WorldWideScience

Sample records for deposition ash erosion

  1. Ash formation, deposition, corrosion, and erosion in conventional boilers

    Energy Technology Data Exchange (ETDEWEB)

    Benson, S.A.; Jones, M.L. [Univ. of North Dakota, Grand Forks, ND (United States)

    1995-12-01

    The inorganic components (ash-forming species) associated with coals significantly affect boiler design, efficiency of operation, and lifetimes of boiler parts. During combustion in conventional pulverized fuel boilers, the inorganic components are transformed into inorganic gases, liquids, and solids. This partitioning depends upon the association of the inorganic components in the coal and combustion conditions. The inorganic components are associated as mineral grains and as organically associated elements, and these associations of inorganic components in the fuel directly influence their fate upon combustion. Combustion conditions, such as temperature and atmosphere, influence the volatility and the interaction of inorganic components during combustion and gas cooling, which influences the state and size composition distribution of the particulate and condensed ash species. The intermediate species are transported with the bulk gas flow through the combustion systems, during which time the gases and entrained ash are cooled. Deposition, corrosion, and erosion occur when the ash intermediate species are transported to the heat-transfer surface, react with the surface, accumulate, sinter, and develop strength. Research over the past decade has significantly advanced understanding of ash formation, deposition, corrosion, and erosion mechanisms. Many of the advances in understanding and predicting ash-related issues can be attributed to advanced analytical methods to determine the inorganic composition of fuels and the resulting ash materials. These new analytical techniques have been the key to elucidation of the mechanisms of ash formation and deposition. This information has been used to develop algorithms and computer models to predict the effects of ash on combustion system performance.

  2. Shedding of ash deposits

    DEFF Research Database (Denmark)

    Zbogar, Ana; Frandsen, Flemming; Jensen, Peter Arendt;

    2009-01-01

    Ash deposits formed during fuel thermal conversion and located on furnace walls and on convective pass tubes, may seriously inhibit the transfer of heat to the working fluid and hence reduce the overall process efficiency. Combustion of biomass causes formation of large quantities of troublesome...... ash deposits which contain significant concentrations of alkali, and earth-alkali metals. The specific composition of biomass deposits give different characteristics as compared to coal ash deposits, i.e. different physical significance of the deposition mechanisms, lower melting temperatures, etc....... Low melting temperatures make straw ashes especially troublesome, since their stickiness is higher at lower temperatures, compared to coal ashes. Increased stickiness will eventually lead to a higher collection efficiency of incoming ash particles, meaning that the deposit may grow even faster...

  3. Adhesion Strength of Biomass Ash Deposits

    DEFF Research Database (Denmark)

    Laxminarayan, Yashasvi; Jensen, Peter Arendt; Wu, Hao

    2015-01-01

    This study investigates the shear adhesion strength of biomass ash deposits on superheater tubes. Artificial biomass ash deposits were prepared on superheater tubes and sintered in an oven at temperatures up to 1000°C. Subsequently, the deposits were sheared off with the help of an electrically...... controlled arm. Higher sintering temperatures resulted in greater adhesion strengths, with a sharp increase observed near the melting point of the ash. Repetition of experiments with fixed operation conditions revealed considerable variation in the obtained adhesion strengths, portraying the stochastic...

  4. Adhesion Strength of Biomass Ash Deposits

    DEFF Research Database (Denmark)

    Laxminarayan, Yashasvi; Jensen, Peter Arendt; Wu, Hao

    2016-01-01

    deposits were prepared on superheater tubes and sintered in an oven at temperatures up to 1000 °C. Subsequently, the deposits were sheared off by an electrically controlled arm, and the corresponding adhesion strength was measured. The results reveal the effect of temperature, ash/deposit composition......, sintering duration, and steel type on the adhesion strength....

  5. Ash particle erosion on steam boiler convective section

    Energy Technology Data Exchange (ETDEWEB)

    Meuronen, V.

    1997-12-31

    In this study, equations for the calculation of erosion wear caused by ash particles on convective heat exchanger tubes of steam boilers are presented. A new, three-dimensional test arrangement was used in the testing of the erosion wear of convective heat exchanger tubes of steam boilers. When using the sleeve-method, three different tube materials and three tube constructions could be tested. New results were obtained from the analyses. The main mechanisms of erosion wear phenomena and erosion wear as a function of collision conditions and material properties have been studied. Properties of fossil fuels have also been presented. When burning solid fuels, such as pulverized coal and peat in steam boilers, most of the ash is entrained by the flue gas in the furnace. In bubbling and circulating fluidized bed boilers, particle concentration in the flue gas is high because of bed material entrained in the flue gas. Hard particles, such as sharp edged quartz crystals, cause erosion wear when colliding on convective heat exchanger tubes and on the rear wall of the steam boiler. The most important ways to reduce erosion wear in steam boilers is to keep the velocity of the flue gas moderate and prevent channelling of the ash flow in a certain part of the cross section of the flue gas channel, especially near the back wall. One can do this by constructing the boiler with the following components. Screen plates can be used to make the velocity and ash flow distributions more even at the cross-section of the channel. Shield plates and plate type constructions in superheaters can also be used. Erosion testing was conducted with three types of tube constructions: a one tube row, an in- line tube bank with six tube rows, and a staggered tube bark with six tube rows. Three flow velocities and two particle concentrations were used in the tests, which were carried out at room temperature. Three particle materials were used: quartz, coal ash and peat ash particles. Mass loss

  6. Ash after forest fires. Effects on soil hydrology and erosion

    Science.gov (United States)

    Bodí, Merche B.

    2013-04-01

    Hillslopes were though to be most susceptible to enhanced hydro-geomorphological responses immediately following burning, with susceptibility declining during the first months or years depending on the soil and vegetation recovery. However, Cerdà (1998) found some indices in that immediately after the fire, the thin wettable ash layer that typically covers the ground could absorb rainfall and prevent or delay the onset of overland flow and associated erosion. Therefore the time lag while ash remains on the ground become of crucial importance to protect the soil after a wildfire. The effect of this ash layer was rarely been considered in detail because ash has often been reduced or redistributed by wind or water erosion before the onset of monitoring and thus the data collection typically begun some weeks or month after the fire. The first papers focussed only on ash and its hydrological effects were published by Cerdà and Doerr (2008) and by Woods and Balfour (2008). The results showed that the soil covered with ash indeed reduced and delayed surface runoff, reduced soil splash detachment and produced lower sediment yield compared to bare terrain. However, these findings arose more questions, as for instance: Why in other research there were indices that ash reduces infiltration? what is the mechanism by which why ash reduces overland flow? The research went further with Bodí PhD. First of all, it was crucial the agreement on the fact that the material "ash" is very variable depending on the original vegetation and the type and temperature of combustion. Therefore ash properties are different between wildfires even and within a fire. This is the main reason of its different effects and thus ash not always reduces runoff and sediment yield. In this way, depending on the nature of ash, it can increase overland flow if it is crusted (usually it contains a high content of calcium carbonate), it is water repellent (with high contents of organic carbon and specially

  7. Ash Deposition Trials at Three Power Stations in Denmark

    DEFF Research Database (Denmark)

    Laursen, Karin; Frandsen, Flemming; Larsen, Ole Hede

    1998-01-01

    the probe temperature did influence the composition of deposits for coals with medium ash deposition propensities. These results may indicate that coals with medium to high ash deposition propensities in existing boilers may cause increasing ash deposit formation in future boilers with higher steam...

  8. Ash wettability conditions splash erosion in the postfire

    Science.gov (United States)

    Gordillo-Rivero, Ángel J.; de Celis, Reyes; García-Moreno, Jorge; Jiménez-Compán, Elizabeth; Alanís, Nancy; Cerdà, Artemi; Pereira, Paulo; Zavala, Lorena M.; Jordán, Antonio

    2015-04-01

    1. INTRODUCTION Soil sustainability and recovery after fire depend on physical, chemical and biological processes and fire severity (Neary et al., 1999; Mataix-Solera and Guerrero, 2007). Fire effects on soils are divided in two types: direct effects, as a consequence of combustion and temperature reached and indirect effects (Neary et al., 1999) as consequence of changes in other ecosystem components, such as decrease in vegetal coverage or ash and partially burned litter contribution including changes in flora (Pausas and Verdú, 2005; Trabaud, 2000). Low intensity fires, during which high temperatures are not reached, affect vegetal coverage but will not cause major impacts on soil. In contrast, prolonged, recurrent, or high-intensity fires may cause important impacts on the soil system functioning (De Celis et al., 2013; DeBano, 1991; Mataix-Solera et al., 2009; Zavala et al., 2014), aggregation (Mataix-Solera et al., 2011), organic matter content and quality (Sevink et al., 1989), water repellency (DeBano, 2000; Doerr et al., 2000), soil nutrients (Stark, 1977), soil erosion (Larsen et al., 2009) and others. In these cases, the restoration period of the initial conditions can be very long and changes may become permanent (DeBano, 1991). During combustion, fuel (biomass, necromass and soil organic matter) is transformed in materials with new physical and chemical properties. After burn, the soil surface is covered by a layer of ash and charred organic residues. Ash has important ecological, hydrological and geomorphological effects, even after being rearranged or mobilized by runoff or wind (Bodí et al., 2014). Ash properties will depend on the burned species, the amount of affected biomass, fuel flammability and structure, temperature and the residence time of thermal peaks (Pereira et al., 2009). Some studies have emphasized the role of ash on soil protection during the after fire period, in which the vegetable coverage could be drastically decreased (Cerd

  9. Model for erosion-deposition patterns

    CERN Document Server

    Maionchi, D O; Filho, R N Costa; Andrade, J S; Herrmann, H J

    2007-01-01

    We investigate through computational simulations with a pore network model the formation of patterns caused by erosion-deposition mechanisms. In this model, the geometry of the pore space changes dynamically as a consequence of the coupling between the fluid flow and the movement of particles due to local drag forces. Our results for this irreversible process show that the model is capable to reproduce typical natural patterns caused by well known erosion processes. Moreover, we observe that, within a certain range of porosity values, the grains form clusters that are tilted with respect to the horizontal with a characteristic angle. We compare our results to recent experiments for granular material in flowing water and show that they present a satisfactory agreement.

  10. Geological behavior of wet outflow deposition fly ash

    Institute of Scientific and Technical Information of China (English)

    周德泉; 赵明华; 刘宏利; 周毅; 严聪

    2008-01-01

    The geological behaviors of wet outflow deposition fly ash were investigated, including the feature of in-situ single and even bridge cone penetration test (CPT) curves, the change of the penetration parameters and vane strength with the increase of depth and the difference of the penetration resistance on and down the water level. Drilling, CPT and vane shear test were carried out in silty clay, fine sand, and fly ash of the ash-dam. The CPT curves of the fly ash do not show a critical depth. The cone resistance (qc) of the fly ash is smaller than that of silty clay or sand; the friction resistance is smaller than that of filling silty clay, similar to that of deposition silty clay or more than that of fine sand; the friction ratio is smaller than that of filling silty clay, or more than that of deposition silty clay or much more than that of fine sand. The specific penetration resistance (ps) is similar to that of filling silty clay, or more than that of deposition silty clay. There is a clear interface effect between the deposition fly ash and the clay. Interface effect of ps-h curve at the groundwater table is clear, and ps of the fly ash reduces significantly under the table. The vane strength of the fly ash increases as the depth increases. The deposition fly ash with wet outflow is similar to silt in the geological behavior.

  11. Polydisperse suspensions: Erosion, deposition, and flow capacity

    Science.gov (United States)

    Dorrell, R. M.; Hogg, A. J.; Pritchard, D.

    2013-09-01

    Deposition from particle-laden flows is often described in terms of the capacity and competence of the flow, but robust definitions of these terms have proved elusive. In this paper we provide a mathematical modeling framework within which erosion and deposition of polydisperse sediment, and thus flow capacity and competence, can be rigorously defined. This framework explicitly captures the coupling between the suspension and an active layer of sediment at the top of the bed, and is capable of describing both depositional and erosional flows over both erodible and nonerodible beds. Crucially, the capacity of a flow is shown to depend on the erosional and depositional history because these processes determine the composition of the active layer. This dependence is explored within models of bidisperse and polydisperse suspensions. It is further demonstrated that monodisperse representations of suspended sediment transport may severely underpredict actual flow capacity. The polydisperse model is validated against recent experimental studies of the evolution of suspended material in waning turbulent flows, and is used to demonstrate that loss of capacity is the principal driver of sediment deposition.

  12. Preliminary Strength Measurements of High Temperature Ash Filter Deposits

    Energy Technology Data Exchange (ETDEWEB)

    Kang, B.S.; Johnson, E.K.; Mallela, R.; Barberio, J.F. [West Virginia Univ., Morgantown, WV (United States). Dept. of Mechanical and Aerospace Engineering

    1996-12-31

    The objective of this study is to develop and evaluate preliminary strength measurement techniques for high temperature candle filter ash deposits. The efficient performance of a high temperature gas filtering system is essential for many of the new thermal cycles being proposed for power plants of the future. These new cycles hold the promise of higher thermal efficiency and lower emissions of pollutants. Many of these cycles involve the combustion or gasification of coal to produce high temperature gases to eventually be used in gas turbines. These high temperature gases must be relatively free of particulates. Today, the candle filter appears to be the leading candidate for high temperature particulate removal. The performance of a candle filter depends on the ash deposits shattering into relatively large particles during the pulse cleaning (back flushing) of the filters. These relatively large particles fall into the ash hopper and are removed from the system. Therefore, these 1247 particles must be sufficiently large so that they will not be re-entrained by the gas flow. The shattering process is dictated by the strength characteristics of the ash deposits. Consequently, the objective of this research is to develop measurements for the desired strength characteristics of the ash deposits. Experimental procedures were developed to measure Young`s modulus of the ash deposit at room temperature and the failure tensile strain of ash deposits from room temperature to elevated temperatures. Preliminary data has been obtained for both soft and hard ash deposits. The qualifier ``preliminary`` is used to indicate that these measurements are a first for this material, and consequently, the measurement techniques are not perfected. In addition, the ash deposits tested are not necessarily uniform and further tests are needed in order to obtain meaningful average data.

  13. Phenolic acids as bioindicators of fly ash deposit revegetation

    Energy Technology Data Exchange (ETDEWEB)

    L. Djurdjevic; M. Mitrovic; P. Pavlovic; G. Gajic; O. Kostic [Institute for Biological Research ' Sinisa Stankovic,' Belgrade (Serbia and Montenegro). Department of Ecology

    2006-05-15

    The floristic composition, the abundance, and the cover of pioneer plant species of spontaneously formed plant communities and the content of total phenolics and phenolic acids, as humus constituents, of an ash deposit after 7 years of recultivation were studied. The restoration of both the soil and the vegetation on the ash deposits of the 'Nikola Tesla-A' thermoelectric power plant in Obrenovac (Serbia) is an extremely slow process. Unfavorable physical and chemical characteristics, the toxicity of fly ash, and extreme microclimatic conditions prevented the development of compact plant cover. The abundance and cover of plants increased from the central part of the deposit towards its edges. Festuca rubra L., Crepis setosa Hall., Erigeron canadensis L., Cirsium arvense (L.) Scop., Calamagrostis epigeios (L.) Roth., and Tamarix gallica L. were the most abundant species, thus giving the highest cover. Humus generated during the decomposition process of plant remains represents a completely new product absent in the ash as the starting material. The amount of total phenolics and phenolic acids in fly ash increased from the center of the deposit towards its edges in correlation with the increase in plant abundance and cover. The presence of phenolic acids indicates the ongoing process of humus formation in the ash, in which the most abundant pioneer plants of spontaneously formed plant communities play the main role. Phenolic compounds can serve as reliable bioindicators in an assessment of the success of the recultivation process of thermoelectric power plants' ash deposits.

  14. Phenolic acids as bioindicators of fly ash deposit revegetation.

    Science.gov (United States)

    Djurdjević, L; Mitrović, M; Pavlović, P; Gajić, G; Kostić, O

    2006-05-01

    The floristic composition, the abundance, and the cover of pioneer plant species of spontaneously formed plant communities and the content of total phenolics and phenolic acids, as humus constituents, of an ash deposit after 7 years of recultivation were studied. The restoration of both the soil and the vegetation on the ash deposits of the "Nikola Tesla-A" thermoelectric power plant in Obrenovac (Serbia) is an extremely slow process. Unfavorable physical and chemical characteristics, the toxicity of fly ash, and extreme microclimatic conditions prevented the development of compact plant cover. The abundance and cover of plants increased from the central part of the deposit towards its edges (ranging from 1-80%). Festuca rubra L., Crepis setosa Hall., Erigeron canadensis L., Cirsium arvense (L.) Scop., Calamagrostis epigeios (L.) Roth., and Tamarix gallica L. were the most abundant species, thus giving the highest cover. Humus generated during the decomposition process of plant remains represents a completely new product absent in the ash as the starting material. The amount of total phenolics and phenolic acids (38.07-185.16 microg/g of total phenolics and 4.12-27.28 microg/g of phenolic acids) in fly ash increased from the center of the deposit towards its edges in correlation with the increase in plant abundance and cover. Ash samples contained high amounts of ferulic, vanillic, and p-coumaric acid, while the content of both p-hydroxybenzoic and syringic acid was relatively low. The presence of phenolic acids indicates the ongoing process of humus formation in the ash, in which the most abundant pioneer plants of spontaneously formed plant communities play the main role. Phenolic compounds can serve as reliable bioindicators in an assessment of the success of the recultivation process of thermoelectric power plants' ash deposits.

  15. Channelization in porous media driven by erosion and deposition

    Science.gov (United States)

    Jäger, R.; Mendoza, M.; Herrmann, H. J.

    2017-01-01

    We develop and validate a new model to study simultaneous erosion and deposition in three-dimensional porous media. We study the changes of the porous structure induced by the deposition and erosion of matter on the solid surface and find that when both processes are active, channelization in the porous structure always occurs. The channels can be stable or only temporary depending mainly on the driving mechanism. Whereas a fluid driven by a constant pressure drop in general does not form steady channels, imposing a constant flux always produces stable channels within the porous structure. Furthermore we investigate how changes of the local deposition and erosion properties affect the final state of the porous structure, finding that the larger the range of wall shear stress for which there is neither erosion nor deposition, the more steady channels are formed in the structure.

  16. Channelization in Porous Media driven by Erosion and Deposition

    CERN Document Server

    Jäger, Robin; Herrmann, Hans Jürgen

    2016-01-01

    We develop and validate a new model to study simultaneous erosion and deposition in three-dimensional porous media. We study the changes of the porous structure induced by the deposition and erosion of matter on the solid surface and find that when both processes are active, channelization in the porous structure always occurs. The channels can be stable or only temporary depending mainly on the driving mechanism. Whereas a fluid driven by a constant pressure drop in general does not form steady channels, imposing a constant flux always produces stable channels within the porous structure. Furthermore we investigate how changes of the local deposition and erosion properties affect the final state of the porous structure, finding that the larger the range of wall shear stress for which there is neither erosion nor deposition, the more steady channels are formed in the structure.

  17. Ash3d: A finite-volume, conservative numerical model for ash transport and tephra deposition

    Science.gov (United States)

    Schwaiger, Hans F.; Denlinger, Roger P.; Mastin, Larry G.

    2012-01-01

    We develop a transient, 3-D Eulerian model (Ash3d) to predict airborne volcanic ash concentration and tephra deposition during volcanic eruptions. This model simulates downwind advection, turbulent diffusion, and settling of ash injected into the atmosphere by a volcanic eruption column. Ash advection is calculated using time-varying pre-existing wind data and a robust, high-order, finite-volume method. Our routine is mass-conservative and uses the coordinate system of the wind data, either a Cartesian system local to the volcano or a global spherical system for the Earth. Volcanic ash is specified with an arbitrary number of grain sizes, which affects the fall velocity, distribution and duration of transport. Above the source volcano, the vertical mass distribution with elevation is calculated using a Suzuki distribution for a given plume height, eruptive volume, and eruption duration. Multiple eruptions separated in time may be included in a single simulation. We test the model using analytical solutions for transport. Comparisons of the predicted and observed ash distributions for the 18 August 1992 eruption of Mt. Spurr in Alaska demonstrate to the efficacy and efficiency of the routine.

  18. Fire vegetative ash and erosion in the Mediterranean areas. State of the art and future perspectives

    Science.gov (United States)

    Pereira, Paulo; Cerdà, Artemi

    2013-04-01

    Fire is a global phenomenon with important ecological impacts. Among all ecosystems, the Mediterranean is frequently visited by severe wildfires with serious impacts on soil properties and increase soil vulnerability to erosion due vegetation removal. After the fire the ash distributed in soil surface can mitigate soil exposition to erosion and rain splash (Cerda and Doerr, 2008), however, this depends on the fire severity that have implications on the type of ash produced (Pereira et al., 2010). High fire severities produced thinner ash that it is easily transported by wind, contrary to low severity wildfires where combustion is not so intense and the mass loss is less, providing a better soil protection in the immediate period after the fire. Soil protection after the fire highly depends on fire severity (Pereira et al. 2013a; Pereira et al. 2013b). Ash it is a highly mobile material, thus this protection can change in space and time, providing a better cover in some areas and worst in others. In the period immediate after the fire, ash can change soil hydrological properties, increasing water retention and reducing sediment transport in relation to bare soil areas (Cerda and Doerr, 2008), but also clog soil pores, seal the soil and increase erosion (Onda et al., 2008). In fact results are controversial and the impacts of vegetative ash in soil erosion may rely on the proprieties of ash produced, that can be extremely variable, even in small distances (Pereira and Úbeda, 2010), due the different conditions of combustions. Ash produced at low severity temperatures can be highly hydrophilic (Bodi et al., 2011) and induce soil hydrophobicity (Bodi et al., 2012). Other mechanisms as the direct impact of fire in soil, can induce soil water repellency, and do not have any interference of vegetative ash. This fire can induce direct (e.g temperature) and indirect (e.g. ash properties) on soil wettability, with obvious implications on spatio-temporal pattern of soil

  19. In situ analysis of ash deposits from black liquor combustion

    Energy Technology Data Exchange (ETDEWEB)

    Bernath, P. [Sandia National Labs., Livermore, CA (United States). Combustion Research Facility]|[Univ. of Toronto, Ontario (Canada); Sinquefield, S.A. [Sandia National Labs., Livermore, CA (United States). Combustion Research Facility]|[Oregon State Univ., Eugene, OR (United States); Baxter, L.L.; Sclippa, G.; Rohlfing, C. [Sandia National Labs., Livermore, CA (United States). Combustion Research Facility; Barfield, M. [Sandia National Labs., Livermore, CA (United States). Combustion Research Facility]|[Univ. of Arizona, Tucson, AZ (United States)

    1996-05-01

    Aerosols formed during combustion of black liquor cause a significant fire-side fouling problem in pulp mill recovery boilers. The ash deposits reduce heat transfer effectiveness, plug gas passages, and contribute to corrosion. Both vapors and condensation aerosols lead to the formation of such deposits. The high ash content of the fuel and the low dew point of the condensate salts lead to a high aerosol and vapor concentration in most boilers. In situ measurements of the chemical composition of these deposits is an important step in gaining a fundamental understanding of the deposition process. Infrared emission spectroscopy is used to characterize the composition of thin film deposits resulting from the combustion of black liquor and the deposition of submicron aerosols and vapors. New reference spectra of Na{sub 2}SO{sub 4}, K{sub 2}SO{sub 4}, Na{sub 2}CO{sub 3} and K{sub 2}CO{sub 3} pure component films were recorded and compared with the spectra of the black liquor deposit. All of the black liquor emission bands were identified using a combination of literature data and ab initio calculations. Ab initio calculations also predict the locations and intensities of bands for the alkali vapors of interest. 39 refs., 9 figs.

  20. Analysis of deposition and erosion of Dongting Lake by GIS

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The sediments of the Dongting Lake come from four channels (one of them was closed in 1959), connected with the Yangtze River, four tributaries (Lishui, Yuanjiang, Zishui and Xiangjiang)and local area, and some of them are transported into the Yangtze River in Chenglingji, which is located at the exit of the Dongting Lake, some of them deposit into drainage system in the lake region and the rest deposit into the lake. The annual mean sediment is 166,555x104 t, of which 80% come from the four channels, 18% from the four tributaries and 2% from local area, whereas 26% of the total sediments are transported into the Yangtze River and 74% deposited into the lake and the lake drainage system. Based on topographic maps of 1974, 1988 and 1998, and the spatial analysis method with geographic information system (GIS), changes in sediment deposition and erosion are studied in this paper. By overlay analysis of 1974 and 1988, 1988 and 1998, erosion and sediments deposition areas are defined. The main conclusions are: (1) sediment rate in the lake is larger than erosion rate from 1974 to 1998. The mean deposition in the lake is 0.43 m; (2) annual sediment deposition is the same between 1974-1988 and 1988-1998, but the annual volume of deposition and erosion of 1988-1998 is bigger than that in 1974-1988; (3) before the completion of the Three Gorges Reservoir,there will be 7.82x108 m3 of sediments deposited in the lake, which would make the lake silted up by 0.33 m; (4) in the lake, the deposition area is found in the north of the east Dongting Lake, the south-west of the south Dongting Lake, and the east of the west Dongting Lake; while the eroded area is in the south of the east Dongting Lake, the middle of the south Dongting Lake, the west of the west Dongting Lake, as well as Xiangjiang and Lishui river flood channels.

  1. Probe Measurements of Ash Deposit Formation Rate and Shedding in a Biomass Suspension-Fired boiler

    DEFF Research Database (Denmark)

    Shafique Bashir, Muhammad; Jensen, Peter Arendt; Frandsen, Flemming;

    The aim of this study was to investigate ash deposit formation rate, heat uptake reduction and deposit removal by using advanced online ash deposition and sootblowing probes in a 350 MWth suspension-fired boiler, utilizing wood and straw pellets as fuel. The influence of fuel type (straw share...

  2. Latest Pleistocene Deposition and Erosion on the New Jersey Shelf

    Science.gov (United States)

    Christensen, B. A.; Alexander, C.; Stackhouse, S.; Turner, R.; Nordfjord, S.; Austin, J.; Goff, J.; Gulick, S.; Fulthorpe, C.

    2007-12-01

    The New Jersey margin is an ideal location for the study of sedimentary response to glacioeustatic forcing because this passive continental edge is both wide and stable. Although the region has been intensively imaged and mapped geophysically, it is still far from being understood stratigraphically because of a lack of samples to constrain timing and paleo-depositional environment. This study examines the timing and nature of latest Pleistocene erosion and deposition on the shelf, using grab samples and core recovered using the AHC-800 (Active Heave Compensation - 800 m) drilling system. The latest Pleistocene shelf is characterized by (1) downcutting and erosion by rivers associated with subaerial exposure during glacial retreat of sea level; (2) deposition at the shelf edge during sea level fall associated with formation of an outer shelf wedge; and (3) deposition in estuarine environments as sea level rose. Foraminiferal and sediment textural analyses of cores samples ground truth previous seismic reflection-based interpretations of incision and paleochannel formation. Grab samples analyzed for foraminiferal content and grain size identify environment of deposition within three main bathymetric features: sand ridges, sand ribbons, and glacial scours. Radiometric dating (14C) further constrains the timing of intervals of erosion and deposition. We relate our results to other studies and suggest a complex, spatially variable shelf response to glacial advance and retreat. K-Ar analyses of hornblende crystals provide constraints on sediment sources. Two assemblages exist: one consistent with ages of Proterozoic age plutons in the New Jersey area, and another, younger, indicating mixing. K-Ar dates show a clear difference between and Holocene (930- 970 +/- 20 Ma) sedimentary assemblages and sediments older than 30 k.y, (850-880 Ma +/- 20-30 Ma). Holocene hornblend crystal ages are consistent with Grenvillian aged plutons common to the source region (e

  3. Deposition and immersion-mode nucleation of ice by three distinct samples of volcanic ash

    Science.gov (United States)

    Schill, G. P.; Genareau, K.; Tolbert, M. A.

    2015-07-01

    Ice nucleation of volcanic ash controls both ash aggregation and cloud glaciation, which affect atmospheric transport and global climate. Previously, it has been suggested that there is one characteristic ice nucleation efficiency for all volcanic ash, regardless of its composition, when accounting for surface area; however, this claim is derived from data from only two volcanic eruptions. In this work, we have studied the depositional and immersion freezing efficiency of three distinct samples of volcanic ash using Raman microscopy coupled to an environmental cell. Ash from the Fuego (basaltic ash, Guatemala), Soufrière Hills (andesitic ash, Montserrat), and Taupo (Oruanui eruption, rhyolitic ash, New Zealand) volcanoes were chosen to represent different geographical locations and silica content. All ash samples were quantitatively analyzed for both percent crystallinity and mineralogy using X-ray diffraction. In the present study, we find that all three samples of volcanic ash are excellent depositional ice nuclei, nucleating ice from 225 to 235 K at ice saturation ratios of 1.05 ± 0.01, comparable to the mineral dust proxy kaolinite. Since depositional ice nucleation will be more important at colder temperatures, fine volcanic ash may represent a global source of cold-cloud ice nuclei. For immersion freezing relevant to mixed-phase clouds, however, only the Oruanui ash exhibited appreciable heterogeneous ice nucleation activity. Similar to recent studies on mineral dust, we suggest that the mineralogy of volcanic ash may dictate its ice nucleation activity in the immersion mode.

  4. The Effect of Ash and Inorganic Pigment Fill on the Atomic Oxygen Erosion of Polymers and Paints (ISMSE-12)

    Science.gov (United States)

    Banks, Bruce A.; Simmons, Julie C.; de Groh, Kim K.; Miller, Sharon K.

    2012-01-01

    Low atomic oxygen fluence (below 1x10(exp 20) atoms/sq cm) exposure of polymers and paints that have a small ash content and/or inorganic pigment fill does not cause a significant difference in erosion yield compared to unfilled (neat) polymers or paints. However, if the ash and/or inorganic pigment content is increased, the surface population of the inorganic content will begin to occupy a significant fraction of the surface area as the atomic oxygen exposure increases because the ash is not volatile and remains as a loosely attached surface layer. This results in a reduction of the flux of atomic oxygen reacting with the polymer and a reduction in the rate of erosion of the polymer remaining. This paper presents the results of ground laboratory and low Earth orbital (LEO) investigations to evaluate the fluence dependence of atomic oxygen erosion yields of polymers and paints having inorganic fill content.

  5. Explosive Origins of Welded Block and Ash Flow Deposits

    Science.gov (United States)

    Andrews, G. D.; Michol, K.; Russell, K.

    2007-12-01

    The 2360 years B. P. eruption of Mount Meager, British Columbia, Canada, produced a succession of rarely- observed, welded block and ash flow deposits and non-welded equivalents, the Pebble Creek Formation. The welded block and ash flow deposits result from accumulation in a narrow, confined river valley; the accumulation was sufficiently rapid to keep the deposits above their glass transition temperature thereby allowing the succession to weld as a single cooling unit. The average integrated strain for vertical sections of the deposit is 31% implying > 50 m shortening of the thickest deposit (from 162 m to the current 112 m). Observations made in the field were supplemented by textural studies with the SEM and microscope, before being quantified by image analysis software. These data were then added to with measurements of connected and isolated porosity from the He-pycnometer at UBC. Only through the integration of these related data sets were we able to explore two significant findings: (1) Unconsolidated deposits have an average matrix porosity of ~41% and clasts have an average porosity of ~32%. Isolated porosity is pervasive (< 8%) in juvenile clasts, but is near absent in samples of matrix (< 1%). Welding and compaction cause a reduction in both connected and isolated porosity, where, equivalent amounts of strain (~38%) are recorded in matrix and clasts. Thus, both matrix and clasts are fully coupled during the welding and compaction process; in contrast, reports from pumiceous ignimbrites suggest that pumice clasts deform faster than the corresponding matrix. We present a series of strain evolution pathways that predict the theoretical welding trajectories for different pyroclastic deposits through porosity space. In this conceptual environment, coupled clast-matrix welding plots along the 1:1 diagonal. (2) The nature and distribution of isolated porosity in the juvenile clasts of rhyodacite (< 8%) suggests an explosive (rather than effusive) origin for

  6. Impact of coal fly ash addition on ash transformation and deposition in a full-scale wood suspension-firing boiler

    DEFF Research Database (Denmark)

    Wu, Hao; Bashir, Muhammad Shafique; Jensen, Peter Arendt;

    2013-01-01

    Ash transformation and deposition during pulverized wood combustion in a full-scale power plant boiler of 800 MWth were studied with and without the addition of coal fly ash. The transient ash deposition behavior was characterized by using an advanced deposit probe system at two boiler locations...... constant after a few hours. The formed deposits, especially those at the location with low flue gas temperatures, contained a considerable amount of K2SO4, KCl, and KOH/K2CO3. With the addition of a large amount (about 4 times of the mass flow of wood ash) of coal fly ash to the boiler, these alkali...

  7. A review: Fly ash and deposit formation in PF fired biomass boilers

    DEFF Research Database (Denmark)

    Jensen, Peter Arendt; Jappe Frandsen, Flemming; Wu, Hao

    2016-01-01

    to the commercialization of the suspension biomass firing technology a range of research studies have improved our understanding of the formation of fly ash and the impact on deposit formation and corrosion in such boilers. In this paper a review of the present knowledge with respect to ash and deposit formation...

  8. The heterogeneous nature of mineral matter, fly-ash and deposits

    Energy Technology Data Exchange (ETDEWEB)

    Creelman, R.A.; Pohl, J.H.; Devir, G.P.; Su, S. [R.A. Creelman and Associates, Epping, NSW (Australia)

    2000-07-01

    This paper reports on a series of slagging studies investigating the heterogeneous nature of mineral matter, fly ash and deposits, and how this heterogeneity affects deposition. The data come from low temperature ashing (LTA) of pulverised coal, fly ash from boilers, and deposits from pilot-scale furnaces and boilers. The paper presents optical and scanning electron (SEM) micrographs, electron microprobe analysis (EMPA) and energy dispersive x-ray analysis (EDXRA) of mineral matter, individual fly ash particles, and localised regions of deposits. During combustion, the included mineral matter is transformed into fly ash, melts and partially adheres to the char surface, and may form agglomerated masses. Excluded mineral matter has little chance of encountering another ash particle and agglomerating in the gas phase, but can react with other particles in the wall deposits. Certain fly ash particles adhere to the wall where they can combine with other fly ash particles. Analyses of molten regions of deposits have shown, so far, four mineral phase fields to be responsible for forming difficult deposits with melting points below deposit surface temperatures of 1200 to 1350{sup o}C. These mineral fields include iron cordierite, albite and its silica undersaturated equivalent nepheline, anorthite, and compounds with ratios of Ca to P of 2.3-2.5.

  9. EROSION RATE OF RESERVOIR DEPOSIT AS REVEALED BY LABORATORY EXPERIMENT

    Directory of Open Access Journals (Sweden)

    A. S. Amar

    2012-06-01

    Full Text Available The construction of dams and reservoirs in a river can give significant impacts on its flow of water and sediment, and can cause long-term morphological changes on the river. Reservoir sedimentation can reduce a reservoir’s effective flood control volume, and in some severe cases can cause overtopping during floods. Sediment deposition against a dam can reduce its stability, and affect the operation of low-level outlet works, gates, and valves. The abrasive action of sediment particles can roughen the surface of release facilities and can cause cavitations and vibration. Sedimentation can also affect a reservoir’s water quality, and reduce its flood control, water supply, hydropower, and recreation benefits. Consequently, taking sedimentation into consideration not only in the planning and design, but also in the operation and maintenance of a dam and reservoir is important. Keywords: Erosion rate, reservoir deposit, shear stress.

