe

    NARCIS (Netherlands)

    Reinds, G.J.; Posch, M.; Vries, de W.

    2009-01-01

    The dynamic soil chemistry model SMART was applied to 121 intensive forest monitoring plots (mainly located in western and northern Europe) for which both element input (deposition) and element concentrations in the soil solution were available. After calibration of poorly known parameters, the mode

  14. Modeling the influence of precipitation and nitrogen deposition on forest understory fuel connectivity in Sierra Nevada mixed-conifer forest

    Science.gov (United States)

    M. Hurteau; M. North; T. Foines

    2009-01-01

    Climate change models for California’s Sierra Nevada predict greater inter-annual variability in precipitation over the next 50 years. These increases in precipitation variability coupled with increases in nitrogen deposition fromfossil fuel consumption are likely to result in increased productivity levels and significant increases in...

  15. 3D Printing of Biocompatible Acellular Auricular Implant Using Dual Scaled Hydrid Technology Combining Fused Deposition Modeling with Electrospinning

    OpenAIRE

    Rezenda, R; Sabado, M; Kasjanovs, V; Baptista, L.; da Silva, K; Noritomi, P; Sena, F.; Wen, X.; Da Silva, J; Mironov, V.

    2013-01-01

    The dual-scaled hydrid scaffold fabrication technology based on combination of 3D printing (fused deposition modeling) and electrospining have been recently introduced. We report here the design, fabrication, mechanical testing, in vitro and in vivo biocompatibility testing of novel auricular implants for treatment microtia fabricated by dual scaled hydbrid scaffold fabrication technology.

  16. Observations and modelling of soil slip-debris flow initiation processes in pyroclastic deposits: the Sarno 1998 event

    Directory of Open Access Journals (Sweden)

    G. B. Crosta

    2003-01-01

    Full Text Available Pyroclastic soils mantling a wide area of the Campanian Apennines are subjected to recurrent instability phenomena. This study analyses the 5 and 6 May 1998 event which affected the Pizzo d’Alvano (Campania, southern Italy. More than 400 slides affecting shallow pyroclastic deposits were triggered by intense and prolonged but not extreme rainfall. Landslides affected the pyroclastic deposits that cover the steep calcareous ridges and are soil slip-debris flows and rapid mudflows. About 30 main channels were deeply scoured by flows which reached the alluvial fans depositing up to 400 000 m3 of material in the piedmont areas. About 75% of the landslides are associated with morphological discontinuities such as limestone cliffs and roads. The sliding surface is located within the pyroclastic cover, generally at the base of a pumice layer. Geotechnical characterisation of pyroclastic deposits has been accomplished by laboratory and in situ tests. Numerical modelling of seepage processes and stability analyses have been run on four simplified models representing different settings observed at the source areas. Seepage modelling showed the formation of pore pressure pulses in pumice layers and the localised increase of pore pressure in correspondence of stratigraphic discontinuities as response to the rainfall event registered between 28 April and 5 May. Numerical modelling provided pore pressure values for stability analyses and pointed out critical conditions where stratigraphic or morphological discontinuities occur. This study excludes the need of a groundwater flow from the underlying bedrock toward the pyroclastic cover for instabilities to occur.

  17. Observations and modelling of soil slip-debris flow initiation processes in pyroclastic deposits: the Sarno 1998 event

    Science.gov (United States)

    Crosta, G. B.; Dal Negro, P.

    Pyroclastic soils mantling a wide area of the Campanian Apennines are subjected to recurrent instability phenomena. This study analyses the 5 and 6 May 1998 event which affected the Pizzo d'Alvano (Campania, southern Italy). More than 400 slides affecting shallow pyroclastic deposits were triggered by intense and prolonged but not extreme rainfall. Landslides affected the pyroclastic deposits that cover the steep calcareous ridges and are soil slip-debris flows and rapid mudflows. About 30 main channels were deeply scoured by flows which reached the alluvial fans depositing up to 400 000 m3 of material in the piedmont areas. About 75% of the landslides are associated with morphological discontinuities such as limestone cliffs and roads. The sliding surface is located within the pyroclastic cover, generally at the base of a pumice layer. Geotechnical characterisation of pyroclastic deposits has been accomplished by laboratory and in situ tests. Numerical modelling of seepage processes and stability analyses have been run on four simplified models representing different settings observed at the source areas. Seepage modelling showed the formation of pore pressure pulses in pumice layers and the localised increase of pore pressure in correspondence of stratigraphic discontinuities as response to the rainfall event registered between 28 April and 5 May. Numerical modelling provided pore pressure values for stability analyses and pointed out critical conditions where stratigraphic or morphological discontinuities occur. This study excludes the need of a groundwater flow from the underlying bedrock toward the pyroclastic cover for instabilities to occur.

  18. Improvement of Surface Finish by Multiple Piezoelectric Transducers in Fused Deposition Modelling

    Directory of Open Access Journals (Sweden)

    A. S. Mohamed

    2016-10-01

    Full Text Available Additive Manufacturing (AM which embrace as a new range technology of creating and producing end user parts in term of adding material layer by layer to create solid object from 3D CAD data. AM in particular Fused Deposition Modelling (FDM used (ABS thermoplastic have shown the most popular among the industry as its technology can print complex geometrical part without human intervention and tools. However, FDM fierce enemy whereas the common problem of stair-stepping, which means that seam lines appear between layers and excess material if often left as a residue, cause to lead rough surface and poor quality finish. It is often desirable for an AM model to have aesthetic or functional importance. Hence, reducing layer thickness will generally improve surface roughness but will add to the build time for the model. As an interest investigate the use of ultrasonic for FDM, this experiment will focus on the effect of applying multiple piezoelectric transducer for FDM printer. This paper aims to explore the effect use of multiple piezoelectric with different frequency applied (27, 40, 50 kHz to improve surface finish quality part printed by FDM whereby an ultrasonic transducer firmly attached onto the platform. Optical microscope with the aid of pro VIS software version 2.90 was used to measure the quality of surface roughness of samples printed with vibration in the above stated frequency. Hence, it was found that 1 piezo with 50 kHz frequency applied to the FDM machine achieved improve surface finish due to less layer thickness defect and finer layer thickness produce.

  19. Filling high aspect ratio trenches by superconformal chemical vapor deposition: Predictive modeling and experiment

    Science.gov (United States)

    Wang, Wenjiao B.; Abelson, John R.

