WorldWideScience

Sample records for deposition mocvd process

  1. In-situ deposition of YBCO high-Tc superconducting thin films by MOCVD and PE-MOCVD

    Science.gov (United States)

    Zhao, J.; Noh, D. W.; Chern, C.; Li, Y. Q.; Norris, P. E.; Kear, B.; Gallois, B.

    1991-01-01

    Metal-Organic Chemical Vapor Deposition (MOCVD) offers the advantages of a high degree of compositional control, adaptability for large scale production, and the potential for low temperature fabrication. The capability of operating at high oxygen partial pressure is particularly suitable for in situ formation of high temperature superconducting (HTSC) films. Yttrium barium copper oxide (YBCO) thin films having a sharp zero-resistance transition with T(sub c) greater than 90 K and J(sub c) of approximately 10(exp 4) A on YSZ have been prepared, in situ, at a substrate temperature of about 800 C. Moreover, the ability to form oxide films at low temperature is very desirable for device applications of HTSC materials. Such a process would permit the deposition of high quality HTSC films with a smooth surface on a variety of substrates. Highly c-axis oriented, dense, scratch resistant, superconducting YBCO thin films with mirror-like surfaces have been prepared, in situ, at a reduced substrate temperature as low as 570 C by a remote microwave-plasma enhanced metal-organic chemical vapor deposition (PE-MOCVD) process. Nitrous oxide was used as a reactant gas to generate active oxidizing species. This process, for the first time, allows the formation of YBCO thin films with the orthorhombic superconducting phase in the as-deposited state. The as-deposited films grown by PE-MOCVD show attainment of zero resistance at 72 K with a transition width of about 5 K. MOCVD was carried out in a commercial production scale reactor with the capability of uniform deposition over 100 sq cm per growth run. Preliminary results indicate that PE-MOCVD is a very attractive thin film deposition process for superconducting device technology.

  2. In Situ deposition of YBCO high-T(sub c) superconducting thin films by MOCVD and PE-MOCVD

    Science.gov (United States)

    Zhao, J.; Noh, D. W.; Chern, C.; Li, Y. Q.; Norris, P.; Gallois, B.; Kear, B.

    1990-01-01

    Metalorganic Chemical Vapor Deposition (MOCVD) offers the advantages of a high degree of compositional control, adaptability for large scale production, and the potential for low temperature fabrication. The capability of operating at high oxygen partial pressure is particularly suitable for in situ formation of high temperature superconducting (HTSC) films. Yttrium barium copper oxide (YBCO) thin films having a sharp zero-resistance transition with T( sub c) greater than 90 K and Jc approx. 10 to the 4th power A on YSZ have been prepared, in situ, at a substrate temperature of about 800 C. Moreover, the ability to form oxide films at low temperature is very desirable for device applications of HTSC materials. Such a process would permit the deposition of high quality HTSC films with a smooth surface on a variety of substrates. Highly c-axis oriented, dense, scratch resistant, superconducting YBCO thin films with mirror-like surfaces have been prepared, in situ, at a reduced substrate temperature as low as 570 C by a remote microwave-plasma enhanced metalorganic chemical vapor deposition (PE-MOCVD) process. Nitrous oxide was used as a reactant gas to generate active oxidizing species. This process, for the first time, allows the formation of YBCO thin films with the orthorhombic superconducting phase in the as-deposited state. The as-deposited films grown by PE-MOCVD show attainment of zero resistance at 72 K with a transition width of about 5 K. MOCVD was carried out in a commercial production scale reactor with the capability of uniform deposition over 100 sq cm per growth run. Preliminary results indicate that PE-MOCVD is a very attractive thin film deposition process for superconducting device technology.

  3. Characterisation of titanium nitride films obtained by metalorganic chemical vapor deposition (MOCVD); Caracterizacao de filmes de nitreto de titanio obtidos por MOCVD

    Energy Technology Data Exchange (ETDEWEB)

    Pillis, M.F., E-mail: mfpillis@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (CCTM/IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Centro de Ciencia e Tecnologia de Materiais; Franco, A.C. [Universidade de Sao Paulo (IF/USP), SP (Brazil). Inst. de Fisica; Araujo, E.G. de [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Sacilotti, M. [Universidade Federal de Pernambuco (IF/UFPE), Recife, PE (Brazil). Inst. de Fisica; Fundacao de Amparo a Ciencia e Tecnologia de Pernambuco (FACEPE), Recife, PE (Brazil)

    2009-07-01

    Ceramic coatings have been widely used as protective coating to improve the life of cutting tools, for corrosion protection and in microelectronics, optical and medical areas. Transition metals nitrides are of special interest due to its high hardness and thermal stability. In this work thin films of titanium nitride were obtained by MOCVD (metalorganic chemical vapor deposition) process. The tests were carried out for 1h at 700 deg C under 80 and 100 mbar of pressure. The characterization was made by using scanning electron microscopy coupled with dispersive energy analysis, and X-ray diffraction. Preliminary results suggested that Ti{sub 2}N phase was formed and that the growth rate varied between 4 and 13 nm/min according to the process parameter considered. (author)

  4. Semiconductor Laser Diode Arrays by MOCVD (Metalorganic Chemical Vapor Deposition)

    Science.gov (United States)

    1987-09-01

    Roberts. N. J1. Mason. and M. Robinson, J. Cryst. Growth 68, 422 (1984). ’M. R. Leys. C. van Opdorp. M. P. A. .’iegers, and H. J. Talen -van der Mheen...geometry effects is and superlattices has been dominated obtained by including one measured by the MOCVD growth technology . data point in the analysis...Dapkus, Gallium : Arsenide Technology , D.K. Ferry, Ed., tices i Howard W. Sams and Co., Indianapolis, hetero- 1985, p. 79. s is nec- G . 4. G. Costrini and

  5. Process in manufacturing high efficiency AlGaAs/GaAs solar cells by MO-CVD

    Science.gov (United States)

    Yeh, Y. C. M.; Chang, K. I.; Tandon, J.

    1984-01-01

    Manufacturing technology for mass producing high efficiency GaAs solar cells is discussed. A progress using a high throughput MO-CVD reactor to produce high efficiency GaAs solar cells is discussed. Thickness and doping concentration uniformity of metal oxide chemical vapor deposition (MO-CVD) GaAs and AlGaAs layer growth are discussed. In addition, new tooling designs are given which increase the throughput of solar cell processing. To date, 2cm x 2cm AlGaAs/GaAs solar cells with efficiency up to 16.5% were produced. In order to meet throughput goals for mass producing GaAs solar cells, a large MO-CVD system (Cambridge Instrument Model MR-200) with a susceptor which was initially capable of processing 20 wafers (up to 75 mm diameter) during a single growth run was installed. In the MR-200, the sequencing of the gases and the heating power are controlled by a microprocessor-based programmable control console. Hence, operator errors can be reduced, leading to a more reproducible production sequence.

  6. Carbonaceous alumina films deposited by MOCVD from aluminium acetylacetonate: a spectroscopic ellipsometry study

    Indian Academy of Sciences (India)

    M P Singh; G Raghavan; A K Tyagi; S A Shivashankar

    2002-04-01

    Spectroscopic ellipsometry was used to characterize carbonaceous, crystalline aluminium oxide films grown on Si(100) by low-pressure metal organic chemical vapour deposition, using aluminium acetylacetonate as the precursor. The presence of carbon in the films, attribured to the use of a metalorganic precursor for the deposition of films, was identified and analysed by secondary ion mass spectroscopy and X-ray photoelectron sectroscopy, for the elemental distribution and the chemical nature of the carbon in the films, respectively. Ellipsometry measurments over the photon energy range 1.5-5 eV were used to derive the pseudo-dielectric function of the aluminium oxide-containing films. Multi-layer modelling using linear regression techniques and the effective medium approximation were carried out to extract the structural details of the specimens. The excellent fit between the simulated and experimental optical data validates the empirical model for alumina-containing coatings grown by MOCVD.

  7. MOCVD and ALD of rare earth containing multifunctional materials. From precursor chemistry to thin film deposition and applications

    Energy Technology Data Exchange (ETDEWEB)

    Milanov, Andrian Petrov

    2010-03-26

    The present thesis deals with the development of metal-organic complexes of rare elements. They should be used as novel precursors for the production of rare earth thin films by metal-organic chemical vapor deposition (MOCVD) and Atomic Layer Deposition (ALD). Within the work two precursor classes were examined, the tris-Malonato-complexes as well as the tris-Guanidinato-complexes of a series of rare earth metals. The latter showed excellent properties regarding to their volatility, their thermal stability, the defined decomposition and high reactivity towards water. They have been successfully used as precursors for the MOCVD of rare earth oxide layers. By using of a gadolinium guanidinate it could also be shown that the rare earth guanidinates are promising precursors for ALD of rare earth oxide and MOCVD of rare earth nitride layers. [German] Die vorliegende Dissertation beschaeftigt sich mit der Entwicklung von metallorganischen Komplexen der Seltenerd-Elemente. Diese sollten als neuartigen Precursoren fuer die Erzeugung von seltenerdhaltigen Duennschichten mittels Metallorganischer Chemischer Dampfabscheidung (MOCVD) und Atomic Layer Deposition (ALD) eingesetzt werden. Innerhalb der Arbeit wurden zwei Precursorklassen untersucht, die Tris-Malonato-Komplexe sowie die Tris-Gunanidinato-Komplexe einer Reihe von Seltenerdmetallen. Letztere zeigten hervorragende Eigenschaften bezueglich ihrer Fluechtigkeit, ihrer thermischen Stabilitaet, der definierten Zersetzung und der hohen Reaktivitaet gegenueber Wasser. Sie wurden erfolgreich als Precursoren fuer die MOCVD von Seltenerd-Oxid-Schichten eingesetzt. Unter Verwendung eines Gadolinium Guanidinats konnte ausserdem gezeigt werden, dass die Seltenerd-Guanidinate vielversprechende Precursoren fuer die ALD von Seltenerd-Oxid-Schichten sowie die MOCVD von Seltenerd-Nitrid-Schichten darstellen.

  8. The biocompatibility of titanium in a buffer solution: compared effects of a thin film of TiO2 deposited by MOCVD and of collagen deposited from a gel.

    Science.gov (United States)

    Popescu, Simona; Demetrescu, Ioana; Sarantopoulos, Christos; Gleizes, Alain N; Iordachescu, Dana

    2007-10-01

    This study aims at evaluating the biocompatibility of titanium surfaces modified according two different ways: (i) deposition of a bio-inert, thin film of rutile TiO(2) by chemical vapour deposition (MOCVD), and (ii) biochemical treatment with collagen gel, in order to obtain a bio-interactive coating. Behind the comparison is the idea that either the bio-inert or the bio-active coating has specific advantages when applied to implant treatment, such as the low price of the collagen treatment for instance. The stability in buffer solution was evaluated by open circuit potential (OCP) for medium time and cyclic voltametry. The OCP stabilized after 5.10(4) min for all the specimens except the collagen treated sample which presented a stable OCP from the first minutes. MOCVD treated samples stabilized to more electropositive values. Numeric results were statistically analysed to obtain the regression equations for long time predictable evolution. The corrosion parameters determined from cyclic curves revealed that the MOCVD treatment is an efficient way to improve corrosion resistance. Human dermal fibroblasts were selected for cell culture tests, taking into account that these cells are present in all bio-interfaces, being the main cellular type of connective tissue. The cells grew on either type of surface without phenotype modification. From the reduction of yellow, water-soluble 3-(4,5-dimethyldiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT cytotoxicity test), MOCVD treated samples offer better viability than mechanically polished Ti and collagen treated samples as well. Cell spreading, as evaluated from microscope images processed by the program Sigma Scan, showed also enhancement upon surface modification. Depending on the experimental conditions, MOCVD deposited TiO(2) exhibits different nanostructures that may influence biological behaviour. The results demonstrate the capacity of integration in simulated physiologic liquids for an implant pretreated by

  9. MOCVD of Cobalt Oxide Using Co-Actylacetonate As Precursor: Thin Film Deposition and Study of Physical Properties

    Directory of Open Access Journals (Sweden)

    S.M. Jogade

    2011-01-01

    Full Text Available Metal Organic Chemical Vapor Deposition (MOCVD is the deposition method of choice for achieving conformal uniform (composition and thickness continuous thin films over the micron geometry topology necessary for implementing advanced devices. Thin films of cobalt oxide were prepared by MOCVD technique on alumina substrate using a cobalt acetylacetonate as precursor. The thin films of cobalt oxide were deposited on alumina substrate by MOCVD at four different temperatures viz 490 °C, 515 °C, 535 °C, 565 °C. The as deposited samples are uniform and well adherent to the substrate. Thickness of the cobalt oxide film is maximum at temperature 535 °C. The crystalline and phase composition of films were examined by X-ray diffraction. The XRD reveals the crystalline nature with cubic in structure for all the samples. The surface morphology of the films were studied by scanning electron microscopy. The SEM image shows well defined closely packed grains for all the samples. The hexagonal shape of grains are observed for sample at temperature 515 °C. Raman spectroscopy shows Fm3m, 225 space groups for cobalt oxide thin films deposited on alumina substrate.

  10. Electrical and deep levels characteristics of ZnO/Si heterostructure by MOCVD deposition

    Institute of Scientific and Technical Information of China (English)

    Liu Ci-Hui; Liu Bing-Ce; Fu Zhu-Xi

    2008-01-01

    ZnO films have been prepared on p-type Si substrates by metal-organic chemical vapour deposition (MOCVD) at different total gas flow rates. The current versus voltage and temperature (I - V - T) characteristics, the deep-level transient spectroscopy (DLTS) and the photoluminescence (PL) spectra of the samples were measured. DLTS shows two deep-level centres of E1 (EC-0.13±0.02 eV) and E2 (EC-0.43±0.05eV) in sample 1202a, which has a ZnO/p-Si heterostructure. A deep level at EC-0.13±0.01 eV was also obtained from the I -T characteristics. It was considered to be the same as E1 obtained from DLTS measurement. The emission related to this deep level center was detected by PL spectra. In addition, the energy location and the relative trap density of E1 was varied when the total gas flow rate was changed.

  11. Model Research On Deposition Of Pure Aluminium Oxide Layers By MOCVD Method

    Directory of Open Access Journals (Sweden)

    Sawka A.

    2015-06-01

    Full Text Available The purpose of this research is to develop an optimal method for synthesizing of nanocrystalline Al2O3 monolayers at high growth rates on cemented carbides coated with an intermediate layer of pre-Al2O3-C (composite layers Al2O3-C/Al2O3. The use of quartz glass substrate allows for obtaining information about the quality of the layers such the thickness and density, because of its high transparency. The Al2O3 layers that do not containing carbon were synthesized on quartz glass by MOCVD using aluminum acetylacetonate and air as the reactants at temperatures of 700-1000°C. Argon was also a carrier gas. The resulting layers were transparent, as homogeneous nucleation did not occur during the synthesis process. The layers synthesized at lower temperatures were subjected to a crystallization process at temperatures above 900°C. The crystallization process was studied as a function of time and temperature. The obtained layers were characterized by their nanocrystalline microstructure.

  12. EXAFS study on yttrium oxide thin films deposited by RF plasma enhanced MOCVD under the influence of varying RF self-bias

    Energy Technology Data Exchange (ETDEWEB)

    Chopade, S.S. [Laser and Plasma Technology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Nayak, C.; Bhattacharyya, D.; Jha, S.N.; Tokas, R.B.; Sahoo, N.K. [Atomic and Molecular Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Patil, D.S., E-mail: dspatil@barc.gov.in [Laser and Plasma Technology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India)

    2014-09-30

    Highlights: • Local structure and surface morphology of Y{sub 2}O{sub 3} thin films deposited by RF plasma MOCVD at different RF self-bias level investigated by EXAFS and AFM. • Bond length and oxygen coordination changes with bias. • Films are nanostructured with structural distortion at higher bias. • Surface morphology of films changes with bias. • Changes observed in local structural parameters are correlated with observed properties of films. • EXAFS study on Y{sub 2}O{sub 3} films deposited under different RF self-bias levels is not been reported so far. - Abstract: Extended X-ray absorption fine structure (EXAFS) and atomic force microscopy (AFM) studies are carried out on yttrium oxide (Y{sub 2}O{sub 3}) thin films deposited by radio frequency plasma assisted metalorganic chemical vapor deposition (MOCVD) process at different RF self-bias (−50 V to −175 V with a step of −25 V) on silicon substrates. A (2,2,6,6-tetramethyl-3,5-heptanedionate) yttrium (commonly known as Y(thd){sub 3}) precursor is used in a plasma of argon and oxygen gases at a substrate temperature of 350 °C for deposition. To gain profound understanding about influence of RF self-bias on the properties of the deposited Y{sub 2}O{sub 3} thin films, the films are characterized by EXAFS and AFM measurements. From the EXAFS measurements it is observed that oxygen co-ordination is high for the film deposited at the lowest self bias (−50 V) which is due to presence of higher amount of hydroxyl group in the sample. Oxygen coordination however decrease to lower values for the films deposited at self bias of −75 V. Y-O bond length decreases gradually with increase in self bias indicating reduction in hydroxyl content. However there is reduction in bond length for the film deposited at −100 V as compared to other films resulting from structural changes. The disorder factor obtained from EXAFS measurement increases for films deposited at voltages beyond −125 V due to

  13. Driving Down HB-LED Costs. Implementation of Process Simulation Tools and Temperature Control Methods of High Yield MOCVD Growth

    Energy Technology Data Exchange (ETDEWEB)

    Quinn, William [Veeco Process Equipment, Inc., Plainview, NY (United States)

    2012-04-30

    . Programmatically, improvements made in Phase I are applied to developments of Phase II when applicable. Phase three is the culmination of the individual tasks from both phases one and two applied to proposed production platforms. We selectively combine previously demonstrated tasks and other options to develop a high-volume production-worthy MOCVD system demonstrating >3x throughput, 1.3x capital efficiency, and 0.7x cost of ownership. In a parallel demonstration we validate the concept of an improved, larger deposition system which utilizes the predictive modeling of chemistry-based flow analysis and extensions of the improvements demonstrated on the current platforms. This validation includes the build and testing of a prototype version of the hardware and demonstration of 69% reduction in the cost of ownership. Also, in this phase we present a stand-alone project to develop a high-temperature system which improves source efficiency by 30% while concurrently increasing growth rate by 1.3x. The material quality is held to the same material quality specifications of our existing baseline processes. The merits of other line item tasks in phase three are discussed for inclusion on next-generation platforms.

  14. Nonlinear optical characterization of GaN layers grown by MOCVD on sapphire[Metal Organic Chemical Vapor Deposition

    Energy Technology Data Exchange (ETDEWEB)

    Tiginyanu, I.M.; Kravetsky, I.V.; Pavlidis, D.; Eisenbach, A.; Hildebrandt, R.; Marowsky, G.; Hartnagel, H.L.

    2000-07-01

    Optical second and third harmonic generation measurements were carried out on GaN layers grown by metalorganic chemical vapor deposition (MOCVD) on sapphire substrates. The measured d{sub 33} is 33 times the d{sub 11} of quartz. The angular dependence of second-harmonic intensity as well as the measured ratios d{sub 33}/d{sub 15} = {minus}2.02 and d{sub 33}/d{sub 31} = {minus}2.03 confirm the wurzite structure of the studied GaN layers with the optical c-axis oriented perpendicular to the sample surface. Fine oscillations were observed in the measured second and third harmonic angular dependencies. A simple model based on the interference of the fundamental beam in the sample was used to explain these oscillations.

  15. Friction and wear behavior of nitrogen-doped ZnO thin films deposited via MOCVD under dry contact

    Directory of Open Access Journals (Sweden)

    U.S. Mbamara

    2016-06-01

    Full Text Available Most researches on doped ZnO thin films are tilted toward their applications in optoelectronics and semiconductor devices. Research on their tribological properties is still unfolding. In this work, nitrogen-doped ZnO thin films were deposited on 304 L stainless steel substrate from a combination of zinc acetate and ammonium acetate precursor by MOCVD technique. Compositional and structural studies of the films were done using Rutherford Backscattering Spectroscopy (RBS and X-ray Diffraction (XRD. The frictional behavior of the thin film coatings was evaluated using a ball-on-flat configuration in reciprocating sliding under dry contact condition. After friction test, the flat and ball counter-face surfaces were examined to assess the wear dimension and failure mechanism. Both friction behavior and wear (in the ball counter-face were observed to be dependent on the crystallinity and thickness of the thin film coatings.

  16. Effect of deposition conditions on the growth rate and electrical properties of ZnO thin films grown by MOCVD

    Energy Technology Data Exchange (ETDEWEB)

    Roro, K.T.; Botha, J.R.; Leitch, A.W.R. [Department of Physics, Nelson Mandela Metropolitan University, P.O. Box 77000, Port Elizabeth 6031 (South Africa)

    2008-07-01

    ZnO thin films have been grown on glass substrates by MOCVD. The effect of deposition conditions such as VI/II molar ratio, DEZn flow rate and total reactor pressure on the growth rate and electrical properties of the films was studied. It is found that the growth rate decreases with an increase in the VI/II molar ratio. This behaviour is ascribed to the competitive adsorption of reactant species on the growth surface. The growth rate increases with an increase in DEZn flow rate, as expected. It is shown that the carrier concentration is independent of the DEZn flow rate. An increase in the total reactor pressure yields a decrease in growth rate. This phenomenon is attributed to the depletion of the gas phase due to parasitic prereactions between zinc and oxygen species at high pressure. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  17. Three-dimensional modelling of horizontal chemical vapor deposition. I - MOCVD at atmospheric pressure

    Science.gov (United States)

    Ouazzani, Jalil; Rosenberger, Franz

    1990-01-01

    A systematic numerical study of the MOCVD of GaAs from trimethylgallium and arsine in hydrogen or nitrogen carrier gas at atmospheric pressure is reported. Three-dimensional effects are explored for CVD reactors with large and small cross-sectional aspect ratios, and the effects on growth rate uniformity of tilting the susceptor are investigated for various input flow rates. It is found that, for light carrier gases, thermal diffusion must be included in the model. Buoyancy-driven three-dimensional flow effects can greatly influence the growth rate distribution through the reactor. The importance of the proper design of the lateral thermal boundary conditions for obtaining layers of uniform thickness is emphasized.

  18. Er{sub 2}O{sub 3} coating synthesized with MOCVD process on the large interior surface of the metal tube

    Energy Technology Data Exchange (ETDEWEB)

    Hishinuma, Yoshimitsu, E-mail: Hishinuma.yoshimitsu@nifs.ac.jp [National Institute for Fusion Science, Toki (Japan); Tanaka, Tsutomu [Toshima MFG Co.,Ltd., Saitama (Japan); Tanaka, Teruya; Nagasaka, Takuya [National Institute for Fusion Science, Toki (Japan); Tasaki, Yuzo [Toshima MFG Co.,Ltd., Saitama (Japan); Sagara, Akio; Muroga, Takeo [National Institute for Fusion Science, Toki (Japan)

    2011-10-15

    The electrical insulating coating on the blanket components such as ducts and walls is an attractive concept for reducing the Magneto Hydrodynamic (MHD) pressure drop. Erbium oxide (Er{sub 2}O{sub 3}) is a promising candidate coating because of its high stability in liquid lithium and high electrical resistivity according to the results of Er{sub 2}O{sub 3} bulk and Physical Vapor Deposition (PVD) thin film. We have investigated the Metal Organic Chemical Vapor Deposition (MOCVD) process for the large area and complicatedly shaped Er{sub 2}O{sub 3} coating. The Er{sub 2}O{sub 3} insulator coating formation on the various metal disk substrates was successfully carried out. The crystallinity of the Er{sub 2}O{sub 3} coating on the metal substrate increased with the decrease in the surface roughness of the metal substrate and, thus, the crystallinity of the coating can be improved by reducing the roughness of the substrate surface. Furthermore, the Er{sub 2}O{sub 3} coating into the interior surface of the honing SUS pipe, whose interior surface was polished by rotating grinding and brush, was formed stably through the MOCVD process.

  19. Thermodynamic analysis of the deposition of GaAs epitaxial layers prepared by the MOCVD method

    Energy Technology Data Exchange (ETDEWEB)

    Leitner, J.; Mikulec, J. (Dept. of Materials for Electronics, Prague Inst. of Chemical Tech. (Czechoslovakia)); Vonka, P. (Dept. of Physical Chemistry, Prague Inst. of Chemical Tech. (Czechoslovakia)); Stejskal, J.; Hladina, R.; Klima, P. (TESLA Research Inst. of Radiocommunication, Prague (Czechoslovakia))

    1991-06-01

    On the basis of a detailed thermodynamic analysis of the Ga-As-C-H system, the initial conditions have been determined, under which the reaction of trimethylgallium (TMGa) and arsine in a hydrogen atmosphere produces a single condensed phase - solid GaAs. Liquid gallium with a small amount of dissolved arsenic is formed simultaneously when the initial ratio of the elements is B{sup V}/A{sup III}<1, whereas solid graphite is simultaneously deposited at a high initial concentration of TMGa, especially at an elevated temperature and a decreased pressure. The equilibrium concentrations of the gaseous substances are strongly influenced by the initial B{sup V}/A{sup III} ratio. As{sub 2}, As{sub 4}, and CH{sub 4} are the dominant species if B{sup V}/A{sup III}>1, while CH{sub 4}, GaCH{sub 3}, GaH and GaH{sub 2} are the most abundant if B{sup V}/A{sup III} < 1. The calculated deposition diagrams are in good qualitative agreement with experimental results published in the literature. A comparison of the calculated composition of the gaseous phase and the results of experiments under the conditions used for the deposition of GaAs epitaxial layers leads to the conclusion that the course and results of the deposition process are significantly affected by transport and kinetic phenomena. (orig.).

  20. Highly conformal and high-ionic conductivity thin-film electrolyte for 3D-structured micro batteries: Characterization of LiPON film deposited by MOCVD method

    Science.gov (United States)

    Fujibayashi, Takashi; Kubota, Yusuke; Iwabuchi, Katsuhiko; Yoshii, Naoki

    2017-08-01

    This paper reports a lithium phosphorus oxynitride (LiPON) thin-film electrolyte deposited using a metalorganic-chemical vapor deposition (MOCVD) method for 3D-structured micro batteries. It is shown that the MOCVD-LiPON film has both highly-conformal step coverage on a patterned substrate with line/space=2μm/2μm and aspect ratio=1 (51±3 nm) and high-ionic conductivity for very thin films deposited at 4.7 nm/min (5.9×10-6 S/cm for 190 nm and 5.3×10-6 S/cm for 95 nm). Detailed material characterization attributes the enhancement in ionic conductivity to a decrease in nanocrystallite size and improvement in chemical-composition uniformity in the film. In addition, electrochemical characterization of an all-solid-state thin-film battery fabricated with the 190 nm-thick LiPON film (Si substrate/Ti/Pt/LiCoO2/LiPON/a-Si:H/Cu) demonstrates that the LiPON film can successfully act as the electrolyte for lithium-ion batteries. Therefore, the MOCVD-LiPON film is a promising candidate material to realize 3D-structured micro batteries in the near future.

  1. Highly conformal and high-ionic conductivity thin-film electrolyte for 3D-structured micro batteries: Characterization of LiPON film deposited by MOCVD method

    Directory of Open Access Journals (Sweden)

    Takashi Fujibayashi

    2017-08-01

    Full Text Available This paper reports a lithium phosphorus oxynitride (LiPON thin-film electrolyte deposited using a metalorganic-chemical vapor deposition (MOCVD method for 3D-structured micro batteries. It is shown that the MOCVD-LiPON film has both highly-conformal step coverage on a patterned substrate with line/space=2μm/2μm and aspect ratio=1 (51±3 nm and high-ionic conductivity for very thin films deposited at 4.7 nm/min (5.9×10-6 S/cm for 190 nm and 5.3×10-6 S/cm for 95 nm. Detailed material characterization attributes the enhancement in ionic conductivity to a decrease in nanocrystallite size and improvement in chemical-composition uniformity in the film. In addition, electrochemical characterization of an all-solid-state thin-film battery fabricated with the 190 nm-thick LiPON film (Si substrate/Ti/Pt/LiCoO2/LiPON/a-Si:H/Cu demonstrates that the LiPON film can successfully act as the electrolyte for lithium-ion batteries. Therefore, the MOCVD-LiPON film is a promising candidate material to realize 3D-structured micro batteries in the near future.

  2. Développement de conducteurs à base d'YBaCuO
    sur des substrats flexibles par MOCVD

    OpenAIRE

    CAROFF, Tristan

    2008-01-01

    The stake of this study was to realize low cost superconducting wires for current transport and current limitation, using original and inexpensive processes like rolling for the elaboration of the substrate, and chemical deposition methods MOD (metal organic decomposition) and MOCVD (metal organic chemical vapor deposition) for the different layers (buffer layers and superconducting film).Pulsed injection MOCVD technique is well adapted for coated conductor processing: it allows obtaining rep...

  3. Growth and characterization of germanium epitaxial film on silicon (001 with germane precursor in metal organic chemical vapour deposition (MOCVD chamber

    Directory of Open Access Journals (Sweden)

    Kwang Hong Lee

    2013-09-01

    Full Text Available The quality of germanium (Ge epitaxial film grown directly on a silicon (Si (001 substrate with 6° off-cut using conventional germane precursor in a metal organic chemical vapour deposition (MOCVD system is studied. The growth sequence consists of several steps at low temperature (LT at 400 °C, intermediate temperature ramp (LT-HT of ∼10 °C/min and high temperature (HT at 600 °C. This is followed by post-growth annealing in hydrogen at temperature ranging from 650 to 825 °C. The Ge epitaxial film of thickness ∼ 1 μm experiences thermally induced tensile strain of 0.11 % with a treading dislocation density (TDD of ∼107/cm2 and the root-mean-square (RMS roughness of ∼ 0.75 nm. The benefit of growing Ge epitaxial film using MOCVD is that the subsequent III-V materials can be grown in-situ without the need of breaking the vacuum hence it is manufacturing worthy.

  4. Vacuum MOCVD fabrication of high efficience cells

    Science.gov (United States)

    Partain, L. D.; Fraas, L. M.; Mcleod, P. S.; Cape, J. A.

    1985-01-01

    Vacuum metal-organic-chemical-vapor-deposition (MOCVD) is a new fabrication process with improved safety and easier scalability due to its metal rather than glass construction and its uniform multiport gas injection system. It uses source materials more efficiently than other methods because the vacuum molecular flow conditions allow the high sticking coefficient reactants to reach the substrates as undeflected molecular beams and the hot chamber walls cause the low sticking coefficient reactants to bounce off the walls and interact with the substrates many times. This high source utilization reduces the materials costs power device and substantially decreases the amounts of toxic materials that must be handled as process effluents. The molecular beams allow precise growth control. With improved source purifications, vacuum MOCVD has provided p GaAs layers with 10-micron minority carrier diffusion lengths and GaAs and GaAsSb solar cells with 20% AMO efficiencies at 59X and 99X sunlight concentration ratios. Mechanical stacking has been identified as the quickest, most direct and logical path to stacked multiple-junction solar cells that perform better than the best single-junction devices. The mechanical stack is configured for immediate use in solar arrays and allows interconnections that improve the system end-of-life performance in space.

  5. Corrosion resistant coatings (Al2O3) produced by metal organic chemical vapour deposition using aluminium-tri-sec-butoxide

    NARCIS (Netherlands)

    Haanappel, V.A.C.; Corbach, van H.D.; Fransen, T.; Gellings, P.J.

    1993-01-01

    The metal organic chemical vapour deposition (MOCVD) of amorphous alumina films on steel was performed in nitrogen at atmospheric pressure. This MOCVD process is based on the thermal decomposition of aluminium-tri-sec-butoxide (ATSB). The effect of the deposition temperature (within the range 290–42

  6. Optimization of the low-temperature MOCVD process for PZT thin films

    CERN Document Server

    Wang, C H; Choi, D J

    2000-01-01

    Pb(Zr sub X Ti sub 1 sub - sub X)O sub 3 (PZT) thin films of about 0.34 nm were successfully grown at a low temperature of 500 .deg. C by metalorganic chemical vapor deposition with a beta-diketonate complex of Pb(tmhd) sub 2 , zirconium t-butoxide, and titanium isopropoxide as source precursors. Ferroelectric capacitors of a Pt/PZT/Pt configuration were fabricated, and their structural and electrical properties were investigated as a function of the input Pb/(Zr+Ti) and Zr/(Zr+Ti) source ratios. The structure of the as-grown films at 500 .deg. C changed from tetragonal to pseudocubic with increasing the Zr/(Zr+Ti) ratio above an input Pb/(Zr+Ti) source ratio of 5.0 while a 2nd phase of ZrO sub 2 was only observed below Pb/(Zr+Ti) ratio of 5.0, regardless of the Zr/(Zr+Ti) ratio. The dielectric constant and loss of the PZT films were 150-1200 and 0.01-0.04 at 100 kHz, respectively, Leakage current densities decreased with increasing the Zr/(Zr+Ti) ratio. The process window for growing a single phase PZT is ve...

  7. a Dlts Study of the EL2 Deep Level in Epitaxial Layers of GALLIUM(1-X) Indium(x) Arsenide Deposited by Mocvd

    Science.gov (United States)

    Lang, Rick

    1990-01-01

    The EL2 deep level is the dominant naturally occurring electron trapping level in metal organic chemical vapour deposited (MOCVD) GaAs. It is also present in ternary alloys such as Ga_{1-x} Al_{x}As, GaAs_{rm 1-x}P _{x} and Ga_ {1-x}In_{ x}As where the changing composition of the crystal lattice alters the local environment of the deep levels. This can influence the properties of the deep level wave functions due to their sensitivity to their immediate environment. In the present work Deep Level Transient Spectroscopy (DLTS) has been employed to measure the thermal activation energy of the EL2 deep level in Ga_{ 1-x}In_{x}As epilayers deposited by low pressure MOCVD onto degenerately doped GaAs substrates. To perform these measurements Au Schottky barrier diodes were fabricated on the epilayers and characterized by Current-Voltage (I -V) and Capacitance-Voltage (C-V) measurements. For some of the samples investigated, the results of these measurements and the DLTS measurements performed using various biasing conditions revealed either back-to-back diode behaviour, or large temperature dependencies for the calculated depletion region widths, or severe bias-sensitive variations in the DLTS spectra. Such behaviours are related to conditions at the Schottky interface and denote that the DLTS results are distorted and unreliable. After elimination of these distorted results, two different dependences of the EL2 thermal activation energy on the indium concentration of the epilayer were apparent. The dependences differed for epilayers deposited using different substrate orientations and V/III reagent ratios during epilayer deposition. For both cases the thermal activation energy decreased with increasing indium concentration in the epilayers. Investigations of the DLTS measurement conditions were made to determine if the differences in the thermal activation energy dependences on the indium concentrations were caused by conditions which are known to influence the

  8. 3D CFD Simulations of MOCVD Synthesis System of Titanium Dioxide Nanoparticles

    Directory of Open Access Journals (Sweden)

    Siti Hajar Othman

    2013-01-01

    Full Text Available This paper presents the 3-dimensional (3D computational fluid dynamics (CFD simulation study of metal organic chemical vapor deposition (MOCVD producing photocatalytic titanium dioxide (TiO2 nanoparticles. It aims to provide better understanding of the MOCVD synthesis system especially of deposition process of TiO2 nanoparticles as well as fluid dynamics inside the reactor. The simulated model predicts temperature, velocity, gas streamline, mass fraction of reactants and products, kinetic rate of reaction, and surface deposition rate profiles. It was found that temperature distribution, flow pattern, and thermophoretic force considerably affected the deposition behavior of TiO2 nanoparticles. Good mixing of nitrogen (N2 carrier gas and oxygen (O2 feed gas is important to ensure uniform deposition and the quality of the nanoparticles produced. Simulation results are verified by experiment where possible due to limited available experimental data. Good agreement between experimental and simulation results supports the reliability of simulation work.

  9. High mobility, large linear magnetoresistance, and quantum transport phenomena in Bi2Te3 films grown by metallo-organic chemical vapor deposition (MOCVD).

    Science.gov (United States)

    Jin, Hyunwoo; Kim, Kwang-Chon; Seo, Juhee; Kim, Seong Keun; Cheong, Byung-Ki; Kim, Jin-Sang; Lee, Suyoun

    2015-11-07

    We investigated the magnetotransport properties of Bi2Te3 films grown on GaAs (001) substrate by a cost-effective metallo-organic chemical vapor deposition (MOCVD). We observed the remarkably high carrier mobility and the giant linear magnetoresistance (carrier mobility ∼ 22 000 cm(2) V(-1) s(-1), magnetoresistance ∼ 750% at 1.8 K and 9 T for a 100 nm thick film) that depends on the film thickness. In addition, the Shubnikov-de Haas oscillation was observed, from which the effective mass was calculated to be consistent with the known value. From the thickness dependence of the Shubnikov-de Haas oscillation, it was found that a two dimensional electron gas with the conventional electron nature coexists with the topological Dirac fermion states and dominates the carrier transport in the Bi2Te3 film with thickness higher than 300 nm. These results are attributed to the intrinsic nature of Bi2Te3 in the high-mobility transport regime obtained by a deliberate choice of the substrate and the growth conditions.

  10. Recycling of metal-organic chemical vapor deposition waste of GaN based power device and LED industry by acidic leaching: Process optimization and kinetics study

    Science.gov (United States)

    Swain, Basudev; Mishra, Chinmayee; Kang, Leeseung; Park, Kyung-Soo; Lee, Chan Gi; Hong, Hyun Seon; Park, Jeung-Jin

    2015-05-01

    Recovery of metal values from GaN, a metal-organic chemical vapor deposition (MOCVD) waste of GaN based power device and LED industry is investigated by acidic leaching. Leaching kinetics of gallium rich MOCVD waste is studied and the process is optimized. The gallium rich waste MOCVD dust is characterized by XRD and ICP-AES analysis followed by aqua regia digestion. Different mineral acids are used to find out the best lixiviant for selective leaching of the gallium and indium. Concentrated HCl is relatively better lixiviant having reasonably faster kinetic and better leaching efficiency. Various leaching process parameters like effect of acidity, pulp density, temperature and concentration of catalyst on the leaching efficiency of gallium and indium are investigated. Reasonably, 4 M HCl, a pulp density of 50 g/L, 100 °C and stirring rate of 400 rpm are the effective optimum condition for quantitative leaching of gallium and indium.

  11. MOCVD growth of GaBN on 6H-SiC (0001) substrates[Metal Organic Chemical Vapor Deposition

    Energy Technology Data Exchange (ETDEWEB)

    Wei, C.H.; Xie, Z.Y.; Edgar, J.H.; Zeng, K.C.; Lin, J.Y.; Jiang, H.X.; Chaudhuri, J.; Ignatiev, C.; Braski, D.N.

    2000-04-01

    B{sub x}Ga{sub 1{minus}x}N films were deposited on 6H-SiC (0001) substrates at 1,000 C by low pressure MOVPE using diborane, trimethylgallium, and ammonia as precursors. The presence of boron was detected by Auger scanning microprobe, the shift of the (00.2) x-ray diffraction peak, and low-temperature photoluminescence. A single-phase B{sub x}Ga{sub 1{minus}x}N alloy with x = 1.5% was produced at the gas phase B/Ga ratio of 0.005. Phase separation into wurtzite BGaN and the B-rich phase occurred for a B/Ga ratio in the 0.01--0.2 range. Only BN was formed by B/Ga > 0.2. The B-rich phase was identified as h-BN with sp{sup 2} bonding based on the results of Fourier transform infrared spectroscopy. As the diborane flow exceeds the threshold concentration, the growth rate of GBaN decreases sharply, because the growth of GaN is poisoned by the formation of the slow growing BN phase. The band edge emission of B{sub x}Ga{sub 1{minus}x}N varies from 3.451 eV for x = 0% with FWHM of 39.2 meV to 3.465 eV for x = 1.5% with FWHM of 35.1 meV. The narrower FWHM indicates that the quality of GaN epilayer is improved with a small amount of boron incorporation. The PL line widths become broader as more boron is introduced into the solid solution.

  12. Gas phase depletion and flow dynamics in horizontal MOCVD reactors

    Science.gov (United States)

    Van de Ven, J.; Rutten, G. M. J.; Raaijmakers, M. J.; Giling, L. J.

    1986-08-01

    Growth rates of GaAs in the MOCVD process have been studied as a function of both lateral and axial position in horizontal reactor cells with rectangular cross-sections. A model to describe growth rates in laminar flow systems on the basis of concentration profiles under diffusion controlled conditions has been developed. The derivation of the growth rate equations includes the definition of an entrance length for the concentration profile to developed. In this region, growth rates appear to decrease with the 1/3 power of the axial position. Beyond this region, an exponential decrease is found. For low Rayleigh number conditions, the present experimental results show a very satisfactory agreement with the model without parameter fitting for both rectangular and tapered cells, and with both H 2 and N 2 as carrier gases. Theory also predicts that uniform deposition can be obtained over large areas in the flow direction for tapered cells, which has indeed been achieved experimentally. The influence of top-cooling in the present MOCVD system has been considered in more detail. From the experimental results, conclusions could be drawn concerning the flow characteristics. For low Rayleigh numbers (present study ≲ 700) it follows that growth rate distributions correspond with forced laminar flow characteristics. For relatively high Rayleigh numbers (present work 1700-2800), free convective effects with vortex formation are important. These conclusions are not specific for the present system, but apply to horizontal cold-wall reactors in general. On the basis of the present observations, recommendations for a cell design to obtain large area homogeneous deposition have been formulated. In addition, this work supports the conclusion that the final decomposition of trimethylgallium in the MOCVD process mainly takes place at the hot substrate and susceptor and not in the gas phase.

  13. Synthesis, structure, vapour pressure and deposition of ZnO thin film by plasma assisted MOCVD technique using a novel precursor bis[(pentylnitrilomethylidine) (pentylnitrilomethylidine-μ-phenalato)]dizinc(II)

    Science.gov (United States)

    Chandrakala, C.; Sravanthi, P.; Raj Bharath, S.; Arockiasamy, S.; George Johnson, M.; Nagaraja, K. S.; Jeyaraj, B.

    2017-02-01

    A novel binuclear zinc schiff's base complex bis[(pentylnitrilomethylidine)(pentylnitrilomethylidine-μ-phenalato)]dizinc(II) (hereafter referred as ZSP) was prepared and used as a precursor for the deposition of ZnO thin film by MOCVD. The dynamic TG run of ZSP showed sufficient volatility and good thermal stability. The temperature dependence of vapour pressure measured by transpiration technique yielded a value of 55.8 ± 2.3 kJ mol-1 for the enthalpy of sublimation (ΔH°sub) in the temperature range of 423-503 K. The crystal structure of ZSP was solved by single crystal XRD which exhibits triclinic crystal system with the space group of Pī. The molecular mass of ZSP was determined by mass spectrometry which yielded the m/z value of 891 and 445 Da corresponding to its dimeric as well as monomeric form. The complex ZSP was further characterized by FT-IR and NMR. The demonstration of ZnO thin film deposition was carried out by using plasma assisted MOCVD. The thin film XRD confirmed the highly oriented (002) ZnO thin films on Si(100) substrate. The uniformity and composition of the thin film were analyzed by SEM/EDX. The band gap of ZnO thin film measurement indicated the blue shift with the value of 3.79 eV.

  14. Investigation of H2/CH4 mixed gas plasma post-etching process for ZnO:B front contacts grown by LP-MOCVD method in silicon-based thin-film solar cells

    Science.gov (United States)

    Wang, Li; Zhang, Xiaodan; Zhao, Ying; Yamada, Takuto; Naito, Yusuke

    2014-10-01

    A new plasma post-etching method, H2/CH4 mixed gas plasma, is introduced to modify ZnO:B films grown by LP-MOCVD technique, successfully relaxing the double trade-offs, i.e., transparency/conductivity trade-off and surface texture/Voc and FF trade-off. To deeply evaluate the post-etching process, optical emission spectroscopy technique is applied to diagnose the plasma condition. Upon different etching power, three distinct possible etching mechanisms are identified by analyzing the evolution of Hα*, Hβ*, CH* emission species in the plasma space. It is demonstrated that Hβ* and CH* species are responsible for the physical etching process and chemical etching process, respectively, from which a new “soft” surface morphology is formed with a combination of micro- and nano-sized texture. Additionally, Hα* species can bond with ZnO and also passivate the grains boundaries, thereby making both the carrier concentration and hall mobility increase. This process is defined as chemical bonding process. Finally, pin-type a-Si:H single-junction solar cells with an optimized device structure is grown on the etched ZnO:B substrate. The corresponding electrical parameters, such as Jsc, Voc and FF, are simultaneously improved compared with the solar cell deposited on as-grown ZnO:B substrate with the same fabrication process. As a consequence, a noteworthy 8.85% conversion-efficiency is achieved with an absorber layer thickness only 160 nm.

  15. Multilayer porous structures of HVPE and MOCVD grown GaN for photonic applications

    Science.gov (United States)

    Braniste, T.; Ciers, Joachim; Monaico, Ed.; Martin, D.; Carlin, J.-F.; Ursaki, V. V.; Sergentu, V. V.; Tiginyanu, I. M.; Grandjean, N.

    2017-02-01

    In this paper we report on a comparative study of electrochemical processes for the preparation of multilayer porous structures in hydride vapor phase epitaxy (HVPE) and metal organic chemical vapor phase deposition (MOCVD) grown GaN. It was found that in HVPE-grown GaN, multilayer porous structures are obtained due to self-organization processes leading to a fine modulation of doping during the crystal growth. However, these processes are not totally under control. Multilayer porous structures with a controlled design have been produced by optimizing the technological process of electrochemical etching in MOCVD-grown samples, consisting of five pairs of thin layers with alternating-doping profiles. The samples have been characterized by SEM imaging, photoluminescence spectroscopy, and micro-reflectivity measurements, accompanied by transfer matrix analysis and simulations by a method developed for the calculation of optical reflection spectra. We demonstrate the applicability of the produced structures for the design of Bragg reflectors.

  16. Valorization of GaN based metal-organic chemical vapor deposition dust a semiconductor power device industry waste through mechanochemical oxidation and leaching: A sustainable green process.

    Science.gov (United States)

    Swain, Basudev; Mishra, Chinmayee; Lee, Chan Gi; Park, Kyung-Soo; Lee, Kun-Jae

    2015-07-01

    Dust generated during metal organic vapor deposition (MOCVD) process of GaN based semiconductor power device industry contains significant amounts of gallium and indium. These semiconductor power device industry wastes contain gallium as GaN and Ga0.97N0.9O0.09 is a concern for the environment which can add value through recycling. In the present study, this waste is recycled through mechanochemical oxidation and leaching. For quantitative recovery of gallium, two different mechanochemical oxidation leaching process flow sheets are proposed. In one process, first the Ga0.97N0.9O0.09 of the MOCVD dust is leached at the optimum condition. Subsequently, the leach residue is mechanochemically treated, followed by oxidative annealing and finally re-leached. In the second process, the MOCVD waste dust is mechanochemically treated, followed by oxidative annealing and finally leached. Both of these treatment processes are competitive with each other, appropriate for gallium leaching and treatment of the waste MOCVD dust. Without mechanochemical oxidation, 40.11 and 1.86 w/w% of gallium and Indium are leached using 4M HCl, 100°C and pulp density of 100 kg/m(3,) respectively. After mechanochemical oxidation, both these processes achieved 90 w/w% of gallium and 1.86 w/w% of indium leaching at their optimum condition.

  17. Structural characterization of one-dimensional ZnO-based nanostructures grown by MOCVD

    Energy Technology Data Exchange (ETDEWEB)

    Sallet, Vincent; Falyouni, Farid; Marzouki, Ali; Haneche, Nadia; Sartel, Corinne; Lusson, Alain; Galtier, Pierre [Groupe d' Etude de la Matiere Condensee (GEMAC), CNRS-Universite de Versailles St-Quentin, Meudon (France); Agouram, Said [SCSIE, Universitat de Valencia, Burjassot (Spain); Enouz-Vedrenne, Shaima [Thales Research and Technology France, Palaiseau (France); Munoz-Sanjose, Vicente [Departamento de Fisica Aplicada y Electromagnetismo, Universitat de Valencia, Burjassot (Spain)

    2010-07-15

    Various one-dimensional (1D) ZnO-based nanostructures, including ZnO nano-wires (NWs) grown using vapour-liquid-solid (VLS) process, ZnO/ZnSe core/shell, nitrogen-doped ZnO and ZnMgO NWs were grown by metalorganic chemical vapour deposition (MOCVD). Transmission electron microscopy (TEM) analysis is presented. For all the samples, a high crystalline quality is observed. Some features are emphasized such as the gold contamination of ZnO wires grown under the metal droplets in the VLS process. It is concluded that MOCVD is a suitable technique for the realization of original ZnO nanodevices. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  18. The preparation of high-J c Gd0.5Y0.5Ba2Cu3O7-δ thin films by the MOCVD process

    Science.gov (United States)

    Zhao, R. P.; Zhang, F.; Liu, Q.; Xia, Y. D.; Lu, Y. M.; Cai, C. B.; Tao, B. W.; Li, Y. R.

    2016-06-01

    A home-designed metal organic chemical vapor deposition (MOCVD) system has been employed to prepare high critical current density (J c) Gd0.5Y0.5Ba2Cu3O7-δ (GdYBCO) thin films on LaMnO3/epitaxial MgO/ion beam assisted deposition (IBAD)-MgO/solution deposition planarization (SDP)-Y2O3-buffered Hastelloy tapes; the thin films were directly heated by the Joule effect after applying an heating current (I h ) through the Hastelloy tapes. The effect of the mole ratio of the metal organic sources has been systematically investigated. X-ray diffraction (XRD) and scanning electron microscope (SEM) analyses indicated that the GdYBCO films crystallized better and became denser with the increasing of the Cu/Ba ratio from 1.0 to 1.1, yielding a J c at 77 K and 0 T of 200 nm GdYBCO film increasing from 2.5 MA cm-2 to 7 MA cm-2. In addition, SEM and energy dispersive spectrometer (EDS) characterizations revealed that more and more outgrowths appeared and the density of the film was reduced with an increase in the Cu/Ba ratio from 1.1 to 1.2. When the I h was 26.8 A and the mole ratio of Gd(tmhd)3, Y(tmhd)3, Ba(tmhd)2 and Cu(tmhd)2 in the precursor was 0.55:0.55:2:2.2, the critical current (I c) of the deposited 200 nm-thick GdYBCO film reached a 140 A cm-1 width (77 K, 0 T), corresponding to the J c 7 MA cm-2 (77 K, 0 T).

  19. Half-sandwich cobalt complexes in the metal-organic chemical vapor deposition process

    Energy Technology Data Exchange (ETDEWEB)

    Georgi, Colin [Technische Universität Chemnitz, Faculty of Natural Science, Institute of Chemistry, Inorganic Chemistry, Chemnitz 09107 (Germany); Hapke, Marko; Thiel, Indre [Leibniz-Institut für Katalyse e.V. an der Universität Rostock (LIKAT), Albert-Einstein-Straße 29a, Rostock 18059 (Germany); Hildebrandt, Alexander [Technische Universität Chemnitz, Faculty of Natural Science, Institute of Chemistry, Inorganic Chemistry, Chemnitz 09107 (Germany); Waechtler, Thomas; Schulz, Stefan E. [Fraunhofer Institute of Electronic Nano Systems (ENAS), Technologie-Campus 3, Chemnitz 09126 (Germany); Technische Universität Chemnitz, Center for Microtechnologies (ZfM), Chemnitz 09107 (Germany); Lang, Heinrich, E-mail: heinrich.lang@chemie.tu-chemnitz.de [Technische Universität Chemnitz, Faculty of Natural Science, Institute of Chemistry, Inorganic Chemistry, Chemnitz 09107 (Germany)

    2015-03-02

    A series of cobalt half-sandwich complexes of type [Co(η{sup 5}-C{sub 5}H{sub 5})(L)(L′)] (1: L, L′ = 1,5-hexadiene; 2: L = P(OEt){sub 3}, L′ = H{sub 2}C=CHSiMe{sub 3}; 3: L = L′ = P(OEt){sub 3}) has been studied regarding their physical properties such as the vapor pressure, decomposition temperature and applicability within the metal-organic chemical vapor deposition (MOCVD) process, with a focus of the influence of the phosphite ligands. It could be shown that an increasing number of P(OEt){sub 3} ligands increases the vapor pressure and thermal stability of the respective organometallic compound. Complex 3 appeared to be a promising MOCVD precursor with a high vapor pressure and hence was deposited onto Si/SiO{sub 2} (100 nm) substrates. The resulting reflective layer is closed, dense and homogeneous, with a slightly granulated surface morphology. X-ray photoelectron spectroscopy (XPS) studies demonstrated the formation of metallic cobalt, cobalt phosphate, cobalt oxide and cobalt carbide. - Highlights: • Thermal studies and vapor pressure measurements of cobalt half-sandwich complexes was carried out. • Chemical vapor deposition with cobalt half-sandwich complexes is reported. • The use of Co-phosphites results in significant phosphorous-doped metallic layers.

  20. CdTe thin film solar cells produced using a chamberless inline process via metalorganic chemical vapour deposition

    Energy Technology Data Exchange (ETDEWEB)

    Kartopu, G., E-mail: giray.kartopu@glyndwr.ac.uk; Barrioz, V.; Monir, S.; Lamb, D.A.; Irvine, S.J.C.

    2015-03-02

    Cd{sub 1−x}Zn{sub x}S and CdTe:As thin films were deposited using a recently developed chamberless inline process via metalorganic chemical vapour deposition (MOCVD) at atmospheric pressure and assessed for fabrication of CdTe photovoltaic (PV) solar cells. Initially, CdS and Cd{sub 1−x}Zn{sub x}S coatings were applied onto 15 × 15 cm{sup 2} float glass substrates, characterised for their optical properties, and then used as the window layer in CdTe solar cells which were completed in a conventional MOCVD (batch) reactor. Such devices provided best conversion efficiency of 13.6% for Cd{sub 0.36}Zn{sub 0.64}S and 10% for CdS which compare favourably to the existing baseline MOCVD (batch reactor) devices. Next, sequential deposition of Cd{sub 0.36}Zn{sub 0.64}S and CdTe:As films was realised by the chamberless inline process. The chemical composition of a 1 μm CdTe:As/150 nm Cd{sub 0.36}Zn{sub 0.64}S bi-layer was observed via secondary ions mass spectroscopy, which showed that the key elements are uniformly distributed and the As doping level is suitable for CdTe device applications. CdTe solar cells formed using this structure provided a best efficiency of 11.8% which is promising for a reduced absorber thickness of 1.25 μm. The chamberless inline process is non-vacuum, flexible to implement and inherits from the legacy of MOCVD towards doping/alloying and low temperature operation. Thus, MOCVD enabled by the chamberless inline process is shown to be an attractive route for thin film PV applications. - Highlights: • CdS, CdZnS and CdTe thin films grown by a chamberless inline process • The inline films assessed for fabricating CdTe solar cells • 13.6% conversion efficiency obtained for CdZnS/CdTe cells.

  1. The multiscale simulation of metal organic chemical vapor deposition growth dynamics of GaInP thin film

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    As a Group III–V compound, GaInP is a high-efficiency luminous material. Metal organic chemical vapor deposition (MOCVD) technology is a very efficient way to uniformly grow multi-chip, multilayer and large-area thin film. By combining the computational fluid dynamics (CFD) and the kinetic Monte Carlo (KMC) methods with virtual reality (VR) technology, this paper presents a multiscale simulation of fluid dynamics, thermodynamics, and molecular dynamics to study the growth process of GaInP thin film in a vertical MOCVD reactor. The results of visualization truly and intuitively not only display the distributional properties of the gas’ thermal and flow fields in a MOCVD reactor but also display the process of GaInP thin film growth in a MOCVD reactor. The simulation thus provides us with a fundamental guideline for optimizing GaInP MOCVD growth.

  2. High-quality uniaxial In(x)Ga(1-x)N/GaN multiple quantum well (MQW) nanowires (NWs) on Si(111) grown by metal-organic chemical vapor deposition (MOCVD) and light-emitting diode (LED) fabrication.

    Science.gov (United States)

    Ra, Yong-Ho; Navamathavan, R; Park, Ji-Hyeon; Lee, Cheul-Ro

    2013-03-01

    This article describes the growth and device characteristics of vertically aligned high-quality uniaxial p-GaN/InxGa1-xN/GaN multiple quantum wells (MQW)/n-GaN nanowires (NWs) on Si(111) substrates grown by metal-organic chemical vapor deposition (MOCVD) technique. The resultant nanowires (NWs), with a diameter of 200-250 nm, have an average length of 2 μm. The feasibility of growing high-quality NWs with well-controlled indium composition MQW structure is demonstrated. These resultant NWs grown on Si(111) substrates were utilized for fabricating vertical-type light-emitting diodes (LEDs). The steep and intense photoluminescence (PL) and cathodoluminescence (CL) spectra are observed, based on the strain-free NWs on Si(111) substrates. High-resolution transmission electron microscopy (HR-TEM) analysis revealed that the MQW NWs are grown along the c-plane with uniform thickness. The current-voltage (I-V) characteristics of these NWs exhibited typical p-n junction LEDs and showed a sharp onset voltage at 2.75 V in the forward bias. The output power is linearly increased with increasing current. The result indicates that the pulsed MOCVD technique is an effective method to grow uniaxial p-GaN/InxGa1-xN/GaN MQW/n-GaN NWs on Si(111), which is more advantageous than other growth techniques, such as molecular beam epitaxy. These results suggest the uniaxial NWs are promising to allow flat-band quantum structures, which can enhance the efficiency of LEDs.

  3. Effects of process parameters on sheet resistance uniformity of fluorine-doped tin oxide thin films

    OpenAIRE

    2012-01-01

    An alternative indium-free material for transparent conducting oxides of fluorine-doped tin oxide [FTO] thin films deposited on polyethylene terephthalate [PET] was prepared by electron cyclotron resonance - metal organic chemical vapor deposition [ECR-MOCVD]. One of the essential issues regarding metal oxide film deposition is the sheet resistance uniformity of the film. Variations in process parameters, in this case, working and bubbler pressures of ECR-MOCVD, can lead to a change in resist...

  4. Thermodynamic modeling to analyse composition of carbonaceous coatings of MnO and other oxides of manganese grown by MOCVD

    Indian Academy of Sciences (India)

    Sukanya Dhar; A Varade; S A Shivashankar

    2011-02-01

    Equilibrium thermodynamic analysis has been applied to the low-pressure MOCVD process using manganese acetylacetonate as the precursor. ``CVD phase stability diagrams” have been constructed separately for the processes carried out in argon and oxygen ambient, depicting the compositions of the resulting films as functions of CVD parameters. For the process conduced in argon ambient, the analysis predicts the simultaneous deposition of MnO and elemental carbon in 1:3 molar proportion, over a range of temperatures. The analysis predicts also that, if CVD is carried out in oxygen ambient, even a very low flow of oxygen leads to the complete absence of carbon in the film deposited oxygen, with greater oxygen flow resulting in the simultaneous deposition of two different manganese oxides under certain conditions. The results of thermodynamic modeling have been verified quantitatively for lowpressure CVD conducted in argon ambient. Indeed, the large excess of carbon in the deposit is found to constitute a MnO/C nanocomposite, the associated cauliflower-like morphology making it a promising candidate for electrode material in supercapacitors. CVD carried out in oxygen flow, under specific conditions, leads to the deposition of more than one manganese oxide, as expected from thermodynamic analysis (and forming an oxide–oxide nanocomposite). These results together demonstrate that thermodynamic analysis of the MOCVD process can be employed to synthesize thin films in a predictive manner, thus avoiding the inefficient trial-and-error method usually associated with MOCVD process development. The prospect of developing thin films of novel compositions and characteristics in a predictive manner, through the appropriate choice of CVD precursors and process conditions, emerges from the present work.

  5. Kinetic Study of MOCVD Ⅲ-Ⅴ Quaternary Antimonides

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    The kinetics of MOCVD GaInAsSb and AlGaAsSb was studied by the growth rate as a function of growth temperature and partial pressure of Ⅲ and Ⅴ MO species. The diffusion theory was used to explain the mass transport processes in MOCVD Ⅲ-Ⅴ quaternary antimonides. On the basis of the discussion about their growth kinetics and epilayer properties, the good quality multi-epilayers of these two quaternary antimonides and their photodetectors and arrays with wavelength of 1.8~2.3 μm and detectivities of D*>109 cm Hz1/2 W-1 were obtained.

  6. Processing and properties of lead zirconate titanate thin films on gallium nitride and ruthenium by sol-gel and chemical vapor deposition

    Science.gov (United States)

    Cao, Wei

    The Pb(ZrxTi1-x)O3 (PZT) thin films are potential candidates for ferroelectric random access memory (FeRAM) devices and components for microelectromechanical systems (MEMS). For example, the PZT/GaN system is being explored as RF MEMS devices for insertion in RF communication systems. A reproducible sol-gel process was developed for the deposition of PZT films on wurtzite (0001) GaN/sapphire substrates. The composition, crystallography, and interfacial nanochemistry were evaluated by various characterization techniques. The PZT/GaN heterostructure exhibited a chemically sharp interface with insignificant interdiffusion between PZT and GaN layers. However, PZT in metal -ferroelectric -semiconductor (MFS) configuration showed lower capacitance and asymmetrical polarization hysteresis compared to PZT in metal-ferroelectric-metal configuration. Such a deviation was attributed to the high depolarization field (Edepol) within PZT. To mitigate this issue, a two-pronged approach was used. First, the calculated spatial distribution of the electric field and potential, which stem from all the charge densities within the MFS configuration, demonstrated that by adjusting controllable parameters, one can minimize Edepol and maximize polarization. Second, a robust metal-organic chemical vapor deposition (MOCVD) process was developed to fabricate high quality PZT thin films on GaN. In this experimental approach, phase-pure and highly (111) oriented PZT films were deposited on GaN/sapphire substrates by MOCVD. The orientation relationships of PZT/GaN system were determined using x-ray pole figure and high-resolution transmission electron microscopy (TEM). The nanochemistry of the PZT/GaN interface, studied using analytical TEM, indicated a chemically sharp interface with interdiffusion limited to a region below 5 nm. The properties of MOCVD-PZT on GaN are briefly compared with PZT by sol-gel processing, rf sputtering, and pulsed laser deposition. Additionally, a preliminary study

  7. Modelling and optimization of film thickness variation for plasma enhanced chemical vapour deposition processes

    Science.gov (United States)

    Waddell, Ewan; Gibson, Des; Lin, Li; Fu, Xiuhua

    2011-09-01

    This paper describes a method for modelling film thickness variation across the deposition area within plasma enhanced chemical vapour deposition (PECVD) processes. The model enables identification and optimization of film thickness uniformity sensitivities to electrode configuration, temperature, deposition system design and gas flow distribution. PECVD deposition utilizes a co-planar 300mm diameter electrodes with separate RF power matching to each electrode. The system has capability to adjust electrode separation and electrode temperature as parameters to optimize uniformity. Vacuum is achieved using dry pumping with real time control of butterfly valve position for active pressure control. Comparison between theory and experiment is provided for PECVD of diamond-like-carbon (DLC) deposition onto flat and curved substrate geometries. The process utilizes butane reactive feedstock with an argon carrier gas. Radiofrequency plasma is used. Deposited film thickness sensitivities to electrode geometry, plasma power density, pressure and gas flow distribution are demonstrated. Use of modelling to optimise film thickness uniformity is demonstrated. Results show DLC uniformity of 0.30% over a 200 mm flat zone diameter within overall electrode diameter of 300mm. Thickness uniformity of 0.75% is demonstrated over a 200mm diameter for a non-conformal substrate geometry. Use of the modelling method for PECVD using metal-organic chemical vapour deposition (MOCVD) feedstock is demonstrated, specifically for deposition of silica films using metal-organic tetraethoxy-silane. Excellent agreement between experimental and theory is demonstrated for conformal and non-conformal geometries. The model is used to explore scalability of PECVD processes and trade-off against film thickness uniformity. Application to MEMS, optical coatings and thin film photovoltaics is discussed.

  8. Thin alumina and silica films by chemical vapor deposition (CVD)

    OpenAIRE

    Hofman, R.; Morssinkhof, R.W.J.; Fransen, T.; Westheim, J.G.F.; Gellings, P.J.

    1993-01-01

    Alumina and silica coatings have been deposited by MOCVD (Metal Organic Chemical Vapor Deposition) on alloys to protect them against high temperature corrosion. Aluminium Tri-lsopropoxide (ATI) and DiAcetoxyDitertiaryButoxySilane (DAOBS) have been used as metal organic precursors to prepare these ceramic coatings. The influence of several process steps on the deposition rate and surface morphology is discussed. The deposition of SiO2 at atmospheric pressure is kinetically limited below 833 K ...

  9. Platinum-Iridium Alloy Films Prepared by MOCVD

    Institute of Scientific and Technical Information of China (English)

    WEI Yan; CHEN Li; CAI Hongzhong; ZHENG Xu; YANG Xiya; HU Changyi

    2012-01-01

    Platinum-Iridium alloy films were prepared by MOCVD on Mo substrate using metal-acetylacetonate precursors.Effects of deposition conditions on composition,microstructure and mechanical properties were determined.In these experimental conditions,the purities of films are high and more than 99.0%.The films are homogeneous and monophase solid solution of Pt and Ir.Weight percentage of platinum are much higher than iridium in the alloy.Lattice constant of the alloy changes with the platinum composition.Iridium composition showing an up-down-up trend at the precursor temperature of 190~230℃ and the deposition temperature at 400~550℃.The hardness of Pt-Ir alloys prepared by MOCVD is three times more than the alloys prepared by casting.

  10. Preparation of platinum-iridium nanoparticles on titania nanotubes by MOCVD and their catalytic evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Colindres, S. Capula [National Polytechnic Institute, Department of Metallurgical Eng., Mexico 07300 D.F., AP 75-874 (Mexico); Garcia, J.R. Vargas, E-mail: rvargasga@ipn.m [National Polytechnic Institute, Department of Metallurgical Eng., Mexico 07300 D.F., AP 75-874 (Mexico); Antonio, J.A. Toledo; Chavez, C. Angeles [Petroleum Mexican Institute, Eje Central Lazaro Cardenas No.152, Mexico 07730 D.F. (Mexico)

    2009-08-26

    Pt based catalysts are commonly used in several industrial processes involving hydrogenation and dehydrogenation reactions. New deposition methods as well as support materials are being investigated to generate new catalysts with superior catalytic activity. In this work, platinum-iridium (Pt-Ir) nanoparticles of about 5 nm in size were supported on titania (TiO{sub 2}) nanotubes by metal organic chemical vapor deposition (MOCVD). The TiO{sub 2} nanotubes were prepared by an alkali hydrothermal method using sodium hydroxide solution at 100 deg. C, during 64.8 ks. Pt-Ir nanoparticles were obtained by controlling the MOCVD conditions at 400 deg. C and 66.6 kPa. Textural properties and particle size were investigated by nitrogen physisorption (BET method), X-ray diffraction, Raman spectroscopy and high resolution transmission electron microscopy. Catalytic activity was measured in cyclohexene disproportion as the test molecule for hydrogenation/dehydrogenation reactions. The TiO{sub 2} nanotubes exhibit a considerable high surface area of about 425,000 m{sup 2}/kg, however, after calcination at 400 deg. C their nanotubular morphology was partially transformed. In spite of this change, the 5 nm Pt-Ir nanoparticles supported on TiO{sub 2} nanotubes were more active in the cyclohexene disproportion reaction than conventional Pt-Ir/alumina catalysts in the whole range of temperatures investigated (50-250 deg. C). Hydrogenation reactions (high selectivity to cyclohexane) predominate at temperatures below 150 deg. C.

  11. Optimization of Strontium Titanate (SrTiO3) Thin Films Fabricated by Metal Organic Chemical Vapor Deposition (MOCVD) for Microwave-Tunable Devices

    Science.gov (United States)

    2015-12-01

    maintained near 250 °C to prevent condensates. Solid-state β–Diketonate complex precursors Bis(2,2,6,6-tetramethyl-3,5- heptanedionato), purchased from Strem...and Titanium(IV) diisopropoxidebis(2,2,6,6-tetramethyl-3,5-heptanedionate), purchased from Sigma-Alrich, were used in all depositions. The Sr...Physics. 2005;38:2446–2451. 66. Hofman W, Hoffmann S, Waser, R. Dopant influence on dielectric losses, leakage behaviour , and resistance

  12. Effects of ZnO Buffer Layer Thickness on Properties of MgxZn1-xO Thin Films Deposited by MOCVD

    Institute of Scientific and Technical Information of China (English)

    DONG Xin; LIU Da-li; DU Guo-tong; ZHANG Yuan-tao; ZHU Hui-chao; YAN Xiao-long; GAO Zhong-min

    2005-01-01

    High-quality MgxZn1-xO thin films were grown on sapphire(0001) substrates with a ZnO buffer layer of different thicknesses by means of metal-organic chemical vapor deposition. Diethyl zinc, bis-cyclopentadienyl-Mg and oxygen were used as the precursor materials. The crystalline quality, surface morphologies and optical properties of the MgxZn1-xO films were investigated by X-ray diffraction, atomic force microscopy and photoluminescence spectrometry. It was shown that the quality of the MgxZn1-xO thin films depends on the thickness of the ZnO buffer layer and an MgxZn1-xO thin film with a ZnO buffer layer whose thickness was 20 nm exhibited the best crystal-quality, optical properties and a flat and dense surface.

  13. Three-Step Growth Optimization of A1N Epilayers by MOCVD

    Institute of Scientific and Technical Information of China (English)

    PENG Ming-Zeng; ZHOU Jun-Ming; GUO Li-Wei; ZHANG Jie; YU Nai-Sen; ZHU Xue-Liang; YAN Jian-Feng; GE Bin-Hui; JIA Hai-Qiang; CHEN Hong

    2008-01-01

    A three-step growth process is developed for depositing high-quality aluminium-nitride (AIN) epilayers on (001) sapphire by low pressure metalorganic chemical vapour deposition (LP-MOCVD). We adopt a low temperature (LT) AIN nucleation layer (NL), and two high temperature (HT) AIN layers with different Ⅴ/Ⅲ ratios. Our results reveal that the optimal NL temperature is 840-880℃, and there exists a proper growth switching from low to high Ⅴ/Ⅲ ratio for further reducing threading dislocations (TDs). The screw-type TD density of the optimized AIN film is just 7.86×106 cm-2, about three orders lower than its edge-type one of 2×109 cm-2 estimated by high-resolution x-ray diffraction (HRXRD) and cross-sectional transmission electron microscopy (TEM).

  14. Processing of CuInSe{sub 2}-based solar cells: Characterization of deposition processes in terms of chemical reaction analyses. Phase 2 Annual Report, 6 May 1996--5 May 1997

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, T.

    1999-10-20

    This report describes research performed by the University of Florida during Phase 2 of this subcontract. First, to study CIGS, researchers adapted a contactless, nondestructive technique previously developed for measuring photogenerated excess carrier lifetimes in SOI wafers. This dual-beam optical modulation (DBOM) technique was used to investigate the differences between three alternative methods of depositing CdS (conventional chemical-bath deposition [CBD], metal-organic chemical vapor deposition [MOCVD], and sputtering). Second, a critical assessment of the Cu-In-Se thermochemical and phase diagram data using standard CALPHAD procedures is being performed. The outcome of this research will produce useful information on equilibrium vapor compositions (required annealing ambients, Sex fluxes from effusion cells), phase diagrams (conditions for melt-assisted growth), chemical potentials (driving forces for diffusion and chemical reactions), and consistent solution models (extents of solid solutions and extending phase diagrams). Third, an integrated facility to fabricate CIS PV devices was established that includes migration-enhanced epitaxy (MEE) for deposition of CIS, a rapid thermal processing furnace for absorber film formation, sputtering of ZnO, CBD or MOCVD of CdS, metallization, and pattern definition.

  15. Malonate complexes of dysprosium: synthesis, characterization and application for LI-MOCVD of dysprosium containing thin films.

    Science.gov (United States)

    Milanov, Andrian P; Seidel, Rüdiger W; Barreca, Davide; Gasparotto, Alberto; Winter, Manuela; Feydt, Jürgen; Irsen, Stephan; Becker, Hans-Werner; Devi, Anjana

    2011-01-07

    A series of malonate complexes of dysprosium were synthesized as potential metalorganic precursors for Dy containing oxide thin films using chemical vapor deposition (CVD) related techniques. The steric bulkiness of the dialkylmalonato ligand employed was systematically varied and its influence on the resulting structural and physico-chemical properties that is relevant for MOCVD was studied. Single crystal X-ray diffraction analysis revealed that the five homoleptic tris-malonato Dy complexes (1-5) are dimers with distorted square-face bicapped trigonal-prismatic geometry and a coordination number of eight. In an attempt to decrease the nuclearity and increase the solubility of the complexes in various solvents, the focus was to react these dimeric complexes with Lewis bases such as 2,2'-biypridyl and pyridine (6-9). This resulted in monomeric tris-malonato mono Lewis base adduct complexes with improved thermal properties. Finally considering the ease of synthesis, the monomeric nature and promising thermal characteristics, the silymalonate adduct complex [Dy(dsml)(3)bipy] (8) was selected as single source precursor for growing DySi(x)O(y) thin films by liquid injection metalorganic chemical vapor deposition (LI-MOCVD) process. The as-deposited films were analyzed for their morphology and composition by scanning electron microscopy (SEM), energy dispersive X-ray (EDX) analysis, Rutherford backscattering (RBS) analysis and X-ray photoelectron spectroscopy.

  16. Stress, structural and electrical properties of Si-doped GaN film grown by MOCVD

    Institute of Scientific and Technical Information of China (English)

    Xu Zhihao; Zhang Jincheng; Duan Huantao; Zhang Zhongfen; Zhu Qingwei; Xu Hao; Hao Yue

    2009-01-01

    The stresses, structural and electrical properties of n-type Si-doped GaN films grown by metalorganic chemical vapor deposition (MOCVD) are systemically studied. It is suggested that the main stress relaxation is induced by bending dislocations in low doping samples. But for higher doping samples, as the Si doping concentration increases, the in-plane stresses in the grown films are quickly relaxed due to the rapid increase of the edge dislocation densities. Hall effect measurements reveal that the carrier mobility first increases rapidly and then decreases with increasing Si doping concentration. This phenomenon is attributed to the interaction between various scattering process. It is suggested that the dominant scattering process is defect scattering for low doping samples and ionized impurity scattering for high doping samples.

  17. Stress, structural and electrical properties of Si-doped GaN film grown by MOCVD

    Energy Technology Data Exchange (ETDEWEB)

    Xu Zhihao; Zhang Jincheng; Duan Huantao; Zhang Zhongfen; Zhu Qingwei; Xu Hao; Hao Yue, E-mail: forman1115@163.co [Key Laboratory of Wide Band-Gap Semiconductor Materials and Devices, School of Microelectronics, Xidian University, Xi' an 710071 (China)

    2009-12-15

    The stresses, structural and electrical properties of n-type Si-doped GaN films grown by metalorganic chemical vapor deposition (MOCVD) are systemically studied. It is suggested that the main stress relaxation is induced by bending dislocations in low doping samples. But for higher doping samples, as the Si doping concentration increases, the in-plane stresses in the grown films are quickly relaxed due to the rapid increase of the edge dislocation densities. Hall effect measurements reveal that the carrier mobility first increases rapidly and then decreases with increasing Si doping concentration. This phenomenon is attributed to the interaction between various scattering process. It is suggested that the dominant scattering process is defect scattering for low doping samples and ionized impurity scattering for high doping samples. (semiconductor materials)

  18. The mechanical properties of thin alumina film deposited by metal-organic chemical vapour deposition

    NARCIS (Netherlands)

    Haanappel, V.A.C.; Gellings, P.J.; Vendel, van de D.; Metselaar, H.S.C.; Corbach, van H.D.; Fransen, T.

    1995-01-01

    Amorphous alumina films were deposited by metal-organic chemical vapour deposition (MOCVD) on stainless steel, type AISI 304. The MOCVD experiments were performed in nitrogen at low and atmospheric pressures. The effects of deposition temperature, growth rate and film thickness on the mechanical pro

  19. MOCVD of thin film photovoltaic solar cells—Next-generation production technology?

    Science.gov (United States)

    Irvine, S. J. C.; Barrioz, V.; Lamb, D.; Jones, E. W.; Rowlands-Jones, R. L.

    2008-11-01

    This paper will review the chalcogenide thin film photovoltaic (PV) solar cells, based on cadmium telluride (CdTe) and copper indium diselenide (CIS) and discuss the potential for metalorganic chemical vapour deposition (MOCVD) to enable more advanced devices in the second generation of CdTe module production. The current generation of production methods is based on physical vapour deposition (PVD) or close-spaced sublimation (CSS). This paper concentrates on the less well-known topic of MOCVD of thin film chalcogenide cells, and in particular that of CdTe. Efficient CdTe PV solar cells (>10% AM1.5) have been demonstrated from deposition of the CdS, CdTe and CdCl 2 films in a single MOCVD chamber. The CdTe layer was doped with As and an additional high As concentration CdTe layer provides effective low resistance contacting without the need for wet etching the surface. The high level of flexibility in using MOCVD has been demonstrated where the CdS window layer has been alloyed with Zn to improve the blue response of the PV device and improve AM1.5 efficiency to 13.3%.

