WorldWideScience

Sample records for deposition cvd processes

  1. Low-pressure c-BN deposition - is a CVD process possible?

    International Nuclear Information System (INIS)

    Haubner, R.; Tang, X.

    2001-01-01

    Since the low-pressure diamond deposition was discovered in 1982 there is a high interest to find a similar process for the c-BN synthesis. A review about the c-BN deposition process as well as its characterization is given. Experiments with a simple chemical vapor deposition(CVD) reactor using tris(dimethylamino)borane as precursor were carried out. In a cold-wall reactor substrates were heated up by high-frequency. Argon was used as protecting and carrying the precursor, it was saturated with tris(dimethylamino)borane (precursor) according to its vapor pressure and transports the pressure to the hot substrate, where deposition occurs. WC-Co hardmetal plates containing 6 wt. % Co, Mo and Si were used as substrates. Various BN layers were deposited and characterized. X-ray diffraction, IR-spectroscopy and SIMS indicate that BN-coatings containing c-BN were deposited. However a final verification of c-BN crystallites by TEM investigations was not possible till now. (nevyjel)

  2. Surface coatings deposited by CVD and PVD

    International Nuclear Information System (INIS)

    Gabriel, H.M.

    1982-01-01

    The demand for wear and corrosion protective coatings is increasing due to economic facts. Deposition processes in gas atmospheres like the CVD and PVD processes attained a tremendous importance especially in the field of the deposition of thin hard refractory and ceramic coatings. CVD and PVD processes are reviewed in detail. Some examples of coating installations are shown and numerous applications are given to demonstrate the present state of the art. (orig.) [de

  3. Effect of substrate bias on deposition behaviour of charged silicon nanoparticles in ICP-CVD process

    International Nuclear Information System (INIS)

    Yoo, Seung-Wan; Kim, Jung-Hyung; Seong, Dae-Jin; You, Shin-Jae; Seo, Byong-Hoon; Hwang, Nong-Moon

    2017-01-01

    The effect of a substrate bias on the deposition behaviour of crystalline silicon films during inductively coupled plasma chemical vapour deposition (ICP-CVD) was analysed by consideration of non-classical crystallization, in which the building block is a nanoparticle rather than an individual atom or molecule. The coexistence of positively and negatively charged nanoparticles in the plasma and their role in Si film deposition are confirmed by applying bias voltages to the substrate, which is sufficiently small as not to affect the plasma potential. The sizes of positively and negatively charged nanoparticles captured on a carbon membrane and imaged using TEM are, respectively, 2.7–5.5 nm and 6–13 nm. The film deposited by positively charged nanoparticles has a typical columnar structure. In contrast, the film deposited by negatively charged nanoparticles has a structure like a powdery compact with the deposition rate about three times higher than that for positively charged nanoparticles. All the films exhibit crystallinity even though the substrate is at room temperature, which is attributed to the deposition of crystalline nanoparticles formed in the plasma. The film deposited by negatively charged nanoparticles has the highest crystalline fraction of 0.84. (paper)

  4. Low temperature CVD deposition of silicon carbide

    International Nuclear Information System (INIS)

    Dariel, M.; Yeheskel, J.; Agam, S.; Edelstein, D.; Lebovits, O.; Ron, Y.

    1991-04-01

    The coating of graphite on silicon carbide from the gaseous phase in a hot-well, open flow reactor at 1150degC is described. This study constitutes the first part of an investigation of the process for the coating of nuclear fuel by chemical vapor deposition (CVD)

  5. Development Status of a CVD System to Deposit Tungsten onto UO2 Powder via the WCI6 Process

    Science.gov (United States)

    Mireles, O. R.; Kimberlin, A.; Broadway, J.; Hickman, R.

    2014-01-01

    Nuclear Thermal Propulsion (NTP) is under development for deep space exploration. NTP's high specific impulse (> 850 second) enables a large range of destinations, shorter trip durations, and improved reliability. W-60vol%UO2 CERMET fuel development efforts emphasize fabrication, performance testing and process optimization to meet service life requirements. Fuel elements must be able to survive operation in excess of 2850 K, exposure to flowing hydrogen (H2), vibration, acoustic, and radiation conditions. CTE mismatch between W and UO2 result in high thermal stresses and lead to mechanical failure as a result UO2 reduction by hot hydrogen (H2) [1]. Improved powder metallurgy fabrication process control and mitigated fuel loss can be attained by coating UO2 starting powders within a layer of high density tungsten [2]. This paper discusses the advances of a fluidized bed chemical vapor deposition (CVD) system that utilizes the H2-WCl6 reduction process.

  6. CVD diamond deposition onto dental burs

    International Nuclear Information System (INIS)

    Ali, N.; Sein, H.

    2001-01-01

    A hot-filament chemical vapor deposition (HFCVD) system has been modified to enable non-planar substrates, such as metallic wires and dental burs, to be uniformly coated with thin polycrystalline diamond films. Initially, diamond deposition was carried out on titanium and tantalum wires in order to test and optimize the system. High growth rates of the order of approx. 8 /hr were obtained when depositing diamond on titanium wires using the vertical filament arrangement. However, lower growth rates of the order of 4-5meu m/hr were obtained with diamond deposition on tantalum wires. To extend the work towards a practical biomedical application tungsten carbide dental burs were coated with diamond films. The as-grown films were found to be polycrystalline and uniform over the cutting tip. Finally, the costs relating to diamond CVD onto dental burs have been presented in this paper. The costs relating to coating different number of burs at a time and the effect of film thickness on costs have been included in this investigation. (author)

  7. Modelling and analysis of CVD processes for ceramic membrane preparation

    NARCIS (Netherlands)

    Brinkman, H.W.; Cao, G.Z.; Meijerink, J.; de Vries, Karel Jan; Burggraaf, Anthonie

    1993-01-01

    A mathematical model is presented that describes the modified chemical vapour deposition (CVD) process (which takes place in advance of the electrochemical vapour deposition (EVD) process) to deposit ZrO2 inside porous media for the preparation and modification of ceramic membranes. The isobaric

  8. Experiment and equipment of depositing diamond films with CVD system

    International Nuclear Information System (INIS)

    Xie Erqing; Song Chang'an

    2002-01-01

    CVD (chemical vapor deposition) emerged in recent years is a new technique for thin film deposition, which play a key role in development of modern physics. It is important to predominate the principle and technology of CVD for studying modern physics. In this paper, a suit of CVD experimental equipment for teaching in college physics is presented, which has simple design and low cost. The good result was gained in past teaching practices

  9. Selective tungsten deposition in a batch cold wall CVD system

    International Nuclear Information System (INIS)

    Chow, R.; Kang, S.; Harshbarger, W.R.; Susoeff, M.

    1987-01-01

    Selective deposition of tungsten offers many advantages for VLSI technology. The process can be used as a planarization technique for multilevel interconnect technology, it can be used to fill contacts and to provide a barrier layer between Al and Si materials, and the selective W process might be used as a self-aligned technology to provide low resistance layers on source/drain and gate conductors. Recent publications have indicate that cold wall CVD systems provide advantages for development of selective W process. Genus has investigated selective W deposition processing, and we have developed a selective W deposition process for the Genus 8402 multifilm deposition system. This paper describes the Genus 8402 system and the selective W process developed in this reactor. To further develop selective W technology, Genus has signed an agreement with General Electric establishing a joint development program. As a part of this program, the authors characterized the selective W process for encroachment, Si consumption and degrees of selectivity on various dielectrics. The status of this development activity and process characterization is reviewed in this paper

  10. Deposition and micro electrical discharge machining of CVD-diamond layers incorporated with silicon

    Science.gov (United States)

    Kühn, R.; Berger, T.; Prieske, M.; Börner, R.; Hackert-Oschätzchen, M.; Zeidler, H.; Schubert, A.

    2017-10-01

    In metal forming, lubricants have to be used to prevent corrosion or to reduce friction and tool wear. From an economical and ecological point of view, the aim is to avoid the usage of lubricants. For dry deep drawing of aluminum sheets it is intended to apply locally micro-structured wear-resistant carbon based coatings onto steel tools. One type of these coatings are diamond layers prepared by chemical vapor deposition (CVD). Due to the high strength of diamond, milling processes are unsuitable for micro-structuring of these layers. In contrast to this, micro electrical discharge machining (micro EDM) is a suitable process for micro-structuring CVD-diamond layers. Due to its non-contact nature and its process principle of ablating material by melting and evaporating, it is independent of the hardness, brittleness or toughness of the workpiece material. In this study the deposition and micro electrical discharge machining of silicon incorporated CVD-diamond (Si-CVD-diamond) layers were presented. For this, 10 µm thick layers were deposited on molybdenum plates by a laser-induced plasma CVD process (LaPlas-CVD). For the characterization of the coatings RAMAN- and EDX-analyses were conducted. Experiments in EDM were carried out with a tungsten carbide tool electrode with a diameter of 90 µm to investigate the micro-structuring of Si-CVD-diamond. The impact of voltage, discharge energy and tool polarity on process speed and resulting erosion geometry were analyzed. The results show that micro EDM is a suitable technology for micro-structuring of silicon incorporated CVD-diamond layers.

  11. High quality aluminide and thermal barrier coatings deposition for new and service exposed parts by CVD techniques

    Energy Technology Data Exchange (ETDEWEB)

    Pedraza, F.; Tuohy, C.; Whelan, L.; Kennedy, A.D. [SIFCO Turbine Components, Carrigtwohill, Cork (Ireland)

    2004-07-01

    In this work, the performance of CVD aluminide coatings is compared to that of coatings deposited by the classical pack cementation technique using standard SIFCO procedures. The CVD coatings always seem to behave better upon exposure to isothermal and cyclic oxidation conditions. This is explained by a longer term stability of CVD coatings, with higher Al amounts in the diffusion zone and less refractory element precipitation in the additive layer. The qualities of Pt/Al coatings by out-of-pack and CVD are also compared as a previous step for further thermal barrier coating deposition. As an example, YSZ thermal barrier coatings are deposited by MO-CVD on Pt/Al CVD bond coats rendering adherent and thick coatings around the surface of turbine blades. This process under development does not require complex manipulation of the component to be coated. (orig.)

  12. Chemical vapor deposition (CVD) of uranium for alpha spectrometry

    International Nuclear Information System (INIS)

    Ramirez V, M. L.; Rios M, C.; Ramirez O, J.; Davila R, J. I.; Mireles G, F.

    2015-09-01

    The uranium determination through radiometric techniques as alpha spectrometry requires for its proper analysis, preparation methods of the source to analyze and procedures for the deposit of this on a surface or substrate. Given the characteristics of alpha particles (small penetration distance and great loss of energy during their journey or its interaction with the matter), is important to ensure that the prepared sources are thin, to avoid problems of self-absorption. The routine methods used for this are the cathodic electro deposition and the direct evaporation, among others. In this paper the use of technique of chemical vapor deposition (CVD) for the preparation of uranium sources is investigated; because by this, is possible to obtain thin films (much thinner than those resulting from electro deposition or evaporation) on a substrate and comprises reacting a precursor with a gas, which in turn serves as a carrier of the reaction products to achieve deposition. Preliminary results of the chemical vapor deposition of uranium are presented, synthesizing and using as precursor molecule the uranyl acetylacetonate, using oxygen as carrier gas for the deposition reaction on a glass substrate. The uranium films obtained were found suitable for alpha spectrometry. The variables taken into account were the precursor sublimation temperatures and deposition temperature, the reaction time and the type and flow of carrier gas. Of the investigated conditions, two depositions with encouraging results that can serve as reference for further work to improve the technique presented here were selected. Alpha spectra obtained for these depositions and the characterization of the representative samples by scanning electron microscopy and X-ray diffraction are also presented. (Author)

  13. Chemical Vapor-Deposited (CVD) Diamond Films for Electronic Applications

    Science.gov (United States)

    1995-01-01

    Diamond films have a variety of useful applications as electron emitters in devices such as magnetrons, electron multipliers, displays, and sensors. Secondary electron emission is the effect in which electrons are emitted from the near surface of a material because of energetic incident electrons. The total secondary yield coefficient, which is the ratio of the number of secondary electrons to the number of incident electrons, generally ranges from 2 to 4 for most materials used in such applications. It was discovered recently at the NASA Lewis Research Center that chemical vapor-deposited (CVD) diamond films have very high secondary electron yields, particularly when they are coated with thin layers of CsI. For CsI-coated diamond films, the total secondary yield coefficient can exceed 60. In addition, diamond films exhibit field emission at fields orders of magnitude lower than for existing state-of-the-art emitters. Present state-of-the-art microfabricated field emitters generally require applied fields above 5x10^7 V/cm. Research on field emission from CVD diamond and high-pressure, high-temperature diamond has shown that field emission can be obtained at fields as low as 2x10^4 V/cm. It has also been shown that thin layers of metals, such as gold, and of alkali halides, such as CsI, can significantly increase field emission and stability. Emitters with nanometer-scale lithography will be able to obtain high-current densities with voltages on the order of only 10 to 15 V.

  14. Effect of pretreatment and deposition parameters on diamond nucleation in CVD

    International Nuclear Information System (INIS)

    Nazim, E.; Izman, S.; Ourdjini, A.; Shaharoun, A.M.

    2007-01-01

    Chemical vapour deposition (CVD) of diamond films on cemented carbide (WC) has aroused great interest in recent years. The combination of toughness from the WC and the high hardness of diamond results in outstanding wear resistance. This will increase the lifetime and better technical performance of the components made of diamond coated carbide. One of the important steps in the growth of diamond film is the nucleation of diamond as its density strongly influences the diamond growth process, film quality and morphology. In this paper the various effects of surface pretreatment and diamond deposition conditions on the diamond nucleation density are reviewed. (author)

  15. A novel Mo-W interlayer approach for CVD diamond deposition on steel

    Energy Technology Data Exchange (ETDEWEB)

    Kundrát, Vojtěch; Sullivan, John; Ye, Haitao, E-mail: h.ye@aston.ac.uk [School of Engineering and Applied Science, Aston University, Birmingham, B4 7ET (United Kingdom); Zhang, Xiaoling; Cooke, Kevin; Sun, Hailin [Miba Coating Group: Teer Coatings Ltd, West-Stone-House, West-Stone, Berry-Hill-Industrial-Estate, WR9 9AS, Droitwich (United Kingdom)

    2015-04-15

    Steel is the most widely used material in engineering for its cost/performance ratio and coatings are routinely applied on its surface to further improve its properties. Diamond coated steel parts are an option for many demanding industrial applications through prolonging the lifetime of steel parts, enhancement of tool performance as well as the reduction of wear rates. Direct deposition of diamond on steel using conventional chemical vapour deposition (CVD) processes is known to give poor results due to the preferential formation of amorphous carbon on iron, nickel and other elements as well as stresses induced from the significant difference in the thermal expansion coefficients of those materials. This article reports a novel approach of deposition of nanocrystalline diamond coatings on high-speed steel (M42) substrates using a multi-structured molybdenum (Mo) – tungsten (W) interlayer to form steel/Mo/Mo-W/W/diamond sandwich structures which overcome the adhesion problem related to direct magnetron sputtering deposition of pure tungsten. Surface, interface and tribology properties were evaluated to understand the role of such an interlayer structure. The multi-structured Mo-W interlayer has been proven to improve the adhesion between diamond films and steel substrates by acting as an effective diffusion barrier during the CVD diamond deposition.

  16. A novel Mo-W interlayer approach for CVD diamond deposition on steel

    Science.gov (United States)

    Kundrát, Vojtěch; Zhang, Xiaoling; Cooke, Kevin; Sun, Hailin; Sullivan, John; Ye, Haitao

    2015-04-01

    Steel is the most widely used material in engineering for its cost/performance ratio and coatings are routinely applied on its surface to further improve its properties. Diamond coated steel parts are an option for many demanding industrial applications through prolonging the lifetime of steel parts, enhancement of tool performance as well as the reduction of wear rates. Direct deposition of diamond on steel using conventional chemical vapour deposition (CVD) processes is known to give poor results due to the preferential formation of amorphous carbon on iron, nickel and other elements as well as stresses induced from the significant difference in the thermal expansion coefficients of those materials. This article reports a novel approach of deposition of nanocrystalline diamond coatings on high-speed steel (M42) substrates using a multi-structured molybdenum (Mo) - tungsten (W) interlayer to form steel/Mo/Mo-W/W/diamond sandwich structures which overcome the adhesion problem related to direct magnetron sputtering deposition of pure tungsten. Surface, interface and tribology properties were evaluated to understand the role of such an interlayer structure. The multi-structured Mo-W interlayer has been proven to improve the adhesion between diamond films and steel substrates by acting as an effective diffusion barrier during the CVD diamond deposition.

  17. A novel Mo-W interlayer approach for CVD diamond deposition on steel

    Directory of Open Access Journals (Sweden)

    Vojtěch Kundrát

    2015-04-01

    Full Text Available Steel is the most widely used material in engineering for its cost/performance ratio and coatings are routinely applied on its surface to further improve its properties. Diamond coated steel parts are an option for many demanding industrial applications through prolonging the lifetime of steel parts, enhancement of tool performance as well as the reduction of wear rates. Direct deposition of diamond on steel using conventional chemical vapour deposition (CVD processes is known to give poor results due to the preferential formation of amorphous carbon on iron, nickel and other elements as well as stresses induced from the significant difference in the thermal expansion coefficients of those materials. This article reports a novel approach of deposition of nanocrystalline diamond coatings on high-speed steel (M42 substrates using a multi-structured molybdenum (Mo – tungsten (W interlayer to form steel/Mo/Mo-W/W/diamond sandwich structures which overcome the adhesion problem related to direct magnetron sputtering deposition of pure tungsten. Surface, interface and tribology properties were evaluated to understand the role of such an interlayer structure. The multi-structured Mo-W interlayer has been proven to improve the adhesion between diamond films and steel substrates by acting as an effective diffusion barrier during the CVD diamond deposition.

  18. Non-classical crystallization of thin films and nanostructures in CVD and PVD processes

    CERN Document Server

    Hwang, Nong Moon

    2016-01-01

    This book provides a comprehensive introduction to a recently-developed approach to the growth mechanism of thin films and nanostructures via chemical vapour deposition (CVD). Starting from the underlying principles of the low pressure synthesis of diamond films, it is shown that diamond growth occurs not by individual atoms but by charged nanoparticles. This newly-discovered growth mechanism turns out to be general to many CVD and some physical vapor deposition (PVD) processes. This non-classical crystallization is a new paradigm of crystal growth, with active research taking place on growth in solution, especially in biomineralization processes. Established understanding of the growth of thin films and nanostructures is based around processes involving individual atoms or molecules. According to the author’s research over the last two decades, however, the generation of charged gas phase nuclei is shown to be the rule rather than the exception in the CVD process, and charged gas phase nuclei are actively ...

  19. Structural and electrical characterization of diamond films deposited in nitrogen/oxygen containing gas mixture by linear antenna microwave CVD process

    Czech Academy of Sciences Publication Activity Database

    Vojs, Marian; Varga, Marián; Babchenko, Oleg; Ižák, Tibor; Mikolášek, M.; Marton, M.; Kromka, Alexander

    2014-01-01

    Roč. 312, SEP (2014), s. 226-230 ISSN 0169-4332 R&D Projects: GA ČR(CZ) GBP108/12/G108 Institutional support: RVO:68378271 Keywords : pulsed linear antenna microwave chemical vapor deposition * nanocrystalline diamond * Raman spectroscopy * admittance spectroscopy * n-type conductive NCD Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.711, year: 2014

  20. Deposition uniformity, particle nucleation and the optimum conditions for CVD in multi-wafer furnaces

    Energy Technology Data Exchange (ETDEWEB)

    Griffiths, S.K.; Nilson, R.H.

    1996-06-01

    A second-order perturbation solution describing the radial transport of a reactive species and concurrent deposition on wafer surfaces is derived for use in optimizing CVD process conditions. The result is applicable to a variety of deposition reactions and accounts for both diffusive and advective transport, as well as both ordinary and Knudsen diffusion. Based on the first-order approximation, the deposition rate is maximized subject to a constraint on the radial uniformity of the deposition rate. For a fixed reactant mole fraction, the optimum pressure and optimum temperature are obtained using the method of Lagrange multipliers. This yields a weak one-sided maximum; deposition rates fall as pressures are reduced but remain nearly constant at all pressures above the optimum value. The deposition rate is also maximized subject to dual constraints on the uniformity and particle nucleation rate. In this case, the optimum pressure, optimum temperature and optimum reactant fraction are similarly obtained, and the resulting maximum deposition rate is well defined. These results are also applicable to CVI processes used in composites manufacturing.

  1. Electrically insulating films deposited on V-4%Cr-4%Ti by reactive CVD

    International Nuclear Information System (INIS)

    Park, J.H.

    1998-04-01

    In the design of liquid-metal blankets for magnetic fusion reactors, corrosion resistance of structural materials and the magnetohydrodynamic forces and their influence on thermal hydraulics and corrosion are major concerns. Electrically insulating CaO films deposited on V-4%Cr-4%Ti exhibit high-ohmic insulator behavior even though a small amount of vanadium from the alloy become incorporated into the film. However, when vanadium concentration in the film is > 15 wt.%, the film becomes conductive. When the vanadium concentration is high in localized areas, a calcium vanadate phase that exhibits semiconductor behavior can form. The objective of this study is to evaluate electrically insulating films that were deposited on V-4%Cr-4%Ti by a reactive chemical vapor deposition (CVD) method. To this end, CaO and Ca-V-O coatings were produced on vanadium alloys by CVD and by a metallic-vapor process to investigate the electrical resistance of the coatings. The authors found that the Ca-V-O films exhibited insulator behavior when the ratio of calcium concentration to vanadium concentration R in the film > 0.9, and semiconductor or conductor behavior when R 0.98 were exposed in liquid lithium. Based on these studies, they conclude that semiconductor behavior occurs if a conductive calcium vanadate phase is present in localized regions in the CaO coating

  2. A study of the performance and properties of diamond like carbon (DLC) coatings deposited by plasma chemical vapor deposition (CVD) for two stroke engine components

    Energy Technology Data Exchange (ETDEWEB)

    Tither, D. [BEP Grinding Ltd., Manchester (United Kingdom); Ahmed, W.; Sarwar, M.; Penlington, R. [Univ. of Northumbria, Newcastle-upon-Tyne (United Kingdom)

    1995-12-31

    Chemical vapor deposition (CVD) using microwave and RF plasma is arguably the most successful technique for depositing diamond and diamond like carbon (DLC) films for various engineering applications. However, the difficulties of depositing diamond are nearly as extreme as it`s unique combination of physical, chemical and electrical properties. In this paper, the modified low temperature plasma enhanced CVD system is described. The main focus of this paper will be work related to deposition of DLC on metal matrix composite materials (MMCs) for application in two-stroke engine components and results will be presented from SEM, mechanical testing and composition analysis studies. The authors have demonstrated the feasibility of depositing DLC on MMCs for the first time using a vacuum deposition process.

  3. Chemical vapor deposition (CVD) of uranium for alpha spectrometry; Deposicion quimica de vapor (CVD) de uranio para espectrometria alfa

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez V, M. L.; Rios M, C.; Ramirez O, J.; Davila R, J. I.; Mireles G, F., E-mail: luisalawliet@gmail.com [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas (Mexico)

    2015-09-15

    The uranium determination through radiometric techniques as alpha spectrometry requires for its proper analysis, preparation methods of the source to analyze and procedures for the deposit of this on a surface or substrate. Given the characteristics of alpha particles (small penetration distance and great loss of energy during their journey or its interaction with the matter), is important to ensure that the prepared sources are thin, to avoid problems of self-absorption. The routine methods used for this are the cathodic electro deposition and the direct evaporation, among others. In this paper the use of technique of chemical vapor deposition (CVD) for the preparation of uranium sources is investigated; because by this, is possible to obtain thin films (much thinner than those resulting from electro deposition or evaporation) on a substrate and comprises reacting a precursor with a gas, which in turn serves as a carrier of the reaction products to achieve deposition. Preliminary results of the chemical vapor deposition of uranium are presented, synthesizing and using as precursor molecule the uranyl acetylacetonate, using oxygen as carrier gas for the deposition reaction on a glass substrate. The uranium films obtained were found suitable for alpha spectrometry. The variables taken into account were the precursor sublimation temperatures and deposition temperature, the reaction time and the type and flow of carrier gas. Of the investigated conditions, two depositions with encouraging results that can serve as reference for further work to improve the technique presented here were selected. Alpha spectra obtained for these depositions and the characterization of the representative samples by scanning electron microscopy and X-ray diffraction are also presented. (Author)

  4. Effect of PbI2 deposition rate on two-step PVD/CVD all-vacuum prepared perovskite

    International Nuclear Information System (INIS)

    Ioakeimidis, Apostolos; Christodoulou, Christos; Lux-Steiner, Martha; Fostiropoulos, Konstantinos

    2016-01-01

    In this work we fabricate all-vacuum processed methyl ammonium lead halide perovskite by a sequence of physical vapour deposition of PbI 2 and chemical vapour deposition (CVD) of CH 3 NH 3 I under a static atmosphere. We demonstrate that for higher deposition rate the (001) planes of PbI 2 film show a higher degree of alignment parallel to the sample's surface. From X-ray diffraction data of the resulted perovskite film we derive that the intercalation rate of CH 3 NH 3 I is fostered for PbI 2 films with higher degree of (001) planes alignment. The stoichiometry of the produced perovskite film is also studied by Hard X-ray photoelectron spectroscopy measurements. Complete all-vacuum perovskite solar cells were fabricated on glass/ITO substrates coated by an ultra-thin (5 nm) Zn-phthalocyanine film as hole selective layer. A dependence of residual PbI 2 on the solar cells performance is displayed, while photovoltaic devices with efficiency up to η=11.6% were achieved. - Graphical abstract: A two-step PVD/CVD processed perovskite film with the CVD intercalation rate of CH 3 NCH 3 molecules been fostered by increasing the PVD rate of PbI 2 and prolonging the CVD time. - Highlights: • A simple PVD/CVD process for perovskite film production. • Increased PVD rate yields better alignment of the PbI 2 (001) crystallite planes. • CH 3 NH 3 I intercalation process fostered by increased PbI 2 PVD rate. • Stoichiometric CH 3 NH 3 PbI 3 suitable as absorber in photovoltaic applications • Reduced PbI 2 residue at the bottom of CH 3 NH 3 PbI 3 improves device performance.

  5. Diamond like carbon coatings deposited by microwave plasma CVD ...

    Indian Academy of Sciences (India)

    WINTEC

    photoelectron spectroscopy (XPS) and spectroscopic ellipsometry techniques for estimating sp. 3. /sp. 2 ratio. ... ion beam deposition (Savvidas 1986), pulsed laser deposi- ... carrier gas (10 sccm) by passing 150 watts of microwave power.

  6. FY1995 development of a clean CVD process by evaluation and control of gas phase nucleation phenomena; 1995 nendo kisokaku seisei gensho no hyoka to seigyo ni yoru clean CVD process no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    The purpose of this study is to develop a high-rate and clean chemical vapor deposition (CVD) process as a breakthrough technique to overcome the problems that particles generated in the gas phase during CVD process for preparation of functional thin films cause reduced product yield and deterioration of the films. In the CVD process proposed here, reactant gas and generated particles are electrically charged to control the motion of them with an electric field. In this study, gas-phase nucleation phenomena are evaluated both theoretically and experimentally. A high-rate, ionized CVD method is first developed, in which reactant gas and generated particles are charged with negative ions generated from a radioisotope source and the UV/photoelectron method, and the motion of the charged gas and particles is controlled with an electric field. Charging and transport processes of fine particles are then investigated experimentally and theoretically to develop a clean CVD method in which generated particles are removed with the electric forces. As a result, quantitative evaluation of the charging and transport process was made possible. We also developed devices for measuring the size distribution and concentration of fine particles in low pressure gas such as those found in plasma CVD processes. In addition, numerical simulation and experiments in this study for a TEOS/O{sub 3} CVD process to prepare thin films could determine reaction rates which have not been known so far and give information on selecting good operation conditions for the process. (NEDO)

  7. Industrial science and technology research and development project of university cooperative type in fiscal 2000. Report on achievements in semiconductor device manufacturing processes using Cat-CVD method (Semiconductor device manufacturing processes using Cat-CVD method); 2000 nendo daigaku renkeigata sangyo kagaku gijutsu kenkyu kaihatsu project. Cat-CVD ho ni yoru handotai device seizo process seika hokokusho (Cat-CVD ho ni yoru handotai device seizo process)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    The catalytic chemical vapor deposition (Cat-CVD) method is a low-temperature thin film depositing technology that can achieve improvement in quality of semiconductor thin films and can perform inexpensive film deposition in a large area. The present project is composed of the basic research and development theme and the demonstrative research and development theme for the Cat-CVD method. This report summarizes the achievements in fiscal 2000 centering on the former theme. Discussions were given on the following five areas: 1) simulation on film thickness distribution in the Cat-CVD method, 2) life extension by preventing the catalyst converting into silicide and development of a catalyst integrated shear head, 3) vapor diagnosis in the film forming process by the Cat-CVD method using silane, hydrogen and ammonia, 4) a technology for high-speed deposition of hydrogenated amorphous silicon films for solar cells using the Cat-CVD method, and the low-temperature silicon oxide nitriding technology using heated catalysts, and 5) discussions on compatibility of transparent oxide electrode materials to the process of manufacturing thin-film silicon-based solar cells by using the Cat-CVD method. (NEDO)

  8. Advances in the chemical vapor deposition (CVD) of Tantalum

    DEFF Research Database (Denmark)

    Mugabi, James Atwoki; Eriksen, Søren; Christensen, Erik

    2014-01-01

    The chemical stability of tantalum in hot acidic media has made it a key material in the protection of industrial equipment from corrosion under such conditions. The Chemical Vapor Deposition of tantalum to achieve such thin corrosion resistant coatings is one of the most widely mentioned examples...

  9. Synthesis of crystalline Ge nanoclusters in PE-CVD-deposited SiO2 films

    DEFF Research Database (Denmark)

    Leervad Pedersen, T.P.; Skov Jensen, J.; Chevallier, J.

    2005-01-01

    The synthesis of evenly distributed Ge nanoclusters in plasma-enhanced chemical-vapour-deposited (PE-CVD) SiO2 thin films containing 8 at. % Ge is reported. This is of importance for the application of nanoclusters in semiconductor technology. The average diameter of the Ge nanoclusters can...

  10. An economic CVD technique for pure SnO2 thin films deposition ...

    Indian Academy of Sciences (India)

    An economic CVD technique for pure SnO2 thin films deposition: Temperature effects ..... C are depicted in figure 7. It is observed that the cut-off wave- ... cating that the energy gap of the SnO2 films varies among. 3·54, 3·35 and 1·8 eV.

  11. Coating of ceramic powders by chemical vapor deposition techniques (CVD)

    International Nuclear Information System (INIS)

    Haubner, R.; Lux, B.

    1997-01-01

    New ceramic materials with selected advanced properties can be designed by coating of ceramic powders prior to sintering. By variation of the core and coating material a large number of various powders and ceramic materials can be produced. Powders which react with the binder phase during sintering can be coated with stable materials. Thermal expansion of the ceramic materials can be adjusted by varying the coating thickness (ratio core/layer). Electrical and wear resistant properties can be optimized for electrical contacts. A fluidized bed reactor will be designed which allow the deposition of various coatings on ceramic powders. (author)

  12. Surface PIXE analysis of phosphorus in a thin SiO2 (P, B) CVD layer deposited onto Si substrate

    International Nuclear Information System (INIS)

    Roumie, M.; Nsouli, B.

    2001-01-01

    Phosphorus determination, at level of percent, in Si matrix is not an easy analytical task. The analyzed materials arc Borophosphosilicate glass which are an important component of silicon based semiconductor technology. It's a thin SiO2 layer (400 nm) doped with boron and phosphorus using, in general, CVD (Chemical Vapor Deposition) process, in order to improve its plasticity, and deposited onto Si substrate. Therefore, the mechanical behaviour of the CVD SiO2 (P, B) layer is very sensitive to the phosphorus concentration. In this work we explore the capability of FIXE (Particle Induced X-ray Emission) to monitor a rapid and accurate quantification of P which is usually very low in such materials (few percent of the thin CVD layer deposited onto a silicon substrate). A systematic study is undertaken using Proton (0.5-3 MeV energy) and helium (1-3 MeV energy) beams, different thickness of X-ray absorber (131 and 146 μm of Kapton filter) and different tilting angles (0,45,60 and 80 deg.). The optimized measurement conditions should improve the P signal detection comparing to the Si and Background ones

  13. Dimensionless Numbers Expressed in Terms of Common CVD Process Parameters

    Science.gov (United States)

    Kuczmarski, Maria A.

    1999-01-01

    A variety of dimensionless numbers related to momentum and heat transfer are useful in Chemical Vapor Deposition (CVD) analysis. These numbers are not traditionally calculated by directly using reactor operating parameters, such as temperature and pressure. In this paper, these numbers have been expressed in a form that explicitly shows their dependence upon the carrier gas, reactor geometry, and reactor operation conditions. These expressions were derived for both monatomic and diatomic gases using estimation techniques for viscosity, thermal conductivity, and heat capacity. Values calculated from these expressions compared well to previously published values. These expressions provide a relatively quick method for predicting changes in the flow patterns resulting from changes in the reactor operating conditions.

  14. Direct deposition of patterned nanocrystalline CVD diamond using an electrostatic self-assembly method with nanodiamond particles

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung-Koo; Kim, Jong-Hoon; Jeong, Min-Goon; Lim, Dae-Soon [Department of Materials Science and Engineering, Korea University, Anam-Dong 5-1, Seoungbuk-Ku, Seoul 136-713 (Korea, Republic of); Song, Min-Jung, E-mail: dslim@korea.ac.kr [Center for Advanced Device Materials, Korea University, Anam-Dong 5-1, Seoungbuk-Ku, Seoul 136-713 (Korea, Republic of)

    2010-12-17

    Micron-sized and precise patterns of nanocrystalline CVD diamond were fabricated successfully on substrates using dispersed nanodiamond particles, charge connection by electrostatic self-assembly, and photolithography processes. Nanodiamond particles which had been dispersed using an attritional milling system were attached electrostatically on substrates as nuclei for diamond growth. In this milling process, poly sodium 4-styrene sulfonate (PSS) was added as an anionic dispersion agent to produce the PSS/nanodiamond conjugates. Ultra dispersed nanodiamond particles with a {zeta}-potential and average particle size of - 60.5 mV and {approx} 15 nm, respectively, were obtained after this milling process. These PSS/nanodiamond conjugates were attached electrostatically to a cationic polyethyleneimine (PEI) coated surface on to which a photoresist had been patterned in an aqueous solution of the PSS/nanodiamond conjugated suspension. A selectively seeded area was formed successfully using the above process. A hot filament chemical vapor deposition system was used to synthesize the nanocrystalline CVD diamond on the seeded area. Micron-sized, thin and precise nanocrystalline CVD diamond patterns with a high nucleation density (3.8 {+-} 0.4 x 10{sup 11} cm{sup -2}) and smooth surface were consequently fabricated.

  15. Direct deposition of patterned nanocrystalline CVD diamond using an electrostatic self-assembly method with nanodiamond particles

    International Nuclear Information System (INIS)

    Lee, Seung-Koo; Kim, Jong-Hoon; Jeong, Min-Goon; Lim, Dae-Soon; Song, Min-Jung

    2010-01-01

    Micron-sized and precise patterns of nanocrystalline CVD diamond were fabricated successfully on substrates using dispersed nanodiamond particles, charge connection by electrostatic self-assembly, and photolithography processes. Nanodiamond particles which had been dispersed using an attritional milling system were attached electrostatically on substrates as nuclei for diamond growth. In this milling process, poly sodium 4-styrene sulfonate (PSS) was added as an anionic dispersion agent to produce the PSS/nanodiamond conjugates. Ultra dispersed nanodiamond particles with a ζ-potential and average particle size of - 60.5 mV and ∼ 15 nm, respectively, were obtained after this milling process. These PSS/nanodiamond conjugates were attached electrostatically to a cationic polyethyleneimine (PEI) coated surface on to which a photoresist had been patterned in an aqueous solution of the PSS/nanodiamond conjugated suspension. A selectively seeded area was formed successfully using the above process. A hot filament chemical vapor deposition system was used to synthesize the nanocrystalline CVD diamond on the seeded area. Micron-sized, thin and precise nanocrystalline CVD diamond patterns with a high nucleation density (3.8 ± 0.4 x 10 11 cm -2 ) and smooth surface were consequently fabricated.

  16. Influence of duration time of CVD process on emissive properties of carbon nanotubes films

    Directory of Open Access Journals (Sweden)

    Stępinska Izabela

    2015-03-01

    Full Text Available In this paper various types of films made of carbon nanotubes (CNTs are presented. These films were prepared on different substrates (Al2O3, Si n-type by the two-step method. The two-step method consists of physical vapor deposition step, followed by chemical vapor deposition step (PVD/CVD. Parameters of PVD process were the same for all initial films, while the duration times of the second step - the CVD process, were different (15, 30 min.. Prepared films were characterized by scanning electron microscopy (SEM, transmission electron microscopy (TEM and field emission (FE measurements. The I-E and F-N characteristics of electron emission were discussed in terms of various forms of CNT films. The value of threshold electric field ranged from few V/μm (for CNT dispersed rarely on the surface of the film deposited on Si up to ~20 V/μm (for Al2O3 substrate.

  17. Mechanics-driven patterning of CVD graphene for roll-based manufacturing process

    Science.gov (United States)

    Kim, Sang-Min; Jang, Bongkyun; Jo, Kyungmin; Kim, Donghyuk; Lee, Jihye; Kim, Kyung-Shik; Lee, Seung-Mo; Lee, Hak-Joo; Han, Seung Min; Kim, Jae-Hyun

    2017-06-01

    Graphene is considered as a promising material for flexible and transparent electrodes due to its outstanding electrical, optical, and mechanical properties. Efforts to mass-produce graphene electrodes led to the development of roll-to-roll chemical vapor deposition (CVD) graphene growth and transfer, and the only remaining obstacle to the mass-production of CVD graphene electrodes is a cost-effective patterning technique that is compatible with the roll-to-roll manufacturing. Herein, we propose a mechanics-driven technique for patterning graphene synthesized on copper foil (commonly used in roll-to-roll manufacturing). The copper foil is exposed to high temperature for a prolonged period during the CVD growth of graphene, and thus can result in recrystallization and grain growth of the copper foil and thereby reducing to the yield strength. This softening behavior of the copper was carefully controlled to allow simple stamp patterning of the graphene. The strength of the underlying substrate was controlled for the accuracy of the residual patterns. The proposed stamp patterning technique is mask-less and photoresist-free, and can be performed at room temperature without high-energy sources such as lasers or plasma. To demonstrate the capability of this process to produce a continuous electrode, a transparent in-plane supercapacitor was fabricated using the proposed patterning technique.

  18. Convection and chemistry effects in CVD: A 3-D analysis for silicon deposition

    Science.gov (United States)

    Gokoglu, S. A.; Kuczmarski, M. A.; Tsui, P.; Chait, A.

    1989-01-01

    The computational fluid dynamics code FLUENT has been adopted to simulate the entire rectangular-channel-like (3-D) geometry of an experimental CVD reactor designed for Si deposition. The code incorporated the effects of both homogeneous (gas phase) and heterogeneous (surface) chemistry with finite reaction rates of important species existing in silane dissociation. The experiments were designed to elucidate the effects of gravitationally-induced buoyancy-driven convection flows on the quality of the grown Si films. This goal is accomplished by contrasting the results obtained from a carrier gas mixture of H2/Ar with the ones obtained from the same molar mixture ratio of H2/He, without any accompanying change in the chemistry. Computationally, these cases are simulated in the terrestrial gravitational field and in the absence of gravity. The numerical results compare favorably with experiments. Powerful computational tools provide invaluable insights into the complex physicochemical phenomena taking place in CVD reactors. Such information is essential for the improved design and optimization of future CVD reactors.

  19. A Review of Carbon Nanomaterials’ Synthesis via the Chemical Vapor Deposition (CVD Method

    Directory of Open Access Journals (Sweden)

    Yehia M. Manawi

    2018-05-01

    Full Text Available Carbon nanomaterials have been extensively used in many applications owing to their unique thermal, electrical and mechanical properties. One of the prime challenges is the production of these nanomaterials on a large scale. This review paper summarizes the synthesis of various carbon nanomaterials via the chemical vapor deposition (CVD method. These carbon nanomaterials include fullerenes, carbon nanotubes (CNTs, carbon nanofibers (CNFs, graphene, carbide-derived carbon (CDC, carbon nano-onion (CNO and MXenes. Furthermore, current challenges in the synthesis and application of these nanomaterials are highlighted with suggested areas for future research.

  20. A Review of Carbon Nanomaterials’ Synthesis via the Chemical Vapor Deposition (CVD) Method

    Science.gov (United States)

    Manawi, Yehia M.; Samara, Ayman; Al-Ansari, Tareq; Atieh, Muataz A.

    2018-01-01

    Carbon nanomaterials have been extensively used in many applications owing to their unique thermal, electrical and mechanical properties. One of the prime challenges is the production of these nanomaterials on a large scale. This review paper summarizes the synthesis of various carbon nanomaterials via the chemical vapor deposition (CVD) method. These carbon nanomaterials include fullerenes, carbon nanotubes (CNTs), carbon nanofibers (CNFs), graphene, carbide-derived carbon (CDC), carbon nano-onion (CNO) and MXenes. Furthermore, current challenges in the synthesis and application of these nanomaterials are highlighted with suggested areas for future research. PMID:29772760

  1. Evaluating electrically insulating films deposited on V-4% Cr-4% Ti by reactive CVD

    Energy Technology Data Exchange (ETDEWEB)

    Park, J.H.; Cho, W.D. [Argonne National Lab., IL (United States)

    1997-04-01

    Previous CaO coatings on V-4%Cr-4%Ti exhibited high-ohmic insulator behavior even though a small amount of vanadium from the alloy was incorporated in the coating. However, when the vanadium concentration in the coatings is > 15 wt%, the coating becomes conductive. When the vanadium concentration is high in localized areas, a calcium vanadate phase that exhibits semiconductor behavior can form. To explore this situation, CaO and Ca-V-O coatings were produced on vanadium alloys by chemical vapor deposition (CVD) and by a metallic-vapor process to investigate the electrical resistance of the coatings. Initially, the vanadium alloy specimens were either charged with oxygen in argon that contained trace levels of oxygen, or oxidized for 1.5-3 h in a 1% CO-CO{sub 2} gas mixture or in air to form vanadium oxide at 625-650{degrees}C. Most of the specimens were exposed to calcium vapor at 800-850{degrees}C. Initial and final weights were obtained to monitor each step, and surveillance samples were removed for examination by optical and scanning electron microscopy and electron-energy-dispersive and X-ray diffraction analysis; the electrical resistivity was also measured. The authors found that Ca-V-O films exhibited insulator behavior when the ratio of calcium concentration to vanadium concentration R in the film was > 0.9, and semiconductor or conductor behavior for R < 0.8. However, in some cases, semiconductor behavior was observed when CaO-coated samples with R > 0.98 were exposed in liquid lithium. Based on these studies, the authors conclude that semiconductor behavior occurs if a conductive calcium vanadate phase is present in localized regions in the CaO coating.

  2. Estimation of magnetic relaxation property for CVD processed YBCO-coated conductors

    International Nuclear Information System (INIS)

    Takahashi, Y.; Kiuchi, M.; Otabe, E.S.; Matsushita, T.; Shikimachi, K.; Watanabe, T.; Kashima, N.; Nagaya, S.

    2010-01-01

    Ion Beam Assist Deposition/Chemical Vapor Deposition(IBAD/CVD)-processed YBCO-coated conductors with high critical current density J c at high magnetic fields are expected to be applied to superconducting equipments such as superconducting magnetic energy storage (SMES). For application to superconducting magnet in SMES one of the most important properties for superconductors is the relaxation property of superconducting current. In this paper, the relaxation property is investigated for IBAD/CVD-processed YBCO-coated conductors of the superconducting layer in the range of 0.18-0.90 μm. This property can be quantitatively characterized by the apparent pinning potential, U 0 *. It is found that U 0 * takes a smaller value due to the two-dimensional pinning mechanism at high magnetic fields for conductor with thinner superconducting layer. Although U 0 * decreases with increasing thickness at low magnetic fields at 20 K, it increases at high magnetic fields. The results are theoretically explained by the model of the flux creep and flow based on the dimensionality of flux pinning. Scaling analysis is examined for the dependence of U 0 * on the magnetic field, temperature and the layer thickness.

  3. Effect of surface irradiation during the photo-CVD deposition of a-Si:H thin films. Hikari CVD ho ni yoru amorphous silicon sakuseiji no kiban hikari reiki koka

    Energy Technology Data Exchange (ETDEWEB)

    Tasaka, K.; Doering, H.; Hashimoto, K.; Fujishima, A. (The University of Tokyo, Tokyo (Japan))

    1990-12-06

    This paper shows the impact of the irradiation from an additional light source during the deposition of hydrogenated amorphous silicon by photo-CVD deposition. Using a mercury sensitized photo-CVD process from Disilan (Si {sub 2} H {sub 6}) and hydrogen, silicon was deposited. A 40W low pressure mercury lamp was applied as the light source. A portion of the substrate was in addition irradiated using an Xg-He lamp through a thermal filter. Irradiation of the substrate using only Xg-He lamp produced no deposition, since this light has a wavelength which is too long to produce the SiH {sub 3}-radicals needed for Si deposition. The additional Xg-He light source was discovered to cause an increased thickness of deposited a-Si:H film and a transmission of the band structure. The reasons of these are considered that the influence of irradiation is not limited to film thickness, but that irradiation also impacts the composition of the a-Si:H film so as to cause a reduction in the hydrogen content. 10 figs., 1 tab.

  4. Microstructure fabrication process induced modulations in CVD graphene

    Science.gov (United States)

    Matsubayashi, Akitomo; Zhang, Zhenjun; Lee, Ji Ung; LaBella, Vincent P.

    2014-12-01

    The systematic Raman spectroscopic study of a "mimicked" graphene device fabrication is presented. Upon photoresist baking, compressive stress is induced in the graphene which disappears after it is removed. The indirect irradiation from the electron beam (through the photoresist) does not significantly alter graphene characteristic Raman peaks indicating that graphene quality is preserved upon the exposure. The 2D peak shifts and the intensity ratio of 2D and G band, I(2D)/I(G), decreases upon direct metal deposition (Co and Py) suggesting that the electronic modulation occurs due to sp2 C-C bond weakening. In contrast, a thin metal oxide film deposited graphene does not show either the significant 2D and G peaks shift or I(2D)/I(G) decrease upon the metal deposition suggesting the oxide protect the graphene quality in the fabrication process.

  5. Microstructure fabrication process induced modulations in CVD graphene

    Energy Technology Data Exchange (ETDEWEB)

    Matsubayashi, Akitomo, E-mail: amatsubayashi@albany.edu; Zhang, Zhenjun; Lee, Ji Ung; LaBella, Vincent P., E-mail: vlabella@albany.edu [College of Nanoscale Science and Engineering, University at Albany, SUNY, Albany, New York 12203 (United States)

    2014-12-15

    The systematic Raman spectroscopic study of a “mimicked” graphene device fabrication is presented. Upon photoresist baking, compressive stress is induced in the graphene which disappears after it is removed. The indirect irradiation from the electron beam (through the photoresist) does not significantly alter graphene characteristic Raman peaks indicating that graphene quality is preserved upon the exposure. The 2D peak shifts and the intensity ratio of 2D and G band, I(2D)/I(G), decreases upon direct metal deposition (Co and Py) suggesting that the electronic modulation occurs due to sp{sup 2} C-C bond weakening. In contrast, a thin metal oxide film deposited graphene does not show either the significant 2D and G peaks shift or I(2D)/I(G) decrease upon the metal deposition suggesting the oxide protect the graphene quality in the fabrication process.

  6. Aluminum-silicon co-deposition by FB-CVD on austenitic stainless steel AISI 316

    International Nuclear Information System (INIS)

    Marulanda, J L; Perez, F J; Remolina-Millán, A

    2013-01-01

    Aluminum-silicon coatings were deposited on stainless steel AISI 316 in the temperature range of 540 to 560°C by CVD-FBR. It was used a fluidized bed with 2.5% silicon and 7.5% aluminum powder and 90% inert (alumina). This bed was fluidized with Ar and as an activator a mixture of HCl/H2 in ratios of 1/10 to 1/16. Furthermore, the deposition time of the coatings was varied between 45 minutes to 1.5 hours, with a 50% active gas, neutral gases 50%. Thermodynamic simulation was conducted with the Thermocalc software to get the possible compositions and amount of material deposited for the chosen conditions. The coatings presented the follow compounds FeAl 2 Si, FeAl 2 and Fe 2 Al 5 . Aluminum-silicon coatings were heat treated to improve its mechanical properties and its behavior against oxidation for the inter diffusion of the alloying elements. The heat treatment causes the aluminum diffuse into the substrate and the iron diffuse into coating surface. This leads to the transformation of the above compounds in FeAl, Al 2 FeSi, Cr 3 Si, AlFeNi and AlCrFe

  7. High-speed deposition of titanium carbide coatings by laser-assisted metal–organic CVD

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Yansheng [Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074 (China); Tu, Rong, E-mail: turong@whut.edu.cn [State Key Laboratory of Advanced Technology for Material Synthesis and Processing, Wuhan University of Technology, Wuhan 430070 (China); Goto, Takashi [Institute for Materials Research, Tohoku University, Aoba-ku, 2-1-1 Katahira, Sendai 980-8577 (Japan)

    2013-08-01

    Graphical abstract: - Highlights: • A semiconductor laser was first used to prepare wide-area LCVD-TiC{sub x} coatings. • The effect of laser power for the deposition of TiC{sub x} coatings was discussed. • TiC{sub x} coatings showed a columnar cross section and a dense surface texture. • TiC{sub x} coatings had a 1–4 order lower laser density than those of previous reports. • This study gives the possibility of LCVD applying on the preparation of TiC{sub x} coating. - Abstract: A semiconductor laser-assisted chemical vapor deposition (LCVD) of titanium carbide (TiC{sub x}) coatings on Al{sub 2}O{sub 3} substrate using tetrakis (diethylamido) titanium (TDEAT) and C{sub 2}H{sub 2} as source materials were investigated. The influences of laser power (P{sub L}) and pre-heating temperature (T{sub pre}) on the microstructure and deposition rate of TiC{sub x} coatings were examined. Single phase of TiC{sub x} coatings were obtained at P{sub L} = 100–200 W. TiC{sub x} coatings had a cauliflower-like surface and columnar cross section. TiC{sub x} coatings in the present study had the highest R{sub dep} (54 μm/h) at a relative low T{sub dep} than those of conventional CVD-TiC{sub x} coatings. The highest volume deposition rate (V{sub dep}) of TiC{sub x} coatings was about 4.7 × 10{sup −12} m{sup 3} s{sup −1}, which had 3–10{sup 5} times larger deposition area and 1–4 order lower laser density than those of previous LCVD using CO{sub 2}, Nd:YAG and argon ion laser.

  8. Influence of tungsten on the carbon nanotubes growth by CVD process

    Energy Technology Data Exchange (ETDEWEB)

    Escobar, Mariano [Instituto de Fisicoquimica de Materiales, Ambiente y Energia, CONICET-UBA, Pabellon II, Ciudad Universitaria (1428) Bs As (Argentina); LP and MC, Dep. De Fisica, FCEyN-UBA, Pabellon 1, Ciudad Universitaria (1428) Bs As (Argentina)], E-mail: mescobar@qi.fcen.uba.ar; Rubiolo, Gerardo H. [LP and MC, Dep. De Fisica, FCEyN-UBA, Pabellon 1, Ciudad Universitaria (1428) Bs As (Argentina); Unidad de Actividad Materiales, CNEA, Av. Gral. Paz 1499, San Martin (1650), Bs As (Argentina); Moreno, M. Sergio [Centro Atomico Bariloche, (8400) S.C. de Bariloche, Rio Negro (Argentina); Goyanes, Silvia [LP and MC, Dep. De Fisica, FCEyN-UBA, Pabellon 1, Ciudad Universitaria (1428) Bs As (Argentina); Candal, Roberto [Instituto de Fisicoquimica de Materiales, Ambiente y Energia, CONICET-UBA, Pabellon II, Ciudad Universitaria (1428) Bs As (Argentina)

    2009-06-24

    The effect of tungsten (W) on the growth of multi-walled carbon nanotubes (MWNTs) using the chemical vapour deposition (CVD) process over a metal Fe-W catalyst incorporated into a silica matrix is reported. A W molar content in Fe/SiO{sub 2} up to 10% was studied. The incorporation of only 2% of W substantially modifies the crystalline phases and the crystalline degree of the catalyst during the MWNTs synthesis. This fact seems to have a strong influence on the type and yield of the carbonaceous species obtained by the CVD of acetylene, at 600 deg. C and 180 Torr, over each catalyst. Tungsten interacts with iron within the matrix, diminishing the catalytic activity of the metal nanoparticles, and both, carbon nanotubes and carbon nanofibers, are obtained when tungsten is present. The results obtained support the hypothesis of a base growth model for carbon nanotubes indicating a strong interaction between silica matrix and Fe/W nanoparticles, independently of the content of W.

  9. Influence of tungsten on the carbon nanotubes growth by CVD process

    International Nuclear Information System (INIS)

    Escobar, Mariano; Rubiolo, Gerardo H.; Moreno, M. Sergio; Goyanes, Silvia; Candal, Roberto

    2009-01-01

    The effect of tungsten (W) on the growth of multi-walled carbon nanotubes (MWNTs) using the chemical vapour deposition (CVD) process over a metal Fe-W catalyst incorporated into a silica matrix is reported. A W molar content in Fe/SiO 2 up to 10% was studied. The incorporation of only 2% of W substantially modifies the crystalline phases and the crystalline degree of the catalyst during the MWNTs synthesis. This fact seems to have a strong influence on the type and yield of the carbonaceous species obtained by the CVD of acetylene, at 600 deg. C and 180 Torr, over each catalyst. Tungsten interacts with iron within the matrix, diminishing the catalytic activity of the metal nanoparticles, and both, carbon nanotubes and carbon nanofibers, are obtained when tungsten is present. The results obtained support the hypothesis of a base growth model for carbon nanotubes indicating a strong interaction between silica matrix and Fe/W nanoparticles, independently of the content of W.

  10. Drastically Enhanced High-Rate Performance of Carbon-Coated LiFePO4 Nanorods Using a Green Chemical Vapor Deposition (CVD) Method for Lithium Ion Battery: A Selective Carbon Coating Process.

    Science.gov (United States)

    Tian, Ruiyuan; Liu, Haiqiang; Jiang, Yi; Chen, Jiankun; Tan, Xinghua; Liu, Guangyao; Zhang, Lina; Gu, Xiaohua; Guo, Yanjun; Wang, Hanfu; Sun, Lianfeng; Chu, Weiguo

    2015-06-03

    Application of LiFePO4 (LFP) to large current power supplies is greatly hindered by its poor electrical conductivity (10(-9) S cm(-1)) and sluggish Li+ transport. Carbon coating is considered to be necessary for improving its interparticle electronic conductivity and thus electrochemical performance. Here, we proposed a novel, green, low cost and controllable CVD approach using solid glucose as carbon source which can be extended to most cathode and anode materials in need of carbon coating. Hydrothermally synthesized LFP nanorods with optimized thickness of carbon coated by this recipe are shown to have superb high-rate performance, high energy, and power densities, as well as long high-rate cycle lifetime. For 200 C (18s) charge and discharge, the discharge capacity and voltage are 89.69 mAh g(-1) and 3.030 V, respectively, and the energy and power densities are 271.80 Wh kg(-1) and 54.36 kW kg(-1), respectively. The capacity retention of 93.0%, and the energy and power density retention of 93.6% after 500 cycles at 100 C were achieved. Compared to the conventional carbon coating through direct mixing with glucose (or other organic substances) followed by annealing (DMGA), the carbon phase coated using this CVD recipe is of higher quality and better uniformity. Undoubtedly, this approach enhances significantly the electrochemical performance of high power LFP and thus broadens greatly the prospect of its applications to large current power supplies such as electric and hybrid electric vehicles.

  11. Interlayers Applied to CVD Diamond Deposition on Steel Substrate: A Review

    Directory of Open Access Journals (Sweden)

    Djoille Denner Damm

    2017-09-01

    Full Text Available Academics and industry have sought after combining the exceptional properties of diamonds with the toughness of steel. Since the early 1990s several partial solutions have been found but chemical vapor deposition (CVD diamond deposition on steel substrate continues to be a persistent problem. The main drawbacks are the high carbon diffusion from gas phase into substrate, the transition metals on the material surface that catalyze sp2 bond formation, instead of sp3 bonds, and the high thermal expansion coefficient (TEC mismatch between diamond and steels. An intermediate layer has been found necessary to increase diamond adhesion. Literature has proposed many efficient intermediate layers as a diffusion barrier for both, carbon and iron, but most intermediate layers shown have not solved TEC mismatch. In this review, we briefly discuss the solutions that exclusively work as diffusion barrier and discuss in a broader way the ones that also solve, or may potentially solve, the TEC mismatch problem. We examine some multilayers, the iron borides, the chromium carbides, and vanadium carbides. We go through the most relevant results of the last two and a half decades, including recent advances in our group. Vanadium carbide looks promising since it has shown excellent diffusion barrier properties, its TEC is intermediary between diamond and steel and, it has been thickened to manage thermal stress relief. We also review a new deposition technique to set up intermediate layers: laser cladding. It is promising because of its versatility in mixing different materials and fusing and/or sintering them on a steel surface. We conclude by remarking on new perspectives.

  12. SiC interlayer by laser-cladding on WC-Co substrates for CVD diamond deposition

    Energy Technology Data Exchange (ETDEWEB)

    Contin, Andre; Fraga, Mariana Amorim; Vieira, Jose; Trava-Airoldi, Vladimir Jesus; Corat, Evaldo Jose, E-mail: andrecontin@yahoo.com.br [Instituto Nacional de Pesquisas Espaciais (INPE), Sao Jose dos Campos, SP (Brazil); Campos, Raonei Alves [Universidade Federal do Sul e Sudeste do Para (UNIFESSPA), Belem, PA (Brazil); Vasconcelos, Getulio [Instituto de Estudos Avancados (IEA), Sao Jose dos Campos, SP (Brazil)

    2016-07-01

    Full text: Despite their huge industrial potential and commercial interest, the direct diamond coating on cemented carbide (WC-Co) is limited, mainly because of the catalytic effect of Cobalt (Co) and the high difference in thermal expansion coefficient [1]. This results in poor adherence between diamond and WC-Co. In addition, the low diamond film adhesion to the cemented carbide useless for machining applications. Removal of Co binder from the substrate surface by superficial etching is one of the techniques used to improve the adhesion between diamond and WC-Co. For the present study, diamond films were deposited on WC-Co substrates with an intermediate barrier to block the Co diffusion to the surface substrate. The laser cladding process produced the SiC barrier, in which a powder layer is melted by a laser irradiation to create the coating on the substrate. The use of laser cladding is the novel method for an intermediate barrier for cemented carbides. The advantages of laser cladding include a faster processing speed, precision, versatility. We reported the application of pretreatment method called ESND (Electrostatic self-assembly seeding of nanocrystalline diamond). The nucleation density was around 10{sup 11}part/cm{sup 2}. Diamond films were grown by Hot Filament Chemical Vapor Deposition. Characterization of samples included Field Emission Gun-Scanning Electron Microscopy (FEG-SEM), Energy Dispersive X-ray (EDX), X-ray diffraction (XRD) and Raman Scattering Spectroscopy. Results showed that laser irradiation formed stable Co compounds in the interfacial barrier. It is because nucleation and good quality of diamond film since the cobalt are no longer free to migrate to the surface during the CVD diamond deposition. Reference: [1] Y. X. Cui, B. Shen, F. H. Sun. Diamond deposition on WC–Co substrate with amorphous SiC interlayer, Surface Engineering, 30, (2014) 237-243. (author)

  13. Functional materials - Study of process for CVD SiC/C composite material

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Doo Jin; Wang, Chae Chyun; Lee, Young Jin; Oh, Byung Jun [Yonsei University, Seoul (Korea)

    2000-04-01

    The CVD SiC coating techniques are the one of high functional material manufactures that improve the thermal, wear, oxidization and infiltration resistance of the surface of raw materials and extend the life of material. Silicon carbide films have been grown onto graphite substrates by low pressure chemical vapor deposition using MTS(CH{sub 3}SiCl{sub 3}) as a source precursor and H{sub 2} or N{sub 2} as a diluent gas. The experiments for temperature and diluent gas addition changes were performed. The effect of temperature from 900 deg. C to 1350 deg. C and the alteration of diluent gas species on the growth rate and structure of deposits have been studied. The experimental results showed that the deposition rate increased with increasing deposition temperature irrespective of diluent gases and reactant depletion effect increased especially at H{sub 2} diluent gas ambient. As the diluent gas added, the growth rate decreased parabolically. For N{sub 2} addition, surface morphology of leaf-like structure appeared, and for H{sub 2}, faceted structure at 1350 deg. C. The observed features were involved by crystalline phase of {beta}-SiC and surface composition with different gas ambient. We also compared the experimental results of the effect of partial pressure on the growth rate with the results of theoretical approach based on the Langmuir-Hinshelwood model. C/SiC composites were prepared by isothermal chemical vapor infiltration (ICVI). In order to fabricate the more dense C/SiC composites, a novel process of the in-situ whisker growing and filling during ICVI was devised, which was manipulated by alternating dilute gas species. The denser C/SiC composites were successfully prepared by the novel process comparing with the conventional ICVI process. 64 refs., 36 figs., 5 tabs. (Author)

  14. Filament poisoning at typical carbon nanotube deposition conditions by hot-filament CVD

    CSIR Research Space (South Africa)

    Oliphant, CJ

    2009-05-01

    Full Text Available extensively used for the deposition of various materials, including diamond [1], polymers [2], silicon thin films [3], boron-carbon-nitride layers [4] and carbon nanotubes (CNTs) [5]. The process relies on the catalytic decomposition of precursor gases... (Ho) twice as efficient as a W filament during the deposition of microcrystalline silicon thin films [6]. Reactions between the precursor gases and the heated filament result in changes of the structural properties of the filaments; a process...

  15. Industrial science and technology research and development project of university cooperative type in fiscal 2000. Report on achievements in semiconductor device manufacturing processes using Cat-CVD method (Development of technology to rationalize energy usage); 2000 nendo daigaku renkeigata sangyo kagaku gijutsu kenkyu kaihatsu project. Cat-CVD ho ni yoru handotai device seizo process seika hokokusho (energy shiyo gorika gijutsu kaihatsu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    The catalytic chemical vapor deposition (Cat-CVD) method is a low-temperature thin film depositing technology that can achieve improvement in quality of semiconductor thin films and can perform inexpensive film deposition in a large area. This paper summarizes the achievements in fiscal 2000 in the demonstrative research and development theme of the present project, centering on the following five areas: 1) discussions on application of the Cat-CVD method to the mass production process for gallium arsenide integrated circuits, 2) studies on the possibility to apply the Cat-CVD method to the process to fabricate nitrided silicon protective film for ferroelectric memory devices, 3) formation of nitrided silicon films for silicon integrated circuits by means of the Cat-CVD method, and development of a chamber cleaning technology, 4) fabrication of high-mobility poly-crystalline silicon thin film transistors formed by using the Cat-CVD method and large particle size poly-crystalline silicon films by using the catalytic chemical sputtering process, and 5) discussions on properties of amorphous silicon thin film transistors formed by using the Cat-CVD method and formation of large area films by using a catalyst integrated shower head. (NEDO)

  16. Deposition and Characterization of CVD-Grown Ge-Sb Thin Film Device for Phase-Change Memory Application

    Directory of Open Access Journals (Sweden)

    C. C. Huang

    2012-01-01

    Full Text Available Germanium antimony (Ge-Sb thin films with tuneable compositions have been fabricated on SiO2/Si, borosilicate glass, and quartz glass substrates by chemical vapour deposition (CVD. Deposition takes place at atmospheric pressure using metal chloride precursors at reaction temperatures between 750 and 875°C. The compositions and structures of these thin films have been characterized by micro-Raman, scanning electron microscope (SEM with energy dispersive X-ray analysis (EDX and X-ray diffraction (XRD techniques. A prototype Ge-Sb thin film phase-change memory device has been fabricated and reversible threshold and phase-change switching demonstrated electrically, with a threshold voltage of 2.2–2.5 V. These CVD-grown Ge-Sb films show promise for applications such as phase-change memory and optical, electronic, and plasmonic switching.

  17. Effect of PbI{sub 2} deposition rate on two-step PVD/CVD all-vacuum prepared perovskite

    Energy Technology Data Exchange (ETDEWEB)

    Ioakeimidis, Apostolos; Christodoulou, Christos; Lux-Steiner, Martha; Fostiropoulos, Konstantinos, E-mail: fostiropoulos@helmholtz-berlin.de

    2016-12-15

    In this work we fabricate all-vacuum processed methyl ammonium lead halide perovskite by a sequence of physical vapour deposition of PbI{sub 2} and chemical vapour deposition (CVD) of CH{sub 3}NH{sub 3}I under a static atmosphere. We demonstrate that for higher deposition rate the (001) planes of PbI{sub 2} film show a higher degree of alignment parallel to the sample's surface. From X-ray diffraction data of the resulted perovskite film we derive that the intercalation rate of CH{sub 3}NH{sub 3}I is fostered for PbI{sub 2} films with higher degree of (001) planes alignment. The stoichiometry of the produced perovskite film is also studied by Hard X-ray photoelectron spectroscopy measurements. Complete all-vacuum perovskite solar cells were fabricated on glass/ITO substrates coated by an ultra-thin (5 nm) Zn-phthalocyanine film as hole selective layer. A dependence of residual PbI{sub 2} on the solar cells performance is displayed, while photovoltaic devices with efficiency up to η=11.6% were achieved. - Graphical abstract: A two-step PVD/CVD processed perovskite film with the CVD intercalation rate of CH{sub 3}NCH{sub 3} molecules been fostered by increasing the PVD rate of PbI{sub 2} and prolonging the CVD time. - Highlights: • A simple PVD/CVD process for perovskite film production. • Increased PVD rate yields better alignment of the PbI{sub 2} (001) crystallite planes. • CH{sub 3}NH{sub 3}I intercalation process fostered by increased PbI{sub 2} PVD rate. • Stoichiometric CH{sub 3}NH{sub 3}PbI{sub 3} suitable as absorber in photovoltaic applications • Reduced PbI{sub 2} residue at the bottom of CH{sub 3}NH{sub 3}PbI{sub 3} improves device performance.

  18. Deposition of silicon oxynitride at room temperature by Inductively Coupled Plasma-CVD

    Energy Technology Data Exchange (ETDEWEB)

    Zambom, Luis da Silva [MPCE-Faculdade de Tecnologia de Sao Paulo - CEETEPS, Pca Coronel Fernando Prestes, 30, Sao Paulo - CEP 01124-060 (Brazil)]. E-mail: zambom@lsi.usp.br; Verdonck, Patrick [PSI-LSI-Escola Politecnica da Universidade de Sao Paulo (Brazil)]. E-mail: patrick@lsi.usp.br

    2006-10-25

    Oxynitride thin films are used in important optical applications and as gate dielectric for MOS devices. Their traditional deposition processes have the drawbacks that high temperatures are needed, high mechanical stresses are induced and the deposition rate is low. Plasma assisted processes may alleviate these problems. In this study, oxynitride films were deposited at room temperature through the chemical reaction of silane, nitrogen and nitrous oxide (N{sub 2}O), in a conventional LPCVD furnace, which was modified into a high density Inductively Coupled Plasma (ICP) reactor. Deposition rates increased with applied coil power and were never lower than 10 nm/min, quite high for room temperature depositions. The films' refractive indexes and FTIR spectra indicate that for processes with low N{sub 2}O gas concentrations, when mixed together with N{sub 2} and SiH{sub 4}, nitrogen was incorporated in the film. This incorporation increased the resistivity, which was up to 70 G{omega} cm, increased the refractive index, from approximately 1.47 to approximately 1.50, and decreased the dielectric constant of these films, which varied in the 4-14 range. These characteristics are adequate for electric applications e.g. for TFT fabrication on glass or polymers which can not stand high temperature steps.

  19. Preparation of tantalum-based alloys by a unique CVD process

    International Nuclear Information System (INIS)

    Bryant, W.A.; Meier, G.H.

    1975-01-01

    One of the greatest problems associated with the formation of alloys by CVD is the achievement of compositional uniformity. In a typical deposition apparatus, wherein reactant gases are made to flow over the substrate in a continuous manner, this nonuniformity is inherent for two reasons. The composition of the gas stream changes as a function of its distance of travel over the substrate and, inevitably, one of the reactant compounds is more easily reduced than the other(s). This problem was overcome by the development of a process termed ''pulsing.'' In it reactant gases are periodically injected into a previously evacuated reaction chamber where they cover the substrate almost instantaneously. By this technique, gas composition at any point in time is not dependent upon distance along the substrate. Formation of alternating layers of the alloy components and subsequent homogenization allows the formation of an alloy of uniform composition with the composition being determined by the duration and relative number of the various cycles. This technique has been utilized to produce dense alloys with the composition Ta--10 wt percent W by depositing alternating layers of TA and W by the hydrogen reduction of TaCl 5 and WCl 6 . The alloys were uniform in thickness and composition over lengths in excess of 20 cm and the target composition was attained. A similar attempt to deposit a Ta--8 wt percent W--2 wt percent Hf alloy was unsuccessful because of the difficulty in reducing HfCl 4 at temperatures below those at which gas phase nucleation of Ta and W occurred (1200 and 1175 0 C respectively). 7 fig

  20. An economic CVD technique for pure SnO 2 thin films deposition

    Indian Academy of Sciences (India)

    A modified new method of CVD for formation of pure layers of tin oxide films was developed. This method is very simple and inexpensive and produces films with good electrical properties. The effect of substrate temperature on the sheet resistance, resistivity, mobility, carrier concentration and transparency of the films has ...

  1. Thermoluminescence properties of undoped diamond films deposited using HF CVD technique

    Directory of Open Access Journals (Sweden)

    Paprocki K.

    2018-03-01

    Full Text Available Natural diamond has been considered as a perspective material for clinical radiation dosimetry due to its tissuebiocompatibility and chemical inertness. However, the use of natural diamond in radiation dosimetry has been halted by the high market price. The recent progress in the development of CVD techniques for diamond synthesis, offering the capability of growing high quality diamond layers, has renewed the interest in using this material in radiation dosimeters having small geometricalsizes. Polycrystalline CVD diamond films have been proposed as detectors and dosimeters of β and α radiation with prospective applications in high-energy photon dosimetry. In this work, we present a study on the TL properties of undoped diamond film samples grown by the hot filament CVD (HF CVD method and exposed to β and α radiation. The glow curves for both types of radiation show similar character and can be decomposed into three components. The dominant TL peaks are centered at around 610 K and exhibit activation energy of the order of 0.90 eV.

  2. One-dimensional surface-imprinted polymeric nanotubes for specific biorecognition by initiated chemical vapor deposition (iCVD).

    Science.gov (United States)

    Ince, Gozde Ozaydin; Armagan, Efe; Erdogan, Hakan; Buyukserin, Fatih; Uzun, Lokman; Demirel, Gokhan

    2013-07-24

    Molecular imprinting is a powerful, generic, and cost-effective technique; however, challenges still remain related to the fabrication and development of these systems involving nonhomogeneous binding sites, insufficient template removing, incompatibility with aqueous media, low rebinding capacity, and slow mass transfer. The vapor-phase deposition of polymers is a unique technique because of the conformal nature of coating and offers new possibilities in a number of applications including sensors, microfluidics, coating, and bioaffinity platforms. Herein, we demonstrated a simple but versatile concept to generate one-dimensional surface-imprinted polymeric nanotubes within anodic aluminum oxide (AAO) membranes based on initiated chemical vapor deposition (iCVD) technique for biorecognition of immunoglobulin G (IgG). It is reported that the fabricated surface-imprinted nanotubes showed high binding capacity and significant specific recognition ability toward target molecules compared with the nonimprinted forms. Given its simplicity and universality, the iCVD method can offer new possibilities in the field of molecular imprinting.

  3. Ternary Precursors for Depositing I-III-VI2 Thin Films for Solar Cells via Spray CVD

    Science.gov (United States)

    Banger, K. K.; Hollingsworth, J. A.; Jin, M. H.-C.; Harris, J. D.; Duraj, S. A.; Smith, M.; Scheiman, D.; Bohannan, E. W.; Switzer, J. A.; Buhro, W. E.

    2002-01-01

    The development of thin-film solar cells on flexible, lightweight, space-qualified substrates provides an attractive cost solution to fabricating solar arrays with high specific power (W/kg). Thin-film fabrication studies demonstrate that ternary single source precursors (SSP's) can be used in either a hot or cold-wall spray chemical vapour deposition (CVD) reactor, for depositing CuInS2, CuGaS2, and CuGaInS2 at reduced temperatures (400 to 450 C), which display good electrical and optical properties suitable for photovoltaic (PV) devices. X-ray diffraction studies, energy dispersive spectroscopy (EDS), and scanning electron microscopy (SEM) confirmed the formation of the single phase CIS, CGS, CIGS thin-films on various substrates at reduced temperatures.