    2014-11-01

    Complete filling of a deep recessed structure with a second material is a challenge in many areas of nanotechnology fabrication. A newly discovered superconformal coating method, applicable in chemical vapor deposition systems that utilize a precursor in combination with a co-reactant, can solve this problem. However, filling is a dynamic process in which the trench progressively narrows and the aspect ratio (AR) increases. This reduces species diffusion within the trench and may drive the component partial pressures out of the regime for superconformal coating. We therefore derive two theoretical models that can predict the possibility for filling. First, we recast the diffusion-reaction equation for the case of a sidewall with variable taper angle. This affords a definition of effective AR, which is larger than the nominal AR due to the reduced species transport. We then derive the coating profile, both for superconformal and for conformal coating. The critical (most difficult) step in the filling process occurs when the sidewalls merge at the bottom of the trench to form the V shape. Experimentally, for the Mg(DMADB)2/H2O system and a starting AR = 9, this model predicts that complete filling will not be possible, whereas experimentally we do obtain complete filling. We then hypothesize that glancing-angle, long-range transport of species may be responsible for the better than predicted filling. To account for the variable range of species transport, we construct a ballistic transport model. This incorporates the incident flux from outside the structure, cosine law re-emission from surfaces, and line-of-sight transport between internal surfaces. We cast the transport probability between all positions within the trench into a matrix that represents the redistribution of flux after one cycle of collisions. Matrix manipulation then affords a computationally efficient means to determine the steady-state flux distribution and growth rate for a given taper angle. The

  20. Multi-model mean nitrogen and sulfur deposition from the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP: evaluation of historical and projected future changes

    Directory of Open Access Journals (Sweden)

    J.-F. Lamarque

    2013-08-01

    Full Text Available We present multi-model global datasets of nitrogen and sulfate deposition covering time periods from 1850 to 2100, calculated within the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP. The computed deposition fluxes are compared to surface wet deposition and ice core measurements. We use a new dataset of wet deposition for 2000–2002 based on critical assessment of the quality of existing regional network data. We show that for present day (year 2000 ACCMIP time slice, the ACCMIP results perform similarly to previously published multi-model assessments. For this time slice, we find a multi-model mean deposition of approximately 50 Tg(N yr−1 from nitrogen oxide emissions, 60 Tg(N yr−1 from ammonia emissions, and 83 Tg(S yr−1 from sulfur emissions. The analysis of changes between 1980 and 2000 indicates significant differences between model and measurements over the United States but less so over Europe. This difference points towards a potential misrepresentation of 1980 NH3 emissions over North America. Based on ice core records, the 1850 deposition fluxes agree well with Greenland ice cores, but the change between 1850 and 2000 seems to be overestimated in the Northern Hemisphere for both nitrogen and sulfur species. Using the Representative Concentration Pathways (RCPs to define the projected climate and atmospheric chemistry related emissions and concentrations, we find large regional nitrogen deposition increases in 2100 in Latin America, Africa and parts of Asia under some of the scenarios considered. Increases in South Asia are especially large, and are seen in all scenarios, with 2100 values more than double their 2000 counterpart in some scenarios and reaching > 1300 mg(N m−2 yr−1 averaged over regional to continental-scale regions in RCP 2.6 and 8.5, ~ 30–50% larger than the values in any region currently (circa 2000. However, sulfur deposition rates in 2100 are in all regions lower than in 2000 in

  1. Development of a rhesus monkey lung geometry model and application to particle deposition in comparison to humans

    Energy Technology Data Exchange (ETDEWEB)

    Asgharian, Bahman; Price, Owen; McClellan, Gene; Corley, Rick; Einstein, Daniel R.; Jacob, Richard E.; Harkema, Jack; Carey, Stephan A.; Schelegle, Edward; Hyde, Dallas; Kimbell, Julia S.; Miller, Frederick J.

    2012-11-01

    The exposure-dose-response characterization of an inhalation hazard established in an animal species needs to be translated to an equivalent characterization in humans relative to comparable doses or exposure scenarios. Here, the first geometry model of the conducting airways for rhesus monkeys is developed based upon CT images of the conducting airways of a 6-month-old male, rhesus monkey. An algorithm was developed for adding the alveolar region airways using published rhesus morphometric data. The resultant lung geometry model can be used in mechanistic particle or gaseous dosimetry models. Such dosimetry models require estimates of the upper respiratory tract volume of the animal and the functional residual capacity, as well as of the tidal volume and breathing frequency of the animal. The relationship of these variables to rhesus monkeys of differing body weights was established by synthesizing and modeling published data as well as modeling pulmonary function measurements on 121 rhesus control animals. Deposition patterns of particles up to 10 µm in size were examined for endotracheal and and up to 5 µm for spontaneous breathing in infant and young adult monkeys and compared to those for humans. Deposition fraction of respirable size particles was found to be higher in the conducting airways of infant and young adult rhesus monkeys compared to humans. Due to the filtering effect of the conducting airways, pulmonary deposition in rhesus monkeys was lower than that in humans. Finally, future research areas are identified that would either allow replacing assumptions or improving the newly developed lung model.

  2. Development and validation of a size-resolved particle dry deposition scheme for applications in aerosol transport models

    Directory of Open Access Journals (Sweden)

    A. Petroff

    2010-08-01

    Full Text Available A size-resolved particle dry deposition scheme is developed, which has been designed for inclusion in large-scale air quality and climate models, where the size distribution and fate of the atmospheric aerosol is of concern. The "resistance" structure is similar to what is proposed by Zhang et al. (2001, 2003, while a new "surface" deposition velocity (or surface resistance is derived by simplification of a one-dimensional aerosol transport model (Petroff et al., 2008b, 2009. Collection efficiencies are given for the 26 Land Use Categories that decribe the earth surface. Validation of this model with existing measurements is performed on desert, grass, coniferous forest and liquid water surfaces. A comparison of this model with measurements on snow and ice is also given. Even though a qualitative agreement is reached, further size-segegated measurements are needed in order to confirm the model accuracy on this surface. The present analytical model provides more accurate predictions of the aerosol deposition on these surfaces than previous models.