  20. Thermodynamic analysis of growth of iron oxide films by MOCVD using tris(-butyl-3-oxo-butanoato)iron(III) as precursor

    Indian Academy of Sciences (India)

    Sukanya Dhar; K Shalini; S A Shivashankar

    2008-10-01

    Thermodynamic calculations, using the criterion of minimization of total Gibbs free energy of the system, have been carried out for the metalorganic chemical vapour deposition (MOCVD) process involving the -ketoesterate complex of iron [tris(-butyl-3-oxo-butanoato)iron(III) or Fe(tbob)3] and molecular oxygen. The calculations predict, under different CVD conditions such as temperature and pressure, the deposition of carbon-free pure Fe3O4, mixtures of different proportions of Fe3O4 and Fe2O3, and pure Fe2O3. The regimes of these thermodynamic CVD parameters required for the deposition of these pure and mixed phases have been depicted in a `CVD phase stability diagram’. In attempts at verification of the thermodynamic calculations, it has been found by XRD and SEM analysis that, under different conditions, MOCVD results in the deposition of films comprising pure and mixed phases of iron oxide, with no carbonaceous impurities. This is consistent with the calculations.

  1. 镍覆膜碳纤维的制备与性能研究%The preparation and properties of nickel-coated carbon fiber by MOCVD process

    Institute of Scientific and Technical Information of China (English)

    李一; 聂俊辉; 李楠; 柳学全; 贾成厂

    2012-01-01

    A dense and smooth nickel-coated film on the surface of carbon fiber was obtained by using metal or ganic chemical vapor deposition (MOCVD) process with carbonyl nickel as precursor. The as-received coating film was pure nickel without any impurities. The influence of deposition temperature on nickel-coated film was investigated and the results showed that the ideal nickel-coated film could be obtained at temperature of 270℃. The measurement of adhesive force of nickel-coated film with carbon fiber was performed by thermal-cold cyc- ling testing, the coating film exfoliation didn't appear until four times of thermal-cold cycling. The fracture strength of nickel-coated film carbon fiber increased by 34.9% compared to that of original carbon fiber. Differ- ential thermal analysis testing indicated that the coating film could enhance the property of oxidation resistant of carbon fiber.%以Ni(CO)4为前驱体,通过羰基金属化学气相沉积工艺在碳纤维表面沉积连续镍膜,从而制得镍覆膜碳纤维材料。实验给出了镍覆膜碳纤维的较佳制备工艺条件。借助SEM、EDX、XRD、冷热循环实验、断裂强度分析、差热分析等多种分析测试手段研究了镍覆膜碳纤维的性能。结果表明碳纤维表面沉积的膜层为纯镍相,连续致密,与碳纤维基底结合良好,可经受4次冷热循环而不脱落;碳纤维表面沉积连续镍膜后,其断裂强度提高了34.9%;差热分析显示沉积连续镍膜后可有效提高碳纤维的抗氧化性能。

  2. Processing of PbTiO{sub 3} and Pb(Zr{sub x}Ti{sub 1{minus}x})O{sub 3} thin films by novel single-solid-source metalorganic chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Lu, P.; Li, H.; Sun, S. [New Mexico Inst. of Mining and Technology, Socorro, NM (United States). Dept. of Materials Science and Engineering; Tuttle, B. [Sandia National Labs., Albuquerque, NM (United States)

    1997-06-01

    Ferroelectric PbTiO{sub 3} (PT) and Pb(Zr{sub x}Ti{sub 1{minus}x})O{sub 3} (PZT) thin films have been deposited on (100) MgO and (111) Pt/SiO{sub 2}/(100)Si substrates by using a novel single-solid-source metalorganic chemical vapor deposition (MOCVD) technique. The new technique uses a powder delivery system to deliver the mixed precursor powders directly into a hot vaporizer from room temperature, therefore, avoiding any problems associated with polymerization or decomposition of the precursors before evaporation. The technique simplifies MOCVD processing significantly and can improve process reliability and reproducibility. The deposited PT and PZT films have a perovskite structure and are highly oriented with respect to the substrate. With improvement of process control, systematic studies of film evolution under various growth conditions have been carried out. Effects of substrate, substrate temperature, system vacuum, and precursor ratios in the mixture on film microstructure and properties will be presented in this paper.

  3. The crystal morphology effect of Iridium tris-acetylacetonate on MOCVD iridium coatings

    Science.gov (United States)

    Shi, Jing; Hao, Yupeng; Yu, Xiaodong; Tan, Chengwen

    2017-07-01

    Iridium tris-acetylacetonate is the most commonly used precursor for the metal organic chemical vapour deposition (MOCVD) of iridium coating. In this paper, the crystal morphology effect of iridium tris-acetylacetonate on iridium coatings prepared by MOCVD was studied. Two kinds of Ir(acac)3 crystalline powder were prepared. A precursor sublimation experiment in a fixed bed reactor and an iridium deposition experiment in a cold-wall atmospheric CVD reactor were designed. It is found that the volatility of the hexagonal columnar crystals is better than that of the tetragonal flake crystals under the experimental conditions. It’s due to the hexagonal columnar crystals exposed more crystal faces than the tetragonal flake crystals, increasing its contact area with the transport gas. An adequate supply of iridium tris-acetylacetonate during the pre-deposition period contributed to obtain an iridium coating with a smooth and uniform continuity surface.

  4. Effects of process parameters on sheet resistance uniformity of fluorine-doped tin oxide thin films.

    Science.gov (United States)

    Hudaya, Chairul; Park, Ji Hun; Lee, Joong Kee

    2012-01-05

    An alternative indium-free material for transparent conducting oxides of fluorine-doped tin oxide [FTO] thin films deposited on polyethylene terephthalate [PET] was prepared by electron cyclotron resonance - metal organic chemical vapor deposition [ECR-MOCVD]. One of the essential issues regarding metal oxide film deposition is the sheet resistance uniformity of the film. Variations in process parameters, in this case, working and bubbler pressures of ECR-MOCVD, can lead to a change in resistance uniformity. Both the optical transmittance and electrical resistance uniformity of FTO film-coated PET were investigated. The result shows that sheet resistance uniformity and the transmittance of the film are affected significantly by the changes in bubbler pressure but are less influenced by the working pressure of the ECR-MOCVD system.

  5. RF plasma enhanced MOCVD of yttria stabilized zirconia thin films using octanedionate precursors and their characterization

    Energy Technology Data Exchange (ETDEWEB)

    Chopade, S.S. [Laser and Plasma Technology Division, Bhabha Atomic Research Center, Trombay, Mumbai 400085 (India); Nayak, C.; Bhattacharyya, D.; Jha, S.N.; Tokas, R.B.; Sahoo, N.K. [Atomic & Molecular Physics Division, Bhabha Atomic Research Center, Trombay, Mumbai 400085 (India); Deo, M.N. [High Pressure & Synchrotron Radiation Physics Division, Bhabha Atomic Research Center, Trombay, Mumbai 400085 (India); Biswas, A. [Atomic & Molecular Physics Division, Bhabha Atomic Research Center, Trombay, Mumbai 400085 (India); Rai, Sanjay [Indus Synchrotron Utilization Division, RRCAT, Indore 452013 (India); Thulasi Raman, K.H.; Rao, G.M. [Department of Instrumentation and Applied Physics, Indian Institute of Science, Bangalore 560012 (India); Kumar, Niranjan [Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 (India); Patil, D.S., E-mail: dspatil@iitb.ac.in [Laser and Plasma Technology Division, Bhabha Atomic Research Center, Trombay, Mumbai 400085 (India)

    2015-11-15

    Highlights: • YSZ films are deposited by RF plasma MOCVD using Zr(tod){sub 4} and Y(tod){sub 3} precursors. • Films are deposited under the influence of RF self-bias on the substrates. • Films are characterized by different techniques. • Films properties are dependent on yttria content and film structure. - Abstract: Yttria stabilized zirconia thin films have been deposited by RF plasma enhanced MOCVD technique on silicon substrates at substrate temperature of 400 °C. Plasma of precursor vapors of (2,7,7-trimethyl-3,5-octanedionate) yttrium (known as Y(tod){sub 3}), (2,7,7-trimethyl-3,5-octanedionate) zirconium (known as Zr(tod){sub 4}), oxygen and argon gases is used for deposition. To the best of our knowledge, plasma assisted MOCVD of YSZ films using octanediaonate precursors have not been reported in the literature so far. The deposited films have been characterized by GIXRD, FTIR, XPS, FESEM, AFM, XANES, EXAFS, EDAX and spectroscopic ellipsometry. Thickness of the films has been measured by stylus profilometer while tribological property measurement has been done to study mechanical behavior of the coatings. Characterization by different techniques indicates that properties of the films are dependent on the yttria content as well as on the structure of the films.

  6. Processing of CuInSe{sub 2}-based solar cells: Characterization of deposition processes in terms of chemical reaction analyses. Phase I annual report, 6 May 1995--5 May 1996

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, T [Univ. of Florida, Gainesville, FL (United States)

    1997-04-01

    An interdisciplinary team of five graduate students and four faculty have made considerable progress during Phase I of this program. The objective of this initiative is to develop a high-rate processing sequence to produce device-quality thin films of CI(G)S(Se). A comprehensive CI(G)S(Se) device fabrication capability is being established that includes thermal evaporation and plasma assisted deposition of CI(G)S(Se), rapid thermal processing, DC sputtering of both undoped and doped ZnO, CBD and MOCVD of CdS, and rf sputtering of Mo. Insight into the materials processing issues is being addressed through assessment of the thermochemistry and phase equilibria of the CI(G)S(Se) system, single crystal growth studies, investigation of Na effects on the growth, and detailed materials characterization.

  7. TiOxNy coatings grown by atmospheric pressure metal organic chemical vapor deposition

    OpenAIRE

    Maury, Francis; Duminica, Florin-Daniel

    2010-01-01

    International audience; Titanium oxynitride coatings were deposited on various substrates by an original atmospheric pressure metal organic chemical vapor deposition (MOCVD) process using titanium tetra-iso-propoxide as titanium and oxygen precursors and hydrazine as a nitrogen source. The films composition was monitored by controlling the N2H4 mole fraction in the initial reactive gas phase. The variation of the N content in the films results in significant changes in morphological, structur...

  8. ZnO Nanostructures Grown on AlN/Sapphire Substrates by MOCVD

    Institute of Scientific and Technical Information of China (English)

    WEI Hong-Yuan; HU Wei-Guo; ZHANG Pan-Feng; LIU Xiang-Lin; ZHU Qin-Sheng; WANG Zhan-Guo

    2007-01-01

    ZnO nanorods and nanotubes are successful synthesized on AlN/sapphire substrates by metal-organic chemical vapour deposition (MOCVD). The different morphology and structure properties of ZnO nanorods and nanotubes are found to be affected by the A1N under-layer. The photoluminescence spectra show the optical properties of the ZnO nanorods and nanotubes, in which a blueshift of UV emission is observed and is attributed to the surface effect.

  9. MOCVD manifold switching effects on growth and characterization

    Science.gov (United States)

    Clark, Ivan O.; Fripp, Archibald L.; Jesser, William A.

    1991-01-01

    A combined modeling and experimental approach is used to quantify the effects of various manifold components on the switching speed in metalorganic chemical vapor deposition (MOCVD). In particular, two alternative vent-run high-speed switching manifold designs suitable for either continuous or interrupted growth have been investigated. Both designs are incorporated in a common manifold, instrumented with a mass spectrometer. The experiments have been performed using nitrogen as the transport gas and argon as the simulated source gas. The advantages and limitations of two designs are discussed. It is found that while constant flow manifold switching systems may have fluid dynamic advantages, care must be taken to minimize sections of the supply manifold with low flow rates if rapid changes in alloy composition are required.

  10. MOCVD ZnO/Screen Printed Ag Back Reflector for Flexible Thin Film Silicon Solar Cell Application

    Directory of Open Access Journals (Sweden)

    Amornrat Limmanee

    2014-01-01

    Full Text Available We have prepared Ag back electrode by screen printing technique and developed MOCVD ZnO/screen printed Ag back reflector for flexible thin film silicon solar cell application. A discontinuity and poor contact interface between the MOCVD ZnO and screen printed Ag layers caused poor open circuit voltage (Voc and low fill factor (FF; however, an insertion of a thin sputtered ZnO layer at the interface could solve this problem. The n type hydrogenated amorphous silicon (a-Si:H film is preferable for the deposition on the surface of MOCVD ZnO film rather than the microcrystalline film due to its less sensitivity to textured surface, and this allowed an improvement in the FF. The n-i-p flexible amorphous silicon solar cell using the MOCVD ZnO/screen printed Ag back reflector showed an initial efficiency of 6.2% with Voc=0.86 V, Jsc=12.4 mA/cm2, and FF = 0.58 (1 cm2. The identical quantum efficiency and comparable performance to the cells using conventional sputtered Ag back electrode have verified the potential of the MOCVD ZnO/screen printed Ag back reflector and possible opportunity to use the screen printed Ag thick film for flexible thin film silicon solar cells.

  11. Structural and optical properties of anatase TiO2 heteroepitaxial films prepared by MOCVD

    Science.gov (United States)

    Zhao, Wei; Feng, Xianjin; Xiao, Hongdi; Luan, Caina; Ma, Jin

    2016-11-01

    High-quality single-crystal anatase TiO2(a-TiO2) thin films have been obtained on SrTiO3 (STO) substrates using the metalorganic chemical vapor deposition (MOCVD) method. The optimal preparation process was explored. The lattice structure and epitaxial relationship were investigated by X-ray diffraction (XRD, both θ-2θ and Φ scans) and transmission electron microscopy (TEM). The results indicated that the film prepared at 550 °C with the Ti precursor molar flow rate of 4×10-7 mol/min had the best single crystalline quality, for which a clear epitaxial relationship of a-TiO2 (001)||STO (100) with a-TiO2 [100]||STO [001bar] could be inferred. The elemental composition and proportion were studied by the X-ray photoelectron spectroscopy (XPS) method, which proved the deposited film approximated stoichiometric TiO2. The samples showed high transparency of 70-80% in the visible range.

  12. Antireflection coatings on plastics deposited by plasma polymerization process

    Indian Academy of Sciences (India)

    K M K Srivatsa; M Bera; A Basu; T K Bhattacharya

    2008-08-01

    Antireflection coatings (ARCs) are deposited on the surfaces of optical elements like spectacle lenses to increase light transmission and improve their performance. In the ophthalmic industry, plastic lenses are rapidly displacing glass lenses due to several advantageous features. However, the deposition of ARCs on plastic lenses is a challenging task, because the plastic surface needs treatment for adhesion improvement and surface hardening before depositing the ARC. This surface treatment is usually done in a multi-stage process—exposure to energetic radiations, followed by deposition of a carbonyl hard coating by spin or dip coating processes, UV curing, etc. However, this treatment can also be done by plasma processes. Moreover, the plasma polymerization process allows deposition of optical films at room temperature, essential for plastics. The energetic ions in plasma processes provide similar effects as in ion assisted physical deposition processes to produce hard coatings, without requiring sophisticated ion sources. The plasma polymerization process is more economical than ion-assisted physical vapour deposition processes as regards equipment and source materials and is more cost-effective, enabling the surface treatment and deposition of the ARC in the same deposition system in a single run by varying the system parameters at each step. Since published results of the plasma polymerization processes developed abroad are rather sketchy and the techniques are mostly veiled in commercial secrecy, innovative and indigenous plasma-based techniques have been developed in this work for depositing the complete ARCs on plastic substrates.

  13. Surface characterization of III-V MOCVD films from heterocyclic single-source precursors; Oberflaechencharakterisierung von III-V MOCVD-Filmen aus heterozyklischen Single Source Precursoren

    Energy Technology Data Exchange (ETDEWEB)

    Seemayer, Andreas

    2009-07-13

    In the present thesis the sublimation and evaporation properties of heterocyclic gallium and antimony containing single-source precursors as well as the chemical composition and morphology of the films fabricated from this were studied. The single-source precursors available by a new synthesis route were characterized concerning their evaporation properties and the obtained films studied surface-physically. By this way the process parameters were optimized and the applicability of the single-source precursors in HV-MOCVD processes studied. By evaporation experiments in the UHV it could be shown that thereby lighter ligands like ethyl- and methyl-groups lead to a lower contamination of the reaction space with carbon containing molecules. Furthermore it was expected that the 6-rings synthetized with short ligands exhibit a high stability. This however could not be confirmed. By unwanted parasitary reactions in the gaseous phase respectively dissociative sublimation in the gaseous phase a deposition of GaSb with these precursors was not possible. The 4-ring stabilized with tertiary-butyl and ethyl-groups caused in the evaporation the largest contamination of the gaseous phase, becauselonger-chain hydrocarbons exhibil only a bad pump cross section. By parasitary reactions originating elementary antimony is detectable in the gaseous phase. The films were studied concerning their chemical composition and their transport- respectively storage-conditioned surface contamination. Furthermore it has become clear that not only a purely synthetized precursor substance but also the reactor design is deciding for a successful deposition and a high film quality. First by successive optimization of the evaporation geometry it was possible to reduce the roughness of the produced GaSb films down to about 10 nm-30 nm.

  14. Photoreflectance for in-situ characterization of MOCVD growth of semiconductors under micro-gravity conditions

    Science.gov (United States)

    Pollak, Fred H.

    1990-01-01

    A contactless electromodulation technique of photoreflectance (PR) was developed for in-situ monitoring of metal-organic chemical vapor deposition (MOCVD) semiconductor growth for micro-gravity applications. PR can be employed in a real MOCVD reactor including rotating substrate (approximately 500 rev/min) in flowing gases and through a diffuser plate. Measurements on GaAs and Ga(0.82)Al(0.18)As were made up to 690 C. The direct band gaps of In(x)Ga(1-x)As (x = 0.07 and 0.16) were evaluated up to 600 C. In order to address the question of real time measurement, the spectra of the direct gap of GaAs at 650 C was obtained in 30 seconds and 15 seconds seems feasible.

  15. Thermal behavior of MOCVD-grown Cu-clusters on ZnO(1010).

    Science.gov (United States)

    Kroll, Martin; Löber, Thomas; Schott, Vadim; Wöll, Christof; Köhler, Ulrich

    2012-02-01

    Scanning tunnelling microscopy (STM) and X-ray photoelectron spectroscopy (XPS, AES) were used to study MOCVD of Cu-clusters on the mixed terminated ZnO(1010) surface in comparison to MBE Cu-deposition. Both deposition methods result in the same Cu cluster morphology. After annealing to 670 K the amount of Cu visible above the oxide surface is found to decrease substantially, indicating a substantial diffusion of Cu atoms inside the ZnO-bulk. The spectroscopic data do not show any evidence for changes in the Cu oxidation state during thermal treatment up to 770 K.

  16. Correlation of local structure peculiarities and critical current density of 2G MOCVD YBCO tapes with BaZrO3 nanoinclusions

    Science.gov (United States)

    Menushenkov, A. P.; Ivanov, V. G.; Chepikov, V. N.; Nygaard, R. R.; Soldatenko, A. V.; Rudnev, I. A.; Osipov, M. A.; Mineev, N. A.; Kaul, A. R.; Mathon, O.; Monteseguro, V.

    2017-04-01

    We have studied the influence of BaZrO3 nanoinclusions on the local structure and critical current density of second-generation high temperature superconducting tapes based on YBa2Cu3O7-δ (YBCO) films. The films were made by metal-organic chemical vapor deposition (MOCVD). The crystal and local structure of the materials under study were analysed by x-ray diffraction and x-ray absorption spectroscopy (EXAFS + XANES). We have found that, being added at MOCVD process, Zr forms BaZrO3 nanoinclusions in YBCO matrix. The distance between Zr and the neighboring atoms is shorter than that one in a bulk crystalline BaZrO3, so we conclude that the nanoinclusions are in compressed state. The incorporation of 5 mol% BaZrO3 minimizes the static disorder of Cu-O bonds and maximizes their stiffness in YBCO. We show that the local structure peculiarities correlate well with the observed critical current behavior and consider this to be additional evidence in favor of small amounts of BaZrO3 nanoinclusions as efficient pinning centers.

  17. Design of a three-layer hot-wall horizontal flow MOCVD reactor

    Institute of Scientific and Technical Information of China (English)

    Gu Chengyan; Lee Chengming; Liu Xianglin

    2012-01-01

    A new three-layer hot-wall horizontal flow metal-organic chemical vapor deposition (MOCVD) reactor is proposed.When the susceptor is heated,the temperature of the wall over the susceptor also increases to the same temperature.Furthermore,the flowing speed of the top layer is also increased by up to four times that of the bottom layer.Both methods effectively decrease the convection and make most of the metal organic (MO) gas and the reactive gas distribute at the bottom surface of the reactor.By selecting appropriate shapes,sizes,nozzles array,and heating area of the walls,the source gases are kept in a laminar flow state.Results of the numeric simulation indicate that the nitrogen is a good carrier to reduce the diffusion among the precursors before arriving at the substrate,which leads to the reduction of pre-reaction.To get a good comparison with the conventional MOCVD horizontal reactor,the two-layer horizontal MOCVD reactor is also investigated.The results indicate that a twolayer reactor cannot control the gas flow effectively when its size and shape are the same as that of the three-layer reactor,so that the concentration distributions of the source gases in the susceptor surface are much more uniform in the new design than those in the conventional one.

  18. Study of TiO{sub 2} nanomembranes obtained by an induction heated MOCVD reactor

    Energy Technology Data Exchange (ETDEWEB)

    Crisbasan, A., E-mail: andreea.crisbasan@yahoo.com [NANOFORM Group, ICB, Université de Bourgogne, BP 47 870, 21078 Dijon (France); Chaumont, D. [NANOFORM Group, ICB, Université de Bourgogne, BP 47 870, 21078 Dijon (France); Sacilotti, M. [NANOFORM Group, ICB, Université de Bourgogne, BP 47 870, 21078 Dijon (France); Departamento de Fisica – Universidade Federal de Pernambuco, Recife (Brazil); Crisan, A.; Lazar, A.M.; Ciobanu, I. [Science and Materials Engineering Faculty, University of Transilvania, Brasov (Romania); Lacroute, Y.; Chassagnon, R. [Université de Bourgogne, BP 47 870, 21078 Dijon (France)

    2015-12-15

    Highlights: • The TiO{sub 2} structures have been obtained by the MOCVD technique using ferrocene, cobalt layer (annealed at 350 °C) and Ti(OC{sub 3}H{sub 7}){sub 4}. • The TiO{sub 2} growth at 550 °C, during 20 min on the cobalt layer (obtained by electron beam evaporation method) on soda-lime glass has as result TiO{sub 2} nanomembranes. • The TiO{sub 2} nanomembranes grow on the cobalt nuclei. • The TiO{sub 2} nanomembranes are polycrystalline, built from TiO{sub 2} anatase and rutile crystals. - Abstract: Nanostructures of TiO{sub 2} were grown using the metal oxide chemical vapor deposition (MOCVD) technique. The procedure used induction heating on a graphite susceptor. This specific feature and the use of cobalt and ferrocene catalysts resulted in nanomembranes never obtained by common MOCVD reactors. The present study discusses the preparation of TiO{sub 2} nanomembranes and the dependence of nanomembrane structure and morphology on growth parameters.

  19. Advanced indium phosphide based monolithic integration using quantum well intermixing and MOCVD regrowth

    Science.gov (United States)

    Raring, James W.

    The proliferation of the internet has fueled the explosive growth of telecommunications over the past three decades. As a result, the demand for communication systems providing increased bandwidth and flexibility at lower cost continues to rise. Lightwave communication systems meet these demands. The integration of multiple optoelectronic components onto a single chip could revolutionize the photonics industry. Photonic integrated circuits (PIC) provide the potential for cost reduction, decreased loss, decreased power consumption, and drastic space savings over conventional fiber optic communication systems comprised of discrete components. For optimal performance, each component within the PIC may require a unique epitaxial layer structure, band-gap energy, and/or waveguide architecture. Conventional integration methods facilitating such flexibility are increasingly complex and often result in decreased device yield, driving fabrication costs upward. It is this trade-off between performance and device yield that has hindered the scaling of photonic circuits. This dissertation presents high-functionality PICs operating at 10 and 40 Gb/s fabricated using novel integration technologies based on a robust quantum-well-intermixing (QWI) method and metal organic chemical vapor deposition (MOCVD) regrowth. We optimize the QWI process for the integration of high-performance quantum well electroabsorption modulators (QW-EAM) with sampled-grating (SG) DBR lasers to demonstrate the first widely-tunable negative chirp 10 and 40 Gb/s EAM based transmitters. Alone, QWI does not afford the integration of high-performance semiconductor optical amplifiers (SOA) and photodetectors with the transmitters. To overcome this limitation, we have developed a novel high-flexibility integration scheme combining MOCVD regrowth with QWI to merge low optical confinement factor SOAs and 40 Gb/s uni-traveling carrier (UTC) photodiodes on the same chip as the QW-EAM based transmitters. These high

  20. Synthesis and deposition of metal nanoparticles by gas condensation process

    Energy Technology Data Exchange (ETDEWEB)

    Maicu, Marina, E-mail: marina.maicu@fep.fraunhofer.de; Glöß, Daniel; Frach, Peter [Fraunhofer Institut für Elektronenstrahl und Plasmatechnik, FEP, Winterbergstraße 28, 01277 Dresden (Germany); Schmittgens, Ralph; Gerlach, Gerald [Institut für Festkörperelektronik, IFE, TU Dresden, Helmholtz Straße 18, 01069 Dresden (Germany); Hecker, Dominic [Fraunhofer Institut für Elektronenstrahl und Plasmatechnik, FEP, Winterbergstraße 28, 01277 Dresden, Germany and Institut für Festkörperelektronik, IFE, TU Dresden, Helmholtz Straße 18, 01069 Dresden (Germany)

    2014-03-15

    In this work, the synthesis of Pt and Ag nanoparticles by means of the inert gas phase condensation of sputtered atomic vapor is presented. The process parameters (power, sputtering time, and gas flow) were varied in order to study the relationship between deposition conditions and properties of the nanoparticles such as their quantity, size, and size distribution. Moreover, the gas phase condensation process can be combined with a plasma enhanced chemical vapor deposition procedure in order to deposit nanocomposite coatings consisting of metallic nanoparticles embedded in a thin film matrix material. Selected examples of application of the generated nanoparticles and nanocomposites are discussed.

  1. TiO2 thin film growth using the MOCVD method

    Directory of Open Access Journals (Sweden)

    Bernardi M.I.B.

    2001-01-01

    Full Text Available Titanium oxide (TiO2 thin films were obtained using the MOCVD method. In this report we discuss the properties of a film, produced using a ordinary deposition apparatus, as a function of the deposition time, with constant deposition temperature (90 °C, oxygen flow (7,0 L/min and substrate temperature (400 °C. The films were characterized by X-ray diffraction (XRD, scanning electron microscopy (SEM, atomic force microscopy (AFM and visible and ultra-violet region spectroscopy (UV-Vis. The films deposited on Si (100 substrates showed the anatase polycrystalline phase, while the films grown on glass substrates showed no crystallinity. Film thickness increased with deposition time as expected, while the transmittance varied from 72 to 91% and the refractive index remained close to 2.6.

  2. Energy Deposition Processes in Titan's Upper Atmosphere

    Science.gov (United States)

    Sittler, Edward C., Jr.; Bertucci, Cesar; Coates, Andrew; Cravens, Tom; Dandouras, Iannis; Shemansky, Don

    2008-01-01

    Most of Titan's atmospheric organic and nitrogen chemistry, aerosol formation, and atmospheric loss are driven from external energy sources such as Solar UV, Saturn's magnetosphere, solar wind and galactic cosmic rays. The Solar UV tends to dominate the energy input at lower altitudes of approximately 1100 km but which can extend down to approximately 400 km, while the plasma interaction from Saturn's magnetosphere, Saturn's magnetosheath or solar wind are more important at higher altitudes of approximately 1400 km, but the heavy ion plasma [O(+)] of approximately 2 keV and energetic ions [H(+)] of approximately 30 keV or higher from Saturn's magnetosphere can penetrate below 950km. Cosmic rays with energies of greater than 1 GeV can penetrate much deeper into Titan's atmosphere with most of its energy deposited at approximately 100 km altitude. The haze layer tends to dominate between 100 km and 300 km. The induced magnetic field from Titan's interaction with the external plasma can be very complex and will tend to channel the flow of energy into Titan's upper atmosphere. Cassini observations combined with advanced hybrid simulations of the plasma interaction with Titan's upper atmosphere show significant changes in the character of the interaction with Saturn local time at Titan's orbit where the magnetosphere displays large and systematic changes with local time. The external solar wind can also drive sub-storms within the magnetosphere which can then modify the magnetospheric interaction with Titan. Another important parameter is solar zenith angle (SZA) with respect to the co-rotation direction of the magnetospheric flow. Titan's interaction can contribute to atmospheric loss via pickup ion loss, scavenging of Titan's ionospheric plasma, loss of ionospheric plasma down its induced magnetotail via an ionospheric wind, and non-thermal loss of the atmosphere via heating and sputtering induced by the bombardment of magnetospheric keV ions and electrons. This

  3. Energy Deposition Processes in Titan's Upper Atmosphere

    Science.gov (United States)

    Sittler, Edward C., Jr.; Bertucci, Cesar; Coates, Andrew; Cravens, Tom; Dandouras, Iannis; Shemansky, Don

    2008-01-01

    Most of Titan's atmospheric organic and nitrogen chemistry, aerosol formation, and atmospheric loss are driven from external energy sources such as Solar UV, Saturn's magnetosphere, solar wind and galactic cosmic rays. The Solar UV tends to dominate the energy input at lower altitudes of approximately 1100 km but which can extend down to approximately 400 km, while the plasma interaction from Saturn's magnetosphere, Saturn's magnetosheath or solar wind are more important at higher altitudes of approximately 1400 km, but the heavy ion plasma [O(+)] of approximately 2 keV and energetic ions [H(+)] of approximately 30 keV or higher from Saturn's magnetosphere can penetrate below 950km. Cosmic rays with energies of greater than 1 GeV can penetrate much deeper into Titan's atmosphere with most of its energy deposited at approximately 100 km altitude. The haze layer tends to dominate between 100 km and 300 km. The induced magnetic field from Titan's interaction with the external plasma can be very complex and will tend to channel the flow of energy into Titan's upper atmosphere. Cassini observations combined with advanced hybrid simulations of the plasma interaction with Titan's upper atmosphere show significant changes in the character of the interaction with Saturn local time at Titan's orbit where the magnetosphere displays large and systematic changes with local time. The external solar wind can also drive sub-storms within the magnetosphere which can then modify the magnetospheric interaction with Titan. Another important parameter is solar zenith angle (SZA) with respect to the co-rotation direction of the magnetospheric flow. Titan's interaction can contribute to atmospheric loss via pickup ion loss, scavenging of Titan's ionospheric plasma, loss of ionospheric plasma down its induced magnetotail via an ionospheric wind, and non-thermal loss of the atmosphere via heating and sputtering induced by the bombardment of magnetospheric keV ions and electrons. This

  4. Vertically p-n-junctioned GaN nano-wire array diode fabricated on Si(111) using MOCVD.

    Science.gov (United States)

    Park, Ji-Hyeon; Kim, Min-Hee; Kissinger, Suthan; Lee, Cheul-Ro

    2013-04-07

    We demonstrate the fabrication of n-GaN:Si/p-GaN:Mg nanowire arrays on (111) silicon substrate by metal organic chemical vapor deposition (MOCVD) method .The nanowires were grown by a newly developed two-step growth process. The diameter of as-grown nanowires ranges from 300-400 nm with a density of 6-7 × 10(7) cm(-2). The p- and n-type doping of the nanowires is achieved with Mg and Si dopant species. Structural characterization by X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM) indicates that the nanowires are relatively defect-free. The room-temperature photoluminescence emission with a strong peak at 370 nm indicates that the n-GaN:Si/p-GaN:Mg nanowire arrays have potential application in light-emitting nanodevices. The cathodoluminscence (CL) spectrum clearly shows a distinct optical transition of GaN nanodiodes. The nano-n-GaN:Si/p-GaN:Mg diodes were further completed using a sputter coating approach to deposit Au/Ni metal contacts. The polysilazane filler has been etched by a wet chemical etching process. The n-GaN:Si/p-GaN:Mg nanowire diode was fabricated for different Mg source flow rates. The current-voltage (I-V) measurements reveal excellent rectifying properties with an obvious turn-on voltage at 1.6 V for a Mg flow rate of 5 sccm (standard cubic centimeters per minute).

  5. Investigations of chemical vapor deposition of GaN using synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, C.; Stephenson, G. B.; Eastman, J. A.; Munkholm, A.; Auciello, O.; Murty, M. V. R.; Fini, P.; DenBaars, S. P.; Speck, J. S.

    2000-05-25

    The authors apply synchrotron x-ray analysis techniques to probe the surface structure of GaN films during synthesis by metal-organic chemical vapor deposition (MOCVD). Their approach is to observe the evolution of surface structure and morphology in real time using grazing incidence x-ray scattering (GIXS). This technique combines the ability of x-rays to penetrate the chemical vapor deposition environment for in situ measurements, with the sensitivity of GIXS to atomic scale structure. In this paper they present examples from some of their studies of growth modes and surface evolution as a function of process conditions that illustrate the capabilities of synchrotron x-ray analysis during MOCVD growth. They focus on studies of the homoepitaxial growth mode, island coarsening dynamics, and effects of impurities.

  6. ZnS thin film deposited with chemical bath deposition process directed by different stirring speeds

    Science.gov (United States)

    Zhang, Y.; Dang, X. Y.; Jin, J.; Yu, T.; Li, B. Z.; He, Q.; Li, F. Y.; Sun, Y.

    2010-09-01

    In this combined film thickness, scanning electron microscopy (SEM), X-ray diffraction and optical properties study, we explore the effects of different stirring speeds on the growth and optical properties of ZnS film deposited by CBD method. From the disclosed changes of thickness of ZnS film, we conclude that film thickness is independent of the stirring speeds in the heterogeneous process (deposition time less than 40 min), but increases with the stirring speeds and/or deposition time increasing in the homogeneous process. Grazing incident X-ray diffraction (GIXRD) and the study of optical properties disclosed that the ZnS films grown with different stirring speeds show partially crystallized film and exhibit good transmittance (70-88% in the visible region), but the stirring speeds cannot give much effects on the structure and optical properties in the homogeneous process.

  7. Characterization of GaN Buffer Layers and Its Epitaxial Layers Grown by MOCVD

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Low-pressure MOCVD has been used to investigate the properties of low-temperature buffer layer deposition conditions and their influence on the properties of high-temperature GaN epilayers grown subsequently. It is found that the surface morphology of the as-grown buffer layer after thermal annealing at 1030℃ and 1050℃ depends strongly on the thickness of the buffer layer. In particular when a thick buffer layer is used, large trapezoidal nuclei are formed after annealing.

  8. Surface Science in an MOCVD Environment: Arsenic on Vicinal Ge(100)

    Energy Technology Data Exchange (ETDEWEB)

    McMahon, W. E.; Olson, J. M.

    1998-11-01

    Scanning tunneling microscope (STM) images of arsine-exposed vicinal Ge(100) surfaces show that most As/Ge steps are reconstructed, and that a variety of different step structures exist. The entire family of reconstructed As/Ge steps can be divided into two types, which we have chosen to call ''single-row'' steps and ''double-row'' steps. In this paper we propose a model for a double-row step created by annealing a vicinal Ge(100) substrate under an arsine flux in a metal-organic chemical vapor deposition (MOCVD) chamber.

  9. Analysis and finite element simulation of electromagnetic heating in the nitride MOCVD reactor

    Institute of Scientific and Technical Information of China (English)

    Li Zhi-Ming; Hao Yue; Zhang Jin-Cheng; Xu Sheng-Rui; Ni JinYu

    2009-01-01

    Electromagnetic field distribution in the vertical metal organic chemical vapour deposition (MOCVD) reactor is simulated by using the finite element method (FEM). The effects of alternating current frequency, intensity, coil turn number and the distance between the coil turns on the distribution of the Joule heat are analysed separately, and their relations to the value of Joule heat are also investigated. The temperature distribution on the suseeptor is also obtained. It is observed that the results of the simulation are in good agreement with previous measurements.

  10. Photodegradative properties of TiO{sub 2} films prepared by MOCVD

    Energy Technology Data Exchange (ETDEWEB)

    Justicia, I.; Ayllon, J.A.; Figueras, A. [Consejo Superior de Investigaciones Cientificas, Barcelona (Spain). Inst. de Ciencia de Materiales; Battiston, G.A.; Gerbasi, R. [Consejo Superior de Investigaciones Cientificas, Barcelona (Spain). Inst. de Ciencia de Materiales; Ist. di Chimica e Tecnologie Inorganiche e dei Materiali Avanzati del CNR, Padova (Italy)

    2001-08-01

    TiO{sub 2} is a well-known photocatalyst for the air-oxydation of organic compounds. This paper deals with the preparation of TiO{sub 2} layers by MOCVD. The photodegradation rate has been studied in the presence of aqueous suspensions (methylene blue) as a function of the film thickness, roughness and crystallite preferred orientation. These results are compared with aqueous suspensions of Degussa P-25 powders. Deposits obtained on fused quartz showed a higher photodegradation rate than those prepared on glass, while Degussa powders exhibited an intermediate value. (orig.)

  11. Micromorphology of modern tills in southwestern Spitsbergen – insights into depositional and post-depositional processes

    Directory of Open Access Journals (Sweden)

    Skolasińska Katarzyna

    2016-12-01

    Full Text Available Textural properties and microstructures are commonly used properties in the analysis of Pleistocene and older glacial deposits. However, contemporary glacial deposits are seldom studied, particularly in the context of post-depositional changes. This paper presents the results of a micromorphological study of recently deposited tills in the marginal zones of Hansbreen and Torellbreen, glaciers in southwestern Spitsbergen. The main objectives of this study were to compare modern tills deposited in subglacial and supraglacial conditions, as well as tills that were freshly released from ice with those laid down several decades ago. The investigated tills are primarily composed of large clasts of metamorphic rocks and represent coarse-grained, matrix-supported diamictons. The tills reveal several characteristic features for ductile (e.g. turbate structures and brittle (e.g. lineations, microshears deformations, which have been considered to be indicative of subglacial conditions. In supraglacial tills, the same structures are common as in the subglacial deposits, which points to the preservation of the primary features, though the sediment was transferred up to the glacier surface due to basal ice layer deformation and redeposited as slumps, or to formation of similar structures due to short-distance sediment re-deposition by mass flows. This study revealed that it might not be possible to distinguish subglacial and supraglacial tills on the basis of micromorphology if the latter are derived from a subglacial position. The only noted difference was the presence of iron oxide cementation zones and carbonate dissolution features in supraglacial tills. These features were found in tills that were deposited at least a few years ago and are interpreted to be induced by early post-depositional processes involving porewater/sediment interactions.

  12. Thermogravimetric evaluation of the suitability of precursors for MOCVD

    Science.gov (United States)

    Kunte, G. V.; Shivashankar, S. A.; Umarji, A. M.

    2008-02-01

    A method based on the Langmuir equation for the estimation of vapour pressure and enthalpy of sublimation of subliming compounds is described. The variable temperature thermogravimetric/differential thermogravimetric (TG/DTG) curve of benzoic acid is used to arrive at the instrument parameters. Employing these parameters, the vapour pressure-temperature curves are derived for salicylic acid and camphor from their TG/DTG curves. The values match well with vapour pressure data in the literature, obtained by effusion methods. By employing the Clausius-Clapeyron equation, the enthalpy of sublimation could be calculated. Extending the method further, two precursors for metal-organic chemical vapour deposition (MOCVD) of titanium oxide bis-isopropyl bis tert-butyl 2-oxobutanoato titanium, Ti(OiPr)2(tbob)2, and bis-oxo-bis-tertbutyl 2-oxobutanoato titanium, [TiO(tbob)2]2, have been evaluated. The complex Ti(OiPr)2(tbob)2 is found to be a more suitable precursor. This approach can be helpful in quickly screening for the suitability of a compound as a CVD precursor.

  13. Optoelectronic and structural properties of InGaN nanostructures grown by plasma-assisted MOCVD

    Science.gov (United States)

    Seidlitz, Daniel; Senevirathna, M. K. I.; Abate, Y.; Hoffmann, A.; Dietz, N.

    2015-09-01

    This paper presents optoelectronic and structural layer properties of InN and InGaN epilayers grown on sapphire templates by Migration-Enhanced Plasma Assisted Metal Organic Chemical Vapor Deposition (MEPA-MOCVD). Real-time characterization techniques have been applied during the growth process to gain insight of the plasma-assisted decomposition of the nitrogen precursor and associated growth surface processes. Analyzed Plasma Emission Spectroscopy (PES) and UV Absorption Spectroscopy (UVAS) provide detection and concentrations of plasma generated active species (N*/NH*/NHx*). Various precursors have been used to assess the nitrogen-active fragments that are directed from the hollow cathode plasma tube to the growth surface. The in-situ diagnostics results are supplemented with ex-situ materials structures investigation results of nanoscale structures using Scanning Near-field Optical Microscopy (SNOM). The structural properties have been analyzed by Raman spectroscopy and Fourier transform infrared (FTIR) reflectance. The Optoelectronic and optical properties were extracted by modeling the FTIR reflectance (e.g. free carrier concentration, high frequency dielectric constant, mobility) and optical absorption spectroscopy. The correlation and comparison between the in-situ metrology results with the ex-situ nano-structural and optoelectronic layer properties provides insides into the growth mechanism on how plasma-activated nitrogen-fragments can be utilized as nitrogen precursor for group III-nitride growth. The here assessed growth process parameter focus on the temporal precursor exposure of the growth surface, the reactor pressure, substrate temperature and their effects of the properties of the InN and InGaN epilayers.

  14. Thermal Modeling of Direct Digital Melt-Deposition Processes

    Science.gov (United States)

    Cooper, K. P.; Lambrakos, S. G.

    2011-02-01

    Additive manufacturing involves creating three-dimensional (3D) objects by depositing materials layer-by-layer. The freeform nature of the method permits the production of components with complex geometry. Deposition processes provide one more capability, which is the addition of multiple materials in a discrete manner to create "heterogeneous" objects with locally controlled composition and microstructure. The result is direct digital manufacturing (DDM) by which dissimilar materials are added voxel-by-voxel (a voxel is volumetric pixel) following a predetermined tool-path. A typical example is functionally gradient material such as a gear with a tough core and a wear-resistant surface. The inherent complexity of DDM processes is such that process modeling based on direct physics-based theory is difficult, especially due to a lack of temperature-dependent thermophysical properties and particularly when dealing with melt-deposition processes. In order to overcome this difficulty, an inverse problem approach is proposed for the development of thermal models that can represent multi-material, direct digital melt deposition. This approach is based on the construction of a numerical-algorithmic framework for modeling anisotropic diffusivity such as that which would occur during energy deposition within a heterogeneous workpiece. This framework consists of path-weighted integral formulations of heat diffusion according to spatial variations in material composition and requires consideration of parameter sensitivity issues.

  15. Nano-scale gap filling and mechanism of deposit-etch-deposit process for phase-change material

    Institute of Scientific and Technical Information of China (English)

    Ren Wan-Chun; Liu Bo; Song Zhi-Tang; Xiang Yang-Hui; Wang Zong-Tao; Zhang Bei-Chao; Feng Song-Lin

    2012-01-01

    Ge2Sb2Te5 gap filling is one of the key processes for phase-change random access memory manufacture.Physical vapor deposition is the mainstream method of Ge2Sb2Te5 film deposition due to its advantages of film quality,purity,and accurate composition control.However,the conventional physical vapor deposition process cannot meet the gapfilling requirement with the critical device dimension scaling down to 90 nm or below.In this study,we find that the deposit-etch-deposit process shows better gap-filling capability and scalability than the single-step deposition process,especially at the nano-scale critical dimension.The gap-filling mechanism of the deposit-etch-deposit process was briefly discussed.We also find that re-deposition of phase-change material from via the sidewall to via the bottom by argon ion bombardment during the etch step was a key ingredient for the final good gap filling.We achieve void-free gap filling of phase-change material on the 45-nm via the two-cycle deposit-etch-deposit process.We gain a rather comprehensive insight into the mechanism of deposit-etch-deposit process and propose a potential gap-filling solution for over 45-nm technology nodes for phase-change random access memory.

  16. Powder Flux Regulation in the Laser Material Deposition Process

    Science.gov (United States)

    Arrizubieta, Jon Iñaki; Wegener, Maximiliam; Arntz, Kristian; Lamikiz, Aitzol; Ruiz, Jose Exequiel

    In the present research work a powder flux regulation system has been designed, developed and validated with the aim of improving the Laser Material Deposition (LMD) process. In this process, the amount of deposited material per substrate surface unit area depends on the real feed rate of the nozzle. Therefore, a regulation system based on a solenoid valve has been installed at the nozzle entrance in order to control the powder flux. The powder flux control has been performed based on the machine real feed rate, which is compared with the programmed feed rate. An instantaneous velocity error is calculated and the powder flow is controlled as a function of this variation using Pulse Width Modulation (PWM) signals. Thereby, in zones where the Laser Material Deposition machine reduces the feed rate due to a trajectory change, powder accumulation can be avoided and the generated clads would present a homogeneous shape.

  17. Plasma Processes : Microwave plasma deposition of diamond like carbon coatings

    Indian Academy of Sciences (India)

    D S Patil; K Ramachandran; N Venkatramani; M Pandey; R D'Cunha

    2000-11-01

    The promising applications of the microwave plasmas have been appearing in the fields of chemical processes and semiconductor manufacturing. Applications include surface deposition of all types including diamond/diamond like carbon (DLC) coatings, etching of semiconductors, promotion of organic reactions, etching of polymers to improve bonding of the other materials etc. With a 2.45 GHz, 700 W, microwave induced plasma chemical vapor deposition (CVD) system set up in our laboratory we have deposited diamond like carbon coatings. The microwave plasma generation was effected using a wave guide single mode applicator. We have deposited DLC coatings on the substrates like stainless steel, Cu–Be, Cu and Si. The deposited coatings have been characterized by FTIR, Raman spectroscopy and ellipsometric techniques. The results show that we have achieved depositing ∼ 95% sp3 bonded carbon in the films. The films are uniform with golden yellow color. The films are found to be excellent insulators. The ellipsometric measurements of optical constant on silicon substrates indicate that the films are transparent above 900 nm.

  18. InGaAs/InP Avalanche Photodiode for Single Photon Detection with Zinc Diffusion Process Using Metal Organic Chemical Vapor Deposition.

    Science.gov (United States)

    Lee, In Joon; Lee, Min Soo; Kim, Min Su; Jun, Dong-Hwan; Jeong, Hae Yong; Kim, Sangin; Han, Sang-wook; Moon, Sung

    2016-05-01

    In this paper, we describe a design, simulation, and fabrication of an InGaAs/InP single photon avalanche photodiode (SPAD), which requires a much higher gain, compared to APD's for conventional optical communications. To achieve a higher gain, an efficient multiplication width control is essential because it significantly affects the overall performance including not only gain but also noise characteristics. Normally, the multiplication layer width is controlled by the Zinc diffusion process. For the reliable and controllable diffusion process, we used metal organic chemical vapor deposition (MOCVD). The controllability of the proposed diffusion process is proved by the diffusion depth measurement of the fabricated devices which show the proportional dependence on the square root of the diffusion time. As a result, we successfully implemented the SPAD that exhibits a high gain enough to detect single photons and a very low dark current level of about 0.1 nA with 0.95 breakdown voltage. The single photon detection efficiency of 15% was measured at the 100 kHz gate pulse rate and the temperature of 230 K.

  19. Application of laser assisted cold spraying process for metal deposition

    CSIR Research Space (South Africa)

    Tlotleng, Monnamme

    2014-02-01

    Full Text Available Laser assisted cold spraying (LACS) process is a hybrid technique that uses laser and cold spray to deposit solid powders on metal substrates. For bonding to occur, the particle velocities must be supersonic which are achieved by entraining...

  20. Stabilization of Indium-Rich In1-xGaxN Heterostructures: The Exploration of a Common Processing Window

    Science.gov (United States)

    2015-04-08

    Real-time optical growth characterization of group III- nitride -alloys during Plasma - Assisted MOCVD,” D. Seidlitz, R. Samaraweera, B. Hussain,I... Nitrides (ISGN-5), Poster presentation, paper# E7, Contr# 1968006, May 19, 6-8pm, Atlanta, GA (2014). 13. “Migration-Enhanced, Remote- Plasma MOVCD Growth...processes. 15. SUBJECT TERMS super-atmospheric / high-pressure chemical vapor deposition (HPCVD); thin film film deposition; group III- Nitride alloys

  1. Growth and characterization of AP-MOCVD iron doped titanium dioxide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Gauthier, V.; Bourgeois, S. [Bourgogne Univ., Dijon (France). Lab. de Recherches sur la Reactivite des Solides; Sibillot, P.; Maglione, M.; Sacilotti, M. [Laboratoire de Physique de l`Universite de Bourgogne, UPRESA 5027 CNRS, BP 400, F 21011, Dijon Cedex (France)

    1999-02-26

    Atmospheric pressure metal organic chemical vapor deposition (AP-MOCVD) was used to prepare iron doped titanium dioxide thin films. Thin films, between 40 and 150 nm thick, were deposited on Si, SiO{sub 2} and Al{sub 2}O{sub 3} substrates using titanium tetra isopropoxide and ferrocene as metal organic precursors. TiO{sub 2} iron doping was achieved in the range of 1-4 at.%. The film morphology and thickness, polycrystalline texture and doping content were studied using respectively scanning electron microscopy (SEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The influence of growth temperature, deposition time, substrate type and dopant partial pressure were studied. Electrical characterizations of the films were also performed. (orig.) 30 refs.

  2. Influence of vacuum-annealing on the diffusion barrier properties of MOCVD TiN for Cu metallization

    CERN Document Server

    Lee, J G; Lee, E G; Lee, J Y; Kim, K B; Lee, J M

    1999-01-01

    We have investigated the effects of vacuum annealing of TDMAT-sourced TiN on the film qualities, as well as on the properties of the barrier against Cu diffusion. Vacuum annealing at 550 .deg. C to 1000 .deg. C achieved a significant densification of the TiN films with the interaction of Ti in the TiN prepared by metalorganic chemical-vapor deposition (MOCVD TiN) and Si at the interface. This interaction produced a stable interface between TiN and Si. In addition, annealing of the films at 1000 .deg. C transformed the amorphous TiN(C) films into crystalline TiNC solid solutions. About 10 at % silicon diffused into the TiN film from the Si substrate, and oxygen in the as-deposited TiN film was expelled to the surface after annealing at 1000 .deg. C. The barrier failure mechanism of MOCVD TiN in Cu metallization included the indiffusion of Cu and the accompanying outdiffusion of silicon through the barrier layer. The annealing of MOCVD TiN in vacuum improved the diffusion barrier properties, partly due to the d...

  3. Temperature coefficients and radiation induced DLTS spectra of MOCVD grown n(+)p InP solar cells

    Science.gov (United States)

    Walters, Robert J.; Statler, Richard L.; Summers, Geoffrey P.

    1991-01-01

    The effects of temperature and radiation on n(+)p InP solar cells and mesa diodes grown by metallorganic chemical vapor deposition (MOCVD) were studied. It was shown that MOCVD is capable of consistently producing good quality InP solar cells with Eff greater than 19 percent which display excellent radiation resistance due to minority carrier injection and thermal annealing. It was also shown that universal predictions of InP device performance based on measurements of a small group of test samples can be expected to be quite accurate, and that the degradation of an InP device due to any incident particle spectrum should be predictable from a measurement following a single low energy proton irradiation.

  4. Morphology Simulation for Ion-Assisted Deposition Process

    Institute of Scientific and Technical Information of China (English)

    Jenn-SenLin; Shin-PonJu; Jian-MingLu

    2004-01-01

    The molecular dynamics simulation is applied to investigate the lnfluence of the incident 1on energy ana mclident angular distribution upon ion-assisted deposition process. The Cu-Cu and Ar-Cu interactions are modeled using the many body tight-binding potential and the Moliere potential, respectively, and the interface width is used to characterize the surface roughness properties at both transient and final state conditions. The results show that the surface roughness of the deposition film is lower when more Ar-to-Cu ratio is used at the same incident energy and angle. For the relative low or high incident energy, the film morphologies are not sensitive to the incident angle. However, if the incident energy of the argon ions is too high, the film morphology will be worse than that without using the ion-assisted deposition.

  5. Chemical vapor deposition of ceramic coatings on metals and ceramic fibers

    Science.gov (United States)

    Nable, Jun Co

    2005-07-01

    The research presented in this study consists of two major parts. The first part is about the development of ceramic coatings on metals by chemical vapor deposition (CVD) and metal-organic chemical vapor deposition (MOCVD). Ceramics such as Al2O3 and Cr2O3, are used as protective coatings for materials used at elevated temperatures (>700°C). These metal oxides either exhibit oxidation resistance or have been used as environmental bond coats. Conventional methods of coating by chemical vapor deposition requires deposition temperatures of >950°C which could damage the substrate material during the coating process. Lower deposition temperatures (400 to 600°C) by MOCVD of these metal oxides were successful on Ni metal substrates. Surface modification such as pre-oxidation and etching were also investigated. In addition, a novel approach for the CVD of TiN on metals was developed. This new approach utilizes ambient pressure conditions which lead to deposition temperatures of 800°C or lower compared to conventional CVD of TiN at 1000°C. Titanium nitride can be used as an abrasive and wear coating on cutting and grinding tools. This nitride can also serve as a diffusion coating in metals. The second major part of this research involves the synthesis of interfacial coatings on ceramic reinforcing fibers for ceramic matrix composites. Aluminum and chromium oxides were deposited onto SiC, and Al2O3-SiO 2 fibers by MOCVD. The effects of the interface coatings on the tensile strength of ceramic fibers are also discussed. New duplex interface coatings consisting of BN or TiN together with Al2O3 or ZrO 2 were also successfully deposited and evaluated on SiC fibers.

  6. Comparison of hafnium silicate thin films on silicon (1 0 0) deposited using thermal and plasma enhanced metal organic chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Rangarajan, Vishwanathan; Bhandari, Harish; Klein, Tonya M

    2002-11-01

    Hafnium silicate thin films were deposited by metal organic chemical vapor deposition (MOCVD) on Si at 400 deg. C using hafnium (IV) t-butoxide. Films annealed in O{sub 2} were compared to as-deposited films using X-ray photoelectron spectroscopy and X-ray diffraction. Hafnium silicate films were deposited by both thermal and plasma enhanced MOCVD using 2% SiH{sub 4} in He as the Si precursor. An O{sub 2} plasma increased Si content to as much as {approx}26 at.% Si. Both thermal and plasma deposited Hf silicates are amorphous as deposited, however, thermal films exhibit crystallinity after anneal. Surface roughness as measured by atomic force microscopy was found to be 1.1 and 5.1 nm for MOCVD hafnium silicate and plasma enhanced MOCVD hafnium silicate, respectively.

  7. Synthesis of TiO2 supported on activated carbon by MOCVD:operation parameters study

    Institute of Scientific and Technical Information of China (English)

    张兴旺; 周明华; 雷乐成; 徐甦

    2004-01-01

    A novel metallo-organic chemical vapor deposition (MOCVD) technique has been applied to the preparation of the photocatalytic titanium dioxide supported on activated carbon. The effects of various condition parameters such as carrier gas flow rate, source temperature and deposition temperature on the deposition rate were investigated. The maximum deposition rate of 8.2 mg/(g.h) was obtained under conditions of carrier gas flow rate of 400 ml/min, source temperature of 423 K and deposition temperature of 913 K. The deposition rate followed Arrhenius behavior at temperature of 753 K to 913 K, corresponding to activation energy Ea of 51.09 kJ/mol. TiO2 existed only in anatase phase when the deposition temperature was 773 K to 973 K. With increase of deposition temperature from 1073 K to 1273 K, the rutile content sharply increased from 7% to 70%. It was found that a deposition temperature of 773 K and a higher source temperature of 448 K resulted in finely dispersed TiO2 particles, which were mainly in the range of 10-20 nm.

  8. A Modified Surface on Titanium Deposited by a Blasting Process

    Directory of Open Access Journals (Sweden)

    Caroline O’Sullivan

    2011-09-01

    Full Text Available Hydroxyapatite (HA coating of hard tissue implants is widely employed for its biocompatible and osteoconductive properties as well as its improved mechanical properties. Plasma technology is the principal deposition process for coating HA on bioactive metals for this application. However, thermal decomposition of HA can occur during the plasma deposition process, resulting in coating variability in terms of purity, uniformity and crystallinity, which can lead to implant failure caused by aseptic loosening. In this study, CoBlastTM, a novel blasting process has been used to successfully modify a titanium (V substrate with a HA treatment using a dopant/abrasive regime. The impact of a series of apatitic abrasives under the trade name MCD, was investigated to determine the effect of abrasive particle size on the surface properties of both microblast (abrasive only and CoBlast (HA/abrasive treatments. The resultant HA treated substrates were compared to substrates treated with abrasive only (microblasted and an untreated Ti. The HA powder, apatitic abrasives and the treated substrates were characterized for chemical composition, coating coverage, crystallinity and topography including surface roughness. The results show that the surface roughness of the HA blasted modification was affected by the particle size of the apatitic abrasives used. The CoBlast process did not alter the chemistry of the crystalline HA during deposition. Cell proliferation on the HA surface was also assessed, which demonstrated enhanced osteo-viability compared to the microblast and blank Ti. This study demonstrates the ability of the CoBlast process to deposit HA coatings with a range of surface properties onto Ti substrates. The ability of the CoBlast technology to offer diversity in modifying surface topography offers exciting new prospects in tailoring the properties of medical devices for applications ranging from dental to orthopedic settings.

  9. Electrical properties of GaAs metal-oxide-semiconductor structure comprising Al2O3 gate oxide and AlN passivation layer fabricated in situ using a metal-organic vapor deposition/atomic layer deposition hybrid system

    Science.gov (United States)

    Aoki, Takeshi; Fukuhara, Noboru; Osada, Takenori; Sazawa, Hiroyuki; Hata, Masahiko; Inoue, Takayuki

    2015-08-01

    This paper presents a compressive study on the fabrication and optimization of GaAs metal-oxide-semiconductor (MOS) structures comprising a Al2O3 gate oxide, deposited via atomic layer deposition (ALD), with an AlN interfacial passivation layer prepared in situ via metal-organic chemical vapor deposition (MOCVD). The established protocol afforded self-limiting growth of Al2O3 in the atmospheric MOCVD reactor. Consequently, this enabled successive growth of MOCVD-formed AlN and ALD-formed Al2O3 layers on the GaAs substrate. The effects of AlN thickness, post-deposition anneal (PDA) conditions, and crystal orientation of the GaAs substrate on the electrical properties of the resulting MOS capacitors were investigated. Thin AlN passivation layers afforded incorporation of optimum amounts of nitrogen, leading to good capacitance-voltage (C-V) characteristics with reduced frequency dispersion. In contrast, excessively thick AlN passivation layers degraded the interface, thereby increasing the interfacial density of states (Dit) near the midgap and reducing the conduction band offset. To further improve the interface with the thin AlN passivation layers, the PDA conditions were optimized. Using wet nitrogen at 600 °C was effective to reduce Dit to below 2 × 1012 cm-2 eV-1. Using a (111)A substrate was also effective in reducing the frequency dispersion of accumulation capacitance, thus suggesting the suppression of traps in GaAs located near the dielectric/GaAs interface. The current findings suggest that using an atmosphere ALD process with in situ AlN passivation using the current MOCVD system could be an efficient solution to improving GaAs MOS interfaces.

  10. Electrical properties of GaAs metal–oxide–semiconductor structure comprising Al2O3 gate oxide and AlN passivation layer fabricated in situ using a metal–organic vapor deposition/atomic layer deposition hybrid system

    Directory of Open Access Journals (Sweden)

    Takeshi Aoki

    2015-08-01

    Full Text Available This paper presents a compressive study on the fabrication and optimization of GaAs metal–oxide–semiconductor (MOS structures comprising a Al2O3 gate oxide, deposited via atomic layer deposition (ALD, with an AlN interfacial passivation layer prepared in situ via metal–organic chemical vapor deposition (MOCVD. The established protocol afforded self-limiting growth of Al2O3 in the atmospheric MOCVD reactor. Consequently, this enabled successive growth of MOCVD-formed AlN and ALD-formed Al2O3 layers on the GaAs substrate. The effects of AlN thickness, post-deposition anneal (PDA conditions, and crystal orientation of the GaAs substrate on the electrical properties of the resulting MOS capacitors were investigated. Thin AlN passivation layers afforded incorporation of optimum amounts of nitrogen, leading to good capacitance–voltage (C–V characteristics with reduced frequency dispersion. In contrast, excessively thick AlN passivation layers degraded the interface, thereby increasing the interfacial density of states (Dit near the midgap and reducing the conduction band offset. To further improve the interface with the thin AlN passivation layers, the PDA conditions were optimized. Using wet nitrogen at 600 °C was effective to reduce Dit to below 2 × 1012 cm−2 eV−1. Using a (111A substrate was also effective in reducing the frequency dispersion of accumulation capacitance, thus suggesting the suppression of traps in GaAs located near the dielectric/GaAs interface. The current findings suggest that using an atmosphere ALD process with in situ AlN passivation using the current MOCVD system could be an efficient solution to improving GaAs MOS interfaces.

  11. Controlling nucleation of monolayer WSe2 during metal-organic chemical vapor deposition growth

    Science.gov (United States)

    Eichfeld, Sarah M.; Oliveros Colon, Víctor; Nie, Yifan; Cho, Kyeongjae; Robinson, Joshua A.

    2016-06-01

    Tungsten diselenide (WSe2) is a semiconducting, two-dimensional (2D) material that has gained interest in the device community recently due to its electronic properties. The synthesis of atomically thin WSe2, however, is still in its infancy. In this work we elucidate the requirements for large selenium/tungsten precursor ratios and explain the effect of nucleation temperature on the synthesis of WSe2 via metal-organic chemical vapor deposition (MOCVD). The introduction of a nucleation-step prior to growth demonstrates that increasing nucleation temperature leads to a transition from a Volmer-Weber to Frank-van der Merwe growth mode. Additionally, the nucleation step prior to growth leads to an improvement of WSe2 layer coverage on the substrate. Finally, we note that the development of this two-step technique may allow for improved control and quality of 2D layers grown via CVD and MOCVD processes.

  12. Influence of growth pressure of a GaN buffer layer on the properties of MOCVD GaN

    Institute of Scientific and Technical Information of China (English)

    CHEN; Jun(陈俊); ZHANG; Shuming(张书明); ZHANG; Baoshun(张宝顺); ZHU; Jianjun(朱建军); FENG; Gan(冯淦); DUAN; Lihong(段俐宏); WANG; Yutian(王玉田); YANG; Hui(杨辉); ZHENG; Wenchen(郑文琛)

    2003-01-01

    The influence of growth pressure of GaN buffer layer on the properties of MOCVD GaN on α-Al2O3 has been investigated with the aid of a home-made in situ laser reflectometry measurement system. The results obtained with in situ measurements and scanning electron microscope show that with the increase in deposition pressure of buffer layer, the nuclei increase in size, which roughens the surface, and delays the coalescence of GaN nuclei. The optical and crystalline quality of GaN epilayer was improved when buffer layer was deposited at high pressure.

  13. Numerical modeling of consolidation processes in hydraulically deposited soils

    Science.gov (United States)

    Brink, Nicholas Robert

    Hydraulically deposited soils are encountered in many common engineering applications including mine tailing and geotextile tube fills, though the consolidation process for such soils is highly nonlinear and requires the use of advanced numerical techniques to provide accurate predictions. Several commercially available finite element codes poses the ability to model soil consolidation, and it was the goal of this research to assess the ability of two of these codes, ABAQUS and PLAXIS, to model the large-strain, two-dimensional consolidation processes which occur in hydraulically deposited soils. A series of one- and two-dimensionally drained rectangular models were first created to assess the limitations of ABAQUS and PLAXIS when modeling consolidation of highly compressible soils. Then, geotextile tube and TSF models were created to represent actual scenarios which might be encountered in engineering practice. Several limitations were discovered, including the existence of a minimum preconsolidation stress below which numerical solutions become unstable.

  14. Structural and photocatalytic properties of TiO2 films fabricated on silicon substrates by MOCVD method

    Institute of Scientific and Technical Information of China (English)

    YANG Jia-long; LI Ying; WANG Fu; ZUO Liang; Gu-Chul Yi; Wong Yong Choi

    2005-01-01

    Silicon(111) and Silicon(100) were employed for fabrication of TiO2 films by metal organic chemical vapor deposition(MOCVD).Titanium(Ⅳ) isopropoxide(Ti[O(C3H7)4]) was used as a precursor. The as-deposited TiO2 films were characterized with FE-SEM, XRD and AFM. The photocatalytic properties were investigated by decomposition of aqueous Orange Ⅱ. And UV-VIS photospectrometer was used for checking the absorption characteristics and photocatalytic degradation activity. The crystalline and structural properties of TiO2 film had crucial influences on the photodegradation efficiency. For MOCVD in-situ deposited films on Si substrates, the photoactivities varied following a shape of "M": at lower(350℃), middle(500℃) and higher(800℃) temperature of deposition, relative lower photodegradation activities were observed. At 400℃ and 700℃ of deposition, relative higher efficiencies of degradation were obtained, because one predominant crystallite orientation could be obtained as deposition at the temperature of two levels, especially a single anatase crystalline TiO2 film could be obtained at 700℃.

  15. Growth of AlN nanostructure on GaN using MOCVD

    Energy Technology Data Exchange (ETDEWEB)

    Loganathan, R.; Ramesh, R.; Jayasakthi, M.; Prabakaran, K.; Kuppulingam, B.; Sankaranarayanan, M.; Balaji, M.; Arivazhagan, P.; Singh, Subra; Baskar, K., E-mail: drbaskar2009@gmail.com [Crystal Growth Centre, Anna University, Chennai-600025 (India)

    2015-06-24

    Aluminum nitride (AlN) nanowalls have been epitaxially grown on dislocation assisted GaN/Al{sub 2}O{sub 3} template by metal organic chemical vapor deposition (MOCVD) without any help of metal catalysts. A large number of nanowalls with thicknesses of 1.5-2.0 µm and height 400 nm have been deposited. The AlN nanowalls were found to have a preferred c-axis oriented with a hexagonal crystal structure. The AlN nanowalls and GaN/Al{sub 2}O{sub 3} template have been characterize at room temperature photoluminescence (PL) and high resolution X-ray diffraction (HRXRD)

  16. Process for electroless deposition of metals on zirconium materials

    Science.gov (United States)

    Donaghy, Robert E.

    1978-01-01

    A process for the electroless deposition of a metal layer on an article comprised of zirconium or a zirconium alloy is disclosed. The article is activated in an aged aqueous solution comprising from about 10 to about 20 grams per liter ammonium bifluoride and from about 0.75 to about 2 grams per liter of sulfuric acid. The solution is aged by immersion of pickled zirconium in the solution for at least about 10 minutes. The loosely adhering film formed on the article in the activating step is removed and the article is contacted with an electroless plating solution containing the metal to be deposited on the article upon sufficient contact with the article.

  17. Process for electrolytic deposition of metals on zirconium materials

    Science.gov (United States)

    Donaghy, Robert E.

    1979-01-30

    A process for the electrolytic deposition of a metal layer on an article comprised of zirconium or a zirconium alloy is disclosed. The article is activated in an aged aqueous solution comprising from about 10 to about 20 grams per liter ammonium bifluoride and from about 0.75 to about 2 grams per liter of sulfuric acid. The solution is aged by immersion of pickled zirconium in the solution for at least about 10 minutes. The loosely adhering film formed on the article in the activating step is removed and the article is contacted with an electrolytic plating solution containing the metal to be deposited on the article in the presence of an electrode receiving current.

  18. MOCVD of ZrO2 films from $bis(t$-butyl-3-oxo-butanoato)zirconium(IV): some theoretical (thermodynamic) and experimental aspects

    Indian Academy of Sciences (India)

    Sukanya Dhar; M S Dharmaprakash; S A Shivashankar

    2008-02-01

    The equilibrium concentrations of various condensed and gaseous phases were calculated from thermodynamic modeling of MOCVD of ZrO2 films using a -ketoesterate complex of zirconium as precursor. This leads to the construction of the `CVD phase stability diagram’ for the formation of solid phases. In the reactive ambient of oxygen, the calculations predict carbon-free ZrO2 film over a wide range of process conditions. The thermodynamic yields are in reasonable agreement with experimental observations, though the removal of carbon from the MOCVD grown films is not as complete as the thermodynamic calculations predict.

  19. Research on the processing experiments of laser metal deposition shaping

    Science.gov (United States)

    Zhang, Kai; Liu, Weijun; Shang, Xiaofeng

    2007-04-01

    Laser additive direct deposition of metals is a new rapid manufacturing technology, which combines with computer-aided design (CAD), laser cladding and rapid prototyping. The advanced technology can build fully dense metal components directly from CAD files with neither mould nor tool. Based on the theory of this technology, a promising rapid manufacturing system called "Laser Metal Deposition Shaping (LMDS)" has been constructed and developed successfully by Chinese Academy of Sciences, Shenyang Institute of Automation. Through the LMDS system, comprehensive experiments are carried out with nickel-based superalloy to systematically investigate the influences of the processing parameters on forming characteristics. By adjusting to the optimal processing parameters, fully dense and near-net-shaped metallic parts can be directly obtained through melting coaxially fed powder with a laser. Moreover, the microstructure and mechanical properties of as-formed samples are tested and analyzed synthetically. As a result, significant processing flexibility with the LMDS system over conventional processing capabilities is recognized, with potentially lower production cost, higher quality components, and shorter lead-time.

  20. Optical emission spectroscopy study on deposition process of microcrystalline silicon

    Institute of Scientific and Technical Information of China (English)

    Wu Zhi-Meng; Lei Qing-Song; Geng Xin-Hua; Zhao Ying; Sun Jian; Xi Jian-Ping

    2006-01-01

    This paper reports that the optical emission spectroscopy (OES) is used to monitor the plasma during the deposition process of hydrogenated microcrystalline silicon films in a very high frequency plasma enhanced chemical vapour deposition system. The OES intensities (SiH*, H*α and H*β) are investigated by varying the deposition parameters. The result shows that the discharge power, silane concentrations and substrate temperature affect the OES intensities. When the discharge power at silane concentration of 4% increases, the OES intensities increase first and then are constant, the intensities increase with the discharge power monotonously at silane concentration of 6%. The SiH* intensity increases with silane concentration, while the intensities of H*α and H*β increase first and then decrease. When the substrate temperature increases, the SiH* intensity decreases and the intensities of H*α and H*β are constant. The correlation between the intensity ratio of IH*α/ISiH* and the crystalline volume fraction (Xc) of films is confirmed.

  1. Reaction network analysis for thin film deposition processes

    Science.gov (United States)

    Ramakrishnasubramanian, Krishnaprasath

    Understanding the growth of thin films produced by Atomic Layer Deposition (ALD) and Chemical Vapor Deposition (CVD) has been one of the most important challenge for surface chemists over the last two to three decades. There has been a lack of complete understanding of the surface chemistry behind these systems due to the dearth of experimental reaction kinetics data available. The data that do exist are generally derived through quantum computations. Thus, it becomes ever so important to develop a deposition model which not only predicts the bulk film chemistry but also explains its self-limiting nature and growth surface stability without the use of reaction rate data. The reaction network analysis tools developed in this thesis are based on a reaction factorization approach that aims to decouple the reaction rates by accounting for the chemical species surface balance dynamic equations. This process eliminates the redundant dynamic modes and identifies conserved modes as reaction invariants. The analysis of these invariants is carried out using a Species-Reaction (S-R) graph approach which also serves to simplify the representation of the complex reaction network. The S-R graph is self explanatory and consistent for all systems. The invariants can be easily extracted from the S-R graph by following a set of straightforward rules and this is demonstrated for the CVD of gallium nitride and the ALD of gallium arsenide. We propose that understanding invariants through these S-R graphs not only provides us with the physical significance of conserved modes but also give us a better insight into the deposition mechanism.

  2. Processing Parameters Optimization for Material Deposition Efficiency in Laser Metal Deposited Titanium Alloy

    Science.gov (United States)

    Mahamood, Rasheedat M.; Akinlabi, Esther T.

    2016-03-01

    Ti6Al4V is an important Titanium alloy that is mostly used in many applications such as: aerospace, petrochemical and medicine. The excellent corrosion resistance property, the high strength to weight ratio and the retention of properties at high temperature makes them to be favoured in most applications. The high cost of Titanium and its alloys makes their use to be prohibitive in some applications. Ti6Al4V can be cladded on a less expensive material such as steel, thereby reducing cost and providing excellent properties. Laser Metal Deposition (LMD) process, an additive manufacturing process is capable of producing complex part directly from the 3-D CAD model of the part and it also has the capability of handling multiple materials. Processing parameters play an important role in LMD process and in order to achieve desired results at a minimum cost, then the processing parameters need to be properly controlled. This paper investigates the role of processing parameters: laser power, scanning speed, powder flow rate and gas flow rate, on the material utilization efficiency in laser metal deposited Ti6Al4V. A two-level full factorial design of experiment was used in this investigation, to be able to understand the processing parameters that are most significant as well as the interactions among these processing parameters. Four process parameters were used, each with upper and lower settings which results in a combination of sixteen experiments. The laser power settings used was 1.8 and 3 kW, the scanning speed was 0.05 and 0.1 m/s, the powder flow rate was 2 and 4 g/min and the gas flow rate was 2 and 4 l/min. The experiments were designed and analyzed using Design Expert 8 software. The software was used to generate the optimized process parameters which were found to be laser power of 3.2 kW, scanning speed of 0.06 m/s, powder flow rate of 2 g/min and gas flow rate of 3 l/min.

  3. Smooth germanium nanowires prepared by a hydrothermal deposition process

    Energy Technology Data Exchange (ETDEWEB)

    Pei, L.Z., E-mail: lzpei1977@163.com [School of Materials Science and Engineering, Institute of Molecular Engineering and Applied Chemistry, Key Laboratory of Materials Science and Processing of Anhui Province, Anhui University of Technology, Ma' anshan, Anhui 243002 (China); Zhao, H.S. [School of Materials Science and Engineering, Institute of Molecular Engineering and Applied Chemistry, Key Laboratory of Materials Science and Processing of Anhui Province, Anhui University of Technology, Ma' anshan, Anhui 243002 (China); Tan, W. [Henkel Huawei Electronics Co. Ltd., Lian' yungang, Jiangsu 222006 (China); Yu, H.Y. [School of Materials Science and Engineering, Institute of Molecular Engineering and Applied Chemistry, Key Laboratory of Materials Science and Processing of Anhui Province, Anhui University of Technology, Ma' anshan, Anhui 243002 (China); Chen, Y.W. [Department of Materials Science, Fudan University, Shanghai 200433 (China); Fan, C.G. [School of Materials Science and Engineering, Institute of Molecular Engineering and Applied Chemistry, Key Laboratory of Materials Science and Processing of Anhui Province, Anhui University of Technology, Ma' anshan, Anhui 243002 (China); Zhang, Qian-Feng, E-mail: zhangqf@ahut.edu.cn [School of Materials Science and Engineering, Institute of Molecular Engineering and Applied Chemistry, Key Laboratory of Materials Science and Processing of Anhui Province, Anhui University of Technology, Ma' anshan, Anhui 243002 (China)

    2009-11-15

    Smooth germanium nanowires were prepared using Ge and GeO{sub 2} as the starting materials and Cu sheet as the substrate by a simple hydrothermal deposition process. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) characterizations show that the germanium nanowires are smooth and straight with uniform diameter of about 150 nm in average and tens of micrometers in length. X-ray diffraction (XRD) and Raman spectrum of the germanium nanowires display that the germanium nanowires are mainly composed of cubic diamond phase. PL spectrum shows a strong blue light emission at 441 nm. The growth mechanism is also discussed.