  4. Influence of electrodes on the photon energy deposition in CVD-diamond dosimeters studied with the Monte Carlo code PENELOPE

    International Nuclear Information System (INIS)

    Gorka, B; Nilsson, B; Fernandez-Varea, J M; Svensson, R; Brahme, A

    2006-01-01

    A new dosimeter, based on chemical vapour deposited (CVD) diamond as the active detector material, is being developed for dosimetry in radiotherapeutic beams. CVD-diamond is a very interesting material, since its atomic composition is close to that of human tissue and in principle it can be designed to introduce negligible perturbations to the radiation field and the dose distribution in the phantom due to its small size. However, non-tissue-equivalent structural components, such as electrodes, wires and encapsulation, need to be carefully selected as they may induce severe fluence perturbation and angular dependence, resulting in erroneous dose readings. By introducing metallic electrodes on the diamond crystals, interface phenomena between high- and low-atomic-number materials are created. Depending on the direction of the radiation field, an increased or decreased detector signal may be obtained. The small dimensions of the CVD-diamond layer and electrodes (around 100 μm and smaller) imply a higher sensitivity to the lack of charged-particle equilibrium and may cause severe interface phenomena. In the present study, we investigate the variation of energy deposition in the diamond detector for different photon-beam qualities, electrode materials and geometric configurations using the Monte Carlo code PENELOPE. The prototype detector was produced from a 50 μm thick CVD-diamond layer with 0.2 μm thick silver electrodes on both sides. The mean absorbed dose to the detector's active volume was modified in the presence of the electrodes by 1.7%, 2.1%, 1.5%, 0.6% and 0.9% for 1.25 MeV monoenergetic photons, a complete (i.e. shielded) 60 Co photon source spectrum and 6, 18 and 50 MV bremsstrahlung spectra, respectively. The shift in mean absorbed dose increases with increasing atomic number and thickness of the electrodes, and diminishes with increasing thickness of the diamond layer. From a dosimetric point of view, graphite would be an almost perfect electrode

  5. Hard Coat Layers by PE-CVD Process for the Top Surface of Touch Panel

    International Nuclear Information System (INIS)

    Okunishi, T; Sato, N; Yazawa, K

    2013-01-01

    In order to protect surface from damages, the high pencil hardness and the high abrasion resistance are required for the hard coat layers on polyethylene telephthalate (PET) films for the application of touch panel surface. We have already found that the UV-curing-hard-coat-polymer (UHP) coated PET films show the poor abrasion resistance, while they have the high pencil hardness. It reveals that the abrasion resistance of hard coat layers of the UHP is not simply dependent on the pencil hardness. In this work, we have studied to improve the abrasion resistance of SiOC films as hard coat layers, which were formed by PE-CVD process on UHP coated PET. The abrasion resistance was evaluated by Taber abrasion test. PE-CVD hard coat layers which formed on UHP coater PET films have showed the better abrasion resistance and have the possibility of substitution to the thin glass sheets for touch panel application.

  6. Synthesis and characterization of organosilicon compounds as novel precursors for CVD processes

    Energy Technology Data Exchange (ETDEWEB)

    Ermakova, E.N.; Sysoev, S.V.; Nikulina, L.D. [Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, Acad. Lavrentiev Ave. 3, Novosibirsk 630090 (Russian Federation); Tsyrendorzhieva, I.P.; Rakhlin, V.I. [Favorskii Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, Favorskii Str. 1, Irkutsk 664033 (Russian Federation); Kosinova, M.L., E-mail: marina@niic.nsc.ru [Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, Acad. Lavrentiev Ave. 3, Novosibirsk 630090 (Russian Federation)

    2015-12-20

    Highlights: • The temperature dependences of vapor pressure of four precursors have been measured. • The experimental data were used to calculate standard thermodynamic functions. • The thermodynamic modelling of SiC{sub x}N{sub y} films formation has been performed. - Abstract: Chemical vapor deposition using single-source organosilicon precursors is one of the most effective ways to produce multifunctional SiC{sub x}N{sub y} films. It is worth mentioning that the precursor molecule design affects both the composition and properties of films. Four organosilicon compounds containing a phenyl substituent (namely, trimethylphenylsilane, trimethyl(phenylamino) silane, trimethyl(benzylamino)silane and bis(trimethylsilyl)phenylamine) have been synthesized and characterized as potential CVD precursors for SiC{sub x}N{sub y} films synthesis. The compounds have been shown to be volatile and stable enough to be used in chemical vapor deposition of SiC{sub x}N{sub y} films. Thermodynamic modeling of the film deposition from the gaseous mixture of trimethylphenylsilane and ammonia in Si–C–N–H system has demonstrated that SiC{sub x}N{sub y} films can be deposited, and there is an opportunity to determine the area of appropriate deposition conditions.

  7. Tungsten-rhenium composite tube fabricated by CVD for application in 18000C high thermal efficiency fuel processing furnace

    International Nuclear Information System (INIS)

    Svedberg, R.C.; Bowen, W.W.; Buckman, R.W. Jr.

    1980-04-01

    Chemical Vapor Deposit (CVD) rhenium was selected as the muffle material for an 1800 0 C high thermal efficiency fuel processing furnace. The muffle is exposed to high vacuum on the heater/insulation/instrumentation side and to a flowing argon-8 V/0 hydrogen gas mixture at one atmosphere pressure on the load volume side. During operation, the muffle cycles from room temperature to 1800 0 C and back to room temperature once every 24 hours. Operational life is dependent on resistance to thermal fatigue during the high temperature exposure. For a prototypical furnace, the muffle is approximately 13 cm I.D. and 40 cm in length. A small (about one-half size) rhenium closed end tube overcoated with tungsten was used to evaluate the concept. The fabrication and testing of the composite tungsten-rhenium tube and prototypic rhenium muffle is described

  8. A study on the basic CVD process technology for TRISO coated particle fuel

    International Nuclear Information System (INIS)

    Choi, D. J.; Cheon, J. H.; Keum, I. S.; Lee, H. S.; Kim, J. G.

    2006-03-01

    Hydrogen energy has many advantages and is suitable as alternative energy of fossil fuel. The study of nuclear hydrogen production has performed at present. For nuclear hydrogen production, it is needed the study of VHTR(Very High Temperature Reactor) and TRISO(TRI-iSOtropic) coated fuel. TRISO coated fuel particle deposited by FBCVD(Fludized Bed CVD) method is composed of three isotropic layers: Inner Pyrolytic Carbon (IPyC), Silicon Carbide (SiC), Outer Pyrolytic Carbon (OPyC) layers. Silicon carbide was chemically vapor deposed on graphite substrate using methyltrichlorosilane (CH 3 SiCl 3 ) as a source in hydrogen atmosphere. The effect of deposition temperature and input gas ratios ( α=Q H2 /Q MTS =P H2 /P MTS ) was investigated in order to find out characteristics of silicon carbide layer. From results of those, SiC-TRISO coating deposition was conducted and achieved. Zirconium carbide layer as an advanced material of silicon carbide layer has studied. In order to find out basic properties and characteristics, studies have conducted using various methods. Zirconium carbide is chemically vapor deposed subliming zirconium tetrachloride(ZrCl 4 ) and using methan(CH 4 ) as a source in hydrogen atmosphere. Many experiments were conducted on graphite substrate about many deposition conditions such as ZrCl 4 heating temperatures and variables of H2 and CH 4 flow rate. but carbon graphite was deposited. For deposition of zirconium carbide, several different methods were approached. so zirconium carbide deposed on ZrO 2 substrate. In this experiments. source subliming type and equipment are no problems. But deposition of zirconium carbide will be continuously studied on graphite substrate approaching views of experimental way and equipment structure

  9. CVD boron nitride infiltration of fibrous structures: properties of low temprature deposits

    International Nuclear Information System (INIS)

    Gebhardt, J.J.

    1973-01-01

    The pyrolytic infiltration of boron nitride and silica fibrous structures with boron nitride was investigated using the thermal decomposition of B-trichloroborazole (TCB) to provide the matrix surrounding felted and 4-directional braided constructions. The deposition precursor was generated on a continuous basis by the reaction between boron trichloride and ammonium chloride in a fixed bed reactor under conditions of total conversion of the trichloride: 3BCl 3 + 3NH 4 Cl = B 3 N 3 H 3 Cl 3 + 9HCl. Deposition rates in boron nitride felt specimens varied between 8 and 28 μm/h, depending on the distance from the exterior surface at the minimum deposition temperature used (1100 0 C ). Infiltration of 4-directional silica braids was poorer because of clogging of the fiber bundle surfaces and access paths to voids in the weave. Deposits prepared at 1100 0 C and above were stable to moisture and consisted of glassy transparent materials which had no discernible x-ray diffraction pattern. Heat treatment of low temperature deposits in nitrogen at 1800 0 C caused significant growth of the crystallites and the emergence of x-ray patterns characteristic of hexagonal boron nitride. Heat treatment in vacuum caused changes in the infrared spectrum which could be correlated with mass analyses of the gases evolved. Loss of hydrogen with amines predominated to about 1500 0 C above which point the loss of nitrogen became significant. (14 figures) (U.S.)

  10. Carbon nanotubes and nanofibers synthesized by CVD on nickel coatings deposited with a vacuum arc

    Energy Technology Data Exchange (ETDEWEB)

    Escobar, M. [LP and MC, Dep. de Fisica-FCEyN-UBA, Cdad. Universitaria Pab.1, (1428), Buenos Aires (Argentina); DQIAQF-FCEyN-UBA, Cdad. Universitaria Pab.1, (1428), Buenos Aires (Argentina); Giuliani, L. [INFIP, CONICET, Dep. de Fisica, FCEyN-UBA, Cdad. Univ. Pab.1, (1428), Buenos Aires (Argentina); Candal, R.J. [INQUIMAE-FCEyN-UBA, Cdad. Universitaria Pab.2, (1428), Buenos Aires (Argentina); Lamas, D.G. [CINSO, CITEFA, CONICET, J.B. de La Salle 4397, (1603) V.Martelli, Buenos Aires (Argentina); Caso, A. [LP and MC, Dep. de Fisica-FCEyN-UBA, Cdad. Universitaria Pab.1, (1428), Buenos Aires (Argentina); Rubiolo, G. [LP and MC, Dep. de Fisica-FCEyN-UBA, Cdad. Universitaria Pab.1, (1428), Buenos Aires (Argentina); UAM-CNEA, Av. Gral Paz 1499, (1650) San Martin, Buenos Aires (Argentina); Grondona, D. [INFIP, CONICET, Dep. de Fisica, FCEyN-UBA, Cdad. Univ. Pab.1, (1428), Buenos Aires (Argentina); Goyanes, S. [LP and MC, Dep. de Fisica-FCEyN-UBA, Cdad. Universitaria Pab.1, (1428), Buenos Aires (Argentina); Marquez, A., E-mail: amarquez@df.uba.a [INFIP, CONICET, Dep. de Fisica, FCEyN-UBA, Cdad. Univ. Pab.1, (1428), Buenos Aires (Argentina)

    2010-04-16

    Nanotubes and nanofibers were grown on Ni coatings deposited by plasma generated with a pulsed vacuum arc on silicon wafers using three different bias conditions: at floating potential (approximately +30 V respect to the grounded cathode); at ground potential; and at -60 V. An atomic force microscopy study showed that the Ni film morphology was affected by the bias condition of the substrate. The morphology of carbonaceous species depended on Ni-films characteristics. FE-SEM and TEM analyses have shown that nanofibers growth was favoured on Ni coatings deposited at -60 V whereas nanotubes grew mainly on Ni coatings obtained at floating and ground potentials. Hence, this new method to produce the precursor can be optimized to obtain nanotubes or nanofibers varying the substrate bias for the Ni deposition.

  11. Influence of composition and structure on the mechanical properties of BCN coatings deposited by thermal CVD

    Energy Technology Data Exchange (ETDEWEB)

    Stoeckel, S.; Weise, K.; Dietrich, D.; Thamm, T.; Braun, M.; Cremer, R.; Neuschuetz, D.; Marx, G

    2002-12-02

    BCN films were deposited by isothermal chemical vapour deposition from gaseous mixtures of trimethylborazine, toluene and ammonia. The films were analysed with respect to chemical state, composition, morphology and microstructure on the one side oxidation behaviour and hardness on the other side. X-ray spectroscopy (WDX), Raman and infrared spectroscopy, differential thermal analysis, X-ray diffraction and transmission electron spectroscopy were employed for film characterization. A microhardness of maximum 20 GPa was achieved, affected by carbon content, by the way of its incorporation into the hexagonal turbostratic lattice as well as by the crystallite size and its texture.

  12. Influence of composition and structure on the mechanical properties of BCN coatings deposited by thermal CVD

    International Nuclear Information System (INIS)

    Stoeckel, S.; Weise, K.; Dietrich, D.; Thamm, T.; Braun, M.; Cremer, R.; Neuschuetz, D.; Marx, G.

    2002-01-01

    BCN films were deposited by isothermal chemical vapour deposition from gaseous mixtures of trimethylborazine, toluene and ammonia. The films were analysed with respect to chemical state, composition, morphology and microstructure on the one side oxidation behaviour and hardness on the other side. X-ray spectroscopy (WDX), Raman and infrared spectroscopy, differential thermal analysis, X-ray diffraction and transmission electron spectroscopy were employed for film characterization. A microhardness of maximum 20 GPa was achieved, affected by carbon content, by the way of its incorporation into the hexagonal turbostratic lattice as well as by the crystallite size and its texture

  13. CVD mechanism of pyrolytic boron nitride

    International Nuclear Information System (INIS)

    Tanji, H.; Monden, K.; Ide, M.

    1987-01-01

    Pyrolytic boron nitride (P-BN) has become a essential material for III-V compound semiconductor manufacturing process. As the demand from electronics industry for larger single crystals increases, the demand for larger and more economical P-BN components is growing rapidly. P-BN is manufactured by low pressure CVD using boron-trihalides and ammonia as the reactants. In spite that P-BN has been in the market for quite a long time, limited number of fundamental studies regarding the kinetics and the formation mechanism of P-BN have been reported. As it has been demonstrated in CVD of Si, knowledge and both theoretical and empirical modeling of CVD process can be applied to improve the deposition technology and to give more uniform deposition with higher efficiency, and it should also apply to the deposition of P-BN

  14. Advances in silicon carbide Chemical Vapor Deposition (CVD) for semiconductor device fabrication

    Science.gov (United States)

    Powell, J. Anthony; Petit, Jeremy B.; Matus, Lawrence G.

    1991-01-01

    Improved SiC chemical vapor deposition films of both 3C and 6H polytypes were grown on vicinal (0001) 6H-SiC wafers cut from single-crystal boules. These films were produced from silane and propane in hydrogen at one atmosphere at a temperature of 1725 K. Among the more important factors which affected the structure and morphology of the grown films were the tilt angle of the substrate, the polarity of the growth surface, and the pregrowth surface treatment of the substrate. With proper pregrowth surface treatment, 6H films were grown on 6H substrates with tilt angles as small as 0.1 degrees. In addition, 3C could be induced to grow within selected regions on a 6H substrate. The polarity of the substrate was a large factor in the incorporation of dopants during epitaxial growth. A new growth model is discussed which explains the control of SiC polytype in epitaxial growth on vicinal (0001) SiC substrates.

  15. The effectiveness of Ti implants as barriers to carbon diffusion in Ti implanted steel under CVD diamond deposition conditions

    International Nuclear Information System (INIS)

    Weiser, P.S.; Prawer, S.; Paterson, P.J.K.

    1993-01-01

    The growth of chemical vapour deposited (CVD) diamond onto iron based substrates complicated by preferential soot formation and carbon diffusion into the substrate [1], leading to poor quality films and poor adhesion. In the initial stages of exposure to a microwave plasma, a layer of graphite is rapidly formed on an untreated Fe based substrate. Once this graphite layer reaches a certain thickness, reasonable quality diamond nucleates and grows upon it. However, the diamond film easily delaminates from the substrate, the weak link being the graphitic layer. Following an initial success in using a TiN barrier layer to inhibit the formation of such a graphitic layer the authors report on attempts to use an implanted Ti layer for the same purpose. This work was prompted by observation that, although the TiN proved to be an extremely effective diffusion barrier, adhesion may be further enhanced by the formation of a TiC interface layer between the diamond film and the Fe substrate. 3 refs., 6 figs

  16. The effectiveness of Ti implants as barriers to carbon diffusion in Ti implanted steel under CVD diamond deposition conditions

    Energy Technology Data Exchange (ETDEWEB)

    Weiser, P S; Prawer, S [Melbourne Univ., Parkville, VIC (Australia). School of Physics; Hoffman, A [Technion-Israel Inst. of Tech., Haifa (Israel). Dept. of Chemistry; Evan, P J [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia); Paterson, P J.K. [Royal Melbourne Inst. of Tech., VIC (Australia)

    1994-12-31

    The growth of chemical vapour deposited (CVD) diamond onto iron based substrates complicated by preferential soot formation and carbon diffusion into the substrate [1], leading to poor quality films and poor adhesion. In the initial stages of exposure to a microwave plasma, a layer of graphite is rapidly formed on an untreated Fe based substrate. Once this graphite layer reaches a certain thickness, reasonable quality diamond nucleates and grows upon it. However, the diamond film easily delaminates from the substrate, the weak link being the graphitic layer. Following an initial success in using a TiN barrier layer to inhibit the formation of such a graphitic layer the authors report on attempts to use an implanted Ti layer for the same purpose. This work was prompted by observation that, although the TiN proved to be an extremely effective diffusion barrier, adhesion may be further enhanced by the formation of a TiC interface layer between the diamond film and the Fe substrate. 3 refs., 6 figs.

  17. The effectiveness of Ti implants as barriers to carbon diffusion in Ti implanted steel under CVD diamond deposition conditions

    Energy Technology Data Exchange (ETDEWEB)

    Weiser, P.S.; Prawer, S. [Melbourne Univ., Parkville, VIC (Australia). School of Physics; Hoffman, A. [Technion-Israel Inst. of Tech., Haifa (Israel). Dept. of Chemistry; Evan, P.J. [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia); Paterson, P.J.K. [Royal Melbourne Inst. of Tech., VIC (Australia)

    1993-12-31

    The growth of chemical vapour deposited (CVD) diamond onto iron based substrates complicated by preferential soot formation and carbon diffusion into the substrate [1], leading to poor quality films and poor adhesion. In the initial stages of exposure to a microwave plasma, a layer of graphite is rapidly formed on an untreated Fe based substrate. Once this graphite layer reaches a certain thickness, reasonable quality diamond nucleates and grows upon it. However, the diamond film easily delaminates from the substrate, the weak link being the graphitic layer. Following an initial success in using a TiN barrier layer to inhibit the formation of such a graphitic layer the authors report on attempts to use an implanted Ti layer for the same purpose. This work was prompted by observation that, although the TiN proved to be an extremely effective diffusion barrier, adhesion may be further enhanced by the formation of a TiC interface layer between the diamond film and the Fe substrate. 3 refs., 6 figs.

  18. FY 1999 achievement report on the project on the R and D of university-cooperation industrial science technology. Semiconductor device production process by Cat-CVD method (Semiconductor device production process by Cat-CVD method); 1999 nendo Cat-CVD ho ni yoru handotai device seizo process seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    The paper described the results obtained by FY 1999 of the semiconductor device production using the catalytic chemical vapor deposition method. As to the thermal fluid simulation modeling in the thermal insulation thin film formation process, elucidated were the decomposition rate (40%) of SiH{sub 4} gas on catalyst body and the gas use efficiency (60% in two collisions with catalyst body). The range where the gas flow has effects was made clear. In researches on the substrate temperature control and catalyst body structure, thermal radiation effects from catalyst body were evaluated, which led to a success in high-speed deposition of high-quality a-Si. Concerning the optical monitor technology in film deposition, the identification of decomposition species (Si, etc.) and temperature of decomposition species could be made clear. Effects of pollutant removal were also monitored. Relating to the basic technology for thermal insulation thin film formation, conditions for Si nitride film formation were made clear, and stoichiometric composition films of Si{sub 3}N{sub 4} were acquired at low temperature of 300 degrees C. Also acquired were high etching resistant/high wetting resistant films. As to the ultra-high purity thin film formation, it was successful to find out the metal pollution resource and remove it. In regard to the Cat-CVD application on to metal oxide ferroelectric substances, low temperature Si{sub 3}N{sub 4} films could be formed at deposition speed of 20nm/min. by making the temperature condition (200 degrees C or less) clear and controlling the substrate temperature. (NEDO)

  19. Interlayer utilization (including metal borides) for subsequent deposition of NSD films via microwave plasma CVD on 316 and 440C stainless steels

    Science.gov (United States)

    Ballinger, Jared

    . Surface boriding was implemented using the novel method of microwave plasma CVD with a mixture of hydrogen and diborane gases. On 440C bearings, dual phase boride layers of Fe2B and FeB were formed which supported adhered nanostructured diamond films. Continuity of the films was not seamless with limited regions remaining uncoated potentially corresponding to delamination of the film as evidenced by the presence of tubular structures presumably composed of sp2 bonded carbon. Surface boriding of 316 stainless steel discs was conducted at various powers and pressures to achieve temperatures ranging from 550-800 °C. The substrate boriding temperature was found to substantially influence the resultant interlayer by altering the metal boride(s) present. The lowest temperatures produced an interlayer where CrB was the single detected phase, higher temperatures yielded the presence of only Fe2B, and a combination of the two phases resulted from an intermediate boriding temperature. Compared with the more common, commercialized boriding methods, this a profound result given the problems posed by the FeB phase in addition to other advantages offered by CVD processes and microwave generated plasmas in general. Indentation testing of the boride layers revealed excellent adhesion strength for all borided interlayers, and above all, no evidence of cracking was observed for a sole Fe2B phase. As with boriding of 440C bearings, subsequent diamond deposition was achieved on these interlayers with substantially improved adhesion strength relative to diamond coated TiN interlayers. Both XRD and Raman spectroscopy confirmed a nanostructured diamond film with interfacial chromium carbides responsible for enhanced adhesion strength. Interlayers consisting solely of Fe2B have displayed an ability to support fully continuous nanostructured diamond films, yet additional study is required for consistent reproduction. This is in good agreement with initial work on pack borided high alloy steels

  20. Processing of SiO2 protective layer using HMDS precursor by combustion CVD.

    Science.gov (United States)

    Park, Kyoung-Soo; Kim, Youngman

    2011-08-01

    Hexamethyldisilazane (HMDS, [(CH3)3Si]2NH) was used as a precursor to form SiO2 protective coatings on IN738LC alloys by combustion chemical vapor deposition (CCVD). SEM and XPS showed that the processed coatings were composed mainly of SiO2. The amount of HMDS had the largest effect on the size of the SiO2 agglomerates and the thickness of the deposited coatings. The specimens coated with SiO2 using the 0.05 mol/l HMDS solution showed a significantly higher temperature oxidation resistance than those deposited under other conditions.

  1. Study of the triton-burnup process in different JET scenarios using neutron monitor based on CVD diamond

    Energy Technology Data Exchange (ETDEWEB)

    Nemtsev, G., E-mail: g.nemtsev@iterrf.ru; Amosov, V.; Meshchaninov, S.; Rodionov, R. [Institution “Project center ITER,” Moscow (Russian Federation); Popovichev, S. [CCFE, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Collaboration: EUROfusion Consortium, JET, Culham Science Centre, Abingdon OX14 3DB (United Kingdom)

    2016-11-15

    We present the results of analysis of triton burn-up process using the data from diamond detector. Neutron monitor based on CVD diamond was installed in JET torus hall close to the plasma center. We measure the part of 14 MeV neutrons in scenarios where plasma current varies in a range of 1-3 MA. In this experiment diamond neutron monitor was also able to detect strong gamma bursts produced by runaway electrons arising during the disruptions. We can conclude that CVD diamond detector will contribute to the study of fast particles confinement and help predict the disruption events in future tokamaks.

  2. Charge transport and X-ray dosimetry performance of a single crystal CVD diamond device fabricated with pulsed laser deposited electrodes

    International Nuclear Information System (INIS)

    Abdel-Rahman, M.A.E.; Abdel-Rahman, M.A.E.; Lohstroh, A.; Bryant, P.; Jayawardena, I.

    2013-01-01

    The deposition of amorphous Carbon mixed with Nickel (C/Ni) as electrodes for a diamond radiation detector using Pulsed Laser Deposition (PLD) was demonstrated previously as a novel technique for producing near-tissue equivalent X-ray dosimeters based on polycrystalline diamond. In this study, we present the first characterisation of a single crystal CVD diamond sandwich detector (of 80 nm thickness) fabricated with this method, labelled SC-C/Ni. To examine the performance of PLD C/Ni as an electrical contact, alpha spectroscopy and x-ray induced photocurrents were studied as a function of applied bias voltage at room temperature and compared to those of polycrystalline CVD diamond detectors (PC-C/Ni); the spectroscopy data allows us to separate electron and hole contributions to the charge transport, whereas the X-ray data was investigated in terms of, linearity and dose rate dependence, sensitivity, signal to noise ratio, photoconductive gain, reproducibility and time response (rise and fall-off times). In the case of electron sensitive alpha induced signals, a charge collection efficiency (CCE) higher than 90 % has been observed at a bias of -40 V and 100 % CCE at -300 V, with an energy resolution of ∼3 % for 5.49 MeV alpha particles. The hole sample showed very poor spectroscopy performance for hole sensitive signals up to 200 Volt; this inhibited a similar numerical analysis to be carried out in a meaningful way. The dosimetric characteristic show a high signal to noise ratio (SNR) of ∼7.3x10 3 , an approximately linear relationship between the photocurrent and the dose rate and a sensitivity of 4.87 μC/Gy.mm 3 . The photoconductive gain is estimated to around 20, this gain might be supported by hole trapping effects as indicated in the alpha spectroscopy. The observed rise and fall-off times are less than 2 and 0.56 seconds, respectively - and mainly reflect the switching time of the X-ray tube used.The reproducibility of (0.504 %) approaches the value

  3. Plasma-Enhanced Chemical Vapor Deposition (PE-CVD) yields better Hydrolytical Stability of Biocompatible SiOx Thin Films on Implant Alumina Ceramics compared to Rapid Thermal Evaporation Physical Vapor Deposition (PVD).

    Science.gov (United States)

    Böke, Frederik; Giner, Ignacio; Keller, Adrian; Grundmeier, Guido; Fischer, Horst

    2016-07-20

    Densely sintered aluminum oxide (α-Al2O3) is chemically and biologically inert. To improve the interaction with biomolecules and cells, its surface has to be modified prior to use in biomedical applications. In this study, we compared two deposition techniques for adhesion promoting SiOx films to facilitate the coupling of stable organosilane monolayers on monolithic α-alumina; physical vapor deposition (PVD) by thermal evaporation and plasma enhanced chemical vapor deposition (PE-CVD). We also investigated the influence of etching on the formation of silanol surface groups using hydrogen peroxide and sulfuric acid solutions. The film characteristics, that is, surface morphology and surface chemistry, as well as the film stability and its adhesion properties under accelerated aging conditions were characterized by means of X-ray photoelectron spectroscopy (XPS), energy dispersive X-ray spectroscopy (EDX), scanning electron microscopy (SEM), inductively coupled plasma-optical emission spectroscopy (ICP-OES), and tensile strength tests. Differences in surface functionalization were investigated via two model organosilanes as well as the cell-cytotoxicity and viability on murine fibroblasts and human mesenchymal stromal cells (hMSC). We found that both SiOx interfaces did not affect the cell viability of both cell types. No significant differences between both films with regard to their interfacial tensile strength were detected, although failure mode analyses revealed a higher interfacial stability of the PE-CVD films compared to the PVD films. Twenty-eight day exposure to simulated body fluid (SBF) at 37 °C revealed a partial delamination of the thermally deposited PVD films whereas the PE-CVD films stayed largely intact. SiOx layers deposited by both PVD and PE-CVD may thus serve as viable adhesion-promoters for subsequent organosilane coupling agent binding to α-alumina. However, PE-CVD appears to be favorable for long-term direct film exposure to aqueous

  4. Vertically aligned Si nanocrystals embedded in amorphous Si matrix prepared by inductively coupled plasma chemical vapor deposition (ICP-CVD)

    Energy Technology Data Exchange (ETDEWEB)

    Nogay, G. [Department of Physics, Middle East Technical University (METU), Ankara 06800 (Turkey); Center of Solar Energy Research and Application (GÜNAM), Middle East Technical University (METU), Ankara 06800 (Turkey); Saleh, Z.M., E-mail: zaki.saleh@aauj.edu [Center of Solar Energy Research and Application (GÜNAM), Middle East Technical University (METU), Ankara 06800 (Turkey); Department of Physics, Arab American University–Jenin (AAUJ), Jenin, Palestine (Country Unknown); Özkol, E. [Center of Solar Energy Research and Application (GÜNAM), Middle East Technical University (METU), Ankara 06800 (Turkey); Department of Chemical Engineering, Middle East Technical University (METU), Ankara 06800 (Turkey); Turan, R. [Department of Physics, Middle East Technical University (METU), Ankara 06800 (Turkey); Center of Solar Energy Research and Application (GÜNAM), Middle East Technical University (METU), Ankara 06800 (Turkey)

    2015-06-15

    Highlights: • Inductively-coupled plasma is used for nanostructured silicon at room temperature. • Low temperature deposition allows device processing on various substrates. • Deposition pressure is the most effective parameter in controlling nanostructure. • Films consist of quantum dots in a-Si matrix and exhibit columnar vertical growth. • Films are porous to oxygen infusion along columnar grain boundaries. - Abstract: Vertically-aligned nanostructured silicon films are deposited at room temperature on p-type silicon wafers and glass substrates by inductively-coupled, plasma-enhanced chemical vapor deposition (ICPCVD). The nanocrystalline phase is achieved by reducing pressure and increasing RF power. The crystalline volume fraction (X{sub c}) and the size of the nanocrystals increase with decreasing pressure at constant power. Columnar growth of nc-Si:H films is observed by high resolution transmission electron microscopy (HRTEM) and scanning electron microscopy (SEM). The films exhibit cauliflower-like structures with high porosity that leads to slow but uniform oxidation after exposure to air at room temperature. Films deposited at low pressures exhibit photoluminescence (PL) signals that may be deconvoluted into three distinct Gaussian components: 760–810, 920–935, and 990–1000 nm attributable to the quantum confinement and interface defect states. Hydrogen dilution is manifested in significant enhancement of the PL, but it has little effect on the nanocrystal size and X{sub c}.

  5. Self-catalytic growth of tin oxide nanowires by chemical vapor deposition process

    CSIR Research Space (South Africa)

    Thabethe, BS

    2013-01-01

    Full Text Available The authors report on the synthesis of tin oxide (SnO(sub2)) nanowires by a chemical vapor deposition (CVD) process. Commercially bought SnO nanopowders were vaporized at 1050°C for 30 minutes with argon gas continuously passing through the system...

  6. CVD apparatus and process for the preparation of fiber-reinforced ceramic composites

    Science.gov (United States)

    Caputo, A.J.; Devore, C.E.; Lowden, R.A.; Moeller, H.H.

    1990-01-23

    An apparatus and process for the chemical vapor deposition of a matrix into a preform having circumferentially wound ceramic fibers, comprises heating one surface of the preform while cooling the other surface thereof. The resulting product may have fibers that are wound on radial planes or at an angle from the radial planes. The fibers can also be precoated with pyrolytic carbon before application of the matrix. The matrix is applied by passing reactant gas through the preform thereof to the other side thereof for the initial deposition of matrix near such other surface of the preform. The matrix fills in the preform from the other side surface thereof to the surface of the side of application thereof until a desired amount of matrix has been deposited. 6 figs.

  7. New deposition processes for the growth of oxide and nitride thin films

    International Nuclear Information System (INIS)

    Apen, E.A.; Atagi, L.M.; Barbero, R.S.; Espinoza, B.F.; Hubbard, K.M.; Salazar, K.V.; Samuels, J.A.; Smith, D.C.; Hoffman, D.M.

    1998-01-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). The goal of this effort is to study the use of homoleptic metal amido compounds as precursors for chemical vapor deposition (CVD). The amides offer potential for the deposition of a variety of important materials at low temperatures. The establishment of these precursor compounds will enhance the ability to exploit the properties of advanced materials in numerous coatings applications. Experiments were performed to study the reactivity of Sn[NMe 2 ] 4 with oxygen. The data demonstrated that gas-phase insertion of oxygen into the Sn-N bond, leading to a reactive intermediate, plays an important role in tin oxide deposition. Several CVD processes for technologically important materials were developed using the amido precursor complexes. These included the plasma enhanced CVD of TiN and Zr 3 N 4 , and the thermal CVD of GaN and AlN. Quality films were obtained in each case, demonstrating the potential of the amido compounds as CVD precursors

  8. Synergy Between Plasma-Assisted ALD and Roll-to-Roll Atmospheric Pressure PE-CVD Processing of Moisture Barrier Films on Polymers

    NARCIS (Netherlands)

    Starostin, S. A.; Keuning, W.; Schalken, J.; Creatore, M.; Kessels, W. M. M.; Bouwstra, J. B.; van de Sanden, M. C. M.; de Vries, H. W.

    2016-01-01

    The synergy between fast (1600 nm · min−1), roll-to-roll plasma-enhanced chemical vapor deposited (PE-CVD) SiO2 layers and plasma-assisted atomic layer deposited (PA-ALD) ultra-thin Al2O3 films has been investigated in terms of moisture permeation barrier properties. The effective and intrinsic

  9. Synergy between plasma-assisted ALD and roll-to-roll atmospheric pressure PE-CVD processing of moisture barrier films on polymers

    NARCIS (Netherlands)

    Starostin, S.A.; Keuning, W.; Schalken, J.R.G.; Creatore, M.; Kessels, W.M.M.; Bouwstra, J.B.; Sanden, van de M.C.M.; Vries, de H.W.

    2016-01-01

    The synergy between fast (1600 nm · min−1), roll-to-roll plasma-enhanced chemical vapor deposited (PE-CVD) SiO2 layers and plasma-assisted atomic layer deposited (PA-ALD) ultra-thin Al2O3 films has been investigated in terms of moisture permeation barrier properties. The effective and intrinsic

  10. Synthesis of few-layer graphene on a Ni substrate by using DC plasma enhanced chemical vapor deposition (PE-CVD)

    International Nuclear Information System (INIS)

    Kim, Jeong Hyuk; Castro, Edward Joseph; Hwang, Yong Gyoo; Lee, Choong Hun

    2011-01-01

    In this work, few-layer graphene (FLG) was successfully grown on polycrystalline Ni a large scale by using DC plasma enhanced chemical vapor deposition (DC PE-CVD), which may serve as an alternative route in large-scale graphene synthesis. The synthesis time had an effect on the quality of the graphene produced. The applied DC voltage, on the other hand, influenced the minimization of the defect densities in the graphene grown. We also present a method of producing a free-standing polymethyl methacrylate (PMMA)/graphene membrane on a FeCl 3(aq) solution, which could then be transferred to the desired substrate.

  11. CVD in nuclear energy

    International Nuclear Information System (INIS)

    Nickel, H.

    1981-08-01

    CVD-deposited pyrocarbon, especially the coatings of nuclear fuel kernels show a structure depending on many parameters such as deposition temperature, nature and pressure of the pyrolysis gas, nature of the substrate, geometry of the deposition system, etc. Because of the variety of pyrocarbon different characterization methods have been developed or qualified for this new application. Additionally classical characterization procedures are available. Beside theoretical aspects concerning the formation and deposition mechanism of pyrocarbon from the gas phase the behaviour of such coatings under irradiation with fast neutrons is discussed. (orig.) [de

  12. Low-temperature graphene synthesis using microwave plasma CVD

    International Nuclear Information System (INIS)

    Yamada, Takatoshi; Kim, Jaeho; Ishihara, Masatou; Hasegawa, Masataka

    2013-01-01

    The graphene chemical vapour deposition (CVD) technique at substrate temperatures around 300 °C by a microwave plasma sustained by surface waves (surface wave plasma chemical vapour deposition, SWP-CVD) is discussed. A low-temperature, large-area and high-deposition-rate CVD process for graphene films was developed. It was found from Raman spectra that the deposited films on copper (Cu) substrates consisted of high-quality graphene flakes. The fabricated graphene transparent conductive electrode showed uniform optical transmittance and sheet resistance, which suggests the possibility of graphene for practical electrical and optoelectronic applications. It is intriguing that graphene was successfully deposited on aluminium (Al) substrates, for which we did not expect the catalytic effect to decompose hydrocarbon and hydrogen molecules. We developed a roll-to-roll SWP-CVD system for continuous graphene film deposition towards industrial mass production. A pair of winder and unwinder systems of Cu film was installed in the plasma CVD apparatus. Uniform Raman spectra were confirmed over the whole width of 297 mm of Cu films. We successfully transferred the deposited graphene onto PET films, and confirmed a transmittance of about 95% and a sheet resistance of less than 7 × 10 5 Ω/sq.

  13. Low-temperature graphene synthesis using microwave plasma CVD

    Science.gov (United States)

    Yamada, Takatoshi; Kim, Jaeho; Ishihara, Masatou; Hasegawa, Masataka

    2013-02-01

    The graphene chemical vapour deposition (CVD) technique at substrate temperatures around 300 °C by a microwave plasma sustained by surface waves (surface wave plasma chemical vapour deposition, SWP-CVD) is discussed. A low-temperature, large-area and high-deposition-rate CVD process for graphene films was developed. It was found from Raman spectra that the deposited films on copper (Cu) substrates consisted of high-quality graphene flakes. The fabricated graphene transparent conductive electrode showed uniform optical transmittance and sheet resistance, which suggests the possibility of graphene for practical electrical and optoelectronic applications. It is intriguing that graphene was successfully deposited on aluminium (Al) substrates, for which we did not expect the catalytic effect to decompose hydrocarbon and hydrogen molecules. We developed a roll-to-roll SWP-CVD system for continuous graphene film deposition towards industrial mass production. A pair of winder and unwinder systems of Cu film was installed in the plasma CVD apparatus. Uniform Raman spectra were confirmed over the whole width of 297 mm of Cu films. We successfully transferred the deposited graphene onto PET films, and confirmed a transmittance of about 95% and a sheet resistance of less than 7 × 105 Ω/sq.

  14. Fiscal 1998 joint R and D project on industrial science and technology with university. Research report on the production process of semiconductor devices by Cat-CVD (Development of practical technology for rational use of energy); 1998 nendo daigaku renkei sangyo kagaku gijutsu kenkyu kaihatsu project. Cat-CVD ho ni yoru handotai device seizo process seika hokokusho (energy shiyo gorika kankei gijutsu jitsuyoka kaihatsu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    The Cat-CVD method is in verification test to establish it as production process of various semiconductor devices such as Ga-As IC, ferroelectric IC, Si IC, and TFT. This paper outlines the research results in fiscal 1998. Study was made on concept design of the Cat-CVD equipment for formation of Ga-As protective film, and basic technology for formation of SiN{sub x} film. Although reducing gas is used for deposition of SiN{sub x} film, anxious modification of oxide ferroelectric materials was avoided by substrate temperature control. Design and fabrication of the CVD equipment for Si ICs were also studied. The equipment was made of Al to control degassing as low as possible. As for production of TFT for LCD, formation technology of high-quality insulating thin film for low-temperature poly-Si TFT by CVD method, and formation of advanced insulating thin film and advanced poly- Si thin film were studied. A large-size deposition method of TFT insulating film, and low-temperature formation technology of poly-Si were also studied. (NEDO)

  15. Development and characterization of protective nickel coatings by CVD process for non-ferrous metals and alloys

    International Nuclear Information System (INIS)

    Haq, A.U.

    2012-01-01

    Objective of this thesis is the formation of adhesive and corrosion resistant nickel film on aluminum, aluminum-lithium (Li 0.5 %) alloy and copper substrates by chemical vapor deposition (CVD) technique. Different surface preparation treatments such as electropolishing, anodizing and pickling are applied to the aforementioned substrates and its effect on the adhesion and corrosion resistance of nickel coating is studied. Nickel coating is deposited on different substrates by using already optimized parameters of 190-200 degree C deposition temperature, 9-8 x 10/sup -1/ Torr pressure during deposition, pure nickel-tetra-carbonyl gas, and induction heating source and 5 minutes deposition time. Substrates subjected to pickling treatment show excellent adhesion of nickel coating with a value of 5B based on ASTM standard while electropolished substrates show valve of 3B. XRD characterization of the nickel film show characteristic peaks of nickel confirming its phase purity. The SEM images show that nickel coating follows the surface features of the substrate. The pickled surface results in film with rough morphology than electropolished or anodized surface. The corrosion resistance of both uncoated and coated substrates is studied by monitoring its open circuit potential in different electrolytes (brine solution, sea and distilled water) at different temperatures. All substrates coated with nickel show 120-400mV potential difference compare with uncoated substrates in different electrolytes. (author)

  16. Intelligent process control of fiber chemical vapor deposition

    Science.gov (United States)

    Jones, John Gregory

    Chemical Vapor Deposition (CVD) is a widely used process for the application of thin films. In this case, CVD is being used to apply a thin film interface coating to single crystal monofilament sapphire (Alsb2Osb3) fibers for use in Ceramic Matrix Composites (CMC's). The hot-wall reactor operates at near atmospheric pressure which is maintained using a venturi pump system. Inert gas seals obviate the need for a sealed system. A liquid precursor delivery system has been implemented to provide precise stoichiometry control. Neural networks have been implemented to create real-time process description models trained using data generated based on a Navier-Stokes finite difference model of the process. Automation of the process to include full computer control and data logging capability is also presented. In situ sensors including a quadrupole mass spectrometer, thermocouples, laser scanner, and Raman spectrometer have been implemented to determine the gas phase reactants and coating quality. A fuzzy logic controller has been developed to regulate either the gas phase or the in situ temperature of the reactor using oxygen flow rate as an actuator. Scanning electron microscope (SEM) images of various samples are shown. A hierarchical control structure upon which the control structure is based is also presented.

  17. Process for the preparation of fiber-reinforced ceramic composites by chemical vapor deposition

    Science.gov (United States)

    Lackey, Jr., Walter J.; Caputo, Anthony J.

    1986-01-01

    A chemical vapor deposition (CVD) process for preparing fiber-reinforced ceramic composites. A specially designed apparatus provides a steep thermal gradient across the thickness of a fibrous preform. A flow of gaseous ceramic matrix material is directed into the fibrous preform at the cold surface. The deposition of the matrix occurs progressively from the hot surface of the fibrous preform toward the cold surface. Such deposition prevents the surface of the fibrous preform from becoming plugged. As a result thereof, the flow of reactant matrix gases into the uninfiltrated (undeposited) portion of the fibrous preform occurs throughout the deposition process. The progressive and continuous deposition of ceramic matrix within the fibrous preform provides for a significant reduction in process time over known chemical vapor deposition processes.

  18. AFM Morphology Study of Si1-Y GeY:H Films Deposited by LF PE CVD from Silane-Germane with Different

    International Nuclear Information System (INIS)

    Sanchez, L; Kosarev, A

    2005-01-01

    The morphology of Si 1-Y Ge Y :H films in the range of Y=0.23 to 0.9 has been studied by AFM. The films were deposited by Low Frequency (LF) PE CVD at substrate temperature T s =300 C and discharge frequency f=110 kHz from silane+germane mixture with and without, Ar and H 2 dilution. The films were deposited on silicon and glass substrates. AFM images were taken and analyzed for 2 x 2 mm 2 area. All the images demonstrated ''grain'' like structure, which was characterized by the height distribution function F(H) average roughness , standard height deviation Rq, lateral correlation length L c area distribution function F(s), mean grain area , diameter distribution function F(d), and mean grain diameter . The roughness of the films monotonically increases with Y for all dilutions, but more significantly in the films deposited without dilution. L c continuously grows with Y in the films deposited without dilution, while more complex behavior L c (Y) is observed in the films deposited with H- or Ar dilution. The sharpness of F(H) characterized by curtosis γ depends on dilution and the sharpest F(H) are for the films deposited with Ar (γ=5.30,Y=0.23) and without dilution (γ=4.3, Y=0.45). Isothermal annealing caused increase of , L c in the films deposited with H- and Ar dilutions, while in the films prepared without dilution the behavior was more complex, depending on the substrates. Significant narrowing of the height distribution was observed in the films deposited with H dilution or without dilution

  19. AFM Morphology Study of Si1-Y GeY:H Films Deposited by LF PE CVD from Silane-Germane with Different

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez, L; Kosarev, A

    2005-03-28

    The morphology of Si{sub 1-Y} Ge{sub Y}:H films in the range of Y=0.23 to 0.9 has been studied by AFM. The films were deposited by Low Frequency (LF) PE CVD at substrate temperature T{sub s}=300 C and discharge frequency f=110 kHz from silane+germane mixture with and without, Ar and H{sub 2} dilution. The films were deposited on silicon and glass substrates. AFM images were taken and analyzed for 2 x 2 mm{sup 2} area. All the images demonstrated ''grain'' like structure, which was characterized by the height distribution function F(H) average roughness , standard height deviation Rq, lateral correlation length L{sub c} area distribution function F(s), mean grain area , diameter distribution function F(d), and mean grain diameter . The roughness of the films monotonically increases with Y for all dilutions, but more significantly in the films deposited without dilution. L{sub c} continuously grows with Y in the films deposited without dilution, while more complex behavior L{sub c}(Y) is observed in the films deposited with H- or Ar dilution. The sharpness of F(H) characterized by curtosis {gamma} depends on dilution and the sharpest F(H) are for the films deposited with Ar ({gamma}=5.30,Y=0.23) and without dilution ({gamma}=4.3, Y=0.45). Isothermal annealing caused increase of , L{sub c} in the films deposited with H- and Ar dilutions, while in the films prepared without dilution the behavior was more complex, depending on the substrates. Significant narrowing of the height distribution was observed in the films deposited with H dilution or without dilution.

  20. Multilayered and composite PVD-CVD coatings in cemented carbides manufacture

    International Nuclear Information System (INIS)

    Glushkov, V.N.; Anikeev, A.I.; Anikin, V.N.; Vereshchaka, A.S.

    2001-01-01

    Carbide cutting tools with wear-resistant coatings deposited by CVD process are widely employed in mechanical engineering to ensure a substantially longer service life of tool systems. However, the relatively high temperature and long time of the process make the substrate decarburise and, as a result, the bend strength and performance characteristics of a tool decrease. The present study suggests the problem of deteriorated strength of CVD-coated carbide tools be solved by the development of a technology that combines arc-PVD and CVD processes to deposit multilayered coatings of titanium and aluminium compounds. (author)

  1. Wear Mechanism of Chemical Vapor Deposition (CVD) Carbide Insert in Orthogonal Cutting Ti-6Al-4V ELI at High Cutting Speed

    International Nuclear Information System (INIS)

    Gusri, A. I.; Che Hassan, C. H.; Jaharah, A. G.

    2011-01-01

    The performance of Chemical Vapor Deposition (CVD) carbide insert with ISO designation of CCMT 12 04 04 LF, when turning titanium alloys was investigated. There were four layers of coating materials for this insert i.e.TiN-Al2O3-TiCN-TiN. The insert performance was evaluated based on the insert's edge resistant towards the machining parameters used at high cutting speed range of machining Ti-6Al-4V ELI. Detailed study on the wear mechanism at the cutting edge of CVD carbide tools was carried out at cutting speed of 55-95 m/min, feed rate of 0.15-0.35 mm/rev and depth of cut of 0.10-0.20 mm. Wear mechanisms such as abrasive and adhesive were observed on the flank face. Crater wear due to diffusion was also observed on the rake race. The abrasive wear occurred more at nose radius and the fracture on tool were found at the feed rate of 0.35 mm/rev and the depth of cut of 0.20 mm. The adhesion wear takes place after the removal of the coating or coating delaminating. Therefore, adhesion or welding of titanium alloy onto the flank and rake faces demonstrates a strong bond at the workpiece-tool interface.

  2. Deposition of low stress, high transmittance SiC as an x-ray mask membrane using ECR plasma CVD

    CERN Document Server

    Lee, S Y; Lim, S T; Ahn, J H

    1998-01-01

    SiC for x-ray mask membrane is deposited by Electron Cyclotron Resonance plasma Chemical Vapor Deposition from SiH sub 4 /CH sub 4 Ar mixtures. Stoichiometric SiC is deposited at SiH sub 4 /CH sub 4 ratio of 0.4, deposition temperature of 600.deg.C and microwave power of 500 W with +- 5% thickness uniformity, As-deposited film has compressive residual stress, very smooth surface (31 A rms) and high optical transmittance of 90% at 633 nm wavelength. The microstructure of this film consists of the nanocrystalline particle (100 A approx 200A) embedded in amorphous matrix. Residual stress can be turned to tensile stress via Rapid Thermal Annealing in N sub 2 atmosphere, while suppressing structural change during annealing, As a result, smooth (37 A rms) SiC film with moderate tensile stress and high optical transmittance (85% at 633 nm wavelength) is obtained.

  3. Advancements in artificial heart valve disks using nano-sized thin films deposited by CVD and sol-gel techniques

    International Nuclear Information System (INIS)

    Kousar, Y.; Ali, N.; Neto, V.F.; Mei, S.; Gracio, J.

    2003-01-01

    Pyrolytic carbon (PyC) is widely used in manufacturing commercial artificial heart valve disks (HVD). Although, PyC is commonly used in HVD, it is not the best material for this application since its blood compatibility is not ideal for prolonged clinical use. As a result thrombosis often occurs and the patients are required to take anti- coagulation drugs on a regular basis in order to minimise the formation of thrombosis. However, the anti-coagulation therapy gives rise to some detrimental side effects in patients. Therefore, it is extremely urgent that newer and more technically advanced materials with better surface and bulk properties are developed. In this paper, we report the mechanical properties of PyC-HVD, namely, strength, wear resistance and coefficient of friction. The strength of the material was assessed using Brinell indentation tests. Furthermore, wear resistance and the coefficient of friction values were obtained from the pin-on-disk testing. The micro-structural properties of PyC were characterized using XRD, Raman spectroscopy and SEM analysis. Also, in this paper we report the preparation of free standing nanocrystalline diamond films (FSND) using the time-modulated chemical vapor deposition (TMCVD) process. Furthermore, the sol-gel technique was used to uniformly coat PyC-HVD with dense, nanocrystalline-titanium oxide (nc-TiO/sub 2/) coatings. The as-grown nc-TiO/sub 2/ coatings were characterized for microstructure using SEM and XRD analysis. (author)

  4. Effect of Source, Surfactant, and Deposition Process on Electronic Properties of Nanotube Arrays

    Directory of Open Access Journals (Sweden)

    Dheeraj Jain

    2011-01-01

    Full Text Available The electronic properties of arrays of carbon nanotubes from several different sources differing in the manufacturing process used with a variety of average properties such as length, diameter, and chirality are studied. We used several common surfactants to disperse each of these nanotubes and then deposited them on Si wafers from their aqueous solutions using dielectrophoresis. Transport measurements were performed to compare and determine the effect of different surfactants, deposition processes, and synthesis processes on nanotubes synthesized using CVD, CoMoCAT, laser ablation, and HiPCO.

  5. Cold-walled UHV/CVD batch reactor for the growth of Si1_x/Gex layers

    DEFF Research Database (Denmark)

    Thomsen, Erik Vilain; Christensen, Carsten; Andersen, C.R.

    1997-01-01

    A novel cold-walled, lamp-heated, ultrahigh vacuum chemical vapor deposition (UHV/CVD) batch system for the growth of SiGe layers is presented. This system combines the batch capability of the standard UHV/CVD furnace with the temperature processing available in rapid thermal processing (Rm...

  6. Raman Spectroscopic Study of As-Deposited and Exfoliated Defected Graphene Grown on (001 Si Substrates by CVD

    Directory of Open Access Journals (Sweden)

    T. I. Milenov

    2017-01-01

    Full Text Available We present here results on a Raman spectroscopic study of the deposited defected graphene on Si substrates by chemical vapor deposition (thermal decomposition of acetone. The graphene films are not deposited on the (001 Si substrate directly but on two types of interlayers of mixed phases unintentionally deposited on the substrates: а diamond-like carbon (designated here as DLC and amorphous carbon (designated here as αC are dominated ones. The performed thorough Raman spectroscopic study of as-deposited as well as exfoliated specimens by two different techniques using different excitation wavelengths (488, 514, and 613 nm as well as polarized Raman spectroscopy establishes that the composition of the designated DLC layers varies with depth: the initial layers on the Si substrate consist of DLC, nanodiamond species, and C70 fullerenes while the upper ones are dominated by DLC with an occasional presence of C70 fullerenes. The αC interlayer is dominated by turbostratic graphite and contains a larger quantity of C70 than the DLC-designated interlayers. The results of polarized and unpolarized Raman spectroscopic studies of as-grown and exfoliated graphene films tend to assume that single- to three-layered defected graphene is deposited on the interlayers. It can be concluded that the observed slight upshift of the 2D band as well as the broadening of 2D band should be related to the strain and doping.

  7. Development of a CVD silica coating for UK advanced gas-cooled nuclear reactor fuel pins

    International Nuclear Information System (INIS)

    Bennett, M.J.; Houlton, M.R.; Moore, D.A.; Foster, A.I.; Swidzinski, M.A.M.

    1983-04-01

    Vapour deposited silica coatings could extend the life of the 20% Cr/25% Ni niobium stabilised (20/25/Nb) stainless steel fuel cladding of the UK advanced gas cooled reactors. A CVD coating process developed originally to be undertaken at atmospheric pressure has now been adapted for operation at reduced pressure. Trials on the LP CVD process have been pursued to the production scale using commercial equipment. The effectiveness of the LP CVD silica coatings in providing protection to 20/25/Nb steel surfaces against oxidation and carbonaceous deposition has been evaluated. (author)

  8. Investigation of the fluidized bed-chemical vapor deposition (FBCVD) process using CFD-DEM method

    International Nuclear Information System (INIS)

    Liu Malin; Liu Rongzheng; Wen Yuanyun; Liu Bing; Shao Youlin

    2014-01-01

    The CFD-DEM-CVD multiscale coupling simulation concept was proposed based on the mass/momentum/energy transfer involved in the FB-CVD process. The pyrolysis process of the reaction gas in the spouted bed can be simulated by CFD method, then the concentration field and velocity field can be extracted and coupled with the particle movement behavior which can be simulated by DEM. Particle deposition process can be described by the CVD model based on particle position, velocity and neighboring gas concentration. This multiscale coupling method can be implemented in the Fluent@-EDEM@ software with their UDF (User Definition Function) and API (Application Programming Interface). Base on the multiscale coupling concept, the criterion for evaluating FB-CVD process is given. At first, the volume in the coating furnace is divided into two parts (active coating area and non-active coating area) based on simulation results of chemical pyrolysis process. Then the residence time of all particles in the active coating area can be obtained using the CFD-DEM simulation method. The residence time distribution can be used as a criterion for evaluating the gas-solid contact efficiency and operation performance of the coating furnace. At last different coating parameters of the coating furnace are compared based on the proposed criterion. And also, the future research emphasis is discussed. (author)

  9. A novel continuous process for synthesis of carbon nanotubes using iron floating catalyst and MgO particles for CVD of methane in a fluidized bed reactor

    Energy Technology Data Exchange (ETDEWEB)

    Maghsoodi, Sarah; Khodadadi, Abasali [Catalysis and Nanostructured Materials Research Laboratory, School of Chemical Engineering, University of Tehran, Tehran (Iran, Islamic Republic of); Mortazavi, Yadollah, E-mail: mortazav@ut.ac.ir [Nanoelectronics Centre of Excellence, University of Tehran, POB 11365-4563, Tehran (Iran, Islamic Republic of)

    2010-02-15

    A novel continuous process is used for production of carbon nanotubes (CNTs) by catalytic chemical vapor deposition (CVD) of methane on iron floating catalyst in situ deposited on MgO in a fluidized bed reactor. In the hot zone of the reactor, sublimed ferrocene vapors were contacted with MgO powder fluidized by methane feed to produce Fe/MgO catalyst in situ. An annular tube was used to enhance the ferrocene and MgO contacting efficiency. Multi-wall as well as single-wall CNTs was grown on the Fe/MgO catalyst while falling down the reactor. The CNTs were continuously collected at the bottom of the reactor, only when MgO powder was used. The annular tube enhanced the contacting efficiency and improved both the quality and quantity of CNTs. The SEM and TEM micrographs of the products reveal that the CNTs are mostly entangled bundles with diameters of about 10-20 nm. Raman spectra show that the CNTs have low amount of amorphous/defected carbon with I{sub G}/I{sub D} ratios as high as 10.2 for synthesis at 900 deg. C. The RBM Raman peaks indicate formation of single-walled carbon nanotubes (SWNTs) of 1.0-1.2 nm diameter.

  10. Organosilicon thin films deposited by plasma enhanced CVD:Thermal changes of chemical structure and mechanical properties

    Czech Academy of Sciences Publication Activity Database

    Zajíčková, L.; Buršíková, V.; Kučerová, Z.; Franclová, J.; Siahel, P.; Peřina, Vratislav; Macková, Anna

    2007-01-01

    Roč. 68, 5-6 (2007), s. 1255-1259 ISSN 0022-3697 R&D Projects: GA ČR GA202/07/1669 Institutional research plan: CEZ:AV0Z10480505 Keywords : hin films * organometallic compounds * plasma deposition Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 0.899, year: 2007

  11. Uranium ore deposits: geology and processing implications

    International Nuclear Information System (INIS)

    Belyk, C.L.

    2010-01-01

    There are fifteen accepted types of uranium ore deposits and at least forty subtypes readily identified around the world. Each deposit type has a unique set of geological characteristics which may also result in unique processing implications. Primary uranium production in the past decade has predominantly come from only a few of these deposit types including: unconformity, sandstone, calcrete, intrusive, breccia complex and volcanic ones. Processing implications can vary widely between and within the different geological models. Some key characteristics of uranium deposits that may have processing implications include: ore grade, uranium and gangue mineralogy, ore hardness, porosity, uranium mineral morphology and carbon content. Processing difficulties may occur as a result of one or more of these characteristics. In order to meet future uranium demand, it is imperative that innovative processing approaches and new technological advances be developed in order that many of the marginally economic traditional and uneconomic non-traditional uranium ore deposits can be exploited. (author)

  12. Sub-bandgap optical absorption spectroscopy of hydrogenated microcrystalline silicon thin films prepared using hot-wire CVD (Cat-CVD) process

    International Nuclear Information System (INIS)

    Goktas, O.; Isik, N.; Okur, S.; Gunes, M.; Carius, R.; Klomfass, J.; Finger, F.

    2006-01-01

    Hydrogenated microcrystalline silicon (μc-Si:H) thin films with different silane concentration (SC) have been prepared using the HW-CVD technique. Dual beam photoconductivity (DBP), photothermal deflection spectroscopy (PDS), and transmission measurements have been used to investigate the optical properties of the μc-Si:H films. Two different sub-bandgap absorption, α(hν), methods have been applied and analyzed to obtain a better insight into the electronic states involved. A good agreement has been obtained in the absorption spectrum obtained from the PDS and DBP measurements at energies above the bandgap. Differences between PDS and DBP spectra exist below the bandgap energy where DBP spectra always give lower α(hν) values and show a dependence on the SC. For some films, differences exist in the α(hν) spectra when the DBP measurements are carried out through the film and substrate side. In addition, for some films, there remains fringe pattern left on the spectrum after the calculation of the fringe-free absorption spectrum, which indicates structural inhomogeneities present throughout the film

  13. Investigation of PA-CVD of TiN: relations between process parameters, spectroscopic measurements and layer properties

    International Nuclear Information System (INIS)

    Rie, K.T.; Gebauer, A.; Woehle, J.

    1993-01-01

    The plasma-assisted chemical vapour deposition of TiN layers on steel substrates was investigated for various process parameters in this work. Optical emission spectroscopy (OES) was used to identify the species in the electrical discharge during the deposition process. The layer properties of the deposited TiN layers were determined by various methods (scanning electron microscopy, energy- and wavelength-dispersive X-ray analysis). The deposited layers have a constant amount of titanium, while the contents of nitrogen and chlorine show a contrary behaviour for different deposition parameters. The hardness of the layers is related among other things to the chlorine content. The OES investigations show that the Ti + and N 2 + emission is related to the layer growth rate. The formation of TiN in a gas phase reaction degrades the quality of the layers, such as their hardness. (orig.)

  14. On the potential of Hg-Photo-CVD process for the low temperature growth of nano-crystalline silicon (Topical review)

    International Nuclear Information System (INIS)

    Barhdadi, A.

    2005-08-01

    Mercury-Sensitized Photo-Assisted Chemical Vapor Deposition (Hg-Photo-CVD) technique opens new possibilities for reducing thin film growth temperature and producing novel semiconductor materials suitable for the future generation of high efficiency thin film solar cells onto low cost flexible plastic substrates. This paper provides an overview of this technique, with the emphasis on its potential in low temperature elaboration of nano-crystalline silicon for the development of thin films photovoltaic technology. (author)

  15. Delaminated Transfer of CVD Graphene

    Science.gov (United States)

    Clavijo, Alexis; Mao, Jinhai; Tilak, Nikhil; Altvater, Michael; Andrei, Eva

    Single layer graphene is commonly synthesized by dissociation of a carbonaceous gas at high temperatures in the presence of a metallic catalyst in a process known as Chemical Vapor Deposition or CVD. Although it is possible to achieve high quality graphene by CVD, the standard transfer technique of etching away the metallic catalyst is wasteful and jeopardizes the quality of the graphene film by contamination from etchants. Thus, development of a clean transfer technique and preservation of the parent substrate remain prominent hurdles to overcome. In this study, we employ a copper pretreatment technique and optimized parameters for growth of high quality single layer graphene at atmospheric pressure. We address the transfer challenge by utilizing the adhesive properties between a polymer film and graphene to achieve etchant-free transfer of graphene films from a copper substrate. Based on this concept we developed a technique for dry delamination and transferring of graphene to hexagonal boron nitride substrates, which produced high quality graphene films while at the same time preserving the integrity of the copper catalyst for reuse. DOE-FG02-99ER45742, Ronald E. McNair Postbaccalaureate Achievement Program.

  16. Earth Surface Processes, Landforms and Sediment Deposits

    Science.gov (United States)

    Bridge, John; Demicco, Robert

    Earth surface processes, landforms and sediment deposits are intimately related - involving erosion of rocks, generation of sediment, and transport and deposition of sediment through various Earth surface environments. These processes, and the landforms and deposits that they generate, have a fundamental bearing on engineering, environmental and public safety issues; on recovery of economic resources; and on our understanding of Earth history. This unique textbook brings together the traditional disciplines of sedimentology and geomorphology to explain Earth surface processes, landforms and sediment deposits in a comprehensive and integrated way. It is the ideal resource for a two-semester course in sedimentology, stratigraphy, geomorphology, and Earth surface processes from the intermediate undergraduate to beginning graduate level. The book is also accompanied by a website hosting illustrations and material on field and laboratory methods for measuring, describing and analyzing Earth surface processes, landforms and sediments.

  17. Comparative evaluation of CVD diamond technologies

    Energy Technology Data Exchange (ETDEWEB)

    Anthony, T.R. [General Electric Corporate Research & Development Center, Schenectady, NY (United States)

    1993-01-01

    Chemical vapor deposition (CVD) of diamonds occurs from hydrogen-hydrocarbon gas mixtures in the presence of atomic hydrogen at subatmospheric pressures. Most CVD methods are based on different means of generating and transporting atomic hydrogen in a particular system. Evaluation of these different techniques involves their capital costs, material costs, energy costs, labor costs and the type and quality of diamond that they produce. Currently, there is no universal agreement on which is the best technique and technique selection has been largely driven by the professional background of the user as well as the particular application of interest. This article discusses the criteria for evaluating a process for low-pressure deposition of diamond. Next, a brief history of low-pressure diamond synthesis is reviewed. Several specific processes are addressed, including the hot filament process, hot filament electron-assisted chemical vapor deposition, and plasma generation of atomic hydrogen by glow discharge, microwave discharge, low pressure radio frequency discharge, high pressure DC discharge, high pressure microwave discharge jets, high pressure RF discharge, and high and low pressure flames. Other types of diamond deposition methods are also evaluated. 101 refs., 15 figs.

  18. Graphene Synthesis by Plasma-Enhanced CVD Growth with Ethanol

    OpenAIRE

    Campo, T.; Cotto, M.; Márquez, F.; Elizalde, E.; Morant, C.

    2016-01-01

    A modified route to synthesize graphene flakes is proposed using the Chemical Vapor Deposition (CVD) technique, by using copper substrates as supports. The carbon source used was ethanol, the synthesis temperature was 950°C and the pressure was controlled along the whole process. In this CVD synthesis process the incorporation of the carbon source was produced at low pressure and 950°C inducing the appearance of a plasma blue flash inside the quartz tube. Apparently, the presence of this plas...

  19. Molecular fouling resistance of zwitterionic and amphiphilic initiated chemically vapor-deposited (iCVD) thin films

    Energy Technology Data Exchange (ETDEWEB)

    Yang, R; Goktekin, E; Wang, MH; Gleason, KK

    2014-08-08

    Biofouling is a universal problem in various applications ranging from water purification to implantable biomedical devices. Recent advances in surface modification have created a rich library of antifouling surface chemistries, many of which can be categorized into one of the two groups: hydrophilic surfaces or amphiphilic surfaces. We report the straightforward preparation of antifouling thin film coatings in both categories via initiated chemical vapor deposition. A molecular force spectroscopy-based method is demonstrated as a rapid and quantitative assessment tool for comparing the differences in antifouling characteristics. The fouling propensity of single molecules, as opposed to bulk protein solution or bacterial culture, is assessed. This method allows for the interrogation of molecular interaction without the complication resulted from protein conformational change or micro-organism group interactions. The molecular interaction follows the same trend as bacterial adhesion results obtained previously, demonstrating that molecular force probe is a valid method for the quantification and mechanistic examination of fouling. In addition, the molecular force spectroscopy-based method is able to distinguish differences in antifouling capability that is not resolvable by traditional static protein adsorption tests. To lend further insight into the intrinsic fouling resistance of zwitterionic and amphiphilic surface chemistries, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, advancing and receding water contact angles, and atomic force microscopy are used to elucidate the film properties that are relevant to their antifouling capabilities.

  20. Synthesis of freestanding WS{sub 2} trees and fibers on Au by chemical vapor deposition (CVD)

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Subash; Jaisi, Balaram Paudel; Sharma, Kamal Prasad; Ibrahim Araby, Mona; Kalita, Golap; Tanemura, Masaki [Department of Physical Science and Engineering, Nagoya Institute of Technology, Nagoya (Japan)

    2018-01-15

    In this work, we report the synthesis of two new forms of WS{sub 2} nanostructures - freestanding WS{sub 2} trees and fibers on Au by chemical vapor deposition. It is observed that dislocation-driven growth causes WS{sub 2} crystals to grow and merge in both vertical and horizontal directions to form the pyramidal tree. During the formation of WS{sub 2} fibers, the presence of two-step growth was demonstrated. It is observed that sulphurization of WO{sub 3} nanoparticle leads to formation of WS{sub 2} rod in the first stage, followed by second stage in which selective growth causes some WS{sub 2} layers grow faster compared to other ones leading to the formation of fibrous WS{sub 2} structure. Fibers synthesized by our reported method have highly exposed WS{sub 2} layers which can demonstrate interesting catalytic and edge related properties or can be functionalized for future applications. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  1. Ion beam figuring of CVD silicon carbide mirrors

    Science.gov (United States)

    Gailly, P.; Collette, J.-P.; Fleury Frenette, K.; Jamar, C.

    2017-11-01

    Optical and structural elements made of silicon carbide are increasingly found in space instruments. Chemical vapor deposited silicon carbide (CVD-SiC) is used as a reflective coating on SiC optics in reason of its good behavior under polishing. The advantage of applying ion beam figuring (IBF) to CVD-SiC over other surface figure-improving techniques is discussed herein. The results of an IBF sequence performed at the Centre Spatial de Liège on a 100 mm CVD-SiC mirror are reported. The process allowed to reduce the mirror surface errors from 243 nm to 13 nm rms . Beside the surface figure, roughness is another critical feature to consider in order to preserve the optical quality of CVD-SiC . Thus, experiments focusing on the evolution of roughness were performed in various ion beam etching conditions. The roughness of samples etched at different depths down to 3 ≠m was determined with an optical profilometer. These measurements emphasize the importance of selecting the right combination of gas and beam energy to keep roughness at a low level. Kaufman-type ion sources are generally used to perform IBF but the performance of an end-Hall ion source in figuring CVD-SiC mirrors was also evaluated in this study. In order to do so, ion beam etching profiles obtained with the end-Hall source on CVD-SiC were measured and used as a basis for IBF simulations.

  2. Low temperature back-surface-field contacts deposited by hot-wire CVD for heterojunction solar cells

    International Nuclear Information System (INIS)

    Munoz, D.; Voz, C.; Martin, I.; Orpella, A.; Alcubilla, R.; Villar, F.; Bertomeu, J.; Andreu, J.; Roca-i-Cabarrocas, P.

    2008-01-01

    The growing interest in using thinner wafers ( 2 ) have been fabricated and characterized by External Quantum Efficiency and current-voltage measurements. Total-area conversion efficiencies up to 14.5% were achieved in a fully low temperature process (< 200 deg. C)

  3. Enhancing quality of carbon nanotubes through a real-time controlled CVD process with application to next-generation nanosystems

    Science.gov (United States)

    Laxminarayana, Karthik; Jalili, Nader

    2004-07-01

    Nanocrystals and nanostructures will be the building blocks for future materials that will exhibit enhanced or entirely new combinations of properties with tremendous opportunity for novel technologies that can have far-reaching impact on our society. It is, however, realized that a major challenge for the near future is the design, synthesis and integration of nanostructures to develop functional nanosystems. In view of this, this exploratory research seeks to facilitate the development of a controlled and deterministic framework for nanomanufacturing of nanotubes as the most suitable choice among nanostructures for a plethora of potential applications in areas such as nanoelectronic devices, biological probes, fuel cell electrodes, supercapacitors and filed emission devices. Specifically, this paper proposes to control and maintain the most common nanotube growth parameters (i.e., reaction temperature and gas flow rate) through both software and hardware modifications. The influence of such growth parameters in a CVD process on some of the most vital and crucial aspects of nanotubes (e.g., length, diameter, yield, growth rate and structure) can be utilized to arrive at some unique and remarkable properties for the nanotubes. The objective here is, therefore, to control the process parameters to pinpoint accuracy, which would enable us to fabricate nanotubes having the desired properties and thereby maximize their ability to function at its fullest potential. To achieve this and in order to provide for experimental validation of the proposed research program, an experimental test-bed using the nanotube processing test chamber and a mechatronics workstation are being constructed.

  4. Preparation of Li4Ti5O12 electrode thin films by a mist CVD process with aqueous precursor solution

    Directory of Open Access Journals (Sweden)

    Kiyoharu Tadanaga

    2015-03-01

    Full Text Available Spinel Li4Ti5O12 thin films were prepared by a mist CVD process, using an aqueous solution of lithium nitrate and a water-soluble titanium lactate complex as the source of Li and Ti, respectively. In this process, mist particles ultrasonically atomized from a source aqueous solution were transferred by nitrogen gas to a heating substrate to prepare thin films. Scanning electron microscopy observation showed that thin films obtained by this process were dense and smooth, and thin films with a thickness of about 500 nm were obtained. In the X-ray diffraction analysis, formation of Li4Ti5O12 spinel phase was confirmed in the obtained thin film sintered at 700 °C for 4 h. The cell with the thin films as an electrode exhibited a capacity of about 110 mAh g−1, and the cell showed good cycling performance during 10 cycles.

  5. CVD - main concepts, applications and restrictions

    International Nuclear Information System (INIS)

    Bliznakovska, B.; Milosevski, M.; Krawczynski, S.; Meixner, C.; Koetter, H.R.

    1993-01-01

    Despite of the fact that the existing literature covering the last two decades is plentiful with data related to CVD, this document is an attempt to provide to a reader a concise information about the nature of CVD technique at production of technologically important materials as well as to point at special references. The text is devided into three separate sections. The first section, The Main Features of CVD, is intended to give a complete comprehensive picture of the CVD technique through process description and characterization. The basic principles of thermodynamics, CVD chemical reactions classification, CVD chemical kinetics aspects and physics of CVD (with particular attention on the gas-flow phenomena) are included. As an additional aspect, in CVD unavoidable aspect however, the role of the coating/substrate compatibility on the overall process was outlined. The second section, CVD Equipment, concerns on the pecularities of the complete CVD unit pointing out the individual significances of the separate parts, i.e. pumping system, reactor chamber, control system. The aim of this section is to create to a reader a basic understanding of the arising problems but connected to be actual CVD performance. As a final goal of this review the reader's attention is turned upon the CVD applications for production of an up-to-date important class of coatings such as multilayer coatings. (orig.)

  6. Criticality Safety Evaluation Report for the Cold Vacuum Drying (CVD) Facility's Process Water Handling System

    International Nuclear Information System (INIS)

    KESSLER, S.F.