  3. Biodegradable and bioactive porous scaffold structures prepared using fused deposition modeling.

    Science.gov (United States)

    Korpela, Jyrki; Kokkari, Anne; Korhonen, Harri; Malin, Minna; Närhi, Timo; Seppälä, Jukka

    2013-05-01

    Three-dimensional printing (3DP) refers to a group of additive manufacturing techniques that can be utilized in tissue engineering applications. Fused deposition modeling (FDM) is a 3DP method capable of using common thermoplastic polymers. However, the scope of materials applicable for FDM has not been fully recognized. The purpose of this study was to examine the creation of biodegradable porous scaffold structures using different materials in FDM and to determine the compressive properties and the fibroblast cell response of the structures. To the best of our knowledge, the printability of a poly(ε-caprolactone)/bioactive glass (PCL/BAG) composite and L-lactide/ε-caprolactone 75/25 mol % copolymer (PLC) was demonstrated for the first time. Scanning electron microscope (SEM) images showed BAG particles at the surface of the printed PCL/BAG scaffolds. Compressive testing showed the possibility of altering the compressive stiffness of a scaffold without changing the compressive modulus. Compressive properties were significantly dependent on porosity level and structural geometry. Fibroblast proliferation was significantly higher in polylactide than in PCL or PCL/BAG composite. Optical microscope images and SEM images showed the viability of the cells, which demonstrated the biocompatibility of the structures. Copyright © 2012 Wiley Periodicals, Inc.

  4. PATTERN DEVELOPMENT FOR MANUFACTURING APPLICATIONS WITH FUSED DEPOSITION MODELLING – A CASE STUDY

    Directory of Open Access Journals (Sweden)

    H. K. Garg

    2013-06-01

    Full Text Available The purpose of this paper is to examine the suitability of fused deposition modelling (FDM, for the production of a pattern that can be used in direct manufacturing applications. In this work, the benchmark was identified and its best part orientation in a FDM machine was located through experimentation. Control charts and process capability histogram were drawn to assess the process capability of the FDM process. The micro hardness of the prepared sample was measured to check the suitability of the process for investment casting applications. Further dimensional accuracy of patterns was established by IT grades as per the ISO standard UNI EN 20286-I (1995. It was observed that the performance indices for all the dimensions in the present study are greater than 1. The study of photo micrographs using SEM gave an insight into the properties of the component (produced by FDM. This study highlights that the tolerance grades for ABS plastics are consistent with the permissible range of tolerance grades as per the ISO standard UNI EN 20286-I (1995 and DIN16901 standard.

  5. Depositional Model of the Marcellus Shale in West Virginia Based on Facies Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Bruner, Kathy

    2011-11-14

    A lithologic analysis of well exposed Marcellus outcrops has identified six different facies in West Virginia and neighboring states: (1) light gray calcareous shale, (2) fossiliferous limestone, (3) black calcareous shale, (4) black noncalcareous shale, (5) dark gray noncalcareous shale, and (6) K-bentonite. Close interbedding of these rock types attests to a complex, ever-changing environment on the eastern foreland ramp of the Appalachian Basin. The environmental setting was clearly not a deep trough, permanently anoxic, salinity stratified, sediment starved, and populated exclusively by phytoplankton—the traditional depositional model. To the contrary, our sedimentary data suggest a rather shallow water depth, intermittent anoxia, normal-marine salinity, a fluctuating input of siliciclastic mud, and faunal communities of low and moderate diversity. Interbedding of the shale and limestone lithofacies as well as the vertical stacking of facies associations is explained most simply by fluctuations in water depth coupled with fluctuations in sediment supply. The sea floor was, at times, immediately below wave base (Facies 1 and 2), around the depth of the thermocline (Facies 2 and 3), or below the thermocline (Facies 4 and 5), relative sea level changing through two sequences of lowstand, transgression, and highstand. Simultaneously the supply of siliciclastic mud was greater at times of lowstand (increased erosion) and highstand (prograding shoreline), and the supply smaller during transgression (sediment stored in distant coastal plain).

  6. Use of fused deposit modeling for additive manufacturing in hospital facilities: European certification directives.

    Science.gov (United States)

    Otero, Joel J; Vijverman, An; Mommaerts, Maurice Y

    2017-09-01

    The goal of this study was to identify current European Union regulations governing hospital-based use of fused deposit modeling (FDM), as implemented via desktop three-dimensional (3D) printers. Literature and Internet sources were screened, searching for official documents, regulations/legislation, and views of specialized attorneys or consultants regarding European regulations for 3D printing or additive manufacturing (AM) in a healthcare facility. A detailed review of the latest amendment (2016) of the European Parliament and Council legislation for medical devices and its classification was performed, which has regularly updated published guidelines for medical devices, that are classified by type and duration of patient contact. As expected, regulations increase in accordance with the level (I-III) of classification. Custom-made medical devices are subject to different regulations than those controlling serially mass-produced items, as originally specified in 98/79/EC European Parliament and Council legislation (1993) and again recently amended (2016). Healthcare facilities undertaking in-house custom production are not obliged to fully follow the directives as stipulated, given an exception for this scenario (Article 4.4a, 98/79/EC). Patient treatment and diagnosis with the aid of customized 3D printing in a healthcare facility can be performed without fully meeting the European Parliament and Council legislation if the materials used are ISO 10993 certified and article 4.4a applies. Copyright © 2017 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  7. Fused Deposition Modeling 3D Printing for (Bio)analytical Device Fabrication: Procedures, Materials, and Applications

    Science.gov (United States)

    2017-01-01

    In this work, the use of fused deposition modeling (FDM) in a (bio)analytical/lab-on-a-chip research laboratory is described. First, the specifications of this 3D printing method that are important for the fabrication of (micro)devices were characterized for a benchtop FDM 3D printer. These include resolution, surface roughness, leakage, transparency, material deformation, and the possibilities for integration of other materials. Next, the autofluorescence, solvent compatibility, and biocompatibility of 12 representative FDM materials were tested and evaluated. Finally, we demonstrate the feasibility of FDM in a number of important applications. In particular, we consider the fabrication of fluidic channels, masters for polymer replication, and tools for the production of paper microfluidic devices. This work thus provides a guideline for (i) the use of FDM technology by addressing its possibilities and current limitations, (ii) material selection for FDM, based on solvent compatibility and biocompatibility, and (iii) application of FDM technology to (bio)analytical research by demonstrating a broad range of illustrative examples. PMID:28628294

  8. Modelling the effects of atmospheric sulphur and nitrogen deposition on selected lakes and streams of the Central Alps (Italy

    Directory of Open Access Journals (Sweden)