  10. Spatial distribution of erosion and deposition on an agricultural watershed

    Science.gov (United States)

    Pineux, Nathalie; Gilles, Colinet; Degré, Aurore

    2013-04-01

    To better understand the agricultural landscapes evolution becomes an essential preoccupation and, for this, it is needed to take into account the sediments deposition, in a distributed way. As it is not possible in practice to study all terrestrial surfaces in detail by instrumenting sectors to obtain data, models of prediction are valuable tools to control the current problems, to predict the future tendencies and to provide a scientific base to the political decisions. In our case, a landscape evolution model is needed, which aims at representing both erosion and sedimentation and dynamically adjusts the landscape to erosion and deposition by modifying the initial digital elevation model. The Landsoil model (Landscape design for Soil conservation under soil use and climate change), among others, could fulfil this objective. It has the advantage to take the soil variability into account. This model, designed for the analysis of agricultural landscape, is suitable for simulations from parcel to catchment scale, is spatially distributed and event-based. Observed quantitative data are essential (notably to calibrate the model) but still limited. Particularly, we lack observations spatially distributed on the watershed. For this purpose, we choose a watershed in Belgium (Wallonia) which is a 124 ha agricultural zone in the loamy region. Its slopes range from 0% to 9%. To test the predictions of the model, comparisons will be done with: - sediment measurements which are done with water samplings in four points on the site to compare the net erosion results; - sediment selective measurements (depth variation observed along graduated bares placed on site) to compare the erosion and deposition results; - very accurate DSM's (6,76 cm pixel resolution X-Y) obtained by the drone (Gatewing X100) each winter. Besides planning what the landscape evolution should be, a revision of the soil map (drew in 1958) is organized to compare with the past situation and establish how the

  11. Simulation model of erosion and deposition on a barchan dune

    Science.gov (United States)

    Howard, A. D.; Morton, J. B.; Gal-El-hak, M.; Pierce, D. B.

    1977-01-01

    Erosion and deposition over a barchan dune near the Salton Sea, California, are modeled by bookkeeping the quantity of sand in saltation following streamlines of transport. Field observations of near surface wind velocity and direction plus supplemental measurements of the velocity distribution over a scale model of the dune are combined as input to Bagnold type sand transport formulas corrected for slope effects. A unidirectional wind is assumed. The resulting patterns of erosion and deposition compare closely with those observed in the field and those predicted by the assumption of equilibrium (downwind translation of the dune without change in size or geometry). Discrepancies between the simulated results and the observed or predicted erosional patterns appear to be largely due to natural fluctuations in the wind direction. The shape of barchan dunes is a function of grain size, velocity, degree of saturation of the oncoming flow, and the variability in the direction of the oncoming wind. The size of the barchans may be controlled by natural atmospheric scales, by the age of the dunes, or by the upwind roughness. The upwind roughness can be controlled by fixed elements or by sand in the saltation. In the latter case, dune scale is determined by grain size and wind velocity.

  12. Ash formation, transformations and deposition during fluidized bed combustion and gasification

    Energy Technology Data Exchange (ETDEWEB)

    Kauppinen, E.; Lind, T.; Kurkela, J.; Latva-Somppi, J.; Lyyraenen, J.; Valmari, T. [VTT Chemical Technology, Espoo (Finland). Aerosol Technology Group

    1998-12-31

    In this work, ash formation and transformations as well as bed agglomeration and fly ash deposition onto the heat exchanger tubes during fluidised bed combustion and gasification were studied using experimental methods and chemical equilibrium calculations. The fuels were coal and pulp and paper mill sludges as well as different wood-based waste materials. The volatilized heavy metal behaviour during pressurized combustion and gasification was studied using chemical equilibrium calculations. The classification of trace elements into four groups presented in this report matched well with the former studies. The release of ash-forming compounds during pyrolysis was studied experimentally in a heated grid reactor. Very small fractions of Si, Al, Fe, Ca, Mg, Na, and K were released from the biomass fuels, peat, and coals during pyrolysis at 900 deg C. Bottom ash during combustion of biomass fuels was found to be formed from bed material and ash-forming compounds. Ash-forming compounds were found to adhere to the bed material by two mechanisms: (i) by deposition of the non-volatile ash compounds as particles onto the bed particle surface, and (ii) by chemical reactions of the volatile ash compounds, e.g., K and Pb, with the bed particles. The size distributions of the fly ash particles were bimodal. The fine mode particles (Dp < 1 {mu}m) were formed by nucleation of the volatilised refractory oxides, e.g., SiO{sub 2}. The nucleated particles grew further by coagulation and condensation of the volatile ash compounds. The coarse fly ash fraction (Dp > 1 {mu}m) was formed from the non-volatile ash compounds, e.g., Ca and Si. The coarse mode particles were agglomerated and irregular in shape. During sludge combustion, the fly ash was mostly in the supermicron size range. This is beneficial for conventional flue gas cleaning devices that are most effective in this particle size. This is especially true for paper mill sludges, producing negligible concentrations of submicron

  13. Analog-experiment analysis of ash-deposition monitoring model of boiler economizers in power plants

    Institute of Scientific and Technical Information of China (English)

    CHENG Wei-liang; XIA Guo-dong; XU Shou-chen

    2005-01-01

    Ash deposition is a form of particulate fouling, and appears usually in boiler economizers. The ash deposition increases capital expenditure, energy input and maintenance costs. An analog experiment for monitoring ash deposition was performed from the analogous objective of a 410 t/h boiler economizer to verify the rationality and reliability of the ash-deposition-monitoring model presented in order to increase the security and economy in economizer running. The analog experiment platform is a tube-shell exchanger that conforms well to the conditions of a self-modeling area. The analog flue gas in the shell side is the heated air mixed with ash,and in the tube side the fluid is water heated by the flue gas. The fluid state in the water side and the flue gas side follows the second self-modeling area. A 4-factor-3 level orthogonal table was used to schedule 9 operation conditions of orthogonal experiment, with the 4 factors being heat power, flue gas velocity, ashes grain diameter and adding ashes quantity while the three levels are different values due to different position classes in every factor. The ash deposition thermal resistances is calculated by the model with the measure parameters of temperature and pressure drop. It shows that the values of the ash deposition thermal resistances gradually increase up to a stable state. And the experimental results are reliable by F testing method at α = 0. 001. Therefore, the model can be applied in online monitoring of ash deposition in a boiler economizers in power plants and provides scientific decision on ash deposition prediction and sootblowing.

  14. Analytical model for erosion behaviour of impacted fly-ash particles on coal-fired boiler components

    Indian Academy of Sciences (India)

    S K Das; K M Godiwalla; S P Mehrotra; K K M Sastry; P K Dey

    2006-10-01

    Fly ash particles entrained in the flue gas from boiler furnaces in coal-fired power stations can cause serious erosive wear on steel surfaces along the flow path. Such erosion can significantly reduce the operational life of the boiler components. A mathematical model embodying the mechanisms of erosion on behaviour, has been developed to predict erosion rates of coal-fired boiler components at different temperatures. Various grades of steels used in fabrication of boiler components and published data pertaining to boiler fly ash have been used for the modelling. The model incorporates high temperature tensile properties of the target metal surface at room and elevated temperatures and has been implemented in an user-interactive in-house computer code (EROSIM–1), to predict the erosion rates of various grades of steel. Predictions have been found to be in good agreement with the published data. The model is calibrated with plant and experimental data generated from a high temperature air-jet erosion-testing facility. It is hoped that the calibrated model will be useful for erosion analysis of boiler components.

  15. Analytical model for erosion behaviour of impacted fly-ash particles on coal-fired boiler components

    Energy Technology Data Exchange (ETDEWEB)

    Das, S.K.; Godiwalla, K.M.; Mehrotra, S.P.; Sastry, K.K.M.; Dey, P.K.

    2006-10-15

    Fly ash particles entrained in the flue gas from boiler furnaces in coal-fired power stations can cause serious erosive wear on steel surfaces along the flow path. Such erosion can significantly reduce the operational life of the boiler components. A mathematical model, embodying the mechanisms of erosion on behaviour, has been developed to predict erosion rates of coal-fired boiler components at different temperatures. Various grades of steels used in fabrication of boiler components and published data pertaining to boiler fly ash have been used for the modelling. The model incorporates high temperature tensile properties of the target metal surface at room and elevated temperatures and has been implemented in an user-interactive in-house computer code (EROSIM-1), to predict the erosion rates of various grades of steel. Predictions have been found to be in good agreement with the published data. The model is calibrated with plant and experimental data generated from a high temperature air-jet erosion-testing facility. It is hoped that the calibrated model will be useful for erosion analysis of boiler components.

  16. Cavitation Erosion of Electro Spark Deposited Nitinol vs. Stellite Alloy on Stainless Steel Substrate

    Science.gov (United States)

    2015-07-15

    EROSION OF ELECTRO SPARK DEPOSITED NITINOL VS. STELLITE® ALLOY ON STAINLESS STEEL SUBSTRATE Theresa A. Hoffard Lean-Miguel San Pedro Mikhail...SUBTITLE 5a. CONTRACT NUMBER CAVITATION EROSION TESTING OF ELECTRO SPARK DEPOSITED NITINOL VS STELLITE® ALLOY ON STAINLESS STEEL SUBTRATE 5b. GRANT...of combining Nitinol (NiTi) superelastic metal alloy with ElectroSpark Deposition (ESD) technology to increase the cavitation erosion resistance of

  17. Modelling the erosion/deposition pattern of the Tore Supra Toroidal Pumped Limiter

    Energy Technology Data Exchange (ETDEWEB)

    Panayotis, S. [CEA, Institut de Recherche sur la Fusion Magnétique, Saint Paul lez Durance (France); Pégourié, B., E-mail: bernard.pegourie@cea.fr [CEA, Institut de Recherche sur la Fusion Magnétique, Saint Paul lez Durance (France); Borodin, D.; Kirschner, A. [Institut für Energie- und Klimaforschung – Plasmaphysik, Forschungszentrum Jülich GmbH, Jülich (Germany); Gunn, J. [CEA, Institut de Recherche sur la Fusion Magnétique, Saint Paul lez Durance (France); Marandet, Y.; Mellet, N. [PIIM, Aix-Marseille University, Marseille (France)

    2015-08-15

    This paper aims at understanding the main processes responsible for the erosion/deposition pattern observed on the surface of the Toroidal Pumped Limiter of Tore Supra, using the 3D local impurity transport code ERO. The influence of the plasma impurity content, CX-flux and surface temperature on the global carbon balance and erosion/deposition pattern is discussed. Main results are (1) that considering medium-range transport of C ions is mandatory for reproducing the main characteristics of the global C balance and erosion/deposition pattern, (2) that impurities and CX-atoms increase the erosion by a factor ⩽2 (without changing the net/gross erosion ratio), and (3) that chemical erosion is governed by the re-erosion of deposits, which depends strongly on the surface temperature.

  18. Early Eocene volcanic ashes on Greifswalder Oie and their depositional environment, with an overview of coeval ash-bearing deposits in northern Germany and Denmark

    Science.gov (United States)

    Obst, Karsten; Ansorge, Jörg; Matting, Sabine; Hüneke, Heiko

    2015-11-01

    Unconsolidated bentonites and carbonate-cemented volcanic ashes occur in northern Germany within the clay sequence of the Lamstedt and Schlieven Formations documented by several wells. Ash-bearing carbonate concretions (so-called cementstones) are also known from glacially transported rafts and erratic boulders on the Baltic Sea island Greifswalder Oie, representing the easternmost exposures of early Eocene sediments in the North Sea Basin. The ashes can be correlated with water-lain ashes of the Danish Fur and Ølst Formations (mo-clay) generated during the opening of the North Atlantic Ocean about 55 Ma ago. Two types of cementstones can be distinguished on the basis of the mineralogical composition, sedimentary features and fossil content. Greifswalder Oie type I contains a black, up to 12-cm-thick ash deposit that follows above two distinct thin grey ash layers. The major ash unit has a rather homogeneous lower part; only a very weak normal grading and faint lamination are discernible. In the upper part, however, intercalations with light mudstone, in part intensively bioturbated, together with parallel and cross-lamination suggest reworking of the ash in a shallow marine environment. Major and trace element compositions are used to correlate type I ashes with those of the Danish-positive series which represent rather uniform ferrobasalts of the Danish stage 4, probably related to the emergence of proto-Iceland. In contrast, type II ash comprises a single, normally graded, about 5-cm-thick layer of water-lain air-fall tuff, which is embedded in fine-grained sandstone to muddy siltstone. Type II ash is characterised by very high TiO2 but low MgO contents. Exceptional REE patterns with a pronounced positive Eu anomaly suggest intense leaching of the glass that hampers exact correlation with pyroclastic deposits within the North Atlantic Igneous Province.

  19. Suspension-firing of wood with coal ash addition: Probe measurements of ash deposit build-up at Avedøre Power Plant (AVV2)

    DEFF Research Database (Denmark)

    Shafique Bashir, Muhammad; Jensen, Peter Arendt; Jappe Frandsen, Flemming;

    This report is about full-scale probe measurements of deposit build-up and removal conducted at the Avedøreværket Unit 2, a 800 MWth suspension boiler, firing wood and natural gas with the addition of coal ash. Coal ash was used as an additive to capture potassium (K) from wood-firing. Investigat......This report is about full-scale probe measurements of deposit build-up and removal conducted at the Avedøreværket Unit 2, a 800 MWth suspension boiler, firing wood and natural gas with the addition of coal ash. Coal ash was used as an additive to capture potassium (K) from wood......-firing. Investigations of deposit formation rate were made by use of an advanced online ash deposition/shedding probe. Quantification of ash deposition and shedding was made via deposit mass uptake signals obtained from the deposit probe. The influence of coal ash, flue gas temperature, probe surface temperature...... and boiler load on ash deposition propensity was investigated. Results of ash deposition propensity showed increasing trend with increasing flue gas temperature. Video monitoring revealed that the deposits formed were not sticky and could be easily removed, and even at very high flue gas temperatures (> 1350...

  20. Ion Beam Induced Surface Modulations from Nano to Pico: Optimizing Deposition During Erosion and Erosion During Deposition.

    Energy Technology Data Exchange (ETDEWEB)

    MoberlyChan, W J; Schalek, R

    2007-11-08

    Ion beams of sufficient energy to erode a surface can lead to surface modulations that depend on the ion beam, the material surface it impinges, and extrinsic parameters such as temperature and geometric boundary conditions. Focused Ion Beam technology both enables site-specific placement of these modulations and expedites research through fast, high dose and small efficient use of material. The DualBeam (FIB/SEM) enables in situ metrology, with movies observing ripple formation, wave motion, and the influence of line defects. Nanostructures (ripples of >400nm wavelength to dots spaced <40nm) naturally grow from atomically flat surfaces during erosion, however, a steady state size may or may not be achieved as a consequence of numerous controlled parameters: temperature, angle, energy, crystallography. Geometric factors, which can be easily invoked using a FIB, enable a controlled component of deposition (and/or redeposition) to occur during erosion, and conversely allow a component of etching to be incurred during (ion-beam assisted) deposition. High angles of ion beam inclination commonly lead to 'rougher' surfaces, however, the extreme case of 90.0{sup o} etching enables deposition of organized structures 1000 times smaller than the aforementioned, video-recorded nanostructures. Orientation and position of these picostructures (naturally quantized by their atomic spacings) may be controlled by the same parameters as for nanostructures (e.g. ion inclination and imposed boundary conditions, which are flexibly regulated by FIB). Judicious control of angles during FIB-CVD growth stimulates erosion with directionality that produces surface modulations akin to those observed for sputtering. Just as a diamond surface roughens from 1-D ripples to 2-D steps with increasing angle of ion sputtering, so do ripples and steps appear on carbon-grown surfaces with increase in angle of FIB-CVD. Ion beam processing has been a stalwart of the microelectronics industry

  1. The Thermal Behavior of Coal—Ash Deposits on Heat Exchangers

    Institute of Scientific and Technical Information of China (English)

    JamesL.S.Chen; EverettR.Ramer

    1994-01-01

    A theoretical model for predicting the thermal behavior of coal-ash deposits on heat exchangers is developed.The heat transfer modes of heat conduction,converction,and thermal radiation are considered for the system.The effective thermal conductivities and emissivities of the ash deposits are temperature dependet,Heat fluxeds and dimensionless temperatures in the three layers(loose,sintered,and fused) of the ash deposit are determined.Results are presented for the first two rows of tubes in aligned and staggered tube banks.

  2. Effect of fly ash deposition on photosynthesis, growth and yield of rice.

    Science.gov (United States)

    Raja, R; Nayak, A K; Rao, K S; Puree, Chandrika; Shahid, Mohammad; Panda, B B; Kumar, Anjani; Tripathi, R; Bhattacharyya, P; Baig, M J; Lal, B; Mohanty, Sangita; Gautam, Priyanka

    2014-07-01

    An experiment was conducted to assess the effect of fly ash deposition without and with (0.25, 0.50, 1.0 and 1.5 g m(-2 )day(-1)) foliar dusting on the photosynthesis, stomatal conductance, transpiration, leaf temperature, albedo and productivity of rice. Dusting of 0.5 g m(-2 )day(-1) fly ash and above significantly reduced the photosynthesis, stomatal conductance, transpiration and albedo. Panicle initiation and flowering stages were more influenced by the fly ash deposition as compared to active tillering stage. At higher rates of fly ash deposition, all growth and yield parameters were significantly influenced due to increased heat load and reduced intercellular CO2 concentration. A significant reduction of 12.3, 15.7 and 20.2 % in grain yield was recorded over control when fly ash was dusted at 0.5, 1.0 and 1.5 g m(-2 )day(-1), respectively.

  3. Experimental measurements of the thermal conductivity of ash deposits: Part 2. Effects of sintering and deposit microstructure

    Energy Technology Data Exchange (ETDEWEB)

    A. L. Robinson; S. G. Buckley; N. Yang; L. L. Baxter

    2000-04-01

    The authors report results from an experimental study that examines the influence of sintering and microstructure on ash deposit thermal conductivity. The measurements are made using a technique developed to make in situ, time-resolved measurements of the effective thermal conductivity of ash deposits formed under conditions that closely replicate those found in the convective pass of a commercial boiler. The technique is designed to minimize the disturbance of the natural deposit microstructure. The initial stages of sintering and densification are accompanied by an increase in deposit thermal conductivity. Subsequent sintering continues to densify the deposit, but has little effect on deposit thermal conductivity. SEM analyses indicates that sintering creates a layered deposit structure with a relatively unsintered innermost layer. They hypothesize that this unsintered layer largely determines the overall deposit thermal conductivity. A theoretical model that treats a deposit as a two-layered material predicts the observed trends in thermal conductivity.

  4. Distributed Modeling of soil erosion and deposition affected by buffer strips

    DEFF Research Database (Denmark)

    Khademalrasoul, Ataalah; Heckrath, Goswin Johann; Iversen, Bo Vangsø

    and dimension of buffer zones in the landscape can be optimized by means of spatially distributed erosion and deposition modeling. During the period from 1998 to 2000 field campaigns were done on a range of agricultural land in Denmark. On 21 slope units and adjacent buffer zones, rill erosion and deposition...

  5. 3-D numerical simulations of volcanic ash transport and deposition

    Science.gov (United States)

    Suzuki, Y. J.; Koyaguchi, T.

    2012-12-01

    During an explosive volcanic eruption, volcanic gas and pyroclasts are ejected from the volcanic vent. The pyroclasts are carried up within a convective plume, advected by the surrounding wind field, and sediment on the ground depending on their terminal velocity. The fine ash are expected to have atmospheric residence, whereas the coarser particles form fall deposits. Accurate modeling of particle transport and deposition is of critical importance from the viewpoint of disaster prevention. Previously, some particle-tracking models (e.g., PUFF) and advection-diffusion models (e.g., TEPHRA2 and FALL3D) tried to forecast particle concentration in the atmosphere and particle loading at ground level. However, these models assumed source conditions (the grain-size distribution, plume height, and mass release location) based on the simple 1-D model of convective plume. In this study, we aim to develop a new 3-D model which reproduces both of the dynamics of convective plume and the ash transport. The model is designed to describe the injection of eruption cloud and marker particles from a circular vent above a flat surface into the stratified atmosphere. Because the advection is the predominant mechanism of particle transport near the volcano, the diffusive process is not taken into account in this model. The distribution of wind velocity is given as an initial condition. The model of the eruption cloud dynamics is based on the 3-D time-dependent model of Suzuki et al. (2005). We apply a pseudo-gas model to calculate the eruption cloud dynamics: the effect of particle separation on the cloud dynamics is not considered. In order to reproduce the drastic change of eruption cloud density, we change the effective gas constant and heat capacity of the mixture in the equation of state for ideal gases with the mixing ratio between the ejected material and entrained air. In order to calculate the location and movement of ash particles, the present model employs Lagrangian marker

  6. Parameterization of volcanic ash remobilization by wind-tunnel erosion experiments.

    Science.gov (United States)

    Del Bello, Elisabetta; Taddeucci, Jacopo; Merrison, Jonathan; Alois, Stefano; Iversen, Jens Jacob; Scarlato, Piergiorgio

    2017-04-01

    The remobilization of volcanic ash from the ground is one of the many problems posing threat to life and infrastructures during and after the course of an explosive volcanic eruption. A proper management of the risks connected to this problem requires a thorough understanding of the factors that influence and promote the dispersal of particles over large distances. Towards this target, we conducted a series of experiments aimed at defining first-order processes controlling the remobilization threshold of ash particles by wind erosion. In the framework of the EU-funded Europlanet project, we joinly used the environmental wind tunnel facility at Aarhus University (DK) and the state-of-the art high-speed imaging equipment of INGV experimental lab (Italy) to capture at unparalleled temporal and spatial resolution the removal dynamics of ash-sized (half-millimetre to micron-sized) particles. A homogenous layer of particles was set at on a plate placed downwind a boundary layer setup. Resuspension processes were filmed at 2000 fps and 50 micron pixel resolution, and the plate weighted pre and post-experiment. Explored variables include: 1) wind speed (from ca. 1 to 7 m/s) and boundary layer structure; 2) particle grain size (from 32-63 to 90-125 micron), and sample sorting); 3) chemical and textural features, using basalt and trachyte samples from Campi Flegrei (Pomici Principali,10 ka) and Eyjafjallajökull (May 2010) eruptions; and 4) temperature and humidity, by conducting experiments either at ambient conditions or with a heated sample. We found that the grain size distribution exerts a strong control on the fundamental dynamics of gas-particle coupling. Particles > 90 micron detach from the particles layer individually, also entering the gas flow individually. Conversely, removal < 63 micron particles occurs in clumps of aggregates. These clumps, once taken in charge by the gas flow, are frequently disaggregated and dispersed rapidly (order of few milliseconds). Our

  7. Ash transformation and deposition behavior during co-firing biomass with sewage sludge

    DEFF Research Database (Denmark)

    Wang, Liang; Wu, Hao; Jensen, Peter Arendt;

    to sewage sludge addition. However, the ash deposition propensity decreased significantly. In addition, the content of water soluble K and Cl in the deposits reduced as a result of sewage sludge addition. The results from present work suggest co-firing of sewage sludge could alleviate deposit formation...

  8. Computational Investigation of the Influence of Fly Ash Silica Content and Shape on the Erosion Behaviour of Indian Coal Fired Boiler Grade Steels

    Science.gov (United States)

    Kumari, Amrita; Das, Suchandan Kumar; Srivastava, Prem Kumar

    2016-07-01

    A mathematical model has been developed to characterize the erosion behaviour of fly ash on boiler grade steel surfaces incorporating various ductile erosion mechanisms. These mechanisms constitute cutting wear, repeated plastic deformation and effect of operating temperature on the mechanical properties of the substrate. Parametric analysis has been carried out to study the erosion response of some typical steel grades as a function of particle impact parameters such as particle impact velocity, angle of impingement coupled with the effect of temperature on the tensile properties. Further, effects of fly ash properties such as hardness (silica content) and shape (angularity) on the erosion response have been also investigated along with the ballistic parameters. These investigations show that a small increment in the fly ash hardness can considerably augment the erosion rate of the steel surface under a given particle impingement condition. This vindicates that hardness of fly ash is one of the most critical parameter which has a direct impact in enhancing the erosion rate of boiler grade steels. The effect of fly ash shape on the erosion behaviour is also studied in conjunction with the particle hardness. This shows that the composite action of these parameters augment the erosion rate significantly.

  9. Fundamental study of ash formation and deposition: Effect of reducing stoichiometry

    Energy Technology Data Exchange (ETDEWEB)

    Helble, J.J.; Bool, L.E.; Kang, S.G. [and others

    1995-11-01

    This project is designed to examine the effects of combustion stoichiometry on the fundamental aspects of ash formation and ash deposit initiation. Emphasis is being placed on reducing stoichiometries associated with low-NOx combustion, although a range of oxidant/fuel ratios are being considered. Previous work has demonstrated that ash formation depends strongly upon coal mineralogy, including mineral type, size, amount, and the presence of organically associated inorganic species. Combustion temperature and the oxidation state of iron also play a significant role. As these latter items will vary with changes in stoichiometry, research to determine the net effect on deposition is required.

  10. Geotechnical approaches to coal ash content control in mining of complex structure deposits

    Science.gov (United States)

    Batugin, SA; Gavrilov, VL; Khoyutanov, EA

    2017-02-01

    Coal deposits having complex structure and nonuniform quality coal reserves require improved processes of production quality control. The paper proposes a method to present coal ash content as components of natural and technological dilution. It is chosen to carry out studies on the western site of Elginsk coal deposit, composed of four coal beds of complex structure. The reported estimates of coal ash content in the beds with respect to five components point at the need to account for such data in confirmation exploration, mine planning and actual mining. Basic means of analysis and control of overall ash content and its components are discussed.

  11. A new two-phase erosion-deposition model for mass flows

    Science.gov (United States)

    Pudasaini, Shiva P.; Fischer, Jan-Thomas

    2016-04-01

    Erosion, entrainment and deposition are complex and dominant, but yet poorly understood, mechanical processes in geophysical mass flows. Here, we propose a novel, two-phase, erosion-deposition model capable of adequately describing these complex phenomena commonly observed in landslides, avalanches, debris flows and bedload transports. The model enhances an existing general two-phase mass flow model (Pudasaini, 2012) by introducing a two-phase variably saturated erodible basal morphology. The adaptive basal morphology allows for the evolution of erosion-deposition-depths, incorporating the inherent physical process and rheological changes of the flowing mixture. With rigorous derivation, we show that appropriate incorporation of the mass and momentum productions and losses in conservative model formulation is essential for the physically correct and mathematically consistent description of erosion-entrainment-deposition processes. Simulation indicates a sharp erosion-front and steady-state-rear erosion depth. The model appropriately captures the emergence and propagation of complex frontal surge dynamics associated with the frontal ambient-drag which is a new hypothesis associated with erosion. The novel enhanced real two-phase model also allows for simulating fluid-run-off during the deposition process. The model resembles laboratory experiments for particle-fluid mixture flows and reveals some major aspects of the mechanics associated with erosion, entrainment and deposition. Reference: Shiva P. Pudasaini (2012): A general two-phase debris flow model. J. Geophys. Res., 117, F03010, doi: 10.1029/2011JF002186.

  12. Experimental measurements of the thermal conductivity of ash deposits: Part 1. Measurement technique

    Energy Technology Data Exchange (ETDEWEB)

    A. L. Robinson; S. G. Buckley; N. Yang; L. L. Baxter

    2000-04-01

    This paper describes a technique developed to make in situ, time-resolved measurements of the effective thermal conductivity of ash deposits formed under conditions that closely replicate those found in the convective pass of a commercial boiler. Since ash deposit thermal conductivity is thought to be strongly dependent on deposit microstructure, the technique is designed to minimize the disturbance of the natural deposit microstructure. Traditional techniques for measuring deposit thermal conductivity generally do not preserve the sample microstructure. Experiments are described that demonstrate the technique, quantify experimental uncertainty, and determine the thermal conductivity of highly porous, unsintered deposits. The average measured conductivity of loose, unsintered deposits is 0.14 {+-} 0.03 W/(m K), approximately midway between rational theoretical limits for deposit thermal conductivity.

  13. Effect of interfacial properties on mechanical stability of ash deposit

    Directory of Open Access Journals (Sweden)

    A. Ontiveros-Ortega

    2016-04-01

    Full Text Available The paper presents a study on the cohesion of volcanic ash particles using surface free energy determination and zeta potential analyses. This is a subject of great interest in physical volcanology, as many researches on volcanic particle aggregation are frequently reported. In this case, special attention is paid to the role of structural or hydration forces between hydrophilic surfaces, which are a consequence of the electron-donor/electron-acceptor character of the interface. From this point of view, the results are potentially interesting as they could give valuable insights into this process. The results are presented in terms of the total energy of interaction between dispersed particles, computed from the extended DLVO theory. Contributions to the total free energy of interaction were determined from the zeta potential and surface free energy of ash, measured under different experimental conditions. Two samples of basaltic volcanic ash (black and white with silica contents of 44% and 63% respectively are studied. The surface free energy and zeta potential were analysed for ashes immersed in different electrolytes (NaCl, CaCl2, FeCl3. The presence of electrolytes changes the surface properties of the solid materials. The analysis of total interaction energy between the ash particles in aqueous medium shows that soil cohesion strongly depends on ash surface properties, chemical nature, the adsorbed cation on the surface, and pH value.

  14. Numerical modelling of the erosion and deposition of sand inside a filter layer

    DEFF Research Database (Denmark)

    Jacobsen, Niels Gjøl; van Gent, Marcel R. A.; Fredsøe, Jørgen

    2017-01-01

    prediction method to assure that the amount of erosion remains within acceptable limits. This work presents a numerical model that is capable of describing the erosion and deposition patterns inside of an open filter of rock on top of sand. The hydraulic loading is that of incident irregular waves...... additional data sets on the erosion and deposition patterns inside of an open filter. A few cases are defined to study the effect of the sinking of the filter into the erosion hole. The numerical model is also applied to several application cases. The response of the core material (sand) to changes......This paper treats the numerical modelling of the behaviour of a sand core covered by rocks and exposed to waves. The associated displacement of the rock is also studied. A design that allows for erosion and deposition of the sand core beneath a rock layer in a coastal structure requires an accurate...

  15. Full-scale ash deposition measurements at Avedøre Power Plant unit 2 during suspension-firing of wood with and without coal ash addition

    DEFF Research Database (Denmark)

    Wu, Hao; Shafique Bashir, Muhammad; Jensen, Peter Arendt

    The formation of deposits during suspension-firing of wood at Avedøre Power Plant unit 2 (AVV2) was studied by using an advanced deposit probe system. The tests were conducted both with and without coal ash addition, and at two different locations with flue gas temperatures of 1250-1300 oC and 750......-800 oC respectively. The deposit formation process was studied quantitatively though the mass uptake data from the load-cell of the probe, while camera pictures were used to qualitatively verify the obtained mass uptake data and to explain the deposit buildup/shedding mechanisms. The collected deposits...... along with the fly ash and bottom ash from the plant were characterized extensively by SEM-EDS, ICP-OES/IC and XRD. Based on the results from the present work, the deposit formation and shedding mechanisms under different operational conditions were proposed and discussed. The influence of coal ash...

  16. In situ estimation of erosion and deposition thresholds by Acoustic Doppler Velocimeter (ADV)

    DEFF Research Database (Denmark)

    Andersen, T.J.; Fredsøe, Jørgen; Pejrup, M.

    2007-01-01

    Field-based estimations of bed shear stress have been made using SonTek/YSI 10 MHz ADVs (Acoustic Doppler Velocimeter) at the Kongsmark mudflat, Danish Wadden Sea, in order to test if it was possible to estimate erosion and deposition thresholds in situ by use of unidirectional tidal and orbital...... (wave) currents. The results were promising and erosion thresholds were in the same range as those observed in EROMES erosion experiments carried out at the same site. Similarly, the short-term erosion rates which could be calculated matched closely those obtained with EROMES, and were in the same range...... as those published for a large annular flume (Sea Carousel) from another fine-grained site. This indicates that the erosion rates obtained with those two erosion-instruments are reasonable estimates of the actual erosion taking place under natural tidal current and waves. One advantage of the use of ADVs...

  17. Ash Deposit Formation and Removal in a Straw and Wood Suspension-Fired Boiler

    DEFF Research Database (Denmark)

    Shafique Bashir, Muhammad; Jensen, Peter Arendt; Frandsen, Flemming

    Utilization of biomass on large suspension-fired boilers is a potentially efficient method to reduce net CO2 emissions and reduce the consumption of fossil fuels. However, ash deposit formation on heat transfer surfaces may cuase operational problems and in severe cases lead to boiler stop...... and manual cleaning. Most studies on ash deposition and removal has been done on biomass grate boilers, while only limited data is available from biomass suspension-firing. The aim of this study was to investigate deposit mass uptake, heat uptake reduction, deposit characteristics, and deposit removal...... scale experimental studies conducted by CHEC indicated that there was not a big difference regarding final deposit mass uptake during straw suspension-firing and combustion on grate. The shedding (deposit removal) events were investigated when the nearby plant sootblower was shutdown. It was identified...

  18. Quantification of Ash Deposit Build-up and Removal in a Straw and Wood Suspension-Fired Boiler

    DEFF Research Database (Denmark)

    Shafique Bashir, Muhammad; Jensen, Peter Arendt; Frandsen, Flemming

    2011-01-01

    The aim of this study was to investigate ash deposit formation rate, heat uptake reduction and deposit removal by using advanced online ash deposition and sootblowing probes in a 350 MWth suspension­fired boiler, utilizing wood and straw pellets as fuel. The influence of fuel type (straw share in...

  19. Erosion and deposition in depth-averaged models of dense, dry, inclined, granular flows

    Science.gov (United States)

    Jenkins, James T.; Berzi, Diego

    2016-11-01

    We derive expressions for the rates of erosion and deposition at the interface between a dense, dry, inclined granular flow and an erodible bed. In obtaining these, we assume that the interface between the flowing grains and the bed moves with the speed of a pressure wave in the flow, for deposition, or with the speed of a disturbance through the contacting particles in the bed, for erosion. We employ the expressions for the rates of erosion and deposition to show that after an abrupt change in the angle of inclination of the bed the characteristic time for the motion of the interface is much shorter than the characteristic time of the flow. This eliminates the need for introducing models of erosion and deposition rate in the mass balance; and the instantaneous value of the particle flux is the same function of the instantaneous value of the flow depth as in a steady, uniform flow.

  20. Dynamic controls on erosion and deposition on debris-flow fans.

    OpenAIRE

    Schürch, P.; Densmore, A. L.; Rosser, N.J.; B. W. McArdell

    2011-01-01

    Debris flows are among the most hazardous and unpredictable of surface processes in mountainous areas. This is partly because debris-flow erosion and deposition are poorly understood, resulting in major uncertainties in flow behavior, channel stability, and sequential effects of multiple flows. Here we apply terrestrial laser scanning and flow hydrograph analysis to quantify erosion and deposition in a series of debris flows at Illgraben, Switzerland. We identify flow depth as an important co...

  1. Deposition and immersion mode nucleation of ice by three distinct samples of volcanic ash using Raman spectroscopy

    Science.gov (United States)

    Schill, G. P.; Genareau, K.; Tolbert, M. A.