    2000-01-01

    This report addresses the criticality concerns associated with process water handling in the Cold Vacuum Drying Facility. The controls and limitations on equipment design and operations to control potential criticality occurrences are identified

  7. Optimization of Al-CVD process based on elementary reaction simulation and experimental verification: From the growth rate to the surface morphology

    International Nuclear Information System (INIS)

    Sugiyama, Masakazu; Iino, Tomohisa; Nakajima, Tohru; Tanaka, Takeshi; Egashira, Yasuyuki; Yamashita, Kohichi; Komiyama, Hiroshi; Shimogaki, Yukihiro

    2006-01-01

    We propose a method to reduce the surface roughness of Al film in the chemical vapor deposition (CVD) using dimethyl-aluminum-hydride (DMAH) as the precursor. An elementary reaction simulation was executed not only to predict the deposition rate but also to predict the coverage of the film by surface adsorbates. It was assumed that high surface coverage is essential in order to deposit smooth films because the adsorbates protect the surface from oxidation which causes discontinuous growth of crystal grains. According to this principle, the condition, that realizes both high surface coverage and high deposition rate at the same time by using the elementary reaction simulation, was sought. A nozzle inlet was used instead of a conventional showerhead. This drastically improved the surface morphology, showing the effectiveness of this theoretical optimization procedure

  8. Development of CVD Diamond for Industrial Applications Final Report CRADA No. TC-2047-02

    Energy Technology Data Exchange (ETDEWEB)

    Caplan, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Olstad, R. [General Atomics, San Diego, CA (United States); Jory, H. [Communications and Power Industries, Palo Alto, CA (United States); Vikharov, A. L. [Russian Academy of Sciences (RAS), Moscow (Russian Federation)

    2017-09-08

    This project was a collaborative effort to develop and demonstrate a new millimeter microwave assisted chemical vapor deposition(CVD) process for manufacturing large diamond disks with greatly reduced processing times and costs from those now available. In the CVD process, carbon based gases (methane) and hydrogen are dissociated into plasma using microwave discharge and then deposited layer by layer as polycrystalline diamond onto a substrate. The available low frequency (2.45GHz) microwave sources used elsewhere (De Beers) result in low density plasmas and low deposition rates: 4 inch diamond disks take 6-8 weeks to process. The new system developed in this project uses a high frequency 30GHz Gyrotron as the microwave source and a quasi-optical CVD chamber resulting in a much higher density plasma which greatly reduced the diamond processing times (1-2 weeks)

  9. CVD of solid oxides in porous substrates for ceramic membrane modification

    NARCIS (Netherlands)

    Lin, Y.S.; Lin, Y.S.; Burggraaf, Anthonie; Burggraaf, A.J.

    1992-01-01

    The deposition of yttria-doped zirconia has been experimented systematically in various types of porous ceramic substrates by a modified chemical vapor deposition (CVD) process operating in an opposing reactant geometry using water vapor and corresponding metal chloride vapors as reactants. The

  10. Selective CVD tungsten on silicon implanted SiO/sub 2/

    International Nuclear Information System (INIS)

    Hennessy, W.A.; Ghezzo, M.; Wilson, R.H.; Bakhru, H.

    1988-01-01

    The application range of selective CVD tungsten is extended by its coupling to the ion implantation of insulating materials. This article documents the results of selective CVD tungsten using silicon implanted into SiO/sub 2/ to nucleate the tungsten growth. The role of implant does, energy, and surface preparation in achieving nucleation are described. SEM micrographs are presented to demonstrate the selectivity of this process. Measurements of the tungsten film thickness and sheet resistance are provided for each of the experimental variants corresponding to successful deposition. RBS and XPS analysis are discussed in terms of characterizing the tungsten/oxide interface and to evaluate the role of the silicon implant in the CVD tungsten mechanism. Utilizing this method a desired metallization pattern can be readily defined with lithography and ion implantation, and accurately replicated with a layer of CVD tungsten. This approach avoids problems usually associated with blanket deposition and pattern transfer, which are particularly troublesome for submicron VLSI technology

  11. A review: deposition and resuspension processes

    International Nuclear Information System (INIS)

    Sehmel, G.A.

    1979-01-01

    A review chapter was written on deposition and resuspension processes for the forthcoming Department of Energy publication, Atmospheric Sciences and Power Production, edited by D. Randerson. The chapter includes eleven tables and thirteen figures summarizing data from 241 references. The conclusions of that review chapter are given

  12. Effect of pulse biasing on the morphology of diamond films grown by hot filament CVD

    International Nuclear Information System (INIS)

    Beake, B.D.; Hussain, I.U.; Rego, C.; Ahmed, W.

    1999-01-01

    There has been considerable interest in the chemical vapour deposition (CVD) of diamond due to its unique mechanical, optical and electronic properties, which make it useful for many applications. For use in optical and electronic applications further developments in the CVD process are required to control the surface morphology and crystal size of the diamond films. These will require a detailed understanding of both the nucleation and growth processes that effect the properties. The technique of bias enhanced nucleation (BEN) of diamond offers better reproducibility than conventional pre-treatment methods such as mechanical abrasion. Atomic force microscopy (AFM) and scanning electron microscopy (SEM) have been used study the surface modification of diamond films on silicon substrates during pulse biased growth in a hot filament CVD reactor. Pre-abraded silicon substrates were subjected to a three-step sequential growth process: (i) diamond deposition under standard CVD conditions, (ii) bias pre-treatment and (iii) deposition under standard conditions. The results show that the bias pre-treatment time is a critical parameter controlling the surface morphology and roughness of the diamond films deposited. Biasing reduces the surface roughness from 152 nm for standard CVD diamond to 68 nm for the 2.5 minutes pulse biased film. Further increase in the bias time results in an increase in surface roughness and crystallite size. (author)

  13. CVD diamond windows for infrared synchrotron applications

    International Nuclear Information System (INIS)

    Sussmann, R.S.; Pickles, C.S.J.; Brandon, J.R.; Wort, C.J.H.; Coe, S.E.; Wasenczuk, A.; Dodge, C.N.; Beale, A.C.; Krehan, A.J.; Dore, P.; Nucara, A.; Calvani, P.

    1998-01-01

    This paper describes the attributes that make diamond a unique material for infrared synchrotron beam experiments. New developments in diamond synthesised by Chemical Vapour Deposition (CVD) promise to extend the range of applications which have been hitherto limited by the availability and cost of large-size single-crystal diamond. Polycrystalline CVD diamond components such as large (100 mm) diameter windows with extremely good transparency over a wide spectral range are now commercially available. Properties of CVD diamond of relevance to optical applications, such as mechanical strength, thermal conductivity and absolute bulk absorption, are discussed. It is shown that although some of the properties of CVD diamond (similar to other polycrystalline industrial ceramics) are affected by the grain structure, currently produced CVD diamond optical components have the quality and performance required for numerous demanding applications

  14. Study of the fluidized bed chemical vapor deposition process on very dense powder for nuclear applications

    International Nuclear Information System (INIS)

    Vanni, Florence

    2015-01-01

    This thesis is part of the development of low-enriched nuclear fuel, for the Materials Test Reactors (MTRs), constituted of uranium-molybdenum particles mixed with an aluminum matrix. Under certain conditions under irradiations, the U(Mo) particles interact with the aluminum matrix, causing unacceptable swelling of the fuel plate. To inhibit this phenomenon, one solution consists in depositing on the surface of the U(Mo) particles, a thin silicon layer to create a barrier effect. This thesis has concerned the study of the fluidized bed chemical vapor deposition (CVD) process to deposit silicon from silane, on the U(Mo) powder, which has an exceptional density of 17,500 kg/m 3 . To achieve this goal, two axes were treated during the thesis: the study and the optimization of the fluidization of a so dense powder, and then those of the silicon deposition process. For the first axis, a series of tests was performed on a surrogate tungsten powder in different columns made of glass and made of steel with internal diameters ranging from 2 to 5 cm, at room temperature and at high temperature (650 C) close to that of the deposits. These experiments helped to identify wall effects phenomena within the fluidized bed, which can lead to heterogeneous deposits or particles agglomeration. Some dimensions of the fluidization columns and operating conditions allowing a satisfactory fluidization of the powder were identified, paving the way for the study of silicon deposition. Several campaigns of deposition experiments on the surrogate powder and then on the U(Mo) powder were carried out in the second axis of the study. The influence of the bed temperature, the inlet molar fraction of silane diluted in argon, and the total gas flow of fluidization, was examined for different diameters of reactor and for various masses of powder. Morphological and structural characterization analyses (SEM, XRD..) revealed a uniform silicon deposition on all the powder and around each particle

  15. Electrochemically assisted deposition of hydroxyapatite on Ti6Al4V substrates covered by CVD diamond films - Coating characterization and first cell biological results.

    Science.gov (United States)

    Strąkowska, Paulina; Beutner, René; Gnyba, Marcin; Zielinski, Andrzej; Scharnweber, Dieter

    2016-02-01

    Although titanium and its alloys are widely used as implant material for orthopedic and dental applications they show only limited corrosion stability and osseointegration in different cases. The aim of the presented research was to develop and characterize a novel surface modification system from a thin diamond base layer and a hydroxyapatite (HAp) top coating deposited on the alloy Ti6Al4V widely used for implants in contact with bone. This coating system is expected to improve both the long-term corrosion behavior and the biocompatibility and bioactivity of respective surfaces. The diamond base films were obtained by Microwave Plasma Assisted Chemical Vapor Deposition (MW-PACVD); the HAp coatings were formed in aqueous solutions by electrochemically assisted deposition (ECAD) at varying polarization parameters. Scanning electron microscopy (SEM), Raman microscopy, and electrical conductivity measurements were applied to characterize the generated surface states; the calcium phosphate coatings were additionally chemically analyzed for their composition. The biological properties of the coating system were assessed using hMSC cells analyzing for cell adhesion, proliferation, and osteogenic differentiation. Varying MW-PACVD process conditions resulted in composite coatings containing microcrystalline diamond (MCD/Ti-C), nanocrystalline diamond (NCD), and boron-doped nanocrystalline diamond (B-NCD) with the NCD coatings being dense and homogeneous and the B-NCD coatings showing increased electrical conductivity. The ECAD process resulted in calcium phosphate coatings from stoichiometric and non-stoichiometric HAp. The deposition of HAp on the B-NCD films run at lower cathodic potentials and resulted both in the highest coating mass and the most homogenous appearance. Initial cell biological investigations showed an improved cell adhesion in the order B-NCD>HAp/B-NCD>uncoated substrate. Cell proliferation was improved for both investigated coatings whereas ALP

  16. Electrochemically assisted deposition of hydroxyapatite on Ti6Al4V substrates covered by CVD diamond films — Coating characterization and first cell biological results

    Energy Technology Data Exchange (ETDEWEB)

    Strąkowska, Paulina [Gdańsk University of Technology, Mechanical Engineering Faculty (Poland); Gdańsk University of Technology, Faculty of Electronics, Telecommunications, and Informatics (Poland); Beutner, René [Max Bergmann Center, Technische Universität Dresden (Germany); Gnyba, Marcin [Gdańsk University of Technology, Faculty of Electronics, Telecommunications, and Informatics (Poland); Zielinski, Andrzej [Gdańsk University of Technology, Mechanical Engineering Faculty (Poland); Scharnweber, Dieter, E-mail: Dieter.Scharnweber@tu-dresden.de [Max Bergmann Center, Technische Universität Dresden (Germany)

    2016-02-01

    Although titanium and its alloys are widely used as implant material for orthopedic and dental applications they show only limited corrosion stability and osseointegration in different cases. The aim of the presented research was to develop and characterize a novel surface modification system from a thin diamond base layer and a hydroxyapatite (HAp) top coating deposited on the alloy Ti6Al4V widely used for implants in contact with bone. This coating system is expected to improve both the long-term corrosion behavior and the biocompatibility and bioactivity of respective surfaces. The diamond base films were obtained by Microwave Plasma Assisted Chemical Vapor Deposition (MW-PACVD); the HAp coatings were formed in aqueous solutions by electrochemically assisted deposition (ECAD) at varying polarization parameters. Scanning electron microscopy (SEM), Raman microscopy, and electrical conductivity measurements were applied to characterize the generated surface states; the calcium phosphate coatings were additionally chemically analyzed for their composition. The biological properties of the coating system were assessed using hMSC cells analyzing for cell adhesion, proliferation, and osteogenic differentiation. Varying MW-PACVD process conditions resulted in composite coatings containing microcrystalline diamond (MCD/Ti-C), nanocrystalline diamond (NCD), and boron-doped nanocrystalline diamond (B-NCD) with the NCD coatings being dense and homogeneous and the B-NCD coatings showing increased electrical conductivity. The ECAD process resulted in calcium phosphate coatings from stoichiometric and non-stoichiometric HAp. The deposition of HAp on the B-NCD films run at lower cathodic potentials and resulted both in the highest coating mass and the most homogenous appearance. Initial cell biological investigations showed an improved cell adhesion in the order B-NCD > HAp/B-NCD > uncoated substrate. Cell proliferation was improved for both investigated coatings whereas ALP

  17. Electrochemically assisted deposition of hydroxyapatite on Ti6Al4V substrates covered by CVD diamond films — Coating characterization and first cell biological results

    International Nuclear Information System (INIS)

    Strąkowska, Paulina; Beutner, René; Gnyba, Marcin; Zielinski, Andrzej; Scharnweber, Dieter

    2016-01-01

    Although titanium and its alloys are widely used as implant material for orthopedic and dental applications they show only limited corrosion stability and osseointegration in different cases. The aim of the presented research was to develop and characterize a novel surface modification system from a thin diamond base layer and a hydroxyapatite (HAp) top coating deposited on the alloy Ti6Al4V widely used for implants in contact with bone. This coating system is expected to improve both the long-term corrosion behavior and the biocompatibility and bioactivity of respective surfaces. The diamond base films were obtained by Microwave Plasma Assisted Chemical Vapor Deposition (MW-PACVD); the HAp coatings were formed in aqueous solutions by electrochemically assisted deposition (ECAD) at varying polarization parameters. Scanning electron microscopy (SEM), Raman microscopy, and electrical conductivity measurements were applied to characterize the generated surface states; the calcium phosphate coatings were additionally chemically analyzed for their composition. The biological properties of the coating system were assessed using hMSC cells analyzing for cell adhesion, proliferation, and osteogenic differentiation. Varying MW-PACVD process conditions resulted in composite coatings containing microcrystalline diamond (MCD/Ti-C), nanocrystalline diamond (NCD), and boron-doped nanocrystalline diamond (B-NCD) with the NCD coatings being dense and homogeneous and the B-NCD coatings showing increased electrical conductivity. The ECAD process resulted in calcium phosphate coatings from stoichiometric and non-stoichiometric HAp. The deposition of HAp on the B-NCD films run at lower cathodic potentials and resulted both in the highest coating mass and the most homogenous appearance. Initial cell biological investigations showed an improved cell adhesion in the order B-NCD > HAp/B-NCD > uncoated substrate. Cell proliferation was improved for both investigated coatings whereas ALP

  18. Linear antenna microwave plasma CVD diamond deposition at the edge of no-growth region of C-H-O ternary diagram

    Czech Academy of Sciences Publication Activity Database

    Potocký, Štěpán; Babchenko, Oleg; Hruška, Karel; Kromka, Alexander

    2012-01-01

    Roč. 249, č. 12 (2012), s. 2612-2615 ISSN 0370-1972 R&D Projects: GA ČR(CZ) GBP108/12/G108; GA ČR GAP205/12/0908 Institutional research plan: CEZ:AV0Z10100521 Keywords : C-H-O phase diagram * nanocrystalline diamond * plasma enhanced CVD * Raman spectroscopy * SEM Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.489, year: 2012

  19. Theoretical modelling of carbon deposition processes

    International Nuclear Information System (INIS)

    Marsh, G.R.; Norfolk, D.J.; Skinner, R.F.

    1985-01-01

    Work based on capsule experiments in the BNL Gamma Facility, aimed at elucidating the chemistry involved in the formation of carbonaceous deposit on CAGR fuel pin surfaces is described. Using a data-base derived from capsule experiments together with literature values for the kinetics of the fundamental reactions, a chemical model of the gas-phase processes has been developed. This model successfully reproduces the capsule results, whilst preliminary application to the WAGR coolant circuit indicates the likely concentration profiles of various radical species within the fuel channels. (author)

  20. CVD diamond - fundamental phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Yarbrough, W.A. [Pennsylvania State Univ., University Park (United States)

    1993-01-01

    This compilation of figures and diagrams addresses the basic physical processes involved in the chemical vapor deposition of diamond. Different methods of deposition are illustrated. For each method, observations are made of the prominent advantages and disadvantages of the technique. Chemical mechanisms of nucleation are introduced.

  1. Mass-Spectrometric Studies of Catalytic Chemical Vapor Deposition Processes of Organic Silicon Compounds Containing Nitrogen

    Science.gov (United States)

    Morimoto, Takashi; Ansari, S. G.; Yoneyama, Koji; Nakajima, Teppei; Masuda, Atsushi; Matsumura, Hideki; Nakamura, Megumi; Umemoto, Hironobu

    2006-02-01

    The mechanism of catalytic chemical vapor deposition (Cat-CVD) processes for hexamethyldisilazane (HMDS) and trisdimethylaminosilane (TDMAS), which are used as source gases to prepare SiNx or SiCxNy films, was studied using three different mass spectrometric techniques: ionization by Li+ ion attachment, vacuum-ultraviolet radiation and electron impact. The results for HMDS show that Si-N bonds dissociate selectively, although Si-C bonds are weaker, and (CH3)3SiNH should be one of the main precursors of deposited films. This decomposition mechanism did not change when NH3 was introduced, but the decomposition efficiency was slightly increased. Similar results were obtained for TDMAS.

  2. Microcrystalline silicon deposition: Process stability and process control

    International Nuclear Information System (INIS)

    Donker, M.N. van den; Kilper, T.; Grunsky, D.; Rech, B.; Houben, L.; Kessels, W.M.M.; Sanden, M.C.M. van de

    2007-01-01

    Applying in situ process diagnostics, we identified several process drifts occurring in the parallel plate plasma deposition of microcrystalline silicon (μc-Si:H). These process drifts are powder formation (visible from diminishing dc-bias and changing spatial emission profile on a time scale of 10 0 s), transient SiH 4 depletion (visible from a decreasing SiH emission intensity on a time scale of 10 2 s), plasma heating (visible from an increasing substrate temperature on a time scale of 10 3 s) and a still puzzling long-term drift (visible from a decreasing SiH emission intensity on a time scale of 10 4 s). The effect of these drifts on the crystalline volume fraction in the deposited films is investigated by selected area electron diffraction and depth-profiled Raman spectroscopy. An example shows how the transient depletion and long-term drift can be prevented by suitable process control. Solar cells deposited using this process control show enhanced performance. Options for process control of plasma heating and powder formation are discussed

  3. H2 dilution effect in the Cat-CVD processes of the SiH4/NH3 system

    International Nuclear Information System (INIS)

    Ansari, S.G.; Umemoto, Hironobu; Morimoto, Takashi; Yoneyama, Koji; Izumi, Akira; Masuda, Atsushi; Matsumura, Hideki

    2006-01-01

    Gas-phase diagnostics in the catalytic chemical vapor deposition processes of the SiH 4 /NH 3 /H 2 system were carried out to examine the effect of H 2 dilution. The decomposition efficiency of NH 3 showed a sharp decrease with the introduction of a small amount of SiH 4 , but this decrease was recovered by the addition of H 2 when the NH 3 pressure was low. On the other hand, at higher NH 3 pressures, the decomposition efficiency showed a minor dependence on the H 2 partial pressure. The addition of SiH 4 to the NH 3 system decreases the H-atom density by one order of magnitude, but this decrease is also recovered by H 2 addition. H atoms produced from H 2 must re-activate the catalyzer surfaces poisoned by SiH 4 when the NH 3 pressure is low

  4. CVD diamond detectors and dosimeters

    International Nuclear Information System (INIS)

    Manfredotti, C.; Fizzotti, F.; LoGiudice, A.; Paolini, C.; Oliviero, P.; Vittone, E.; Torino Univ., Torino

    2002-01-01

    Natural diamond, because of its well-known properties of tissue-equivalence, has recorded a wide spreading use in radiotherapy planning with electron linear accelerators. Artificial diamond dosimeters, as obtained by Chemical Vapour Deposition (CVD) could be capable to offer the same performances and they can be prepared in different volumes and shapes. The dosimeter sensitivity per unit volume may be easily proved to be better than standard ionization microchamber. We have prepared in our laboratory CVD diamond microchamber (diamond tips) in emispherical shape with an external diameter of 200 μm, which can be used both as X-ray beam profilometers and as microdosimeters for small field applications like stereotaxy and also for in vivo applications. These dosimeters, which are obtained on a wire substrate that could be either metallic or SiC or even graphite, display good performances also as ion or synchrotron X-rays detectors

  5. Surface structuring of boron doped CVD diamond by micro electrical discharge machining

    Science.gov (United States)

    Schubert, A.; Berger, T.; Martin, A.; Hackert-Oschätzchen, M.; Treffkorn, N.; Kühn, R.

    2018-05-01

    Boron doped diamond materials, which are generated by Chemical Vapor Deposition (CVD), offer a great potential for the application on highly stressed tools, e. g. in cutting or forming processes. As a result of the CVD process rough surfaces arise, which require a finishing treatment in particular for the application in forming tools. Cutting techniques such as milling and grinding are hardly applicable for the finish machining because of the high strength of diamond. Due to its process principle of ablating material by melting and evaporating, Electrical Discharge Machining (EDM) is independent of hardness, brittleness or toughness of the workpiece material. EDM is a suitable technology for machining and structuring CVD diamond, since boron doped CVD diamond is electrically conductive. In this study the ablation characteristics of boron doped CVD diamond by micro electrical discharge machining are investigated. Experiments were carried out to investigate the influence of different process parameters on the machining result. The impact of tool-polarity, voltage and discharge energy on the resulting erosion geometry and the tool wear was analyzed. A variation in path overlapping during the erosion of planar areas leads to different microstructures. The results show that micro EDM is a suitable technology for finishing of boron doped CVD diamond.

  6. CVD diamond for nuclear detection applications

    CERN Document Server

    Bergonzo, P; Tromson, D; Mer, C; Guizard, B; Marshall, R D; Foulon, F

    2002-01-01

    Chemically vapour deposited (CVD) diamond is a remarkable material for the fabrication of radiation detectors. In fact, there exist several applications where other standard semiconductor detectors do not fulfil the specific requirements imposed by corrosive, hot and/or high radiation dose environments. The improvement of the electronic properties of CVD diamond has been under intensive investigations and led to the development of a few applications that are addressing specific industrial needs. Here, we report on CVD diamond-based detector developments and we describe how this material, even though of a polycrystalline nature, is readily of great interest for applications in the nuclear industry as well as for physics experiments. Improvements in the material synthesis as well as on device fabrication especially concern the synthesis of films that do not exhibit space charge build up effects which are often encountered in CVD diamond materials and that are highly detrimental for detection devices. On a pre-i...

  7. Preparation of LiMn2O4 cathode thin films for thin film lithium secondary batteries by a mist CVD process

    International Nuclear Information System (INIS)

    Tadanaga, Kiyoharu; Yamaguchi, Akihiro; Sakuda, Atsushi; Hayashi, Akitoshi; Tatsumisago, Masahiro; Duran, Alicia; Aparacio, Mario

    2014-01-01

    Highlights: • LiMn 2 O 4 thin films were prepared by using the mist CVD process. • An aqueous solution of lithium and manganese acetates is used for the precursor solution. • The cell with the LiMn 2 O 4 thin films exhibited a capacity of about 80 mAh/g. • The cell showed good cycling performance during 10 cycles. - Abstract: LiMn 2 O 4 cathode thin films for thin film lithium secondary batteries were prepared by using so-called the “mist CVD process”, employing an aqueous solution of lithium acetate and manganese acetate, as the source of Li and Mn, respectively. The aqueous solution of starting materials was ultrasonically atomized to form mist particles, and mists were transferred by nitrogen gas to silica glass substrate to form thin films. FE-SEM observation revealed that thin films obtained by this process were dense and smooth, and thin films with a thickness of about 750 nm were obtained. The electrochemical cell with the thin films obtained by sintering at 700 °C exhibited a capacity of about 80 mAh/g, and the cell showed good cycling performance during 10 cycles

  8. Preparation of LiMn{sub 2}O{sub 4} cathode thin films for thin film lithium secondary batteries by a mist CVD process

    Energy Technology Data Exchange (ETDEWEB)

    Tadanaga, Kiyoharu, E-mail: tadanaga@chem.osakafu-u.ac.jp [Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, Sakai, Osaka, 599-8531 (Japan); Yamaguchi, Akihiro; Sakuda, Atsushi; Hayashi, Akitoshi; Tatsumisago, Masahiro [Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, Sakai, Osaka, 599-8531 (Japan); Duran, Alicia; Aparacio, Mario [Instituto de Cerámica y Vidrio, Consejo Superior de Investigaciones Científicas, Kelsen 5 (Campus de Cantoblanco), Madrid, 28049 (Spain)

    2014-05-01

    Highlights: • LiMn{sub 2}O{sub 4} thin films were prepared by using the mist CVD process. • An aqueous solution of lithium and manganese acetates is used for the precursor solution. • The cell with the LiMn{sub 2}O{sub 4} thin films exhibited a capacity of about 80 mAh/g. • The cell showed good cycling performance during 10 cycles. - Abstract: LiMn{sub 2}O{sub 4} cathode thin films for thin film lithium secondary batteries were prepared by using so-called the “mist CVD process”, employing an aqueous solution of lithium acetate and manganese acetate, as the source of Li and Mn, respectively. The aqueous solution of starting materials was ultrasonically atomized to form mist particles, and mists were transferred by nitrogen gas to silica glass substrate to form thin films. FE-SEM observation revealed that thin films obtained by this process were dense and smooth, and thin films with a thickness of about 750 nm were obtained. The electrochemical cell with the thin films obtained by sintering at 700 °C exhibited a capacity of about 80 mAh/g, and the cell showed good cycling performance during 10 cycles.

  9. Advanced methods for processing ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Carter, W.B. [Georgia Institute of Technology, Atlanta, GA (United States)

    1997-04-01

    Combustion chemical vapor deposition (combustion CVD) is being developed for the deposition of high temperature oxide coatings. The process is being evaluated as an alternative to more capital intensive conventional coating processes. The thrusts during this reporting period were the development of the combustion CVD process for depositing lanthanum monazite, the determination of the influence of aerosol size on coating morphology, the incorporation of combustion CVD coatings into thermal barrier coatings (TBCs) and related oxidation research, and continued work on the deposition of zirconia-yttria coatings.

  10. CVD diamond for nuclear detection applications

    International Nuclear Information System (INIS)

    Bergonzo, P.; Brambilla, A.; Tromson, D.; Mer, C.; Guizard, B.; Marshall, R.D.; Foulon, F.

    2002-01-01

    Chemically vapour deposited (CVD) diamond is a remarkable material for the fabrication of radiation detectors. In fact, there exist several applications where other standard semiconductor detectors do not fulfil the specific requirements imposed by corrosive, hot and/or high radiation dose environments. The improvement of the electronic properties of CVD diamond has been under intensive investigations and led to the development of a few applications that are addressing specific industrial needs. Here, we report on CVD diamond-based detector developments and we describe how this material, even though of a polycrystalline nature, is readily of great interest for applications in the nuclear industry as well as for physics experiments. Improvements in the material synthesis as well as on device fabrication especially concern the synthesis of films that do not exhibit space charge build up effects which are often encountered in CVD diamond materials and that are highly detrimental for detection devices. On a pre-industrial basis, CVD diamond detectors have been fabricated for nuclear industry applications in hostile environments. Such devices can operate in harsh environments and overcome limitations encountered with the standard semiconductor materials. Of these, this paper presents devices for the monitoring of the alpha activity in corrosive nuclear waste solutions, such as those encountered in nuclear fuel assembly reprocessing facilities, as well as diamond-based thermal neutron detectors exhibiting a high neutron to gamma selectivity. All these demonstrate the effectiveness of a demanding industrial need that relies on the remarkable resilience of CVD diamond

  11. Micro-strip sensors based on CVD diamond

    Energy Technology Data Exchange (ETDEWEB)

    Adam, W.; Berdermann, E.; Bergonzo, P.; Bertuccio, G.; Bogani, F.; Borchi, E.; Brambilla, A.; Bruzzi, M.; Colledani, C.; Conway, J.; D' Angelo, P.; Dabrowski, W.; Delpierre, P.; Deneuville, A.; Dulinski, W.; Eijk, B. van; Fallou, A.; Fizzotti, F.; Foulon, F.; Friedl, M.; Gan, K.K.; Gheeraert, E.; Hallewell, G.; Han, S.; Hartjes, F.; Hrubec, J.; Husson, D.; Kagan, H.; Kania, D.; Kaplon, J.; Kass, R.; Koeth, T.; Krammer, M.; Logiudice, A.; Lu, R.; Mac Lynne, L.; Manfredotti, C.; Meier, D. E-mail: dirk.meier@cern.ch; Mishina, M.; Moroni, L.; Oh, A.; Pan, L.S.; Pernicka, M.; Peitz, A.; Perera, L.; Pirollo, S.; Procario, M.; Riester, J.L.; Roe, S.; Rousseau, L.; Rudge, A.; Russ, J.; Sala, S.; Sampietro, M.; Schnetzer, S.; Sciortino, S.; Stelzer, H.; Stone, R.; Suter, B.; Tapper, R.J.; Tesarek, R.; Trischuk, W.; Tromson, D.; Vittone, E.; Walsh, A.M.; Wedenig, R.; Weilhammer, P.; Wetstein, M.; White, C.; Zeuner, W.; Zoeller, M

    2000-10-11

    In this article we present the performance of recent chemical vapour deposition (CVD) diamond micro-strip sensors in beam tests. In addition, we present the first comparison of a CVD diamond micro-strip sensor before and after proton irradiation.

  12. Micro-strip sensors based on CVD Diamond

    CERN Document Server

    Adam, W; Bergonzo, P; Bertuccio, G; Bogani, F; Borchi, E; Brambilla, A; Bruzzi, Mara; Colledani, C; Conway, J; D'Angelo, P; Dabrowski, W; Delpierre, P A; Deneuville, A; Dulinski, W; van Eijk, B; Fallou, A; Fizzotti, F; Foulon, F; Friedl, M; Gan, K K; Gheeraert, E; Hallewell, G D; Han, S; Hartjes, F G; Hrubec, Josef; Husson, D; Kagan, H; Kania, D R; Kaplon, J; Kass, R; Koeth, T W; Krammer, Manfred; Lo Giudice, A; Lü, R; MacLynne, L; Manfredotti, C; Meier, D; Mishina, M; Moroni, L; Oh, A; Pan, L S; Pernicka, Manfred; Peitz, A; Perera, L P; Pirollo, S; Procario, M; Riester, J L; Roe, S; Rousseau, L; Rudge, A; Russ, J; Sala, S; Sampietro, M; Schnetzer, S R; Sciortino, S; Stelzer, H; Stone, R; Suter, B; Tapper, R J; Tesarek, R J; Trischuk, W; Tromson, D; Vittone, E; Walsh, A M; Wedenig, R; Weilhammer, Peter; Wetstein, M; White, C; Zeuner, W; Zoeller, M M

    2000-01-01

    In this article we present the performance of recent chemical vapour deposition (CVD) diamond micro-strip sensors in beam tests. In addition we present the first comparison of a CVD diamond micro-strip sensor before and after proton irradiation.

  13. Micro-strip sensors based on CVD diamond

    International Nuclear Information System (INIS)

    Adam, W.; Berdermann, E.; Bergonzo, P.; Bertuccio, G.; Bogani, F.; Borchi, E.; Brambilla, A.; Bruzzi, M.; Colledani, C.; Conway, J.; D'Angelo, P.; Dabrowski, W.; Delpierre, P.; Deneuville, A.; Dulinski, W.; Eijk, B. van; Fallou, A.; Fizzotti, F.; Foulon, F.; Friedl, M.; Gan, K.K.; Gheeraert, E.; Hallewell, G.; Han, S.; Hartjes, F.; Hrubec, J.; Husson, D.; Kagan, H.; Kania, D.; Kaplon, J.; Kass, R.; Koeth, T.; Krammer, M.; Logiudice, A.; Lu, R.; Mac Lynne, L.; Manfredotti, C.; Meier, D.; Mishina, M.; Moroni, L.; Oh, A.; Pan, L.S.; Pernicka, M.; Peitz, A.; Perera, L.; Pirollo, S.; Procario, M.; Riester, J.L.; Roe, S.; Rousseau, L.; Rudge, A.; Russ, J.; Sala, S.; Sampietro, M.; Schnetzer, S.; Sciortino, S.; Stelzer, H.; Stone, R.; Suter, B.; Tapper, R.J.; Tesarek, R.; Trischuk, W.; Tromson, D.; Vittone, E.; Walsh, A.M.; Wedenig, R.; Weilhammer, P.; Wetstein, M.; White, C.; Zeuner, W.; Zoeller, M.

    2000-01-01

    In this article we present the performance of recent chemical vapour deposition (CVD) diamond micro-strip sensors in beam tests. In addition, we present the first comparison of a CVD diamond micro-strip sensor before and after proton irradiation

  14. Micro-strip sensors based on CVD diamond

    Science.gov (United States)

    Adam, W.; Berdermann, E.; Bergonzo, P.; Bertuccio, G.; Bogani, F.; Borchi, E.; Brambilla, A.; Bruzzi, M.; Colledani, C.; Conway, J.; D'Angelo, P.; Dabrowski, W.; Delpierre, P.; Deneuville, A.; Dulinski, W.; van Eijk, B.; Fallou, A.; Fizzotti, F.; Foulon, F.; Friedl, M.; Gan, K. K.; Gheeraert, E.; Hallewell, G.; Han, S.; Hartjes, F.; Hrubec, J.; Husson, D.; Kagan, H.; Kania, D.; Kaplon, J.; Kass, R.; Koeth, T.; Krammer, M.; Logiudice, A.; Lu, R.; mac Lynne, L.; Manfredotti, C.; Meier, D.; Mishina, M.; Moroni, L.; Oh, A.; Pan, L. S.; Pernicka, M.; Peitz, A.; Perera, L.; Pirollo, S.; Procario, M.; Riester, J. L.; Roe, S.; Rousseau, L.; Rudge, A.; Russ, J.; Sala, S.; Sampietro, M.; Schnetzer, S.; Sciortino, S.; Stelzer, H.; Stone, R.; Suter, B.; Tapper, R. J.; Tesarek, R.; Trischuk, W.; Tromson, D.; Vittone, E.; Walsh, A. M.; Wedenig, R.; Weilhammer, P.; Wetstein, M.; White, C.; Zeuner, W.; Zoeller, M.; RD42 Collaboration

    2000-10-01

    In this article we present the performance of recent chemical vapour deposition (CVD) diamond micro-strip sensors in beam tests. In addition, we present the first comparison of a CVD diamond micro-strip sensor before and after proton irradiation.

  15. Research on chemical vapor deposition processes for advanced ceramic coatings

    Science.gov (United States)

    Rosner, Daniel E.

    1993-01-01

    Our interdisciplinary background and fundamentally-oriented studies of the laws governing multi-component chemical vapor deposition (VD), particle deposition (PD), and their interactions, put the Yale University HTCRE Laboratory in a unique position to significantly advance the 'state-of-the-art' of chemical vapor deposition (CVD) R&D. With NASA-Lewis RC financial support, we initiated a program in March of 1988 that has led to the advances described in this report (Section 2) in predicting chemical vapor transport in high temperature systems relevant to the fabrication of refractory ceramic coatings for turbine engine components. This Final Report covers our principal results and activities for the total NASA grant of $190,000. over the 4.67 year period: 1 March 1988-1 November 1992. Since our methods and the technical details are contained in the publications listed (9 Abstracts are given as Appendices) our emphasis here is on broad conclusions/implications and administrative data, including personnel, talks, interactions with industry, and some known applications of our work.

  16. New developments in CVD diamond for detector applications

    Science.gov (United States)

    Adam, W.; Berdermann, E.; Bergonzo, P.; de Boer, W.; Bogani, F.; Borchi, E.; Brambilla, A.; Bruzzi, M.; Colledani, C.; Conway, J.; D'Angelo, P.; Dabrowski, W.; Delpierre, P.; Dulinski, W.; Doroshenko, J.; van Eijk, B.; Fallou, A.; Fischer, P.; Fizzotti, F.; Furetta, C.; Gan, K. K.; Ghodbane, N.; Grigoriev, E.; Hallewell, G.; Han, S.; Hartjes, F.; Hrubec, J.; Husson, D.; Kagan, H.; Kaplon, J.; Kass, R.; Keil, M.; Knoepfle, K. T.; Koeth, T.; Krammer, M.; Logiudice, A.; Lu, R.; Mac Lynne, L.; Manfredotti, C.; Meier, D.; Menichelli, D.; Meuser, S.; Mishina, M.; Moroni, L.; Noomen, J.; Oh, A.; Pernicka, M.; Perera, L.; Potenza, R.; Riester, J. L.; Roe, S.; Rudge, A.; Sala, S.; Sampietro, M.; Schnetzer, S.; Sciortino, S.; Stelzer, H.; Stone, R.; Sutera, C.; Trischuk, W.; Tromson, D.; Tuve, C.; Vincenzo, B.; Weilhammer, P.; Wermes, N.; Wetstein, M.; Zeuner, W.; Zoeller, M.

    Chemical Vapor Deposition (CVD) diamond has been discussed extensively as an alternative sensor material for use very close to the interaction region of the LHC and other machines where extreme radiation conditions exist. During the last seven years the RD42 collaboration has developed diamond detectors and tested them with LHC electronics towards the end of creating a device usable by experiments. The most recent results of this work are presented. Recently, a new form of CVD diamond has been developed: single crystal CVD diamond which resolves many of the issues associated with poly-crystalline CVD material. The first tests of this material are also presented.

  17. New developments in CVD diamond for detector applications

    Energy Technology Data Exchange (ETDEWEB)

    Adam, W. [HEPHY, Vienna (Austria); Berdermann, E. [GSI, Darmstadt (Germany); Bergonzo, P.; Brambilla, A. [LETI/DEIN/SPE/CEA Saclay (France); Boer, W. de [Universitaet Karlsruhe, Karlsruhe (Germany); Bogani, F. [LENS, Florence (Italy); Borchi, E.; Bruzzi, M. [University of Florence (Italy); Colledani, C.; Dulinski, W. [LEPSI, IN2P3/CNRS-ULP, Strasbourg (France); Conway, J.; Doroshenko, J. [Rutgers University, Piscataway (United States); D' Angelo, P.; Furetta, C. [INFN, Milano (Italy); Dabrowski, W. [UMM, Cracow (Poland); Delpierre, P.; Fallou, A. [CPPM, Marseille (France); Eijk, B. van [NIKHEF, Amsterdam (Netherlands); Fischer, P. [Universitaet Bonn, Bonn (Germany); Fizzotti, F. [University of Torino (Italy); Gan, K.K.; Ghodbane, N.; Grigoriev, E.; Hallewell, G.; Han, S.; Hartjes, F.; Hrubec, J.; Husson, D.; Kagan, H.; Kaplon, J.; Kass, R.; Keil, M.; Knoepfle, K.T.; Koeth, T.; Krammer, M.; Logiudice, A.; Lu, R.; Mac Lynne, L.; Manfredotti, C.; Meier, D.; Menichelli, D.; Meuser, S.; Mishina, M.; Moroni, L.; Noomen, J.; Oh, A.; Pernicka, M.; Perera, L.; Potenza, R.; Riester, J.L.; Roe, S.; Rudge, A.; Sala, S.; Sampietro, M.; Schnetzer, S.; Sciortino, S.; Stelzer, H.; Stone, R.; Sutera, C.; Trischuk, W.; Tromson, D.; Tuve, C.; Vincenzo, B.; Weilhammer, P.; Wermes, N.; Wetstein, M.; Zeuner, W.; Zoeller, M.

    2004-07-01

    Chemical Vapor Deposition (CVD) diamond has been discussed extensively as an alternative sensor material for use very close to the interaction region of the LHC and other machines where extreme radiation conditions exist. During the last seven years the RD42 collaboration has developed diamond detectors and tested them with LHC electronics towards the end of creating a device usable by experiments. The most recent results of this work are presented. Recently, a new form of CVD diamond has been developed: single crystal CVD diamond which resolves many of the issues associated with poly-crystalline CVD material. The first tests of this material are also presented. (orig.)

  18. New developments in CVD diamond for detector applications

    International Nuclear Information System (INIS)

    Adam, W.; Berdermann, E.; Bergonzo, P.; Brambilla, A.; Boer, W. de; Bogani, F.; Borchi, E.; Bruzzi, M.; Colledani, C.; Dulinski, W.; Conway, J.; Doroshenko, J.; D'Angelo, P.; Furetta, C.; Dabrowski, W.; Delpierre, P.; Fallou, A.; Eijk, B. van; Fischer, P.; Fizzotti, F.; Gan, K.K.; Ghodbane, N.; Grigoriev, E.; Hallewell, G.; Han, S.; Hartjes, F.; Hrubec, J.; Husson, D.; Kagan, H.; Kaplon, J.; Kass, R.; Keil, M.; Knoepfle, K.T.; Koeth, T.; Krammer, M.; Logiudice, A.; Lu, R.; Mac Lynne, L.; Manfredotti, C.; Meier, D.; Menichelli, D.; Meuser, S.; Mishina, M.; Moroni, L.; Noomen, J.; Oh, A.; Pernicka, M.; Perera, L.; Potenza, R.; Riester, J.L.; Roe, S.; Rudge, A.; Sala, S.; Sampietro, M.; Schnetzer, S.; Sciortino, S.; Stelzer, H.; Stone, R.; Sutera, C.; Trischuk, W.; Tromson, D.; Tuve, C.; Vincenzo, B.; Weilhammer, P.; Wermes, N.; Wetstein, M.; Zeuner, W.; Zoeller, M.

    2004-01-01

    Chemical Vapor Deposition (CVD) diamond has been discussed extensively as an alternative sensor material for use very close to the interaction region of the LHC and other machines where extreme radiation conditions exist. During the last seven years the RD42 collaboration has developed diamond detectors and tested them with LHC electronics towards the end of creating a device usable by experiments. The most recent results of this work are presented. Recently, a new form of CVD diamond has been developed: single crystal CVD diamond which resolves many of the issues associated with poly-crystalline CVD material. The first tests of this material are also presented. (orig.)

  19. Deposit control in process cooling water systems

    International Nuclear Information System (INIS)

    Venkataramani, B.

    1981-01-01

    In order to achieve efficient heat transfer in cooling water systems, it is essential to control the fouling of heat exchanger surfaces. Solubilities of scale forming salts, their growth into crystals, and the nature of the surfaces play important roles in the deposition phenomenon. Condensed phosphates, organic polymers and compounds like phosphates are effective in controlling deposition of scale forming salts. The surface active agents inhibit crystal growth and modify the crystals of the scale forming salts, and thus prevent deposition of dense, uniformly structured crystalline mass on the heat transfer surface. Understanding the mechanism of biofouling is essential to control it by surface active agents. Certain measures taken in the plant, such as back flushing, to control scaling, sometimes may not be effective and can be detrimental to the system itself. (author)

  20. An assessment of radiotherapy dosimeters based on CVD grown diamond

    International Nuclear Information System (INIS)

    Ramkumar, S.; Buttar, C.M.; Conway, J.; Whitehead, A.J.; Sussman, R.S.; Hill, G.; Walker, S.

    2001-01-01

    Diamond is potentially a very suitable material for use as a dosimeter for radiotherapy. Its radiation hardness, the near tissue equivalence and chemical inertness are some of the characteristics of diamond, which make it well suited for its application as a dosimeter. Recent advances in the synthesis of diamond by chemical vapour deposition (CVD) technology have resulted in the improvement in the quality of material and increased its suitability for radiotherapy applications. We report in this paper, the response of prototype dosimeters based on two different types (CVD1 and CVD2) of CVD diamond to X-rays. The diamond devices were assessed for sensitivity, dependence of response on dose and dose rate, and compared with a Scanditronix silicon photon diode and a PTW natural diamond dosimeter. The diamond devices of CVD1 type showed an initial increase in response with dose, which saturates after ∼6 Gy. The diamond devices of CVD2 type had a response at low fields ( 1162.8 V/cm), the CVD2-type devices showed polarisation and dose-rate dependence. The sensitivity of the CVD diamond devices varied between 82 and 1300 nC/Gy depending upon the sample type and the applied voltage. The sensitivity of CVD diamond devices was significantly higher than that of natural diamond and silicon dosimeters. The results suggest that CVD diamond devices can be fabricated for successful use in radiotherapy applications

  1. Robofurnace: A semi-automated laboratory chemical vapor deposition system for high-throughput nanomaterial synthesis and process discovery

    International Nuclear Information System (INIS)

    Oliver, C. Ryan; Westrick, William; Koehler, Jeremy; Brieland-Shoultz, Anna; Anagnostopoulos-Politis, Ilias; Cruz-Gonzalez, Tizoc; Hart, A. John

    2013-01-01

    Laboratory research and development on new materials, such as nanostructured thin films, often utilizes manual equipment such as tube furnaces due to its relatively low cost and ease of setup. However, these systems can be prone to inconsistent outcomes due to variations in standard operating procedures and limitations in performance such as heating and cooling rates restrict the parameter space that can be explored. Perhaps more importantly, maximization of research throughput and the successful and efficient translation of materials processing knowledge to production-scale systems, relies on the attainment of consistent outcomes. In response to this need, we present a semi-automated lab-scale chemical vapor deposition (CVD) furnace system, called “Robofurnace.” Robofurnace is an automated CVD system built around a standard tube furnace, which automates sample insertion and removal and uses motion of the furnace to achieve rapid heating and cooling. The system has a 10-sample magazine and motorized transfer arm, which isolates the samples from the lab atmosphere and enables highly repeatable placement of the sample within the tube. The system is designed to enable continuous operation of the CVD reactor, with asynchronous loading/unloading of samples. To demonstrate its performance, Robofurnace is used to develop a rapid CVD recipe for carbon nanotube (CNT) forest growth, achieving a 10-fold improvement in CNT forest mass density compared to a benchmark recipe using a manual tube furnace. In the long run, multiple systems like Robofurnace may be linked to share data among laboratories by methods such as Twitter. Our hope is Robofurnace and like automation will enable machine learning to optimize and discover relationships in complex material synthesis processes

  2. Robofurnace: A semi-automated laboratory chemical vapor deposition system for high-throughput nanomaterial synthesis and process discovery

    Energy Technology Data Exchange (ETDEWEB)

    Oliver, C. Ryan; Westrick, William; Koehler, Jeremy; Brieland-Shoultz, Anna; Anagnostopoulos-Politis, Ilias; Cruz-Gonzalez, Tizoc [Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109 (United States); Hart, A. John, E-mail: ajhart@mit.edu [Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109 (United States); Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)

    2013-11-15

    Laboratory research and development on new materials, such as nanostructured thin films, often utilizes manual equipment such as tube furnaces due to its relatively low cost and ease of setup. However, these systems can be prone to inconsistent outcomes due to variations in standard operating procedures and limitations in performance such as heating and cooling rates restrict the parameter space that can be explored. Perhaps more importantly, maximization of research throughput and the successful and efficient translation of materials processing knowledge to production-scale systems, relies on the attainment of consistent outcomes. In response to this need, we present a semi-automated lab-scale chemical vapor deposition (CVD) furnace system, called “Robofurnace.” Robofurnace is an automated CVD system built around a standard tube furnace, which automates sample insertion and removal and uses motion of the furnace to achieve rapid heating and cooling. The system has a 10-sample magazine and motorized transfer arm, which isolates the samples from the lab atmosphere and enables highly repeatable placement of the sample within the tube. The system is designed to enable continuous operation of the CVD reactor, with asynchronous loading/unloading of samples. To demonstrate its performance, Robofurnace is used to develop a rapid CVD recipe for carbon nanotube (CNT) forest growth, achieving a 10-fold improvement in CNT forest mass density compared to a benchmark recipe using a manual tube furnace. In the long run, multiple systems like Robofurnace may be linked to share data among laboratories by methods such as Twitter. Our hope is Robofurnace and like automation will enable machine learning to optimize and discover relationships in complex material synthesis processes.

  3. Handbook of chemical vapor deposition principles, technology and applications

    CERN Document Server

    Pierson, Hugh O

    1999-01-01

    Turn to this new second edition for an understanding of the latest advances in the chemical vapor deposition (CVD) process. CVD technology has recently grown at a rapid rate, and the number and scope of its applications and their impact on the market have increased considerably. The market is now estimated to be at least double that of a mere seven years ago when the first edition of this book was published. The second edition is an update with a considerably expanded and revised scope. Plasma CVD and metallo-organic CVD are two major factors in this rapid growth. Readers will find the latest

  4. Microbial processes in banded iron formation deposition

    DEFF Research Database (Denmark)

    Posth, Nicole; Konhauser, Kurt; Kappler, Andreas

    2013-01-01

    , remains unresolved. Evidence of an anoxic Earth with only localized oxic areas until the Great Oxidation Event ca 2·45 to 2·32 Ga makes the investigation of O2-independent mechanisms for banded iron formation deposition relevant. Recent studies have explored the long-standing proposition that Archean......Banded iron formations have been studied for decades, particularly regarding their potential as archives of the Precambrian environment. In spite of this effort, the mechanism of their deposition and, specifically, the role that microbes played in the precipitation of banded iron formation minerals...... banded iron formations may have been formed, and diagenetically modified, by anaerobic microbial metabolisms. These efforts encompass a wide array of approaches including isotope, ecophysiological and phylogeny studies, molecular and mineral marker analysis, and sedimentological reconstructions. Herein...

  5. Polymer Adsorption on Graphite and CVD Graphene Surfaces Studied by Surface-Specific Vibrational Spectroscopy.

    Science.gov (United States)

    Su, Yudan; Han, Hui-Ling; Cai, Qun; Wu, Qiong; Xie, Mingxiu; Chen, Daoyong; Geng, Baisong; Zhang, Yuanbo; Wang, Feng; Shen, Y R; Tian, Chuanshan

    2015-10-14

    Sum-frequency vibrational spectroscopy was employed to probe polymer contaminants on chemical vapor deposition (CVD) graphene and to study alkane and polyethylene (PE) adsorption on graphite. In comparing the spectra from the two surfaces, it was found that the contaminants on CVD graphene must be long-chain alkane or PE-like molecules. PE adsorption from solution on the honeycomb surface results in a self-assembled ordered monolayer with the C-C skeleton plane perpendicular to the surface and an adsorption free energy of ∼42 kJ/mol for PE(H(CH2CH2)nH) with n ≈ 60. Such large adsorption energy is responsible for the easy contamination of CVD graphene by impurity in the polymer during standard transfer processes. Contamination can be minimized with the use of purified polymers free of PE-like impurities.

  6. CVD carbon powders modified by ball milling

    Directory of Open Access Journals (Sweden)

    Kazmierczak Tomasz

    2015-09-01

    Full Text Available Carbon powders produced using a plasma assisted chemical vapor deposition (CVD methods are an interesting subject of research. One of the most interesting methods of synthesizing these powders is using radio frequency plasma. This method, originally used in deposition of carbon films containing different sp2/sp3 ratios, also makes possible to produce carbon structures in the form of powder. Results of research related to the mechanical modification of these powders have been presented. The powders were modified using a planetary ball mill with varying parameters, such as milling speed, time, ball/powder mass ratio and additional liquids. Changes in morphology and particle sizes were measured using scanning electron microscopy and dynamic light scattering. Phase composition was analyzed using Raman spectroscopy. The influence of individual parameters on the modification outcome was estimated using statistical method. The research proved that the size of obtained powders is mostly influenced by the milling speed and the amount of balls. Powders tend to form conglomerates sized up to hundreds of micrometers. Additionally, it is possible to obtain nanopowders with the size around 100 nm. Furthermore, application of additional liquid, i.e. water in the process reduces the graphitization of the powder, which takes place during dry milling.

  7. Structurally controlled deposition of silicon onto nanowires

    Science.gov (United States)

    Wang, Weijie; Liu, Zuqin; Han, Song; Bornstein, Jonathan; Stefan, Constantin Ionel

    2018-03-20

    Provided herein are nanostructures for lithium ion battery electrodes and methods of fabrication. In some embodiments, a nanostructure template coated with a silicon coating is provided. The silicon coating may include a non-conformal, more porous layer and a conformal, denser layer on the non-conformal, more porous layer. In some embodiments, two different deposition processes, e.g., a PECVD layer to deposit the non-conformal layer and a thermal CVD process to deposit the conformal layer, are used. Anodes including the nanostructures have longer cycle lifetimes than anodes made using either a PECVD or thermal CVD method alone.

  8. Mass production of CNTs using CVD multi-quartz tubes

    Energy Technology Data Exchange (ETDEWEB)

    Yousef, Samy; Mohamed, Alaa [Dept. of Production Engineering and Printing Technology, Akhbar Elyom Academy, Giza (Egypt)

    2016-11-15

    Carbon nanotubes (CNTs) have become the backbone of modern industries, including lightweight and heavy-duty industrial applications. Chemical vapor deposition (CVD) is considered as the most common method used to synthesize high yield CNTs. This work aims to develop the traditional CVD for the mass production of more economical CNTs, meeting the growing CNT demands among consumers by increasing the number of three particular reactors. All reactors housing is connected by small channels to provide the heat exchange possibility between the chambers, thereby decreasing synthesis time and reducing heat losses inside the ceramic body of the furnace. The novel design is simple and cheap with a lower reacting time and heat loss compared with the traditional CVD design. Methane, hydrogen, argon, and catalyzed iron nanoparticles were used as a carbon source and catalyst during the synthesis process. In addition, CNTs were produced using only a single quartz tube for comparison. The produced samples were examined using XRD, TEM, SEM, FTIR, and TGA. The results showed that the yield of CNTs increases by 287 % compared with those synthesized with a single quartz tube. Moreover, the total synthesis time of CNTs decreases by 37 % because of decreased heat leakage.

  9. Raman Studies on Pre- and Post-Processed CVD Graphene Films Grown under Various Nitrogen Carrier Gas Flows

    Science.gov (United States)

    Beh, K. P.; Yam, F. K.; Abdalrheem, Raed; Ng, Y. Z.; Suhaimi, F. H. A.; Lim, H. S.; Mat Jafri, M. Z.

    2018-04-01

    In this work, graphene films were grown on copper substrates using chemical vapour deposition method under various N2 carrier flow rate. The samples were characterized using Raman spectroscopy. Three sets of Raman measurements have been performed: graphene/Cu (as-grown samples), pre-annealed graphene/glass, and post-annealed graphene/glass. It was found that the Raman spectra of graphene/Cu samples possessed a hump-shaped baseline, additionally higher signal-to-noise ratio (SNR) that leads to attenuation graphene-related bands. Significant improvement of SNR and flat baseline were observed for graphene films transferred on glass substrate. Further analysis on the remaining sets of Raman spectra highlighted minute traces of polymethyl methacrylate (PMMA) could yield misleading results. Hence, the set of Raman spectra on annealed graphene/glass samples would be suitable in further elucidating the effects of N2 carrier flow towards graphene growth. From there, higher N2 flow implied dilution of methanol/H2 mixture, limiting interactions between reactants and substrate. This leads to smaller crystallite size and lesser graphene layers.

  10. Chemical Vapour Deposition of Large Area Graphene

    DEFF Research Database (Denmark)

    Larsen, Martin Benjamin Barbour Spanget

    Chemical Vapor Deposition (CVD) is a viable technique for fabrication of large areas of graphene. CVD fabrication is the most prominent and common way of fabricating graphene in industry. In this thesis I have attempted to optimize a growth recipe and catalyst layer for CVD fabrication of uniform......, single layer, and high carrier mobility large area graphene. The main goals of this work are; (1) explore the graphene growth mechanics in a low pressure cold-wall CVD system on a copper substrate, and (2) optimize the process of growing high quality graphene in terms of carrier mobility, and crystal...... structure. Optimization of a process for graphene growth on commercially available copper foil is limited by the number of aluminium oxide particles on the surface of the catalyst. By replacing the copper foil with a thin deposited copper film on a SiO2/Si or c-plane sapphire wafer the particles can...

  11. Causal knowledge extraction by natural language processing in material science: a case study in chemical vapor deposition

    Directory of Open Access Journals (Sweden)

    Yuya Kajikawa

    2006-11-01

    Full Text Available Scientific publications written in natural language still play a central role as our knowledge source. However, due to the flood of publications, the literature survey process has become a highly time-consuming and tangled process, especially for novices of the discipline. Therefore, tools supporting the literature-survey process may help the individual scientist to explore new useful domains. Natural language processing (NLP is expected as one of the promising techniques to retrieve, abstract, and extract knowledge. In this contribution, NLP is firstly applied to the literature of chemical vapor deposition (CVD, which is a sub-discipline of materials science and is a complex and interdisciplinary field of research involving chemists, physicists, engineers, and materials scientists. Causal knowledge extraction from the literature is demonstrated using NLP.

  12. Conformal coverage of poly(3,4-ethylenedioxythiophene) films with tunable nanoporosity via oxidative chemical vapor deposition

    NARCIS (Netherlands)

    Im, S.G.; Kusters, D.J.N.; Choi, W.; Baxamusa, S.H.; Sanden, van de M.C.M.; Gleason, K.K.

    2008-01-01

    Novel nanoporous poly(3,4-ethylenedioxythiophene) (PEDOT) films with basalt-like surface morphology are successfully obtained via a one-step, vapor phase process of oxidative chemical vapor deposition (oCVD) by introducing a new oxidant, CuCl2, The substrate temperature of the oCVD process is a

  13. Feature scale modeling for etching and deposition processes in semiconductor manufacturing

    International Nuclear Information System (INIS)

    Pyka, W.

    2000-04-01

    modeling of ballistic transport determined low-pressure processes, the equations for the calculation of local etching and deposition rates have been revised. New extensions like the full relation between angular and radial target emission characteristics and particle distributions resulting at different positions on the wafer have been added, and results from reactor scale simulations have been linked to the feature scale profile evolution. Moreover, a fitting model has been implemented, which reduces the number of parameters for particle distributions, scattering mechanisms, and angular dependent surface interactions. Concerning diffusion determined high-pressure CVD processes, a continuum transport and reaction model for the first time has been implemented in three dimensions. It comprises a flexible interface for the formulation of the involved process chemistry and derives the local deposition rate from a finite element diffusion calculation carried out on the three-dimensional mesh of the gas domain above the feature. For each time-step of the deposition simulation the mesh is automatically generated as counterpart to the surface of the three-dimensional structure evolving with time. The CVD model has also been coupled with equipment simulations. (author)

  14. A 3D tomographic EBSD analysis of a CVD diamond thin film

    International Nuclear Information System (INIS)

    Liu Tao; Raabe, Dierk; Zaefferer, Stefan

    2008-01-01

    We have studied the nucleation and growth processes in a chemical vapor deposition (CVD) diamond film using a tomographic electron backscattering diffraction method (3D EBSD). The approach is based on the combination of a focused ion beam (FIB) unit for serial sectioning in conjunction with high-resolution EBSD. Individual diamond grains were investigated in 3-dimensions particularly with regard to the role of twinning.

  15. A 3D tomographic EBSD analysis of a CVD diamond thin film

    Directory of Open Access Journals (Sweden)

    Tao Liu, Dierk Raabe and Stefan Zaefferer

    2008-01-01

    Full Text Available We have studied the nucleation and growth processes in a chemical vapor deposition (CVD diamond film using a tomographic electron backscattering diffraction method (3D EBSD. The approach is based on the combination of a focused ion beam (FIB unit for serial sectioning in conjunction with high-resolution EBSD. Individual diamond grains were investigated in 3-dimensions particularly with regard to the role of twinning.

  16. Preparación de tamices moleculares de carbono por CVD

    OpenAIRE

    Manso, R.; Pajares, J. A.; Albiniak, A.; Broniek, E.; Siemieniewska, T.

    2001-01-01

    Carbon molecular sieves (CMS) have been prepared by chemical vapour deposition (CVD) of carbon from the pyrolysis of benzene molecules on activated carbon surfaces. The pyrolysis of benzene at temperatures in the range 650-850 ºC restricts the accessibility of the micropores due to the creation of constrictions on the microporous network. Temperatures higher than 850 ºC (temperature of carbonisation) add difficulties due to decomposition and sinterization processes. Low flows of nitrogen (30 ...

  17. Chemical vapor deposition based tungsten disulfide (WS2) thin film transistor

    KAUST Repository

    Hussain, Aftab M.; Sevilla, Galo T.; Rader, Kelly; Hussain, Muhammad Mustafa

    2013-01-01

    electric field. This makes them an interesting option for channel material in field effect transistors (FETs). Therefore, we show a highly manufacturable chemical vapor deposition (CVD) based simple process to grow WS2 directly on silicon oxide in a furnace

  18. Modeling of gas flow and deposition profile in HWCVD processes

    Energy Technology Data Exchange (ETDEWEB)

    Pflug, Andreas; Höfer, Markus; Harig, Tino; Armgardt, Markus; Britze, Chris; Siemers, Michael; Melzig, Thomas; Schäfer, Lothar

    2015-11-30

    Hot wire chemical vapor deposition (HWCVD) is a powerful technology for deposition of high quality films on large area, where drawbacks of plasma based technology such as defect generation by ion bombardment and high equipment costs are omitted. While processes for diamond coatings using H{sub 2} and CH{sub 4} as precursor have been investigated in detail since 1990 and have been transferred to industry, research also focuses on silicon based coatings with H{sub 2}, SiH{sub 4} and NH{sub 3} as process gases. HWCVD of silicon based coatings is a promising alternative for state-of-the-art radiofrequency-plasma enhanced chemical vapor deposition reactors. The film formation in HWCVD results from an interaction of several concurrent chemical reactions such as gas phase chemistry, film deposition, abstraction of surplus hydrogen bonds and etching by atomic hydrogen. Since there is no easy relation between process parameters and resulting deposition profiles, substantial experimental effort is required to optimize the process for a given film specification and the desired film uniformity. In order to obtain a deeper understanding of the underlying mechanisms and to enable an efficient way of process optimization, simulation methods come into play. While diamond deposition occurs at pressures in the range of several kPa HWCVD deposition of Si based coatings operates at pressures in the 0.1–30 Pa range. In this pressure regime, particle based simulation methods focused on solving the Boltzmann equation are computationally feasible. In comparison to computational fluid dynamics this yields improved accuracy even near small gaps or orifices, where characteristic geometric dimensions approach the order of the mean free path of gas molecules. At Fraunhofer IST, a parallel implementation of the Direct Simulation Monte Carlo (DSMC) method extended by a reactive wall chemistry model is developed. To demonstrate the feasibility of three-dimensional simulation of HWCVD processes

  19. The versatility of hot-filament activated chemical vapor deposition

    International Nuclear Information System (INIS)

    Schaefer, Lothar; Hoefer, Markus; Kroeger, Roland

    2006-01-01

    In the field of activated chemical vapor deposition (CVD) of polycrystalline diamond films, hot-filament activation (HF-CVD) is widely used for applications where large deposition areas are needed or three-dimensional substrates have to be coated. We have developed processes for the deposition of conductive, boron-doped diamond films as well as for tribological crystalline diamond coatings on deposition areas up to 50 cm x 100 cm. Such multi-filament processes are used to produce diamond electrodes for advanced electrochemical processes or large batches of diamond-coated tools and parts, respectively. These processes demonstrate the high degree of uniformity and reproducibility of hot-filament CVD. The usability of hot-filament CVD for diamond deposition on three-dimensional substrates is well known for CVD diamond shaft tools. We also develop interior diamond coatings for drawing dies, nozzles, and thread guides. Hot-filament CVD also enables the deposition of diamond film modifications with tailored properties. In order to adjust the surface topography to specific applications, we apply processes for smooth, fine-grained or textured diamond films for cutting tools and tribological applications. Rough diamond is employed for grinding applications. Multilayers of fine-grained and coarse-grained diamond have been developed, showing increased shock resistance due to reduced crack propagation. Hot-filament CVD is also used for in situ deposition of carbide coatings and diamond-carbide composites, and the deposition of non-diamond, silicon-based films. These coatings are suitable as diffusion barriers and are also applied for adhesion and stress engineering and for semiconductor applications, respectively

  20. Micromorphology of modern tills in southwestern Spitsbergen – insights into depositional and post-depositional processes

    Directory of Open Access Journals (Sweden)

    Skolasińska Katarzyna

    2016-12-01

    Full Text Available Textural properties and microstructures are commonly used properties in the analysis of Pleistocene and older glacial deposits. However, contemporary glacial deposits are seldom studied, particularly in the context of post-depositional changes. This paper presents the results of a micromorphological study of recently deposited tills in the marginal zones of Hansbreen and Torellbreen, glaciers in southwestern Spitsbergen. The main objectives of this study were to compare modern tills deposited in subglacial and supraglacial conditions, as well as tills that were freshly released from ice with those laid down several decades ago. The investigated tills are primarily composed of large clasts of metamorphic rocks and represent coarse-grained, matrix-supported diamictons. The tills reveal several characteristic features for ductile (e.g. turbate structures and brittle (e.g. lineations, microshears deformations, which have been considered to be indicative of subglacial conditions. In supraglacial tills, the same structures are common as in the subglacial deposits, which points to the preservation of the primary features, though the sediment was transferred up to the glacier surface due to basal ice layer deformation and redeposited as slumps, or to formation of similar structures due to short-distance sediment re-deposition by mass flows. This study revealed that it might not be possible to distinguish subglacial and supraglacial tills on the basis of micromorphology if the latter are derived from a subglacial position. The only noted difference was the presence of iron oxide cementation zones and carbonate dissolution features in supraglacial tills. These features were found in tills that were deposited at least a few years ago and are interpreted to be induced by early post-depositional processes involving porewater/sediment interactions.

  1. FY 1999 achievement report on the project on the R and D of university-cooperation industrial science technology. Semiconductor device production process by Cat-CVD method (Development of the technology to rationalize energy utilization); 1999 nendo Cat-CVD ho ni yoru handotai device seizo process seika hokokusho. Energy shiyo gorika gijutsu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    The paper described the results obtained by FY 1999 of the semiconductor device production using the catalytic chemical vapor deposition method. As to the application to Ga-As integrated circuits, a guide was acquired for the accumulation speed over 40nm/min. The 5% thickness distribution of inner film of 4-inch wafer, refractive index distribution of 1% or less, and 2D electron gas concentration change of 1.5% could be realized. The experimental device for commercialization was designed and manufactured. Concerning the application to ferroelectric integrated circuits, the accumulation temperature condition was refined as 200 degrees C or less, which resulted in succeeding in forming Si{sub 3}N{sub 4} film at low temperature of 120 degrees C (accumulation speed: 20nm/min.) Relating to the application to Si integrated circuits, a machine to cope with 8 inches was developed. The 6-inch film thickness distribution of 5% and the refractive index distribution of 1% were realized. In regard to the leak current, extreme-thin film was superior to thermal oxidation film. About the application to the formation of high-quality thermal insulation thin films for low temperature polycrystal Si thin film transistor use, poly-Si films with a Hall effect mobility of approximately 10cm{sup 2}/Vs which is relatively high could be formed. In addition, the design/manufacture of Cat-CVD device with a large area were made. (NEDO)

  2. Superhydrophobic Copper Surfaces with Anticorrosion Properties Fabricated by Solventless CVD Methods.

    Science.gov (United States)

    Vilaró, Ignasi; Yagüe, Jose L; Borrós, Salvador

    2017-01-11

    Due to continuous miniaturization and increasing number of electrical components in electronics, copper interconnections have become critical for the design of 3D integrated circuits. However, corrosion attack on the copper metal can affect the electronic performance of the material. Superhydrophobic coatings are a commonly used strategy to prevent this undesired effect. In this work, a solventless two-steps process was developed to fabricate superhydrophobic copper surfaces using chemical vapor deposition (CVD) methods. The superhydrophobic state was achieved through the design of a hierarchical structure, combining micro-/nanoscale domains. In the first step, O 2 - and Ar-plasma etchings were performed on the copper substrate to generate microroughness. Afterward, a conformal copolymer, 1H,1H,2H,2H-perfluorodecyl acrylate-ethylene glycol diacrylate [p(PFDA-co-EGDA)], was deposited on top of the metal via initiated CVD (iCVD) to lower the surface energy of the surface. The copolymer topography exhibited a very characteristic and unique nanoworm-like structure. The combination of the nanofeatures of the polymer with the microroughness of the copper led to achievement of the superhydrophobic state. AFM, SEM, and XPS were used to characterize the evolution in topography and chemical composition during the CVD processes. The modified copper showed water contact angles as high as 163° and hysteresis as low as 1°. The coating withstood exposure to aggressive media for extended periods of time. Tafel analysis was used to compare the corrosion rates between bare and modified copper. Results indicated that iCVD-coated copper corrodes 3 orders of magnitude slower than untreated copper. The surface modification process yielded repeatable and robust superhydrophobic coatings with remarkable anticorrosion properties.

  3. Contribution to understanding and controlling a-Si:H thin films growth by mercury-sensitised photo-CVD

    International Nuclear Information System (INIS)

    Barhdadi, A.

    2003-09-01

    Mercury-sensitized photo-CVD technique is widely used for growing amorphous silicon thin films. This attractive method allows damage-free thin film depositions at very low substrate temperatures without the deleterious effects of the other processes. This review reports on the principle and potential of this technique. It also recalls and summarizes some fundamental issues such as experimental systems or apparatus particularities, the analysis of gas-phase reactions in the reactor, the surface-reaction model of SiH 3 and H during the film growth and all the kinetic model for lamp-induced Photo-CVD. (author)

  4. Verification of thermo-fluidic CVD reactor model

    International Nuclear Information System (INIS)

    Lisik, Z; Turczynski, M; Ruta, L; Raj, E

    2014-01-01

    Presented paper describes the numerical model of CVD (Chemical Vapour Deposition) reactor created in ANSYS CFX, whose main purpose is the evaluation of numerical approaches used to modelling of heat and mass transfer inside the reactor chamber. Verification of the worked out CVD model has been conducted with measurements under various thermal, pressure and gas flow rate conditions. Good agreement between experimental and numerical results confirms correctness of the elaborated model.

  5. MgO by injection CVD

    International Nuclear Information System (INIS)

    Abrutis, A.; Kubilius, V.; Teiserkis, A.; Bigelyte, V.; Vengalis, B.; Jukna, A.; Butkute, R.

    1997-01-01

    Epitaxial YBa 2 Cu 3 O 7 layers with 45 in-plane orientation have been grown by injection CVD on MgO substrates polished off-axis to within 1.4-1.9 of the [100] direction. This new single-source CVD process is based on computer-controlled injection of precise microdoses of a metal-organic precursor solution into a CVD reactor. A wide range of solution compositions was tested to investigate compositional effects on phase purity, surface morphology, texturing and superconducting properties of the prepared films. The highest quality films with pure 45 texture had a smooth surface, zero resistance T c (R=0) of 88-89 K, and critical current density J c (77 K) above 10 6 A/cm 2 . (orig.) and critical current density J c (77 K) above 10 6 A/cm 2 . (orig.)

  6. Biochemical processes of oligotrophic peat deposits of Vasyugan Mire

    Science.gov (United States)

    Inisheva, L. I.; Sergeeva, M. A.

    2009-04-01

    The problem of peat and mire ecosystems functioning and their rational use is the main problem of biosphere study. This problem also refers to forecasting of biosphere changes results which are global and anthropogenic. According to many scientists' research the portion of mires in earth carbon balance is about 15% of world's stock. The aim of this study is to investigate biochemical processes in oligotrophic deposits in North-eastern part of Vasyugan Mire. The investigations were made on the territory of scientific-research ground (56˚ 03´ and 56˚ 57´ NL, 82˚ 22´ and 82˚ 42´ EL). It is situated between two rivers Bakchar and Iksa (in outskirts of the village Polynyanka, Bakchar region, Tomsk oblast). Evolution of investigated mire massif began with the domination of eutrophic phytocenosis - Filicinae, then sedge. Later transfer into oligotrophic phase was accompanied by formation of meter high-moor peat deposit. The age of three-meter peat deposit reaches four thousand years. Biochemical processes of carbon cycle cover the whole peat deposit, but the process activity and its direction in different layers are defined by genesis and duration of peat formation. So, the number of cellulose-fermenting aerobes in researched peat deposits ranges from 16.8 to 75.5 million CFU/g, and anaerobic bacteria from 9.6 to 48.6 million CFU/g. The high number of aerobes is characteristic for high water levels, organizing by raised bog peats. Their number decreases along the profile in 1.7 - 2 times. The number of microflora in peat deposit is defined by the position in the landscape profile (different geneses), by the depth, by hydrothermic conditions of years and individual months. But microflora activity shows along all depth of peat deposit. We found the same in the process of studying of micromycete complex structure. There was revealed either active component micromycete complex - mycelium, or inert one - spores in a meter layer of peat deposit. If mushrooms

  7. Recent results with CVD diamond trackers

    Energy Technology Data Exchange (ETDEWEB)

    Adam, W.; Bauer, C.; Berdermann, E.; Bergonzo, P.; Bogani, F.; Borchi, E.; Brambilla, A.; Bruzzi, M.; Colledani, C.; Conway, J.; Dabrowski, W.; Delpierre, P.; Deneuville, A.; Dulinski, W.; Eijk, B. van; Fallou, A.; Fizzotti, F.; Foulon, F.; Friedl, M.; Gan, K.K.; Gheeraert, E.; Grigoriev, E.; Hallewell, G.; Hall-Wilton, R.; Han, S.; Hartjes, F.; Hrubec, J.; Husson, D.; Kagan, H.; Kania, D.; Kaplon, J.; Karl, C.; Kass, R.; Knoepfle, K.T.; Krammer, M.; Logiudice, A.; Lu, R.; Manfredi, P.F.; Manfredotti, C.; Marshall, R.D.; Meier, D.; Mishina, M.; Oh, A.; Pan, L.S.; Palmieri, V.G.; Pernicka, M.; Peitz, A.; Pirollo, S.; Polesello, P.; Pretzl, K.; Procario, M.; Re, V.; Riester, J.L.; Roe, S.; Roff, D.; Rudge, A.; Runolfsson, O.; Russ, J.; Schnetzer, S.; Sciortino, S.; Speziali, V.; Stelzer, H.; Stone, R.; Suter, B.; Tapper, R.J.; Tesarek, R.; Trawick, M.; Trischuk, W.; Vittone, E.; Walsh, A.M.; Wedenig, R.; Weilhammer, P.; White, C.; Ziock, H.; Zoeller, M

    1999-08-01

    We present recent results on the use of Chemical Vapor Deposition (CVD) diamond microstrip detectors for charged particle tracking. A series of detectors was fabricated using 1 x 1 cm{sup 2} diamonds. Good signal-to-noise ratios were observed using both slow and fast readout electronics. For slow readout electronics, 2 {mu}s shaping time, the most probable signal-to-noise ratio was 50 to 1. For fast readout electronics, 25 ns peaking time, the most probable signal-to-noise ratio was 7 to 1. Using the first 2 x 4 cm{sup 2} diamond from a production CVD reactor with slow readout electronics, the most probable signal-to-noise ratio was 23 to 1. The spatial resolution achieved for the detectors was consistent with the digital resolution expected from the detector pitch.