    M. Rogora

    2003-01-01

    Full Text Available The dynamic model MAGIC was calibrated and applied to selected sites in north-western Italy (3 rivers, 10 alpine lakes to predict the future response of surface water to different scenarios of atmospheric deposition of S and N compounds. Results at the study sites suggest that several factors other than atmospheric deposition may influence the long-term changes in surface water chemistry. At present the lumped approach of dynamic models such as MAGIC cannot represent all the processes occurring at the catchment scale. Climate warming in particular and its effects on surface water chemistry proved to be important in the study area. Furthermore the river catchments considered here showed clear signs of N saturation. This condition and the increasing concentrations of NO3 in river water were simulated using N dynamics recently included in MAGIC. The modelling performed in this study represents the first application of MAGIC to Italian sites. The results show that inclusion of other factors specific to the Mediterranean area, such as dust deposition and climate change, may improve the fit to observed data and the reliability of the model forecast. Despite these limitations, the model captured well the main trends in chemical data in both rivers and lakes. The outputs clearly demonstrate the benefits of achieving the emission reductions in both S and N compounds as agreed under the Gothenburg Protocol rather than making no further emission reductions. It was also clear that, besides the substantial reduction of SO4 deposition from the peak levels of the 1980s, N deposition must also be reduced in the near future to protect freshwaters from further acidification. Keywords: MAGIC, northern Italy, acidification, recovery, nitrogen saturation

  9. Monte Carlo study of radial energy deposition from primary and secondary particles for narrow and large proton beamlet source models.

    Science.gov (United States)

    Peeler, Christopher R; Titt, Uwe

    2012-06-21

    In spot-scanning intensity-modulated proton therapy, numerous unmodulated proton beam spots are delivered over a target volume to produce a prescribed dose distribution. To accurately model field size-dependent output factors for beam spots, the energy deposition at positions radial to the central axis of the beam must be characterized. In this study, we determined the difference in the central axis dose for spot-scanned fields that results from secondary particle doses by investigating energy deposition radial to the proton beam central axis resulting from primary protons and secondary particles for mathematical point source and distributed source models. The largest difference in the central axis dose from secondary particles resulting from the use of a mathematical point source and a distributed source model was approximately 0.43%. Thus, we conclude that the central axis dose for a spot-scanned field is effectively independent of the source model used to calculate the secondary particle dose.

  10. A Deterministic Model for Analyzing the Dynamics of Ant System Algorithm and Performance Amelioration through a New Pheromone Deposition Approach

    CERN Document Server

    Acharya, Ayan; Konar, Amit; Janarthanan, Ramadoss

    2008-01-01

    Ant Colony Optimization (ACO) is a metaheuristic for solving difficult discrete optimization problems. This paper presents a deterministic model based on differential equation to analyze the dynamics of basic Ant System algorithm. Traditionally, the deposition of pheromone on different parts of the tour of a particular ant is always kept unvarying. Thus the pheromone concentration remains uniform throughout the entire path of an ant. This article introduces an exponentially increasing pheromone deposition approach by artificial ants to improve the performance of basic Ant System algorithm. The idea here is to introduce an additional attracting force to guide the ants towards destination more easily by constructing an artificial potential field identified by increasing pheromone concentration towards the goal. Apart from carrying out analysis of Ant System dynamics with both traditional and the newly proposed deposition rules, the paper presents an exhaustive set of experiments performed to find out suitable p...

  11. Modeling the deposition of bioaerosols with variable size and shape in the human respiratory tract – A review

    Directory of Open Access Journals (Sweden)

    R. Sturm

    2012-10-01

    Full Text Available The behavior of bioaerosol particles with various size and shape in the human respiratory tract was simulated by using a probabilistic model of the lung and an almost realistic mathematical approach to particle deposition. Results obtained from the theoretical computations clearly show that biogenic particle deposition in different lung compartments does not only depend on physical particle properties, but also on breathing mode (nose or mouth breathing and inhalative flow rate (=tidal volume × breathing frequency/30. Whilst ultrafine (5 μm particles tend to accumulate in the extrathoracic region and the uppermost airways of the tracheobronchial tree, particles with intermediate size are characterized by higher penetration depth, leading to their possible accumulation in the lung alveoli. Due to their deposition in deep lung regions and insufficient clearance, some bioaerosol particles may induce severe lung diseases ranging from infections, allergies, and toxic reactions to cancer.

  12. Numerical modeling of chemical vapor deposition (CVD) in a horizontal reactor

    Science.gov (United States)

    Sheikholeslami, M. Z.; Jasinski, T.; Fretz, K. W.

    1988-01-01

    In the present numerical prediction of the deposition rate of silicon from silane in a CVD process, the conservation equations for mass, momentum, energy, and chemical species are solved on a staggered grid using the SIMPLE algorithm, while the rate of chemical reactions in the gas phase and on the susceptor surface is obtained from an Arrhenius rate equation. Predicted deposition rates as a function of position along the susceptor with and without the gas phase chemical reaction are compared with the available experimental and numerical data; agreement is excellent except at the leading edge of the susceptor, where the deposition rate is overpredicted.

  13. Application of a dual deposition mode model to evaluate transport of Escherichia coli D21 in porous media

    Science.gov (United States)

    Tufenkji, Nathalie

    2006-12-01

    Controlled laboratory-scale column deposition experiments were conducted using a well-characterized mutant of the Escherichia coli (E. coli) K12 strain to obtain insight into the mechanisms that give rise to the observed deviation from classical colloid filtration theory (CFT). Both the suspended effluent bacteria concentration and the spatial distribution of retained bacteria were systematically measured over a wide range of solution conditions using columns packed with spherical glass beads. Calculations of Derjaguin-Landau-Verwey-Overbeek (DLVO) interaction energies based on measured cell zeta potentials indicated that the bacteria should experience considerable repulsive interaction forces when approaching the glass bead surface. In spite of these predictions, bacterial adhesion was observed even at the lowest solution ionic strength investigated (3 mM) and increased with solution salt concentration. Comparison of these results with measurements obtained using model colloidal particles (polystyrene latex microspheres) and a different microbe (Cryptosporidium parvum) suggested that another non-DLVO-type interaction may be contributing to the observed deposition behavior. Furthermore, predictions based on a discrete dual deposition mode (DDM) model disagreed with measured fractions of released cells. Taken together, the experimental and modeling results suggest that the deposition behavior of bacteria in saturated porous media is influenced by additional interaction mechanism(s) or factors not considered in classical DLVO theory, such as local charge heterogeneities of the cell membrane and surface biomolecule-specific interactions.