    2015-01-01

    Ice nucleation on volcanic ash controls both ash aggregation and cloud glaciation, which affect atmospheric transport and global climate. Previously, it has been suggested that there is one characteristic ice nucleation efficiency for all volcanic ash, regardless of its composition, when accounting for surface area; however, this claim is derived from data from only two volcanic eruptions. In this work, we have studied the depositional and immersion freezing efficiency of three distinct samples of volcanic ash using Raman Microscopy coupled to an environmental cell. Ash from the Fuego (basaltic ash, Guatemala), Soufrière Hills (andesitic ash, Montserrat), and Taupo (Oruanui euption, rhyolitic ash, New Zealand) volcanoes were chosen to represent different geographical locations and silica content. All ash samples were quantitatively analyzed for both percent crystallinity and mineralogy using X-ray diffraction. In the present study, we find that all three samples of volcanic ash are excellent depositional ice nuclei, nucleating ice from 225-235 K at ice saturation ratios of 1.05 ± 0.01, comparable to the mineral dust proxy kaolinite. Since depositional ice nucleation will be more important at colder temperatures, fine volcanic ash may represent a global source of cold-cloud ice nuclei. For immersion freezing relevant to mixed-phase clouds, however, only the Oruanui ash exhibited heterogeneous ice nucleation activity. Similar to recent studies on mineral dust, we suggest that the mineralogy of volcanic ash may dictate its ice nucleation activity in the immersion mode.

  2. Usability value and heavy metals accumulation in forage grasses grown on power station ash deposit

    Directory of Open Access Journals (Sweden)

    Simić Aleksandar S.

    2015-01-01

    Full Text Available The study of five forage grasses (Lolium multiflorum, Festuca rubra, Festuca arundinacea, Arrhenatherum elatius and Dactylis glomerata was conducted on an uncontaminated cultivated land, of leached chernozem type, and on “Nikola Tesla A” (TENT A thermal power station ash deposit. The concentrations of: As, Pb, Cd, Zn, Ni, Fe i Cu in grasses grown on two media were compared. Grass samples have been collected in tillering stage, when they were in full development. During the vegetative period three replications cut was conducted at about 3-5 cm height, imitating mowing and grazing. The concentrations of As and Ni were elevated in media samples collected from TENT A ash deposit, while the level of all studied elements in soil samples collected from cultivated land were within allowed limits. The variance of certain elements amounts in plant material collected from TENT A ash deposit was less homogeneous; the concentrations of As, Fe and Ni were higher in grasses collected from ash deposit, but Pb and Cu concentrations were higher in grasses grown on cultivated land. The concentrations of Zn were approximately the same in plants collected from the sites, whereas Cd concentrations were slightly increased in grasses grown on ash deposit. In general, it can be concluded from the results of this study that the concentrations of heavy metals in plants collected from both sites do not exceed maximal tolerant levels for fodder. The use of grasses grown on ash deposit for forage production should be taken with reserve. [Projekat Ministarstva nauke Republike Srbije, br. TR 31016: Unapređenje tehnologije gajenja krmnih biljaka na oranicama i travnjacima

  3. Computer Modeling of Flow, Thermal Condition and Ash Deposition in a Hot-Gas Filtration Device

    Energy Technology Data Exchange (ETDEWEB)

    Ahmadi, G.; Mazaheri, A.; Liu, C.; Gamwo, I.K.

    2002-09-19

    The objective of the present study is to develop a computational model for simulating the gas flow, thermal condition and ash transport and deposition pattern in the hot-gas filtration systems. The computational model is to provide a virtual tool for design and operation modifications. Particular attention is given to the Particle Control Device (PCD) at the Power Systems Development Facility (PSDF) in Wilsonville, Alabama. For evaluation of gas velocity and temperature field in the vessel, the FLUENT commercial CFD computer code is used. Ash particle transport and deposition pattern was analyzed with the Lagrangian particle tracking approach.

  4. Soil aggregation and the stabilization of organic carbon as affected by erosion and deposition

    NARCIS (Netherlands)

    Wang, X.; Cammeraat, E.L.H.; Cerli, C.; Kalbitz, K.

    2014-01-01

    The importance of soil aggregation in determining the dynamics of soil organic carbon (SOC) during erosion, transportation and deposition is poorly understood. Particularly, we do not know how aggregation contributes to the often-observed accumulation of SOC at depositional sites. Our objective was

  5. Quantifying transient erosion of orogens with detrital thermochronology from syntectonic basin deposits

    Science.gov (United States)

    Rahl, Jeffrey M.; Ehlers, Todd A.; van der Pluijm, Ben A.

    2007-04-01

    The evolution of an orogen is marked by phases of topographic growth, equilibrium, and decay. During these phases erosion rates vary in response to temporal and spatial changes in climate, topographic relief and slope, and deformation. Detrital thermochronometer cooling-age data collected from syntectonic basin deposits are a promising tool for quantifying erosion histories during orogenic evolution. Previous studies typically assume steady-state erosion for interpreting detrital data, although in many situations this assumption is not justified. Here we present a new numerical modeling approach that predicts thermochronometer cooling ages in a stratigraphic section where sediment is sourced from a region with a temporally variable erosion history. Multiple thermochronometer cooling ages are predicted at different stratigraphic horizons as a function of variable erosion histories, rock cooling rates in the hinterland, and thermophysical material properties and boundary conditions. The modeling approach provides the context for the interpretation of natural data, including geologically realistic situations with a temporally varying erosion rate. The results of three end-member hinterland erosion histories are explored: (1) steady-state erosion; (2) increasing erosion rate with time; and (3) decreasing erosion rate with time. Results indicate that for steady erosion rates between 0.2 and 1.0 mm/yr, up to 30 m.y. will pass following a change in erosion rate before the detrital ages have adjusted to reflect a new erosion regime. In simulations with transient erosion, the estimation of erosion rates from a detrital record using assumption of thermal steady-state will generally be in error, often by as much as - 25 to 100%. These results highlight that assumptions of steady erosion in mountain belts should be used with caution. Application of the model to thermochronometer cooling ages preserved in syntectonic sediments sourced from the Nanga Parbat region, Himalaya

  6. Evaluation of ash deposits during experimental investigation of co-firing of Bosnian coal with wooden biomass

    Energy Technology Data Exchange (ETDEWEB)

    Smajevic, Izet; Kazagic, Anes [JP Elektroprivreda BiH d.d., Sarajevo (Bosnia and Herzegovina); Sarajevo Univ. (Bosnia and Herzegovina). Faculty of Mechanical Engineering

    2008-07-01

    The paper is addressed to the development and use different criteria for evaluation of ash deposits collected during experimental co-firing of Bosnian coals with wooden biomass. Spruce saw dust was used for the co-firing tests with the Kakanj brown coal and with a lignite blend consisted of the Dubrave lignite and the Sikulje lignite. The coal/biomass mixtures at 93:7 %w and at 80:20 %w were tested. Experimental lab-scale facility PF entrained flow reactor is used for the co-firing tests. The reactor allows examination of fouling/slagging behaviors and emissions at various and infinitely variable process temperature which can be set at will in the range from ambient to 1560 C. Ash deposits are collected on two non-cooled ceramic probes and one water-cooled metal surface. Six different criteria are developed and used to evaluate behavior of the ash deposits on the probes: ash deposit shape, state and structure, which are analyzed visually - photographically and optically by a microscope, rate of adhesion and ash deposit strength, analyzed by physic acting to the ash deposits, and finally deposition rate, determined as a mass of the deposit divided by the collecting area and the time of collecting. Furthermore, chemical composition analysis and AFT of the ash deposits were also done to provide additional information on the deposits. (orig.)

  7. Biomimetic thermal barrier coating in jet engine to resist volcanic ash deposition

    Science.gov (United States)

    Song, Wenjia; Major, Zsuzsanna; Schulz, Uwe; Muth, Tobias; Lavallée, Yan; Hess, Kai-Uwe; Dingwell, Donald B.

    2017-04-01

    The threat of volcanic ash to aviation safety is attracting extensive attention when several commercial jet aircraft were damaged after flying through volcanic ash clouds from the May 1980 eruptions of Mount St. Helen in Washington, U.S. and especially after the air traffic disruption in 2010 Eyjafjallajökull eruption. A major hazard presented by volcanic ash to aircraft is linked to the wetting and spreading of molten ash droplets on engine component surfaces. Due to the fact ash has a lower melting point, around 1100 °C, than the gas temperature in the hot section (between 1400 to 2000 °C), this cause the ash to melt and potentially stick to the internal components (e.g., combustor and turbine blades), this cause the ash to melt and potentially stick to the internal components of the engine creating, substantial damage or even engine failure after ingestion. Here, inspiring form the natural surface of lotus leaf (exhibiting extreme water repellency, known as 'lotus effect'), we firstly create the multifunctional surface thermal barrier coatings (TBCs) by producing a hierarchical structure with femtosecond laser pulses. In detail, we investigate the effect of one of primary femtosecond laser irradiation process parameter (scanning speed) on the hydrophobicity of water droplets onto the two kinds of TBCs fabricated by electron-beam physical vapor deposition (EB-PVD) and air plasma spray (APS), respectively as well as their corresponding to morphology. It is found that, comparison with the original surface (without femtosecond laser ablation), all of the irradiated samples demonstrate more significant hydrophobic properties due to nanostructuring. On the basis of these preliminary room-temperature results, the wettability of volcanic ash droplets will be analysed at the high temperature to constrain the potential impact of volcanic ash on the jet engines.

  8. EDDA 1.0: integrated simulation of debris flow erosion, deposition and property changes

    OpenAIRE

    Chen, H. X.; Zhang, L. M.

    2015-01-01

    Debris flow material properties change during the initiation, transportation and deposition processes, which influences the runout characteristics of the debris flow. A quasi-three-dimensional depth-integrated numerical model, EDDA (Erosion–Deposition Debris flow Analysis), is presented in this paper to simulate debris flow erosion, deposition and induced material property changes. The model considers changes in debris flow density, yield stress and dynamic viscosity during ...

  9. Soil Properties in Coniferous Forest Stands Along a Fly Ash Deposition Gradient in Eastern Germany

    Institute of Scientific and Technical Information of China (English)

    S. KLOSE; F. MAKESCHIN

    2005-01-01

    Physical, chemical, and microbial properties of forest soils subjected to long-term fly ash depositions were analyzed in spruce (Picea abies (L.) Karst.) stands of eastern Germany on three forest sites along an emission gradient of 3 (high input), 6, and 15 km (low input) downwind of a coal-fired power plant. Past emissions resulted in an atypical high mass of mineral fly ash constituents in the organic horizons at the high input site of 128 t ha-1 compared to 58 t ha-1 at the low input site. Magnetic susceptibility measurements proved that the high mineral content of the forest floor was a result of fly ash accumulation in these forest stands. Fly ash deposition in the organic horizons at Site Ⅰ versus Ⅲsignificantly increased the pH values, effective cation exchange capacity, base saturation and, with exception of the L horizon, concentrations of mobile heavy metals Cd, Cr, and Ni, while stocks of organic C generally decreased. A principal component analysis showed that organic C content and base status mainly controlled soil microbial biomass and microbial respiration rates at these sites, while pH and mobile fractions of Cd, Cr, and Ni governed enzyme activities. Additionally,it was hypothesized that long-term fly ash emissions would eventually destabilize forest ecosystems. Therefore, the results of this study could become a useful tool for risk assessment in forest ecosystems that were subjected to past emissions from coal-fired power plants.

  10. Depositional and Immersion-Mode Ice Nucleation of Fine-Grained Volcanic Ash Samples

    Science.gov (United States)

    Cloer, S.; Woods, T.; Genareau, K. D.

    2016-12-01

    Volcanic lightning is a common phenomenon during explosive eruptions; occurring as vent discharges, near-vent discharges, and plume lightning. Plume lightning is most similar to thunderstorm lightning, where volcanic ash may act as ice nuclei. Volcanic ash samples derived from eight volcanoes: Augustine, Crater Peak, Katmai, Okmok, Redoubt (Alaska, U.S.A.), Lathrop Well (Nevada, U.S.A.), Taupo (New Zealand), and Valles Caldera (New Mexico, U.S.A.); were used to determine what roles ash mineralogy, particularly Fe-oxide-bearing minerals and silica-enriched minerals, grain shape, and grain size have in the nucleation of ice, which can generate plume lightning. Depositional and immersion-mode ice nucleation experiments were performed using a Nicolet Almega XR Dispersive Raman spectrometer, following the methods of Schill et al. (2015), where samples were shaken for 24 h prior to experiments in ultra-pure water, then nebulized to super micron droplets. Depositional nucleation experiments were conducted from 225-235 K, and immersion-mode nucleation experiments were conducted from 233-278 K. A JEOL JSM 6010 Plus/LA scanning electron microscope (SEM), along with Image-J freeware, was used to quantify the number density of Fe-oxide mineral phases in backscattered electron images, with an x-ray diffractometer (XRD) used to determine bulk mineral abundance and an x-ray fluorescence (XRF) spectrometer to determine bulk ash composition. Based on previous studies, we hypothesize that all ash samples will efficiently form depositional ice nuclei; however, certain mineral phases will dictate the efficiency of immersion-mode ice nucleation including K or Na / Ca feldspars, which have been shown to be efficient nuclei, and Fe-oxide-bearing minerals. These results will shed new light on volcanic cloud dynamics and add new parameters for atmospheric models, which currently only address effects of mineral dust as ice nuclei and overlook the potential role of volcanic ash.

  11. Modelling wet deposition in simulations of volcanic ash dispersion from hypothetical eruptions of Merapi, Indonesia

    Science.gov (United States)

    Dare, Richard A.; Potts, Rodney J.; Wain, Alan G.

    2016-10-01

    The statistical impact of including the process of wet deposition in dispersion model predictions of the movement of volcanic ash is assessed. Based on hypothetical eruptions of Merapi, Indonesia, sets of dispersion model simulations were generated, each containing four simulations per day over a period of three years, to provide results based on a wide range of atmospheric conditions. While on average dry sedimentation removes approximately 10% of the volcanic ash from the atmosphere during the first 24 h, wet deposition removes an additional 30% during seasons with highest rainfall (December and January) but only an additional 1% during August and September. The majority of the wet removal is due to in-cloud rather than below-cloud collection of volcanic ash particles. The largest uncertainties in the amount of volcanic ash removed by the process of wet deposition result from the choice of user-defined parameters used to compute the scavenging coefficient, and from the definition of the cloud top height. Errors in the precipitation field provided by the numerical weather prediction model utilised here have relatively less impact.

  12. Assessment of erosion and deposition in steep mountain basins by differencing sequential digital terrain models

    Science.gov (United States)

    Cavalli, Marco; Goldin, Beatrice; Comiti, Francesco; Brardinoni, Francesco; Marchi, Lorenzo

    2017-08-01

    Digital elevation models (DEMs) built from repeated topographic surveys permit producing DEM of Difference (DoD) that enables assessment of elevation variations and estimation of volumetric changes through time. In the framework of sediment transport studies, DEM differencing enables quantitative and spatially-distributed representation of erosion and deposition within the analyzed time window, at both the channel reach and the catchment scale. In this study, two high-resolution Digital Terrain Models (DTMs) derived from airborne LiDAR data (2 m resolution) acquired in 2005 and 2011 were used to characterize the topographic variations caused by sediment erosion, transport and deposition in two adjacent mountain basins (Gadria and Strimm, Vinschgau - Venosta valley, Eastern Alps, Italy). These catchments were chosen for their contrasting morphology and because they feature different types and intensity of sediment transfer processes. A method based on fuzzy logic, which takes into account spatially variable DTMs uncertainty, was used to derive the DoD of the study area. Volumes of erosion and deposition calculated from the DoD were then compared with post-event field surveys to test the consistency of two independent estimates. Results show an overall agreement between the estimates, with differences due to the intrinsic approximations of the two approaches. The consistency of DoD with post-event estimates encourages the integration of these two methods, whose combined application may permit to overcome the intrinsic limitations of the two estimations. The comparison between 2005 and 2011 DTMs allowed to investigate the relationships between topographic changes and geomorphometric parameters expressing the role of topography on sediment erosion and deposition (i.e., slope and contributing area) and describing the morphology influenced by debris flows and fluvial processes (i.e., curvature). Erosion and deposition relations in the slope-area space display substantial

  13. Experimental investigation of ash deposits on convection heating surfaces of a circulating fluidized bed municipal solid waste incinerator.

    Science.gov (United States)

    Tang, Zhi; Chen, Xiaoping; Liu, Daoyin; Zhuang, Yaming; Ye, Minghua; Sheng, Hongchan; Xu, Shaojuan

    2016-10-01

    Incineration of municipal solid waste (MSW) is a waste treatment method which can be sustainable in terms of waste volume reduction, as well as a source of renewable energy. During MSW combustion, increased formation of deposits on convection heating exchanger surfaces can pose severe operational problems, such as fouling, slagging and corrosion. These problems can cause lower heat transfer efficiency from the hot flue gas to the working fluid inside the tubes. A study was performed where experiments were carried out to examine the ash deposition characteristics in a full-scale MSW circulating fluidized bed (CFB) incinerator, using a newly designed deposit probe that was fitted with six thermocouples and four removable half rings. The influence of probe exposure time and probe surface temperature (500, 560, and 700°C) on ash deposit formation rate was investigated. The results indicate that the deposition mass and collection efficiency achieve a minimum at the probe surface temperature of 560°C. Ash particles are deposited on both the windward and leeward sides of the probe by impacting and thermophoretic/condensation behavior. The major inorganic elements present in the ash deposits are Ca, Al and Si. Compared to ash deposits formed on the leeward side of the probe, windward-side ash deposits contain relatively higher Ca and S concentrations, but lower levels of Al and Si. Among all cases at different surface temperatures, the differences in elemental composition of the ash deposits from the leeward side are insignificant. However, as the surface temperature increases, the concentrations of Al, Si, K and Na in the windward-side ash deposits increase, but the Ca concentration is reduced. Finally, governing mechanisms are proposed on the basis of the experimental data, such as deposit morphology, elemental composition and thermodynamic calculations.

  14. Ash Deposit Formation and Deposit Properties. A Comprehensive Summary of Research Conducted at Sandia's Combustion Research Facility

    Energy Technology Data Exchange (ETDEWEB)

    Larry L. Baxter

    2000-08-01

    This report summarizes experimental and theoretical work performed at Sandia's Combustion Research Facility over the past eight years on the fate of inorganic material during coal combustion. This work has been done under four broad categories: coal characterization, fly ash formation, ash deposition, and deposit property development. The objective was to provide sufficient understanding of these four areas to be able to predict coal behavior in current and advanced conversion systems. This work has led to new characterization techniques for fuels that provide, for the first time, systematic and species specific information regarding the inorganic material. The transformations of inorganic material during combustion can be described in terms of the net effects of the transformations of these individual species. Deposit formation mechanisms provide a framework for predicting deposition rates for abroad range of particle sizes. Predictions based on these rates many times are quite accurate although there are important exceptions. A rigorous framework for evaluating deposit has been established. Substantial data have been obtained with which to exercise this framework, but this portion of the work is less mature than is any other. Accurate prediction of deposit properties as functions of fuel properties, boiler design, and boiler operating conditions represents the single most critical area where additional research is needed.

  15. The preferential erosion and deposition of heavy particles over erodible beds

    Science.gov (United States)

    Salesky, Scott; Giometto, Marco; Lehning, Michael; Parlange, Marc

    2016-11-01

    The erosion, transport, and deposition of heavy particles over erodible beds by turbulent flow is a significant process in the context of sediment transport, aeolian processes, and snow transport in alpine and polar regions. While it is well-known that terrain features can lead to spatially inhomogeneous deposition velocities, a systematic study considering the effects of terrain and particle properties has not been conducted to date using large eddy simulation (LES). Using a recently developed Eulerian finite-volume model for the transport of heavy particles over complex terrain in LES, we perform simulations of the transport, erosion, and deposition of heavy particles over idealized surface topography. A new model for particle ejection in the saltation layer subject to the constraints of energy and momentum conservation is adapted for use in an Eulerian framework. A suite of simulations is conducted in order to explore the governing parameters relevant for erosion and deposition (e.g. Stokes number, Rouse number, Shields number, surface cohesion) and to investigate the influence of the mean flow vs. turbulent fluxes for the observed erosion and deposition patterns. Implications for model development will be highlighted, and numerical considerations will be discussed.

  16. Runoff and erosion effects after prescribed fire and wildfire on volcanic ash-cap soils

    Science.gov (United States)

    AFTER PRESCRIBED BURNS AT THREE LOCATIONS AND ONE WILDFIRE, RAINFALL SIMULATIONS STUDIES WERE COMPLETED TO COMPARE POSTFIRE RUNOFF RATES AND SEDIMENT YIELDS ON ASH-CAP SOIL IN CONIFER FOREST REGIONS OF NOTHERN IDAHO AND WESTERN MONTANA. THE MEASURED FIRE EFFECTS WERE DIFFERENTIATED BY BURN SEVERITY ...

  17. In search for a compromise between biodiversity conservation and human health protection in restoration of fly ash deposits: effect of anti-dust treatments on five groups of arthropods.

    Science.gov (United States)

    Tropek, Robert; Cerna, Ilona; Straka, Jakub; Kocarek, Petr; Malenovsky, Igor; Tichanek, Filip; Sebek, Pavel

    2016-07-01

    Recently, fly ash deposits have been revealed as a secondary refuge of critically endangered arthropods specialised on aeolian sands in Central Europe. Simultaneously, these anthropogenic habitats are well known for their negative impact on human health and the surrounding environment. The overwhelming majority of these risks are caused by wind erosion, the substantial decreasing of which is thus necessary. But, any effects of anti-dust treatments on endangered arthropods have never been studied. We surveyed communities of five arthropod groups (wild bees and wasps, leafhoppers, spiders, hoverflies and orthopteroid insects) colonising three fly ash deposits in the western Czech Republic. We focused on two different anti-dust treatments (~70 and 100 % cover of fly ash by barren soil) and their comparison with a control of bare fly ash. Altogether, we recorded 495 species, including 132 nationally threatened species (eight of them were considered to be extinct in the country) and/or 30 species strictly specialised to drift sands. Bees and wasps and leafhoppers contained the overwhelming majority of species of the highest conservation interest; a few other important records were also in spiders and orthopteroids. Total soil cover depleted the unique environment of fly ash and thus destroyed the high conservation potential of the deposits. On the other hand, partial coverage (with ~30 % of bare fly ash) still offered habitats for many of the most threatened species, as we showed by both regression and multivariate analyses, with a decrease of wind erosion. This topic still needs much more research interest, but we consider mosaic-like preservation of smaller spots of fly ash as one of the possible compromises between biodiversity and human health.

  18. Study on the structural change and heat transfer characteristics of ash deposit layers in the coal gasifier

    Energy Technology Data Exchange (ETDEWEB)

    Kazuyoshi Ichikawa; Yuso Oki; Jun Inumaru [Central Research Institute of Electric Power Industry (CREIPI) (Japan)

    2005-07-01

    Ash deposition is often observed in the coal gasifier. As it may interfere the operation of gasifier, in case of excessive deposition, a study is needed to evaluate the ash deposition characteristics on the gasifier wall, its ability to grow after deposition, and influence of the formation of deposition layers on the heat transfer capability in advance. CRIEPI has conducted a study of the basic gasification process and operational technology using a 2T/D air-blown pressurized entrained-flow coal gasifier (2 T/D gasifier) since 1983. In a previous work, the authors calculated the ash liquid phase ratio as an index of the ash melting characteristics in correspondence to continuous temperature change, and established the relationship with the ash deposition characteristics. We also proposed as the technique to predict ash deposition characteristics in the gasifier by construction of a model based upon the correlation and introduction into the numerical analysis code. In this report, the relationship between the sintering structure and the heat transfer characteristics of deposition layer is studied. The heat transfer mechanism in the layer was also pursued. 7 refs., 6 figs., 1 tab.

  19. EDDA: integrated simulation of debris flow erosion, deposition and property changes

    OpenAIRE

    Chen, H. X.; Zhang, L. M.

    2014-01-01

    Debris flow material properties change during the initiation, transportation and deposition processes, which influences the runout characteristics of the debris flow. A quasi-three-dimensional depth-integrated numerical model, EDDA, is presented in this paper to simulate debris flow erosion, deposition and induced material property changes. The model considers changes in debris flow density, yield stress and dynamic viscosity during the flow process. The yie...

  20. Predicting soil erosion and deposition effects on plant establishment: A key to increasing restoration success

    Science.gov (United States)

    Soil erosion and deposition can result in significant modification of the soil profile, including changes in soil surface texture and structure. A series of field studies and modeling exercises are currently being completed at the USDA-ARS Jornada Experimental Range, located in the northern Chihuahu...

  1. Duststones on Mars: source, transport, deposition and erosion

    Science.gov (United States)

    Bridges, Nathan T.; Muhs, Daniel R.; Grotzinger, John P.; Milliken, Ralph E.

    2012-01-01

    Dust is an abundant material on Mars, and there is strong evidence that it is a contributor to the rock record as “duststone,” analogous in many ways to loess on Earth. Although a common suite of dust formation mechanisms has operated on the two planets, fundamental differences in environments and geologic histories have resulted in vastly different weighting functions, causing distinct depositional styles and erosional mechanisms. On Earth, dust is derived predominantly from glacial grinding and, in nonglacial environments, by other processes, such as volcanism, eolian abrasion, and fluvial comminution. Hydrological and biological processes convert dust accumulations to loess deposits. Active hydrology also acts to clean dust from the atmosphere and convert loess into soil or erode it entirely. On Mars, glacial production of dust has been minor, with most fine particles probably produced from ancient volcanic, impact, and fluvial processes. Dust is deposited under arid conditions in which aggregate growth and cementation are the stabilizing agents. Thick accumulations result in duststone.

  2. A lithium depth-marker technique for rapid erosion and deposition measurements

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, R.M., E-mail: rsulli@psfc.mit.edu; Pang, A.; Martinez-Sanchez, M.; Whyte, D.G.

    2014-01-15

    Highlights: • Rutherford backscattering spectrometry (RBS) to determine the change in depth. • Rutherford backscattering spectrometry (RBS) to determine the change in depth. • Rutherford backscattering spectrometry (RBS) to determine the change in depth. -- Abstract: A novel, high-resolution technique has been developed for the measurement of erosion and deposition in solid material surfaces. The technique uses a combination of nuclear reaction analysis (NRA) and Rutherford backscattering spectrometry (RBS) to determine the change in depth of a previously implanted marker layer consisting of {sup 7}Li. A scoping study shows that {sup 7}Li is an ideal marker candidate due to a high Q (∼18 MeV) nuclear reaction, {sup 7}Li(p,α){sup 4}He. Net erosion or deposition is measured by NRA of modified alpha energy passing through the bulk material. The reaction’s high cross-section provides for the fast time resolution needed to measure erosion from high flux plasmas, and a highly penetrating proton beam provides for a large range of erosion/deposition measurements. Additionally, the implantation of low-Z Li leads to relatively low vacancy concentrations in the solid material due to implantation. This technique thus provides greater assurance that the measured erosion rate is indicative of the solid material: due to both the low vacancy production and the fact that no films or deposits are involved. Validation was performed by comparing the measured and predicted amount of erosion based on previously measured sputtering yields; the two were found to agree, within the uncertainty of the experiment. The depth resolution of the techniques is ∼60 nm at a net erosion depth of about 1 μm. The benefits of this technique are summarized as: short time scales (minutes) to obtain results, the marker layer can be used in any solid material, greater assurance that the measured erosion is indicative of the unperturbed solid material, and the continuous monitoring of the

  3. Erosion Modeling of the Pyroclastic Flow Deposits From the 1991 Eruption of Mt. Pinatubo, Philippines

    Science.gov (United States)

    Daag, A. S.; Daag, A. S.

    2001-12-01

    The June 15-16 1991 eruption of Mt. Pinatubo had emplaced approximately 6km3 of sand-size pumiceous pyroclastic flow deposits that affected 8 major watersheds surrounding the volcano. These deposits attained thickness of about 200m on deep channels and remained unconsolidated, when it rains they are the main source of lahars for several years. This study focuses on the eastern watersheds namely, Sacobia-Pasig-Abacan, because it posed the greatest risk due to lahar flow hazards being the highly developed and the most populated. In order to study and monitor the erosions of the pyroclastic flow deposits, several methods were used. Yearly direct quantification of erosions were made using multi-temporal Digital Elevation Models (DEMs), aerial photos and satellite imageries. GIS and image processing software were used to compute erosion volumes and in determining geomorphic changes. To understand the different parameters affecting the erosiveness of in-situ deposits, a portable rainfall simulator was used. Regression modeling was utilized to determine the effect of the different parameters in the erosion such as, slope, rainfall intensity, grain size and shear strength of the deposits. Yearly rainfall events that yielded lahars were all analyzed to get the yearly deviations and relationships of the rainfall-lahar triggering thresholds. A physically based distributed simulation model was developed using PCRaster program that simulates the catchments' response on a certain rainfall and predicts the lahar hydrographs. This model utilizes DEM and other catchment's physical parameters. The flow predicts the volumetric ratio of sediments and water using Meunier mudflow equation.

  4. Excess erosion and deposition in the catchments of Kamenichka and Radanjska river, Republic of Macedonia

    Directory of Open Access Journals (Sweden)

    Milevski Ivica

    2009-01-01

    Full Text Available One of the greatest environmental problems in the Republic of Macedonia is accelerated soil erosion caused by high human impact during last centuries on to the susceptible landscape. Natural factors itself are very suitable for development of such erosion: from mostly erodible rocks and soils on the mountainous slopes around the depressions, to the generally continental, semi-arid climate and slight vegetation cover. Because of that, there are sites with severe erosion and deposition like those in the catchments of Kamenichka River and Radanjska River, two torrential tributaries of Bregalnica. In these catchments there are varieties of erosion-related landforms: rills, gullies, badlands, landslides, as well as valley-type alluvial fans and huge alluvial plains. Such devastating accelerated erosion and deposition largely transformed original landscape, and represent significant environmental, social, and economic problem in local areas. Because of that, some measures of protection and conservation were taken from 1950-ties in both catchments. But it is obvious that the final effect of these measures is far of enough, so new efforts must be implemented to revitalizing these abandoned lands.

  5. Ash deposition and high temperature corrosion at combustion of aggressive fuels

    Energy Technology Data Exchange (ETDEWEB)

    Hede Larsen, O. [I/S Fynsvaerket, Faelleskemikerne, Odense (Denmark); Henriksen, N. [Elsamprojekt A/S, Faelleskemikerne, Fredericia (Denmark)

    1996-12-01

    In order to reduce CO{sub 2} emission, ELSAM is investigating the possibilities of using biomass - mainly straw - for combustion in high efficiency power plants. As straw has very high contents of chlorine and potassium, a fuel with high corrosion and ash deposition propensities has been introduced. ELSAM has investigated 3 ultra supercritical boiler concepts for combustion of straw alone or together with coal: (1) PF boilers with a relatively low share of straw, (2) CFB boilers with low to high share of straw and (3) vibrating grate boilers with 100% straw. These investigations has mainly been full-scale tests with straw fed into existing boilers. Corrosion tests have been performed in these boilers using temperature regulated probes and in-plant test tubes in existing superheaters. The corrosion has been determined by detailed measurements of wall thickness reduction and light optical microscopic measurements of the material degradation due to high temperature corrosion. Corrosion mechanisms have been evaluated using SEM/EDX together with thermodynamical considerations based on measurements of the chemical environment in the flue gas. Ash deposition is problematic in CFB boilers and in straw fired boilers, especially in years with high potassium and chlorine content of the straw. This ash deposition also is related to condensation of KCl and can probably only be handled by improved cleaning devices. (EG)

  6. Geology and mineral deposits of the Jabal ash Shumta quadrangle, Kingdom of Saudi Arabia

    Science.gov (United States)

    Hummel, C.L.; Ankary, Abdullah O.

    1972-01-01

    Rocks, structures, and mineral deposits which are the result of both the older Halaban petro-tectonic cycle and the younker Najd Wrench Fault deformation are present in the Ash Shumta area. Northward-trending belts of granitic rocks and folded, layered metavolcanic and metasedimentary rocks of the Halaban Formation which they intrude represent the effects of the Halaban cycle. These older rocks are everywhere transected and deformed by northwestward- and northeastward-striking fractures and strike-slip faults and by eastward-striking fractures and fracture-controlled silicic dikes which belong to the Najd Wrench Fault deformation. Several kinds of epigenetic mineral deposits of hydrothermal origin are present throughout the Ash Shumta area. All occur in or ape closely associated with structures of the Najd Wrench Fault deformation. The mineralization which produced the deposits is thought to have taken place during the period of deformation which produced the Najd Wrench Fault structures. The hydrothermal deposits include many metalliferous quartz veins most of which occur in three mineralized areas: two major areas at Jabal Ash Shumta and Jabal El Khom in the northern half of the quadrangle and a minor area along Wadj al Boharah in the southeastern part of the quadrangle. The metalliferous lodes possess the only economic potential in the area of the Jabal Ash Shumta quadrangle. These lodes consist mainly of gold and base metal-bearing quartz veins, some of which were mined for gold in ancient times. The mineralized area at Jabal Ash Shumta has the best of these veins. Higher temperature veins with wolframite as a major constituent and beryl as a minor one occur in a granite cupola in the eastern part of the El Khom area. These veins have altered, gneissen-like wall rocks. Although the grade of the veins is low at the surface, the made could increase at depth. The tungsten-bearing veins and El Khom area possess the greatest economic promise in the Jabal Ash Shumta

  7. Debris-flow deposits and watershed erosion rates near southern Death Valley, CA, United States

    Science.gov (United States)

    Schmidt, K.M.; Menges, C.M.; ,

    2003-01-01

    Debris flows from the steep, granitic hillslopes of the Kingston Range, CA are commensurate in age with nearby fluvial deposits. Quaternary chronostratigraphic differentiation of debris-flow deposits is based upon time-dependent characteristics such as relative boulder strength, derived from Schmidt Hammer measurements, degree of surface desert varnish, pedogenesis, and vertical separation. Rock strength is highest for Holocene-aged boulders and decreases for Pleistocene-aged boulders weathering to grus. Volumes of age-stratified debris-flow deposits, constrained by deposit thickness above bedrock, GPS surveys, and geologic mapping, are greatest for Pleistocene deposits. Shallow landslide susceptibility, derived from a topographically based GIS model, in conjunction with deposit volumes produces watershed-scale erosion rates of ???2-47 mm ka-1, with time-averaged Holocene rates exceeding Pleistocene rates. ?? 2003 Millpress.

  8. Development of slurry erosion resistant materials by laser-based direct metal deposition process

    Science.gov (United States)

    Yarrapareddy, Eswar

    The current research deals with the development of slurry erosion resistant materials by the laser-based direct metal deposition (LBDMD) process for different industrial applications. The work started with the development of functionally graded materials using nickel-tungsten carbide (Ni-Tung) powders and finally produced a better erosion resistant materials system by reinforcing nano-tungsten carbide particles with nickel-tungsten carbide powders. Functionally graded materials (FGMs) consisting of Ni-Tung) powders with different concentrations of tungsten carbide particles are successfully deposited by the LBDMD process on 4140 Steel substrates. The slurry erosion behavior of the Ni-Tung FGMs is studied at different impingement angles. The slurry erosion tests are performed at Southern Methodist University's Center for Laser Aided Manufacturing using a centrifugal force driven erosion testing machine. For the purpose of comparison, Ni-Tung 40 depositions and 4140 steel samples are also tested. The results indicate that the LBDMD process is able to deposit defect-free Ni-Tung FGMs with a uniform distribution of tungsten carbide particles in a nickel-based matrix. The slurry erosion resistance of Ni-Tung FGMs is observed to be much better than that of the Ni-Tung 40 and 4140 steels. The superior slurry erosion resistance of Ni-Tung FGMs is attributed to the presence of large amounts of very hard tungsten carbide particles. The material removal rate (MRR) from erosion decreases with a decrease in the impingement angle, except at a 45 degree impingement angle on 4140 steel. The relationship among the material removal rates, the craters depth of penetration, the areas of the craters formed, the average surface roughness values, and the impingement angles is established for Ni-Tung FGMs, Ni-Tung 40, and 4140 steels. The surface profiles of the eroded samples are analyzed by measuring the depth of penetration of the craters formed by the slurry jet using a needle

  9. EDDA 1.0: integrated simulation of debris flow erosion, deposition and property changes

    Science.gov (United States)

    Chen, H. X.; Zhang, L. M.