  8. Recent results with CVD diamond trackers

    CERN Document Server

    Adam, W; Berdermann, E; Bergonzo, P; Bogani, F; Borchi, E; Brambilla, A; Bruzzi, Mara; Colledani, C; Conway, J; Dabrowski, W; Delpierre, P A; Deneuville, A; Dulinski, W; van Eijk, B; Fallou, A; Fizzotti, F; Foulon, F; Friedl, M; Gan, K K; Gheeraert, E; Grigoriev, E; Hallewell, G D; Hall-Wilton, R; Han, S; Hartjes, F G; Hrubec, Josef; Husson, D; Kagan, H; Kania, D R; Kaplon, J; Karl, C; Kass, R; Knöpfle, K T; Krammer, Manfred; Lo Giudice, A; Lü, R; Manfredi, P F; Manfredotti, C; Marshall, R D; Meier, D; Mishina, M; Oh, A; Pan, L S; Palmieri, V G; Pernicka, Manfred; Peitz, A; Pirollo, S; Polesello, P; Pretzl, Klaus P; Procario, M; Re, V; Riester, J L; Roe, S; Roff, D G; Rudge, A; Runólfsson, O; Russ, J; Schnetzer, S R; Sciortino, S; Speziali, V; Stelzer, H; Stone, R; Suter, B; Tapper, R J; Tesarek, R J; Trawick, M L; Trischuk, W; Vittone, E; Walsh, A M; Wedenig, R; Weilhammer, Peter; White, C; Ziock, H J; Zöller, M

    1999-01-01

    We present recent results on the use of chemical vapor deposition (CVD) diamond microstrip detectors for charged particle tracking. A series of detectors was fabricated using 1*1 cm/sup 2/ diamonds. Good signal-to-noise ratios were observed using both slow and fast readout electronics. For slow readout electronics, 2 mu s shaping time, the most probable signal-to-noise ratio was 50 to 1. For fast readout electronics, 25 ns peaking time, the most probable signal-to-noise ratio was 7 to 1. Using the first 2*4 cm/sup 2/ diamond from a production CVD reactor with slow readout electronics, the most probable signal-to-noise ratio was 23 to 1. The spatial resolution achieved for the detectors was consistent with the digital resolution expected from the detector pitch. (6 refs).

  9. Process maps for plasma spray. Part II: Deposition and properties

    International Nuclear Information System (INIS)

    XIANGYANG, JIANG; MATEJICEK, JIRI; KULKARNI, ANAND; HERMAN, HERBERT; SAMPATH, SANJAY; GILMORE, DELWYN L.; NEISER A, RICHARD Jr.

    2000-01-01

    This is the second paper of a two part series based on an integrated study carried out at the State University of New York at Stony Brook and Sandia National Laboratories. The goal of the study is the fundamental understanding of the plasma-particle interaction, droplet/substrate interaction, deposit formation dynamics and microstructure development as well as the deposit property. The outcome is science-based relationships, which can be used to link processing to performance. Molybdenum splats and coatings produced at 3 plasma conditions and three substrate temperatures were characterized. It was found that there is a strong mechanical/thermal interaction between droplet and substrate, which builds up the coatings/substrate adhesion. Hardness, thermal conductivity, and modulus increase, while oxygen content and porosity decrease with increasing particle velocity. Increasing deposition temperature resulted in dramatic improvement in coating thermal conductivity and hardness as well as increase in coating oxygen content. Indentation reveals improved fracture resistance for the coatings prepared at higher deposition temperature. Residual stress was significantly affected by deposition temperature, although not significant by particle energy within the investigated parameter range. Coatings prepared at high deposition temperature with high-energy particles suffered considerably less damage in wear tests. Possible mechanisms behind these changes are discussed within the context of relational maps which are under development

  10. Powder Flux Regulation in the Laser Material Deposition Process

    Science.gov (United States)

    Arrizubieta, Jon Iñaki; Wegener, Maximiliam; Arntz, Kristian; Lamikiz, Aitzol; Ruiz, Jose Exequiel

    In the present research work a powder flux regulation system has been designed, developed and validated with the aim of improving the Laser Material Deposition (LMD) process. In this process, the amount of deposited material per substrate surface unit area depends on the real feed rate of the nozzle. Therefore, a regulation system based on a solenoid valve has been installed at the nozzle entrance in order to control the powder flux. The powder flux control has been performed based on the machine real feed rate, which is compared with the programmed feed rate. An instantaneous velocity error is calculated and the powder flow is controlled as a function of this variation using Pulse Width Modulation (PWM) signals. Thereby, in zones where the Laser Material Deposition machine reduces the feed rate due to a trajectory change, powder accumulation can be avoided and the generated clads would present a homogeneous shape.

  11. A new thin film deposition process by cathodic plasma electrolysis

    International Nuclear Information System (INIS)

    Paulmier, T.; Kiriakos, E.; Bell, J.; Fredericks, P.

    2004-01-01

    Full text: A new technique, called atmospheric pressure plasma deposition (APPD), has been developed since a few years for the deposition of carbon and DLC, Titanium or Silicon films on metal and metal alloys substrates. A high voltage (2kV) is applied in a liquid electrolytic solution between an anode and a cathode, both electrodes being cylindrical: a glow discharge is then produced and confined at the vicinity of the cathode. The physic of the plasma in the electrolytic solution near the cathode is very different form the other techniques of plasma deposition since the pressure is here close to the atmospheric pressure. We describe here the different physico-chemical processes occurring during the process. In this cathodic process, the anodic area is significantly larger than the cathode area. In a first step, the electrolytic solution is heated by Joule effect induced by the high voltage between the electrodes. Due to the high current density, the vaporization of the solution occurs near the cathode: a large amount of bubbles are produced which are stabilized at the electrode by hydrodynamic and electromagnetic forces, forming a vapour sheath. The electric field and voltage drop are then concentrated in this gas envelope, inducing the ionization of the gas and the ignition of a glow discharge at the surface of the material. This plasma induces the formation of ionized and reactive species which diffuse and are accelerated toward the cathode. These excited species are the precursors for the formation of the deposition material. At the same time, the glow discharge interacts with the electrolyte solution inducing also ionization, convection and polymerization processes in the liquid: the solution is therefore a second source of the deposition material. A wide range of films have been deposited with a thickness up to 10 micrometers. These films have been analyzed by SEM and Raman spectroscopy. The electrolytic solution has been characterized by GC-MS and the

  12. Growth, characterization and properties of CVD diamond films for applications as radiation detectors

    International Nuclear Information System (INIS)

    Sciorti, S.

    1999-01-01

    The aim of the work is to give a picture of the current state of the art of CVD (chemical vapour deposition) diamond. The interest is due to the capability to grow over large areas a material with physical properties suitable for an impressive number of applications. The authors focuses on the potential of diamond as a radiation detector and gets into details of the huge field that extends from the thermochemistry of the deposition process to the test of a diamond-based tracker with a fast readout electronics

  13. Application of laser assisted cold spraying process for metal deposition

    CSIR Research Space (South Africa)

    Tlotleng, Monnamme

    2014-02-01

    Full Text Available Laser assisted cold spraying (LACS) process is a hybrid technique that uses laser and cold spray to deposit solid powders on metal substrates. For bonding to occur, the particle velocities must be supersonic which are achieved by entraining...

  14. Processes of preparation, deposition and analysis of thermionic emissive substances

    International Nuclear Information System (INIS)

    Romao, B.M. Verdelli; Muraro Junior, A.; Tessaroto, L.A.B.; Takahashi, J.

    1992-09-01

    This paper shows the results of the optimization of the process of preparation and deposition of thermionic emissive substances that are used in the oxide-cathodes which are utilized in the gun of the IEAv linear electron accelerator. (author). 5 refs., 5 figs

  15. Effects of acid deposition on microbial processes in natural waters

    International Nuclear Information System (INIS)

    Gilmour, C.C.

    1992-01-01

    Biogeochemical processes mediated by microorganisms are not adversely affected by the acidification of natural waters to the same extent as are the life cycles of higher organisms. Basic processes, e.g., primary production and organic matter decomposition, are not slowed in moderately acidified systems and do not generally decline above a pH of 5. More specifically, the individual components of the carbon, nitrogen, and sulfur cycles are, with few exceptions, also acid resistant. The influence of acid deposition on microbial processes is more often stimulation of nitrogen and sulfur cycling, often leading to alkalinity production, which mitigates the effect of strong acid deposition. Bacterial sulfate reduction and denitrification in sediments are two of the major processes that can be stimulated by sulfate and nitrate deposition, respectively, and result in ANC (acid-neutralizing capacity) generation. One of the negative effects of acid deposition is increased mobilization and bioaccumulation of some metals. Bacteria appear to play an important role, especially in mercury cycling, with acidification leading to increased bacterial methylation of mercury and subsequent bioaccumulation in higher organisms

  16. Investigation of the nucleation process of chemical vapour deposited diamond films

    International Nuclear Information System (INIS)

    Katai, S.

    2001-01-01

    The primary aim of this work was to contribute to the understanding of the bias enhanced nucleation (BEN) process during the chemical vapour deposition (CVD) of diamond on silicon. The investigation of both the gas phase environment above the substrate surface, by in situ mass selective energy analysis of ions, and of the surface composition and structure by in vacuo surface analytic methods (XPS, EELS) have been carried out. In both cases, the implementation of these measurements required the development and construction of special experimental apparatus as well. The secondary aim of this work was to give orientation to our long term goal of growing diamond films with improved quality. For this reason, (1) contaminant levels at the diamond-silicon interface after growth were studied by SIMS, (2) the internal stress distribution of highly oriented free-standing diamond films were studied by Raman spectroscopy, and (3) an attempt was made to produce spatially regular oriented nuclei formation by nucleating on a pattern created by laser treatment on silicon substrates. (orig.)

  17. Process and machinery description of equipment for deposition of canisters in medium-long deposition holes

    International Nuclear Information System (INIS)

    Kalbantner, P.

    2001-08-01

    In this report twelve methods are presented to deposit a canister with spent nuclear fuel in a horizontal hole, several canisters per hole (MLH). These methods are part of the KBS-3 system. They have been developed successively, after an analysis of weak points and strong points in previously described methods. In conformance with the guidelines for Project JADE, a choices of system has been considered during the development work. This is whether canister and bentonite buffer should be deposited 'in parts', i.e. at different occasions, but shortly after each other or 'in a package', i.e. together in a single package. The other choice in the guidelines for the JADE project, whether the canister should be placed in a radiation shield or not during transport in the secondary tunnels, was not relevant to MLR. The basic technical problem is depositing heavy objects, the canister and the buffer components, in an horizontal hole which is approximately 200 m deep. Two methods for depositing of the bentonite barrier and the canisters in separate processes have been studied. For depositing of the bentonite barrier and the canister 'in a package', four alternative techniques have been studied: a metallic sleeve around the package, a loading scoop that is rotated, a fork carriage and rails. The repeated transports in a hole, a consequence of depositing several canisters in the same hole, could lead to the rock being crushed. The mutual impact of machines, load and rock wall has therefore been particularly considered. In several methods, the use of a gangway has been proposed (steel plates or layer of ice). A failure mode and effect analysis has been performed for one of the twelve methods. When comparing with a method to deposit one canister per hole using the same technique, the need for equipment and resources is far larger for this MLH method if incidents should occur during depositing. The development work reported here has not yet yielded a definitive method for placing

  18. Advanced methods for processing ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Carter, W.B. [Georgia Institute of Technology, Atlanta, GA (United States)

    1995-05-01

    Combustion chemical vapor deposition (CCVD) is a flame assisted, open air chemical vapor deposition (CVD) process. The process is capable of producing textured, epitaxial coatings on single crystal substrates using low cost reagents. Combustion chemical vapor deposition is a relatively inexpensive, alternative thin film deposition process with potential to replace conventional coating technologies for certain applications. The goals of this project are to develop the CCVD process to the point that potential industrial applications can be identified and reliably assessed.

  19. Gas analysis during the chemical vapor deposition of carbon

    International Nuclear Information System (INIS)

    Lieberman, M.L.; Noles, G.T.

    1973-01-01

    Gas chromatographic analyses were performed during the chemical vapor deposition of carbon in both isothermal and thermal gradient systems. Such data offer insight into the gas phase processes which occur during deposition and the interrelations which exist between gas composition, deposition rate, and resultant structure of the deposit. The results support a carbon CVD model presented previously. The application of chromatographic analysis to research, development, and full-scale facilities is shown. (U.S.)

  20. Advances in the electro-spark deposition coating process

    International Nuclear Information System (INIS)

    Johnson, R.N.; Sheldon, G.L.

    1986-04-01

    Electro-spark deposition (ESD) is a pulsed-arc micro-welding process using short-duration, high-current electrical pulses to deposit an electrode material on a metallic substrate. It is one of the few methods available by which a fused, metallurgically bonded coating can be applied with such a low total heat input that the bulk substrate material remains at or near ambient temperatures. The short duration of the electrical pulse allows an extremely rapid solidification of the deposited material and results in an exceptionally fine-grained, homogenous coating that approaches (and with some materials, actually is) an amorphous structure. This structure is believed to contribute to the good tribological and corrosion performance observed for hardsurfacing materials used in the demanding environments of high temperatures, liquid metals, and neutron irradiation. A brief historical review of the process is provided, followed by descriptions of the present state-of-the-art and of the performance and applications of electro-spark deposition coatings in liquid-metal-cooled nuclear reactors

  1. Ballistic Josephson junctions based on CVD graphene

    Science.gov (United States)

    Li, Tianyi; Gallop, John; Hao, Ling; Romans, Edward

    2018-04-01

    Josephson junctions with graphene as the weak link between superconductors have been intensely studied in recent years, with respect to both fundamental physics and potential applications. However, most of the previous work was based on mechanically exfoliated graphene, which is not compatible with wafer-scale production. To overcome this limitation, we have used graphene grown by chemical vapour deposition (CVD) as the weak link of Josephson junctions. We demonstrate that very short, wide CVD-graphene-based Josephson junctions with Nb electrodes can work without any undesirable hysteresis in their electrical characteristics from 1.5 K down to a base temperature of 320 mK, and their gate-tuneable critical current shows an ideal Fraunhofer-like interference pattern in a perpendicular magnetic field. Furthermore, for our shortest junctions (50 nm in length), we find that the normal state resistance oscillates with the gate voltage, consistent with the junctions being in the ballistic regime, a feature not previously observed in CVD-graphene-based Josephson junctions.

  2. Undoped CVD diamond films for electrochemical applications

    International Nuclear Information System (INIS)

    Mosinska, Lidia; Fabisiak, Kazimierz; Paprocki, Kazimierz; Kowalska, Magdalena; Popielarski, Pawel; Szybowicz, Miroslaw

    2013-01-01

    By using different deposition conditions, the CVD diamond films with different qualities and orientation were grown by the hot-filament CVD technique. The object of this article is to summarize and discuss relation between structural, physical and electrochemical properties of different diamond electrodes. The physical properties of the Hot Filament CVD microcrystalline diamond films are analyzed by scanning electron microscopy and Raman spectroscopy. In presented studies two different electrodes were used of the diamond grain sizes around 200 nm and 10 μm, as it was estimated from SEM picture. The diamond layers quality was checked on basis of FWHM (Full width at Half Maximum) of 1332 cm −1 diamond Raman peak. The ratio of sp 3 /sp 2 carbon bonds was determined by 1550 cm −1 G band and 1350 cm −1 D band in the Raman spectrum. The electrochemical properties were analyzed using (CV) cyclic voltammetry measurements in aqueous solutions. The sensitivity of undoped diamond electrodes depends strongly on diamond film quality and concentration of amorphous carbon phase in the diamond layer

  3. CVD-graphene growth on different polycrystalline transition metals

    Directory of Open Access Journals (Sweden)

    M. P. Lavin-Lopez

    2017-01-01

    Full Text Available The chemical vapor deposition (CVD graphene growth on two polycrystalline transition metals (Ni and Cu was investigated in detail using Raman spectroscopy and optical microscopy as a way to synthesize graphene of the highest quality (i.e. uniform growth of monolayer graphene, which is considered a key issue for electronic devices. Key CVD process parameters (reaction temperature, CH4/H2flow rate ratio, total flow of gases (CH4+H2, reaction time were optimized for both metals in order to obtain the highest graphene uniformity and quality. The conclusions previously reported in literature about the performance of low and high carbon solubility metals in the synthesis of graphene and their associated reaction mechanisms, i.e. surface depositionand precipitation on cooling, respectively, was not corroborated by the results obtained in this work. Under the optimal reaction conditions, a large percentage of monolayer graphene was obtained over the Ni foil since the carbon saturation was not complete, allowing carbon atoms to be stored in the bulk metal, which could diffuse forming high quality monolayer graphene at the surface. However, under the optimal reaction conditions, the formation of a non-uniform mixture of few layers and multilayer graphene on the Cu foil was related to the presence of an excess of active carbon atoms on the Cu surface.

  4. Oxide Dispersion Strengthened Iron Aluminide by CVD Coated Powders

    Energy Technology Data Exchange (ETDEWEB)

    Asit Biswas Andrew J. Sherman

    2006-09-25

    This I &I Category2 program developed chemical vapor deposition (CVD) of iron, aluminum and aluminum oxide coated iron powders and the availability of high temperature oxidation, corrosion and erosion resistant coating for future power generation equipment and can be used for retrofitting existing fossil-fired power plant equipment. This coating will provide enhanced life and performance of Coal-Fired Boilers components such as fire side corrosion on the outer diameter (OD) of the water wall and superheater tubing as well as on the inner diameter (ID) and OD of larger diameter headers. The program also developed a manufacturing route for readily available thermal spray powders for iron aluminide coating and fabrication of net shape component by powder metallurgy route using this CVD coated powders. This coating can also be applid on jet engine compressor blade and housing, industrial heat treating furnace fixtures, magnetic electronic parts, heating element, piping and tubing for fossil energy application and automotive application, chemical processing equipment , heat exchanger, and structural member of aircraft. The program also resulted in developing a new fabrication route of thermal spray coating and oxide dispersion strengthened (ODS) iron aluminide composites enabling more precise control over material microstructures.

  5. VOx effectively doping CVD-graphene for transparent conductive films

    Science.gov (United States)

    Ji, Qinghua; Shi, Liangjing; Zhang, Qinghong; Wang, Weiqi; Zheng, Huifeng; Zhang, Yuzhi; Liu, Yangqiao; Sun, Jing

    2016-11-01

    Chemical vapor deposition(CVD)-synthesized graphene is potentially an alternative for tin-doped indium oxide (ITO) transparent conductive films (TCFs), however its sheet resistance is still too high to meet many demands. Vanadium oxide has been widely applied as smart window materials, however, no study has been reported to use it as dopant to improve the conductivity of graphene TCFs. In this study, we firstly reported that VOx doping can effectively lower the sheet resistance of CVD-graphene films while keeping its good optical properties, whose transmittance is as high as 86-90%. The optimized VOx-doped graphene exhibits a sheet resistance as low as 176 Ω/□, which decreases by 56% compared to the undoped graphene films. The doping process is convenient, stable, economical and easy to operate. What is more, VOx can effectively increase the work function(WF) of the film, making it more appropriate for use in solar cells. The evolution of the VOx species annealed at different temperatures below 400 °C has been detailed studied for the first time, based on which the doping mechanism is proposed. The prepared VOx doped graphene is expected to be a promising candidate for transparent conductive film purposes.

  6. Solidification in direct metal deposition by LENS processing

    Science.gov (United States)

    Hofmeister, William; Griffith, Michelle

    2001-09-01

    Thermal imaging and metallographic analysis were used to study Laser Engineered Net Shaping (LENS™) processing of 316 stainless steel and H13 tool steel. The cooling rates at the solid-liquid interface were measured over a range of conduction conditions. The length scale of the molten zone controls cooling rates during solidification in direct metal deposition. In LENS processing, the molten zone ranges from 0.5 mm in length to 1.5 mm, resulting in cooling rates at the solid-liquid interface ranging from 200 6,000 Ks-1.

  7. Diameter Tuning of Single-Walled Carbon Nanotubes by Diffusion Plasma CVD

    Directory of Open Access Journals (Sweden)

    Toshiaki Kato

    2011-01-01

    Full Text Available We have realized a diameter tuning of single-walled carbon nanotubes (SWNTs by adjusting process gas pressures with plasma chemical vapor deposition (CVD. Detailed photoluminescence measurements reveal that the diameter distribution of SWNTs clearly shifts to a large-diameter region with an increase in the pressure during plasma CVD, which is also confirmed by Raman scattering spectroscopy. Based on the systematical investigation, it is found that the main diameter of SWNTs is determined by the pressure during the heating in an atmosphere of hydrogen and the diameter distribution is narrowed by adjusting the pressure during the plasma generation. Our results could contribute to an application of SWNTs to high-performance thin-film transistors, which requires the diameter-controlled semiconductor-rich SWNTs.

  8. Apparatus and process for deposition of hard carbon films

    Science.gov (United States)

    Nyaiesh, Ali R.; Garwin, Edward L.

    1989-01-03

    A process and an apparatus for depositing thin, amorphous carbon films having extreme hardness on a substrate is described. An enclosed chamber maintained at less than atmospheric pressure houses the substrate and plasma producing elements. A first electrode is comprised of a cavity enclosed within an RF coil which excites the plasma. A substrate located on a second electrode is excited by radio frequency power applied to the substrate. A magnetic field confines the plasma produced by the first electrode to the area away from the walls of the chamber and focuses the plasma onto the substrate thereby yielding film deposits having higher purity and having more rapid buildup than other methods of the prior art.

  9. PROCESS FOR THE RECOVERY AND PURIFICATION OF URANIUM DEPOSITS

    Science.gov (United States)

    Carter, J.M.; Kamen, M.D.

    1958-10-14

    A process is presented for recovering uranium values from UCl/sub 4/ deposits formed on calutrons. Such deposits are removed from the calutron parts by an aqueous wash solution which then contains the uranium values in addition to the following impurities: Ni, Cu, Fe, and Cr. This impurity bearing wash solution is treated with an oxidizing agent, and the oxidized solution is then treated with ammonia in order to precipitate the uranium as ammonium diuranate. The metal impurities of iron and chromium, which form insoluble hydroxides, are precipitated along with the uranium values. The precipitate is separated from the solution, dissolved in acid, and the solution again treated with ammonia and ammonium carbonate, which results in the precipitation of the metal impurities as hydroxides while the uranium values remain in solution.

  10. CVD diamond substrates for electronic devices

    International Nuclear Information System (INIS)

    Holzer, H.

    1996-03-01

    In this study the applicability of chemical vapor deposition (CVD) diamond as a material for heat spreaders was investigated. Economical evaluations on the production of heat spreaders were also performed. For the diamond synthesis the hot-filament and microwave method were used respectively. The deposition parameters were varied in a way that free standing diamond layers with a thickness of 80 to 750 microns and different qualities were obtained. The influence of the deposition parameters on the relevant film properties was investigated and discussed. With both the hot-filament and microwave method it was possible to deposit diamond layers having a thermal conductivity exceeding 1200 W/mK and therefore to reach the quality level for commercial uses. The electrical resistivity was greater than 10 12 Ωcm. The investigation of the optical properties was done by Raman-, IR- and cathodoluminescence spectroscopy. Because of future applications of diamond-aluminium nitride composites as highly efficient heat spreaders diamond deposition an AIN was investigated. An improved substrate pretreatment prior to diamond deposition showed promising results for better performance of such composite heat spreaders. Both free standing layers and diamond-AIN composites could be cut by a CO2 Laser in Order to get an exact size geometry. A reduction of the diamond surface roughness was achieved by etching with manganese powder or cerium. (author)

  11. CVD Diamond Sensors In Detectors For High Energy Physics

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00334150; Trischuk, William

    At the end of the next decade an upgrade of the Large Hadron Collider (LHC) to High Luminosity LHC (HL-LHC) is planned which requires the development of new radiation tolerant sensor technology. Diamond is an interesting material for use as a particle detector in high radiation environments. The large band gap ($5.47\\,\\text{eV}$) and the large displacement energy suggest that diamond is a radiation tolerant detector material. In this Thesis the capability of Chemical Vapor Deposition (CVD) diamond as such a sensor technology is investigated. The radiation damage constant for $800\\,\\text{MeV}$ protons is measured using single crystalline CVD (scCVD) and polycrystalline CVD (pCVD) diamonds irradiated to particle fluences up to $12 \\times 10^{15}\\,\\text{p/cm}^2$. In addition the signal response of a pCVD diamond detector after an irradiation to $12 \\times 10^{15}\\,\\text{p/cm}^2$ is investigated to determine if such a detector can be operated efficiently in the expected HL-LHC environment. By using electrodes em...

  12. High collection efficiency CVD diamond alpha detectors

    International Nuclear Information System (INIS)

    Bergonzo, P.; Foulon, F.; Marshall, R.D.; Jany, C.; Brambilla, A.; McKeag, R.D.; Jackman, R.B.

    1998-01-01

    Advances in Chemical Vapor Deposited (CVD) diamond have enabled the routine use of this material for sensor device fabrication, allowing exploitation of its unique combination of physical properties (low temperature susceptibility (> 500 C), high resistance to radiation damage (> 100 Mrad) and to corrosive media). A consequence of CVD diamond growth on silicon is the formation of polycrystalline films which has a profound influence on the physical and electronic properties with respect to those measured on monocrystalline diamond. The authors report the optimization of physical and geometrical device parameters for radiation detection in the counting mode. Sandwich and co-planar electrode geometries are tested and their performances evaluated with regard to the nature of the field profile and drift distances inherent in such devices. The carrier drift length before trapping was measured under alpha particles and values as high as 40% of the overall film thickness are reported. Further, by optimizing the device geometry, they show that a gain in collection efficiency, defined as the induced charge divided by the deposited charge within the material, can be achieved even though lower bias values are used

  13. Effect of magnetic and electric coupling fields on micro- and nano- structure of carbon films in the CVD diamond process and their electron field emission property

    Science.gov (United States)

    Wang, Yijia; Li, Jiaxin; Hu, Naixiu; Jiang, Yunlu; Wei, Qiuping; Yu, Zhiming; Long, Hangyu; Zhu, Hekang; Xie, Youneng; Ma, Li; Lin, Cheng-Te; Su, Weitao

    2018-03-01

    In this paper, both electric field and magnetic field were used to assist the hot filament chemical vapor deposition (HFCVD) and we systematically investigated the effects of which on the (1) phase composition, (2) grain size, (3) thickness and (4) preferred orientation of diamond films through SEM, Raman and XRD. The application of magnetic field in electric field, so called ‘the magnetic and electric coupling fields’, enhanced the graphitization and refinement of diamond crystals, slowed down the decrease of film thickness along with the increase of bias current, and suppressed diamond (100) orientation. During the deposition process, the electric field provided additional energy to HFCVD system and generated large number of energetic particles which might annihilate at the substrate and lose kinetic energy, while the Lorentz force, provided by magnetic field, could constrict charged particles (including electrons) to do spiral movement, which prolonged their moving path and life, thus the system energy increased. With the graphitization of diamond films intensified, the preferred orientation of diamond films completely evolved from (110) to (100), until the orientation and diamond phase disappeared, which can be attributed to (I) the distribution and concentration ratio of carbon precursors (C2H2 and CH3) and (II) graphitization sequence of diamond crystal facets. Since the electron field emission property of carbon film is sensitive to the phase composition, thickness and preferred orientation, nano- carbon cones, prepared by the negative bias current of 20 mA and magnetic field strength of 80 Gauss, exhibited the lowest turn-on field of 6.1 V -1 μm-1.

  14. Effect of heat treatment on the characteristics of tool steel deposited by the directed energy deposition process

    Science.gov (United States)

    Park, Jun Seok; Lee, Min-Gyu; Cho, Yong-Jae; Sung, Ji Hyun; Jeong, Myeong-Sik; Lee, Sang-Kon; Choi, Yong-Jin; Kim, Da Hye

    2016-01-01

    The directed energy deposition process has been mainly applied to re-work and the restoration of damaged steel. Differences in material properties between the base and the newly deposited materials are unavoidable, which may affect the mechanical properties and durability of the part. We investigated the effect of heat treatment on the characteristics of tool steel deposited by the DED process. We prepared general tool steel materials of H13 and D2 that were deposited onto heat-treated substrates of H13 and D2, respectively, using a direct metal tooling process. The hardness and microstructure of the deposited steel before and after heat treatment were investigated. The hardness of the deposited H13 steel was higher than that of wrought H13 steel substrate, while that of the deposited D2 was lower than that of wrought D2. The evolution of the microstructures by deposition and heat treatment varied depending on the materials. In particular, the microstructure of the deposited D2 steel after heat treatment consisted of fine carbides in tempered martensite and it is expected that the deposited D2 steel will have isotropic properties and high hardness after heat treatment.

  15. Evaluation of CVD silicon carbide for synchrotron radiation mirrors

    International Nuclear Information System (INIS)

    Takacs, P.Z.

    1981-07-01

    Chemical vapor deposited silicon carbide (CVD SiC) is a recent addition to the list of materials suitable for use in the harsh environment of synchrotron radiation (SR) beam lines. SR mirrors for use at normal incidence must be ultrahigh vacuum compatible, must withstand intense x-ray irradiation without surface damage, must be capable of being polished to an extremely smooth surface finish, and must maintain surface figure under thermal loading. CVD SiC exceeds the performance of conventional optical materials in all these areas. It is, however, a relatively new optical material. Few manufacturers have experience in producing optical quality material, and few opticians have experience in figuring and polishing the material. The CVD material occurs in a variety of forms, sensitively dependent upon reaction chamber production conditions. We are evaluating samples of CVD SiC obtained commercially from various manufacturers, representing a range of deposition conditions, to determine which types of CVD material are most suitable for superpolishing. At the time of this writing, samples are being polished by several commercial vendors and surface finish characteristics are being evaluated by various analytical methods

  16. Corrosion processes of physical vapor deposition-coated metallic implants.

    Science.gov (United States)

    Antunes, Renato Altobelli; de Oliveira, Mara Cristina Lopes

    2009-01-01

    Protecting metallic implants from the harsh environment of physiological fluids is essential to guaranteeing successful long-term use in a patient's body. Chemical degradation may lead to the failure of an implant device in two different ways. First, metal ions may cause inflammatory reactions in the tissues surrounding the implant and, in extreme cases, these reactions may inflict acute pain on the patient and lead to loosening of the device. Therefore, increasing wear strength is beneficial to the performance of the metallic implant. Second, localized corrosion processes contribute to the nucleation of fatigue cracks, and corrosion fatigue is the main reason for the mechanical failure of metallic implants. Common biomedical alloys such as stainless steel, cobalt-chrome alloys, and titanium alloys are prone to at least one of these problems. Vapor-deposited hard coatings act directly to improve corrosion, wear, and fatigue resistances of metallic materials. The effectiveness of the corrosion protection is strongly related to the structure of the physical vapor deposition layer. The aim of this paper is to present a comprehensive review of the correlation between the structure of physical vapor deposition layers and the corrosion properties of metallic implants.

  17. Recent Advances in Atmospheric Vapor-Phase Deposition of Transparent and Conductive Zinc Oxide

    NARCIS (Netherlands)

    Illiberi, A.; Poodt, P.; Roozeboom, F.

    2014-01-01

    The industrial need for high-throughput and low-cost ZnO deposition processes has triggered the development of atmospheric vapor-phase deposition techniques which can be easily applied to continuous, in-line manufacturing. While atmospheric CVD is a mature technology, new processes for the growth of

  18. Smooth germanium nanowires prepared by a hydrothermal deposition process

    Energy Technology Data Exchange (ETDEWEB)

    Pei, L.Z., E-mail: lzpei1977@163.com [School of Materials Science and Engineering, Institute of Molecular Engineering and Applied Chemistry, Key Laboratory of Materials Science and Processing of Anhui Province, Anhui University of Technology, Ma' anshan, Anhui 243002 (China); Zhao, H.S. [School of Materials Science and Engineering, Institute of Molecular Engineering and Applied Chemistry, Key Laboratory of Materials Science and Processing of Anhui Province, Anhui University of Technology, Ma' anshan, Anhui 243002 (China); Tan, W. [Henkel Huawei Electronics Co. Ltd., Lian' yungang, Jiangsu 222006 (China); Yu, H.Y. [School of Materials Science and Engineering, Institute of Molecular Engineering and Applied Chemistry, Key Laboratory of Materials Science and Processing of Anhui Province, Anhui University of Technology, Ma' anshan, Anhui 243002 (China); Chen, Y.W. [Department of Materials Science, Fudan University, Shanghai 200433 (China); Fan, C.G. [School of Materials Science and Engineering, Institute of Molecular Engineering and Applied Chemistry, Key Laboratory of Materials Science and Processing of Anhui Province, Anhui University of Technology, Ma' anshan, Anhui 243002 (China); Zhang, Qian-Feng, E-mail: zhangqf@ahut.edu.cn [School of Materials Science and Engineering, Institute of Molecular Engineering and Applied Chemistry, Key Laboratory of Materials Science and Processing of Anhui Province, Anhui University of Technology, Ma' anshan, Anhui 243002 (China)

    2009-11-15

    Smooth germanium nanowires were prepared using Ge and GeO{sub 2} as the starting materials and Cu sheet as the substrate by a simple hydrothermal deposition process. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) characterizations show that the germanium nanowires are smooth and straight with uniform diameter of about 150 nm in average and tens of micrometers in length. X-ray diffraction (XRD) and Raman spectrum of the germanium nanowires display that the germanium nanowires are mainly composed of cubic diamond phase. PL spectrum shows a strong blue light emission at 441 nm. The growth mechanism is also discussed.

  19. Smooth germanium nanowires prepared by a hydrothermal deposition process

    International Nuclear Information System (INIS)

    Pei, L.Z.; Zhao, H.S.; Tan, W.; Yu, H.Y.; Chen, Y.W.; Fan, C.G.; Zhang, Qian-Feng

    2009-01-01

    Smooth germanium nanowires were prepared using Ge and GeO 2 as the starting materials and Cu sheet as the substrate by a simple hydrothermal deposition process. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) characterizations show that the germanium nanowires are smooth and straight with uniform diameter of about 150 nm in average and tens of micrometers in length. X-ray diffraction (XRD) and Raman spectrum of the germanium nanowires display that the germanium nanowires are mainly composed of cubic diamond phase. PL spectrum shows a strong blue light emission at 441 nm. The growth mechanism is also discussed.

  20. A Comparative Study of Three Different Chemical Vapor Deposition Techniques of Carbon Nanotube Growth on Diamond Films

    Directory of Open Access Journals (Sweden)

    Betty T. Quinton

    2013-01-01

    Full Text Available This paper compares between the methods of growing carbon nanotubes (CNTs on diamond substrates and evaluates the quality of the CNTs and the interfacial strength. One potential application for these materials is a heat sink/spreader for high-power electronic devices. The CNTs and diamond substrates have a significantly higher specific thermal conductivity than traditional heat sink/spreader materials making them good replacement candidates. Only limited research has been performed on these CNT/diamond structures and their suitability of different growth methods. This study investigates three potential chemical vapor deposition (CVD techniques for growing CNTs on diamond: thermal CVD (T-CVD, microwave plasma-enhanced CVD (MPE-CVD, and floating catalyst thermal CVD (FCT-CVD. Scanning electron microscopy (SEM and high-resolution transmission electron microscopy (TEM were used to analyze the morphology and topology of the CNTs. Raman spectroscopy was used to assess the quality of the CNTs by determining the ID/IG peak intensity ratios. Additionally, the CNT/diamond samples were sonicated for qualitative comparisons of the durability of the CNT forests. T-CVD provided the largest diameter tubes, with catalysts residing mainly at the CNT/diamond interface. The MPE-CVD process yielded non uniform defective CNTs, and FCT-CVD resulted in the smallest diameter CNTs with catalyst particles imbedded throughout the length of the nanotubes.

  1. Research on Glass Frit Deposition Based on the Electrospray Process

    Directory of Open Access Journals (Sweden)

    Yifang Liu

    2016-04-01

    Full Text Available In this paper, the electrospray technology is used to easily deposit the glass frit into patterns at a micro-scale level. First, far-field electrospray process was carried out with a mixture of glass frit in the presence of ethanol. A uniform, smooth, and dense glass frit film was obtained, verifying that the electrospray technology was feasible. Then, the distance between the nozzle and the substrate was reduced to 2 mm to carry out near-field electrospray. The experimental process was improved by setting the range of the feed rate of the substrate to match both the concentration and the flow rate of the solution. Spray diameter could be less at the voltage of 2 kV, in which the glass frit film was expected to reach the minimum line width. A uniform glass frit film with a line width within the range of 400–500 μm was prepared when the speed of the substrate was 25 mm/s. It indicates that electrospray is an efficient technique for the patterned deposition of glass frit in wafer-level hermetic encapsulation.

  2. Direct CVD Graphene Growth on Semiconductors and Dielectrics for Transfer-Free Device Fabrication.

    Science.gov (United States)

    Wang, Huaping; Yu, Gui

    2016-07-01

    Graphene is the most broadly discussed and studied two-dimensional material because of its preeminent physical, mechanical, optical, and thermal properties. Until now, metal-catalyzed chemical vapor deposition (CVD) has been widely employed for the scalable production of high-quality graphene. However, in order to incorporate the graphene into electronic devices, a transfer process from metal substrates to targeted substrates is inevitable. This process usually results in contamination, wrinkling, and breakage of graphene samples - undesirable in graphene-based technology and not compatible with industrial production. Therefore, direct graphene growth on desired semiconductor and dielectric substrates is considered as an effective alternative. Over the past years, there have been intensive investigations to realize direct graphene growth using CVD methods without the catalytic role of metals. Owing to the low catalytic activity of non-metal substrates for carbon precursor decomposition and graphene growth, several strategies have been designed to facilitate and engineer graphene fabrication on semiconductors and insulators. Here, those developed strategies for direct CVD graphene growth on semiconductors and dielectrics for transfer-free fabrication of electronic devices are reviewed. By employing these methods, various graphene-related structures can be directly prepared on desired substrates and exhibit excellent performance, providing versatile routes for varied graphene-based materials fabrication. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Fabrication and characteristics of self-assembly nano-polystyrene films by laser induced CVD

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Tingting [Department of Applied Physics, Chongqing University, Chongqing 401331 (China); Science and Technology on Plasma Physics Laboratory, Research Center of Laser Fusion, CAEP, Mianyang 621900 (China); Cai, Congzhong [Department of Applied Physics, Chongqing University, Chongqing 401331 (China); Peng, Liping [Science and Technology on Plasma Physics Laboratory, Research Center of Laser Fusion, CAEP, Mianyang 621900 (China); Wu, Weidong, E-mail: wuweidongding@163.com [Science and Technology on Plasma Physics Laboratory, Research Center of Laser Fusion, CAEP, Mianyang 621900 (China)

    2013-10-01

    The self-assembly nano-polystyrene (PS) films have been prepared by laser induced CVD at room temperature. The XPS, Raman and UV–vis absorption spectra all indicated that the films were PS. The optical properties, microstructure and controllable nanostructure of PS films have been investigated. Dewetting-like microstructure in PS films was investigated and uniform island structures with a diameter of about 200 nm were observed at the deposition pressure of 14 Pa. The films possess good toughness and precisely controlled thicknesses. The free-standing PS films with thickness of 10 nm could be obtained by this method though a series of process.

  4. Process-property relationships of SiC chemical vapor deposition in the Si/H/C/O system

    International Nuclear Information System (INIS)

    Richardson, C.; Takoudis, C.G.

    1999-01-01

    The thermal, chemical, and physical properties of SiC make it an attractive material for a wide range of applications from wear resistant coatings on tools to high temperature microelectronics operations. A comprehensive thermodynamic analysis has been performed for the Si/H/C/O system from which a priori process-property relationships of the chemical vapor deposition (CVD) of silicon carbide (SiC) are obtained. The parameter space for pure silicon carbide growth is reported for five orders of magnitude of the system water vapor level (1 ppb--100 ppm), four orders of magnitude of system pressure (0.1--760 Torr), and two orders of magnitude of C/Si feed ratio (0.25--20) and H 2 /Si feed ratio (50--10,000). Lower growth temperatures for pure SiC are predicted in clean systems with low system water vapor levels, at stoichiometric to near carbon excess conditions (C/Si ≅ 1 to C/Si > 1), at high carrier gas flow rates (large H 2 /Si feed ratios), and at low operating pressures. Because relative C/Si and H 2 /Si feed ratios have been considered, the predictions in this study are applicable to both multiple and single precursor systems. Further, these results are valid for the CVD of α-SiC as well as β-SiC. Experimental data reported on the growth of α-SiC and β-SiC are found to be in satisfactory agreement with the theoretical predictions, for numerous systems that include multiple and single source, silicon and carbon, species

  5. Fast method for reactor and feature scale coupling in ALD and CVD

    Science.gov (United States)

    Yanguas-Gil, Angel; Elam, Jeffrey W.

    2017-08-08

    Transport and surface chemistry of certain deposition techniques is modeled. Methods provide a model of the transport inside nanostructures as a single-particle discrete Markov chain process. This approach decouples the complexity of the surface chemistry from the transport model, thus allowing its application under general surface chemistry conditions, including atomic layer deposition (ALD) and chemical vapor deposition (CVD). Methods provide for determination of determine statistical information of the trajectory of individual molecules, such as the average interaction time or the number of wall collisions for molecules entering the nanostructures as well as to track the relative contributions to thin-film growth of different independent reaction pathways at each point of the feature.

  6. Aluminum and aluminum/silicon coatings on ferritic steels by CVD-FBR technology

    International Nuclear Information System (INIS)

    Perez, F.J.; Hierro, M.P.; Trilleros, J.A.; Carpintero, M.C.; Sanchez, L.; Bolivar, F.J.

    2006-01-01

    The use of chemical vapor deposition by fluidized bed reactors (CVD-FBR) offers some advantages in comparison to other coating techniques such as pack cementation, because it allows coating deposition at lower temperatures than pack cementation and at atmospheric pressure without affecting the mechanical properties of material due to heat treatments of the bulk during coating process. Aluminum and aluminum/silicon coatings have been obtained on two different ferritics steels (P-91 and P-92). The coatings were analyzed using several techniques like SEM/EDX and XRD. The results indicated that both coatings were form by Fe 2 Al 5 intermetallic compound, and in the co-deposition the Si was incorporated to the Fe 2 Al 5 structure in small amounts

  7. Mining and processing of uranium deposits in Salamanca, Spain

    International Nuclear Information System (INIS)

    Gomez Jaen, J.P.; Otero, J.; Serrano, J.R.; Membrillera, J.R.; Josa, J.M.

    1977-01-01

    In July, 1974, Empresa Nacional del Uranio, S.A. (ENUSA), took the decision to mine uranium in the province of Salamanca, based on geological and processing studies carried out by the Junta de Energia Nuclear (JEN). The milling plant was designed by JEN and assembled by ENUSA, and operations were begun on 22 May, 1975. The orebody, FE-1, is composed of slate of Cambrain age and the fissures are filled by primary minerals. Secondary minerals are impregnated in the zone affected by the hydrostatic level. The orebody is of the stockwork type in which carbonaceous matter has acted as a reducing agent. The average grade of the ore is 0.09% U 3 O 8 at a cutoff grade of 0.02% U 3 O 8 : the deposit is therefore among the lowest-grade deposits that are currently mined. Annual production is 1 200 000 t of rock, of which 200 000 t is ore-bearing. The milling plant uses a static heap-leaching method, followed by solvent extraction (tertiary amines) and precipitation by ammonia. Joint studies by JEN and ENUSA have led to the introduction of modifications that have increased the production capacity from 75 to 112 t U 3 O 8 per annum with no significant alteration in the initial planned investment. The total recovery after processing is 75% of the U 3 O 8 contained in the ore. Approximately 100 people are employed in the overall operation. ENUSA has decided to expand operations in Salamanca with the construction of a new milling plant (technological aid by JEN), which will be capable of processing 825 000 t of ore per year, with an annual production of 500 t U 3 O 8 . The new plant is expected to begin operations in 1979. (author)

  8. Adhesion of non-selective CVD tungsten to silicon dioxide

    International Nuclear Information System (INIS)

    Woodruff, D.W.; Wilson, R.H.; Sanchez-Martinez, R.A.

    1986-01-01

    Adhesion of non-selective, CVD tungsten to silicon dioxide is a critical issue in the development of tungsten as a metalization for VLSI circuitry. Without special adhesion promoters, tungsten deposited from WF/sub 6/ and H/sub 2/ has typically failed a standard tape test over all types of silicon oxides and nitrides. The reasons for failure of thin films, and CVD tungsten in particular are explored along with standard techniques for improving adhesion of thin films. Experiments are reported which include a number of sputtered metals as adhesion promoters, as well as chemical and plasma treatment of the oxide surface. Sputtered molybdenum is clearly the superior adhesion promoting layer from these tests. Traditional adhesion layers such as chromium or titanium failed as adhesion layers for CVD tungsten possibly due to chemical reactions between the WF/sub 6/ and Cr or Ti

  9. The gate oxide integrity of CVD tungsten polycide

    International Nuclear Information System (INIS)

    Wu, N.W.; Su, W.D.; Chang, S.W.; Tseng, M.F.

    1988-01-01

    CVD tungsten polycide has been demonstrated as a good gate material in recent very large scale integration (VLSI) technology. CVD tungsten silicide offers advantages of low resistivity, high temperature stability and good step coverage. On the other hand, the polysilicon underlayer preserves most characteristics of the polysilicon gate and acts as a stress buffer layer to absorb part of the thermal stress origin from the large thermal expansion coefficient of tungsten silicide. Nevertheless, the gate oxide of CVD tungsten polycide is less stable or reliable than that of polysilicon gate. In this paper, the gate oxide integrity of CVD tungsten polycide with various thickness combinations and different thermal processes have been analyzed by several electrical measurements including breakdown yield, breakdown fluence, room temperature TDDB, I-V characteristics, electron traps and interface state density

  10. Influence of surface morphology and microstructure on performance of CVD tungsten coating under fusion transient thermal loads

    Energy Technology Data Exchange (ETDEWEB)

    Lian, Youyun, E-mail: lianyy@swip.ac.cn [Southwestern Institute of Physics, Chengdu (China); Liu, Xiang; Wang, Jianbao; Feng, Fan [Southwestern Institute of Physics, Chengdu (China); Lv, Yanwei; Song, Jiupeng [China National R& D Center for Tungsten Technology, Xiamen Tungsten Co. Ltd, 361026 Xiamen (China); Chen, Jiming [Southwestern Institute of Physics, Chengdu (China)

    2016-12-30

    Highlights: • Thick CVD-W coatingswere deposited at a rapid growth rate. • The polished CVD-W coatings have highly textured structure and exhibited a very strong preferred orientation. • The polished CVD tungsten coatings show superior thermal shock resistance as compared with that of the as-deposited coatings. • The crack formation of the polished CVD-W was almost suppressed at an elevated temperature. - Abstract: Thick tungsten coatings have been deposited by chemical vapor deposition (CVD) at a rapid growth rate. A series of tungsten coatings with different thickness and surface morphology were prepared. The surface morphology, microstructure and preferred orientation of the CVD tungsten coatings were investigated. Thermal shock analyses were performed by using an electron beam facility to study the influence of the surface morphology and the microstructure on the thermal shock resistance of the CVD tungsten coatings. Repetitive (100 pulses) ELMs-like thermal shock loads were applied at various temperatures between room temperature and 600 °C with pulse duration of 1 ms and an absorbed power density of up to 1 GW/m{sup 2}. The results of the tests demonstrated that the specific surface morphology and columnar crystal structure of the CVD tungsten have significant influence on the surface cracking threshold and crack propagation of the materials. The CVD tungsten coatings with a polished surface show superior thermal shock resistance as compared with that of the as-deposited coatings with a rough surface.

  11. Thermodynamic study of CVD-ZrO2 phase diagrams

    International Nuclear Information System (INIS)

    Torres-Huerta, A.M.; Vargas-Garcia, J.R.; Dominguez-Crespo, M.A.; Romero-Serrano, J.A.

    2009-01-01

    Chemical vapor deposition (CVD) of zirconium oxide (ZrO 2 ) from zirconium acetylacetonate Zr(acac) 4 has been thermodynamically investigated using the Gibbs' free energy minimization method and the FACTSAGE program. Thermodynamic data Cp o , ΔH o and S o for Zr(acac) 4 have been estimated using the Meghreblian-Crawford-Parr and Benson methods because they are not available in the literature. The effect of deposition parameters, such as temperature and pressure, on the extension of the region where pure ZrO 2 can be deposited was analyzed. The results are presented as calculated CVD stability diagrams. The phase diagrams showed two zones, one of them corresponds to pure monoclinic phase of ZrO 2 and the other one corresponds to a mix of monoclinic phase of ZrO 2 and graphite carbon.

  12. Particle dry deposition to water surfaces: Processes and consequences

    DEFF Research Database (Denmark)

    Pryor, S.C.; Barthelmie, R.J.

    2000-01-01

    flux to coastal waters, atmosphere-surface exchange represents a significant component of the total flux and may be particularly critical during the summertime when both the riverine input and ambient nutrient concentrations are often at a minimum. In this chapter, we present an overview...... of the physical and chemical processes which dictate the quantity (and direction) of atmosphere-surface fluxes of trace chemicals to (and above) water surfaces with particular emphasis on the role of particles. Dry deposition (transfer to the surface in the absence of precipitation) of particles is determined...... efforts to simulate and measure fluxes close to the coastline. These arise in part from the complexity of atmospheric flow in this region where energy and chemical fluxes are highly inhomogeneous in space and time and thermally generated atmospheric circulations are commonplace. (C) 2000 Elsevier Science...

  13. Understanding the chemical vapor deposition of diamond: recent progress

    International Nuclear Information System (INIS)

    Butler, J E; Mankelevich, Y A; Cheesman, A; Ma, Jie; Ashfold, M N R

    2009-01-01

    In this paper we review and provide an overview to the understanding of the chemical vapor deposition (CVD) of diamond materials with a particular focus on the commonly used microwave plasma-activated chemical vapor deposition (MPCVD). The major topics covered are experimental measurements in situ to diamond CVD reactors, and MPCVD in particular, coupled with models of the gas phase chemical and plasma kinetics to provide insight into the distribution of critical chemical species throughout the reactor, followed by a discussion of the surface chemical process involved in diamond growth.

  14. CVD of alternated microcrystalline (MCD) and nanocrystalline (NCD) diamond films on WC-TIC-CO substrates

    International Nuclear Information System (INIS)

    Campos, Raonei Alves; Contin, Andre; Trava-Airoldi, Vladimir J.; Corat, Evaldo Jose; Barquete, Danilo Maciel

    2010-01-01

    CVD Diamond coating of WC-TiC-Co cutting tools has been an alternative to increase tool lifetime. Experiments have shown that residual stresses produced during films growth on WC-TiC-Co substrates significantly increases with increasing film thickness up to 20 μm and usually leads to film delamination. In this work alternated micro- and nanocrystalline CVD diamond films have been used to relax interface stresses and to increase diamond coatings performance. WC-TiC-Co substrates have been submitted to a boronizing thermal diffusion treatment prior to CVD diamond films growth. After reactive heat treatment samples were submitted to chemical etching in acid and alkaline solution. The diamond films deposition was performed using HFCVD reactor with different gas concentrations for microcrystalline (MCD) and nano-crystalline (NCD) films growth. As a result, we present the improvement of diamond films adherence on WC-TiC-Co, evaluated by indentation and machining tests. Samples were characterized by Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray (EDX) for qualitative analysis of diamond films. X-ray Diffraction (XRD) was used for phases identification after boronizing process. Diamond film compressive residual stresses were analyzed by Raman Scattering Spectroscopy (RSS). (author)

  15. CVD-graphene for low equivalent series resistance in rGO/CVD-graphene/Ni-based supercapacitors

    Science.gov (United States)

    Kwon, Young Hwi; Kumar, Sunil; Bae, Joonho; Seo, Yongho

    2018-05-01

    Reduced equivalent series resistance (ESR) is necessary, particularly at a high current density, for high performance supercapacitors, and the interface resistance between the current collector and electrode material is one of the main components of ESR. In this report, we have optimized chemical vapor deposition-grown graphene (CVD-G) on a current collector (Ni-foil) using reduced graphene oxide as an active electrode material to fabricate an electric double layer capacitor with reduced ESR. The CVD-G was grown at different cooling rates—20 °C min‑1, 40 °C min‑1 and 100 °C min‑1—to determine the optimum conditions. The lowest ESR, 0.38 Ω, was obtained for a cell with a 100 °C min‑1 cooling rate, while the sample without a CVD-G interlayer exhibited 0.80 Ω. The CVD-G interlayer-based supercapacitors exhibited fast CD characteristics with high scan rates up to 10 Vs‑1 due to low ESR. The specific capacitances deposited with CVD-G were in the range of 145.6 F g‑1–213.8 F g‑1 at a voltage scan rate of 0.05 V s‑1. A quasi-rectangular behavior was observed in the cyclic voltammetry curves, even at very high scan rates of 50 and 100 V s‑1, for the cell with optimized CVD-G at higher cooling rates, i.e. 100 °C min‑1.

  16. Evaluation of niobium dimethylamino-ethoxide for chemical vapour deposition of niobium oxide thin films

    International Nuclear Information System (INIS)

    Dabirian, Ali; Kuzminykh, Yury; Wagner, Estelle; Benvenuti, Giacomo; Rushworth, Simon; Hoffmann, Patrik

    2014-01-01

    Chemical vapour deposition (CVD) processes depend on the availability of suitable precursors. Precursors that deliver a stable vapour pressure are favourable in classical CVD processes, as they ensure process reproducibility. In high vacuum CVD (HV-CVD) process vapour pressure stability of the precursor is of particular importance, since no carrier gas assisted transport can be used. The dimeric Nb 2 (OEt) 10 does not fulfil this requirement since it partially dissociates upon heating. Dimethylamino functionalization of an ethoxy ligand of Nb(OEt) 5 acts as an octahedral field completing entity and leads to Nb(OEt) 4 (dmae). We show that Nb(OEt) 4 (dmae) evaporates as monomeric molecule and ensures a stable vapour pressure and, consequently, stable flow. A set of HV-CVD experiments were conducted using this precursor by projecting a graded molecular beam of the precursor onto the substrate at deposition temperatures from 320 °C to 650 °C. Film growth rates ranging from 8 nm·h −1 to values larger than 400 nm·h −1 can be obtained in this system illustrating the high level of control available over the film growth process. Classical CVD limiting conditions along with the recently reported adsorption–reaction limited conditions are observed and the chemical composition, and microstructural and optical properties of the films are related to the corresponding growth regime. Nb(OEt) 4 (dmae) provides a large process window of deposition temperatures and precursor fluxes over which carbon-free and polycrystalline niobium oxide films with growth rates proportional to precursor flux are obtained. This feature makes Nb(OEt) 4 (dmae) an attractive precursor for combinatorial CVD of niobium containing complex oxide films that are finding an increasing interest in photonics and photoelectrochemical water splitting applications. The adsorption–reaction limited conditions provide extremely small growth rates comparable to an atomic layer deposition (ALD) process

  17. Optical monitoring of surface processes relevant to thin film growth by chemical vapour deposition

    International Nuclear Information System (INIS)

    Simcock, Michael Neil

    2002-01-01

    This thesis reports on the investigation of the use of reflectance anisotropy spectroscopy (RAS) as an in-situ monitor for the preparation and oxidation of GaAs(100) c(4x4) surfaces using a CVD 2000 MOCVD reactor. These surfaces were oxidised using air. It was found that it was possible to follow surface degradation using RA transients at 2.6eV and 4eV. From this data it was possible to speculate on the nature of the surface oxidation process. A study was performed into the rate of surface degradation under different concentrations of air, it was found that the relation between the air concentration and the surface degradation was complicated but that the behaviour of the first third of the degradation approximated a first order behaviour. An estimation of the activation energy of the process was then made, and an assessment of the potential use of the glove-box for STM studies which is an integral part of the MOCVD equipment was also made. Following this, a description is given of the construction of an interferometer for monitoring thin film growth. An investigation is also described into two techniques designed to evaluate the changes in reflected intensity as measured by an interferometer. The first technique uses an iteration procedure to determine the film thickness from the reflection data. This is done using a Taylor series expansion of the thin film reflection function to iterate for the thickness. Problems were found with the iteration when applied to noisy data, these were solved by using a least squares fit to smooth the data. Problems were also found with the iteration at the turning points these were solved using the derivative of the function and by anticipating the position of the turning points. The second procedure uses the virtual interface method to determine the optical constants of the topmost deposited material, the virtual substrate, and the growth rate. This method is applied by using a Taylor series expansion of the thin film reflection

  18. CVD diamond Brewster window: feasibility study by FEM analyses

    Directory of Open Access Journals (Sweden)

    Vaccaro A.

    2012-09-01

    Full Text Available Chemical vapor deposition (CVD diamond windows are a crucial component in heating and current drive (H&CD applications. In order to minimize the amount of reflected power from the diamond disc, its thickness must match the desired beam wavelength, thus proper targeting of the plasma requires movable beam reflectors. This is the case, for instance, of the ITER electron cyclotron H&CD system. However, looking at DEMO, the higher heat loads and neutron fluxes could make the use of movable parts close to the plasma difficult. The issue might be solved by using gyrotrons able to tune the beam frequency to the desired resonance, but this concept requires transmission windows that work in a given frequency range, such as the Brewster window. It consists of a CVD diamond disc brazed to two copper cuffs at the Brewster angle. The brazing process is carried out at about 800°C and then the temperature is decreased down to room temperature. Diamond and copper have very different thermal expansion coefficients, therefore high stresses build up during the cool down phase that might lead to failure of the disc. Considering also the complex geometry of the window with the skewed position of the disc, analyses are required in the first place to check its feasibility. The cool down phase was simulated by FEM structural analyses for several geometric and constraint configurations of the window. A study of indirect cooling of the window by water was also performed considering a HE11 mode beam. The results are here reported.

  19. Enhancement of surface integrity of titanium alloy with copper by means of laser metal deposition process

    CSIR Research Space (South Africa)

    Erinosho, MF

    2016-04-01

    Full Text Available The laser metal deposition process possesses the combination of metallic powder and laser beam respectively. However, these combinations create an adhesive bonding that permanently solidifies the laser-enhanced-deposited powders. Titanium alloys (Ti...

  20. Chemical vapor deposition of Si/SiC nano-multilayer thin films

    International Nuclear Information System (INIS)

    Weber, A.; Remfort, R.; Woehrl, N.; Assenmacher, W.; Schulz, S.

    2015-01-01

    Stoichiometric SiC films were deposited with the commercially available single source precursor Et_3SiH by classical thermal chemical vapor deposition (CVD) as well as plasma-enhanced CVD at low temperatures in the absence of any other reactive gases. Temperature-variable deposition studies revealed that polycrystalline films containing different SiC polytypes with a Si to carbon ratio of close to 1:1 are formed at 1000 °C in thermal CVD process and below 100 °C in the plasma-enhanced CVD process. The plasma enhanced CVD process enables the reduction of residual stress in the deposited films and offers the deposition on temperature sensitive substrates in the future. In both deposition processes the film thickness can be controlled by variation of the process parameters such as the substrate temperature and the deposition time. The resulting material films were characterized with respect to their chemical composition and their crystallinity using scanning electron microscope, energy dispersive X-ray spectroscopy (XRD), atomic force microscopy, X-ray diffraction, grazing incidence X-ray diffraction, secondary ion mass spectrometry and Raman spectroscopy. Finally, Si/SiC multilayers of up to 10 individual layers of equal thickness (about 450 nm) were deposited at 1000 °C using Et_3SiH and SiH_4. The resulting multilayers features amorphous SiC films alternating with Si films, which feature larger crystals up to 300 nm size as measured by transmission electron microscopy as well as by XRD. XRD features three distinct peaks for Si(111), Si(220) and Si(311). - Highlights: • Stoichiometric silicon carbide films were deposited from a single source precursor. • Thermal as well as plasma-enhanced chemical vapor deposition was used. • Films morphology, crystallinity and chemical composition were characterized. • Silicon/silicon carbide multilayers of up to 10 individual nano-layers were deposited.

  1. Chemical vapour deposition growth and Raman characterization of graphene layers and carbon nanotubes

    Science.gov (United States)

    Lai, Y.-C.; Rafailov, P. M.; Vlaikova, E.; Marinova, V.; Lin, S. H.; Yu, P.; Yu, S.-C.; Chi, G. C.; Dimitrov, D.; Sveshtarov, P.; Mehandjiev, V.; Gospodinov, M. M.

    2016-02-01

    Single-layer graphene films were grown by chemical vapour deposition (CVD) on Cu foil. The CVD process was complemented by plasma enhancement to grow also vertically aligned multiwalled carbon nanotubes using Ni nanoparticles as catalyst. The obtained samples were characterized by Raman spectroscopy analysis. Nature of defects in the samples and optimal growth conditions leading to achieve high quality of graphene and carbon nanotubes are discussed.

  2. Energy-enhanced atomic layer deposition : offering more processing freedom

    NARCIS (Netherlands)

    Potts, S.E.; Kessels, W.M.M.

    2013-01-01

    Atomic layer deposition (ALD) is a popular deposition technique comprising two or more sequential, self-limiting surface reactions, which make up an ALD cycle. Energy-enhanced ALD is an evolution of traditional thermal ALD methods, whereby energy is supplied to a gas in situ in order to convert a

  3. Performance of CVD and CVR coated carbon-carbon in high temperature hydrogen

    Science.gov (United States)

    Adams, J. W.; Barletta, R. E.; Svandrlik, J.; Vanier, P. E.

    As a part of the component development process for the particle bed reactor (PBR), it is necessary to develop coatings which will be time and temperature stable at extremely high temperatures in flowing hydrogen. These coatings must protect the underlying carbon structure from attack by the hydrogen coolant. Degradation which causes small changes in the reactor component, e.g. hole diameter in the hot frit, can have a profound effect on operation. The ability of a component to withstand repeated temperature cycles is also a coating development issue. Coatings which crack or spall under these conditions would be unacceptable. While refractory carbides appear to be the coating material of choice for carbon substrates being used in PBR components, the method of applying these coatings can have a large effect on their performance. Two deposition processes for these refractory carbides, chemical vapor deposition (CVD) and chemical vapor reaction (CVR), have been evaluated. Screening tests for these coatings consisted of testing of coated 2-D and 3-D weave carbon-carbon in flowing hot hydrogen at one atmosphere. Carbon loss from these samples was measured as a function of time. Exposure temperatures up to 3,000 K were used, and samples were exposed in a cyclical fashion cooling to room temperature between exposures. The results of these measurements are presented along with an evaluation of the relative merits of CVR and CVD coatings for this application.

  4. Development of a new process for deposition of metallic vapours and ions

    International Nuclear Information System (INIS)

    Gabrielli, O. de.

    1989-01-01

    Surface treatment processes by deposition, enabling surface properties to be altered without altering the volume, are making rapid progress in industry. The description of these processes has led us to consider the role and the importance of methods using plasmas. The new plasma source we have developed is the subject of this experimental research: it is the basis of the deposition process (metallic ion and vapour deposition). The specifications and preliminary results enable us to compare this process with others in use. Fast deposition rates and excellent adhesion are the two main characteristics of this process [fr

  5. Electrocatalysts with platinum, cobalt and nickel preparations by mechanical alloyed and CVD for the reaction of oxygen reduction; Electrocatalizadores a base de platino, cobalto y niquel preparados por aleado mecanico y CVD para la reaccion de reduccion de oxigeno

    Energy Technology Data Exchange (ETDEWEB)

    Garcia C, M A [ININ, 52750 La Marquesa, Estado de Mexico (Mexico)

    2008-07-01

    In this research, the molecular oxygen reduction reaction (ORR) was investigated on electrocatalysts of Co, Ni, Pt and their alloys CoNi, PtCo, PtNi and PtCoNi by using H{sub 2}SO{sub 4} 0.5 and KOH 0.5 M solutions as electrolytes. The electrocatalysts were synthesized by Mechanical Alloying (MA) and Chemical Vapor Deposition (CVD) processes. For MA, metallic powders were processed during 20 h of milling in a high energy SPEX 8000 mill. For CVD, a hot-wall reactor was utilized and Co, Ni and Pt acetilactetonates were used as precursors. Films were deposited at a total pressure of 1 torr and temperatures of 400-450 C. Electrocatalysts were characterized by X-Ray Diffraction (XRD). Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM) and Energy Dispersive X-Ray Spectroscopy (EDS). Electrocatalysts prepared by mechanical alloying showed a homogeneously dispersed agglomeration of particles with nano metric size. Electrocatalysts obtained by CVD showed, in some cases, non uniform films, with particles of nano metric size, as well. The electrocatalytic performance was evaluated by using the Rotating Disk Electrode technique (RDE). Electrocatalysts prepared by MA showed higher activity than those obtained by CVD. All electrocatalysts were evaluated in alkaline media. Only electrocatalysts containing Pt were evaluated in acid media, because those materials with Co, Ni and their alloys showed instability in acidic media. Most electrocatalysts followed a mechanism for the ORR producing a certain proportion of H{sub 2}O{sub 2}. All electrocatalysts, exhibited a fair or good electrocatalytic activity in comparison with other similar reported materials. It was found that MA and CVD are appropriate processes to prepare electrocatalysts for the ORR with particles of nano metric size and performing with an acceptable catalytic activity. PtCoNi 70-23-7% by MA and PtCoNi-CVD electrocatalysts showed the highest activity in alkaline media, while in acidic

  6. 49 CFR 594.9 - Fee for reimbursement of bond processing costs and costs for processing offers of cash deposits...

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 7 2010-10-01 2010-10-01 false Fee for reimbursement of bond processing costs and costs for processing offers of cash deposits or obligations of the United States in lieu of sureties on... indirect costs the agency incurs for receipt, processing, handling, and disbursement of cash deposits or...

  7. Chemical vapor deposition: A technique for applying protective coatings

    Energy Technology Data Exchange (ETDEWEB)

    Wallace, T.C. Sr.; Bowman, M.G.

    1979-01-01

    Chemical vapor deposition is discussed as a technique for applying coatings for materials protection in energy systems. The fundamentals of the process are emphasized in order to establish a basis for understanding the relative advantages and limitations of the technique. Several examples of the successful application of CVD coating are described. 31 refs., and 18 figs.

  8. 25th anniversary article: CVD polymers: a new paradigm for surface modification and device fabrication.

    Science.gov (United States)

    Coclite, Anna Maria; Howden, Rachel M; Borrelli, David C; Petruczok, Christy D; Yang, Rong; Yagüe, Jose Luis; Ugur, Asli; Chen, Nan; Lee, Sunghwan; Jo, Won Jun; Liu, Andong; Wang, Xiaoxue; Gleason, Karen K

    2013-10-11

    Well-adhered, conformal, thin (polymers can be achieved on virtually any substrate: organic, inorganic, rigid, flexible, planar, three-dimensional, dense, or porous. In CVD polymerization, the monomer(s) are delivered to the surface through the vapor phase and then undergo simultaneous polymerization and thin film formation. By eliminating the need to dissolve macromolecules, CVD enables insoluble polymers to be coated and prevents solvent damage to the substrate. CVD film growth proceeds from the substrate up, allowing for interfacial engineering, real-time monitoring, and thickness control. Initiated-CVD shows successful results in terms of rationally designed micro- and nanoengineered materials to control molecular interactions at material surfaces. The success of oxidative-CVD is mainly demonstrated for the deposition of organic conducting and semiconducting polymers. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Electrocatalysts with platinum, cobalt and nickel preparations by mechanical alloyed and CVD for the reaction of oxygen reduction

    International Nuclear Information System (INIS)

    Garcia C, M. A.

    2008-01-01

    In this research, the molecular oxygen reduction reaction (ORR) was investigated on electrocatalysts of Co, Ni, Pt and their alloys CoNi, PtCo, PtNi and PtCoNi by using H 2 SO 4 0.5 and KOH 0.5 M solutions as electrolytes. The electrocatalysts were synthesized by Mechanical Alloying (MA) and Chemical Vapor Deposition (CVD) processes. For MA, metallic powders were processed during 20 h of milling in a high energy SPEX 8000 mill. For CVD, a hot-wall reactor was utilized and Co, Ni and Pt acetilactetonates were used as precursors. Films were deposited at a total pressure of 1 torr and temperatures of 400-450 C. Electrocatalysts were characterized by X-Ray Diffraction (XRD). Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM) and Energy Dispersive X-Ray Spectroscopy (EDS). Electrocatalysts prepared by mechanical alloying showed a homogeneously dispersed agglomeration of particles with nano metric size. Electrocatalysts obtained by CVD showed, in some cases, non uniform films, with particles of nano metric size, as well. The electrocatalytic performance was evaluated by using the Rotating Disk Electrode technique (RDE). Electrocatalysts prepared by MA showed higher activity than those obtained by CVD. All electrocatalysts were evaluated in alkaline media. Only electrocatalysts containing Pt were evaluated in acid media, because those materials with Co, Ni and their alloys showed instability in acidic media. Most electrocatalysts followed a mechanism for the ORR producing a certain proportion of H 2 O 2 . All electrocatalysts, exhibited a fair or good electrocatalytic activity in comparison with other similar reported materials. It was found that MA and CVD are appropriate processes to prepare electrocatalysts for the ORR with particles of nano metric size and performing with an acceptable catalytic activity. PtCoNi 70-23-7% by MA and PtCoNi-CVD electrocatalysts showed the highest activity in alkaline media, while in acidic electrolyte PtCoNi 70

  10. Directed Vapor Deposition: Low Vacuum Materials Processing Technology

    National Research Council Canada - National Science Library

    Groves, J. F; Mattausch, G; Morgner, H; Hass, D. D; Wadley, H. N

    2000-01-01

    Directed vapor deposition (DVD) is a recently developed electron beam-based evaporation technology designed to enhance the creation of high performance thick and thin film coatings on small area surfaces...

  11. Thermal Analysis of Cold Vacuum Drying (CVD) of Spent Nuclear Fuel (SNF)

    International Nuclear Information System (INIS)

    PIEPHO, M.G.

    2000-01-01

    The thermal analysis examined transient thermal and chemical behavior of the Multi-Canister Overpack (MCO) container for a broad range of cases that represent the Cold Vacuum Drying (CVD) processes. The cases were defined to consider both normal and off-normal operations at the CVD Facility for an MCO with N Reactor spent fuel. This analysis provides the basis for the MCO thermal behavior at the CVD Facility in support of the safety basis documentation

  12. Building of nested components by a double-nozzle droplet deposition process

    Science.gov (United States)

    Li, SuLi; Wei, ZhengYing; Du, Jun; Zhao, Guangxi; Wang, Xin; Lu, BingHeng

    2016-07-01

    According to the nested components jointed with multiple parts,a double-nozzle droplet deposition process was put forward in this paper, and the experimental system was developed. Through the research on the properties of support materials and the process of double-nozzle droplet deposition, the linkage control of the metal droplet deposition and the support material extrusion was realized, and a nested component with complex construction was fabricated directly. Compared with the traditional forming processes, this double-nozzle deposition process has the advantages of short cycle, low cost and so on. It can provide an approach way to build the nested parts.

  13. On the formation mechanisms of the diffuse atmospheric pressure dielectric barrier discharge in CVD processes of thin silica-like films

    International Nuclear Information System (INIS)

    Starostin, S A; Premkumar, P Antony; Creatore, M; Van Veldhuizen, E M; Van de Sanden, M C M; De Vries, H; Paffen, R M J

    2009-01-01

    Pathways of formation and temporal evolution of the diffuse dielectric barrier discharge at atmospheric pressure were experimentally studied in this work by means of optical (fast imaging camera) and electrical diagnostics. The chosen model system is relevant for applications of plasma-enhanced chemical vapor deposition of thin silica-like film on the polymeric substrate, from cost-efficient gas mixtures of Ar/N 2 /O 2 /hexamethyldisiloxane. It was found that the discharge can gradually experience the phases of homogeneous low current Townsend-like mode, local Townsend to glow transition and expanding high current density (∼0.7 A cm -2 ) glow-like mode. While the glow-like current spot occupies momentarily only a small part of the electrode area, its expanding behavior provides uniform treatment of the whole substrate surface. Alternatively, it was observed that a visually uniform discharge can be formed by the numerous microdischarges overlapping over the large electrode area.