  14. A nucleation and growth model of silicon nanoparticles produced by pulsed laser deposition via Monte Carlo simulation

    Science.gov (United States)

    Wang, Yinglong; Qin, Aili; Chu, Lizhi; Deng, Zechao; Ding, Xuecheng; Guan, Li

    2017-02-01

    We simulated the nucleation and growth of Si nanoparticles produced by pulse laser deposition using Monte Carlo method at the molecular (microscopic) level. In the model, the mechanism and thermodynamic conditions of nucleation and growth of Si nanoparticles were described. In a real physical scale of target-substrate configuration, the model was used to analyze the average size distribution of Si nanoparticles in argon ambient gas and the calculated results are in agreement with the experimental results.

  15. Modeled subalpine plant community response to climate change and atmospheric nitrogen deposition in Rocky Mountain National Park, USA.

    Science.gov (United States)

    McDonnell, T C; Belyazid, S; Sullivan, T J; Sverdrup, H; Bowman, W D; Porter, E M

    2014-04-01

    To evaluate potential long-term effects of climate change and atmospheric nitrogen (N) deposition on subalpine ecosystems, the coupled biogeochemical and vegetation community competition model ForSAFE-Veg was applied to a site at the Loch Vale watershed of Rocky Mountain National Park, Colorado. Changes in climate and N deposition since 1900 resulted in pronounced changes in simulated plant species cover as compared with ambient and estimated future community composition. The estimated critical load (CL) of N deposition to protect against an average future (2010-2100) change in biodiversity of 10% was between 1.9 and 3.5 kg N ha(-1) yr(-1). Results suggest that the CL has been exceeded and vegetation at the study site has already undergone a change of more than 10% as a result of N deposition. Future increases in air temperature are forecast to cause further changes in plant community composition, exacerbating changes in response to N deposition alone.

  16. Modelling the response of soil and soil solution chemistry upon roofing a forest in an area with high nitrogen deposition

    Directory of Open Access Journals (Sweden)

    C. van der Salm

    1998-01-01

    Full Text Available In the Speuld forest, the Netherlands, the dynamic soil acidification model NuCSAM has been applied to a manipulation experiment in which part of the forest was roofed to control nitrogen (N and sulphur (S deposition. The roofed area was divided into two subplots watered artificially; one received ambient N and S deposition and one with pristine N and S deposition. Concentration measurements on each plots showed a high (time-dependent spatial variability. Statistical analyses of the concentrations on both subplots showed small but significant effects of the reduction in deposition on nitrate (NO3 sulphate (SO4 and aluminum (Al concentrations. The statistical significance of the effects was minimised by the large spatial variability within the plots. Despite these shortcomings, simulated concentrations were generally within the 95% confidence interval of the measurements although the effect of a reduction in N deposition on soil solution chemistry was underestimated due to a marked decline in N-uptake by the vegetation.

  17. Investigating the influence of infill percentage on the mechanical properties of fused deposition modelled ABS parts

    Directory of Open Access Journals (Sweden)

    Kenny Álvarez

    2016-09-01

    Full Text Available 3D printing is a manufacturing process that is usually used for modeling and prototyping. One of the most popular printing techniques is fused deposition modeling (FDM, which is based on adding melted material layer by layer. Although FDM has several advantages with respect to other manufacturing materials, there are several problems that have to be faced. When setting the printing options, several parameters have to be taken into account, such as temperature, speed, infill percentage, etc. Selecting these parameters is often a great challenge for the user, and is generally solved by experience without considering the influence of variations in the parameters on the mechanical properties of the printed parts.This article analyzes the influence of the infill percentage on the mechanical properties of ABS (Acrylonitrile Butadiene Styrene printed parts. In order to characterize this influence, test specimens for tensile strength and Charpy tests were printed with a Makerbot Replicator 2X printer, in which the infill percentage was varied but the rest of the printing parameters were kept constant. Three different results were analyzed for these tests: tensile strength, impact resistance, and effective printing time. Results showed that the maximum tensile force (1438N and tensile stress (34,57MPa were obtained by using 100% infill. The maximum impact resistance, 1,55J, was also obtained with 100% infill. In terms of effective printing time, results showed that printing with an infill range between 50% and 98% is not recommended, since the effective printing time is higher than with a 100% infill and the tensile strength and impact resistance are smaller. In addition, in comparing the results of our analysis with results from other authors, it can be concluded that the printer type and plastic roll significantly influence the mechanical properties of ABS parts.

  18. Optimization of fused deposition modeling process using teaching-learning-based optimization algorithm

    Directory of Open Access Journals (Sweden)

    R. Venkata Rao

    2016-03-01

    Full Text Available The performance of rapid prototyping (RP processes is often measured in terms of build time, product quality, dimensional accuracy, cost of production, mechanical and tribological properties of the models and energy consumed in the process. The success of any RP process in terms of these performance measures entails selection of the optimum combination of the influential process parameters. Thus, in this work the single-objective and multi-objective optimization problems of a widely used RP process, namely, fused deposition modeling (FDM, are formulated, and the same are solved using the teaching-learning-based optimization (TLBO algorithm and non-dominated Sorting TLBO (NSTLBO algorithm, respectively. The results of the TLBO algorithm are compared with those obtained using genetic algorithm (GA, and quantum behaved particle swarm optimization (QPSO algorithm. The TLBO algorithm showed better performance as compared to GA and QPSO algorithms. The NSTLBO algorithm proposed to solve the multi-objective optimization problems of the FDM process in this work is a posteriori version of the TLBO algorithm. The NSTLBO algorithm is incorporated with non-dominated sorting concept and crowding distance assignment mechanism to obtain a dense set of Pareto optimal solutions in a single simulation run. The results of the NSTLBO algorithm are compared with those obtained using non-dominated sorting genetic algorithm (NSGA-II and the desirability function approach. The Pareto-optimal set of solutions for each problem is obtained and reported. These Pareto-optimal set of solutions will help the decision maker in volatile scenarios and are useful for the FDM process.