  4. Composition and microstructure of beryllium carbide films prepared by thermal MOCVD

    Energy Technology Data Exchange (ETDEWEB)

    He, Yu-dan; Luo, Jiang-shan; Li, Jia; Meng, Ling-biao; Luo, Bing-chi; Zhang, Ji-qiang; Zeng, Yong; Wu, Wei-dong, E-mail: wuweidongding@163.com

    2016-02-15

    Highlights: • Non-columnar-crystal Be{sub 2}C films were firstly prepared by thermal MOCVD. • Beryllium carbide was always the dominant phase in the films. • α-Be and carbon existed in films deposited below and beyond 400 °C, respectively. • Morphology evolved with temperatures and no columnar grains were characterized. • The preferred substrate temperature for depositing high quality Be{sub 2}C films was 400 °C. - Abstract: Beryllium carbide films without columnar-crystal microstructures were prepared on the Si (1 0 0) substrate by thermal metal organic chemical vapor deposition using diethylberyllium as precursor. The influence of the substrate temperature on composition and microstructure of beryllium carbide films was systematically studied. Crystalline beryllium carbide is always the dominant phase according to XRD analysis. Meanwhile, a small amount of α-Be phase exists in films when the substrate temperature is below 400 °C, and hydrocarbon or amorphous carbon exists when the temperature is beyond 400 °C. Surfaces morphology shows transition from domes to cylinders, to humps, and to tetraquetrous crystalline needles with the increase of substrate temperature. No columnar grains are characterized throughout the thickness as revealed from the cross-section views. The average densities of these films are determined to be 2.04–2.17 g/cm{sup 3}. The findings indicate the substrate temperature has great influences on the composition and microstructure of the Be{sub 2}C films grown by thermal MOCVD.

  5. High Throughput Atomic Layer Deposition Processes: High Pressure Operations, New Reactor Designs, and Novel Metal Processing

    Science.gov (United States)

    Mousa, MoatazBellah Mahmoud

    Atomic Layer Deposition (ALD) is a vapor phase nano-coating process that deposits very uniform and conformal thin film materials with sub-angstrom level thickness control on various substrates. These unique properties made ALD a platform technology for numerous products and applications. However, most of these applications are limited to the lab scale due to the low process throughput relative to the other deposition techniques, which hinders its industrial adoption. In addition to the low throughput, the process development for certain applications usually faces other obstacles, such as: a required new processing mode (e.g., batch vs continuous) or process conditions (e.g., low temperature), absence of an appropriate reactor design for a specific substrate and sometimes the lack of a suitable chemistry. This dissertation studies different aspects of ALD process development for prospect applications in the semiconductor, textiles, and battery industries, as well as novel organic-inorganic hybrid materials. The investigation of a high pressure, low temperature ALD process for metal oxides deposition using multiple process chemistry revealed the vital importance of the gas velocity over the substrate to achieve fast depositions at these challenging processing conditions. Also in this work, two unique high throughput ALD reactor designs are reported. The first is a continuous roll-to-roll ALD reactor for ultra-fast coatings on porous, flexible substrates with very high surface area. While the second reactor is an ALD delivery head that allows for in loco ALD coatings that can be executed under ambient conditions (even outdoors) on large surfaces while still maintaining very high deposition rates. As a proof of concept, part of a parked automobile window was coated using the ALD delivery head. Another process development shown herein is the improvement achieved in the selective synthesis of organic-inorganic materials using an ALD based process called sequential vapor

  6. Two to six compound thin films by MOCVD for tandem solar cells

    Science.gov (United States)

    Britt, Jeffrey Scott

    Polycrystalline Cd(1-x)Zn(x)S and Hg(x)Zn(1-x)Te films have been deposited on a variety of substrates by MOCVD. Deposition conditions have been adjusted based on measurements of the material properties. Heterojunction solar cells have been formed from these materials and their potential application as the upper member of a tandem solar cell has been examined. The evaluation and optimization of a high efficiency CdTe/CdS solar cell has also been accomplished. Polycrystalline Cd(1-x)Zn(x)S films were deposited at 350-425 C by the reaction between DMCd, DEZn, and the novel source, propanethiol (PM) in a H2 flow. The growth rate and bandgap energy are strongly dependent on the growth temperature, DMCd/DEZn molar ratio, and the II/VI molar ratio. TMAl and octyl-chloride have been introduced into the reaction mixture to lower resistivities to values suitable for device operation. Polycrystalline ZnTe films have been deposited at 270-400 C by the reaction between DIPTe and DMZn or DEZn in a H2 flow. ZnTe films have been deposited by photoenhanced and conventional MOCVD. Polycrystalline Hg(x)Zn(1-x)Te films have been deposited at 350-410 C by the reaction between elemental Hg, DIPTe, and DMZn in a H2 flow. AsH3 was introduced to the reaction mixture to control the resistivity. Heterojunctions have been formed with Cd(1-x)Zn(x)S and ZnSe. The films and junctions have been characterized by x-ray, optical transmission, low temperature photoluminescence, SEM, and electrical measurements. The evaluation and optimization of a CSS CdTe/CdS solar cell has been formed. A technique for the formation of low-resistance contacts to CdTe with HgTe has also been developed. A pre-deposition heat treatment of CdS in H2 has been demonstrated beneficial to the photovoltaic characteristics of the junction. A post-deposition CdCl2 treatment has been shown to have a profound influence on the electrical characteristics of CSS CdTe/CdS junctions. The identification of optical losses in CSS Cd

  7. Optical monitoring of surface processes relevant to thin film growth by chemical vapour deposition Oxidation; Surface degradation

    CERN Document Server

    Simcock, M N

    2002-01-01

    This thesis reports on the investigation of the use of reflectance anisotropy spectroscopy (RAS) as an in-situ monitor for the preparation and oxidation of GaAs(100) c(4x4) surfaces using a CVD 2000 MOCVD reactor. These surfaces were oxidised using air. It was found that it was possible to follow surface degradation using RA transients at 2.6eV and 4eV. From this data it was possible to speculate on the nature of the surface oxidation process. A study was performed into the rate of surface degradation under different concentrations of air, it was found that the relation between the air concentration and the surface degradation was complicated but that the behaviour of the first third of the degradation approximated a first order behaviour. An estimation of the activation energy of the process was then made, and an assessment of the potential use of the glove-box for STM studies which is an integral part of the MOCVD equipment was also made. Following this, a description is given of the construction of an inte...

  8. The MOCVD challenge a survey of GaInAsp-InP and GaInAsp-GaAs for photonic and electronic device applications

    CERN Document Server

    Razeghi, Manijeh

    2010-01-01

    Introduction to Semiconductor Compounds III-V semiconductor alloys III-V semiconductor devices Technology of multilayer growth Growth Technology Metalorganic chemical vapor deposition New non-equilibrium growth techniques In situ Characterization during MOCVD Reflectance anisotropy and ellipsometry Optimization of the growth of III-V binaries by RDS RDS investigation of III-V lattice-matched heterojunctions RDS investigation of III-V lattice-mismatched structures Insights on the growt

  9. New process may aid solution mining. [Fracturing salt deposits

    Energy Technology Data Exchange (ETDEWEB)

    1970-12-01

    A novel approach is presented regarding fracturing salt deposits. It promises to make solution mining more eficient in recovering potash from a deep ore-body. In the process, wells to supply process water are drilled in the center of a proposed mining field. The well depth is determined by the location of a water-bearing stratum having a geothermic heat content at least equal to that in the mineral strata to be mined. If process water of lower heat content is used, it can be warmed artificially by steam injection or allowed to absorb heat in the geothermic environment prevailing in the mineral stratum during the process of curing the brine to maturity. Once a process water source is assured, injection wells are drilled to the deepest stratum of sylvinite. The water is then injected adjacent to a clay bed at a hydraulic pressure sufficient to permit breakdown of the formation. Starting at the lowest stratum permits advantage to be taken of an ascending fracture plane. After having achieved breakdown in each stratum, the operator continues injection of water to assure coverage of the necessary fractured plane. Then the brine field development wells are drilled in a convenient pattern to correspond with the direction of the fracture plane (these can be used at a later date either as brine-producing or injection wells). Well spacings are proposed (between injection wells of at least 400 ft.

  10. Pulsed-source MOCVD of high-k dielectric thin films with in situ monitoring by spectroscopic ellipsometry

    CERN Document Server

    Tsuchiya, Y; Tung, R T; Oda, S; Kurosawa, M; Hattori, T

    2003-01-01

    The formation of high-k thin films by pulsed-source metal-organic chemical vapor deposition (MOCVD) has been investigated with in situ spectroscopic ellipsometry. It is demonstrated that spectroscopic ellipsometry is an effective method for in situ monitoring of the fabrication of high-k dielectric thin films with thicknesses of several nm's. Thin yttrium oxide films with average roughnesses smaller than the thickness of a single molecular layer, and with a capacitance equivalent thickness approx 1.7 nm were obtained. Thicknesses and optical properties of each individual layer were also extracted from spectroscopic ellipsometry, by fitting to appropriate structural models. (author)

  11. Room-temperature ferromagnetism in V-doped GaN thin films grown by MOCVD

    Energy Technology Data Exchange (ETDEWEB)

    Souissi, M.; El Jani, B. [Unite de Recherche sur les Hetero-Epitaxies et Applications, Faculte des Sciences de Monastir, 5000 Monastir (Tunisia); Schmerber, G.; Derory, A. [Institut de Physique et Chimie des Materiaux de Strasbourg (IPCMS), UMR7504 CNRS-UDS, 23 rue du Loess, BP 43, 67034 Strasbourg Cedex 2 (France)

    2010-09-15

    V-doped GaN thin films were grown on c-sapphire substrate by metal organic chemical vapour deposition method (MOCVD). We have used vanadium tetrachloride (VCl{sub 4}) to intentionally incorporate vanadium (V) during the crystal growth of GaN. X-ray diffraction measurements revealed no secondary phase in the samples. Magnetic experiments using superconducting quantum interference device (SQUID) showed clear hysteresis loop in magnetization versus applied field (M -H) curves for V-doped GaN films. The ferromagnetic behavior was evidenced at 300 K, implying the Curie temperature to be over 300 K. Strong and broad blue-luminescent band (centered at 2.6 eV) is induced by the V doping in GaN. (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  12. Growth and Characterization of InN Thin Films on Sapphire by MOCVD

    Institute of Scientific and Technical Information of China (English)

    XIE Zi-Li; ZHANG Rong; XIU Xiang-Qian; LIU Bin; LI Liang; HAN Ping; GU Shu-Lin; SHI Yi; ZHENG You-Dou

    2007-01-01

    Indium nitride thin films are grown on sapphire substrates by metal-organic chemical vapour deposition(MOCVD).By employing three-step layer buffers,the mirror-like layers on two-inch sapphire wafers have been obtained.The structural,optical and electrical characteristics of InN are investigated by x-ray diffraction,scanning electron microscopy,atomic force microscopy,photoluminescence and infrared optical absorpton.The photoluminescence and the absorption studies of the materials reveal a marked energy bandgap structure around 0.70 eV at room temperature.The room-temperature Hall mobility and carrier concentration of the film are typically 939 cm2/Vs,and 3.9×1018cm-3,respectively.

  13. Photocatalysis in the visible range of sub-stoichiometric anatase films prepared by MOCVD

    Energy Technology Data Exchange (ETDEWEB)

    Justicia, I. [ICMAB/CSIC, Campus UAB, 08193 Bellaterra (Spain); Garcia, G. [ICMAB/CSIC, Campus UAB, 08193 Bellaterra (Spain)]. E-mail: gemma@icmab.es; Battiston, G.A. [ICIS/CNR, Corso Stati Uniti 4, 35127 Padova (Italy); Gerbasi, R. [ICIS/CNR, Corso Stati Uniti 4, 35127 Padova (Italy); Ager, F. [CNA/CSIC Parque Tecnologico Cartuja 93, Avda Thomas A, Edison, 41092 Sevilla (Spain); Guerra, M. [IIQAB/CSIC Jordi Girona, 18 08034 Barcelona (Spain); Caixach, J. [IIQAB/CSIC Jordi Girona, 18 08034 Barcelona (Spain); Pardo, J.A. [ICMAB/CSIC, Campus UAB, 08193 Bellaterra (Spain); Rivera, J. [IIQAB/CSIC Jordi Girona, 18 08034 Barcelona (Spain); Figueras, A. [ICMAB/CSIC, Campus UAB, 08193 Bellaterra (Spain); Instituto de Fisica, UNAM, Campus UNAM Juriquilla, 76230 Queretaro (Mexico)

    2005-08-25

    Anatase phase of titanium oxide is the most promising photocatalyst material for organic pollutant degradation. However, due to its large band gap energy (3.2 eV) it is not viable to use sunlight as an energy source for the photocatalysis activation, and so, ultraviolet (UV) radiation below the wavelength of 380 nm is required. This paper focuses on the experimental demonstration of the reduction of this large band gap energy by inducing defects in the anatase structure under the form of oxygen sub-stoichiometry. TiO{sub 2} thin films were prepared in a metal organic chemical vapour deposition (MOCVD) reactor. The samples stoichiometry was measured by the Rutherford backscattering spectrometry (RBS) technique. Optical characterisation was also performed and the photodegradation activity in the visible range was tested using nonylphenol, which is one of the most harmful pollutants present in waste waters.

  14. Synthesis and Characterization of Pr(DPM)3 Served as Precursor for MOCVD

    Institute of Scientific and Technical Information of China (English)

    LIU Ming-fei; HU Yong-xing; JIANG Yin-zhu; GAO Jian-feng; WANG Yan-yan; MENG Guang-yao

    2007-01-01

    Praseodymium β-diketone chelate, Pr(DPM) 3 [DPM=2,2,6,6-tetramethyl-3,5-heptanedionato], was successfully synthesized from the inorganic salt praseodymium chloride and HDPM(2,2,6,6-tetramethyl-3,5-heptane-dione) in an ethanol/aqueous solution followed distillation at low pressure and recrystallization from toluene. The physical and thermal properties of the chelate, including volatility, stability, and thermal decomposition, were investigated by elemental analyses, 1H NMR spectroscopy, XRD, TG/DTG/DTA analysis, infrared spectroscopy, and mass spectroscopy. The chelate with high purity prepared by the authors of this study also shows sufficient volatility and stability in inert gases, which could be used as the precursor for metal-organic chemical vapor deposition(MOCVD).

  15. Effect of oxygen content on the structural and optical properties of ZnO films grown by atmospheric pressure MOCVD

    Institute of Scientific and Technical Information of China (English)

    Sajjad Hussain; Yaqoob Khan; Volodymyr Khranovskyy; Riaz Muhammad; Rositza Yakimova

    2013-01-01

    Atmospheric pressure MOCVD was used to deposit ZnO layers on sapphire and homoepitaxial template under different oxygen flow rates. Oxygen content affects the lattice constant value and texture coefficient of the films as evidenced by the y-2y peaks position and their intensity. Films deposited at lower oxygen flow rate possess higher value of strain and stresses. ZnO films deposited at high oxygen flow rates show intense UV emissions while samples prepared under oxygen deficient conditions exhibited defect related emission along with UV luminescence. The results are compared to the ZnO films deposited homoepitaxially on annealed ZnO samples. The data obtained suggest that ZnO stoichiometry is responsible for the structural and optical quality of ZnO films.

  16. Thermodynamic investigation of the MOCVD of copper films from bis(2,2,6,6-tetramethyl-3,5-heptadionato)copper(II)

    Indian Academy of Sciences (India)

    Sukanya Mukhopadhyay; K Shalini; Anjana Devi; S A Shivashankar

    2002-10-01

    Equilibrium concentrations of various condensed and gaseous phases have been thermodynamically calculated, using the free energy minimization criterion, for the metalorganic chemical vapour deposition (MOCVD) of copper films using bis(2,2,6,6-tetramethyl-3,5-heptadionato)copper(II) as the precursor material. From among the many chemical species that may possibly result from the CVD process, only those expected on the basis of mass spectrometric analysis and chemical reasoning to be present at equilibrium, under different CVD conditions, are used in the thermodynamic calculations. The study predicts the deposition of pure, carbon-free copper in the inert atmosphere of argon as well as in the reactive hydrogen atmosphere, over a wide range of substrate temperatures and total reactor pressures. Thin films of copper, grown on SiO2/Si(100) substrates from this metalorganic precursor by low pressure CVD have been characterized by XRD and AES. The experimentally determined composition of CVD-grown copper films is in reasonable agreement with that predicted by thermodynamic analysis.

  17. Metallorganic chemical vapor deposition and atomic layer deposition approaches for the growth of hafnium-based thin films from dialkylamide precursors for advanced CMOS gate stack applications

    Science.gov (United States)

    Consiglio, Steven P.

    To continue the rapid progress of the semiconductor industry as described by Moore's Law, the feasibility of new material systems for front end of the line (FEOL) process technologies needs to be investigated, since the currently employed polysilicon/SiO2-based transistor system is reaching its fundamental scaling limits. Revolutionary breakthroughs in complementary-metal-oxide-semiconductor (CMOS) technology were recently announced by Intel Corporation and International Business Machines Corporation (IBM), with both organizations revealing significant progress in the implementation of hafnium-based high-k dielectrics along with metal gates. This announcement was heralded by Gordon Moore as "...the biggest change in transistor technology since the introduction of polysilicon gate MOS transistors in the late 1960s." Accordingly, the study described herein focuses on the growth of Hf-based dielectrics and Hf-based metal gates using chemical vapor-based deposition methods, specifically metallorganic chemical vapor deposition (MOCVD) and atomic layer deposition (ALD). A family of Hf source complexes that has received much attention recently due to their desirable properties for implementation in wafer scale manufacturing is the Hf dialkylamide precursors. These precursors are room temperature liquids and possess sufficient volatility and desirable decomposition characteristics for both MOCVD and ALD processing. Another benefit of using these sources is the existence of chemically compatible Si dialkylamide sources as co-precursors for use in Hf silicate growth. The first part of this study investigates properties of MOCVD-deposited HfO2 and HfSixOy using dimethylamido Hf and Si precursor sources using a customized MOCVD reactor. The second part of this study involves a study of wet and dry surface pre-treatments for ALD growth of HfO2 using tetrakis(ethylmethylamido)hafnium in a wafer scale manufacturing environment. The third part of this study is an investigation of

  18. Effect of layer thickness setting on deposition characteristics in direct energy deposition (DED) process

    Science.gov (United States)

    Shim, Do-Sik; Baek, Gyeong-Yun; Seo, Jin-Seon; Shin, Gwang-Yong; Kim, Kee-Poong; Lee, Ki-Yong

    2016-12-01

    Direct energy deposition is an additive manufacturing technique that involves the melting of metal powder with a high-powered laser beam and is used to build a variety of components. In laser-assisted metal deposition, the mechanical and metallurgical properties achieved are influenced by many factors. This paper addresses methods for selecting an appropriate layer thickness setting, which is an important parameter in layer-by-layer deposition manufacturing. A new procedure is proposed for determining the layer thickness setting for use in slicing of a part based on the single-layer height for a given depositing condition. This procedure was compared with a conventional method that uses an empirically determined layer thickness and with a feedback control method. The micro-hardness distribution, location of the melting pool, and microstructures of the deposited layers after deposition of a simple target shape were investigated for each procedure. The experimental results show that even though the feedback control method is the most effective method for obtaining the desired geometry, the deposited region was characterized by inhomogeneity of micro-hardness due to the time-variable depositing conditions involved. The largest dimensional error was associated with the conventional deposition procedure, which produced a rise in the melting zone due to over-deposition with respect to the slicing thickness, especially at the high laser power level considered. In contrast, the proposed procedure produced a stable melting zone position during deposition, which resulted in the deposited part having reasonable dimensional accuracy and uniform micro-hardness throughout the deposited region.

  19. Enhancement of surface integrity of titanium alloy with copper by means of laser metal deposition process

    CSIR Research Space (South Africa)

    Erinosho, MF

    2016-04-01

    Full Text Available The laser metal deposition process possesses the combination of metallic powder and laser beam respectively. However, these combinations create an adhesive bonding that permanently solidifies the laser-enhanced-deposited powders. Titanium alloys (Ti...

  20. Characterization of Al{sub x}Ga{sub 1-x}As/GaAs heterostructures for single quantum wells grown by a solid arsenic MOCVD system

    Energy Technology Data Exchange (ETDEWEB)

    Castillo-Ojeda, R. [Universidad Politecnica de Pachuca, Km. 20, Rancho Luna, Ex-Hacienda de Santa Barbara, Municipio de Zempoala, Hidalgo 43830 (Mexico); Diaz-Reyes, J., E-mail: jdiazr2001@yahoo.co [Instituto Politecnico Nacional, Centro de Investigacion en Biotecnologia Aplicada, CIBA-IPN, Ex Hacienda de San Juan Molino, Km. 1.5. Tepetitla, Tlaxcala 90700 (Mexico); Galvan-Arellano, M.; Pena-Sierra, R. [CINVESTAV-IPN, Depto. de Ing. Electrica, SEES. Apdo. 14-740, Mexico, D.F. 07000 (Mexico)

    2011-06-15

    This work presents the results of the growth and characterization of Al{sub x}Ga{sub 1-x}As/GaAs multilayer structures obtained in a metallic-arsenic-based-MOCVD system. The main goal is to explore the ability of the growth system to grow high quality multilayer structures like quantum wells. The use of metallic arsenic could introduce important differences in the growth process due to the absence of the hydride group V precursor (AsH{sub 3}), which manifests in the electrical and optical characteristics of both GaAs and Al{sub x}Ga{sub 1-x}As layers. The characterization of these epilayers and structures was performed using low-temperature photoluminescence, Hall effect measurements, X-ray diffraction, Raman spectroscopy, secondary ion mass spectroscopy (SIMS) and Atomic Force Microscopy (AFM). - Research highlights: {yields} This work is reported the growth of AlxGa1-xAs/GaAs/AlxGa1-xAs heterostructures by a solid arsenic based MOCVD system. {yields} The results obtained with this system are comparable with those obtained with the traditional arsine based growth system. {yields} The main limitation of the alternative MOCVD system is related to the lack of monoatomic hydrogen on the growth surface that acts modifying the surface kinetics and enhancing the carbon incorporation. {yields} The experimental results indicate that it can be grown AlxGa1-xAs using elemental arsenic by MOCVD, which can be used to optoelectronic devices.

  1. Effects of LP-MOCVD prepared TiO{sub 2} thin films on the in vitro behavior of gingival fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Cimpean, Anisoara [Department of Biochemistry and Molecular Biology, University of Bucharest, Bucharest (Romania); Popescu, Simona [Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, Polizu, Bucharest (Romania); Centre Interuniversitaire de Recherche et d' Ingenierie des Materiaux (CIRIMAT), CNRS-INPT/ENSIACET, University of Toulouse, Toulouse (France); Ciofrangeanu, Cristina M. [Department of Biochemistry and Molecular Biology, University of Bucharest, Bucharest (Romania); Gleizes, Alain N., E-mail: alain.gleizes@ensiacet.fr [Centre Interuniversitaire de Recherche et d' Ingenierie des Materiaux (CIRIMAT), CNRS-INPT/ENSIACET, University of Toulouse, Toulouse (France)

    2011-02-15

    We report on the in vitro response of human gingival fibroblasts (HGF-1 cell line) to various thin films of titanium dioxide (TiO{sub 2}) deposited on titanium (Ti) substrates by low pressure metal-organic chemical vapor deposition (LP-MOCVD). The aim was to study the influence of film structural parameters on the cell behavior comparatively with a native-oxide covered titanium specimen, this objective being topical and interesting for materials applications in implantology. HGF-1 cells were cultured on three LP-MOCVD prepared thin films of TiO{sub 2} differentiated by their thickness, roughness, transversal morphology, allotropic composition and wettability, and on a native-oxide covered Ti substrate. Besides traditional tests of cell viability and morphology, the biocompatibility of these materials was evaluated by fibronectin immunostaining, assessment of cell proliferation status and the zymographic evaluation of gelatinolytic activities specific to matrix metalloproteinases secreted by cells grown in contact with studied specimens. The analyzed surfaces proved to influence fibronectin fibril assembly, cell proliferation and capacity to degrade extracellular matrix without considerably affecting cell viability and morphology. The MOCVD of TiO{sub 2} proved effective in positively modifying titanium surface for medical applications. Surface properties playing a crucial role for cell behavior were the wettability and, secondarily, the roughness, HGF-1 cells preferring a moderately rough and wettable TiO{sub 2} coating.

  2. Monolithic Integration of Sampled Grating DBR with Electroabsorption Modulator by Combining Selective-Area-Growth MOCVD and Quantum-Well Intermixing

    Science.gov (United States)

    Liu, Hong-Bo; Zhao, Ling-Juan; Pan, Jiao-Qing; Zhu, Hong-Liang; Zhou, Fan; Wang, Bao-Jun; Wang, Wei

    2008-10-01

    We present the monolithic integration of a sampled-grating distributed Bragg reflector (SG-DBR) laser with a quantum-well electroabsorption modulator (QW-EAM) by combining ultra-low-pressure (55mbar) selective-area-growth (SAG) metal-organic chemical vapour deposition (MOCVD) and quantum-well intermixing (QWI) for the first time. The QW-EAM and the gain section can be grown simultaneously by using SAG MOCVD technology. Meanwhile, the QWI technology offers an abrupt band-gap change between two functional sections, which reduces internal absorption loss. The experimental results show that the threshold current Ith = 62 mA, and output power reaches 3.6mW. The wavelength tuning range covers 30nm, and all the corresponding side mode suppression ratios are over 30 dB. The extinction ratios at available wavelength channels can reach more than 14 dB with bias of -5 V.

  3. Monolithic Integration of Sampled Grating DBR with Electroabsorption Modulator by Combining Selective-Area-Growth MOCVD and Quantum-Well Intermixing

    Institute of Scientific and Technical Information of China (English)

    LIU Hong-Bo; ZHAO Ling-Juan; PAN Jiao-Qing; ZHU Hong-Liang; ZHOU Fan; WANG Bao-Jun; WANG Wei

    2008-01-01

    We present the monolithic integration of a sampled-grating distributed Bragg reflector (SG-DBR) laser with a quantum-well eleetroabsorption modulator (QW-EAM) by combining ultra-low-pressure (55mbar) selectivearea-growth (SAG) metal-organic chemical vapour deposition (MOCVD) and quantum-well intermixing (QWI)for the first time. The QW-EAM and the gain section can be grown simultaneously by using SAG MOCVD technology. Meanwhile, the QWI technology offers an abrupt band-gap change between two functional sections,which reduces internal absorption loss. The experimental results show that the threshold current Ith=62 mA,and output power reaches 3.6 roW. The wavelength tuning range covers 3Ohm, and all the corresponding side mode suppression ratios are over 30 dB. The extinction ratios at available wavelength channels can reach more than 14dB with bias of -5 V.

  4. Understanding processes affecting mineral deposits in humid environments

    Science.gov (United States)

    Seal, Robert R., II; Ayuso, Robert A.

    2011-01-01

    Recent interdisciplinary studies by the U.S. Geological Survey have resulted in substantial progress toward understanding the influence that climate and hydrology have on the geochemical signatures of mineral deposits and the resulting mine wastes in the eastern United States. Specific areas of focus include the release, transport, and fate of acid, metals, and associated elements from inactive mines in temperate coastal areas and of metals from unmined mineral deposits in tropical to subtropical areas; the influence of climate, geology, and hydrology on remediation options for abandoned mines; and the application of radiogenic isotopes to uniquely apportion source contributions that distinguish natural from mining sources and extent of metal transport. The environmental effects of abandoned mines and unmined mineral deposits result from a complex interaction of a variety of chemical and physical factors. These include the geology of the mineral deposit, the hydrologic setting of the mineral deposit and associated mine wastes, the chemistry of waters interacting with the deposit and associated waste material, the engineering of a mine as it relates to the reactivity of mine wastes, and climate, which affects such factors as temperature and the amounts of precipitation and evapotranspiration; these factors, in turn, influence the environmental behavior of mineral deposits. The role of climate is becoming increasingly important in environmental investigations of mineral deposits because of the growing concerns about climate change.

  5. MOCVD growth of GaN-based materials on ZnO substrates

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Shen-Jie; Li, Nola; Park, Eun-Hyun; Kane, Matthew [School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0250 (United States); Feng, Zhe Chuan [Graduate Institute of Electro-Optical Engineering, National Taiwan University, Taipei, Taiwan 106-17 (China); Valencia, Adriana; Nause, Jeff [CERMET Inc., 1019 Collier Road, Atlanta, Georgia 30318 (United States); Summers, Chris [School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0250 (United States); Ferguson, Ian [School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0250 (United States); School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0250 (United States)

    2008-07-01

    The metalorganic chemical vapor deposition (MOCVD) growth of GaN based materials on ZnO substrates has numerous technical issues that need to be investigated and resolved. These include the thermal stability of ZnO, out-diffusion of Zn/O from the ZnO into the epilayers, and H{sub 2} back etching into the ZnO all of which can cause poor film quality. Cracks and pinholes were seen in the epilayers, leading to the epilayer peeling off. In this study, good quality InGaN films with a wide range of indium incorporation have been grown on (0001) ZnO substrates by MOCVD. No indium droplets and phase separation were observed even at high indium concentrations. The optical microscopy and field-emission scanning electron microscopy revealed a mirror-like InGaN surface with no evidence of indium droplets on the surface. Photoluminescence (PL) showed broad InGaN-related emissions with peak energy lower than the calculated InGaN band gap, possibly due to Zn/O impurities diffused into InGaN from the ZnO substrate. More recently, Al{sub 2}O{sub 3} coated ZnO substrates have been employed for growth to limit Zn diffusion as well as assist epilayer growth. HRXRD result shows that a single crystal InGaN film has been successfully grown on an annealed Al{sub 2}O{sub 3} coated ZnO substrate. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  6. DFT study on adduct reaction paths of GaN MOCVD growth

    Institute of Scientific and Technical Information of China (English)

    SHI; JunCao; ZUO; Ran; MENG; SuCi

    2013-01-01

    The adduct reaction paths for GaN growth by metal organic chemical vapor deposition (MOCVD) were studied by quantum chemical calculations employing density functional theory (DFT). Five possible adduct reaction paths with or without the ex-cess NH3were proposed and the corresponding potential energy surfaces were calculated. From the calculation results, it is concluded that after the formation of DMGNH2from TMG:NH3, the further decomposition paths have very slim probability because of the high energy barriers; whereas the oligomerization pathway to form oligomers [DMGNH2]x(x=2, 3) is probable,because of zero energy barrier. Since the oligomers tend to further polymerize, the nanoparticles are easily formed through this path. When NH3is in excess, TMG:NH3 tends to combine with the second NH3to form two new complexes: the coordination-bonded compound H3N:TMG:NH3and the hydrogen-bonded compound TMG:NH3 NH3. The formation of hydrogen-bonded compound TMG:NH3 NH3 will be more probable because of the lower energy than H3N:TMG:NH3. By comparing the potential energy surfaces in five adduct reaction paths, we postulate that, under the growth conditions of GaN MOCVD, the formation of hydrogen-bonded compound TMG:NH3 NH3 followed by the reversible decomposition may be the main reaction path for GaN thin film growth; while the adduct oligomerization path to generate oligomers [DMGNH2]2 and [DMGNH2]3might be the main reaction path for nanoparticles formation.

  7. The stratigraphy, depositional processes, and environment of the late Pleistocene Polallie-period deposits at Mount Hood Volcano, Oregon, USA

    Science.gov (United States)

    Thouret, Jean-Claude

    2005-08-01

    The Polallie eruptive period of Mt. Hood, Oregon, is the last major episode of eruption and dome growth, before the late Holocene activity which was centered at Crater Rock. A volume of 4-8 km 3 of Polallie deposits forms an apron of ca. 60 km 2 on the east, northeast and southeast flanks. The Polallie deposits can be divided, stratigraphically, into four groups: Group I rockslide avalanche and pyroclastic-flow deposits; Group II debris-flow and pyroclastic-flow deposits that suggest some explosive activity and remobilization of pyroclastic debris in a glacial environment; Group III block-and-ash flow deposits that attest to summit dome growth; Group IV alternating debris-flow deposits, glacial sediments, and reworked pyroclastic-flow deposits that indicate a decrease in dome activity and an increase in erosion and transport. Group III clearly indicates frequent episodes of dome growth and collapse, whereas Groups II and IV imply increasing erosion and, conversely, decreasing volcanic activity. The Polallie period occurred in the late Pleistocene during and just after the last Alpine glaciation, which is named Evans Creek in the Cascade Range. According to four K-Ar age dates on lava flows interbedded with Polallie deposits and to published minimum 14C ages on tephra and soils overlying these deposits, the Polallie period had lasted 15,000-22,000 years between 28-34 ka and 12-13 ka. From stratigraphic subdivisions, sedimentary lithofacies and features and from the grain-size and geochemical data, we infer that the Polallie depositional record is a result of the interplay of several processes acting during a long-lasting period of dome growth and destruction. The growth of several domes near the present summit was intermittent, because each group of sediments encompasses primary (pyroclastic) and secondary (volcaniclastic and epiclastic) deposition. Direct deposition of primary material has occurred within intervals of erosion that have probably included meltwater

  8. Appropriate deposition parameters for formation of fcc Co-Ni alloy nanowires during electrochemical deposition process

    Science.gov (United States)

    Mukhtar, Aiman; Shahzad Khan, Babar; Mehmood, Tahir

    2016-12-01

    The effect of deposition potential on the crystal structure and composition of Co-Ni alloy nanowires is studied by XRD, FE-SEM and EDX. The alloy nanowires deposited at -3.2 V are metastable fcc phase Co-Ni. The alloy nanowires deposited at -1.8 V are hcp phase Co-Ni. The formation of the metastable fcc alloy nanowires can be attributed to smaller critical clusters formed at the high potential as the smaller critical clusters favor fcc structure because of the significant surface energy effect. The content of Co inside nanowires increases with increasing potential. This can be understood by the polarization curves of depositing Co and Ni nanowires, which show that the current density ratio of Ni to Co at low potential has larger value than that at high potential.

  9. Lahars in Java: Initiations, Dynamics, Hazard Assessment And Deposition Processes

    Directory of Open Access Journals (Sweden)

    Franck Lavigne

    2016-05-01

    Full Text Available Lahar has been applied as a general term for rapidly flowing, high-concentration, poorly sorted sediment-laden mixtures of rock debris and water (other than normal streamflow from a volcano. Lahars are one of the most destructive phenomena associated with composite volcanoes, which are dominant in Java Island. Resulting deposits of lahar are poorly sorted, massive, made up of clasts (chiefly of volcanic composition, that generally include a mud-poor matrix. The aim of this research is threefold: to discuss the initiation of lahars occurrences, their dynamics, to assess the hazard and to analyse the deposition. Lahars are either a direct result of eruptive activity or not temporally related to eruptions. Syn-eruptive lahars may result from the transformation on pyroclastic flows or debris avalanches which transform to aqueous flows (e.g. at Papandayan in November 2002; They may be also generated through lake outburst or breaching (e.g. at Kelut in 1909 or 1966, and through removal of pyroclastic debris by subsequent heavy rainstorms. Post-eruptive lahar occurs during several years after an eruption. At Merapi, lahars are commonly rain-triggered by rainfalls having an average intensity of about 40 mm in 2 hours. Most occur during the rainy season from November to April. Non-eruptive lahars are flows generated without eruptive activity, particularly in the case of a debris avalanche or a lake outburst (e.g., Kelut. A lahar may include one or more discrete flow processes and encompass a variety of rheological flow types and flow transformations. As such, lahars encompass a continuum between debris flows and hyperconcentrated flows, as observed at Merapi, Kelut and Semeru volcanoes. Debris flows, with water contents ranging from 10 to no more than about 25% weight, are non-newtonian fluids that move as fairly coherent masses in what is thought to be predominantly laminar fashion. However, the relative importance of laminar versus turbulent regime is

  10. UV optical properties of thin film oxide layers deposited by different processes.

    Science.gov (United States)

    Pellicori, Samuel F; Martinez, Carol L

    2011-10-01

    UV optical properties of thin film layers of compound and mixed oxide materials deposited by different processes are presented. Japan Electron Optics Laboratory plasma ion assisted deposition (JEOL PIAD), electron beam with and without IAD, and pulsed DC magnetron sputtering were used. Comparisons are made with published deposition process data. Refractive indices and absorption values to as short as 145 nm were measured by spectroscopic ellipsometry (SE). Electronic interband defect states are detected that are deposition-process dependent. SE might be effective in identifying UV optical film quality, especially in defining processes and material composition beneficial for high-energy excimer laser applications and environments requiring stable optical properties.

  11. Analysis of Fiber deposition using Automatic Image Processing Method

    Science.gov (United States)

    Belka, M.; Lizal, F.; Jedelsky, J.; Jicha, M.

    2013-04-01

    Fibers are permanent threat for a human health. They have an ability to penetrate deeper in the human lung, deposit there and cause health hazards, e.glung cancer. An experiment was carried out to gain more data about deposition of fibers. Monodisperse glass fibers were delivered into a realistic model of human airways with an inspiratory flow rate of 30 l/min. Replica included human airways from oral cavity up to seventh generation of branching. Deposited fibers were rinsed from the model and placed on nitrocellulose filters after the delivery. A new novel method was established for deposition data acquisition. The method is based on a principle of image analysis. The images were captured by high definition camera attached to a phase contrast microscope. Results of new method were compared with standard PCM method, which follows methodology NIOSH 7400, and a good match was found. The new method was found applicable for evaluation of fibers and deposition fraction and deposition efficiency were calculated afterwards.

  12. Analysis of Fiber deposition using Automatic Image Processing Method

    Directory of Open Access Journals (Sweden)

    Jicha M.

    2013-04-01

    Full Text Available Fibers are permanent threat for a human health. They have an ability to penetrate deeper in the human lung, deposit there and cause health hazards, e.glung cancer. An experiment was carried out to gain more data about deposition of fibers. Monodisperse glass fibers were delivered into a realistic model of human airways with an inspiratory flow rate of 30 l/min. Replica included human airways from oral cavity up to seventh generation of branching. Deposited fibers were rinsed from the model and placed on nitrocellulose filters after the delivery. A new novel method was established for deposition data acquisition. The method is based on a principle of image analysis. The images were captured by high definition camera attached to a phase contrast microscope. Results of new method were compared with standard PCM method, which follows methodology NIOSH 7400, and a good match was found. The new method was found applicable for evaluation of fibers and deposition fraction and deposition efficiency were calculated afterwards.

  13. Improved GaN Brown on Si(111 ) substrate using ammonia flow modulation on SiNx mask layer by MOCVD

    Institute of Scientific and Technical Information of China (English)

    YU NaiSen; WANG Yong; WANG Hui; NG KaiWei; LAU KeiMay

    2009-01-01

    In this paper, 1 μm n-GaN was grown by using varied and fixed ammonia flow (NH3) on SiNx mask layer on Si(111) substrate using metal organic chemical vapor deposition (MOCVD). In-situ optical reflectivity traces of GaN growth show that the three- to two-dimensional process has been prolonged by using varied ammonia flow on SiNx mask layer method compared with that grown by fixing ammonia flow. Structural and optical properties were characterized by high-resolution X-ray diffraction and photolu-minescence, and compared with the sample grown by fixing ammonia flow, GaN grown using the varied ammonia flow on SiNx mask layer showed better structure and optical quality. It was assumed that the low NH3 flow in the initial growth stage considerably increased the GaN island density on the nano-porous SiNx layer by enhancing vertical growth. Lateral growth was significantly favored by high NH3 flow in the subsequent step. As a result, the improved crystal and optical quality was achieved utilizing NH3 flow modulation for GaN buffer growth on Si(111) substrate.

  14. Improved GaN grown on Si(111) substrate using ammonia flow modulation on SiN_x mask layer by MOCVD

    Institute of Scientific and Technical Information of China (English)

    NG; KaiWei; LAU; KeiMay

    2009-01-01

    In this paper,1 μm n-GaN was grown by using varied and fixed ammonia flow (NH3) on SiNx mask layer on Si(111) substrate using metal organic chemical vapor deposition (MOCVD). In-situ optical reflectivity traces of GaN growth show that the three-to two-dimensional process has been prolonged by using varied ammonia flow on SiNx mask layer method compared with that grown by fixing ammonia flow. Structural and optical properties were characterized by high-resolution X-ray diffraction and photolu-minescence,and compared with the sample grown by fixing ammonia flow,GaN grown using the varied ammonia flow on SiNx mask layer showed better structure and optical quality. It was assumed that the low NH3 flow in the initial growth stage considerably increased the GaN island density on the nano-porous SiNx layer by enhancing vertical growth. Lateral growth was significantly favored by high NH3 flow in the subsequent step. As a result,the improved crystal and optical quality was achieved utilizing NH3 flow modulation for GaN buffer growth on Si(111) substrate.

  15. Impact of photoluminescence temperature and growth parameter on the exciton localized in BxGa1-xAs/GaAs epilayers grown by MOCVD

    Science.gov (United States)

    Hidouri, Tarek; Saidi, Faouzi; Maaref, Hassen; Rodriguez, Philippe; Auvray, Laurent

    2016-10-01

    In this work, BxGa1-xAs/GaAs epilayers with three different boron compositions were elaborated by metal organic chemical vapor deposition (MOCVD) on GaAs (001) substrate. Structural study using High resolution X-ray diffraction (HRXRD) spectroscopy and Atomic Force Microscopy (AFM) have been used to estimate the boron fraction. The luminescence keys were carried out as functions of temperature in the range 10-300 K, by the techniques of photoluminescence (PL). The low PL temperature has shown an abnormal emission appeared at low energy side witch attributed to the recombination through the deep levels. In all samples, the PL peak energy and the full width at half maximum (FWHM), present an anomalous behavior as a result of the competition process between localized and delocalized carriers. We propose the Localized-state Ensemble model to explain the unusual photoluminescence behaviors. Electrical carriers generation, thermal escape, recapture, radiative and non-radiative lifetime are taken into account. The temperature-dependent photoluminescence measurements were found to be in reasonable agreement with the model of localized states. We controlled the evolution of such parameters versus composition by varying the V/III ratio to have a quantitative and qualitative understanding of the recombination mechanisms. At high temperature, the model can be approximated to the band-tail-state emission.

  16. Nitrogen deposition to the United States: distribution, sources, and processes

    Directory of Open Access Journals (Sweden)

    L. Zhang

    2012-01-01

    Full Text Available We simulate nitrogen deposition over the US in 2006–2008 by using the GEOS-Chem global chemical transport model at 1/2° × 2/3° horizontal resolution over North America and adjacent oceans. US emissions of NOx and NH3 in the model are 6.7 and 2.9 Tg N a−1 respectively, including a 20% natural contribution for each. Ammonia emissions are a factor of 3 lower in winter than summer, providing a good match to US network observations of NHx (≡NH3 gas + ammonium aerosol and ammonium wet deposition fluxes. Model comparisons to observed deposition fluxes and surface air concentrations of oxidized nitrogen species (NOy show overall good agreement but excessive wintertime HNO3 production over the US Midwest and Northeast. This suggests a model overestimate N2O5 hydrolysis in aerosols, and a possible factor is inhibition by aerosol nitrate. Model results indicate a total nitrogen deposition flux of 6.5 Tg N a−1 over the contiguous US, including 4.2 as NOy and 2.3 as NHx. Domestic anthropogenic, foreign anthropogenic, and natural sources contribute respectively 78%, 6%, and 16% of total nitrogen deposition over the contiguous US in the model. The domestic anthropogenic contribution generally exceeds 70% in the east and in populated areas of the west, and is typically 50–70% in remote areas of the west. Total nitrogen deposition in the model exceeds 10 kg N ha−1 a−1 over 35% of the contiguous US.

  17. Nitrogen deposition to the United States: distribution, sources, and processes

    Directory of Open Access Journals (Sweden)

    L. Zhang

    2012-05-01

    Full Text Available We simulate nitrogen deposition over the US in 2006–2008 by using the GEOS-Chem global chemical transport model at 1/2°×2/3° horizontal resolution over North America and adjacent oceans. US emissions of NOx and NH3 in the model are 6.7 and 2.9 Tg N a−1 respectively, including a 20% natural contribution for each. Ammonia emissions are a factor of 3 lower in winter than summer, providing a good match to US network observations of NHx (≡NH3 gas + ammonium aerosol and ammonium wet deposition fluxes. Model comparisons to observed deposition fluxes and surface air concentrations of oxidized nitrogen species (NOy show overall good agreement but excessive wintertime HNO3 production over the US Midwest and Northeast. This suggests a model overestimate N2O5 hydrolysis in aerosols, and a possible factor is inhibition by aerosol nitrate. Model results indicate a total nitrogen deposition flux of 6.5 Tg N a−1 over the contiguous US, including 4.2 as NOy and 2.3 as NHx. Domestic anthropogenic, foreign anthropogenic, and natural sources contribute respectively 78%, 6%, and 16% of total nitrogen deposition over the contiguous US in the model. The domestic anthropogenic contribution generally exceeds 70% in the east and in populated areas of the west, and is typically 50–70% in remote areas of the west. Total nitrogen deposition in the model exceeds 10 kg N ha−1 a−1 over 35% of the contiguous US.

  18. The adsorptive-kinetic model of in-situ phosphorus doped film polysilicon deposition process

    Directory of Open Access Journals (Sweden)

    Nalivaiko O. Yu.

    2009-11-01

    Full Text Available The investigation of deposition kinetics of in-situ phosphorus doped polysilicon films has been performed. The adsorptive-kinetic model of in-situ phosphorus doped polysilicon deposition has been developed. The values of heterogeneous reaction constants and constants, which describe the desorption process for monosilane and phosphine, have been defined. The optimal process conditions, which provide the acceptable deposition rate, thickness uniformity, high doping level and conformal step coverage, have been founded.

  19. Processing Research on Chemically Vapor Deposited Silicon Nitride.

    Science.gov (United States)

    1979-12-01

    7 A-A79 328 GENERAL ELECTR IC Co PHILADELPH IA PA RE-ENTRY AND ENV--ETC F/S 3/ PROCESING RESEARCH ON CHEMICALLY VAPR DEPOSITED SILICON HITRI ETCIU) I...NH)2] x-- .Si3N 4 as well as NH 3 2) 3SiCI + 6H --- 3i + 6 HC - Si N 4 2 (V,l1) 3 4 pressure may play a part in shifting the deposition sequence from...hot-wall reactor should be further refined with em- phasis on the formation of figured geometries (hemispherical and ogive shells). As part of this

  20. Temperature Uniformity of Wafer on a Large-Sized Susceptor for a Nitride Vertical MOCVD Reactor

    Institute of Scientific and Technical Information of China (English)

    LI Zhi-Ming; JIANG Hai-Ying; HAN Yan-Bin; LI Jin-Ping; YIN Jian-Qin; ZHANG Jin-Cheng

    2012-01-01

    The effect of coil location on wafer temperature is analyzed in a vertical MOCVD reactor by induction heating.It is observed that the temperature distribution in the wafer with the coils under the graphite susceptor is more uniform than that with the coils around the outside wall of the reactor.For the case of coils under the susceptor,we find that the thickness of the susceptor,the distance from the coils to the susceptor bottom and the coil turns significantly affect the temperature uniformity of the wafer. An optimization process is executed for a 3-inch susceptor with this kind of structure,resulting in a large improvement in the temperature uniformity.A further optimization demonstrates that the new susceptor structure is also suitable for either multiple wafers or large-sized wafers approaching 6 and 8 inches.

  1. Alloying, co-doping, and annealing effects on the magnetic and optical properties of MOCVD-grown Ga{sub 1-x}Mn {sub x}N

    Energy Technology Data Exchange (ETDEWEB)

    Kane, Matthew H. [Georgia Institute of Technology, School of Electrical and Computer Engineering, Atlanta, GA 30332 (United States); Georgia Institute of Technology, School of Materials Science and Engineering, Atlanta, GA 30332 (United States); Strassburg, Martin [Georgia Institute of Technology, School of Electrical and Computer Engineering, Atlanta, GA 30332 (United States); Georgia Institute of Technology, School of Chemistry and Biochemistry, Atlanta, GA 30332 (United States); Asghar, Ali [Georgia Institute of Technology, School of Electrical and Computer Engineering, Atlanta, GA 30332 (United States); Fenwick, William E. [Georgia Institute of Technology, School of Electrical and Computer Engineering, Atlanta, GA 30332 (United States); Senawiratne, Jayantha [Georgia State University, Department of Physics and Astronomy, Atlanta, GA 30303 (United States); Song, Qing [Georgia Institute of Technology, School of Chemistry and Biochemistry, Atlanta, GA 30332 (United States); Summers, Christopher J. [Georgia Institute of Technology, School of Materials Science and Engineering, Atlanta, GA 30332 (United States); Zhang, Z. John [Georgia Institute of Technology, School of Chemistry and Biochemistry, Atlanta, GA 30332 (United States); Dietz, Nikolaus [Georgia State University, Department of Physics and Astronomy, Atlanta, GA 30303 (United States); Ferguson, Ian T. [Georgia Institute of Technology, School of Electrical and Computer Engineering, Atlanta, GA 30332 (United States)]. E-mail: ianf@ece.gatech.edu

    2006-01-25

    Recent theoretical work for Ga{sub 1-x}Mn {sub x}N predicts ferromagnetism in this materials system with Curie temperatures above room temperature. Ferromagnetic behavior observed in Ga{sub 1-x}Mn {sub x}N is still controversial, as there are conflicting experimental reports owing to the disparity in crystalline quality and phase purity of Ga{sub 1-x}Mn {sub x}N produced by different methods. In this work, metal-organic chemical vapor deposition (MOCVD) has been used to grow high-quality epitaxial films of Ga{sub 1-x}Mn {sub x}N of varying thickness and manganese doping levels using Cp{sub 2}Mn as the Mn source. Crystalline quality and phase purity were determined by high-resolution X-ray diffraction, indicating that no macroscopic second phases are formed. Atomic force microscopy revealed MOCVD-like step flow growth patterns and a mean surface roughness of 0.378 nm in optimally grown films, which is close to that from the as-grown template layer of 0.330 nm. No change in the growth mechanism and morphology with Mn incorporation is observed. A uniform Mn concentration in the epitaxial layers is confirmed by secondary ion mass spectroscopy. SQUID measurements showed an apparent room temperature ferromagnetic hysteresis with saturation magnetizations of over 2 {mu}{sub B}/Mn at x = 0.008, which decreases with increasing Mn incorporation. Upon high-temperature annealing, numerous changes are observed in these properties, including an increase in surface roughness due to surface decomposition and a large decrease in the magnetic signature. A similar decrease in the magnetic signature is observed upon co-doping with the shallow donor silicon during the growth process. These results demonstrate the critical importance of controlling the Fermi level relative to the Mn{sup 2+/3+} acceptor level in Ga{sub 1-x}Mn {sub x}N in order to achieve strong ferromagnetism.

  2. Thin alumina and silica films by chemical vapor deposition (CVD)

    NARCIS (Netherlands)

    Hofman, R.; Morssinkhof, R.W.J.; Fransen, T.; Westheim, J.G.F.; Gellings, P.J.

    1993-01-01

    Alumina and silica coatings have been deposited by MOCVD (Metal Organic Chemical Vapor Deposition) on alloys to protect them against high temperature corrosion. Aluminium Tri-lsopropoxide (ATI) and DiAcetoxyDitertiaryButoxySilane (DAOBS) have been used as metal organic precursors to prepare these ce

  3. Status of HgCdTe Barrier Infrared Detectors Grown by MOCVD in Military University of Technology

    Science.gov (United States)

    Kopytko, M.; Jóźwikowski, K.; Martyniuk, P.; Gawron, W.; Madejczyk, P.; Kowalewski, A.; Markowska, O.; Rogalski, A.; Rutkowski, J.

    2016-09-01

    In this paper we present the status of HgCdTe barrier detectors with an emphasis on technological progress in metalorganic chemical vapor deposition (MOCVD) growth achieved recently at the Institute of Applied Physics, Military University of Technology. It is shown that MOCVD technology is an excellent tool for HgCdTe barrier architecture growth with a wide range of composition, donor /acceptor doping, and without post-grown annealing. The device concept of a specific barrier bandgap architecture integrated with Auger-suppression is as a good solution for high-operating temperature infrared detectors. Analyzed devices show a high performance comparable with the state-of-the-art of HgCdTe photodiodes. Dark current densities are close to the values given by "Rule 07" and detectivities of non-immersed detectors are close to the value marked for HgCdTe photodiodes. Experimental data of long-wavelength infrared detector structures were confirmed by numerical simulations obtained by a commercially available software APSYS platform. A detailed analysis applied to explain dark current plots was made, taking into account Shockley-Read-Hall, Auger, and tunneling currents.

  4. Transport phenomena and the effects of reactor geometry for epitaxial GaN growth in a vertical MOCVD reactor

    Science.gov (United States)

    Tseng, Chien-Fu; Tsai, Tsung-Yen; Huang, Yen-Hsiu; Lee, Ming-Tsang; Horng, Ray-Hua

    2015-12-01

    In this study a numerical simulation was carried out to analyze the transport phenomena in a vertical type metal organic chemical vapor deposition (MOCVD) reactor for Gallium Nitride (GaN) growth. The simulated results were compared and validated by experiment. The effects of showerhead design and chamber height are investigated and discussed. It was found that, by properly adjusting the height of the chamber, both the growth rate and film uniformity could be significantly improved. This is attributed to the suppression of the thermal and mass transfer boundary layers by the injection flow of reacting gas mixtures, as well as the confined vertical vortices caused by the geometry of the reduced space. However, inappropriate design of the distance between the showerhead and the susceptor can result in uneven distribution of the organic source in the vicinity of the substrate surface resulting in an uneven growth rate of the GaN film. Consequently, there exists an optimal chamber height that will give the best growth rate and uniformity to the GaN film as discussed in this study. This study provides comprehensive insight into the transport phenomena of GaN growth that includes coupled heat and mass transfer as well as chemical reactions. The results provide important information in a succinct format and enable decisions to be made about the showerhead and the geometrical design and size of a vertical MOCVD reactor.

  5. Formation of a pn junction on an anisotropically etched GaAs surface using metalorganic chemical vapor deposition

    Science.gov (United States)

    Leon, R. P.; Bailey, S. G.; Mazaris, G. A.; Williams, W. D.

    1986-01-01

    A continuous p-type GaAs epilayer has been deposited on an n-type sawtooth GaAs surface using MOCVD. A wet chemical etching process was used to expose the intersecting (111)Ga and (-1 -1 1)Ga planes with 6-micron periodicity. Charge-collection microscopy was used to verify the presence of the pn junction thus formed and to measure its depth. The ultimate goal of this work is to fabricate a V-groove GaAs cell with improved absorptivity, high short-circuit current, and tolerance to particle radiation.

  6. Particle dry deposition to water surfaces: Processes and consequences

    DEFF Research Database (Denmark)

    Pryor, S.C.; Barthelmie, R.J.

    2000-01-01

    's oceans and seas is most significantly impacted by human activities. More than half of the world's population lives within 100 km of a coast and hence the overwhelming majority of anthropogenic fluxes to aquatic systems occur in the coastal zone. We discuss the particular challenges that arise from...... measurement requirements represent significant barriers to application to measurement of particle dry deposition fluxes although, as discussed, innovative solutions are now becoming available. In the final section, we examine meteorological controls on deposition to the coastal zone. This region of the world...... flux to coastal waters, atmosphere-surface exchange represents a significant component of the total flux and may be particularly critical during the summertime when both the riverine input and ambient nutrient concentrations are often at a minimum. In this chapter, we present an overview...

  7. Research on chemical vapor deposition processes for advanced ceramic coatings

    Science.gov (United States)

    Rosner, Daniel E.

    1993-01-01

    Our interdisciplinary background and fundamentally-oriented studies of the laws governing multi-component chemical vapor deposition (VD), particle deposition (PD), and their interactions, put the Yale University HTCRE Laboratory in a unique position to significantly advance the 'state-of-the-art' of chemical vapor deposition (CVD) R&D. With NASA-Lewis RC financial support, we initiated a program in March of 1988 that has led to the advances described in this report (Section 2) in predicting chemical vapor transport in high temperature systems relevant to the fabrication of refractory ceramic coatings for turbine engine components. This Final Report covers our principal results and activities for the total NASA grant of $190,000. over the 4.67 year period: 1 March 1988-1 November 1992. Since our methods and the technical details are contained in the publications listed (9 Abstracts are given as Appendices) our emphasis here is on broad conclusions/implications and administrative data, including personnel, talks, interactions with industry, and some known applications of our work.

  8. Closed-Loop Process Control for Electron Beam Freeform Fabrication and Deposition Processes

    Science.gov (United States)

    Taminger, Karen M. (Inventor); Hafley, Robert A. (Inventor); Martin, Richard E. (Inventor); Hofmeister, William H. (Inventor)

    2013-01-01

    A closed-loop control method for an electron beam freeform fabrication (EBF(sup 3)) process includes detecting a feature of interest during the process using a sensor(s), continuously evaluating the feature of interest to determine, in real time, a change occurring therein, and automatically modifying control parameters to control the EBF(sup 3) process. An apparatus provides closed-loop control method of the process, and includes an electron gun for generating an electron beam, a wire feeder for feeding a wire toward a substrate, wherein the wire is melted and progressively deposited in layers onto the substrate, a sensor(s), and a host machine. The sensor(s) measure the feature of interest during the process, and the host machine continuously evaluates the feature of interest to determine, in real time, a change occurring therein. The host machine automatically modifies control parameters to the EBF(sup 3) apparatus to control the EBF(sup 3) process in a closed-loop manner.

  9. Electrochemically Deposited Nickel Membranes; Process-Microstructure-Property Relationships

    DEFF Research Database (Denmark)

    Jensen, Jens Dahl; Pantleon, Karen; Somers, Marcel A.J.

    2003-01-01

    -type) or without (0-type) the use of the sulphur-containing additive sodium saccharin. Both types of Ni-foils appeared perfectly smooth when investigated with scanning electron microscopy (SEM), while atomic force microscopy (AFM) and transmission electron microscopy (TEM), revealed differences in the surface......-type foils during thin film tensile testing, due to microstructural defects caused by sodium saccharin during deposition. Tensile strengths in the order of 700-1000 MPa were observed - highest for the more ductile 0-type foils. A hardness in the order of 6 GPa (590 HV) was found by nanoindentation. Keywords...

  10. Electrochemically Deposited Nickel Membranes; Process-Microstructure-Property Relationships

    DEFF Research Database (Denmark)

    Jensen, Jens Dahl; Pantleon, Karen; Somers, Marcel A.J.

    2003-01-01

    -type) or without (0-type) the use of the sulphur-containing additive sodium saccharin. Both types of Ni-foils appeared perfectly smooth when investigated with scanning electron microscopy (SEM), while atomic force microscopy (AFM) and transmission electron microscopy (TEM), revealed differences in the surface......-type foils during thin film tensile testing, due to microstructural defects caused by sodium saccharin during deposition. Tensile strengths in the order of 700-1000 MPa were observed - highest for the more ductile 0-type foils. A hardness in the order of 6 GPa (590 HV) was found by nanoindentation. Keywords...

  11. Characteristics of Single-Track and Multi-track Depositions of Stellite by Micro-plasma Transferred Arc Powder Deposition Process

    Science.gov (United States)

    Sawant, Mayur S.; Jain, N. K.

    2017-08-01

    This paper describes the characteristics study of single-track and multi-track deposition of Stellite 6 on AISI 4130 steel substrate by indigenously developed micro-plasma transferred arc powder deposition (μ-PTAPD) process. Deposition height and width, dilution and microstructure have been used to characterize the single-track depositions by studying effects of micro-plasma power, travel speed of worktable and powder mass flow rate on energy consumption per unit traverse length and power consumption per unit powder mass flow rate. Micro-plasma power was found to be the most influential parameter that affects energy and deposition material consumption. Consequently, its influence on micro-hardness and abrasion resistance of multi-track deposition was studied. Results showed that increase in micro-plasma power decreases micro-hardness and scratch hardness number and increases mean value of friction coefficient. Comparison of microstructure and chemical composition of single-track and multi-track depositions revealed that single-track has finer dendritic microstructure than the multi-track deposition. The black colored matrix and white colored dendrites present in the multi-track deposition have higher wt.% of cobalt and less wt.% of chromium than the single-track deposition. Comparison of µ-PTAPD process capabilities with the existing processes for Stellite deposition establishes that it is an energy-efficient, cost-effective and good quality deposition yielding process.

  12. Study of the deposition process of vinpocetine on the surface of porous silicon

    Science.gov (United States)

    Lenshin, A. S.; Polkovnikova, Yu. A.; Seredin, P. V.

    Currently the most prospective way in pharmacotherapy is the obtaining of nanoparticles involving pharmaceutical substances. Application of porous inorganic materials on the basis of silicon is among the main features in solving of this problem. The present work is concerned with the problem of the deposition of pharmaceutical drug with nootropic activity - vinpocetine - into porous silicon. Silicon nanoparticles were obtained by electrochemical anodic etching of Si plates. The process of vinpocetine deposition was studied in dependence of the deposition time. As a result of the investigations it was found that infrared transmission spectra of porous silicon with the deposited vinpocetine revealed the absorption bands characteristic of vinpocetine substance.

  13. Performance characterization of Ni60-WC coating on steel processed with supersonic laser deposition

    Directory of Open Access Journals (Sweden)

    Fang Luo

    2015-03-01

    Full Text Available Ni60-WC particles are used to improve the wear resistance of hard-facing steel due to their high hardness. An emerging technology that combines laser with cold spraying to deposit the hard-facing coatings is known as supersonic laser deposition. In this study, Ni60-WC is deposited on low-carbon steel using SLD. The microstructure and performance of the coatings are investigated through SEM, optical microscopy, EDS, XRD, microhardness and pin-on-disc wear tests. The experimental results of the coating processed with the optimal parameters are compared to those of the coating deposited using laser cladding.

  14. Effect of process parameters on induction plasma reactive deposition of tungsten carbide from tungsten metal powder

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Tungsten carbide deposit was made directly from tungsten metal powder through the reaction with methane in radio frequency induction plasma. Effect of major process parameters on the induction plasma reactive deposition of tungsten carbide was studied by optical microscopy, scanning electron microscopy, X-ray diffraction analysis, water displacement method, and microhardness test. The results show that methane flow rate, powder feed rate, particle size, reaction chamber pressure and deposition distance have significant influences on the phase composition, density, and microhardness of the deposit. Extra carbon is necessary to ensure the complete conversion of tungsten metal into the carbide.

  15. Gravimetric measurements with use of a cantilever for controlling of electrochemical deposition processes

    Science.gov (United States)

    Prokaryn, Piotr; Janus, Pawel; Zajac, Jerzy; Sierakowski, Andrzej; Domanski, Krzysztof; Grabiec, Piotr

    2016-11-01

    In this paper we describe the method for monitoring the progress of electrochemical deposition process. The procedure allows to control the deposition of metals as well as conductive polymers on metallic seed layer. The method is particularly useful to very thin layers (1-10 nm) of deposited medium which mechanical or optical methods are troublesome for. In this method deposit is grown on the target and on the test silicon micro-cantilever with a metal pad. Galvanic deposition on the cantilever causes the change of its mass and consequently the change of its resonance frequency. Changes of the frequency is measured with laser vibro-meter then the layer thicknesses can be estimated basing on the cantilever calibration curve. Applying this method for controlling of gold deposition on platinum seed layer, for improving the properties of the biochemical sensors, is described in this paper.

  16. Electroless deposition process for zirconium and zirconium alloys

    Science.gov (United States)

    Donaghy, Robert E.; Sherman, Anna H.

    1981-01-01

    A method is disclosed for preventing stress corrosion cracking or metal embrittlement of a zirconium or zirconium alloy container that is to be coated on the inside surface with a layer of a metal such as copper, a copper alloy, nickel, or iron and used for holding nuclear fuel material as a nuclear fuel element. The zirconium material is etched in an etchant solution, desmutted mechanically or ultrasonically, oxidized to form an oxide coating on the zirconium, cleaned in an aqueous alkaline cleaning solution, activated for electroless deposition of a metal layer and contacted with an electroless metal plating solution. This method provides a boundary layer of zirconium oxide between the zirconium container and the metal layer.

  17. The Research and Development of the External Magnetic Field Acting on Electro-Deposition Process

    Directory of Open Access Journals (Sweden)

    Wu Menghua

    2016-01-01

    Full Text Available The research and development status of the electro-deposition technology under the action of external magnetic field are introduced. The basic characteristics and applied manners of external magnetic field in electro-deposition process are summarized. The acting principle of external magnetic field, the effects of magnetic hydrodynamics (MHD caused by the Lorentz force, and the acting of magnetic force on the metal ions and particles are described. The main actions of external magnetic field include MHD effect, magnetizing force, affecting the physical and chemical properties of the bath, affecting the disperse ability and coverage capacity of bath, affecting the mass transfer process of electro-deposition, affecting the chemical reaction process and current distribution of electrode surface. Some examples of electro-depositing single metal coatings, alloy coatings and composite coatings under action of magnetic field are explained. During the electro-depositing process, the external magnetic field has different degrees of impact on solution properties, mass transfer, charge transfer, content of composited nanoparticles, crystal growth and crystal orientation etc. The specific impact of magnetic field during the electro-depositing is also classified and summarized. The problems that existed in electro-deposition process while applying magnetic field and the next development trend were summarized.

  18. Nucleation and Growth of MOCVD Grown (Cr, Zn)O Films – Uniform Doping vs. Secondary Phase Formation

    Energy Technology Data Exchange (ETDEWEB)

    Saraf, Laxmikant V.; Engelhard, Mark H.; Nachimuthu, Ponnusamy; Shutthanandan, V.; Wang, Chong M.; Heald, Steve M.; McCready, David E.; Lea, Alan S.; Baer, Donald R.; Chambers, Scott A.

    2007-01-17

    We report a detailed study of chromium solubility and secondary phase formation in MOCVD grown (Cr, Zn)O-based films on silicon (100). Simultaneous deposition of 0.15M Cr(TMHD) and 0.025M Zn(TMHD) based precursors in an oxidizing environment with a flow ratio of 1:10 resulted in secondary phase formation rather than uniform Cr doping. Based on several surface and micro-structural techniques, we have identified nano-crystalline ZnCr2O4 and disordered Cr2O3 as the secondary Cr-containing phases that nucleate. Analysis suggests that ZnCr2O4 crystallites are dispersed throughout the film and that disordered Cr2O3 layer may form at the interface. These results reveal a strong tendency for Cr to exist in octahedral, rather than tetrahedral coordination.

  19. Optical and Magnetic Properties of Fe-Doped GaN Diluted Magnetic Semiconductors Prepared by MOCVD Method

    Institute of Scientific and Technical Information of China (English)

    TAG Zhi-Kuo; ZHANG Rong; CUI Xu-Gao; XIU Xiang-Qian; ZHANG Guo-Yu; XIE Zi-Li; GU Shu-Lin; SHI Yi; ZHENG You-Dou

    2008-01-01

    @@ Fe-doped GaN thin films are grown on c-sapphires by metal organic chemical vapour deposition method (MOCVD).Crystalline quality and phase purity are characterized by x-ray diffraction and Raman scattering measurements.There are no detectable second phases formed during growth and no significant degradation in crystalline quality as Fe ions are doped. Fe-related optical transitions are observed in photoluminescence spectra. Magnetic measurements reveal that the films show room-temperature ferromagnetic behaviour. The ferromagnetism may originate from carrier-mediated Fe-doped CaN diluted magnetic semiconductors or nanoscale iron dusters and Fe-N compounds which we have not detected.

  20. Structural and morphological characterizations of ZnO films grown on GaAs substrates by MOCVD

    Energy Technology Data Exchange (ETDEWEB)

    Agouram, S.; Zuniga Perez, J.; Munoz-Sanjose, V. [Universitat de Valencia, Departamento de Fisica Aplicada y Electromagnetismo, Burjassot (Spain)

    2007-07-15

    ZnO films were grown on GaAs(100), GaAs(111)A and GaAs(111)B substrates by metal organic chemical vapour deposition (MOCVD). Diethylzinc (DEZn) and tertiarybutanol (t-butanol) were used as Zn and O precursors, respectively. The influence of the growth temperature and GaAs substrate orientation on the crystalline orientation and morphology of the ZnO grown films has been analysed. Crystallinity of grown films was studied by X-ray diffraction (XRD); thickness and morphology of ZnO films were investigated by scanning electron microscopy (SEM). SEM results reveal significant differences between morphologies depending on growth temperature but not significant differences were detected on the texture of grown films. (orig.)

  1. Species transport and chemical reaction in a MOCVD reactor and their influence on the GaN growth uniformity

    Science.gov (United States)

    Zhang, Zhi; Fang, Haisheng; Yao, Qingxia; Yan, Han; Gan, Zhiyin

    2016-11-01

    Fluid flow, heat transfer, and species transport with chemical reactions have been investigated for gallium nitride (GaN) growth in a commercial metal-organic chemical vapor deposition (MOCVD) reactor. Both the growth rate and the growth uniformity are investigated zone by zone, as the wafers are divided into three zones/groups according to their distances to the susceptor center. The results show that species transport in the reactor is affected by the inlet conditions, i.e., the premixed or non-premixed inlet, the inlet temperature, the total gas flow rate, and the V/III component ratio, and reveal that the premixed inlet condition is preferred for uniform growth. Especially, a large total flow rate or a low V/III ratio results in both increase of the growth rate and improvement of the growth uniformity.

  2. Microwave characterization of normal and superconducting states of MOCVD made YBCO tapes

    Science.gov (United States)

    Wosik, Jarek; Krupka, Jerzy; Qin, Kuang; Ketharnath, Dhivya; Galstyan, Eduard; Selvamanickam, Venkat

    2017-03-01

    We have used a microwave, non-contact, non-destructive, dielectric resonator (DR) technique to characterize complex conductivity of different quality YBCO/Hastelloy tapes for the purpose of exploring such a technique as a potential quality control method for fabrication of YBCO tapes. The tapes were deposited at different temperatures on Hastelloy-supported oxide buffer layers using the MOCVD technique. The buffer stack consisted of aluminum oxide (Al2O3), yttrium oxide (Y2O3), and textured ion beam assisted deposition-MgO and LaMnO3 layers. Two dielectric resonators (DRs), the single post DR, consisting of high-permittivity barium zirconium titanate ceramic operating at 13 GHz in quasi-TE01δ mode, and the rod DR, consisting of rutile single crystal disk operating at 9.4 GHz in-TE011 mode, were designed to meet sensitivity requirements for characterization of conductivity of the superconductor at normal and superconducting states, respectively. For calculations of complex conductivity from experimental data of Q-factor and resonant frequency shift, a commercial electromagnetic simulator HFSS, based on finite elements analysis, was used. The theoretical Q-factor and resonant frequency on conductivity functions obtained from full wave numerical simulations of microwave fields were matched with the experimental data to determine conductivity of the YBCO tapes in both normal and superconducting states. In addition, for comparison purposes, 280 nm thick high-quality YBCO epitaxial film deposited on a dielectric substrate was also characterized, including frequency dependence of the complex conductivity. Discussion about feasibility of using DR microwave techniques as a quality control tool via measurements of conductivity versus temperature slope of the YBCO/Hastelloy tape in normal state is included. Also, microwave conductivity values of Hastelloy substrate as a function of temperature are reported.

  3. Atomistic study of deposition process of Al thin film on Cu substrate

    Energy Technology Data Exchange (ETDEWEB)

    Cao Yongzhi, E-mail: yzcaohit@gmail.com [Center for Precision Engineering, Harbin Institute of Technology, Harbin (China); Zhang Junjie; Sun Tao; Yan Yongda; Yu Fuli [Center for Precision Engineering, Harbin Institute of Technology, Harbin (China)

    2010-08-01

    In this paper we report molecular dynamics based atomistic simulations of deposition process of Al atoms onto Cu substrate and following nanoindentation process on that nanostructured material. Effects of incident energy on the morphology of deposited thin film and mechanical property of this nanostructured material are emphasized. The results reveal that the morphology of growing film is layer-by-layer-like at incident energy of 0.1-10 eV. The epitaxy mode of film growth is observed at incident energy below 1 eV, but film-mixing mode commences when incident energy increase to 10 eV accompanying with increased disorder of film structure, which improves quality of deposited thin film. Following indentation studies indicate deposited thin films pose lower stiffness than single crystal Al due to considerable amount of defects existed in them, but Cu substrate is strengthened by the interface generated from lattice mismatch between deposited Al thin film and Cu substrate.

  4. Fe-Doped TiO2 Nanoparticles Produced via MOCVD: Synthesis, Characterization, and Photocatalytic Activity

    Directory of Open Access Journals (Sweden)

    Siti Hajar Othman

    2011-01-01

    Full Text Available Iron (Fe-doped titanium dioxide (TiO2 nanoparticles were produced via the metallorganic chemical vapour deposition (MOCVD method at 700∘C. Different amounts of ferrocene as the Fe dopant source (0.001–0.05 g were introduced inside the reactor together with the titanium precursor in order to synthesize different Fe dopant concentrations of TiO2 nanoparticles. Nitrogen (N2 adsorption results showed that increasing the Fe dopant concentration caused a slight increase in the surface area of the nanoparticles due to the decrease in nanoparticle size. The UV-diffuse reflectance spectra demonstrated an absorption shift in Fe-doped TiO2 nanoparticles to longer wavelengths, thus showing an enhancement of the absorption in the visible spectrum. Bandgap energy values determined from the UV-diffuse reflectance spectra data decreased with an increase in the Fe dopant concentrations. The photocatalytic activity of Fe-doped TiO2 nanoparticles was investigated via degradation of methylene blue under UV and fluorescent light. It was found that Fe doping reduced the photocatalytic activity of the samples. Based on X-ray photoelectron spectroscopy (XPS results, it is believed that this is due to the unfavourable location of Fe3+ inside the interior matrix of the TiO2 nanoparticles rather than on the exterior surface, which would affect photocatalytic behaviour.

  5. Effect of silicon doping in InGaN/GaN heterostructure grown by MOCVD

    Science.gov (United States)

    Surender, S.; Pradeep, S.; Prabakaran, K.; Singh, Shubra; Baskar, K.

    2017-05-01

    In this work the effect of Si doped InGaN/GaN heterostructure is systematically studied. The n-InGaN /GaN heterostructure are grown on c-plane sapphire substrate by horizontal flow Metal Organic Chemical Vapor Deposition (MOCVD). The heterostructure samples are investigated by structural, optical, morphological and electrical studies using High Resolution X-ray diffraction (HRXRD), room temperature Photoluminescence (PL), Atomic Force Microscopy (AFM) and Hall measurement respectively. The composition of indium in n-InGaN/GaN heterostructure was calculated as 15.9% using epitaxy smooth fit software. The energy band gap (Eg) of the InGaN epilayer has been calculated as 2.78 eV using vigard's law. PL emission obtained at 446 nm for n-InGaN epilayer. AFM results indicate that the Si doped InGaN/GaN heterostructure has the root mean square (rms) roughness of about 0.59 nm for a scan area of 5×5 µm2 which has island like growth. Moreover, Hall measurements results shows that Si doped InGaN/GaN heterostructure possess carrier concentration of 4.2 × 1018cm-3 and mobility of 257 cm2/V s at room temperature.

  6. Variable Energy Positron Annihilation Spectroscopy of GaN Grown on Sapphire Substrates with MOCVD

    Institute of Scientific and Technical Information of China (English)

    HU Yi-Fan; C.D. Beling; S. Fung

    2005-01-01

    @@ Depth profiled Doppler broadening of positron annihilation spectroscopy (DBPAS), which is also called the variable energy positron annihilation spectroscopy (VEPAS), is used in characterization of GaN grown on sapphire substrates with metal-organic chemical vapour deposition (MOCVD). The GaN film and the film/substrate interface are investigated. The VEPFIT (variable energy positron fit) software was used for analysing the data,and the positron diffusion length of the sapphire is obtained. The results suggest that there is a highly defected region near the GaN/sapphire interface. This thin dislocated region is generated at the film/substrate interface to relieve the strain. Effects of implantation dose on defect formation, for the GaN/Sapphire samples, which implanted by Al+ ions, are also investigated. Studies on Al+ implanted GaN films (not including the interface and sapphire) have revealed that there are two different regions of implantation damage. For the low Al+ implantation dose samples, in the region close to the surface, defects are mainly composed of vacancy pairs with small amount of vacancy clusters, and in the interior region of the film the positron traps are vacancy clusters without micro-voids. For the highest dose sample, however, some positron trap centres are in the form of micro-voids in the second region.

  7. High energy high rate pulsed power processing of materials by powder consolidation and by railgun deposition

    Science.gov (United States)

    Persad, C.; Marcus, H. L.; Weldon, W. F.

    1987-03-01

    This exploratory research program was initiated to investigate the potential of using pulse power sources for powder consolidation, deposition and other High Energy High Rate Processing. The characteristics of the High Energy High Rate (1MJ/s) powder consolidation using megampere current pulses from a Homopolar Generator, have been defined. Molybdenum Alloy TZM, A Nickel based metallic glass, Copper graphite composites, and P/M Aluminum Alloy X7091 have been investigated. The powder consolidation process produced high densification rates. Density values of 80% to 99% could be obtained with sub second high temperature exposure. Specific energy input and applied pressure were controlling process parameters. Time Temperature Transformation (TTT) concepts underpin a fundamental understanding of pulsed power processing. Deposition experiments were conducted using an exploding foil device (EFD) providing an armature feed to railgun mounted in a vacuum chamber. The material to be deposited - in plasma, gas, liquid or solid state - was accelerated electromagnetically in the railgun and deposited on a substrate.