  14. NEXAFS Study of the Annealing Effect on the Local Structure of FIB-CVD DLC

    International Nuclear Information System (INIS)

    Saikubo, Akihiko; Kato, Yuri; Igaki, Jun-ya; Kanda, Kazuhiro; Matsui, Shinji; Kometani, Reo

    2007-01-01

    Annealing effect on the local structure of diamond like carbon (DLC) formed by focused ion beam-chemical vapor deposition (FIB-CVD) was investigated by the measurement of near edge x-ray absorption fine structure (NEXAFS) and energy dispersive x-ray (EDX) spectra. Carbon K edge absorption NEXAFS spectrum of FIB-CVD DLC was measured in the energy range of 275-320 eV. In order to obtain the information on the location of the gallium in the depth direction, incidence angle dependence of NEXAFS spectrum was measured in the incident angle range from 0 deg. to 60 deg. . The peak intensity corresponding to the resonance transition of 1s→σ* originating from carbon-gallium increased from the FIB-CVD DLC annealed at 200 deg. C to the FIB-CVD DLC annealed at 400 deg. C and decreased from that at 400 deg. C to that at 600 deg. C. Especially, the intensity of this peak remarkably enhanced in the NEXAFS spectrum of the FIB-CVD DLC annealed at 400 deg. C at the incident angle of 60 deg. . On the contrary, the peak intensity corresponding to the resonance transition of 1s→π* originating from carbon double bonding of emission spectrum decreased from the FIB-CVD DLC annealed at 200 deg. C to that at 400 deg. C and increased from that at 400 deg. C to that at 600 deg. C. Gallium concentration in the FIB-CVD DLC decreased from ≅2.2% of the as-deposited FIB-CVD DLC to ≅1.5% of the FIB-CVD DLC annealed at 600 deg. C from the elementary analysis using EDX. Both experimental results indicated that gallium atom departed from FIB-CVD DLC by annealing at the temperature of 600 deg. C

  15. Process simulation for advanced composites production

    Energy Technology Data Exchange (ETDEWEB)

    Allendorf, M.D.; Ferko, S.M.; Griffiths, S. [Sandia National Labs., Livermore, CA (United States)] [and others

    1997-04-01

    The objective of this project is to improve the efficiency and lower the cost of chemical vapor deposition (CVD) processes used to manufacture advanced ceramics by providing the physical and chemical understanding necessary to optimize and control these processes. Project deliverables include: numerical process models; databases of thermodynamic and kinetic information related to the deposition process; and process sensors and software algorithms that can be used for process control. Target manufacturing techniques include CVD fiber coating technologies (used to deposit interfacial coatings on continuous fiber ceramic preforms), chemical vapor infiltration, thin-film deposition processes used in the glass industry, and coating techniques used to deposit wear-, abrasion-, and corrosion-resistant coatings for use in the pulp and paper, metals processing, and aluminum industries.

  16. Graphene growth on Ge(100)/Si(100) substrates by CVD method.

    Science.gov (United States)

    Pasternak, Iwona; Wesolowski, Marek; Jozwik, Iwona; Lukosius, Mindaugas; Lupina, Grzegorz; Dabrowski, Pawel; Baranowski, Jacek M; Strupinski, Wlodek

    2016-02-22

    The successful integration of graphene into microelectronic devices is strongly dependent on the availability of direct deposition processes, which can provide uniform, large area and high quality graphene on nonmetallic substrates. As of today the dominant technology is based on Si and obtaining graphene with Si is treated as the most advantageous solution. However, the formation of carbide during the growth process makes manufacturing graphene on Si wafers extremely challenging. To overcome these difficulties and reach the set goals, we proposed growth of high quality graphene layers by the CVD method on Ge(100)/Si(100) wafers. In addition, a stochastic model was applied in order to describe the graphene growth process on the Ge(100)/Si(100) substrate and to determine the direction of further processes. As a result, high quality graphene was grown, which was proved by Raman spectroscopy results, showing uniform monolayer films with FWHM of the 2D band of 32 cm(-1).

  17. Stress in ion-implanted CVD Si3N4 films

    International Nuclear Information System (INIS)

    EerNisse, E.P.

    1977-01-01

    The compressive stress buildup caused in chemical-vapor-deposited (CVD) Si 3 N 4 films by ion implantation is shown to be caused entirely by atomic collision effects, ionization effects being unimportant. The stress introduction rate is shown to be independent of CVD processing variables and O content of the film. The maximum attainable compressive stress change is 3.5 x 10 10 dyn/cm 2 , resulting in a maximum net compressive stress of 2 x 10 10 dyn/cm 2 for films on Si where the as-deposited films inherently have 1.5 x 10 10 dyn/cm 2 tensile stress before ion implantation. Results are presented which show that O in the films inhibits thermal annealing of the ion-implantation-induced compressive stress. Results for introduction rate and annealing effects are presented in normalized form so that workers can use the effects for intentional stress level adjustment in the films to reduce probability of cracking and detachment

  18. Plasma-enhanced chemical vapor deposition for YBCO film fabrication of superconducting fault-current limiter

    Energy Technology Data Exchange (ETDEWEB)

    Jun, Byung Hyuk; Kim, Chan Joong

    2006-05-15

    Since the high-temperature superconductor of oxide type was founded, many researches and efforts have been performed for finding its application field. The YBCO superconducting film fabricated on economic metal substrate with uniform critical current density is considered as superconducting fault-current limiter (SFCL). There are physical and chemical processes to fabricate superconductor film, and it is understood that the chemical methods are more economic to deposit large area. Among them, chemical vapor deposition (CVD) is a promising deposition method in obtaining film uniformity. To solve the problems due to the high deposition temperature of thermal CVD, plasma-enhanced chemical vapor deposition (PECVD) is suggested. This report describes the principle and fabrication trend of SFCL, example of YBCO film deposition by PECVD method, and principle of plasma deposition.

  19. Numerical simulations of rarefied gas flows in thin film processes

    NARCIS (Netherlands)

    Dorsman, R.

    2007-01-01

    Many processes exist in which a thin film is deposited from the gas phase, e.g. Chemical Vapor Deposition (CVD). These processes are operated at ever decreasing reactor operating pressures and with ever decreasing wafer feature dimensions, reaching into the rarefied flow regime. As numerical

  20. CVD Graphene/Ni Interface Evolution in Sulfuric Electrolyte

    DEFF Research Database (Denmark)

    Yivlialin, Rossella; Bussetti, Gianlorenzo; Duò, Lamberto

    2018-01-01

    Systems comprising single and multilayer graphene deposited on metals and immersed in acid environments have been investigated, with the aim of elucidating the mechanisms involved, for instance, in hydrogen production or metal protection from corrosion. In this work, a relevant system, namely...... chemical vapor deposited (CVD) multilayer graphene/Ni (MLGr/Ni), is studied when immersed in a diluted sulfuric electrolyte. The MLGr/Ni electrochemical and morphological properties are studied in situ and interpreted in light of the highly oriented pyrolytic graphite (HOPG) electrode behavior, when...... immersed in the same electrolyte. Following this interpretative framework, the dominant role of the Ni substrate in hydrogen production is clarified....

  1. On the formation mechanisms of the diffuse atmospheric pressure dielectric barrier discharge in CVD processes of thin silica-like films

    Energy Technology Data Exchange (ETDEWEB)

    Starostin, S A; Premkumar, P Antony [Materials Innovation Institute (M2i), Mekelweg 2, 2600 GA Delft, The Netherland (Netherlands); Creatore, M; Van Veldhuizen, E M; Van de Sanden, M C M [Department of Applied Physics, Eindhoven University of Technology, 5600 MB Eindhoven (Netherlands); De Vries, H; Paffen, R M J [FUJIFILM Manufacturing Europe B.V, PO Box 90156, Tilburg (Netherlands)

    2009-11-15

    Pathways of formation and temporal evolution of the diffuse dielectric barrier discharge at atmospheric pressure were experimentally studied in this work by means of optical (fast imaging camera) and electrical diagnostics. The chosen model system is relevant for applications of plasma-enhanced chemical vapor deposition of thin silica-like film on the polymeric substrate, from cost-efficient gas mixtures of Ar/N{sub 2}/O{sub 2}/hexamethyldisiloxane. It was found that the discharge can gradually experience the phases of homogeneous low current Townsend-like mode, local Townsend to glow transition and expanding high current density ({approx}0.7 A cm{sup -2}) glow-like mode. While the glow-like current spot occupies momentarily only a small part of the electrode area, its expanding behavior provides uniform treatment of the whole substrate surface. Alternatively, it was observed that a visually uniform discharge can be formed by the numerous microdischarges overlapping over the large electrode area.

  2. Radiation monitoring with CVD diamonds and PIN diodes at BaBar

    Energy Technology Data Exchange (ETDEWEB)

    Bruinsma, M. [University of California Irvine, Irvine, CA 92697 (United States); Burchat, P. [Stanford University, Stanford, CA 94305-4060 (United States); Curry, S. [University of California Irvine, Irvine, CA 92697 (United States)], E-mail: scurry@slac.stanford.edu; Edwards, A.J. [Stanford University, Stanford, CA 94305-4060 (United States); Kagan, H.; Kass, R. [Ohio State University, Columbus, OH 43210 (United States); Kirkby, D. [University of California Irvine, Irvine, CA 92697 (United States); Majewski, S.; Petersen, B.A. [Stanford University, Stanford, CA 94305-4060 (United States)

    2007-12-11

    The BaBar experiment at the Stanford Linear Accelerator Center has been using two polycrystalline chemical vapor deposition (pCVD) diamonds and 12 silicon PIN diodes for radiation monitoring and protection of the Silicon Vertex Tracker (SVT). We have used the pCVD diamonds for more than 3 years, and the PIN diodes for 7 years. We will describe the SVT and SVT radiation monitoring system as well as the operational difficulties and radiation damage effects on the PIN diodes and pCVD diamonds in a high-energy physics environment.

  3. Nitrogen deposition to the United States: distribution, sources, and processes

    Directory of Open Access Journals (Sweden)

    L. Zhang

    2012-05-01

    Full Text Available We simulate nitrogen deposition over the US in 2006–2008 by using the GEOS-Chem global chemical transport model at 1/2°×2/3° horizontal resolution over North America and adjacent oceans. US emissions of NOx and NH3 in the model are 6.7 and 2.9 Tg N a−1 respectively, including a 20% natural contribution for each. Ammonia emissions are a factor of 3 lower in winter than summer, providing a good match to US network observations of NHx (≡NH3 gas + ammonium aerosol and ammonium wet deposition fluxes. Model comparisons to observed deposition fluxes and surface air concentrations of oxidized nitrogen species (NOy show overall good agreement but excessive wintertime HNO3 production over the US Midwest and Northeast. This suggests a model overestimate N2O5 hydrolysis in aerosols, and a possible factor is inhibition by aerosol nitrate. Model results indicate a total nitrogen deposition flux of 6.5 Tg N a−1 over the contiguous US, including 4.2 as NOy and 2.3 as NHx. Domestic anthropogenic, foreign anthropogenic, and natural sources contribute respectively 78%, 6%, and 16% of total nitrogen deposition over the contiguous US in the model. The domestic anthropogenic contribution generally exceeds 70% in the east and in populated areas of the west, and is typically 50–70% in remote areas of the west. Total nitrogen deposition in the model exceeds 10 kg N ha−1 a−1 over 35% of the contiguous US.

  4. Bone repair after osteotomy with diamond burs and CVD ultrasonic tips – histological study in rats

    OpenAIRE

    Matuda, Fábio S.; Pagani, Clovis; Miranda, Carolina B.; Crema, Aline A. S.; Brentel, Aline S.; Carvalho, Yasmin R.

    2010-01-01

    This study histologically evaluated the behavior of bone tissue of rats submitted to osteotomy with conventional diamond burs in high speed and a new ultrasonic diamond tips system (CVD – Chemical Vapor Deposition), at different study periods. The study was conducted on 24 Wistar rats. Osteotomy was performed on the posterior paws of each rat, with utilization of diamond burs in high speed under thorough water cooling at the right paw, and CVD tips at the left paw. Animals were killed a...

  5. Tribological Characteristics and Applications of Superhard Coatings: CVD Diamond, DLC, and c-BN

    Science.gov (United States)

    Miyoshi, Kazuhisa; Murakawa, Masao; Watanabe, Shuichi; Takeuchi, Sadao; Wu, Richard L. C.

    1999-01-01

    Results of fundamental research on the tribological properties of chemical-vapor-deposited (CVD) diamond, diamondlike carbon, and cubic boron nitride films in sliding contact with CVD diamond in ultrahigh vacuum, dry nitrogen, humid air, and water are discussed. Furthermore, the actual and potential applications of the three different superhard coatings in the field of tribology technology, particularly for wear parts and tools, are reviewed.

  6. CVD Diamond, DLC, and c-BN Coatings for Solid Film Lubrication

    Science.gov (United States)

    Miyoshi, Kazuhisa

    1998-01-01

    When the main criteria for judging coating performance were coefficient of friction and wear rate, which had to be less than 0.1 and 10(exp -6) mm(exp 3)/N-m, respectively, carbon- and nitrogen-ion-implanted, fine-grain CVD diamond and DLC ion beam deposited on fine-grain CVD diamond met the requirements regardless of environment (vacuum, nitrogen, and air).

  7. Merging Standard CVD Techniques for GaAs and Si Epitaxial Growth

    NARCIS (Netherlands)

    Sammak, A.; De Boer, W.; Van den Bogaard, A.; Nanver, L.K.

    2010-01-01

    A commercial Chemical Vapor Deposition (CVD) system, the ASMI Epsilon 2000 designed for Si and SiGe epitaxy, has, for the first time, been equipped for the growth of GaAs compounds in a manner that does not exclude the use of the system also for Si-based depositions. With the new system, intrinsic,

  8. Electrochemically Deposited Nickel Membranes; Process-Microstructure-Property Relationships

    DEFF Research Database (Denmark)

    Jensen, Jens Dahl; Pantleon, Karen; Somers, Marcel A.J.

    2003-01-01

    This paper reports on the manufacturing, surface morphology, internal structure and mechanical properties of Ni-foils used as membranes in reference-microphones. Two types of foils, referred to as S-type and 0-type foils, were electrochemically deposited from a Watts-type electrolyte, with (S...

  9. Nucleation of microwave plasma CVD diamond on molybdenum (Mo) substrate

    International Nuclear Information System (INIS)

    Inderjeet, K.; Ramesh, S.

    2000-01-01

    Molybdenum is a metal, which is gaining increasing significance in industrial applications. The main use of Mo is as all alloying element added in small amounts to steel, irons and non- ferrous alloys in order to enhance the strength, toughness and wear resistance. Mo is also vastly being employed in the automotive and aircraft industries, mainly due to its low coefficient of friction. Diamond, on be other hand, is a unique material for innumerable applications because of its usual combination of physical and chemical properties. Several potential applications can be anticipated for diamond in many sectors including electronics, optics, as protective corrosion resistant coatings, cutting tools, etc. With the enhancement in science and technology, diamond microcrystals and thin films are now being produced from the vapour phase by a variety of chemical vapour deposition (CVD) techniques; such as microwave plasma CVD. With such technology being made available, it is envisage that diamond-coated molybdenum would further enhance the performance and to open up new avenue for Mo in various industries. Therefore, it is the aim of the present work to study the nucleation and growth of diamond particles on Mo surface by employing microwave plasma CVD (MAPCVD). In the present work, diamond deposition was carried out in several stages by varying the deposition distance. The nucleation and growth rate were studied using scanning electron microscopy (SEM). In addition, the existence of diamond was verified by X-ray diffraction (XRD) analysis. It has been found that the nucleation and growth rate of diamond particles were influenced by the deposition height between the substrate and plasma. Under the optimum condition, well defined diamond crystallites distributed homogeneously throughout the surface, could be obtained. Some of the important parameters controlling the deposition and growth of diamond particles on Mo surface are discussed. (author)

  10. Oxidation protection of multilayer CVD SiC/B/SiC coatings for 3D C/SiC composite

    International Nuclear Information System (INIS)

    Liu Yongsheng; Cheng Laifei; Zhang Litong; Wu Shoujun; Li Duo; Xu Yongdong

    2007-01-01

    A CVD boron coating was introduced between two CVD SiC coating layers. EDS and XRD results showed that the CVD B coating was a boron crystal without other impurity elements. SEM results indicated that the CVD B coating was a flake-like or column-like crystal with a compact cross-section. The crack width in the CVD SiC coating deposited on CVD B is smaller than that in a CVD SiC coating deposited on CVD SiC coating. After oxidation at 700 deg. C and 1000 deg. C, XRD results indicated that the coating was covered by product B 2 O 3 or B 2 O 3 .xSiO 2 film. The cracks were sealed as observed by SEM. There was a large amount of flake-like material on hybrid coating surface after oxidation at 1300 deg. C. Oxidation weight loss and residual flexural strength results showed that hybrid SiC/B/SiC multilayer coating provided better oxidation protection for C/SiC composite than a three layer CVD SiC coating at temperatures from 700 deg. C to 1000 deg. C for 600 min, but worse oxidation protection above 1000 deg. C due to the large amount of volatilization of B 2 O 3 or B 2 O 3 .xSiO 2

  11. Nitrogen and hydrogen related infrared absorption in CVD diamond films

    Energy Technology Data Exchange (ETDEWEB)

    Titus, E. [Department of Mechanical Engineering, University of Aveiro, 3810-193 (Portugal)]. E-mail: elby@mec.ua.pt; Ali, N. [Department of Mechanical Engineering, University of Aveiro, 3810-193 (Portugal); Cabral, G. [Department of Mechanical Engineering, University of Aveiro, 3810-193 (Portugal); Madaleno, J.C. [Department of Mechanical Engineering, University of Aveiro, 3810-193 (Portugal); Neto, V.F. [Department of Mechanical Engineering, University of Aveiro, 3810-193 (Portugal); Gracio, J. [Department of Mechanical Engineering, University of Aveiro, 3810-193 (Portugal); Ramesh Babu, P [Materials Ireland, Polymer research Centre, School of Physics, Dublin (Ireland); Sikder, A.K. [Department of Physics, Indian Institute of Technology (IIT), Bombay (India); Okpalugo, T.I. [Northern Ireland Bio-Engineering Centre, NIBEC, University of Ulster (United Kingdom); Misra, D.S. [Department of Physics, Indian Institute of Technology (IIT), Bombay (India)

    2006-09-25

    In this paper, we investigate on the presence of hydrogen and nitrogen related infrared absorptions in chemical vapour deposited (CVD) diamond films. Investigations were carried out in cross sections of diamond windows, deposited using hot filament CVD (HFCVD). The results of Scanning Electron Microscopy (SEM), Fourier Transform Infrared (FTIR) and Raman spectroscopy carried out in a cross section of self-standing diamond sheets are presented. The FTIR spectra showed several features that have not been reported before. In order to confirm the frequency of nitrogen related vibrations, ab-initio calculations were carried out using GAMESS program. The investigations showed the presence of several C-N related peaks in one-phonon (1000-1333 cm{sup -1}). The deconvolution of the spectra in the three-phonon region (2700-3150 cm{sup -1}) also showed a number of vibration modes corresponding to sp {sup m}CH {sub n} phase of carbon. Elastic recoil detection analysis (ERDA) was employed to compare the H content measured using FTIR technique. Using these measurements we point out that the oscillator strength of the different IR modes varies depending upon the structure and H content of CVD diamond sheets.

  12. CVD polycrystalline diamond. A novel neutron detector and applications

    International Nuclear Information System (INIS)

    Mongkolnavin, R.

    1998-01-01

    Chemical Vapour Deposition (CVD) Polycrystalline Diamond film has been investigated as a low noise sensor for beta particles, gammas and neutrons using High Energy Physics technologies. Its advantages and disadvantages have been explored in comparison with other particle detectors such as silicon detector and other plastic scintillators. The performance and characteristic of the diamond detector have been fully studied and discussed. These studies will lead to a better understanding of how CVD diamonds perform as a detector and how to improve their performance under various conditions. A CVD diamond detector model has been proposed which is an attempt to explain the behaviour of such an extreme detector material. A novel neutron detector is introduced as a result of these studies. A good thermal and fast neutron detector can be fabricated with CVD diamond with new topologies. This detector will perform well without degradation in a high neutron radiation environment, as diamond is known to be radiation hard. It also offers better neutrons and gammas discrimination for high gamma background applications compared to other semiconductor detectors. A full simulation of the detector has also been done using GEANT, a Monte-Carlo simulation program for particle detectors. Simulation results show that CVD diamond detectors with this novel topology can detect neutrons with great directionality. Experimental work has been done on this detector in a nuclear reactor environment and accelerator source. A novel neutron source which offers a fast pulse high-energy neutrons has also been studied. With this detector, applications in neutron spectrometer for low-Z material have been pursued with various neutron detection techniques. One of these is a low-Z material identification system. The system has been designed and simulated for contraband luggage interrogation using the detector and the novel neutron source. Also other neutron related applications have been suggested. (author)

  13. CVD polycrystalline diamond. A novel neutron detector and applications

    International Nuclear Information System (INIS)

    Mongkolnavin, R.

    1998-07-01

    Chemical Vapour Deposition (CVD) Polycrystalline Diamond film has been investigated as a low noise sensor for beta particles, gammas and neutrons using High Energy Physics technologies. Its advantages and disadvantages have been explored in comparison with other particle detectors such as silicon detector and other plastic scintillators. The performance and characteristic of the diamond detector have been fully studied and discussed. These studies will lead to a better understanding of how CVD diamonds perform as a detector and how to improve their performance under various conditions. A CVD diamond detector model has been proposed which is an attempt to explain the behaviour of such an extreme detector material. A novel neutron detector is introduced as a result of these studies. A good thermal and fast neutron detector can be fabricated with CVD diamond with new topologies. This detector will perform well without degradation in a high neutron radiation environment, as diamond is known to be radiation-hard. It also offers better neutrons and gammas discrimination for high gamma background applications compared to other semiconductor detectors. A full simulation of the detector has also been done using GEANT, a Monte Carlo simulation program for particle detectors. Simulation results show that CVD diamond detectors with this novel topology can detect neutrons with great directionality. Experimental work has been done on this detector in a nuclear reactor environment and accelerator source. A novel neutron source which offers a fast pulse high-energy neutrons has also been studied. With this detector, applications in neutron spectrometry for low-Z material have been pursued with various neutron detection techniques. One of these is a low-Z material identification system. The system has been designed and simulated for contraband luggage interrogation using the detector and the novel neutron source. (author)

  14. VO{sub x} effectively doping CVD-graphene for transparent conductive films

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Qinghua; Shi, Liangjing [State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050 (China); Zhang, Qinghong [State Key Laboratory of Modification of Chemical Fibers and Polymer Materials, College of Material Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620 (China); Wang, Weiqi; Zheng, Huifeng [State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050 (China); Zhang, Yuzhi [The Key Laboratory of Inorganic Coating Materials, Shanghai Institute of Ceramics, Chinese Academy of Sciences,1295 Dingxi Road, Shanghai 200050 (China); Liu, Yangqiao, E-mail: yqliu@mail.sic.ac.cn [State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050 (China); Sun, Jing, E-mail: jingsun@mail.sic.ac.cn [State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050 (China)

    2016-11-30

    Highlights: • Doping process operated easily. • Sheet resistance decreased efficiently after doping. • Sheet resistance of doped graphene is stable after exposed in the air. • Mechanism of doping process is studied. - Abstract: Chemical vapor deposition(CVD)-synthesized graphene is potentially an alternative for tin-doped indium oxide (ITO) transparent conductive films (TCFs), however its sheet resistance is still too high to meet many demands. Vanadium oxide has been widely applied as smart window materials, however, no study has been reported to use it as dopant to improve the conductivity of graphene TCFs. In this study, we firstly reported that VO{sub x} doping can effectively lower the sheet resistance of CVD-graphene films while keeping its good optical properties, whose transmittance is as high as 86–90%. The optimized VO{sub x}-doped graphene exhibits a sheet resistance as low as 176 Ω/□, which decreases by 56% compared to the undoped graphene films. The doping process is convenient, stable, economical and easy to operate. What is more, VO{sub x} can effectively increase the work function(WF) of the film, making it more appropriate for use in solar cells. The evolution of the VO{sub x} species annealed at different temperatures below 400 °C has been detailed studied for the first time, based on which the doping mechanism is proposed. The prepared VO{sub x} doped graphene is expected to be a promising candidate for transparent conductive film purposes.

  15. Graphene growth from reduced graphene oxide by chemical vapour deposition: seeded growth accompanied by restoration

    Science.gov (United States)

    Chang, Sung-Jin; Hyun, Moon Seop; Myung, Sung; Kang, Min-A.; Yoo, Jung Ho; Lee, Kyoung G.; Choi, Bong Gill; Cho, Youngji; Lee, Gaehang; Park, Tae Jung

    2016-03-01

    Understanding the underlying mechanisms involved in graphene growth via chemical vapour deposition (CVD) is critical for precise control of the characteristics of graphene. Despite much effort, the actual processes behind graphene synthesis still remain to be elucidated in a large number of aspects. Herein, we report the evolution of graphene properties during in-plane growth of graphene from reduced graphene oxide (RGO) on copper (Cu) via methane CVD. While graphene is laterally grown from RGO flakes on Cu foils up to a few hundred nanometres during CVD process, it shows appreciable improvement in structural quality. The monotonous enhancement of the structural quality of the graphene with increasing length of the graphene growth from RGO suggests that seeded CVD growth of graphene from RGO on Cu surface is accompanied by the restoration of graphitic structure. The finding provides insight into graphene growth and defect reconstruction useful for the production of tailored carbon nanostructures with required properties.

  16. Laser-Directed CVD 3D Printing System for Refractory Metal Propulsion Hardware, Phase II, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — In this work, Ultramet is developing a three-dimensional (3D) laser-directed chemical vapor deposition (CVD) additive manufacturing system to build free-form...

  17. An important atomic process in the CVD growth of graphene: Sinking and up-floating of carbon atom on copper surface

    International Nuclear Information System (INIS)

    Li, Yingfeng; Li, Meicheng; Gu, TianSheng; Bai, Fan; Yu, Yue; Trevor, Mwenya; Yu, Yangxin

    2013-01-01

    By density functional theory (DFT) calculations, the early stages of the growth of graphene on copper (1 1 1) surface are investigated. At the very first time of graphene growth, the carbon atom sinks into subsurface. As more carbon atoms are adsorbed nearby the site, the sunken carbon atom will spontaneously form a dimer with one of the newly adsorbed carbon atoms, and the formed dimer will up-float on the top of the surface. We emphasize the role of the co-operative relaxation of the co-adsorbed carbon atoms in facilitating the sinking and up-floating of carbon atoms. In detail: when two carbon atoms are co-adsorbed, their co-operative relaxation will result in different carbon–copper interactions for the co-adsorbed carbon atoms. This difference facilitates the sinking of a single carbon atom into the subsurface. As a third carbon atom is co-adsorbed nearby, it draws the sunken carbon atom on top of the surface, forming a dimer. Co-operative relaxations of the surface involving all adsorbed carbon atoms and their copper neighbors facilitate these sinking and up-floating processes. This investigation is helpful for the deeper understanding of graphene synthesis and the choosing of optimal carbon sources or process.

  18. Assessment of CVD diamond as a thermoluminescence dosemeter material

    International Nuclear Information System (INIS)

    Borchi, E.; Furetta, C.; Leroy, C.

    1996-01-01

    Diamond has a low atomic number (Z = 6) and is therefore essentially soft tissue (Z = 7.4) equivalent. As such, diamond is an attractive material for applications in dosimetry in which the radiation absorption in the sensor material should be as close as possible to that of soft tissue. Synthetic diamond prepared by chemical vapour deposition (CVD) offers an attractive option for this application. The aim of the present work is to report results on the thermoluminescence (TL) properties of CVD diamond samples. The annealing procedures, the linearity of the TL response as a function of dose, a short-term fading experiment and some kinetic properties have been investigated and are reported here. (Author)

  19. Synthesis of graphene on nickel films by CVD method using methane

    International Nuclear Information System (INIS)

    Castro, Manuela O. de; Liebold-Ribeiro, Yvonne; Barros, Eduardo B.; Salomao, Francisco C.C.; Mendes Filho, Josue; Souza Filho, Antonio G.; Chesman, Carlos

    2011-01-01

    Full text: Nanomaterials have opened up many possibilities for groundbreaking innovations in various technologies of modern society. One key example is graphene, which is composed of one-atom-thick sheet of sp2-bonded carbon atoms, arranged in a hexagonal symmetry. However, real world applications of graphene require well-established and large synthesis techniques. The so-called Chemical Vapor Deposition (CVD) is one of the most promising method for synthesizing graphene. The general idea of this technique is to dissolve carbon atoms inside a transition metal melt at a certain temperature, then allowing the dissolved carbon to precipitate at lower temperatures as single layer graphene (SLG). In the present work, we used the CVD method and methane gas as carbon source for the synthesis of graphene on silicon (Si) substrates (300nm thermal oxide) covered with sputtered nickel (Ni) films as catalyst. In order to achieve large-area and defect-free graphene sheets the influence of the different growth parameters (growth temperature and time, gas flow of methane, film thickness and grain size of Ni) on quality and quantity of graphene growth were studied. The obtained graphene films were transferred to a silicon substrate by the polymer coating process, using polymethyl-methacrylate (PMMA) as coating. In order to characterize the transferred graphene we used Scanning Electron Microscopy (SEM), Raman Spectroscopy, Optical Microscopy and Atomic Force Microscopy (AFM). The results show the influence of CVD process parameters on the quality and quantity of graphene growth in our experimental conditions. Acknowledgments: The authors thank Brazilian agencies CNPq and FUNCAP for financial support and Alfonso Reina (MIT, USA) for helpful discussions. (author)

  20. Coating of carbon short fibers with thin ceramic layers by chemical vapor deposition

    International Nuclear Information System (INIS)

    Hackl, Gerrit; Gerhard, Helmut; Popovska, Nadejda

    2006-01-01

    Carbon short fiber bundles with a length of 6 mm were uniformly coated using specially designed, continuous chemical vapor deposition (CVD) equipment. Thin layers of titanium nitride, silicon nitride (SiC) and pyrolytic carbon (pyC) were deposited onto several kilograms of short fibers in this large scale CVD reactor. Thermo-gravimetric analyses and scanning electron microscopy investigations revealed layer thicknesses between 20 and 100 nm on the fibers. Raman spectra of pyC coated fibers show a change of structural order depending on the CVD process parameters. For the fibers coated with SiC, Raman investigations showed a deposition of amorphous SiC. The coated carbon short fibers will be applied as reinforcing material in composites with ceramic and metallic matrices

  1. Closed-Loop Process Control for Electron Beam Freeform Fabrication and Deposition Processes

    Science.gov (United States)

    Taminger, Karen M. (Inventor); Hafley, Robert A. (Inventor); Martin, Richard E. (Inventor); Hofmeister, William H. (Inventor)

    2013-01-01

    A closed-loop control method for an electron beam freeform fabrication (EBF(sup 3)) process includes detecting a feature of interest during the process using a sensor(s), continuously evaluating the feature of interest to determine, in real time, a change occurring therein, and automatically modifying control parameters to control the EBF(sup 3) process. An apparatus provides closed-loop control method of the process, and includes an electron gun for generating an electron beam, a wire feeder for feeding a wire toward a substrate, wherein the wire is melted and progressively deposited in layers onto the substrate, a sensor(s), and a host machine. The sensor(s) measure the feature of interest during the process, and the host machine continuously evaluates the feature of interest to determine, in real time, a change occurring therein. The host machine automatically modifies control parameters to the EBF(sup 3) apparatus to control the EBF(sup 3) process in a closed-loop manner.

  2. CVD-Graphene-Based Flexible, Thermoelectrochromic Sensor

    Directory of Open Access Journals (Sweden)

    Adam Januszko

    2017-01-01

    Full Text Available The main idea behind this work was demonstrated in a form of a new thermoelectrochromic sensor on a flexible substrate using graphene as an electrically reconfigurable thermal medium (TEChrom™. Our approach relies on electromodulation of thermal properties of graphene on poly(ethylene terephthalate (PET via mechanical destruction of a graphene layer. Graphene applied in this work was obtained by chemical vapor deposition (CVD technique on copper substrate and characterized by Raman and scanning tunneling spectroscopy. Electrical parameters of graphene were evaluated by the van der Pauw method on the transferred graphene layers onto SiO2 substrates by electrochemical delamination method. Two configurations of architecture of sensors, without and with the thermochromic layer, were investigated, taking into account the increase of voltage from 0 to 50 V and were observed by thermographic camera to define heat energy. Current-voltage characteristics obtained for the sensor with damaged graphene layer are linear, and the resistivity is independent from the current applied. The device investigated under 1000 W/m2 exhibited rise of resistivity along with increased temperature. Flexible thermoelectrochromic device with graphene presented here can be widely used as a sensor for both the military and civil monitoring.

  3. Controlled growth of CNT in mesoporous AAO through optimized conditions for membrane preparation and CVD operation

    Energy Technology Data Exchange (ETDEWEB)

    Ciambelli, P; Sarno, M; Leone, C; Sannino, D [Department of Chemical and Food Engineering, University of Salerno, I-84084 Fisciano (Italy); Arurault, L; Fontorbes, S; Datas, L; Lenormand, P; Le Blond Du Plouy, S, E-mail: msarno@unisa.it, E-mail: arurault@chimie.ups-tlse.fr [Universite de Toulouse, CIRIMAT, UPS/INPT/CNRS, LCMIE, F-31062 Toulouse Cedex 9 (France)

    2011-07-01

    Anodic aluminium oxide (RAAO) membranes with a mesoporous structure were prepared under strictly controlling experimental process conditions, and physically and chemically characterized by a wide range of experimental techniques. Commercial anodic aluminium oxide (CAAO) membranes were also investigated for comparison. We demonstrated that RAAO membranes have lower content of both water and phosphorus and showed better porosity shape than CAAO. The RAAO membranes were used for template growth of carbon nanotubes (CNT) inside its pores by ethylene chemical vapour deposition (CVD) in the absence of a catalyst. A composite material, containing one nanotube for each channel, having the same length as the membrane thickness and an external diameter close to the diameter of the membrane holes, was obtained. Yield, selectivity and quality of CNTs in terms of diameter, length and arrangement (i.e. number of tubes for each channel) were optimized by investigating the effect of changing the experimental conditions for the CVD process. We showed that upon thermal treatment RAAO membranes were made up of crystallized allotropic alumina phases, which govern the subsequent CNT growth, because of their catalytic activity, likely due to their Lewis acidity. The strict control of experimental conditions for membrane preparation and CNT growth allowed us to enhance the carbon structural order, which is a critical requisite for CNT application as a substitute for copper in novel nano-interconnects.

  4. Simulation and experimental approach to CVD-FBR aluminide coatings on ferritic steels under steam oxidation

    International Nuclear Information System (INIS)

    Leal, J.; Alcala, G.; Bolivar, F.J.; Sanchez, L.; Hierro, M.P.; Perez, F.J.

    2008-01-01

    The ferritic steels used to produce structural components for steam turbines are susceptible to strong corrosion and creep damage due to the extreme working conditions pushed to increase the process efficiency and to reduce pollutants release. The response of aluminide coatings on the P-92 ferritic steel, deposited by CVD-FBR, during oxidation in a simulated steam environment was studied. The analyses were performed at 650 deg. C in order to simulate the working conditions of a steam turbine, and 800 deg. C in order to produce a critical accelerated oxidation test. The Thermo-Calc software was used to predict the different solid phases that could be generated during the oxidation process, in both, coated and uncoated samples. In order to validate the thermodynamic results, the oxides scales produced during steam tests were characterized by different techniques such as XRD, SEM and EDS. The preliminary results obtained are discussed in the present work

  5. The CVD graphene transfer procedure introduces metallic impurities which alter the graphene electrochemical properties.

    Science.gov (United States)

    Ambrosi, Adriano; Pumera, Martin

    2014-01-07

    High quality graphene films can be fabricated by chemical vapor deposition (CVD) using Ni and Cu as catalytic substrates. Such a synthesis procedure always requires a subsequent transfer process to be performed in order to eliminate the metallic substrate and transfer the graphene onto the desired surface. We show here that such a transfer process causes significant contamination of the graphene film with residual Fe and Ni metal impurities. Fe contamination derives from the use of Fe-based etching solutions to dissolve Ni (or Cu) substrates, while residual Ni (or Cu) is due to an incomplete metal substrate etching. The presence of these metallic impurities within the transferred graphene film affects tremendously its electrochemical behavior when adopted as an electrode material.

  6. Granular nanocrystalline zirconia electrolyte layers deposited on porous SOFC cathode substrates

    International Nuclear Information System (INIS)

    Seydel, Johannes; Becker, Michael; Ivers-Tiffee, Ellen; Hahn, Horst

    2009-01-01

    Thin granular yttria-stabilized zirconia (YSZ) electrolyte layers were prepared by chemical vapor synthesis and deposition (CVD/CVS) on a porous substoichiometric lanthanum-strontium-manganite (ULSM) solid oxide fuel cell cathode substrate. The substrate porosity was optimized with a screen printed fine porous buffer layer. Structural analysis by scanning electron microscopy showed a homogeneous, granular nanocrystalline layer with a microstructure that was controlled via reactor settings. The CVD/CVS gas-phase process enabled the deposition of crack-free granular YSZ films on porous ULSM substrates. The electrolyte layers characterized with impedance spectroscopy exhibited enhanced grain boundary conductivity.

  7. CN distribution in flame deposition of diamond and its relation to the growth rate, morphology, and nitrogen incorporation of the diamond layer

    NARCIS (Netherlands)

    Klein-Douwel, R.J.H.; Schermer, J.J.; Meulen, ter J.J.

    1998-01-01

    Two-dimensional laser-induced fluorescence (2D-LIF) measurements areapplied to the chemical vapour deposition (CVD) of diamond by anoxyacetylene flame to visualize the distribution of CN in the gas phaseduring the diamond growth process. The obtained diamond deposits arecharacterized by optical as

  8. Improvement of a microwave ECR plasma source for the plasma immersion ion implantation and deposition process

    International Nuclear Information System (INIS)

    Wu Hongchen; Zhang Huafang; Peng Liping; Jiang Yanli; Ma Guojia

    2004-01-01

    The Plasma Immersion Ion Implantation and Deposition (PIII and D) process has many advantages over the pure plasma immersion ion implantation or deposition. It can compensate for or eliminate the disadvantages of the shallow modification layer (for PIII) and increase the bond strength of the coating (of deposition). For this purpose, a new type of microwave plasma source used in the PIII and D process was developed, composed of a vacuum bend wave guide and a special magnetic circuit, so that the coupling window was protected from being deposited with a coating and bombarded by high-energy particles. So the life of the window is increased. To enhance the bonding between the coating and substrate a new biasing voltage is applied to the work piece so that the implantation and deposition (or hybrid process) can be completed in one vacuum cycle

  9. Origin, state of the art and some prospects of the diamond CVD

    CERN Document Server

    Spitsyn, B V; Alexenko, A E

    2000-01-01

    A short review on the diamond CVD origin, together with its state of the art and some prospects was given. New hybrid methods of the diamond CVD permit to gain 1.2 to 6 times of growth rate in comparison with ordinary diamond CVD's. Recent results on n-type diamond film synthesis through phosphorus doping in the course of the CVD process are briefly discussed. In comparison with high-pressure diamond synthesis, the CVD processes open new facets of the diamond as ultimate crystal for science and technology evolution. It was stressed that, mainly on the basis of new CVDs of diamond, the properties of natural diamond are not only reproduced, but can be surpassed. As examples, mechanical (fracture resistance), physical (thermal conductivity), and chemical (oxidation stability) properties are mentioned. Some present issues in the field are considered.

  10. Performance characterization of Ni60-WC coating on steel processed with supersonic laser deposition

    Directory of Open Access Journals (Sweden)

    Fang Luo

    2015-03-01

    Full Text Available Ni60-WC particles are used to improve the wear resistance of hard-facing steel due to their high hardness. An emerging technology that combines laser with cold spraying to deposit the hard-facing coatings is known as supersonic laser deposition. In this study, Ni60-WC is deposited on low-carbon steel using SLD. The microstructure and performance of the coatings are investigated through SEM, optical microscopy, EDS, XRD, microhardness and pin-on-disc wear tests. The experimental results of the coating processed with the optimal parameters are compared to those of the coating deposited using laser cladding.

  11. Deposition of metallic nanoparticles on carbon nanotubes via a fast evaporation process

    International Nuclear Information System (INIS)

    Ren Guoqiang; Xing Yangchuan

    2006-01-01

    A new technique was developed for the deposition of colloidal metal nanoparticles on carbon nanotubes. It involves fast evaporation of a suspension containing sonochemically functionalized carbon nanotubes and colloidal nanoparticles. It was demonstrated that metallic nanoparticles with different sizes and concentrations can be deposited on the carbon nanotubes with only a few agglomerates. The technique does not seem to be limited by what the nanoparticles are, and therefore would be applicable to the deposition of other nanoparticles on carbon nanotubes. PtPd and CoPt 3 alloy nanoparticles were used to demonstrate the deposition process. It was found that the surfactants used to disperse the nanoparticles can hinder the nanoparticle deposition. When the nanoparticles were washed with ethanol, they could be well deposited on the carbon nanotubes. The obtained carbon nanotube supported metal nanoparticles were characterized by transmission electron microscopy, energy dispersive x-ray spectroscopy, x-ray photoelectron spectroscopy, and cyclic voltammetry

  12. Electroless deposition process for zirconium and zirconium alloys

    Science.gov (United States)

    Donaghy, Robert E.; Sherman, Anna H.

    1981-01-01

    A method is disclosed for preventing stress corrosion cracking or metal embrittlement of a zirconium or zirconium alloy container that is to be coated on the inside surface with a layer of a metal such as copper, a copper alloy, nickel, or iron and used for holding nuclear fuel material as a nuclear fuel element. The zirconium material is etched in an etchant solution, desmutted mechanically or ultrasonically, oxidized to form an oxide coating on the zirconium, cleaned in an aqueous alkaline cleaning solution, activated for electroless deposition of a metal layer and contacted with an electroless metal plating solution. This method provides a boundary layer of zirconium oxide between the zirconium container and the metal layer.

  13. A Study of CRUD Deposition Processing and Composition Materials

    International Nuclear Information System (INIS)

    Jung, Yanghong; Kim, H. M.; Yoo, B. O.; Baik, S. J.; Ahn, S. B.

    2013-07-01

    After cutting and drilling the spent fuel, we made a scrapping crud from the surface on the cladding. To scrap crud on the cladding surface, we made a special apparatus which has a 1/1,000 mm accuracy, but we could not taken crud. Thus, we effort the most possible use equipment to take crud samples, but unfortunately failed to get crud. We assume the crud would be dissolved. Because of the two fuel cladding, 17ACE7 and Plus 7, which were storage in PIEF pool for few years, it would be chemical reaction between pool water and crud deposited on the cladding. But we could not know the reason clearly. Therefore, it was impossible to analysis the crud, after that this project had to be stopped

  14. A measure of the interfacial shear strength between SiC(CVD)/B(CVD) filament--aluminum matrix by fragmentation method

    International Nuclear Information System (INIS)

    Jiang, Y.Q.; Chen, X.J.; Yang, D.M.; Fei, X.; Pan, J.

    1993-01-01

    The tensile specimens used are of dog-bone shape and consist of single axial SiC (CVD) /B (CVD) filament processed by CVD and embedded in a LD-2 aluminum alloy. Model composite specimens have been fabricated by a high pressure squeeze casting technique. This paper describes the application of an Acoustic Emission Technique for locating the position of fiber breaks and thus determining the length distribution of fiber fragments resulting when a composite specimen containing a single fiber is loaded to failure. The critical lengths (minimal lengths) are checked by Corrosion Method

  15. Simple method for the calculation and use of CVD phase diagrams with applications to the Ti-B-Cl-H system, 1200 to 8000K

    International Nuclear Information System (INIS)

    Randich, E.; Gerlach, T.M.

    1980-03-01

    A simple method for calculating multi-component gas-solid equilibrium phase diagrams for chemical vapor deposition (CVD) systems is presented. The method proceeds in three steps: dtermination of stable solid assemblages, evaluation of gas-solid stability relations, and calcuation of conventional phase diagrams using a new free energy minimization technique. The phase diagrams can be used to determine (1) bulk compositions and phase fields accessible by CVD techniques; (2) expected condensed phases for various starting gas mixtures; and (3) maximum equilibrium yields for specific CVD process variables. The three step thermodynamic method is used to calcuate phase diagrams for the example CVD system Ti-B-Cl-H at 1200 and 800 0 K. Examples of applications of the diagrams for yield optimization and experimental accessibility studies are presented and discussed. Experimental verification of the TiB 2 + Gas/Gas phase field boundary at 1200 0 K, H/Cl = 1 confirms the calculated boundary and indicates that equilibrium is nearly and rapidly approached under laboratory conditions

  16. High-efficiency supercapacitor electrodes of CVD-grown graphenes hybridized with multiwalled carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Kalam, Amir Abul; Bae, Joon Ho [Dept. of Nano-physics, Gachon University, Seongnam (Korea, Republic of); Park, Soo Bin; Seo, Yong Ho [Nanotechnology and Advanced Material Engineering, HMC, and GRI, Sejong University, Seoul (Korea, Republic of)

    2015-08-15

    We demonstrate, for the first time, high-efficiency supercapacitors by utilizing chemical vapor deposition (CVD)-grown graphenes hybridized with multiwalled carbon nanotubes (CNTs). A single-layer graphene was grown by simple CVD growth method, and transferred to polyethylene terephthalate substrates. The bare graphenes were further hybridized with multiwalled CNTs by drop-coating CNTs on graphenes. The supercapacitors using bare graphenes and graphenes with CNTs revealed that graphenes with CNTs resulted in enhanced supercapacitor performances of 2.2- (the mass-specific capacitance) and 4.4-fold (the area-specific capacitance) of those of bare graphenes. Our strategy to improve electrochemical performance of CVD-grown graphenes is advantageous for large-scale graphene electrodes due to high electrical conductivity of CVD-grown graphenes and cost-effectiveness of using multiwalled CNTs as compared to conventional employment of single-walled CNTs.

  17. High-efficiency supercapacitor electrodes of CVD-grown graphenes hybridized with multiwalled carbon nanotubes

    International Nuclear Information System (INIS)

    Kalam, Amir Abul; Bae, Joon Ho; Park, Soo Bin; Seo, Yong Ho

    2015-01-01

    We demonstrate, for the first time, high-efficiency supercapacitors by utilizing chemical vapor deposition (CVD)-grown graphenes hybridized with multiwalled carbon nanotubes (CNTs). A single-layer graphene was grown by simple CVD growth method, and transferred to polyethylene terephthalate substrates. The bare graphenes were further hybridized with multiwalled CNTs by drop-coating CNTs on graphenes. The supercapacitors using bare graphenes and graphenes with CNTs revealed that graphenes with CNTs resulted in enhanced supercapacitor performances of 2.2- (the mass-specific capacitance) and 4.4-fold (the area-specific capacitance) of those of bare graphenes. Our strategy to improve electrochemical performance of CVD-grown graphenes is advantageous for large-scale graphene electrodes due to high electrical conductivity of CVD-grown graphenes and cost-effectiveness of using multiwalled CNTs as compared to conventional employment of single-walled CNTs

  18. Advanced deposition model for thermal activated chemical vapor deposition

    Science.gov (United States)

    Cai, Dang

    Thermal Activated Chemical Vapor Deposition (TACVD) is defined as the formation of a stable solid product on a heated substrate surface from chemical reactions and/or dissociation of gaseous reactants in an activated environment. It has become an essential process for producing solid film, bulk material, coating, fibers, powders and monolithic components. Global market of CVD products has reached multi billions dollars for each year. In the recent years CVD process has been extensively used to manufacture semiconductors and other electronic components such as polysilicon, AlN and GaN. Extensive research effort has been directed to improve deposition quality and throughput. To obtain fast and high quality deposition, operational conditions such as temperature, pressure, fluid velocity and species concentration and geometry conditions such as source-substrate distance need to be well controlled in a CVD system. This thesis will focus on design of CVD processes through understanding the transport and reaction phenomena in the growth reactor. Since the in situ monitor is almost impossible for CVD reactor, many industrial resources have been expended to determine the optimum design by semi-empirical methods and trial-and-error procedures. This approach has allowed the achievement of improvements in the deposition sequence, but begins to show its limitations, as this method cannot always fulfill the more and more stringent specifications of the industry. To resolve this problem, numerical simulation is widely used in studying the growth techniques. The difficulty of numerical simulation of TACVD crystal growth process lies in the simulation of gas phase and surface reactions, especially the latter one, due to the fact that very limited kinetic information is available in the open literature. In this thesis, an advanced deposition model was developed to study the multi-component fluid flow, homogeneous gas phase reactions inside the reactor chamber, heterogeneous surface

  19. One-step electrodeposition process of CuInSe2: Deposition time effect

    Indian Academy of Sciences (India)

    Administrator

    CuInSe2 thin films were prepared by one-step electrodeposition process using a simplified two- electrodes system. ... homojunctions or heterojunctions (Rincon et al 1983). Efficiency of ... deposition times onto indium thin oxide (ITO)-covered.

  20. Complex processing of antimony-mercury gold concentrates of Dzhizhikrut Deposit

    International Nuclear Information System (INIS)

    Abdusalyamova, M.N.; Gadoev, S.A.; Dreisinger, D.; Solozhenkin, P.M.

    2013-01-01

    Present article is devoted to complex processing of antimony-mercury gold concentrates of Dzhizhikrut Deposit. The purpose of research was obtaining the metallic mercury and antimony with further gold and thallium extraction.

  1. A discrete element based simulation framework to investigate particulate spray deposition processes

    KAUST Repository

    Mukherjee, Debanjan; Zohdi, Tarek I.

    2015-01-01

    © 2015 Elsevier Inc. This work presents a computer simulation framework based on discrete element method to analyze manufacturing processes that comprise a loosely flowing stream of particles in a carrier fluid being deposited on a target surface

  2. Process control of high rate microcrystalline silicon based solar cell deposition by optical emission spectroscopy

    International Nuclear Information System (INIS)

    Kilper, T.; Donker, M.N. van den; Carius, R.; Rech, B.; Braeuer, G.; Repmann, T.

    2008-01-01

    Silicon thin-film solar cells based on microcrystalline silicon (μc-Si:H) were prepared in a 30 x 30 cm 2 plasma-enhanced chemical vapor deposition reactor using 13.56 or 40.68 MHz plasma excitation frequency. Plasma emission was recorded by optical emission spectroscopy during μc-Si:H absorber layer deposition at deposition rates between 0.5 and 2.5 nm/s. The time course of SiH * and H β emission indicated strong drifts in the process conditions particularly at low total gas flows. By actively controlling the SiH 4 gas flow, the observed process drifts were successfully suppressed resulting in a more homogeneous i-layer crystallinity along the growth direction. In a deposition regime with efficient usage of the process gas, the μc-Si:H solar cell efficiency was enhanced from 7.9 % up to 8.8 % by applying process control

  3. Electrochemical applications of CVD diamond

    International Nuclear Information System (INIS)

    Pastor-Moreno, Gustavo

    2002-01-01

    Diamond technology has claimed an important role in industry since non-expensive methods of synthesis such as chemical vapour deposition allow to elaborate cheap polycrystalline diamond. This fact has increased the interest in the scientific community due to the outstanding properties of diamond. Since Pleskov published in 1987 the first paper in electrochemistry, many researchers around the world have studied different aspects of diamond electrochemistry such as reactivity, electrical structure, etc. As part of this worldwide interest these studies reveal new information about diamond electrodes. These studies report investigation of diamond electrodes characterized using structural techniques like scanning electrode microscopy and Raman spectroscopy. A new electrochemical theory based on surface states is presented that explains the metal and the semiconductor behaviour in terms of the doping level of the diamond electrode. In an effort to characterise the properties of diamond electrodes the band edges for hydrogen and oxygen terminated surface are located in organic solvent, hence avoiding possible interference that are present in aqueous solution. The determination of the band edges is performed by Mott-Schottky studies. These allow the calculation of the flat band potential and therefore the band edges. Additional cyclic voltammetric studies are presented for both types of surface termination. Mott-Schottky data and cyclic voltammograms are compared and explained in terms of the band edge localisation. Non-degenerately p-type semiconductor behaviour is presented for hydrogen terminated boron doped diamond. Graphitic surface states on oxidised surface boron doped diamond are responsible for the electrochemistry of redox couples that posses similar energy. Using the simple redox couple 1,4-benzoquinone effect of surface termination on the chemical behaviour of diamond is presented. Hydrogen sublayers in diamond electrodes seem to play an important role for the

  4. Use of process indices for simplification of the description of vapor deposition systems

    International Nuclear Information System (INIS)

    Kajikawa, Yuya; Noda, Suguru; Komiyama, Hiroshi

    2004-01-01

    Vapor deposition is a complex process, including gas-phase, surface, and solid-phase phenomena. Because of the complexity of chemical and physical processes occurring in vapor deposition processes, it is difficult to form a comprehensive, fundamental understanding of vapor deposition and to control such systems for obtaining desirable structures and performance. To overcome this difficulty, we present a method for simplifying the complex description of such systems. One simplification method is to separate complex systems into multiple elements, and determine which of these are important elements. We call this method abridgement. The abridgement method retains only the dominant processes in a description of the system, and discards the others. Abridgement can be achieved by using process indices to evaluate the relative importance of the elementary processes. We describe the formulation and use of these process indices through examples of the growth of continuous films, initial deposition processes, and the formation of the preferred orientation of polycrystalline films. In this paper, we propose a method for representing complex vapor deposition processes as a set of simpler processes

  5. CVD diamonds as thermoluminescent detectors for medical applications

    International Nuclear Information System (INIS)

    Marczewska, B.; Olko, P.; Nesladek, M.; Waligorski, M.P.R.; Kerremans, Y.

    2002-01-01

    Diamond is believed to be a promising material for medical dosimetry due to its tissue equivalence, mechanical and radiation hardness, and lack of solubility in water or in disinfecting agents. A number of diamond samples, obtained under different growth conditions at Limburg University, using the chemical vapour deposition (CVD) technique, was tested as thermoluminescence dosemeters. Their TL glow curve, TL response after doses of gamma rays, fading, and so on were studied at dose levels and for radiation modalities typical for radiotherapy. The investigated CVD diamonds displayed sensitivity comparable with that of MTS-N (Li:Mg,Ti) detectors, signal stability (reproducibility after several readouts) below 10% (1 SD) and no fading was found four days after irradiation. A dedicated CVD diamond plate was grown, cut into 20 detector chips (3x3x0.5 mm) and used for measuring the dose-depth distribution at different depths in a water phantom, for 60 Co and six MV X ray radiotherapy beams. Due to the sensitivity of diamond to ambient light, it was difficult to achieve reproducibility comparable with that of standard LiF detectors. (author)

  6. Thermoluminescent properties of CVD diamond: applications to ionising radiation dosimetry

    International Nuclear Information System (INIS)

    Petitfils, A.

    2007-09-01

    Remarkable properties of synthetic diamond (human soft tissue equivalence, chemical stability, non-toxicity) make this material suitable for medical application as thermoluminescent dosimeter (TLD). This work highlights the interest of this material as radiotherapy TLD. In the first stage of this work, we looked after thermoluminescent (TL) and dosimetric properties of polycrystalline diamond made by Chemically Vapor Deposited (CVD) synthesis. Dosimetric characteristics are satisfactory as TLD for medical application. Luminescence thermal quenching on diamond has been investigated. This phenomenon leads to a decrease of dosimetric TL peak sensitivity when the heating rate increases. The second part of this work analyses the use of synthetic diamond as TLD in radiotherapy. Dose profiles, depth dose distributions and the cartography of an electron beam obtained with our samples are in very good agreement with results from an ionisation chamber. It is clearly shown that CVD) diamond is of interest to check beams of treatment accelerators. The use of these samples in a control of treatment with Intensity Modulated Radiation Therapy underlines good response of synthetic diamond in high dose gradient areas. These results indicate that CVD diamond is a promising material for radiotherapy dosimetry. (author)

  7. Investigation of CVD graphene topography and surface electrical properties

    International Nuclear Information System (INIS)

    Wang, Rui; Pearce, Ruth; Gallop, John; Patel, Trupti; Pollard, Andrew; Hao, Ling; Zhao, Fang; Jackman, Richard; Klein, Norbert; Zurutuza, Amaia

    2016-01-01

    Combining scanning probe microscopy techniques to characterize samples of graphene, a selfsupporting, single atomic layer hexagonal lattice of carbon atoms, provides far more information than a single technique can. Here we focus on graphene grown by chemical vapour deposition (CVD), grown by passing carbon containing gas over heated copper, which catalyses single atomic layer growth of graphene on its surface. To be useful for applications the graphene must be transferred onto other substrates. Following transfer it is important to characterize the CVD graphene. We combine atomic force microscopy (AFM) and scanning Kelvin probe microscopy (SKPM) to reveal several properties of the transferred film. AFM alone provides topographic information, showing ‘wrinkles’ where the transfer provided incomplete substrate attachment. SKPM measures the surface potential indicating regions with different electronic properties for example graphene layer number. By combining AFM and SKPM local defects and impurities can also be observed. Finally, Raman spectroscopy can confirm the structural properties of the graphene films, such as the number of layers and level of disorder, by observing the peaks present. We report example data on a number of CVD samples from different sources. (paper)

  8. PVD processes of thin films deposition using Hall-current discharge

    International Nuclear Information System (INIS)

    Svadkovskij, I.V.

    2007-01-01

    Results of research and developments in the field of PVD processes of thin films deposition using Hall-current discharge have been summarized. Effects of interaction of ions with surface during deposition have been considered. Also features of application and prospects of devices based on ion beam and magnetron sputtering systems in thin films technologies have been analyzed. The aspects in the field plasma physics, technology and equipment plasma PVD processes of thin films deposition have been systematized, on the base of investigations made by author and other scientists. (authors)

  9. Effect of Energy Input on the Characteristic of AISI H13 and D2 Tool Steels Deposited by a Directed Energy Deposition Process

    Science.gov (United States)

    Park, Jun Seok; Park, Joo Hyun; Lee, Min-Gyu; Sung, Ji Hyun; Cha, Kyoung Je; Kim, Da Hye

    2016-05-01

    Among the many additive manufacturing technologies, the directed energy deposition (DED) process has attracted significant attention because of the application of metal products. Metal deposited by the DED process has different properties than wrought metal because of the rapid solidification rate, the high thermal gradient between the deposited metal and substrate, etc. Additionally, many operating parameters, such as laser power, beam diameter, traverse speed, and powder mass flow rate, must be considered since the characteristics of the deposited metal are affected by the operating parameters. In the present study, the effect of energy input on the characteristics of H13 and D2 steels deposited by a direct metal tooling process based on the DED process was investigated. In particular, we report that the hardness of the deposited H13 and D2 steels decreased with increasing energy input, which we discuss by considering microstructural observations and thermodynamics.

  10. Stress analysis of CVD diamond window for ECH system

    International Nuclear Information System (INIS)

    Takahashi, Koji

    2001-03-01

    The stress analysis of a chemical vapor deposition (CVD) diamond window for Electron Cyclotron Heating and Current Drive (ECH/ECCD) system of fusion reactors is described. It was found that the real size diamond window (φ aper =70mm, t=2.25mm) withstood 14.5 atm. (1.45 MPa). The calculation results of the diamond window by ABAQUS code agree well with the results of the pressure test. The design parameters of the torus diamond window for a vacuum and a safety barrier were also obtained. (author)

  11. CVD diamond sensor for UV-photon detection

    CERN Document Server

    Periale, L; Gervino, G; Lamarina, A M; Palmisano, C; Periale, R; Picchi, P

    2012-01-01

    A new generation of UV photosensors, based on single crystal Chemical Vapour Deposition (CVD) diamonds to work optically coupled with large volume two-phase liquid-Ar (LAr) or liquid-Xe (LXe) detectors nowadays under design for the next generation of WIMPs experiments, is under development. Preliminary tests and first calibrations show these devices can have better performance than the existing UV sensitive detectors (higher photosensitivity and better signal-to-noise ratio). I-V characteristics, dark current measurements, linearity response to X-ray irradiation, and alpha-particle energy resolution are reported and discussed. (C) 2011 Elsevier B.V. All rights reserved.

  12. The effect of alkaline doped catalysts on the CVD synthesis of carbon nanotubes

    DEFF Research Database (Denmark)

    Nemeth, Krisztian; Nemeth, Zoltan; Fejes, Dora

    2011-01-01

    The aim of this work was to develop new doped catalysts for chemical vapour deposition (CVD) synthesis in order to increase the quantity and quality of carbon nanotubes (CNTs). Doping compounds such as CsBr, CsCl, KBr and KCl were used to reach higher carbon deposit and carbon yield. The amount o...... of the dopant alkali compounds varied from 1 to 5%. As prepared CNTs were characterized by transmission electron microscopy (TEM), X‐ray diffraction (XRD) and Raman microscopy. Results revealed that both carbon yield and deposit could be increased over doped catalysts.......The aim of this work was to develop new doped catalysts for chemical vapour deposition (CVD) synthesis in order to increase the quantity and quality of carbon nanotubes (CNTs). Doping compounds such as CsBr, CsCl, KBr and KCl were used to reach higher carbon deposit and carbon yield. The amount...

  13. Synthesis of mullite coatings by chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Mulpuri, R.P.; Auger, M.; Sarin, V.K. [Boston Univ., MA (United States)

    1996-08-01

    Formation of mullite on ceramic substrates via chemical vapor deposition was investigated. Mullite is a solid solution of Al{sub 2}O{sub 3} and SiO{sub 2} with a composition of 3Al{sub 2}O{sub 3}{circ}2SiO{sub 2}. Thermodynamic calculations performed on the AlCl{sub 3}-SiCl{sub 4}-CO{sub 2}-H{sub 2} system were used to construct equilibrium CVD phase diagrams. With the aid of these diagrams and consideration of kinetic rate limiting factors, initial process parameters were determined. Through process optimization, crystalline CVD mullite coatings have been successfully grown on SiC and Si{sub 3}N{sub 4} substrates. Results from the thermodynamic analysis, process optimization, and effect of various process parameters on deposition rate and coating morphology are discussed.

  14. Salt separation of uranium deposits generated from electrorefining in pyro process

    International Nuclear Information System (INIS)

    Kwon, S. W.; Park, K. M.; Jeong, J. H.; Lee, H. S.; Kim, J. G.

    2012-01-01

    Electrorefining is a key step in a pyro processing. Electrorefining process is generally composed of two recovery steps- deposit of uranium onto a solid cathode(electrorefining) and then the recovery of the remaining uranium and TRU(TransUranic) elements simultaneously by a liquid cadmium cathode(electrowinning). The uranium ingot is prepared from the deposits after the salt separation. In this study, the sequential operation of the liquid salt separation? distillation of the residual salt was attempted for the achievement of high throughput performance in the salt separation. The effects of deposit size and packing density were also investigated with steel chips, steel chips, and uranium dendrites. The apparent evaporation rate decreased with the increasing packing density or the increasing size of deposits due to the hindrance of the vapor transport by the deposits. It was found that the packing density and the geometry of deposit crucible are important design parameters for the salt separation system. Base on the results of the study, an engineering scale salt distiller was developed and installed in the argon cell. The salt distiller is a batch-type, and the process capacity to about 50 kg U-deposits/day. The design of the salt distiller is based on the remote operation by Master Slave Manipulator (MSM) and a hoist. The salt distiller is composed of two large blocks of the distillation tower and the crucible loading system for the transportation to maintenance room via the Large Transfer Lock (LTL)

  15. Salt separation of uranium deposits generated from electrorefining in pyro process

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, S. W.; Park, K. M.; Jeong, J. H.; Lee, H. S.; Kim, J. G. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-03-15

    Electrorefining is a key step in a pyro processing. Electrorefining process is generally composed of two recovery steps- deposit of uranium onto a solid cathode(electrorefining) and then the recovery of the remaining uranium and TRU(TransUranic) elements simultaneously by a liquid cadmium cathode(electrowinning). The uranium ingot is prepared from the deposits after the salt separation. In this study, the sequential operation of the liquid salt separation? distillation of the residual salt was attempted for the achievement of high throughput performance in the salt separation. The effects of deposit size and packing density were also investigated with steel chips, steel chips, and uranium dendrites. The apparent evaporation rate decreased with the increasing packing density or the increasing size of deposits due to the hindrance of the vapor transport by the deposits. It was found that the packing density and the geometry of deposit crucible are important design parameters for the salt separation system. Base on the results of the study, an engineering scale salt distiller was developed and installed in the argon cell. The salt distiller is a batch-type, and the process capacity to about 50 kg U-deposits/day. The design of the salt distiller is based on the remote operation by Master Slave Manipulator (MSM) and a hoist. The salt distiller is composed of two large blocks of the distillation tower and the crucible loading system for the transportation to maintenance room via the Large Transfer Lock (LTL)

  16. Crystal growth of CVD diamond and some of its peculiarities

    CERN Document Server

    Piekarczyk, W

    1999-01-01

    Experiments demonstrate that CVD diamond can form in gas environments that are carbon undersaturated with respect to diamond. This fact is, among others, the most serious violation of principles of chemical thermodynamics. In this $9 paper it is shown that none of the principles is broken when CVD diamond formation is considered not a physical process consisting in growth of crystals but a chemical process consisting in accretion of macro-molecules of polycyclic $9 saturated hydrocarbons belonging to the family of organic compounds the smallest representatives of which are adamantane, diamantane, triamantane and so forth. Since the polymantane macro-molecules are in every respect identical with $9 diamond single crystals with hydrogen-terminated surfaces, the accretion of polymantane macro- molecules is a process completely equivalent to the growth of diamond crystals. However, the accretion of macro-molecules must be $9 described in a way different from that used to describe the growth of crystals because so...

  17. Measures for waste water management from recovery processing of Zhushanxia uranium deposit

    International Nuclear Information System (INIS)

    Liu Yaochi; Xu Lechang

    2000-01-01

    Measures for waste water management from recovery processing of Zhushanxia uranium deposit of Wengyuan Mine is analyzed, which include improving process flow, recycling process water used in uranium mill as much as possible and choosing a suitable disposing system. All these can decrease the amount of waste water, and also reduce costs of disposing waste water and harm to environment

  18. Deposition of polymeric perfluored thin films in proton ionic membranes by plasma processes

    International Nuclear Information System (INIS)

    Polak, Peter Lubomir; Mousinho, Ana Paula; Ordonez, Nelson; Silva Zambom, Luis da; Mansano, Ronaldo Domingues

    2007-01-01

    In this work the surfaces of polymeric membranes based on Nafion (proton conducting material), used in proton exchange membranes fuel cells (PEMFC) had been modified by plasma deposition of perfluored polymers, in order to improve its functioning in systems of energy generation (fuel cells). The deposition increases the chemical resistance of the proton ionic polymers without losing the electrical properties. The processing of the membranes also reduces the permeability of the membranes to the alcohols (methanol and ethanol), thus preventing poisoning of the fuel cell. The processing of the membranes of Nafion was carried through in a system of plasma deposition using a mixture of CF 4 and H 2 gases. The plasma processing was made mainly to increase the chemical resistance and result in hydrophobic surfaces. The Fourier transformed infrared (FTIR) technique supplies a spectrum with information about the CF n bond formation. Through the Rutherford back scattering (RBS) technique it was possible to verify the deposition rate of the polymeric layer. The plasma process with composition of 60% of CF 4 and 40% of H 2 presented the best deposition rate. By the spectrum analysis for the optimized configuration, it was possible to verify that the film deposition occurred with a thickness of 90 nm, and fluorine concentration was nearly 30%. Voltammetry made possible to verify that the fluorination increases the membranes chemical resistance, improving the stability of Nafion, becoming an attractive process for construction of fuel cells

  19. Studies of Physicochemical Processes in Atmospheric Particles and Acid Deposition.

    Science.gov (United States)

    Pandis, Spyros N.

    A comprehensive chemical mechanism for aqueous -phase atmospheric chemistry was developed and its detailed sensitivity analysis was performed. The main aqueous-phase reaction pathways for the system are the oxidation of S(IV) to S(VI) by H_2O_2 , OH, O_2 (catalysed by Fe ^{3+} and Mn^ {2+}), O_3 and HSO_sp{5}{-}. The gas-phase concentrations of SO_2, H_2O_2, HO _2, OH, O_3 HCHO, NH_3, HNO_3 and HCl and the liquid water content of the cloud are of primary importance. The Lagrangian model predictions for temperature profile, fog development, liquid water content, gas-phase concentrations of SO_2 , HNO_3, and NH_3 , pH, aqueous-phase concentrations of SO _sp{4}{2-}, NH _sp{4}{+} and NO _sp{3}{-}, and finally deposition rates of the above ions match well the observed values. A third model was developed to study the distribution of acidity and solute concentration among the various droplet sizes in a fog or a cloud. Significant solute concentration differences can occur in aqueous droplets inside a fog or a cloud. Fogs in polluted environments have the potential to increase aerosol sulfate concentrations, but at the same time to cause reductions in the aerosol concentration of nitrate, chloride, ammonium and sodium as well as in the total aerosol mass concentration. The sulfate producd during fog episodes favors the aerosol particles that have access to most of the fog liquid water. Aerosol scavenging efficiencies of around 80% were calculated for urban fogs. Sampling and subsequent mixing of fog droplets of different sizes may result in measured concentrations that are not fully representative of the fogwater chemical composition. Isoprene and beta-pinene, at concentration levels ranging from a few ppb to a few ppm were reacted photochemically with NO_ {x} in the Caltech outdoor smog chamber facility. Aerosol formation from the isoprene photooxidation was found to be negligible even under extreme ambient conditions due to the relatively high vapor pressure of its

  20. Development of a fluorine-free chemical solution deposition route for rare-earth cuprate superconducting tapes and its application to reel-to-reel processing

    DEFF Research Database (Denmark)

    Tang, Xiao

    temperature, REBCO (RE= rare earth) has some evident advantages compared to other high-temperature superconductors in retaining high current densities under strong magnetic fields, thus REBCO high temperature superconducto rs have significant potential for high field engineering applications. Compared...... to Pulsed Laser Deposition (PLD) and Chemical Vapor Deposition (CVD), the trifluoroacetate metal-organic deposition (TFA-MOD) route is more promising for producing REBCO superconducting films, owing to the high-Jc, high reproducibility, and low cost of this technique, which doesn't require any high vacuum...... on the microstructure and performance of FF-MOD derived YBCO films was investigated. Chapter 9 is the summary of the thesis....

  1. Rapid deposition process for zinc oxide film applications in pyroelectric devices

    International Nuclear Information System (INIS)

    Hsiao, Chun-Ching; Yu, Shih-Yuan

    2012-01-01

    Aerosol deposition (AD) is a rapid process for the deposition of films. Zinc oxide is a low toxicity and environmentally friendly material, and it possesses properties such as semiconductivity, pyroelectricity and piezoelectricity without the poling process. Therefore, AD is used to accelerate the manufacturing process for applications of ZnO films in pyroelectric devices. Increasing the temperature variation rate in pyroelectric films is a useful method for enhancing the responsivity of pyroelectric devices. In the present study, a porous ZnO film possessing the properties of large heat absorption and high temperature variation rate is successfully produced by the AD rapid process and laser annealing for application in pyroelectric devices. (paper)

  2. Sources and processes contributing to nitrogen deposition: an adjoint model analysis applied to biodiversity hotspots worldwide.

    Science.gov (United States)

    Paulot, Fabien; Jacob, Daniel J; Henze, Daven K

    2013-04-02

    Anthropogenic enrichment of reactive nitrogen (Nr) deposition is an ecological concern. We use the adjoint of a global 3-D chemical transport model (GEOS-Chem) to identify the sources and processes that control Nr deposition to an ensemble of biodiversity hotspots worldwide and two U.S. national parks (Cuyahoga and Rocky Mountain). We find that anthropogenic sources dominate deposition at all continental sites and are mainly regional (less than 1000 km) in origin. In Hawaii, Nr supply is controlled by oceanic emissions of ammonia (50%) and anthropogenic sources (50%), with important contributions from Asia and North America. Nr deposition is also sensitive in complicated ways to emissions of SO2, which affect Nr gas-aerosol partitioning, and of volatile organic compounds (VOCs), which affect oxidant concentrations and produce organic nitrate reservoirs. For example, VOC emissions generally inhibit deposition of locally emitted NOx but significantly increase Nr deposition downwind. However, in polluted boreal regions, anthropogenic VOC emissions can promote Nr deposition in winter. Uncertainties in chemical rate constants for OH + NO2 and NO2 hydrolysis also complicate the determination of source-receptor relationships for polluted sites in winter. Application of our adjoint sensitivities to the representative concentration pathways (RCPs) scenarios for 2010-2050 indicates that future decreases in Nr deposition due to NOx emission controls will be offset by concurrent increases in ammonia emissions from agriculture.