  19. Laboratory measurements and model sensitivity studies of dust deposition ice nucleation

    Directory of Open Access Journals (Sweden)

    G. Kulkarni

    2012-08-01

    Full Text Available We investigated the ice nucleating properties of mineral dust particles to understand the sensitivity of simulated cloud properties to two different representations of contact angle in the Classical Nucleation Theory (CNT. These contact angle representations are based on two sets of laboratory deposition ice nucleation measurements: Arizona Test Dust (ATD particles of 100, 300 and 500 nm sizes were tested at three different temperatures (−25, −30 and −35 °C, and 400 nm ATD and kaolinite dust species were tested at two different temperatures (−30 and −35 °C. These measurements were used to derive the onset relative humidity with respect to ice (RHice required to activate 1% of dust particles as ice nuclei, from which the onset single contact angles were then calculated based on CNT. For the probability density function (PDF representation, parameters of the log-normal contact angle distribution were determined by fitting CNT-predicted activated fraction to the measurements at different RHice. Results show that onset single contact angles vary from ~18 to 24 degrees, while the PDF parameters are sensitive to the measurement conditions (i.e. temperature and dust size. Cloud modeling simulations were performed to understand the sensitivity of cloud properties (i.e. ice number concentration, ice water content, and cloud initiation times to the representation of contact angle and PDF distribution parameters. The model simulations show that cloud properties are sensitive to onset single contact angles and PDF distribution parameters. The comparison of our experimental results with other studies shows that under similar measurement conditions the onset single contact angles are consistent within ±2.0 degrees, while our derived PDF parameters have larger discrepancies.

  20. 3D geostatistical modelling for identifying sinkhole disaster potential zones around the Verkhnekamskoye potash deposit (Russia)

    Science.gov (United States)

    Royer, J. J.; Litaudon, J.; Filippov, L. O.; Lyubimova, T.; Maximovich, N.

    2017-07-01

    This work results from a cooperative scientific program between the Perm State University (Russia) and the University of Lorraine (France). Its objectives are to integrate modern 3D geomodeling in order to improve sustainable mining extraction, especially for predicting and avoiding the formation of sinkholes disaster potential zones. Systematic exploration drill holes performed in the Verkhnekamskoye potash deposit (Perm region, Russia) have been used to build a comprehensive 3D model for better understanding the spatial repartition of the ore quality (geometallurgy). A precise modelling of the mineralized layers allows an estimation of the in-situ ore reserves after interpolating by kriging the potassium (K) and magnesium (Mg) contents at the node of a regular centred grid (over a million cells). Total resources in potassium vary according to the cut-off between 4.7Gt @ 16.1 % K2O; 0.32 % MgCl2 for a cut-off grade at 13.1% K2O and 2.06 Gt @ 18.2 % K2O; 0.32 % MgCl2 at a cut-off of 16.5% K2O. Most of reserves are located in the KPI, KPII and KPIII layers, the KPI being the richest, and KPIII the largest in terms of tonnage. A systematic study of the curvature calculated along the roof of the mineralized layers points out the location of potential main faults which play a major role in the formation of sinkhole during exploitation. A risk map is then derived from this attribute.

  1. Laboratory measurements and model sensitivity studies of dust deposition ice nucleation

    Directory of Open Access Journals (Sweden)

    G. Kulkarni

    2012-01-01

    Full Text Available We investigated the ice nucleating properties of mineral dust particles to understand the sensitivity of modeled cloud properties to different representations of contact angle in the Classical Nucleation Theory (CNT: onset single angle and probability density function (PDF distribution approaches. These contact angle representations are based on two sets of laboratory deposition ice nucleation measurements: Arizona Test Dust (ATD particles of 100, 300, and 500 nm sizes were tested at three different temperatures (−25, −30 and −35 °C, and 400 nm ATD and Kaolinite dust species were tested at two different temperatures (−30 and −35 °C. These measurements were used to derive the onset relative humidity with respect to ice (RHice required to activate 1% of dust particles as ice nuclei, from which the onset single contact angles were then calculated based on the CNT. For the PDF representation, parameters of the log-normal contact angle distribution (mean and standard deviation were determined by fitting the CNT-predicted activated fraction to the measurements at different RHice. Results show that onset single contact angles are not much different between experiments, while the PDF parameters are sensitive to those environmental conditions (i.e., temperature and dust size. The cloud resolving model simulations show that cloud properties (i.e. ice number concentration, ice water content, and cloud initiation times are sensitive to onset single contact angles and PDF distribution parameters, particularly to the mean value. The comparison of our experimental results with other studies shows that under similar measurement conditions the onset single contact angles are consistent within ±2.0°, while our derived PDF parameters have discrepancies.

  2. Modeling hydrodynamic flows in plasma fluxes when depositing metal layer on the surface of catalyst converters

    Science.gov (United States)

    Chinakhov, D. A.; Sarychev, V. D.; Granovsky, A. Yu; Solodsky, S. A.; Nevsky, S. A.; Konovalov, S. V.

    2017-01-01

    Air pollution with harmful substances resulting from combustion of liquid hydrocarbons and emitted into atmosphere became one of the global environmental problems in the late 20th century. The systems of neutralization capable to reduce toxicity of exhaust gases several times are very important for making environmentally safer combustion products discharged into the atmosphere. As revealed in the literature review, one of the most promising purification procedures is neutralization of burnt gases by catalyst converter systems. The principal working element in the converter is a catalytic layer of metals deposited on ceramics, with thickness 20-60 micron and a well-developed micro-relief. The paper presents a thoroughly substantiated new procedure of deposing a nano-scale surface layer of metal-catalyst particles, furthering the utilization of catalysts on a new level. The paper provides description of mathematical models and computational researches into plasma fluxes under high-frequency impulse input delivered to electrode material, explorations of developing Kelvin-Helmholtz, Marangoni and magnetic hydrodynamic instabilities on the surface of liquid electrode metal droplet in the nano-scale range of wavelengths to obtain a flow of nano-meter particles of cathode material. The authors have outlined a physical and mathematical model of magnetic and hydrodynamic instability for the case of melt flowing on the boundary with the molten metal with the purpose to predict the interphase shape and mutual effect of formed plasma jet and liquid metal droplet on the electrode in the nano-scale range of wavelengths at high-frequency impact on the boundary “electrode-liquid layer”.