  8. Magnesium doped GaN grown by MOCVD

    Energy Technology Data Exchange (ETDEWEB)

    Guarneros, C., E-mail: cesyga@yahoo.com.mx [Ingenieria Electrica, Seccion Electronica del Estado Solido, Centro de Investigacion y de Estudios Avanzados del Instituto Politecnico Nacional, Av. I.P.N. 2508, San Pedro Zacatenco, 07360 Mexico, D.F. (Mexico); Sanchez, V. [Ingenieria Electrica, Seccion Electronica del Estado Solido, Centro de Investigacion y de Estudios Avanzados del Instituto Politecnico Nacional, Av. I.P.N. 2508, San Pedro Zacatenco, 07360 Mexico, D.F. (Mexico)

    2010-10-25

    We have studied the optical and electrical characteristics of undoped and doped GaN layers. The n- and p-type layers have been prepared by low pressure MOCVD technique. Photoluminescence (PL) studies were carried at low temperature. In the PL spectra of undoped GaN layer, a low intensity band edge emission and a broad yellow emission band were observed. The donor-acceptor pair (DAP) emission and its phonon replicas were observed in Mg lightly doped GaN layer. The dominance of the blue and the yellow emissions increased in the PL spectra as the Mg concentration was increased. The X-ray diffraction was employed to study the structure of the layers. Both the undoped and the doped layers exhibited hexagonal structure. The samples were annealed and significant changes were not observed in Hall Effect and in the PL measurements, so we suggest that there is no need of a thermal annealing for magnesium acceptor activation.

  9. Si surface passivation by Al2O3 thin films deposited using a low thermal budget atomic layer deposition process

    Energy Technology Data Exchange (ETDEWEB)

    Seguini, G.; Cianci, E.; Wiemer, C.; Perego, M. [Laboratorio MDM, IMM-CNR, Via C. Olivetti 2, 20864 Agrate Brianza MB (Italy); Saynova, D.; Van Roosmalen, J.A.M. [ECN Solar Energy, Westerduinweg 3, NL-1755 ZG Petten (Netherlands)

    2013-04-05

    High-quality surface passivation of crystalline Si is achieved using 10 nm thick Al2O3 films fabricated by thermal atomic layer deposition at 100C. After a 5 min post deposition annealing at 200C, the effective carrier lifetime is 1 ms, indicating a functional level of surface passivation. The interplay between the chemical and the field effect passivation is investigated monitoring the density of interface traps and the amount of fixed charges with conductance-voltage and capacitance-voltage techniques. The physical mechanisms underlying the surface passivation are described. The combination of low processing temperatures, thin layers, and good passivation properties facilitate a technology for low-temperature solar cells.

  10. Influence of process parameters on the preparation of pharmaceutical films by electrostatic powder deposition.

    Science.gov (United States)

    Prasad, Leena Kumari; LaFountaine, Justin S; Keen, Justin M; Williams, Robert O; McGinity, James W

    2016-12-30

    Electrostatic powder deposition (ESPD) has been developed as a solvent-free method to prepare pharmaceutical films. The aim of this work was to investigate the influence of process parameters during (1) electrostatic powder deposition, (2) curing, and (3) removal of the film from the substrate on the properties of the film. Polyethylene oxide (PEO) was used as the model polymer and stainless steel 316 as the substrate. Deposition efficiency (i.e. deposited weight) was measured with varying charging voltage, gun tip to substrate distance, and environmental humidity. Scanning electron microscopy was utilized to assess film formation, and adhesive and mechanical strength of films were measured with varying cure temperature and time. Adhesive strength was measured for films prepared on substrates of varying surface roughness. When deposition was performed at low humidity conditions, 25%RH, process parameters did not significantly affect deposition behavior. At 40%RH, increasing deposition efficiency with decreasing gun tip to substrate distance and increasing voltage (up to 60kV) was observed. Complete film formation was seen by 30min at 80°C, compared to lower curing temperatures and times. All films were readily removed from the substrates. The results show the ESPD process can be modified to produce films with good mechanical properties (e.g. tensile strength>0.06MPa), suggesting it is a promising dry powder process for preparing pharmaceutical films.

  11. Mechanistic Details of Surface Reactions in Atomic Layer Deposition (ALD) Processes

    Institute of Scientific and Technical Information of China (English)

    Menno; Bouman; Christopher; Clark; Hugo; Tiznado; Francisco; Zaera

    2007-01-01

    1 Results The reaction mechanisms of the atomic layer deposition (ALD) processes used for thin-film growth have been characterized by a combination of surface sensitive techniques. Our early studies focused on the deposition of TiN films from TiCl4 and ammonia,starting with the independent characterization of each of the two half steps comprising the ALD process. It was found that exposure of the substrate to TiCl4 leads to the initial deposition of titanium in the +3 oxidation state; only at a later st...

  12. Effect of Energy Input on the Characteristic of AISI H13 and D2 Tool Steels Deposited by a Directed Energy Deposition Process

    Science.gov (United States)

    Park, Jun Seok; Park, Joo Hyun; Lee, Min-Gyu; Sung, Ji Hyun; Cha, Kyoung Je; Kim, Da Hye

    2016-05-01

    Among the many additive manufacturing technologies, the directed energy deposition (DED) process has attracted significant attention because of the application of metal products. Metal deposited by the DED process has different properties than wrought metal because of the rapid solidification rate, the high thermal gradient between the deposited metal and substrate, etc. Additionally, many operating parameters, such as laser power, beam diameter, traverse speed, and powder mass flow rate, must be considered since the characteristics of the deposited metal are affected by the operating parameters. In the present study, the effect of energy input on the characteristics of H13 and D2 steels deposited by a direct metal tooling process based on the DED process was investigated. In particular, we report that the hardness of the deposited H13 and D2 steels decreased with increasing energy input, which we discuss by considering microstructural observations and thermodynamics.

  13. Investigation of Tin (Sn) Film Using an Aerosol Jet Additive Manufacturing Deposition Process

    Science.gov (United States)

    Fortier, Aleksandra; Liu, Yue; Ghamarian, Iman; Collins, Peter C.; Chason, Eric

    2017-08-01

    The quality of a Sn film deposited by the aerosol process is compared against the quality of Sn films deposited with traditional electroplating. Using the aerosol additive deposition technique, a Sn film was deposited on a brass substrate and exposed to room (25°C) temperature environments for 30 days, followed by a laser photosintering process. The film characteristics and content, formation of intermetallic compounds, residual stress distribution, grain texture, and the tendency of the film to grow Sn whiskers were analyzed. The preliminary results show a successful deposition of Sn film with an aerosol jet process and tensile residual stresses, whereas it was compressive in nature for electroplated Sn film. X-ray diffraction results also show the absence of intermetallic compound (IMC) formation in the aerosol jet-deposited film, while electroplated Sn film has a significant presence of IMC. The aerosol jet-deposited Sn film has the potential to resist nucleation of Sn whiskers under the operating conditions used in this study.

  14. A sub-atmospheric chemical vapor deposition process for deposition of oxide liner in high aspect ratio through silicon vias.

    Science.gov (United States)

    Lisker, Marco; Marschmeyer, Steffen; Kaynak, Mehmet; Tekin, Ibrahim

    2011-09-01

    The formation of a Through Silicon Via (TSV) includes a deep Si trench etching and the formation of an insulating layer along the high-aspect-ratio trench and the filling of a conductive material into the via hole. The isolation of the filling conductor from the silicon substrate becomes more important for higher frequencies due to the high coupling of the signal to the silicon. The importance of the oxide thickness on the via wall isolation can be verified using electromagnetic field simulators. To satisfy the needs on the Silicon dioxide deposition, a sub-atmospheric chemical vapor deposition (SA-CVD) process has been developed to deposit an isolation oxide to the walls of deep silicon trenches. The technique provides excellent step coverage of the 100 microm depth silicon trenches with the high aspect ratio of 20 and more. The developed technique allows covering the deep silicon trenches by oxide and makes the high isolation of TSVs from silicon substrate feasible which is the key factor for the performance of TSVs for mm-wave 3D packaging.

  15. The erosion performance of cold spray deposited metal matrix composite coatings with subsequent friction stir processing

    Science.gov (United States)

    Peat, Tom; Galloway, Alexander; Toumpis, Athanasios; McNutt, Philip; Iqbal, Naveed

    2017-02-01

    This study forms an initial investigation into the development of SprayStir, an innovative processing technique for generating erosion resistant surface layers on a chosen substrate material. Tungsten carbide - cobalt chromium, chromium carbide - nickel chromium and aluminium oxide coatings were successfully cold spray deposited on AA5083 grade aluminium. In order to improve the deposition efficiency of the cold spray process, coatings were co-deposited with powdered AA5083 using a twin powder feed system that resulted in thick (>300 μm) composite coatings. The deposited coatings were subsequently friction stir processed to embed the particles in the substrate in order to generate a metal matrix composite (MMC) surface layer. The primary aim of this investigation was to examine the erosion performance of the SprayStirred surfaces and demonstrate the benefits of this novel process as a surface engineering technique. Volumetric analysis of the SprayStirred surfaces highlighted a drop of approx. 40% in the level of material loss when compared with the cold spray deposited coating prior to friction stir processing. Micro-hardness testing revealed that in the case of WC-CoCr reinforced coating, the hardness of the SprayStirred material exhibits an increase of approx. 540% over the unaltered substrate and 120% over the as-deposited composite coating. Microstructural examination demonstrated that the increase in the hardness of the MMC aligns with the improved dispersion of reinforcing particles throughout the aluminium matrix.

  16. Synthesis, characterization, and thermal properties of homoleptic rare-earth guanidinates: promising precursors for MOCVD and ALD of rare-earth oxide thin films.

    Science.gov (United States)

    Milanov, Andrian P; Fischer, Roland A; Devi, Anjana

    2008-12-01

    Eight novel homoleptic tris-guanidinato complexes M[(N(i)Pr)(2)CNR(2)](3) [M = Y (a), Gd (b), Dy (c) and R = Me (1), Et (2), (i)Pr (3)] have been synthesized and characterized by NMR, CHN-analysis, mass spectrometry and infrared spectroscopy. Single crystal structure analysis revealed that all the compounds are monomers with the rare-earth metal center coordinated to six nitrogen atoms of the three chelating guanidinato ligands in a distorted trigonal prism geometry. With the use of TGA/DTA and isothermal TGA analysis, the thermal characteristics of all the complexes were studied in detail to evaluate their suitability as precursors for thin film deposition by MOCVD and ALD. The (i)Pr-Me(2)N-guanidinates of Y, Gd and Dy (1a-c) showed excellent thermal characteristics in terms of thermal stability and volatility. Additionally, the thermal stability of the (i)Pr-Me(2)N-guanidinates of Y and Dy (1a, c) in solution was investigated by carrying out NMR decomposition experiments and both the compounds were found to be remarkably stable. All these studies indicate that (i)Pr-Me(2)N-guanidinates of Y, Gd and Dy (1a-c) have the prerequisites for MOCVD and ALD applications which were confirmed by the successful deposition of Gd(2)O(3) and Dy(2)O(3) thin films on Si(100) substrates. The MOCVD grown films of Gd(2)O(3) and Dy(2)O(3) were highly oriented in the cubic phase, while the ALD grown films were amorphous.

  17. MOCVD of zirconium oxide thin films: Synthesis and characterization

    Science.gov (United States)

    Torres-Huerta, A. M.; Domínguez-Crespo, M. A.; Ramírez-Meneses, E.; Vargas-García, J. R.

    2009-02-01

    The synthesis of thin films of zirconia often produces tetragonal or cubic phases, which are stable at high temperatures, but that can be transformed into the monoclinic form by cooling. In the present study, we report the deposition of thin zirconium dioxide films by metalorganic chemical vapor deposition using zirconium (IV)-acetylacetonate as precursor. Colorless, porous, homogeneous and well adherent ZrO 2 thin films in the cubic phase were obtained within the temperature range going from 873 to 973 K. The deposits presented a preferential orientation towards the (1 1 1) and (2 2 0) planes as the substrate temperature was increased, and a crystal size ranging between 20 and 25 nm. The kinetics is believed to result from film growth involving the deposition and aggregation of nanosized primary particles produced during the CVD process. A mismatch between the experimental results obtained here and the thermodynamic prediction was found, which can be associated with the intrinsic nature of the nanostructured materials, which present a high density of interfaces.

  18. MOCVD of zirconium oxide thin films: Synthesis and characterization

    Energy Technology Data Exchange (ETDEWEB)

    Torres-Huerta, A.M., E-mail: atohuer@hotmail.com [Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada, Unidad Altamira, Instituto Politecnico Nacional, Km. 14.5 Carr. Tampico-Puerto Industrial, C.P. 89600, Altamira, Tamaulipas (Mexico); Dominguez-Crespo, M.A.; Ramirez-Meneses, E. [Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada, Unidad Altamira, Instituto Politecnico Nacional, Km. 14.5 Carr. Tampico-Puerto Industrial, C.P. 89600, Altamira, Tamaulipas (Mexico); Vargas-Garcia, J.R. [ESIQIE, Departamento de Metalurgia y Materiales, Instituto Politecnico Nacional. A.P. 75-876, 07300 Mexico, D.F. (Mexico)

    2009-02-15

    The synthesis of thin films of zirconia often produces tetragonal or cubic phases, which are stable at high temperatures, but that can be transformed into the monoclinic form by cooling. In the present study, we report the deposition of thin zirconium dioxide films by metalorganic chemical vapor deposition using zirconium (IV)-acetylacetonate as precursor. Colorless, porous, homogeneous and well adherent ZrO{sub 2} thin films in the cubic phase were obtained within the temperature range going from 873 to 973 K. The deposits presented a preferential orientation towards the (1 1 1) and (2 2 0) planes as the substrate temperature was increased, and a crystal size ranging between 20 and 25 nm. The kinetics is believed to result from film growth involving the deposition and aggregation of nanosized primary particles produced during the CVD process. A mismatch between the experimental results obtained here and the thermodynamic prediction was found, which can be associated with the intrinsic nature of the nanostructured materials, which present a high density of interfaces.

  19. CaCu{sub 3}Ti{sub 4}O{sub 12} thin films on conductive oxide electrode: A comparative study between chemical and physical vapor deposition routes

    Energy Technology Data Exchange (ETDEWEB)

    Catalano, Maria R.; Malandrino, Graziella [Dipartimento di Scienze Chimiche, Universita di Catania, and INSTM, UdR Catania, Viale A. Doria 6, 95125 Catania (Italy); Bongiorno, Corrado [Istituto per la Microelettronica e Microsistemi, IMM-CNR, Strada VIII 5, 95121 Catania (Italy); Toro, Roberta G. [Istituto per lo Studio dei Materiali Nanostrutturati, ISMN-CNR, Via dei Taurini, 19, 00185 Roma (Italy); Fiorenza, Patrick [Istituto per la Microelettronica e Microsistemi, IMM-CNR, Strada VIII 5, 95121 Catania (Italy); Bodeux, Romain [Laboratoire LEMA, UMR 6157 CNRS/CEA, Universite F. Rabelais, Parc de Grandmont, 37200 Tours (France); STMicroelectronics, R and D, Rue Pierre et Marie Curie, 37000 Tours (France); Wolfman, Jerome; Gervais, Monique; Lambert, Cecile Autret; Gervais, Francois [Laboratoire LEMA, UMR 6157 CNRS/CEA, Universite F. Rabelais, Parc de Grandmont, 37200 Tours (France); Lo Nigro, Raffaella, E-mail: raffaella.lonigro@imm.cnr.it [Istituto per la Microelettronica e Microsistemi, IMM-CNR, Strada VIII 5, 95121 Catania (Italy)

    2012-04-16

    Highlights: Black-Right-Pointing-Pointer Dielectrics growth and characterization is one of the most hot topics of materials science and microelectronics. Black-Right-Pointing-Pointer CaCu{sub 3}Ti{sub 4}O{sub 12} perovskite, recently, demonstrated to possess peculiar dielectric properties (Science, 2001, 293, 673-676). Black-Right-Pointing-Pointer To date no deep discussion on the growth processes, properties and perspective of CCTO thin films has been proposed. Black-Right-Pointing-Pointer Our paper is an effective example of interdisciplinarity, since the comparison between PLD and MOCVD has been addressed. Black-Right-Pointing-Pointer Great attention has been paid to CaCu{sub 3}Ti{sub 4}O{sub 12} film/substrate interfaces since dielectric properties are strongly affected. - Abstract: Metal Organic Chemical Vapor Deposition (MOCVD) and Pulsed Laser Deposition (PLD) techniques have been used for the growth of CaCu{sub 3}Ti{sub 4}O{sub 12} (CCTO) thin films on La{sub 0.9}Sr{sub 1.1}NiO{sub 4}/LaAlO{sub 3} (LSNO/LAO) stack. (1 0 0) oriented CCTO films have been formed through both deposition routes and film complete structural and morphological characterizations have been carried out using several techniques (X-ray diffraction, scanning electron microscopy, energy-filtered transmission electron microscopy). The comparative study demonstrated some differences at the CCTO/LSNO interfaces depending on the adopted deposition technique. Chemical/structural modification of the LSNO electrode probably occurred as a function of the different oxygen partial pressure used in the PLD and MOCVD processes.

  20. Deposition and post-processing techniques for transparent conductive films

    Energy Technology Data Exchange (ETDEWEB)

    Christoforo, Mark Greyson; Mehra, Saahil; Salleo, Alberto; Peumans, Peter

    2017-07-04

    In one embodiment, a method is provided for fabrication of a semitransparent conductive mesh. A first solution having conductive nanowires suspended therein and a second solution having nanoparticles suspended therein are sprayed toward a substrate, the spraying forming a mist. The mist is processed, while on the substrate, to provide a semitransparent conductive material in the form of a mesh having the conductive nanowires and nanoparticles. The nanoparticles are configured and arranged to direct light passing through the mesh. Connections between the nanowires provide conductivity through the mesh.

  1. Rare earth-doped alumina thin films deposited by liquid source CVD processes

    Energy Technology Data Exchange (ETDEWEB)

    Deschanvres, J.L.; Meffre, W.; Joubert, J.C.; Senateur, J.P. [Ecole Nat. Superieure de Phys. de Grenoble, St. Martin d`Heres (France). Lab. des Materiaux et du Genie Phys.; Robaut, F. [Consortium des Moyens Technologiques Communs, Institut National Polytechnique de Grenoble, BP 75, 38402 St Martin d`Heres (France); Broquin, J.E.; Rimet, R. [Laboratoire d`Electromagnetisme, Microondes et Optoelectronique, CNRS-Ecole Nationale Superieure d`Electronique et Radioelectricite de Grenoble, BP 257, 38016 Grenoble, Cedex (France)

    1998-07-24

    Two types of liquid-source CVD processes are proposed for the growth of rare earth-doped alumina thin films suitable as amplifying media for integrated optic applications. Amorphous, transparent, pure and erbium- or neodymium-doped alumina films were deposited between 573 and 833 K by atmospheric pressure aerosol CVD. The rare earth doping concentration increases by decreasing the deposition temperature. The refractive index of the alumina films increases as a function of the deposition temperature from 1.53 at 573 K to 1.61 at 813 K. Neodymium-doped films were also obtained at low pressure by liquid source injection CVD. (orig.) 7 refs.

  2. Advancement in additive manufacturing & numerical modelling considerations of direct energy deposition process

    OpenAIRE

    Quanren Zeng; Zhenhai Xu; Yankang Tian; Yi Qin

    2016-01-01

    The development speed and application range of the additive manufacturing (AM) processes, such as selective laser melting (SLM), laser metal deposition (LMD) or laser-engineering net shaping (LENS), are ever-increasing in modern advanced manufacturing field for rapid manufacturing, tooling repair or surface enhancement of the critical metal components. LMD is based on a kind of directed energy deposition (DED) technology which ejects a strand of metal powders into a moving molten pool caused ...

  3. The Research and Development of the External Magnetic Field Acting on Electro-Deposition Process

    OpenAIRE

    Wu Menghua; Jia Weiping

    2016-01-01

    The research and development status of the electro-deposition technology under the action of external magnetic field are introduced. The basic characteristics and applied manners of external magnetic field in electro-deposition process are summarized. The acting principle of external magnetic field, the effects of magnetic hydrodynamics (MHD) caused by the Lorentz force, and the acting of magnetic force on the metal ions and particles are described. The main actions of external magnetic field...

  4. Comparison of deposited surface area of airborne ultrafine particles generated from two welding processes.

    Science.gov (United States)

    Gomes, J F; Albuquerque, P C; Miranda, Rosa M; Santos, Telmo G; Vieira, M T

    2012-09-01

    This article describes work performed on the assessment of the levels of airborne ultrafine particles emitted in two welding processes metal-active gas (MAG) of carbon steel and friction-stir welding (FSW) of aluminium in terms of deposited area in alveolar tract of the lung using a nanoparticle surface area monitor analyser. The obtained results showed the dependence from process parameters on emitted ultrafine particles and clearly demonstrated the presence of ultrafine particles, when compared with background levels. The obtained results showed that the process that results on the lower levels of alveolar-deposited surface area is FSW, unlike MAG. Nevertheless, all the tested processes resulted in important doses of ultrafine particles that are to be deposited in the human lung of exposed workers.

  5. Effect of Source, Surfactant, and Deposition Process on Electronic Properties of Nanotube Arrays

    Directory of Open Access Journals (Sweden)

    Dheeraj Jain

    2011-01-01

    Full Text Available The electronic properties of arrays of carbon nanotubes from several different sources differing in the manufacturing process used with a variety of average properties such as length, diameter, and chirality are studied. We used several common surfactants to disperse each of these nanotubes and then deposited them on Si wafers from their aqueous solutions using dielectrophoresis. Transport measurements were performed to compare and determine the effect of different surfactants, deposition processes, and synthesis processes on nanotubes synthesized using CVD, CoMoCAT, laser ablation, and HiPCO.

  6. Atomic layer deposition of copper and copper silver films using an electrochemical process

    Energy Technology Data Exchange (ETDEWEB)

    Fang, J.S., E-mail: jsfang@nfu.edu.tw [Department of Materials Science and Engineering, National Formosa University, Huwei 63201, Taiwan (China); Liu, Y.S. [Department of Materials Science and Engineering, National Formosa University, Huwei 63201, Taiwan (China); Chin, T.S. [Department of Materials Science and Engineering, Feng Chia University, Taichung 40724, Taiwan (China)

    2015-04-01

    This paper describes the formation and properties of Cu and Cu(Ag) films on a Ru/Si substrate using electrochemical atomic layer deposition. The process was performed layer-by-layer using underpotential deposition (UPD) and surface-limited redox reactions. The first Cu atomic layer was deposited on the Ru/Si substrate via UPD. Using UPD, atomic layered of Pb, which acts as a sacrificial layer, was applied on the Cu layer. Then, a Cu{sup 2+} solution was flushed into the cell at an open-circuit potential, and the Pb layer was exchanged for Cu via redox replacements. The above sequences were repeated 500 times to form a Cu film. The Cu(Ag) alloy films were formed using Cu–UPD and Ag–UPD in predetermined sequences. The lowest electrical resistivity achieved was 3.6 and 2.2 μΩ cm for the Cu film and Cu(Ag) film, respectively, after annealing at 400 °C. Due to the self-limiting reactions, the process has the ability to deposit atomic layers to meet the requirement of Cu interconnects. - Highlights: • Layer-by-layer growth of Cu and Cu(Ag) films are prepared using electrochemical atomic layer deposition. • Cu coverage is from 0.33 to 0.51 ML for each deposition cycle in different NaCl concentrations. • The process can be applied in Cu interconnections.

  7. Empirical-Statistical Study on the Relationship between Deposition Parameters, Process Variables, Deposition Rate and Mechanical Properties of a-C:H:W Coatings

    Directory of Open Access Journals (Sweden)

    Harald Hetzner

    2014-12-01

    Full Text Available Tungsten-modified hydrogenated amorphous carbon coatings (a-C:H:W were deposited on high speed steel by reactive magnetron sputtering of a tungsten carbide target in an argon-ethine atmosphere. The deposition parameters, sputtering power, bias voltage, argon and ethine flow rate, were varied according to a central composite design comprising 25 different parameter combinations. For comparison, a tungsten carbide coating was deposited, as well. During coating deposition, the process variables, total pressure, sputtering voltage and bias current, were measured as process characteristics. The thickness of the deposited coatings was determined using the crater grinding method, and the deposition rate was calculated. Young’s modulus E and indentation hardness HIT were characterized by means of nanoindentation. With E = 80

  8. Apparatus and process for atomic or molecular layer deposition onto particles during pneumatic transport

    NARCIS (Netherlands)

    Van Ommen, J.R.

    2010-01-01

    The invention provides a process for depositing a coating onto particles being pneumatically transported in a tube. The process comprising the steps of providing a tube having an inlet opening and an outlet opening; feeding a carrier gas entraining particles into the tube at or near the inlet openin

  9. Process sedimentology of submarine fan deposits - new perspectives

    Science.gov (United States)

    Postma, George

    2017-04-01

    To link submarine fan process sedimentology with sand distribution, sand body architecture, texture and fabric, the field geologist studies sedimentary facies, facies associations (fan elements) and stratigraphy. Facies analysis resides on factual knowledge of modern fan morphodynamics and physical modelling of en-masse sediment transport. Where do we stand after 55 years of submarine research, i.e. the date when the first submarine fan model was launched by Arnold Bouma in 1962? Since that date students of submarine fans have worked on a number of important, recurring questions concerned with facies analysis of submarine successions in outcrop and core: 1. What type of sediment transport produced the beds? 2. What facies can be related to initial flow conditions? 3. What is the significance of grain size jumps and bounding surface hierarchy in beds consisting of crude and spaced stratification (traction carpets)? Do these point to multi flow events or to flow pulsations by one and the same event? 4. What facies associations relate to the basic elements of submarine fans? 5. What are the autogenic and allogenic signatures in submarine fans? Particularly in the last decade, the enormous technical advancement helped to obtain high-quality data from observations of density flows in modern canyons, deep basins and deep-water delta slopes (refs 1,2,3). In combination with both physical (refs 4,5) and numerical modelling (ref 6) these studies broke new ground into our understanding of density flow processes in various submarine environments and have led to new concepts of submarine fan building by super- and subcritical high-density flow (ref 7). Do these new concepts provide better answers to our recurrent questions related to the morphodynamics of submarine fans and prediction of sand body architecture? In discussing this open question, I shall 1. apply the new concepts to a modern and ancient example of a channel-lobe-transition-zone (ref 8); 2. raise the problem of

  10. Dependence of InN properties on MOCVD growth parameters

    Energy Technology Data Exchange (ETDEWEB)

    Tuna, Oe.; Giesen, C. [AIXTRON AG, Kaiserstr. 98, 52134 Herzogenrath (Germany); Behmenburg, H.; Kalisch, H.; Jansen, R.H. [Chair of Electromagnetic Theory, RWTH Aachen University, Kackertstr. 15-17, 52072 Aachen (Germany); Yablonskii, G.P. [Stepanov Institute of Physics, National Academy of Sciences of Belarus, Independence Ave. 68, Minsk 220072 (Belarus); Heuken, M. [AIXTRON AG, Kaiserstr. 98, 52134 Herzogenrath (Germany); Chair of Electromagnetic Theory, RWTH Aachen University, Kackertstr. 15-17, 52072 Aachen (Germany)

    2011-07-15

    In order to optimize the growth conditions, the effect of the most important growth parameters such as growth temperature, pressure and V/III ratio on MOCVD-grown InN was investigated. A series of samples were grown by changing the growth temperature from 500 C to 550 C at fixed growth pressure of 800 mbar and V/III ratio of 145000. An improvement of electrical properties with temperature increment was noted. The highest mobility of 1200 cm{sup 2}/Vs was achieved at 550 C with a bulk carrier concentration of 4.32 x 10{sup 18} cm{sup -3}. The effect of V/III ratio on In droplet formation and on carrier concentration was also studied. At fixed temperature of 520 C, reactor pressure of 200 mbar and at fixed NH{sub 3} flow of 3 slm, a rising TMIn flow from 1.2 {mu}mol/min to 2.0 {mu}mol/min results in a carrier concentration increment from 6.06 x 10{sup 18} cm{sup -3} to 1.33 x 10{sup 19} cm{sup -3}and a decrement of the mobility from 430 cm{sup 2}/Vs to 348 cm{sup 2}/Vs. X-ray diffraction measurements show that the intensity associated with In droplets on the surface is rising with increasing TMIn flow. The effect of reactor pressure on InN growth was also examined. A high sensitivity to growth pressure for crystalline quality of InN was observed. The full width at half maximum (FWHM) values of InN (0002) reflexes decreased with increasing reactor pressure. With increasing growth pressure above 200 mbar, FWHM of around 275 arcsec of InN (0002) was achieved. This FWHM value is the lowest reported in literature for MOCVD-grown InN so far. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  11. Enhanced Light Scattering by Preferred Orientation Control of Ga Doped ZnO Films Prepared through MOCVD

    Directory of Open Access Journals (Sweden)

    Long Giang Bach

    2016-01-01

    Full Text Available We have explored the effective approach to fabricate GZO/ZnO films that can make the pyramidal surface structures of GZO films for effective light scattering by employing a low temperature ZnO buffer layer prior to high temperature GZO film growth. The GZO thin films exhibit the typical preferred growth orientations along the (002 crystallographic direction at deposition temperature of 400°C and SEM showed that column-like granule structure with planar surface was formed. In contrast, GZO films with a pyramidal texture surface were successfully developed by the control of (110 preferred orientation. We found that the light diffuse transmittance of the film with a GZO (800 nm/ZnO (766 nm exhibited 13% increase at 420 nm wavelength due to the formed large grain size of the pyramidal texture surface. Thus, the obtained GZO films deposited over ZnO buffer layer have high potential for use as front TCO layers in Si-based thin film solar cells. These results could develop the potential way to fabricate TCO based ZnO thin film using MOCVD or sputtering techniques by depositing a low temperature ZnO layer to serve as a template for high temperature GZO film growth. The GZO films exhibited satisfactory optoelectric properties.

  12. A parametric simulation study for solvent co-injection process in bitumen deposits

    Energy Technology Data Exchange (ETDEWEB)

    Yazdani, A.; Alvestad, J.; Kjonsvik, D.; Gilje, E.; Kowalewski, E. [Statoil Canada (Canada)

    2011-07-01

    The extraction of very large Canadian extra heavy oil and bitumen deposits is facing major challenges, such as energy requirements and access to sustainable water resources. Steam assisted gravity drainage (SAGD) is the most common commercial in-situ recovery process used for the extraction but it has many associated economic and environmental challenges. Moreover, current knowledge of the fundamental physics and mechanics involved in the process is not satisfactory. This paper presents a parametric simulation study for a solvent co-injection (SCI) process in bitumen deposits. This process has the potential to improve the efficiency of steam processes as well as to reduce energy use and CO2 emissions. The study contributes to further understanding of the development process. Several operational and geological parameters were evaluated to assess their impact on SAGD operations. The results demonstrated that the basis for selecting the optimum solvent should not only be mobility improvement capability but should also include other operational and geological conditions.

  13. Properties of Aluminum Deposited by a High-Velocity Oxygen-Fueled Process

    Energy Technology Data Exchange (ETDEWEB)

    Chow, R; Decker, T A; Gansert, R V; Gansert, D; Lee, D

    2001-06-12

    Aluminum coatings deposited by a HVOF process have been demonstrated and relevant coating properties evaluated according to two deposition parameters, the spray distance and the oxygen-to-fuel flow ratio. The coating porosity, surface roughness, and microhardness are measured. The coating properties are fairly insensitive to spray distance, the distance between the nozzle and the workpiece, and fuel ratios, the oxygen-to-fuel flow. Increasing the fuel content does appear to improve the process productivity in terms of surface roughness. Minimization of nozzle loading is discussed.

  14. The effect of process variables on microstructure in laser-deposited materials

    Science.gov (United States)

    Bontha, Srikanth

    Laser deposition of titanium alloys is under consideration for aerospace applications, which require the consistent control of microstructure and resulting mechanical properties. To date, only limited experimental data exists to link deposition process variables (e.g., laser power and velocity) to resulting microstructure (e.g., grain size and morphology) in laser-deposited materials, and suitable microstructures have typically been obtained only by trial and error. In addition, it is unclear whether knowledge based on small-scale laser deposition processes (e.g., LENS(TM)) can be applied to large-scale (higher power) processes currently under development for commercial applications. Therefore, simulation-based methods are needed to predict the effects of process variables and size-scale on microstructure in laser-deposited titanium and other aerospace materials. The ability to predict and control microstructure in laser deposition processes requires an understanding of the thermal conditions at the onset of solidification. The focus of this work is the development of thermal process maps relating solidification cooling rate and thermal gradient (the key parameters controlling microstructure) to laser deposition process variables (laser power and velocity). The approach employs the well-known Rosenthal solution for a moving point heat source traversing an infinite substrate. Cooling rates and thermal gradients at the onset of solidification are numerically extracted from the Rosenthal solution throughout the depth of the melt pool, and dimensionless process maps are presented for both 2-D thin-wall and bulky 3-D geometries. Results for both small-scale (LENS(TM)) and large-scale (higher power) processes are plotted on solidification maps for predicting trends in grain morphology in laser-deposited Ti-6Al-4V. Although the Rosenthal predictions neglect the nonlinear effects of temperature-dependent properties and latent heat of transformation, a comparison with 2-D

  15. Deposition of wear-resistant steel surfaces by the plasma rotating electrode coating process

    Science.gov (United States)

    Kim, Michael Robert

    A high-deposition rate thermal spray method was investigated for the purpose of coating aluminum cylinder bores with a wear resistant surface. This method, the plasma rotating electrode coating system (PROTEC) utilized transferred-arc melting of a rapidly rotating consumable electrode to create a droplet stream via centrifugal atomization. A cylindrical substrate was placed around the rotating rod, in the flight path of the droplets, to deposit a coating onto the internal surface of the cylinder. Selected coatings of 1045 steel deposited by the PROTEC coating method exhibited lower wear loss in lubricated sliding than wire-arc sprayed carbon steel coatings and gray cast iron. Splat cohesion was shown to be a significant factor in the wear resistance of PROTEC coatings. The relationship between deposition enthalpy and cooling rate of the coating was found to have the greatest effect on coating microstructure, and the coating cohesion. The most rapidly solidified coatings showed inferior splat cohesion in comparison to coatings that cooled more slowly. The increase in splat cohesion with decreased cooling rate was accompanied by the formation of a directionally oriented coating microstructure, likely formed during cellular solidification of the coating. A model describing the thermal state of the deposition process was used to predict the deposition conditions that would result in a cellular structure, and the level of splat cohesion required to produce a wear resistant coating.

  16. A discrete element based simulation framework to investigate particulate spray deposition processes

    KAUST Repository

    Mukherjee, Debanjan

    2015-06-01

    © 2015 Elsevier Inc. This work presents a computer simulation framework based on discrete element method to analyze manufacturing processes that comprise a loosely flowing stream of particles in a carrier fluid being deposited on a target surface. The individual particulate dynamics under the combined action of particle collisions, fluid-particle interactions, particle-surface contact and adhesive interactions is simulated, and aggregated to obtain global system behavior. A model for deposition which incorporates the effect of surface energy, impact velocity and particle size, is developed. The fluid-particle interaction is modeled using appropriate spray nozzle gas velocity distributions and a one-way coupling between the phases. It is found that the particle response times and the release velocity distribution of particles have a combined effect on inter-particle collisions during the flow along the spray. It is also found that resolution of the particulate collisions close to the target surface plays an important role in characterizing the trends in the deposit pattern. Analysis of the deposit pattern using metrics defined from the particle distribution on the target surface is provided to characterize the deposition efficiency, deposit size, and scatter due to collisions.

  17. Solution processed deposition of electron transport layers on perovskite crystal surface-A modeling based study

    Science.gov (United States)

    Mortuza, S. M.; Taufique, M. F. N.; Banerjee, Soumik

    2017-02-01

    The power conversion efficiency (PCE) of planar perovskite solar cells (PSCs) has reached up to ∼20%. However, structural and chemicals defects that lead to hysteresis in the perovskite based thin film pose challenges. Recent work has shown that thin films of [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) deposited on the photo absorption layer, using solution processing techniques, minimize surface pin holes and defects thereby increasing the PCE. We developed and employed a multiscale model based on molecular dynamics (MD) and kinetic Monte Carlo (kMC) to establish a relationship between deposition rate and surface coverage on perovskite surface. The MD simulations of PCBMs dispersed in chlorobenzene, sandwiched between (110) perovskite substrates, indicate that PCBMs are deposited through anchoring of the oxygen atom of carbonyl group to the exposed lead (Pb) atom of (110) perovskite surface. Based on rates of distinct deposition events calculated from MD, kMC simulations were run to determine surface coverage at much larger time and length scales than accessible by MD alone. Based on the model, a generic relationship is established between deposition rate of PCBMs and surface coverage on perovskite crystal. The study also provides detailed insights into the morphology of the deposited film.

  18. Novel electroless copper deposition on carbon fibers with environmentally friendly processes.

    Science.gov (United States)

    Byeon, Jeong Hoon; Kim, Jang-Woo

    2010-08-15

    A novel electroless deposition (ELD) of copper (Cu) on carbon fibers (CFs) with environmentally friendly processes, silver (Ag) aerosol activation and subsequent nonformaldehyde Cu ELD, was developed. Spark-generated Ag aerosol nanoparticles (approximately 10 nm in mode diameter) were deposited (48.4 microg Ag/g CF in activation intensity) onto the surfaces of CFs. After annealing (at 220 degrees C in a nitrogen atmosphere), the catalytically activated CFs were placed into a solution for Cu ELD (at 82 degrees C). Homogeneous Cu coating (approximately 5.1 nm/min) on CFs was achieved with 90 min of deposition and the corresponding mass deposition rate and Cu grain size for 30-90 min of deposition had ranges of 0.25-1.14 mg Cu/g CF-min and 14.8-37.2 nm, respectively. The porosity of CFs decreased by depositing the Cu for 30-90 min, and the specific surface area and pore volume of CFs decreased from 1536 to 1399 m(2)/g and from 0.65 to 0.57 cm(3)/g, respectively.

  19. Fabrication of FeSe superconducting films with chemical transport deposition process

    Science.gov (United States)

    Feng, J. Q.; Zhang, S. N.; Liu, J. X.; Hao, Q. B.; Li, C. S.; Zhang, P. X.

    2017-07-01

    FeSe Superconducting films were fabricated with a chemical transport deposition process. During the fabrication process, Fe foils were adopted as substrates and Se powders were put at one end of the tube furnace. During the heating process, Se powders were vaporized, and vaporized atoms were carried by Ar flow and deposited on the Fe substrates. With a heat treatment process under proper temperature, superconducting tetragonal β-FeSe phase can be obtained. The effects of key parameters, including the sintering temperatures and the distances between Fe substrates and Se source on the phase composition and morphology of the obtained films were systematically investigated. The superconducting transition temperature of 7.8 K was obtained on the optimized film. By further optimization of the heat treatment process, it is promising to fabricate FeSe films with higher superconducting phase content and better superconducting properties.

  20. Photoluminescence study of ZnO nanostructures grown on silicon by MOCVD

    Energy Technology Data Exchange (ETDEWEB)

    Biethan, J.-P., E-mail: biethan@hfe.tu-darmstadt.de [Department of High Frequency Electronics, Technische Universitaet Darmstadt, Merckstr. 25, Darmstadt 64283 (Germany); Sirkeli, V.P., E-mail: vsirkeli@yahoo.com [Department of Physics, Moldova State University, A. Mateevici str. 60, MD-2009 Chisinau, Republic of Moldova (Moldova, Republic of); Department of Mathematics and Computer Science, Comrat State University, Galatsan str. 17, MD-3800 Comrat, Republic of Moldova (Moldova, Republic of); Considine, L. [Department of High Frequency Electronics, Technische Universitaet Darmstadt, Merckstr. 25, Darmstadt 64283 (Germany); Nedeoglo, D.D. [Department of Physics, Moldova State University, A. Mateevici str. 60, MD-2009 Chisinau, Republic of Moldova (Moldova, Republic of); Pavlidis, D., E-mail: pavlidis@hfe.tu-darmstadt.de [Department of High Frequency Electronics, Technische Universitaet Darmstadt, Merckstr. 25, Darmstadt 64283 (Germany); Hartnagel, H.L., E-mail: hartnagel@mwe.tu-darmstadt.de [Department of High Frequency Electronics, Technische Universitaet Darmstadt, Merckstr. 25, Darmstadt 64283 (Germany); Department of Microwave Electronics, Technische Universitaet Darmstadt, Merckstr. 25, Darmstadt 64283 (Germany)

    2012-05-15

    Highlights: Black-Right-Pointing-Pointer The size and shape of ZnO nanostructures depend on growth temperature. Black-Right-Pointing-Pointer The size reduction of ZnO nanostructures causes a UV shift of the edge-band PL line. Black-Right-Pointing-Pointer A higher growth temperature can decrease the number of deep level defects. Black-Right-Pointing-Pointer Hydrogen appears to be an impurity donor in the ZnO nanostructures. Black-Right-Pointing-Pointer The PL line at 373.7 nm can be attributed to oxygen vacancies. - Abstract: ZnO nanostructures with a size ranging from 20 to 100 nm were successfully deposited on (1 0 0)-Si substrates at different temperatures (500-800 Degree-Sign C) using MOCVD. It could be confirmed that the size of ZnO nanostructures decreased with increasing growth temperature. From photoluminescence (PL) studies it was found, that intensive band-edge PL of ZnO nanostructures consists of emission lines with maxima at 368.6 nm, 370.1 nm, 373.7 nm, 383.9 nm, 391.7 nm, 400.7 nm and 412 nm. These lines can be dedicated to free excitons and impurity donor-bound excitons, where hydrogen acts as donor impurity with an activation energy of about 65 meV. A UV shift of the band-edge PL line with increasing growth temperature of ZnO nanostructures was observed as a result of the quantum confinement effect. The results suggest that an increase of growth temperature leads to increased band-edge PL intensity. Moreover, the ratio of band-edge PL intensity to green- (red-) band intensity also increases, indicating better crystalline quality of ZnO nanostructures with increasing growth temperature.

  1. Microstructural Evolution and Mechanical Properties of Inconel 625 Alloy during Pulsed Plasma Arc Deposition Process

    Institute of Scientific and Technical Information of China (English)

    Fujia Xu; Yaohui Lv; Yuxin Liu; Fengyuan Shu; Peng He; Binshi Xu

    2013-01-01

    Pulsed plasma arc deposition (PPAD),which combines pulsed plasma cladding with rapid prototyping,is a promising technology for manufacturing near net shape components due to its superiority in cost and convenience of processing.In the present research,PPAD was successfully used to fabricate the Ni-based superalloy Inconel 625 components.The microstructures and mechanical properties of deposits were investigated by scanning electron microscopy (SEM),optical microscopy (OM),transmission electron microscopy (TEM) with energy dispersive spectrometer (EDS),microhardness and tensile testers.It was found that the as-deposited structure exhibited homogenous columnar dendrite structure,which grew epitaxially along the deposition direction.Moreover,some intermetallic phases such as Laves phase,minor MC (NbC,TiC) carbides and needle-like δ-Ni3Nb were observed in γ-Ni matrix.Precipitation mechanism and distribution characteristics of these intermetallic phases in the as-deposited 625 alloy sample were analyzed.In order to evaluate the mechanical properties of the deposits,microhardness was measured at various location (including transverse plane and longitudinal plane).The results revealed hardness was in the range of 260-285 HVo.2.In particular,microhardness at the interface region between two adjacent deposited layers was slightly higher than that at other regions due to highly refined structure and the disperse distribution of Laves particles.Finally,the influence of precipitation phases and fabrication strategies on the tensile properties of the as-deposited samples was investigated.The failure modes of the tensile specimens were analyzed with fractography.

  2. Evaluation of Mineral Deposits Along the Little Wind River, Riverton, WY, Processing Site

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, Sam [Navarro Research and Engineering, Oak Ridge, TN (United States); Dam, Wiliam [US Department of Energy, Washington, DC (United States). Office of Legacy Management

    2014-12-01

    In 2012, the U.S.Department of Energy (DOE) began reassessing the former Riverton, Wyoming, Processing Site area for potential contaminant sources impacting groundwater. A flood in 2010 along the Little Wind River resulted in increases in groundwater contamination (DOE 2013).This investigation is a small part of continued efforts by DOE and other stakeholders to update human health and ecological risk assessments, to make a comprehensive examination of all exposure pathways to ensure that the site remains protective through established institutional controls. During field inspections at the Riverton Site in 2013, a white evaporitic mineral deposit was identified along the bank of the Little Wind River within the discharge zone of the groundwater contamination plume. In December 2013, Savannah River National Laboratory (SRNL) personnel collected a sample for analysis by X-ray fluorescence (Figure 1 shows the type of material sampled). The sample had a uranium concentration of approximately 64 to 73 parts per million. Although the uranium in this mineral deposit is within the expected range for evaporatic minerals in the western United States (SRNL 2014), DOE determined that additional assessment of the mineral deposit was warranted. In response to the initial collection and analysis of a sample of the mineral deposit, DOE developed a work plan (Work Plan to Sample Mineral Deposits Along the Little Wind River, Riverton, Wyoming, Processing Site [DOE 2014]) to further define the extent of these mineral deposits and the concentration of the associated contaminants (Appendix A). The work plan addressed field reconnaissance, mapping, sampling, and the assessment of risk associated with the mineral deposits adjacent to the Little Wind River.

  3. Active soft solder deposition by magnetron-sputter-ion-plating (MSIP)-PVD-process

    Energy Technology Data Exchange (ETDEWEB)

    Lugscheider, E.; Bobzin, K.; Erdle, A

    2004-01-30

    In different technical areas micro electro mechanical systems (M.E.M.S.), e.g. micro pumps, micro sensors, actuators and micro dosage systems are in use today. The components of these M.E.M.S. consist of various materials, which have to be joined. To join materials like ceramics, plastics or metals to a hybrid M.E.M.S., established joining technologies have to be adjusted. For the assembling and mounting of temperature sensible micro components, a low temperature joining process, e.g. transient liquid phase (TLP) bonding or an active soft soldering process can be performed. In this article the deposition of a low melting active soft solder by magnetron-sputter (MS)-PVD deposition with an active substrate cooling will be presented. The substrate temperatures were set and controlled by an additional cooling unit, which was integrated into the sputtering facility. In the performed experiments a substrate temperature range from -40 to +20 deg. C was investigated. The effects of these different substrate temperatures to the microstructure and the soldering suitability of the solder system were investigated by scanning electron microscopy (SEM), nanoindentation and soldering tests. The chemical composition of the deposited solder systems was examined by glow discharge optical spectroscopy (GDOS)-analysis. As a suitable substrate temperature range for deposition -10 to -20 deg. C was detected. Solder systems deposited in this temperature range showed good solder abilities.

  4. Magnetic properties related to hydrothermal alteration processes at the Escondida porphyry copper deposit, northern Chile

    Science.gov (United States)

    Riveros, K.; Veloso, E.; Campos, E.; Menzies, A.; Véliz, W.

    2014-08-01

    Fluid-rock interaction related to the circulation of hydrothermal fluids can strongly modify the physicochemical properties of wall rocks in porphyry Cu deposits. These processes can also produce compositional and textural changes in ferromagnetic minerals, which can be quantified using magnetic methods. In the Escondida porphyry Cu deposit of northern Chile, each hydrothermally altered lithology is characterized by a discrete assemblage of Fe-Ti oxide minerals. These minerals have distinctive bulk magnetic susceptibility ( K bulk), temperature-dependent magnetic susceptibility, and magnetic hysteresis parameters. Selectively altered rocks (i.e., potassic and chloritic alteration types) exhibit the highest K bulk values (>3.93 × 10-3 SI units), and their hysteresis parameters indicate multidomain magnetic mineral behavior. This suggests that these rocks are composed of the coarsest magnetic grain sizes within the deposit. Optical analyses and susceptibility-temperature curves confirm that the magnetic signals in selectively altered rocks are mainly carried by secondary magnetite. In contrast, pervasively altered rocks (i.e., quartz-sericite and argillic alteration types) exhibit low K bulk values (hydrothermal alteration processes, Fe-Ti oxide minerals, and magnetic properties of the wall rock in the Escondida deposit. These magnetic methods can be considered a sensitive and efficient petrophysical tool for the identification and semi-quantification of alteration assemblages, and facilitating the recognition and mapping of discrete hydrothermal zones during exploration and operation of porphyry Cu deposits.

  5. Basical characteristics of fluid geologic process of interlayer oxidation zone sandstone-typeuranium deposit

    Institute of Scientific and Technical Information of China (English)

    WU; BoLin; LIU; ChiYang; WANG; JianQiang

    2007-01-01

    This paper reveals the physicochemical properties such as component, formulation, genesis, tem- perature, pH, Eh, salinity and pressure of all main alteration fluid of interlayer oxidation zone sand- stone-type uranium deposits after studying the geologic process and geochemistry of internal typical sandstone-type uranium deposits such as Shihongtan deposit in the Turpan-Hami basin, 512 deposit in the Yili basin, Dongsheng deposit in the Ordos basin. The composition of fluid can be divided into two parts based on the analysis of inclusion: one can be affirmed as atmospheric water with ordinary temperature epigenesist according to the character of hydrogen and oxygen isotope of inclusion, the other is natural gas containing gaseous hydrocarbon like CH4, and CO2 as well as a little H2S, CO, H2, N2 and so on, it always contains a small quantity of hydrocarbon liquid in petroliferous basins. The fluid property of oxidation alteration zone is always oxidation alkaline, and neutrality or weak acid-weak alkaline and reducibility during the metallizing process, but at secondary reduction or deoxidization zone it becomes strong reduction alkaline. Oxygenic groundwater in the fluid is the activate and mig- ratory medium of uranium element, but the gaseous hydrocarbon like CH4 as well as H2, H2S, CO from natural gas is the important sedimentary reducer of uranium mineral; the transformation of pH,Eh in fluid environment is the main reason for the formation of uranium metallization.

  6. Optimization of Nano-Process Deposition Parameters Based on Gravitational Search Algorithm

    Directory of Open Access Journals (Sweden)

    Norlina Mohd Sabri

    2016-06-01

    Full Text Available This research is focusing on the radio frequency (RF magnetron sputtering process, a physical vapor deposition technique which is widely used in thin film production. This process requires the optimized combination of deposition parameters in order to obtain the desirable thin film. The conventional method in the optimization of the deposition parameters had been reported to be costly and time consuming due to its trial and error nature. Thus, gravitational search algorithm (GSA technique had been proposed to solve this nano-process parameters optimization problem. In this research, the optimized parameter combination was expected to produce the desirable electrical and optical properties of the thin film. The performance of GSA in this research was compared with that of Particle Swarm Optimization (PSO, Genetic Algorithm (GA, Artificial Immune System (AIS and Ant Colony Optimization (ACO. Based on the overall results, the GSA optimized parameter combination had generated the best electrical and an acceptable optical properties of thin film compared to the others. This computational experiment is expected to overcome the problem of having to conduct repetitive laboratory experiments in obtaining the most optimized parameter combination. Based on this initial experiment, the adaptation of GSA into this problem could offer a more efficient and productive way of depositing quality thin film in the fabrication process.

  7. Modeling Mechanism and Growth Reactions for New Nanofabrication Processes by Atomic Layer Deposition.

    Science.gov (United States)

    Elliott, Simon D; Dey, Gangotri; Maimaiti, Yasheng; Ablat, Hayrensa; Filatova, Ekaterina A; Fomengia, Glen N

    2016-07-01

    Recent progress in the simulation of the chemistry of atomic layer deposition (ALD) is presented for technologically important materials such as alumina, silica, and copper metal. Self-limiting chemisorption of precursors onto substrates is studied using density functional theory so as to determine reaction pathways and aid process development. The main challenges for the future of ALD modeling are outlined.

  8. Self-assembling Process of Alkanethiol Monolayers on Gold Surface via Underpotential Deposition

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    It was demonstrated feasible that underpotential deposition(UPD) of copper on a monolayer-modified gold substrate can be used to determine the gold electrode area. The deposition and stripping of a Cu adlayer can take place reversibly and stably at a bared or a self-assembled monolayer modified gold electrode. The growth kinetics of decanethiol/Au was also investigated via Cu UPD. The difference between the assembling kinetics determined by UPD and that by quartz crystal microbalance measurements reveals the configuration transmutation of the assembled molecules from a disordered arrangement to an ordered arrangement during the self-assembling processes.

  9. STUDY OF DYNAMIC MECHANICAL PROPERTIES OF FUSED DEPOSITION MODELLING PROCESSED ULTEM MATERIAL

    OpenAIRE

    Adhiyamaan Arivazhagan; Ammar Saleem; S. H. Masood; Mostafa Nikzad; K. A. JAGADEESH

    2014-01-01

    Fused Deposition Modelling (FDM), a renowned Rapid Prototyping (RP) process, has been successfully implemented in several industries to fabricate concept models and prototypes for rapid manufacturing. This study furnishes terse notes about the material damping properties of FDM made ULTEM samples considering the effect of FDM process parameters. Dynamic Mechanical Analysis (DMA) is carried out using DMA 2980 equipment to study the dynamic response of the FDM material subjected to single canti...

  10. Modeling of atmospheric iron processing carried by mineral dust and its deposition to ocean

    Science.gov (United States)

    Nickovic, Slobodan; Vukovic, Ana; Vujadinovic, Mirjam

    2014-05-01

    Relatively insoluble iron in dust originating from desert soils increases its solubility after Fe carried by mineral dust is chemically processed by the atmosphere. After dust is deposited deposition to the ocean, soluble Fe as a nutrient could enhance the marine primary production. The atmospheric dust cycle is driven by the atmospheric processes often of smaller, meso-scales. The soil mineralogy of dust emitted from sources determines also how much Fe in the aerosol will be finding. Once Fe is exposed to the atmospheric processes, the atmospheric radiation, clouds and polluted air will chemically affect the iron in dust. Global dust-iron models, having typical horizontal resolutions of 100-300 km which are mostly used to numerically simulate the fate of iron in the atmosphere can provide rather global picture of the dust and iron transport, but not details. Such models often introduce simplistic approximation on the Fe content in dust-productive soils. To simulate the Fe processing we instead implemented a high resolution regional atmospheric dust-iron model with detailed 1km global map for the geographic distribution of Fe content in soil. We also introduced a parameterization of the Fe processing caused by dust mineralogy, cloud processes and solar radiation. We will present results from simulation experiments in order to explore the model capability to reproduce major observed patterns of deposited Fe into the Atlantic cruises.

  11. Effect of Carrier Gas Flux on ZnO Nanorod Arrays Grown by MOCVD%载气流量对氧化锌纳米棒阵列的影响

    Institute of Scientific and Technical Information of China (English)

    蔡芳芳; 魏鸿源; 范海波; 杨安丽; 张攀峰; 刘祥林

    2008-01-01

    ZnO nanorod arrays with different morphologies were grown by metalorganic chemical vapor deposition(MOCVD).The diameters of nanorods range from 150 nm to 20 nm through changing the carrier gas flux during the growth process.Measurements such as scanning electron microscope(SEM),X-ray diffraction(XRD),Raman scattering and photoluminescence(PL)spectrum were employed to analyze the differences of these nanorods.It was found that when both carrier gas flux of Zn and O reactant are 1 SLM,we can obtain the best vertically aligned and uniform nanorods.Furthermore,the PL spectrum reveals a blueshift of UV emission peak,which may be assigned to the increase of surface effect.%本文研究了在金属有机化学气相沉积法(MOCVD)生长过程中,锌(Zn)源和氧(O)源载气流量的改变对ZnO纳米棒阵列的影响.通过改变源材料载气的流量,得到了直径从150 nm到20 nm范围、均一性明显改善的ZnO纳米棒.采用扫描电子显微镜(SEM),X射线衍射图谱(XRD),拉曼光谱(Raman)和光致荧光光谱(PL)等测试手段对样品的形貌结构和光学特性进行了表征.SEM和XRD结果表明当Zn源和O源的载气流量均为1 SLM时,所得的纳米棒直径最均匀,排列整齐,垂直于衬底生长,且结晶度最好.PL谱显示纳米棒的紫外带边峰发生了蓝移,可能与表面效应的增加有关.

  12. Structure and depositional processes of a gravelly tsunami deposit in a shallow marine setting: Lower Cretaceous Miyako Group, Japan

    Science.gov (United States)

    Fujino, S.; Masuda, F.; Tagomori, S.; Matsumoto, D.

    2006-06-01

    This study reports a newly discovered gravelly tsunami deposit from the Lower Cretaceous Miyako Group, Japan. The deposit was formed in an open shallow marine setting. The event deposit erosionally overlies shoreface deposits and shows marked lateral facies change. At the basin margin, the deposit is composed mainly of amalgamated HCS sandstones with liquefaction structures, overlain by finer sediments that contain many plant fragments or micas. Conglomerates accompanying the HCS sandstones contain molluscan fossils and many coral clasts. In the basin center, the event deposit is made up mainly of conglomerates and lenticular sandstone beds, and passes upwards into alternating sandstones and siltstones. A condensed organic debris layer is intercalated within the alternating section. Conglomerates contain abundant beach gravel, and also contain beachrock, coral blocks, and boulders. Bivalve fossils are well preserved despite their occurrence in grain-supported conglomerates. The event deposit is divided into sub-layers bounded by internal scours that are wavy and intersect. Each sub-layer consists of a conglomerate grading into a sandstone layer. Imbrications just above the scours in sub-layers show seawards paleocurrents; however, imbrications just beneath the sandstone horizons in the same sub-layers feature landward paleocurrents. Respective sub-layers in the tsunami deposit were formed by substrate erosion due to backwash flow, gravel deposition, reworking by flood flow, and sand deposition during the stagnant water period. The overall upward-fining trend reflects decline of the tsunami event. Development of the gravelly deposit in the central part of the basin and lateral facies change may be attributed to hydrodynamic response of the tsunami pulse to local bathymetry and geography.

  13. Numerical solution of moving boundary problem for deposition process in solid fuel gas generator

    Science.gov (United States)

    Volokhov, V. M.; Dorofeenko, S. O.; Sharov, M. S.; Toktaliev, P. D.

    2016-11-01

    Moving boundary problem in application to process of depositions formation in gas generator are considered. Gas generator, as a part of fuel preparation system of high-speed vehicle, convert solid fuel into multicomponent multiphase mixture, which further burned down in combustion chamber. Mathematical model of two-phase “gas-solid particles” flow, including Navier-Stokes equations for turbulent flow in gas generator and mass, impulse conservations laws for elementary depositions layer are proposed. Verification of proposed mathematical model for depositions mass in gas generator conditions is done. Further possible improvements of proposed model, based on more detail accounting of particle-wall interaction and wall's surface adhesion properties are analyzed.

  14. Effect of Processing Parameters on Performance of Spray-Deposited Organic Thin-Film Transistors

    Directory of Open Access Journals (Sweden)

    Jack W. Owen

    2011-01-01

    Full Text Available The performance of organic thin-film transistors (OTFTs is often strongly dependent on the fabrication procedure. In this study, we fabricate OTFTs of soluble small-molecule organic semiconductors by spray-deposition and explore the effect of processing parameters on film morphology and device mobility. In particular, we report on the effect of the nature of solvent, the pressure of the carrier gas used in deposition, and the spraying distance. We investigate the surface morphology using scanning force microscopy and show that the molecules pack along the π-stacking direction, which is the preferred charge transport direction. Our results demonstrate that we can tune the field-effect mobility of spray-deposited devices two orders of magnitude, from 10−3 cm2/Vs to 10−1 cm2/Vs, by controlling fabrication parameters.

  15. Plasma polymers deposited in atmospheric pressure dielectric barrier discharges: Influence of process parameters on film properties

    Energy Technology Data Exchange (ETDEWEB)

    Fricke, Katja, E-mail: k.fricke@inp-greifswald.de [Leibniz Institute for Plasma Science and Technology e.V. (INP Greifswald), Felix-Hausdorff-Str. 2, 17489 Greifswald (Germany); Girard-Lauriault, Pierre-Luc [Plasma Processing Laboratory, Department of Chemical Engineering, McGill University, 3610 rue University, Montreal, QC H3A 0C5 (Canada); Weltmann, Klaus-Dieter [Leibniz Institute for Plasma Science and Technology e.V. (INP Greifswald), Felix-Hausdorff-Str. 2, 17489 Greifswald (Germany); Wertheimer, Michael R. [Department of Engineering Physics, École Polytechnique de Montréal, Box 6079, Station Centre-Ville, Montreal, QC H3C 3A7 (Canada)

    2016-03-31

    We present results on the deposition of plasma polymer (PP) films in a dielectric barrier discharge system fed with mixtures of argon or nitrogen carrier gas plus different hydrocarbon precursors, where the latter possess different carbon-to-hydrogen ratios: CH{sub 4} < C{sub 2}H{sub 6} < C{sub 2}H{sub 4} = C{sub 3}H{sub 6} < C{sub 2}H{sub 2}. The influence of precursor gas mixture and flow rate, excitation frequency, and absorbed power on PP film compositions and properties has been investigated. The discharge was characterized by electrical measurements, while the chemical compositions and structures of coatings were analysed by X-ray photoelectron spectroscopy, Fourier-transform infrared spectroscopy, total combustion, and elastic recoil detection analyses, the latter two for determining carbon-to-hydrogen ratios. Scanning electron microscopy was used to study the coatings' morphology, and profilometry for evaluating deposition rates. - Highlights: • Atmospheric pressure DBD is used to deposit organic hydrocarbon films. • High deposition rates can be achieved by varying the power and/or gas mixture ratio. • Process parameters affect the films' surface chemical composition and morphology. • Deposited films are not soluble in aqueous environment. • No delamination of coatings produced from argon plasma.

  16. Chemical vapor deposited fiber coatings and chemical vapor infiltrated ceramic matrix composites

    Energy Technology Data Exchange (ETDEWEB)

    Kmetz, M.A.

    1992-01-01

    Conventional Chemical Vapor Deposition (CVD) and Organometallic Chemical Vapor Deposition (MOCVD) were employed to deposit a series of interfacial coatings on SiC and carbon yarn. Molybdenum, tungsten and chromium hexacarbonyls were utilized as precursors in a low temperature (350[degrees]C) MOCVD process to coat SiC yarn with Mo, W and Cr oxycarbides. Annealing studies performed on the MoOC and WOC coated SiC yarns in N[sub 2] to 1,000[degrees]C establish that further decomposition of the oxycarbides occurred, culminating in the formation of the metals. These metals were then found to react with Si to form Mo and W disilicide coatings. In the Cr system, heating in N[sub 2] above 800[degrees]C resulted in the formation of a mixture of carbides and oxides. Convention CVD was also employed to coat SiC and carbon yarn with C, Bn and a new interface designated BC (a carbon-boron alloy). The coated tows were then infiltrated with SiC, TiO[sub 2], SiO[sub 2] and B[sub 4]C by a chemical vapor infiltration process. The B-C coatings were found to provide advantageous interfacial properties over carbon and BN coatings in several different composite systems. The effectiveness of these different coatings to act as a chemically inert barrier layer and their relationship to the degree of interfacial debonding on the mechanical properties of the composites were examined. The effects of thermal stability and strength of the coated fibers and composites were also determined for several difference atmospheres. In addition, a new method for determining the tensile strength of the as-received and coated yarns was also developed. The coated fibers and composites were further characterized by AES, SEM, XPS, IR and X-ray diffraction analysis.

  17. Growth process conditions of tungsten oxide thin films using hot-wire chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Houweling, Z. Silvester, E-mail: Z.S.Houweling@uu.nl [Nanophotonics - Physics of Devices, Debye Institute for Nanomaterials Science, Utrecht University, Princetonlaan 4, 3584 CB Utrecht (Netherlands); Geus, John W. [Electron Microscopy, Utrecht University, Padualaan 8, 3584 CH Utrecht (Netherlands); Jong, Michiel de; Harks, Peter-Paul R.M.L.; Werf, Karine H.M. van der; Schropp, Ruud E.I. [Nanophotonics - Physics of Devices, Debye Institute for Nanomaterials Science, Utrecht University, Princetonlaan 4, 3584 CB Utrecht (Netherlands)

    2011-12-15

    Highlights: Black-Right-Pointing-Pointer Process parameters to control hot-wire CVD of WO{sub 3-x} are categorized. Black-Right-Pointing-Pointer Growth time, oxygen partial pressure, filament and substrate temperature are varied. Black-Right-Pointing-Pointer Chemical and crystal structure, optical bandgap and morphology are determined. Black-Right-Pointing-Pointer Oxygen partial pressure determines the deposition rate up to as high as 36 {mu}m min{sup -1}. Black-Right-Pointing-Pointer Nanostructures, viz. wires, crystallites and closed crystallite films, are controllably deposited. - Abstract: We report the growth conditions of nanostructured tungsten oxide (WO{sub 3-x}) thin films using hot-wire chemical vapor deposition (HWCVD). Two tungsten filaments were resistively heated to various temperatures and exposed to an air flow at various subatmospheric pressures. The oxygen partial pressure was varied from 6.0 Multiplication-Sign 10{sup -6} to 1.0 mbar and the current through the filaments was varied from 4.0 to 9.0 A, which constitutes a filament temperature of 1390-2340 Degree-Sign C in vacuum. It is observed that the deposition rate of the films is predominantly determined by the oxygen partial pressure; it changes from about 1 to about 36,000 nm min{sup -1} in the investigated range. Regardless of the oxygen partial pressure and filament temperature used, thin films with a nanogranular morphology are obtained, provided that the depositions last for 30 min or shorter. The films consist either of amorphous or partially crystallized WO{sub 3-x} with high averaged transparencies of over 70% and an indirect optical band gap of 3.3 {+-} 0.1 eV. A prolonged deposition time entails an extended exposure of the films to thermal radiation from the filaments, which causes crystallization to monoclinic WO{sub 3} with diffraction maxima due to the (0 0 2), (2 0 0) and (0 2 0) crystallographic planes, furthermore the nanograins sinter and the films exhibit a cone

  18. Processes and environmental significance of the subglacial chemical deposits in Tianshan Mountains

    Institute of Scientific and Technical Information of China (English)

    LIU; Gengnian; LUO; Risheng; CAO; Jun

    2005-01-01

    On the bedrock surface of Glacier No.1 in the headwater of Urumqi River, Tianshan Mts., well layered and crystallized subglacial calcite precipitations were discovered. Based on observations and analysis of the surface form, sedimentary texture and structure, and chemical composition of the deposits, clues about the subglacial processes and environment are deduced. The radial-growth crustation texture of the deposits, which builds up in the saturated CaCO3 solution, proves the existence of pressure melting water and water films under Glacier No.1; and their rhythmic beddings, dissolved planes and unconformable contacts show that the water films responsible for the formation of these structures were in a wide range of spatial as well as temporal variations. Though formed under continental glacier in non-limestone area, the deposits are quite similar to those formed under temperate glaciers in limestone areas, a fact that shows a similar process of chemical precipitation between the two. Hence the enrichment of calcium in the subglacial melting water and the process of precipitation have actually little to do with the bedrock lithology and the glacier types. The cemented detritus in the deposits are rich in Fe and Al while depleted in K, Na and Si; also the included clay mineral consists mainly of illite, which reveals some weak chemical weathering under the continental glacier. The subglacial CaCO3 precipitates when plenty of Ca++ melt into the subglacial melting water on a comparatively enclosed ice-bedrock interface under a high CO2 partial pressure, the forming of subglacial chemical deposits therefore offers unequivocal evidence for the ongoing of subglacial chemical reactions.

  19. Properties of multilayer gallium and aluminum doped ZnO(GZO/AZO)transparent thin films deposited by pulsed laser deposition process

    Institute of Scientific and Technical Information of China (English)

    Jin-Hyum SHIN; Dong-Kyun SHIN; Hee-Young LEE; Jai-Yeoul LEE

    2011-01-01

    Multilayer gallium and aluminum doped ZnO (GZO/AZO) films were fabricated by alternative deposition of Ga-doped zinc oxide(GZO) and Al-doped zinc oxide(AZO) thin film by using pulsed laser deposition(PLD) process. The electrical and optical properties of these GZO/AZO thin films were investigated and compared with those of GZO and AZO thin films. The GZO/AZO GZO/AZO thin films linearly decreases with increasing the Al ratio.

  20. INFLUENCE OF PROCESS PARAMETERS ON DIMENSIONAL ACCURACY OF PARTS MANUFACTURED USING FUSED DEPOSITION MODELLING TECHNOLOGY

    Directory of Open Access Journals (Sweden)

    Filip Górski

    2013-09-01

    Full Text Available The paper presents the results of experimental study – part of research of additive technology using thermoplastics as a build material, namely Fused Deposition Modelling (FDM. Aim of the study was to identify the relation between basic parameter of the FDM process – model orientation during manufacturing – and a dimensional accuracy and repeatability of obtained products. A set of samples was prepared – they were manufactured with variable process parameters and they were measured using 3D scanner. Significant differences in accuracy of products of the same geometry, but manufactured with different set of process parameters were observed.

  1. A new highly automated sputter equipment for in situ investigation of deposition processes with synchrotron radiation

    Science.gov (United States)

    Döhrmann, Ralph; Botta, Stephan; Buffet, Adeline; Santoro, Gonzalo; Schlage, Kai; Schwartzkopf, Matthias; Bommel, Sebastian; Risch, Johannes F. H.; Mannweiler, Roman; Brunner, Simon; Metwalli, Ezzeldin; Müller-Buschbaum, Peter; Roth, Stephan V.

    2013-04-01

    HASE (Highly Automated Sputter Equipment) is a new mobile setup developed to investigate deposition processes with synchrotron radiation. HASE is based on an ultra-high vacuum sputter deposition chamber equipped with an in-vacuum sample pick-and-place robot. This enables a fast and reliable sample change without breaking the vacuum conditions and helps to save valuable measurement time, which is required for experiments at synchrotron sources like PETRA III at DESY. An advantageous arrangement of several sputter guns, mounted on a rotative flange, gives the possibility to sputter under different deposition angles or to sputter different materials on the same substrate. The chamber is also equipped with a modular sample stage, which allows for the integration of different sample environments, such as a sample heating and cooling device. The design of HASE is unique in the flexibility. The combination of several different sputtering methods like standard deposition, glancing angle deposition, and high pressure sputter deposition combined with heating and cooling possibil-ities of the sample, the large exit windows, and the degree of automation facilitate many different grazing incidence X-ray scattering experiments, such as grazing incidence small and wide angle X-ray scattering, in one setup. In this paper we describe in detail the design and the performance of the new equipment and present the installation of the HASE apparatus at the Micro and Nano focus X-ray Scattering beamline (MiNaXS) at PETRA III. Furthermore, we describe the measurement options and present some selected results. The HASE setup has been successfully commissioned and is now available for users.

  2. A new highly automated sputter equipment for in situ investigation of deposition processes with synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Doehrmann, Ralph; Botta, Stephan; Buffet, Adeline; Santoro, Gonzalo; Schlage, Kai; Schwartzkopf, Matthias; Risch, Johannes F. H.; Mannweiler, Roman; Roth, Stephan V. [DESY, Deutsches Elektronen-Synchrotron, Notkestrasse 85, D-22607 Hamburg (Germany); Bommel, Sebastian [DESY, Deutsches Elektronen-Synchrotron, Notkestrasse 85, D-22607 Hamburg (Germany); Institut fuer Physik, Humboldt-Universitaet zu Berlin, Newtonstr. 15, D-12489 Berlin (Germany); Brunner, Simon; Metwalli, Ezzeldin; Mueller-Buschbaum, Peter [Lehrstuhl fuer Funktionelle Materialien, Physik-Department, Technische Universitaet Muenchen, James-Franck-Str. 1, D-85748 Garching (Germany)

    2013-04-15

    HASE (Highly Automated Sputter Equipment) is a new mobile setup developed to investigate deposition processes with synchrotron radiation. HASE is based on an ultra-high vacuum sputter deposition chamber equipped with an in-vacuum sample pick-and-place robot. This enables a fast and reliable sample change without breaking the vacuum conditions and helps to save valuable measurement time, which is required for experiments at synchrotron sources like PETRA III at DESY. An advantageous arrangement of several sputter guns, mounted on a rotative flange, gives the possibility to sputter under different deposition angles or to sputter different materials on the same substrate. The chamber is also equipped with a modular sample stage, which allows for the integration of different sample environments, such as a sample heating and cooling device. The design of HASE is unique in the flexibility. The combination of several different sputtering methods like standard deposition, glancing angle deposition, and high pressure sputter deposition combined with heating and cooling possibil-ities of the sample, the large exit windows, and the degree of automation facilitate many different grazing incidence X-ray scattering experiments, such as grazing incidence small and wide angle X-ray scattering, in one setup. In this paper we describe in detail the design and the performance of the new equipment and present the installation of the HASE apparatus at the Micro and Nano focus X-ray Scattering beamline (MiNaXS) at PETRA III. Furthermore, we describe the measurement options and present some selected results. The HASE setup has been successfully commissioned and is now available for users.

  3. Effects of Processing Variables on Tantalum Nitride by Reactive-Ion-Assisted Magnetron Sputtering Deposition

    Science.gov (United States)

    Wei, Chao‑Tsang; Shieh, Han‑Ping D.

    2006-08-01

    The binary compound tantalum nitride (TaN) and ternary compounds tantalum tungsten nitrides (Ta1-xWxNy) exhibit interesting properties such as high melting point, high hardness, and chemical inertness. Such nitrides were deposited on a tungsten carbide (WC) die and silicon wafers by ion-beam-sputter evaporation of the respective metal under nitrogen ion-assisted deposition (IAD). The effects of N2/Ar flux ratio, post annealing, ion-assisted deposition, deposition rate, and W doping in coating processing variables on hardness, load critical scratching, oxidation resistance, stress and surface roughness were investigated. The optimum N2/Ar flux ratios in view of the hardness and critical load of TaN and Ta1-xWxNy films were ranged from 0.9 to 1.0. Doping W into TaN to form Ta1-xWxNy films led significant increases in hardness, critical load, oxidation resistance, and reduced surface roughness. The optimum doping ratio was [W/(W+Ta)]=0.85. From the deposition rate and IAD experiments, the stress in the films is mainly contributed by sputtering atoms. The lower deposition rate at a high N2/Ar flux ratio resulted in a higher compressive stress. A high compressive residual stress accounts for a high hardness. The relatively high compressive stress was attributed primarily to peening by atoms, ions and electrons during film growth, the Ta1-xWxNy films showed excellent hardness and strength against a high temperature, and sticking phenomena can essentially be avoided through their use. Ta1-xWxNy films showed better performance than the TaN film in terms of mechanical properties and oxidation resistance.

  4. Ore Zoning and Dynamics of Ore—Forming Processes of Yinshan Polymetallic Deposit in Dexing,Jiangxi

    Institute of Scientific and Technical Information of China (English)

    张德会; 於崇文; 等

    1997-01-01

    The Yinshan deposit,one of the large-scale Cu-Pb-Zn-Au-Ag polymetallic deposits,may be named a middle-low temperature subvolcanic hydrothermal deposit and referred to as the "transitional deposit"linking mineralization of the epithermal and porphyry coppertypes.In this paper,the characteristics and structures of ore zoning are briefly described.On the basis of the dynamics of ore-forming processes and applying computer numerical simulation technique,the mechanism of ore zoning is discussed and a concealed igneous body controlling ore deposition at depth of the Yinshan mine is predicted.

  5. Method for Improving Mg Doping During Group-III Nitride MOCVD

    Science.gov (United States)

    Creighton, J. Randall; Wang, George T.

    2008-11-11

    A method for improving Mg doping of Group III-N materials grown by MOCVD preventing condensation in the gas phase or on reactor surfaces of adducts of magnesocene and ammonia by suitably heating reactor surfaces between the location of mixing of the magnesocene and ammonia reactants and the Group III-nitride surface whereon growth is to occur.