  3. Modeling of the Effect of Path Planning on Thermokinetic Evolutions in Laser Powder Deposition Process

    Science.gov (United States)

    Foroozmehr, Ehsan; Kovacevic, Radovan

    2011-07-01

    A thermokinetic model coupling finite-element heat transfer with transformation kinetics is developed to determine the effect of deposition patterns on the phase-transformation kinetics of laser powder deposition (LPD) process of a hot-work tool steel. The finite-element model is used to define the temperature history of the process used in an empirical-based kinetic model to analyze the tempering effect of the heating and cooling cycles of the deposition process. An area is defined to be covered by AISI H13 on a substrate of AISI 1018 with three different deposition patterns: one section, two section, and three section. The two-section pattern divides the area of the one-section pattern into two sections, and the three-section pattern divides that area into three sections. The results show that dividing the area under deposition into smaller areas can influence the phase transformation kinetics of the process and, consequently, change the final hardness of the deposited material. The two-section pattern shows a higher average hardness than the one-section pattern, and the three-section pattern shows a fully hardened surface without significant tempered zones of low hardness. To verify the results, a microhardness test and scanning electron microscope were used.

  4. Fermented dairy food and CVD risk.

    Science.gov (United States)

    Tapsell, Linda C

    2015-04-01

    Fermented dairy foods such as yoghurt and cheese are commonly found in the Mediterranean diet. Recent landmark research has confirmed the effect of the Mediterranean diet on reducing the CVD risk, but the relative contributions of fermented dairy foods have not been fully articulated. The present study provides a review of the relationship between fermented dairy foods consumption and CVD risk in the context of the whole diet. Studies show that people who eat healthier diets may be more likely to consume yoghurt, so there is a challenge in attributing separate effects to yoghurt. Analyses from large population studies list yoghurt as the food most negatively associated with the risk of weight gain (a problem that may lead to CVD). There is some suggestion that fermented dairy foods consumption (yoghurt or cheese) may be associated with reduced inflammatory biomarkers associated with the development of CVD. Dietary trials suggest that cheese may not have the same effect on raising LDL-cholesterol levels as butter with the same saturated fat content. The same might be stated for yoghurt. The use of different probiotic cultures and other aspects of study design remain a problem for research. Nevertheless, population studies from a range of countries have shown that a reduced risk of CVD occurs with the consumption of fermented dairy foods. A combination of evidence is necessary, and more research is always valuable, but indications remain that fermented dairy foods such as cheese and yoghurt are integral to diets that are protective against CVD.

  5. Deposition and post-processing techniques for transparent conductive films

    Energy Technology Data Exchange (ETDEWEB)

    Christoforo, Mark Greyson; Mehra, Saahil; Salleo, Alberto; Peumans, Peter

    2017-07-04

    In one embodiment, a method is provided for fabrication of a semitransparent conductive mesh. A first solution having conductive nanowires suspended therein and a second solution having nanoparticles suspended therein are sprayed toward a substrate, the spraying forming a mist. The mist is processed, while on the substrate, to provide a semitransparent conductive material in the form of a mesh having the conductive nanowires and nanoparticles. The nanoparticles are configured and arranged to direct light passing through the mesh. Connections between the nanowires provide conductivity through the mesh.

  6. Influence of substrate geometry on ion-plasma coating deposition process

    International Nuclear Information System (INIS)

    Khoroshikh, V.M.; Leonov, S.A.; Belous, V.A.

    2008-01-01

    Influence of substrate geometry on the feature of Ti vacuum arc plasma streams condensation process in presence of N 2 or Ar in a discharge ambient were investigated. Character of gas pressure and substrate potential influence on deposition rate is conditioned the competitive processes of condensation and sputtering, and also presence of double electric layer on a border plasma-substrate. Influence of potential on deposition rate especially strongly shows up for cylindrical substrates of small size. For such substrates it was found substantial (approximately in 4 times) growth of deposition rate at the increasing of negative potential from 100 to 700 V when nitrogen pressure is ∼0,3...2,5 Pa. Possibility of droplet-free coating deposition the substrate backs and in discharge ambient, being outside area of cathode direct visibility is shown

  7. Indium oxide deposition on glass by aerosol pyrolysis (Pyrosol (R) process)

    International Nuclear Information System (INIS)

    Blandenet, G.; Lagarde, Y.; Spitz, J.

    1975-01-01

    The pyrosol (R) process involves the pyrolysis of an aerosol generated by ultrasonic nebulisation from a solution of organic or inorganic compounds. This technique was used to deposit transparent n-conducting indium oxide films on glass. The electrical and optical properties of these films were studied as a function of the deposition temperature and doping (using tin or fluorine). A deposition temperature of 480 deg C and a Sn/In ratio of about 5% gave the best results. In this case, the transmission in the visible range was 92%, the infrared reflection 84% and the electrical resistivity 1.7x10 -4 ohm.cm [fr

  8. Cat-CVD-prepared oxygen-rich μc-Si:H for wide-bandgap material

    International Nuclear Information System (INIS)

    Matsumoto, Yasuhiro; Ortega, Mauricio; Peza, Juan-Manuel; Reyes, Mario-Alfredo; Escobosa, Arturo

    2005-01-01

    Microcrystalline phase-involved oxygen-rich a-Si:H (hydrogenated amorphous silicon) films have been obtained using catalytic chemical vapor deposition (Cat-CVD) process. Pure SiH 4 (silane), H 2 (hydrogen), and O 2 (oxygen) gases were introduced in the chamber by maintaining a pressure of 0.1 Torr. A tungsten catalyzer was fixed at temperatures of 1750 and 1950 deg. C for film deposition on glass and crystalline silicon substrates at 200 deg. C. As revealed from X-ray diffraction spectra, the microcrystalline phase appears for oxygen-rich a-Si:H samples deposited at a catalyzer temperature of 1950 deg. C. However, this microcrystalline phase tends to disappear for further oxygen incorporation. The oxygen content in the deposited films was corroborated by FTIR analysis revealing Si-O-Si bonds and typical Si-H bonding structures. The optical bandgap of the sample increases from 2.0 to 2.7 eV with oxygen gas flow and oxygen incorporation to the deposited films. In the present thin film deposition conditions, no strong tungsten filament degradation was observed after a number of sample preparations

  9. Morphological and structural characterization of CrO2/Cr2O3 films grown by Laser-CVD

    International Nuclear Information System (INIS)

    Sousa, P.M.; Silvestre, A.J.; Popovici, N.; Conde, O.

    2005-01-01

    This work reports on the synthesis of chromium (III, IV) oxides films by KrF laser-assisted CVD. Films were deposited onto sapphire substrates at room temperature by the photodissociation of Cr(CO) 6 in dynamic atmospheres containing oxygen and argon. A study of the processing parameters has shown that partial pressure ratio of O 2 to Cr(CO) 6 and laser fluence are the prominent parameters that have to be accurately controlled in order to co-deposit both the crystalline oxide phases. Films consistent with such a two-phase system were synthesised for a laser fluence of 75 mJ cm -2 and a partial pressure ratio of about 1

  10. Recent Results from Beam Tests of 3D and Pad pCVD Diamond Detectors

    CERN Document Server

    Wallny, Rainer

    2017-01-01

    Results from prototypes of a detector using chemical vapor deposited (CVD) diamond with embedded resistive electrodes in the bulk forming a 3D diamond device are presented. A detector system consisting of 3D devices based on poly-crystalline CVD (pCVD) diamond was connected to a multi-channel readout and successfully tested in a 120 GeV/c proton beam at CERN proving for the first time the feasibility of the 3D detector concept in pCVD for particle tracking applications. We also present beam test results on the dependence of signal size on incident particle rate in charged particle detectors based on poly-crystalline CVD diamond. The detectors were tested in a 260 MeV/c pion beam over a range of particle fluxes from 2 kHz/cm2 to 10 MHz/cm2 . The pulse height of the sensors was measured with pad readout electronics at a peaking time of 7 ns. Our data from the 2015 beam tests at PSI indicate that the pulse height of poly-crystalline CVD diamond sensor irradiated to 5×1014 neq/cm2 is independent of particle flux...

  11. Ion beam induced surface graphitization of CVD diamond for x-ray beam position monitor applications

    International Nuclear Information System (INIS)

    Liu, Chian; Shu, D.; Kuzay, T.M.; Wen, L.; Melendres, C.A.; Argonne National Lab., IL

    1996-01-01

    The Advanced Photon Source at ANL is a third-generation synchrotron facility that generates powerful x-ray beams on its undulator beamlines. It is important to know the position and angle of the x- ray beam during experiments. Due to very high heat flux levels, several patented x-ray beam position monitors (XBPM) exploiting chemical vapor deposition (CVD) diamond have been developed. These XBPMs have a thin layer of low-atomic-mass metallic coating so that photoemission from the x rays generate a minute but measurable current for position determination. Graphitization of the CVD diamond surface creates a very thin, intrinsic and conducting layer that can stand much higher temperatures and minimal x-ray transmission losses compared to the coated metallic layers. In this paper, a laboratory sputter ion source was used to transform selected surfaces of a CVD diamond substrate into graphite. The effect of 1-5 keV argon ion bombardment on CVD diamond surfaces at various target temperatures from 200 to 500 C was studied using Auger electron spectroscopy and in-situ electrical resistivity measurements. Graphitization after the ion bombardment has been confirmed and optimum conditions for graphitization studied. Raman spectroscopy was used to identify the overall diamond structure in the bulk of CVD diamond substrate after the ion bombardments. It was found that target temperature plays an important role in stability and electrical conductivity of the irradiated CVD diamonds

  12. Controlling the resistivity gradient in chemical vapor deposition-deposited aluminum-doped zinc oxide

    NARCIS (Netherlands)

    Ponomarev, M. V.; Verheijen, M. A.; Keuning, W.; M. C. M. van de Sanden,; Creatore, M.

    2012-01-01

    Aluminum-doped ZnO (ZnO:Al) grown by chemical vapor deposition (CVD) generally exhibit a major drawback, i.e., a gradient in resistivity extending over a large range of film thickness. The present contribution addresses the plasma-enhanced CVD deposition of ZnO: Al layers by focusing on the control

  13. Hydraulic experimental investigation on spatial distribution and formation process of tsunami deposit on a slope

    Science.gov (United States)

    Harada, K.; Takahashi, T.; Yamamoto, A.; Sakuraba, M.; Nojima, K.

    2017-12-01

    An important aim of the study of tsunami deposits is to estimate the characteristics of past tsunamis from the tsunami deposits found locally. Based on the tsunami characteristics estimated from tsunami deposit, it is possible to examine tsunami risk assessment in coastal areas. It is considered that tsunami deposits are formed based on the dynamic correlation between tsunami's hydraulic values, sediment particle size, topography, etc. However, it is currently not enough to evaluate the characteristics of tsunamis from tsunami deposits. This is considered to be one of the reasons that the understanding of the formation process of tsunami deposits is not sufficiently understood. In this study, we analyze the measurement results of hydraulic experiment (Yamamoto et al., 2016) and focus on the formation process and distribution of tsunami deposits. Hydraulic experiment was conducted with two-dimensional water channel with a slope. Tsunami was inputted as a bore wave flow. The moving floor section was installed as a seabed slope connecting to shoreline and grain size distribution was set some cases. The water level was measured using ultrasonic displacement gauges, and the flow velocity was measured using propeller current meters and an electromagnetic current meter. The water level and flow velocity was measured at some points. The distribution of tsunami deposit was measured from shoreline to run-up limit on the slope. Yamamoto et al. (2016) reported the measurement results on the distribution of tsunami deposit with wave height and sand grain size. Therefore, in this study, hydraulic analysis of tsunami sediment formation process was examined based on the measurement data. Time series fluctuation of hydraulic parameters such as Froude number, Shields number, Rouse number etc. was calculated to understand on the formation process of tsunami deposit. In the front part of the tsunami, the flow velocity take strong flow from shoreline to around the middle of slope. From

  14. Rapid processing method for solution deposited YBa2Cu3O7-δ thin films

    International Nuclear Information System (INIS)

    Dawley, J.T.; Clem, P.G.; Boyle, T.J.; Ottley, L.M.; Overmyer, D.L.; Siegal, M.P.

    2004-01-01

    YBa 2 Cu 3 O 7-δ (YBCO) films, deposited on buffered metal substrates, are the primary candidate for second-generation superconducting (SC) wires, with applications including expanded power grid transmission capability, compact motors, and enhanced sensitivity magnetic resonance imaging. Feasibility of manufacturing such superconducting wires is dependent on high processing speed, often a limitation of vapor and solution-based YBCO deposition processes. In this work, YBCO films were fabricated via a new diethanolamine-modified trifluoroacetic film solution deposition method. Modifying the copper chemistry of the YBCO precursor solution with diethanolamine enables a hundredfold decrease in the organic pyrolysis time required for MA/cm 2 current density (J c ) YBCO films, from multiple hours to ∼20 s in atmospheric pressure air. High quality, ∼0.2 μm thick YBCO films with J c (77 K) values ≥2 MA/cm 2 at 77 K are routinely crystallized from these rapidly pyrolyzed films deposited on LaAlO 3 . This process has also enabled J c (77 K)=1.1 MA/cm 2 YBCO films via 90 m/h dip-coating on Oak Ridge National Laboratory RABiTS textured metal tape substrates. This new YBCO solution deposition method suggests a route toward inexpensive and commercializable ∼$10/kA m solution deposited YBCO coated conductor wires

  15. Comparison of deposited surface area of airborne ultrafine particles generated from two welding processes.

    Science.gov (United States)

    Gomes, J F; Albuquerque, P C; Miranda, Rosa M; Santos, Telmo G; Vieira, M T

    2012-09-01

    This article describes work performed on the assessment of the levels of airborne ultrafine particles emitted in two welding processes metal-active gas (MAG) of carbon steel and friction-stir welding (FSW) of aluminium in terms of deposited area in alveolar tract of the lung using a nanoparticle surface area monitor analyser. The obtained results showed the dependence from process parameters on emitted ultrafine particles and clearly demonstrated the presence of ultrafine particles, when compared with background levels. The obtained results showed that the process that results on the lower levels of alveolar-deposited surface area is FSW, unlike MAG. Nevertheless, all the tested processes resulted in important doses of ultrafine particles that are to be deposited in the human lung of exposed workers.

  16. Processing-structure-property relationships in electron beam physical vapor deposited yttria stabilized zirconia coatings

    International Nuclear Information System (INIS)

    Rao, D. Srinivasa; Valleti, Krishna; Joshi, S. V.; Janardhan, G. Ranga

    2011-01-01

    The physical and mechanical properties of yttria stabilized zirconia (YSZ) coatings deposited by the electron beam physical vapor deposition technique have been investigated by varying the key process variables such as vapor incidence angle and sample rotation speed. The tetragonal zirconia coatings formed under varying process conditions employed were found to have widely different surface and cross-sectional morphologies. The porosity, phase composition, planar orientation, hardness, adhesion, and surface residual stresses in the coated specimens were comprehensively evaluated to develop a correlation with the process variables. Under transverse scratch test conditions, the YSZ coatings exhibited two different crack formation modes, depending on the magnitude of residual stress. The influence of processing conditions on the coating deposition rate, column orientation angle, and adhesion strength has been established. Key relationships between porosity, hardness, and adhesion are also presented.

  17. Enhanced graphitization of c-CVD grown multi-wall carbon nanotube arrays assisted by removal of encapsulated iron-based phases under thermal treatment in argon

    International Nuclear Information System (INIS)

    Boncel, Slawomir; Koziol, Krzysztof K.K.

    2014-01-01

    Graphical abstract: - Highlights: • Annealing of the c-CVD MWCNT arrays toward complete removal of iron nanoparticles. • The ICP-AES protocol established for quantitative analysis of Fe-content in MWCNTs. • The vertical alignment from the as-grown MWCNT arrays found intact after annealing. • A route to decrease number of defects/imperfections in the MWCNT graphene walls. • A foundation for commercial purification of c-CVD derived MWCNTs. - Abstract: The effect of annealing on multi-walled carbon nanotube (MWCNT) arrays grown via catalytic Chemical Vapour Deposition (c-CVD) was studied. The treatment enabled to decrease number of defects/imperfections in the graphene walls of MWCNTs’, which was reflected in Raman spectroscopy by reduction of the I D /I G ratio by 27%. Moreover, the vertical alignment from the as-synthesized nanotube arrays was found intact after annealing. Not only graphitization of the nanotube walls occurred under annealing, but the amount of metal iron-based catalyst residues (interfering with numerous physicochemical properties, and hence applications of MWCNTs) was reduced from 9.00 wt.% (for pristine MWCNTs) to 0.02 wt.% as detected by Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES). This value, established by a new analytical protocol, is the lowest recorded by now for purified c-CVD MWCNTs and, due to operating under atmospheric pressure, medium temperature regime (as for annealing processes), reasonable time-scale and metal residue non-specificity, it could lay the foundation for commercial purification of c-CVD derived MWCNTs

  18. Enhanced graphitization of c-CVD grown multi-wall carbon nanotube arrays assisted by removal of encapsulated iron-based phases under thermal treatment in argon

    Energy Technology Data Exchange (ETDEWEB)

    Boncel, Slawomir, E-mail: slawomir.boncel@polsl.pl [Department of Organic Chemistry, Biochemistry and Biotechnology, Silesian University of Technology, Krzywoustego 4, 44-100 Gliwice (Poland); Koziol, Krzysztof K.K., E-mail: kk292@cam.ac.uk [Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, CB3 0FS Cambridge (United Kingdom)

    2014-05-01

    Graphical abstract: - Highlights: • Annealing of the c-CVD MWCNT arrays toward complete removal of iron nanoparticles. • The ICP-AES protocol established for quantitative analysis of Fe-content in MWCNTs. • The vertical alignment from the as-grown MWCNT arrays found intact after annealing. • A route to decrease number of defects/imperfections in the MWCNT graphene walls. • A foundation for commercial purification of c-CVD derived MWCNTs. - Abstract: The effect of annealing on multi-walled carbon nanotube (MWCNT) arrays grown via catalytic Chemical Vapour Deposition (c-CVD) was studied. The treatment enabled to decrease number of defects/imperfections in the graphene walls of MWCNTs’, which was reflected in Raman spectroscopy by reduction of the I{sub D}/I{sub G} ratio by 27%. Moreover, the vertical alignment from the as-synthesized nanotube arrays was found intact after annealing. Not only graphitization of the nanotube walls occurred under annealing, but the amount of metal iron-based catalyst residues (interfering with numerous physicochemical properties, and hence applications of MWCNTs) was reduced from 9.00 wt.% (for pristine MWCNTs) to 0.02 wt.% as detected by Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES). This value, established by a new analytical protocol, is the lowest recorded by now for purified c-CVD MWCNTs and, due to operating under atmospheric pressure, medium temperature regime (as for annealing processes), reasonable time-scale and metal residue non-specificity, it could lay the foundation for commercial purification of c-CVD derived MWCNTs.

  19. Control of Reaction Surface in Low Temperature CVD to Enhance Nucleation and Conformal Coverage

    Science.gov (United States)

    Kumar, Navneet

    2009-01-01

    The Holy Grail in CVD community is to find precursors that can afford the following: good nucleation on a desired substrate and conformal deposition in high AR features. Good nucleation is not only necessary for getting ultra-thin films at low thicknesses; it also offers films that are smooth at higher thickness values. On the other hand,…

  20. The effect of percentage carbonon the CVD coating of plain carbon ...

    African Journals Online (AJOL)

    Two steels En 3 and En 39 were given a TiC-TiN CVD coating in the carburized and uncarburized conditions. The continuity of the coatings and their adherance to the substrate were examined. The thickness of the deposited coatings were also measured, their adherence to the substrate and their thickness was off ected by ...

  1. Large-area selective CVD epitaxial growth of Ge on Si substrates

    NARCIS (Netherlands)

    Sammak, A.; De Boer, W.; Nanver, L.K.

    2011-01-01

    Selective epitaxial growth of crystalline Ge on Si in a standard ASM Epsilon 2000 CVD reactor is investigated for the fabrication of Ge p+n diodes. At the deposition temperature of 700?C, most of the lattice mismatch-defects are trapped within first 300nm of Ge growth and good quality single crystal

  2. Hydrogen termination of CVD diamond films by high-temperature annealing at atmospheric pressure

    NARCIS (Netherlands)

    Seshan, V.; Ullien, D.; Castellanos-Gomez, A.; Sachdeva, S.; Murthy, D.H.K.; Savenije, T.J.; Ahmad, H.A.; Nunney, T.S.; Janssens, S.D.; Haenen, K.; Nesládek, M.; Van der Zant, H.S.J.; Sudhölter, E.J.R.; De Smet, L.C.P.M.

    2013-01-01

    A high-temperature procedure to hydrogenate diamond films using molecular hydrogen at atmospheric pressure was explored. Undoped and doped chemical vapour deposited (CVD) polycrystalline diamond films were treated according to our annealing method using a H2 gas flow down to ?50 ml/min (STP) at

  3. Optimization of CVD parameters for long ZnO NWs grown on ITO

    Indian Academy of Sciences (India)

    The optimization of chemical vapour deposition (CVD) parameters for long and vertically aligned (VA) ZnO nanowires (NWs) were investigated. Typical ZnO NWs as a single crystal grown on indium tin oxide (ITO)-coated glass substrate were successfully synthesized. First, the conducted side of ITO–glass substrate was ...

  4. Computation of flow and thermal fields in a model CVD reactor

    Indian Academy of Sciences (India)

    Mixing of coaxial jets within a tube in the presence of blockage has been numerically studied. This configuration is encountered during the modelling of flow and heat transfer in CVD (chemical vapour deposition) reactors. For the conditions prevailing in the reactor, the Reynolds numbers are low and flow can be taken to be ...

  5. Investigation of effect of process parameters on multilayer builds by direct metal deposition

    International Nuclear Information System (INIS)

    Amine, Tarak; Newkirk, Joseph W.; Liou, Frank

    2014-01-01

    Multilayer direct laser deposition (DLD) is a fabrication process through which parts are fabricated by creating a molten pool into which metal powder is injected as. During fabrication, complex thermal activity occurs in different regions of the build; for example, newly deposited layers will reheat previously deposited layers. The objective of this study was to provide insight into the thermal activity that occurs during the DLD process. This work focused on the effect of the deposition parameters of deposited layers on the microstructure and mechanical properties of the previously deposited layers. It is important to characterize these effects in order to provide information for proper parameter selection in future DLD fabrication. Varying the parameters was shown to produce different effects on the microstructure morphology and property values, presumably resulting from in-situ quench and tempering of the steels. In general, the microstructure was secondary dendrite arm spacing. Typically, both the travel speed and laser power significantly affect the microstructure and hardness. A commercial ABAQUS/CAE software was used to model this process by developing a thermo-mechanical 3D finite element model. This work presents a 3D heat transfer model that considers the continuous addition of mass in front of a moving laser beam using ABAQUS/CAE software. The model assumes the deposit geometry appropriate to each experimental condition and calculates the temperature distribution, cooling rates and re-melted layer depth, which can affect the final microstructure. Model simulations were qualitatively compared with experimental results acquired in situ using a K-type thermocouple. - Highlights: • Direct laser deposition DLD. • Microstructure of stainless steel 316L. • Thermocouples measurement. • 3D finite element modeling

  6. Evidence for substantial forestry canopy processing of nitrogen deposition using isotopic tracer experiments in low deposition conditions

    Science.gov (United States)

    Ferraretto, Daniele; Heal, Kate

    2017-04-01

    Temperate forest ecosystems are significant sinks for nitrogen deposition (Ndep) yielding benefits such as protection of waterbodies from eutrophication and enhanced sequestration of atmospheric CO2. Previous studies have shown evidence of biological nitrification and Ndep processing and retention in forest canopies. However, this was reported only at sites with high environmental or experimentally enhanced rates of Ndep (˜18 kg N ha-1 y-1) and has not yet been demonstrated in low Ndep environments. We have used bulk field hydrochemical measurements and labelled isotopic experiments to assess canopy processing in a lower Ndep environment (˜7 kg N ha-1 year-1) at a Sitka spruce plantation in Perthshire, Scotland, representing the dominant tree species (24%) in woodlands in Great Britain. Analysis of 4.5 years of measured N fluxes in rainfall (RF) and fogwater onto the canopy and throughfall (TF) and stemflow (SF) below the canopy suggests strong transformation and uptake of Ndep in the forest canopy. Annual canopy Ndep uptake was ˜4.7 kg N ha-1 year-1, representing 60-76% of annual Ndep. To validate these plot-scale results and track N uptake within the forest canopy in different seasons, double 15N-labelled NH4NO3 (98%) solution was sprayed in summer and winter onto the canopy of three trees at the measurement site. RF, TF and SF samples have been collected and analysed for 15NH4 and 15NO3. Comparing the amount of labelled N recovered under the sample trees with the measured δ15N signal is expected to provide further evidence of the role of forest canopies in actively processing and retaining atmospheric N deposition.

  7. Chemical vapor deposition of refractory metals and ceramics III

    International Nuclear Information System (INIS)

    Gallois, B.M.; Lee, W.Y.; Pickering, M.A.

    1995-01-01

    The papers contained in this volume were originally presented at Symposium K on Chemical Vapor Deposition of Refractory Metals and Ceramics III, held at the Fall Meeting of the Materials Research Society in Boston, Massachusetts, on November 28--30, 1994. This symposium was sponsored by Morton International Inc., Advanced Materials, and by The Department of Energy-Oak Ridge National Laboratory. The purpose of this symposium was to exchange scientific information on the chemical vapor deposition (CVD) of metallic and ceramic materials. CVD technology is receiving much interest in the scientific community, in particular, to synthesize new materials with tailored chemical composition and physical properties that offer multiple functionality. Multiphase or multilayered films, functionally graded materials (FGMs), ''smart'' material structures and nanocomposites are some examples of new classes of materials being produced via CVD. As rapid progress is being made in many interdisciplinary research areas, this symposium is intended to provide a forum for reporting new scientific results and addressing technological issues relevant to CVD materials and processes. Thirty four papers have been processed separately for inclusion on the data base

  8. Low-temperature processed ZnO and CdS photodetectors deposited by pulsed laser deposition

    International Nuclear Information System (INIS)

    Hernandez-Como, N; Moreno, S; Mejia, I; Quevedo-Lopez, M A

    2014-01-01

    UV-VIS photodetectors using an interdigital configuration, with zinc oxide (ZnO) and cadmium sulfide (CdS) semiconductors deposited by pulsed laser deposition, were fabricated with a maximum processing temperature of 100 °C. Without any further post-growth annealing, the photodetectors are compatible with flexible and transparent substrates. Aluminum (Al) and indium tin oxide (ITO) were investigated as contacts. Focusing on underwater communications, the impact of metal contact (ITO versus Al) was investigated to determine the maximum responsivity using a laser with a 405 nm wavelength. As expected, the responsivity increases for reduced metal finger separation. This is a consequence of reduced carrier transit time for shorter finger separation. For ITO, the highest responsivities for both films (ZnO and CdS) were ∼3 A W −1 at 5 V. On the other hand, for Al contacts, the maximum responsivities at 5 V were ∼0.1 A W −1 and 0.7 A W −1 for CdS and ZnO, respectively. (paper)

  9. The development of chemically vapor deposited mullite coatings for the corrosion protection of SiC

    Energy Technology Data Exchange (ETDEWEB)

    Auger, M.; Hou, P.; Sengupta, A.; Basu, S.; Sarin, V. [Boston Univ., MA (United States)

    1998-05-01

    Crystalline mullite coatings have been chemically vapor deposited onto SiC substrates to enhance the corrosion and oxidation resistance of the substrate. Current research has been divided into three distinct areas: (1) Development of the deposition processing conditions for increased control over coating`s growth rate, microstructure, and morphology; (2) Analysis of the coating`s crystal structure and stability; (3) The corrosion resistance of the CVD mullite coating on SiC.

  10. Development of Fe-AI CVD coatings as tritium permeation barrier

    International Nuclear Information System (INIS)

    Chabrol, C.; Schuster, F.; Le Marois, G.; Serra, E.

    1998-01-01

    A specific method of pack-cementation has been developed in order to perform a CVD deposition of Fe-Al alloys on a martensitic steel at a temperature which respects its mechanical properties ( 2 Al 5 intermetallic phases thanks to a low pressure deposition and using a special cement containing Fe and Al. These coatings coated with an Al 2 O 3 top layer drastically reduce the permeation rate of deuterium with regards to the uncoated substrate. (authors)

  11. Continuous, Highly Flexible, and Transparent Graphene Films by Chemical Vapor Deposition for Organic Photovoltaics

    KAUST Repository

    Gomez De Arco, Lewis; Zhang, Yi; Schlenker, Cody W.; Ryu, Koungmin; Thompson, Mark E.; Zhou, Chongwu

    2010-01-01

    We report the implementation of continuous, highly flexible, and transparent graphene films obtained by chemical vapor deposition (CVD) as transparent conductive electrodes (TCE) in organic photovoltaic cells. Graphene films were synthesized by CVD

  12. Electron beam induced deposition of silacyclohexane and dichlorosilacyclohexane: the role of dissociative ionization and dissociative electron attachment in the deposition process

    Directory of Open Access Journals (Sweden)

    Ragesh Kumar T P

    2017-11-01

    Full Text Available We present first experiments on electron beam induced deposition of silacyclohexane (SCH and dichlorosilacyclohexane (DCSCH under a focused high-energy electron beam (FEBID. We compare the deposition dynamics observed when growing pillars of high aspect ratio from these compounds and we compare the proximity effect observed for these compounds. The two precursors show similar behaviour with regards to fragmentation through dissociative ionization in the gas phase under single-collision conditions. However, while DCSCH shows appreciable cross sections with regards to dissociative electron attachment, SCH is inert with respect to this process. We discuss our deposition experiments in context of the efficiency of these different electron-induced fragmentation processes. With regards to the deposition dynamics, we observe a substantially faster growth from DCSCH and a higher saturation diameter when growing pillars with high aspect ratio. However, both compounds show similar behaviour with regards to the proximity effect. With regards to the composition of the deposits, we observe that the C/Si ratio is similar for both compounds and in both cases close to the initial molecular stoichiometry. The oxygen content in the DCSCH deposits is about double that of the SCH deposits. Only marginal chlorine is observed in the deposits of from DCSCH. We discuss these observations in context of potential approaches for Si deposition.

  13. Fiscal 2000 achievement report. Research and development of semiconductor CVD chamber cleaning systems for electronic device manufacturing using new alternative gas instead of SF6, PFCs, and other gases; 2000 nendo sokkoteki kakushinteki energy kankyo gijutsu kaihatsu seika hokokusho. SF6 tou ni daitaisuru gasu wo riyo shita denshi debaisu seizo cleaning system no kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    The efforts aim to develop a CVD (chemical vapor deposition) mechanism cleaning gas with less environmental impact such as global warming and a CVD process using the same. The candidate gas synthesizing study for the development of such a gas continues from the preceding fiscal year. In addition, various candidate gases and tentatively synthesized gases are evaluated for their cleaning performance using a simplified experimental system. As the result, patent applications were filed for three novel alternative gases low in environmental impact and high in cleaning performance. In the research and development of CVD processes, a verification test process is developed for the evaluation of alternative gases at the real system level using a large CVD evaluation system. Studies are also made in which some existing gases are utilized to improve on CVD cleaning efficiency and to reduce greenhouse gas emissions. In relation to the process, one domestic patent application is made, and three essays are presented at an international conference on electrochemistry in the United States. (NEDO)

  14. Pulsed laser deposition of the lysozyme protein: an unexpected “Inverse MAPLE” process

    DEFF Research Database (Denmark)

    Schou, Jørgen; Matei, Andreea; Constantinescu, Catalin

    2012-01-01

    Films of organic materials are commonly deposited by laser assisted methods, such as MAPLE (matrix-assisted pulsed laser evaporation), where a few percent of the film material in the target is protected by a light-absorbing volatile matrix. Another possibility is to irradiate the dry organic...... the ejection and deposition of lysozyme. This can be called an “inverse MAPLE” process, since the ratio of “matrix” to film material in the target is 10:90, which is inverse of the typical MAPLE process where the film material is dissolved in the matrix down to several wt.%. Lysozyme is a well-known protein...

  15. Improved CVD Techniques for Depositing Passivation Layers of ICs

    Science.gov (United States)

    1975-10-01

    Halted PhilcoT xong, 43 o Flex b ru.an I ery t92." PrutptEnt,"e Electro nic -News; p. 34 --(M a~y 20, 1974). 355. 4t3fAtil, No 2(estbgru sey SpesHg-o e...and No. 4, 78 (1974). *J. G. Biddle Co., Plymouth Meeting, PA 19462. 222 NARROW AND WIDE INTERFERENCE CONTOUR 2 4 6 IC PE LLET Bonding pad oxide area

  16. Volcanogenic Uranium Deposits: Geology, Geochemical Processes, and Criteria for Resource Assessment

    Science.gov (United States)

    Nash, J. Thomas

    2010-01-01

    Felsic volcanic rocks have long been considered a primary source of uranium for many kinds of uranium deposits, but volcanogenic uranium deposits themselves have generally not been important resources. Until the past few years, resource summaries for the United States or the world generally include volcanogenic in the broad category of 'other deposits' because they comprised less than 0.5 percent of past production or estimated resources. Exploration in the United States from the 1940s through 1982 discovered hundreds of prospects in volcanic rocks, of which fewer than 20 had some recorded production. Intensive exploration in the late 1970s found some large deposits, but low grades (less than about 0.10 percent U3O8) discouraged economic development. A few deposits in the world, drilled in the 1980s and 1990s, are now known to contain large resources (>20,000 tonnes U3O8). However, research on ore-forming processes and exploration for volcanogenic deposits has lagged behind other kinds of uranium deposits and has not utilized advances in understanding of geology, geochemistry, and paleohydrology of ore deposits in general and epithermal deposits in particular. This review outlines new ways to explore and assess for volcanogenic deposits, using new concepts of convection, fluid mixing, and high heat flow to mobilize uranium from volcanic source rocks and form deposits that are postulated to be large. Much can also be learned from studies of epithermal metal deposits, such as the important roles of extensional tectonics, bimodal volcanism, and fracture-flow systems related to resurgent calderas. Regional resource assessment is helped by genetic concepts, but hampered by limited information on frontier areas and undiscovered districts. Diagnostic data used to define ore deposit genesis, such as stable isotopic data, are rarely available for frontier areas. A volcanic environment classification, with three classes (proximal, distal, and pre-volcanic structures

  17. Analysis of heating effect on the process of high deposition rate microcrystalline silicon

    International Nuclear Information System (INIS)

    Xiao-Dan, Zhang; He, Zhang; Chang-Chun, Wei; Jian, Sun; Guo-Fu, Hou; Shao-Zhen, Xiong; Xin-Hua, Geng; Ying, Zhao

    2010-01-01

    A possible heating effect on the process of high deposition rate microcrystalline silicon has been studied. It includes the discharge time-accumulating heating effect, discharge power, inter-electrode distance, and total gas flow rate induced heating effect. It is found that the heating effects mentioned above are in some ways quite similar to and in other ways very different from each other. However, all of them will directly or indirectly cause the increase of the substrate surface temperature during the process of depositing microcrystalline silicon thin films, which will affect the properties of the materials with increasing time. This phenomenon is very serious for the high deposition rate of microcrystalline silicon thin films because of the high input power and the relatively small inter-electrode distance needed. Through analysis of the heating effects occurring in the process of depositing microcrystalline silicon, it is proposed that the discharge power and the heating temperature should be as low as possible, and the total gas flow rate and the inter-electrode distance should be suitable so that device-grade high quality deposition rate microcrystalline silicon thin films can be fabricated

  18. Prediction of the properties of PVD/CVD coatings with the use of FEM analysis

    Science.gov (United States)

    Śliwa, Agata; Mikuła, Jarosław; Gołombek, Klaudiusz; Tański, Tomasz; Kwaśny, Waldemar; Bonek, Mirosław; Brytan, Zbigniew

    2016-12-01

    The aim of this paper is to present the results of the prediction of the properties of PVD/CVD coatings with the use of finite element method (FEM) analysis. The possibility of employing the FEM in the evaluation of stress distribution in multilayer Ti/Ti(C,N)/CrN, Ti/Ti(C,N)/(Ti,Al)N, Ti/(Ti,Si)N/(Ti,Si)N, and Ti/DLC/DLC coatings by taking into account their deposition conditions on magnesium alloys has been discussed in the paper. The difference in internal stresses in the zone between the coating and the substrate is caused by, first of all, the difference between the mechanical and thermal properties of the substrate and the coating, and also by the structural changes that occur in these materials during the fabrication process, especially during the cooling process following PVD and CVD treatment. The experimental values of stresses were determined based on X-ray diffraction patterns that correspond to the modelled values, which in turn can be used to confirm the correctness of the accepted mathematical model for testing the problem. An FEM model was established for the purpose of building a computer simulation of the internal stresses in the coatings. The accuracy of the FEM model was verified by comparing the results of the computer simulation of the stresses with experimental results. A computer simulation of the stresses was carried out in the ANSYS environment using the FEM method. Structure observations, chemical composition measurements, and mechanical property characterisations of the investigated materials has been carried out to give a background for the discussion of the results that were recorded during the modelling process.

  19. Anisotropy and dimensional characteristics in CVD route Y1Ba2Cu3O7-δ

    International Nuclear Information System (INIS)

    Watanabe, K.; Kobayashi, N.; Awaji, S.; Yamane, H.; Hirai, T.; Muto, Y.

    1993-01-01

    The anisotropic behaviors of the upper critical field B c2 and the critical current density J c were investigated in Y 1 Ba 2 Cu 3 O 7-δ films prepared by a chemical vapor deposition (CVD) route. The angular dependence of J c at fixed temperature, the field dependence of J c at fixed angle, and the temperature dependence of J c at fixed field were measured. The obtained results were explored in terms of the dimensional superconducting characteristics. The important information on the anisotropic behaviors of J c in CVD-Y 1 Ba 2 Cu 3 O 7-δ was discussed from a viewpoint of the flux pinning. (orig.)

  20. Modeling of thermal, electronic, hydrodynamic, and dynamic deposition processes for pulsed-laser deposition of thin films

    International Nuclear Information System (INIS)

    Liu, C.L.; LeBoeuf, J.N.; Wood, R.F.; Geohegan, D.B.; Donato, J.M.; Chen, K.R.; Puretzky, A.A.

    1994-11-01

    Various physical processes during laser ablation of solids for pulsed-laser deposition (PLD) are studied using a variety of computational techniques. In the course of the authors combined theoretical and experimental effort, they have been trying to work on as many aspects of PLD processes as possible, but with special focus on the following areas: (a) the effects of collisional interactions between the particles in the plume and in the background on the evolving flow field and on thin film growth, (b) interactions between the energetic particles and the growing thin films and their effects on film quality, (c) rapid phase transformations through the liquid and vapor phases under possibly nonequilibrium thermodynamic conditions induced by laser-solid interactions, (d) breakdown of the vapor into a plasma in the early stages of ablation through both electronic and photoionization processes, (c) hydrodynamic behavior of the vapor/plasma during and after ablation. The computational techniques used include finite difference (FD) methods, particle-in-cell model, and atomistic simulations using molecular dynamics (MD) techniques

  1. Probing the Gas-Phase Dynamics of Graphene Chemical Vapour Deposition using in-situ UV Absorption Spectroscopy

    DEFF Research Database (Denmark)

    Shivayogimath, Abhay; Mackenzie, David; Luo, Birong

    2017-01-01

    The processes governing multilayer nucleation in the chemical vapour deposition (CVD) of graphene are important for obtaining high-quality monolayer sheets, but remain poorly understood. Here we show that higher-order carbon species in the gas-phase play a major role in multilayer nucleation...

  2. Fluid expulsion sites on the Cascadia accretionary prism: mapping diagenetic deposits with processed GLORIA imagery

    Science.gov (United States)

    Carson, Bobb; Seke, Erol; Paskevich, Valerie F.; Holmes, Mark L.

    1994-01-01

    Point-discharge fluid expulsion on accretionary prisms is commonly indicated by diagenetic deposition of calcium carbonate cements and gas hydrates in near-surface (topographic and lithologic information. We have processed GLORIA imagery from the Oregon continental margin to remove topographic effects. A synthetic side scan image was created initially from Sea Beam bathymetric data and then was subtracted iteratively from the original GLORIA data until topographic features disappeared. The residual image contains high-amplitude backscattering that we attribute to diagenetic deposits associated with fluid discharge, based on submersible mapping, Ocean Drilling Program drilling, and collected samples. Diagenetic deposits are concentrated (1) near an out-of-sequence thrust fault on the second ridge landward of the base of the continental slope, (2) along zones characterized by deep-seated strikeslip faults that cut transversely across the margin, and (3) in undeformed Cascadia Basin deposits which overlie incipient thrust faults seaward of the toe of the prism. There is no evidence of diagenetic deposition associated with the frontal thrust that rises from the dècollement. If the dècollement is an important aquifer, apparently the fluids are passed either to the strike-slip faults which intersect the dècollement or to the incipient faults in Cascadia Basin for expulsion. Diagenetic deposits seaward of the prism toe probably consist dominantly of gas hydrates.

  3. A discrete element based simulation framework to investigate particulate spray deposition processes

    KAUST Repository

    Mukherjee, Debanjan

    2015-06-01

    © 2015 Elsevier Inc. This work presents a computer simulation framework based on discrete element method to analyze manufacturing processes that comprise a loosely flowing stream of particles in a carrier fluid being deposited on a target surface. The individual particulate dynamics under the combined action of particle collisions, fluid-particle interactions, particle-surface contact and adhesive interactions is simulated, and aggregated to obtain global system behavior. A model for deposition which incorporates the effect of surface energy, impact velocity and particle size, is developed. The fluid-particle interaction is modeled using appropriate spray nozzle gas velocity distributions and a one-way coupling between the phases. It is found that the particle response times and the release velocity distribution of particles have a combined effect on inter-particle collisions during the flow along the spray. It is also found that resolution of the particulate collisions close to the target surface plays an important role in characterizing the trends in the deposit pattern. Analysis of the deposit pattern using metrics defined from the particle distribution on the target surface is provided to characterize the deposition efficiency, deposit size, and scatter due to collisions.

  4. Deposition behavior of colloid in filtration process through glass beads packed bed

    International Nuclear Information System (INIS)

    Chinju, Hirofumi; Nagasaki, Shinya; Tanaka, Satoru; Tanaka, Tadao; Takebe, Shinichi; Ogawa, Hiromichi

    1999-01-01

    We investigated the deposition behavior in colloid transport through porous media by conducting column experiments and batch experiments using polystyrene latex particles and spherical glass beads. The conclusion of this present work are summarized as follows: (1) The comparison between the results of the batch and the column experiments indicated that the deposition was enhanced in the column experiments compared with the batch experiments due to particles trapped by the effect of slow field. (2) Colloid BTCs showed three different stages of deposition which can be characterized by the different rate of the change in the C/C O . Three stages can be explained by the existence of large area of weak deposition sites and small area of strong deposition sites on the collector surfaces. (3) The amount of deposited particles until the beginning of the third stage was larger for lower flow velocity. (4) The results of the column experiments revealed that breakthrough behavior of colloidal particles of the second run after back wash process is affected by remaining particles on collector surfaces. (J.P.N.)

  5. Thermodynamic analysis of processes proceeding on (111) faces of diamond during chemical vapour deposition

    International Nuclear Information System (INIS)

    Piekarczyk, W.; Prawer, S.

    1992-01-01

    Chemically vapour deposited diamond is commonly synthesized from activated hydrogen-rich, carbon/hydrogen gas mixtures under conditions which should, from a thermodynamic equilibrium point of view, favour the production of graphite. Much remains to be understood about why diamond, and not graphite, forms under these conditions. However, it is well known that the presence of atomic hydrogen, is crucial to the success of diamond deposition. As part of an attempt to better understand the deposition process, a thermodynamic analysis of the process was performed on diamond (111) faces in hydrogen rich environments. It is shown that the key role of atomic hydrogen is to inhibit the reconstruction of the (111) face to an sp 2 -bonded structure, which would provide a template for graphite, rather than diamond formation. The model correctly predicts experimentally determined trends in growth rate and diamond film quality as a function of methane concentration in the stating gas mixture. 17 refs., 4 figs

  6. Effects of vacuum processing erbium dideuteride/ditritide films deposited on chromium underlays on copper substrates

    International Nuclear Information System (INIS)

    Provo, J.L.

    1978-01-01

    Thin films of erbium dideuteride/ditritide were experimentally produced on chromium underlays deposited on copper substrates. The chromium underlay is required to prevent erbium occluder/copper substrate alloying which inhibits hydriding. Data taken has shown that vacuum processing affects the erbium/chromium/copper interaction. With an in situ process in which underlay/occluder films are vacuum deposited onto copper substrates and hydrided with no air exposure between these steps, data indicates a minimum of 1500A of chromium is required for optimum hydriding. If films are vacuum deposited as above and air-exposed before hydriding, a minimum of 3000A of chromium was shown to be required for equivalent hydriding. Data suggests that the activation step (600 0 C for 1 hour) required for hydriding the film of the second type is responsible for the difference observed. Such underlay thickness parameters are important, with regard to heat transfer considerations in thin hydride targets used for neutron generation

  7. The study on microb and organic metallogenetic process of the interlayer oxidized zone uranium deposit. A case study of the Shihongtan uranium deposit in Turpan-Hami basin

    International Nuclear Information System (INIS)

    Qiao Haiming; Shang Gaofeng

    2010-01-01

    Microbial and organic process internationally leads the field in the study of metallogenetic process presently. Focusing on Shi Hongtan uranium deposit, a typical interlayer oxidized zone sandstone-type deposit, this paper analyzes the geochemical characteristics of microb and organic matter in the deposit, and explores the interaction of microb and organic matter. It considers that the anaerobic bacterium actively takes part in the formation of the interlayer oxidized zone, as well as the mobilization and migration of uranium. In the redox (oxidation-reduction) transition zone, sulphate-reducing bacteria reduced sulphate to stink damp, lowing Eh and acidifying pH in the groundwater, which leads to reducing and absorbing of uranium, by using light hydrocarbon which is the product of the biochemical process of organism and the soluble organic matter as the source of carbon. The interaction of microb and organic matter controls the metallogenetic process of uranium in the deposit. (authors)

  8. The erosion performance of cold spray deposited metal matrix composite coatings with subsequent friction stir processing

    Energy Technology Data Exchange (ETDEWEB)

    Peat, Tom, E-mail: tompeat12@gmail.com [Department of Mechanical & Aerospace Engineering, University of Strathclyde, James Weir Building, 75 Montrose Street, Glasgow G1 1XJ (United Kingdom); Galloway, Alexander; Toumpis, Athanasios [Department of Mechanical & Aerospace Engineering, University of Strathclyde, James Weir Building, 75 Montrose Street, Glasgow G1 1XJ (United Kingdom); McNutt, Philip [TWI Ltd., Granta Park, Cambridge CB21 6AL (United Kingdom); Iqbal, Naveed [TWI Technology Centre, Wallis Way, Catcliff, Rotherham, S60 5TZ (United Kingdom)

    2017-02-28

    Highlights: • WC-CoCr, Cr{sub 3}C{sub 2}-NiCr and Al{sub 2}O{sub 3} coatings were cold spray deposited on AA5083 and friction stir processed. • The SprayStirred WC-CoCr demonstrated a hardness increase of 100% over the cold sprayed coating. • As-deposited and SprayStirred coatings were examined under slurry erosion test conditions. • Mass and volume loss was measured following 20-min exposure to the slurry. • The WC-CoCr and Al2O3 demonstrated a reduction in volume loss of approx. 40% over the cold sprayed coating. - Abstract: This study forms an initial investigation into the development of SprayStir, an innovative processing technique for generating erosion resistant surface layers on a chosen substrate material. Tungsten carbide – cobalt chromium, chromium carbide – nickel chromium and aluminium oxide coatings were successfully cold spray deposited on AA5083 grade aluminium. In order to improve the deposition efficiency of the cold spray process, coatings were co-deposited with powdered AA5083 using a twin powder feed system that resulted in thick (>300 μm) composite coatings. The deposited coatings were subsequently friction stir processed to embed the particles in the substrate in order to generate a metal matrix composite (MMC) surface layer. The primary aim of this investigation was to examine the erosion performance of the SprayStirred surfaces and demonstrate the benefits of this novel process as a surface engineering technique. Volumetric analysis of the SprayStirred surfaces highlighted a drop of approx. 40% in the level of material loss when compared with the cold spray deposited coating prior to friction stir processing. Micro-hardness testing revealed that in the case of WC-CoCr reinforced coating, the hardness of the SprayStirred material exhibits an increase of approx. 540% over the unaltered substrate and 120% over the as-deposited composite coating. Microstructural examination demonstrated that the increase in the hardness of the

  9. Recent results on CVD diamond radiation sensors

    Science.gov (United States)

    Weilhammer, P.; Adam, W.; Bauer, C.; Berdermann, E.; Bogani, F.; Borchi, E.; Bruzzi, M.; Colledani, C.; Conway, J.; Dabrowski, W.; Delpierre, P.; Deneuville, A.; Dulinski, W.; v. d. Eijk, R.; van Eijk, B.; Fallou, A.; Fish, D.; Fried, M.; Gan, K. K.; Gheeraert, E.; Grigoriev, E.; Hallewell, G.; Hall-Wilton, R.; Han, S.; Hartjes, F.; Hrubec, J.; Husson, D.; Kagan, H.; Kania, D.; Kaplon, J.; Kass, R.; Knopfle, K. T.; Krammer, M.; Manfredi, P. F.; Meier, D.; LeNormand; Pan, L. S.; Pernegger, H.; Pernicka, M.; Plano, R.; Re, V.; Riester, J. L.; Roe, S.; Roff; Rudge, A.; Schieber, M.; Schnetzer, S.; Sciortino, S.; Speziali, V.; Stelzer, H.; Stone, R.; Tapper, R. J.; Tesarek, R.; Thomson, G. B.; Trawick, M.; Trischuk, W.; Turchetta, R.; RD 42 Collaboration

    1998-02-01

    CVD diamond radiation sensors are being developed for possible use in trackers in the LHC experiments. The diamond promises to be radiation hard well beyond particle fluences that can be tolerated by Si sensors. Recent results from the RD 42 collaboration on charge collection distance and on radiation hardness of CVD diamond samples will be reported. Measurements with diamond tracking devices, both strip detectors and pixel detectors, will be discussed. Results from beam tests using a diamond strip detector which was read out with fast, 25 ns shaping time, radiation-hard pipeline electronics will be presented.

  10. Prediction of the properties of PVD/CVD coatings with the use of FEM analysis

    International Nuclear Information System (INIS)

    Śliwa, Agata; Mikuła, Jarosław; Gołombek, Klaudiusz; Tański, Tomasz; Kwaśny, Waldemar; Bonek, Mirosław; Brytan, Zbigniew

    2016-01-01

    Highlights: • Prediction of the properties of PVD/CVD coatings with the use of (FEM) analysis. • Stress distribution in multilayer Ti/Ti(C,N)/CrN, Ti/Ti(C,N)/(Ti,Al)N coatings. • The experimental values of stresses were determined on X-ray diffraction patterns. • An FEM model was established for the purpose of building a computer simulation. - Abstract: The aim of this paper is to present the results of the prediction of the properties of PVD/CVD coatings with the use of finite element method (FEM) analysis. The possibility of employing the FEM in the evaluation of stress distribution in multilayer Ti/Ti(C,N)/CrN, Ti/Ti(C,N)/(Ti,Al)N, Ti/(Ti,Si)N/(Ti,Si)N, and Ti/DLC/DLC coatings by taking into account their deposition conditions on magnesium alloys has been discussed in the paper. The difference in internal stresses in the zone between the coating and the substrate is caused by, first of all, the difference between the mechanical and thermal properties of the substrate and the coating, and also by the structural changes that occur in these materials during the fabrication process, especially during the cooling process following PVD and CVD treatment. The experimental values of stresses were determined based on X-ray diffraction patterns that correspond to the modelled values, which in turn can be used to confirm the correctness of the accepted mathematical model for testing the problem. An FEM model was established for the purpose of building a computer simulation of the internal stresses in the coatings. The accuracy of the FEM model was verified by comparing the results of the computer simulation of the stresses with experimental results. A computer simulation of the stresses was carried out in the ANSYS environment using the FEM method. Structure observations, chemical composition measurements, and mechanical property characterisations of the investigated materials has been carried out to give a background for the discussion of the results that were

  11. Prediction of the properties of PVD/CVD coatings with the use of FEM analysis

    Energy Technology Data Exchange (ETDEWEB)

    Śliwa, Agata; Mikuła, Jarosław; Gołombek, Klaudiusz; Tański, Tomasz; Kwaśny, Waldemar; Bonek, Mirosław, E-mail: miroslaw.bonek@polsl.pl; Brytan, Zbigniew

    2016-12-01

    Highlights: • Prediction of the properties of PVD/CVD coatings with the use of (FEM) analysis. • Stress distribution in multilayer Ti/Ti(C,N)/CrN, Ti/Ti(C,N)/(Ti,Al)N coatings. • The experimental values of stresses were determined on X-ray diffraction patterns. • An FEM model was established for the purpose of building a computer simulation. - Abstract: The aim of this paper is to present the results of the prediction of the properties of PVD/CVD coatings with the use of finite element method (FEM) analysis. The possibility of employing the FEM in the evaluation of stress distribution in multilayer Ti/Ti(C,N)/CrN, Ti/Ti(C,N)/(Ti,Al)N, Ti/(Ti,Si)N/(Ti,Si)N, and Ti/DLC/DLC coatings by taking into account their deposition conditions on magnesium alloys has been discussed in the paper. The difference in internal stresses in the zone between the coating and the substrate is caused by, first of all, the difference between the mechanical and thermal properties of the substrate and the coating, and also by the structural changes that occur in these materials during the fabrication process, especially during the cooling process following PVD and CVD treatment. The experimental values of stresses were determined based on X-ray diffraction patterns that correspond to the modelled values, which in turn can be used to confirm the correctness of the accepted mathematical model for testing the problem. An FEM model was established for the purpose of building a computer simulation of the internal stresses in the coatings. The accuracy of the FEM model was verified by comparing the results of the computer simulation of the stresses with experimental results. A computer simulation of the stresses was carried out in the ANSYS environment using the FEM method. Structure observations, chemical composition measurements, and mechanical property characterisations of the investigated materials has been carried out to give a background for the discussion of the results that were

  12. Superhydrophobic nanostructured ZnO thin films on aluminum alloy substrates by electrophoretic deposition process

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Ying; Sarkar, D.K., E-mail: dsarkar@uqac.ca; Chen, X-Grant

    2015-02-01

    Graphical abstract: - Highlights: • Fabrication of superhydrophobic ZnO thin films surfaces by electrophoretic deposition process on aluminum substrates. • Effect of bath temperature on the physical and superhydrophobic properties of thin films. • The water contact angle of 155° ± 3 with roll off property has been observed on the film that was grown at bath temperatures of 50 °C. • The activation energy for electrophoretic deposition of SA-functionalized ZnO nanoparticle is calculated to be 0.50 eV. - Abstract: Superhydrophobic thin films have been fabricated on aluminum alloy substrates by electrophoretic deposition (EPD) process using stearic acid (SA) functionalized zinc oxide (ZnO) nanoparticles suspension in alcohols at varying bath temperatures. The deposited thin films have been characterized using both X-ray diffraction (XRD) and infrared (IR) spectroscopy and it is found that the films contain low surface energy zinc stearate and ZnO nanoparticles. It is also observed that the atomic percentage of Zn and O, roughness and water contact angle of the thin films increase with the increase of the deposited bath temperature. Furthermore, the thin film deposited at 50 °C, having a roughness of 4.54 ± 0.23 μm, shows superhydrophobic properties providing a water contact angle of 155 ± 3° with rolling off properties. Also, the activation energy of electrophoretic deposition of stearic-acid-functionalized ZnO nanoparticles is calculated to be 0.5 eV.

  13. Solution processed deposition of electron transport layers on perovskite crystal surface—A modeling based study

    Energy Technology Data Exchange (ETDEWEB)

    Mortuza, S.M.; Taufique, M.F.N.; Banerjee, Soumik, E-mail: soumik.banerjee@wsu.edu

    2017-02-01

    Highlights: • The model determined the surface coverage of solution-processed film on perovskite. • Calculated surface density map provides insight into morphology of the monolayer. • Carbonyl oxygen atom of PCBM strongly attaches to the (110) surface of perovskite. • Uniform distribution of clusters on perovskite surface at lower PCBM concentration. • Deposition rate of PCBM on the surface is very high at initial stage of film growth. - Abstract: The power conversion efficiency (PCE) of planar perovskite solar cells (PSCs) has reached up to ∼20%. However, structural and chemicals defects that lead to hysteresis in the perovskite based thin film pose challenges. Recent work has shown that thin films of [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) deposited on the photo absorption layer, using solution processing techniques, minimize surface pin holes and defects thereby increasing the PCE. We developed and employed a multiscale model based on molecular dynamics (MD) and kinetic Monte Carlo (kMC) to establish a relationship between deposition rate and surface coverage on perovskite surface. The MD simulations of PCBMs dispersed in chlorobenzene, sandwiched between (110) perovskite substrates, indicate that PCBMs are deposited through anchoring of the oxygen atom of carbonyl group to the exposed lead (Pb) atom of (110) perovskite surface. Based on rates of distinct deposition events calculated from MD, kMC simulations were run to determine surface coverage at much larger time and length scales than accessible by MD alone. Based on the model, a generic relationship is established between deposition rate of PCBMs and surface coverage on perovskite crystal. The study also provides detailed insights into the morphology of the deposited film.

  14. Evaluation of Mineral Deposits Along the Little Wind River, Riverton, WY, Processing Site

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, Sam [Navarro Research and Engineering, Oak Ridge, TN (United States); Dam, Wiliam [US Department of Energy, Washington, DC (United States). Office of Legacy Management

    2014-12-01

    In 2012, the U.S.Department of Energy (DOE) began reassessing the former Riverton, Wyoming, Processing Site area for potential contaminant sources impacting groundwater. A flood in 2010 along the Little Wind River resulted in increases in groundwater contamination (DOE 2013).This investigation is a small part of continued efforts by DOE and other stakeholders to update human health and ecological risk assessments, to make a comprehensive examination of all exposure pathways to ensure that the site remains protective through established institutional controls. During field inspections at the Riverton Site in 2013, a white evaporitic mineral deposit was identified along the bank of the Little Wind River within the discharge zone of the groundwater contamination plume. In December 2013, Savannah River National Laboratory (SRNL) personnel collected a sample for analysis by X-ray fluorescence (Figure 1 shows the type of material sampled). The sample had a uranium concentration of approximately 64 to 73 parts per million. Although the uranium in this mineral deposit is within the expected range for evaporatic minerals in the western United States (SRNL 2014), DOE determined that additional assessment of the mineral deposit was warranted. In response to the initial collection and analysis of a sample of the mineral deposit, DOE developed a work plan (Work Plan to Sample Mineral Deposits Along the Little Wind River, Riverton, Wyoming, Processing Site [DOE 2014]) to further define the extent of these mineral deposits and the concentration of the associated contaminants (Appendix A). The work plan addressed field reconnaissance, mapping, sampling, and the assessment of risk associated with the mineral deposits adjacent to the Little Wind River.

  15. Solution processed deposition of electron transport layers on perovskite crystal surface—A modeling based study

    International Nuclear Information System (INIS)

    Mortuza, S.M.; Taufique, M.F.N.; Banerjee, Soumik

    2017-01-01

    Highlights: • The model determined the surface coverage of solution-processed film on perovskite. • Calculated surface density map provides insight into morphology of the monolayer. • Carbonyl oxygen atom of PCBM strongly attaches to the (110) surface of perovskite. • Uniform distribution of clusters on perovskite surface at lower PCBM concentration. • Deposition rate of PCBM on the surface is very high at initial stage of film growth. - Abstract: The power conversion efficiency (PCE) of planar perovskite solar cells (PSCs) has reached up to ∼20%. However, structural and chemicals defects that lead to hysteresis in the perovskite based thin film pose challenges. Recent work has shown that thin films of [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) deposited on the photo absorption layer, using solution processing techniques, minimize surface pin holes and defects thereby increasing the PCE. We developed and employed a multiscale model based on molecular dynamics (MD) and kinetic Monte Carlo (kMC) to establish a relationship between deposition rate and surface coverage on perovskite surface. The MD simulations of PCBMs dispersed in chlorobenzene, sandwiched between (110) perovskite substrates, indicate that PCBMs are deposited through anchoring of the oxygen atom of carbonyl group to the exposed lead (Pb) atom of (110) perovskite surface. Based on rates of distinct deposition events calculated from MD, kMC simulations were run to determine surface coverage at much larger time and length scales than accessible by MD alone. Based on the model, a generic relationship is established between deposition rate of PCBMs and surface coverage on perovskite crystal. The study also provides detailed insights into the morphology of the deposited film.

  16. Ti film deposition process of a plasma focus: Study by an experimental design

    Directory of Open Access Journals (Sweden)

    M. J. Inestrosa-Izurieta

    2017-10-01

    Full Text Available The plasma generated by plasma focus (PF devices have substantially different physical characteristics from another plasma, energetic ions and electrons, compared with conventional plasma devices used for plasma nanofabrication, offering new and unique opportunities in the processing and synthesis of Nanomaterials. This article presents the use of a plasma focus of tens of joules, PF-50J, for the deposition of materials sprayed from the anode by the plasma dynamics in the axial direction. This work focuses on the determination of the most significant effects of the technological parameters of the system on the obtained depositions through the use of a statistical experimental design. The results allow us to give a qualitative understanding of the Ti film deposition process in our PF device depending on four different events provoked by the plasma dynamics: i an electric erosion of the outer material of the anode; ii substrate ablation generating an interlayer; iii electron beam deposition of material from the center of the anode; iv heat load provoking clustering or even melting of the deposition surface.

  17. Cutting characteristics of dental diamond burs made with CVD technology Características de corte de pontas odontológicas diamantadas obtidas pela tecnologia CVD

    Directory of Open Access Journals (Sweden)

    Luciana Monti Lima

    2006-04-01

    Full Text Available The aim of this study was to determine the cutting ability of chemical vapor deposition (CVD diamond burs coupled to an ultrasonic dental unit handpiece for minimally invasive cavity preparation. One standard cavity was prepared on the mesial and distal surfaces of 40 extracted human third molars either with cylindrical or with spherical CVD burs. The cutting ability was compared regarding type of substrate (enamel and dentin and direction of handpiece motion. The morphological characteristics, width and depth of the cavities were analyzed and measured using scanning electron micrographs. Statistical analysis using the Kruskal-Wallis test (p O objetivo deste estudo foi determinar a habilidade de corte das pontas de diamante obtidas pelo processo de deposição química a vapor (CVD associadas ao aparelho de ultra-som no preparo cavitário minimamente invasivo. Uma cavidade padronizada foi preparada nas faces mesial e distal de 40 terceiros molares, utilizando-se pontas de diamante CVD cilíndrica e esférica. A habilidade de corte foi comparada quanto ao tipo de substrato (esmalte e dentina e quanto à direção do movimento realizado com a ponta. As características morfológicas, a largura e profundidade das cavidades foram analisadas e medidas em microscopia eletrônica de varredura. A análise estatística pelo teste de Kruskal-Wallis (p < 0,05 revelou que a largura e profundidade das cavidades foram significativamente maiores em dentina. Cavidades mais largas foram obtidas quando se utilizou a ponta de diamante CVD cilíndrica, e mais profundas quando a ponta esférica foi empregada. A direção do movimento da ponta não influenciou o tamanho das cavidades, sendo os cortes produzidos pelas pontas de diamante CVD precisos e conservadores.

  18. Optimization of Nano-Process Deposition Parameters Based on Gravitational Search Algorithm

    Directory of Open Access Journals (Sweden)

    Norlina Mohd Sabri

    2016-06-01

    Full Text Available This research is focusing on the radio frequency (RF magnetron sputtering process, a physical vapor deposition technique which is widely used in thin film production. This process requires the optimized combination of deposition parameters in order to obtain the desirable thin film. The conventional method in the optimization of the deposition parameters had been reported to be costly and time consuming due to its trial and error nature. Thus, gravitational search algorithm (GSA technique had been proposed to solve this nano-process parameters optimization problem. In this research, the optimized parameter combination was expected to produce the desirable electrical and optical properties of the thin film. The performance of GSA in this research was compared with that of Particle Swarm Optimization (PSO, Genetic Algorithm (GA, Artificial Immune System (AIS and Ant Colony Optimization (ACO. Based on the overall results, the GSA optimized parameter combination had generated the best electrical and an acceptable optical properties of thin film compared to the others. This computational experiment is expected to overcome the problem of having to conduct repetitive laboratory experiments in obtaining the most optimized parameter combination. Based on this initial experiment, the adaptation of GSA into this problem could offer a more efficient and productive way of depositing quality thin film in the fabrication process.

  19. Plasma processes and film growth of expanding thermal plasma deposited textured zinc oxide

    NARCIS (Netherlands)

    Groenen, R.; Linden, J.L.; Sanden, van de M.C.M.

    2005-01-01

    Plasma processes and film growth of textured zinc oxide deposited from oxygen and diethyl zinc utilizing expanding thermal argon plasma created by a cascaded arc is discussed. In all conditions explored, an excess of argon ions and low temperature electrons is available, which represent the

  20. Electrospray ionization deposition of BSA under vacuum conditions

    Science.gov (United States)

    Hecker, Dominic; Gloess, Daniel; Frach, Peter; Gerlach, Gerald

    2015-05-01

    Vacuum deposition techniques like thermal evaporation and CVD with their precise layer control and high layer purity often cannot be applied for the deposition of chemical or biological molecules. The molecules are usually decomposed by heat. To overcome this problem, the Electrospray ionization (ESI) process known from mass spectroscopy is employed to transfer molecules into vacuum and to deposit them on a substrate. In this work, a homemade ESI tool was used to deposit BSA (Bovine serum albumin) layers with high deposition rates. Solutions with different concentrations of BSA were prepared using a methanol:water (MeOH:H2O) mixture (1:1) as solvent. The influence of the substrate distance on the deposition rate and on the transmission current was analyzed. Furthermore, the layer thickness distribution and layer adhesion were investigated.

  1. CVD diamond based soft X-ray detector with fast response

    International Nuclear Information System (INIS)

    Li Fang; Hou Lifei; Su Chunxiao; Yang Guohong; Liu Shenye

    2010-01-01

    A soft X-ray detector has been made with high quality chemical vapor deposited (CVD) diamond and the electrical structure of micro-strip. Through the measurement of response time on a laser with the pulse width of 10 ps, the full width at half maximum of the data got in the oscilloscope was 115 ps. The rise time of the CVD diamond detector was calculated to be 49 ps. In the experiment on the laser prototype facility, the signal got by the CVD diamond detector was compared with that got by a soft X-ray spectrometer. Both signals coincided well. The detector is proved to be a kind of reliable soft X-ray detector with fast response and high signal-to-noise ratio. (authors)

  2. Reduced thermal budget processing of Y-Ba-Cu-O films by rapid isothermal processing assisted metalorganic chemical vapor deposition

    International Nuclear Information System (INIS)

    Singh, R.; Sinha, S.; Hsu, N.J.; Ng, J.T.C.; Chou, P.; Thakur, R.P.S.; Narayan, J.

    1991-01-01

    Metalorganic chemical vapor deposition (MOCVD) has the potential of emerging as a viable technique to fabricate ribbons, tapes, coated wires, and the deposition of films of high-temperature superconductors, and related materials. As a reduced thermal budget processing technique, rapid isothermal processing (RIP) based on incoherent radiation as the source of energy can be usefully coupled to conventional MOCVD. In this paper we report on the deposition and characterization of high quality superconducting thin films of Y-Ba-Cu-O (YBCO) on yttrium stabilized zirconia substrates by RIP assisted MOCVD. Using O 2 gas as the source of oxygen, YBCO films deposited initially at 600 degree C for 1 min and at 745 degree C for 25 min followed by deposition at 780 degree C for 45 s are primarily c-axis oriented and zero resistance is observed at 89--90 K. The zero magnetic field current density at 53 and 77 K are 1.2x10 6 and 3x10 5 A/cm 2 , respectively. By using a mixture of N 2 O and O 2 as the oxygen source substrate temperature was further reduced in the deposition of YBCO films. The films deposited initially at 600 degree C for 1 min and than at 720 degree C for 30 min are c-axis oriented and with zero resistance being observed at 91 K. The zero magnetic field current densities at 53 and 77 K are 3.4x10 6 and 1.2x10 6 A/cm 2 , respectively. To the best of our knowledge this is the highest value of critical current density, J c for films deposited by MOCVD at a substrate temperature as low as 720 degree C. It is envisioned that high energy photons from the incoherent light source and the use of a mixture of N 2 O and O 2 as the oxygen source, assist chemical reactions and lower overall thermal budget for processing of these films

  3. Thermodynamic study of CVD-ZrO{sub 2} phase diagrams

    Energy Technology Data Exchange (ETDEWEB)

    Torres-Huerta, A.M., E-mail: atorresh@ipn.m [Research Center for Applied Science and Advanced Technology, Altamira-IPN, Altamira C.P.89600 Tamaulipas (Mexico); Vargas-Garcia, J.R. [Dept of Metallurgical Eng., ESIQIE-IPN, Mexico 07300 D.F. (Mexico); Dominguez-Crespo, M.A. [Research Center for Applied Science and Advanced Technology, Altamira-IPN, Altamira C.P.89600 Tamaulipas (Mexico); Romero-Serrano, J.A. [Dept of Metallurgical Eng., ESIQIE-IPN, Mexico 07300 D.F. (Mexico)

    2009-08-26

    Chemical vapor deposition (CVD) of zirconium oxide (ZrO{sub 2}) from zirconium acetylacetonate Zr(acac){sub 4} has been thermodynamically investigated using the Gibbs' free energy minimization method and the FACTSAGE program. Thermodynamic data Cp{sup o}, DELTAH{sup o} and S{sup o} for Zr(acac){sub 4} have been estimated using the Meghreblian-Crawford-Parr and Benson methods because they are not available in the literature. The effect of deposition parameters, such as temperature and pressure, on the extension of the region where pure ZrO{sub 2} can be deposited was analyzed. The results are presented as calculated CVD stability diagrams. The phase diagrams showed two zones, one of them corresponds to pure monoclinic phase of ZrO{sub 2} and the other one corresponds to a mix of monoclinic phase of ZrO{sub 2} and graphite carbon.

  4. Ion - beam assisted process in the physical deposition of organic thin layers

    Energy Technology Data Exchange (ETDEWEB)

    Dimov, D; Spassova, E; Assa, J; Danev, G [Acad. J .Malinowski Central Laboratory of Photoprocesses, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl.109, 1113 Sofia (Bulgaria); Georgiev, A, E-mail: dean@clf.bas.b [University of Chemical Technology and Metallurgy, 8 Kl. Ohridski Blvd., 1756 Sofia (Bulgaria)

    2010-04-01

    A novel method was developed for physical deposition of thin polyimide layers by applying an argon plasma assisted process. The influence was investigated of the plasma on the combined molecular flux of the two thermally evaporated precursors - oxydianiline and pyromellitic dianhydride. The effects observed on the properties of the deposited films are explained with the increased energy of the precursor molecules resulting from the ion-molecular collisions. As could be expected, molecules with higher energy possess higher mobility and thus determine the modification of the films structure and their electrical properties.

  5. Friction Properties of Polished Cvd Diamond Films Sliding against Different Metals

    Science.gov (United States)

    Lin, Zichao; Sun, Fanghong; Shen, Bin

    2016-11-01

    Owing to their excellent mechanical and tribological properties, like the well-known extreme hardness, low coefficient of friction and high chemical inertness, chemical vapor deposition (CVD) diamond films have found applications as a hard coating for drawing dies. The surface roughness of the diamond films is one of the most important attributes to the drawing dies. In this paper, the effects of different surface roughnesses on the friction properties of diamond films have been experimentally studied. Diamond films were fabricated using hot filament CVD. The WC-Co (Co 6wt.%) drawing dies were used as substrates. A gas mixture of acetone and hydrogen gas was used as the feedstock gas. The CVD diamond films were polished using mechanical polishing. Polished diamond films with three different surface roughnesses, as well as the unpolished diamond film, were fabricated in order to study the tribological performance between the CVD diamond films and different metals with oil lubrication. The unpolished and polished CVD diamond films are characterized with scanning electron microscope (SEM), atomic force microscope (AFM), surface profilometer, Raman spectrum and X-ray diffraction (XRD). The friction examinations were carried out by using a ball-on-plate type reciprocating friction tester. Low carbide steel, stainless steel, copper and aluminum materials were used as counterpart balls. Based on this study, the results presented the friction coefficients between the polished CVD films and different metals. The friction tests demonstrate that the smooth surface finish of CVD diamond films is beneficial for reducing their friction coefficients. The diamond films exhibit low friction coefficients when slid against the stainless steel balls and low carbide steel ball, lower than that slid against copper ball and aluminum ball, attributed to the higher ductility of copper and aluminum causing larger amount of wear debris adhering to the sliding interface and higher adhesive

  6. A study of the thermoluminescent properties of CVD diamond detectors

    International Nuclear Information System (INIS)

    Marczewska, B.; Bilski, P.; Olko, P.; Rebisz, M.; Nesladek, M.; Waligorski, M.P.R.

    2002-01-01

    A batch of 20 diamond detectors obtained by the chemical vapour deposition (CVD) method at the Institute for Materials Research at the Limburg University, Belgium, was investigated with respect to their thermoluminescent (TL) properties. The investigated detectors demonstrate TL sensitivity similar to that of the standard LiF:Mg, Ti (MTS) thermoluminescent detectors, lack of fading after two weeks from irradiation and apparent linearity of dose response. In spite of the persistent fluctuation of individual detector sensitivity observed in this batch, a new annealing procedure improved the stability of the TL signal. It has been concluded that 1 h annealing at 350 C assures the highest reproducibility for this set of detectors. A 30% discrepancy of the value of the TL signal between individual detectors from the batch may be caused by non-uniform distribution of dopants in the volume of the CVD diamond. A prototype of a planar TL reader equipped with a CCD camera was employed in this investigation. (Abstract Copyright [2002], Wiley Periodicals, Inc.)