    2015-03-01

    Debris flow material properties change during the initiation, transportation and deposition processes, which influences the runout characteristics of the debris flow. A quasi-three-dimensional depth-integrated numerical model, EDDA (Erosion-Deposition Debris flow Analysis), is presented in this paper to simulate debris flow erosion, deposition and induced material property changes. The model considers changes in debris flow density, yield stress and dynamic viscosity during the flow process. The yield stress of the debris flow mixture determined at limit equilibrium using the Mohr-Coulomb equation is applicable to clear water flow, hyper-concentrated flow and fully developed debris flow. To assure numerical stability and computational efficiency at the same time, an adaptive time stepping algorithm is developed to solve the governing differential equations. Four numerical tests are conducted to validate the model. The first two tests involve a one-dimensional debris flow with constant properties and a two-dimensional dam-break water flow. The last two tests involve erosion and deposition, and the movement of multi-directional debris flows. The changes in debris flow mass and properties due to either erosion or deposition are shown to affect the runout characteristics significantly. The model is also applied to simulate a large-scale debris flow in Xiaojiagou Ravine to test the performance of the model in catchment-scale simulations. The results suggest that the model estimates well the volume, inundated area, and runout distance of the debris flow. The model is intended for use as a module in a real-time debris flow warning system.

  10. The erosion performance of cold spray deposited metal matrix composite coatings with subsequent friction stir processing

    Science.gov (United States)

    Peat, Tom; Galloway, Alexander; Toumpis, Athanasios; McNutt, Philip; Iqbal, Naveed

    2017-02-01

    This study forms an initial investigation into the development of SprayStir, an innovative processing technique for generating erosion resistant surface layers on a chosen substrate material. Tungsten carbide - cobalt chromium, chromium carbide - nickel chromium and aluminium oxide coatings were successfully cold spray deposited on AA5083 grade aluminium. In order to improve the deposition efficiency of the cold spray process, coatings were co-deposited with powdered AA5083 using a twin powder feed system that resulted in thick (>300 μm) composite coatings. The deposited coatings were subsequently friction stir processed to embed the particles in the substrate in order to generate a metal matrix composite (MMC) surface layer. The primary aim of this investigation was to examine the erosion performance of the SprayStirred surfaces and demonstrate the benefits of this novel process as a surface engineering technique. Volumetric analysis of the SprayStirred surfaces highlighted a drop of approx. 40% in the level of material loss when compared with the cold spray deposited coating prior to friction stir processing. Micro-hardness testing revealed that in the case of WC-CoCr reinforced coating, the hardness of the SprayStirred material exhibits an increase of approx. 540% over the unaltered substrate and 120% over the as-deposited composite coating. Microstructural examination demonstrated that the increase in the hardness of the MMC aligns with the improved dispersion of reinforcing particles throughout the aluminium matrix.

  11. Using 137Cs Tracer Technique to Evaluate Erosion and Deposition of Black Soil in Northeast China

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Soil and water losses through erosion have been serious in the black soil region of Northeast China. Therefore, a sloping cultivated land in Songnen Plain was selected as a case study to: 1) determine the 137Cs reference inventory in the study area; 2) calculate erosion and deposition rates of black soil on different slope locations; 3) conduct a sensitivity analysis of some model parameters; and 4) compare overall outputs using four different models. Three transects were set in the field with five slope locations for each transect, including summit, shoulder-slope, back-slope, foot-slope, and toe-slope. Field measurements and model simulation were used to estimate a bomb-derived 137Cs reference inventory in the study area.Soil erosion and deposition rates were estimated using four 137Cs models and percentage of 137Cs loss/gain. The 137Cs reference value in the study area was 2 232.8 Bq m-2 with 137Cs showing a clear topographic pattern, decreasing from the summit to shoulder-slope, then increasing again at the foot-slope and reaching a maximum at the toe-slope. Predicted soil redistribution rates for different slope locations varied. Among models, the Yang Model (YANG-M) overestimated erosion loss but underestimated deposition. However, the standard mass balance model (MBM1) gave predictions similar to a mass balance model incorporating soil movement by tillage (MBM2). Sensitivity analysis of the proportion factor γand distribution pattern of 137Cs in the surface layer demonstrated the impact of 137Cs enrichment on calculation of the soil erosion rate. Factors influencing the redistribution of fallout 137Cs in landscape should be fully considered as calculating soil redistribution rate using 137Cs technique.

  12. Insights into the Toba Super-Eruption using SEM Analysis of Ash Deposits

    Science.gov (United States)

    Gatti, E.; Achyuthan, H.; Durant, A. J.; Gibbard, P.; Mokhtar, S.; Oppenheimer, C.; Raj, R.; Shridar, A.

    2010-12-01

    The ~74 ka Youngest Toba Tuff (YTT) super-eruption of Toba volcano, Northern Sumatra, was the largest eruption of the Quaternary (magnitude M= 8.8) and injected massive quantities of volcanic gases and ash into the stratosphere. YTT deposits covered at least 40,000,000 km2 of Southeast Asia and are preserved in river valleys across peninsular India and Malaysia, and in deep-sea tephra layers in the Indian Ocean, Bay of Bengal and South China Sea. Initial studies hypothesized the eruption caused immediate and substantial global cooling during the ~ 1 kyr between Dansgaard-Oeschger events 19 and 20 which devastated ecosystems and hominid populations. A more recent review argues against severe post-YTT climatic deterioration and cannot find clear evidence for considerable impacts on ecosystems or bio-diversity. The determination of the eruptive parameters is crucial in this issue to document the eruption and understand the potential impacts from future super-volcanic eruptions. Volcanic ash deposits can offer dramatic insights into key eruptive parameters, including magnitude, duration and plume height. The composition and shape of volcanic ashes can be used to interpret physical properties of an erupting magma and tephra transport, while textural characteristics such as grain roughness and surface vescicularity can provide insights into degassing history, volatile content and explosive activity of the volcano. We present a stratigraphic and sedimentological analysis of YTT deposits in stratified contexts at three localities in India, at two sites in Peninsular Malaysia, and at several localities around Lake Toba and on Samosir Island, Sumatra. These sites offer excellent constraints on the spatial distribution of YTT deposits which can be used to infer dispersal directions of the cloud, and provide insights into environmental controls on preservation of tephra beds. The research aims at a systematic interpretation of the Toba tephra to understand the volcanic

  13. Comparisons of Fly Ash and Deposition Between Air and Oxy-Fuel Combustion in Bench-Scale Fluidized Bed with Limestone Addition

    Institute of Scientific and Technical Information of China (English)

    Zhimin Zheng; Hui Wang∗; Yongjun Guo; Li Yang; Shuai Guo; Shaohua Wu

    2015-01-01

    In Oxy⁃fuel circulating fluidized bed, the residual CaO particles may react with high concentration of CO2 in flue gas to form bonded deposit on heat transfer surfaces in backpass when limestone is used as a sorbent to capture SO2 .In this paper, experiments were designed on ash deposition in a bench⁃scale fluidized bed under oxy⁃fuel and air atmosphere. A novel ash deposit sampling probe was used to simulate the tubes of tail surfaces. The chemical composition of fly ash and ash deposit from both air⁃firing and oxy⁃fuel firing cases were analyzed by Inductively Coupled Plasma⁃Atomic Emission Spectrometry ( ICP⁃AES ) and Scanning Electron Microscopy ( SEM) , respectively. The degrees of carbonation reaction of ash deposits were measured by Thermo Gravimetric Analysis. The results showed that there are distinct differences in fly ash deposition rate between oxy⁃fuel and air firing cases, and oxy⁃fuel combustion with limestone addition can affect chemical composition of fly ash and ash deposit, especially for elements of Ca, Na, K, and S. However, the carbonation reaction degree of ash deposits is found weak, which is due to the relatively low CaO content in ash deposit or not long enough of the sampling time.

  14. Modelling of carbon erosion and re-deposition for the EAST movable limiter

    Science.gov (United States)

    Xie, Hai; Ding, Rui; Chen, Junling; Sun, Jizhong

    2017-04-01

    The movable limiter at the mid-plane of the Experimental Advanced Superconducting Tokamak (EAST) with carbon coatings on the surface was exposed to edge plasma to study the material erosion and re-deposition. After the experiments, the carbon erosion and re-deposition is modelled using the 3D Monte Carlo code ERO. The geometry of the movable limiter, 3D configuration of the plasma parameters and electromagnetic fields under both limiter and divertor configurations have been implemented into the code. In the simulations, the main uncertain parameters such as carbon concentration ρ c in the background plasma and cross-field transport coefficient D ⊥ in the vicinity of surface according to the ‘funneling model’, have been studied in comparison with experiments. The parameter ρ c mainly influences the net erosion and deposition profiles of the two sides of the movable limiter, while D ⊥ mostly changes the profiles on the top surface. Supported by the National Magnetic Confinement Fusion Science Program of China (Nos. 2013GB107004 and 2013GB105003), National Natural Science Foundation of China (Nos. 11375010, 11675218 and 11005125), and the Sino-German Center for Research Promotion under contract No GZ769.

  15. Modelling of carbon erosion and re-deposition for the EAST movable limiter

    Science.gov (United States)

    Hai, XIE; Rui, DING; Junling, CHEN; Jizhong, SUN

    2017-04-01

    The movable limiter at the mid-plane of the Experimental Advanced Superconducting Tokamak (EAST) with carbon coatings on the surface was exposed to edge plasma to study the material erosion and re-deposition. After the experiments, the carbon erosion and re-deposition is modelled using the 3D Monte Carlo code ERO. The geometry of the movable limiter, 3D configuration of the plasma parameters and electromagnetic fields under both limiter and divertor configurations have been implemented into the code. In the simulations, the main uncertain parameters such as carbon concentration ρ c in the background plasma and cross-field transport coefficient D ⊥ in the vicinity of surface according to the ‘funneling model’, have been studied in comparison with experiments. The parameter ρ c mainly influences the net erosion and deposition profiles of the two sides of the movable limiter, while D ⊥ mostly changes the profiles on the top surface. Supported by the National Magnetic Confinement Fusion Science Program of China (Nos. 2013GB107004 and 2013GB105003), National Natural Science Foundation of China (Nos. 11375010, 11675218 and 11005125), and the Sino-German Center for Research Promotion under contract No GZ769.

  16. Review of the ITER diagnostics suite for erosion, deposition, dust and tritium measurements

    Energy Technology Data Exchange (ETDEWEB)

    Reichle, R., E-mail: roger.reichle@iter.org [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St Paul Lez Durance Cedex (France); Andrew, P. [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St Paul Lez Durance Cedex (France); Bates, P. [F4E, Torres Diagonal Litoral B3, Barcelona (Spain); Bede, O.; Casal, N.; Choi, C.H.; Barnsley, R. [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St Paul Lez Durance Cedex (France); Damiani, C. [F4E, Torres Diagonal Litoral B3, Barcelona (Spain); Bertalot, L. [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St Paul Lez Durance Cedex (France); Dubus, G. [F4E, Torres Diagonal Litoral B3, Barcelona (Spain); Ferreol, J.; Jagannathan, G.; Kocan, M.; Leipold, F.; Lisgo, S.W.; Martin, V.; Palmer, J.; Pearce, R. [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St Paul Lez Durance Cedex (France); Philipps, V. [Institut für Energieforschung – Plasmaphysik, Forschungszentrum Jülich GmbH, Association EURATOM – Forschungszentrum Jülich, D-52425 Jülich (Germany); Pitts, R.A. [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St Paul Lez Durance Cedex (France); and others

    2015-08-15

    Dust and tritium inventories in the vacuum vessel have upper limits in ITER that are set by nuclear safety requirements. Erosion, migration and re-deposition of wall material together with fuel co-deposition will be largely responsible for these inventories. The diagnostic suite required to monitor these processes, along with the set of the corresponding measurement requirements is currently under review given the recent decision by the ITER Organization to eliminate the first carbon/tungsten (C/W) divertor and begin operations with a full-W variant Pitts et al. [1]. This paper presents the result of this review as well as the status of the chosen diagnostics.

  17. The fate of SOC during the processes of water erosion and subsequent deposition: a field study.

    Science.gov (United States)

    van Hemelryck, H.; Govers, G.; van Oost, K.; Merckx, R.

    2009-04-01

    Globally soils are the largest terrestrial pool of carbon (C). A relatively small increase or decrease in soil carbon content due to changes in land use or management practices could therefore result in a significant net exchange of C between the soil C reservoir and the atmosphere. As such, the geomorphic processes of water and tillage erosion have been identified to significantly impact on this large pool of soil organic carbon (SOC). Soil erosion, transport and deposition not only result in redistribution of sediments and associated carbon within a landscape, but also affect the exchange of C between the pedosphere and the atmosphere. The direction and magnitude of an erosion-induced change in the global C balance is however a topic of much debate as opposing processes interact: i) At eroding sites a net uptake of C could be the result of reduced respiration rates and continued inputs of newly produced carbon. ii) Colluvial deposition of eroded sediment and SOC leads to the burial of the original topsoil and this may constrain the decomposition of its containing SOC. iii) Eroded sediment could be transported to distal depositional environments or fluvial systems where it will either be conserved or become rapidly mineralized. iv) Increased emission of CO2 due to erosion may result from the disruptive energy of erosive forces causing the breakdown of aggregates and exposing previously protected SOC to microbial decomposition. The above-mentioned processes show a large spatial and temporal variability and assessing their impact requires an integrated modeling approach. However uncertainties about the basic processes that accompany SOC displacement are still large. This study focuses on one of these large information gaps: the fate of eroded and subsequently deposited SOC. A preceding experimental study (Van Hemelryck et al., 2008) was used to identify controlling factors (erosional intensity, changes in soil structure,…). However this experimental research

  18. Experimental and numerical studies on laser-based powder deposition of slurry erosion resistant materials

    Science.gov (United States)

    Balu, Prabu

    Slurry erosion (the removal of material caused by the randomly moving high velocity liquid-solid particle mixture) is a serious issue in crude oil drilling, mining, turbines, rocket nozzles, pumps, and boiler tubes that causes excessive downtime and high operating costs as a result of premature part failure. The goal of this research is to enhance the service life of high-value components subjected to slurry erosion by utilizing the concept of functionally graded metal-ceramic composite material (FGMCCM) in which the favorable properties of metal (toughness, ductility, etc.) and ceramic (hardness) are tailored smoothly to improve erosion resistance. Among the potential manufacturing processes, such as the laser-based powder deposition (LBPD), the plasma transferred arc (PTA), and the thermal spray the LBPD process offers good composition and microstructure control with a high deposition rate in producing the FGMCCM. This research focuses on the development of nickel-tungsten carbide (Ni-WC) based FGMCCM using the LBPD process for applications the above mentioned. The LBPD of Ni-WC involves the introduction of Ni and WC powder particle by an inert gas into the laser-formed molten pool at the substrate via nozzles. The LBPD of Ni-WC includes complex multi-physical interactions between the laser beam, Ni-WC powder, substrate, and carrier and shielding gases that are governed by a number of process variables such as laser power, scanning speed, and powder flow rate. In order to develop the best Ni-WC based slurry erosion resistant material using the LBPD process, the following challenges associated with the fabrication and the performance evaluation need to be addressed: 1) flow behavior of the Ni-WC powder and its interaction with the laser, 2) the effect of the process variables, the material compositions, and the thermo-physical properties on thermal cycles, temperature gradient, cooling rate, and residual stress formation within the material and the subsequent

  19. Quantification of Ash Deposit Build-up and Removal in a Straw and Wood Suspension-Fired Boiler

    DEFF Research Database (Denmark)

    Shafique Bashir, Muhammad; Jensen, Peter Arendt; Frandsen, Flemming

    2011-01-01

    to determine derivative deposit formation (DDF) rate. The overall derivative deposit formation (DDF) rates were measured to be between 0 to 3200 g/m2h. Large differences in the DDF rates are observed without the causes presently known. However, the results indicated that an increase in flue gas temperature...... the deposit mass load was very high on the flue gas facing side of the probe. Results of deposit removal by using sootblowing probe indicated that probe exposure time and surface temperature significantly influence the Peak Impact Pressure (PIP) needed to remove the deposits. The video recordings of all...... deposit probe experiments revealed that deposit shedding was primarily through debonding from the surface of the tubes in the superheater region. Chemical analysis of fly ashes indicated that during suspension­firing of straw and wood, the fly ashes were rich in Si, K, Ca and Cl, but the relative...

  20. Divergent taxonomic and functional responses of microbial communities to field simulation of aeolian soil erosion and deposition.

    Science.gov (United States)

    Ma, Xingyu; Zhao, Cancan; Gao, Ying; Liu, Bin; Wang, Tengxu; Yuan, Tong; Hale, Lauren; Nostrand, Joy D Van; Wan, Shiqiang; Zhou, Jizhong; Yang, Yunfeng

    2017-08-01

    Aeolian soil erosion and deposition have worldwide impacts on agriculture, air quality and public health. However, ecosystem responses to soil erosion and deposition remain largely unclear in regard to microorganisms, which are the crucial drivers of biogeochemical cycles. Using integrated metagenomics technologies, we analysed microbial communities subjected to simulated soil erosion and deposition in a semiarid grassland of Inner Mongolia, China. As expected, soil total organic carbon and plant coverage were decreased by soil erosion, and soil dissolved organic carbon (DOC) was increased by soil deposition, demonstrating that field simulation was reliable. Soil microbial communities were altered (p erosion and deposition, with dramatic increase in Cyanobacteria related to increased stability in soil aggregates. amyA genes encoding α-amylases were specifically increased (p = .01) by soil deposition and positively correlated (p = .02) to DOC, which likely explained changes in DOC. Surprisingly, most of microbial functional genes associated with carbon, nitrogen, phosphorus and potassium cycling were decreased or unaltered by both erosion and deposition, probably arising from acceleration of organic matter mineralization. These divergent responses support the necessity to include microbial components in evaluating ecological consequences. Furthermore, Mantel tests showed strong, significant correlations between soil nutrients and functional structure but not taxonomic structure, demonstrating close relevance of microbial function traits to nutrient cycling. © 2017 John Wiley & Sons Ltd.

  1. Orographic effects on the transport and deposition of volcanic ash: A case study of Mount Sakurajima, Japan

    Science.gov (United States)

    Poulidis, Alexandros P.; Takemi, Tetsuya; Iguchi, Masato; Renfrew, Ian A.

    2017-09-01

    Volcanic ash is a major atmospheric hazard that has a significant impact on local populations and international aviation. The topography surrounding a volcano affects the transport and deposition of volcanic ash, but these effects have not been studied in depth. Here we investigate orographic impacts on ash transport and deposition in the context of the Sakurajima volcano in Japan, using the chemistry-resolving version of the Weather Research and Forecasting model. Sakurajima is an ideal location for such a study because of the surrounding mountainous topography, frequent eruptions, and comprehensive observing network. At Sakurajima, numerical experiments reveal that across the 2-8ϕ grain size range, the deposition of "medium-sized" ash (3-5ϕ) is most readily affected by orographic flows. The direct effects of resolving fine-scale orographic phenomena are counteracting: mountain-induced atmospheric gravity waves can keep ash afloat, while enhanced downslope winds in the lee of mountains (up to 50% stronger) can force the ash downward. Gravity waves and downslope winds were seen to have an effect along the dispersal path, in the vicinity of both the volcano and other mountains. Depending on the atmospheric conditions, resolving these orographic effects means that ash can be transported higher than the initial injection height (especially for ash finer than 2ϕ), shortly after the eruption (within 20 min) and close to the vent (within the first 10 km), effectively modifying the input plume height used in an ash dispersal model—an effect that should be taken into account when initializing simulations.

  2. Changes in soil physical properties of forest floor horizons due to long-term deposition of lignite fly ash

    Energy Technology Data Exchange (ETDEWEB)

    Hartmann, Peter; Fleige, Heiner; Horn, Rainer [Inst. for Plant Nutrition and Soil Science, Christian-Albrechts-Univ. zu Kiel (Germany)

    2010-03-15

    Background, aim, and scope: From the beginning of the twentieth century until the 1990s, energy in Upper Lusatia, Saxony in Eastern Germany was produced at power plants that burnt lignite coals. As a result, alkaline fly ash and aerosols from the combustion of brown coal have accumulated in adjacent areas that are partly under forestry. We ask the question, 'how have these atmospheric depositions of fly ash influenced the soil physical properties (bulk density, particle density, saturated hydraulic conductivity, pore size distribution, and water repellency) of forest floor horizons?' Materials and methods: The experimental sites represented typical soil types and stands of the sylviculturally used areas in the region of Upper Lusatia. Three forest sites were located close to the emission sources, where high amounts of fly ashes accumulated, and three control sites were without fly ash enrichment. Pore size distribution, saturated hydraulic conductivity, and bulk density were examined with undisturbed samples (metal cylinder 100 cm{sup 3}). Disturbed samples were used for the characterization of particle density, texture, and water repellency (Wilhelmy plate method). Additionally, the carbon content was determined. Scanning electron microscopy was used to show fly ash enrichment. Results: The enrichment of mineral fly ash particles could be proven for sites close to the emission source. Using scanning electron microscopy, spherical fly ash particles could be identified. Total quantities of persistent fly ash enrichment amounted to approximately 150-280 Mg ha{sup -1}. The enrichment of fly ash affected the soil-physical characteristics. Close to the emission source (sandy fly ashes), particle density, air capacity, and saturated hydraulic conductivity were significantly increased, whereas the plant available water was significantly reduced. With increasing distance from the emission source (silty fly ashes or no ash enrichment), air capacity and saturated

  3. Soil erosion increases soil microbial activity at the depositional position of eroding slopes

    Science.gov (United States)

    Meng, Xu; Cardenas, Laura M.; Donovan, Neil; Zhang, Junling; Murray, Phil; Zhang, Fusuo; Dungait, Jennifer A. J.

    2016-04-01

    Soil erosion is the most widespread form of soil degradation. Estimation of the impact of agricultural soil erosion on global carbon cycle is a topic of scientific debate, with opposing yet similar magnitude estimates of erosion as a net source or sink of atmospheric carbon. The transport and deposition of eroded agricultural soils affects not only the carbon cycle but other nutrient cycles as well. It has been estimated that erosion-induced lateral fluxes of nitrogen (N) and phosphorus (P) could be similar in magnitude to those from fertilizer application and crop removal (Quinton et al., 2010). In particular, the dynamics of soil N in eroding slopes need to be considered because the management of soil N has profound influences on the functioning of soil microorganisms, which are generally considered as the main biotic driver of soil C efflux. Carbon dioxide (CO2) emissions tend to increase in deposition positions of eroded slopes, diminishing the sink potential of eroded soils C (. As the global warming potential of nitrous oxide (N2O) is 310 times relative to that of CO2, the sink potential of agricultural erosion could easily be negated with a small increase in N2O emissions. Therefore, an investigation of the potential emissions of greenhouse gases, and especially N2O from soils affected by agricultural erosion, are required. In the present study, a field experiment was established with contrasting cultivation techniques of a C4 crop (Zea mays; δ13C = -12.2‰) to introduce 13C-enriched SOC to a soil previously cropped with C3 plants (δ13C = -29.3‰). Soils sampled from the top, middle, bottom and foot slope positions along a distinct erosion pathway were analyzed using 13C-phospholipid fatty acid (PLFA) analysis and incubated to investigate the responses of microorganisms and associated potential emissions of greenhouse gases (GHG). The total C and N contents were greatest in soils at the top slope position, whereas soil mineral N (NO3--N and NH4+-N

  4. Application of different techniques to obtain spatial estimates of debris flows erosion and deposition depths

    Science.gov (United States)

    Boreggio, Mauro; Gregoretti, Carlo; Degetto, Massimo; Bernard, Martino

    2016-04-01

    In Alpine regions, debris flows endanger settlements and human life. Danger mitigation strategies based on the preparation of hazard maps are necessary tools for the current land planning. To date, hazard maps are obtained by using one- or two-dimensional numerical models that are able to forecast the potential inundated areas, after careful calibration of those input parameters that directly affect the flow motion and its interaction with the ground surface (sediments entrainment or deposition). In principle, the reliability of these numerical models can be tested by flume experiments in laboratory using, for example, particles and water mixtures. However, for more realistic materials including coarse particles, the scaling effects are still difficult to account for. In some cases, where there are enough data (for example, point measures of flow depths and velocities or spatial estimation of erosion and deposition depths), these models can be tested against field observations. As it regards the spatial estimates of debris flows erosion and deposition depths, different approaches can be followed to obtain them, mainly depending on both the type and accuracy of the available initial data. In this work, we explain the methods that have been employed to obtain the maps of erosion and deposition depths for three occurred debris flows in the Dolomites area (North-Eastern Italian Alps). The three events are those occurred at Rio Lazer (Trento) on the 4th of November 1966, at Fiames (Belluno) on the 5th of July 2006 and at Rio Val Molinara (Trento) on the 15th of August 2010. For each case study, we present the available initial data and the related problems, the techniques that have been used to overcome them and finally the results obtained.

  5. EDDA: integrated simulation of debris flow erosion, deposition and property changes

    Directory of Open Access Journals (Sweden)

    H. X. Chen

    2014-11-01

    Full Text Available Debris flow material properties change during the initiation, transportation and deposition processes, which influences the runout characteristics of the debris flow. A quasi-three-dimensional depth-integrated numerical model, EDDA, is presented in this paper to simulate debris flow erosion, deposition and induced material property changes. The model considers changes in debris flow density, yield stress and dynamic viscosity during the flow process. The yield stress of debris flow mixture is determined at limit equilibrium using the Mohr–Coulomb equation, which is applicable to clear water flow, hyper-concentrated flow and fully developed debris flow. To assure numerical stability and computational efficiency at the same time, a variable time stepping algorithm is developed to solve the governing differential equations. Four numerical tests are conducted to validate the model. The first two tests involve a one-dimensional dam-break water flow and a one-dimensional debris flow with constant properties. The last two tests involve erosion and deposition, and the movement of multi-directional debris flows. The changes in debris flow mass and properties due to either erosion or deposition are shown to affect the runout characteristics significantly. The model is also applied to simulate a large-scale debris flow in Xiaojiagou Ravine to test the performance of the model in catchment-scale simulations. The results suggest that the model estimates well the volume, inundated area, and runout distance of the debris flow. The model is intended for use as a module in a real-time debris flow warning system.

  6. EDDA: integrated simulation of debris flow erosion, deposition and property changes

    Science.gov (United States)

    Chen, H. X.; Zhang, L. M.

    2014-11-01

    Debris flow material properties change during the initiation, transportation and deposition processes, which influences the runout characteristics of the debris flow. A quasi-three-dimensional depth-integrated numerical model, EDDA, is presented in this paper to simulate debris flow erosion, deposition and induced material property changes. The model considers changes in debris flow density, yield stress and dynamic viscosity during the flow process. The yield stress of debris flow mixture is determined at limit equilibrium using the Mohr-Coulomb equation, which is applicable to clear water flow, hyper-concentrated flow and fully developed debris flow. To assure numerical stability and computational efficiency at the same time, a variable time stepping algorithm is developed to solve the governing differential equations. Four numerical tests are conducted to validate the model. The first two tests involve a one-dimensional dam-break water flow and a one-dimensional debris flow with constant properties. The last two tests involve erosion and deposition, and the movement of multi-directional debris flows. The changes in debris flow mass and properties due to either erosion or deposition are shown to affect the runout characteristics significantly. The model is also applied to simulate a large-scale debris flow in Xiaojiagou Ravine to test the performance of the model in catchment-scale simulations. The results suggest that the model estimates well the volume, inundated area, and runout distance of the debris flow. The model is intended for use as a module in a real-time debris flow warning system.

  7. Identifying pyroclastic and lahar deposits and assessing erosion and lahar hazards at active volcanoes using multi-temporal HSR image analysis and techniques for change detection

    Science.gov (United States)

    Kassouk, Zeineb; Thouret, Jean-Claude; Oehler, Jean-François; Solikhin, Akhmad

    2014-05-01

    The increasing availability of high-spatial resolution (HSR) remote sensing images leads to new opportunities for hazard assessment in the case of active volcanoes. Object-oriented analysis (OOA) of HSR images helps to simultaneously exploit spatial, spectral and contextual information. Here, we identify and delineate pyroclastic density current (PDC) and post-eruption lahar deposits on the south flank of Merapi volcano, Indonesia, after the large 2010 eruption. GeoEye-1 (2010 and 2011) and Pleiades (2012) images were analyzed with an adjusted object-oriented method. The PDC deposits include valley-confined block-and-ash flows (BAFs), unconfined, overbank pyroclastic flows (OPFs), and high-energy surges or ash-cloud surges. We follow up the evolution of the pyroclastic and lahar deposits through changes in the spectral indices calculated in segmented features, which represent the principal units of deposits and devastated areas. The object-oriented analysis has been applied to the pseudo image comprising of three spectral indices (NDWI water index; NDVI vegetation index; and NDRSI Red Soil Index). This pseudo image has enabled us to delineate fifteen units of PDC and lahar deposits, and damaged forests and settlements in the Gendol-Opak catchment (c.80 sqkm). The units represent 75% of classes obtained by photointerpretation of the same image and supported by field observations. A combination of NDWI and NDVI helps to separate areas affected by surges (NDWI 0.3 and NDWIsurges. The NDWI/NDRSI 2010 plot displays two clusters: NDRSI close to 0 is assigned to scoria-rich PFs while NDWI close to 0 and NDRSI4 x106/km2/year) from erosion acting in the Gendol valley, which characterize composite volcanoes after a large eruption. HSR images have also helped to measure geomorphic characteristics (channel capacity/wetted section; longitudinal change in channel confinement, and channel sinuosity) of river channels, which favor overbank and avulsion of lahars on a densely

  8. Oil shale fueled FBC power plant - ash deposits and fouling problems

    Energy Technology Data Exchange (ETDEWEB)

    O. Yoffe; A. Wohlfarth; Y. Nathan; S. Cohen; T. Minster [Geological Survey of Israel, Jerusalem (Israel)

    2007-12-15

    41 MWth oil shale fired demonstration power plant was built in 1989 by PAMA in Mishor Rotem, Negev, Israel. The raw material for the plant is the local 'oil shale', which is in fact organic-rich marl. Since then, and until today, the unit is operated at high reliability and availability. At first, heavy soft fouling occurred due to the Circulating Fluidized Bed Combustion (CFBC) mode of operation, which caused a considerable reduction in the heat transfer coefficient of the heat exchangers. By going over to the Fluidized Bed Combustion (FBC) mode of operation the soft fouling phenomenon stopped at once, the heat transfer coefficient improved, and the power plant could be operated at its designed values. After five months of operation at the FBC mode the boiler had to be shut down because Hard Deposits (HD) blocked physically the passes in the boiler. These deposits could be removed only with the help of mechanical devices. During the first two years the boiler had to be stopped, at least, three times a year for deposit cleaning purposes. Research conducted at the plant and in the laboratories of the Geological Survey of Israel enabled us to understand the mechanism of formation of these deposits. The results showed that the HD are formed in two stages: (1) Deposition of very fine ash particles on the pipes of the boiler, as a result of the impact of larger particles on the pipes. The fine particles adhere to the pipes and to each other, and step by step build the deposit. The growth of the deposit on the pipe surface is always perpendicular to the particles flow direction. (2) The deposits harden due to chemical reactions. 17 refs., 14 figs., 5 tabs.

  9. Satellite-derived mineral mapping and monitoring of weathering, deposition and erosion

    Science.gov (United States)

    Cudahy, Thomas; Caccetta, Mike; Thomas, Matilda; Hewson, Robert; Abrams, Michael; Kato, Masatane; Kashimura, Osamu; Ninomiya, Yoshiki; Yamaguchi, Yasushi; Collings, Simon; Laukamp, Carsten; Ong, Cindy; Lau, Ian; Rodger, Andrew; Chia, Joanne; Warren, Peter; Woodcock, Robert; Fraser, Ryan; Rankine, Terry; Vote, Josh; de Caritat, Patrice; English, Pauline; Meyer, Dave; Doescher, Chris; Fu, Bihong; Shi, Pilong; Mitchell, Ross

    2016-01-01

    The Earth’s surface comprises minerals diagnostic of weathering, deposition and erosion. The first continental-scale mineral maps generated from an imaging satellite with spectral bands designed to measure clays, quartz and other minerals were released in 2012 for Australia. Here we show how these satellite mineral maps improve our understanding of weathering, erosional and depositional processes in the context of changing weather, climate and tectonics. The clay composition map shows how kaolinite has developed over tectonically stable continental crust in response to deep weathering during northwardly migrating tropical conditions from 45 to 10 Ma. The same clay composition map, in combination with one sensitive to water content, enables the discrimination of illite from montmorillonite clays that typically develop in large depositional environments over thin (sinking) continental crust such as the Lake Eyre Basin. Cutting across these clay patterns are sandy deserts that developed <10 Ma and are well mapped using another satellite product sensitive to the particle size of silicate minerals. This product can also be used to measure temporal gains/losses of surface clay caused by periodic wind erosion (dust) and rainfall inundation (flood) events. The accuracy and information content of these satellite mineral maps are validated using published data. PMID:27025192

  10. Satellite-derived mineral mapping and monitoring of weathering, deposition and erosion.

    Science.gov (United States)

    Cudahy, Thomas; Caccetta, Mike; Thomas, Matilda; Hewson, Robert; Abrams, Michael; Kato, Masatane; Kashimura, Osamu; Ninomiya, Yoshiki; Yamaguchi, Yasushi; Collings, Simon; Laukamp, Carsten; Ong, Cindy; Lau, Ian; Rodger, Andrew; Chia, Joanne; Warren, Peter; Woodcock, Robert; Fraser, Ryan; Rankine, Terry; Vote, Josh; de Caritat, Patrice; English, Pauline; Meyer, Dave; Doescher, Chris; Fu, Bihong; Shi, Pilong; Mitchell, Ross

    2016-03-30

    The Earth's surface comprises minerals diagnostic of weathering, deposition and erosion. The first continental-scale mineral maps generated from an imaging satellite with spectral bands designed to measure clays, quartz and other minerals were released in 2012 for Australia. Here we show how these satellite mineral maps improve our understanding of weathering, erosional and depositional processes in the context of changing weather, climate and tectonics. The clay composition map shows how kaolinite has developed over tectonically stable continental crust in response to deep weathering during northwardly migrating tropical conditions from 45 to 10 Ma. The same clay composition map, in combination with one sensitive to water content, enables the discrimination of illite from montmorillonite clays that typically develop in large depositional environments over thin (sinking) continental crust such as the Lake Eyre Basin. Cutting across these clay patterns are sandy deserts that developed <10 Ma and are well mapped using another satellite product sensitive to the particle size of silicate minerals. This product can also be used to measure temporal gains/losses of surface clay caused by periodic wind erosion (dust) and rainfall inundation (flood) events. The accuracy and information content of these satellite mineral maps are validated using published data.