  6. Metalorganic chemical vapor deposition of Ti-O-C-N thin films using TBOT as a promising precursor

    Energy Technology Data Exchange (ETDEWEB)

    Fouad, O.A., E-mail: oafouad@yahoo.com [Central Metallurgical Research and Development Institute (CMRDI), P.O. Box 87, Helwan 11421, Helwan (Egypt); Geioushy, R.A.; El-Sheikh, S.M. [Central Metallurgical Research and Development Institute (CMRDI), P.O. Box 87, Helwan 11421, Helwan (Egypt); Khedr, M.H. [Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef (Egypt); Ibrahim, I.A. [Central Metallurgical Research and Development Institute (CMRDI), P.O. Box 87, Helwan 11421, Helwan (Egypt)

    2011-05-19

    Graphical abstract: Display Omitted Highlights: > Novel precursor (TBOT) has been used for synthesis of from Ti(O,C,N) thin films via APCVD process. > TiO{sub 2} and TiC compounds deposition were thermodynamically favored as products of metalorganic precursor decomposition in presence of H{sub 2} gas at temperature >500 deg. C. > TiO{sub 2} deposited in the form of spherical-like shape particles, TiC deposited in the form of fiber-like shape structures. > High hardness value was obtained for Ti-O-C-N films at 750 deg. C ({approx}425 HV{sub 50}) due to the formation of stoichiometric TiN phase. - Abstract: Ti-O, Ti-O-C and Ti-O-C-N thin films have been synthesized successfully via metalorganic chemical vapor deposition (MOCVD) technique. Tetrabutyl orthotitanate (TBOT) is used as a precursor in presence of Ar, H{sub 2}, and N{sub 2} as process gases. By controlling deposition temperature and type of process gases, it was possible to control the composition of the deposited films. The deposited films are composed mainly of Ti and O when H{sub 2} is used as a process gas in the temperature range 350-500 deg. C. As the temperature increased up to 600 deg. C, thin films containing anatase (TiO{sub 2}) and titanium carbide (TiC) phases are deposited and confirmed by XRD and EDX analyses. As the temperature increased to 750 deg. C, a transformation from anatase to rutile phase (TiO{sub 2}) is started and clearly observed from XRD patterns. Titanium nitride (Ti{sub 2}N and TiN) phase in addition to TiO{sub 2} and TiC phases are formed at 600-1000 deg. C in presence of nitrogen as a process gas. SEM images for all investigated film samples showed that the films are deposited mainly in the form of spherical particles ranged from few nano- to micrometer in size with some additional special features regardless the type of the process gas. Films containing carbon and nitrogen show higher hardness than that containing only oxygen. The obtained results may help in better

  7. An Experimental Study on Slurry Erosion Resistance of Single and Multilayered Deposits of Ni-WC Produced by Laser-Based Powder Deposition Process

    Science.gov (United States)

    Balu, Prabu; Hamid, Syed; Kovacevic, Radovan

    2013-11-01

    Single and multilayered deposits containing different mass fractions of tungsten carbide (WC) in nickel (Ni)-matrix (NT-20, NT-60, NT-80) are deposited on a AISI 4140 steel substrate using a laser-based powder deposition process. The transverse cross section of the coupons reveals that the higher the mass fraction of WC in Ni-matrix leads to a more uniform distribution through Ni-matrix. The slurry erosion resistance of the fabricated coupons is tested at three different impingement angles using an abrasive water jet cutting machine, which is quantified based on the erosion rate. The top layer of a multilayered deposit (i.e., NT-60 in a two-layer NT-60 over NT-20 deposit) exhibits better erosion resistance at all three tested impingement angles when compared to a single-layer (NT-60) deposit. A definite increase in the erosion resistance is noted with an addition of nano-size WC particles. The relationship between the different mass fractions of reinforcement (WC) in the deposited composite material (Ni-WC) and their corresponding matrix (Ni) hardness on the erosion rate is studied. The eroded surface is analyzed in the light of a three-dimensional (3-D) profilometer and a scanning electron microscope (SEM). The results show that a volume fraction of approximately 62% of WC with a Ni-matrix hardness of 540 HV resulting in the gouging out of WC from the Ni-matrix by the action of slurry. It is concluded that the slurry erosion resistance of the AISI 4140 steel can be significantly enhanced by introducing single and multilayered deposits of Ni-WC composite material fabricated by the laser-based powder deposition process.

  8. THE ROLE OF CRYOGENIC PROCESSES IN THE FORMATION OF LOESS DEPOSITS

    Directory of Open Access Journals (Sweden)

    Vyacheslav N. Konishchev

    2015-01-01

    Full Text Available The paper describes a new approach to the analysis of the genetic nature of mineral substances in loess deposits. In permafrost under the influence of multiple alternate freezing and thawing in dispersed deposits, quartz particles accumulate the 0.05-0.01 mm fraction, while feldspars are crushed to a coarse fraction of 0.1-0.05 mm. In dispersed sediments formed in temperate and warm climatic zones, the granulometric spectrum of quartz and feldspar has the opposite pattern. The proposed methodology is based on a differential analysis of the distribution of these minerals by the granulometric spectrum. We have proposed two criteria - the coefficient of cryogenic contrast (CCC and the coefficient of distribution of heavy minerals, which allow determination of the degree of participation of cryogenic processes in the formation of loess sediments and processes of aeolian or water sedimentation.

  9. Ellipsometry study of process deposition of amorphous Indium Gallium Zinc Oxide sputtered thin films

    Energy Technology Data Exchange (ETDEWEB)

    Talagrand, C., E-mail: talagrand@emse.fr [Ecole des Mines de Saint-Etienne CMP-GC, Dept PS2, Gardanne, 880 route de Mimet (France); Boddaert, X. [Ecole des Mines de Saint-Etienne CMP-GC, Dept PS2, Gardanne, 880 route de Mimet (France); Selmeczi, D.G.; Defranoux, C. [Semilab Semiconductor Physics Laboratory Co. Ltd., Budapest, 1117 (Hungary); Collot, P. [Ecole Nationale Supérieure d' Arts et Métiers ParisTech, Aix-en-Provence, 2 cours des Arts et Métiers (France)

    2015-09-01

    This paper reports on an InGaZnO optical study by spectrometric ellipsometry. First of all, the fitting results of different models and different structures are analysed to choose the most appropriate model. The Tauc–Lorentz model is suitable for thickness measurements but a more complex model allows the refractive index and extinction coefficient to be extracted more accurately. Secondly, different InGaZnO process depositions are carried out in order to investigate stability, influence of deposition time and uniformity. Films present satisfactory optical stability over time. InGaZnO optical property evolution as a function of deposition time is related to an increase in temperature. To understand the behaviour of uniformity, mapping measurements are correlated to thin film resistivity. Results show that temperature and resputtering are the two phenomena that affect IGZO uniformity. - Highlights: • Model and structure are investigated to fit IGZO ellipsometric angles. • Maximum refractive index rises with substrate temperature and thus deposition time. • Resputtering leads to inhomogeneity in IGZO electrical and optical properties.

  10. Oxidation of ZnO thin films during pulsed laser deposition process

    Indian Academy of Sciences (India)

    E De Posada; L Moreira; J Pérez De La Cruz; M Arronte; L V Ponce; T Flores; J G Lunney

    2013-06-01

    Pulsed laser deposition of ZnO thin films, using KrF laser, is analysed. The films were deposited on (001) sapphire substrates at 400 °C, at two different oxygen pressures (0.3 and 0.4 mbar) and two different target–substrate distances (30 and 40 mm). It is observed that in order to obtain good quality in the photoluminescence of the films, associated with oxygen stoichiometry, it is needed to maximize the time during which the plasma remains in contact with the growing film (plasma residence time), which is achieved by selecting suitable combinations of oxygen pressures and target to substrate distances. It is also discussed that for the growth parameters used, the higher probability for ZnO films growth results from the oxidation of Zn deposited on the substrate and such process takes place during the time that the plasma is in contact with the substrate. Moreover, it is observed that maximizing the plasma residence time over the growing film reduces the rate of material deposition, favouring the surface diffusion of adatoms, which favours both Zn–O reaction and grain growth.

  11. Biomimetic formation of titania thin films: effect of amino acids on the deposition process.

    Science.gov (United States)

    Durupthy, Olivier; Jeurgens, Lars P H; Bill, Joachim

    2011-05-01

    Different types of amino acids have been used as additives to control the aqueous deposition of titanium dioxide thin films on single-crystal Si wafers. Thin titania films can be obtained through a chemical bath deposition (CBD) process using TiCl₄ as a precursor in an aqueous solution at temperatures below 100 °C. The addition of amino acids to the deposition solution was shown to reduce the thickness and roughness of the films and to increase their density. These protein building blocks were employed to modify the deposition rate as well as the size of aggregates that form the film. The thickness, crystallinity, morphology and composition of the grown films were characterized by a variety of techniques, including XRD, XPS, AFM and SEM. The consequences of the type of the amino acid additive (and its concentration in the solution) on the microstructural evolutions of the deposed films are thus revealed and discussed on the basis of the organic-inorganic interactions in solution and at the film surface.

  12. Molecular dynamics simulation of the deposition process of hydrogenated diamond-like carbon (DLC) films

    Institute of Scientific and Technical Information of China (English)

    ZHANG YuJun; DONG GuangNeng; MAO JunHong; XIE YouBai

    2008-01-01

    The deposition process of hydrogenated diamond-like carbon (DLC) film greatly affects its frictional properties. In this study, CH3 radicals are selected as source species to deposit hydrogenated DLC films for molecular dynamics simulation. The growth and structural properties of hydrogenated DLC films are investigated and elucidated in detail. By comparison and statistical analysis, the authors find that the ratio of carbon to hydrogen in the films generally shows a monotonously increasing trend with the increase of impact energy. Carbon atoms are more reactive during deposition and more liable to bond with substrate atoms than hydrogen atoms. In addition, there exists a peak value of the number of hydrogen atoms deposited in hydrogenated DLC films. The trends of the variation are opposite on the two sides of this peak point, and itbecomes stable when impact energy is greater than 80 eV. The average relative density also indicates a rising trend along with the increment of impact energy, while it does not reach the saturation value until impact energy comes to 50 eV. The hydrogen content in source species is a key factor to determine the hydrogen content in hydrogenated DLC films. When the hydrogen content in source species is high, the hydrogen content in hydrogenated DLC films is accordingly high.

  13. The interconnection of wet and dry deposition and the alteration of deposition budgets due to incorporation of new process understanding in regional models

    Science.gov (United States)

    Dennis, R. L.; Bash, J. O.; Foley, K. M.; Gilliam, R.; Pinder, R. W.

    2013-12-01

    Deposition is affected by the chemical and physical processes represented in the regional models as well as source strength. The overall production and loss budget (wet and dry deposition) is dynamically connected and adjusts internally to changes in process representation. In addition, the scrubbing of pollutants from the atmosphere by precipitation is one of several processes that remove pollutants, creating a coupling with the atmospheric aqueous and gas phase chemistry that can influence wet deposition rates in a nonlinear manner. We explore through model sensitivities with the regional Community Multiscale Air Quality (CMAQ) model the influence on wet and dry deposition, and the overall continental nitrogen budget, of changes in three process representations in the model: (1) incorporation of lightning generated NO, (2) improved representation of convective precipitation, and (3) replacement of the typical unidirectional dry deposition of NH3 with a state of the science representation of NH3 bi-directional air-surface exchange. Results of the sensitivity studies will be presented. (1) Incorporation of lightning generated NO significantly reduces a negative bias in summer wet nitrate deposition, but is sensitive to the choice of convective parameterization. (2) Use of a less active trigger of convective precipitation in the WRF meteorological model to reduce summertime precipitation over prediction bias reduces the generation of NO from lightning. It also reduces the wet deposition of nitrate and increases the dry deposition of oxidized nitrogen, as well as changing (reducing) the surface level exposure to ozone. Improvements in the convective precipitation processes also result in more non-precipitating clouds leading to an increase in SO4 production through the aqueous pathway resulting in improvements in summertime SO4 ambient aerosol estimates.(3) Incorporation of state of the science ammonia bi-directional air surface exchange affects both the dry

  14. Simulation of polyatomic discharges for thin film deposition processes in low-pressure plasma reactors

    Science.gov (United States)

    Bera, Kallol

    conditions of experimental reactors. The discharge models were used to investigate the effects of operating and design parameters of the reactors on plasma process characteristics to obtain better process characteristics on the wafer. These parameters can be used to design new reactors for the deposition/etching process. The models can be modified for different feed gases for other applications like plasma etching or sputtering.

  15. REE concentration processes in ion adsorption deposits: Evidence from Madagascar and China.

    Science.gov (United States)

    Smith, Martin; Estrade, Guillaume; Marquis, Eva; Goodenough, Kathryn; Nasun, Peter; Cheng, Xu; Kynicky, Jindrich

    2017-04-01

    Lateritic clay deposits, where the rare earth elements (REE) occur adsorbed to clay mineral surfaces, are the world's dominant supply of heavy REE (Gd-Lu). These deposits are currently only mined in China where there is a reported heavy REE enrichment, but other deposits are currently under exploration in Brazil, the Philippines and Madagascar. Concentration of REE within IADs has been proposed to be a dominantly supergene process, where easily degradable REE-minerals (e.g. REE-fluorcarbonates) break down and release REE that are then adsorbed to clay minerals resulting in HREE enrichment. Here we present data from the Ambohimirahavavy Complex, Madagascar, and compare them to data from mineralised profiles in China, with the aim of further constraining the formation and REE enrichment processes in ion adsorption deposits. Bulk rock total REE contents from Madagascar vary from 400-5000ppm, with the HREE varying from 10 to 20% of the TREE. Ammonium Sulphate leaches (designed to remove clay-adsorbed REE) of laterite show leachable TREE from 130-500ppm, with no preferential HREE adsorption. Within the sequential extraction procedure the reducible fraction (hydroxylammonium chloride leach) showed the highest REE, but this is largely attributable to Ce4+ in oxide layers. Analysis of laterite profiles show that the REE distribution is heterogeneous, with control from both bedrock heterogeneity, and the hydrological variation between pedolith and saprolith. Similar patterns are seen in Chinese profiles from Jiangxi province. X-ray diffraction shows the clay fraction in all sites is dominated by kaolinite and halloysite. These data are consistent with experimental data which show that kaolinite is only HREE selective in high ionic strength solutions (Coppin et al., 2002), and suggest that HREE enrichment in lateritic deposits may be a function of exceptional bed rock conditions. Petrographic investigation of the Zhaibei granite, immediately underlying HREE enriched

  16. Processing and characterization of high temperature superconductor thin films deposited by electron beam co-evaporation

    Science.gov (United States)

    Huh, Jeong-Uk

    Ever since the high temperature superconductors (HTS) were discovered in the late 1980s, there have been enormous efforts to make this into applications such as power transmission cables, transformers, motors and generators. However, many obstacles in performance and high manufacturing cost made this difficult. The first generation HTS wires had low critical current density and were expensive to fabricate. The motivation of this research was to make high performance and low cost second generation HTS coated conductor. Electron beam co-evaporation technique was used to deposit YBCO(YBa2Cu3O7-x ) film at a high rate (10nm/s and higher) on single crystals and metal tapes. The oxygen pressure at the stage of depositing Y, Ba, Cu was 5x10 -5 Torr and the process temperature was 810-840°C. In-situ Fourier Transform Infrared spectroscopy (FTIR) was used to monitor the optical properties of the YBCO during and after deposition. The deposit transformed to a glassy amorphous mixture of Y, Ba and Cu at 3 mTorr of oxygen. YBCO crystallization occurred after extra oxygen was applied to several Torr. FTIR showed almost the same signature during the formation of YBCO and liquid Ba-Cu-O during deposition, which indicates the liquid played an important role in determining the properties of YBCO in terms of providing epitaxy and fast transport of atoms to nucleate on the film-metal interface. The transformation was very rapid---seconds to minutes, compared to minutes to hours for other post-reaction processes. The oxygen partial pressure and the rate of oxidation (supersaturation) in the liquid region defined in the YBCO phase stability diagram determined the electrical and microstructural properties. In-situ X-ray diffraction heating stage with ambient control was utilized to study this supersaturation effect and explore the temperature-pressure space during YBCO growth. With all the information gathered from FTIR and XRD in-situ experiments and also with nano-engineering during

  17. The fate of SOC during the processes of water erosion and subsequent deposition: a field study.

    Science.gov (United States)

    van Hemelryck, H.; Govers, G.; van Oost, K.; Merckx, R.

    2009-04-01

    Globally soils are the largest terrestrial pool of carbon (C). A relatively small increase or decrease in soil carbon content due to changes in land use or management practices could therefore result in a significant net exchange of C between the soil C reservoir and the atmosphere. As such, the geomorphic processes of water and tillage erosion have been identified to significantly impact on this large pool of soil organic carbon (SOC). Soil erosion, transport and deposition not only result in redistribution of sediments and associated carbon within a landscape, but also affect the exchange of C between the pedosphere and the atmosphere. The direction and magnitude of an erosion-induced change in the global C balance is however a topic of much debate as opposing processes interact: i) At eroding sites a net uptake of C could be the result of reduced respiration rates and continued inputs of newly produced carbon. ii) Colluvial deposition of eroded sediment and SOC leads to the burial of the original topsoil and this may constrain the decomposition of its containing SOC. iii) Eroded sediment could be transported to distal depositional environments or fluvial systems where it will either be conserved or become rapidly mineralized. iv) Increased emission of CO2 due to erosion may result from the disruptive energy of erosive forces causing the breakdown of aggregates and exposing previously protected SOC to microbial decomposition. The above-mentioned processes show a large spatial and temporal variability and assessing their impact requires an integrated modeling approach. However uncertainties about the basic processes that accompany SOC displacement are still large. This study focuses on one of these large information gaps: the fate of eroded and subsequently deposited SOC. A preceding experimental study (Van Hemelryck et al., 2008) was used to identify controlling factors (erosional intensity, changes in soil structure,…). However this experimental research

  18. A replacement of high-k process for CMOS transistor by atomic layer deposition

    Science.gov (United States)

    Han, Jin-Woo; Choi, Byung Joon; Yang, J. Joshua; Moon, Dong-Il; Choi, Yang-Kyu; Williams, R. Stanley; Meyyappan, M.

    2013-08-01

    A replacement of high-k process was implemented on an independent double gate FinFET, following the ordinary gate-first process with minor modifications. The present scheme involves neither exotic materials nor unprecedented processing. After the source/drain process, the sacrificial gate oxide was selectively substituted with amorphous Ta2O5 via conformal plasma enhanced atomic layer deposition. The present gate-first gate-dielectric-last scheme combines the advantages of the process and design simplicity of the gate-first approach and the control of the effective gate workfunction and the interfacial oxide of the gate-dielectric-last approach. Electrical characterization data and cross-sectional images are provided as evidence of the concept.

  19. One-step electrodeposition process of CuInSe2: Deposition time effect

    Indian Academy of Sciences (India)

    O Meglali; N Attaf; A Bouraiou; M S Aida; S Lakehal

    2014-10-01

    CuInSe2 thin films were prepared by one-step electrodeposition process using a simplified twoelectrodes system. The films were deposited, during 5, 10, 15 and 20 min, from the deionized water solution consisting of CuCl2, InCl3 and SeO2 onto ITO-coated glass substrates. As-deposited films have been annealed under vacuum at 300 °C during 30 min. The structural, optical band gap and electrical resistivity of elaborated films were studied, respectively, using X-ray diffraction (XRD), Raman spectroscopy, UV spectrophotometer and four-point probe method. The micro structural parameters like lattice constants, crystallite size, dislocation density and strain have been evaluated. The XRD investigation proved that the film deposited at 20 min present CuInSe2 single phase in its chalcopyrite structure and with preferred orientation along (1 1 2) direction, whereas the films deposited at 5, 10 and 15 min show the CuInSe2 chalcopyrite structure with the In2Se3 as secondary phase. We have found that the formation mechanism of CuInSe2 depends on the In2Se3 phase. The optical band gap of the films is found to decrease from 1.17 to 1.04 eV with increase in deposition time. All films show Raman spectra with a dominant A1 mode at 174 cm-1, confirming the chalcopyrite crystalline quality of these films. The films exhibited a range of resistivity varying from 2.3 × 10-3 to 4.4 × 10-1 cm.

  20. Chemically deposited CdS by an ammonia-free process for solar cells window layers

    Energy Technology Data Exchange (ETDEWEB)

    Ochoa-Landin, R. [Centro de Investigacion y Estudios Avanzados del IPN, Unidad Queretaro, Apdo. Postal 1-798, 76001 Queretaro, Qro. (Mexico); Departamento de Fisica, Universidad de Sonora, Apdo. Postal 88, 83190 Hermosillo, Son. (Mexico); Sastre-Hernandez, J.; Vigil-Galan, O. [Escuela Superior de Fisica y Matematicas, Instituto Politecnico Nacional UP Adolfo Lopez Mateos, Edif. 9, 07738 Mexico, DF (Mexico); Ramirez-Bon, R. [Centro de Investigacion y Estudios Avanzados del IPN, Unidad Queretaro, Apdo. Postal 1-798, 76001 Queretaro, Qro. (Mexico)

    2010-02-15

    Chemically deposited CdS window layers were studied on two different transparent conductive substrates, namely indium tin oxide (ITO) and fluorine doped tin oxide (FTO), to determine the influence of their properties on CdS/CdTe solar cells performance. Three types of CdS films obtained from different chemical bath deposition (CBD) processes were studied. The three CBD processes employed sodium citrate as the complexing agent in partial or full substitution of ammonia. The CdS films were studied by X-ray diffraction, optical transmission spectroscopy and atomic force microscopy. CdS/CdTe devices were completed by depositing 3 {mu}m thick CdTe absorbent layers by means of the close-spaced vapor transport technique (CSVT). Evaporated Cu-Au was used as the back contact in all the solar cells. Dark and under illumination J-V characteristic and quantum efficiency measurements were done on the CdS/CdTe devices to determine their conversion efficiency and spectral response. The efficiency of the cells depended on the window layer and on the transparent contact with values between 5.7% and 8.7%. (author)

  1. Bio-mineralization and potential biogeochemical processes in bauxite deposits: genetic and ore quality significance

    Science.gov (United States)

    Laskou, Magdalini; Economou-Eliopoulos, Maria

    2013-08-01

    The Parnassos-Ghiona bauxite deposit in Greece of karst type is the 11th largest bauxite producer in the world. The mineralogical, major and trace-element contents and δ18O, δ12C, δ34S isotopic compositions of bauxite ores from this deposit and associated limestone provide valuable evidence for their origin and biogeochemical processes resulting in the beneficiation of low grade bauxite ores. The organic matter as thin coal layers, overlying the bauxite deposits, within limestone itself (negative δ12C isotopic values) and the negative δ34S values in sulfides within bauxite ores point to the existence of the appropriate circumstances for Fe bio-leaching and bio-mineralization. Furthermore, a consortium of microorganisms of varying morphological forms (filament-like and spherical to lenticular at an average size of 2 μm), either as fossils or presently living and producing enzymes, is a powerful factor to catalyze the redox reactions, expedite the rates of metal extraction and provide alternative pathways for metal leaching processes resulting in the beneficiation of bauxite ore.

  2. Depositional and welding processes in low aspect ratio ignimbrites: examples from the Sulcis Volcanic District(Sardinia, Italy)

    OpenAIRE

    Mulas, Maurizio

    2013-01-01

    The rheomorphic, high-grade, welded ignimbrites are a special type of pyroclastic density current (PDC) deposits usually associated with high intensity volcanic explosive activity (VEI >4). They are characterized by a high variability of physical features and sedimentological structures that may testify different emplacement mechanisms from a PDC and a different response to topography during and after the end of the depositional processes. When the temperatures of the deposits are higher than...

  3. Preparation of Chromium Oxide Coatings on Aluminum Borate Whiskers by a Hydrothermal Deposition Process

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Aluminum borate whiskers (9Al2O32B2O3) can be used to reinforce aluminum alloys to produce light and strong composites. However, the adverse interfacial reactions between the whiskers and the aluminum alloys inhibit their practical uses; therefore, a protective coating is needed on whiskers. In this work, aluminum borate whiskers were coated with chromium-coating deposits in a hydrothermal solution containing CrCl3, Na2C4H4O6, NaPH2O2, and H3BO3. The presence of the impurity P in the hydrothermal deposits can be avoided by reducing the amount of NaPH2O2 in the coating solution. Thermodynamic analysis was used to discuss the behavior of ions in the coating process. The subsequent heating of the hydrothermal products in air at 800 ℃ yielded smooth Cr2O3 films with a thickness of 0.060.07 μm.

  4. Dependence of bimodal size distribution on temperature and optical properties of InAs quantum dots grown on vicinal GaAs (100) substrates by using MOCVD

    Institute of Scientific and Technical Information of China (English)

    Liang Song; Zhu Hong-Liang; Pan Jiao-Qing; Wang Wei

    2006-01-01

    Self-assembled InAs quantum dots (QDs) are grown on vicinal GaAs (100) substrates by using metal-organic chemical vapour deposition (MOCVD). An abnormal temperature dependence of bimodal size distribution of InAs quantum dots is found. As the temperature increases, the density of the small dots grows larger while the density of the large dots turns smaller, which is contrary to the evolution of QDs on exact GaAs (100) substrates. This trend is explained by taking into account the presence of multiatomic steps on the substrates. The optical properties of InAs QDs on vicinal GaAs(100) substrates are also studied by photoluminescence (PL) . It is found that dots on a vicinal substrate have a longer emission wavelength, a narrower PL line width and a much larger PL intensity.

  5. Multi-wafer growth of GaInAs photodetectors on 4" InP by MOCVD for SWIR imaging applications

    Science.gov (United States)

    Furlong, Mark J.; Mattingley, Mark; Lim, Sung Wook; Geen, Matthew; Jones, Wynne

    2014-06-01

    Photodiodes based on the GaInAs/InP material system responding in the 1.3-1.7 μm wavelength range are of interest in a wide range of applications, from optical power and channel monitors in telecommunication systems through to advanced night vision imaging using large format focal plane type detectors for defense and security applications. Here we report on our results of GaInAs PIN photo detector structures grown on 2", 3" and 4" InP substrates by low pressure Metalorganic Chemical Vapor Deposition (MOCVD) in both standard and new larger volume format reactor configurations. High quality, lattice matched InP/GaInAs epitaxial layers were grown and we demonstrate that when moving to larger platen configurations, high degree of thickness uniformity (improved performance.

  6. Investigation of the optimal annealing temperature for the enhanced thermoelectric properties of MOCVD-grown ZnO films

    Science.gov (United States)

    Mahmood, K.; Ali, A.; Arshad, M. I.; Ajaz un Nabi, M.; Amin, N.; Faraz Murtaza, S.; Rabia, S.; Azhar Khan, M.

    2017-04-01

    In this study, we demonstrate the optimization of the annealing temperature for enhanced thermoelectric properties of ZnO. Thin films of ZnO are grown on a sapphire substrate using the metal organic chemical Vapor Deposition (MOCVD) technique. The grown films are annealed in an oxygen environment at 600-1000°C, with a step of 100°C for one hour. Seebeck measurements at room temperature revealed that the Seebeck coefficient of the sample that was not annealed was 152 μV/K, having a carrier concentration of N D 1.46 × 1018 cm-3. The Seebeck coefficient of the annealed films increased from 212 to 415 μV/K up to 900°C and then decreased at 1000°C. The power factor is calculated and found to have an increasing trend with the annealing temperature. This observation is explained by the theory of Johnson and Lark-Horovitz that thermoelectric properties are enhanced by improving the structure of ZnO thin films. The Hall measurements and PL data strongly justify the proposed argument.

  7. Optical characterization of Al sub x Ga sub 1 sub - sub x N alloys grown by MOCVD

    CERN Document Server

    Kim, H S; Li, J; Lin, J Y; Jiang, H

    2000-01-01

    Al sub x Ga sub 1 sub - sub x N alloys with x varied from 0 to 0.35 have been produced on sapphire substrates with GaN buffer layers by using metalorganic chemical vapor deposition (MOCVD), and the optical properties of the Al sub x Ga sub 1 sub - sub x N alloys have been investigated using picosecond time-resolved photoluminescence (PL) spectroscopy at low temperature (10 K). Our results reveal that the PL intensity decreases with increasing of Al content. On the other hand, the PL decay lifetime increases with Al content. These results can be understood in terms of the effects of tail states in the density of states (DOS) due to alloy fluctuation in the Al sub x Ga sub 1 sub - sub x N alloys. The Al content dependence of the energy tail-state distribution parameter, E sub 0 , which is an important parameter for determining the optical and the electrical properties of the AlGaN alloys, has been obtained experimentally.

  8. Optical and X-ray studies of MOCVD-grown InGaN epilayers with low indium concentration

    Science.gov (United States)

    Park, Gil; Hwang, Seon-Ju; Shee, Sang-Kee; Sugahara, Tomoya; Lam, Jack; Gainer, Gordon; Song, Jin-Joo; Sakai, S.

    2001-03-01

    Optical and X-ray studies of MOCVD-grown InGaN epilayers with low indium concentration G. H. Park, S. J. Hwang, S. K. Shee, T. Sugahara, J. B. Lam, G. H. Gainer and J. J. Song, Center for Laser and Photonics Research and Department of Physics, Oklahoma State University, Stillwater, OK 74078, USA; S. Sakai, Electrical and Electronic Department, University of Tokushima, Tokushima, Japan. In_xGa_1-xN epilayers with low indium concentration (x < 5%) were grown by low pressure metalorganic chemical vapor deposition on (0001) sapphire. These samples were characterized by optical techniques and high-resolution X-ray diffraction. Photoluminescence (PL) and stimulated emission (SE) were measured. The PL intensity of the InGaN epilayers is much higher than that of GaN, even for very small indium concentrations. The PL peaks show the S-shaped temperature dependence, and the stimulated emission threshold is also temperature dependent. The PL and SE also vary greatly with indium concentration. These observations indicate that the way indium incorporates into GaN varies with In concentration. The structural characteristics will be discussed in light of their possible relation to the optical characteristics. This work is supported by ONR, BMDO, and AFOSR.

  9. Monolithic integration of MQW wavelength tunable DBR lasers with external cavity electroabsorption modulators by selective-area MOCVD

    Science.gov (United States)

    Lammert, Robert M.; Smith, Gary M.; Hughes, J. S.; Osowski, Mark L.; Jones, A. M.; Coleman, James J.

    1997-01-01

    The design and operation of multiple-quantum well (MQW) wavelength tunable distributed Bragg reflector (DBR) lasers with nonabsorbing gratings and monolithically integrated external cavity electroabsorption modulators fabricated by selective-area metal-organic chemical vapor deposition (MOCVD) are presented. Uncoated devices exhibit cw threshold currents as low as 10.5 mA with slope efficiencies of 0.21 W/A from the laser facet and 0.06 W/A from the modulator facet. After the application of facet coatings, slope efficiencies from the modulator facet increase to 0.14 W/A. Wavelength tuning of 7 nm is obtained by injection current heating of the DBR section. These devices exhibit extinction ratios of 18 dB from the modulator facet at a low modulator bias of 1 V, when measured with a broad-area detector. When coupled to a singlemode fiber, these devices exhibit high extinction ratios of 40 dB at a modulator bias of 1.25 V. Photo-generated current versus optical power plots indicate that the extinction ratios are not limited by carrier build- up in the modulator quantum wells.

  10. Structural and Optical Properties of ZnO Films with Different Thicknesses Grown on Sapphire by MOCVD

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    ZnO(002) films with different thicknesses, grown on Al2O3 (006) substrates by metal-organic chemical vapor deposition( MOCVD), were etched by Ar ion beams. The samples were examined by D8 X-ray diffraction, scanning electron microscopy(SEM), and photoluminescence (PL) spectrometry. The structural properties vary with the increasing thickness of the films. When the film thickness is thin, the phi(Φ) scanning curves for ZnO(103) and sapphire(116) substrate show the existence of two kinds of orientation relationships between ZnO films and sapphire,which are ZnO(002)//Al2O3 (006), ZnO(100)//Al2O3 (110) and ZnO(002)//Al2O3 (006), ZnO(110)//Al2O3(110). When the thickness increases to 500 nm there is only one orientation relationship, which is ZnO(002)//Al2O3 (006), ZnO [ 100 ]//Al2O3[ 110 ]. Their photoluminescence (PL) spectra at room temperature show that the optical properties of ZnO films have been greatly improved when increasing the thickness of films is increased.

  11. A Study on Reactive Spray Deposition Technology Processing Parameters in the Context of Pt Nanoparticle Formation

    Science.gov (United States)

    Roller, Justin M.; Maric, Radenka

    2015-12-01

    Catalytic materials are complex systems in which achieving the desired properties (i.e., activity, selectivity and stability) depends on exploiting the many degrees of freedom in surface and bulk composition, geometry, and defects. Flame aerosol synthesis is a process for producing nanoparticles with ample processing parameter space to tune the desired properties. Flame dynamics inside the reactor are determined by the input process variables such as solubility of precursor in the fuel; solvent boiling point; reactant flow rate and concentration; flow rates of air, fuel and the carrier gas; and the burner geometry. In this study, the processing parameters for reactive spray deposition technology, a flame-based synthesis method, are systematically evaluated to understand the residence times, reactant mixing, and temperature profiles of flames used in the synthesis of Pt nanoparticles. This provides a framework for further study and modeling. The flame temperature and length are also studied as a function of O2 and fuel flow rates.

  12. [Paste deposition and chip bonding process development]. IBM, Endicott tenth quarterly report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-05-01

    The scope of Endicott activity during this quarter includes: paste deposition process development and chip bonding process development. It was discovered that small voids exist in the photobumps. These are typically at the base of the bump and are believed to have always been present. Although the reliability test results have been positive and no failure is attributed to voids, the process development work during the last quarter has focused on understanding how these form and how to reduce them. High feed pressure, slow nozzle speed and lower viscosity reduce void formation. Nozzle design changes have been identified. One change will increase the shearing of the paste during feed, thus reducing the viscosity, a second change will allow higher feed pressures. Chip bonding process development has focused on correlating bonding results between the IBM in-house chip bonder made by Research Devices, Inc. and the Universal development bond tool. Two variables have been identified that correlate with poor bond results. The report describes more detail of the activity during the tenth quarter for paste deposition and chip bonding in each of these areas.

  13. Sedimentological characteristics and depositional processes of sediment gravity flows in rift basins: The Palaeogene Dongying and Shahejie formations, Bohai Bay Basin, China

    Science.gov (United States)

    Liu, Lei; Chen, Hongde; Zhong, Yijiang; Wang, Jun; Xu, Changgui; Chen, Anqing; Du, Xiaofeng

    2017-10-01

    Sediment gravity flow deposits are common, particularly in sandy formations, but their origin has been a matter of debate and there is no consensus about the classification of such deposits. However, sediment gravity flow sandstones are economically important and have the potential to meet a growing demand in oil and gas exploration, so there is a drive to better understand them. This study focuses on sediment gravity flow deposits identified from well cores in Palaeogene deposits from the Liaodong Bay Depression in Bohai Bay Basin, China. We classify the sediment gravity flow deposits into eight lithofacies using lithological characteristics, grain size, and sedimentary structures, and interpret the associated depositional processes. Based on the scale, spatial distribution, and contact relationships of sediment gravity flow deposits, we defined six types of lithofacies associations (LAs) that reflect transformation processes and depositional morphology: LA1 (unconfined proximal breccia deposits), LA2 (confined channel deposits), LA3 (braided-channel lobe deposits), LA4 (unconfined lobe deposits), LA5 (distal sheet deposits), and LA6 (non-channelized sheet deposits). Finally, we established three depositional models that reflect the sedimentological characteristics and depositional processes of sediment gravity flow deposits: (1) slope-apron gravel-rich depositional model, which involves cohesive debris flows deposited as LA1 and dilute turbidity currents deposited as LA5; (2) non-channelized surge-like turbidity current depositional model, which mainly comprises sandy slumping, suspended load dominated turbidity currents, and dilute turbidity currents deposited as LA5 and LA6; and (3) channelized subaqueous-fan depositional model, which consists of non-cohesive bedload dominated turbidity currents, suspended load dominated turbidity currents, and dilute turbidity currents deposited as LA2-LA5, originating from sustained extrabasinal turbidity currents

  14. New deposition processes for the growth of oxide and nitride thin films

    Energy Technology Data Exchange (ETDEWEB)

    Apen, E.A.; Atagi, L.M.; Barbero, R.S.; Espinoza, B.F.; Hubbard, K.M.; Salazar, K.V.; Samuels, J.A.; Smith, D.C. [Los Alamos National Lab., NM (US); Hoffman, D.M. [Univ. of Houston, TX (US)

    1998-11-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). The goal of this effort is to study the use of homoleptic metal amido compounds as precursors for chemical vapor deposition (CVD). The amides offer potential for the deposition of a variety of important materials at low temperatures. The establishment of these precursor compounds will enhance the ability to exploit the properties of advanced materials in numerous coatings applications. Experiments were performed to study the reactivity of Sn[NMe{sub 2}]{sub 4} with oxygen. The data demonstrated that gas-phase insertion of oxygen into the Sn-N bond, leading to a reactive intermediate, plays an important role in tin oxide deposition. Several CVD processes for technologically important materials were developed using the amido precursor complexes. These included the plasma enhanced CVD of TiN and Zr{sub 3}N{sub 4}, and the thermal CVD of GaN and Al N. Quality films were obtained in each case, demonstrating the potential of the amido compounds as CVD precursors.

  15. Influence of flocculation on sediment deposition process at the Three Gorges Reservoir.

    Science.gov (United States)

    Wang, Dangwei; Liu, Xiaofang; Ji, Zuwen; Dong, Zhandi; Hu, Haihua

    2016-01-01

    By comparing the original particle gradation of sediment from the Three Gorges Reservoir with the single particle gradation, the differences in these two particle gradations showed that there is sediment flocculation in the Three Gorges Reservoir, which can accelerate the sediment deposition rate in the reservoir. In order to determine the influence of flocculation on the sediment settling velocity, sediment was collected at the Three Gorges Reservoir, and the indoor quiescent settling experiment was performed to study the mechanism of sediment flocculation. The experimental results showed that sediments aggregated from single particles into floccules in the settling processes. The single particles smaller than 0.022 mm will participate in the formation of floccules, which accounts for 83% of the total amount of sediment in the Three Gorges Reservoir. Moreover, the degree of sediment flocculation and the increase in sediment settling velocity were directly proportional to the sediment concentration. Taking the average particle size and the median particle size as the representative particle size, respectively, the maximum flocculation factors were calculated to be 3.4 and 5.0. Due to the sediment flocculation, the volume of sediment deposition will increase by 66% when the mass settling flux factor of total sediment had a maximum value of 1.66, suggesting that flocculation has a significant influence on the sediment deposition rate in the Three Gorges Reservoir.

  16. What processes at mid-ocean ridges tell us about volcanogenic massive sulfide deposits

    Science.gov (United States)

    Cathles, Lawrence M.

    2011-07-01

    Episodic seafloor spreading, ridge topography, and fault movement at ridges find (more extreme) analogs in the arc and back-arc setting where the volcanogenic massive sulfide (VMS) deposits that we mine today were formed. The factors affecting sulfide accumulation efficiency and the extent to which sulfides are concentrated spatially are the same in both settings, however. The processes occurring at mid-ocean ridges therefore provide a useful insight into those producing VMS deposits in arcs and back-arcs. The critical observation investigated here is that all the heat introduced by seafloor spreading at mid-ocean ridges is carried out of the crust within a few hundred meters of the ridge axis by ˜350°C hydrothermal fluids. The high-temperature ridge hydrothermal systems are tied to the presence of magma at the ridge axis and greatly reduce the size and control the shape of axial magma intrusions. The amount of heat introduced to each square kilometer of ocean crust during its formation can be calculated, and its removal by high-temperature convection allows calculation of the total base metal endowment of the ocean basins. Using reasonable metal deposition efficiencies, we conclude that the ocean floor is a giant VMS district with metal resources >600 times the total known VMS reserves on land and a copper resource which would last >6,000 years at current production rates.

  17. Tuning polymorphism and orientation in organic semiconductor thin films via post-deposition processing.

    Science.gov (United States)

    Hiszpanski, Anna M; Baur, Robin M; Kim, Bumjung; Tremblay, Noah J; Nuckolls, Colin; Woll, Arthur R; Loo, Yueh-Lin

    2014-11-05

    Though both the crystal structure and molecular orientation of organic semiconductors are known to impact charge transport in thin-film devices, separately accessing different polymorphs and varying the out-of-plane molecular orientation is challenging, typically requiring stringent control over film deposition conditions, film thickness, and substrate chemistry. Here we demonstrate independent tuning of the crystalline polymorph and molecular orientation in thin films of contorted hexabenzocoronene, c-HBC, during post-deposition processing without the need to adjust deposition conditions. Three polymorphs are observed, two of which have not been previously reported. Using our ability to independently tune the crystal structure and out-of-plane molecular orientation in thin films of c-HBC, we have decoupled and evaluated the effects that molecular packing and orientation have on device performance in thin-film transistors (TFTs). In the case of TFTs comprising c-HBC, polymorphism and molecular orientation are equally important; independently changing either one affects the field-effect mobility by an order of magnitude.

  18. RESEARCH ON LASER DIRECT DEPOSITION PROCESS OF Ti-6Al-4V ALLOY

    Institute of Scientific and Technical Information of China (English)

    S.Y. Gao; Y.Z. Zhang; L.K. Shi; B.L. Du; M.Z. Xi; H.Z. Ji

    2007-01-01

    Laser direct deposition (LDD) of metallic components is an advanced technology of combining CAD/CAM (computer aided design/computer aided manufacturing), high power laser, and rapid prototyping. This technology uses laser beam to melt the powders fed coaxially into the molten pool by the laser beam to fabricate fully dense metallic components. The present article mainly studies the LDD of Ti-6Al-4V alloy, which can be used to fabricate aircraft components. The mechanical properties of the Ti-6Al-4V alloy, fabricated by LDD, are obtained using the tension test, and the oxygen content of used powders and deposited specimens are measured. In the present article, it can be seen that the mechanical properties obtained using this method are higher than the ones obtained by casting, and equal to those got by wrought anneal. One aircraft pan has been made using the LDD process. Because of this aircraft part, with sophisticated shape, the effect of the laser scanning track on the internal soundness of the deposited part was discussed.

  19. Impact of hydrotalcite deposition on biogeochemical processes in a shallow tropical bay.

    Science.gov (United States)

    Alongi, Daniel M; McKinnon, A David

    2011-03-01

    The biogeochemistry of a tropical shoal bay (Melville Bay, Australia) impacted by the effluent release, precipitation, and deposition of hydrotalcite from an alumina refinery was studied in both wet and dry seasons. Within the deposition zone, sulfate reduction dominated benthic carbon cycling accounting for ≈100% of total microbial activity, with rates greater than those measured in most other marine sediments. These rapid rates of anoxic metabolism resulted in high rates of sulfide and ammonium production and low C:S ratios, implying significant preservation of S in stable sulfide minerals. Rates of total microbial activity were significantly less in control sediments of equivalent grain size, where sulfate reduction accounted for ≈50% of total benthic metabolism. Rates of planktonic carbon cycling overlying the deposition zone were also greater than those measured in the control areas of southern Melville Bay. At the sediment surface, productive algal and cyanobacterial mats helped stabilize the sediment surface and oxidize sulfide to sulfate to maintain a fully oxygenated water-column overlying the impacted zone. The mats utilized a significant fraction of dissolved inorganic N and P released from the sea bed; some nutrients escaped to the water-column such that benthic regeneration of NH₄+ and PO₄³⁻ accounted for 100% and 42% of phytoplankton requirements for N and P, respectively. These percentages are high compared to other tropical coastal environments and indicate that benthic nutrient recycling may be a significant factor driving water-column production overlying the deposition zone. With regard to remediation, it is recommended that the sea bed not be disturbed as attempts at removal may result in further environmental problems and would require specific assessment of the proposed removal process.

  20. Textural and depositional processes of surface sediments of Kalpakkam, Southeast Coast of India

    Institute of Scientific and Technical Information of China (English)

    Usha NATESAN; K.Deepthi; AL.MUTHULAKSHMI; Vincent A.FERRER; S.V.NARASIMHAN; V.P.VENUGOPALAN

    2012-01-01

    To understand the influence of human disturbance on the sediment processes along Kalpakkam coast,India,beach and seabed sediments at 200 m,500 m,and 1 km into the sea were collected monthly for one year and analyzed.Coarser material close to the tidal inlets (river) and manmade structures (sea wall) indicate the effect of these features in altering the grain size distribution from the general trend.The bivariant plots confirm the dominance of deposition under beach environment.The CM diagram (C-one percentile grain diameter,M-median) divulges that the deposition takes place by suspension and rolling of sediments with C < 1 mm.Linear discriminate function analysis for sediments at Kalpakkam indicates a shallow marine environment for all the samples collected.On the multigroup multivariant discriminant functions V1-V2 diagram,the bulk of the samples from Kalpakkam to Mahabalipuram fall in the field of beach deposition.These results show that reworked sediments,submerged during the Holocene marine transgression are being deposited on present-day beaches by waves,currents and rivers in the study area.Though a high wave energy environment is prevailing in the study area,dominant northward sediment transport along the Kalpakkam-Mahabalipuram coast is not altered due to human interventions.Beach building activity in front of the sea wall ensures the safety ofIndira Gandhi Centre for Atomic Research (IGCAR) from wave actions without causing any significant changes to the coastal environment.

  1. Deposition of calcium carbonate films by a polymer-induced liquid-precursor (PILP) process

    Science.gov (United States)

    Gower, Laurie B.; Odom, Damian J.

    2000-03-01

    A polypeptide additive has been used to transform the solution crystallization of calcium carbonate to a solidification process of a liquid-phase mineral precursor. In situ observations reveal that polyaspartate induces liquid-liquid phase separation of droplets of a mineral precursor. The droplets deposit on the substrate and coalesce to form a coating, which then solidifies into calcitic tablets and films. Transition bars form during the amorphous to crystalline transition, leading to sectorization of calcite tablets, and the defect textures and crystal morphologies are atypical of solution grown crystals. The formation of nonequilibrium crystal morphologies using an acidic polypeptide may have implications in the field of biomineralization, and the environmentally friendly aspects of this polymer-induced liquid-precursor (PILP) process may offer new techniques for aqueous-based processing of ceramic films, coatings, and particulates.

  2. Pulsed laser deposition of the lysozyme protein: an unexpected “Inverse MAPLE” process

    DEFF Research Database (Denmark)

    Schou, Jørgen; Matei, Andreea; Constantinescu, Catalin

    2012-01-01

    the ejection and deposition of lysozyme. This can be called an “inverse MAPLE” process, since the ratio of “matrix” to film material in the target is 10:90, which is inverse of the typical MAPLE process where the film material is dissolved in the matrix down to several wt.%. Lysozyme is a well-known protein...... which is used in food processing and is also an important constituent of human secretions such as sweat and saliva. It has a well-defined mass (14307 u) and can easily be detected by mass spectrometric methods such as MALDI (Matrix-assisted laser desorption ionization) in contrast to many other organic...

  3. Chemical characterisation of rainwater at Stromboli Island (Italy): The effect of post-depositional processes

    Science.gov (United States)

    Cangemi, Marianna; Madonia, Paolo; Favara, Rocco

    2017-04-01

    Volcanoes emit fluids and solid particles into the atmosphere that modify the chemical composition of natural precipitation. We have investigated the geochemistry of Stromboli's rainfall during the period from November 2014 to March 2016 using a network of a new type of sampler specifically designed for operations on volcanic islands. We found that most of the chemical modifications are due to processes occurring after the storage of rainwater in the sampling bottles. These processes include dissolution of volcanogenic soluble salts encrusting volcanic ash and a variable contribution of sea spray aerosol. Our data showed noticeably less scatter than has previously been achieved with a different sampling system that was more open to the atmosphere. This demonstrates the improved efficacy of the new sampler design. The data showed that post-depositional chemical alteration of rain samples dominates over processes occurring during droplet formation ad precipitation. This has important implications for the calculation of fluxes of chemicals from rainfall in volcanic regions.

  4. Chemical vapor deposition graphene transfer process to a polymeric substrate assisted by a spin coater

    Science.gov (United States)

    Kessler, Felipe; da Rocha, Caique O. C.; Medeiros, Gabriela S.; Fechine, Guilhermino J. M.

    2016-03-01

    A new method to transfer chemical vapor deposition graphene to polymeric substrates is demonstrated here, it is called direct dry transfer assisted by a spin coater (DDT-SC). Compared to the conventional method DDT, the improvement of the contact between graphene-polymer due to a very thin polymeric film deposited by spin coater before the transfer process prevented air bubbles and/or moisture and avoided molecular expansion on the graphene-polymer interface. An acrylonitrile-butadiene-styrene copolymer, a high impact polystyrene, polybutadiene adipate-co-terephthalate, polylactide acid, and a styrene-butadiene-styrene copolymer are the polymers used for the transfers since they did not work very well by using the DDT process. Raman spectroscopy and optical microscopy were used to identify, to quantify, and to qualify graphene transferred to the polymer substrates. The quantity of graphene transferred was substantially increased for all polymers by using the DDT-SC method when compared with the DDT standard method. After the transfer, the intensity of the D band remained low, indicating low defect density and good quality of the transfer. The DDT-SC transfer process expands the number of graphene applications since the polymer substrate candidates are increased.

  5. Mechanistic modeling study on process optimization and precursor utilization with atmospheric spatial atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Zhang; He, Wenjie; Duan, Chenlong [State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); Chen, Rong, E-mail: rongchen@mail.hust.edu.cn [State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); Shan, Bin [State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China)

    2016-01-15

    Spatial atomic layer deposition (SALD) is a promising technology with the aim of combining the advantages of excellent uniformity and conformity of temporal atomic layer deposition (ALD), and an industrial scalable and continuous process. In this manuscript, an experimental and numerical combined model of atmospheric SALD system is presented. To establish the connection between the process parameters and the growth efficiency, a quantitative model on reactant isolation, throughput, and precursor utilization is performed based on the separation gas flow rate, carrier gas flow rate, and precursor mass fraction. The simulation results based on this model show an inverse relation between the precursor usage and the carrier gas flow rate. With the constant carrier gas flow, the relationship of precursor usage and precursor mass fraction follows monotonic function. The precursor concentration, regardless of gas velocity, is the determinant factor of the minimal residual time. The narrow gap between precursor injecting heads and the substrate surface in general SALD system leads to a low Péclet number. In this situation, the gas diffusion act as a leading role in the precursor transport in the small gap rather than the convection. Fluid kinetics from the numerical model is independent of the specific structure, which is instructive for the SALD geometry design as well as its process optimization.

  6. Synthesis of magnetic tunnel junctions with full in situ atomic layer and chemical vapor deposition processes

    Energy Technology Data Exchange (ETDEWEB)

    Mantovan, R., E-mail: roberto.mantovan@mdm.imm.cnr.it [Laboratorio MDM, IMM-CNR, Via C. Olivetti 2, 20864 Agrate Brianza (Italy); Vangelista, S.; Kutrzeba-Kotowska, B.; Cocco, S.; Lamperti, A.; Tallarida, G. [Laboratorio MDM, IMM-CNR, Via C. Olivetti 2, 20864 Agrate Brianza (MB) (Italy); Mameli, D. [Laboratorio MDM, IMM-CNR, Via C. Olivetti 2, 20864 Agrate Brianza (Italy); Dipartimento di Scienze Chimiche, Universita di Cagliari, Cittadella Universitaria, 09042 Monserrato, Cagliari (Italy); Fanciulli, M. [Laboratorio MDM, IMM-CNR, Via C. Olivetti 2, 20864 Agrate Brianza (Italy); Dipartimento di Scienza dei Materiali, Universita degli studi Milano-Bicocca, Via R Cozzi 53, 20125 Milano (Italy)

    2012-05-01

    Magnetic tunnel junctions, i.e. the combination of two ferromagnetic electrodes separated by an ultrathin tunnel oxide barrier, are core elements in a large variety of spin-based devices. We report on the use of combined chemical vapor and atomic layer deposition processes for the synthesis of magnetic tunnel junctions with no vacuum break. Structural, chemical and morphological characterizations of selected ferromagnetic and oxide layers are reported, together with the evidence of tunnel magnetoresistance effect in patterned Fe/MgO/Co junctions.

  7. Self-catalytic growth of tin oxide nanowires by chemical vapor deposition process

    CSIR Research Space (South Africa)

    Thabethe, BS

    2013-01-01

    Full Text Available Corporation Journal of Nanomaterials Volume 2013, Article ID 712361, 7 pages http://dx.doi.org/10.1155/2013/712361 Research Article Self-Catalytic Growth of Tin Oxide Nanowires by Chemical Vapor Deposition Process Bongani S. Thabethe,1,2 Gerald F. Malgas,1... Department of Physics, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa Correspondence should be addressed to Gerald F. Malgas; gmalgas@csir.co.za and David E. Motaung; dmotaung@csir.co.za Received 20 February 2013; Accepted 10...

  8. Parametric study of an HVOF process for the deposition of nanostructured WC-Co coatings

    Science.gov (United States)

    Bartuli, Cecilia; Valente, Teodoro; Cipri, Fabio; Bemporad, Edoardo; Tului, Mario

    2005-06-01

    Nanocrystalline WC-Co coatings were deposited by high velocity oxyfuel from commercial nanostructured composite powders. Processing parameters were optimized for maximal retention of the nanocrystalline size and for minimal decarburation of the ceramic reinforcement. Thermochemical and gas-dynamical properties of gas and particle flows within the combustion flame were identified in various operating conditions by computational fluid-dynamics (CFD) simulation. Significant improvements of the mechanical properties of the coatings were obtained: a decrease of the friction coefficient was measured for the nanostructured coatings, together with an increase of microhardness and fracture toughness.

  9. Base surge deposits, eruption history, and depositional processes of a wet phreatomagmatic volcano in Central Anatolia (Cora Maar)

    Science.gov (United States)

    Gençalioğlu-Kuşcu, Gonca; Atilla, Cüneyt; Cas, Ray A. F.; Kuşcu, İlkay

    2007-01-01

    Cora Maar is a Quaternary volcano located to the 20 km northwest of Mount Erciyes, the largest of the 19 polygenetic volcanic complexes of the Cappadocian Volcanic Province in central Anatolia. Cora Maar is a typical example of a maar-diatreme volcano with a nearly circular crater with a mean diameter of c.1.2 km, and a well-bedded base surge-dominated maar rim tephra sequence up to 40 m in thickness. Having a diameter/depth ratio ( D/ d) of 12, Cora is a relatively "mature" maar compared to recent maar craters in the world. Cora crater is excavated within the andesitic lava flows of Quaternary age. The tephra sequence is not indurated, and consists of juvenile clasts up to 70 cm, non-juvenile clasts up to 130 cm, accretionary lapilli up to 1.2 cm in diameter, and ash to lapilli-sized tephra. Base surge layers display well-developed antidune structures indicating the direction of the transport. Both progressive and regressive dune structures are present within the tephra sequence. Wavelength values increase with increasing wave height, and with large wavelength and height values. Cora tephra display similarities to Taal and Laacher See base surge deposits. Impact sags and small channel structures are also common. Lateral and vertical facies changes are observed for the dune bedded and planar bedsets. According to granulometric analyses, Cora Maar tephra samples display a bimodal distribution with a wide range of Md φ values, characteristic for the surge deposits. Very poorly sorted, bimodal ash deposits generally vary from coarse tail to fine tail grading depending on the grain size distribution while very poorly sorted lapilli and block-rich deposits display a positive skewness due to fine tail grading.

  10. The effects of flow multiplicity on GaN deposition in a rotating disk CVD reactor

    Science.gov (United States)

    Gkinis, P. A.; Aviziotis, I. G.; Koronaki, E. D.; Gakis, G. P.; Boudouvis, A. G.

    2017-01-01

    The effect of gas flow multiplicity, i.e. the possibility of two very different flow regimes prevailing at random in a rotating disk metalorganic chemical vapor deposition (MOCVD) reactor, on the deposited GaN film is investigated. A transport model coupled with a system of chemical reactions in the gas phase and on the wafer where the film is formed, is implemented in the parameter regions where multiple flows are possible. In the region of multiplicity where either plug flow, imposed by forced convection, or buoyancy-dominated flow is possible, the results in the latter case indicate high deposition rate and decreased uniformity. In the former case, increasing the pressure and the rotation rate has a favorable effect on the deposition rate without sacrificing uniformity. In the parameter window of multiplicity where either rotation or combined rotation/buoyancy may prevail, the effects of buoyancy lead to higher deposition rate at the center of the wafer and reduced uniformity. The Arrhenius plots in the regions of multiplicity for exactly the same operating conditions reveal that the system operates in a diffusion-limited regime in the plug flow and in the rotation-dominated flow, in the first and second region of multiplicity respectively. In contrast, in the buoyancy-dominated flow and the combined rotation/buoyancy flow (first and second region of multiplicity respectively) the process shifts into the kinetics-limited regime.

  11. Model Research On Deposition Of Pure Aluminium Oxide Layers By MOCVD Method

    National Research Council Canada - National Science Library

    A. Sawka; A. Kwatera

    2015-01-01

    ... (composite layers Al -C/Al ). The use of quartz glass substrate allows for obtaining information about the quality of the layers such the thickness and density, because of its high transparency...

  12. High-performance InGaN/GaN MQW LEDs with Al-doped ZnO transparent conductive layers grown by MOCVD using H2O as an oxidizer

    Science.gov (United States)

    Lin, Jia-Yong; Pei, Yan-Li; Zhuo, Yi; Chen, Zi-Min; Hu, Rui-Qin; Cai, Guang-Shuo; Wang, Gang

    2016-11-01

    In this study, the high performance of InGaN/GaN multiple quantum well light-emitting diodes (LEDs) with Al-doped ZnO (AZO) transparent conductive layers (TCLs) has been demonstrated. The AZO-TCLs were fabricated on the n+-InGaN contact layer by metal organic chemical vapor deposition (MOCVD) using H2O as an oxidizer at temperatures as low as 400 °C without any post-deposition annealing. It shows a high transparency (98%), low resistivity (510-4 Ω·cm), and an epitaxial-like excellent interface on p-GaN with an n+-InGaN contact layer. A forward voltage of 2.82 V @ 20 mA was obtained. Most importantly, the power efficiencies can be markedly improved by 53.8%@20 mA current injection and 39.6%@350 mA current injection compared with conventional LEDs with indium tin oxide TCL (LED-III), and by 28.8%@20 mA current injection and 4.92%@350 mA current injection compared with LEDs with AZO-TCL prepared by MOCVD using O2 as an oxidizer (LED-II), respectively. The results indicate that the AZO-TCL grown by MOCVD using H2O as an oxidizer is a promising TCL for a low-cost and high-efficiency GaN-based LED application. Project supported by the National Natural Science Foundation of China (Grant Nos. 61204091, 61404177, 51402366, and U1201254) and the Science and Technology Planning Project of Guangdong Province, China (Grant No. 2015B010132006).

  13. Chemical Vapor Deposition of Turbine Thermal Barrier Coatings

    Science.gov (United States)

    Haven, Victor E.

    1999-01-01

    Ceramic thermal barrier coatings extend the operating temperature range of actively cooled gas turbine components, therefore increasing thermal efficiency. Performance and lifetime of existing ceram ic coatings are limited by spallation during heating and cooling cycles. Spallation of the ceramic is a function of its microstructure, which is determined by the deposition method. This research is investigating metalorganic chemical vapor deposition (MOCVD) of yttria stabilized zirconia to improve performance and reduce costs relative to electron beam physical vapor deposition. Coatings are deposited in an induction-heated, low-pressure reactor at 10 microns per hour. The coating's composition, structure, and response to the turbine environment will be characterized.

  14. Sensor-based atomic layer deposition for rapid process learning and enhanced manufacturability

    Science.gov (United States)

    Lei, Wei

    In the search for sensor based atomic layer deposition (ALD) process to accelerate process learning and enhance manufacturability, we have explored new reactor designs and applied in-situ process sensing to W and HfO 2 ALD processes. A novel wafer scale ALD reactor, which features fast gas switching, good process sensing compatibility and significant similarity to the real manufacturing environment, is constructed. The reactor has a unique movable reactor cap design that allows two possible operation modes: (1) steady-state flow with alternating gas species; or (2) fill-and-pump-out cycling of each gas, accelerating the pump-out by lifting the cap to employ the large chamber volume as ballast. Downstream quadrupole mass spectrometry (QMS) sampling is applied for in-situ process sensing of tungsten ALD process. The QMS reveals essential surface reaction dynamics through real-time signals associated with byproduct generation as well as precursor introduction and depletion for each ALD half cycle, which are then used for process learning and optimization. More subtle interactions such as imperfect surface saturation and reactant dose interaction are also directly observed by QMS, indicating that ALD process is more complicated than the suggested layer-by-layer growth. By integrating in real-time the byproduct QMS signals over each exposure and plotting it against process cycle number, the deposition kinetics on the wafer is directly measured. For continuous ALD runs, the total integrated byproduct QMS signal in each ALD run is also linear to ALD film thickness, and therefore can be used for ALD film thickness metrology. The in-situ process sensing is also applied to HfO2 ALD process that is carried out in a furnace type ALD reactor. Precursor dose end-point control is applied to precisely control the precursor dose in each half cycle. Multiple process sensors, including quartz crystal microbalance (QCM) and QMS are used to provide real time process information. The

  15. Processes in Environmental Depositional Systems and Deformation in Sedimentary Basins: Goals for Exoloration in Mexico

    Science.gov (United States)

    Sandoval-Ochoa, J.

    2005-05-01

    Among the recent needs to establish new goals in the mexican energy industry to increase the petroleum reserves, has been necessary to recapitulate on some academic an operative concepts and definitions applied to the Petroliferous Basins Exploration; first of all, in order to understand the Petroleum System in given tectonophysical framework. The tectonophysical environment experienced by the petroliferous basin in the southwestern Gulf of Mexico, merely in the Campeche Sound and adjacent terrestrial regions (Figure 1); has been the result of interaction among the tectonic plates, the Coco's Plate with impingement and subduction beneath the Northamerican Plate and the Yucatán Microplate and even in very deep connection with the oceanic crust of southwesternmost portion of the Gulf of Mexico and the one of the Caribbean sea beneath the gulf of Belize-Honduras. The tectonosedimentary effects in the Campeche Bay starting with the skeleton formed for the Cenozoic Era, kept simultaneous conditions in depositions and deformations because of strain, stress and collapse fields, acted through this Era up to the present day, as observed in the surface Aguayo et al, 1999 and Sandoval, 2000. The involved portions of the crust and its boundaries have also been performing the relative sinking of the mere southwestern centre of the Gulf of Mexico, and the rising of the southeastern lands of Mexico. In the middle contiguity are found the productive Tertiary basins of: Comalcalco, Macuspana, Salina del Itsmo, Campeche-Champoton and other in deep waters; all of them, in an arrangement of basins among distensive faulted blocks in echelon, falling down to the deep centre of the Gulf Sandoval, op cit. With this scenario and that ones of other basins, a recapitulation on concepts and definitions, has been made on the regional natural processes of the environmental depositional systems and on the basins analysis in the tectonophysical framework, in order to reflect on the

  16. Equatorial Layered Deposits in Arabia Terra, Mars: Facies and Process Variability

    Science.gov (United States)

    Pondrelli, M.; Rossi, A.; van Gasselt, S.; Le Deit, L.; Glamoclija, M.; Cavalazzi, B.; Franchi, F.; Fueten, F.; Hauber, E.; Zegers, T.

    2012-12-01

    Genetic mechanisms proposed to explain Equatorial Layered Deposits (ELDs) formation include subglacial volcanism, aeolian/airfall, lacustrine, lacustrine/volcanic and spring-fed deposition. ELDs have been frequently shown to consist of sulfates (e.g. Gendrin et al., 2005) that might form as a response to evaporation in a playa environment (Hoefen et al., 2003) or during spring precipitation (e.g. Allen and Oehler, 2008; Rossi et al., 2008). The importance of groundwater-dominated hydrological systems was proposed to explain the formation of light-toned deposits in Meridiani Planum and Arabia Terra (e.g. Andrews-Hanna et al. 2007). Additionally, fluid expulsion processes have been invoked to explain the formation of mounds within the light-toned deposits in Arabia Terra (Allen and Oehler, 2008; Rossi et al., 2008; Pondrelli et al., 2011). Potential for habitable conditions of both playa and spring-related settings (Cavalazzi et al., 2007; Glamoclija et al., 2011) coupled with the high preservation potential within sulfates (Panieri et al., 2010), make these deposits a good candidate to understand the potential past habitability of the planet. In order to investigate ELDs genesis, an area in the vicinity of Firsoff crater, where ELDs are present within and outside the craters, was selected for geological mapping and analysis of the landforms and their association using the available dataset, including CRISM in order to infer ELDs composition. Within Firsoff crater, ELDs form a bulge that can be estimated to be at least a few hundred meters thick, while, outside the craters, ELDs form flat-lying deposits. Although heavily eroded by wind and carved by yardangs, several morphologies within the ELDs in the craters seem to be depositional, which would exclude that the entire Firsoff basin had been originally filled by ELDs. Within craters, ELDs consist of roughly meter thick layers draping and onlapping the substratum. They appear affected by polygonal patterns with no

  17. Electromagnetic sensors for monitoring of scour and deposition processes at bridges and offshore wind turbines

    Science.gov (United States)

    Michalis, Panagiotis; Tarantino, Alessandro; Judd, Martin

    2014-05-01

    Recent increases in precipitation have resulted in severe and frequent flooding incidents. This has put hydraulic structures at high risk of failure due to scour, with severe consequences to public safety and significant economic losses. Foundation scour is the leading cause of bridge failures and one of the main climate change impacts to highway and railway infrastructure. Scour action is also being considered as a major risk for offshore wind farm developments as it leads to excessive excavation of the surrounding seabed. Bed level conditions at underwater foundations are very difficult to evaluate, considering that scour holes are often re-filled by deposited loose material which is easily eroded during smaller scale events. An ability to gather information concerning the evolution of scouring will enable the validation of models derived from laboratory-based studies and the assessment of different engineering designs. Several efforts have focused on the development of instrumentation techniques to measure scour processes at foundations. However, they are not being used routinely due to numerous technical and cost issues; therefore, scour continues to be inspected visually. This research project presents a new sensing technique, designed to measure scour depth variation and sediment deposition around the foundations of bridges and offshore wind turbines, and to provide an early warning of an impending structural failure. The monitoring system consists of a probe with integrated electromagnetic sensors, designed to detect the change in the surrounding medium around the foundation structure. The probe is linked to a wireless network to enable remote data acquisition. A developed prototype and a commercial sensor were evaluated to quantify their capabilities to detect scour and sediment deposition processes. Finite element modelling was performed to define the optimum geometric characteristics of the prototype scour sensor based on models with various permittivity

  18. Nanostructured bioactive glass-ceramic coatings deposited by the liquid precursor plasma spraying process

    Science.gov (United States)

    Xiao, Yanfeng; Song, Lei; Liu, Xiaoguang; Huang, Yi; Huang, Tao; Wu, Yao; Chen, Jiyong; Wu, Fang

    2011-01-01

    Bioactive glass-ceramic coatings have great potential in dental and orthopedic medical implant applications, due to its excellent bioactivity, biocompatibility and osteoinductivity. However, most of the coating preparation techniques either produce only thin thickness coatings or require tedious preparation steps. In this study, a new attempt was made to deposit bioactive glass-ceramic coatings on titanium substrates by the liquid precursor plasma spraying (LPPS) process. Tetraethyl orthosilicate, triethyl phosphate, calcium nitrate and sodium nitrate solutions were mixed together to form a suspension after hydrolysis, and the liquid suspension was used as the feedstock for plasma spraying of P 2O 5-Na 2O-CaO-SiO 2 bioactive glass-ceramic coatings. The in vitro bioactivities of the as-deposited coatings were evaluated by soaking the samples in simulated body fluid (SBF) for 4 h, 1, 2, 4, 7, 14, and 21 days, respectively. The as-deposited coating and its microstructure evolution behavior under SBF soaking were systematically analyzed by scanning electron microscopy (SEM), X-ray diffraction (XRD), inductively coupled plasma (ICP), and Fourier transform infrared (FTIR) spectroscopy. The results showed that P 2O 5-Na 2O-CaO-SiO 2 bioactive glass-ceramic coatings with nanostructure had been successfully synthesized by the LPPS technique and the synthesized coatings showed quick formation of a nanostructured HCA layer after being soaked in SBF. Overall, our results indicate that the LPPS process is an effective and simple method to synthesize nanostructured bioactive glass-ceramic coatings with good in vitro bioactivity.

  19. Deposits on heat exchanging surfaces, causes in the bleaching process and countermeasures; Belaeggningar paa vaermevaexlare, orsaker i blekprocessen och aatgaerder

    Energy Technology Data Exchange (ETDEWEB)

    Bjurstroem, Henrik [AaF-Energi och Miljoe AB, Stockholm (Sweden); Staahl, Charlotte; Widell, Lars [AaF-Celpap AB, Stockholm (Sweden)

    2003-06-01

    Energy conservation in process industry implies to a large extent recovery of heat (or cold) from a process stream and its utilization for another process stream. The savings of energy that can be achieved depend on the process streams, but also on the efficiency of the heat exchange. A small driving temperature difference is a condition for an extensive recovery and a satisfactory preservation of its quality, i.e. its temperature. As process streams contain compounds or components that can precipitate and form deposits on heat exchanging surfaces, the recovery of heat is degraded. In the pulp and paper industry, two trends combine to increase the extent of fouling: a larger degree of closure for the process and a change in pH-profile caused by a switch to elementary chlorine free bleaching. In this study, the occurrence of deposits has been investigated for the mills that produce mechanical pulp and for the fiber line in mills producing chemical pulp. Deposits on the evaporator surfaces are treated in a parallel study. Except for some plants, deposits are not an important problem today. That does not mean that there has not been any problem or that problems will not occur. The origin of deposits lies in the chemistry of the process, but deposits have consequences for the thermal energy management. A list of possible actions in order to avoid deposits or to mitigate their consequences has been dressed in this report. They should be considered with the following order of priority: avoiding that the compounds that may form deposits enter at all the process, section 6.1; avoiding that these compounds form a deposit once they have entered the process, section 6.2; cleaning if nothing else helps or costs too much, section 6.3. Some of these methods are well known or are conventional changes in the processes. Some of these methods are less well proven or less well documented. In a longer time perspective, the kidney technology that is being developed could contribute to

  20. Rhythmic bedding in prodeltaic deposits of the ancient Colorado River: Exploring genetic processes

    Science.gov (United States)

    Waresak, Sandra; Nalin, Ronald; Lucarelli, Andrea

    2016-04-01

    Prodeltaic deposits represent a valuable archive for the characterization of deltaic depositional systems, offering a distal, minimally reworked record of dominant processes active at the fluvial-marine interface. The Fish Creek Basin (CA, US) preserves a ~ 3-km thick, lower Pliocene, progradational deltaic succession formed when the ancestral Colorado River infiltrated a marine rift basin (the early Gulf of California). The unit in this succession interpreted as prodeltaic, corresponding to the upper Mud Hills Member of the Deguynos Formation, consists of ~ 300 m of muddy siltstones. A striking attribute of parts of this unit is the presence of rhythmic bedding, with consistently alternating silt- to fine sand-dominated and clay-dominated beds forming couplets with an average thickness of 12 cm. By performing a detailed sedimentological analysis of the rhythmites and investigating periodicities in bed thickness, our study aimed at reconstructing the mode of deposition of this enigmatic prodeltaic succession. We measured at high stratigraphic resolution 265 consecutive couplets, for a total thickness of 33 m. Individual beds have good lateral persistence of at least tens of meters and gradational to sharp, flat contacts. Observed sedimentary structures are concentrated on the coarser portion of the couplets and mostly consist of parallel and wavy lamination, with subordinate ripple cross-lamination and localized internal scours. Bioturbation appears low in intensity or absent. Most notably, grain size analysis performed with laser diffraction techniques on several couplets shows a consistent pattern of inverse grading transitioning to normal grading. The cumulative evidence of these sedimentological features indicates that deposition of the rhythmites was accomplished via hyperpycnal flows, each couplet most likely representing an individual event in a setting characterized by high overall depositional rates. We performed time series analysis on bed thickness of

  1. Sediments as tracers for transport and deposition processes in peri-alpine lakes: A case study

    Science.gov (United States)

    Righetti, Maurizio; Toffolon, Marco; Lucarelli, Corrado; Serafini, Michele

    2011-12-01

    SummaryThe benthic sediment fingerprint is analysed in the small peri-alpine lake Levico (Trentino, Italy) to identify the causes of recurrent phenomena of turbidity peaks, particularly evident in a littoral region of the water body. In order to study the sediment transport processes, we exploit the fact that the sediment supply from the major tributary has a specific chemical composition, which differs from that of the nearby lake basin. Three elements (Fe, Al, K) have been used as tracers to identify the source and the deposition patterns of tributary sediments, and another typical element, Si, has been critically analysed because of its dual (allochthonous and autochthonous) origin. Several samples of the benthic material have been analysed using SEM-EDS, and the results of the sedimentological characterisation have been compared with the patterns of sediment accumulation at the bed of the lake obtained using a three-dimensional numerical model, in response to the tributary supply under different external forcing and stratification conditions. The coupled use of field measurements and numerical results suggests that the turbidity phenomena are strongly related to the deposition of the sediments supplied by the tributary stream, and shows that it is possible to reconstruct the process of local transport when the tributary inflow is chemically specific.

  2. Energy distribution of secondary particles in ion beam deposition process of Ag: experiment, calculation and simulation

    Energy Technology Data Exchange (ETDEWEB)

    Bundesmann, C.; Feder, R.; Lautenschlaeger, T.; Neumann, H. [Leibniz-Institute of Surface Modification, Leipzig (Germany)

    2015-12-15

    Ion beam sputter deposition allows tailoring the properties of the film-forming, secondary particles (sputtered target particles and backscattered primary particles) and, hence, thin film properties by changing ion beam (ion energy, ion species) and geometrical parameters (ion incidence angle, polar emission angle). In particular, the energy distribution of secondary particles and their influence on the ion beam deposition process of Ag was studied in dependence on process parameters. Energy-selective mass spectrometry was used to measure the energy distribution of sputtered and backscattered ions. The energy distribution of the sputtered particles shows, in accordance with theory, a maximum at low energy and an E{sup -2} decay for energies above the maximum. If the sum of incidence angle and polar emission angle is larger than 90 , additional contributions due to direct sputtering events occur. The energy distribution of the backscattered primary particles can show contributions by scattering at target particles and at implanted primary particles. The occurrence of these contributions depends again strongly on the scattering geometry but also on the primary ion species. The energy of directly sputtered and backscattered particles was calculated using equations based on simple two-particle-interaction whereas the energy distribution was simulated using the well-known Monte Carlo code TRIM.SP. In principal, the calculation and simulation data agree well with the experimental findings. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. Role of Granitic Intrusions and Serpentinization Processes in The Forming of Iron Deposits: Yellice-Dumluca Iron Deposits, Divrigi, Sivas, Turkey

    Science.gov (United States)

    Ozturk, Ceyda; Ozcan Kilic, Cumhur; Unlu, Taner

    2016-04-01

    Divrigi iron ore deposit is one of the most important iron province in Turkey. Genesis of the Divrigi iron deposits is still highly controversial. In Divrigi-Yellice vicinity, no granitic intrusions takes place. Low grade (average 18-20% Fe3O4), 125 million tones magnetite formation in Yellice deposit is found within serpentinites. On the other hand, in Divrigi-Dumluca deposit, granitic intrusions cut the serpentinite units. In the contact between granitic and serpentinized rocks, high grade (%57 Fe), 8 million tones magnetite is substantive. Yellice deposit is consist of characteristic liquid magmatic phase minerals such as chromite, magnetite, pentlandite, pyrotine, chalcopyrite and also pyrite disseminations. Due to serpentinization process, secondary magnetites formed by the iron released from ferromagnesian minerals. Also pyrite and silicate minerals accompanies secondary magnetite occurences. In Dumluca deposit, ore minerals such as magnetite, hematite, pyrite, chalcopyrite, limonite, marcasite, millerite accompanied by characteristic skarn zone paragenesis, diopside, actinolite and quartz. Performed Confocal Raman Spectroscopy studies to determine the serpentine types show that, serpentine minerals of Yellice deposit is mainly antigorite with talc. But however, serpentine minerals of Dumluca deposit is mostly chrysotile. This difference suggests that, serpentinization in Yellice deposit occurred in high temperatures (450-550°C), otherwise in Dumluca deposit, serpentinization occurred in relatively low temperatures (350-400°C). Performed chemical analysis on ore samples shows the distinct differences in major oxides such as Fe2O3, MgO, SiO2, Al2O3, Na2O, Cr2O3 and in trace elements, Rb, Sr, Zr and Ni. Yellice samples have mean 48,79% Fe2O3, 28,24% MgO, 26,46% SiO2, 1,05% Al2O3, 0,02% Na2O, 0.712% Cr2O3 and 44,7 ppm Rb, 6,2 ppm Sr, 1,9 ppm Zr, 2592,9 ppm Ni values whereas Dumluca samples have mean 65,29% Fe2O3, 10,24% MgO, 37,66% SiO2, 4,38% Al2O3, 0,72% Na2

  4. Transformation of cadmium hydroxide to cadmium oxide thin films synthesized by SILAR deposition process: Role of varying deposition cycles

    OpenAIRE

    2016-01-01

    Successive Ionic Layer Adsorption and Reaction (SILAR) was used to deposit nanocrystalline cadmium oxide (CdO) thin films on microscopic glass substrates for various cycles (40–120). This is based on alternate dipping of the substrate in CdCl2 solution made alkaline (pH ∼12) with NaOH, rinsing with distilled water, followed by air treatment with air dryer and annealing at 300 °C for 1 h in air. The prepared films were characterized by X-ray diffraction (XRD), UV–Visible Spectrophotomer (UV–Vi...