  7. Thermoluminescence in CVD diamond films: application to actinometric dosimetry

    International Nuclear Information System (INIS)

    Barboza-Flores, M.; Melendrez, R.; Chernov, V.; Castaneda, B.; Pedroza-Montero, M.; Gan, B.; Ahn, J.; Zhang, Q.; Yoon, S.F.

    2002-01-01

    Diamond is considered a tissue-equivalent material since its atomic number (Z=6) is close to the effective atomic number of biological tissue (Z=7.42). Such a situation makes it suitable for radiation detection purposes in medical applications. In the present work the analysis is reported of the thermoluminescence (TL) and dosimetric features of chemically vapour deposited (CVD) diamond film samples subjected to ultraviolet (UV) irradiation in the actinometric region. The TL glow curve shows peaks at 120, 220, 320 and 370 deg. C. The 120 and 370 deg. C peaks are too weak and the first one fades away in a few seconds after exposure. The overall room temperature fading shows a 50% TL decay 30 min after exposure. The 320 deg. C glow peak is considered to be the most adequate for dosimetric applications due to its low fading and linear TL behaviour as a function of UV dose in the 180-260 nm range. The TL excitation spectrum presents a broad band with at least two overlapped components around 205 and 220 nm. The results indicate that the TL behaviour of CVD diamond film can be a good alternative to the currently available dosemeter and detector in the actinometric region as well as in clinical and medical applications. (author)

  8. Response of CVD diamond detectors to alpha radiation

    Energy Technology Data Exchange (ETDEWEB)

    Souw, E.-K. [Brookhaven National Lab., Upton, NY (United States); Meilunas, R.J. [Northrop-Grumman Corporation, Bethpage, NY 11714-3582 (United States)

    1997-11-21

    This article describes some results from an experiment with CVD diamond films used as {alpha} particle detectors. It demonstrates that bulk polarization can be effectively stopped within a reasonable time interval. This will enable detector calibration and quantitative measurement. A possible mechanism for the observed polarization quenching is discussed. It involves two types of carrier traps and a tentative band-gap model derived from the results of photoconductive current measurements. The experiment was set up mainly to investigate {alpha} detection properties of polycrystalline diamond films grown by the technique of microwave plasma enhanced chemical vapor deposition. For comparison, two commercially purchased diamond wafers were also investigated, i.e., one grown by the DC arc jet method, and the other, a type-IIa natural diamond wafer (not preselected). The best response to {alpha} particles was obtained using diamond thin-films grown by the microwave PECVD method, followed by the type-IIa natural diamond, and finally, the CVD diamond grown by the DC arc jet technique. (orig.). 43 refs.

  9. CVD diamond pixel detectors for LHC experiments

    CERN Document Server

    Wedenig, R; Bauer, C; Berdermann, E; Bergonzo, P; Bogani, F; Borchi, E; Brambilla, A; Bruzzi, Mara; Colledani, C; Conway, J; Dabrowski, W; Delpierre, P A; Deneuville, A; Dulinski, W; van Eijk, B; Fallou, A; Fizzotti, F; Foulon, F; Friedl, M; Gan, K K; Gheeraert, E; Grigoriev, E; Hallewell, G D; Hall-Wilton, R; Han, S; Hartjes, F G; Hrubec, Josef; Husson, D; Kagan, H; Kania, D R; Kaplon, J; Karl, C; Kass, R; Knöpfle, K T; Krammer, Manfred; Lo Giudice, A; Lü, R; Manfredi, P F; Manfredotti, C; Marshall, R D; Meier, D; Mishina, M; Oh, A; Pan, L S; Palmieri, V G; Pernicka, Manfred; Peitz, A; Pirollo, S; Polesello, P; Pretzl, Klaus P; Procario, M; Re, V; Riester, J L; Roe, S; Roff, D G; Rudge, A; Runólfsson, O; Russ, J; Schnetzer, S R; Sciortino, S; Speziali, V; Stelzer, H; Stone, R; Suter, B; Tapper, R J; Tesarek, R J; Trawick, M L; Trischuk, W; Vittone, E; Wagner, A; Walsh, A M; Weilhammer, Peter; White, C; Zeuner, W; Ziock, H J; Zöller, M

    1999-01-01

    This paper reviews the development of CVD diamond pixel detectors. The preparation of the diamond pixel sensors for bump-bonding to the pixel readout electronics for the LHC and the results from beam tests carried out at CERN are described. (9 refs).

  10. CVD diamond pixel detectors for LHC experiments

    Energy Technology Data Exchange (ETDEWEB)

    Wedenig, R.; Adam, W.; Bauer, C.; Berdermann, E.; Bergonzo, P.; Bogani, F.; Borchi, E.; Brambilla, A.; Bruzzi, M.; Colledani, C.; Conway, J.; Dabrowski, W.; Delpierre, P.; Deneuville, A.; Dulinski, W.; Eijk, B. van; Fallou, A.; Fizzotti, F.; Foulon, F.; Friedl, M.; Gan, K.K.; Gheeraert, E.; Grigoriev, E.; Hallewell, G.; Hall-Wilton, R.; Han, S.; Hartjes, F.; Hrubec, J.; Husson, D.; Kagan, H.; Kania, D.; Kaplon, J.; Karl, C.; Kass, R.; Knoepfle, K.T.; Krammer, M.; Logiudice, A.; Lu, R.; Manfredi, P.F.; Manfredotti, C.; Marshall, R.D.; Meier, D.; Mishina, M.; Oh, A.; Pan, L.S.; Palmieri, V.G.; Pernicka, M.; Peitz, A.; Pirollo, S.; Polesello, P.; Pretzl, K.; Procario, M.; Re, V.; Riester, J.L.; Roe, S.; Roff, D.; Rudge, A.; Runolfsson, O.; Russ, J.; Schnetzer, S.; Sciortino, S.; Speziali, V.; Stelzer, H.; Stone, R.; Suter, B.; Tapper, R.J.; Tesarek, R.; Trawick, M.; Trischuk, W.; Vittone, E.; Wagner, A.; Walsh, A.M.; Weilhammer, P.; White, C.; Zeuner, W.; Ziock, H.; Zoeller, M.; Blanquart, L.; Breugnion, P.; Charles, E.; Ciocio, A.; Clemens, J.C.; Dao, K.; Einsweiler, K.; Fasching, D.; Fischer, P.; Joshi, A.; Keil, M.; Klasen, V.; Kleinfelder, S.; Laugier, D.; Meuser, S.; Milgrome, O.; Mouthuy, T.; Richardson, J.; Sinervo, P.; Treis, J.; Wermes, N

    1999-08-01

    This paper reviews the development of CVD diamond pixel detectors. The preparation of the diamond pixel sensors for bump-bonding to the pixel readout electronics for the LHC and the results from beam tests carried out at CERN are described.

  11. CVD diamond pixel detectors for LHC experiments

    International Nuclear Information System (INIS)

    Wedenig, R.; Adam, W.; Bauer, C.; Berdermann, E.; Bergonzo, P.; Bogani, F.; Borchi, E.; Brambilla, A.; Bruzzi, M.; Colledani, C.; Conway, J.; Dabrowski, W.; Delpierre, P.; Deneuville, A.; Dulinski, W.; Eijk, B. van; Fallou, A.; Fizzotti, F.; Foulon, F.; Friedl, M.; Gan, K.K.; Gheeraert, E.; Grigoriev, E.; Hallewell, G.; Hall-Wilton, R.; Han, S.; Hartjes, F.; Hrubec, J.; Husson, D.; Kagan, H.; Kania, D.; Kaplon, J.; Karl, C.; Kass, R.; Knoepfle, K.T.; Krammer, M.; Logiudice, A.; Lu, R.; Manfredi, P.F.; Manfredotti, C.; Marshall, R.D.; Meier, D.; Mishina, M.; Oh, A.; Pan, L.S.; Palmieri, V.G.; Pernicka, M.; Peitz, A.; Pirollo, S.; Polesello, P.; Pretzl, K.; Procario, M.; Re, V.; Riester, J.L.; Roe, S.; Roff, D.; Rudge, A.; Runolfsson, O.; Russ, J.; Schnetzer, S.; Sciortino, S.; Speziali, V.; Stelzer, H.; Stone, R.; Suter, B.; Tapper, R.J.; Tesarek, R.; Trawick, M.; Trischuk, W.; Vittone, E.; Wagner, A.; Walsh, A.M.; Weilhammer, P.; White, C.; Zeuner, W.; Ziock, H.; Zoeller, M.; Blanquart, L.; Breugnion, P.; Charles, E.; Ciocio, A.; Clemens, J.C.; Dao, K.; Einsweiler, K.; Fasching, D.; Fischer, P.; Joshi, A.; Keil, M.; Klasen, V.; Kleinfelder, S.; Laugier, D.; Meuser, S.; Milgrome, O.; Mouthuy, T.; Richardson, J.; Sinervo, P.; Treis, J.; Wermes, N.

    1999-01-01

    This paper reviews the development of CVD diamond pixel detectors. The preparation of the diamond pixel sensors for bump-bonding to the pixel readout electronics for the LHC and the results from beam tests carried out at CERN are described

  12. Turbostratic stacked CVD graphene for high-performance devices

    Science.gov (United States)

    Uemura, Kohei; Ikuta, Takashi; Maehashi, Kenzo

    2018-03-01

    We have fabricated turbostratic stacked graphene with high-transport properties by the repeated transfer of CVD monolayer graphene. The turbostratic stacked CVD graphene exhibited higher carrier mobility and conductivity than CVD monolayer graphene. The electron mobility for the three-layer turbostratic stacked CVD graphene surpassed 10,000 cm2 V-1 s-1 at room temperature, which is five times greater than that for CVD monolayer graphene. The results indicate that the high performance is derived from maintenance of the linear band dispersion, suppression of the carrier scattering, and parallel conduction. Therefore, turbostratic stacked CVD graphene is a superior material for high-performance devices.

  13. Fabrication and evaluation of chemically vapor deposited tungsten heat pipe.

    Science.gov (United States)

    Bacigalupi, R. J.

    1972-01-01

    A network of lithium-filled tungsten heat pipes is being considered as a method of heat extraction from high temperature nuclear reactors. The need for material purity and shape versatility in these applications dictates the use of chemically vapor deposited (CVD) tungsten. Adaptability of CVD tungsten to complex heat pipe designs is shown. Deposition and welding techniques are described. Operation of two lithium-filled CVD tungsten heat pipes above 1800 K is discussed.

  14. Thermokinetic Modeling of Phase Transformation in the Laser Powder Deposition Process

    Science.gov (United States)

    Foroozmehr, Ehsan; Kovacevic, Radovan

    2009-08-01

    A finite element model coupled with a thermokinetic model is developed to predict the phase transformation of the laser deposition of AISI 4140 on a substrate with the same material. Four different deposition patterns, long-bead, short-bead, spiral-in, and spiral-out, are used to cover a similar area. Using a finite element model, the temperature history of the laser powder deposition (LPD) process is determined. The martensite transformation as well as martensite tempering is considered to calculate the final fraction of martensite, ferrite, cementite, ɛ-carbide, and retained austenite. Comparing the surface hardness topography of different patterns reveals that path planning is a critical parameter in laser surface modification. The predicted results are in a close agreement with the experimental results.

  15. Effect of Processing Parameters on Performance of Spray-Deposited Organic Thin-Film Transistors

    Directory of Open Access Journals (Sweden)

    Jack W. Owen

    2011-01-01

    Full Text Available The performance of organic thin-film transistors (OTFTs is often strongly dependent on the fabrication procedure. In this study, we fabricate OTFTs of soluble small-molecule organic semiconductors by spray-deposition and explore the effect of processing parameters on film morphology and device mobility. In particular, we report on the effect of the nature of solvent, the pressure of the carrier gas used in deposition, and the spraying distance. We investigate the surface morphology using scanning force microscopy and show that the molecules pack along the π-stacking direction, which is the preferred charge transport direction. Our results demonstrate that we can tune the field-effect mobility of spray-deposited devices two orders of magnitude, from 10−3 cm2/Vs to 10−1 cm2/Vs, by controlling fabrication parameters.

  16. Spin transport in two-layer-CVD-hBN/graphene/hBN heterostructures

    Science.gov (United States)

    Gurram, M.; Omar, S.; Zihlmann, S.; Makk, P.; Li, Q. C.; Zhang, Y. F.; Schönenberger, C.; van Wees, B. J.

    2018-01-01

    We study room-temperature spin transport in graphene devices encapsulated between a layer-by-layer-stacked two-layer-thick chemical vapor deposition (CVD) grown hexagonal boron nitride (hBN) tunnel barrier, and a few-layer-thick exfoliated-hBN substrate. We find mobilities and spin-relaxation times comparable to that of SiO2 substrate-based graphene devices, and we obtain a similar order of magnitude of spin relaxation rates for both the Elliott-Yafet and D'Yakonov-Perel' mechanisms. The behavior of ferromagnet/two-layer-CVD-hBN/graphene/hBN contacts ranges from transparent to tunneling due to inhomogeneities in the CVD-hBN barriers. Surprisingly, we find both positive and negative spin polarizations for high-resistance two-layer-CVD-hBN barrier contacts with respect to the low-resistance contacts. Furthermore, we find that the differential spin-injection polarization of the high-resistance contacts can be modulated by dc bias from -0.3 to +0.3 V with no change in its sign, while its magnitude increases at higher negative bias. These features point to the distinctive spin-injection nature of the two-layer-CVD-hBN compared to the bilayer-exfoliated-hBN tunnel barriers.

  17. Preparation of textured high Tc superconducting films by CVD using halides on technical substrates with appropriate buffer layers. Final report

    International Nuclear Information System (INIS)

    Selbmann, D.; Balarin, M.; Klosowski, J.

    1993-01-01

    On the basis of a thermodynamical calculation of the system Y-Ba-Cu-O-Hal-C-H, Hal = I, Br, Cl the deposition conditions of the 123-phase and the other phases in this system was investigated. For the practical applications a reaction temperature higher 850 C and an oxidizer excesse higher 5 . 10 3 is necessary in order to deposit halid- and carbon free layers. A new Aerosol-CVD-process has been developed, which allows the reproducible preparation of superconducting YBa 2 Cu 3 O 7 thin films. The process uses a solution source of Y-, Ba-, Cu-bromide dissolved in suitable organic solvents. With the process the films consisting of the 123-phase, however the content of other phases is too high. With this composition it is not possible to deposit textured layers. This behaviour is due to flow technical problems. In order to avoid the formation of oxides in the evaporator it is necessary to mix the oxidizer directly near the substrate. Therefore the development of a new reactor and a process optimization is necessary. (orig.) [de

  18. Surface modification of pitch-based spherical activated carbon by CVD of NH3 to improve its adsorption to uric acid

    International Nuclear Information System (INIS)

    Liu Chaojun; Liang Xiaoyi; Liu Xiaojun; Wang Qin; Zhan Liang; Zhang Rui; Qiao Wenming; Ling Licheng

    2008-01-01

    Surface chemistry of pitch-based spherical activated carbon (PSAC) was modified by chemical vapor deposition of NH 3 (NH 3 -CVD) to improve the adsorption properties of uric acid. The texture and surface chemistry of PSAC were studied by N 2 adsorption, pH PZC (point of zero charge), acid-base titration and X-ray photoelectron spectroscopy (XPS). NH 3 -CVD has a limited effect on carbon textural characteristics but it significantly changed the surface chemical properties, resulting in positive effects on uric acid adsorption. After modification by NH 3 -CVD, large numbers of nitrogen-containing groups (especially valley-N and center-N) are introduced on the surface of PSAC, which is responsible for the increase of pH PZC , surface basicity and uric acid adsorption capacity. Pseudo-second-order kinetic model can be used to describe the dynamic adsorption of uric acid on PSAC, and the thermodynamic parameters show that the adsorption of uric acid on PSAC is spontaneous, endothermic and irreversible process in nature

  19. Surface modification of pitch-based spherical activated carbon by CVD of NH{sub 3} to improve its adsorption to uric acid

    Energy Technology Data Exchange (ETDEWEB)

    Liu Chaojun [State Key Laboratory of Chemical Engineering, East China University of Science and Technology (ECUST), Shanghai 200237 (China); Liang Xiaoyi [State Key Laboratory of Chemical Engineering, East China University of Science and Technology (ECUST), Shanghai 200237 (China)], E-mail: xyliang@ecust.edu.cn; Liu Xiaojun; Wang Qin; Zhan Liang; Zhang Rui; Qiao Wenming; Ling Licheng [State Key Laboratory of Chemical Engineering, East China University of Science and Technology (ECUST), Shanghai 200237 (China)

    2008-08-30

    Surface chemistry of pitch-based spherical activated carbon (PSAC) was modified by chemical vapor deposition of NH{sub 3} (NH{sub 3}-CVD) to improve the adsorption properties of uric acid. The texture and surface chemistry of PSAC were studied by N{sub 2} adsorption, pH{sub PZC} (point of zero charge), acid-base titration and X-ray photoelectron spectroscopy (XPS). NH{sub 3}-CVD has a limited effect on carbon textural characteristics but it significantly changed the surface chemical properties, resulting in positive effects on uric acid adsorption. After modification by NH{sub 3}-CVD, large numbers of nitrogen-containing groups (especially valley-N and center-N) are introduced on the surface of PSAC, which is responsible for the increase of pH{sub PZC}, surface basicity and uric acid adsorption capacity. Pseudo-second-order kinetic model can be used to describe the dynamic adsorption of uric acid on PSAC, and the thermodynamic parameters show that the adsorption of uric acid on PSAC is spontaneous, endothermic and irreversible process in nature.

  20. Surface modification of pitch-based spherical activated carbon by CVD of NH 3 to improve its adsorption to uric acid

    Science.gov (United States)

    Liu, Chaojun; Liang, Xiaoyi; Liu, Xiaojun; Wang, Qin; Zhan, Liang; Zhang, Rui; Qiao, Wenming; Ling, Licheng

    2008-08-01

    Surface chemistry of pitch-based spherical activated carbon (PSAC) was modified by chemical vapor deposition of NH 3 (NH 3-CVD) to improve the adsorption properties of uric acid. The texture and surface chemistry of PSAC were studied by N 2 adsorption, pH PZC (point of zero charge), acid-base titration and X-ray photoelectron spectroscopy (XPS). NH 3-CVD has a limited effect on carbon textural characteristics but it significantly changed the surface chemical properties, resulting in positive effects on uric acid adsorption. After modification by NH 3-CVD, large numbers of nitrogen-containing groups (especially valley-N and center-N) are introduced on the surface of PSAC, which is responsible for the increase of pH PZC, surface basicity and uric acid adsorption capacity. Pseudo-second-order kinetic model can be used to describe the dynamic adsorption of uric acid on PSAC, and the thermodynamic parameters show that the adsorption of uric acid on PSAC is spontaneous, endothermic and irreversible process in nature.

  1. CVD diamond metallization and characterization

    Energy Technology Data Exchange (ETDEWEB)

    Fraimovitch, D., E-mail: dimitryf@mail.tau.ac.il [Faculty of Engineering, Tel Aviv University, 69978 Tel Aviv (Israel); Adelberd, A.; Marunko, S. [Faculty of Engineering, Tel Aviv University, 69978 Tel Aviv (Israel); Lefeuvre, G. [Micron Semiconductor Ltd. Royal Buildings, Marlborough Road, Lancing Business Park, BN15 8SJ (United Kingdom); Ruzin, A. [Faculty of Engineering, Tel Aviv University, 69978 Tel Aviv (Israel)

    2017-02-11

    In this study we compared three diamond substrate grades: polycrystalline, optical grade single crystal, and electronic grade single crystal for detector application. Beside the bulk type, the choice of contact material, pre-treatment, and sputtering process details have shown to alter significantly the diamond detector performance. Characterization of diamond substrate permittivity and losses indicate grade and crystallinity related, characteristic differences for frequencies in 1 kHz–1 MHz range. Substantial grade related variations were also observed in surface electrostatic characterization performed by contact potential difference (CPD) mode of an atomic force microscope. Study of conductivity variations with temperature reveal that bulk trap energy levels are also dependent on the crystal grade.

  2. CVD diamond metallization and characterization

    International Nuclear Information System (INIS)

    Fraimovitch, D.; Adelberd, A.; Marunko, S.; Lefeuvre, G.; Ruzin, A.

    2017-01-01

    In this study we compared three diamond substrate grades: polycrystalline, optical grade single crystal, and electronic grade single crystal for detector application. Beside the bulk type, the choice of contact material, pre-treatment, and sputtering process details have shown to alter significantly the diamond detector performance. Characterization of diamond substrate permittivity and losses indicate grade and crystallinity related, characteristic differences for frequencies in 1 kHz–1 MHz range. Substantial grade related variations were also observed in surface electrostatic characterization performed by contact potential difference (CPD) mode of an atomic force microscope. Study of conductivity variations with temperature reveal that bulk trap energy levels are also dependent on the crystal grade.

  3. Influence of radioactive contamination to agricultural products due to dry and wet deposition processes during a nuclear emergency

    International Nuclear Information System (INIS)

    Hwang, Won Tae; Kim, Eun Han; Suh, Kyung Suk; Han, Moon Hee; Choi, Yong Ho; Lee, Chang Woo

    2002-01-01

    Combined with deposition model onto the ground of radionuclides, the influence of radioactive contamination to agricultural products was analyzed due to wet deposition as well as dry deposition from radioactive air concentration during a nuclear emergency. The previous dynamic food chain model, in which initial input parameter is only radionuclide concentrations on the ground, was improved for the evaluating of radioactive contamination to agricultural products from either radionuclide concentrations in air or radionuclide concentrations on the ground. As the results, in case of deposition onto the ground, wet deposition was more dominant process than dry deposition. While the contamination levels of agricultural products were dependent on the a variety of factors such as radionuclides and rainfall rate. It means that the contamination levels of agricultural products are determined from which is more dominant process between deposition on the ground and interception onto agricultural plants

  4. Synthesis and characterization of hafnium carbide microcrystal chains with a carbon-rich shell via CVD

    International Nuclear Information System (INIS)

    Tian, Song; Li, Hejun; Zhang, Yulei; Liu, Sen; Fu, Yangxi; Li, Yixian; Qiang, Xinfa

    2013-01-01

    Graphical abstract: Novel HfC microcrystal chains have been synthesized via a catalyst-assisted chemical vapor deposition process. SEM results show the chains have a periodically changing diameter and a nanoscale sharpening tip. Analysis of TEM/SAED/EELS/EDX data shows the single-crystal chains grow along a [0 0 1] direction and consist of a HfC core and a thin carbon-rich shell with embedded HfC nanocrystallites surrounding the core. This work achieves the controllable preparation of nanoscale HfC sharpening tips for application as a point electron emission source and facilitates the application of HfC ultrafast laser-triggered tips in attosecond science. Highlights: •HfC microcrystal chains were synthesized by a catalyst-assisted CVD. •The chains grow along a [0 0 1] direction and have a periodically changing diameter. •Single-crystal HfC core is sheathed by a thin carbon-rich shell. •A growth mechanism model is proposed to explain the growth of microcrystal chians. •This work achieves the controllable preparation of nanoscale HfC sharpening tips. -- Abstract: Novel hafnium carbide (HfC) microcrystal chains, with a periodically changing diameter and a nanoscale sharpening tip at the chain end, have been synthesized via a catalyst-assisted chemical vapor deposition (CVD) process. The as-synthesized chains with many octahedral microcrystals have diameters of between several hundreds of nm and 6 μm and lengths of ∼500 μm. TEM diffraction studies show that the chains are single-crystalline HfC and preferentially grow along a [0 0 1] crystal orientation. TEM/EELS/EDX analysis proves the chains are composed of a HfC core and a thin (several tens of nm to 100 nm) carbon-rich shell with the embedded HfC nanocrystallites (typically below 10 nm) surrounding the core. The growth mechanism model for the chains based on the vapor–liquid–solid process, the vapor–solid process, and the HfC crystal growth characteristics is discussed

  5. Characteristics of CVD graphene nanoribbon formed by a ZnO nanowire hardmask

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Chang Goo; Kang, Jang Won; Lee, Seung Yong; Hwang, Hyeon Jun; Lee, Young Gon; Park, Seong-Ju; Lee, Byoung Hun [School of Material Science and Engineering, Gwangju Institute of Science and Technology, Oryong-dong 1, Buk-gu, Gwangju, 500-712 (Korea, Republic of); Lee, Sang Kyung; Cho, Chun Hum [Department of Nanobio Materials and Electronics, Gwangju Institute of Science and Technology, Oryong-dong 1, Buk-gu, Gwangju, 500-712 (Korea, Republic of); Heo, Jinseong; Chung, Hyun-Jong; Yang, Heejun [Semiconductor Devices Lab, Samsung Advanced Institute of Technology, Yongin (Korea, Republic of); Seo, Sunae [Department of Physics, Sejong University, Gunja-Dong, Kwanggin-gu, Seoul (Korea, Republic of); Ko, Ki Young; Ahn, Jinho, E-mail: bhl@gist.ac.kr [Division of Materials Science and Engineering, Hanyang University, 17 Haengdang-dong, Seongdong-gu, Seoul, 133-791 (Korea, Republic of)

    2011-07-22

    A graphene nanoribbon (GNR) is an important basic structure to open a bandgap in graphene. The GNR processes reported in the literature are complex, time-consuming, and expensive; moreover, the device yield is relatively low. In this paper, a simple new process to fabricate a long and straight graphene nanoribbon with a high yield has been proposed. This process utilizes CVD graphene substrate and a ZnO nanowire as the hardmask for patterning. 8 {mu}m long and 50-100 nm wide GNRs were successfully demonstrated in high density without any trimming, and {approx} 10% device yield was realized with a top-down patterning process. After passivating the surfaces of the GNRs using a low temperature atomic layer deposition (ALD) of Al{sub 2}O{sub 3}, high performance GNR MOSFETs with symmetric drain-current-gate-voltage (I{sub d}-V{sub g}) curves were demonstrated and a field effect mobility up to {approx} 1200 cm{sup 2} V{sup -1} s{sup -1} was achieved at V{sub d} = 10 mV.

  6. Optical characterization of a-Si:H thin films grown by Hg-Photo-CVD

    International Nuclear Information System (INIS)

    Barhdadi, A.; Karbal, S.; M'Gafad, N.; Benmakhlouf, A.; Chafik El Idrissi, M.; Aka, B.M.

    2006-08-01

    Mercury-Sensitized Photo-Assisted Chemical Vapor Deposition (Hg-Photo-CVD) technique opens new possibilities for reducing thin film growth temperature and producing novel semiconductor materials suitable for the future generation of high efficiency thin film solar cells onto low cost flexible plastic substrates. This paper provides some experimental data resulting from the optical characterization of hydrogenated amorphous silicon thin films grown by this deposition technique. Experiments have been performed on both as-deposited layers and thermal annealed ones. (author) [fr

  7. Electrical and optical performance of transparent conducting oxide films deposited by electrostatic spray assisted vapour deposition.

    Science.gov (United States)

    Hou, Xianghui; Choy, Kwang-Leong; Liu, Jun-Peng

    2011-09-01

    Transparent conducting oxide (TCO) films have the remarkable combination of high electrical conductivity and optical transparency. There is always a strong motivation to produce TCO films with good performance at low cost. Electrostatic Spray Assisted Vapor Deposition (ESAVD), as a variant of chemical vapour deposition (CVD), is a non-vacuum and low-cost deposition method. Several types of TCO films have been deposited using ESAVD process, including indium tin oxide (ITO), antimony-doped tin oxide (ATO), and fluorine doped tin oxide (FTO). This paper reports the electrical and optical properties of TCO films produced by ESAVD methods, as well as the effects of post treatment by plasma hydrogenation on these TCO films. The possible mechanisms involved during plasma hydrogenation of TCO films are also discussed. Reduction and etching effect during plasma hydrogenation are the most important factors which determine the optical and electrical performance of TCO films.

  8. Thermodynamic and experimental studies of the CVD of A-15 superconductors. I

    International Nuclear Information System (INIS)

    Madar, R.; Weiss, F.; Fruchart, R.; Bernard, C.

    1978-01-01

    This paper deals with the experimental and thermodynamic study of the chemical vapor deposition (CVD) synthesis of Nb 3 Ga layers on various metallic and insulating substrates using the coreduction of mixed halides by hydrogen. Thermodynamic equilibrium in the seven-component system Nb-Ga-H-Cl-Si-O-Ar has been calculated using the method of minimization of the system Gibbs free energy as a function of the variables directly available in the CVD system. The chosen variables were the chloride ratio, the reduction and dilution parameters and the temperature of the deposition zone. The equilibrium compositions were calculated for the two composition limits of the A-15 phase: NbGasub(0.15) and Nb 3 Ga. They are presented in the form of CVD phase diagrams. A CVD reactor has been set up and more than one hundred measurements have been made in order to check the validity of the equilibrium calculations. The comparisons between equilibrium and experimental results show a good agreement and lead to a better understanding of the chemistry and thermodynamics of the system. (Auth.)

  9. CVD of SiC and AlN using cyclic organometallic precursors

    Science.gov (United States)

    Interrante, L. V.; Larkin, D. J.; Amato, C.

    1992-01-01

    The use of cyclic organometallic molecules as single-source MOCVD precursors is illustrated by means of examples taken from our recent work on AlN and SiC deposition, with particular focus on SiC. Molecules containing (AlN)3 and (SiC)2 rings as the 'core structure' were employed as the source materials for these studies. The organoaluminum amide, (Me2AlNH2)3, was used as the AlN source and has been studied in a molecular beam sampling apparatus in order to determine the gas phase species present in a hot-wall CVD reactor environment. In the case of SiC CVD, a series of disilacyclobutanes (Si(XX')CH2)2 (with X and X' = H, CH3, and CH2SiH2CH3), were examined in a cold-wall, hot-stage CVD reactor in order to compare their relative reactivities and prospective utility as single-source CVD precursors. The parent compound, disilacyclobutane, (SiH2CH2)2, was found to exhibit the lowest deposition temperature (ca. 670 C) and to yield the highest purity SiC films. This precursor gave a highly textured, polycrystalline film on the Si(100) substrates.

  10. An Experimental Study on Slurry Erosion Resistance of Single and Multilayered Deposits of Ni-WC Produced by Laser-Based Powder Deposition Process

    Science.gov (United States)

    Balu, Prabu; Hamid, Syed; Kovacevic, Radovan

    2013-11-01

    Single and multilayered deposits containing different mass fractions of tungsten carbide (WC) in nickel (Ni)-matrix (NT-20, NT-60, NT-80) are deposited on a AISI 4140 steel substrate using a laser-based powder deposition process. The transverse cross section of the coupons reveals that the higher the mass fraction of WC in Ni-matrix leads to a more uniform distribution through Ni-matrix. The slurry erosion resistance of the fabricated coupons is tested at three different impingement angles using an abrasive water jet cutting machine, which is quantified based on the erosion rate. The top layer of a multilayered deposit (i.e., NT-60 in a two-layer NT-60 over NT-20 deposit) exhibits better erosion resistance at all three tested impingement angles when compared to a single-layer (NT-60) deposit. A definite increase in the erosion resistance is noted with an addition of nano-size WC particles. The relationship between the different mass fractions of reinforcement (WC) in the deposited composite material (Ni-WC) and their corresponding matrix (Ni) hardness on the erosion rate is studied. The eroded surface is analyzed in the light of a three-dimensional (3-D) profilometer and a scanning electron microscope (SEM). The results show that a volume fraction of approximately 62% of WC with a Ni-matrix hardness of 540 HV resulting in the gouging out of WC from the Ni-matrix by the action of slurry. It is concluded that the slurry erosion resistance of the AISI 4140 steel can be significantly enhanced by introducing single and multilayered deposits of Ni-WC composite material fabricated by the laser-based powder deposition process.

  11. 2D modeling of direct laser metal deposition process using a finite particle method

    Science.gov (United States)

    Anedaf, T.; Abbès, B.; Abbès, F.; Li, Y. M.

    2018-05-01

    Direct laser metal deposition is one of the material additive manufacturing processes used to produce complex metallic parts. A thorough understanding of the underlying physical phenomena is required to obtain a high-quality parts. In this work, a mathematical model is presented to simulate the coaxial laser direct deposition process tacking into account of mass addition, heat transfer, and fluid flow with free surface and melting. The fluid flow in the melt pool together with mass and energy balances are solved using the Computational Fluid Dynamics (CFD) software NOGRID-points, based on the meshless Finite Pointset Method (FPM). The basis of the computations is a point cloud, which represents the continuum fluid domain. Each finite point carries all fluid information (density, velocity, pressure and temperature). The dynamic shape of the molten zone is explicitly described by the point cloud. The proposed model is used to simulate a single layer cladding.

  12. THE ROLE OF CRYOGENIC PROCESSES IN THE FORMATION OF LOESS DEPOSITS

    Directory of Open Access Journals (Sweden)

    Vyacheslav N. Konishchev

    2015-01-01

    Full Text Available The paper describes a new approach to the analysis of the genetic nature of mineral substances in loess deposits. In permafrost under the influence of multiple alternate freezing and thawing in dispersed deposits, quartz particles accumulate the 0.05-0.01 mm fraction, while feldspars are crushed to a coarse fraction of 0.1-0.05 mm. In dispersed sediments formed in temperate and warm climatic zones, the granulometric spectrum of quartz and feldspar has the opposite pattern. The proposed methodology is based on a differential analysis of the distribution of these minerals by the granulometric spectrum. We have proposed two criteria - the coefficient of cryogenic contrast (CCC and the coefficient of distribution of heavy minerals, which allow determination of the degree of participation of cryogenic processes in the formation of loess sediments and processes of aeolian or water sedimentation.

  13. Nitrogen deposition in precipitation to a monsoon-affected eutrophic embayment: Fluxes, sources, and processes

    Science.gov (United States)

    Wu, Yunchao; Zhang, Jingping; Liu, Songlin; Jiang, Zhijian; Arbi, Iman; Huang, Xiaoping; Macreadie, Peter Ian

    2018-06-01

    Daya Bay in the South China Sea (SCS) has experienced rapid nitrogen pollution and intensified eutrophication in the past decade due to economic development. Here, we estimated the deposition fluxes of nitrogenous species, clarified the contribution of nitrogen from precipitation and measured ions and isotopic composition (δ15N and δ18O) of nitrate in precipitation in one year period to trace its sources and formation processes among different seasons. We found that the deposition fluxes of total dissolved nitrogen (TDN), NO3-, NH4+, NO2-, and dissolved organic nitrogen (DON) to Daya Bay were 132.5, 64.4 17.5, 1.0, 49.6 mmol m-2•yr-1, respectively. DON was a significant contributor to nitrogen deposition (37% of TDN), and NO3- accounted for 78% of the DIN in precipitation. The nitrogen deposition fluxes were higher in spring and summer, and lower in winter. Nitrogen from precipitation contributed nearly 38% of the total input of nitrogen (point sources input and dry and wet deposition) in Daya Bay. The δ15N-NO3- abundance, ion compositions, and air mass backward trajectories implicated that coal combustion, vehicle exhausts, and dust from mainland China delivered by northeast monsoon were the main sources in winter, while fossil fuel combustion (coal combustion and vehicle exhausts) and dust from PRD and southeast Asia transported by southwest monsoon were the main sources in spring; marine sources, vehicle exhausts and lightning could be the potential sources in summer. δ18O results showed that OH pathway was dominant in the chemical formation process of nitrate in summer, while N2O5+ DMS/HC pathways in winter and spring.

  14. Cyclic voltammetry response of an undoped CVD diamond electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Fabisiak, K., E-mail: kfab@ukw.edu.pl [Institute of Physics, Kazimierz Wielki University, Powstancow Wielkopolskich 2, 85-090 Bydgoszcz (Poland); Torz-Piotrowska, R. [Faculty of Chemical Technology and Engineering, UTLS Seminaryjna 3, 85-326 Bydgoszcz (Poland); Staryga, E. [Institute of Physics, Technical University of Lodz, Wolczanska 219, 90-924 Lodz (Poland); Szybowicz, M. [Faculty of Technical Physics, Poznan University of Technology, Nieszawska 13A, 60-965 Poznan (Poland); Paprocki, K.; Popielarski, P.; Bylicki, F. [Institute of Physics, Kazimierz Wielki University, Powstancow Wielkopolskich 2, 85-090 Bydgoszcz (Poland); Wrzyszczynski, A. [Institute of Physics, Technical University of Lodz, Wolczanska 219, 90-924 Lodz (Poland)

    2012-09-01

    Highlights: Black-Right-Pointing-Pointer Correlation was found between diamond quality and its electrochemical performance. Black-Right-Pointing-Pointer The electrode sensitivity depends on the content of sp{sup 2} carbon phase in diamond layer. Black-Right-Pointing-Pointer The sp{sup 2} carbon phase content has little influence on the CV peak separation ({Delta}E{sub p}). - Abstract: The polycrystalline undoped diamond layers were deposited on tungsten wire substrates by using hot filament chemical vapor deposition (HFCVD) technique. As a working gas the mixture of methanol in excess of hydrogen was used. The morphologies and quality of as-deposited films were monitored by means of scanning electron microscopy (SEM), X-ray diffraction (XRD) and Raman spectroscopy respectively. The electrochemical activity of the obtained diamond layers was monitored by using cyclic voltammetry measurements. Analysis of the ferrocyanide-ferricyanide couple at undoped diamond electrode suggests that electrochemical reaction at diamond electrode has a quasireversibile character. The ratio of the anodic and cathodic peak currents was always close to unity. In this work we showed that the amorphous carbon admixture in the CVD diamond layer has a crucial influence on its electrochemical performance.

  15. Immobilization of glucoamylase on ceramic membrane surfaces modified with a new method of treatment utilizing SPCP-CVD.

    Science.gov (United States)

    Ida; Matsuyama; Yamamoto

    2000-07-01

    Glucoamylase, as a model enzyme, was immobilized on a ceramic membrane modified by surface corona discharge induced plasma chemical process-chemical vapor deposition (SPCP-CVD). Characterizations of the immobilized enzyme were then discussed. Three kinds of ceramic membranes with different amounts of amino groups on the surface were prepared utilizing the SPCP-CVD method. Each with 1-time, 3-times and 5-times surface modification treatments and used for supports in glucoamylase immobilization. The amount of immobilized glucoamylase increased with the increase in the number of surface modification treatments and saturated to a certain maximum value estimated by a two-dimensional random packing. The operational stability of the immobilized glucoamylase also increased with the increase in the number of the surface treatment. It was almost the same as the conventional method, while the activity of immobilized enzyme was higher. The results indicated the possibility of designing the performance of the immobilized enzyme by controlling the amount of amino groups. The above results showed that the completely new surface modification method using SPCP was effective in modifying ceramic membranes for enzyme immobilization.

  16. CVD growth of large-area and high-quality HfS2 nanoforest on diverse substrates

    Science.gov (United States)

    Zheng, Binjie; Wang, Zegao; Qi, Fei; Wang, Xinqiang; Yu, Bo; Zhang, Wanli; Chen, Yuanfu

    2018-03-01

    Two-dimensional layered transition metal dichalcogenides (TMDs) have attracted burgeoning attention due to their various properties and wide potential applications. As a new TMD, hafnium disulfide (HfS2) is theoretically predicted to have better electrical performance than widely studied MoS2. The experimental researches also confirmed the extraordinary feature in electronics and optoelectronics. However, the maximal device performance may not be achieved due to its own limitation of planar structure and challenge of transfer without contamination. Here, through the chemical vapor deposition (CVD) technique, inch-size HfS2 nanoforest has been directly grown on diverse objective substrates covering insulating, semiconducting and conducting substrates. This direct CVD growth without conventional transfer process avoids contamination and degradation in quality, suggesting its promising and wide applications in high-quality and multifarious devices. It is noted that all the HfS2 nanoforests grown on diverse substrates are constructed with vertically aligned few-layered HfS2 nanosheets with high crystalline quality and edge orientation. Moreover, due to its unique structure, the HfS2 nanoforest owns abundant exposed edge sites and large active surface area, which is essential to apply in high-performance catalyst, sensor, and energy storage or field emitter.

  17. Vertically aligned carbon nanotubes black coatings from roll-to-roll deposition process

    Science.gov (United States)

    Goislard de Monsabert, Thomas; Papciak, L.; Sangar, A.; Descarpentries, J.; Vignal, T.; de Longiviere, Xavier; Porterat, D.; Mestre, Q.; Hauf, H.

    2017-09-01

    Vertically aligned carbon nanotubes (VACNTs) have recently attracted growing interest as a very efficient light absorbing material over a broad spectral range making them a superior coating in space optics applications such as radiometry, optical calibration, and stray light elimination. However, VACNT coatings available to-date most often result from batch-to-batch deposition processes thus potentially limiting the manufacturing repeatability, substrate size and cost efficiency of this material.

  18. Impact of the Fused Deposition (FDM) Printing Process on Polylactic Acid (PLA) Chemistry and Structure

    OpenAIRE

    Michael Arthur Cuiffo; Jeffrey Snyder; Alicia M. Elliott; Nicholas Romero; Sandhiya Kannan; Gary P. Halada

    2017-01-01

    Polylactic acid (PLA) is an organic polymer commonly used in fused deposition (FDM) printing and biomedical scaffolding that is biocompatible and immunologically inert. However, variations in source material quality and chemistry make it necessary to characterize the filament and determine potential changes in chemistry occurring as a result of the FDM process. We used several spectroscopic techniques, including laser confocal microscopy, Fourier transform infrared (FTIR) spectroscopy and pho...

  19. Processing-Microstructure-Property Relationships for Cold Spray Powder Deposition of Al-Cu Alloys

    Science.gov (United States)

    2015-06-01

    Champagne [18]. The simulations were completed to compare the simulated particle exit velocities versus the measured particle exit velocities. In...620 m/s to 670 m/s [39]. V. Champagne states that for pure aluminum, an acceptable critical velocity for the deposition of pure aluminum is anything...Materials and Processess, vol. 168, no. 5, pp. 53–55, May 2010. [3] V. K. Champagne and P. F. Leyman, “Cold Spray Process Development for the Reclamation

  20. CVD calibration light systems specifications. Rev. 0

    International Nuclear Information System (INIS)

    Mcllwain, A. K.

    1992-04-01

    Two prototype Cerenkov Viewing Device Calibration Light systems for the Mark IV CVD have been fabricated. They consist of a maintenance unit that will be used by the IAEA maintenance staff and a field unit that will be used by IAEA inspectors. More detailed information on the design of the calibration units can be obtained from the document SSP-39 and additional information on the Mark IV CVD can be obtained from the operating manual published as Canadian Safeguards Support Program document CSSP 6. The specifications refer to the prototype units which will be demonstrated to the IAEA in 1992 May. Based upon the feedback from the IAEA, the instruments will be changed in the final production models to provide devices that more closely satisfy the needs of the end users

  1. Ellipsometry study of process deposition of amorphous Indium Gallium Zinc Oxide sputtered thin films

    International Nuclear Information System (INIS)

    Talagrand, C.; Boddaert, X.; Selmeczi, D.G.; Defranoux, C.; Collot, P.

    2015-01-01

    This paper reports on an InGaZnO optical study by spectrometric ellipsometry. First of all, the fitting results of different models and different structures are analysed to choose the most appropriate model. The Tauc–Lorentz model is suitable for thickness measurements but a more complex model allows the refractive index and extinction coefficient to be extracted more accurately. Secondly, different InGaZnO process depositions are carried out in order to investigate stability, influence of deposition time and uniformity. Films present satisfactory optical stability over time. InGaZnO optical property evolution as a function of deposition time is related to an increase in temperature. To understand the behaviour of uniformity, mapping measurements are correlated to thin film resistivity. Results show that temperature and resputtering are the two phenomena that affect IGZO uniformity. - Highlights: • Model and structure are investigated to fit IGZO ellipsometric angles. • Maximum refractive index rises with substrate temperature and thus deposition time. • Resputtering leads to inhomogeneity in IGZO electrical and optical properties

  2. Ellipsometry study of process deposition of amorphous Indium Gallium Zinc Oxide sputtered thin films

    Energy Technology Data Exchange (ETDEWEB)

    Talagrand, C., E-mail: talagrand@emse.fr [Ecole des Mines de Saint-Etienne CMP-GC, Dept PS2, Gardanne, 880 route de Mimet (France); Boddaert, X. [Ecole des Mines de Saint-Etienne CMP-GC, Dept PS2, Gardanne, 880 route de Mimet (France); Selmeczi, D.G.; Defranoux, C. [Semilab Semiconductor Physics Laboratory Co. Ltd., Budapest, 1117 (Hungary); Collot, P. [Ecole Nationale Supérieure d' Arts et Métiers ParisTech, Aix-en-Provence, 2 cours des Arts et Métiers (France)

    2015-09-01

    This paper reports on an InGaZnO optical study by spectrometric ellipsometry. First of all, the fitting results of different models and different structures are analysed to choose the most appropriate model. The Tauc–Lorentz model is suitable for thickness measurements but a more complex model allows the refractive index and extinction coefficient to be extracted more accurately. Secondly, different InGaZnO process depositions are carried out in order to investigate stability, influence of deposition time and uniformity. Films present satisfactory optical stability over time. InGaZnO optical property evolution as a function of deposition time is related to an increase in temperature. To understand the behaviour of uniformity, mapping measurements are correlated to thin film resistivity. Results show that temperature and resputtering are the two phenomena that affect IGZO uniformity. - Highlights: • Model and structure are investigated to fit IGZO ellipsometric angles. • Maximum refractive index rises with substrate temperature and thus deposition time. • Resputtering leads to inhomogeneity in IGZO electrical and optical properties.

  3. Particokinetics: computational analysis of the superparamagnetic iron oxide nanoparticles deposition process

    Science.gov (United States)

    Cárdenas, Walter HZ; Mamani, Javier B; Sibov, Tatiana T; Caous, Cristofer A; Amaro, Edson; Gamarra, Lionel F

    2012-01-01

    Background Nanoparticles in suspension are often utilized for intracellular labeling and evaluation of toxicity in experiments conducted in vitro. The purpose of this study was to undertake a computational modeling analysis of the deposition kinetics of a magnetite nanoparticle agglomerate in cell culture medium. Methods Finite difference methods and the Crank–Nicolson algorithm were used to solve the equation of mass transport in order to analyze concentration profiles and dose deposition. Theoretical data were confirmed by experimental magnetic resonance imaging. Results Different behavior in the dose fraction deposited was found for magnetic nanoparticles up to 50 nm in diameter when compared with magnetic nanoparticles of a larger diameter. Small changes in the dispersion factor cause variations of up to 22% in the dose deposited. The experimental data confirmed the theoretical results. Conclusion These findings are important in planning for nanomaterial absorption, because they provide valuable information for efficient intracellular labeling and control toxicity. This model enables determination of the in vitro transport behavior of specific magnetic nanoparticles, which is also relevant to other models that use cellular components and particle absorption processes. PMID:22745539

  4. Particokinetics: computational analysis of the superparamagnetic iron oxide nanoparticles deposition process

    Directory of Open Access Journals (Sweden)

    Cárdenas WH

    2012-06-01

    Full Text Available Walter HZ Cárdenas, Javier B Mamani, Tatiana T Sibov, Cristofer A Caous, Edson Amaro Jr, Lionel F GamarraInstituto do Cérebro, Hospital Israelita Albert Einstein, São Paulo, BrazilBackground: Nanoparticles in suspension are often utilized for intracellular labeling and evaluation of toxicity in experiments conducted in vitro. The purpose of this study was to undertake a computational modeling analysis of the deposition kinetics of a magnetite nanoparticle agglomerate in cell culture medium.Methods: Finite difference methods and the Crank-Nicolson algorithm were used to solve the equation of mass transport in order to analyze concentration profiles and dose deposition. Theoretical data were confirmed by experimental magnetic resonance imaging.Results: Different behavior in the dose fraction deposited was found for magnetic nanoparticles up to 50 nm in diameter when compared with magnetic nanoparticles of a larger diameter. Small changes in the dispersion factor cause variations of up to 22% in the dose deposited. The experimental data confirmed the theoretical results.Conclusion: These findings are important in planning for nanomaterial absorption, because they provide valuable information for efficient intracellular labeling and control toxicity. This model enables determination of the in vitro transport behavior of specific magnetic nanoparticles, which is also relevant to other models that use cellular components and particle absorption processes.Keywords: magnetite, nanoparticles, diffusion, sedimentation, agglomerates, computational modeling, cellular labeling, magnetic resonance imaging

  5. Future prospect of remote Cat-CVD on the basis of the production, transportation and detection of H atoms

    International Nuclear Information System (INIS)

    Umemoto, Hironobu; Matsumura, Hideki

    2008-01-01

    The future prospect of remote Cat-CVD, in which the decomposition and the deposition chambers are separated, is discussed on the basis of the absolute density measurements of H atoms. It is now well recognized that uniform deposition is possible on a large area without plasma damages by Cat-CVD. However, we may not overlook the demerits in Cat-CVD. One of the demerits is the poisoning of the catalyzer surfaces by the material gases, both temporary and permanent. One technique to overcome this problem is remote Cat-CVD. The question is how to separate the decomposition and deposition areas. If the separation is not enough, there should be back diffusion of the material gases, which will poison the catalyzers. If the separation is too tight, radicals may not effuse out from the decomposition chamber. These problems are discussed and it is shown that SiO 2 coating to reduce the radical recombination rates on walls is promising. The possibility of the polytetrafluoroethene coating by Cat-CVD is also discussed

  6. Size modulation of nanocrystalline silicon embedded in amorphous silicon oxide by Cat-CVD

    International Nuclear Information System (INIS)

    Matsumoto, Y.; Godavarthi, S.; Ortega, M.; Sanchez, V.; Velumani, S.; Mallick, P.S.

    2011-01-01

    Different issues related to controlling size of nanocrystalline silicon (nc-Si) embedded in hydrogenated amorphous silicon oxide (a-SiO x :H) deposited by catalytic chemical vapor deposition (Cat-CVD) have been reported. Films were deposited using tantalum (Ta) and tungsten (W) filaments and it is observed that films deposited using tantalum filament resulted in good control on the properties. The parameters which can affect the size of nc-Si domains have been studied which include hydrogen flow rate, catalyst and substrate temperatures. The deposited samples are characterized by X-ray diffraction, HRTEM and micro-Raman spectroscopy, for determining the size of the deposited nc-Si. The crystallite formation starts for Ta-catalyst around the temperature of 1700 o C.

  7. The fate of SOC during the processes of water erosion and subsequent deposition: a field study.

    Science.gov (United States)

    van Hemelryck, H.; Govers, G.; van Oost, K.; Merckx, R.

    2009-04-01

    Globally soils are the largest terrestrial pool of carbon (C). A relatively small increase or decrease in soil carbon content due to changes in land use or management practices could therefore result in a significant net exchange of C between the soil C reservoir and the atmosphere. As such, the geomorphic processes of water and tillage erosion have been identified to significantly impact on this large pool of soil organic carbon (SOC). Soil erosion, transport and deposition not only result in redistribution of sediments and associated carbon within a landscape, but also affect the exchange of C between the pedosphere and the atmosphere. The direction and magnitude of an erosion-induced change in the global C balance is however a topic of much debate as opposing processes interact: i) At eroding sites a net uptake of C could be the result of reduced respiration rates and continued inputs of newly produced carbon. ii) Colluvial deposition of eroded sediment and SOC leads to the burial of the original topsoil and this may constrain the decomposition of its containing SOC. iii) Eroded sediment could be transported to distal depositional environments or fluvial systems where it will either be conserved or become rapidly mineralized. iv) Increased emission of CO2 due to erosion may result from the disruptive energy of erosive forces causing the breakdown of aggregates and exposing previously protected SOC to microbial decomposition. The above-mentioned processes show a large spatial and temporal variability and assessing their impact requires an integrated modeling approach. However uncertainties about the basic processes that accompany SOC displacement are still large. This study focuses on one of these large information gaps: the fate of eroded and subsequently deposited SOC. A preceding experimental study (Van Hemelryck et al., 2008) was used to identify controlling factors (erosional intensity, changes in soil structure,…). However this experimental research

  8. Comparative study of dlc coatings by pvd against cvd technique on textile dents

    International Nuclear Information System (INIS)

    Malik, M.; Alam, S.; Iftikhar, F.

    2007-01-01

    Diamond like Carbon (DLC) film is a hard amorphous carbon hydride film formed by Physical or Chemical vapor deposition (PVD or CVD) techniques. Due to its unique properties especially high hardness, lower coefficient of friction and lubricious nature, these coatings are not only used to extend the life of cutting tools but also for non cutting applications such as for forming dies, molds and on many functional parts of textile. In the present work two techniques were employed i.e. PVD and CVD for deposition of diamond like carbon film on textile dents. These dents are used as thread guider in high speed weaving machine. The measurement of coating thickness, adhesion, hardness and roughness values indicates that overall properties of DLC coating developed by PVD LARC technology reduces abrasion and increases the workability and durability of textile dents as well as suppress the need of lubricants. (author)

  9. Pulse-height defect in single-crystal CVD diamond detectors

    Energy Technology Data Exchange (ETDEWEB)

    Beliuskina, O.; Imai, N. [The University of Tokyo, Center for Nuclear Study, Wako, Saitama (Japan); Strekalovsky, A.O.; Aleksandrov, A.A.; Aleksandrova, I.A.; Ilich, S.; Kamanin, D.V.; Knyazheva, G.N.; Kuznetsova, E.A.; Mishinsky, G.V.; Pyatkov, Yu.V.; Strekalovsky, O.V.; Zhuchko, V.E. [JINR, Flerov Laboratory of Nuclear Reactions, Dubna, Moscow Region (Russian Federation); Devaraja, H.M. [Manipal University, Manipal Centre for Natural Sciences, Manipal, Karnataka (India); Heinz, C. [II. Physikalisches Institut, Justus-Liebig-Universitaet Giessen, Giessen (Germany); Heinz, S. [II. Physikalisches Institut, Justus-Liebig-Universitaet Giessen, Giessen (Germany); GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany); Hofmann, S.; Kis, M.; Kozhuharov, C.; Maurer, J.; Traeger, M. [GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany); Pomorski, M. [CEA, LIST, Diamond Sensor Laboratory, CEA/Saclay, Gif-sur-Yvette (France)

    2017-02-15

    The pulse-height versus deposited energy response of a single-crystal chemical vapor deposition (scCVD) diamond detector was measured for ions of Ti, Cu, Nb, Ag, Xe, Au, and of fission fragments of {sup 252} Cf at different energies. For the fission fragments, data were also measured at different electric field strengths of the detector. Heavy ions have a significant pulse-height defect in CVD diamond material, which increases with increasing energy of the ions. It also depends on the electrical field strength applied at the detector. The measured pulse-height defects were explained in the framework of recombination models. Calibration methods known from silicon detectors were modified and applied. A comparison with data for the pulse-height defect in silicon detectors was performed. (orig.)

  10. Temperature dependence of stress in CVD diamond films studied by Raman spectroscopy

    Directory of Open Access Journals (Sweden)

    Dychalska Anna

    2015-09-01

    Full Text Available Evolution of residual stress and its components with increasing temperature in chemical vapor deposited (CVD diamond films has a crucial impact on their high temperature applications. In this work we investigated temperature dependence of stress in CVD diamond film deposited on Si(100 substrate in the temperature range of 30 °C to 480 °C by Raman mapping measurement. Raman shift of the characteristic diamond band peaked at 1332 cm-1 was studied to evaluate the residual stress distribution at the diamond surface. A new approach was applied to calculate thermal stress evolution with increasing tempera­ture by using two commonly known equations. Comparison of the residts obtained from the two methods was presented. The intrinsic stress component was calculated from the difference between average values of residual and thermal stress and then its temperature dependence was discussed.

  11. Efecto del argon en películas CNxHy depositadas mediante ECR-CVD

    Directory of Open Access Journals (Sweden)

    Albella, J. M.

    2004-04-01

    Full Text Available Carbon nitride films have been deposited by ECR-CVD, from Ar/CH4/N2 gas mixtures with different methane concentrations. Infrared Spectroscopy (IRS and Elastic Recoil Detection Analysis (ERDA have been used for films characterisation and Optical Emission Spectroscopy (OES for plasma analysis. Argon concentration in the gas mixture controls the growth rate as well as the composition of the film. In the proposed model, argon plays a key role in the activation of methane molecules. Also, during the growth of the film, two processes may be considered: i Film formation and ii Etching of the growing surface. Changing the gas mixture composition affects both processes, which results in films with different composition and structure as well as different deposition rates.Se ha estudiado el efecto del argon durante el proceso de CVD asistido por un plasma ECR para la síntesis de películas de nitruro de carbono (CNxHy a partir de mezclas gaseosas Ar/CH4/N2 con diferente contenido de metano. Las películas depositadas han sido analizadas mediante espectroscopía infrarroja (IRS y ERDA (Elastic Recoil Detection Analysis, y el análisis del plasma ha sido realizado utilizando la técnica de espectroscopía de emisión óptica (OES. La velocidad de deposición y la composición de las películas depositadas se encuentran determinadas por la concentración de argon en la mezcla gaseosa. Se propone un modelo, según el cual el argon juega un papel fundamental como activador de las moléculas de metano. El modelo propuesto incluye dos procesos simultáneos durante el crecimiento de las capas : i formación de la capa y ii ataque de la superficie de crecimiento. Según la composición de la mezcla gaseosa se favorece uno u otro proceso, lo que conduce a velocidades de deposición diferentes así como a depósitos con diferente composición y estructura atómica.

  12. Bio-mineralization and potential biogeochemical processes in bauxite deposits: genetic and ore quality significance

    Science.gov (United States)

    Laskou, Magdalini; Economou-Eliopoulos, Maria

    2013-08-01

    The Parnassos-Ghiona bauxite deposit in Greece of karst type is the 11th largest bauxite producer in the world. The mineralogical, major and trace-element contents and δ18O, δ12C, δ34S isotopic compositions of bauxite ores from this deposit and associated limestone provide valuable evidence for their origin and biogeochemical processes resulting in the beneficiation of low grade bauxite ores. The organic matter as thin coal layers, overlying the bauxite deposits, within limestone itself (negative δ12C isotopic values) and the negative δ34S values in sulfides within bauxite ores point to the existence of the appropriate circumstances for Fe bio-leaching and bio-mineralization. Furthermore, a consortium of microorganisms of varying morphological forms (filament-like and spherical to lenticular at an average size of 2 μm), either as fossils or presently living and producing enzymes, is a powerful factor to catalyze the redox reactions, expedite the rates of metal extraction and provide alternative pathways for metal leaching processes resulting in the beneficiation of bauxite ore.

  13. Gaseous material capacity of open plasma jet in plasma spray-physical vapor deposition process

    Science.gov (United States)

    Liu, Mei-Jun; Zhang, Meng; Zhang, Qiang; Yang, Guan-Jun; Li, Cheng-Xin; Li, Chang-Jiu

    2018-01-01

    Plasma spray-physical vapor deposition (PS-PVD) process, emerging as a highly efficient hybrid approach, is based on two powerful technologies of both plasma spray and physical vapor deposition. The maximum production rate is affected by the material feed rate apparently, but it is determined by the material vapor capacity of transporting plasma actually and essentially. In order to realize high production rate, the gaseous material capacity of plasma jet must be fundamentally understood. In this study, the thermal characteristics of plasma were measured by optical emission spectrometry. The results show that the open plasma jet is in the local thermal equilibrium due to a typical electron number density from 2.1 × 1015 to 3.1 × 1015 cm-3. In this condition, the temperature of gaseous zirconia can be equal to the plasma temperature. A model was developed to obtain the vapor pressure of gaseous ZrO2 molecules as a two dimensional map of jet axis and radial position corresponding to different average plasma temperatures. The overall gaseous material capacity of open plasma jet, take zirconia for example, was further established. This approach on evaluating material capacity in plasma jet would shed light on the process optimization towards both depositing columnar coating and a high production rate of PS-PVD.

  14. Electrical characteristics of thermal CVD B-doped Si films on highly strained Si epitaxially grown on Ge(100) by plasma CVD without substrate heating

    International Nuclear Information System (INIS)

    Sugawara, Katsutoshi; Sakuraba, Masao; Murota, Junichi

    2010-01-01

    Using an 84% relaxed Ge(100) buffer layer formed on Si(100) by electron cyclotron resonance (ECR) plasma enhanced chemical vapor deposition (CVD), influence of strain upon electrical characteristics of B-doped Si film epitaxially grown on the Ge buffer have been investigated. For the thinner B-doped Si film, surface strain amount is larger than that of the thicker film, for example, strain amount reaches 2.0% for the thickness of 2.2 nm. It is found that the hole mobility is enhanced by the introduction of strain to Si, and the maximum enhancement of about 3 is obtained. This value is higher than that of the usually reported mobility enhancement by strain using Si 1 -x Ge x buffer. Therefore, introduction of strain using relaxed Ge film formed by ECR plasma enhanced CVD is useful to improve future Si-based device performance.

  15. Deposition of high Tc superconductor thin films by pulsed excimer laser ablation and their post-synthesis processing

    International Nuclear Information System (INIS)

    Ogale, S.B.

    1992-01-01

    This paper describes the use of pulsed excimer laser ablation technique for deposition of high quality superconductor thin films on different substrate materials such as Y stabilized ZrO 2 , SrTiO 3 , LiNbO 3 , Silicon and Stainless Steels, and dopant incorporation during the film depositions. Processing of deposited films using ion and laser beams for realisation of device features are presented. 28 refs., 16 figs

  16. Interpretation of postdepositional processes related to the formation and destruction of the Jackpile-Paguate uranium deposit, northwest New Mexico

    International Nuclear Information System (INIS)

    Adams, S.S.; Curtis, H.S.; Hafen, P.L.; Salek-Nejad, H.

    1978-01-01

    This paper presents aspects of geological studies conducted on the Jackpile-Paguate uranium deposit in northwestern New Mexico in order to document and interpret certain geological characteristics of the deposit and suggest a sequence of processes which have formed and, in part, destroyed the deposits. The principle contributions of the paper are the field and petrologic observations and the interpretations they permit. 29 refs

  17. Data on nearshore wave process and surficial beach deposits, central Tamil Nadu coast, India.

    Science.gov (United States)

    Joevivek, V; Chandrasekar, N

    2017-08-01

    The chronicles of nearshore morphology and surficial beach deposits provide valuable information about the nature of the beach condition and the depositional environment. It imparts an understanding about the spatial and temporal relationship of nearshore waves and its influence over the distribution of beach sediments. This article contains data about wave and sediment dynamics of the ten sandy beaches along the central Tamil Nadu coast, India. This present dataset comprises nearshore wave parameters, breaker wave type, beach morphodynamic state, grain size distribution and weight percentage of heavy and light mineral distribution. The dataset will figure out the beach morphology and hydrodynamic condition with respect to the different monsoonal season. This will act as a field reference to realize the coastal dynamics in an open sea condition. The nearshore entities were obtained from the intensive field survey between January 2011 and December 2011, while characteristics of beach sediments are examined by the chemical process in the laboratory environment.

  18. Catalytic behaviors of ruthenium dioxide films deposited on ferroelectrics substrates, by spin coating process

    International Nuclear Information System (INIS)

    Khachane, M.; Nowakowski, P.; Villain, S.; Gavarri, J.R.; Muller, Ch.; Elaatmani, M.; Outzourhite, A.; Luk'yanchuk, I.; Zegzouti, A.; Daoud, M.

    2007-01-01

    Catalytic ruthenium dioxide films were deposited by spin-coating process on ferroelectric films mainly constituted of SrBi 2 Ta 2 O 9 (SBT) and Ba 2 NaNb 5 O 15 (BNN) phases. After thermal treatment under air, these ferroelectric-catalytic systems were characterized by X-ray diffraction and scanning electron microscopy (SEM). SEM images showed that RuO 2 film morphology depended on substrate nature. A study of CH 4 conversion into CO 2 and H 2 O was carried out using these catalytic-ferroelectric multilayers: the conversion was analyzed from Fourier transform infrared (FTIR) spectroscopy, at various temperatures. Improved catalytic properties were observed for RuO 2 films deposited on BNN oxide layer

  19. On the processing-structure-property relationship of ITO layers deposited on crystalline and amorphous Si

    International Nuclear Information System (INIS)

    Diplas, S.; Ulyashin, A.; Maknys, K.; Gunnaes, A.E.; Jorgensen, S.; Wright, D.; Watts, J.F.; Olsen, A.; Finstad, T.G.

    2007-01-01

    Indium-tin-oxide (ITO) antireflection coatings were deposited on crystalline Si (c-Si), amorphous hydrogenated Si (a-Si:H) and glass substrates at room temperature (RT), 160 deg. C and 230 deg. C by magnetron sputtering. The films were characterised using atomic force microscopy, transmission electron microscopy, angle resolved X-ray photoelectron spectroscopy, combined with resistance and transmittance measurements. The conductivity and refractive index as well as the morphology of the ITO films showed a significant dependence on the processing conditions. The films deposited on the two different Si substrates at higher temperatures have rougher surfaces compared to the RT ones due to the development of crystallinity and growth of columnar grains

  20. Catalyst Design Using Nanoporous Iron for the Chemical Vapor Deposition Synthesis of Single-Walled Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Tarek M. Abdel-Fattah

    2013-01-01

    Full Text Available Single-walled carbon nanotubes (SWNTs have been synthesized via a novel chemical vapor deposition (CVD approach utilizing nanoporous, iron-supported catalysts. Stable aqueous dispersions of the CVD-grown nanotubes using an anionic surfactant were also obtained. The properties of the as-produced SWNTs were characterized through atomic force microscopy and Raman spectroscopy and compared with purified SWNTs produced via the high-pressure CO (HiPCO method as a reference, and the nanotubes were observed with greater lengths than those of similarly processed HiPCO SWNTs.

  1. Nanocrystalline sp{sup 2} and sp{sup 3} carbons: CVD synthesis and applications

    Energy Technology Data Exchange (ETDEWEB)

    Terranova, M. L. [Università degli Studi di Roma “Tor Vergata,” via Della Ricerca Scientifica, Dipartimento di Scienze e Tecnologie Chimiche—MinimaLab (Italy); Rossi, M. [Università degli Studi di Roma “Sapienza,” via A. Scarpa, Dipartimento di Scienze di Base e Applicate per l’Ingegneria and Centro di Ricerca per le Nanotecnologie Applicate all’Ingegneria (CNIS) (Italy); Tamburri, E., E-mail: emanuela.tamburri@uniroma2.it [Università degli Studi di Roma “Tor Vergata,” via Della Ricerca Scientifica, Dipartimento di Scienze e Tecnologie Chimiche—MinimaLab (Italy)

    2016-11-15

    The design and production of innovative materials based on nanocrystalline sp{sup 2}- and sp{sup 3}-coordinated carbons is presently a focus of the scientific community. We present a review of the nanostructures obtained in our labs using a series of synthetic routes, which make use of chemical vapor deposition (CVD) techniques for the selective production of non-planar graphitic nanostructures, nanocrystalline diamonds, and hybrid two-phase nanostructures.

  2. Process qualification and testing of LENS deposited AY1E0125 D-bottle brackets

    International Nuclear Information System (INIS)

    Atwood, Clinton J.; Smugeresky, John E.; Jew, Michael; Gill, David Dennis; Scheffel, Simon

    2006-01-01

    The LENS Qualification team had the goal of performing a process qualification for the Laser Engineered Net Shaping(trademark)(LENS(reg s ign)) process. Process Qualification requires that a part be selected for process demonstration. The AY1E0125 D-Bottle Bracket from the W80-3 was selected for this work. The repeatability of the LENS process was baselined to determine process parameters. Six D-Bottle brackets were deposited using LENS, machined to final dimensions, and tested in comparison to conventionally processed brackets. The tests, taken from ES1E0003, included a mass analysis and structural dynamic testing including free-free and assembly-level modal tests, and Haversine shock tests. The LENS brackets performed with very similar characteristics to the conventionally processed brackets. Based on the results of the testing, it was concluded that the performance of the brackets made them eligible for parallel path testing in subsystem level tests. The testing results and process rigor qualified the LENS process as detailed in EER200638525A

  3. RF characteristic of MESFET on H-terminated DC arc jet CVD diamond film

    International Nuclear Information System (INIS)

    Liu, J.L.; Li, C.M.; Zhu, R.H.; Guo, J.C.; Chen, L.X.; Wei, J.J.; Hei, L.F.; Wang, J.J.; Feng, Z.H.; Guo, H.; Lv, F.X.

    2013-01-01

    Diamond has been considered to be a potential material for high-frequency and high-power electronic devices due to the excellent electrical properties. In this paper, we reported the radio frequency (RF) characteristic of metal-semiconductor field effect transistor (MESFET) on polycrystalline diamond films prepared by direct current (DC) arc jet chemical vapor deposition (CVD). First, 4 in polycrystalline diamond films were deposited by DC arc jet CVD in gas recycling mode with the deposition rate of 14 μm/h. Then the polished diamond films were treated by microwave hydrogen plasma and the 0.2 μm-gate-length MESFET was fabricated by using Au mask photolithography and electron beam (EB) lithography. The surface conductivity of the H-terminated diamond film and DC and RF performances of the MESFET were characterized. The results demonstrate that, the carrier mobility of 24.6 cm 2 /V s and the carrier density of 1.096 × 10 13 cm −2 are obtained on the surface of H-terminated diamond film. The FET shows the maximum transition frequency (f T ) of 5 GHz and the maximum oscillation frequency (f max ) of 6 GHz at V GS = −0.5 V and V DS = −8 V, which indicates that H-terminated DC arc jet CVD polycrystalline diamond is suitable for the development of high frequency devices.

  4. Tungsten deposition by hydrogen-atom reaction with tungsten hexafluoride

    International Nuclear Information System (INIS)

    Lee, W.W.

    1991-01-01

    Using gaseous hydrogen atoms with WF 6 , tungsten atoms can be produced in a gas-phase reaction. The atoms then deposit in a near-room temperature process, which results in the formation of tungsten films. The W atoms (10 10 -10 11 /cm 3 ) were measured in situ by atomic absorption spectroscopy during the CVD process. Deposited W films were characterized by Auger electron spectroscopy, Rutherford backscattering, and X-ray diffraction. The surface morphology of the deposited films and filled holes was studied using scanning electron microscopy. The deposited films were highly adherent to different substrates, such as Si, SiO 2 , Ti/Si, TiN/Si and Teflon. The reaction mechanism and kinetics were studied. The experimental results indicated that this method has three advantages compared to conventional CVD or PECVD: (1) film growth occurs at low temperatures; (2) deposition takes place in a plasma-free environment; and (3) a low level of impurities results in high-quality adherent films

  5. Influence of cold rolling and strain rate on plastic response of powder metallurgy and chemical vapor deposition rhenium

    International Nuclear Information System (INIS)

    Koeppel, B.J.; Subhash, G.