  11. An Experimental Study on Slurry Erosion Resistance of Single and Multilayered Deposits of Ni-WC Produced by Laser-Based Powder Deposition Process

    Science.gov (United States)

    Balu, Prabu; Hamid, Syed; Kovacevic, Radovan

    2013-11-01

    Single and multilayered deposits containing different mass fractions of tungsten carbide (WC) in nickel (Ni)-matrix (NT-20, NT-60, NT-80) are deposited on a AISI 4140 steel substrate using a laser-based powder deposition process. The transverse cross section of the coupons reveals that the higher the mass fraction of WC in Ni-matrix leads to a more uniform distribution through Ni-matrix. The slurry erosion resistance of the fabricated coupons is tested at three different impingement angles using an abrasive water jet cutting machine, which is quantified based on the erosion rate. The top layer of a multilayered deposit (i.e., NT-60 in a two-layer NT-60 over NT-20 deposit) exhibits better erosion resistance at all three tested impingement angles when compared to a single-layer (NT-60) deposit. A definite increase in the erosion resistance is noted with an addition of nano-size WC particles. The relationship between the different mass fractions of reinforcement (WC) in the deposited composite material (Ni-WC) and their corresponding matrix (Ni) hardness on the erosion rate is studied. The eroded surface is analyzed in the light of a three-dimensional (3-D) profilometer and a scanning electron microscope (SEM). The results show that a volume fraction of approximately 62% of WC with a Ni-matrix hardness of 540 HV resulting in the gouging out of WC from the Ni-matrix by the action of slurry. It is concluded that the slurry erosion resistance of the AISI 4140 steel can be significantly enhanced by introducing single and multilayered deposits of Ni-WC composite material fabricated by the laser-based powder deposition process.

  12. Formation of protective deposits by anti-erosive toothpastes-A microscopic study on enamel with artificial defects.

    Science.gov (United States)

    Bradna, Pavel; Vrbova, Radka; Fialova, Vlasta; Housova, Devana; Gojisova, Eva

    2016-09-01

    This study investigated formation of protective deposits on the enamel surface after application of several anti-erosive toothpastes with different active ingredients. NaF-containing Sensodyne Pronamel, SnCl2 /F-based Elmex Erosion Protection and calcium phosphate-based BioRepair Plus Sensitivity Control, SensiShield and Enamel Care toothpastes with claimed anti-erosive properties were tested. Artificial saliva and Elmex Erosion Protection mouth rinse served as control groups. The toothpastes were applied 30 times by a toothbrush for 2 min per day, mouth rinse for 30 s on polished enamel of thirty five human molars (n = 5) with series of five rhomboid-shaped indents of various length prepared by a Knoop indentor. After 15 and 30 applications, the shape of the indents and surface morphology was characterised using light and scanning electron microscopy. At the end of treatment, the samples were exposed to 0.2 wt. % citric acid (pH 3.30) to test resistance of the treated enamel to erosion. Pronounced differences were observed between protective properties of the toothpastes. While Sensodyne Pronamel and BioRepair Plus Sensitivity Control did not produce any protective deposits, Enamel Care formed a compact layer of deposits which protected the enamel surface against erosion. With Elmex Erosion Protection and SensiShield fractured indent edges and scratches on the treated enamel suggested that their abrasive properties prevailed over ability of active ingredients to form deposits. These results revealed that toothpastes with strong potential to form acid-resistant deposits on the enamel surface and of low abrasivity should be used for effective prevention of enamel erosion. SCANNING 38:380-388, 2016. © 2015 Wiley Periodicals, Inc. © Wiley Periodicals, Inc.

  13. Improving Erosion Resistance of Plasma-Sprayed Ceramic Coatings by Elevating the Deposition Temperature Based on the Critical Bonding Temperature

    Science.gov (United States)

    Yao, Shu-Wei; Yang, Guan-Jun; Li, Cheng-Xin; Li, Chang-Jiu

    2017-09-01

    Interlamellar bonding within plasma-sprayed coatings is one of the most important factors dominating the properties and performance of coatings. The interface bonding between lamellae significantly influences the erosion behavior of plasma-sprayed ceramic coatings. In this study, TiO2 and Al2O3 coatings with different microstructures were deposited at different deposition temperatures based on the critical bonding temperature concept. The erosion behavior of ceramic coatings was investigated. It was revealed that the coatings prepared at room temperature exhibit a typical lamellar structure with numerous unbonded interfaces, whereas the coatings deposited at the temperature above the critical bonding temperature present a dense structure with well-bonded interfaces. The erosion rate decreases sharply with the improvement of interlamellar bonding when the deposition temperature increases to the critical bonding temperature. In addition, the erosion mechanisms of ceramic coatings were examined. The unbonded interfaces in the conventional coatings act as pre-cracks accelerating the erosion of coatings. Thus, controlling interlamellar bonding formation based on the critical bonding temperature is an effective approach to improve the erosion resistance of plasma-sprayed ceramic coatings.

  14. Global erosion and deposition patterns in JET with the ITER-like wall

    Energy Technology Data Exchange (ETDEWEB)

    Baron-Wiechec, A., E-mail: aleksandra.baron-wiechec@ccfe.ac.uk [CCFE, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Widdowson, A. [CCFE, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Alves, E. [Instituto Superior Técnico, Instituto de Plasmas e Fusão Nuclear, Universidade de Lisboa, Lisboa (Portugal); Ayres, C.F. [CCFE, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Barradas, N.P. [Instituto Superior Técnico, Instituto de Plasmas e Fusão Nuclear, Universidade de Lisboa, Lisboa (Portugal); Brezinsek, S. [Association EURATOM-Forschungszentrum Jülich, IPP, D-52425 Jülich (Germany); Coad, J.P. [CCFE, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Catarino, N. [Instituto Superior Técnico, Instituto de Plasmas e Fusão Nuclear, Universidade de Lisboa, Lisboa (Portugal); Heinola, K. [Association EURATOM-TEKES, University of Helsinki, PO Box 64, 00014 University of Helsinki (Finland); Likonen, J. [Association EURATOM-TEKES, VTT, PO Box 1000, 02044 VTT, Espoo (Finland); Matthews, G.F. [CCFE, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Mayer, M. [Max-Planck-Institut für Plasmaphysik, 85748 Garching (Germany); Petersson, P.; Rubel, M. [Royal Institute of Technology, Assoc. EURATOM-VR, 100 44 Stockholm (Sweden); Renterghem, W. van; Uytdenhouwen, I. [SCK-CEN, The Belgian Nuclear Research Centre, Boeretang 200, 2400 Mol (Belgium)

    2015-08-15

    A set of Be and W tiles removed after the first ITER-like wall campaigns (JET-ILW) from 2011 to 2012 has been analysed. The results indicate that the primary erosion site is in the main chamber (Be) as in previous carbon campaigns (JET-C). In particular the limiters tiles near the mid-plane are eroded probably during the limiter phases of discharges. W is found at low concentrations on all plasma-facing surfaces of the vessel indicating deposition via plasma transport initially from the W divertor and from main chamber W-coated tiles; there are also traces of Mo (used as an interlayer for these coatings). Deposited films in the inner divertor have a layered structure, and every layer is dominated by Be with some W and O content.

  15. Ash transformation and deposit build-up during biomass suspension and grate firing: Full-scale experimental studies

    DEFF Research Database (Denmark)

    Shafique Bashir, Muhammad; Jensen, Peter Arendt; Frandsen, Flemming

    2012-01-01

    of this study was to investigate ash transformation and deposition behavior in two biomass-fired boilers, firing wheat straw and/or wood. The influence of strawfiring technology (grate and suspension) on the ash transformation, deposit formation rate and deposit characteristics has been investigated. Bulk...... on similar levels. This was observed even though the concentration of fly ash in the flue gas was significantly higher during straw suspension firing. The influence of co-combustion of wood with straw on deposit formation rate, probe heat uptake and deposit characteristicswas also investigated during...... suspension firing conditions. Data from 35% straw suspension firing with wood showed a deposit formation rate of 33 g/m2/h for the first 12 h. The deposit formation rate increased to 41 g/m2/h with 100% strawfiring. The probe heat uptake reduction up to 40 h of exposure time was 3.0, 7.3, 8.4 and 16.5 kW/m2...

  16. Influence of Erosion and Deposition on Metallic First Mirror in HT-7 Tokamak

    Institute of Scientific and Technical Information of China (English)

    CHEN Ju; YAN Rong; CHEN Junling

    2012-01-01

    Abstract Dedicated experiments in the HT-7 tokamak were performed to investigate the in- fluence of erosion and deposition on the mirror samples. The first mirror (FM) samples made of polyerystalline (PC) stainless steel (SS), molybdenum (Mo) and tungsten (W) were fixed on a holder at an angle of 45° with respect to the horizontal plane and set at different locations with different connection lengths along the magnetic field. The optical reflectivity of the first mirror was measured by a spectrophotometer before and after plasma exposure. It was found that the surface morphology and specular reflectivity of the mirror samples after the exposure were different with respect to the different distances from the mirror surface to the last closed flux surface (LCFS) of the plasma in the tokamak. It was also found that shortening the connection length before the mirror surface would weaken the influence of the plasma erosion and impurity deposition on the mirror surface. In order to maintain the optical characteristics of the mirror surface, it is necessary to adopt the in-situ cleaning and mirror protection techniques.

  17. Erosion, Transportation, and Deposition on Outer Solar System Satellites: Landform Evolution Modeling Studies

    Science.gov (United States)

    Moore, Jeffrey Morgan; Howard, Alan D.; Schenk, Paul M.

    2013-01-01

    Mass movement and landform degradation reduces topographic relief by moving surface materials to a lower gravitational potential. In addition to the obvious role of gravity, abrasive mechanical erosion plays a role, often in combination with the lowering of cohesion, which allows disaggregation of the relief-forming material. The identification of specific landform types associated with mass movement and landform degradation provides information about local sediment particle size and abundance and transportation processes. Generally, mass movements can be classified in terms of the particle sizes of the transported material and the speed the material moved during transport. Most degradation on outer planet satellites appears consistent with sliding or slumping, impact erosion, and regolith evolution. Some satellites, such as Callisto and perhaps Hyperion and Iapetus, have an appearance that implies that some additional process is at work, most likely sublimation-driven landform modification and mass wasting. A variant on this process is thermally driven frost segregation as seen on all three icy Galilean satellites and perhaps elsewhere. Titan is unique among outer planet satellites in that Aeolian and fluvial processes also operate to erode, transport, and deposit material. We will evaluate the sequence and extent of various landform-modifying erosional and volatile redistribution processes that have shaped these icy satellites using a 3-D model that simulates the following surface and subsurface processes: 1) sublimation and re-condensation of volatiles; 2) development of refractory lag deposits; 3) disaggregation and downward sloughing of surficial material; 4) radiative heating/cooling of the surface (including reflection, emission, and shadowing by other surface elements); 5) thermal diffusion; and 6) vapor diffusion. The model will provide explicit simulations of landform development and thusly predicts the topographic and volatile evolution of the surface

  18. Supercritical fluid extraction of vapor-deposited pyrene from carbonaceous coal stack ash.

    Science.gov (United States)

    Mauldin, R F; Vienneau, J M; Wehry, E L; Mamantov, G

    1990-11-01

    The efficiencies of extraction of vapor-deposited pyrene from a high-carbon coal stack ash by Soxhlet extraction with methanol, ultrasonic extraction with toluene, acid pretreatment and subsequent ultrasonic extraction with toluene, batch extraction with toluene, and supercritical fluid extraction (SFE) are compared. SFE using CO(2) or isobutane yielded extraction recoveries virtually identical with those obtained using ultrasonic or Soxhlet extraction processes. Collection of the SFE extract was performed by expansion into a solvent or onto the head of a gas chromatography (GC) column. No loss of extracted pyrene was observed upon collection of methanol-modified CO(2) SFE by expansion into methanol. Also, no loss of pure CO(2) SFE extract was observed upon collection on the head of a GC column. However, use of a methanol or toluene modifier for CO(2) SFE directly coupled to GC effected complete loss of extracted pyrene.

  19. Preserved stratification from deposition/erosion sequences of progressive and breaking antidunes

    Science.gov (United States)

    Leclair, Suzanne; Carling, Paul; Breakspear, Richard

    2015-04-01

    Experiments on sedimentary processes allow large amounts of data to be collected, which are oftentime not analyzed entierely as this may be beyond the scope of a particular study. This paper makes second use of Breakspear's video records and photographs of preserved deposits from an experimental investigation on antidunes in sand and gravel. The objective of this study is to better understand the successive patterns of deposition and erosion during antidune migration. Results will 1) bring insights on the preservation potential of sediment deposited during the process, and 2) be further related to Breaksprear's finding on antidune hydrodynamics, Water and bed surface were drawn from successive still images of video records showing the migration of progressive (not breaking) and breaking antidunes. In addition, image analysis (pixel characteristics) of preserved sediment (photos of sediment peels) was performed, allowing to understand the relative spatial distribution of sand and gravel. Results show that wave-like strata (in flow direction) is commonly preserved, generally thicker and shorter for breaking than progressive antidunes, and that uptream-dipping strata is observed only in the case of progressive antidunes. The successive passage of progressive antidunes creates a planar erosion surface whereas that of breaking antidunes produces bed scour with coarse-grain deposit, which disrupt alongstream wave-like strata. Although the preserved deposit show mixtures of sand ans gravel, the video records indicate that some sand was deposited at a different time-sequence than gravel (subsequent infiltration). These peliminairy findings are potentially usefull of improving our interpretation of the sedimentary record. Further studies on antidunes should address the effects of mixed sediment size and/or density on antidune processes and deposits in order to better predict reservoir characteristics (e.g. variation in porosity). We also need to improve our understanding of

  20. Sediment Deposition, Erosion, and Bathymetric Change in Central San Francisco Bay: 1855-1979

    Science.gov (United States)

    Fregoso, Theresa A.; Foxgrover, Amy C.; Jaffe, Bruce E.

    2008-01-01

    Central San Francisco Bay is the hub of a dynamic estuarine system connecting the San Joaquin and Sacramento River Deltas, Suisun Bay, and San Pablo Bay to the Pacific Ocean and South San Francisco Bay. To understand the role that Central San Francisco Bay plays in sediment transport throughout the system, it is necessary to first determine historical changes in patterns of sediment deposition and erosion from both natural and anthropogenic forces. The first extensive hydrographic survey of Central San Francisco Bay was conducted in 1853 by the National Ocean Service (NOS) (formerly the United States Coast and Geodetic Survey (USCGS)). From 1894 to 1979, four additional surveys, composed of a total of approximately 700,000 bathymetric soundings, were collected within Central San Francisco Bay. Converting these soundings into accurate bathymetric models involved many steps. The soundings were either hand digitized directly from the original USCGS and NOS hydrographic sheets (H-sheets) or obtained digitally from the National Geophysical Data Center's (NGDC) Geophysical Data System (GEODAS) (National Geophysical Data Center, 1996). Soundings were supplemented with contours that were either taken directly from the H-sheets or added in by hand. Shorelines and marsh areas were obtained from topographic sheets. The digitized soundings, depth contours, shorelines, and marsh areas were entered into a geographic information system (GIS) and georeferenced to a common horizontal datum. Using surface modeling software, bathymetric grids with a horizontal resolution of 25 m were developed for each of the five hydrographic surveys. Before analyses of sediment deposition and erosion were conducted, interpolation bias was removed and all of the grids were converted to a common vertical datum. These bathymetric grids were then used to develop bathymetric change maps for subsequent survey periods and to determine long-term changes in deposition and erosion by calculating volumes and

  1. Occurrence of volcanic ash in the Quaternary alluvial deposits, lower Narmada basin, western India

    Indian Academy of Sciences (India)

    Rachna Raj

    2008-02-01

    This communication reports the occurrence of an ash layer intercalated within the late Quaternary alluvial succession of the Madhumati River, a tributary of the lower Narmada River. Petrographic, morphological and chemical details of glass shards and pumice fragments have formed the basis of this study. The ash has been correlated with the Youngest Toba Tuff. The finding of ash layer interbedded in Quaternary alluvial sequences of western Indian continental margin is significant, as ash being datable material, a near precise time-controlled stratigraphy can be interpreted for the Quaternary sediments of western India. The distant volcanic source of this ash requires a fresh re-assessment of ash volume and palaeoclimatic interpretations.

  2. Factors controlling erosion/deposition phenomena related to lahars at Volcán de Colima, Mexico

    Science.gov (United States)

    Vázquez, Rosario; Capra, Lucia; Coviello, Velio

    2016-08-01

    One of the most common phenomena at Volcán de Colima is the annual development of lahars that runs mainly through the southern ravines of the edifice. Since 2011 the study and the monitoring of these flows and of the associated rainfall has been achieved by means of an instrumented station located along the Montegrande ravine, together with the systematic surveying of cross-topographic profiles of the main channel. From these, we present the comparison of the morphological changes experimented by this ravine during the 2013, 2014 and 2015 rainy seasons. The erosion/deposition effects of 11 lahars that occurred during this period of time were quantified by means of the topographic profiles taken at the beginning and at the end of the rainy seasons and before and after the major lahar event of 11 June 2013. We identified (i) an erosive zone between 2100 and 1950 m a.s.l., 8° in slope, with an annual erosional rate of 10.3 % mainly due to the narrowness of the channel and to its high slope angle and (ii) an erosive-depositional zone, between 1900 and 1700 m a.s.l., ( ˜ 8 % erosion and ˜ 16 % deposition), characterized by a wider channel that decreases in slope angle (4°). Based on these observations, the major factors controlling the erosion/deposition rates in the Montegrande ravine are the morphology of the gully (i.e., channel bed slope and the cross section width) and the joint effect of sediment availability and accumulated rainfall. On the distal reach of the ravine, the erosion/deposition processes tend to be promoted preferentially one over the other, mostly depending on the width of the active channel. Only for extraordinary rainfall events are the largest lahars mostly erosive all along the ravine up to the distal fan where the deposition takes place. In addition, as well as the morphological characteristics of the ravine, the flow depth is a critical factor in controlling erosion, as deeper flows will promote erosion against deposition. Finally, by

  3. Characterization of flue gas, fly ash, aerosol and deposit compositions as a function of waste composition and grate operation

    DEFF Research Database (Denmark)

    Pedersen, Anne Juul; Zeuthen, Frederik Jacob; Frandsen, Flemming

    2007-01-01

    was incinerated. However, a main environmental concern for waste incineration is the leaching of hazardous elements from the solid residues. In addition, some elements may constitute operational problems, as they may accelerate the deposition and corrosion processes in furnace. In the present work, a full......The Danish strategy for waste management is still to increase recycling and on the same time to reduce the volume of land-filled waste, in order to avoid loss of resources, and waste incineration is an important part of this strategy. In 2004, 26 % of the total reported Danish waste production......-scale measuring campaign have been conducted at a 22 MWth waste incinerator, in order to investigate the effects of waste composition and plant operation on formation and characteristics of ashes and deposits. The present work focuses on the characterization of flue gas, deposits, fly ash and aerosols, sampled...

  4. Field measurement of critical shear stress for erosion and deposition of fine muddy sediments

    Science.gov (United States)

    Salehi, M.; Strom, K. B.; Field Study

    2010-12-01

    The movement of muddy sediment from one region to another is linked to the fate and transport of pollutants that can be attached to this sediment. Important in understanding this movement is the need to know the critical conditions for erosion and deposition of the fine muddy sediment. For non-cohesion sediment, such as sands and gravels, reasonable estimates for the critical conditions can often be made theoretically without in situ measurements of the critical fluid condition or sediment transport rate. However, the shear stress needed for the incipient motion of the mud (cohesive sediments) is inherently difficult to calculate theoretically or in research flumes due to the influence of (1) flow history; (2) local sediment composition; (3) biological activity within the bed; (4) water content of the bed; and (5) salinity of the water column. The complexity of the combination of these factors makes the field measurement necessary. A field experiment was conducted under tidal flow in the region surrounding the Houston Ship Channel (near Houston, TX) to determine these conditions. Observations were made using single point, simultaneous, in situ measurement of turbulent flow and suspended sediment concentration within bottom boundary layer. Measurements were primarily made with a 6 MHz Nortek Vector velocimeter (ADV). The ADV was programmed to record 3-minute turbulent velocity with 32 Hz frequency every 10 minute. The suspended sediment concentration (SSC) was measured using the calibration of acoustic backscatter recorded by ADV against sample derived SSC. Different methods such as turbulent kinetic energy (TKE), TKEw and direct covariance method (COV) are compared together. TKE showed much more reasonable estimation on bed shear stress. Combination of time varying SSC, distance from the bed to the sampling volume recorded by ADV and calculation of shear stress made the determination of critical conditions for erosion and deposition possible.

  5. Hard Coal Fly Ash and Silica-Effect of Fine Particulate Matter Deposits on Brassica chinensis

    Directory of Open Access Journals (Sweden)

    Christian Ulrichs

    2009-01-01

    Full Text Available Problem statement: One focus in recent atmospheric pollution research is on fine Particle Matter (PM, especially as result of increasing traffic and anthropogenic activity in urban areas. Here, the impact on animal and human health has been in the center of many studies. Despite the fact that PM depositions can affect plants on the long term, there are only few studies about the impact on plants conducted. Approach: Therefore we studied the impact of PM on plants, using naturally occurring silica dusts (diatomaceous earth and hard Coal Fly Ash (CFA from burning processes. Dusts were applied onto Brassica chinensis L. using a simple duster (covering upper leaf surfaces or electrostatically (covering leaf upper and -underside. Results: Main components of the tested CFA are SO42-, K, Ca and NH4+. The pH value of eluates was found to be around 9.5 in CFA and 5.7 in silica. B. chinensis was insensitive towards the high pH and showed no growth reduction when grown in silica or CFA substrate. PM deposition on leaf surfaces results through shading in a reduced photosynthetic activity. The reduction is relatively higher at higher light intensities. Photosynthesis stays reduced after removal of silica PM from leaf surfaces. We assume that stomata get cloaked by small particles and that silica absorbs lipids from the epicuticle resulting in a general stress reaction. Smaller sized silica particles resulted in a higher reduction of CO2-absorption. Next to particle size is the photosynthesis negatively correlated with exposure time for silica PM. The chlorophyll fluorescence data indicate that dust-covered leaves exhibited significantly lower quantum yield of PS II and a reduced quantum efficiency of PS II and therefore supported the gas exchange data. Conclusion: Reduced photosynthetic performance would be expected to reduce growth and productivity of B. chinensis. In contrast to silica hard coal fly ash

  6. TECHNOLOGY AND EFFICIENCY IN USAGE OF BROWN COAL ASH FOR CEMENT AND CONCRETE MIXTURES AT THE LELCHITSKY DEPOSIT

    Directory of Open Access Journals (Sweden)

    G. D. Lyahevich

    2017-01-01

    Full Text Available Modern visions on the role of high-dispersity additives in concrete mixtures reflect a positive effect of optimal amount of ash left after combustion of solid fuel on structure and physico-mechanical characteristics of cement compositions: hardening of contact zone between cement stone and aggregates with formation of “binder – aggregate” clusters due to high surface energy of aggregate particles; reduction of total cement stone porosity in concrete while increasing volumetric concentration and aggregate dispersion; binding of calcium hydroxide by amorphized silicon of pozzolanic aggregates; increase in pozzolanic aggregate activity with its fine grinding, etc. Experimental investigations have ascertained that usage of portland cement clinker ash samples left after brown coal burning at the Lelchitsky deposit contributed to an increase of cement working life and activity. Concrete samples have been obtained that have improved physico-mechanical properties owing to introduction the following components in their composition: 2–14 % (of cement mass of ash left after brown coal burning and 1.6–2.1 % of sodium salt that is a condensation product of sulfur oxidate in aromatic hydrocarbons with formaldehyde. Efficiency of the executed work has been proved by solution of the problems pertaining to an increase of neat cement working life, cement activity, concrete strength. The paper also considers no less important problem concerning protection of the environment from contamination with ash left after burning of high-ash brown coal. 

  7. Development of laser induced breakdown spectroscopy for studying erosion, deposition, and fuel retention in ASDEX Upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Paris, Peeter; Piip, Kaarel [Institute of Physics, University of Tartu, Tartu (Estonia); Hakola, Antti [VTT Technical Research Centre of Finland, Espoo (Finland); Laan, Matti, E-mail: matti.laan@ut.ee [Institute of Physics, University of Tartu, Tartu (Estonia); Aints, Märt [Institute of Physics, University of Tartu, Tartu (Estonia); Koivuranta, Seppo; Likonen, Jari [VTT Technical Research Centre of Finland, Espoo (Finland); Lissovski, Aleksandr [Institute of Physics, University of Tartu, Tartu (Estonia); Mayer, Matej [Max-Planck-Institut für Plasmaphysik, Garching (Germany); Neu, Rudolf [Max-Planck-Institut für Plasmaphysik, Garching (Germany); Technische Universität München, Fachgebt Plasma-Material-Wechelwirkung, Garching (Germany); Rohde, Volker; Sugiyama, Kazuyoshi [Max-Planck-Institut für Plasmaphysik, Garching (Germany)

    2015-10-15

    Highlights: • LIBS development for in situ monitoring of first walls of fusion reactors. • Testing of samples extracted from the divertor tiles of ASDEX Upgrade. • Reliable detection of deuterium depth profiles. • A method of LIBS data processing which allows to find the elemental depth profiles. • Comparison of LIBS results with those of other surface characterization methods. - Abstract: The paper deals with the development of laser induced breakdown spectroscopy (LIBS) into an in situ method for studying erosion/deposition processes at the first walls of fusion reactors. To this end, samples extracted from the divertor tiles of ASDEX Upgrade after the 2009 plasma operations were analyzed using LIBS for their composition and the results were compared with other post mortem deposition data. Quantitative depth profiles for the elemental concentrations were extracted from LIBS spectra by applying a novel data processing method. In addition, both multiline and multispot averaging procedures were applied to reduce fluctuations in the data. The LIBS concentration profiles matched qualitatively with those given by secondary ion mass spectrometry and quantitatively with the ion-beam data. The deuterium content of the samples could be reliably determined if the surface densities were >10{sup 17} at/cm{sup 2}.

  8. Assessment of soil erosion and deposition rates in a Moroccan agricultural field using fallout 137Cs and 210Pbex.

    Science.gov (United States)

    Benmansour, M; Mabit, L; Nouira, A; Moussadek, R; Bouksirate, H; Duchemin, M; Benkdad, A

    2013-01-01

    In Morocco land degradation - mainly caused by soil erosion - is one of the most serious agroenvironmental threats encountered. However, only limited data are available on the actual magnitude of soil erosion. The study site investigated was an agricultural field located in Marchouch (6°42' W, 33° 47' N) at 68 km south east from Rabat. This work demonstrates the potential of the combined use of (137)Cs, (210)Pb(ex) as radioisotopic soil tracers to estimate mid and long term erosion and deposition rates under Mediterranean agricultural areas. The net soil erosion rates obtained were comparable, 14.3 t ha(-1) yr(-1) and 12.1 ha(-1) yr(-1) for (137)Cs and (210)Pb(ex) respectively, resulting in a similar sediment delivery ratio of about 92%. Soil redistribution patterns of the study field were established using a simple spatialisation approach. The resulting maps generated by the use of both radionuclides were similar, indicating that the soil erosion processes has not changed significantly over the last 100 years. Over the previous 10 year period, the additional results provided by the test of the prediction model RUSLE 2 provided results of the same order of magnitude. Based on the (137)Cs dataset established, the contribution of the tillage erosion impact has been evaluated with the Mass Balance Model 3 and compared to the result obtained with the Mass Balance Model 2. The findings highlighted that water erosion is the leading process in this Moroccan cultivated field, tillage erosion under the experimental condition being the main translocation process within the site without a significant and major impact on the net erosion.

  9. Simulation of soil erosion and deposition in a changing land use: A modelling approach to implement the support practice factor

    Science.gov (United States)

    Pelacani, Samanta; Märker, Michael; Rodolfi, Giuliano

    2008-07-01

    Using the USPED (Unit Stream Power Erosion Deposition) model, three land use scenarios were analysed for an Italian small catchment (15 km 2) of high landscape value. The upper Orme stream catchment, located in the Chianti area, 30 km south of Florence, has a long historical agriculture record. Information on land use and soil conservation practices date back to 1821, hence offering an opportunity to model impacts of land use change on erosion and deposition. For this study, a procedure that takes into account soil conservation practices and potential sediment storage is proposed. The approach was to calculate and model the flow accumulation considering rural and logging roads, location of urban areas, drainage ditches, streams, gullies and permanent sediment sinks. This calculation attempts to assess the spatial variability, especially the impact of support practices ( P factor). Weather data from 1980-2003 were taken into account to calculate the R factor. However, to consider the intense pluviometric conditions in terms of the erosivity factor, the 0.75th quantile was used, while the lowest erosivity was modelled using the 0.25th quantile. Results of the USPED model simulation show that in 1821 the mean annual net erosion for the watershed was 2.8 Mg ha - 1 y - 1 ; in 1954 it was 4.2 Mg ha - 1 y - 1 ; and in 2004 it was 5.3 Mg ha - 1 y - 1 . Conservation practices can reduce erosion processes by ≥ 20 Mg ha - 1 y - 1 when the 1821 practices are introduced in the present management. On the other hand, if the support practices are not considered in the model, soil erosion risk is overestimated. Field observation for the present-day simulation confirmed that erosion and associated sediment deposition predicted by the model depend, as expected, on geomorphology and land use. The model shows limitations that are mainly due to the input data. A high resolution DEM is essential for the delineation of reliable topographic potential to predict erosion and deposition

  10. Investigation of ash deposition in a pilot-scale fluidized bed combustor co-firing biomass with lignite

    Energy Technology Data Exchange (ETDEWEB)

    Gogebakan, Z.; Gogebakan, Y.; Selcuk, N.; Seliuk, E. [Middle East Technical University, Ankara (Turkey). Dept. of Chemical Engineering

    2009-01-15

    This study presents the results from investigation of ash deposition characteristics of a high ash and sulfur content lignite co-fired with three types of biomass (olive residue, 49 wt%; hazelnut shell, 42 wt%; and cotton residue, 41 wt%) in 0.3 MWt Middle East Technical University (METU) Atmospheric Bubbling Fluidized Bed Combustion (ABFBC) Test Rig. Deposit samples were collected on all air-cooled probe at a temperature of 500{degree}C. Samples were analyzed by SEM/EDX and XRD methods. The results reveal that co-firing lignite with olive residue, hazelnut shell and cotton residue show low deposition rates. High concentrations of silicon, calcium, sulfur, iron, and aluminum were found in deposit samples. No chlorine was detected in deposits. Calcium sulfate and potassium sulfate were detected as major and minor components of the deposits, respectively. High sulfur and alumina-silicate content of lignite resulted in formation of alkali sulfates instead of alkali chlorides. Therefore, fuel blends under consideration can be denoted to have low-fouling propensity.

  11. Investigation of ash deposition in a pilot-scale fluidized bed combustor co-firing biomass with lignite.

    Science.gov (United States)

    Gogebakan, Zuhal; Gogebakan, Yusuf; Selçuk, Nevin; Selçuk, Ekrem

    2009-01-01

    This study presents the results from investigation of ash deposition characteristics of a high ash and sulfur content lignite co-fired with three types of biomass (olive residue, 49 wt%; hazelnut shell, 42 wt%; and cotton residue, 41 wt%) in 0.3 MW(t) Middle East Technical University (METU) Atmospheric Bubbling Fluidized Bed Combustion (ABFBC) Test Rig. Deposit samples were collected on an air-cooled probe at a temperature of 500 degrees C. Samples were analyzed by SEM/EDX and XRD methods. The results reveal that co-firing lignite with olive residue, hazelnut shell and cotton residue show low deposition rates. High concentrations of silicon, calcium, sulfur, iron, and aluminum were found in deposit samples. No chlorine was detected in deposits. Calcium sulfate and potassium sulfate were detected as major and minor components of the deposits, respectively. High sulfur and alumina-silicate content of lignite resulted in formation of alkali sulfates instead of alkali chlorides. Therefore, fuel blends under consideration can be denoted to have low-fouling propensity.

  12. Erosion level of the epithermal Rogovik deposit estimated from geochemical data, northeast Russia

    Science.gov (United States)

    Kravtsova, R. G.; Makshakov, A. S.

    2016-11-01

    The geochemical zoning of the Rogovik epithermal deposit in northeast Russia has been established on the basis of endogenic anomalous geochemical fields (AGCF) of Au-Ag zones, their qualitative and quantitative compositions, and spatial distribution of chemical element indicators of Au-Ag mineralization. The obtained geochemical data (monoelemental AGCF, associations of elements, their composition, contrast, and correlation) allowed us to estimate the erosion level of Au-Ag ore zones. It has been shown that AGCF related to Au-Ag mineralization are distinguished by simple component composition (Au, Ag, Hg, Sb, As, Cu, Pb, Zn) and regular spatial distribution of the elements. It has been established that the least eroded central part of the object is characterized by widespread and the most contrasting Au, Ag, Hg, Sb, and As AGCF closely related to the ore-bearing units of the deposit. The contrast of these fields gradually decreases with depth. Low-contrast Cu, Pb, and Zn AGCF typical of the footwall depth intervals and flanks of Au-Ag zones intervals appear at depth. The northern part of the area is eroded to the deepest level. The contrast of Ag, Hg, Sb, and As geochemical fields abruptly decreases here, and Cu, Pb, and Zn AGCF become widespread with depth. The relatively contrasting fields of anomalous Au concentrations develop here extremely locally and near the surface. It has been concluded that the as yet poorly explored southern part of the Rogovik deposit most likely is promising for further geological exploration and the discovery of new mineralized areas.

  13. Erosion and deposition in tidal marshes revisited by accounting for soil creep

    Science.gov (United States)

    Mariotti, G.

    2015-12-01

    Channels regulate the sediment dynamics of tidal marshes, affect the capacity of marsh platforms to keep pace with sea level rise and can contribute to the loss of the low marsh, a critical area for nutrient cycling and ecosystem services. A puzzling aspect of marsh dynamics is the occurrence of slumping on the channel banks despite the absence of channel widening and migration. An apparently unrelated conundrum is why vertical accretion rates on the low marsh adjacent to channels are often higher than the rate of relative sea level rise: this sedimentation excess should not occur in a regime of equilibrium or in a regime of accelerated sea level rise. Here I suggest that bank erosion and sedimentation surplus are linked and can be explained by soil creep, the process by which soil is moved downslope by gravity. A novel model for a channel-platform cross section predicts an equilibrium state where the sedimentation surplus on the channel banks is transferred by creep toward the channel, where an erosional surplus and a suspend load transport toward the bank close the sediment budget. This model predicts that bank slumping can occur even if marshes are in equilibrium with sea level rise. As a consequence slumping is not an unequivocal indicator of ongoing marsh loss. The model also predicts that, at equilibrium, sedimentation rates adjacent to channels are higher than the rate of sea level rise. This implies that a sedimentation surplus is not a sign of resilience to sea level rise acceleration. The framework proposed by the model will affect how erosion and deposition measurements adjacent to marsh channels are interpreted.