  5. Monomeric malonate precursors for the MOCVD of HfO2 and ZrO2 thin films.

    Science.gov (United States)

    Pothiraja, Ramasamy; Milanov, Andrian; Parala, Harish; Winter, Manuela; Fischer, Roland A; Devi, Anjana

    2009-01-28

    New Hf and Zr malonate complexes have been synthesized by the reaction of metal amides with different malonate ligands (L = dimethyl malonate (Hdmml), diethyl malonate (Hdeml), di-tert-butyl malonate (Hdbml) and bis(trimethylsilyl) malonate (Hbsml)). Homoleptic eight-coordinated monomeric compounds of the type ML4 were obtained for Hf with all the malonate ligands employed. In contrast, for Zr only Hdmml and Hdeml yielded the eight-coordinated monomeric compounds of the type ML4, while using the bulky Hdbml and Hbsml ligands resulted into mixed alkoxo-malonato six-coordinated compounds of the type [ML2(OR)2]. Single crystal X-ray diffraction studies of all the compounds are presented and discussed, and they are found to be monomeric. The complexes are solids and in solution, they retain their monomeric nature as evidenced by NMR measurements. Compared to the classical beta-diketonate complexes, [M(acac)4] and [M(thd)4] (M = Hf, Zr; acac: acetylacetonate; thd: tetramethylheptadione), the new malonate compounds are more volatile, decompose at lower temperatures and have lower melting points. In particular, the homoleptic diethyl malonate complexes of Hf and Zr melt at temperatures as low as 62 degrees C. In addition, the compounds are very stable in air and can be sublimed quantitatively. The promising thermal properties makes these compounds interesting for metal-organic chemical vapor deposition (MOCVD). This was demonstrated by depositing HfO2 and ZrO2 thin films successfully with two representative Hf and Zr complexes.

  6. Effects of particle density on depositing properties of WC-1 7 Co by HVOF process

    Institute of Scientific and Technical Information of China (English)

    丁坤英; 王立君

    2014-01-01

    The in-flight and deposition properties ofthree types ofWC-1 7 Co powder with different particle densities during a high-velocity oxygen fuel (HVOF)thermal spray process were investigated.Three types ofpowder exhibited similar velocity upon impact on the substrate surface.The powder with the lower particle density exhibited a higher temperature upon impingement process,resulting in the generation ofa higher flattening ratio.Thus,the coating derived from the powder with the lower particle density possessed superior micro-hardness,porosity and surface roughness.However,the coating with the lowest particle density showed the poorest fracture toughness because ofthe generation ofthe largest amount ofamorphous phase.

  7. Influence of as-deposited conductive type on sensitization process of PbSe films

    Science.gov (United States)

    Yang, Hao; Chen, Lei; Zheng, Jianbang; Qiao, Kai; Li, Xiaojiang

    2016-07-01

    The as-grown n- and p-type polycrystalline PbSe thin films are fabricated by vapor phase deposition using substrate temperature regulation. The surface polycrystalline structures and photoelectric properties of n- and p-type polycrystalline PbSe films are provided. Surface composition of n-type-sensitized PbSe film has been analyzed according to X-ray photoelectron spectroscopy results. The oxygen roles in n- and p-type PbSe polycrystalline films during the sensitization process are studied experimentally, respectively. The dependence of sensitized photoelectric performance on the initial conductive state has been firstly observed and discussed, as we know presently. It is revealed that oxygen can trigger photo-response in the sensitization process for n-type PbSe film, but not for p-type. These discussions may be useful for understanding the sensitization mechanism of lead salt materials.

  8. Electro-deposition painting process improvement of cab truck by Six Sigma concept

    Science.gov (United States)

    Kawitu, Kitiya; Chutima, Parames

    2017-06-01

    The case study company is a manufacturer of trucks and currently facing a high rework cost due to the thickness of the electro-deposited paint (EDP) of the truck cab is lower than standard. In addition, the process capability is very low. The Six Sigma concept consisting of 5 phases (DMAIC) is applied to determine new parameter settings for each significant controllable factor. After the improvement, EDP thickness of the truck cab increases from 17.88μ to 20μ (i.e. standard = 20 ± 3μ). Moreover, the process capability indexes (Cp and Cpk) are increased from 0.9 to 1.43, and from 0.27 to 1.43, respectively. This improvement could save the rework cost about 1.6M THB per year.

  9. Combustion of spent shales from the Rotem deposit. Pt. 1. Concurrent thermal processes: Pyrolysis and gasification

    Energy Technology Data Exchange (ETDEWEB)

    Zabicky, J. (Ben-Gurion Univ. of the Negev, Beersheba (Israel). Institutes for Applied Research Ben-Gurion Univ. of the Negev, Beersheba (Israel). M.R. Bloch Center for Coal Research); Wohlfarth, A. (Pama - Energy Resources Development Ltd., Arava (Israel))

    1991-06-01

    Spent shales prepared by the Fisher method from oil shales of the Rotem deposit/Israel were studied in a continuous fluidized bed reactor at 700-900deg C under atmospheric pressure, using mixtures of nitrogen and carbon dioxide as the fluidizing gas. A set of simultaneus processes takes place, including pyrolysis of the organic residue in the spent shales, decomposition of calcium carbonate, dehydration of clay phases, decomposition of pyrites, reduction of anhydrite to calcium sulfide and other minor reactions. An important secondary process is gasification of the organic residue by carbon dioxide produced by carbonate decomposition or combustion. The extent to which these reactions take place depends on temperature, composition of the fluidizing gas, particle size of the spent shales, and mean residence time of the particles in the reactor. (orig.).

  10. Development of slurry erosion resistant materials by laser-based direct metal deposition process

    Science.gov (United States)

    Yarrapareddy, Eswar

    The current research deals with the development of slurry erosion resistant materials by the laser-based direct metal deposition (LBDMD) process for different industrial applications. The work started with the development of functionally graded materials using nickel-tungsten carbide (Ni-Tung) powders and finally produced a better erosion resistant materials system by reinforcing nano-tungsten carbide particles with nickel-tungsten carbide powders. Functionally graded materials (FGMs) consisting of Ni-Tung) powders with different concentrations of tungsten carbide particles are successfully deposited by the LBDMD process on 4140 Steel substrates. The slurry erosion behavior of the Ni-Tung FGMs is studied at different impingement angles. The slurry erosion tests are performed at Southern Methodist University's Center for Laser Aided Manufacturing using a centrifugal force driven erosion testing machine. For the purpose of comparison, Ni-Tung 40 depositions and 4140 steel samples are also tested. The results indicate that the LBDMD process is able to deposit defect-free Ni-Tung FGMs with a uniform distribution of tungsten carbide particles in a nickel-based matrix. The slurry erosion resistance of Ni-Tung FGMs is observed to be much better than that of the Ni-Tung 40 and 4140 steels. The superior slurry erosion resistance of Ni-Tung FGMs is attributed to the presence of large amounts of very hard tungsten carbide particles. The material removal rate (MRR) from erosion decreases with a decrease in the impingement angle, except at a 45 degree impingement angle on 4140 steel. The relationship among the material removal rates, the craters depth of penetration, the areas of the craters formed, the average surface roughness values, and the impingement angles is established for Ni-Tung FGMs, Ni-Tung 40, and 4140 steels. The surface profiles of the eroded samples are analyzed by measuring the depth of penetration of the craters formed by the slurry jet using a needle

  11. Progress in MOCVD growth of HgCdTe epilayers for HOT infrared detectors

    Science.gov (United States)

    Kebłowski, A.; Gawron, W.; Martyniuk, P.; Stepień, D.; Kolwas, K.; Piotrowski, J.; Madejczyk, P.; Kopytko, M.; Piotrowski, A.; Rogalski, A.

    2016-05-01

    In this paper we present progress in MOCVD growth of (100) HgCdTe epilayers achieved recently at the Institute of Applied Physics, Military University of Technology and Vigo System S.A. It is shown that MOCVD technology is an excellent tool in fabrication of different HgCdTe detector structures with a wide range of composition, donor/acceptor doping and without post grown annealing. Particular progress has been achieved in the growth of (100) HgCdTe epilayers for long wavelength infrared photoconductors operated in HOT conditions. The (100) HgCdTe photoconductor optimized for 13-μm attain detectivity equal to 6.5x109 Jones and therefore outperform its (111) counterpart. The paper also presents technological progress in fabrication of MOCVD-grown (111) HgCdTe barrier detectors. The barrier device performance is comparable with state-of-the-art of HgCdTe photodiodes. The detectivity of HgCdTe detectors is close to the value marked HgCdTe photodiodes. Dark current densities are close to the values given by "Rule 07".

  12. Macro controlling of copper oxide deposition processes and spray mode by using home-made fully computerized spray pyrolysis system

    Science.gov (United States)

    Essa, Mohammed Sh.; Chiad, Bahaa T.; Shafeeq, Omer Sh.

    2017-09-01

    Thin Films of Copper Oxide (CuO) absorption layer have been deposited using home-made Fully Computerized Spray Pyrolysis Deposition system FCSPD on glass substrates, at the nozzle to substrate distance equal to 20,35 cm, and computerized spray mode (continues spray, macro-control spray). The substrate temperature has been kept at 450 °c with the optional user can enter temperature tolerance values ± 5 °C. Also that fixed molar concentration of 0.1 M, and 2D platform speed or deposition platform speed of 4mm/s. more than 1000 instruction program code, and specific design of graphical user interface GUI to fully control the deposition process and real-time monitoring and controlling the deposition temperature at every 200 ms. The changing in the temperature has been recorded during deposition processes, in addition to all deposition parameters. The films have been characterized to evaluate the thermal distribution over the X, Y movable hot plate, the structure and optical energy gap, thermal and temperature distribution exhibited a good and uniform distribution over 20 cm2 hot plate area, X-ray diffraction (XRD) measurement revealed that the films are polycrystalline in nature and can be assigned to monoclinic CuO structure. Optical band gap varies from 1.5-1.66 eV depending on deposition parameter.

  13. Mapping process and age of Quaternary deposits on Santa Rosa Island, Channel Islands National Park, California

    Science.gov (United States)

    Schmidt, K. M.; Minor, S. A.; Bedford, D.

    2016-12-01

    Employing a geomorphic process-age classification scheme, we mapped the Quaternary surficial geology of Santa Rosa (SRI) within the Channel Islands National Park. This detailed (1:12,000 scale) map represents upland erosional transport processes and alluvial, fluvial, eolian, beach, marine terrace, mass wasting, and mixed depositional processes. Mapping was motivated through an agreement with the National Park Service and is intended to aid natural resource assessments, including post-grazing disturbance recovery and identification of mass wasting and tectonic hazards. We obtained numerous detailed geologic field observations, fossils for faunal identification as age control, and materials for numeric dating. This GPS-located field information provides ground truth for delineating map units and faults using GIS-based datasets- high-resolution (sub-meter) aerial imagery, LiDAR-based DEMs and derivative raster products. Mapped geologic units denote surface processes and Quaternary faults constrain deformation kinematics and rates, which inform models of landscape change. Significant findings include: 1) Flights of older Pleistocene (>120 ka) and possibly Pliocene marine terraces were identified beneath younger alluvial and eolian deposits at elevations as much as 275 m above modern sea level. Such elevated terraces suggest that SRI was a smaller, more submerged island in the late Neogene and (or) early Pleistocene prior to tectonic uplift. 2) Structural and geomorphic observations made along the potentially seismogenic SRI fault indicate a protracted slip history during the late Neogene and Quaternary involving early normal slip, later strike slip, and recent reverse slip. These changes in slip mode explain a marked contrast in island physiography across the fault. 3) Many of the steeper slopes are dramatically stripped of regolith, with exposed bedrock and deeply incised gullies, presumably due effects related to past grazing practices. 4) Surface water presence is

  14. Transformation of cadmium hydroxide to cadmium oxide thin films synthesized by SILAR deposition process: Role of varying deposition cycles

    Directory of Open Access Journals (Sweden)

    A.C. Nwanya

    2016-06-01

    Full Text Available Successive Ionic Layer Adsorption and Reaction (SILAR was used to deposit nanocrystalline cadmium oxide (CdO thin films on microscopic glass substrates for various cycles (40–120. This is based on alternate dipping of the substrate in CdCl2 solution made alkaline (pH ∼12 with NaOH, rinsing with distilled water, followed by air treatment with air dryer and annealing at 300 °C for 1 h in air. The prepared films were characterized by X-ray diffraction (XRD, UV–Visible Spectrophotomer (UV–Vis and Scanning Electron Microscopy (SEM. The 80th cycle was observed to be the saturation stage for this reaction. The XRD results confirmed the films to be CdO with some Cd(OH2 phase at higher deposition cycles. The films were polycrystalline in nature having high orientation along (111 and (200 planes. As the number of cycles increases the calculated average crystallite sizes increase gradually up till the 80th cycle after which a gradual decrease in the crystallite size was observed with increasing number of cycles. The films’ transmittance in the visible and near infrared region decreased as the number of cycles increased and ranged between 25 and 80%. This work shows the feasibility of using simple SILAR method at room temperature to obtain Cd(OH2 films which are transformed to CdO thin films after annealing.

  15. Effect of a Ti capping layer on thermal stability of NiSi formed from Ni thin films deposited by metal-organic chemical vapor deposition using a Ni(iPr-DAD)2 precursor

    Science.gov (United States)

    Park, Jingyu; Jeon, Heeyoung; Kim, Hyunjung; Jang, Woochool; Kang, Chunho; Yuh, Junhan; Jeon, Hyeongtag

    2015-02-01

    Ni films were deposited by metal-organic chemical vapor deposition (MOCVD) using a novel Ni precursor, bis(1,4-di-isopropyl-1,3-diazabutadienyl)nickel [Ni(iPr-DAD)2], and NH3 gas. To optimize process conditions, the deposition temperature and reactant partial pressure were varied from 200 to 350 °C and from 0.2 to 0.99 Torr, respectively. Ni films deposited at 300 °C with a reactant pressure of 0.8 Torr exhibited excellent quality, and had a low carbon impurity concentration of around 4%. In addition, a sacrificial Ti capping layer was deposited by an in situ e-beam evaporator on top of the Ni films to enhance the thermal stability of the subsequently formed NiSi films. Both the Ti-capped and uncapped Ni films were annealed by a two-step method, with a first annealing conducted at 500 °C, followed by wet etching and then a second annealing carried out from 500 to 900 °C. The Ti capping layer did not affect the silicidation kinetic process, but by acting as an oxygen scavenger, it did enhance the morphological stability of the NiSi films and thus improve their electrical properties.

  16. Molecular beam epitaxy and metalorganic chemical vapor deposition growth of epitaxial CdTe on (100) GaAs/Si and (111) GaAs/Si substrates

    Science.gov (United States)

    Nouhi, A.; Radhakrishnan, G.; Katz, J.; Koliwad, K.

    1988-01-01

    Epitaxial CdTe has been grown on both (100)GaAs/Si and (111)GaAs/Si substrates. A combination of molecular beam epitaxy (MBE) and metalorganic chemical vapor deposition (MOCVD) has been employed for the first time to achieve this growth: the GaAs layers are grown on Si substrates by MBE and the CdTe film is subsequently deposited on GaAs/Si by MOCVD. The grown layers have been characterized by X-ray diffraction, scanning electron microscopy, and photoluminescence.

  17. Microstructural Effects and Properties of Non-line-of-Sight Coating Processing via Plasma Spray-Physical Vapor Deposition

    Science.gov (United States)

    Harder, Bryan J.; Zhu, Dongming; Schmitt, Michael P.; Wolfe, Douglas E.

    2017-08-01

    Plasma spray-physical vapor deposition (PS-PVD) is a unique processing method that bridges the gap between conventional thermal spray and vapor phase methods, and enables highly tailorable coatings composed of a variety of materials in thin, dense layers or columnar microstructures with modification of the processing conditions. The strengths of this processing technique are material and microstructural flexibility, deposition speed, and potential for non-line-of-sight (NLOS) capability by vaporization of the feedstock material. The NLOS capability of PS-PVD is investigated here using yttria-stabilized zirconia and gadolinium zirconate, which are materials of interest for turbine engine applications. PS-PVD coatings were applied to static cylindrical substrates approximately 6-19 mm in diameter to study the coating morphology as a function of angle. In addition, coatings were deposited on flat substrates under various impingement configurations. Impingement angle had significant effects on the deposition mode, and microscopy of coatings indicated that there was a shift in the deposition mode at approximately 90° from incidence on the cylindrical samples, which may indicate the onset of more turbulent flow and PVD-like growth. Coatings deposited at non-perpendicular angles exhibited a higher density and nearly a 2× improvement in erosion performance when compared to coatings deposited with the torch normal to the surface.

  18. Characterization and Optimization of Mechanical Properties of ABS Parts Manufactured by the Fused Deposition Modelling Process

    Directory of Open Access Journals (Sweden)

    Godfrey C. Onwubolu

    2014-01-01

    Full Text Available While fused deposition modelling (FDM is one of the most used additive manufacturing (AM techniques today due to its ability to manufacture very complex geometries, the major research issues have been to balance ability to produce aesthetically appealing looking products with functionality. In this study, five important process parameters such as layer thickness, part orientation, raster angle, raster width, and air gap have been considered to study their effects on tensile strength of test specimen, using design of experiment (DOE. Using group method of data handling (GMDH, mathematical models relating the response with the process parameters have been developed. Using differential evolution (DE, optimal process parameters have been found to achieve good strength simultaneously for the response. The optimization of the mathematical model realized results in maximized tensile strength. Consequently, the additive manufacturing part produced is improved by optimizing the process parameters. The predicted models obtained show good correlation with the measured values and can be used to generalize prediction for process conditions outside the current study. Results obtained are very promising and hence the approach presented in this paper has practical applications for design and manufacture of parts using additive manufacturing technologies.

  19. Is the wash-off process of road-deposited sediment source limited or transport limited?

    Science.gov (United States)

    Zhao, Hongtao; Chen, Xuefei; Hao, Shaonan; Jiang, Yan; Zhao, Jiang; Zou, Changliang; Xie, Wenxia

    2016-09-01

    An in-depth understanding of the road-deposited sediments (RDS) wash-off process is essential to estimation of urban surface runoff pollution load and to designing methods to minimize the adverse impacts on the receiving waters. There are two debatable RDS wash-off views: source limited and transport limited. The RDS build-up and wash-off process was characterized to explore what determines the wash-off process to be source limited or transport limited based on twelve RDS sampling activities on an urban road in Beijing. The results showed that two natural rain events (2.0mm and 23.2mm) reduced the total RDS mass by 30%-40%, and that finer particles (transport limited, but that finer particles tend to be source limited. To further explore and confirm the results of the field experiment, a total of 40 simulated rain events were designed to observe the RDS wash-off with different particle size fractions. The finer particles have a higher wash-off percentage (Fw) than the coarser particles, and the Fw values provide a good view to characterize the wash-off process. The key conclusions drawn from the combined field and simulated experiments data are: (i) Finer and coarser particle wash-off processes tend to be source limited and transport limited, respectively. (ii) The source and transport limited processes occur during the initial period (the first flush) and later periods, respectively. (iii) The smaller and larger rain events tend to be transport limited and source limited, respectively. Overall, the wash-off process is generally a combination of source and transport limited processes.

  20. Rare-earth-doped optical-fiber core deposition using full vapor-phase SPCVD process

    Science.gov (United States)

    Barnini, A.; Robin, T.; Cadier, B.; Aka, G.; Caurant, D.; Gotter, T.; Guyon, C.; Pinsard, E.; Guitton, P.; Laurent, A.; Montron, R.

    2017-02-01

    One key parameter in the race toward ever-higher power fiber lasers remains the rare earth doped optical core quality. Modern Large Mode Area (LMA) fibers require a fine radial control of the core refractive index (RI) close to the silica level. These low RI are achieved with multi-component materials that cannot be readily obtained using conventional solution doping based Modified Chemical Vapor Deposition (MCVD) technology. This paper presents a study of such optical material obtained through a full-vapor phase Surface Plasma Chemical Vapor Deposition (SPCVD). The SPCVD process generates straight glassy films on the inner surface of a thermally regulated synthetic silica tube under vacuum. The first part of the presented results points out the feasibility of ytterbium-doped aluminosilicate fibers by this process. In the second part we describe the challenge controlling the refractive index throughout the core diameter when using volatile fluorine to create efficient LMA fiber profiles. It has been demonstrated that it is possible to counter-act the loss of fluorine at the center of the core by adjusting the core composition locally. Our materials yielded, when used in optical fibers with numerical apertures ranging from 0.07 to 0.09, power conversion efficiency up to 76% and low background losses below 20 dB/km at 1100nm. Photodarkening has been measured to be similar to equivalent MCVD based fibers. The use of cerium as a co-dopant allowed for a complete mitigation of this laser lifetime detrimental effect. The SPCVD process enables high capacity preforms and is particularly versatile when it comes to radial tailoring of both rare earth doping level and RI. Large core diameter preforms - up to 4mm - were successfully produced.

  1. TC17 titanium alloy laser melting deposition repair process and properties

    Science.gov (United States)

    Liu, Qi; Wang, Yudai; Zheng, Hang; Tang, Kang; Li, Huaixue; Gong, Shuili

    2016-08-01

    Due to the high manufacturing cost of titanium compressor blisks, aero engine repairing process research has important engineering significance and economic value. TC17 titanium alloy is a rich β stable element dual α+β phase alloy whose nominal composition is Ti-5Al-2Sn-2Zr-4Mo-4Cr. It has high mechanical strength, good fracture toughness, high hardenability and a wide forging-temperature range. Through a surface response experiment with different laser powers, scanning speeds and powder feeding speeds, the coaxial powder feeding laser melting deposition repair process is studied for the surface circular groove defects. In this paper, the tensile properties, relative density, microhardness, elemental composition, internal defects and microstructure of the laser-repaired TC17 forging plate are analyzed. The results show that the laser melting deposition process could realize the form restoration of groove defect; tensile strength and elongation could reach 1100 MPa and 10%, which could reach 91-98% that of original TC17 wrought material; with the optimal parameters (1000 W-25 V-8 mm/s), the microhardness of the additive zone, the heat-affected zone and base material is evenly distributed at 370-390 HV500. The element content difference between the additive zone and base material is less than ±0.15%. Due to the existence of the pores 10 μm in diameter, the relative density could reach 99%, which is mainly inversely proportional to the powder feeding speed. The repaired zone is typically columnar and dendrite crystal, and the 0.5-1.5 mm-deep heat-affected zone in the groove interface is coarse equiaxial crystal.

  2. Studies on Nanostructure Aluminium Thin Film Coatings Deposited using DC magnetron Sputtering Process

    Science.gov (United States)

    Singh M, Muralidhar; G, Vijaya; MS, Krupashankara; Sridhara, B. K.; Shridhar, T. N.

    2016-09-01

    Nanostructured thin film metallic coatings has become an area of intense research particularly in applications related solar, sensor technologies and many other optical applications such as laser windows, mirrors and reflectors. Thin film metallic coatings were deposited using DC magnetron sputtering process. The deposition rate was varied to study its influence on optical behavior of Aluminum thin films at a different argon flow rate. Studies on the optical response of these nanostructure thin film coatings were characterized using UV-VIS-NIR spectrophotometer with integrating sphere in the wavelength range of (250-2500nm) and Surface morphology were carried out using atomic force microscope with roughness ranging from 2 to 20nm and thickness was measured using Dektak measuring instrument. The reflection behavior of aluminium coatings on polycarbonate substrates has been evaluated. UV-VIS-NIR Spectrophotometer analysis indicates higher reflectance of 96% for all the films in the wavelength range of 250 nm to 2500 nm. Nano indentation study revealed that there was a considerable change in hardness values of the films prepared at different conditions.

  3. Mechanical and structural properties of titanium dioxide deposited by innovative magnetron sputtering process

    Directory of Open Access Journals (Sweden)

    Wojcieszak Damian

    2015-09-01

    Full Text Available Titanium dioxide thin films were prepared using two types of magnetron sputtering processes: conventional and with modulated plasma. The films were deposited on SiO2 and Si substrates. X-ray diffraction measurements of prepared coatings revealed that the films prepared using both methods were nanocrystalline. However, the coatings deposited using conventional magnetron sputtering had anatase structure, while application of sputtering with modulated plasma made possible to obtain films with rutile phase. Investigations performed with the aid of scanning electron microscope showed significant difference in the surface morphology as well as the microstructure at the thin film cross-sections. The mechanical properties of the obtained coatings were determined on the basis of nanoindentation and abrasion resistance tests. The hardness was much higher for the films with the rutile structure, while the scratch resistance was similar in both cases. Optical properties were evaluated on the basis of transmittance measurements and showed that both coatings were well transparent in a visible wavelength range. Refractive index and extinction coefficient were higher for TiO2 with rutile structure.

  4. Deposition of substituted apatites with anticolonizing properties onto titanium surfaces using a novel blasting process.

    Science.gov (United States)

    O'Sullivan, C; O'Hare, P; O'Leary, N D; Crean, A M; Ryan, K; Dobson, A D W; O'Neill, L

    2010-10-01

    A series of doped apatites have been deposited onto titanium (V) substrates using a novel ambient temperature blasting process. The potential of these deposited doped apatites as non-colonizing osteoconductive coatings has been evaluated in vitro. XPS, EDX, and gravimetric analysis demonstrated that a high degree of coating incorporation was observed for each material. The modified surfaces were found to produce osteoblast proliferation comparable to, or better than, a hydroxyapatite finish. Promising levels of initial microbial inhibition were observed from the Sr- and Ag-doped surfaces, with the strontium showing prolonged ability to reduce bacteria numbers over a 30-day period. Ion elution profiles have been characterized and linked to the microbial response and based on the results obtained, mechanisms of kill have been suggested. In this study, the direct contact of coated substrate surfaces with microbes was observed to be a significant contributing factor to the antimicrobial performance and the anticolonizing activity. The silver substituted apatite was observed to out-perform both the SrA and ZnA in terms of biofilm inhibition.

  5. Iron isotope constraints on the mineralization processes of the Sandaowanzi telluride gold deposit, NE China

    Science.gov (United States)

    Li, Xingxing; Liu, Junlai; Lu, Di; Ren, Shunli; Liu, Zhengyang

    2016-04-01

    located at level +130m, but decreases gradually towards deeper and shallower levels. It is generally accepted that the isotopically light iron preferentially deposited early during the evolution process of mineralizing fluids and in the residues heavy Fe isotopes are enriched. Two stages of iron isotope fractionation are thus expected: enrichment of the isotopically light iron in the early stage at the level 170m and enrichment of the isotopically heavy iron in the later stage at the 130m. The results, therefore, suggest that mineralization first started at the level 170m and ended at the economic bonanza veins at level 130m. Meanwhile, the δ57Fe from levels 170m and 130m may suggest that mineralization started early near the core of the ore body, but the values from the level 50m may imply that mineralization started from one end of the ore lode.

  6. High deposition rate processes for the fabrication of microcrystalline silicon thin films

    Energy Technology Data Exchange (ETDEWEB)

    Michard, S. [Institute of Energy and Climate Research 5 - Photovoltaik, Forschungszentrum Jülich, 52425 Jülich (Germany); Meier, M., E-mail: ma.meier@fz-juelich.de [Institute of Energy and Climate Research 5 - Photovoltaik, Forschungszentrum Jülich, 52425 Jülich (Germany); Grootoonk, B.; Astakhov, O.; Gordijn, A.; Finger, F. [Institute of Energy and Climate Research 5 - Photovoltaik, Forschungszentrum Jülich, 52425 Jülich (Germany)

    2013-05-15

    The increase of deposition rate of microcrystalline silicon absorber layers is an essential point for cost reduction in the mass production of thin-film silicon solar cells. In this work we explored a broad range of plasma enhanced chemical vapor deposition (PECVD) parameters in order to increase the deposition rate of intrinsic microcrystalline silicon layers keeping the industrial relevant material quality standards. We combined plasma excitation frequencies in the VHF band with the high pressure high power depletion regime using new deposition facilities and achieved deposition rates as high as 2.8 nm/s. The material quality evaluated from photosensitivity and electron spin resonance measurements is similar to standard microcrystalline silicon deposited at low growth rates. The influence of the deposition power and the deposition pressure on the electrical and structural film properties was investigated.

  7. STUDY OF DYNAMIC MECHANICAL PROPERTIES OF FUSED DEPOSITION MODELLING PROCESSED ULTEM MATERIAL

    Directory of Open Access Journals (Sweden)

    Adhiyamaan Arivazhagan

    2014-01-01

    Full Text Available Fused Deposition Modelling (FDM, a renowned Rapid Prototyping (RP process, has been successfully implemented in several industries to fabricate concept models and prototypes for rapid manufacturing. This study furnishes terse notes about the material damping properties of FDM made ULTEM samples considering the effect of FDM process parameters. Dynamic Mechanical Analysis (DMA is carried out using DMA 2980 equipment to study the dynamic response of the FDM material subjected to single cantilever loading under periodic stress. Three FDM process parameters namely Build Style, Raster Width and Raster Angle were contemplated. ULTEM parts are fabricated using solid normal build style and three values each of raster width and raster angle. DMA is performed with temperature sweep at three different fixed frequencies of 1, 50 and 100 Hz. Results were obtained for dynamic properties such as Maximum Storage Modulus, Maximum Loss Modulus, Maximum Tan Delta and Maximum Complex Viscosity. The present work discusses the effect of increasing the frequencies and temperature on FDM made ULTEM samples using different FDM process parameters.

  8. Process of Energetic Carbon Atom Deposition on Si (001) Substrate by Molecular Dynamics Simulation

    Institute of Scientific and Technical Information of China (English)

    于威; 滕晓云; 李晓苇; 傅广生

    2002-01-01

    The process of energetic C atom deposition on Si (001)-(2×1) is studied by the molecular dynamics method using the semi-empirical many-bond Tersoff potential. It is found that the incident energy of the carbon atom has an important effect on the collision process and its diffusion process on the substrate. Most of the incident energy of the carbon atom is transferred to the substrate atoms within the initial two vibration periods of substrate atoms and its value increases with the incident energy. The spreading distance and penetration depth of the incident atom increasing with the incident energy are also identified. The simulated results imply that an important effect of energy of incident carbon on the film growth at Iow substrate temperature provides activation energy for silicon carbide formation through the vibration enhancement of local substrate atoms. In addition, suppressing carbon atom inhomogeneous collection and dispensing with the silicon diffusion process may be effectively promoted by the spreading and penetration of the energetic carbon atom in the silicon substrate.

  9. Manufacturing processes of cellular metals. Part II. Solid route, metals deposition, other processes; Procesos de fabricacion de metales celulares. Parte II: Via solida, deposicion de metales otros procesos

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, P.; Cruz, L. J.; Coleto, J.

    2009-07-01

    At the first part of this paper review a description about cellular metal processes by liquid route, was made. In this second part, solid processes and metals deposition are described. In similar way, the different kind of processes in each case are reviewed; making a short description about the main parameters involved and the advantages and drawbacks in each of them. (Author) 147 refs.

  10. Optimization of fused deposition modeling process using teaching-learning-based optimization algorithm

    Directory of Open Access Journals (Sweden)

    R. Venkata Rao

    2016-03-01

    Full Text Available The performance of rapid prototyping (RP processes is often measured in terms of build time, product quality, dimensional accuracy, cost of production, mechanical and tribological properties of the models and energy consumed in the process. The success of any RP process in terms of these performance measures entails selection of the optimum combination of the influential process parameters. Thus, in this work the single-objective and multi-objective optimization problems of a widely used RP process, namely, fused deposition modeling (FDM, are formulated, and the same are solved using the teaching-learning-based optimization (TLBO algorithm and non-dominated Sorting TLBO (NSTLBO algorithm, respectively. The results of the TLBO algorithm are compared with those obtained using genetic algorithm (GA, and quantum behaved particle swarm optimization (QPSO algorithm. The TLBO algorithm showed better performance as compared to GA and QPSO algorithms. The NSTLBO algorithm proposed to solve the multi-objective optimization problems of the FDM process in this work is a posteriori version of the TLBO algorithm. The NSTLBO algorithm is incorporated with non-dominated sorting concept and crowding distance assignment mechanism to obtain a dense set of Pareto optimal solutions in a single simulation run. The results of the NSTLBO algorithm are compared with those obtained using non-dominated sorting genetic algorithm (NSGA-II and the desirability function approach. The Pareto-optimal set of solutions for each problem is obtained and reported. These Pareto-optimal set of solutions will help the decision maker in volatile scenarios and are useful for the FDM process.

  11. Initiated-chemical vapor deposition of organosilicon layers: Monomer adsorption, bulk growth, and process window definition

    NARCIS (Netherlands)

    Aresta, G.; Palmans, J.; M. C. M. van de Sanden,; Creatore, M.

    2012-01-01

    Organosilicon layers have been deposited from 1,3,5-trivinyl-1,3,5-trimethylcyclotrisiloxane (V3D3) by means of the initiated-chemical vapor deposition (i-CVD) technique in a deposition setup, ad hoc designed for the engineering of multilayer moisture permeation barriers. The application of Fourier

  12. Optimization of process parameter for synthesis of silicon quantum dots using low pressure chemical vapour deposition

    Indian Academy of Sciences (India)

    Dipika Barbadikar; Rashmi Gautam; Sanjay Sahare; Rajendra Patrikar; Jatin Bhatt

    2013-06-01

    Si quantum dots-based structures are studied recently for performance enhancement in electronic devices. This paper presents an attempt to get high density quantum dots (QDs) by low pressure chemical vapour deposition (LPCVD) on SiO2 substrate. Surface treatment, annealing and rapid thermal processing (RTP) are performed to study their effect on size and density of QDs. The samples are also studied using Fourier transformation infrared spectroscopy (FTIR), atomic force microscopy (AFM), scanning electron microscopy (SEM) and photoluminescence study (PL). The influence of Si–OH bonds formed due to surface treatment on the density of QDs is discussed. Present study also discusses the influence of surface treatment and annealing on QD formation.

  13. Self-Catalytic Growth of Tin Oxide Nanowires by Chemical Vapor Deposition Process

    Directory of Open Access Journals (Sweden)

    Bongani S. Thabethe

    2013-01-01

    Full Text Available We report on the synthesis of tin oxide (SnO2 nanowires by a chemical vapor deposition (CVD process. Commercially bought SnO nanopowders were vaporized at 1050°C for 30 minutes with argon gas continuously passing through the system. The as-synthesized products were characterized using UV-visible absorption spectroscopy, X-ray diffraction (XRD, scanning electron microscopy (SEM, and high-resolution transmission electron microscopy (HRTEM. The band gap of the nanowires determined from UV-visible absorption was around 3.7 eV. The SEM micrographs revealed “wool-like” structure which contains nanoribbons and nanowires with liquid droplets at the tips. Nanowires typically have diameter in the range of 50–200 nm and length 10–100 μm. These nanowires followed the vapor-liquid-solid (VLS growth mechanism.

  14. Fabrication of Nanosized Lanthanum Zirconate Powder and Deposition of Thermal Barrier Coating by Plasma Spray Process

    Science.gov (United States)

    Mishra, S. K.; Jagdeesh, N.; Pathak, L. C.

    2016-07-01

    The present manuscript discusses our findings on fabrication of nanosized lanthanum zirconate powder for thermal barrier coating application and its coating by plasma spray on nickel-based superalloy substrate. Single-phase La2Zr2O7 coating of thickness of the order of 45 µm on the Ni-Cr-Al bond coat coated Ni-based superalloy substrate was deposited by plasma spray process. The layers at the interface did not show spallation and inter diffusion was very less. The microstructure, interface, porosity, and mechanical properties of different layers are investigated. The lanthanum zirconate hardness and modulus were 10.5 and 277 GPa, respectively. The load depth curve for lanthanum zirconate showed good elastic recovery around 74%.

  15. The Influence of Process Parameters on Properties of Conversion Coatings Deposited on Titanium Alloy

    Directory of Open Access Journals (Sweden)

    Karaś M.

    2016-03-01

    Full Text Available The effect of process parameters of conversion coatings on the corrosion resistance was investigated. To produce anodic coatings, the solutions of H2SO4 of 0.5 and 1 M concentrations and current densities of 0.5 and 1 A/dm2 were applied. The coatings were deposited by galvanostatic technique on titanium Grade 1. The result of the study was comparison of the corrosion resistance of coatings produced under varying parameters such as: the anodic current density, the electrolyte concentration, and the speed of reaching the preset voltage. Corrosion tests performed by potentiodynamic polarization test have shown that even nanometric anodic films of amorphous structure improve the corrosion resistance of titanium alloy. The lowest corrosion current and the corrosion potential of the most cathodic nature were observed in the sample with anodic coating produced at J = 1 A/dm2 in a 0.5 M H2SO4 electrolyte concentration.

  16. Ion beam sputter deposition of Ge films: Influence of process parameters on film properties

    Energy Technology Data Exchange (ETDEWEB)

    Bundesmann, C., E-mail: carsten.bundesmann@iom-leipzig.de [Leibniz-Institut für Oberflächenmodifizierung e.V., Permoserstrasse 15, 04318 Leipzig (Germany); Feder, R. [Leibniz-Institut für Oberflächenmodifizierung e.V., Permoserstrasse 15, 04318 Leipzig (Germany); Wunderlich, R.; Teschner, U.; Grundmann, M. [Universität Leipzig, Fakultät für Physik und Geowissenschaften, Institut für Experimentelle Physik II, Linnéstrasse 5, 04103 Leipzig (Germany); Neumann, H. [Leibniz-Institut für Oberflächenmodifizierung e.V., Permoserstrasse 15, 04318 Leipzig (Germany)

    2015-08-31

    Several sets of Ge films were grown by ion beam sputter deposition under systematic variation of ion beam parameters (ion species and ion energy) and geometrical parameters (ion incidence angle and polar emission angle). The films were characterized concerning thickness, growth rate, mass density, structural properties and composition. The film thicknesses show a cosine-like angular distribution, and the growth rates were found to increase with increasing ion incidence angle and ion energy. All films are amorphous and the average mass density was found to be (4.3 ± 0.2) g/cm{sup 3}, without a systematic relation to ion energy and geometrical parameters. Slightly higher mass densities were found for Ge films grown by sputtering with Xe than for sputtering with Ar. The Ge films contain a fraction of inert gas atoms from backscattered primary particles. This fraction is found to be higher for sputtering with Ar than for sputtering with Xe. The fraction of inert gas atoms increases with increasing polar emission angle and increasing ion incidence angle. Raman scattering experiments revealed also systematic shifts of the characteristic Raman mode. The shifts are tentatively assigned to the change of the Ge particle densities caused by the incorporation of inert gas particles. There seem to be also slight changes in short range ordering. The experimental data are discussed with respect to the known energy and angular distributions of the sputtered and backscattered particles. - Highlights: • Ion beam sputter deposition under systematic variation of process parameters • Thickness, growth rate, mass density, composition, structure, phonon properties • All germanium films are amorphous with small variations in mass density. • Incorporation of considerable amount of inert process gas • Vibrational properties correlate with composition.

  17. On the feasibility of silicene encapsulation by AlN deposited using an atomic layer deposition process

    Energy Technology Data Exchange (ETDEWEB)

    Van Bui, H., E-mail: H.VanBui@utwente.nl, E-mail: M.P.deJong@utwente.nl; Wiggers, F. B.; Kovalgin, A. Y.; Jong, M. P. de, E-mail: H.VanBui@utwente.nl, E-mail: M.P.deJong@utwente.nl [MESA+ Institute for Nanotechnology, University of Twente, 7500 AE Enschede (Netherlands); Friedlein, R.; Yamada-Takamura, Y. [School of Materials Science, Japan Advanced Institute of Science and Technology, Nomi, Ishikawa 923-1292 (Japan)

    2015-02-14

    Since epitaxial silicene is not chemically inert under ambient conditions, its application in devices and the ex-situ characterization outside of ultrahigh vacuum environments require the use of an insulating capping layer. Here, we report on a study of the feasibility of encapsulating epitaxial silicene on ZrB{sub 2}(0001) thin films grown on Si(111) substrates by aluminum nitride (AlN) deposited using trimethylaluminum (TMA) and ammonia (NH{sub 3}) precursors. By in-situ high-resolution core-level photoelectron spectroscopy, the chemical modifications of the surface due to subsequent exposure to TMA and NH{sub 3} molecules, at temperatures of 300 °C and 400 °C, respectively, have been investigated. While an AlN-related layer can indeed be grown, silicene reacts strongly with both precursor molecules resulting in the formation of Si–C and Si–N bonds such that the use of these precursors does not allow for the protective AlN encapsulation that leaves the electronic properties of silicene intact.

  18. Thermally stable yttrium-scandium oxide high-k dielectrics deposited by a solution process

    Science.gov (United States)

    Hu, Wenbing; Frost, Bradley; Peterson, Rebecca L.

    2016-03-01

    We investigated the thermal stability of electrical properties in ternary alloy (Y x Sc1-x )2O3 high-k oxides as a function of yttrium fraction, x. The yttrium-scandium oxide dielectric films are deposited using a facile ink-based process. The oxides have a stoichiometry-dependent relative dielectric constant of 26.0 to 7.7 at 100 kHz, low leakage current density of 10-8 A·cm-2, high breakdown field of 4 MVṡcm-1, and interface trap density of 1012 cm-2·eV-1 with silicon. Compared with binary oxides, ternary alloys exhibit less frequency dispersion of the dielectric constant and a higher crystallization temperature. After crystallization is induced through a 900 °C anneal, ternary (Y0.6Sc0.4)2O3 films maintain their low leakage current and high breakdown field. In contrast, the electrical performance of the binary oxides significantly degrades following the same treatment. The solution-processed ternary oxide dielectrics demonstrated here may be used as high-k gate insulators in complementary metal-oxide semiconductor (CMOS) technologies, in novel electronic material systems and devices, and in printed, flexible thin film electronics, and as passivation layers for high power devices. These oxides may also be used as insulators in fabrication process flows that require a high thermal budget.

  19. Pulsed laser deposition of the lysozyme protein: an unexpected “Inverse MAPLE” process

    DEFF Research Database (Denmark)

    Schou, Jørgen; Matei, Andreea; Constantinescu, Catalin

    2012-01-01

    the ejection and deposition of lysozyme. This can be called an “inverse MAPLE” process, since the ratio of “matrix” to film material in the target is 10:90, which is inverse of the typical MAPLE process where the film material is dissolved in the matrix down to several wt.%. Lysozyme is a well-known protein...... which is used in food processing and is also an important constituent of human secretions such as sweat and saliva. It has a well-defined mass (14307 u) and can easily be detected by mass spectrometric methods such as MALDI (Matrix-assisted laser desorption ionization) in contrast to many other organic...... materials. Also, the thermal properties of lysozyme, including the heat-induced decomposition behavior are comparatively well-known. The ablation of lysozyme from a dry pressed target in vacuum was measured by weight loss in nanosecond laser ablation at 355 with a fluence of 0.5 to 6 J/cm2. Films...

  20. Evolution and preservation potential of fluvial and transgressive deposits on the Louisiana inner shelf: Understanding depositional processes to support coastal management

    Science.gov (United States)

    Flocks, J.; Miner, M.D.; Twichell, D.C.; Lavoie, D.L.; Kindinger, J.

    2009-01-01

    The barrier-island systems of the Mississippi River Delta plain are currently undergoing some of the highest rates of shoreline retreat in North America (???20 m/year). Effective management of this coastal area requires an understanding of the processes involved in shoreline erosion and measures that can be enacted to reduce loss. The dominant stratigraphy of the delta plain is fluvial mud (silts and clays), delivered in suspension via a series of shallow-water delta lobes that prograded across the shelf throughout the Holocene. Abandonment of a delta lobe through avulsion leads to rapid land subsidence through compaction within the muddy framework. As the deltaic headland subsides below sea level, the marine environment transgresses the bays and wetlands, reworking the available sands into transgressive barrier shorelines. This natural process is further complicated by numerous factors: (1) global sea-level rise; (2) reduced sediment load within the Mississippi River; (3) diversion of the sediment load away from the barrier shorelines to the deep shelf; (4) storm-induced erosion; and (5) human alteration of the littoral process through the construction of hardened shorelines, canals, and other activities. This suite of factors has led to the deterioration of the barrier-island systems that protect interior wetlands and human infrastructure from normal wave activity and periodic storm impact. Interior wetland loss results in an increased tidal prism and inlet cross-sectional areas, and expanding ebb-tidal deltas, which removes sand from the littoral processes through diversion and sequestration. Shoreface erosion of the deltaic headlands does not provide sufficient sand to balance the loss, resulting in thinning and dislocation of the islands. Abatement measures include replenishing lost sediment with similar material, excavated from discrete sandy deposits within the muddy delta plain. These sand bodies were deposited by the same cyclical processes that formed the

  1. Pyrolytic deposition of nanostructured titanium carbide coatings on the surface of multiwalled carbon nanotubes

    Science.gov (United States)

    Kremlev, K. V.; Ob"edkov, A. M.; Ketkov, S. Yu.; Kaverin, B. S.; Semenov, N. M.; Gusev, S. A.; Tatarskii, D. A.; Yunin, P. A.

    2016-05-01

    Nanostructured titanium carbide coatings have been deposited on the surface of multiwalled carbon nanotubes (MWCNTs) by the MOCVD method with bis(cyclopentadienyl)titanium dichloride precursor. The obtained TiC/MWCNT hybrid materials were characterized by X-ray diffraction, scanning electron microscopy, and high-resolution transmission electron microscopy. It is established that a TiC coating deposits onto the MWCNT surface with the formation of a core-shell (MWSNT-TiC) type structure.

  2. Processes of ore genesis at the world-class Yuchiling molybdenum deposit, Henan province, China

    Science.gov (United States)

    Zhang, Juan; Ye, Hui-shou; Zhou, Ke; Meng, Fang

    2014-01-01

    The Yuchiling molybdenum deposit is one of the most significant porphyry molybdenum systems in the eastern Qinling of central China. The mineralization is mainly hosted by a porphyritic granite and associated cryptoexplosive breccia. Hydrothermal alteration minerals include K-feldspar, sericite, pyrite, chlorite, epidote, carbonate, kaolinite, fluorite, and gypsum. Ore minerals are dominated by molybdenite and pyrite, with lesser amounts of chalcopyrite, galena, scheelite, wolframite, ilmenite, leucoxene, native gold, sphalerite, and hematite. The δ34S compositions of sulfide minerals range from -6.0‰ to +4.0‰. The deposit is characterized by four hydrothermal stages: quartz-K-feldspar (stage I), molybdenite-quartz (stage II), pyrite-sericite-quartz (stage III), and quartz-carbonate (stage IV). Microthermometric studies of fluid inclusions show that the fluids evolved gradually during the ore-forming process. Homogenization temperatures, salinities, and minimum pressure estimates for the inclusions from each mineralization stage evolved as follows: (1) stage I: homogenization temperatures = 203.7-525.8 °C, salinities = 2.96-10.49 and 29.66 wt.% NaCl equiv., and minimum pressures = 101.9-196.2 MPa; (2) stage II: homogenization temperatures = 173.6-448.6 °C, salinities = 1.81-9.74 wt.% NaCl equiv., and minimum pressures = 93.1-172.0 MPa; (3) stage III: homogenization temperatures = 130.1-386.0 °C, salinities = 1.40-9.73 and 34.07 wt.% NaCl equiv., and minimum pressures = 95.5-142.5 MPa; (4) stage IV: homogenization temperatures = 170-230 °C and salinities = 0.18-5.71 wt.% NaCl equiv. Various fluid inclusions were observed to contain H2O, CO2, CH4, SO2, C2H2, C2H4, C2H6, and (or) H2S, as well as solids that include halite, sylvite, anhydrite, chalcopyrite, hematite, molybdenite, and jamesonite. The δ18O and δD of the hydrothermal fluids vary from -4.4‰ to +8.5‰ and -81‰ to -61‰, respectively. Microthermometric and stable isotope data indicate that

  3. Role of minerals properties on leaching process of weathered crust elution-deposited rare earth ore

    Institute of Scientific and Technical Information of China (English)

    肖燕飞; 刘向生; 冯宗玉; 黄小卫; 黄莉; 陈迎迎; 吴文远

    2015-01-01

    Granite belonged to intrusive rock and volcanic was extrusive rock. There may be many differences in their degree of weathering and mineral chemical composition. The present study investigated the minerals properties and the leaching mechanism of the granitic weathered crust elution-deposited rare earth ore from Longnan Rare Earth Mine area (LN ores) and volcanic weathered crust elution-deposited rare earth ore from Liutang Rare Earth Mine area (LT ores). The X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR) were used to characterize the phase of rare earth ores. The particle size distributions and main composition of the ore were also presented in this paper. The leaching mechanisms of two kinds of rare earth ores were analyzed with different kinetics models and could be described by the shrinking-core model. They were all inner diffusion-controlled leaching processes. The leaching equation of the kinetics of the LN ores could be expressed as:4 LN LN 1.096 10 2/3 0.377 8.314 0 2 3=0.1061 (1 ) Tr e tη η×−−− − −, leaching equation of kinetics of LT ores was 3 LT LT 4.640 10 2/3 0.411 8.314 0 32 3=8.33 101 (1 ) Tr e tη η×−− −×− − −. The rare earth leaching rate of LT ores was always lower in the same condition, and it would need more time and more (NH4)2SO4 consump-tion to achieve the same rare earth leaching efficiency, which would lead to more serious ammonia-nitrogen pollution. Therefore, magnesium salt was proposed as the leaching agent to eliminate ammonia-nitrogen pollution and further studies would be taken in the future.

  4. Microstructures, hardness and bioactivity of hydroxyapatite coatings deposited by direct laser melting process.

    Science.gov (United States)

    Tlotleng, Monnamme; Akinlabi, Esther; Shukla, Mukul; Pityana, Sisa

    2014-10-01

    Hydroxyapatite (HAP) coatings on bioinert metals such as Ti-6Al-4V are necessary for biomedical applications. Together, HAP and Ti-6Al-4V are biocompatible and bioactive. The challenges of depositing HAP on Ti-6Al-4V with traditional thermal spraying techniques are well founded. In this paper, HAP was coated on Ti-6Al-4V using direct laser melting (DLM) process. This process, unlike the traditional coating processes, is able to achieve coatings with good metallurgical bonding and little dilution. The microstructural and mechanical properties, chemical composition and bio-activities of the produced coatings were studied with optical microscopy, scanning electron microscope equipped with energy dispersive X-ray spectroscopy, and Vickers hardness machine, and by immersion test in Hanks' solution. The results showed that the choice of the laser power has much influence on the evolving microstructure, the mechanical properties and the retainment of HAP on the surface of the coating. Also, the choice of laser power of 750 W led to no dilution. The microhardness results inferred a strong intermetallic-ceramic interfacial bonding; which meant that the 750 W coating could survive long in service. Also, the coating was softer at the surface and stronger in the heat affected zones. Hence, this process parameter setting can be considered as an optimal setting. The soak tests revealed that the surface of the coating had unmelted crystals of HAP. The CaP ratio conducted on the soaked coating was 2.00 which corresponded to tetra calcium phosphate. This coating seems attractive for metallic implant applications.

  5. Fabrication of a multifunctional carbon nanotube "cotton" yarn by the direct chemical vapor deposition spinning process.

    Science.gov (United States)

    Zhong, Xiao-Hua; Li, Ya-Li; Feng, Jian-Min; Kang, Yan-Ru; Han, Shuai-Shuai

    2012-09-21

    A continuous cotton-like carbon nanotube fiber yarn, consisting of multiple threads of high purity double walled carbon nanotubes, was fabricated in a horizontal CVD gas flow reactor with water vapor densification by the direct chemical vapor deposition spinning process. The water vapor interaction leads to homogeneous shrinking of the CNT sock-like assembly in the gas flow. This allows well controlled continuous winding of the dense thread inside the reactor. The CNT yarn is quite thick (1-3 mm), has a highly porous structure (99%) while being mechanically strong and electrically conductive. The water vapor interaction leads to homogeneous oxidation of the CNTs, offering the yarn oxygen-functionalized surfaces. The unique structure and surface of the CNT yarn provide it multiple processing advantages and properties. It can be mechanically engineered into a dense yarn, infiltrated with polymers to form a composite and mixed with other yarns to form a blend, as demonstrated in this research. Therefore, this CNT yarn can be used as a "basic yarn" for various CNT based structural and functional applications.

  6. On the magnetic properties of iron nanostructures fabricated via focused electron beam induced deposition and autocatalytic growth processes

    Science.gov (United States)

    Tu, F.; Drost, M.; Vollnhals, F.; Späth, A.; Carrasco, E.; Fink, R. H.; Marbach, H.

    2016-09-01

    We employ Electron beam induced deposition (EBID) in combination with autocatalytic growth (AG) processes to fabricate magnetic nanostructures with controllable shapes and thicknesses. Following this route, different Fe deposits were prepared on silicon nitride membranes under ultra-high vacuum conditions and studied by scanning electron microscopy (SEM) and scanning transmission x-ray microspectroscopy (STXM). The originally deposited Fe nanostructures are composed of pure iron, especially when fabricated via autocatalytic growth processes. Quantitative near-edge x-ray absorption fine structure (NEXAFS) spectroscopy was employed to derive information on the thickness dependent composition. X-ray magnetic circular dichroism (XMCD) in STXM was used to derive the magnetic properties of the EBID prepared structures. STXM and XMCD analysis evinces the existence of a thin iron oxide layer at the deposit-vacuum interface, which is formed during exposure to ambient conditions. We were able to extract magnetic hysteresis loops for individual deposits from XMCD micrographs with varying external magnetic field. Within the investigated thickness range (2-16 nm), the magnetic coercivity, as evaluated from the width of the hysteresis loops, increases with deposit thickness and reaches a maximum value of ˜160 Oe at around 10 nm. In summary, we present a viable technique to fabricate ferromagnetic nanostructures in a controllable way and gain detailed insight into their chemical and magnetic properties.

  7. Oriented growth of thin films of samarium oxide by MOCVD

    Indian Academy of Sciences (India)

    K Shalini; S A Shivashankar

    2005-02-01

    Thin films of Sm2O3 have been grown on Si(100) and fused quartz by low-pressure chemical vapour deposition using an adducted -diketonate precursor. The films on quartz are cubic, with no preferred orientation at lower growth temperatures (∼ 550°C), while they grow with a strong (111) orientation as the temperature is raised (to 625°C). On Si(100), highly oriented films of cubic Sm2O3 at 625°C, and a mixture of monoclinic and cubic polymorphs of Sm2O3 at higher temperatures, are formed. Films grown on either substrate are very smooth and fine-grained. Infrared spectroscopic study reveals that films grown above 600°C are free of carbon.

  8. Sedimentary processes and depositional environments of the Horn River Shale in British Columbia, Canada

    Science.gov (United States)

    Yoon, Seok-Hoon; Koh, Chang-Seong; Joe, Young-Jin; Woo, Ju-Hwan; Lee, Hyun-Suk

    2017-04-01

    The Horn River Basin in the northeastern British Columbia, Canada, is one of the largest unconventional gas accumulations in North America. It consists mainly of Devonian shales (Horn River Formation) and is stratigraphically divided into three members, the Muskwa, Otterpark and Evie in descending order. This study focuses on sedimentary processes and depositional environments of the Horn River shale based on sedimentary facies analysis aided by well-log mineralogy (ECS) and total organic carbon (TOC) data. The shale formation consists dominantly of siliceous minerals (quartz, feldspar and mica) and subordinate clay mineral and carbonate materials, and TOC ranging from 1.0 to 7.6%. Based on sedimentary structures and micro texture, three sedimentary facies were classified: homogeneous mudstone (HM), indistinctly laminated mudstone (ILM), and planar laminated mudstone (PLM). Integrated interpretation of the sedimentary facies, lithology and TOC suggests that depositional environment of the Horn River shale was an anoxic quiescent basin plain and base-of-slope off carbonate platform or reef. In this deeper marine setting, organic-rich facies HM and ILM, dominant in the Muskwa (the upper part of the Horn River Formation) and Evie (the lower part of the Horn River Formation) members, may have been emplaced by pelagic to hemipelagic sedimentation on the anoxic sea floor with infrequent effects of low-density gravity flows (turbidity currents or nepheloid flows). In the other hand, facies PLM typifying the Otterpark Member (the middle part of the Horn River Formation) suggests more frequent inflow of bottom-hugging turbidity currents punctuating the hemipelagic settling of the background sedimentation process. The stratigraphic change of sedimentary facies and TOC content in the Horn River Formation is most appropriately interpreted to have been caused by the relative sea-level change, that is, lower TOC and frequent signal of turbidity current during the sea

  9. MOCVD ZnO/Screen Printed Ag Back Reflector for Flexible Thin Film Silicon Solar Cell Application

    OpenAIRE

    Amornrat Limmanee; Patipan Krudtad; Sasiwimon Songtrai; Suttinan Jaroensathainchok; Taweewat Krajangsang; Jaran Sritharathikhun; Kobsak Sriprapha

    2014-01-01

    We have prepared Ag back electrode by screen printing technique and developed MOCVD ZnO/screen printed Ag back reflector for flexible thin film silicon solar cell application. A discontinuity and poor contact interface between the MOCVD ZnO and screen printed Ag layers caused poor open circuit voltage (Voc) and low fill factor (FF); however, an insertion of a thin sputtered ZnO layer at the interface could solve this problem. The n type hydrogenated amorphous silicon (a-Si:H) film is preferab...

  10. The use of metalorganics in the preparation of semiconductor materials. VIII - Feasibility studies of the growth of Group III-Group V compounds of boron by MOCVD

    Science.gov (United States)

    Manasevit, H. M.; Hewitt, W. B.; Nelson, A. J.; Mason, A. R.

    1989-01-01

    The MOCVD growth of B-As and B-P films on Si, sapphire, and Si-on-sapphire substrates is described; in this process, trimethylborane (TMB) or triethylborane (TEB) is pyrolyzed in the presence of AsH3 or PH3 in an H2 atmosphere. The procedures employed are outlined, and the results are presented in graphs, tables, and micrographs. It is found that the growth rate of the primarily amorphous films is dependent on the TMB or TEB concentration but approximately constant for TEB and AsH3 at 550-900 C. The nominal compositions of films grown using TMB are given as B(12-16)As2 and B(1-1.3)P. Carbon impurities and significant stress, bowing, and crazing are observed in the films grown on Si substrates, with the highest carbon content in the films grown from TMB and PH3.

  11. High quality GaN-based LED epitaxial layers grown in a homemade MOCVD system

    Institute of Scientific and Technical Information of China (English)

    Yin Haibo; Wang Xiaoliang; Ran Junxue; Hu Guoxin; Zhang Lu; Xiao Hongling; Li Jing; Li Jinmin

    2011-01-01

    A homemade 7 × 2 inch MOCVD system is presented.With this system,high quality GaN epitaxial layers,InGaN/GaN multi-quantum wells and blue LED structural epitaxial layers have been successfully grown.The non-uniformity of undoped GaN epitaxial layers is as low as 2.86%.Using the LED structural epitaxial layers,blue LED chips with area of 350 × 350μm2 were fabricated.Under 20 mA injection current,the optical output power of the blue LED is 8.62 mW.

  12. Electrical properties of ZnO thin films grown by MOCVD

    Energy Technology Data Exchange (ETDEWEB)

    Pagni, O. [Department of Physics, Nelson Mandela Metropolitan University, P.O. Box 77000, Port Elizabeth 6031 (South Africa); Somhlahlo, N.N. [Department of Physics, Nelson Mandela Metropolitan University, P.O. Box 77000, Port Elizabeth 6031 (South Africa); Weichsel, C. [Department of Physics, Nelson Mandela Metropolitan University, P.O. Box 77000, Port Elizabeth 6031 (South Africa); Leitch, A.W.R. [Department of Physics, Nelson Mandela Metropolitan University, P.O. Box 77000, Port Elizabeth 6031 (South Africa)]. E-mail: andrew.leitch@nmmu.ac.za

    2006-04-01

    We report on the electrical characterization of ZnO films grown by MOCVD on glass and sapphire substrates. After correcting our temperature variable Hall measurements by applying the standard two-layer model, which takes into account an interfacial layer, scattering mechanisms in the ZnO films were studied as well as donor activation energies determined. ZnO films grown at different oxygen partial pressures indicated the importance of growth conditions on the defect structure by means of their conductivities and conductivity activation energies.

  13. Synthesis of Ag-doped hydrogenated carbon thin films by a hybrid PVD–PECVD deposition process

    Indian Academy of Sciences (India)

    Majji Venkatesh; Sukru Taktak; Efstathios I Meletis

    2014-12-01

    Silver-doped hydrogenated amorphous carbon (Ag-DLC) films were deposited on Si substrates using a hybrid plasma vapour deposition–plasma enhanced chemical vapour deposition (PVD–PECVD) process combining Ag target magnetron sputtering and PECVD in an Ar–CH4 plasma. Processing parameters (working pressure, CH4/Ar ratio and magnetron current) were varied to obtain good deposition rate and a wide variety of Ag films. Structure and bonding environment of the films were obtained from transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS) and Fourier transform infrared (FTIR) spectroscopy studies. Variation of processing parameters was found to produce Ag-doped amorphous carbon or diamond-like carbon (DLC) films with a range of characteristics with CH4/Ar ratio exercising a dominant effect. It was pointed out that Ag concentration and deposition rate of the film increased with the increase in d.c. magnetron current. At higher Ar concentration in plasma, Ag content increased whereas deposition rate of the film decreased. FTIR study showed that the films contained a significant amount of hydrogen and, as a result of an increase in the Ag content in the hydrogenated DLC film, $sp^{2}$ bond content also increased. The TEM cross sectional studies revealed that crystalline Ag particles were formed with a size in the range of 2–4 nm throughout an amorphous DLC matrix.

  14. Different types of nitrogen deposition show variable effects on the soil carbon cycle process of temperate forests.

    Science.gov (United States)

    Du, Yuhan; Guo, Peng; Liu, Jianqiu; Wang, Chunyu; Yang, Ning; Jiao, Zhenxia

    2014-10-01

    Nitrogen (N) deposition significantly affects the soil carbon (C) cycle process of forests. However, the influence of different types of N on it still remained unclear. In this work, ammonium nitrate was selected as an inorganic N (IN) source, while urea and glycine were chosen as organic N (ON) sources. Different ratios of IN to ON (1 : 4, 2 : 3, 3 : 2, 4 : 1, and 5 : 0) were mixed with equal total amounts and then used to fertilize temperate forest soils for 2 years. Results showed that IN deposition inhibited soil C cycle processes, such as soil respiration, soil organic C decomposition, and enzymatic activities, and induced the accumulation of recalcitrant organic C. By contrast, ON deposition promoted these processes. Addition of ON also resulted in accelerated transformation of recalcitrant compounds into labile compounds and increased CO2 efflux. Meanwhile, greater ON deposition may convert C sequestration in forest soils into C source. These results indicated the importance of the IN to ON ratio in controlling the soil C cycle, which can consequently change the ecological effect of N deposition.

  15. Effect of substrate bias on deposition behaviour of charged silicon nanoparticles in ICP-CVD process

    Science.gov (United States)

    Yoo, Seung-Wan; You, Shin-Jae; Kim, Jung-Hyung; Seong, Dae-Jin; Seo, Byong-Hoon; Hwang, Nong-Moon

    2017-01-01

    The effect of a substrate bias on the deposition behaviour of crystalline silicon films during inductively coupled plasma chemical vapour deposition (ICP-CVD) was analysed by consideration of non-classical crystallization, in which the building block is a nanoparticle rather than an individual atom or molecule. The coexistence of positively and negatively charged nanoparticles in the plasma and their role in Si film deposition are confirmed by applying bias voltages to the substrate, which is sufficiently small as not to affect the plasma potential. The sizes of positively and negatively charged nanoparticles captured on a carbon membrane and imaged using TEM are, respectively, 2.7-5.5 nm and 6-13 nm. The film deposited by positively charged nanoparticles has a typical columnar structure. In contrast, the film deposited by negatively charged nanoparticles has a structure like a powdery compact with the deposition rate about three times higher than that for positively charged nanoparticles. All the films exhibit crystallinity even though the substrate is at room temperature, which is attributed to the deposition of crystalline nanoparticles formed in the plasma. The film deposited by negatively charged nanoparticles has the highest crystalline fraction of 0.84.

  16. Microstructures, hardness and bioactivity of hydroxyapatite coatings deposited by direct laser melting process

    Energy Technology Data Exchange (ETDEWEB)

    Tlotleng, Monnamme, E-mail: MTlotleng@csir.co.za [Laser Materials Processing Group, National Laser Center CSIR, Pretoria 0001 (South Africa); Department of Mechanical Engineering Science, University of Johannesburg, Auckland Park, Kingsway Campus, Johannesburg 2006 (South Africa); Akinlabi, Esther [Department of Mechanical Engineering Science, University of Johannesburg, Auckland Park, Kingsway Campus, Johannesburg 2006 (South Africa); Shukla, Mukul [Department of Mechanical Engineering Technology, University of Johannesburg, Doornfontein Campus, Johannesburg 2006 (South Africa); Department of Mechanical Engineering, MNNIT, Allahabad, UP 211004 (India); Pityana, Sisa [Laser Materials Processing Group, National Laser Center CSIR, Pretoria 0001 (South Africa); Department of Chemical and Metallurgical Engineering, Tshwane University of Technology, Pretoria 0001 (South Africa)

    2014-10-01

    Hydroxyapatite (HAP) coatings on bioinert metals such as Ti–6Al–4V are necessary for biomedical applications. Together, HAP and Ti–6Al–4V are biocompatible and bioactive. The challenges of depositing HAP on Ti–6Al–4V with traditional thermal spraying techniques are well founded. In this paper, HAP was coated on Ti–6Al–4V using direct laser melting (DLM) process. This process, unlike the traditional coating processes, is able to achieve coatings with good metallurgical bonding and little dilution. The microstructural and mechanical properties, chemical composition and bio-activities of the produced coatings were studied with optical microscopy, scanning electron microscope equipped with energy dispersive X-ray spectroscopy, and Vickers hardness machine, and by immersion test in Hanks' solution. The results showed that the choice of the laser power has much influence on the evolving microstructure, the mechanical properties and the retainment of HAP on the surface of the coating. Also, the choice of laser power of 750 W led to no dilution. The microhardness results inferred a strong intermetallic–ceramic interfacial bonding; which meant that the 750 W coating could survive long in service. Also, the coating was softer at the surface and stronger in the heat affected zones. Hence, this process parameter setting can be considered as an optimal setting. The soak tests revealed that the surface of the coating had unmelted crystals of HAP. The CaP ratio conducted on the soaked coating was 2.00 which corresponded to tetra calcium phosphate. This coating seems attractive for metallic implant applications. - Highlights: • Characteristics of HAP coatings produced on Ti-6Al-4V achieved with direct laser melting are reported. • Optimal process parameters necessary to achieve biocompatible coating are reported. • The SEM micrograph of the soaked HAP coating revealed partially melted crystals of HAP. • The HAP coating was retained at the surface of

  17. Biogeometallurgical pre-mining characterization of ore deposits: an approach to increase sustainability in the mining process.

    Science.gov (United States)

    Dold, Bernhard; Weibel, Leyla

    2013-11-01

    Based on the knowledge obtained from acid mine drainage formation in mine waste environments (tailings impoundments and waste rock dumps), a new methodology is applied to characterize new ore deposits before exploitation starts. This gives the opportunity to design optimized processes for metal recovery of the different mineral assemblages in an ore deposit and at the same time to minimize the environmental impact and costs downstream for mine waste management. Additionally, the whole economic potential is evaluated including strategic elements. The methodology integrates high-resolution geochemistry by sequential extractions and quantitative mineralogy in combination with kinetic bioleach tests. The produced data set allows to define biogeometallurgical units in the ore deposit and to predict the behavior of each element, economically or environmentally relevant, along the mining process.

  18. Regularly arranged indium islands on glass/molybdenum substrates upon femtosecond laser and physical vapor deposition processing

    Energy Technology Data Exchange (ETDEWEB)

    Ringleb, F.; Eylers, K.; Teubner, Th.; Boeck, T., E-mail: torsten.boeck@ikz-berlin.de [Leibniz-Institute for Crystal Growth, Max-Born-Straße 2, Berlin 12489 (Germany); Symietz, C.; Bonse, J.; Andree, S.; Krüger, J. [Bundesanstalt für Materialforschung und-prüfung (BAM), Unter den Eichen 87, Berlin 12205 (Germany); Heidmann, B.; Schmid, M. [Department of Physics, Freie Universität Berlin, Arnimalle 14, Berlin 14195 (Germany); Nanooptical Concepts for PV, Helmholtz Zentrum Berlin, Hahn-Meitner-Platz 1, Berlin 14109 (Germany); Lux-Steiner, M. [Nanooptical Concepts for PV, Helmholtz Zentrum Berlin, Hahn-Meitner-Platz 1, Berlin 14109 (Germany); Heterogeneous Material Systems, Helmholtz Zentrum Berlin, Hahn-Meitner-Platz 1, Berlin 14109 (Germany)

    2016-03-14

    A bottom-up approach is presented for the production of arrays of indium islands on a molybdenum layer on glass, which can serve as micro-sized precursors for indium compounds such as copper-indium-gallium-diselenide used in photovoltaics. Femtosecond laser ablation of glass and a subsequent deposition of a molybdenum film or direct laser processing of the molybdenum film both allow the preferential nucleation and growth of indium islands at the predefined locations in a following indium-based physical vapor deposition (PVD) process. A proper choice of laser and deposition parameters ensures the controlled growth of indium islands exclusively at the laser ablated spots. Based on a statistical analysis, these results are compared to the non-structured molybdenum surface, leading to randomly grown indium islands after PVD.

  19. Development of a NbN Deposition Process for Superconducting Quantum Sensors

    CERN Document Server

    Glowacka, D M; Withington, S; Muhammad, H; Yassin, G; Tan, B K

    2014-01-01

    We have carried out a detailed programme to explore the superconducting characteristics of reactive DC-magnetron sputtered NbN. The basic principle is to ignite a plasma using argon, and then to introduce a small additional nitrogen flow to achieve the nitridation of a Nb target. Subsequent sputtering leads to the deposition of NbN onto the host substrate. The characteristics of a sputtered film depend on a number of parameters: argon pressure, nitrogen flow rate and time-evolution profile, substrate material, etc. Crucially, the hysteresis in the target voltage as a function of the nitrogen flow can be used to provide a highly effective monitor of nitrogen consumption during the reactive process. By studying these dependencies we have been able to achieve highly reproducible film characteristics on sapphire, silicon dioxide on silicon, and silicon nitride on silicon. Intrinsic film stress was minimised by optimising the argon pressure, giving NbN films having Tc = 14.65 K. In the paper, we report characteris...

  20. A study of color modulation of porous alumina processed by physical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Wang Xulongqi; Zhang Haijun; Zhang Dongxian, E-mail: zhangdx@zju.edu.cn [State Key Laboratory of Modern Optical Instrumentation, Zhejiang University, Hangzhou, 310027 (China)

    2011-02-01

    With the development of the porous alumina (PA) fabrication technology, more and more scholars plough into the research of its properties, especially optical properties. Recently, we observed an interesting phenomenon that the PA templates processed by Physical Vapor Deposition (PVD) show color differences related to light path difference. Our work attempts to make the principle clear and to find an effective method to modulate the color of PA samples. This article describes the details of our experimental and theoretical results. We successfully prepared some PA templates with different pore-depth by controlling the time of anodization in oxalic acid solution. In order to enhance the reflectivity of air-PA interface, a layer of TiO{sub 2} film of 18 nm is coated with PVD technique, which makes PA templates display quite distinct colors with different hole-depth. By modelling and analyzing PA samples, we make the interpretation of this optical property by taking the PA sample with 150 nm pore-depth as an example, and then put forward a way to simulate sample's color within its hole-depth and material refraction-index. The results are in good agreement with our theoretical analysis, which proves the feasibility of our simulation mode.

  1. Simulation of Powder Layer Deposition in Additive Manufacturing Processes Using the Discrete Element Method

    Energy Technology Data Exchange (ETDEWEB)

    Herbold, E. B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Walton, O. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Homel, M. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-10-26

    This document serves as a final report to a small effort where several improvements were added to a LLNL code GEODYN-­L to develop Discrete Element Method (DEM) algorithms coupled to Lagrangian Finite Element (FE) solvers to investigate powder-­bed formation problems for additive manufacturing. The results from these simulations will be assessed for inclusion as the initial conditions for Direct Metal Laser Sintering (DMLS) simulations performed with ALE3D. The algorithms were written and performed on parallel computing platforms at LLNL. The total funding level was 3-­4 weeks of an FTE split amongst two staff scientists and one post-­doc. The DEM simulations emulated, as much as was feasible, the physical process of depositing a new layer of powder over a bed of existing powder. The DEM simulations utilized truncated size distributions spanning realistic size ranges with a size distribution profile consistent with realistic sample set. A minimum simulation sample size on the order of 40-­particles square by 10-­particles deep was utilized in these scoping studies in order to evaluate the potential effects of size segregation variation with distance displaced in front of a screed blade. A reasonable method for evaluating the problem was developed and validated. Several simulations were performed to show the viability of the approach. Future investigations will focus on running various simulations investigating powder particle sizing and screen geometries.

  2. Development of a NbN Deposition Process for Superconducting Quantum Sensors

    CERN Document Server

    Glowacka, D M; Withington, S; Muhammad, H; Yassin, G

    2014-01-01

    We have carried out a detailed programme to explore the superconducting characteristics of reactive DC-magnetron sputtered NbN. The basic principle is to ignite a plasma using argon, and then to introduce a small additional nitrogen flow to achieve the nitridation of a Nb target. Subsequent sputtering leads to the deposition of NbN onto the host substrate. The characteristics of a sputtered film depend on a number of parameters: argon pressure, nitrogen flow rate and time-evolution profile, substrate material, etc. Crucially, the hysteresis in the target voltage as a function of the nitrogen flow can be used to provide a highly effective monitor of nitrogen consumption during the reactive process. By studying these dependencies we have been able to achieve highly reproducible film characteristics on sapphire, silicon dioxide on silicon, and silicon nitride on silicon. Intrinsic film stress was minimised by optimising the argon pressure, giving NbN films having Tc = 14.65 K. In the paper, we report characteris...

  3. Light-emitting diode therapy increases collagen deposition during the repair process of skeletal muscle.

    Science.gov (United States)

    de Melo, Claudia Aparecida Viana; Alves, Agnelo Neves; Terena, Stella Maris Lins; Fernandes, Kristianne Porta Santos; Nunes, Fábio Daumas; da Silva, Daniela de Fátima Teixeira; Bussadori, Sandra Kalil; Deana, Alessandro Melo; Mesquita-Ferrari, Raquel Agnelli

    2016-04-01

    This study analyzed the effects of light-emitting diode (LED) therapy on the morphology of muscle tissue as well as collagen remodeling and matrix metalloproteinase 2 (MMP-2) activity in the skeletal muscle of rats following acute injury. Wistar rats were divided into four groups: (1) control, (2) sham, (3) untreated cryoinjury, and (4) cryoinjury treated with LED. Cryoinjury was induced by two applications of a metal probe cooled in liquid nitrogen directly onto the belly of the tibialis anterior muscle. For treatment, the LED equipment (wavelength 850 nm, output power 30 mW, and total energy 3.2 J) was used daily. The study periods were 1, 3, and 7 days after cryoinjury. Morphological aspects were evaluated through hematoxylin-eosin staining. The amount of collagen fibers was evaluated using Picro Sirius Red staining under polarized light. The gelatinase activity of MMP-2 was evaluated using zymography. The results showed significant reductions in inflammatory infiltrate after 3 days and an increased number of immature muscle fibers after 7 days. Furthermore, treatment induced a reduction in the gelatinolytic activity of MMP-2 after 1, 3, and 7 days in comparison to the untreated injury groups and increased the collagen deposition after 3 and 7 days in the treated groups. LED therapy at 850 nm induced a significant reduction in inflammation, decreased MMP-2 activity, and increased the amount of immature muscle and collagen fibers during the muscle repair process following acute injury.