  3. Modeling of inertial deposition in scaled models of rat and human nasal airways: Towards in vitro regional dosimetry in small animals

    Energy Technology Data Exchange (ETDEWEB)

    Xi, Jinxiang; Kim, JongWon; Si, Xiuhua A.; Corley, Richard A.; Zhou, Yue

    2016-09-01

    Rodents are routinely used in inhalation toxicology tests as human surrogates. However, in vitro dosimetry tests in rodent casts are still scarce due to small rodent airways and in vitro tests to quantify sub-regional dosimetry are still impractical. We hypothesized that for inertial particles whose deposition is dominated by airflow convection (Reynolds number) and particle inertia (Stokes number), the deposition should be similar among airway replicas of different scales if their Reynolds and Stokes numbers are kept the same. In this study, we aimed to (1) numerically test the hypothesis in three airway geometries: a USP induction port, a human nose model, and a Sprague-Dawley rat nose model, and (2) find the range of applicability of this hypothesis. Five variants of the USP and human nose models and three variants of the rat nose model were tested. Inhalation rates and particle sizes were scaled to match the Reynolds number and Stokes numbers. A low-Reynolds-number k–ω model was used to resolve the airflow and a Lagrangian tracking algorithm was used to simulate the particle transport and deposition. Statistical analysis of predicted doses was conducted using ANOVA. For normal inhalation rates and particle dia- meters ranging from 0.5 to 24 mm, the deposition differences between the life-size and scaled models are insignificant for all airway geometries considered (i.e., human nose, USP, and rat nose). Furthermore, the deposition patterns and exit particle profiles also look similar among scaled models. However, deposition rates and patterns start to deviate if inhalation rates are too low, or particle sizes are too large. For the rat nose, the threshold velocity was found to be 0.71 m/s and the threshold Froude number to be 50. Results of this study provide a theoretical foundation for sub-regional in vitro dosimetry tests in small animals and for interpretation of data from inter-species or intra-species with varying body sizes.

  4. Modelling the geometry of a moving laser melt pool and deposition track via energy and mass balances

    Science.gov (United States)

    Pinkerton, Andrew J.; Li, Lin

    2004-07-01

    The additive manufacturing technique of laser direct metal deposition allows multiple tracks of full density metallic material to be built to form complex parts for rapid tooling and manufacture. Practical results and theoretical models have shown that the geometries of the tracks are governed by multiple factors. Original work with single layer cladding identified three basic clad profiles but, so far, models of multiple layer, powder-feed deposition have been based on only two of them. At higher powder mass flow rates, experimental results have shown that a layer's width can become greater than the melt pool width at the substrate surface, but previous analytical models have not been able to accommodate this. In this paper, a model based on this third profile is established and experimentally verified. The model concentrates on mathematical analysis of the melt pool and establishes mass and energy balances based on one-dimensional heat conduction to the substrate. Deposition track limits are considered as arcs of circles rather than of ellipses, as used in most established models, reflecting the dominance of surface tension forces in the melt pool, and expressions for elongation of the melt pool with increasing traverse speed are incorporated. Trends in layer width and height with major process parameters are captured and predicted layer dimensions correspond well to the experimental values.

  5. Modelling the erosion/deposition pattern of the Tore Supra Toroidal Pumped Limiter

    Energy Technology Data Exchange (ETDEWEB)

    Panayotis, S. [CEA, Institut de Recherche sur la Fusion Magnétique, Saint Paul lez Durance (France); Pégourié, B., E-mail: bernard.pegourie@cea.fr [CEA, Institut de Recherche sur la Fusion Magnétique, Saint Paul lez Durance (France); Borodin, D.; Kirschner, A. [Institut für Energie- und Klimaforschung – Plasmaphysik, Forschungszentrum Jülich GmbH, Jülich (Germany); Gunn, J. [CEA, Institut de Recherche sur la Fusion Magnétique, Saint Paul lez Durance (France); Marandet, Y.; Mellet, N. [PIIM, Aix-Marseille University, Marseille (France)

    2015-08-15

    This paper aims at understanding the main processes responsible for the erosion/deposition pattern observed on the surface of the Toroidal Pumped Limiter of Tore Supra, using the 3D local impurity transport code ERO. The influence of the plasma impurity content, CX-flux and surface temperature on the global carbon balance and erosion/deposition pattern is discussed. Main results are (1) that considering medium-range transport of C ions is mandatory for reproducing the main characteristics of the global C balance and erosion/deposition pattern, (2) that impurities and CX-atoms increase the erosion by a factor ⩽2 (without changing the net/gross erosion ratio), and (3) that chemical erosion is governed by the re-erosion of deposits, which depends strongly on the surface temperature.

  6. Modelling Deposition and Erosion rates with RadioNuclides (MODERN) - Part 1: A new conversion model to derive soil redistribution rates from inventories of fallout radionuclides.

    Science.gov (United States)

    Arata, Laura; Meusburger, Katrin; Frenkel, Elena; A'Campo-Neuen, Annette; Iurian, Andra-Rada; Ketterer, Michael E; Mabit, Lionel; Alewell, Christine

    2016-10-01

    The measurement of fallout radionuclides (FRN) has become one of the most commonly used tools to quantify sediment erosion or depositional processes. The conversion of FRN inventories into soil erosion and deposition rates is done with a variety of models, which suitability is dependent on the selected FRN, soil cultivation (ploughed or unploughed) and movement (erosion or deposition). The authors propose a new conversion model, which can be easily and comprehensively used for different FRN, land uses and soil redistribution processes. The new model MODERN (Modelling Deposition and Erosion rates with RadioNuclides) considers the precise depth distribution of any FRN at the reference site, and allows adapting it for any specific site conditions. MODERN adaptability and performance in converting different FRN inventories is discussed for a theoretical case as well as for two already published case studies i.e. a (137)Cs study in an alpine and unploughed area in the Aosta valley (Italy) and a (210)Pbex study on a ploughed area located in the Transylvanian Plain (Romania). The tests highlight a highly significant correspondence (i.e. correlation factor of 0.91) between the results of MODERN and the published results of other models currently used by the FRN scientific community (i.e. the Profile Distribution Model and the Mass Balance Model). The development and the cost free accessibility of MODERN (see modern.umweltgeo.unibas.ch) will ensure the promotion of wider application of FRNs for tracing soil erosion and sedimentation.

  7. Modeling of debris flow depositional patterns according to the catchment and sediment source area characteristics

    OpenAIRE

    2015-01-01

    A method to predict the most probable flow rheology in Alpine debris flows is presented. The methods classifies outcropping rock masses in catchments on the basis of the type of resulting unconsolidated deposits. The grain size distribution of the debris material and the depositional style of past debris flow events are related to the dominant flow processes: viscoplastic and frictional/collisional. Three catchments in the upper Susa Valley (Western Alps), characterized by different lithologi...