    1999-01-01

    The plastic response of two kinds of rhenium processed via powder metallurgy (PM) and chemical vapor deposition (CVD) were investigated under uniaxial compression over a range of strain rates. The PM rhenium, further cold rolled to 50 and 80 pct of the original thickness, was also investigated to assess the influence of cold work on the plastic behavior. A strong basal texture was detected in all the preceding materials as a result of processing and cold work. Both CVD and PM rhenium exhibited an increase in yield strength and flow stress with increasing strain rate. In PM rhenium, cold work resulted in an increase in hardness and yield strength and a decrease in the work hardening rate. The deformed microstructures revealed extensive twinning in CVD rhenium. At large strains, inhomogeneous deformation mode in the form of classical cup and cone fracture was noticed

  6. Sedimentological characteristics and depositional processes of sediment gravity flows in rift basins: The Palaeogene Dongying and Shahejie formations, Bohai Bay Basin, China

    Science.gov (United States)

    Liu, Lei; Chen, Hongde; Zhong, Yijiang; Wang, Jun; Xu, Changgui; Chen, Anqing; Du, Xiaofeng

    2017-10-01

    Sediment gravity flow deposits are common, particularly in sandy formations, but their origin has been a matter of debate and there is no consensus about the classification of such deposits. However, sediment gravity flow sandstones are economically important and have the potential to meet a growing demand in oil and gas exploration, so there is a drive to better understand them. This study focuses on sediment gravity flow deposits identified from well cores in Palaeogene deposits from the Liaodong Bay Depression in Bohai Bay Basin, China. We classify the sediment gravity flow deposits into eight lithofacies using lithological characteristics, grain size, and sedimentary structures, and interpret the associated depositional processes. Based on the scale, spatial distribution, and contact relationships of sediment gravity flow deposits, we defined six types of lithofacies associations (LAs) that reflect transformation processes and depositional morphology: LA1 (unconfined proximal breccia deposits), LA2 (confined channel deposits), LA3 (braided-channel lobe deposits), LA4 (unconfined lobe deposits), LA5 (distal sheet deposits), and LA6 (non-channelized sheet deposits). Finally, we established three depositional models that reflect the sedimentological characteristics and depositional processes of sediment gravity flow deposits: (1) slope-apron gravel-rich depositional model, which involves cohesive debris flows deposited as LA1 and dilute turbidity currents deposited as LA5; (2) non-channelized surge-like turbidity current depositional model, which mainly comprises sandy slumping, suspended load dominated turbidity currents, and dilute turbidity currents deposited as LA5 and LA6; and (3) channelized subaqueous-fan depositional model, which consists of non-cohesive bedload dominated turbidity currents, suspended load dominated turbidity currents, and dilute turbidity currents deposited as LA2-LA5, originating from sustained extrabasinal turbidity currents

  7. Growth of GaN on SiC/Si substrates using AlN buffer layer by hot-mesh CVD

    International Nuclear Information System (INIS)

    Tamura, Kazuyuki; Kuroki, Yuichiro; Yasui, Kanji; Suemitsu, Maki; Ito, Takashi; Endou, Tetsuro; Nakazawa, Hideki; Narita, Yuzuru; Takata, Masasuke; Akahane, Tadashi

    2008-01-01

    GaN films were grown on SiC/Si (111) substrates by hot-mesh chemical vapor deposition (CVD) using ammonia (NH 3 ) and trimetylgallium (TMG) under low V/III source gas ratio (NH 3 /TMG = 80). The SiC layer was grown by a carbonization process on the Si substrates using propane (C 3 H 8 ). The AlN layer was deposited as a buffer layer using NH 3 and trimetylaluminum (TMA). GaN films were formed and grown by the reaction between NH x radicals, generated on a tungsten hot mesh, and the TMG molecules. The GaN films with the AlN buffer layer showed better crystallinity and stronger near-band-edge emission compared to those without the AlN layer

  8. Growth of GaN on SiC/Si substrates using AlN buffer layer by hot-mesh CVD

    Energy Technology Data Exchange (ETDEWEB)

    Tamura, Kazuyuki [Nagaoka University of Technology, Nagaoka 940-2188 (Japan)], E-mail: kazuyuki@stn.nagaokaut.ac.jp; Kuroki, Yuichiro; Yasui, Kanji [Nagaoka University of Technology, Nagaoka 940-2188 (Japan); Suemitsu, Maki; Ito, Takashi [Center of Interdisciplinary Research, Tohoku University, Sendai 980-8578 (Japan); Endou, Tetsuro [Research Institute of Electrical Communication, Tohoku University, Sendai 980-8577 (Japan); Nakazawa, Hideki [Faculty of Science and Technology, Hirosaki University, Hirosaki 036-8561 (Japan); Narita, Yuzuru [Center of Interdisciplinary Research, Tohoku University, Sendai 980-8578 (Japan); Takata, Masasuke; Akahane, Tadashi [Nagaoka University of Technology, Nagaoka 940-2188 (Japan)

    2008-01-15

    GaN films were grown on SiC/Si (111) substrates by hot-mesh chemical vapor deposition (CVD) using ammonia (NH{sub 3}) and trimetylgallium (TMG) under low V/III source gas ratio (NH{sub 3}/TMG = 80). The SiC layer was grown by a carbonization process on the Si substrates using propane (C{sub 3}H{sub 8}). The AlN layer was deposited as a buffer layer using NH{sub 3} and trimetylaluminum (TMA). GaN films were formed and grown by the reaction between NH{sub x} radicals, generated on a tungsten hot mesh, and the TMG molecules. The GaN films with the AlN buffer layer showed better crystallinity and stronger near-band-edge emission compared to those without the AlN layer.

  9. Rapid growth of single-layer graphene on the insulating substrates by thermal CVD

    Energy Technology Data Exchange (ETDEWEB)

    Chen, C.Y. [Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093 (China); Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Dai, D.; Chen, G.X.; Yu, J.H. [Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Nishimura, K. [Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Advanced Nano-processing Engineering Lab, Mechanical Systems Engineering, Kogakuin University (Japan); Lin, C.-T. [Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Jiang, N., E-mail: jiangnan@nimte.ac.cn [Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Zhan, Z.L., E-mail: zl_zhan@sohu.com [Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093 (China)

    2015-08-15

    Highlights: • A rapid thermal CVD process has been developed to directly grow graphene on the insulating substrates. • The treating time consumed is ≈25% compared to conventional CVD procedure. • Single-layer and few-layer graphene can be formed on quartz and SiO{sub 2}/Si substrates, respectively. • The formation of thinner graphene at the interface is due to the fast precipitation rate of carbon atoms during cooling. - Abstract: The advance of CVD technique to directly grow graphene on the insulating substrates is particularly significant for further device fabrication. As graphene is catalytically grown on metal foils, the degradation of the sample properties is unavoidable during transfer of graphene on the dielectric layer. Moreover, shortening the treatment time as possible, while achieving single-layer growth of graphene, is worthy to be investigated for promoting the efficiency of mass production. Here we performed a rapid heating/cooling process to grow graphene films directly on the insulating substrates by thermal CVD. The treating time consumed is ≈25% compared to conventional CVD procedure. In addition, we found that high-quality, single-layer graphene can be formed on quartz, but on SiO{sub 2}/Si substrate only few-layer graphene can be obtained. The pronounced substrate effect is attributed to the different dewetting behavior of Ni films on the both substrates at 950 °C.

  10. Hard coatings by plasma CVD on polycarbonate for automotive and optical applications

    International Nuclear Information System (INIS)

    Schmauder, T.; Nauenburg, K.-D.; Kruse, K.; Ickes, G.

    2006-01-01

    In many applications, plastic surfaces need coatings as a protection against abrasion or weathering. Leybold Optics is developing Plasma CVD processes and machinery for transparent hard coatings (THC) for polycarbonate parts. In this paper we present the current features and remaining challenges of this technique. The coatings generally show excellent adhesion. Abrasion resistance is superior to commonly used lacquers. Climate durability of the coating has been improved to pass the tests demanded by automotive specifications. Current activities are focused on improving the durability under exposure to UV radiation. Estimations show that our high-rate plasma CVD hard coating process is also economically competitive to lacquering

  11. Organic solar cells using CVD-grown graphene electrodes

    International Nuclear Information System (INIS)

    Kim, Hobeom; Han, Tae-Hee; Lim, Kyung-Geun; Lee, Tae-Woo; Bae, Sang-Hoon; Ahn, Jong-Hyun

    2014-01-01

    We report on the development of flexible organic solar cells (OSCs) incorporating graphene sheets synthesized by chemical vapor deposition (CVD) as transparent conducting electrodes on polyethylene terephthalate (PET) substrates. A key barrier that must be overcome for the successful fabrication of OSCs with graphene electrodes is the poor-film properties of water-based poly(3,4-ethylenedioxythiphene):poly(styrenesulfonate) (PEDOT:PSS) when coated onto hydrophobic graphene surfaces. To form a uniform PEDOT:PSS film on a graphene surface, we added perfluorinated ionomers (PFI) to pristine PEDOT:PSS to create ‘GraHEL’, which we then successfully spin coated onto the graphene surface. We systematically investigated the effect of number of layers in layer-by-layer stacked graphene anode of an OSC on the performance parameters including the open-circuit voltage (V oc ), short-circuit current (J sc ), and fill factor (FF). As the number of graphene layers increased, the FF tended to increase owing to lower sheet resistance, while J sc tended to decrease owing to the lower light absorption. In light of this trade-off between sheet resistance and transmittance, we determined that three-layer graphene (3LG) represents the best configuration for obtaining the optimal power conversion efficiency (PCE) in OSC anodes, even at suboptimal sheet resistances. We finally developed efficient, flexible OSCs with a PCE of 4.33%, which is the highest efficiency attained so far by an OSC with CVD-grown graphene electrodes to the best of our knowledge. (paper)

  12. Half-sandwich cobalt complexes in the metal-organic chemical vapor deposition process

    Energy Technology Data Exchange (ETDEWEB)

    Georgi, Colin [Technische Universität Chemnitz, Faculty of Natural Science, Institute of Chemistry, Inorganic Chemistry, Chemnitz 09107 (Germany); Hapke, Marko; Thiel, Indre [Leibniz-Institut für Katalyse e.V. an der Universität Rostock (LIKAT), Albert-Einstein-Straße 29a, Rostock 18059 (Germany); Hildebrandt, Alexander [Technische Universität Chemnitz, Faculty of Natural Science, Institute of Chemistry, Inorganic Chemistry, Chemnitz 09107 (Germany); Waechtler, Thomas; Schulz, Stefan E. [Fraunhofer Institute of Electronic Nano Systems (ENAS), Technologie-Campus 3, Chemnitz 09126 (Germany); Technische Universität Chemnitz, Center for Microtechnologies (ZfM), Chemnitz 09107 (Germany); Lang, Heinrich, E-mail: heinrich.lang@chemie.tu-chemnitz.de [Technische Universität Chemnitz, Faculty of Natural Science, Institute of Chemistry, Inorganic Chemistry, Chemnitz 09107 (Germany)

    2015-03-02

    A series of cobalt half-sandwich complexes of type [Co(η{sup 5}-C{sub 5}H{sub 5})(L)(L′)] (1: L, L′ = 1,5-hexadiene; 2: L = P(OEt){sub 3}, L′ = H{sub 2}C=CHSiMe{sub 3}; 3: L = L′ = P(OEt){sub 3}) has been studied regarding their physical properties such as the vapor pressure, decomposition temperature and applicability within the metal-organic chemical vapor deposition (MOCVD) process, with a focus of the influence of the phosphite ligands. It could be shown that an increasing number of P(OEt){sub 3} ligands increases the vapor pressure and thermal stability of the respective organometallic compound. Complex 3 appeared to be a promising MOCVD precursor with a high vapor pressure and hence was deposited onto Si/SiO{sub 2} (100 nm) substrates. The resulting reflective layer is closed, dense and homogeneous, with a slightly granulated surface morphology. X-ray photoelectron spectroscopy (XPS) studies demonstrated the formation of metallic cobalt, cobalt phosphate, cobalt oxide and cobalt carbide. - Highlights: • Thermal studies and vapor pressure measurements of cobalt half-sandwich complexes was carried out. • Chemical vapor deposition with cobalt half-sandwich complexes is reported. • The use of Co-phosphites results in significant phosphorous-doped metallic layers.

  13. Wet and dry deposition and resuspension of AFCT/TFCT fuel processing radionuclides. Final report

    International Nuclear Information System (INIS)

    Slinn, W.G.N.; Katen, P.C.; Wolf, M.A.; Loveland, W.D.; Radke, L.F.; Miller, E.L.; Ghannam, L.J.; Reynolds, B.W.; Vickers, D.

    1979-09-01

    After short summary and introductory chapters, Chapter IV contains a critical analysis of available parameterizations for resuspension and for wet and dry removal processes and recommends interim parameterizations for use in radiation dose calculations. Chapter V describes methods and experimental results from field studies of in-cloud vs below-cloud scavenging, precipitation efficiency, and modifications of aerosols by clouds. In Chapter VI are contained descriptions of methods and results from four different approaches to the problem of measuring the dry deposition velocities of submicron aerosol particles depositing on vegetation. Chapter VII describes experimental results from a study of resuspension and weathering of tracer aerosol particles deposited on soil, grass and gravel; typical resuspension rates were found to be of the order of 10 -8 s -1 and it is recommended that the concept of weathering be reassessed. In Chapter VIII, National Weather Service data are used to obtain Lagrangian statistics for use in a regional-scale study of wet and dry removal. Chapter IX develops new concepts in reservoir models for application at regional to global scales. In the final chapter are some comments about the results found in this study and recommendations for future research

  14. Reconstructing depositional processes and history from reservoir stratigraphy: Englebright Lake, Yuba River, northern California

    Science.gov (United States)

    Snyder, N.P.; Wright, S.A.; Alpers, Charles N.; Flint, L.E.; Holmes, C.W.; Rubin, D.M.

    2006-01-01

    Reservoirs provide the opportunity to link watershed history with its stratigraphic record. We analyze sediment cores from a northern California reservoir in the context of hydrologic history, watershed management, and depositional processes. Observations of recent depositional patterns, sediment-transport calculations, and 137CS geochronology support a conceptual model in which the reservoir delta progrades during floods of short duration (days) and is modified during prolonged (weeks to months) drawdowns that rework topset beds and transport sand from topsets to foresets. Sediment coarser than 0.25-0.5 mm. deposits in foresets and topsets, and finer material falls out of suspension as bottomset beds. Simple hydraulic calculations indicate that fine sand (0.063-0.5 mm) is transported into the distal bottomset area only during floods. The overall stratigraphy suggests that two phases of delta building occurred in the reservoir. The first, from dam construction in 1940 to 1970, was heavily influenced by annual, prolonged >20 m drawdowns of the water level. The second, built on top of the first, reflects sedimentation from 1970 to 2002 when the influence of drawdowns was less. Sedimentation rates in the central part of the reservoir have declined ???25% since 1970, likely reflecting a combination of fewer large floods, changes in watershed management, and winnowing of stored hydraulic mining sediment. Copyright 2006 by the American Geophysical Union.

  15. Deposition and surface treatment of Ag-embedded indium tin oxide by plasma processing

    International Nuclear Information System (INIS)

    Kim, Jun Young; Kim, Jae-Kwan; Kim, Ja-Yeon; Kwon, Min-Ki; Yoon, Jae-Sik; Lee, Ji-Myon

    2013-01-01

    Ag-embedded indium tin oxide (ITO) films were deposited on Corning 1737 glass by radio-frequency magnetron sputtering under an Ar or Ar/O 2 mixed gas ambient with a combination of ITO and Ag targets that were sputtered alternately by switching on and off the shutter of the sputter gun. The effects of a subsequent surface treatment using H 2 and H 2 + O 2 mixed gas plasma were also examined. The specific resistance of the as-deposited Ag-embedded ITO sample was lower than that of normal ITO. The transmittance was quenched when Ag was incorporated in ITO. To enhance the specific resistance of Ag-embedded ITO, a surface treatment was conducted using H 2 or H 2 + O 2 mixed gas plasma. Although all samples showed improved specific resistance after the H 2 plasma treatment, the transmittance was quenched due to the formation of agglomerated metals on the surface. The specific resistance of the film was improved without any deterioration of the transmittance after a H 2 + O 2 mixed gas plasma treatment. - Highlights: • Ag-embedded indium tin oxide was deposited. • The contact resistivity was decreased by H 2 + O 2 plasma treatment. • The process was carried out at room temperature without thermal treatment. • The mechanism of enhancing the contact resistance was clarified

  16. Sedimentary facies and Holocene depositional processes of Laura Island, Majuro Atoll

    Science.gov (United States)

    Yasukochi, Toru; Kayanne, Hajime; Yamaguchi, Toru; Yamano, Hiroya

    2014-10-01

    The depositional processes that formed Laura Island, Majuro Atoll, Marshall Islands, were reconstructed based on a facies analysis of island sediments and spine ratios, and radiocarbon ages of foraminifera. Sedimentary facies were analyzed from trenches and drill cores excavated on the island and its adjacent reef flat. Depositional ages were obtained using benthic foraminifera (Calcarina) whose spines had not been abraded. The facies were classified into two types: gravelly and sandy. The initial sediments of these sites consisted of gravelly facies in the lower horizon and sandy facies in the upper horizon. Their ages were approximately 2000 cal BP and coincident with the onset of a 1.1-m decline in regional relative sea level, which enabled deposition of the gravelly facies. Half of the sand fraction of the sediment was composed of larger benthic foraminifera. The spine ratio showed that their supply source on the reef flat was located oceanside of the island. The supply source appears to have been caused by the relative sea-level fall. This indicates that the studied island was formed by a relative reduction in wave energy and enhanced foraminiferal supply, both of which were triggered by the late Holocene relative sea-level fall.

  17. Tuning polymorphism and orientation in organic semiconductor thin films via post-deposition processing.

    Science.gov (United States)

    Hiszpanski, Anna M; Baur, Robin M; Kim, Bumjung; Tremblay, Noah J; Nuckolls, Colin; Woll, Arthur R; Loo, Yueh-Lin

    2014-11-05

    Though both the crystal structure and molecular orientation of organic semiconductors are known to impact charge transport in thin-film devices, separately accessing different polymorphs and varying the out-of-plane molecular orientation is challenging, typically requiring stringent control over film deposition conditions, film thickness, and substrate chemistry. Here we demonstrate independent tuning of the crystalline polymorph and molecular orientation in thin films of contorted hexabenzocoronene, c-HBC, during post-deposition processing without the need to adjust deposition conditions. Three polymorphs are observed, two of which have not been previously reported. Using our ability to independently tune the crystal structure and out-of-plane molecular orientation in thin films of c-HBC, we have decoupled and evaluated the effects that molecular packing and orientation have on device performance in thin-film transistors (TFTs). In the case of TFTs comprising c-HBC, polymorphism and molecular orientation are equally important; independently changing either one affects the field-effect mobility by an order of magnitude.

  18. Cold Vacuum Dryer (CVD) Facility Fire Protection System Design Description (SYS 24)

    Energy Technology Data Exchange (ETDEWEB)

    SINGH, G.

    2000-10-17

    This system design description (SDD) addresses the Cold Vacuum Drying (CVD) Facility fire protection system (FPS). The primary features of the FPS for the CVD are a fire alarm and detection system, automatic sprinklers, and fire hydrants. The FPS also includes fire extinguishers located throughout the facility and fire hydrants to assist in manual firefighting efforts. In addition, a fire barrier separates the operations support (administrative) area from the process bays and process bay support areas. Administrative controls to limit combustible materials have been established and are a part of the overall fire protection program. The FPS is augmented by assistance from the Hanford Fire Department (HED) and by interface systems including service water, electrical power, drains, instrumentation and controls. This SDD, when used in conjunction with the other elements of the definitive design package, provides a complete picture of the FPS for the CVD Facility.

  19. Understanding and improving the chemical vapor deposition process for solar grade silicon production

    OpenAIRE

    Ramos Cabal, Alba

    2015-01-01

    Esta Tesis Doctoral se centra en la investigación del proceso de producción de polisilicio para aplicaciones fotovoltaicas (FV) por la vía química; mediante procesos de depósito en fase vapor (CVD). El polisilicio para la industria FV recibe el nombre de silicio de grado solar (SoG Si). Por un lado, el proceso que domina hoy en día la producción de SoG Si está basado en la síntesis, destilación y descomposición de triclorosilano (TCS) en un reactor CVD -denominado reactor Siemens-. El materia...

  20. Roll-to-roll atomic layer deposition process for flexible electronics encapsulation applications

    International Nuclear Information System (INIS)

    Maydannik, Philipp S.; Kääriäinen, Tommi O.; Lahtinen, Kimmo; Cameron, David C.; Söderlund, Mikko; Soininen, Pekka; Johansson, Petri; Kuusipalo, Jurkka; Moro, Lorenza; Zeng, Xianghui

    2014-01-01

    At present flexible electronic devices are under extensive development and, among them, flexible organic light-emitting diode displays are the closest to a large market deployment. One of the remaining unsolved challenges is high throughput production of impermeable flexible transparent barrier layers that protect sensitive light-emitting materials against ambient moisture. The present studies deal with the adaptation of the atomic layer deposition (ALD) process to high-throughput roll-to-roll production using the spatial ALD concept. We report the development of such a process for the deposition of 20 nm thickness Al 2 O 3 diffusion barrier layers on 500 mm wide polymer webs. The process uses trimethylaluminum and water as precursors at a substrate temperature of 105 °C. The observation of self-limiting film growth behavior and uniformity of thickness confirms the ALD growth mechanism. Water vapor transmission rates for 20 nm Al 2 O 3 films deposited on polyethylene naphthalate (PEN) substrates were measured as a function of substrate residence time, that is, time of exposure of the substrate to one precursor zone. Moisture permeation levels measured at 38 °C/90% relative humidity by coulometric isostatic–isobaric method were below the detection limit of the instrument ( −4  g/m 2 day) for films coated at web moving speed of 0.25 m/min. Measurements using the Ca test indicated water vapor transmission rates ∼5 × 10 −6 g/m 2 day. Optical measurements on the coated web showed minimum transmission of 80% in the visible range that is the same as the original PEN substrate

  1. Roll-to-roll atomic layer deposition process for flexible electronics encapsulation applications

    Energy Technology Data Exchange (ETDEWEB)

    Maydannik, Philipp S., E-mail: philipp.maydannik@lut.fi; Kääriäinen, Tommi O.; Lahtinen, Kimmo; Cameron, David C. [Advanced Surface Technology Research Laboratory, Lappeenranta University of Technology, Sammonkatu 12, 50130 Mikkeli (Finland); Söderlund, Mikko; Soininen, Pekka [Beneq Oy, P.O. Box 262, 01511 Vantaa (Finland); Johansson, Petri; Kuusipalo, Jurkka [Tampere University of Technology, Paper Converting and Packaging Technology, P.O. Box 589, 33101 Tampere (Finland); Moro, Lorenza; Zeng, Xianghui [Samsung Cheil Industries, San Jose R and D Center, 2186 Bering Drive, San Jose, California 95131 (United States)

    2014-09-01

    At present flexible electronic devices are under extensive development and, among them, flexible organic light-emitting diode displays are the closest to a large market deployment. One of the remaining unsolved challenges is high throughput production of impermeable flexible transparent barrier layers that protect sensitive light-emitting materials against ambient moisture. The present studies deal with the adaptation of the atomic layer deposition (ALD) process to high-throughput roll-to-roll production using the spatial ALD concept. We report the development of such a process for the deposition of 20 nm thickness Al{sub 2}O{sub 3} diffusion barrier layers on 500 mm wide polymer webs. The process uses trimethylaluminum and water as precursors at a substrate temperature of 105 °C. The observation of self-limiting film growth behavior and uniformity of thickness confirms the ALD growth mechanism. Water vapor transmission rates for 20 nm Al{sub 2}O{sub 3} films deposited on polyethylene naphthalate (PEN) substrates were measured as a function of substrate residence time, that is, time of exposure of the substrate to one precursor zone. Moisture permeation levels measured at 38 °C/90% relative humidity by coulometric isostatic–isobaric method were below the detection limit of the instrument (<5 × 10{sup −4} g/m{sup 2} day) for films coated at web moving speed of 0.25 m/min. Measurements using the Ca test indicated water vapor transmission rates ∼5 × 10{sup −6} g/m{sup 2} day. Optical measurements on the coated web showed minimum transmission of 80% in the visible range that is the same as the original PEN substrate.

  2. Effect of mixture ratios and nitrogen carrier gas flow rates on the morphology of carbon nanotube structures grown by CVD

    CSIR Research Space (South Africa)

    Malgas, GF

    2008-02-01

    Full Text Available This paper reports on the growth of carbon nanotubes (CNTs) by thermal Chemical Vapour Deposition (CVD) and investigates the effects of nitrogen carrier gas flow rates and mixture ratios on the morphology of CNTs on a silicon substrate by vaporizing...

  3. A beam radiation monitor based on CVD diamonds for SuperB

    Science.gov (United States)

    Cardarelli, R.; Di Ciaccio, A.

    2013-08-01

    Chemical Vapor Deposition (CVD) diamond particle detectors are in use in the CERN experiments at LHC and at particle accelerator laboratories in Europe, USA and Japan mainly as beam monitors. Nowadays it is considered a proven technology with a very fast signal read-out and a very high radiation tolerance suitable for measurements in high radiation environment zones i.e. near the accelerators beam pipes. The specific properties of CVD diamonds make them a prime candidate for measuring single particles as well as high-intensity particle cascades, for timing measurements on the sub-nanosecond scale and for beam protection systems in hostile environments. A single-crystalline CVD (scCVD) diamond sensor, read out with a new generation of fast and high transition frequency SiGe bipolar transistor amplifiers, has been tested for an application as radiation monitor to safeguard the silicon vertex tracker in the SuperB detector from excessive radiation damage, cumulative dose and instantaneous dose rates. Test results with 5.5 MeV alpha particles from a 241Am radioactive source and from electrons from a 90Sr radioactive source are presented in this paper.

  4. High-rate anisotropic ablation and deposition of polytetrafluoroethylene using synchrotron radiation process

    International Nuclear Information System (INIS)

    Inayoshi, Muneto; Ikeda, Masanobu; Hori, Masaru; Goto, Toshio; Hiramatsu, Mineo; Hiraya, Atsunari.

    1995-01-01

    Both anisotropic ablation and thin film formation of polytetrafluoroethylene (PTFE) were successfully demonstrated using synchrotron radiation (SR) irradiation of PTFE, that is, the SR ablation process. Anisotropic ablation by the SR irradiation was performed at an extremely high rate of 3500 μm/min at a PTFE target temperature of 200degC. Moreover, a PTFE thin film was formed at a high rate of 2.6 μm/min using SR ablation of PTFE. The chemical structure of the deposited film was similar to that of the PTFE target as determined from Fourier transform infrared absorption spectroscopy (FT-IR) analysis. (author)

  5. Chemical vapor deposition graphene transfer process to a polymeric substrate assisted by a spin coater

    International Nuclear Information System (INIS)

    Kessler, Felipe; Da Rocha, Caique O C; Medeiros, Gabriela S; Fechine, Guilhermino J M

    2016-01-01

    A new method to transfer chemical vapor deposition graphene to polymeric substrates is demonstrated here, it is called direct dry transfer assisted by a spin coater (DDT-SC). Compared to the conventional method DDT, the improvement of the contact between graphene-polymer due to a very thin polymeric film deposited by spin coater before the transfer process prevented air bubbles and/or moisture and avoided molecular expansion on the graphene-polymer interface. An acrylonitrile-butadiene-styrene copolymer, a high impact polystyrene, polybutadiene adipate-co-terephthalate, polylactide acid, and a styrene-butadiene-styrene copolymer are the polymers used for the transfers since they did not work very well by using the DDT process. Raman spectroscopy and optical microscopy were used to identify, to quantify, and to qualify graphene transferred to the polymer substrates. The quantity of graphene transferred was substantially increased for all polymers by using the DDT-SC method when compared with the DDT standard method. After the transfer, the intensity of the D band remained low, indicating low defect density and good quality of the transfer. The DDT-SC transfer process expands the number of graphene applications since the polymer substrate candidates are increased. (paper)

  6. Chemical Vapor Deposition of Photocatalyst Nanoparticles on PVDF Membranes for Advanced Oxidation Processes

    Directory of Open Access Journals (Sweden)

    Giovanni De Filpo

    2018-06-01

    Full Text Available The chemical binding of photocatalytic materials, such as TiO2 and ZnO nanoparticles, onto porous polymer membranes requires a series of chemical reactions and long purification processes, which often result in small amounts of trapped nanoparticles with reduced photocatalytic activity. In this work, a chemical vapor deposition technique was investigated in order to allow the nucleation and growth of ZnO and TiO2 nanoparticles onto polyvinylidene difluoride (PVDF porous membranes for application in advanced oxidation processes. The thickness of obtained surface coatings by sputtered nanoparticles was found to depend on process conditions. The photocatalytic efficiency of sputtered membranes was tested against both a model drug and a model organic pollutant in a small continuous flow reactor.

  7. Process for depositing an oxide epitaxially onto a silicon substrate and structures prepared with the process

    Science.gov (United States)

    McKee, Rodney A.; Walker, Frederick J.

    1993-01-01

    A process and structure involving a silicon substrate utilizes an ultra high vacuum and molecular beam epitaxy (MBE) methods to grow an epitaxial oxide film upon a surface of the substrate. As the film is grown, the lattice of the compound formed at the silicon interface becomes stabilized, and a base layer comprised of an oxide having a sodium chloride-type lattice structure grows epitaxially upon the compound so as to cover the substrate surface. A perovskite may then be grown epitaxially upon the base layer to render a product which incorporates silicon, with its electronic capabilities, with a perovskite having technologically-significant properties of its own.

  8. Use of Kelvin probe force microscopy for identification of CVD grown graphene flakes on copper foil

    Science.gov (United States)

    Kumar, Rakesh; Mehta, B. R.; Kanjilal, D.

    2017-05-01

    Graphene flakes have been grown by chemical vapour deposition (CVD) method on Cu foils. The obtained graphene flakes have been characterized by optical microscopy, field emission scanning electron microscopy, Kelvin probe force microscopy (KPFM) and Raman spectroscopy. The graphene flakes grown on Cu foil comprise mainly single layer graphene and confirm that the nucleation for graphene growth starts very quickly. Moreover, KPFM has been found to be a valuable technique to differentiate between covered and uncovered portion of Cu foil by graphene flakes deposited for shorter duration. The results show that KPFM can be a very useful technique in understanding the mechanism of graphene growth.

  9. Ethylene Gas Sensing Properties of Tin Oxide Nanowires Synthesized via CVD Method

    Science.gov (United States)

    Akhir, Maisara A. M.; Mohamed, Khairudin; Rezan, Sheikh A.; Arafat, M. M.; Haseeb, A. S. M. A.; Uda, M. N. A.; Nuradibah, M. A.

    2018-03-01

    This paper studies ethylene gas sensing performance of tin oxide (SnO2) nanowires (NWs) as sensing material synthesized using chemical vapor deposition (CVD) technique. The effect of NWs diameter on ethylene gas sensing characteristics were investigated. SnO2 NWs with diameter of ∼40 and ∼240 nm were deposited onto the alumina substrate with printed gold electrodes and tested for sensing characteristic toward ethylene gas. From the finding, the smallest diameter of NWs (42 nm) exhibit fast response and recovery time and higher sensitivity compared to largest diameter of NWs (∼240 nm). Both sensor show good reversibility features for ethylene gas sensor.

  10. Processes in Environmental Depositional Systems and Deformation in Sedimentary Basins: Goals for Exoloration in Mexico

    Science.gov (United States)

    Sandoval-Ochoa, J.

    2005-05-01

    Among the recent needs to establish new goals in the mexican energy industry to increase the petroleum reserves, has been necessary to recapitulate on some academic an operative concepts and definitions applied to the Petroliferous Basins Exploration; first of all, in order to understand the Petroleum System in given tectonophysical framework. The tectonophysical environment experienced by the petroliferous basin in the southwestern Gulf of Mexico, merely in the Campeche Sound and adjacent terrestrial regions (Figure 1); has been the result of interaction among the tectonic plates, the Coco's Plate with impingement and subduction beneath the Northamerican Plate and the Yucatán Microplate and even in very deep connection with the oceanic crust of southwesternmost portion of the Gulf of Mexico and the one of the Caribbean sea beneath the gulf of Belize-Honduras. The tectonosedimentary effects in the Campeche Bay starting with the skeleton formed for the Cenozoic Era, kept simultaneous conditions in depositions and deformations because of strain, stress and collapse fields, acted through this Era up to the present day, as observed in the surface Aguayo et al, 1999 and Sandoval, 2000. The involved portions of the crust and its boundaries have also been performing the relative sinking of the mere southwestern centre of the Gulf of Mexico, and the rising of the southeastern lands of Mexico. In the middle contiguity are found the productive Tertiary basins of: Comalcalco, Macuspana, Salina del Itsmo, Campeche-Champoton and other in deep waters; all of them, in an arrangement of basins among distensive faulted blocks in echelon, falling down to the deep centre of the Gulf Sandoval, op cit. With this scenario and that ones of other basins, a recapitulation on concepts and definitions, has been made on the regional natural processes of the environmental depositional systems and on the basins analysis in the tectonophysical framework, in order to reflect on the

  11. A flexible angle sensor made from MWNT/CuO/Cu{sub 2}O nanocomposite films deposited by an electrophoretic co-deposition process

    Energy Technology Data Exchange (ETDEWEB)

    Toboonsung, Buppachat, E-mail: buppachattt@yahoo.co.th [Physics and General Science Program, Faculty of Science and Technology, Nakhon Ratchasima Rajabhat University, Nakhon Ratchasima 30000 (Thailand); Singjai, Pisith, E-mail: singjai@hotmail.com [Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Materials Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 (Thailand)

    2012-08-25

    Highlights: Black-Right-Pointing-Pointer MWNT/CuO/Cu{sub 2}Onanocomposite films were coated on a PET sheet. Black-Right-Pointing-Pointer The film resistance and application as angle sensor were investigated. Black-Right-Pointing-Pointer Thesensor showed a linear relation between the film resistance and the bending angle. Black-Right-Pointing-Pointer A minimum loop area and a high stability in sensitivity over a thousand bending cycles were obtained. - Abstract: A flexible angle sensor was prepared using an electrophoretic co-deposition process to form nanocomposite networks of multi-wall carbon nanotube/cupric oxide/cuprous oxide (MWNT/CuO/Cu{sub 2}O) on a polyethylene terephthalate (PET) sheet. The deposition method used copper and stainless steel electrodes, and the effects of varying of electrode separation, MWNT concentration in deionized water, voltage and deposition time were studied. The film resistance of the as-deposited samples decreased with increasing the MWNT concentration up to 0.3 mg/ml. The angle sensor showed a linear relation between the film resistance and the bending angle, a relationship that was illustrated with loop area and sensitivity data. The best angle sensor was successfully made with an electrode separation of 8 mm, a concentration of 0.3 mg/ml, a voltage of 10 V and a deposition time of 3 h, parameters that resulted in a minimum loop area and the most stability in sensitivity over a thousand bending cycles.

  12. Sensor-based atomic layer deposition for rapid process learning and enhanced manufacturability

    Science.gov (United States)

    Lei, Wei

    In the search for sensor based atomic layer deposition (ALD) process to accelerate process learning and enhance manufacturability, we have explored new reactor designs and applied in-situ process sensing to W and HfO 2 ALD processes. A novel wafer scale ALD reactor, which features fast gas switching, good process sensing compatibility and significant similarity to the real manufacturing environment, is constructed. The reactor has a unique movable reactor cap design that allows two possible operation modes: (1) steady-state flow with alternating gas species; or (2) fill-and-pump-out cycling of each gas, accelerating the pump-out by lifting the cap to employ the large chamber volume as ballast. Downstream quadrupole mass spectrometry (QMS) sampling is applied for in-situ process sensing of tungsten ALD process. The QMS reveals essential surface reaction dynamics through real-time signals associated with byproduct generation as well as precursor introduction and depletion for each ALD half cycle, which are then used for process learning and optimization. More subtle interactions such as imperfect surface saturation and reactant dose interaction are also directly observed by QMS, indicating that ALD process is more complicated than the suggested layer-by-layer growth. By integrating in real-time the byproduct QMS signals over each exposure and plotting it against process cycle number, the deposition kinetics on the wafer is directly measured. For continuous ALD runs, the total integrated byproduct QMS signal in each ALD run is also linear to ALD film thickness, and therefore can be used for ALD film thickness metrology. The in-situ process sensing is also applied to HfO2 ALD process that is carried out in a furnace type ALD reactor. Precursor dose end-point control is applied to precisely control the precursor dose in each half cycle. Multiple process sensors, including quartz crystal microbalance (QCM) and QMS are used to provide real time process information. The

  13. Electromagnetic sensors for monitoring of scour and deposition processes at bridges and offshore wind turbines

    Science.gov (United States)

    Michalis, Panagiotis; Tarantino, Alessandro; Judd, Martin

    2014-05-01

    Recent increases in precipitation have resulted in severe and frequent flooding incidents. This has put hydraulic structures at high risk of failure due to scour, with severe consequences to public safety and significant economic losses. Foundation scour is the leading cause of bridge failures and one of the main climate change impacts to highway and railway infrastructure. Scour action is also being considered as a major risk for offshore wind farm developments as it leads to excessive excavation of the surrounding seabed. Bed level conditions at underwater foundations are very difficult to evaluate, considering that scour holes are often re-filled by deposited loose material which is easily eroded during smaller scale events. An ability to gather information concerning the evolution of scouring will enable the validation of models derived from laboratory-based studies and the assessment of different engineering designs. Several efforts have focused on the development of instrumentation techniques to measure scour processes at foundations. However, they are not being used routinely due to numerous technical and cost issues; therefore, scour continues to be inspected visually. This research project presents a new sensing technique, designed to measure scour depth variation and sediment deposition around the foundations of bridges and offshore wind turbines, and to provide an early warning of an impending structural failure. The monitoring system consists of a probe with integrated electromagnetic sensors, designed to detect the change in the surrounding medium around the foundation structure. The probe is linked to a wireless network to enable remote data acquisition. A developed prototype and a commercial sensor were evaluated to quantify their capabilities to detect scour and sediment deposition processes. Finite element modelling was performed to define the optimum geometric characteristics of the prototype scour sensor based on models with various permittivity

  14. Process-structure-property relationships of micron thick gadolinium oxide films deposited by reactive electron beam-physical vapor deposition (EB-PVD)

    Science.gov (United States)

    Grave, Daniel A.

    Gadolinium oxide (Gd2O3) is an attractive material for solid state neutron detection due to gadolinium's high thermal neutron capture cross section. Development of neutron detectors based on Gd2 O3 requires sufficiently thick films to ensure neutron absorption. In this dissertation work, the process-structure-property relationships of micron thick Gd2O3 films deposited by reactive electron-beam physical vapor deposition (EB-PVD) were studied. Through a systematic design of experiments, fundamental studies were conducted to determine the effects of processing conditions such as deposition temperature, oxygen flow rate, deposition rate, and substrate material on Gd2O3 film crystallographic phase, texture, morphology, grain size, density, and surface roughness. Films deposited at high rates (> 5 A/s) were examined via x-ray diffraction (XRD) and Raman spectroscopy. Quantitative phase volume calculations were performed via a Rietveld refinement technique. All films deposited at high rates were found to be fully monoclinic or mixed cubic/monoclinic phase. Generally, increased deposition temperature and increased oxygen flow resulted in increased cubic phase volume. As film thickness increased, monoclinic phase volume increased. Grazing incidence x-ray diffraction (GIXRD) depth profiling analysis showed that cubic phase was only present under large incidence angle (large penetration depth) measurements, and after a certain point, only monoclinic phase was grown. This was confirmed by transmission electron microscopy (TEM) analysis with selected area diffraction (SAD). Based on this information, a large compressive stress was hypothesized to cause the formation of the monoclinic phase and this hypothesis was confirmed by demonstrating the existence of a stress induced phase transition. An experiment was designed to introduce compressive stress into the Gd2O 3 films via ion beam assisted deposition (IBAD). This allowed for systematic increase in compressive stress while

  15. Deposits on heat exchanging surfaces, causes in the bleaching process and countermeasures; Belaeggningar paa vaermevaexlare, orsaker i blekprocessen och aatgaerder

    Energy Technology Data Exchange (ETDEWEB)

    Bjurstroem, Henrik [AaF-Energi och Miljoe AB, Stockholm (Sweden); Staahl, Charlotte; Widell, Lars [AaF-Celpap AB, Stockholm (Sweden)

    2003-06-01

    Energy conservation in process industry implies to a large extent recovery of heat (or cold) from a process stream and its utilization for another process stream. The savings of energy that can be achieved depend on the process streams, but also on the efficiency of the heat exchange. A small driving temperature difference is a condition for an extensive recovery and a satisfactory preservation of its quality, i.e. its temperature. As process streams contain compounds or components that can precipitate and form deposits on heat exchanging surfaces, the recovery of heat is degraded. In the pulp and paper industry, two trends combine to increase the extent of fouling: a larger degree of closure for the process and a change in pH-profile caused by a switch to elementary chlorine free bleaching. In this study, the occurrence of deposits has been investigated for the mills that produce mechanical pulp and for the fiber line in mills producing chemical pulp. Deposits on the evaporator surfaces are treated in a parallel study. Except for some plants, deposits are not an important problem today. That does not mean that there has not been any problem or that problems will not occur. The origin of deposits lies in the chemistry of the process, but deposits have consequences for the thermal energy management. A list of possible actions in order to avoid deposits or to mitigate their consequences has been dressed in this report. They should be considered with the following order of priority: avoiding that the compounds that may form deposits enter at all the process, section 6.1; avoiding that these compounds form a deposit once they have entered the process, section 6.2; cleaning if nothing else helps or costs too much, section 6.3. Some of these methods are well known or are conventional changes in the processes. Some of these methods are less well proven or less well documented. In a longer time perspective, the kidney technology that is being developed could contribute to

  16. Development of CVD diamond radiation detectors

    CERN Document Server

    Adam, W; Berdermann, E; Bogani, F; Borchi, E; Bruzzi, Mara; Colledani, C; Conway, J; Dabrowski, W; Delpierre, P A; Deneuville, A; Dulinski, W; van Eijk, B; Fallou, A; Fisch, D; Foulon, F; Friedl, M; Gan, K K; Gheeraert, E; Grigoriev, E A; Hallewell, G D; Hall-Wilton, R; Han, S; Hartjes, F G; Hrubec, Josef; Husson, D; Kagan, H; Kania, D R; Kaplon, J; Kass, R; Knöpfle, K T; Krammer, Manfred; Manfredi, P F; Meier, D; Mishina, M; Le Normand, F; Pan, L S; Pernegger, H; Pernicka, Manfred; Pirollo, S; Re, V; Riester, J L; Roe, S; Roff, D G; Rudge, A; Schnetzer, S R; Sciortino, S; Speziali, V; Stelzer, H; Stone, R; Tapper, R J; Tesarek, R J; Thomson, G B; Trawick, M L; Trischuk, W; Turchetta, R; Walsh, A M; Wedenig, R; Weilhammer, Peter; Ziock, H J; Zoeller, M M

    1998-01-01

    Diamond is a nearly ideal material for detecting ionizing radiation. Its outstanding radiation hardness, fast charge collection and low leakage current allow a diamond detector to be used in high ra diation, high temperature and in aggressive chemical media. We have constructed charged particle detectors using high quality CVD diamond. Characterization of the diamond samples and various detect ors are presented in terms of collection distance, $d=\\mu E \\tau$, the average distance electron-hole pairs move apart under the influence of an electric field, where $\\mu$ is the sum of carrier mo bilities, $E$ is the applied electric field, and $\\tau$ is the mobility weighted carrier lifetime. Over the last two years the collection distance increased from $\\sim$ 75 $\\mu$m to over 200 $\\mu$ m. With this high quality CVD diamond a series of micro-strip and pixel particle detectors have been constructed. These devices were tested to determine their position resolution and signal to n oise performance. Diamond detectors w...

  17. TSC response of irradiated CVD diamond films

    CERN Document Server

    Borchi, E; Bucciolini, M; Guasti, A; Mazzocchi, S; Pirollo, S; Sciortino, S

    1999-01-01

    CVD diamond films have been irradiated with electrons, sup 6 sup 0 Co photons and protons in order to study the dose response to exposure to different particles and energies and to investigate linearity with dose. The Thermally Stimulated Current (TSC) has been studied as a function of the dose delivered to polymethilmetacrilate (PMMA) in the range from 1 to 12 Gy with 20 MeV electrons from a linear accelerator. The TSC spectrum has revealed the presence of two components with peak temperatures of about 470 and 520 K, corresponding to levels lying in the diamond band gap with activation energies of the order of 0.7 - 1 eV. After the subtraction of the exponential background the charge emitted during the heating scan has been evaluated and has been found to depend linearly on the dose. The thermally emitted charge of the CVD diamond films has also been studied using different particles. The samples have been irradiated with the same PMMA dose of about 2 Gy with 6 and 20 MeV electrons from a Linac, sup 6 sup 0 ...

  18. Process for depositing epitaxial alkaline earth oxide onto a substrate and structures prepared with the process

    Science.gov (United States)

    McKee, Rodney A.; Walker, Frederick J.

    1996-01-01

    A process and structure involving a silicon substrate utilize molecular beam epitaxy (MBE) and/or electron beam evaporation methods and an ultra-high vacuum facility to grow a layup of epitaxial alkaline earth oxide films upon the substrate surface. By selecting metal constituents for the oxides and in the appropriate proportions so that the lattice parameter of each oxide grown closely approximates that of the substrate or base layer upon which oxide is grown, lattice strain at the film/film or film/substrate interface of adjacent films is appreciably reduced or relieved. Moreover, by selecting constituents for the oxides so that the lattice parameters of the materials of adjacent oxide films either increase or decrease in size from one parameter to another parameter, a graded layup of films can be grown (with reduced strain levels therebetween) so that the outer film has a lattice parameter which closely approximates that of, and thus accomodates the epitaxial growth of, a pervoskite chosen to be grown upon the outer film.

  19. Pulsed Laser Deposition Processing of Improved Titanium Nitride Coatings for Implant Applications

    Science.gov (United States)

    Haywood, Talisha M.

    Recently surface coating technology has attracted considerable attention of researchers to develop novel coatings with enhanced functional properties such as hardness, biocompatibility, wear and corrosion resistance for medical devices and surgical tools. The materials currently being used for surgical implants include predominantly stainless steel (316L), cobalt chromium (Co-Cr), titanium and its alloys. Some of the limitations of these implants include improper mechanical properties, corrosion resistance, cytotoxicity and bonding with bone. One of the ways to improve the performance and biocompatibility of these implants is to coat their surfaces with biocompatible materials. Among the various coating materials, titanium nitride (TiN) shows excellent mechanical properties, corrosion resistance and low cytotoxicity. In the present work, a systematic study of pulsed laser ablation processing of TiN coatings was conducted. TiN thin film coatings were grown on commercially pure titanium (Ti) and stainless steel (316L) substrates at different substrate temperatures and different nitrogen partial pressures using the pulsed laser deposition (PLD) technique. Microstructural, surface, mechanical, chemical, corrosion and biological analysis techniques were applied to characterize the TiN thin film coatings. The PLD processed TiN thin film coatings showed improvements in mechanical strength, corrosion resistance and biocompatibility when compared to the bare substrates. The enhanced performance properties of the TiN thin film coatings were a result of the changing and varying of the deposition parameters.

  20. Parametric optimization during machining of AISI 304 Austenitic Stainless Steel using CVD coated DURATOMIC cutting insert

    Directory of Open Access Journals (Sweden)

    M. Kaladhar

    2012-08-01

    Full Text Available In this work, Taguchi method is applied to determine the optimum process parameters for turning of AISI 304 austenitic stainless steel on CNC lathe. A Chemical vapour deposition (CVD coated cemented carbide cutting insert is used which is produced by DuratomicTM technology of 0.4 and 0.8 mm nose radii. The tests are conducted at four levels of Cutting speed, feed and depth of cut. The influence of these parameters are investigated on the surface roughness and material removal rate (MRR. The Analysis Of Variance (ANOVA is also used to analyze the influence of cutting parameters during machining. The results revealed that cutting speed significantly (46.05% affected the machined surface roughness values followed by nose radius (23.7%. The influence of the depth of cut (61.31% in affecting material removal rate (MRR is significantly large. The cutting speed (20.40% is the next significant factor. Optimal range and optimal level of parameters are also predicted for responses.

  1. Macro controlling of copper oxide deposition processes and spray mode by using home-made fully computerized spray pyrolysis system

    Science.gov (United States)

    Essa, Mohammed Sh.; Chiad, Bahaa T.; Shafeeq, Omer Sh.

    2017-09-01

    Thin Films of Copper Oxide (CuO) absorption layer have been deposited using home-made Fully Computerized Spray Pyrolysis Deposition system FCSPD on glass substrates, at the nozzle to substrate distance equal to 20,35 cm, and computerized spray mode (continues spray, macro-control spray). The substrate temperature has been kept at 450 °c with the optional user can enter temperature tolerance values ± 5 °C. Also that fixed molar concentration of 0.1 M, and 2D platform speed or deposition platform speed of 4mm/s. more than 1000 instruction program code, and specific design of graphical user interface GUI to fully control the deposition process and real-time monitoring and controlling the deposition temperature at every 200 ms. The changing in the temperature has been recorded during deposition processes, in addition to all deposition parameters. The films have been characterized to evaluate the thermal distribution over the X, Y movable hot plate, the structure and optical energy gap, thermal and temperature distribution exhibited a good and uniform distribution over 20 cm2 hot plate area, X-ray diffraction (XRD) measurement revealed that the films are polycrystalline in nature and can be assigned to monoclinic CuO structure. Optical band gap varies from 1.5-1.66 eV depending on deposition parameter.

  2. Thermoluminescent properties of CVD diamond: applications to ionising radiation dosimetry; Proprietes thermoluminescentes du diamant CVD: applications a la dosimetrie des rayonnements ionisants

    Energy Technology Data Exchange (ETDEWEB)

    Petitfils, A

    2007-09-15

    Remarkable properties of synthetic diamond (human soft tissue equivalence, chemical stability, non-toxicity) make this material suitable for medical application as thermoluminescent dosimeter (TLD). This work highlights the interest of this material as radiotherapy TLD. In the first stage of this work, we looked after thermoluminescent (TL) and dosimetric properties of polycrystalline diamond made by Chemically Vapor Deposited (CVD) synthesis. Dosimetric characteristics are satisfactory as TLD for medical application. Luminescence thermal quenching on diamond has been investigated. This phenomenon leads to a decrease of dosimetric TL peak sensitivity when the heating rate increases. The second part of this work analyses the use of synthetic diamond as TLD in radiotherapy. Dose profiles, depth dose distributions and the cartography of an electron beam obtained with our samples are in very good agreement with results from an ionisation chamber. It is clearly shown that CVD) diamond is of interest to check beams of treatment accelerators. The use of these samples in a control of treatment with Intensity Modulated Radiation Therapy underlines good response of synthetic diamond in high dose gradient areas. These results indicate that CVD diamond is a promising material for radiotherapy dosimetry. (author)

  3. Simultaneous Co-deposition of Zn-Mg Alloy Layers on Steel Strip by PVD Process

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Tae Yeob [POSCO Technical Research Laboratories, Gwangyang (Korea, Republic of); Goodenough, Mark [Strategic Marketing, Tata Steel, Warwickshire (United Kingdom)

    2011-12-15

    This is the first release of an interim report on the development of coating technology of Zn-Mg alloy layers on steel strip by EML-PVD (electromagnetic levitation - physical vapor deposition) process in an air-to-air type continuous PVD pilot plant. It intends to introduce a basic principle of the EML-PVD process together with the high speed PVD pilot plant built in Posco. Due to the agitation effect provided by the high frequency induction coil, simultaneous evaporation of Zn and Mg from a droplet could produce alloy coating layers with Mg content of 6% to 12% depending on the composition of the droplet inside the coil. For its superior corrosion resistance, Zn-Mg alloy coated steel would be a very promising material for automotive, electrical appliances, and construction applications.

  4. Electro-deposition painting process improvement of cab truck by Six Sigma concept

    Science.gov (United States)

    Kawitu, Kitiya; Chutima, Parames

    2017-06-01

    The case study company is a manufacturer of trucks and currently facing a high rework cost due to the thickness of the electro-deposited paint (EDP) of the truck cab is lower than standard. In addition, the process capability is very low. The Six Sigma concept consisting of 5 phases (DMAIC) is applied to determine new parameter settings for each significant controllable factor. After the improvement, EDP thickness of the truck cab increases from 17.88μ to 20μ (i.e. standard = 20 ± 3μ). Moreover, the process capability indexes (Cp and Cpk) are increased from 0.9 to 1.43, and from 0.27 to 1.43, respectively. This improvement could save the rework cost about 1.6M THB per year.

  5. Seed defective reduction in automotive Electro-Deposition Coating Process of truck cabin

    Science.gov (United States)

    Sonthilug, Aekkalag; Chutima, Parames

    2018-02-01

    The case study company is one of players in Thailand’s Automotive Industry who manufacturing truck and bus for both domestic and international market. This research focuses on a product quality problem about seed defects occurred in the Electro-Deposition Coating Process of truck cabin. The 5-phase of Six Sigma methodology including D-Define, M-Measure, A-Analyze, I-Improve, and C-Control is applied to this research to identify root causes of problem for setting new parameters of each significant factor. After the improvement, seed defects in this process is reduced from 9,178 defects per unit to 876 defects per unit (90% improvement)

  6. Simultaneous Co-deposition of Zn-Mg Alloy Layers on Steel Strip by PVD Process

    International Nuclear Information System (INIS)

    Kim, Tae Yeob; Goodenough, Mark

    2011-01-01

    This is the first release of an interim report on the development of coating technology of Zn-Mg alloy layers on steel strip by EML-PVD (electromagnetic levitation - physical vapor deposition) process in an air-to-air type continuous PVD pilot plant. It intends to introduce a basic principle of the EML-PVD process together with the high speed PVD pilot plant built in Posco. Due to the agitation effect provided by the high frequency induction coil, simultaneous evaporation of Zn and Mg from a droplet could produce alloy coating layers with Mg content of 6% to 12% depending on the composition of the droplet inside the coil. For its superior corrosion resistance, Zn-Mg alloy coated steel would be a very promising material for automotive, electrical appliances, and construction applications

  7. A CVD diamond beam telescope for charged particle tracking

    CERN Document Server

    Adam, W; Bergonzo, P; de Boer, Wim; Bogani, F; Borchi, E; Brambilla, A; Bruzzi, Mara; Colledani, C; Conway, J; D'Angelo, P; Dabrowski, W; Delpierre, P A; Dulinski, W; Doroshenko, J; Doucet, M; van Eijk, B; Fallou, A; Fischer, P; Fizzotti, F; Kania, D R; Gan, K K; Grigoriev, E; Hallewell, G D; Han, S; Hartjes, F G; Hrubec, Josef; Husson, D; Kagan, H; Kaplon, J; Kass, R; Keil, M; Knöpfle, K T; Koeth, T W; Krammer, Manfred; Meuser, S; Lo Giudice, A; MacLynne, L; Manfredotti, C; Meier, D; Menichelli, D; Mishina, M; Moroni, L; Noomen, J; Oh, A; Pan, L S; Pernicka, Manfred; Perera, L P; Riester, J L; Roe, S; Rudge, A; Russ, J; Sala, S; Sampietro, M; Schnetzer, S; Sciortino, S; Stelzer, H; Stone, R; Suter, B; Trischuk, W; Tromson, D; Vittone, E; Weilhammer, Peter; Wermes, N; Wetstein, M; Zeuner, W; Zöller, M

    2002-01-01

    CVD diamond is a radiation hard sensor material which may be used for charged particle tracking near the interaction region in experiments at high luminosity colliders. The goal of the work described here is to investigate the use of several detector planes made of CVD diamond strip sensors for charged particle tracking. Towards this end a tracking telescope composed entirely of CVD diamond planes has been constructed. The telescope was tested in muon beams and its tracking capability has been investigated.

  8. Fabrication of Ultrasensitive Field-Effect Transistor DNA Biosensors by a Directional Transfer Technique Based on CVD-Grown Graphene.

    Science.gov (United States)

    Zheng, Chao; Huang, Le; Zhang, Hong; Sun, Zhongyue; Zhang, Zhiyong; Zhang, Guo-Jun

    2015-08-12

    Most graphene field-effect transistor (G-FET) biosensors are fabricated through a routine process, in which graphene is transferred onto a Si/SiO2 substrate and then devices are subsequently produced by micromanufacture processes. However, such a fabrication approach can introduce contamination onto the graphene surface during the lithographic process, resulting in interference for the subsequent biosensing. In this work, we have developed a novel directional transfer technique to fabricate G-FET biosensors based on chemical-vapor-deposition- (CVD-) grown single-layer graphene (SLG) and applied this biosensor for the sensitive detection of DNA. A FET device with six individual array sensors was first fabricated, and SLG obtained by the CVD-growth method was transferred onto the sensor surface in a directional manner. Afterward, peptide nucleic acid (PNA) was covalently immobilized on the graphene surface, and DNA detection was realized by applying specific target DNA to the PNA-functionalized G-FET biosensor. The developed G-FET biosensor was able to detect target DNA at concentrations as low as 10 fM, which is 1 order of magnitude lower than those reported in a previous work. In addition, the biosensor was capable of distinguishing the complementary DNA from one-base-mismatched DNA and noncomplementary DNA. The directional transfer technique for the fabrication of G-FET biosensors is simple, and the as-constructed G-FET DNA biosensor shows ultrasensitivity and high specificity, indicating its potential application in disease diagnostics as a point-of-care tool.

  9. Mapping process and age of Quaternary deposits on Santa Rosa Island, Channel Islands National Park, California

    Science.gov (United States)

    Schmidt, K. M.; Minor, S. A.; Bedford, D.

    2016-12-01

    Employing a geomorphic process-age classification scheme, we mapped the Quaternary surficial geology of Santa Rosa (SRI) within the Channel Islands National Park. This detailed (1:12,000 scale) map represents upland erosional transport processes and alluvial, fluvial, eolian, beach, marine terrace, mass wasting, and mixed depositional processes. Mapping was motivated through an agreement with the National Park Service and is intended to aid natural resource assessments, including post-grazing disturbance recovery and identification of mass wasting and tectonic hazards. We obtained numerous detailed geologic field observations, fossils for faunal identification as age control, and materials for numeric dating. This GPS-located field information provides ground truth for delineating map units and faults using GIS-based datasets- high-resolution (sub-meter) aerial imagery, LiDAR-based DEMs and derivative raster products. Mapped geologic units denote surface processes and Quaternary faults constrain deformation kinematics and rates, which inform models of landscape change. Significant findings include: 1) Flights of older Pleistocene (>120 ka) and possibly Pliocene marine terraces were identified beneath younger alluvial and eolian deposits at elevations as much as 275 m above modern sea level. Such elevated terraces suggest that SRI was a smaller, more submerged island in the late Neogene and (or) early Pleistocene prior to tectonic uplift. 2) Structural and geomorphic observations made along the potentially seismogenic SRI fault indicate a protracted slip history during the late Neogene and Quaternary involving early normal slip, later strike slip, and recent reverse slip. These changes in slip mode explain a marked contrast in island physiography across the fault. 3) Many of the steeper slopes are dramatically stripped of regolith, with exposed bedrock and deeply incised gullies, presumably due effects related to past grazing practices. 4) Surface water presence is

  10. Novel sedimentological fingerprints link shifting depositional processes to Holocene climate transitions in East Greenland

    Science.gov (United States)

    van der Bilt, Willem G. M.; Rea, Brice; Spagnolo, Matteo; Roerdink, Desiree L.; Jørgensen, Steffen L.; Bakke, Jostein

    2018-05-01

    The Arctic warms faster than any other region of our planet. Besides melting glaciers, thawing permafrost and decreasing sea-ice, this amplified response affects earth surface processes. This geomorphological expression of climate change may alter landscapes and increase the frequency and magnitude of geohazards like floods or mass-movements. Beyond the short span of sparse monitoring time series, geological archives provide a valuable long-term context for future risk assessment. Lake sediment sequences are particularly promising in this respect as continuous recorders of surface process change. Over the past decade, the emergence of new techniques that characterize depositional signatures in more detail has enhanced this potential. Here, we present a well-dated Holocene-length lake sediment sequence from Ammassalik Island on southeast Greenland. This area is particularly sensitive to regional shifts in the Arctic climate system due to its location near the sea-ice limit, the Greenland Ice Sheet and the convergence of polar and Atlantic waters. The expression of Holocene change is fingerprinted using physical (grain size, organic content, density), visual (3-D Computed Tomography) and geochemical (X-Ray Fluorescence, X-Ray Diffraction) evidence. We show that three sharp transitions characterize the Holocene evolution of Ymer Lake. Between 10 and 9.5 cal. ka BP, rapid local glacier loss from the lake catchment culminated in an outburst flood. Following a quiescent Holocene climatic optimum, Neoglacial cooling, lengthening lake ice cover and shifting wind patterns prompted in-lake avalanching of sediments from 4.2 cal. ka BP onwards. Finally, glaciers reformed in the catchment around 1.2 cal. ka BP. The timing of these shifts is consistent with the regional expression of deglaciation, Neoglacial cooling and Little Ice Age-type glacier growth, respectively. The novel multi-proxy approach applied in this study rigorously links depositional sediment signatures to

  11. Clean and polymer-free transfer of CVD-grown graphene films on hexagonal boron nitride substrates

    Science.gov (United States)

    Fujihara, Miho; Ogawa, Shun; Yoshimura, Shintaro; Inoue, Ryosuke; Maniwa, Yutaka; Taniguchi, Takashi; Watanabe, Kenji; Shinohara, Hisanori; Miyata, Yasumitsu

    2017-05-01

    This report describes the development of a solution-assisted, polymer-free transfer method and the characterization of chemical vapor deposition (CVD)-grown graphene on hexagonal boron nitride. Raman analysis reveals that polymer-free samples have small variations in G- and 2D-mode Raman frequencies and are minimally affected by charge doping as observed for clean exfoliated graphene. Electrical measurements indicate that charge doping, hysteresis, and carrier scattering are suppressed in polymer-free samples. The results demonstrate that this method provides a simple and effective way to prepare clean heterostructures of CVD-grown, large-area graphene and other two-dimensional materials.

  12. Application of CVD diamond film for radiation detection

    International Nuclear Information System (INIS)

    Zhou Haiyang; Zhu Xiaodong; Zhan Rujuan

    2005-01-01

    With the development of diamond synthesis at low pressure, the CVD diamond properties including electronic characteristics have improved continuously. Now the fabrication of electronic devices based on the CVD diamond has been one of hot research subjects in this field. Due to many unique advantages, such as high signal-noise ratio, fast time response, and normal output in extremely harsh surrounding, the CVD diamond radiation detector has attracted more and more interest. In this paper, we have reviewed the development and status of the CVD diamond radiation detector. The prospect of this detector is described. (authors)

  13. Microstructural Effects and Properties of Non-line-of-Sight Coating Processing via Plasma Spray-Physical Vapor Deposition

    Science.gov (United States)

    Harder, Bryan J.; Zhu, Dongming; Schmitt, Michael P.; Wolfe, Douglas E.

    2017-08-01

    Plasma spray-physical vapor deposition (PS-PVD) is a unique processing method that bridges the gap between conventional thermal spray and vapor phase methods, and enables highly tailorable coatings composed of a variety of materials in thin, dense layers or columnar microstructures with modification of the processing conditions. The strengths of this processing technique are material and microstructural flexibility, deposition speed, and potential for non-line-of-sight (NLOS) capability by vaporization of the feedstock material. The NLOS capability of PS-PVD is investigated here using yttria-stabilized zirconia and gadolinium zirconate, which are materials of interest for turbine engine applications. PS-PVD coatings were applied to static cylindrical substrates approximately 6-19 mm in diameter to study the coating morphology as a function of angle. In addition, coatings were deposited on flat substrates under various impingement configurations. Impingement angle had significant effects on the deposition mode, and microscopy of coatings indicated that there was a shift in the deposition mode at approximately 90° from incidence on the cylindrical samples, which may indicate the onset of more turbulent flow and PVD-like growth. Coatings deposited at non-perpendicular angles exhibited a higher density and nearly a 2× improvement in erosion performance when compared to coatings deposited with the torch normal to the surface.

  14. Crystalline silicon thin film growth by ECR plasma CVD for solar cells

    International Nuclear Information System (INIS)

    Licai Wang

    1999-07-01

    This thesis describes the background, motivation and work carried out towards this PhD programme entitled 'Crystalline Silicon Thin Film Growth by ECR Plasma CVD for Solar Cells'. The fundamental principles of silicon solar cells are introduced with a review of silicon thin film and bulk solar cells. The development and prospects for thin film silicon solar cells are described. Some results of a modelling study on thin film single crystalline solar cells are given which has been carried out using a commercially available solar cell simulation package (PC-1D). This is followed by a description of thin film deposition techniques. These include Chemical Vapour Deposition (CVD) and Plasma-Assisted CVD (PACVD). The basic theory and technology of the emerging technique of Electron Cyclotron Resonance (ECR) PACVD, which was used in this research, are introduced and the potential advantages summarised. Some of the basic methods of material and cell characterisation are briefly described, together with the work carried out in this research. The growth by ECR PACVD at temperatures 2 illumination. The best efficiency in the ECR grown structures was 13.76% using an epitaxial emitter. Cell performance was analysed in detail and the factors controlling performance identified by fitting self-consistently the fight and dark current-voltage and spectral response data using PC-1D. Finally, the conclusions for this research and suggestions for further work are outlined. (author)

  15. Deposition of Coating to Protect Waste Water Reservoir in Acidic Solution by Arc Thermal Spray Process

    Directory of Open Access Journals (Sweden)

    Han-Seung Lee

    2018-01-01

    Full Text Available The corrosion characteristics of 304 stainless steel (SS and titanium (Ti coatings deposited by the arc thermal spray process in pH 4 solution were assessed. The Ti-sprayed coating exhibits uniform, less porous, and adherent coating morphology compared to the SS-sprayed coating. The electrochemical study, that is, electrochemical impedance spectroscopy (EIS, revealed that as exposure periods to solution were increased, the polarization resistance (Rp decreased and the charge transfer resistance (Rct increased owing to corrosion of the metallic surface and simultaneously at the same time the deposition of oxide films/corrosion on the SS-sprayed surface, while Ti coating transformed unstable oxides into the stable phase. Potentiodynamic studies confirmed that both sprayed coatings exhibited passive tendency attributed due to the deposition of corrosion products on SS samples, whereas the Ti-sprayed sample formed passive oxide films. The Ti coating reduced the corrosion rate by more than six times compared to the SS coating after 312 h of exposure to sulfuric acid- (H2SO4- contaminated water solution, that is, pH 4. Scanning electron microscope (SEM results confirmed the uniform and globular morphology of the passive film on the Ti coating resulting in reduced corrosion. On the other hand, the corrosion products formed on SS-sprayed coating exhibit micropores with a net-like microstructure. X-ray diffraction (XRD revealed the presence of the composite oxide film on Ti-sprayed samples and lepidocrocite (γ-FeOOH on the SS-coated surface. The transformation of TiO and Ti3O into TiO2 (rutile and anatase and Ti3O5 after 312 h of exposure to H2SO4 acid reveals the improved corrosion resistance properties of Ti-sprayed coating.

  16. TC17 titanium alloy laser melting deposition repair process and properties

    Science.gov (United States)

    Liu, Qi; Wang, Yudai; Zheng, Hang; Tang, Kang; Li, Huaixue; Gong, Shuili

    2016-08-01

    Due to the high manufacturing cost of titanium compressor blisks, aero engine repairing process research has important engineering significance and economic value. TC17 titanium alloy is a rich β stable element dual α+β phase alloy whose nominal composition is Ti-5Al-2Sn-2Zr-4Mo-4Cr. It has high mechanical strength, good fracture toughness, high hardenability and a wide forging-temperature range. Through a surface response experiment with different laser powers, scanning speeds and powder feeding speeds, the coaxial powder feeding laser melting deposition repair process is studied for the surface circular groove defects. In this paper, the tensile properties, relative density, microhardness, elemental composition, internal defects and microstructure of the laser-repaired TC17 forging plate are analyzed. The results show that the laser melting deposition process could realize the form restoration of groove defect; tensile strength and elongation could reach 1100 MPa and 10%, which could reach 91-98% that of original TC17 wrought material; with the optimal parameters (1000 W-25 V-8 mm/s), the microhardness of the additive zone, the heat-affected zone and base material is evenly distributed at 370-390 HV500. The element content difference between the additive zone and base material is less than ±0.15%. Due to the existence of the pores 10 μm in diameter, the relative density could reach 99%, which is mainly inversely proportional to the powder feeding speed. The repaired zone is typically columnar and dendrite crystal, and the 0.5-1.5 mm-deep heat-affected zone in the groove interface is coarse equiaxial crystal.

  17. Scaling behavior and morphological properties of the interfaces obtained by the multilayer deposition process

    Energy Technology Data Exchange (ETDEWEB)

    Achik, I. [Laboratoire de Physique de la Matière Condensée, Université Hassan II-Mohammedia, Faculté des sciences Ben M' sik, Casablanca (Morocco); Boughaleb, Y., E-mail: yboughaleb@yahoo.fr [Laboratoire de Physique de la Matière Condensée, Université Hassan II-Mohammedia, Faculté des sciences Ben M' sik, Casablanca (Morocco); Université Chouaib Doukkali, Faculté des sciences, El Jadida (Morocco); Hassan II Academy of Science and Technology, Rabat (Morocco); Hader, A. [Laboratoire de Physique de la Matière Condensée, Université Hassan II-Mohammedia, Faculté des sciences Ben M' sik, Casablanca (Morocco); CRMEF Settat (Morocco); Sbiaai, K. [Université Chouaib Doukkali, Faculté des sciences, El Jadida (Morocco); Hajjaji, A. [Université Chouaib Doukkali, Ecole nationale des sciences appliquées, El Jadida (Morocco)

    2013-10-31

    The aim of the present work was to study numerically the scaling behavior and the morphological properties of the interfaces generated by the multilayer deposition process. We have noticed that, in the case where the ratio of the surface diffusion coefficient to the deposition rate reaches high values D/F > > 1, the interface consists of mound structures. By using the dynamic scaling, we have shown that the height–height correlation function scales with time t and length l as G(l,t) ∼ l{sup α}f(t/l{sup α/β}) with β = 0.25 ± 0.05 and α = 0.51 ± 0.02. These exponent values are equal to the ones predicted by the Edwards–Wilkinson approach. Besides, our results are in agreement with the growth system of Cu/Cu(100) at 300 K which has been characterized in more detail by a combined scanning tunneling microscopy and spot profile analysis — low energy electronic diffusion study. Moreover, by considering two different methods, we have examined the fractal aspect of the obtained interfaces. - Highlights: • The adlayer interfaces present mound morphologies. • The adlayer interfaces scale with the Family–Vicsek law. • The critical exponents (α, β) are in agreement with those of Edwards–Wilkinson approach.

  18. Sedimentation rates and depositional processes in Lake Superior from 210Pb geochronology

    International Nuclear Information System (INIS)

    Evans, J.E.; Johnson, T.C.; Alexander, E.C. Jr.; Lively, R.S.; Eisenreich, S.J.

    1981-01-01

    Sedimentation rates range from 0.01 to 0.32 cm/yr in 17 sediment box cores from Lake Superior, as determined by 210 Pb geochronology. Shoreline erosion and resuspension of nearshore sediments causes moderate to high (0.05-0.11 cm/yr) sedimentation rates in the western arm of Lake Superior. Sedimentation rates are very high (> 0.15 cm/yr) in marginal bays adjoining Lake Superior; and moderate to very high (0.07-0.19 cm/yr) in open lake regions adjacent to marginal bays. Resuspension of nearshore and shoal top sediments in southern and southeastern Lake Superior by storms is responsible for depositional anomalies in 210 Pb profiles corresponding to 1905, 1916-1918, and 1940 storms. Sedimentation rates are very low (0.01-0.03 cm/yr) in the central basins due to isolation from sediment sources. These data indicate that sedimentation rates and processes vary significantly in different regions of Lake Superior. The sedimentation rates provided by this study, in conjunction with previously-reported sedimentation rates, yield a better understanding of the Lake Superior depositional environment

  19. Scaling behavior and morphological properties of the interfaces obtained by the multilayer deposition process

    International Nuclear Information System (INIS)

    Achik, I.; Boughaleb, Y.; Hader, A.; Sbiaai, K.; Hajjaji, A.

    2013-01-01

    The aim of the present work was to study numerically the scaling behavior and the morphological properties of the interfaces generated by the multilayer deposition process. We have noticed that, in the case where the ratio of the surface diffusion coefficient to the deposition rate reaches high values D/F > > 1, the interface consists of mound structures. By using the dynamic scaling, we have shown that the height–height correlation function scales with time t and length l as G(l,t) ∼ l α f(t/l α/β ) with β = 0.25 ± 0.05 and α = 0.51 ± 0.02. These exponent values are equal to the ones predicted by the Edwards–Wilkinson approach. Besides, our results are in agreement with the growth system of Cu/Cu(100) at 300 K which has been characterized in more detail by a combined scanning tunneling microscopy and spot profile analysis — low energy electronic diffusion study. Moreover, by considering two different methods, we have examined the fractal aspect of the obtained interfaces. - Highlights: • The adlayer interfaces present mound morphologies. • The adlayer interfaces scale with the Family–Vicsek law. • The critical exponents (α, β) are in agreement with those of Edwards–Wilkinson approach

  20. Effect of voltage on the characteristics of magnesium-lanthanum deposits synthesized by an electrodeposition process

    Energy Technology Data Exchange (ETDEWEB)

    Sahli, M. [Laboratoire de Physique Energétique, Université de Constantine 1 (Algeria); Chetehouna, K.; Gascoin, N. [INSA-CVL, Univ. Orléans, PRISME, EA 4229, F-18020, Bourges (France); Bellel, N. [Laboratoire de Physique Energétique, Université de Constantine 1 (Algeria); Tadini, P., E-mail: tadini.pietro@gmail.com [INSA-CVL, Univ. Orléans, PRISME, EA 4229, F-18020, Bourges (France)

    2017-04-15

    This work deals with the characterization of magnesium-lanthanum powders deposits produced with an electrodeposition technique using an aqueous solution based on magnesium chloride and lanthanum(III) nitrate. In recent years, the interest for magnesium-based alloys is growing due to their potential use as solid state systems for hydrogen storage. This work is a preliminary study on the synthesis of magnesium-lanthanum powders oriented to their later evaluation in systems for hydrogen storage. Magnesium and Lanthanum are deposited on a copper plate used as a cathode. Chemical composition, structure and morphology are investigated by EDS, XRD, FTIR and SEM. The effect of voltage on powders characteristics is studied considering three values (3, 3.5 and 4 V). EDS analysis shows the presence of three major elements (Mg, La and O) with a little amount of Cl. The weight percentages of Mg and O increase whereas the one of La decreases with the growth of voltage. Morphological characterization reveals that heterogeneous chemical structures are formed on the surface of the electrode and the size of aggregates decreases with the increase of voltage. From the results of X-ray analysis the deposits reveal the significant presence of two phases: Mg(OH){sub 2} and La(OH){sub 3}. The peaks originating from the Mg(OH){sub 2} phase has a non-monotonic behavior and those of La(OH){sub 3} phase increase with the increase of voltage. FTIR analysis confirms the presence of the two phases identified in XRD diffractograms and exhibits that their corresponding transmittance values increase for higher voltage values. - Highlights: • Synthesis of magnesium-lanthanum deposits by an electrodeposition process. • Voltage effect is investigated using different physicochemical analysis techniques (EDS, XRD, FTIR and SEM). • The EDS analysis shows the presence of three major elements (Mg, La and O) and a little amount of Cl. • Two phases, namely Mg(OH){sub 2} and La(OH){sub 3} are