  4. Laser-processing of VO2 thin films synthesized by polymer-assisted-deposition

    Science.gov (United States)

    Breckenfeld, Eric; Kim, Heungsoo; Gorzkowski, Edward P.; Sutto, Thomas E.; Piqué, Alberto

    2017-03-01

    We investigate a novel route for synthesis and laser-sintering of VO2 thin films via solution-based polymer-assisted-deposition (PAD). By replacing the traditional solvent for PAD (water) with propylene glycol, we are able to control the viscosity and improve the environmental stability of the precursor. The solution stability and ability to control the viscosity makes for an ideal solution to pattern simple or complex shapes via direct-write methods. We demonstrate the potential of our precursor for printing applications by combining PAD with laser induced forward transfer (LIFT). We also demonstrate large-area film synthesis on 4 in. diameter glass wafers. By varying the annealing temperature, we identify the optimal synthesis conditions, obtaining optical transmittance changes of 60% at a 2500 nm wavelength and a two-order-of-magnitude semiconductor-to-metal transition. We go on to demonstrate two routes for improved semiconductor-to-metal characteristics. The first method uses a multi-coating process to produce denser films with large particles. The second method uses a pulsed-UV-laser sintering step in films annealed at low temperatures (<450° C) to promote particle growth and improve the semiconductor-to-metal transition. By comparing the hysteresis width and semiconductor-to-metal transition magnitude in these samples, we demonstrate that both methods yield high quality VO2 with a three-order-of-magnitude transition.

  5. Impact of the Fused Deposition (FDM Printing Process on Polylactic Acid (PLA Chemistry and Structure

    Directory of Open Access Journals (Sweden)

    Michael Arthur Cuiffo

    2017-06-01

    Full Text Available Polylactic acid (PLA is an organic polymer commonly used in fused deposition (FDM printing and biomedical scaffolding that is biocompatible and immunologically inert. However, variations in source material quality and chemistry make it necessary to characterize the filament and determine potential changes in chemistry occurring as a result of the FDM process. We used several spectroscopic techniques, including laser confocal microscopy, Fourier transform infrared (FTIR spectroscopy and photoacousitc FTIR spectroscopy, Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS in order to characterize both the bulk and surface chemistry of the source material and printed samples. Scanning electron microscopy (SEM and differential scanning calorimetry (DSC were used to characterize morphology, cold crystallinity, and the glass transition and melting temperatures following printing. Analysis revealed calcium carbonate-based additives which were reacted with organic ligands and potentially trace metal impurities, both before and following printing. These additives became concentrated in voids in the printed structure. This finding is important for biomedical applications as carbonate will impact subsequent cell growth on printed tissue scaffolds. Results of chemical analysis also provided evidence of the hygroscopic nature of the source material and oxidation of the printed surface, and SEM imaging revealed micro- and submicron-scale roughness that will also impact potential applications.

  6. Erosional and Depositional Processes of the 18 March 2007 Lahar at Mt. Ruapehu, New Zealand

    Science.gov (United States)

    Kastl, B. C.; Fagents, S. A.; Houghton, B. F.

    2010-12-01

    Spatiotemporal variability in the deposits of lahars offers clues into the characteristics and fluid dynamics of sediment-laden flows. The 18 March 2007 Crater Lake break-out lahar at Mount Ruapehu, New Zealand, emplaced 1.4 million m3 of boulder-bearing, matrix-rich, massively and weakly bedded deposits over the first 47.4 km of its flow-path. Traditionally these would be classified as debris flow and hyperconcentrated flow deposits, respectively. Grain size and componentry analyses were performed on samples collected over the first 11 km of flow path, for both the 2007 lahar and existing deposits that contributed sediment to the lahar. Heavily altered landslide material contributed a major proportion of sediment to the flow 0.6 km from source, and was used as a marker to establish downstream evolution of flow characteristics. Variations in the proportions of altered material with grain size suggest that abrasion and cataclasis occurred during transport. Furthermore, oxidized components are more rounded than all other sediment contributions, demonstrating greater vulnerability of the former to mechanical breakdown. Ten of sixteen samples of the 2007 lahar have distinctive sand-sized (1-2 Φ) secondary modes that become more pronounced with depth in the deposit, while primary modes coarsen. Similar but primary modes of 1-2 Φ exist 7 km from source, in deposits near the head of a side channel that captured the upper portion of the lahar after it overtopped a drainage divide. The grain size data suggest that sand may percolate downwards from a dilute upper region of the flow into a lower depositional region. We put forth a model for deposition in the first 11 km reach by the waning hyperconcentrated phase of a lahar with a concentrated basal flow but a strong vertical concentration gradient. During peak sediment concentration, the laminar basal region underwent en masse deposition, containing an abundance of sand. As the sediment concentration decreased over time

  7. Shale depositional processes: Example from the Paleozoic Barnett Shale, Fort Worth Basin, Texas, USA

    Science.gov (United States)

    Abouelresh, Mohamed; Slatt, Roger

    2011-12-01

    A long held geologic paradigm is that mudrocks and shales are basically the product of `hemipelagic rain' of silt- and/or clay-sized, detrital, biogenic and particulate organic particles onto the ocean floor over long intervals of time. However, recently published experimental and field-based studies have revealed a plethora of micro-sedimentary features that indicate these common fine-grained rocks also could have been transported and/or reworked by unidirectional currents. In this paper, we add to this growing body of knowledge by describing such features from the Paleozoic Barnett Shale in the Fort Worth Basin, Texas, U.S.A. which suggests transport and deposition was from hyperpycnal, turbidity, storm and/or contour currents, in addition to hemipelagic rain. On the basis of a variety of sedimentary textures and structures, six main sedimentary facies have been defined from four 0.3 meter intervals in a 68m (223 ft) long Barnett Shale core: massive mudstone, rhythmic mudstone, ripple and low-angle laminated mudstone, graded mudstone, clay-rich facies, and spicule-rich facies. Current-induced features of these facies include mm- to cmscale cross- and parallel-laminations, scour surfaces, clastic/biogenic particle alignment, and normal- and inverse-size grading. A spectrum of vertical facies transitions and bed types indicate deposition from waxing-waning flows rather than from steady `rain' of particles to the sea floor. Detrital sponge spicule-rich facies suggests transport to the marine environment as hypopycnal or hyperpycnal flows and reversal in buoyancy by transformation from concentrated to dilute flows; alternatively the spicules could have originated by submarine slumping in front of contemporaneous shallow marine sponge reefs, and then transported basinward as turbidity current flows. The occurrence of dispersed biogenic/organic remains and inversely size graded mudstones also support a hyperpycnal and/or turbidity flow origin for a significant part of

  8. Correlation of Fracture Mode Transition of Ceramic Particle with Critical Velocity for Successful Deposition in Vacuum Kinetic Spraying Process

    Science.gov (United States)

    Park, Hyungkwon; Kim, Jinyoung; Lee, Sung Bo; Lee, Changhee

    2016-12-01

    Vacuum kinetic spraying (VKS) is a promising room-temperature process to fabricate dense ceramic films. However, unfortunately, the deposition mechanism is still not clearly understood. In this respect, the critical conditions for successful deposition were investigated. Based on simulation and microstructural analysis, it was found that as the particle velocity increased, fracture mode transition from tensile fracture to shear fracture occurred and particle did not bounce off anymore above a certain velocity. Simultaneously, particle underwent shock-induced plasticity and dynamic fragmentation. The plasticity assisted to prevent the fragments from rebounding by spending the excessive kinetic energy and fragmentation is essential for fragment bonding and film growth considering that the deposition rate increased as the fraction of fragmentation increased. Accordingly, plasticity and fragmentation take a crucial role for particle deposition. In this respect, the velocity that fracture mode transition occurs is newly defined as critical velocity. Consequently, for successful deposition, the particle should at least exceed the critical velocity and thus it is very crucial for film fabrication in VKS process at room temperature.

  9. North Atlantic Ocean deep-water processes and depositional environments: A study of the Cenozoic Norway Basin

    Science.gov (United States)

    Oline Hjelstuen, Berit; Andreassen, Elin V.

    2015-04-01

    Despite the enormous areas deep-water basins occupy in modern oceans, our knowledge about them remains poor. At depths of greater than 2000 m, the Cenozoic Norway Basin in the northernmost part of the Atlantic Ocean, is one such basin. Interpretation of 2D multichannel seismic data suggests a three-stage evolution for the Norway Basin. (1) Eocene-Pliocene. This time period is characterised by deposition of ooze-rich sediments in a widening and deepening basin. (2) Early-Middle Pleistocene. A significant shift in sedimentary processes and depositional environments took place in the Early Pleistocene. Mass failures initiated on the Norwegian continental slope, and three Early and Middle Pleistocene slide debrites, with maximum thicknesses of 600 m and sediment volumes of up to 25000 km3, were deposited. With ages estimated at c. 2.7-1.7 Ma, 1.7-1.1 Ma and 0.5 Ma, these slide deposits are among the largest identified worldwide, and among the oldest mapped along the entire NE Atlantic continental margin. (3) Late Pleistocene-Present. Since c. 0.5 Ma the Norway Basin has been effected by glacigenic debris flows, the Storegga Slide and hemipelagic-glacimarine sedimentation. These sedimentary processes were active during a time of repeated shelf-edge ice advances along the NE Atlantic continental margin. This study shows that deep-water basins represent dynamic depositional environments reflecting regional tectonic and climatic changes trough time.

  10. Effect of high-temperature buffer thickness on quality of AlN epilayer grown on sapphire substrate by metalorganic chemical vapor deposition

    Institute of Scientific and Technical Information of China (English)

    Liu Bo; Zhang Sen; Yin Jia-Yun; Zhang Xiong-Wen; Dun Shao-Bo; Feng Zhi-Hong; Cai Shu-Jun

    2013-01-01

    The effect of an initially grown high-temperature AlN buffer (HT-AlN) layer's thickness on the quality of an AlN epilayer grown on sapphire substrate by metalorganic chemical vapor deposition (MOCVD) in a two-step growth process is investigated.The characteristics of AIN epilayers are analyzed by using triple-axis crystal X-ray diffraction (XRD) and atomic force microscopy (AFM).It is shown that the crystal quality of the AlN epilayer is closely related to its correlation length.The correlation length is determined by the thickness of the initially grown HT-AIN buffer layer.We find that the optimal HT-AlN buffer thickness for obtaining a high-quality AlN epilayer grown on sapphire substrate is about 20 nm.

  11. Linking microbial ultrastructure and physiology to iron depositional processes in deep sea hydrothermal environments

    Science.gov (United States)

    Chan, C. S.; Fleming, E. J.; Emerson, D.; Edwards, K. J.

    2008-12-01

    directional growth may be useful in detecting microscale environmental gradients. Furthermore, this behavior may be preserved in the fossil record, which would allow provide insight into the chemistry of past microenvironments. Experiments are being performed to determine the rate of stalk Fe deposition per cell, in order to relate microbial scale processes to geologic-scale deposits. We are currently investigating the details of taxis and motility. Given available data, we posit a life cycle that involves the following: (1) a "free" stalk-less swimming cell, (2) the cell attaches to a solid surface and starts forming a stalk, (3) depending upon the microenvironment, stalks may grow toward higher oxygen (4) stalk growth stops when conditions no longer sustain cell metabolism and the cell detaches to become a free- swimming cell once again. This study gives yields a better understanding of how these microbes colonize and control chemical gradients in deep-sea microbial mats, and provides criteria to evaluate the biogenicity and environments of fossilized mats. We are beginning cryoelectron tomography studies of M. ferrooxydans, in which we will observe internal and external ultrastructure, allowing us to localize the cellular machinery involved in stalk formation, iron oxidation, and biomineralization.

  12. Microwave processing of epoxy resins and synthesis of carbon nanotubes by microwave plasma chemical vapor deposition

    Science.gov (United States)

    Zong, Liming

    Microwave processing of advanced materials has been studied as an attractive alternative to conventional thermal processing. In this dissertation, work was preformed in four sections. The first section is a review on research status of microwave processing of polymer materials. The second section is investigation of the microwave curing kinetics of epoxy resins. The curing of diglycidyl ether of bisphenol A (DGEBA) and 3, 3'-diaminodiphenyl sulfone (DDS) system under microwave radiation at 145 °C was governed by an autocatalyzed reaction mechanism. A kinetic model was used to describe the curing progress. The third section is a study on dielectric properties of four reacting epoxy resins over a temperature range at 2.45 GHz. The epoxy resin was DGEBA. The four curing agents were DDS, Jeffamine D-230, m-phenylenediamine, and diethyltoluenediamine. The mixtures of DGEBA and the four curing agents were stoichiometric. The four reacting systems were heated under microwave irradiation to certain cure temperatures. Measurements of temperature and dielectric properties were made during free convective cooling of the samples. The cooled samples were analyzed with a Differential Scanning Calorimeter to determine the extents of cure. The Davidson-Cole model can be used to describe the dielectric data. A simplified Davidson-Cole expression was proposed to calculate the parameters in the Davidson-Cole model and describe the dielectric properties of the DGEBA/DDS system and part of the dielectric data of the other three systems. A single relaxation model was used with the Arrhenius expression for temperature dependence to model the results. The evolution of all parameters in the models during cure was related to the decreasing number of the epoxy and amine groups in the reactants and the increasing viscosity of the reacting systems. The last section is synthesis of carbon nanotubes (CNTs) on silicon substrate by microwave plasma chemical vapor deposition of a gas mixture of

  13. SiNx coatings deposited by reactive high power impulse magnetron sputtering: Process parameters influencing the residual coating stress

    Science.gov (United States)

    Schmidt, S.; Hänninen, T.; Wissting, J.; Hultman, L.; Goebbels, N.; Santana, A.; Tobler, M.; Högberg, H.

    2017-05-01

    The residual coating stress and its control is of key importance for the performance and reliability of silicon nitride (SiNx) coatings for biomedical applications. This study explores the most important deposition process parameters to tailor the residual coating stress and hence improve the adhesion of SiNx coatings deposited by reactive high power impulse magnetron sputtering (rHiPIMS). Reactive sputter deposition and plasma characterization were conducted in an industrial deposition chamber equipped with pure Si targets in N2/Ar ambient. Reactive HiPIMS processes using N2-to-Ar flow ratios of 0 and 0.28-0.3 were studied with time averaged positive ion mass spectrometry. The coatings were deposited to thicknesses of 2 μm on Si(001) and to 5 μm on polished CoCrMo disks. The residual stress of the X-ray amorphous coatings was determined from the curvature of the Si substrates as obtained by X-ray diffraction. The coatings were further characterized by X-ray photoelectron spectroscopy, scanning electron microscopy, and nanoindentation in order to study their elemental composition, morphology, and hardness, respectively. The adhesion of the 5 μm thick coatings deposited on CoCrMo disks was assessed using the Rockwell C test. The deposition of SiNx coatings by rHiPIMS using N2-to-Ar flow ratios of 0.28 yield dense and hard SiNx coatings with Si/N ratios <1. The compressive residual stress of up to 2.1 GPa can be reduced to 0.2 GPa using a comparatively high deposition pressure of 600 mPa, substrate temperatures below 200 °C, low pulse energies of <2.5 Ws, and moderate negative bias voltages of up to 100 V. These process parameters resulted in excellent coating adhesion (ISO 0, HF1) and a low surface roughness of 14 nm for coatings deposited on CoCrMo.

  14. Microstructure, optical and electrical properties of Al-doped ZnO films grown by MOCVD

    Energy Technology Data Exchange (ETDEWEB)

    Su, Jianfeng, E-mail: sujianfengvy@gmail.com [Department of Mathematics and Physics, Luoyang Institute of Science and Technology, Luoyang 471023 (China); Tang, Chunjuan; Niu, Qiang; Zang, Chunhe; Zhang, Yongsheng [Department of Mathematics and Physics, Luoyang Institute of Science and Technology, Luoyang 471023 (China); Fu, Zhuxi [Department of Physics, University of Science and Technology of China, Hefei 230026 (China)

    2012-09-01

    Highlights: Black-Right-Pointing-Pointer Al-doped ZnO films were grown on quartz substrates by MOCVD. Black-Right-Pointing-Pointer The preferred orientation of ZnO films decreased with the increase of Al content. Black-Right-Pointing-Pointer Decomposition products of TMA bringing down the surface activity of ZnO grains. Black-Right-Pointing-Pointer UV emission peak initially red-shifted and then blue-shifted as increasing Al content. Black-Right-Pointing-Pointer Low electrical resistivity of Al-doped ZnO films was obtained. - Abstract: Al-doped ZnO films were grown on quartz substrates by MOCVD. A systematical and detailed study about the effect of Al content on structural, optical and electrical properties were discussed. XRD measurements revealed that the preferred orientation of ZnO films decreased with the increase of Al content. AFM images indicated that the TMA molecules or their decomposition products bringing down the surface activity of ZnO grains, and so grain growth is inhibited. By the band tail states and the quantum confinement effect, the UV emission peak initially red-shifted and then blue-shifted. All Al-doped samples demonstrated more than 80% of the optical transparency in the visible region. Low electrical resistivity of Al-doped ZnO films was obtained. However, due to defects and grain boundary scattering which caused by Al doping, the hall mobility is increased initially and then decreased.

  15. Molecular dynamics simulation of the formation of sp3 hybridized bonds in hydrogenated diamondlike carbon deposition processes.

    Science.gov (United States)

    Murakami, Yasuo; Horiguchi, Seishi; Hamaguchi, Satoshi

    2010-04-01

    The formation process of sp3 hybridized carbon networks (i.e., diamondlike structures) in hydrogenated diamondlike carbon (DLC) films has been studied with the use of molecular-dynamics simulations. The processes simulated in this study are injections of hydrocarbon (CH3 and CH) beams into amorphous carbon (a-C) substrates. It has been shown that diamondlike sp3 structures are formed predominantly at a subsurface level when the beam energy is relatively high, as in the "subplantation" process for hydrogen-free DLC deposition. However, for hydrogenated DLC deposition, the presence of abundant hydrogen at subsurface levels, together with thermal spikes caused by energetic ion injections, substantially enhances the formation of carbon-to-carbon sp3 bonds. Therefore, the sp3 bond formation process for hydrogenated DLC films essentially differs from that for hydrogen-free DLC films.

  16. Handbook of thin film deposition processes and techniques principles, methods, equipment and applications

    CERN Document Server

    Seshan, Krishna

    2002-01-01

    New second edition of the popular book on deposition (first edition by Klaus Schruegraf) for engineers, technicians, and plant personnel in the semiconductor and related industries. This book traces the technology behind the spectacular growth in the silicon semiconductor industry and the continued trend in miniaturization over the last 20 years. This growth has been fueled in large part by improved thin film deposition techniques and the development of highly specialized equipment to enable this deposition. The book includes much cutting-edge material. Entirely new chapters on contamination and contamination control describe the basics and the issues-as feature sizes shrink to sub-micron dimensions, cleanliness and particle elimination has to keep pace. A new chapter on metrology explains the growth of sophisticated, automatic tools capable of measuring thickness and spacing of sub-micron dimensions. The book also covers PVD, laser and e-beam assisted deposition, MBE, and ion beam methods to bring together a...

  17. Structure, morphology and Raman and optical spectroscopic analysis of In1-xCuxP thin films grown by MOCVD technique for solar cell applications

    Science.gov (United States)

    Alshahrie, Ahmed; Juodkazis, S.; Al-Ghamdi, A. A.; Hafez, M.; Bronstein, L. M.

    2017-10-01

    Nanocrystalline In1-xCuxP thin films (0 ≤ x ≤ 0.5) have been deposited on quartz substrates by a Metal-Organic Chemical Vapor Deposition (MOCVD) technique. The effect of the copper ion content on the structural crystal lattice, morphology and optical behavior of the InP thin films was assessed using X-ray diffraction, scanning electron microscopy, atomic force microscopy, Raman spectroscopy and spectrophotometry. All films exhibited a crystalline cubic zinc blende structure, inferring the solubility of the Cu atoms in the InP crystal structure. The XRD patterns demonstrated that the inclusion of Cu atoms into the InP films forced the nanoparticles in the films to grow along the (1 1 1) direction. The AFM topography showed that the Cu ions reduce the surface roughness of deposited films. The Raman spectra of the deposited films contain the first and second order anti-stoke ΓTO, ΓLO, ΧLO + ΧTO, 2ΓTO, and ΓLO + ΓTO bands which are characteristic of the InP crystalline structure. The intensities of these bands decreased with increasing the content of the Cu atoms in the InP crystals implying the creation of a stacking fault density in the InP crystal structure. The In1-xCuxP thin films have shown high optical transparency of 90%. An increase of the optical band gap from 1.38 eV to 1.6 eV was assigned to the increase of the amount of Cu ions in the InP films. The In0.5Cu0.5P thin film exhibited remarkable optical conductivity with very low dissipation factor which makes it a promising buffer window for solar energy applications.

  18. Electron backscatter diffraction analysis on the microstructures of electrolytic Cu deposition in the through hole filling process

    Energy Technology Data Exchange (ETDEWEB)

    Ho, C.E., E-mail: ceho1975@hotmail.com [Department of Chemical Engineering and Materials Science, Yuan Ze University, Taiwan, ROC (China); Liao, C.W. [Department of Chemical Engineering and Materials Science, Yuan Ze University, Taiwan, ROC (China); School of Physics and Technology, Wuhan University, Wuhan, Hubei 430072 (China); Pan, C.X. [School of Physics and Technology, Wuhan University, Wuhan, Hubei 430072 (China); Chen, H.J. [Department of Chemical Engineering and Materials Science, Yuan Ze University, Taiwan, ROC (China); Kuo, J.C.; Chen, D. [Department of Materials Science and Engineering, National Cheng Kung University, Taiwan, ROC (China)

    2013-10-01

    Through hole (TH) filling by electrolytic Cu deposition has become a critical process for high density interconnection technologies associated with three-dimensional packaging. In this study, the morphological and crystallographic evolutions of the electrolytic Cu TH filling with the plating time (t) were investigated using an optical microscope and a field-emission scanning electron microscope equipped with an electron backscatter diffraction (EBSD) analysis system. The Cu deposition rate in the TH was strongly dependent on t, which was established at a moderate rate of ∼ 0.3 μm/min at t = 40 min–74 min, then dramatically accelerated to ∼ 4 μm/min at t = 74 min–80 min (termed “fast deposition regime”), and subsequently decelerated in the final plating regime (t = 80 min–100 min). EBSD analyses showed that the electrolytic Cu predominantly possessed high-angle grain boundaries with strong coincidence site lattices at ∑3 (60° rotation at <111>) and ∑9 (38.9° rotation at <101>) for all t examined. Interestingly, the [111]‖TD (transverse direction) orientation displayed a relatively strong presence in the initial induction regime, while the [111]‖TD + [101]‖TD orientations with large grain sizes became dominant in the fast deposition regime (i.e., t = 74 min–80 min), and there was a very low concentration of the [111]‖TD orientation in the final deposition regime. This research offered a better understanding of the morphological and crystallographic evolutions in each stage of the electrolytic Cu TH filling. - Highlights: • Through hole (TH) filling by electrolytic Cu deposition • The Cu deposition rate is strongly dependent on the plating time in the THs. • The dominant Cu orientations were [111]‖TD (transverse direction) and [101]‖TD. • Cu possessed high angle grain boundaries with strong coincidence site lattices.

  19. Studies on Effect of Fused Deposition Modelling Process Parameters on Ultimate Tensile Strength and Dimensional Accuracy of Nylon

    Science.gov (United States)

    Basavaraj, C. K.; Vishwas, M.

    2016-09-01

    This paper discusses the process parameters for fused deposition modelling (FDM). Layer thickness, Orientation angle and shell thickness are the process variables considered for studies. Ultimate tensile strength, dimensional accuracy and manufacturing time are the response parameters. For number of experimental runs the taguchi's L9 orthogonal array is used. Taguchis S/N ratio was used to identify a set of process parameters which give good results for respective response characteristics. Effectiveness of each parameter is investigated by using analysis of variance. The material used for the studies of process parameter is Nylon.

  20. Nanostructured TaxC interlayer synthesized via double glow plasma surface alloying process for diamond deposition on cemented carbide

    Science.gov (United States)

    Rong, Wolong; Hei, Hongjun; Zhong, Qiang; Shen, Yanyan; Liu, Xiaoping; Wang, Xin; Zhou, Bing; He, Zhiyong; Yu, Shengwang

    2015-12-01

    The aim in this work was to improve the adhesion of diamond coating with pre-deposition of a TaxC interlayer on cemented carbide (WC-Co) substrate by double glow plasma surface alloying technique. The following deposition of diamond coating on the interlayer was performed in a microwave plasma chemical vapor deposition (MPCVD) reactor. TaxC interlayer with an inner diffusion layer and an outer deposition layer was composed of Ta2C and TaC nanocrystalline, and it exhibited a special compact surface morphology formed of flower-shaped pits. As the gradual element distributions existed in the diffusion layer, the interlayer displayed a superior adherence to the substrate with significantly enhanced surface microhardness to the original substrate. After CVD process, the preferred orientation of TaC changed from (2 2 2) to (2 0 0) plane, and a uniform and tense diamond coating with adhesion referred to class HF 2 at least (Verein Deutscher Ingenieure 3198 norm) was obtained on the interlayered substrate. It indicated that the diffusion of Co was effectively inhibited by the formation of TaxC diffusion-deposition interlayer. The TaxC interlayer is most likely to improve the performance of diamond coatings used in cutting tools.

  1. Perspective: Highly ordered MoS2 thin films grown by multi-step chemical vapor deposition process

    Directory of Open Access Journals (Sweden)

    S. N. Heo

    2016-03-01

    Full Text Available We established a process for growing highly ordered MoS2 thin films. The process consists of four steps: MoO3 thermal evaporation, first annealing, sulfurization, and second annealing. The main feature of this process is that thermally deposited MoO3 thin films are employed as a precursor for the MoS2 films. The first deposition step enabled us to achieve precise control of the resulting thickness of the MoS2 films with high uniformity. The crystalline structures, surface morphologies, and chemical states at each step were characterized by X-ray diffraction, atomic force microscopy, Raman spectroscopy, and X-ray photoelectron spectroscopy. Based on these characterizations and a careful optimization of the growth conditions, we successfully produced a highly oriented MoS2 thin film with a thickness of five monolayers over an entire one-centimeter-square sapphire substrate.

  2. DEPOSITION OF TiBN HARD FILMS ON HOT-WORKING-STEEL DIES FOR ALUMINIUM EXTRUSION VIA A DUPLEX PROCESS

    Institute of Scientific and Technical Information of China (English)

    K. MUller

    2001-01-01

    Hot working steels have been used as die materials for hot extrusion of aluminium.Due to tribological interaction at elevated temperature between the die bearing and thesurface of extruded aluminium profiles, not only the surface quality of the extrudedproduct, but also the lifetime of the dies decreases. Deposition of TiBN hard films onthe die bearing could improve the die performance. Treatment should be done in aduplex process process combining a plasma nitriding pretreatment (PN) and a plasmaassisted chemical vapour deposition (PACVD) of TiBN. In this study the influence ofthe process conditions on the properties of the duplex coatings was investigated. Therelationship between structure and mechanical property was researched. For testingthese TiBN hardfilms under elevated temperature conditions and for comparison withother possible coatings special extrusion dies with different coated bearings were used.The extrusion trials were performed on the 8MN-extrusion press at the research anddevelopment center for extrusion, Technical University of Berlin.

  3. Co3O4 protective coatings prepared by Pulsed Injection Metal Organic Chemical Vapour Deposition

    DEFF Research Database (Denmark)

    Burriel, M.; Garcia, G.; Santiso, J.

    2005-01-01

    Cobalt oxide films were grown by Pulsed Injection Metal Organic Chemical Vapour Deposition (PI-MOCVD) using Co(acac)(3) (acac=acetylacetonate) precursor dissolved in toluene. The structure, morphology and growth rate of the layers deposited on silicon substrates were studied as a function...... of deposition temperature. Pure Co3O4 spinel structure was found for deposition temperatures ranging from 360 to 540 degreesC. The optimum experimental parameters to prepare dense layers with a high growth rate were determined and used to prepare corrosion protective coatings for Fe-22Cr metallic interconnects...

  4. Development of coatings for ultrasonic additive manufacturing sonotrode using laser direct metal deposition process

    Energy Technology Data Exchange (ETDEWEB)

    Sridharan, Niyanth [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Dehoff, Ryan R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jordan, Brian H. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Babu, Sudarsanam Suresh [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-10-01

    ORNL partnered with Fabrisonic, LLC to develop galling resistant hard facing coatings on sonotrodes used to fabricate 3D printed materials using ultrasonic additive manufacturing. The development and deployment of a coated sonotrode is expected to push the existing state of the art to facilitate the solidstate additive manufacturing of hard steels and titanium alloys. To this effect a structurally amorphous stainless steel material and cobalt chrome material were deposited on the sonotrode material. Both the deposits showed good adhesion to the substrate. The coatings made using the structurally amorphous steel materials showed cracking during the initial trials and cracking was eliminated by deposition on a preheated substrate. Both the coatings show hardness in excess of 600 HVN. Thus the phase 1 of this project has been used to identify suitable materials to use to coat the sonotrode. Despite the fact that successful deposits were obtained, the coatings need to be evaluated by performing detailed galling tests at various temperatures. In addition field tests are also necessary to test the stability of these coatings in a high cycle ultrasonic vibration mode. If awarded, phase 2 of the project would be used to optimize the composition of the deposit material to maximize galling resistance. The industrial partner would then use the coated sonotrode to fabricate builds made of austenitic stainless steel to test the viability of using a coated sonotrode.

  5. Correlations between optical properties, microstructure, and processing conditions of Aluminum nitride thin films fabricated by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Baek, Jonghoon [Department of Electrical and Computer Engineering, Texas Materials Institute, University of Texas at Austin, Austin, Texas 78712 (United States)]. E-mail: jhoon6@hotmail.com; Ma, James [Materials Science and Engineering Program, Texas Materials Institute, University of Texas at Austin, Austin, Texas 78712 (United States); Becker, Michael F. [Department of Electrical and Computer Engineering, Texas Materials Institute, University of Texas at Austin, Austin, Texas 78712 (United States); Keto, John W. [Department of Physics, Texas Materials Institute, University of Texas at Austin, Austin, Texas 78712 (United States); Kovar, Desiderio [Department of Mechanical Engineering, Texas Materials Institute, University of Texas at Austin, Austin, Texas 78712 (United States)

    2007-06-25

    Aluminum nitride (AlN) films were deposited using pulsed laser deposition (PLD) onto sapphire (0001) substrates with varying processing conditions (temperature, pressure, and laser fluence). We have studied the dependence of optical properties, structural properties and their correlations for these AlN films. The optical transmission spectra of the produced films were measured, and a numerical procedure was applied to accurately determine the optical constants for films of non-uniform thickness. The microstructure and texture of the films were studied using various X-ray diffraction techniques. The real part of the refractive index was found to not vary significantly with processing parameters, but absorption was found to be strongly dependent on the deposition temperature and the nitrogen pressure in the deposition chamber. We report that low optical absorption, textured polycrystalline AlN films can be produced by PLD on sapphire substrates at both low and high laser fluence using a background nitrogen pressure of 6.0 x 10{sup -2} Pa (4.5 x 10{sup -4} Torr) of 99.9% purity.

  6. Photocatalytic evaluation of self-assembled porous network structure of ferric oxide film fabricated by dry deposition process

    Energy Technology Data Exchange (ETDEWEB)

    Park, Yunchan; Kim, Hyungsub; Lee, Geon-Yong; Pawar, Rajendra C.; Lee, Jai-Sung; Lee, Caroline Sunyong, E-mail: sunyonglee@hanyang.ac.kr

    2016-09-15

    Ferric oxide powder in the alpha phase (α-Fe{sub 2}O{sub 3}) was deposited on an aluminum oxide (Al{sub 2}O{sub 3}) substrate by a nanoparticle deposition system using the dry deposition method. X-ray diffraction (XRD) images confirmed that the phase of the deposited α-Fe{sub 2}O{sub 3} did not change. The deposited α-Fe{sub 2}O{sub 3} was characterized in terms of its microstructure using scanning electron microscopy (SEM). A porous network microstructure formed when small agglomerates of Fe{sub 2}O{sub 3} (SAF) were deposited. The deposition and formation mechanism of the microstructure were investigated using SEM and three-dimensional (3D) profile analysis. First, a dense coating layer formed when the film was thinner than the particle size. After that, as the film thickness increased to over 5 μm, the porous network structure formed by excavating the surface of the coating layer as it was bombarded by particles. Rhodamine B (RhB) was degraded after 6 h of exposure to the Fe{sub 2}O{sub 3} coating layer with SAF, which has good photocatalytic activity and a high porous network structure. The kinetic rate constants of the SAF and large agglomerates of Fe{sub 2}O{sub 3} (LAF) were calculated to be 0.197(h{sup −1}) and 0.128(h{sup −1}), respectively, based on the absorbance results. Using linear sweep voltammetry, we confirmed that the photoelectric effect occurred in the coating layer by measuring the resulting current under illuminated and dark conditions. - Graphical abstract: Self-assembled porous photocatalytic film fabricated by dry deposition method for water purification. - Highlights: • Different sizes of Fe{sub 2}O{sub 3} agglomerates were used to form porous network structure. • Fe{sub 2}O{sub 3} agglomerate particles were deposited using solvent-free process. • Self-assembled porous network microstructure formed better with small agglomerates of Fe{sub 2}O{sub 3}. • Fabricated porous network structure showed its potential to be used

  7. A Humidity Sensor Based on Silver Nanoparticles Thin Film Prepared by Electrostatic Spray Deposition Process

    Directory of Open Access Journals (Sweden)

    Thutiyaporn Thiwawong

    2013-01-01

    Full Text Available In this work, thin film of silver nanoparticles for humidity sensor application was deposited by electrostatic spray deposition technique. The influence of the deposition times on properties of films was studied. The crystal structures of sample films, their surface morphology, and optical properties have been investigated by X-ray diffraction (XRD, field emission scanning electron microscopy (FE-SEM, and UV-VIS spectrophotometer, respectively. The crystalline structure of silver nanoparticles thin film was found in the orientation of (100 and (200 planes of cubic structure at diffraction angles 2θ  =  38.2° and 44.3°, respectively. Moreover, the silver nanoparticles thin films humidity sensor was fabricated onto the interdigitated electrodes. The sensor exhibited the humidity adsorption and desorption properties. The sensing mechanisms of the device were also elucidated by complex impedance analysis.

  8. In situ ellipsometric study of the three-stage process in CuInSe{sub 2} film deposition

    Energy Technology Data Exchange (ETDEWEB)

    Shirakata, Sho; Takahashi, Toshihiro; Matsunaga, Hiroaki [Faculty of Engineering, Ehime University, 3 Bunkyo-cho, Matsuyama (Japan)

    2013-08-15

    In Situ ellipsometric study has been carried out during the deposition of the CuInSe{sub 2} thin film by means of the three-stage process. A rotator analyzing ellipsomerter using a 632.8 nm He-Ne laser was used. Ellipsometric parameters ({Psi} and {Delta}) and reflectivity R was obtained during the entire deposition stages, in which a complex reflection coefficient is {rho}=tan{Psi} exp(i{Delta}). Cu, In and Se were deposited on the Mo-coated SLG substrate. At the first-stage (In-Se deposition), the In-Se film deposition rate and its reflactive index has been obtained on the basis of the light interference. At the second-stage, changes in both {Psi} and {Delta} are observed. Based on the X-ray diffraction measurement, these changes are related to the stoichiometric composition of the film from In-rich to Cu-rich. This signal was utilized as a process switch from the second-stage to the third-stage. At the third stage, the weak change in {Psi} has been observed showing the change of the stoichiometric composition from the Cu- rich to the In-rich. By means of the in situ ellipsometry-controlled three-stage process, the CuInSe{sub 2} layer with single phase chalcopyrite structure has successfully been prepared, which exhibits an intense near-band-edge photoluminescence at 0.998 eV at room temperature. The preliminary fabricated ZnO/CdS/CuInSe{sub 2} solar cell exhibited a conversion efficiency of 5.6%. (copyright 2013 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  9. Preparation and characteristics of C/C composite brake disc by multi-cylindrical chemical vapor deposition processes

    Institute of Scientific and Technical Information of China (English)

    YUAN Yi-dong; ZHANG Fu-kuan; ZHOU Wan-cheng

    2005-01-01

    The C/C composite brake discs were prepared by tri-cylindrical chemical vapor deposition (CVD) process. The optimum processing parameters were as follows: deposition temperature was 830-930 ℃, the gas-flow rates of N2 and propylene were 4.8-5.2 m3/h and 5.8-6.2 m3/h, respectively, the furnace pressure was 4.5-5.5 kPa and the deposition time was 200 h.The effects of processing parameters on the densified rates, thermal-physical property and mechanical performance of C/C composite brake discs were studied. The results show that density, heat conductivity, bend strength and abrasion ratio of the multi-cylindrica brake discs are 1.02-1.78 g/cm3, 31 W/(m·K), 114 MPa and 7 μm/s, respectively, which are approximately similar to those of the single-cylindrical ones. The gas flow rate has no relation to the number of the cylinder and furnace loading. The utilization ratio of carbon can be improved by multi-cylinder CVD process without changing the characteristics of brake disc.

  10. Room Temperature Deposition Processes Mediated By Ultrafast Photo-Excited Hot Electrons

    Science.gov (United States)

    2014-01-30

    unreliable fabrication methods . Further, a technique to mass-produce diamond wafers, such as the Czochralski method for silicon, has not yet been...developed the first known method for the selective heteroepitaxial deposition of diamond patterning, potentially paving the way for an all-diamond

  11. Deposition and characterization of La 2Ti 2O 7 thin films via spray pyrolysis process

    Science.gov (United States)

    Todorovsky, D. S.; Todorovska, R. V.; Milanova, M. M.; Kovacheva, D. G.

    2007-03-01

    Thin films of La 2Ti 2O 7 have been deposited on fused silica and Si substrates by a spray pyrolysis method using ethylene glycol solution of La(III)-Ti(IV)-citrate complexes as starting material and O 2 as a carrier gas. The composition, crystal structure and morphology of the films are studied.

  12. Direct Deposition of Metal (DDM) as a Repair Process for Metallic Military Parts

    Science.gov (United States)

    2013-01-20

    properties such as, better corrosion resistance , increased strength, increased toughness and finer microstructure. DDM also has improved ductility...Figure 12: Samples after 168 hours salt spray corrosion test UNCLASSIFIED UNCLASSIFIED 15 Stellite 6 Deposit Mechanical Tests • Specimen...less than 1% elongation (from www.matweb.com) • Corrosion test – Stellite material was not subjected to corrosion testing. Figure 13

  13. Nanoparticle-electrode collision processes: the underpotential deposition of thallium on silver nanoparticles in aqueous solution.

    Science.gov (United States)

    Zhou, Yi-Ge; Rees, Neil V; Compton, Richard G

    2011-08-01

    The electrochemistry of collisions between metal nanoparticles (NPs) and electrode surfaces has been of recent interest with the development of anodic particle coulometry as a characterisation method. For the first time the underpotential deposition of metal ions from solution onto metal nanoparticles during collisions between the NPs and an inert electrode is reported.

  14. Growth Process Conditions of Tungsten Oxide Thin Films Using Hot-Wire Chemical Vapor Deposition

    NARCIS (Netherlands)

    Houweling, Z.S.; Geus, J.W.; de Jong, M.; Harks, P.P.R.M.L.; van der Werf, C.H.M.; Schropp, R.E.I.

    2011-01-01

    We report the growth conditions of nanostructured tungsten oxide (WO3−x) thin films using hot-wire chemical vapor deposition (HWCVD). Two tungsten filaments were resistively heated to various temperatures and exposed to an air flow at various subatmospheric pressures. The oxygen partial pressure was

  15. Theoretical Study of Laser-Stimulated Chemical Vapor Deposition Processes of Importance in Microelectronics.

    Science.gov (United States)

    1983-12-01

    fundamental microscopic theory for the laser-induced periodic surface structure ( LIPSS ), which includes electronic and vibrational degrees of freedom of the...deposition rate. The dynamics of subsequent multilayer LIPSS formation is treated using a metal-metal interaction potential obtained by combining MO theory

  16. An automatic modeling system of the reaction mechanisms for chemical vapor deposition processes using real-coded genetic algorithms.

    Science.gov (United States)

    Takahashi, Takahiro; Nakai, Hiroyuki; Kinpara, Hiroki; Ema, Yoshinori

    2011-09-01

    The identification of appropriate reaction models is very helpful for developing chemical vapor deposition (CVD) processes. In this study, we have developed an automatic system to model reaction mechanisms in the CVD processes by analyzing the experimental results, which are cross-sectional shapes of the deposited films on substrates with micrometer- or nanometer-sized trenches. We designed the inference engine to model the reaction mechanism in the system by the use of real-coded genetic algorithms (RCGAs). We studied the dependence of the system performance on two methods using simple genetic algorithms (SGAs) and the RCGAs; the one involves the conventional GA operators and the other involves the blend crossover operator (BLX-alpha). Although we demonstrated that the systems using both the methods could successfully model the reaction mechanisms, the RCGAs showed the better performance with respect to the accuracy and the calculation cost for identifying the models.

  17. Processes of depositing platinum on carbon nanotubes and their effect on performance of proton exchange membrane fuel cell

    Institute of Scientific and Technical Information of China (English)

    Yanhui Li; Jun Ding; Junfeng Chen; Zongqiang Mao; Cailu Xu; Dehai Wu

    2004-01-01

    The ultrafine platinum nanoparticles deposited on the surfaces of carbon nanotubes (Pt/CNTs) were prepared by a chemical precipitation method and used as the catalyst of proton exchange membrane fuel cell. The depositing process parameters such as the solution pH value, Pt content and treatment temperature were analyzed. The experimental results show that the optimum process parameters to prepare Pt/CNTs are the solution pH value of 7.0, the theoretical Pt content of 25% (mass fraction) and the heating temperature of 500℃, under the conditions the best performance of the proton exchange membrane fuel cell can be obtained and its voltage can reach 580 mV at a current density of 500 mA/cm2.

  18. Trimethyl(phenylsilane — a precursor for gas phase processes of SiCx:H film deposition: Synthesis and characterization

    Directory of Open Access Journals (Sweden)

    Evgeniya N. Ermakova

    2015-12-01

    Full Text Available The technique of synthesis and purification of trimethyl(phenylsilane PhSiMe3, allowing to obtain the product with high yield. Individuality of the product was confirmed by elemental analysis for C, H, Si was developed. IR, UV and 1H NMR-spectroscopic studies were used to define its spectral characteristics. Complex thermal analysis and thermogravimetry defined thermoanalytical behavior of PhSiMe3 in an inert atmosphere. Tensimetric studies have shown that the compound has sufficient volatility and thermal stability for use as a precursor in the process of chemical vapor deposition (CVD. The composition and temperature limits of the possible crystalline phase complexes in equilibrium with the gas phase of different composition has been determined by method of thermodynamic modeling. Calculated CVD diagrams allow us to select the optimal conditions of film deposition. The possibility of using trimethyl(phenylsilane in CVD processes for producing dielectric films of hydrogenated silicon carbide has been demonstrated.

  19. Metallogenesis of superlarge gold deposits in Jiaodong region and deep processes of subcontinental lithosphere beneath North China Craton in Mesozoic

    Institute of Scientific and Technical Information of China (English)

    ZHOU; Xinhua(周新华); YANG; Jinhui(杨进辉); ZHANG; Lianchang(张连昌)

    2003-01-01

    The study of ore-forming chronology indicates that the superlarge gold deposits in the Jiaodong region were formed in 120±10 Ma. Sr-Nd-Pb isotopic compositions from typical gold deposits suggest that ore-forming materials were derived from the multisources, mantle component was partly involved in mineralization, the deep dynamic processes are the major geological background of large-scale metallogenesis in the Jiaodong region in Mesozoic. The deep pro- cesses mainly include the effect of post deep-subduction of continental crust of the central orogen belt and the distant effect of subduction of the paleo-Pacific plate underneath the Eurasian continent. However, lithosphere thinning, crust-mantle interaction, crustal extension and formation of large-type ore-controlling structures would be the comprehensive consequences of the above- mentioned geodynamic processes in the region.

  20. Physicochemical parameters of magmatic and hydrothermal processes at the Yaman-Kasy massive sulfide deposit, the southern Urals

    Science.gov (United States)

    Simonov, V. A.; Kovyazin, S. V.; Terenya, E. O.; Maslennikov, V. V.; Zaykov, V. V.; Maslennikova, S. P.

    2006-10-01

    Melt and fluid inclusions in minerals have been studied and physicochemical parameters of magmatic processes and hydrothermal systems estimated at the Yaman-Kasy copper massive sulfide deposit in the southern Urals. It was established that relatively low-temperature (910-945°C) rhyodacitic melts belonging to the tholeiitic series and containing 2.7-5.2 wt % water participated in the formation of the igneous complexes that host the Yaman-Kasy deposit. As follows from ion microprobe results, these silicic magmas had a primitive character. In the distribution of trace elements, including REE, the rhyodacites are closer to basaltic rather than silicic volcanic rocks, and they are distinguished in this respect from the igneous rocks from other massive sulfide deposits of the Urals and the Rudny Altai. Two types of solutions actively took part in the formation of hydrothermal systems: (1) solutions with a moderate salinity (5-10 wt % dissolved salts) and (2) solutions with a low salinity (a value close to that of seawater or even lower). Concentrated fluids with more than 11.5 wt % dissolved salts were much less abundant. Hydrothermal solutions heated to 130-160, 160-270, or occasionally 280-310°C predominated in ore formation. The sequence of mineral-forming processes at the Yaman-Kasy deposit is demonstrated. Mineral assemblages were formed with an inversion of the parameters characterizing ore-forming solutions. An increase in the temperature and salinity of solutions at the early stages was followed by a decrease at the final stages. The evolution of the hydrothermal system at the Yaman-Kasy deposit has much in common with the parameters of black smokers in the present-day Pacific backarc basins.

  1. Annealing behavior of hexagonal phase content in cubic GaN thin films grown on GaAs (001) by MOCVD

    Institute of Scientific and Technical Information of China (English)

    孙小玲; 杨辉; 王玉田; 李国华; 郑联喜; 李建斌; 徐大鹏; 王占国

    1999-01-01

    The annealing behavior of the hexagonal phase content in cubic GaN (c-GaN) thin films grown on GaAs (001) by MOCVD is reported. C-GaN thin films are grown on GaAs (001) substrates by metalorganic chemical vapor deposition (MOCVD). High temperature annealing is employed to treat the as-grown c-GaN thin films. The characterization of the c-GaN films is investigated by photoluminescence (PL) and Raman scattering spectroscopy. The change conditions of the hexagonal phase content in the metastable c-GaN are reported. There is a boundary layer existing in the c-GaN/GaAs film. When being annealed at high temperature, the intensity of the TOB and LOB phonon modes from the boundary layer weakens while that of the E2 phonon mode from the hexagonal phase increases. The content change of hexagonal phase has closer relationship with annealing temperature than with annealing time period.

  2. Photoluminescence Properties of Two-dimensional Planar Layer and Three-dimensional Island Layer for ZnO Films Grown Using MOCVD

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    ZnO(002) films with different thicknesses ranging from 7 to 300 nm were grown on sapphire(006) substrates via metal-organic chemical vapor deposition(MOCVD). The two-dimensional(2D) planar layer and the three-dimensional(3D) island layer were studied by using of X-ray diffraction(XRD) rocking curves and atomic force microscopy(AFM). The room temperature photoluminescence(PL) spectra show a blue shift of the peak positions of the ultraviolet(UV) emission with increasing film thickness. The blue shift is remarkably high(393-380 nm) when an increase in film thickness(7-15 nm) is accompanied by the change of structure from a2D planar layer to a 3D island layer. The PL spectra at 77 K also indicate that there are different transition mechanisms in the film thickness from a2D planar layer to a 3D island layer near the2D layer region.

  3. Effects of high-temperature annealing on magnetic properties of V-doped GaN thin films grown by MOCVD

    Energy Technology Data Exchange (ETDEWEB)

    Souissi, M., E-mail: mnawer.souissi@fsm.rnu.tn [Higher Institute of Computer Sciences and Communication Techniques of Hammam Sousse, Sousse 4011 (Tunisia); Schmerber, G.; Derory, A. [Institut de Physique et Chimie des Materiaux de Strasbourg (IPCMS) UMR7504 CNRS-UDS, 23 rue du Loess, BP 43, 67034 Strasbourg Cedex 2 (France); El Jani, B. [URHEA, Faculte des Sciences de Monastir, Monastir 5000 (Tunisia)

    2012-08-15

    Metal organic chemical vapor deposition (MOCVD) has been used to grow vanadium-doped GaN (GaN:V) on c-sapphire substrate using VCl{sub 4} as the V source. The as-grown GaN:V exhibited a saturated magnetic moment (M{sub s}) of 0.28 emu/cm{sup 3} at room temperature. Upon high-temperature annealing treatment at 1100 Degree-Sign C for 7 min under N{sub 2} ambient, the M{sub s} of the GaN:V increased by 39.28% to 0.39 emu/cm{sup 3}. We found that rapid thermal annealing leads to a remarkable increase in surface roughness of the V-doped GaN as well as the electron concentration. The annealing also leads to a significant increase in the Curie temperature (T{sub C}), we have identified Curie temperatures about 350 K concluded from the difference between the field-cooled and zero-field-cooled magnetizations. Structure characterization by x-ray diffraction indicated that the ferromagnetic properties are not a result of secondary magnetic phases.

  4. Wafer-level MOCVD growth of AlGaN/GaN-on-Si HEMT structures with ultra-high room temperature 2DEG mobility

    Science.gov (United States)

    Xu, Xiaoqing; Zhong, Jiebin; So, Hongyun; Norvilas, Aras; Sommerhalter, Christof; Senesky, Debbie G.; Tang, Mary

    2016-11-01

    In this work, we investigate the influence of growth temperature, impurity concentration, and metal contact structure on the uniformity and two-dimensional electron gas (2DEG) properties of AlGaN/GaN high electron mobility transistor (HEMT) structure grown by metal-organic chemical vapor deposition (MOCVD) on 4-inch Si substrate. High uniformity of 2DEG mobility (standard deviation down to 0.72%) across the radius of the 4-inch wafer has been achieved, and 2DEG mobility up to 1740.3 cm2/Vṡs at room temperature has been realized at low C and O impurity concentrations due to reduced ionized impurity scattering. The 2DEG mobility is further enhanced to 2161.4 cm2/Vṡs which is comparable to the highest value reported to date when the contact structure is switched from a square to a cross pattern due to reduced piezoelectric scattering at lower residual strain. This work provides constructive insights and promising results to the field of wafer-scale fabrication of AlGaN/GaN HEMT on Si.

  5. Wafer-level MOCVD growth of AlGaN/GaN-on-Si HEMT structures with ultra-high room temperature 2DEG mobility

    Directory of Open Access Journals (Sweden)

    Xiaoqing Xu

    2016-11-01

    Full Text Available In this work, we investigate the influence of growth temperature, impurity concentration, and metal contact structure on the uniformity and two-dimensional electron gas (2DEG properties of AlGaN/GaN high electron mobility transistor (HEMT structure grown by metal-organic chemical vapor deposition (MOCVD on 4-inch Si substrate. High uniformity of 2DEG mobility (standard deviation down to 0.72% across the radius of the 4-inch wafer has been achieved, and 2DEG mobility up to 1740.3 cm2/V⋅s at room temperature has been realized at low C and O impurity concentrations due to reduced ionized impurity scattering. The 2DEG mobility is further enhanced to 2161.4 cm2/V⋅s which is comparable to the highest value reported to date when the contact structure is switched from a square to a cross pattern due to reduced piezoelectric scattering at lower residual strain. This work provides constructive insights and promising results to the field of wafer-scale fabrication of AlGaN/GaN HEMT on Si.

  6. Selective-Area MOCVD Growth and Carrier-Transport-Type Control of InAs(Sb)/GaSb Core-Shell Nanowires.

    Science.gov (United States)

    Ji, Xianghai; Yang, Xiaoguang; Du, Wenna; Pan, Huayong; Yang, Tao

    2016-12-14

    We report the first selective-area growth of high quality InAs(Sb)/GaSb core-shell nanowires on Si substrates using metal-organic chemical vapor deposition (MOCVD) without foreign catalysts. Transmission electron microscopy (TEM) analysis reveals that the overgrowth of the GaSb shell is highly uniform and coherent with the InAs(Sb) core without any misfit dislocations. To control the structural properties and reduce the planar defect density in the self-catalyzed InAs core nanowires, a trace amount of Sb was introduced during their growth. As the Sb content increases from 0 to 9.4%, the crystal structure of the nanowires changes from a mixed wurtzite (WZ)/zinc-blende (ZB) structure to a perfect ZB phase. Electrical measurements reveal that both the n-type InAsSb core and p-type GaSb shell can work as active carrier transport channels, and the transport type of core-shell nanowires can be tuned by the GaSb shell thickness and back-gate voltage. This study furthers our understanding of the Sb-induced crystal-phase control of nanowires. Furthermore, the high quality InAs(Sb)/GaSb core-shell nanowire arrays obtained here pave the foundation for the fabrication of the vertical nanowire-based devices on a large scale and for the study of fundamental quantum physics.

  7. A unique laboratory test rig reduces the need for offshore tests to combat calcium naphthenate deposition in oilfield process equipment.

    Energy Technology Data Exchange (ETDEWEB)

    Mediaas, Heidi; Grande, Knut; Hustad, Britt-Marie; Hoevik, Kim Reidar; Kummernes, Hege; Nergaard, Bjoern; Vindstad, Jens Emil

    2006-03-15

    Producing and refining high-TAN crude oils introduces a number of challenges, among which calcium naphthenate deposition in process facilities is the most serious production issue. Until recently, the only option for studying chemicals and process parameters in order to prevent naphthenate deposition has been field tests. Statoil has now developed a small scale pilot plant where these experiments can be performed in the laboratory at Statoil's Research and Technology Center in Trondheim, Norway. The results from the pilot plant are in full agreement with the extensive naphthenate experience obtained from almost 9 years operation of the Heidrun oilfield. The design and operational procedures for this test facility are based on the recent discovery by Statoil and ConocoPhillips of the ARN acid. The ARN acid is a prerequisite for calcium naphthenate deposition. The new continuous flow pilot plant, the Naphthenate Rig, is used to develop new environmental friendly naphthenate inhibitors and to optimize process operating conditions. Since it operates on real crudes the need for field tests in qualifying new naphthenate inhibitors is reduced. To the best of our knowledge, the rig is the first of its kind in the world. (Author)

  8. Modeling and simulation of the deposition/relaxation processes of polycrystalline diatomic structures of metallic nitride films

    Science.gov (United States)

    García, M. F.; Restrepo-Parra, E.; Riaño-Rojas, J. C.

    2015-05-01

    This work develops a model that mimics the growth of diatomic, polycrystalline thin films by artificially splitting the growth into deposition and relaxation processes including two stages: (1) a grain-based stochastic method (grains orientation randomly chosen) is considered and by means of the Kinetic Monte Carlo method employing a non-standard version, known as Constant Time Stepping, the deposition is simulated. The adsorption of adatoms is accepted or rejected depending on the neighborhood conditions; furthermore, the desorption process is not included in the simulation and (2) the Monte Carlo method combined with the metropolis algorithm is used to simulate the diffusion. The model was developed by accounting for parameters that determine the morphology of the film, such as the growth temperature, the interacting atomic species, the binding energy and the material crystal structure. The modeled samples exhibited an FCC structure with grain formation with orientations in the family planes of , and . The grain size and film roughness were analyzed. By construction, the grain size decreased, and the roughness increased, as the growth temperature increased. Although, during the growth process of real materials, the deposition and relaxation occurs simultaneously, this method may perhaps be valid to build realistic polycrystalline samples.

  9. A Kind of Coating Method of GaN-MOCVD Graphite Susceptor

    Directory of Open Access Journals (Sweden)

    Xiao-feng Wu

    2013-01-01

    Full Text Available A novel coating method for the GaN-MOCVD graphite susceptor is proposed in the paper, which means that the upper surface and sides of the graphite susceptor are covered with a low emissivity material coating, and the surface under the susceptor is covered with a high emissivity SiC coating. By using finite element analysis software COMSOL Multiphysics, the temperature field of the susceptors without coating, with common SiC coating, and with improved coating is obtained and compared, which shows that the susceptor with the improved coating not only increases the heating efficiency of the heater, but also improves the temperature uniformity of the substrate, which can be of great benefit to the film growth. In addition, this improved coating for the susceptor has the same heating sensitivity as the common SiC coating.

  10. Linking the distribution of microbial deposits from the Great Salt Lake (Utah, USA) to tectonic and climatic processes

    Science.gov (United States)

    Bouton, Anthony; Vennin, Emmanuelle; Boulle, Julien; Pace, Aurélie; Bourillot, Raphaël; Thomazo, Christophe; Brayard, Arnaud; Désaubliaux, Guy; Goslar, Tomasz; Yokoyama, Yusuke; Dupraz, Christophe; Visscher, Pieter T.

    2016-10-01

    The Great Salt Lake is a modern hypersaline lake, in which an extended modern and ancient microbial sedimentary system has developed. Detailed mapping based on aerial images and field observations can be used to identify non-random distribution patterns of microbial deposits, such as paleoshorelines associated with extensive polygons or fault-parallel alignments. Although it has been inferred that climatic changes controlling the lake level fluctuations explain the distribution of paleoshorelines and polygons, straight microbial deposit alignments may underline a normal fault system parallel to the Wasatch Front. This study is based on observations over a decimetre to kilometre spatial range, resulting in an integrated conceptual model for the controls on the distribution of the microbial deposits. The morphology, size and distribution of these deposits result mainly from environmental changes (i.e. seasonal to long-term water level fluctuations, particular geomorphological heritage, fault-induced processes, groundwater seepage) and have the potential to bring further insights into the reconstruction of paleoenvironments and paleoclimatic changes through time. New radiocarbon ages obtained on each microbial macrofabric described in this study improve the chronological framework and question the lake level variations that are commonly assumed.

  11. Observations and modelling of soil slip-debris flow initiation processes in pyroclastic deposits: the Sarno 1998 event

    Directory of Open Access Journals (Sweden)

    G. B. Crosta

    2003-01-01

    Full Text Available Pyroclastic soils mantling a wide area of the Campanian Apennines are subjected to recurrent instability phenomena. This study analyses the 5 and 6 May 1998 event which affected the Pizzo d’Alvano (Campania, southern Italy. More than 400 slides affecting shallow pyroclastic deposits were triggered by intense and prolonged but not extreme rainfall. Landslides affected the pyroclastic deposits that cover the steep calcareous ridges and are soil slip-debris flows and rapid mudflows. About 30 main channels were deeply scoured by flows which reached the alluvial fans depositing up to 400 000 m3 of material in the piedmont areas. About 75% of the landslides are associated with morphological discontinuities such as limestone cliffs and roads. The sliding surface is located within the pyroclastic cover, generally at the base of a pumice layer. Geotechnical characterisation of pyroclastic deposits has been accomplished by laboratory and in situ tests. Numerical modelling of seepage processes and stability analyses have been run on four simplified models representing different settings observed at the source areas. Seepage modelling showed the formation of pore pressure pulses in pumice layers and the localised increase of pore pressure in correspondence of stratigraphic discontinuities as response to the rainfall event registered between 28 April and 5 May. Numerical modelling provided pore pressure values for stability analyses and pointed out critical conditions where stratigraphic or morphological discontinuities occur. This study excludes the need of a groundwater flow from the underlying bedrock toward the pyroclastic cover for instabilities to occur.

  12. Observations and modelling of soil slip-debris flow initiation processes in pyroclastic deposits: the Sarno 1998 event

    Science.gov (United States)

    Crosta, G. B.; Dal Negro, P.

    Pyroclastic soils mantling a wide area of the Campanian Apennines are subjected to recurrent instability phenomena. This study analyses the 5 and 6 May 1998 event which affected the Pizzo d'Alvano (Campania, southern Italy). More than 400 slides affecting shallow pyroclastic deposits were triggered by intense and prolonged but not extreme rainfall. Landslides affected the pyroclastic deposits that cover the steep calcareous ridges and are soil slip-debris flows and rapid mudflows. About 30 main channels were deeply scoured by flows which reached the alluvial fans depositing up to 400 000 m3 of material in the piedmont areas. About 75% of the landslides are associated with morphological discontinuities such as limestone cliffs and roads. The sliding surface is located within the pyroclastic cover, generally at the base of a pumice layer. Geotechnical characterisation of pyroclastic deposits has been accomplished by laboratory and in situ tests. Numerical modelling of seepage processes and stability analyses have been run on four simplified models representing different settings observed at the source areas. Seepage modelling showed the formation of pore pressure pulses in pumice layers and the localised increase of pore pressure in correspondence of stratigraphic discontinuities as response to the rainfall event registered between 28 April and 5 May. Numerical modelling provided pore pressure values for stability analyses and pointed out critical conditions where stratigraphic or morphological discontinuities occur. This study excludes the need of a groundwater flow from the underlying bedrock toward the pyroclastic cover for instabilities to occur.

  13. Fluorine and boron co-doped diamond-like carbon films deposited by pulsed glow discharge plasma immersion ion processing

    CERN Document Server

    He, X M; Peters, A M; Taylor, B; Nastasi, M

    2002-01-01

    Fluorine (F) and boron (B) co-doped diamond-like carbon (FB-DLC) films were prepared on different substrates by the plasma immersion ion processing (PIIP) technique. A pulse glow discharge plasma was used for the PIIP deposition and was produced at a pressure of 1.33 Pa from acetylene (C sub 2 H sub 2), diborane (B sub 2 H sub 6), and hexafluoroethane (C sub 2 F sub 6) gas. Films of FB-DLC were deposited with different chemical compositions by varying the flow ratios of the C sub 2 H sub 2 , B sub 2 H sub 6 , and C sub 2 F sub 6 source gases. The incorporation of B sub 2 H sub 6 and C sub 2 F sub 6 into PIIP deposited DLC resulted in the formation of F-C and B-C hybridized bonding structures. The levels of the F and B concentrations effected the chemical bonding and the physical properties as was evident from the changes observed in density, hardness, stress, friction coefficient, and contact angle of water on films. Compared to B-doped or F-doped DLC films, the F and B co-doping of DLC during PIIP deposition...

  14. Metal-Organic Vapor Phase Epitaxial Reactor for the Deposition of Infrared Detector Materials

    Science.gov (United States)

    2015-04-09

    ADDRESS (ES) U.S. Army Research Office P.O. Box 12211 Research Triangle Park , NC 27709-2211 Epitaxial reactor, MOCVD, Infrared Materials, CdTe and...researchers from First Solar in depositing single crystal solar cell materials. A research contract worth over $150K was awarded to RPI b First Solar based on...Administrative Support Army Contracting Command - APG Research Triangle Park Division TEL: (919) 549-4269 FAX: (919) 549-4388 Table of

  15. High index of refraction films for dielectric mirrors prepared by metal-organic chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Brusasco, R.M.

    1989-01-01

    A wide variety of metal oxides with high index of refraction can be prepared by Metal-Organic Chemical Vapor Deposition. We present some recent optical and laser damage results on oxide films prepared by MOCVD which could be used in a multilayer structure for highly reflecting (HR) dielectric mirror applications. The method of preparation affects both optical properties and laser damage threshold. 10 refs., 8 figs., 4 tabs.

  16. ZnS Thin Films Deposited by a Spin Successive Ionic Layer Adsorption and Reaction Process

    Energy Technology Data Exchange (ETDEWEB)

    Han, Seungyeol; Lee, D. H.; Ryu, S. O.; Chang, Chih-hung

    2010-05-20

    In this article, we reported a spin successive ionic layer adsorption and reaction (SILAR) method for the first time. ZnS thin films were deposited by spin SILAR using ZnCl2 and Na2S aqueous precursor solutions at room temperature and atmosphere pressure. The optical, structural, and morphological characterizations of the films were studied by scanning electron microscopy, atomic force microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, and UV/visible spectroscopy. Smooth (average roughness <3 nm), uniform, and highly transparent ZnS (transmittance of over 90% in the visible band) thin films could be successfully deposited using this technique with shorter cycle time and much less solvent usage.

  17. Pulsed-laser-deposited YBCO thin films using modified MTG processed targets

    CERN Document Server

    Kim, C H; Kim, I T; Hahn, T S

    1999-01-01

    YBCO thin films were deposited by pulsed laser deposition from targets fabricated using the modified melt-textured growth (MTG) method and the solid-state sintering (SSS) method. All of the films showed c-axis orientations, but the films from the MTG targets had better crystallinity than those from the SSS targets. As the substrate temperature was increased, T sub c and J sub c of the films increased. The films from the MTG targets showed better superconducting properties than those from the SSS targets. From the composition analysis of the targets, the Y-richer vapor species arriving at the substrate from the MTG targets are thought to form a thermodynamically more stable YBCO phase with less cation disorder.

  18. Cadmium cathodic deposition on polycrystalline p-selenium: Dark and photoelectrochemical processes

    Energy Technology Data Exchange (ETDEWEB)

    Ragoisha, G.A., E-mail: ragoishag@bsu.b [Research Institute for Physical Chemical Problems, Belarusian State University, Leningradskaya 14, Minsk 220030 (Belarus); Streltsov, E.A.; Rabchynski, S.M.; Ivanou, D.K. [Chemistry Department, Belarusian State University, Minsk 220030 (Belarus)

    2011-04-01

    Cathodic reduction of Cd{sup 2+} on p-Se proceeds at low overpotential in the dark and results in bulk Cd, while the underpotential deposition is kinetically inhibited. Cadmium adlayer is photoelectrochemically deposited on illuminated electrode 0.7 V above E(Cd{sup 2+}/Cd). The adlayer cathodic deposition under illumination proceeds with simultaneous formation of CdSe nanoparticles. Potentiodynamic electrochemical impedance spectroscopy has discriminated the two products of the photoelectrochemical reaction both by their potentials of anodic oxidation and by characteristic dependences of impedance on potential. Anodic oxidation of CdSe nanoparticles gives a sharp peak of real impedance in low frequencies close to the corresponding anodic current peak in cyclic voltammogram. The impedance peak appears below a threshold frequency f{sub t}. The latter separates two modes of diffusion in anodic dissolution of CdSe nanoparticles. The diffusion proceeds independently at different particles above f{sub t} and turns to cooperative mode below the threshold frequency. Due to this effect, information on spatial distribution of growing nuclei on electrode surface in early stages of electrodeposition can be obtained from potentiodynamic impedance spectra.

  19. Corrosion Resistance of Ni-Based WC/Co Coatings Deposited by Spray and Fuse Process Varying the Oxygen Flow

    Science.gov (United States)

    Jiménez, H.; Olaya, J. J.; Alfonso, J. E.; Mtshali, C. B.; Pineda-Vargas, C. A.

    2017-08-01

    In this work, the effect of oxygen flow variation in the corrosion behavior of Ni-based WC/Co coatings deposited by spray and fuse process was investigated. The coatings were deposited on gray cast iron substrates using a Superjet Eutalloy thermal spraying gun. The morphology of the coatings was analyzed using scanning electron microscopy. The crystallographic phases were registered by x-ray diffraction (XRD), the diffraction patterns show the crystalline phases of the powder components with principal reflections for Ni and WC, the increase in flame temperature, due to the oxygen flow variation, generated amorphization in the nickel and an important crystallization of the planes (111) and (222) of WC as well as the decarburization of WC in W2C and W metallic. The corrosion behavior was investigated at room temperature in a 3.5% w/w aqueous solution of NaCl via potentiodynamic polarization. Electrochemical corrosion test showed that the coatings deposited under neutral flame conditions with an oxygen flow of 12.88 SCFH evidenced higher corrosion resistance. The chemical composition of the coatings and corrosion areas were analyzed by particle-induced x-ray emission, this technique permitting the corroboration of the decarburization process of WC determined by XRD and the formation of Cl structures.

  20. The effect of orientation difference in fused deposition modeling of ABS polymer on the processing time, dimension accuracy, and strength

    Science.gov (United States)

    Tanoto, Yopi Y.; Anggono, Juliana; Siahaan, Ian H.; Budiman, Wesley

    2017-01-01

    There are several parameters that must be set before manufacturing a product using 3D printing. These parameters include the orientation deposition of that product, type of material, form fill, fill density, and other parameters. The finished product of 3D printing has some responses that can be observed, measured, and tested. Some of those responses are the processing time, the dimensions of the end product, its surface roughness and the mechanical properties, i.e. its yield strength, ultimate tensile strength, and impact resistance. This research was conducted to study the relationship between process parameters of 3D printing machine using a technology of fused deposition modeling (FDM) and the generated responses. The material used was ABS plastic that was commonly used in the industry. Understanding the relationship between the parameters and the responses thus the resulting product can be manufactured to meet the user needs. Three different orientations in depositing the ABS polymer named XY(first orientation), YX (second orientation), and ZX (third orientation) were studied. Processing time, dimensional accuracy, and the product strength were the responses that were measured and tested. The study reports that the printing process with third orientation was the fastest printing process with the processing time 2432 seconds followed by orientation 1 and 2 with a processing time of 2688 and 2780 seconds respectively. Dimension accuracy was also measured from the width and the length of gauge area of tensile test specimens printed in comparison with the dimensions required by ASTM 638-02. It was found that the smallest difference was in thickness dimension, i.e. 0.1 mm thicker in printed sample using second orientation than as required by the standard. The smallest thickness deviation from the standard was measured in width dimension of a sample printed using first orientation (0.13 mm). As with the length dimension, the closest dimension to the standard was

  1. Interface studies on the tunneling contact of a MOCVD-prepared tandem solar cell; Grenzflaechenuntersuchungen am Tunnelkontakt einer MOCVD-praeparierten Tandemsolarzelle

    Energy Technology Data Exchange (ETDEWEB)

    Seidel, U.

    2007-07-10

    In this thesis a tandem solar cell with a novel tunneling contact was developed. For the development of the monolithic preparation especailly critical hetero-interfaces were studied in the region of the tunneling contact with surface-sensitive measuring method. The tandem solar cell consisted of single solar cells with absorber layers of In{sub 0.53}Ga{sub 0.47}As (E{sub g}=0.73 eV) and In{sub 0.78}Ga{sub 0.22}As{sub 0.491}P{sub 0.51} (E{sub g}=1.03 eV), the serial switching of which was pursued with a tunneling contact (ESAKI diode, which consisted of a very thin n-doped InGaAs and a p-doped GaAsSb layer. The III-V semiconductor layers were prepared by metalorganic gas phase epitaxy (MOCVD) monocrystallinely on an InP(100) substrate lattice-matchedly. Especially the influence of the preparation of InGaAs surfaces on the sharpness of the InGaAs/GaAsSb interface was in-situ studied by reflection-anisotropy spectroscopy and after a contamination-free transfer into the ultrahigh vacuum with photoelectron spectroscopy and with low-energetic electron diffraction (LEED). Thereby for the first time three different reconstructions of the MOCVD-prepared InGaAs surfaces could be observed, which were dependent on the heating temperature under pure hydrogen. The arsenic-rich InGaAs surface was observed for temperatures less than 300 C and showed in the LEED picture a (4 x 3) reconstruction. In the temperature range from 300 C until about 500 C a (2 x 4) reconstruction was observed, above 500 C the InGaAs surface 94 x 2)/c(8 x 2) was reconstructed. Subsequently the study of the growth of thin GaAsSb layers on these three InGaAs surface reconstructions followed. XPS measurements showed that the Sb/As ratio in GaAsSb at the growth on the As-rich (4 x 3) reconstructed surface in the first monolayers was too low. The preparation of the GaAsSb on the two other InGaAs surfaces yielded however in both cases a distinctly higher Sb/As ratio. Finally tandem solar cells with differently

  2. Experimental Study on Treatment of High-concentrated Sulfur Wastewater by Process of Depositing Natrojarosite and Its Environmental Significance

    Institute of Scientific and Technical Information of China (English)

    MA Shengfeng; WANG Changqiu; LU Anhuai; GUO Yanjun; HE Hongliao

    2007-01-01

    High-concentrated sulfur wastewater with sodium and COD (chemical oxygen demand) up to 26000 mg/L from a chemical plant, Jiangsu Province of China has been treated by deposition of natrojarosite in lab. The results indicated that the COD of the wastewater was decreased sharply from 26000 mg/L to 1001 mg/L, with removal rate of COD up to 96% by twice precipitations of natrojarosite and twice oxidation of H2O2. The treated sulfur wastewater reached the requirement of subsequent biochemical treatment to water quality. The optimal operational parameters should be controlled on provided an experimental basis for pretreatment of high-concentrated sulfur wastewater and proposed a new mineralogical method on treatment of other wastewaters. Depositing process ofjarosite and its analogs should be able to be used to treat wastewater from mine and other industries to remove S, Fe and other toxic and harmful elements, such as As, Cr, Hg, Pb, etc. in the water.

  3. Antireflection and downconversion response of Nd3+ doped Y2O3/Si thin film deposited by AACVD process

    Science.gov (United States)

    Elleuch, R.; Salhi, R.; Deschanvres, J.-L.; Maalej, R.

    2014-09-01

    Nd3+:Y2O3 nanograins-like structure films with various Nd concentrations, were deposited on Si (1 0 0) substrates by aerosol assisted chemical vapor deposition (AACVD) process. The intense 900 nm emission of Nd3+ corresponding to the 4F3/2 → 4I9/2 transition was investigated as a function of the annealing temperature. The reflectance percentage of the optimized 5 mol.% Nd:Y2O3 film was recorded at about 16% in 400-1000 nm range. The refractive index (n = 1.94) and the low porosity (P = 2.74%) showed the high transparency of this film. The obtained results demonstrate that this film can enhance the Si solar cell efficiency by light trapping and spectrum shifting.

  4. A novel Ag catalyzation process using swelling impregnation method for electroless Ni deposition on Kevlar® fiber

    Science.gov (United States)

    Pang, Hongwei; Bai, Ruicheng; Shao, Qinsi; Gao, Yufang; Li, Aijun; Tang, Zhiyong

    2015-12-01

    A novel Ag catalyzation process using swelling impregnation pretreatment method was developed for electroless nickel (EN) deposition on Kevlar fiber. Firstly, the fiber was immersed into an aqueous dimethylsulfoxide (DMSO) solution of silver nitrate to impart silver nitrate into the inner part of the fiber near the surface. Subsequently silver nitrate was reduced to metal silver nanoparticles on the fiber surface by treatment with aqueous solution of sodium borohydride. After electroless plating, a dense and homogeneous nickel coating was obtained on the fiber surface. The silver nanoparticles formed at the fiber surface functioned as a catalyst for electroless deposition as well as an anchor for the plated layer. The study also revealed that the incorporation of surfactant sodium dodecyl sulfate (SDS) in electroless nickel plating bath can enhance the adhesion strength of EN layer with the fiber surface and minimize the surface roughness of the EN coating. The Ni plated Kevlar fiber possessed excellent corrosion resistance and high tensile strength.

  5. Using quantitative topographic analysis to understand the role of water on transport and deposition processes on crater walls

    Science.gov (United States)

    Palucis, Marisa Christina

    The amount of water runoff need to evolve landscapes is rarely assessed. Empirical studies correlate erosion rate to runoff or mean annual precipitation, but rarely is the full history of a landscape known such that it is possible to assess how much water was required to produce it. While this may not seem to be of primary importance on Earth where water is commonly plentiful, on Mars the amount of water to drive landscape evolution is a key question. Here we tackle this question through a series of five chapters, one devoted to field work at Meteor Crater, another to laboratory experiments about controlling processes, and then two chapters on analysis of landforms and implications of water runoff on Mars (associated with the Mars Science Laboratory mission to Gale Crater), and then we complete this effort with a consideration of how we can reliably assign relative timing between events resulting in small depositional features. What follows below is a summary of what is found in each chapter. Meteor Crater, a 4.5 km2 impact crater that formed ˜50,000 years ago in northern Arizona, has prominent gully features on its steep walls that appear similar to some gullies found on Mars. At the crater bottom, there are over 30 meters of lake sediments from a lake that disappeared ˜10,000 to 11,000 years ago, indicating the transition from the Pleistocene to the current, drier climate. A combination of fieldwork, cosmogenic dating, and topographic analysis of LiDAR data show that debris flows, not seepage erosion and fluvial processes as previously suggested in the literature, drove gully incision during their formation period of ˜40,000 years before the onset of the Holocene. Runoff from bare bedrock source areas high on the crater wall cut into lower debris mantled slopes, where the runoff bulked up and transformed into debris flows that carried boulders down to ˜5 to 8 degree slopes, leaving distinct boulder lined levees and lobate tongues of terminal debris deposits

  6. InP基MOCVD及MBE外延生长HBT的制备与分析%Fabrication and analysis of InP-based HBT by MOCVD and MBE growth

    Institute of Scientific and Technical Information of China (English)

    崔海林; 任晓敏; 黄辉

    2012-01-01

    设计并研制了用于光电集成(OEIC)的InP基异质结双极晶体管(HBT),介绍了工艺流程及器件结构。分别采用金属有机化学气相沉积(MOCVD)及分子束外延(MBE)生长的外延片,并在外延结构、工艺流程相同的条件下,对两种生长机制的HBT直流及高频参数进行和分析。结果表明,采用MOCVD生长的InP基HBT,直流增益为30倍,截止频率约为38GHz;MBE生长的HBT,直流增益达到100倍,截止频率约为40GHz。这表明,MBE生长的HBT外延层质量更高,在相同光刻条件下,所对应的HBT器件的性能更好。%We designed and fabricated the InP-based heterojunction bipolar transistor (HBT) for optoe-lectronic integrated circuit (OEIC). Both metal organic chemical vapor deposition (MOCVD) and molec-ular beam epitax (MBE) growth methods were developed. We compared and analyzed HBTs direct cur-rent (DC) and high frequency parameters by two growth mechanism types under the same epitaxial structure and technique process. The HBT by MOCVD growth exhibits a current gain of 30 and a cut-off frequency of 38 GHz. The HBT by MBE growth has a current gain of 100 and a cut-off frequency of 40 GHz. Based on testing results, the MBE growth epitaxy layer has better quality and in the same lithogra- phy condition,the corresponding HBT device has better performance.