  14. Prevention of the ash deposits by means of process conditions in biomass gasification; Biomassapolttoaineiden tuhkan kuonaantumiskaeyttaeytymisen estaeminen prosessiolosuhteiden avulla

    Energy Technology Data Exchange (ETDEWEB)

    Moilanen, A.; Laatikainen-Luntama, J.; Nieminen, M.; Kurkela, E.; Korhonen, J. [VTT Energy, Espoo (Finland)

    1997-10-01

    In fluidised-bed gasification, various types of deposits and agglomerates may be formed by biomass ash in the bed, in upper zones of the reactor, for instance in cyclones. These may decisively hamper the operation of the process. The aim of the project was to obtain data on the detrimental fouling behaviour of the ash of different types of biomass in fluidised-bed gasification, and on the basis of these data to determine the process conditions and ways of preventing this kind of behaviour. Different types of biomass fuel relevant to energy production such as straw, wood residue were be used as samples. The project consisted of laboratory studies and fluidised-bed reactor tests including ash behaviour studied both in the bed and freeboard. In laboratory tests, the sample material was characterised as a function of different process parameters. In fluid-bed reactors, the most harmful biomasses were tested using process variables such as temperature, bed material and the gasification agents. Bubbling fluidised-bed gasification tests with wheat straw showed that agglomerates with different sizes and structures formed in the bed depending on the temperature, the feed gas composition and bed material. Agglomerates consisted of molten ash which sintered with bed material and other solids. In all BFB tests, freeboard walls were slicked by ash agglomerates (different amounts) which, however, were easily removable. The results of this project and the earlier pilot-scale gasification experience obtained with the same feedstocks showed that useful characteristic data about ash behaviour can be obtained using laboratory tests and small scale reactors. (orig.)

  15. A simple semi-empirical approach to model thickness of ash-deposits for different eruption scenarios

    Science.gov (United States)

    González-Mellado, A. O.; de La Cruz-Reyna, S.

    2010-11-01

    The impact of ash-fall on people, buildings, crops, water resources, and infrastructure depends on several factors such as the thickness of the deposits, grain size distribution and others. Preparedness against tephra falls over large regions around an active volcano requires an understanding of all processes controlling those factors, and a working model capable of predicting at least some of them. However, the complexity of tephra dispersion and sedimentation makes the search of an integral solution an almost unapproachable problem in the absence of highly efficient computing facilities due to the large number of equations and unknown parameters that control the process. An alternative attempt is made here to address the problem of modeling the thickness of ash deposits as a primary impact factor that can be easily communicated to the public and decision-makers. We develop a semi-empirical inversion model to estimate the thickness of non-compacted deposits produced by an explosive eruption around a volcano in the distance range 4-150 km from the eruptive source. The model was elaborated from the analysis of the geometric distribution of deposit thickness of 14 world-wide well-documented eruptions. The model was initially developed to depict deposits of potential eruptions of Popocatépetl and Colima volcanoes in México, but it can be applied to any volcano. It has been designed to provide planners and Civil Protection authorities of an accurate perception of the ash-fall deposit thickness that may be expected for different eruption scenarios. The model needs to be fed with a few easy-to-obtain parameters, namely, height of the eruptive column, duration of the explosive phase, and wind speed and direction, and its simplicity allows it to run in any platform, including a personal computers and even a notebook. The results may be represented as tables, two dimensional thickness-distance plots, or isopach maps using any available graphic interface. The model has

  16. A simple semi-empirical approach to model thickness of ash-deposits for different eruption scenarios

    Directory of Open Access Journals (Sweden)

    A. O. González-Mellado

    2010-11-01

    Full Text Available The impact of ash-fall on people, buildings, crops, water resources, and infrastructure depends on several factors such as the thickness of the deposits, grain size distribution and others. Preparedness against tephra falls over large regions around an active volcano requires an understanding of all processes controlling those factors, and a working model capable of predicting at least some of them. However, the complexity of tephra dispersion and sedimentation makes the search of an integral solution an almost unapproachable problem in the absence of highly efficient computing facilities due to the large number of equations and unknown parameters that control the process. An alternative attempt is made here to address the problem of modeling the thickness of ash deposits as a primary impact factor that can be easily communicated to the public and decision-makers. We develop a semi-empirical inversion model to estimate the thickness of non-compacted deposits produced by an explosive eruption around a volcano in the distance range 4–150 km from the eruptive source.

    The model was elaborated from the analysis of the geometric distribution of deposit thickness of 14 world-wide well-documented eruptions. The model was initially developed to depict deposits of potential eruptions of Popocatépetl and Colima volcanoes in México, but it can be applied to any volcano. It has been designed to provide planners and Civil Protection authorities of an accurate perception of the ash-fall deposit thickness that may be expected for different eruption scenarios. The model needs to be fed with a few easy-to-obtain parameters, namely, height of the eruptive column, duration of the explosive phase, and wind speed and direction, and its simplicity allows it to run in any platform, including a personal computers and even a notebook. The results may be represented as tables, two dimensional thickness-distance plots, or isopach maps using any available

  17. The potential of four woody species for the revegetation of fly ash deposits from the ‘Nikola Tesla-a’ thermoelectric plant (Obrenovac, Serbia

    Directory of Open Access Journals (Sweden)

    Kostić Olga

    2012-01-01

    Full Text Available Four woody species, Tamarix tentandra Pallas, Populus alba L. and Robinia pseudoacacia L. (planted and Amorpha fruticosa L. (naturally colonized were studied at two fly ash deposit lagoons, weathered 3 (L1 and 11 years (L2. All species were assessed in terms of their invasive ability, photosynthetic efficiency, photosynthetic pigments and damage symptoms, while the characteristics of the habitat were assessed in terms of trace element content and the pH and EC of the ash. A reduced vitality of all populations growing on the ash was observed, except for the naturally colonized A. fruticosa. High vitality on all sites, except at L2, increased chlorophyll content and absence of damage symptoms indicates a tolerance in relation to the uptake of toxic elements from the ash. Therefore, the characteristics of naturally colonized species can be used for modeling future actions of biological restoration of fly ash deposits.

  18. Research on Acid Rain Erosion Resistance of Fly Ash Concrete%粉煤灰混凝土抗酸雨侵蚀的研究

    Institute of Scientific and Technical Information of China (English)

    陈树东; 费治华

    2011-01-01

    不同粉煤灰掺量(0,20%,40%,60%)高性能混凝土经不同pH值(1、2、4)硫酸溶液浸泡后,研究其相对动弹性模量和质量损失规律.试验表明,随着溶液酸性的增加,混凝土破坏严重;粉煤灰掺量为20%~60%时,混凝土抗酸性能有所增加;高掺量粉煤灰混凝土在酸性环境中浸泡,当粉煤灰掺量为60%时,混凝土以相对动弹性模量损失形式遭到破坏,粉煤灰掺量为0~40%时都是以质量损失形式遭到破坏.粉煤灰混凝土的抗酸性研究对混凝土结构耐久性和寿命预测具有现实意义.%The relative dynamic modulus of elasticity and mass loss of high performance concrete with different fly ash proportion(0% ,20%,40% ,60% )after being soaked in sulfuric acid solution of different pH value( 1, 2, 4) are studied. Experiment results show that the concrete is seriously damaged with the higher strong of acidic solution. The performance of acid resistant increased when the concrete add 20% -60% fly ash.The destructional form of high value fly ash concrete dip in acid solution is relative dynamic modulus of elasticity loss when the concrete add 60% fly ash, and the destructional form is mass loss when the concrete add 0.40% fly ash. The research of the acid rain erosion resistance of concrete has redity meaning for the structure durability and life prediction of concrete.

  19. Phreatomagmatic and phreatic fall and surge deposits from explosions at Kilauea volcano, Hawaii, 1790 a.d.: Keanakakoi Ash Member

    Science.gov (United States)

    McPhie, J.; Walker, G.P.L.; Christiansen, R.L.

    1990-01-01

    In or around 1790 a.d. an explosive eruption took place in the summit caldera of Kilauea shield volcano. A group of Hawaiian warriors close to the caldera at the time were killed by the effects of the explosions. The stratigraphy of pyroclastic deposits surrounding Kilauea (i.e., the Keanakakoi Ash Member) suggests that the explosions referred to in the historic record were the culmination of a prolonged hydrovolcanic eruption consisting of three main phases. The first phase was phreatomagmatic and generated well-bedded, fine fallout ash rich in glassy, variably vesiculated, juvenile magmatic and dense, lithic pyroclasts. The ash was mainly dispersed to the southwest of the caldera by the northeasterly trade winds. The second phase produced a Strombolian-style scoria fall deposit followed by phreatomagmatic ash similar to that of the first phase, though richer in accretionary lapilli and lithics. The third and culminating phase was phreatic and deposited lithic-rich lapilli and block fall layers, interbedded with cross-bedded surge deposits, and accretionary lapilli-rich, fine ash beds. These final explosions may have been responsible for the deaths of the warriors. The three phases were separated by quiescent spells during which the primary deposits were eroded and transported downwind in dunes migrating southwestward and locally excavated by fluvial runoff close to the rim. The entire hydrovolcanic eruption may have lasted for weeks or perhaps months. At around the same time, lava erupted from Kilauea's East Rift Zone and probably drained magma from the summit storage. The earliest descriptions of Kilauea (30 years after the Keanakakoi eruption) emphasize the great depth of the floor (300-500 m below the rim) and the presence of stepped ledges. It is therefore likely that the Keanakakoi explosions were deepseated within Kilauea, and that the vent rim was substantially lower than the caldera rim. The change from phreatomagmatic to phreatic phases may reflect the

  20. Urate crystal deposition and bone erosion in gout: 'inside-out' or 'outside-in'? A dual-energy computed tomography study.

    Science.gov (United States)

    Towiwat, Patapong; Doyle, Anthony J; Gamble, Gregory D; Tan, Paul; Aati, Opetaia; Horne, Anne; Stamp, Lisa K; Dalbeth, Nicola

    2016-09-15

    It is currently unknown whether bone erosion in gout occurs through an 'inside-out' mechanism due to direct intra-osseous crystal deposition or through an 'outside-in' mechanism from the surface of bone. The aim of this study was to examine the mechanism ('outside-in' vs. 'inside-out') of monosodium urate (MSU) crystal deposition in bone erosion in gout. Specifically, we used three-dimensional dual-energy computed tomography (DECT) to analyse the positional relationship between bone and MSU crystal deposition in tophaceous gout, and to determine whether intra-osseous crystal deposition occurs in the absence of erosion. One hundred forty-four participants with gout and at least one palpable tophus had a DECT scan of both feet. Two readers independently scored all metatarsal heads (1433 bones available for scoring). For bones in contact with urate, the bone was scored for whether urate was present within an erosion, on the surface of bone or within bone only (true intra-osseous deposit). Data were analysed using generalised estimating equations. Urate in contact with bone was present in 370 (54.3 %) of 681 joints with urate deposition. For those bones in contact with urate, deposition was present on the surface of bone in 143 (38.6 %) of 370 joints and within erosion in 227 (61.4 %) of 370. True intra-osseous urate deposition was not observed at any site (p in one plane, examination in other planes revealed urate deposition within an en face erosion. In tophaceous gout, MSU crystal deposition is present within the joint, on the bone surface and within bone erosion, but it is not observed within bone in the absence of a cortical break. These data support the concept that MSU crystals deposit outside bone and contribute to bone erosion through an 'outside-in' mechanism.

  1. Physical, chemical, and mineralogical data from surficial deposits, groundwater levels, and water composition in the area of Franklin Lake playa and Ash Meadows, California and Nevada

    Science.gov (United States)

    Goldstein, Harland L.; Breit, George N.; Yount, James C.; Reynolds, Richard L.; Reheis, Marith C.; Skipp, Gary L.; Fisher, Eric M.; Lamothe, Paul J.

    2011-01-01

    This report presents data and describes the methods used to determine the physical attributes, as well as the chemical and mineralogical composition of surficial deposits; groundwater levels; and water composition in the area of Franklin Lake playa and Ash Meadows, California and Nevada. The results support studies that examine (1) the interaction between groundwater and the ground surface, and the transport of solutes through the unsaturated zone; (2) the potential for the accumulation of metals and metalloids in surface crusts; (3) emission of dust from metal-rich salt crust; and (4) the effects of metal-rich dusts on human and ecosystem health. The evaporation of shallow (salt in the subsurface and (or) the formation of salt crusts at the ground surface. Ground-surface characteristics such as hardness, electrical conductivity, and mineralogy depend on the types and forms of these salt crusts. In the study area, salt crusts range from hard and bedded to soft and loose (Reynolds and others, 2009). Depending on various factors such as the depth and composition of groundwater and sediment characteristics of the unsaturated zone, salt crusts may accumulate relatively high contents of trace elements. Soft, loose salt crusts are highly vulnerable to wind erosion and transport. These vulnerable crusts, which may contain high contents of potentially toxic trace elements, can travel as atmospheric dust and affect human and ecosystem health at local to regional scales.

  2. LIBS detection of erosion/deposition and deuterium retention resulting from exposure to Pilot-PSI plasmas

    Science.gov (United States)

    Piip, K.; van der Meiden, H. J.; Hämarik, L.; Karhunen, J.; Hakola, A.; Laan, M.; Paris, P.; Aints, M.; Likonen, J.; Bystrov, K.; Kozlova, J.; Založnik, A.; Kelemen, M.; Markelj, S.

    2017-06-01

    Samples with tungsten (W) and tungsten-yttrium (Y) coatings on molybdenum were exposed to plasmas simulating the divertor conditions of ITER. The exposed surfaces were studied using in-situ laser induced breakdown spectroscopy diagnostics (LIBS) and the results were compared to those obtained by other surface characterization methods. Our results show that LIBS is a reliable technique for in situ monitoring of erosion, deposition, and fuel retention processes under reactor-relevant conditions. In the regions of the highest gross erosion the thickness of the remaining tungsten layer is thinnest and at the central part of samples both mixing and deposition of components took place. LIBS also allowed reliable recording of D retention. D accumulation is influenced by the surface temperature as well as by the surface irregularities.

  3. A scanning electron microscopy study of ash, char, deposits and fuels from straw combustion and co-combustion of coal and straw

    Energy Technology Data Exchange (ETDEWEB)

    Sund Soerensen, H.

    1998-07-01

    The SEM-study of samples from straw combustion and co-combustion of straw and coal have yielded a reference selection of representative images that will be useful for future comparison. The sample material encompassed potential fuels (wheat straw and grain), bottom ash, fly ash and deposits from straw combustion as well as fuels (coal and wheat straw), chars, bottom ash, fly ash and deposits from straw + coal co-combustion. Additionally, a variety of laboratory ashes were studied. SEM and CCSEM analysis of the samples have given a broad view of the inorganic components of straw and of the distribution of elements between individual ash particles and deposits. The CCSEM technique does, however, not detect dispersed inorganic elements in biomass, so to get a more complete visualization of the distribution of inorganic elements additional analyses must be performed, for example progressive leaching. In contrast, the CCSEM technique is efficient in characterizing the distribution of elements in ash particles and between ash fractions and deposits. The data for bottom ashes and fly ashes have indicated that binding of potassium to silicates occurs to a significant extent. The silicates can either be in the form of alumino-silicates or quartz (in co-combustion) or be present as straw-derived amorphous silica (in straw combustion). This process is important for two reasons. One is that potasium lowers the melting point of silica in the fly ash, potentially leading to troublesome deposits by particle impaction and sticking to heat transfer surfaces. The other is that the reaction between potassium and silica in the bottom ash binds part of the potassium meaning that it is not available for reaction with chlorine or sulphur to form KCl or K{sub 2}SO{sub 4}. Both phases are potentially troublesome because they can condense of surfaces to form a sticky layer onto which fly ash particles can adhere and by inducing corrosion beneath the deposit. It appears that in the studied

  4. Simulation of erosion and deposition processes of many-component surface layers in fusion devices; Simulation von Erosion- und Depositionsprozessen mehrkomponentiger Oberflaechenschichten in Fusionsanlagen

    Energy Technology Data Exchange (ETDEWEB)

    Droste, S.

    2007-02-15

    The present choice of first wall materials in ITER will unavoidably lead to the formation of mixed carbon, tungsten and beryllium layers. Predictive modelling of erosion processes, impurity transport and deposition processes is important. For this the 3D Monte-Carlo code ERO can be used. In this thesis ERO has been coupled to the existing Monte-Carlo code SDTrimSP to describe material mixing processes in wall components correctly. SDTrimSP describes the surface by calculating the transport of ions in solids. It keeps track of the depth dependent material concentration caused by the implantation of projectiles in the solid. The calculation of movements of the recoil atoms within the solid gives reflection coefficients and sputtering yields. Since SDTrimSP does not consider chemical processes a new method has been developed to implement chemical erosion of carbon by the impact of hydrogen projectiles. The new code ERO-SDTrimSP was compared to TEXTOR experiments which were carried out to study the formation of mixed surface layers. In these experiments methane CH4 was injected through drillings in graphite and tungsten spherical limiters into the plasma. A pronounced substrate dependence was observed. The deposition efficiency, i.e. the ratio of the locally deposited to the injected amount of carbon, was 4% for graphite and 0.3% for tungsten. The deposition-dominated area on the graphite limiter covers a five times larger area than on the tungsten limiter. Modelling of this experiment with ERO-SDTrimSP also showed a clear substrate dependence with 2% deposition efficiency for graphite and less than 0.5% for tungsten. An important result of the comparison between experiment and simulation was that the effective sticking of hydrocarbon radicals hitting the surface must be negligible. Furthermore, it was shown that local re-deposited carbon layers are 10 times more effectively eroded than ordinary graphite. Simulation of the impurity transport in the plasma was checked

  5. The erosion performance of particle reinforced metal matrix composite coatings produced by co-deposition cold gas dynamic spraying

    Science.gov (United States)

    Peat, Tom; Galloway, Alexander; Toumpis, Athanasios; McNutt, Philip; Iqbal, Naveed

    2017-02-01

    This work reports on the erosion performance of three particle reinforced metal matrix composite coatings, co-deposited with an aluminium binder via cold-gas dynamic spraying. The deposition of ceramic particles is difficult to achieve with typical cold spray techniques due to the absence of particle deformation. This issue has been overcome in the present study by simultaneously spraying the reinforcing particles with a ductile metallic binder which has led to an increased level of ceramic/cermet particles deposited on the substrate with thick (>400 μm) coatings produced. The aim of this investigation was to evaluate the erosion performance of the co-deposited coatings within a slurry environment. The study also incorporated standard metallographic characterisation techniques to evaluate the distribution of reinforcing particles within the aluminium matrix. All coatings exhibited poorer erosion performance than the uncoated material, both in terms of volume loss and mass loss. The Al2O3 reinforced coating sustained the greatest amount of damage following exposure to the slurry and recorded the greatest volume loss (approx. 2.8 mm3) out of all of the examined coatings. Despite the poor erosion performance, the WC-CoCr reinforced coating demonstrated a considerable hardness increase over the as-received AA5083 (approx. 400%) and also exhibited the smallest free space length between adjacent particles. The findings of this study reveal that the removal of the AA5083 matrix by the impinging silicon carbide particles acts as the primary wear mechanism leading to the degradation of the coating. Analysis of the wear scar has demonstrated that the damage to the soft matrix alloy takes the form of ploughing and scoring which subsequently exposes carbide/oxide particles to the impinging slurry.

  6. In situ measurements of shear stress, erosion and deposition in man-made tidal channels within a tidal saltmarsh

    Science.gov (United States)

    Pieterse, Aline; Puleo, Jack A.; McKenna, Thomas E.; Figlus, Jens

    2017-06-01

    A field study was conducted in man-made ditches in a tidal saltmarsh in Lewes, Delaware, USA. Ditches are prevalent throughout tidal marshes along the Atlantic US coast, and influence hydrodynamics and sediment transport. The field study focused on measuring near-bed velocity, shear stress, sediment concentration, and bed level variability at 5 stations over a 3-week period. Velocities in the ditch (2-5 m wide, 1 m deep) peaked between 0.4 and 0.6 m/s and were slightly ebb dominated. Velocity and shear stress were maximum during a storm event, with peak shear stresses of 2 N/m2. Bed levels were estimated from acoustic amplitude return of a downward-looking velocity profiler. The bed level in the ditch at the landward locations increased ∼ 0.03 m over 3 weeks, while there was ∼ 0.01 m bed level decrease at the most seaward site suggesting a net import of sediment into the channel. At all sites, erosion (∼ 0.005-0.015 m) occurred during the accelerating phase of the flood tide, and accretion of a similar magnitude occurred during the decelerating phase of the ebb tide. This erosion-deposition sequence resulted in small net changes in bed level at the end of each tidal cycle. The intratidal behavior of the bed level was simulated using erosion and deposition flux equations based on shear stress, critical shear stress, and suspended sediment concentration. Erosion was predicted well with RMS errors on the order of 2 ṡ10-3 m. The bed level during the deposition phase could not be reproduced using the simple approach. Model inaccuracies for deposition were attributed to advection and variations in fall velocity due to flocculation that were not modeled due to lack of ground-truth observations.

  7. Deposition or not? The fate of volcanic ash after aggregation processes

    Science.gov (United States)

    Mueller, Sebastian B.; Kueppers, Ulrich; Wadsworth, Fabian B.; Ayris, Paul M.; Casas, Ana S.; Cimarelli, Corrado; Ametsbichler, Jonathan; Delmelle, Pierre; Taddeucci, Jacopo; Jacob, Michael; Dingwell, Donald B.

    2017-04-01

    In the course of explosive volcanic eruptions, large amounts of ash are released into the atmosphere and may subsequently pose a threat to infrastructure, such as aviation industry. Ash plume forecasting is therefore a crucial tool for volcanic hazard mitigation but may be significantly affected by aggregation, altering the aerodynamic properties of particles. Models struggle with the implementation of aggregation since external conditions promoting aggregation have not been completely understood; in a previous study we have shown the rapid generation of ash aggregates through liquid bonding via the use of fluidization bed technology and further defined humidity and temperature ranges necessary to trigger aggregation. Salt (NaCl) was required for the recovery of stable aggregates, acting as a cementation agent and granting aggregate cohesion. A numerical model was used to explain the physics behind particle aggregation mechanisms and further predicted a dependency of aggregation efficiency on liquid binder viscosity. In this study we proof the effect of viscosity on particle aggregation. HCl and H2SO4 solutions were diluted to various concentrations resulting in viscosities between 1 and 2 mPas. Phonolitic and rhyolitic ash samples as well as soda-lime glass beads (serving as analogue material) were fluidized in the ProCell Lab® of Glatt Ingenieurtechnik GmbH and treated with the acids via a bottom-spray technique. Chemically driven interaction between acid liquids and surfaces of the three used materials led to crystal precipitation. Salt crystals (e.g. NaCl) have been confirmed through scanning electron microscopy (SEM) and leachate analysis. Both volcanic ash samples as well as the glass beads showed a clear dependency of aggregation efficiency on viscosity of the sprayed HCl solution. Spraying H2SO4 provoked a collapse of the fluidized bed and no aggregation has been observed. This is accounted by the high hygroscopicity of H2SO4. Dissolving CaCl2 (known to be

  8. Chemical signature of two Permian volcanic ash deposits within a bentonite bed from Melo, Uruguay

    Directory of Open Access Journals (Sweden)

    Liane M. Calarge

    2006-09-01

    Full Text Available A Permian bentonite deposit at Melo, Uruguay is composed of a calcite-cemented sandstone containing clay pseudomorphs of glass shards (0-0.50 m overlying a pink massive clay deposit (0.50-2.10m. The massive bed is composed of two layers containing quartz and smectite or pure smectite respectively. The smectite is remarkably homogeneous throughout the profile: it is a complex mixed layer composed of three layer types whose expandability with ethylene glycol (2EG 1EG or 0EG sheets in the interlayer zone which correspond to low-, medium- and high-charge layers respectively varies with the cation saturating the interlayer zone. The smectite homogeneity through the profile is the signature of an early alteration process in a lagoonal water which was over saturated with respect to calcite. Compaction during burial has made the bentonite bed a K-depleted closed system in which diagenetic illitization was inhibited. Variations in major, REE and minor element abundances throughout the massive clay deposit suggest that it originated from two successive ash falls. The incompatible element abundances are consistent with that of a volcanic glass fractionated from a rhyolite magma formed in a subduction/collision geological context.Um depósito Permiano de bentonita em Melo, Uruguai,é composto por um arenito com cimento calcítico contendo pseudomorfos de argila sobre detritos vítreos(0-0.50 m superpostos a um deposito maciço de argila rosado (0.50-2.10 m. A camada maciça é composta por dois níveis contendo quartzo e esmectita ou esmectita pura, respectivamente. A homogeneidade de esmectita ao longo do perfil é notável: trata-se de um interestratificado composto de três tipos de camadas, cuja expansibilidade com etileno-glicol (folhas 2EG, 1EG ou 0EG na zona interfoliar correspondentes a camadas com baixa, média e alta carga, respectivamente variam com o tipo de cátion que satura a zona interfoliar. A homogeneidade da esmectita ao longo do perfil

  9. Ash storms: impacts of wind-remobilised volcanic ash on rural communities and agriculture following the 1991 Hudson eruption, southern Patagonia, Chile

    Science.gov (United States)

    Wilson, T. M.; Cole, J. W.; Stewart, C.; Cronin, S. J.; Johnston, D. M.

    2011-04-01

    Tephra fall from the August 1991 eruption of Volcán Hudson affected some 100,000 km2 of Patagonia and was almost immediately reworked by strong winds, creating billowing clouds of remobilised ash, or `ash storms'. The immediate impacts on agriculture and rural communities were severe, but were then greatly exacerbated by continuing ash storms. This paper describes the findings of a 3-week study tour of the diverse environments of southern Patagonia affected by ash storms, with an emphasis on determining the impacts of repeated ash storms on agriculture and local practices that were developed in an attempt to mitigate these impacts. Ash storms produce similar effects to initial tephra eruptions, prolonged for considerable periods. These have included the burial of farmland under dune deposits, abrasion of vegetation and contamination of feed supplies with fine ash. These impacts can then cause problems for grazing animals such as starvation, severe tooth abrasion, gastrointestinal problems, corneal abrasion and blindness, and exhaustion if sheep fleeces become laden with ash. In addition, ash storms have led to exacerbated soil erosion, human health impacts, increased cleanup requirements, sedimentation in irrigation canals, and disruption of aviation and land transport. Ash deposits were naturally stabilised most rapidly in areas with high rainfall (>1,500 mm/year) through compaction and enhanced vegetation growth. Stabilisation was slowest in windy, semi-arid regions. Destruction of vegetation and suppression of regrowth by heavy tephra fall (>100 mm) hindered the stabilisation of deposits for years, and reduced the surface friction which increased wind erosivity. Stabilisation of tephra deposits was improved by intensive tillage, use of windbreaks and where there was dense and taller vegetative cover. Long-term drought and the impracticality of mixing ash deposits with soil by tillage on large farms was a barrier to stabilising deposits and, in turn

  10. A combined molecular dynamics and kinetic Monte Carlo calculation to study sputter erosion and beam assisted deposition

    CERN Document Server

    Betz, G

    2002-01-01

    To extend the time scale in molecular dynamics (MD) calculations of sputtering and ion assisted deposition we have coupled our MD calculations to a kinetic Monte Carlo (KMC) calculation. In this way we have studied surface erosion of Cu(1 0 0) under 200-600 eV Cu ion bombardment and growth of Cu on Cu(1 0 0) for deposition at thermal energies up to energies of 100 eV per atom. Target temperatures were varied from 100 to 400 K. The coupling of the MD calculation to a KMC calculation allows us to extend our calculations from a few ps, a time scale typical for MD, to times of up to seconds until the next Cu particle will impinge/be deposited on the crystal surface of about 100 nm sup 2 in size. The latter value of 1 s is quite realistic for a typical experimental sputter erosion or deposition experiment. In such a calculation thermal diffusion processes at the surface and annealing of the surface after energetic ion bombardment can be taken into account. To achieve homo-epitaxial growth of a film the results cle...

  11. Mechanisms of Water Droplets Deposition on Turbine Blade Surfaces and Erosion Wear Effects

    Directory of Open Access Journals (Sweden)

    G. Ilieva

    2017-01-01

    Full Text Available Failure of turbine blades leads to various exploitation problems, efficiency decrease and economical losses, at all. A detailed research on aerodynamic features, in various exploitation conditions and regimes, and on reasons for failures, is a prerequisite to the obviated technical problems and increased reliability of turbine aggregates. Water droplets erosion is known as a very complex and crucial phenomena. It couples the effects of wet steam expansion, together with condensation (evaporation, presence of second phase with the impact of water droplets over blade surfaces, erosion effects and fatigue mechanisms. The present research deals with a logical sequence for numerical simulations and research on erosion mechanisms in a low pressure stage of К-1000-6 /1500 steam turbine, working at a Nuclear Power Plant. Attention is paid to the impact of droplets’ diameter on blade surfaces, their aerodynamic behavior and efficiency of energy conversion through turbine channels. Particular trajectories of water droplets, reasons for occurrence of erosion wear, over certain parts of the streamlined surfaces, are established and discussed. An approach to acquire incidence time to erosion appearance is implemented. Research methodology and obtained results are applicable to determine erosion effects on streamed complex surfaces, to replace expensive measurements campaigns, introduce approaches to decrease wetness in last stages of condensation turbines and prolong the reliability of blades operated in wet steam conditions

  12. Contributions of microbial activity and ash deposition to post-fire nitrogen availability in a pine savanna

    Science.gov (United States)

    Ficken, Cari D.; Wright, Justin P.

    2017-01-01

    Many ecosystems experience drastic changes to soil nutrient availability associated with fire, but the magnitude and duration of these changes are highly variable among vegetation and fire types. In pyrogenic pine savannas across the southeastern United States, pulses of soil inorganic nitrogen (N) occur in tandem with ecosystem-scale nutrient losses from prescribed burns. Despite the importance of this management tool for restoring and maintaining fire-dependent plant communities, the contributions of different mechanisms underlying fire-associated changes to soil N availability remain unclear. Pulses of N availability following fire have been hypothesized to occur through (1) changes to microbial cycling rates and (2) direct ash deposition. Here, we document fire-associated changes to N availability across the growing season in a longleaf pine savanna in North Carolina. To differentiate between possible mechanisms driving soil N pulses, we measured net microbial cycling rates and changes to soil δ15N before and after a burn. Our findings refute both proposed mechanisms: we found no evidence for changes in microbial activity, and limited evidence that ash deposition could account for the increase in ammonium availability to more than 5-25 times background levels. Consequently, we propose a third mechanism to explain post-fire patterns of soil N availability, namely that (3) changes to plant sink strength may contribute to ephemeral increases in soil N availability, and encourage future studies to explicitly test this mechanism.

  13. Assessment of a numerical model to reproduce event‐scale erosion and deposition distributions in a braided river

    Science.gov (United States)

    Measures, R.; Hicks, D. M.; Brasington, J.

    2016-01-01

    Abstract Numerical morphological modeling of braided rivers, using a physics‐based approach, is increasingly used as a technique to explore controls on river pattern and, from an applied perspective, to simulate the impact of channel modifications. This paper assesses a depth‐averaged nonuniform sediment model (Delft3D) to predict the morphodynamics of a 2.5 km long reach of the braided Rees River, New Zealand, during a single high‐flow event. Evaluation of model performance primarily focused upon using high‐resolution Digital Elevation Models (DEMs) of Difference, derived from a fusion of terrestrial laser scanning and optical empirical bathymetric mapping, to compare observed and predicted patterns of erosion and deposition and reach‐scale sediment budgets. For the calibrated model, this was supplemented with planform metrics (e.g., braiding intensity). Extensive sensitivity analysis of model functions and parameters was executed, including consideration of numerical scheme for bed load component calculations, hydraulics, bed composition, bed load transport and bed slope effects, bank erosion, and frequency of calculations. Total predicted volumes of erosion and deposition corresponded well to those observed. The difference between predicted and observed volumes of erosion was less than the factor of two that characterizes the accuracy of the Gaeuman et al. bed load transport formula. Grain size distributions were best represented using two φ intervals. For unsteady flows, results were sensitive to the morphological time scale factor. The approach of comparing observed and predicted morphological sediment budgets shows the value of using natural experiment data sets for model testing. Sensitivity results are transferable to guide Delft3D applications to other rivers. PMID:27708477

  14. Assessment of a numerical model to reproduce event-scale erosion and deposition distributions in a braided river.

    Science.gov (United States)

    Williams, R D; Measures, R; Hicks, D M; Brasington, J

    2016-08-01

    Numerical morphological modeling of braided rivers, using a physics-based approach, is increasingly used as a technique to explore controls on river pattern and, from an applied perspective, to simulate the impact of channel modifications. This paper assesses a depth-averaged nonuniform sediment model (Delft3D) to predict the morphodynamics of a 2.5 km long reach of the braided Rees River, New Zealand, during a single high-flow event. Evaluation of model performance primarily focused upon using high-resolution Digital Elevation Models (DEMs) of Difference, derived from a fusion of terrestrial laser scanning and optical empirical bathymetric mapping, to compare observed and predicted patterns of erosion and deposition and reach-scale sediment budgets. For the calibrated model, this was supplemented with planform metrics (e.g., braiding intensity). Extensive sensitivity analysis of model functions and parameters was executed, including consideration of numerical scheme for bed load component calculations, hydraulics, bed composition, bed load transport and bed slope effects, bank erosion, and frequency of calculations. Total predicted volumes of erosion and deposition corresponded well to those observed. The difference between predicted and observed volumes of erosion was less than the factor of two that characterizes the accuracy of the Gaeuman et al. bed load transport formula. Grain size distributions were best represented using two φ intervals. For unsteady flows, results were sensitive to the morphological time scale factor. The approach of comparing observed and predicted morphological sediment budgets shows the value of using natural experiment data sets for model testing. Sensitivity results are transferable to guide Delft3D applications to other rivers.

  15. Detection of erosion/deposition depth using a low frequency passive Radio Frequency Identification (RFID) technology

    Science.gov (United States)

    Moustakidis, Iordanis Vlasios

    antenna and a transponder. The laboratory results show that the dominant RFID parameters affecting the system performance are (a) the transponder orientation towards the excitation antenna plane and (b) the medium type in between the excitation antenna and the transponder. The differences in reading distances were attributed to the transponder inner antenna type, while the effect of the medium was related with the void ratio, where higher porosity materials have, less RF signal strength decay. The parameter that governs the RF signal strength decay was found to be the distance between the excitation antenna and the transponder (erosion process experiments). The RF signal strength decays almost linearly with distance, while the rate of the RF signal strength decay is controlled by the material type in between the excitation antenna and the transponder (deposition process experiments). The RF signal vs. the detection distance experiments demonstrate that the reading distance of the RFID system can be significantly increased by using a custom made excitation antenna. The custom made excitation antenna not only increases the reading distance between the antenna and the transponder to nearly 20 ft., but also allows the user to manipulate the excitation antenna's shape and size to meet the specific landscape requirements at the monitoring site.

  16. Quantifying erosion and deposition patterns using airborne LiDAR following the 2012 High Park Fire and 2013 Colorado Flood

    Science.gov (United States)

    Brogan, D. J.; Nelson, P. A.; MacDonald, L. H.