  8. Induction of complement proteins in a mouse model for cerebral microvascular Aβ deposition

    OpenAIRE

    DeFilippis Kelly; Fan Rong; Van Nostrand William E

    2007-01-01

    Abstract The deposition of amyloid β-protein (Aβ) in cerebral vasculature, known as cerebral amyloid angiopathy (CAA), is a common pathological feature of Alzheimer's disease and related disorders. In familial forms of CAA single mutations in the Aβ peptide have been linked to the increase of vascular Aβ deposits accompanied by a strong localized activation of glial cells and elevated expression of neuroinflammatory mediators including complement proteins. We have developed human amyloid-β pr...

  9. Advancement in additive manufacturing & numerical modelling considerations of direct energy deposition process

    OpenAIRE

    Quanren Zeng; Zhenhai Xu; Yankang Tian; Yi Qin

    2016-01-01

    The development speed and application range of the additive manufacturing (AM) processes, such as selective laser melting (SLM), laser metal deposition (LMD) or laser-engineering net shaping (LENS), are ever-increasing in modern advanced manufacturing field for rapid manufacturing, tooling repair or surface enhancement of the critical metal components. LMD is based on a kind of directed energy deposition (DED) technology which ejects a strand of metal powders into a moving molten pool caused ...

  10. Joint analysis of deposition fluxes and atmospheric concentrations of inorganic nitrogen and sulphur compounds predicted by six chemistry transport models in the frame of the EURODELTAIII project

    Science.gov (United States)

    Vivanco, M. G.; Bessagnet, B.; Cuvelier, C.; Theobald, M. R.; Tsyro, S.; Pirovano, G.; Aulinger, A.; Bieser, J.; Calori, G.; Ciarelli, G.; Manders, A.; Mircea, M.; Aksoyoglu, S.; Briganti, G.; Cappelletti, A.; Colette, A.; Couvidat, F.; D'Isidoro, M.; Kranenburg, R.; Meleux, F.; Menut, L.; Pay, M. T.; Rouïl, L.; Silibello, C.; Thunis, P.; Ung, A.

    2017-02-01

    In the framework of the UNECE Task Force on Measurement and Modelling (TFMM) under the Convention on Long-range Transboundary Air Pollution (LRTAP), the EURODELTAIII project is evaluating how well air quality models are able to reproduce observed pollutant air concentrations and deposition fluxes in Europe. In this paper the sulphur and nitrogen deposition estimates of six state-of-the-art regional models (CAMx, CHIMERE, EMEP MSC-W, LOTOS-EUROS, MINNI and CMAQ) are evaluated and compared for four intensive EMEP measurement periods (25 Feb-26 Mar 2009; 17 Sep-15 Oct 2008; 8 Jan-4 Feb 2007 and 1-30 Jun 2006). For sulphur, this study shows the importance of including sea salt sulphate emissions for obtaining better model results; CMAQ, the only model considering these emissions in its formulation, was the only model able to reproduce the high measured values of wet deposition of sulphur at coastal sites. MINNI and LOTOS-EUROS underestimate sulphate wet deposition for all periods and have low wet deposition efficiency for sulphur. For reduced nitrogen, all the models underestimate both wet deposition and total air concentrations (ammonia plus ammonium) in the summer campaign, highlighting a potential lack of emissions (or incoming fluxes) in this period. In the rest of campaigns there is a general underestimation of wet deposition by all models (MINNI and CMAQ with the highest negative bias), with the exception of EMEP, which underestimates the least and even overestimates deposition in two campaigns. This model has higher scavenging deposition efficiency for the aerosol component, which seems to partly explain the different behaviour of the models. For oxidized nitrogen, CMAQ, CAMx and MINNI predict the lowest wet deposition and the highest total air concentrations (nitric acid plus nitrates). Comparison with observations indicates a general underestimation of wet oxidized nitrogen deposition by these models, as well as an overestimation of total air concentration for

  11. A Three—Stage Metallogenic Model for Gold Deposits in Metamorphosed Microclastic Rocks

    Institute of Scientific and Technical Information of China (English)

    王秀璋; 程景平; 等

    1996-01-01

    Gld deposits occurring in metamorphosed microcelastic rocks are distributed extensively at home and abroad.Some deposits of this type are of superlarge tonnage.The formation of gold deposits in metamorphosed microclastic rocks involves three stages:the sedimentary stage,the regionally metamorphic stage,and the ore-forming stage.At the first stage,microclastic sedimentary source rocks were developed in a relatively semi-enclosed reducing sea basin and were enriched in carbon,sulfur and gold.At the second stage,the gold adsorbed on organic matter and clay minerals was relesed and poorly concentrated during the destruction of organic matter and the depletion of clay minerals by regional metamorphism with increase temperature and pressure.At the third stage,a tectono-hydrothermal event took place.As a result,gold was leached from metamorphosed microclastic rocks,transported to ore depositional locus and/or mixed with gold of other sources in the course of migration,and finally precipitared as ores.Gold deposits of this type were eventually formed at the third stage,and they also can be classified as the orogenic belt type and the activation zone type.The gold deposits occurring in metamorphosed microcalastic rocks are the products of reworking processes and the influence of magmatism should be taken into consideration in some cases.

  12. Synoptic evaluation of modelled and bioindicated atmospheric deposition of heavy metals in forests; Synoptische Auswertung modellierter atmosphaerischer Eintraege von Schwermetallen und deren Indikation durch Biomonitore in Waeldern

    Energy Technology Data Exchange (ETDEWEB)

    Nickel, Stefan; Schroeder, Winfried [Vechta Univ. (Germany). Lehrstuhl fuer Landschaftsoekologie; Fries, Caroline [PlanWerk - Buero fuer oekologische Fachplanungen, Nidda (Germany)

    2017-03-15

    Heavy metals (HM) concentrations in moss, leaves and needles and organic surface soil layers, derived from the European Moss Survey, the German Environmental Specimen Bank (ESB) and the ICP Forests were compared with those from deposition modelling by use of LOTOS-EUROS (LE) and EMEP/MSCE-HM in terms of their spatial patterns and temporal trends. The total atmospheric deposition differs considerably between the two models. HM concentrations in biomonitors (moss, leaves, and needles) were found to be predominantly higher correlated to deposition modelled by LE compared to EMEP. For Cd, strongest correlations could be found between deposition data calculated by LE and concentrations in moss (Europe, geostatistically estimated) and in needles (Germany). Regarding Pb, the coefficients of correlation came out to be the highest for EMEP deposition and measured element concentrations in moss (Europe) as well