  7. Development Of Advanced Sandwich Core Topologies Using Fused Deposition Modeling And Electroforming Processes

    Science.gov (United States)

    Storck, Steven M.

    New weight efficient materials are needed to enhance the performance of vehicle systems allowing increased speed, maneuverability and fuel economy. This work leveraged a multi-length-scale composite approach combined with hybrid material methodology to create new state-of-the-art additive manufactured sandwich core material. The goal of the research was to generate a new material to expands material space for strength versus density. Fused-Deposition-Modeling (FDM) was used to remove geometric manufacturing constraints, and electrodepositing was used to generate a high specific-strength, bio-inspired hybrid material. Microtension samples (3mm x 1mm with 250mum x 250mum gage) were used to investigate the electrodeposited coatings in the transverse (TD) and growth (GD) directions. Three bath chemistries were tested: copper, traditional nickel sulfamate (TNS) nickel, and nickel deposited with a platinum anode (NDPA). NDPA shows tensile strength exceeding 1600 MPa, significantly beyond the literature reported values of 60MPa. This strengthening was linked to grain size refinement into the sub-30nm range, in addition to grain texture refinement resulting in only 17% of the slip systems for nickel being active. Anisotropy was observed in nickel deposits, which was linked to texture evolution inside of the coating. Microsample testing guided the selection of 15mum layer of copper deposition followed by a 250 mum NDPA layer. Classical formulas for structural collapse were used to guide an experimental parametric study to establish a weight/volume efficient strut topology. Length, diameter and thickness were all investigated to determine the optimal column topology. The most optimal topology exists when Eulerian buckling, shell micro buckling and yielding failure modes all exist in a single geometric topology. Three macro-scale sandwich topologies (pyramidal, tetrahedral, and strut-reinforced-tetrahedral (SRT) were investigated with respect to strength-per-unit-weight. The

  8. Causal knowledge extraction by natural language processing in material science: a case study in chemical vapor deposition

    Directory of Open Access Journals (Sweden)

    Yuya Kajikawa

    2006-11-01

    Full Text Available Scientific publications written in natural language still play a central role as our knowledge source. However, due to the flood of publications, the literature survey process has become a highly time-consuming and tangled process, especially for novices of the discipline. Therefore, tools supporting the literature-survey process may help the individual scientist to explore new useful domains. Natural language processing (NLP is expected as one of the promising techniques to retrieve, abstract, and extract knowledge. In this contribution, NLP is firstly applied to the literature of chemical vapor deposition (CVD, which is a sub-discipline of materials science and is a complex and interdisciplinary field of research involving chemists, physicists, engineers, and materials scientists. Causal knowledge extraction from the literature is demonstrated using NLP.

  9. Silver deposition on titanium surface by electrochemical anodizing process reduces bacterial adhesion of Streptococcus sanguinis and Lactobacillus salivarius.

    Science.gov (United States)

    Godoy-Gallardo, Maria; Rodríguez-Hernández, Ana G; Delgado, Luis M; Manero, José M; Javier Gil, F; Rodríguez, Daniel

    2015-10-01

    The aim of this study was to determine the antibacterial properties of silver-doped titanium surfaces prepared with a novel electrochemical anodizing process. Titanium samples were anodized with a pulsed process in a solution of silver nitrate and sodium thiosulphate at room temperature with stirring. Samples were processed with different electrolyte concentrations and treatment cycles to improve silver deposition. Physicochemical properties were determined by X-ray photoelectron spectroscopy, contact angle measurements, white-light interferometry, and scanning electron microscopy. Cellular cytotoxicity in human fibroblasts was studied with lactate dehydrogenase assays. The in vitro effect of treated surfaces on two oral bacteria strains (Streptococcus sanguinis and Lactobacillus salivarius) was studied with viable bacterial adhesion measurements and growth curve assays. Nonparametric statistical Kruskal-Wallis and Mann-Whitney U-tests were used for multiple and paired comparisons, respectively. Post hoc Spearman's correlation tests were calculated to check the dependence between bacteria adhesion and surface properties. X-ray photoelectron spectroscopy results confirmed the presence of silver on treated samples and showed that treatments with higher silver nitrate concentration and more cycles increased the silver deposition on titanium surface. No negative effects in fibroblast cell viability were detected and a significant reduction on bacterial adhesion in vitro was achieved in silver-treated samples compared with control titanium. Silver deposition on titanium with a novel electrochemical anodizing process produced surfaces with significant antibacterial properties in vitro without negative effects on cell viability. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Combined multi-nozzle deposition and freeze casting process to superimpose two porous networks for hierarchical three-dimensional microenvironment.

    Science.gov (United States)

    Snyder, Jessica E; Hunger, Philipp M; Wang, Chengyang; Hamid, Qudus; Wegst, Ulrike G K; Sun, Wei

    2014-03-01

    An engineered three-dimensional scaffold with hierarchical porosity and multiple niche microenvironments is produced using a combined multi-nozzle deposition-freeze casting technique. In this paper we present a process to fabricate a scaffold with improved interconnectivity and hierarchical porosity. The scaffold is produced using a two-stage manufacturing process which superimposes a printed porous alginate (Alg) network and a directionally frozen ceramic-polymer matrix. The combination of two processes, multi-nozzle deposition and freeze casting, provides engineering control of the microenvironment of the scaffolds over several length scales; including the addition of lateral porosity and the ratio of polymer to ceramic microstructures. The printed polymer scaffold is submerged in a ceramic-polymer slurry and subsequently, both structures are directionally frozen (freeze cast), superimposing and patterning both microenvironments into a single hierarchical architecture. An optional additional sintering step removes the organic material and densifies the ceramic phase to produce a well-defined network of open pores and a homogenous cell wall material composition. The techniques presented in this contribution address processing challenges, such as structure definition, reproducibility and fine adjustments of unique length scales, which one typically encounters when fabricating topological channels between longitudinal and transverse porous networks.

  11. Simulation of geochemical processes responsible for the formation of the Zhezqazghan deposit

    Science.gov (United States)

    Ryzhenko, B. N.; Cherkasova, E. V.

    2014-05-01

    Physicochemical computer simulation of water-rock systems at a temperature of 25-150°C and under a pressure of up to 600 bar has been carried out for quantitative description of the mineralization formation conditions at sandstone- and shale-hosted copper deposits. The simulation is based on geological and geochemical information concerning the Zhezqazghan deposit and considers (i) a source of ore matter, (ii) composition of the fluid that transfers ore matter to the ore formation zone, and (iii) factors of ore concentration. It has been shown that extraction of copper from minerals of rocks and its accumulation in aqueous solution are optimal at a high mass ratio of rock to water (R/W > 10), Eh of +200 to -100 mV, and an obligatory content of chloride ions in the aqueous phase. The averaged ore-bearing fluid Cl95SO44//Ca50(Na + K)30Mg19 (eq %), pH ˜ 4, mineralization of up to 400 g/L, is formed by the interaction of red sandstone beds with a sedimentogenic brine (a product of metamorphism of seawater in carbonate rocks enriched in organic matter). The ore concentration proceeds in the course of cooling from 150 to 50°C during filtration of ore-bearing fluid through red sandstone beds in the rock-water system thermodynamically opened with respect to the reductive components.

  12. MOCVD方法在Si衬底上低温生长ZnO薄膜%Low -temperature preparation of ZnO films on Si substrates by MOCVD

    Institute of Scientific and Technical Information of China (English)

    沈文娟; 王俊; 王启元; 段垚; 曾一平

    2006-01-01

    ZnO films were deposited on Si(100) substrates at 300℃ by metal -organic chemical vapor deposition(MOGVD). The effect of different ratios of DEZn to N2O on crystal quality was analyzed. It is found that the optimum ratio of DEZn to N2O is 2:1. And in this optimum growth condition, X - ray diffraction (XRD) and scanning probe morphology (SPM) images indicate that the films grow along the c -axis orientation. ZnO film exhibits a strong UV optical absorption near 388 nm..And the optical absorbance is close to zero,that indicates nearly 100% optical transparence. Photoluminescence (PL) spectrum shows only strong near- band -edge emissions with little or no deep -level emission related to defects. The full - width at half - maximum (FWHM) of the ultraviolet emission peak is 80meV. The results indicate that better crystal quality can be obtained.%采用二乙基锌(DEZn)和氧化亚氮(N2O)作为锌源和氧源,在低温300℃,利用金属有机化学气相沉积(MOCVD)的方法在Si(100)衬底上制备了ZnO薄膜.通过优化氧锌比,ZnO薄膜为高度单一c轴方向生长.由光致发光谱和反射谱得知,ZnO薄膜的紫外发光峰位于388nm,具有很好的光透性,且其PL谱半峰宽为80meV.

  13. Processing for optically active erbium in silicon by film co-deposition and ion-beam mixing

    Energy Technology Data Exchange (ETDEWEB)

    Abedrabbo, S., E-mail: sxa0215@yahoo.com [Department of Physics, University of Jordan, Amman 11942 (Jordan); Mohammed, Q. [Tadawul Shares and Bonds Mediation L.L.C., Dubai (United Arab Emirates); Fiory, A.T. [Department of Physics, New Jersey Institute of Technology, Newark, NJ 07901 (United States)

    2009-02-01

    Techniques of film deposition by co-evaporation, ion-beam assisted mixing, oxygen ion implantation, and thermal annealing were been combined in a novel way to study processing of erbium-in-silicon thin-film materials for optoelectronics applications. Structures with erbium concentrations above atomic solubility in silicon and below that of silicide compounds were prepared by vacuum co-evaporation from two elemental sources to deposit 200-270 nm films on crystalline silicon substrates. Ar{sup +} ions were implanted at 300 keV. Oxygen was incorporated by O{sup +}-ion implantation at 130 keV. Samples were annealed at 600 deg. C in vacuum. Concentration profiles of the constituent elements were obtained by Rutherford backscattering spectrometry. Results show that diffusion induced by ion-beam mixing and activated by thermal annealing depends on the deposited Si-Er profile and reaction with implanted oxygen. Room temperature photoluminescence spectra show Er{sup 3+} transitions in a 1480-1550 nm band and integrated intensities that increase with the oxygen-to-erbium ratio.

  14. Mass transport deposits and processes in the north slope of the Xisha Trough, northern South China Sea

    Institute of Scientific and Technical Information of China (English)

    QIN Zhiliang; WU Shiguo; WANG Dawei; LI Wei; GONG Shaojun; MI Lijun; SPENCE George

    2015-01-01

    Triple mass-transport deposits (MTDs) with areas of 625, 494 and 902 km2, respectively, have been identified on the north slope of the Xisha Trough, northern South China Sea margin. Based on high-resolution seismic reflection data and multi-beam bathymetric data, the Quaternary MTDs are characterized by typical geometric shapes and internal structures. Results of slope analysis showed that they are developed in a steep slope ranging from 5° to 35°. The head wall scarps of the MTDs arrived to 50 km in length (from headwall to termination). Their inner structures include well developed basal shear surface, growth faults, stepping lateral scarps, erosion grooves, and frontal thrust deformation. From seismic images, the central deepwater channel system of the Xisha Trough has been filled by interbedded channel-levee deposits and thick MTDs. Therefore, we inferred that the MTDs in the deepwater channel system could be dominated by far-travelled slope failure deposits even though there are local collapses of the trough walls. And then, we drew the two-dimensional process model and three-dimensional structure model diagram of the MTDs. Combined with the regional geological setting and previous studies, we discussed the trigger mechanisms of the triple MTDs.

  15. Nanostructure and nanochemistry of gate dielectrics and processing of tunable dielectrics by chemical vapor deposition

    Science.gov (United States)

    Wang, Chang-Gong

    2002-01-01

    PbTiO3-SrTiO3 (PST) thin films that are voltage tunable were developed for high-frequency application by a metal-organic chemical vapor deposition technique at rates of 10--15 nm/min. PST films (90--150nm) were deposited on Pt/TiO2/SiO2/Si and Sapphire (0001) substrates and characterized by various techniques to control the composition and structure. The tunability and dielectric loss (tandelta) of a 90nm PST film were 37% and 0.02, respectively, at 1MHz and 3V in a parallel plates capacitor (Pt/PST/Pt) configuration. PST films on (0001) Sapphire were epitaxial with an orientation relationship of PST [1 1 1]// Sapphire [0 0 0 1], and in-plane alignment of PST [1 i 0]// Sapphire [2 i i 0] and PST [i i 2]// Sapphire [0 1 i 0]. A coplanar waveguide structure was used to determine the tunability (31.3%) and figure of merit (13 degrees/dB) of an epitaxial 100nm PST film on Sapphire at 12 GHz. The tandelta, derived from transmission-type resonator, is explained in terms of composition inhomogeneities and in-plane biaxial stress due to lattice mismatch between PST and Sapphire. A 4nm-ZrOx/1.2nm-SiOx layer structure was formed on 200mm Si wafers by a manufacturable atomic layer chemical vapor deposition (ALCVD) technique for advanced metal oxide semiconductor gate dielectrics. The nanostructure and nanochemistry of this gate stack were investigated by various techniques, before and after oxygen annealing (700°C). The results showed that a multiphase and heterogeneous structure evolved, defined as Zr-O/interlayer(IL)/Si stack. The critical parameters that control the nanostructural and nanochemical evolution are discussed using some simple mechanistic explanations and literature data. The stacks were characterized for their dielectric and electrical properties using a Pt/Zr-O/IL/Si capacitor configuration. The flat band shift (DeltaV FB), capacitance voltage hysteresis, and leakage current density were correlated with defects and roughness of the interface, thickness of IL

  16. Crevasse splay processes and deposits in an ancient distributive fluvial system: The lower Beaufort Group, South Africa

    Science.gov (United States)

    Gulliford, Alice R.; Flint, Stephen S.; Hodgson, David M.

    2017-08-01

    Up to 12% of the mud-prone, ephemeral distributive fluvial system stratigraphy in the Permo-Triassic lower Beaufort Group, South Africa, comprises tabular fine-grained sandstone to coarse-grained siltstone bodies, which are interpreted as proximal to distal crevasse splay deposits. Crevasse splay sandstones predominantly exhibit ripple to climbing ripple cross-lamination, with some structureless and planar laminated beds. A hierarchical architectural scheme is adopted, in which 1 m thick crevasse splay elements extend for tens to several hundreds of meters laterally, and stack with other splay elements to form crevasse splay sets up to 4 m thick and several kilometers in width and length. Paleosols and nodular horizons developed during periods, or in areas, of reduced overbank flooding are used to subdivide the stratigraphy, separating crevasse splay sets. Deposits from crevasse splays differ from frontal splays as their proximal deposits are much thinner and narrower, with paleocurrents oblique to the main paleochannel. In order for crevasse splay sets to develop, the parent channel belt and the location where crevasse splays form must stay relatively fixed during a period of multiple flood events. Beaufort Group splays have similar geometries to those of contemporary perennial rivers but exhibit more lateral variability in facies, which is interpreted to be the result of more extreme fluctuations in discharge regime. Sharp-based crevasse splay packages are associated with channel avulsion, but most are characterized by a gradual coarsening upward, interpreted to represent progradation. The dominance of progradational splays beneath channel belt deposits may be more characteristic of progradational stratigraphy in a distributive fluvial system rather than dominated by avulsion processes in a trunk river system. This stratigraphic motif may therefore be an additional criterion for recognition of distributive fluvial systems in the ancient record.

  17. Building a Better Capacitor with Thin-Film Atomic Layer Deposition Processing

    Energy Technology Data Exchange (ETDEWEB)

    Pike, Christopher [North Seattle College, WA (United States)

    2015-08-28

    The goal of this research is to determine procedures for creating ultra-high capacity supercapacitors by using nanofabrication techniques and high k-value dielectrics. One way to potentially solve the problem of climate change is to switch the source of energy to a source that doesn’t release many tons of greenhouse gases, gases which cause global warming, into the Earth’s atmosphere. These trap in more heat from the Sun’s solar energy and cause global temperatures to rise. Atomic layer deposition will be used to create a uniform thin-film of dielectric to greatly enhance the abilities of our capacitors and will build them on the nanoscale.

  18. PULSED LASER DEPOSITION OF MAGNETIC MULTILAYERS FOR THE GRANT ENTITLED LASER PROCESSING OF ADVANCED MAGNETIC MATERIALS

    Energy Technology Data Exchange (ETDEWEB)

    Monica Sorescu

    2003-10-11

    Nanostructured magnetite/T multilayers, with T = Ni, Co, Cr, have been prepared by pulsed laser deposition. The thickness of individual magnetite and metal layers takes values in the range of 5-40 nm with a total multilayer thickness of 100-120 nm. X-ray diffraction has been used to study the phase characteristics as a function of thermal treatment up to 550 C. Small amounts of maghemite and hematite were identified together with prevailing magnetite phase after treatments at different temperatures. The mean grain size of magnetite phase increases with temperature from 12 nm at room temperature to 54 nm at 550 C. The thermal behavior of magnetite in multilayers in comparison with powder magnetite is discussed. These findings were published in peer-reviewed conference proceedings after presentation at an international materials conference.

  19. Structure and Surface Characterization of Nanostructured Tio2 Coatings Deposited Via HVOF Thermal Spray Processes

    Directory of Open Access Journals (Sweden)

    Maryamossadat Bozorgtabar

    2015-01-01

    Full Text Available Titanium dioxide coatings were deposited by high velocity oxy-fuel spraying (HVOF with the use of agglomerated P25/20 nano-powder and different spraying parameters (e.g. fuel/flow ratio to determine their influence on the microstructure, crystalline structure and surface feature of the coatings. The microstructure of as-sprayed TiO2 coatings was characterized by scanning electron microscope (SEM, transmission electron microscope (TEM and X-ray diffraction (XRD. Surface features were investigated by Fourier transform infrared (FT-IR and X-ray photoelectron spectroscopy (XPS. The results showed that the fuel and oxygen flow ratio have an important influence on the microstructure, anatase content, surface chemical state and surface feature of the TiO2 coatings

  20. Modeling and optimization of atomic layer deposition processes on vertically aligned carbon nanotubes.

    Science.gov (United States)

    Yazdani, Nuri; Chawla, Vipin; Edwards, Eve; Wood, Vanessa; Park, Hyung Gyu; Utke, Ivo

    2014-01-01

    Many energy conversion and storage devices exploit structured ceramics with large interfacial surface areas. Vertically aligned carbon nanotube (VACNT) arrays have emerged as possible scaffolds to support large surface area ceramic layers. However, obtaining conformal and uniform coatings of ceramics on structures with high aspect ratio morphologies is non-trivial, even with atomic layer deposition (ALD). Here we implement a diffusion model to investigate the effect of the ALD parameters on coating kinetics and use it to develop a guideline for achieving conformal and uniform thickness coatings throughout the depth of ultra-high aspect ratio structures. We validate the model predictions with experimental data from ALD coatings of VACNT arrays. However, the approach can be applied to predict film conformality as a function of depth for any porous topology, including nanopores and nanowire arrays.

  1. Modeling and optimization of atomic layer deposition processes on vertically aligned carbon nanotubes

    Directory of Open Access Journals (Sweden)

    Nuri Yazdani

    2014-03-01

    Full Text Available Many energy conversion and storage devices exploit structured ceramics with large interfacial surface areas. Vertically aligned carbon nanotube (VACNT arrays have emerged as possible scaffolds to support large surface area ceramic layers. However, obtaining conformal and uniform coatings of ceramics on structures with high aspect ratio morphologies is non-trivial, even with atomic layer deposition (ALD. Here we implement a diffusion model to investigate the effect of the ALD parameters on coating kinetics and use it to develop a guideline for achieving conformal and uniform thickness coatings throughout the depth of ultra-high aspect ratio structures. We validate the model predictions with experimental data from ALD coatings of VACNT arrays. However, the approach can be applied to predict film conformality as a function of depth for any porous topology, including nanopores and nanowire arrays.

  2. TiCl4 Barrier Process Engineering in Semiconductor Manufacturing

    Directory of Open Access Journals (Sweden)

    Tuung Luoh

    2016-01-01

    Full Text Available Titanium nitride (TiN not only was utilized in the wear-resistant coatings industry but it was also adopted in barrier processes for semiconductor manufacturing. Barrier processes include the titanium (Ti and TiN processes, which are commonly used as diffusion barriers in via/contact applications. However, engineers frequently struggle at the via/contact module in the beginning of every technology node. As devices shrink, barrier processes become more challenging to overcome the both the physical fill-in and electrical performance requirements of advanced small via/contact plugs. The aim of this paper is to investigate various chemical vapor deposition (CVD TiCl4-based barrier processes to serve the application of advanced small via/contact plugs and the metal gate processes. The results demonstrate that the plasma-enhanced chemical vapor deposition (PECVD TiCl4-based Ti process needs to select a feasible process temperature to avoid Si surface corrosion by high-temperature chloride flow. Conventional high step coverage (HSC CVD TiCl4-based TiN processes give much better impurity performance than metal organic chemical vapor deposition (MOCVD TiN. However, the higher chloride content in HSC film may degrade the long-term reliability of the device. Furthermore, it is evidenced that a sequential flow deposition (SFD CVD TiCl4-based process with multiple cycles can give much less chloride content, resulting in faster erase speeds and lower erase levels than that of conventional HSC TiN.

  3. Development Status of a CVD System to Deposit Tungsten onto UO2 Powder via the WCI6 Process

    Science.gov (United States)

    Mireles, O. R.; Kimberlin, A.; Broadway, J.; Hickman, R.

    2014-01-01

    Nuclear Thermal Propulsion (NTP) is under development for deep space exploration. NTP's high specific impulse (> 850 second) enables a large range of destinations, shorter trip durations, and improved reliability. W-60vol%UO2 CERMET fuel development efforts emphasize fabrication, performance testing and process optimization to meet service life requirements. Fuel elements must be able to survive operation in excess of 2850 K, exposure to flowing hydrogen (H2), vibration, acoustic, and radiation conditions. CTE mismatch between W and UO2 result in high thermal stresses and lead to mechanical failure as a result UO2 reduction by hot hydrogen (H2) [1]. Improved powder metallurgy fabrication process control and mitigated fuel loss can be attained by coating UO2 starting powders within a layer of high density tungsten [2]. This paper discusses the advances of a fluidized bed chemical vapor deposition (CVD) system that utilizes the H2-WCl6 reduction process.

  4. Fine control of perovskite-layered morphology and composition via sequential deposition crystallization process towards improved perovskite solar cells

    Science.gov (United States)

    Luo, Yi; Meng, Fanli; Zhao, Erfei; Zheng, Yan-Zhen; Zhou, Yali; Tao, Xia

    2016-04-01

    The ability to prepare high coverage and compact perovskite films via solution-based crystallization manipulation processes still represents a vital issue towards improving the ultimate photoelectric conversion efficiency of devices. In this work, we prepare the active perovskite layer by means of sequential deposition crystallization process i.e. dipping PbI2-infiltrated TiO2 film within CH3NH3I solution from 20s to 60s. The morphology and thickness of the as-prepared perovskite layer, and its overall performance superiority are investigated. X-ray diffraction (XRD) reveals that a maximum conversion of PbI2 to perovskite is completed upon applying a sequential deposition crystallization process of 40s. Field emission scanning electron microscope (FESEM) demonstrates that the coverage of the perovskite capping layer exhibits a trend from rise to decline in the whole dipping time from 20s to 60s. By fine control of the dipping time, a 620 nm-thickness compact perovskite active layer is obtained at the optimized dipping time of 40s and is verified to possess strong light absorption and high electron extraction efficiency, leading to a higher photocurrent. By further optimizing the mesoporous TiO2 film thickness, a high photocurrent of 23.98 mA cm-2 and an efficiency of 13.47% are achieved.

  5. Template-based growth of titanium dioxide nanorods by a particulate sol-electrophoretic deposition process

    Institute of Scientific and Technical Information of China (English)

    Mohammad Reza Mohammadi; Farideh Ordikhani; Derek J. Fray; Farzad Khornamizadeh

    2011-01-01

    TiO2 nanorods have been successfully grown into a track-etched polycarbonate (PC) membrane by a particulate sol-electrophoretic deposition from an aqueous medium, The prepared sols had a narrow particle size distribution around 17 nm and excellent stability against aging, with zeta potentials in the range of 47-50 mV at pH 2. It was found that TiO2 nanorods were grown from dilute aqueous sol with a Iow, 0.1-M concentration. Fourier transform infrared spectroscopy (FT-IR) analysis confirmed that a full conversion of titanium isopropoxide was obtained by hydrolysis, resulting in the formation of TiO2particles. X-ray diffraction (XRD) results revealed that TiO2 nanorods dried at 100°C were a mixture of anatase and brookite phases, whereas they were a mixture of anatase and rutile structures at 500℃.Moreover, the futile content of the TiO2 nanorods was higher than that of TiO2 powders. Transmission electron microscope (TEM) images confirmed that TiO2 nanorods had a smooth morphology and longitudinal uniformity in diameter. Field emission scanning electron microscope (FE-SEM) images showed that Ti02 nanorods grown by sol-electrophoresis from the dilute aqueous sol had a dense structure with a uniform diameter of 200 nm, containing small particles with an average size of 15 nm. Simultaneous differential thermal (SDT) analysis verified that individual TiO2 nanorods, grown into a PC template, were obtained after annealing at 500℃. Based on kinetic studies, it was found that uniform TiO2 nanorods with high-quality morphology were obtained under optimum conditions at an applied potential of 0.3 V/cm and a deposition time or 60 min.

  6. Research Update: Large-area deposition, coating, printing, and processing techniques for the upscaling of perovskite solar cell technology

    Science.gov (United States)

    Razza, Stefano; Castro-Hermosa, Sergio; Di Carlo, Aldo; Brown, Thomas M.

    2016-09-01

    To bring perovskite solar cells to the industrial world, performance must be maintained at the photovoltaic module scale. Here we present large-area manufacturing and processing options applicable to large-area cells and modules. Printing and coating techniques, such as blade coating, slot-die coating, spray coating, screen printing, inkjet printing, and gravure printing (as alternatives to spin coating), as well as vacuum or vapor based deposition and laser patterning techniques are being developed for an effective scale-up of the technology. The latter also enables the manufacture of solar modules on flexible substrates, an option beneficial for many applications and for roll-to-roll production.

  7. The nature of gold in the Aitik Cu-Au deposit:implications for mineral processing and mine planning

    OpenAIRE

    Sammelin, Monika

    2011-01-01

    The Aitik mine is a large Cu-Au producer in Europe with an annual production of 28 million tons of ore and a planned expansion of production to 36 million tons of ore until year 2013. Large ongoing investments are done in the mine and a new processing plant is built to manage the capacity increase. The mine is situated 15 kilometers from the town Gällivare, in northern Norrbotten, Sweden. The ore is a large porphyry type deposit with low grades of disseminated copper (0,27 %) and gold (0,16 p...

  8. Reliability study of Zr and Al incorporated Hf based high-k dielectric deposited by advanced processing

    Science.gov (United States)

    Bhuyian, Md Nasir Uddin

    Hafnium-based high-kappa dielectric materials have been successfully used in the industry as a key replacement for SiO2 based gate dielectrics in order to continue CMOS device scaling to the 22-nm technology node. Further scaling according to the device roadmap requires the development of oxides with higher kappa values in order to scale the equivalent oxide thickness (EOT) to 0.7 nm or below while achieving low defect densities. In addition, next generation devices need to meet challenges like improved channel mobility, reduced gate leakage current, good control on threshold voltage, lower interface state density, and good reliability. In order to overcome these challenges, improvements of the high-kappa film properties and deposition methods are highly desirable. In this dissertation, a detail study of Zr and Al incorporated HfO 2 based high-kappa dielectrics is conducted to investigate improvement in electrical characteristics and reliability. To meet scaling requirements of the gate dielectric to sub 0.7 nm, Zr is added to HfO2 to form Hf1-xZrxO2 with x=0, 0.31 and 0.8 where the dielectric film is deposited by using various intermediate processing conditions, like (i) DADA: intermediate thermal annealing in a cyclical deposition process; (ii) DSDS: similar cyclical process with exposure to SPA Ar plasma; and (iii) As-Dep: the dielectric deposited without any intermediate step. MOSCAPs are formed with TiN metal gate and the reliability of these devices is investigated by subjecting them to a constant voltage stress in the gate injection mode. Stress induced flat-band voltage shift (DeltaVFB), stress induced leakage current (SILC) and stress induced interface state degradation are observed. DSDS samples demonstrate the superior characteristics whereas the worst degradation is observed for DADA samples. Time dependent dielectric breakdown (TDDB) shows that DSDS Hf1-xZrxO2 (x=0.8) has the superior characteristics with reduced oxygen vacancy, which is affiliated to

  9. Factors affecting the superconductivity in the process of depositing Nd1.85Ce0.15CuO4-δ by the pulsed electron deposition technique

    Institute of Scientific and Technical Information of China (English)

    GUO; YanFeng

    2007-01-01

    On SrTiO3 single crystal substrate, by using the pulsed electron deposition technique, the high-quality electron doped Nd1.85Ce0.15CuO4-δsuperconducting film was successfully fabricated. After careful study on the R-T curves of the obtained samples deposited with different substrate temperatures, thicknesses, annealing methods and pulse frequencies, the effects of them on the superconductivity of the films were found, and the reasons were also analyzed. Additionally, by using the same model of the pulsed laser deposition technique, the relation between the target-to-substrate distance and the deposition pressure was drawn out as a quantitative one.  ……

  10. In situ study of key material and process reliability issues in the chemical vapor deposition of copper

    Science.gov (United States)

    Lou, Ishing

    With the limitations of current aluminum based metallization schemes used in microelectronics, the development of a manufacturable chemical vapor deposition (CVD) process for copper metallization schemes is crucial to meet the stringent requirements of sub-quarter micron device technology and beyond. The work presented herein focused on investigating key material and process reliability issues pertaining to Cu CVD processing. In particular, a unique combination of in-situ gas phase Fourier transform infrared (FTIR) and quadrupole mass spectrometry (QMS) was employed to study the role of hydrogen in thermal CVD of copper using (tmvs)Cusp{I}(hfac). These studies showed that hydrogen provides significant enhancement in the deposition rate of copper interconnects. Based on the QMS and FTIR data, this enhancement could be attributed to the role of hydrogen in assisting in the removal of tmvs from (tmvs)Cusp{I}(hfac), thus enhancing the conversion of Cusp{I}(hfac) intermediates to Cusp{o} and Cusp{II}(hfac)sb2 and providing a wider process window with higher conversion efficiency. In addition, in-situ real time QMS studies were performed of the gas phase evolution and decomposition pathways of (tmvs)Cusp{I}(hfac) during thermal CVD of copper. The QMS investigations focused on determining the ionization efficiency curves and appearance potentials of (tmvs)Cusp{I}(hfac) under real CVD processing conditions. The resulting curves and associated potentials were then employed to identify the most likely precursor decomposition pathways and examine relevant implications for thermal CVD of copper from (tmvs)Cusp{I}(hfac). Finally, a hydrogen-plasma assisted CVD (PACVD) process was developed for the growth of device quality gold for incorporation as dopant in emerging Cu CVD based metallization interconnects. In particular, it was demonstrated that the PACVD gold process window identified can maintain very low gold deposition rates (gold is a promising in-situ Cu doping technique

  11. Effect of mid-annealing process on the device characteristics of the TFT using Al-doped ZnO active channels prepared by atomic layer deposition

    Science.gov (United States)

    Kim, Eom-Ji; Bak, Jun-Yong; Choi, Jeong-Seon; Yoon, Sung-Min

    2015-03-01

    A specified mid-annealing process, which is a thermal treatment in oxygen ambient right after an active layer deposition, was proposed for obtaining a sufficiently wide process window for the atomic layer deposition in order to realize a high performance Al-doped ZnO (AZO) thin-film transistors (TFTs). While the crystalline phases of the AZO thin films were not changed after the mid-annealing process, the electrical conductivities of the films experienced drastic changes owing to the significant reduction of oxygen vacancies during the mid-annealing process. The decrease in the electrical conductivity was more markedly observed for the AZO films prepared at higher deposition temperature. Top-gate-structured TFTs using the mid-annealed AZO active channel layers were fabricated and characterized. Sound on/off switching behaviors of TFTs were obtained at a wider range of deposition temperature. Additionally, the improvements in carrier mobility and negative bias stress stability were successfully confirmed.

  12. Bismuth mineral inclusions in gold-bearing magnetite from the giant Beiya gold deposit, SW China: insights into mineralization process

    Science.gov (United States)

    Zhou, Haoyang; Sun, Xiaoming

    2017-04-01

    Bismuth minerals are commonly found in a wide range of gold deposits and could offer valuable information on the process of gold mineralization. This is because Bi minerals always show immediate association with gold and are sensitive to chemical-physical variations (Afifi et al., 1988). Specifically, native bismuth has a melting point of 271°C and could melt at lower temperatures when gold is added (Okamoto et al,, 1983). It has been verified that Bi melt could efficiently scavenge gold from hydrothermal fluids (Tooth et al., 2008, 2011). The Beiya deposit, situated in the Sanjiang Tethyan tectonic domain in the southwestern China, is one of the largest gold deposits in China 10.4 Moz Au @ 2.47g/t). Located along the contacts between a 36 Ma quartz syenite porphyry and the Triassic limestones, the deposit contains abundant massive Au-bearing magnetite ores, which are considered as a product of skarn mineralization. However, the pivotal processes accounting for the huge accumulation of gold resource at Beiya area are poorly constrained. In the massive magnetite ores, abundant native gold was observed to be present as submicron-scale inclusions hosted by magnetite (Zhou et al., 2017). We also noted that abundant Bi minerals occur within these ores (Zhou et al., 2016), which provide critical clues to reveal the processes of gold mineralization. An assemblage of Bi minerals, composed of native bismuth, maldonite and bismuthinite, is present as tiny inclusions in these Au-bearing magnetite grains. Mineralogical study illustrates the encapsulation of native bismuth and maldonite as melts during magnetite growth, which is also supported by the ore-forming temperatures over 300°C derived from previous fluid inclusions study (He et al., 2016). Our thermodynamic modeling demonstrates that Bi melts scavenged gold from hydrothermal fluids. Subsequently, sulfidation of Bi melts resulted in precipitation of gold, which was captured by growing magnetite. We thus propose that

  13. Near-interface Si substrate 3d metal contamination during atomic layer deposition processing detected by electron spin resonance

    Science.gov (United States)

    Nguyen, A. P. D.; Stesmans, A.; Hiller, D.; Zacharias, M.

    2012-06-01

    A K- and Q-band electron spin resonance (ESR) study has been carried out on (100)Si/SiO2 entities manufactured by low temperature (150 °C) atomic layer deposition (ALD) of a high-quality SiO2 layer on Si using 3-aminopropyltriethoxysilane, H2O, and ozone in a three-step process. Whereas previous work has demonstrated the high quality of the deposited SiO2 layer, the current ESR analysis reports on the tracing of growth-related contamination of near interface Si substrate layers by two transition metals. This includes, first, detection of the signal of interstitial Cr+ (S = 5/2) impurities in c-Si, characterized by an isotropic central g value of 1.9980 ± 0.0002, an isotropic 53Cr (I = 3/2) hyperfine interaction of splitting Aiso = 11.8 G, and cubic crystal field splitting parameter a = +32.2 G, well in agreement with the known bulk c-Si case; A small anisotropic contribution to the hyperfine interaction has additionally been revealed. The total Cr+ defect density is inferred as ˜5 × 1011 cm-2. Second, a single signal is observed at isotropic g = 2.070 ± 0.001, corresponding to interstitial Fe impurities (Fei)0 (S = 1) positioned in a c-Si matrix. Defect density depth profiling reveals the impurities to be confined to a few μm thick Si substrate top layer, the density decaying exponential-like from the Si/SiO2 interface inward the Si substrate. The total of the results points to a contamination of reactor-environment origin, connected with the layer deposition process. It concerns a weak contamination, in which detection the ESR technique emerges as a powerful technique able to unveil very low levels of contamination of near-surface Si substrate layers.

  14. Low-temperature atomic layer deposition of TiO{sub 2} thin layers for the processing of memristive devices

    Energy Technology Data Exchange (ETDEWEB)

    Porro, Samuele, E-mail: samuele.porro@polito.it; Conti, Daniele; Guastella, Salvatore; Ricciardi, Carlo [Applied Science and Technology Department, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino (Italy); Jasmin, Alladin; Pirri, Candido F. [Applied Science and Technology Department, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy and Center for Space Human Robotics@PoliTo, Istituto Italiano di Tecnologia, C.so Trento 21, 10129 Torino (Italy); Bejtka, Katarzyna; Perrone, Denis; Chiolerio, Alessandro [Center for Space Human Robotics@PoliTo, Istituto Italiano di Tecnologia, C.so Trento 21, 10129 Torino (Italy)

    2016-01-15

    Atomic layer deposition (ALD) represents one of the most fundamental techniques capable of satisfying the strict technological requirements imposed by the rapidly evolving electronic components industry. The actual scaling trend is rapidly leading to the fabrication of nanoscaled devices able to overcome limits of the present microelectronic technology, of which the memristor is one of the principal candidates. Since their development in 2008, TiO{sub 2} thin film memristors have been identified as the future technology for resistive random access memories because of their numerous advantages in producing dense, low power-consuming, three-dimensional memory stacks. The typical features of ALD, such as self-limiting and conformal deposition without line-of-sight requirements, are strong assets for fabricating these nanosized devices. This work focuses on the realization of memristors based on low-temperature ALD TiO{sub 2} thin films. In this process, the oxide layer was directly grown on a polymeric photoresist, thus simplifying the fabrication procedure with a direct liftoff patterning instead of a complex dry etching process. The TiO{sub 2} thin films deposited in a temperature range of 120–230 °C were characterized via Raman spectroscopy and x-ray photoelectron spectroscopy, and electrical current–voltage measurements taken in voltage sweep mode were employed to confirm the existence of resistive switching behaviors typical of memristors. These measurements showed that these low-temperature devices exhibit an ON/OFF ratio comparable to that of a high-temperature memristor, thus exhibiting similar performances with respect to memory applications.

  15. Stability increase of fuel clad with zirconium oxynitride thin film by metalorganic chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Jee, Seung Hyun [Department of Materials Science and Engineering, Yonsei University, 134 Sinchon Dong, Seoul 120-749 (Korea, Republic of); Materials Research and Education Center, Dept. of Mechanical Engineering, Auburn University, 275 Wilmore Labs, AL 36849-5341 (United States); Kim, Jun Hwan; Baek, Jong Hyuk [Recycled Fuel Development Division, Korea Atomic Energy Research Institute, P.O. Box 105, Yuseong, Daejeon, 305-600 (Korea, Republic of); Kim, Dong-Joo [Materials Research and Education Center, Dept. of Mechanical Engineering, Auburn University, 275 Wilmore Labs, AL 36849-5341 (United States); Kang, Seong Sik [Regulatory Research Division, Korea Institute of Nuclear Safety, 19, Guseong-Dong, Yuseong-Gu, Daejeon, 305-338 (Korea, Republic of); Yoon, Young Soo, E-mail: yoonys@yonsei.ac.kr [Department of Materials Science and Engineering, Yonsei University, 134 Sinchon Dong, Seoul 120-749 (Korea, Republic of)

    2012-06-01

    A zirconium oxynitride (ZON) thin film was deposited onto HT9 steel as a cladding material by a metalorganic chemical vapor deposition (MOCVD) in order to prevent a fuel-clad chemical interaction (FCCI) between a U-10 wt% Zr metal fuel and a clad material. X-ray diffraction spectrums indicated that the mixture of structures of zirconium nitride, oxide and carbide in the MOCVD grown ZON thin films. Also, typical equiaxial grain structures were found in plane and cross sectional images of the as-deposited ZON thin films with a thickness range of 250-500 nm. A depth profile using auger electron microscopy revealed that carbon and oxygen atoms were decreased in the ZON thin film deposited with hydrogen gas flow. Diffusion couple tests at 800 Degree-Sign C for 25 hours showed that the as-deposited ZON thin films had low carbon and oxygen content, confirmed by the Energy Dispersive X-ray Spectroscopy, which showed a barrier behavior for FCCI between the metal fuel and the clad. This result suggested that ZON thin film cladding by MOCVD, even with the thickness below the micro-meter level, has a high possibility as an effective FCCI barrier. - Highlights: Black-Right-Pointing-Pointer Zirconium oxynitride (ZON) deposited by metal organic chemical vapor deposition. Black-Right-Pointing-Pointer Prevention of fuel cladding chemical interaction (FCCI) investigated. Black-Right-Pointing-Pointer Interfusion reduced by between metal fuel (U-10 wt% Zr) and a HT9 cladding material. Black-Right-Pointing-Pointer Hydrogenation of the ZON during growth improved the FCCI barrier performance.

  16. Super-Hydrophobic Surface Prepared by Lanthanide Oxide Ceramic Deposition Through PS-PVD Process

    Science.gov (United States)

    Li, Jie; Li, Cheng-Xin; Chen, Qing-Yu; Gao, Jiu-Tao; Wang, Jun; Yang, Guan-Jun; Li, Chang-Jiu

    2017-02-01

    Super-hydrophobic surface has received widespread attention in recent years. Both the surface morphology and chemical composition have significant impact on hydrophobic performance. A novel super-hydrophobic surface based on plasma spray-vapor deposition was introduced in the present paper. Samaria-doped ceria, which has been proved as an intrinsic hydrophobic material, was used as feedstock material. Additionally, in order to investigate the influence of surface free energy on the hydrophobicity, chemical modification by low surface free energy materials including stearic acid and 1,1,2,2-tetrahydroperfluorodecyltrimethoxysilane (FAS) was used on coating surface. Scanning electron microscopy and Fourier transform infrared spectroscopy were employed to characterize the coating surface. The results show that the obtained surface has a hierarchical structure composed by island-like structures agglomerated with angular-like sub-micrometer-sized particles. Moreover, with the surface free energy decreases, the hydrophobic property of the surface improves gradually. The water contact angle of the as-sprayed coating surface increases from 110° to 148° after modification by stearic acid and up to 154° by FAS. Furthermore, the resultant surface with super-hydrophobicity exhibits an excellent stability.

  17. Influence of processing parameters on lattice parameters in laser deposited tool alloy steel

    Energy Technology Data Exchange (ETDEWEB)

    Sun, G.F., E-mail: gfsun82@gmail.com [Center for Laser-Aided Intelligent Manufacturing, University of Michigan, Ann Arbor, MI, 48109 (United States); School of Mechanical Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013 (China); Bhattacharya, S. [Center for Laser-Aided Intelligent Manufacturing, University of Michigan, Ann Arbor, MI, 48109 (United States); Dinda, G.P.; Dasgupta, A. [Center for Advanced Technologies, Focus: Hope, Detroit, MI, 48238 (United States); Mazumder, J. [Center for Laser-Aided Intelligent Manufacturing, University of Michigan, Ann Arbor, MI, 48109 (United States)

    2011-06-15

    Highlights: {yields} Orientation relationships among phases in the DMD are given. {yields} Martensite lattice parameters increased with laser specific energy. {yields} Austenite lattice parameters decreased with laser specific energy. - Abstract: Laser aided direct metal deposition (DMD) has been used to form AISI 4340 steel coating on the AISI 4140 steel substrate. The microstructural property of the DMD coating was analyzed by means of scanning electron microscopy, transmission electron microscopy and X-ray diffractometry. Microhardness of the DMD was measured with a Vickers microhardness tester. Results indicate that DMD can be used to form dense AISI 4340 steel coatings on AISI 4140 steel substrate. The DMD coating is mainly composed of martensite and retained austenite. Consecutive thermal cycles have a remarkable effect on the microstructure of the plan view of the DMD coating and on the corresponding microhardness distribution. Orientation relationships among austenite, martensite and cementite in the DMD coating followed the ones in conventional heat treated steels. As the laser specific energy decreased, cooling rate increased, and martensite peaks broadened and shifted to a lower Bragg's angle. Also martensite lattice parameters increased and austenite lattice parameters decreased due to the above parameter change.

  18. Global change and modern coral reefs: New opportunities to understand shallow-water carbonate depositional processes

    Science.gov (United States)

    Hallock, Pamela

    2005-04-01

    Human activities are impacting coral reefs physically, biologically, and chemically. Nutrification, sedimentation, chemical pollution, and overfishing are significant local threats that are occurring worldwide. Ozone depletion and global warming are triggering mass coral-bleaching events; corals under temperature stress lose the ability to synthesize protective sunscreens and become more sensitive to sunlight. Photo-oxidative stress also reduces fitness, rendering reef-building organisms more susceptible to emerging diseases. Increasing concentration of atmospheric CO 2 has already reduced CaCO 3 saturation in surface waters by more than 10%. Doubling of atmospheric CO 2 concentration over pre-industrial concentration in the 21st century may reduce carbonate production in tropical shallow marine environments by as much as 80%. As shallow-water reefs decline worldwide, opportunities abound for researchers to expand understanding of carbonate depositional systems. Coordinated studies of carbonate geochemistry with photozoan physiology and calcification, particularly in cool subtropical-transition zones between photozoan-reef and heterotrophic carbonate-ramp communities, will contribute to understanding of carbonate sedimentation under environmental change, both in the future and in the geologic record. Cyanobacteria are becoming increasingly prominent on declining reefs, as these microbes can tolerate strong solar radiation, higher temperatures, and abundant nutrients. The responses of reef-dwelling cyanobacteria to environmental parameters associated with global change are prime topics for further research, with both ecological and geological implications.

  19. Growth process optimization of ZnO thin film using atomic layer deposition

    Science.gov (United States)

    Weng, Binbin; Wang, Jingyu; Larson, Preston; Liu, Yingtao

    2016-12-01

    The work reports experimental studies of ZnO thin films grown on Si(100) wafers using a customized thermal atomic layer deposition. The impact of growth parameters including H2O/DiethylZinc (DEZn) dose ratio, background pressure, and temperature are investigated. The imaging results of scanning electron microscopy and atomic force microscopy reveal that the dose ratio is critical to the surface morphology. To achieve high uniformity, the H2O dose amount needs to be at least twice that of DEZn per each cycle. If the background pressure drops below 400 mTorr, a large amount of nanoflower-like ZnO grains would emerge and increase surface roughness significantly. In addition, the growth temperature range between 200 °C and 250 °C is found to be the optimal growth window. And the crystal structures and orientations are also strongly correlated to the temperature as proved by electron back-scattering diffraction and x-ray diffraction results.

  20. Pulsed laser deposition process of PLZT thin films using an infrared Nd:YAG laser

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, T. [CCADET-UNAM, A.P. 70-186, Mexico D.F., C.P. 04510 (Mexico)]. E-mail: tupacgarcia@yahoo.com; Posada, E. de [IMRE-Physics Faculty, Havana University (Cuba); Bartolo-Perez, P. [CINVESTAV-IPN Unidad, Applied Physics Department, A.P. 73 Cordemex, Merida, Yuc. (Mexico); Programa de Corrosion del Golfo de Mexico, UAC, Compeche (Mexico); Pena, J.L. [CINVESTAV-IPN Unidad, Applied Physics Department, A.P. 73 Cordemex, Merida, Yuc. (Mexico); Diamant, R. [UAM-Unidad Iztapalapa, D.F. (Mexico); Calderon, F. [IMRE-Physics Faculty, Havana University (Cuba); Pelaiz, A. [IMRE-Physics Faculty, Havana University (Cuba)

    2006-03-15

    Pulsed laser depositions of PLZT thin films were performed using an Nd:YAG (1064 nm) laser. The growths took place in vacuum or in an oxygen background. Room temperature and 500 deg. C were the used substrate temperatures. The X-ray diffraction analysis revealed a preferential crystallographic orientation in the films grown at room temperature in vacuum. Such result is discussed. The velocity distribution functions of the species in the plasma plume were obtained from a time of flight study using optical emission spectroscopy. The maximums of these distributions functions fall around 10{sup 6} cm/s, equivalent to an energy range of 18-344 eV. Ionic species of heavy elements (like lead) achieved higher velocities than other lighter species. This result is linked to the creation of an accelerating spatial charge and to the thermal nature of the target material extraction that allows some elements to be released first than others. Chemical state variations of the elements present in the films were analyzed. Under these different growing conditions, lead chemical states varied the most.

  1. Reactive Ar ion beam sputter deposition of TiO{sub 2} films: Influence of process parameters on film properties

    Energy Technology Data Exchange (ETDEWEB)

    Bundesmann, C., E-mail: carsten.bundesmann@iom-leipzig.de [Leibniz-Institut für Oberflächenmodifizierung e.V., Permoserstrasse 15, 04318 Leipzig (Germany); Lautenschläger, T.; Thelander, E. [Leibniz-Institut für Oberflächenmodifizierung e.V., Permoserstrasse 15, 04318 Leipzig (Germany); Spemann, D. [Leibniz-Institut für Oberflächenmodifizierung e.V., Permoserstrasse 15, 04318 Leipzig (Germany); Universität Leipzig, Fakultät für Physik und Geowissenschaften, Institut für Experimentelle Physik II, Linnéstrasse 5, 04103 Leipzig (Germany)

    2017-03-15

    Highlights: • Ion beam sputter deposition under systematic variation of process parameters. • Thickness, growth rate, structure, mass density, composition, optical properties. • All TiO{sub 2} films are amorphous with systematic variations in mass density. • Considerable amount of inert process gas correlated with scattering angle. • Correlation of mass density and index of refraction. - Abstract: Several sets of TiO{sub 2} films were grown by Ar ion beam sputter deposition under systematic variation of ion energy and geometrical parameters (ion incidence angle and polar emission angle). The films were characterized concerning thickness, growth rate, structural properties, composition, mass density, and optical properties. The film thicknesses show a cosine-like angular distribution, and the growth rates were found to increase with increasing ion incidence angle and ion energy. All films are amorphous and stoichiometric, but can contain a considerable amount of backscattered primary particles. The atomic fraction of Ar particles decreases systematically with increasing scattering angle, independent from ion energy and ion incidence angle. Mass density and index of refraction show similar systematic variations with ion energy and geometrical parameters. The film properties are mainly influenced by the scattering geometry, and only slightly by ion energy and ion incidence angle. The variations in the film properties are tentatively assigned to changes in the angular and energy distribution of the sputtered target particles and back-scattered primary particles.

  2. Experimentally Investigating the Effect of Temperature Differences in the Particle Deposition Process on Solar Photovoltaic (PV Modules

    Directory of Open Access Journals (Sweden)

    Yu Jiang

    2016-10-01

    Full Text Available This paper reports an experimental investigation of the dust particle deposition process on solar photovoltaic (PV modules with different surface temperatures by a heating plate to illustrate the effect of the temperature difference (thermophoresis between the module surface and the surrounding air on the dust accumulation process under different operating temperatures. In general, if the temperature of PV modules is increased, the energy conversion efficiency of the modules is decreased. However, in this study, it is firstly found that higher PV module surface temperature differences result in a higher energy output compared with those modules with lower temperature differences because of a reduced accumulation of dust particles. The measured deposition densities of dust particles were found to range from 0.54 g/m2 to 0.85 g/m2 under the range of experimental conditions and the output power ratios were found to increase from 0.861 to 0.965 with the increase in the temperature difference from 0 to 50 °C. The PV module with a higher temperature difference experiences a lower dust density because of the effect of the thermophoresis force arising from the temperature gradient between the module surface and its surrounding air. In addition, dust particles have a significant impact on the short circuit current, as well as the output power. However, the influence of particles on open circuit voltage can be negligible.

  3. Growth process and mechanism of a multi-walled carbon nanotube nest deposited on a silicon nanoporous pillar array

    Energy Technology Data Exchange (ETDEWEB)

    Jiang Weifen, E-mail: gingerwfj@yahoo.com.cn [Department of Mathematics and Information Science, North China Institute of Water Conservancy and Hydroelectric Power, No. 36 Beihuan Road, Zhengzhou 450011 (China); Jian Lv; Yang Xiaohui [Department of Mathematics and Information Science, North China Institute of Water Conservancy and Hydroelectric Power, No. 36 Beihuan Road, Zhengzhou 450011 (China); Li Xinjian [Department of Physics and Laboratory of Material Physics, Zhengzhou University, Zhengzhou 450052 (China)

    2010-03-01

    A large scale nest array of multi-walled carbon nanotubes (NACNTs) was grown on silicon nanoporous pillar array (Si-NPA) by thermal chemical vapor deposition. Through observing its macro/micromorphology and structure, ascertaining the catalyst component and its locations at different growth time by hiring field emission scanning electron microscopy, transmission electron microscopy (TEM), high-resolution TEM, and selected area electron diffraction, the growth process was deduced. Its thermal properties were also investigated by using a thermogravimetric analyzer. Our experiments demonstrated that the CNTs growth by means of root-growth mechanism at the initial growth stage, then a continuous growth process with its tip open is suggested, finally, a schematic growth model of NACNT/Si-NPA was presented.

  4. Process-based, morphodynamic hindcast of decadal deposition patterns in San Pablo Bay, California, 1856-1887

    Science.gov (United States)

    van der Wegen, M.; Jaffe, B.E.; Roelvink, J.A.

    2011-01-01

    This study investigates the possibility of hindcasting-observed decadal-scale morphologic change in San Pablo Bay, a subembayment of the San Francisco Estuary, California, USA, by means of a 3-D numerical model (Delft3D). The hindcast period, 1856-1887, is characterized by upstream hydraulic mining that resulted in a high sediment input to the estuary. The model includes wind waves, salt water and fresh water interactions, and graded sediment transport, among others. Simplified initial conditions and hydrodynamic forcing were necessary because detailed historic descriptions were lacking. Model results show significant skill. The river discharge and sediment concentration have a strong positive influence on deposition volumes. Waves decrease deposition rates and have, together with tidal movement, the greatest effect on sediment distribution within San Pablo Bay. The applied process-based (or reductionist) modeling approach is valuable once reasonable values for model parameters and hydrodynamic forcing are obtained. Sensitivity analysis reveals the dominant forcing of the system and suggests that the model planform plays a dominant role in the morphodynamic development. A detailed physical explanation of the model outcomes is difficult because of the high nonlinearity of the processes. Process formulation refinement, a more detailed description of the forcing, or further model parameter variations may lead to an enhanced model performance, albeit to a limited extent. The approach potentially provides a sound basis for prediction of future developments. Parallel use of highly schematized box models and a process-based approach as described in the present work is probably the most valuable method to assess decadal morphodynamic development. Copyright ?? 2011 by the American Geophysical Union.

  5. High aspect ratio AFM Probe processing by helium-ion-beam induced deposition.

    Science.gov (United States)

    Onishi, Keiko; Guo, Hongxuan; Nagano, Syoko; Fujita, Daisuke

    2014-11-01

    A Scanning Helium Ion Microscope (SHIM) is a high resolution surface observation instrument similar to a Scanning Electron Microscope (SEM) since both instruments employ finely focused particle beams of ions or electrons [1]. The apparent difference is that SHIMs can be used not only for a sub-nanometer scale resolution microscopic research, but also for the applications of very fine fabrication and direct lithography of surfaces at the nanoscale dimensions. On the other hand, atomic force microscope (AFM) is another type of high resolution microscopy which can measure a three-dimensional surface morphology by tracing a fine probe with a sharp tip apex on a specimen's surface.In order to measure highly uneven and concavo-convex surfaces by AFM, the probe of a high aspect ratio with a sharp tip is much more necessary than the probe of a general quadrangular pyramid shape. In this paper we report the manufacture of the probe tip of the high aspect ratio by ion-beam induced gas deposition using a nanoscale helium ion beam of SHIM.Gas of platinum organic compound was injected into the sample surface neighborhood in the vacuum chamber of SHIM. The decomposition of the gas and the precipitation of the involved metal brought up a platinum nano-object in a pillar shape on the normal commercial AFM probe tip. A SHIM system (Carl Zeiss, Orion Plus) equipped with the gas injection system (OmniProbe, OmniGIS) was used for the research. While the vacuum being kept to work, we injected platinum organic compound ((CH3)3(CH3C5H4)Pt) into the sample neighborhood and irradiated the helium ion beam with the shape of a point on the apex of the AFM probe tip. It is found that we can control the length of the Pt nano-pillar by irradiation time of the helium ion beam. The AFM probe which brought up a Pt nano-pillar is shown in Figure 1. It is revealed that a high-aspect-ratio Pt nano-pillar of ∼40nm diameter and up to ∼2000 nm length can be grown. In addition, for possible heating

  6. Hybrid layers deposited by an atmospheric pressure plasma process for corrosion protection of galvanized steel.

    Science.gov (United States)

    Del Frari, D; Bour, J; Bardon, J; Buchheit, O; Arnoult, C; Ruch, D

    2010-04-01

    Finding alternative treatments to reproduce anticorrosion properties of chromated coatings is challenging since both physical barrier and self-healing effects are needed. Siloxane based treatments are known to be a promising way to achieve physical barrier coatings, mainly plasma polymerized hexamethyldisiloxane (ppHMDSO). In addition, it is known that cerium-based coatings can also provide corrosion protection of metals by means of self-healing effect. In this frame, innovative nanoAlCeO3/ppHMDSO layers have thus been deposited and studied. These combinations allow to afford a good physical barrier effect and active properties. Liquid siloxane and cerium-based particles mixture is atomized and introduced as precursors into a carrier gas. Gas mixture is then injected into an atmospheric pressure dielectric barrier discharge (DBD) where plasma polymerization of the siloxane precursor occurs. The influence of cerium concentration on the coating properties is investigated: coating structure and topography have been studied by scanning electron microscopy (SEM) and interferometry, and corrosion resistance of these different coatings is compared by electrochemistry techniques: polarization curves and electrochemical impedance spectroscopy (EIS). Potential self-healing property afforded by cerium in the layer was studied by associating EIS measurements and nanoscratch controlled damaging. Among the different combinations investigated, mixing of plasma polymerized HMDSO and AICeO3 nanoparticles seems to give promising results with a good physical barrier and interesting electroactive properties. Indeed, corrosion currents measured on such coatings are almost as low as those measured with the chromated film. Combination of nanoscratch damaging of layers with EIS experiments to investigate self-healing also allow to measure the active protection property of such layers.

  7. Investigation on primary and secondary processes in Nasirabad manganese deposit, south of Neyriz: using mineralogy and Pb isotope geochemistry

    Directory of Open Access Journals (Sweden)

    Ali Reza Zarasvandi

    2013-04-01

    Full Text Available The Nasirabad manganese deposit is located 5 km south of Nasirabad, 8 km SW of Neyriz in the Fars province. Structurally, the area is placed in the southeastern part of Zagros thrust belt. In this area, the manganese mineralization occurred as ore layers and nodules, interlayered with Pichakun radiolarite chert deposits. In this study, mineralogy and geochemistry of uranium, thorium and lead isotopes were used to investigate the primary and secondary processes. In this way, in addition to petrographic and XRD studies, ICP-MS analysis was carried out in order to measure the U, Th and Pb isotopes. The strong fractionation of Fe and Mn phases and also the absence of Fe-bearing minerals in the XRD results, presence of syngenetic todorokite and quartz crystals, high U/Th ratios in some samples and Th versus U diagrams, all indicate entrance of Mn-bearing hydrothermal fluids into the sedimentary basin of the Nasirabad manganese deposit. The pyrolusites in radiolarites tests as replacement textures, host rock space filling and fracture filling pyrolusites, indicates the influence of secondary exogenic processes on primary hydrothermal mineralization. Non-homogenous 206Pb/Pb204, 207Pb/Pb204 and 208Pb/Pb204 values show non-steady hydrothermal processes in the sedimentary basin and indicate mixing of hydrothermal lead isotopes with another secondary source. Strong positive correlation between absolute values of radiogenic lead isotopes and insoluble High Field Strength Elements (HFSE such as 207Pb vs Nb (r=0.81, 207Pb vs TiO2 (r=0.93, 207Pb vs Th (r=0.79 and strong correlation between these elements and some mafic components like 208Pb vs Fe2O3 (r=0.94 and Th vs MgO (r=0.86 represent entrance of radiogenic lead with mafic detrital materials into the sedimentary basin. Similar linear trend among 206Pb/Pb204 vs 208Pb/Pb204 and 207Pb/Pb204 ratios in nodules and manganese layers show the same geochemical condition in Mn-nodules and layers formation and

  8. Numerical simulation of heat transfer and fluid flow in coaxial laser cladding process for direct metal deposition

    Science.gov (United States)

    Qi, Huan; Mazumder, Jyotirmoy; Ki, Hyungson

    2006-07-01

    The coaxial laser cladding process is the heart of direct metal deposition (DMD). Rapid materials processing, such as DMD, is steadily becoming a tool for synthesis of materials, as well as rapid manufacturing. Mathematical models to develop the fundamental understanding of the physical phenomena associated with the coaxial laser cladding process are essential to further develop the science base. A three-dimensional transient model was developed for a coaxial powder injection laser cladding process. Physical phenomena including heat transfer, melting and solidification phase changes, mass addition, and fluid flow in the melt pool, were modeled in a self-consistent manner. Interactions between the laser beam and the coaxial powder flow, including the attenuation of beam intensity and temperature rise of powder particles before reaching the melt pool were modeled with a simple heat balance equation. The level-set method was implemented to track the free surface movement of the melt pool, in a continuous laser cladding process. The governing equations were discretized using the finite volume approach. Temperature and fluid velocity were solved for in a coupled manner. Simulation results such as the melt pool width and length, and the height of solidified cladding track were compared with experimental results and found to be reasonably matched.

  9. Metal nanoparticle deposited inorganic nanostructure hybrids, uses thereof and processes for their preparation

    Science.gov (United States)

    Tenne, Reshef; Tsverin, Yulia; Burghaus, Uwe; Komarneni, Mallikharjuna Rao

    2016-01-26

    This invention relates to a hybrid component comprising at least one nanoparticle of inorganic layered compound (in the form of fullerene-like structure or nanotube), and at least one metal nanoparticle, uses thereof as a catalyst, (e.g. photocatalysis) and processes for its preparation.

  10. Effects of various power process parameters on deposition efficiency of plasma-sprayed Al2O3-40% wt.TiO2 coatings

    Science.gov (United States)

    Wang, Y. J.; Xu, J. Y.; Zhao, Q. H.; Wang, Y.; Gao, B.

    2017-06-01

    To investigate effects of various power process parameters on deposition efficiency, Al2O3-40% wt. TiO2 is selected as raw material to be coated on Q235 steel substrate by air plasma spraying. Different variables of spraying current and voltage are designed, whose spraying power is from 12.8 KW to 16.8 KW and increment step is 0.8 KW. Deposition thickness is proposed as a simple method to characterize the deposition efficiency of coatings. Analysis of variance is used to observe the difference between two adjacent groups. It is shown that deposition efficiency increases with the increase of spraying current; by and large, it firstly rises and then decreases with the increment of spraying voltage. However, the effects of increasing the latter are much stronger on deposition efficiency.

  11. Ground-penetrating radar study of beach-ridge deposits in Huangqihai Lake, North China: the imprint of washover processes

    Institute of Scientific and Technical Information of China (English)

    Xin SHAN; Xinghe YU; Peter D.CLIFT; Chengpeng TAN; Shunli LI; Zhixing WANG; Dongxu SU

    2016-01-01

    Determining the origin of beach ridges in lacustrine basins can often be problematic.The sedimentary processes responsible for formation of beach ridges on the north shore of Huangqihai Lake were investigated by using ground penetrating radar (GPR).A 400 MHz GPR antenna was used to achieve a high vertical resolution of 0.04-0.08 m.The radar stratigraphy was then determined using principles of seismic stratigraphy.The radar facies (RF) were determined by analyzing internal configuration and continuity of reflections,as well as reflection termination patterns.The identified RF fall into three groups (inclined,horizontal and irregular).The inclined group consists of RF that display inclined reflections.The horizontal group consists of RF that exhibit predominantly horizontal reflections.In the irregular group,the reflections are typically weak.RF with reflections with gently landward dips in the shore-normal profile are interpreted as washover sheet deposits.RF with steeply landward-dipping and imbricated reflections are interpreted as washover lobes.Washover sheets develop when overwash fails to enter a significant body of water and sedimentation takes place entirely on the relatively flattened topography.Washover lobe development occurs when overwash enters a region in which topography dips steeply landward,and sedimentation takes place on the surface of washover sheets or previous washover lobes.The beach-ridge deposits are interpreted as being formed entirely from vertically and laterally stacked washover sheets and washover lobes.They were formed by wave-dominated processes and secondary overwash processes supplemented by longshore currents.

  12. First principles study of the atomic layer deposition of alumina by TMA-H2O-process.

    Science.gov (United States)

    Weckman, Timo; Laasonen, Kari

    2015-07-14

    Atomic layer deposition (ALD) is a coating technology used to produce highly uniform thin films. Aluminiumoxide, Al2O3, is mainly deposited using trimethylaluminium (TMA) and water as precursors and is the most studied ALD-process to date. However, only few theoretical studies have been reported in the literature. The surface reaction mechanisms and energetics previously reported focus on a gibbsite-like surface model but a more realistic description of the surface can be achieved when the hydroxylation of the surface is taken into account using dissociatively adsorbed water molecules. The adsorbed water changes the structure of the surface and reaction energetics change considerably when compared to previously studied surface model. Here we have studied the TMA-H2O process using density functional theory on a hydroxylated alumina surface and reproduced the previous results for comparison. Mechanisms and energetics during both the TMA and the subsequent water pulse are presented. TMA is found to adsorb exothermically onto the surface. The reaction barriers for the ligand-exchange reactions between the TMA and the surface hydroxyl groups were found to be much lower compared to previously presented results. TMA dissociation on the surface is predicted to saturate at monomethylaluminium. Barriers for proton diffusion between surface sites are observed to be low. TMA adsorption was also found to be cooperative with the formation of methyl bridges between the adsorbants. The water pulse was studied using single water molecules reacting with the DMA and MMA surface species. Barriers for these reactions were found to reasonable in the process conditions. However, stabilizing interactions amongst water molecules were found to lower the reaction barriers and the dynamical nature of water is predicted to be of importance. It is expected that these calculations can only set an upper limit for the barriers during the water pulse.

  13. Mineralization and leaching process in the Jian copper deposit, northeastern Fars province: Application of petrography and stable isotopes

    Directory of Open Access Journals (Sweden)

    Farid Moore

    2015-04-01

    Full Text Available Introduction One of the first principles in the formation of a reserve is mineralogical, construction and mineral textures studies and investigation of paragenetic relations in the ore minerals. In addition, to petrographic studies, isotopic investigates have wide applications in economic geology. In general, copper isotope variability in primary (high temperature mineralization forms a tight cluster, in contrast to secondary mineralization, which has a much larger isotope range. A distinct pattern of heavier copper isotope signatures is evident in supergene samples, and a lighter signature characterizes the leached cap and oxidation-zone minerals. This relationship has been used to understand oxidation–reduction processes (Hoefs, 2009. Also for a better understanding of the origin of the Jian Cu deposit, this research focuses on the origin and composition of the fluid and elucidation of its evolution during the mineralization process. In order to achieve this end, field observations, vein petrography, microthermometry of fluid inclusions and stable isotope analyses of veins and minerals were investigated. The present study also compares high and low temperature sulfide samples in an attempt to document and explain diagnostic δ65Cu ranges in minerals from the Jian deposit. Materials and methods The samples were taken from different depths to measure Cu isotope variations within each reservoir. Mineralogical composition was determined using X-ray diffractometry. In addition, chromatographic separation was carried out on all samples (except for native Cu samples in a clean lab and was conducted as outlined in Mathur et al. (Mathur et al., 2009. These samples were measured into a Multicollector Inductively-Coupled-Plasma Mass Spectrometer (MC-ICPMS, the Micro mass Isoprobe at the University of Arizona in low resolution mode using a microconcentric nebulizer to increase sensitivity for the samples with lower concentrations of copper. Preparation

  14. Ion beam sputter deposition of Ag films: Influence of process parameters on electrical and optical properties, and average grain sizes

    Energy Technology Data Exchange (ETDEWEB)

    Bundesmann, C., E-mail: carsten.bundesmann@iom-leipzig.de; Feder, R.; Gerlach, J.W.; Neumann, H.

    2014-01-31

    Ion beam sputter deposition is used to grow several sets of Ag films under systematic variation of ion beam parameters, such as ion species and ion energy, and geometrical parameters, such as ion incidence angle and polar emission angle. The films are characterized concerning their thickness by profilometry, their electrical properties by 4-point-probe-measurements, their optical properties by spectroscopic ellipsometry, and their average grain sizes by X-ray diffraction. Systematic influences of the growth parameters on film properties are revealed. The film thicknesses show a cosine-like angular distribution. The electrical resistivity increases for all sets with increasing emission angle and is found to be considerably smaller for Ag films grown by sputtering with Xe ions than for the Ag films grown by sputtering with Ar ions. Increasing the ion energy or the ion incidence angle also increases the electrical resistivity. The optical properties, which are the result of free charge carrier absorption, follow the same trends. The observed trends can be partly assigned to changes in the average grain size, which are tentatively attributed to different energetic and angular distributions of the sputtered and back-scattered particles. - Highlights: • Ion beam sputter deposition under systematic variation of process parameters. • Film characterization: thickness, electrical, optical and structural properties. • Electrical resistivity changes considerably with ion species and polar emission angle. • Electrical and optical data reveal a strong correlation with grain sizes. • Change of film properties related to changing properties of film-forming particles.

  15. Classification of processes for the atomic layer deposition of metals based on mechanistic information from density functional theory calculations

    Science.gov (United States)

    Elliott, S. D.; Dey, G.; Maimaiti, Y.

    2017-02-01

    Reaction cycles for the atomic layer deposition (ALD) of metals are presented, based on the incomplete data that exist about their chemical mechanisms, particularly from density functional theory (DFT) calculations. ALD requires self-limiting adsorption of each precursor, which results from exhaustion of adsorbates from previous ALD pulses and possibly from inactivation of the substrate through adsorption itself. Where the latter reaction does not take place, an "abbreviated cycle" still gives self-limiting ALD, but at a much reduced rate of deposition. Here, for example, ALD growth rates are estimated for abbreviated cycles in H2-based ALD of metals. A wide variety of other processes for the ALD of metals are also outlined and then classified according to which a reagent supplies electrons for reduction of the metal. Detailed results on computing the mechanism of copper ALD by transmetallation are summarized and shown to be consistent with experimental growth rates. Potential routes to the ALD of other transition metals by using complexes of non-innocent diazadienyl ligands as metal sources are also evaluated using DFT.

  16. Characteristics of the subglacially-formed debris-rich chemical deposits and related subglacial processes of Qiangyong Glacier, Tibet

    Institute of Scientific and Technical Information of China (English)

    LUORisheng; CAOJun; LIUGengnian; CUIZhijiu

    2003-01-01

    Subglacially-formed debris-rich chemical deposits were found both on bedrock surface and in bedrock crevice on the edge of Qiangyong Glacier, one of the continental glaciers in Tibet. Grain size distribution, internal structures and chemical components of the chemical deposits were analyzed. It can be inferred that the temperature of some part of the ice-bedrock interface is close to the melting point and there exists pressure melting water under Qiangyong Glacier. Debris, especially those from continental aerosols, can release Ca++ in the water. At the lee-side of obstacles on glacier bed the CO2 in the melting water might escape from the water and the melting water might refreeze due to the dramatically reduced pressure, making the enrichment and precipitation of CaCO3. The existence of subglacial melting water and the process of regelation under Qiangyong Glacier indicate that sliding could contribute some proportion to the entire movement of Qiangyong Glacier and it belongs to multiolex cold-temperate glaciers.

  17. Classification of processes for the atomic layer deposition of metals based on mechanistic information from density functional theory calculations.

    Science.gov (United States)

    Elliott, S D; Dey, G; Maimaiti, Y

    2017-02-07

    Reaction cycles for the atomic layer deposition (ALD) of metals are presented, based on the incomplete data that exist about their chemical mechanisms, particularly from density functional theory (DFT) calculations. ALD requires self-limiting adsorption of each precursor, which results from exhaustion of adsorbates from previous ALD pulses and possibly from inactivation of the substrate through adsorption itself. Where the latter reaction does not take place, an "abbreviated cycle" still gives self-limiting ALD, but at a much reduced rate of deposition. Here, for example, ALD growth rates are estimated for abbreviated cycles in H2-based ALD of metals. A wide variety of other processes for the ALD of metals are also outlined and then classified according to which a reagent supplies electrons for reduction of the metal. Detailed results on computing the mechanism of copper ALD by transmetallation are summarized and shown to be consistent with experimental growth rates. Potential routes to the ALD of other transition metals by using complexes of non-innocent diazadienyl ligands as metal sources are also evaluated using DFT.

  18. Indium tin oxide nanowires grown by one-step thermal evaporation-deposition process at low temperature.

    Science.gov (United States)

    Dong, Haibo; Zhang, Xiaoxian; Niu, Zhiqiang; Zhao, Duan; Li, Jinzhu; Cai, Le; Zhou, Weiya; Xie, Sishen

    2013-02-01

    Indium tin oxide (ITO), as one of the most important transparent conducting oxide, is widely used in electro-optical field. We have developed a simple one-step method to synthesize ITO nanowires at low temperature of 600 degrees C. In detail, mixtures of InN nanowires and SnO powder, with the molar ratio of 10:1, have been used as precursors for the thermal evaporation-deposition of ITO nanowires on silicon/quartz slices. During the growth process, the evaporation temperature is maintained at 600 degrees C, which favors the decomposition of InN and oxidation of In, with a limited incorporation of Sn in the resulting compound (In:Sn approximately 11:1 in atomic ratio). As far as we know, this is the lowest growth temperature reported on the thermal deposition of ITO nanowires. The diameters of the nanowires are about 120 nm and the lengths are up to tens of micrometers. XRD characterization indicates the high crystallization of the nanowires. HRTEM results show the nanowires grow along the [200] direction. The transmittance of the nanowire film on quartz slice is more than 75% in the visible region. Based on photolithography and lift-off techniques, four-terminal measurement was utilized to test the resistivity of individual nanowire (6.11 x 10(-4) omega x cm). The high crystallization quality, good transmittance and low resistivity make as-grown ITO nanowires a promising candidate as transparent electrodes of nanoscale devices.

  19. Impact of Formulation Properties and Process Parameters on the Dispensing and Depositioning of Drug Nanosuspensions Using Micro-Valve Technology.

    Science.gov (United States)

    Bonhoeffer, Bastian; Kwade, Arno; Juhnke, Michael

    2017-04-01

    Flexible manufacturing processes with continuously adjustable dose strengths are considered particularly innovative and interesting for applications in personalized medicine, continuous manufacturing, or early drug development. A piezo-actuated micro-valve has been investigated for the dispensing and depositioning of drug nanosuspensions onto substrates to facilitate the manufacturing of solid oral dosage forms. The investigated micro-valve has been characterized regarding dispensing behavior, mass flow, accuracy, and robustness. The amount of dispensed drug compound during 1 dispensing event could be continuously adjusted from a few micrograms to several milligrams with high accuracy. Fluid properties, dispensing parameters of the micro-valve, and the resulting steady state mass flow could be correlated adequately for low-viscous drug nanosuspensions. High-speed imaging was used to investigate the dispensing behavior of the micro-valve regarding the evolution of the dispensed drug nanosuspension after ejection from the nozzle and the behavior during impact on flat and dry solid substrates. The experimentally determined breakup length of the dispensed liquid jet could be correlated with a semiempirical equation. From image sequences of the jet impact, We-Re phase diagrams could be established, providing a profound understanding and systematic guidance for the controlled depositioning of the entire dispensed drug nanosuspension onto the substrate.

  20. Improved breakdown voltage of AlGaN/GaN HEMTs grown on Si substrates using partially Mg-doped GaN buffer layer by MOCVD

    Institute of Scientific and Technical Information of China (English)

    LAU; KeiMay

    2010-01-01

    AlGaN/GaN high electron mobility transistors(HEMTs) were grown on Si substrates by MOCVD.In the HEMT structure,a 1 μm GaN buffer layer was partially doped with Mg in an attempt to increase the resistivity and minimize the buffer leakage.The AlGaN/GaN HEMTs grown on undoped and partially Mg-doped GaN buffer layers were processed and the DC characteristics of the devices were characterized for comparing the effect of Mg doping.For the device with the partially Mg-doped GaN buffer layer,a lower drain leakage current density of 55.8 nA/mm,a lower gate leakage current density of 2.73 μA/mm,and a hig