    2015-12-01

    Quantifying and predicting geomorphic change over large spatial scales is increasingly feasible and of growing interest as repeat high resolution topography becomes available. We began detailed field studies of channel geomorphic change using RTK-GPS in two 15 km2 watersheds following the 2012 High Park Fire; the watersheds were then subjected to a several-hundred year flood in September 2013. During this time a series of airborne LiDAR datasets were collected, and the objectives of this study were to: 1) determine and compare the spatial variability in channel and valley erosion and deposition over time from the LiDAR; and 2) determine if the observed changes can be predicted from channel and valley bottom characteristics. Data quality issues in the initial LiDAR required us to rotate and translate flight lines in order to co-register ground-classified point clouds between successive datasets; uncertainty was then estimated using our RTK-GPS field measurements. Topographic changes were calculated using the Multiscale Model to Model Cloud Comparison (M3C2) algorithm. Results indicate that the 2013 flood mobilized much more sediment than was mobilized due to the fire alone; unfortunately the uncertainty in differencing is still frequently greater than the observed changes, especially within transfer reaches. Valley expansion and constriction are major controls on spatial patterns of erosion and deposition, suggesting that topographic metrics such as longitudinal distributions of channel slope and valley confinement may provide quasi-physically based estimates of sediment deposition and delivery potential.

  17. Repair of Erosion Defects in Gun Barrels by Direct Laser Deposition

    Science.gov (United States)

    Nowotny, Steffen; Spatzier, Joerg; Kubisch, Frank; Scharek, Siegfried; Ortner, Jens; Beyer, Eckhard

    2012-12-01

    In recent years the development of functional carbide coatings follows the trend to use composite powders with fine grained hard particles. In addition to thermal spraying, laser cladding is a suitable surface technology in particular for dynamically loaded components, and it is widely used for the manufacturing of coatings as well as complex 3D structures. The paper presents an application addressing the repair of erosion defects in large gun barrels using a novel internal diameter laser cladding head. The most promising material systems are TiC- and VC-based metal-matrix composites. Samples were evaluated in a special erosion test that emulates realistic load conditions. In this test, the materials are exposed to extreme stresses by temperature and pressure shocks, a very reactive atmosphere and erosive particles. As result, TiC-based coatings showed the best performance, and they are applicable for both repair and surface protection of inner surfaces of components and tools.

  18. The ash deposits of the 4200 BP Cerro Blanco eruption: the largest Holocene eruption of the Central Andes

    Science.gov (United States)

    Fernandez-Turiel, Jose-Luis; Saavedra, Julio; Perez-Torrado, Francisco-Jose; Rodriguez-Gonzalez, Alejandro; Carracedo, Juan-Carlos; Lobo, Agustin; Rejas, Marta; Gallardo, Juan-Fernando; Osterrieth, Margarita; Carrizo, Julieta; Esteban, Graciela; Martinez, Luis-Dante; Gil, Raul-Andres; Ratto, Norma; Baez, Walter

    2015-04-01

    We present new data about a major eruption -spreading approx. 110 km3 ashes over 440.000 km2- long thought to have occurred around 4200 years ago in the Cerro Blanco Volcanic Complex (CBVC) in the Central Andes of NW Argentina (Southern Puna, 26°45' S, 67°45' W). This eruption may be the biggest during the past five millennia in the Central Volcanic Zone of the Andes, and possibly one of the largest Holocene eruptions in the world. Discrimination and correlation of pyroclastic deposits of this eruption of Cerro Blanco was conducted comparing samples of proximal (domes, pyroclastic flow and fall deposits) with distal ash fall deposits (up to 400 km from de vent). They have been characterized using optical and electron microscopy (SEM), X-ray diffraction, particle-size distribution by laser diffraction and electron microprobe and HR-ICP-MS with laser ablation for major and trace element composition of glass, feldspars and biotite. New and published 14C ages were calibrated using Bayesian statistics. An one-at-a-time inversion method was used to reconstruct the eruption conditions using the Tephra2 code (Bonadonna et al. 2010, https://vhub.org/resources/tephra2). This method allowed setting the main features of the eruption that explains the field observations in terms of thickness and grain size distributions of the ash fall deposit. The main arguments that justify the correlation are four: 1) Compositional coincidence for glass, feldspars, and biotite in proximal and distal materials; 2) Stratigraphic and geomorphological relationships, including structure and thickness variation of the distal deposits; 3) Geochronological consistency, matching proximal and distal ages; and 4) Geographical distribution of correlated outcrops in relation to the eruption centre at the coordinates of Cerro Blanco. With a magnitude of 7.0 and a volcanic explosivity index or VEI 7, this eruption of ~4200 BP at Cerro Blanco is the largest in the last five millennia known in the Central

  19. Erosion of Be and deposition of C and O due to bombardment with C{sup +} and CO{sup +}

    Energy Technology Data Exchange (ETDEWEB)

    Eckstein, W.; Goldstrass, P.; Linsmeier, Ch. [Max-Planck-Institut fuer Plasmaphysik, Garching (Germany)

    1998-01-01

    The bombardment of Be with 3 and 5 keV C{sup +} and CO{sup +} at normal incidence is investigated experimentally and by computer simulation with the program TRIDYN. The deposited amount of C and O is determined experimentally and found in good agreement with calculated data for C bombardment. Chemical erosion dominates at higher fluences for CO{sup +} bombardment. Calculations are then used to determine the sputter yield of Be at steady state conditions as a function of the plasma edge electron temperature for two C impurity concentrations in the incident D flux, typical for fusion plasmas. The fluence to reach steady state conditions is also investigated. (author)

  20. Advances in understanding of high-Z material erosion and re-deposition in low-Z wall environment in DIII-D

    Science.gov (United States)

    Ding, R.; Rudakov, D. L.; Stangeby, P. C.; Wampler, W. R.; Abrams, T.; Brezinsek, S.; Briesemeister, A.; Bykov, I.; Chan, V. S.; Chrobak, C. P.; Elder, J. D.; Guo, H. Y.; Guterl, J.; Kirschner, A.; Lasnier, C. J.; Leonard, A. W.; Makowski, M. A.; McLean, A. G.; Snyder, P. B.; Thomas, D. M.; Tskhakaya, D.; Unterberg, E. A.; Wang, H. Q.; Watkins, J. G.

    2017-05-01

    Dedicated DIII-D experiments coupled with modeling reveal that the net erosion rate of high-Z materials, i.e. Mo and W, is strongly affected by carbon concentration in the plasma and the magnetic pre-sheath properties. Different methods such as electrical biasing and local gas injection have been investigated to control high-Z material erosion. The net erosion rate of high-Z materials is significantly reduced due to the high local re-deposition ratio. The ERO modeling shows that the local re-deposition ratio is mainly controlled by the electric field and plasma density within the magnetic pre-sheath. The net erosion can be significantly suppressed by reducing the sheath potential drop. A high carbon impurity concentration in the background plasma is also found to reduce the net erosion rate of high-Z materials. Both DIII-D experiments and modeling show that local 13CH4 injection can create a carbon coating on the metal surface. The profile of 13C deposition provides quantitative information on radial transport due to E  ×  B drift and the cross-field diffusion. The deuterium gas injection upstream of the W sample can reduce W net erosion rate by plasma perturbation. In H-mode plasmas, the measured inter-ELM W erosion rates at different radial locations are well reproduced by ERO modeling taking into account charge-state-resolved carbon ion flux in the background plasma calculated using the OEDGE code.

  1. Degradation of thermal barrier coatings on an Integrated Gasification Combined Cycle (IGCC) simulated film-cooled turbine vane pressure surface due to particulate fly ash deposition

    Science.gov (United States)

    Luo, Kevin

    Coal synthesis gas (syngas) can introduce contaminants into the flow of an Integrated Gasification Combined Cycle (IGCC) industrial gas turbine which can form molten deposits onto components of the first stage of a turbine. Research is being conducted at West Virginia University (WVU) to study the effects of particulate deposition on thermal barrier coatings (TBC) employed on the airfoils of an IGCC turbine hot section. WVU had been working with U.S. Department of Energy, National Energy Technology Laboratory (NETL) to simulate deposition on the pressure side of an IGCC turbine first stage vane to study the effects on film cooling. To simulate the particulate deposition, TBC coated, angled film-cooled test articles were subjected to accelerated deposition injected into the flow of a combustor facility with a pressure of approximately 4 atm and a gas temperature of 1560 K. The particle characteristics between engine conditions and laboratory are matched using the Stokes number and particulate loading. To investigate the degradation on the TBC from the particulate deposition, non-destructive evaluations were performed using a load-based multiple-partial unloading micro-indentation technique and were followed by scanning electron microscopy (SEM) evaluation and energy dispersive X-ray spectroscopy (EDS) examinations. The micro-indentation technique used in the study was developed by Kang et al. and can quantitatively evaluate the mechanical properties of materials. The indentation results found that the Young's Modulus of the ceramic top coat is higher in areas with deposition formation due to the penetration of the fly ash. The increase in the modulus of elasticity has been shown to result in a reduction of strain tolerance of the 7% yttria-stabilized zirconia (7YSZ) TBC coatings. The increase in the Young's modulus of the ceramic top coat is due to the stiffening of the YSZ columnar microstructure from the cooled particulate fly ash. SEM evaluation was used to

  2. Wave-induced flow and its influence on ridge erosion and channel deposition in Lanshayang channel of radial sand ridges

    Institute of Scientific and Technical Information of China (English)

    陈可峰; 安翔; 陆培东; 张玮; 徐卓

    2014-01-01

    Very limited modeling studies were available of the wave-induced current under the complex hydrodynamic conditions in the South Yellow Sea Radial Sand Ridge area (SYSRSR). Partly it is due to the difficulties in estimating the influence of the wave-induced current in this area. In this study, a coupled 3-D storm-surge-wave model is built. In this model, the time-dependent varying Collins coefficient with the water level method (TCL) are used. The wave-flow environment in the Lanshayang Channel (LSYC) during the “Winnie” typhoon is successfully represented by this model. According to the modelling results, at a high water level (HWL), the wave-induced current similar to the long-shore current will emerge in the shallow area of the ridges, and has two different motion trends correlated with the morphological characteristics of the ridges. The wave-induced current velocity could be as strong as 1 m/s, which is at the same magnitude as the tidal current. This result is verified by the bathymetric changes in the LSYC during the “Matsa” typhoon. Thus, the wave-induced current may be one of the driven force of the ridge erosion and channel deposition in the SYSRSR. These conclusions will help to further study the mechanism of the ridge erosion and channel deposition in the SYSRSR.

  3. From deposition to erosion: spatial and temporal variability of sediment sources, storage, and transport in a small agricultural watershed

    Science.gov (United States)

    Florsheim, J.L.; Pellerin, B.A.; Oh, N.H.; Ohara, N.; Bachand, P.A.M.; Bachand, Sandra M.; Bergamaschi, B.A.; Hernes, P.J.; Kavvas, M.L.

    2011-01-01

    The spatial and temporal variability of sediment sources, storage, and transport were investigated in a small agricultural watershed draining the Coast Ranges and Sacramento Valley in central California. Results of field, laboratory, and historical data analysis in the Willow Slough fluvial system document changes that transformed a transport-limited depositional system to an effective erosion and transport system, despite a large sediment supply. These changes were caused by a combination of factors: (i) an increase in transport capacity, and (ii) hydrologic alteration. Alteration of the riparian zone and drainage network pattern during the past ~ 150 years included a twofold increase in straightened channel segments along with a baselevel change from excavation that increased slope, and increased sediment transport capacity by ~ 7%. Hydrologic alteration from irrigation water contributions also increased transport capacity, by extending the period with potential for sediment transport and erosion by ~ 6 months/year. Field measurements document Quaternary Alluvium as a modern source of fine sediment with grain size distributions characterized by 5 to 40% fine material. About 60% of an upland and 30% of a lowland study reach incised into this deposit exhibit bank erosion. During this study, the wet 2006 and relatively dry 2007 water years exhibited a range of total annual suspended sediment load spanning two orders of magnitude: ~ 108,500 kg/km2/year during 2006 and 5,950 kg/km2/year during 2007, only 5% of that during the previous year. Regional implications of this work are illustrated by the potential for a small tributary such as Willow Slough to contribute sediment – whereas large dams limit sediment supply from larger tributaries – to the Sacramento River and San Francisco Bay Delta and Estuary. This work is relevant to lowland agricultural river–floodplain systems globally in efforts to restore aquatic and riparian functions and where water quality

  4. The Effect of Applied Organic Fertilizers on the Bioavailability of Heavy Metals in Lolium Perenne, Cultivated on Fly Ash Deposits

    Directory of Open Access Journals (Sweden)

    Smaranda Mâşu

    2011-10-01

    Full Text Available The study aims to monitor the capacity of certain organic fertilizers (volcanic tuff and municipal sludge, applied as such and mixed with volcanic rocks with a high content in clinoptilolite, to determine the covering with vegetation of fly ash deposits resulted from the combustion of lignite in thermal plants. Both biosolids (20 t/ha and volcanic rock with high clinoptilolite content (5 t/ha determined the installation of a vegetative layer and diminished the soil metal bioavailability to the Lolium prerenne plant biomass. When using the organic-zeolite mixture, a synergistic effect is recorded of the two components of the treatment agent and an increase of the biomass with 448%. Moreover, the resulted biomass shows the highest reductions of metal bioaccumulations, of 38-46% for Zn and Fe, of 62% for Cu and between 82-89% for Cr, Ni and Pb.

  5. On the origin and post-depositional history of widespread massive ash deposits: The case of Intermediate Brown Tuffs (IBT) of Lipari (Aeolian Islands, Italy)

    Science.gov (United States)

    De Rosa, Rosanna; Donato, Paola; Scarciglia, Fabio

    2016-11-01

    We analysed a widespread, massive ash unit outcropping on the island of Lipari, which belongs to the Intermediate Brown Tuffs (IBT) succession of the Aeolian Islands, Italy. The use of a multidisciplinary approach that integrates textural, petrological and pedological methods, allows us to discriminate between syn-eruptive and post-depositional features. The deposits are dominated by uncrystallised blocky glass fragments of homogeneous shoshonitic composition, confirming a provenance from hydromagmatic eruptions on the island of Vulcano. Many glass fragments are surrounded by a coating separated by a thin void of syn-eruptive origin due to alteration by aggressive acid gases in the eruptive cloud. The lack of this coating in the northern part of Lipari can be explained as a progressive dispersion of the gases far from the vent and/or to post-depositional processes. The degree of soil development significantly increases from south (soil profiles P1 and P2 at Valle Muria) to north (P3 and P4, at Madoro and Chiesa Vecchia sites, respectively) as a response to a decrease in slope steepness, which has brought about a progressive deepening of the pedogenetic front on gentler landforms and conversely its rejuvenation on steep slopes. The relatively poor to moderate degree of pedogenic evolution of the studied IBT unit is consistent with its emplacement during part of the last glacial period.

  6. Technical Guidelines on Performing a Sediment Erosion and Deposition Assessment (SEDA) at Superfund Sites

    Science.gov (United States)

    2014-09-01

    A. Shipp, and R. L. Ulery. 1996. Water quality in the Trinity River Basin, Texas , 1992-95. U.S. Geological Survey Circular 1171. Available at...and W. Lick. 1997. Effects of bulk density on sediment erosion rates. Water , Air, and Soil Pollution 99:21-31. Jepsen, R., J. Roberts, and J...sciences, water resources, and environmental sciences for the Army, the Department of Defense, civilian agencies, and our nation’s public good. Find

  7. CFD modeling of ash deposition for co-combustion of MBM with coal in a tangentially fired utility boiler

    NARCIS (Netherlands)

    Taha, T.J.; Stam, A.F.; Stam, K.; Brem, G.

    2013-01-01

    Ash deposition is one of the main challenges that needs to be tackled in response to increased percentage of biomass co-firing in pulverized fuel boilers. In this study, a model has been developed to investigate the slagging behavior of meat and bone meal (MBM) at higher co-firing rates in the Maasv

  8. Exposure to toxicants in soil and bottom ash deposits in Agbogbloshie, Ghana: human health risk assessment.

    Science.gov (United States)

    Obiri, S; Ansa-Asare, O D; Mohammed, S; Darko, H F; Dartey, A G

    2016-10-01

    Recycling of e-waste using informal or crude techniques poses serious health risk not only to the workers but also to the environment as whole. It is against this background that this paper sought to measure health risk faced by informal e-waste workers from exposure to toxicants such as lead, cadmium, chromium, copper, arsenic, tin, zinc and cobalt via oral and dermal contact with bottom ash and soil. Using random sampling techniques, 3 separate sites each (where burning and manual dismantling of e-wastes are usually carried) were identified, and a total of 402 samples were collected. The samples were analysed using standard methods for chemical analysis prescribed by the American Water Works Association (AWWA). Concentrations of Pb, Cd, Cr, Cu, As, Sn, Zn and Co in bottom ash samples from location ASH1 are 5388 ± 0.02 mg/kg (Pb), 2.39 ± 0.01 mg/kg (Cd), 42 ± 0.05 mg/kg (Cr), 7940 ± 0.01 mg/kg (Cu), 20 ± 0.07 mg/kg (As), 225 ± 0.04 mg/kg (Sn), 276 ± 0.04 mg/kg (Zn) and 123 ± 0.04 mg/kg (Co), while concentrations of the aforementioned toxicants in soil samples at location ASG1 are as follows: 1685 ± 0.14 mg/kg (Pb), 26.89 ± 0.30 mg/kg (Cd), 36.86 ± 0.02 mg/kg (Cr), 1427 ± 0.08 mg/kg (Cu), 1622 ± 0.12 mg/kg (As), 234 ± 0.25 mg/kg (Sn), 783 ± 0.31 mg/kg (Zn) and 135 ± 0.01 mg/kg (Co); used as input parameters in assessing health risk faced by workers. The results of cancer health risk faced by e-waste workers due to accidental ingestion of As in bottom ash at ASH1 is 4.3 × 10(-3) (CTE) and 6.5 × 10(-2) (RME), i.e. approximately 4 out of 1000 e-waste workers are likely to suffer from cancer-related diseases via central tendency exposure (CTE parameters), and 7 out of every 100 e-waste worker is also likely to suffer from cancer cases by reasonable maximum exposure (RME) parameters, respectively. The cancer health risk results for the other sampling sites were found to have exceeded the acceptable

  9. Simulating the Impact of Future Land Use and Climate Change on Soil Erosion and Deposition in the Mae Nam Nan Sub-Catchment, Thailand

    Directory of Open Access Journals (Sweden)

    Nitin Kumar Tripathi

    2013-07-01

    Full Text Available This paper evaluates the possible impacts of climate change and land use change and its combined effects on soil loss and net soil loss (erosion and deposition in the Mae Nam Nan sub-catchment, Thailand. Future climate from two general circulation models (GCMs and a regional circulation model (RCM consisting of HadCM3, NCAR CSSM3 and PRECIS RCM ware downscaled using a delta change approach. Cellular Automata/Markov (CA_Markov model was used to characterize future land use. Soil loss modeling using Revised Universal Soil Loss Equation (RUSLE and sedimentation modeling in Idrisi software were employed to estimate soil loss and net soil loss under direct impact (climate change, indirect impact (land use change and full range of impact (climate and land use change to generate results at a 10 year interval between 2020 and 2040. Results indicate that soil erosion and deposition increase or decrease, depending on which climate and land use scenarios are considered. The potential for climate change to increase soil loss rate, soil erosion and deposition in future periods was established, whereas considerable decreases in erosion are projected when land use is increased from baseline periods. The combined climate and land use change analysis revealed that land use planning could be adopted to mitigate soil erosion and deposition in the future, in conjunction with the projected direct impact of climate change.

  10. Modelling Deposition and Erosion rates with RadioNuclides (MODERN) - Part 1: A new conversion model to derive soil redistribution rates from inventories of fallout radionuclides.

    Science.gov (United States)

    Arata, Laura; Meusburger, Katrin; Frenkel, Elena; A'Campo-Neuen, Annette; Iurian, Andra-Rada; Ketterer, Michael E; Mabit, Lionel; Alewell, Christine

    2016-10-01

    The measurement of fallout radionuclides (FRN) has become one of the most commonly used tools to quantify sediment erosion or depositional processes. The conversion of FRN inventories into soil erosion and deposition rates is done with a variety of models, which suitability is dependent on the selected FRN, soil cultivation (ploughed or unploughed) and movement (erosion or deposition). The authors propose a new conversion model, which can be easily and comprehensively used for different FRN, land uses and soil redistribution processes. The new model MODERN (Modelling Deposition and Erosion rates with RadioNuclides) considers the precise depth distribution of any FRN at the reference site, and allows adapting it for any specific site conditions. MODERN adaptability and performance in converting different FRN inventories is discussed for a theoretical case as well as for two already published case studies i.e. a (137)Cs study in an alpine and unploughed area in the Aosta valley (Italy) and a (210)Pbex study on a ploughed area located in the Transylvanian Plain (Romania). The tests highlight a highly significant correspondence (i.e. correlation factor of 0.91) between the results of MODERN and the published results of other models currently used by the FRN scientific community (i.e. the Profile Distribution Model and the Mass Balance Model). The development and the cost free accessibility of MODERN (see modern.umweltgeo.unibas.ch) will ensure the promotion of wider application of FRNs for tracing soil erosion and sedimentation.

  11. Dynamics of volcanic ash remobilisation by wind through the Patagonian steppe after the eruption of Cordón Caulle, 2011.

    Science.gov (United States)

    Panebianco, Juan E; Mendez, Mariano J; Buschiazzo, Daniel E; Bran, Donaldo; Gaitán, Juan J

    2017-03-28

    Wind erosion of freshly-deposited volcanic ash causes persistent storms, strongly affecting ecosystems and human activity. Wind erosion of the volcanic ash was measured up to 17 months after the ash deposition, at 7 sites located within the ash-deposition area. The mass flux was measured up to 1.5 m above ground level. Mass transport rates were over 125 times the soil wind-erosion rates observed before the ash deposition, reaching up to 6.3 kg m(-1) day(-1). Total mass transport of ash during the 17 months ranged between 113.6 and 969.9 kg m(-1) depending on topographic location and wind exposure. The vertical distribution of the mass flux at sites with higher vegetation cover was generally inverted as compared to sites with lower vegetation cover. This situation lasted 7 months and then a shift towards a more uniform vertical distribution was observed, in coincidence with the beginning of the decline of the mass transport rates. Decay rates differed between sites. Despite changes over time, an inverse linear correlation between the mass transports and the mass-flux gradients was found. Both the mass-flux gradients and the average mass-transport rates were not linked with shear-stress partition parameters, but with the ratio: ash-fall thickness to total vegetation cover.

  12. Long-term modelling of fly ash and radionuclide emissions as well as deposition fluxes due to the operation of large oil shale-fired power plants.

    Science.gov (United States)

    Vaasma, Taavi; Kaasik, Marko; Loosaar, Jüri; Kiisk, Madis; Tkaczyk, Alan H

    2017-09-11

    Two of the world's largest oil shale-fired power plants (PPs) in Estonia have been operational over 40 years, emitting various pollutants, such as fly ash, SOx, NOx, heavy metals, volatile organic compounds as well as radionuclides to the environment. The emissions from these PPs have varied significantly during this period, with the maximum during the 1970s and 1980s. The oil shale burned in the PPs contains naturally occurring radionuclides from the (238)U and (232)Th decay series as well as (40)K. These radionuclides become enriched in fly ash fractions (up to 10 times), especially in the fine fly ash escaping the purification system. Using a validated Gaussian-plume model, atmospheric dispersion modelling was carried out to determine the quantity and a real magnitude of fly ash and radionuclide deposition fluxes during different decades. The maximum deposition fluxes of volatile radionuclides ((210)Pb and (210)Po) were around 70 mBq m(-2) d(-1) nearby the PPs during 1970s and 1980s. Due to the reduction of burned oil shale and significant renovations done on the PPs, the deposition fluxes were reduced to 10 mBq m(-2) d(-1) in the 2000s and down to 1.5 mBq m(-2) d(-1) in 2015. The maximum deposition occurs within couple of kilometers of the PPs, but the impacted area extends to over 50 km from the sources. For many radionuclides, including (210)Po, the PPs have been larger contributors of radionuclides to the environment via atmospheric pathway than natural sources. This is the first time that the emissions and deposition fluxes of radionuclides from the PPs have been quantified, providing the information about their radionuclide deposition load on the surrounding environment during various time periods. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. The application of terrestrial laser scanner and photogrammetry in measuring erosion and deposition processes in humid badlands in the Central Spanish Pyrenees

    Science.gov (United States)

    Nadal-Romero, E.; Revuelto, J.; Errea, P.; López-Moreno, J. I.

    2015-04-01

    Erosion and deposition processes in badland areas are usually estimated using traditional observations of topographic changes, measured by erosion pins or profile meters (invasive techniques). In recent times, geomatic techniques (non-invasive) have been routinely applied in geomorphology studies, especially in erosion studies. These techniques provide the opportunity to build high-resolution topographic models at subcentimeter accuracy. By comparing different 3-D point clouds of the same area, obtained at different time intervals, the variations in the terrain and temporal dynamics can be analyzed. The aim of this study is to assess and compare the functioning of Terrestrial Laser Scanner (TLS, RIEGL LPM-321) and close range photogrammetry techniques (Camera FUJIFILM, Finepix x100 and Software PhotoScan by AgiSoft), to evaluate erosion and deposition processes in a humid badland area in the Central Spanish Pyrenees. Results show that TLS data sets and photogrammetry techniques provide new opportunities in geomorphological erosion studies. The data we recorded over one year demonstrated that north-facing slopes experienced more intense and faster changing geomorphological dynamics than south-facing slopes as well as the highest erosion rates. Different seasonal processes were observed, with the highest topographic differences observed during winter periods and the high intensity rainfalls in summer. While TLS provided the highest resolution models, photogrammetry was still a faster methodology in the field and precise at short distances. Both techniques do not require direct contact with the soil and thus prevent the usual surface disturbance of traditional and invasive methods.

  14. Mega deposits and erosive features related to the glacial lake Nedre Glomsjø outburst flood, southeastern Norway

    Science.gov (United States)

    Høgaas, Fredrik; Longva, Oddvar

    2016-11-01

    In this paper we present a suite of erosional remnants, mega deposits and subtle bar morphology that we relate to the outburst flood from the glacial lake Nedre Glomsjø at the end of the last Ice Age. By using large datasets of airborne LiDAR data implemented in a geographic information system (GIS), we have mapped flood related features along the Glomma and Vrangselva rivers in southeastern Norway. The unprecedented overview of the valley reaches obtained by the vegetation-free LiDAR-derived digital elevation models (DEM) has revealed a set of hitherto undocumented landforms. Persisting erosive lines - indicators of the uppermost flooded level - are carved into surficial deposits in the hillsides and are found as high as 80-90 m above the modern valley floor. By using the indicators as an upper flood boundary, we have computed cross-sectional profiles showing that the flood in some reaches inundated more than 120 000 m2 of the valley. Large, streamlined bed forms, which we interpret as flood bars, drape sections of the valley floor, some several kilometers long. The most morphologically striking - pendant bars - are developed behind flood flow projections, such as bedrock knolls or in lee of a valley bend. Flood bars occur in the entire study area, but are more widespread in the north and generally decrease in size moving in a downstream direction. Kettle holes and ice-block obstacle marks from icebergs arrested during the flood are common. These features support the theory of a catastrophic drainage event, but also indicate a pattern of differential erosion and deposition that allowed us to interpret palaeoflow on individual bars. Vast aeolian dune fields in the region are interpreted as a secondary product of the flood, as deposits related to the event were mobilised by northerly winds momentarily after the flood waned. The dune fields cover an excess of 50 km2 and reveal that the region was a highly active periglacial desert after the flood. Our mapping

  15. Re-burning of ash in grate boilers; Omfoerbraenning av askor i rosterpannor

    Energy Technology Data Exchange (ETDEWEB)

    Bergqvist, Kristina; Myringer, Aase; Nordgren, Daniel; Rydberg, Stina [Vattenfall Utveckling AB, Aelvkarleby (Sweden)

    2005-03-01

    , reburning of fly ash appears to be the method that has the highest potential of substantially reducing the amount of unburnt carbon in the ash. Ash from the electric filter should not be circulated, as analyses show that chlorine is concentrated there. The technical conditions and the economic incentives for installing re-burning, vary greatly between plants. The study shows that the economic potential of installing ash reburning systems is high and that reduced fuel costs often is a stronger incentive for an installation than reduced deposit costs. Screening tests show a clear correlation between particle size and content of unburnt carbon in the fly ash. This knowledge can and should be used when re-burning ash. Separating the fly ash and returning the coarser fraction to the furnace makes sure most of the unburnt material is re-burned at the same time as the amount of circulated inorganic material is minimized, thereby also minimizing unnecessary erosion of equipment. The telephone interviews indicated that re-burning ash does not lead to increased emissions of CO or NO{sub x}, which was also confirmed by the field studies. Both plants used for the field studies circulate ash from cyclones that are placed before the final dust separators, in both cases electric filters. If some kind of final dust separation is utilized, the emissions of dust will not be affected by the ash reburn, but if such equipment is missing, emissions of dust will increase as the load on the cyclone separation will increase. Tests with deposit probes have been performed and the results do not show that ash reburning increases the rate of deposit growth or the risk of corrosion.

  16. Impact of super-distal ash fallout on tropical hydrology and landscape: a case study from the YTT deposits of the Perak river, Malaysia

    Science.gov (United States)

    Gatti, E.; Saidin, M.; Gibbard, P.; Oppenheimer, C.

    2011-12-01

    The Younger Toba Tuff eruption, approximately 73 ka ago, is the largest known for the Quaternary and its climate, environmental and human consequences are keenly debated (Oppenheimer, 2011).While the distribution (Rose and Chesner, 1987; Rose and Chesner, 1990; Chesner et al., 1991; Schulz et al., 2002; Von Rad et al., 2002) , geochemical properties (Shane et al., 1995; Westgate et al., 1998) and volcanic significance (Rampino and Self, 1982; Rampino and Self, 1993; Rampino and Ambrose, 2000; Oppenheimer, 2002; Mason et al., 2004)of the YTT have been widely studied, few attention has been given to the significance of the distal volcanic ash deposits within their receiving basin context. Although several studies exist on the impact of pyroclastic flows on proximal rivers and lakes (Collins and Dunne, 1986; Thompson et al., 1986; Hayes et al., 2002; Németh and Cronin, 2007), only few address the issues of the dynamic of preservation of super-distal fine ash deposits in rivers (also due to the lack of direct data on super-eruptions). It has also been demonstrated that models of the styles and timing of distal volcanoclastic re-sedimentation are more complicated than those developed for proximal settings of stratovolcanoes (Kataoka et al., 2009). We present an analysis of the taphonomy (intended as accumulation and preservation) of distal volcanic ash in fluvial and lacustrian contexts in newly discovered Toungest Toba Tuff sites in the Lenggong valley, western Peninsular Malaysia. The paper aims to characterise the nature of distal tephras in fluvial environments towards a stratigraphic distinction between primary ash and secondary ash, characterisation of the pre-ash fall receiving environment in term of fluvial dynamic and landscape morphology, and assessment of the time of recovery.

  17. 沉积粉煤灰工程特性试验研究%Experimental study on behavior of deposition fly ash stratum

    Institute of Scientific and Technical Information of China (English)

    周德泉; 赵明华; 肖宏宇

    2011-01-01

    粉煤灰作为地层时的工程特性研究较少,直接影响粉煤灰场地的勘察与设计.采用钻探、静力触探和十字板剪切试验相结合的方法研究湿排沉积粉煤灰层的工程特性.结果表明:沉积粉煤灰的静力触探曲线呈锯齿状,没有临界深度;锥尖阻力比粉质粘土和细砂小;侧壁摩阻力小于填筑粉质粘土、接近沉积粉质粘土、大于细砂;摩阻比小于填筑粉质黏土、大于沉积粉质粘土和细砂;比贯入阻力接近填筑粉质粘土、大于沉积粉质粘土;粉煤灰遇水软化,触探曲线在水位上下有明显的界面效应;十字板强度随深度加大而增大,具有明显的结构性;粉煤灰地层宜用双桥静力触探进行勘察.该粉煤灰的工程特性接近于粉土.%The engineering behavior of fly ash as stratum is studied seldom,which affects directly the exploration and design of the deposition fly ash site. The behavior of deposition fly ash was studied by drilling, cone penetration test and vane shear test. The results of study show that the fly ash cone penetration is the sawtooth form, and there is no critical depth for fly ash. The cone resistance of the fly ash is smaller than silty clay and sand, the friction resistance is smaller than filling silty clay, similar to deposition silty clay and more than fine sand, the friction ratio is smaller than filling silty clay, more than deposition silty clay and much more than fine sand, the specific penetration resistance is similar to filling silty clay, more than deposition silty clay. Fly ash with water will be soften,and there is a clear interface effect of fly ash penetration curve on the groundwater level . With obvious behavior of structure, vane strength of the fly ash increases with the depth increased. Even bridge cone penetration test should be used during geological exploration . The deposition fly ash is much similar to silt in character.

  18. Fundamental study of ash formation and deposition: Effect of reducing stoichiometry. Quarterly report No. 2, 1 July 1993--30 September 1993

    Energy Technology Data Exchange (ETDEWEB)

    Helble, J.J.; Srinivasachar, S.: Wilemski, G.; Kang, S.G. [PSI Technology Co., Andover, MA (United States); Sarofim, A.F. [Massachusetts Inst. of Tech., Cambridge, MA (United States); Peterson, T.W.; Bool, L.E. [Arizona Univ., Tucson, AZ (United States); Huffman, G.P.; Huggins, F.E.; Shah, N. [Kentucky Univ., Lexington, KY (United States)

    1993-11-01

    The technical objectives of this project are: To identify the partitioning of inorganic coal constituents among vapor, submicron fume, and fly ash products generated during the combustion of pulverized coal under a variety of combustion conditions. Fuel lean and fuel rich combustion conditions will be considered. To identify and quantify the fundamental processes by which the transformations of minerals and organically-associated inorganic species occur. Emphasis will be placed on identifying any changes that occur as a result of combustion under sub-stoichiometric combustion conditions. To incorporate the effects of combustion stoichiometry into an Engineering Model for Ash Formation based upon the understanding developed in (a) and (b). When completed, this model wig predict the particle size and chemical composition distributions of ash formed during the combustion of pulverized coal under a broad range of conditions. The work discussed in this report highlights the accomplishments of the second quarter of this two year project. This includes the final selection of coals by PSI PowerServe, the results of initial in-situ XAFS combustion measurements by the University of Kentucky, a review of the status of ash formation and deposition models by MIT, modeling of iron behavior during coal combustion by the University of Arizona, preliminary work on the redistribution of minerals within char during the early stages of combustion by PSI PowerServe, and the incorporation of a char fragmentation mechanism into the ash formation model by PSI PowerServe.

  19. Soil archives of mardel deposits: the impact of Late Holocene vegetation development, climatic oscillations and historical land use on soil erosion in Luxembourg

    Science.gov (United States)

    van Mourik, Jan; Slotboom, Ruud

    2014-05-01

    Mardel genesis. Mardels are small scale circular to elongated closed depressions (Ø > 50 m). They occur in Luxembourg on the Lias plateau in the Gutland, but also in other regions with landscapes, developed on Keuper and Lias deposits (as Lorraine). We can distinguish geogenetic and anthropogenic mardels. There are two types of genetic mardels, sink holes (controlled by diaclases in the Luxembourger sandstone and 'true mardels' or subsidence basins (controlled by dissolved gypsic lenses in marls of the Keuper deposits). These mardels developed during the Holocene. The age of the mardel sediments is Subatlantic; the sediments have been deposited on a palaeosol. Anthropogenic mardels are the result of historic clay excavation (Roman Time or younger). The age of these mardels is Subatlantic. The age of the sediments is also Subatlantic; the sediments have been deposited on a truncated soil in excavations. In all the genetic types of mardels, the sediments can consist of peat, peaty loam, or colluvic clayloam and the mardel sediments contain always valuable soil archives for the reconstruction of the impact of vegetation development, climatic oscillations and land use on soil erosion and deposition. Comparison of mardel deposits and valley deposits. - Pre-Holocene mardels have been eroded during the Weichselian. Geogenic mardels have been developed during the Holocene, anthropogenic mardels have been excavated since Roman Time. The age of the clastic (colluvic) deposits in mardels is Subatlantic - In the Late Glacial, valley bottoms were rather broad and covered with a gravelly bed load. Till the Subboreal river incision was active in primary valleys and peat accumulation took place on broad valley bottoms of secondary valleys. Since Celtic/Roman Time deforestation and extension of agriculture. During the Subatlantic colluvic/alluvic sedimentation took place on all the valley bottoms. The Subatlantic is a period of accelerated sedimentation of clastic sediments in

  20. Melting and Sintering of Ashes

    DEFF Research Database (Denmark)

    Hansen, Lone Aslaug

    1997-01-01

    The thesis contains an experimental study of the fusion and sintering of ashes collected during straw and coal/straw co-firing.A laboratory technique for quantitative determination of ash fusion has been developed based on Simultaneous Thermal Analysis (STA). By means of this method the fraction...... of melt in the investigated ashes has been determined as a function of temperature. Ash fusion results have been correlated to the chemical and mineralogical composition of the ashes, to results from a standard ash fusion test and to results from sintering experiments. Furthermore, the ash fusion results......-firing, the model only had a qualitative agreement with the measured ash deposit formation rates.Sintering measurements were carried out by means of compression strength testing of ash pellets. This method showed to not be applicable for the salt rich fly ash derived from straw combustion. For the fly ashes...

  1. Photocatalytic Activity of Reactively Sputtered Titania Coatings Deposited Using a Full Face Erosion Magnetron

    OpenAIRE

    Farahani, Nick; Kelly, Peter,; West, Glen; Hill, Claire; Vishnyakov, Vladimir

    2013-01-01

    Titanium dioxide (titania) is widely used as a photocatalyst for its moderate band gap, high photoactivity, recyclability, nontoxicity, low cost and its significant chemical stability. The anatase phase of titania is known to show the highest photocatalytic activity, however, the presence of this phase alone is not sufficient for sustained activity. In this study TiO2 coatings were deposited onto glass substrates by mid-frequency pulsed magnetron sputtering from metallic targets in reactive m...

  2. Spatial distribution of erosion and deposition during a glacier surge: Brúarjökull, Iceland

    Science.gov (United States)

    Korsgaard, Niels J.; Schomacker, Anders; Benediktsson, Ívar Örn; Larsen, Nicolaj K.; Ingólfsson, Ólafur; Kjær, Kurt H.

    2015-12-01

    Time-series of digital elevation models (DEMs) of the forefield of the Brúarjökull surge-type glacier in Iceland were used to quantify the volume of material that was mobilized by the 1963-1964 surge. The DEMs were produced by stereophotogrammetry on aerial photographs from before the surge (1961) and after (1988 and 2003). The analysis was performed on two DEMs of Difference (DoDs), i.e., a 1961-2003 DoD documenting the impact of the surge and a 1988-2003 DoD documenting the post-surge modification of the juvenile surging glacier landsystem. Combined with a digital geomorphological map, the DoDs allow us to quantify the impact of the surge on a landsystem scale down to individual landforms. A total of 34.2 ± 11.3 × 106 m3 of material was mobilized in the 30.7-km2 study area as a result of the most recent surge event. Of these, 17.4 ± 6.6 × 106 m3 of the material were eroded and 16.8 ± 4.7 × 106 m3 were deposited. More than half of the deposited volume was ice-cored landforms. This study demonstrates that although the total mobilized mass volume is high, the net volume gain of ice and sediment deposited as landforms in the forefield caused by the surge is low. Furthermore, deposition of new dead-ice from the 1963-1964 surge constitutes as much as 64% of the volume gain in the forefield. The 1988-2003 DoD is used to quantify the melt-out of this dead-ice and other paraglacial modification of the recently deglaciated forefield of Brúarjökull.

  3. Comparison of Ash from PF and CFB Boilers and Behaviour of Ash in Ash Fields

    Science.gov (United States)

    Arro, H.; Pihu, T.; Prikk, A.; Rootamm, R.; Konist, A.

    Over 90% of electricity produced in Estonia is made by power plants firing local oil shale and 25% of the boilers are of the circulating fluidised bed (CFB) variety. In 2007 approximately 6.5 million tons of ash was acquired as a byproduct of using oil shale for energy production. Approximately 1.5 million tons of that was ash from CFB boilers. Such ash is deposited in ash fields by means ofhydro ash removal.

  4. Ash Properties of Alternative Biomass

    DEFF Research Database (Denmark)

    Capablo, Joaquin; Jensen, Peter Arendt; Pedersen, Kim Hougaard

    2009-01-01

    The ash behavior during suspension firing of 12 alternative solid biofuels, such as pectin waste, mash from a beer brewery, or waste from cigarette production have been studied and compared to wood and straw ash behavior. Laboratory suspension firing tests were performed on an entrained flow...... analysis into three main groups depending upon their ash content of silica, alkali metal, and calcium and magnesium. To further detail the biomass classification, the relative molar ratio of Cl, S, and P to alkali were included. The study has led to knowledge on biomass fuel ash composition influence...... on ash transformation, ash deposit flux, and deposit chlorine content when biomass fuels are applied for suspension combustion....

  5. Wildland fire ash: future research directions

    Science.gov (United States)

    Bodí, Merche B.; Martins, Deborah A.; Cerdà, Artemi; Balfour, Victoria N.; Santin, Cristina; Doerr, Stefan H.; Pereira, Paulo; Mataix-Solera, Jorge

    2014-05-01

    Ash is a key component of the forest fires affected land (Cerdà, 1998; Bodí et al., 2011; Pereira et al., 2013a). Ash controls the hydrological processes and determines the water repellency (Dlapa et al., 2012) and the infiltration rates (Cerdà and Doerr, 2008;). Moreover, ash is the key factor on runoff initiation and then on the soil erosion. Little is known about the impact of ash in different ecosystems, but during the last decade a substantial increase in the papers that show the role of ash in the Earth and Soil System were published (Bodí et al., 2012; Pereira et al., 2013b).. Ash is being found as the key component of the post-fire pedological, geomorphological and hydrological response after forest fires (Fernández et al., 2012; Martín et al., 2012; Bodí et al., 2013; Guénon et al., 2013; Pereira et al., 2013c). A recent State-of-the-Art review about wildland fire ash (Bodí et al., 2014) compiles the knowledge regarding the production, composition and eco-hydro-geomorphic effects of wildland fire ash. In the present paper we indicate the knowledge gaps detected and suggest topics that need more research effort concerning: i) data collection and analysis techniques: a) To develop standardized sampling techniques that allow cross comparison among sites and avoid inclusion of the underlying soil unless the burned surface soil forms part of the ash layer, b) To develop standardized methods to define and characterize ash, including its color, physical properties such as particle size distribution or density, proportion of pyrogenic C, chemical and biological reactivity and persistence in the environment, c) To validate, calibrate and test measurements collected through remote sensing with on-the-ground measurements. ii) ash production, deposition redistribution and fate: d) To untangle the significance of the effects of maximum temperature reached during combustion versus the duration of heating, e) To understand the production of ash by measuring its

  6. Erosion critical stress of a matter surface deposit on a micro filtration membrane; Contrainte critique d`erosion d`un depot superficiel de matiere sur membrane de microfiltration

    Energy Technology Data Exchange (ETDEWEB)

    Aubert, M.C.

    1995-05-11

    During the tangential micro filtration and ultrafiltration processes a membranes fouling in surface and inside the pores often appears. This fouling has the effect of a permeation flow decrease in terms of the filtration time. In order to keep this flow constant (to improve the rentability) the transfer pressure gradient is frequently increased and leads to solid matter surface deposit on the porous wall. The fouling can then be irreversible and requires the stopping of the facilities. The fouling and more particularly the fouling by solid deposit seems to be an abatement to the micro filtration technology development. It is then necessary to search the carrying away conditions of these solid deposits and thus to control the fouling process. An ultrafiltration or micro filtration appliance has been realized and allows to calculate experimentally the erosion critical stress on a porous wall : this is the minimum stress to apply in order to lead in the principal flow a solid particles deposit and the parietal stress to be imposed to lead by an erosion process a solid particles deposit. (O.L.). 122 refs., 73 figs., 25 tabs.

  7. Effects of Varying Shrub Density on Erosion and Deposition During a Large Flood, Rio Puerco, New Mexico

    Science.gov (United States)

    Griffin, E. R.; Friedman, J. M.; Vincent, K. R.

    2010-12-01

    A large flood in August 2006 following saltcedar control efforts along a 12-km segment of the Rio Puerco provided an opportunity to measure the effects of varying shrub density on down-valley flood flow and sediment transport. Post-flood field observations in two 3-km long arroyo segments, one in the sprayed reach and one downstream from the sprayed reach, indicate the density and distribution of woody vegetation had a substantial effect on locations and magnitudes of sediment erosion and deposition. In the reach sprayed with herbicide three years before the flood, in which dense woody stems covered only about 30% of the pre-flood (2005) floodplain, average channel width increased by 63% during the flood. Downstream from the sprayed reach, where both pre-and post-flood shrubs covered 50% of the floodplain, erosion was limited to sites where flood flow through sharp bends undercut the arroyo wall. Flow and suspended sediment transport were computed for two 500-m-long floodplain segments, one in the sprayed reach and one downstream from the sprayed reach. Large volumes of fine-grain sediment (fine to very fine sand and silt) were available for transport during the flood in both reaches. In the reach sprayed with herbicide, dense canopy (dominantly saltcedar; Tamarix spp.) remained only within 10-m-wide linear bands oriented along the present or former channel and in isolated, small shrubs scattered about the floodplain. Downstream from the sprayed reach, adjacent shrub bands were closely spaced, with canopies touching in many areas. Mature saltcedar along the Rio Puerco have rigid, dense stems more than 2 m high, whereas floodplain flow depths during the August 2006 event were on the order of 1 m. Drag on the stems was computed using the average stem density (average stem diameter divided by average stem spacing squared) determined from a large number of measurements along the Rio Puerco, 0.35 m-1 (Friedman and others, unpublished data, 2004). Computations of flow

  8. The role of phase separation for self-organized surface pattern formation by ion beam erosion and metal atom co-deposition

    Energy Technology Data Exchange (ETDEWEB)

    Hofsaess, H.; Zhang, K.; Pape, A.; Bobes, O.; Broetzmann, M. [Georg-August University Goettingen, II. Institute of Physics, Goettingen (Germany)

    2013-05-15

    We investigate the ripple pattern formation on Si surfaces at room temperature during normal incidence ion beam erosion under simultaneous deposition of different metallic co-deposited surfactant atoms. The co-deposition of small amounts of metallic atoms, in particular Fe and Mo, is known to have a tremendous impact on the evolution of nanoscale surface patterns on Si. In previous work on ion erosion of Si during co-deposition of Fe atoms, we proposed that chemical interactions between Fe and Si atoms of the steady-state mixed Fe{sub x} Si surface layer formed during ion beam erosion is a dominant driving force for self-organized pattern formation. In particular, we provided experimental evidence for the formation of amorphous iron disilicide. To confirm and generalize such chemical effects on the pattern formation, in particular the tendency for phase separation, we have now irradiated Si surfaces with normal incidence 5 keV Xe ions under simultaneous gracing incidence co-deposition of Fe, Ni, Cu, Mo, W, Pt, and Au surfactant atoms. The selected metals in the two groups (Fe, Ni, Cu) and (W, Pt, Au) are very similar regarding their collision cascade behavior, but strongly differ regarding their tendency to silicide formation. We find pronounced ripple pattern formation only for those co deposited metals (Fe, Mo, Ni, W, and Pt), which are prone to the formation of mono and disilicides. In contrast, for Cu and Au co-deposition the surface remains very flat, even after irradiation at high ion fluence. Because of the very different behavior of Cu compared to Fe, Ni and Au compared to W, Pt, phase separation toward amorphous metal silicide phases is seen as the relevant process for the pattern formation on Si in the case of Fe, Mo, Ni, W, and Pt co-deposition. (orig.)

  9. Erosion and deposition on the Pajarito Plateau, New Mexico, and implications for geomorphic responses to late Quaternary climatic changes

    Energy Technology Data Exchange (ETDEWEB)

    Reneau, S.L.; McDonald, E.V.; Gardner, J.N.; Longmire, P.A. [Los Alamos National Lab., NM (United States); Kolbe, T.R. [Woodward-Clyde Federal Services, Oakland, CA (United States); Carney, J.S. [Kent State Univ., OH (United States). Dept. of Geology; Watt, P.M. [New Mexico Univ., Albuquerque, NM (United States). Dept. of Earth and Planetary Sciences

    1996-04-01

    The Pajarito Plateau of northern New Mexico contains a rich and diverse record of late Quaternary landscape changes in a variety of geomorphic settings that include gently-sloping mesa tops, steep canyon walls, and canyon bottoms. A broad range of investigations during the past decade, motivated by environmental and seismic hazard concerns, have resulted in examination of the characteristics, stratigraphy, and age of sediments and soils at numerous locations throughout the Plateau. Geochronologic control is provided by >140 radiocarbon dates supplemented by soil characterization and tephrochronology. In this paper we first summarize some of the results of recent and ongoing work on late Quaternary deposits on the Pajarito Plateau, illustrating both the complexity of the geomorphic record and some common elements that have been observed in multiple locations. We then use these observations, in combination with other work in the Southwest, to make some inferences about the local geomorphic response to regional climatic changes. Because the geomorphic and paleoclimatic records are fragmentary, and because the relations between large scale climate changes and local variations in precipitation, vegetation, and geomorphic processes are not fully understood, many uncertainties exist concerning the response of the local landscape to past climatic fluctuations. In addition, variations in local landscape sensitivity related to prior erosional history and spatial variations in vegetation, and the localized nature of many storms, probably contribute to the complexity of the geomorphic record. Nevertheless, the work discussed in this paper suggests a strong relation between regional climatic changes and local geomorphic history, and provides a framework for considering relations between modem processes, the record of past landscape changes, and future erosion and deposition on the Plateau and in surrounding areas.

  10. Surficial deposits on salt diapirs (Zagros Mountains and Persian Gulf Platform, Iran): Characterization, evolution, erosion and the influence on landscape morphology

    Science.gov (United States)

    Bruthans, Jiří; Filippi, Michal; Asadi, Naser; Zare, Mohammad; Šlechta, Stanislav; Churáčková, Zdenka

    2009-06-01

    The surfaces of salt diapirs in the Zagros Mountains are mostly covered by surficial deposits, which significantly affect erosion rates, salt karst evolution, land use and the density of the vegetation cover. Eleven salt diapirs were selected for the study of surficial deposits in order to cover variability in the geology, morphology and climate in a majority of the diapirs in the Zagros Mountains and Persian Gulf Platform. The chemical and mineralogical compositions of 80 selected samples were studied mainly by X-ray powder diffraction and X-ray fluorescence. Changes in salinity along selected vertical profiles were studied together with the halite and gypsum distribution. The subaerial residuum formed from minerals and rock detritus released from the dissolved rock salt is by far the most abundant material on the diapirs. Fluvial sediments derived from this type of residuum are the second most common deposits found, while submarine residuum and marine sediments have only local importance. The mineralogical/chemical composition of surficial deposits varies amongst the three end members: evaporite minerals (gypsum/anhydrite and minor halite), carbonates (dolomite and calcite) and silicates-oxides (mainly quartz, phyllosilicates, and hematite). Based on infiltration tests on different types of surficial deposits, most of the rainwater will infiltrate, while overland flow predominates on rock salt exposures. Recharge concentration and thick accumulations of fine sediment support relatively rich vegetation cover in some places and even enable local agricultural activity. The source material, diapir relief, climatic conditions and vegetation cover were found to be the main factors affecting the development and erosion of surficial deposits. A difference was found in residuum type and landscape morphology between the relatively humid NW part of the studied area and the arid Persian Gulf coast: In the NW, the medium and thick residuum seems to be stable under current

  11. Long-Term Impact of Sediment Deposition and Erosion on Water Surface Profiles in the Ner River

    Directory of Open Access Journals (Sweden)

    Tomasz Dysarz

    2017-02-01

    Full Text Available The purpose of the paper is to test forecasting of the sediment transport process, taking into account two main uncertainties involved in sediment transport modeling. These are: the lack of knowledge regarding future flows, and the uncertainty with respect to which sediment transport formula should be chosen for simulations. The river reach chosen for study is the outlet part of the Ner River, located in the central part of Poland. The main characteristic of the river is the presence of an intensive morphodynamic process, increasing flooding frequency. The approach proposed here is based on simulations with a sediment-routing model and assessment of the hydraulic condition changes on the basis of hydrodynamic calculations for the chosen characteristic flows. The data used include Digital Terrain Models (DTMs, cross-section measurements, and hydrological observations from the Dabie gauge station. The sediment and hydrodynamic calculations are performed using program HEC-RAS 5.0. Twenty inflow scenarios are of a 10-year duration and are composed on the basis of historical data. Meyer-Peter and Müller and Engelund-Hansen formulae are applied for the calculation of sediment transport intensity. The methodology presented here seems to be a good tool for the prediction of long-term impacts on water surface profiles caused by sediment deposition and erosion.

  12. Properties of the fly ash from the Power Plant Dětmarovice from the point of view of their deposition in underground mines

    Directory of Open Access Journals (Sweden)

    Dirner Vojtech

    2001-06-01

    Full Text Available Mining for the Purposes of Disposal – Facilities, Requirements and Conceptions. Mining for the purposes of disposal can be instrumental in environmental protection in the future. Therefore the utilization of residues in the mining process has to be put into the foreground, whether they are a product of the mining activity itself or coming from other sources. It is possible to use the residual products as filling or building materials. Within the constantly increasing demand for building materials in the mines it is possible to combine the advantages that improve mine safety, rock mechanics and support with the secure long-term sealing of mineralized industrial residues in the lithosphere. Also the disposal of polluted, water-soluble and toxic or radioactive waste in a suitable geological formation underground can be realized ensuring long-term safety. This long-term safety is guaranteed by a multiple system of geological and technical barriers. The storage can b conducted in appropriate void space like chambers, caverns, drifts or boreholes with or without the opinion of retarding the material.Contribution is discussing the possibility of the deposition on fly ash produced by thermal power plants which are using low-grade brown coal as a fuel. Properties of fly ash were studied id detail on samples from Power Plant Dìtmarovice, northern Moravia.Results proved that fly ash can be deposited safely in underground.

  13. Application of VNIR diffuse reflectance spectroscopy for mapping of organic matter redistribution due to erosion and deposition processes

    Science.gov (United States)

    Klement, Ales; Brodsky, Lukas; Jaksik, Ondrej; Fer, Miroslav; Kodesova, Radka

    2014-05-01

    Visible and near-infrared (VNIR) diffuse reflectance spectroscopy is cost- and time-effective and environmentally friendly techniques method used for prediction of soil properties. Study was performed on the soils from the agricultural land from the municipalities of Brumovice (209 samples), Sedlcany (67 samples), Vidim (74 samples) and Zelezna (32 samples). In Brumovice original soil type was Haplic Chernozem on loess, which was due to erosion changed into Regosol (steep parts) and Colluvial soil (base slope and the tributary valley). A similar process has been described at other three locations Sedlcany, Vidim and Zelezna where the original soil types were Haplic Cambisol on gneiss, Haplic Luvisol on loess and Haplic Cambisol on shales, respectively. The goal of the study was to evaluate relationship between soil spectra curves and organic matter content to provide an efficient tool for mapping of organic matter redistribution (i.e. soil degradation) due to erosion and deposition processes. Samples were taken from the topsoil within regular grid covering studied areas. The soil spectra curves (of air dry soil and sieved using 0.2 mm sieve) were measured in the laboratory using spectrometer FieldSpec®3 (350 - 2 500 nm). Partial least squares regression (PLSR) was used for modeling of the relationship between spectra and measured organic matter content. Prediction ability was evaluated using the R2, root mean square error (RMSE). The results showed the best prediction of the organic matter content was obtained for soil samples from Brumovice (R2 = 0.78, RMSE = 0.15) and decreased as follows: Zelezna (R2 = 0.68, RMSE = 0.23), Sedlcany (R2 = 0.64, RMSE = 0.18) and Vidim (R2 = 0.61, RMSE = 0.12). In general, the results confirmed that the measurement of soil spectral characteristics is a promising technology for a digital soil mapping and predicting studied soil properties. Acknowledgment: Authors acknowledge the financial support of the Ministry of Agriculture of

  14. Landslide susceptibility assessment in ash-fall pyroclastic deposits surrounding Mount Somma-Vesuvius: Application of geophysical surveys for soil thickness mapping

    Science.gov (United States)

    De Vita, P.; Agrello, D.; Ambrosino, F.

    2006-06-01

    Along the steep slopes of the carbonate mountains that surround the Campanian Plain and Mount Somma-Vesuvius, rainfall-triggered debris slides occur in unconsolidated ash-fall pyroclastic deposits. The initial debris slides evolve into debris flows that often cause significant property damage and loss of human life in the towns located at the foot of the slopes. In this particular geological situation, the pyroclastic soil thickness, the slope angle, and the morphological variations of the slope profile are the most important factors that contribute to landslide susceptibility. In this paper, the results of an experimental application of shallow resistivity and refraction seismic soundings in mapping the thickness of pyroclastic soils are presented. These geophysical methods are proposed as low-cost and versatile methods to be used in the difficult morphological conditions of the steep slopes in which debris-slides initiate. The methods have been used experimentally in a sample area located on the upper slope of Mount Pizzo d'Alvano, from which debris flows initiated that dramatically hit the town of Sarno on 5-6 May 1998. The inversion of geoelectrical soundings has been calibrated with resistivity values measured directly on pyroclastic outcrops and with soil thickness estimations derived from refraction seismic soundings and from the application of a mobile dynamic penetrometer. The results of the field experimentation can be summarised as follows: (i) unconsolidated ash-fall pyroclastic deposits, ranging in particle size from fine ash to lapilli, can be differentiated from fractured carbonate bedrock by means of electrical resistivity and velocity values of longitudinal seismic waves; (ii) thickness of ash-fall pyroclastic soils can be empirically related to the slope angle using an inverse relationship; and (iii) the empirical model has been applied to Digital Elevation Model data, allowing pyroclastic soil thickness mapping in the sample area.

  15. Analysis of the 2006 block-and-ash flow deposits of Merapi Volcano, Java, Indonesia, using high-spatial resolution IKONOS images and complementary ground based observations

    Science.gov (United States)

    Thouret, Jean-Claude; Gupta, Avijit; Liew, Soo Chin; Lube, Gert; Cronin, Shane J.; Surono, Dr

    2010-05-01

    On 16 June 2006 an overpass of IKONOS coincided with the emplacement of an active block-and-ash flow fed by a lava dome collapse event at Merapi Volcano (Java, Indonesia). This was the first satellite image recorded for a moving pyroclastic flow. The very high-spatial resolution data displayed the extent and impact of the pyroclastic deposits emplaced during and prior to, the day of image acquisition. This allowed a number of features associated with high-hazard block-and-ash flows emplaced in narrow, deep gorges to be mapped, interpreted and understood. The block-and-ash flow and surge deposits recognized in the Ikonos images include: (1) several channel-confined flow lobes and tongues in the box-shaped valley; (2) thin ash-cloud surge deposit and knocked-down trees in constricted areas on both slopes of the gorge; (3) fan-like over bank deposits on the Gendol-Tlogo interfluves from which flows were re-routed in the Tlogo secondary valley; (4) massive over bank lobes on the right bank from which flows devastated the village of Kaliadem 0.5 km from the main channel, a small part of this flow being re-channeled in the Opak secondary valley. The high-resolution IKONOS images also helped us to identify geomorphic obstacles that enabled flows to ramp and spill out from the sinuous channel, a process called flow avulsion. Importantly, the avulsion redirected flows to unexpected areas away from the main channel. In the case of Merapi we see that the presence of valley fill by previous deposits, bends and man-made dams influence the otherwise valley-guided course of the flows. Sadly, Sabo dams (built to ameliorate the effect of high sediment load streams) can actually cause block-and-ash flows to jump out of their containing channel and advance into sensitive areas. Very-high-spatial resolution satellite images are very useful for mapping and interpreting the distribution of freshly erupted volcanic deposits. IKONOS-type images with 1-m resolution provide opportunities to

  16. The Role of Authigenic Volcanic Ash in Marine Sediment

    Science.gov (United States)

    Scudder, R.; McKinley, C. C.; Thomas, D. J.; Murray, R. W.

    2016-12-01

    Marine sediments are a fundamental archive of the history of weathering and erosion, biological productivity, volcanic activity, patterns of deep-water formation and circulation, and a multitude of other earth, ocean, and atmosphere processes. In particular, the record and consequences of volcanic eruptions have long fascinated humanity. Volcanic ash layers are often visually stunning, and can have thicknesses of 10s of cm or more. While the ash layer records are of great importance by themselves, we are missing a key piece of information-that of the very fined grained size fractions. Dispersed ash is the very fine grained-component that has either been mixed into the bulk sediment by bioturbation, or is deposited from subaqueous eruptions, erosion of terrestrial deposits, general input during time periods of elevated global volcanism, or other mechanisms, plays an important role in the marine sediment. The presence of dispersed ash in the marine record has previously been relatively over-looked as it is difficult to identify petrographically due to its commonly extremely fine grain size and/or alteration to authigenic clay. The dispersed ash, either altered or unaltered, is extremely difficult to differentiate from detrital/terrigenous/authigenic clay, as they are all "aluminosilicates". Here we apply a combined geochemical, isotopic, and statistical technique that enables us to resolve volcanic from detrital terrigenous inputs at DSDP/ODP/IODP sites from both the Brazil Margin and the Northwest Pacific Oceans. Incorporating the combined geochemical/statistical techniques with radiogenic isotope records allows us to address paleoceanographic questions in addition to studies of the effect of sediment fluxes on carbon cycling, the relationship between volcanic ash and biological productivity of the open ocean and nutrient availability for subseafloor microbial life.

  17. The application of terrestrial laser scanner and SfM photogrammetry in measuring erosion and deposition processes in two opposite slopes in a humid badlands area (central Spanish Pyrenees)

    NARCIS (Netherlands)

    E. Nadal-Romero; P. Revuelto; P. Errea; J.I. López-Moreno

    2015-01-01

    Erosion and deposition processes in badland areas are usually estimated using traditional observations of topographic changes, measured by erosion pins or profile metres (invasive techniques). In recent times, remote-sensing techniques (non-invasive) have been routinely applied in geomorphology stud

  18. Reclamation and revegetation of fly ash disposal sites - challenges and research needs

    Energy Technology Data Exchange (ETDEWEB)

    Haynes, R.J. [University of Queensland, St Lucia, Qld. (Australia)

    2009-01-15

    Coal-fired power generation is a principal energy source throughout the world. Approximately, 70-75% of coal combustion residues are fly ash and its utilization worldwide is only slightly above 30%. The remainder is disposed of in landfills and fly ash basins. It is desirable to revegetate these sites for aesthetic purposes, to stabilize the surface ash against wind and water erosion and to reduce the quantity of water leaching through the deposit. Limitations to plant establishment and growth in fly ash can include a high pH (and consequent deficiencies of Fe, Mn, Cu, Zn and P), high soluble salts, toxic levels of elements such as B, pozzalanic properties of ash resulting in cemented/compacted layers and lack of microbial activity. An integrated organic/biotechnological approach to revegetation seems appropriate and should be investigated further. This would include incorporation of organic matter into the surface layer of ash, mycorrhizal inoculation of establishing vegetation and use of inoculated legumes to add N. Leaching losses from ash disposal sites are likely to be site-specific but a sparse number of studies have revealed enriched concentrations of elements such as Ca, Fe, Cd, Pb, and Sb in surrounding groundwater. This aspect deserves further study particularly in the longer-term. In addition, during weathering of the ash and deposition of organic matter during plant growth, a soil will form with properties vastly different to that of the parent ash. In turn, this will influence the effect that the disposal site has on the surrounding environment. Nevertheless, the effects of ash weathering and organic matter accumulation over time on the chemical, physical and biological properties of the developing ash-derived soil are not well understood and require further study.

  19. Formation of PCDDs and PCDFs from methane-flame , Gas-phase by-products; soot deposits; and fly ash

    Energy Technology Data Exchange (ETDEWEB)

    Wikstrom, E.; Touati, A.; Ryan, S.; Gullet, B.

    2002-07-01

    Simple methane or propane flame combustion at sooty conditions with hydrogen chloride (HCI) present, as well as numerous experiments conducted with only fly ash present as the source of carbon and chlorine (de novo synthesis) have shown significant formation of chlorinated compounds, such as polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs). In a full-scale incinerator, both fly ash and flame products are present simultaneously, and the relative importance of the two carbon sources for the formation of PCDDs/Fs is still undetermined. An important question to be answered is whether PCDDs/Fs are formed through a series of reactions of gas-phase flame by-products formed at various concentrations depending on the equivalence ratio and/or from the carbon matrix present in flame soot and fly ash. Additionally, how important are catalytic reactions by metals present in the fly ash for the formation of PCDDs/Fs?. Experiments conducted in a laboratory scale reactor using a methane flame doped with chlorine and addition of fly ash in the flue gas provided answers to many of the important questions regarding the PCDDs/Fs formation mechanism during high-temperature processes. (Author)

  20. High-Temperature Erosion Resistance of FeBSiNb Amorphous Coatings Deposited by Arc Spraying for Boiler Applications

    Science.gov (United States)

    Cheng, J. B.; Liang, X. B.; Chen, Y. X.; Wang, Z. H.; Xu, B. S.

    2013-06-01

    Erosive high-temperature wear in boilers is one of the main causes of downtime and one of the principal engineering problems in these installations. This article discusses the use of FeBSiNb amorphous coatings synthesized by arc spraying to improve elevated-temperature erosion resistance for boiler applications. The influence of test temperature, velocity, and impact angle on material wastage was revealed using air solid particle erosion rig. The experimental results showed that moderate degradation of the coating was predominant at lower impact velocity and impact angles, while severe damage arose for higher velocities and impact angles. The erosion behavior of the coating was sensitive to test temperature. The erosion rates of the coating decreased as a function of environment temperature. The relationship between microstructure and erosion resistance of the coating was also analyzed in details. The FeBSiNb coating had excellent elevated-temperature erosion resistance at temperatures at least up to 600 °C during service.

  1. Runoff erosion

    OpenAIRE

    Evelpidou, Niki; Cordier, Stephane; Merino, Agustin (Ed.); Figueiredo, Tomás; Centeri, Csaba

    2013-01-01

    Table of Contents PART I – THEORY OF RUNOFF EROSION CHAPTER 1 - RUNOFF EROSION – THE MECHANISMS CHAPTER 2 - LARGE SCALE APPROACHES OF RUNOFF EROSION CHAPTER 3 - MEASURING PRESENT RUNOFF EROSION CHAPTER 4 - MODELLING RUNOFF EROSION CHAPTER 5 - RUNOFF EROSION AND HUMAN SOCIETIES: THE INFLUENCE OF LAND USE AND MANAGEMENT PRACTICES ON SOIL EROSION PART II - CASE STUDIES CASE STUDIES – INTRODUCTION: RUNOFF EROSION IN MEDITERRANEAN AREA CASE STUDY 1: Soil Erosion Risk...

  2. Relations between rainfall–runoff-induced erosion and aeolian deposition at archaeological sites in a semi-arid dam-controlled river corridor

    Science.gov (United States)

    Collins, Brian; Bedford, David; Corbett, Skye; Fairley, Helen; Cronkite-Ratcliff, Collin

    2016-01-01

    Process dynamics in fluvial-based dryland environments are highly complex with fluvial, aeolian, and alluvial processes all contributing to landscape change. When anthropogenic activities such as dam-building affect fluvial processes, the complexity in local response can be further increased by flood- and sediment-limiting flows. Understanding these complexities is key to predicting landscape behavior in drylands and has important scientific and management implications, including for studies related to paleoclimatology, landscape ecology evolution, and archaeological site context and preservation. Here we use multi-temporal LiDAR surveys, local weather data, and geomorphological observations to identify trends in site change throughout the 446-km-long semi-arid Colorado River corridor in Grand Canyon, Arizona, USA, where archaeological site degradation related to the effects of upstream dam operation is a concern. Using several site case studies, we show the range of landscape responses that might be expected from concomitant occurrence of dam-controlled fluvial sand bar deposition, aeolian sand transport, and rainfall-induced erosion. Empirical rainfall-erosion threshold analyses coupled with a numerical rainfall–runoff–soil erosion model indicate that infiltration-excess overland flow and gullying govern large-scale (centimeter- to decimeter-scale) landscape changes, but that aeolian deposition can in some cases mitigate gully erosion. Whereas threshold analyses identify the normalized rainfall intensity (defined as the ratio of rainfall intensity to hydraulic conductivity) as the primary factor governing hydrologic-driven erosion, assessment of false positives and false negatives in the dataset highlight topographic slope as the next most important parameter governing site response. Analysis of 4+ years of high resolution (four-minute) weather data and 75+ years of low resolution (daily) climate records indicates that dryland erosion is dependent on short

  3. Deposit formation in a full-scale pulverized wood-fired power plant with and without coal fly ash addition

    DEFF Research Database (Denmark)

    Wu, Hao; Shafique Bashir, Muhammad; Jensen, Peter Arendt

    2013-01-01

    temperatures of ~1300oC and ~800oC, respectively. It was found that during pulverized wood combustion, the deposit formation at the hightemperature location was characterized by a slow and continuous growth of deposits followed by the shedding of a large layer of deposits, while the deposit formation...

  4. An ecophysiological study of plants growing on the fly ash deposits from the "Nikola Tesla-A" thermal power station in Serbia.

    Science.gov (United States)

    Pavlović, Pavle; Mitrović, Miroslava; Djurdjević, Lola

    2004-05-01

    This ecophysiological research on the ash deposits from the "Nikola Tesla-A" thermal power station in Serbia covered 10 plant species (Tamarix gallica, Populus alba, Spiraea van-hauttei, Ambrosia artemisifolia, Amorpha fruticosa, Eupatorium cannabinum, Crepis setosa, Epilobium collinum, Verbascum phlomoides, and Cirsium arvense). This paper presents the results of a water regime analysis, photosynthetic efficiency and trace elements (B, Cu, Mn, Zn, Pb, and Cd) content in vegetative plant parts. Water regime parameters indicate an overall stability in plant-water relations. During the period of summer drought, photosynthetic efficiency (Fv/Fm) was low, ranging from 0.429 to 0.620 for all the species that were analyzed. An analysis of the tissue trace elements content showed a lower trace metal concentration in the plants than in the ash, indicating that heavy metals undergo major concentration during the combustion process and some are not readily taken up by plants. The Zn and Pb concentrations in all of the examined species were normal whereas Cu and Mn concentrations were in the deficiency range. Boron concentrations in plant tissues were high, with some species even showing levels of more than 100 microg/g (Populus sp., Ambrosia sp., Amorpha sp., and Cirsium sp.). The presence of Cd was not detected. In general, it can be concluded from the results of this research that biological recultivation should take into account the existing ecological, vegetation, and floristic potential of an immediate environment that is abundant in life forms and ecological types of plant species that can overgrow the ash deposit relatively quickly. Selected species should be adapted to toxic B concentrations with moderate demands in terms of mineral elements (Cu and Mn).

  5. Wildland fire ash: Production, composition and eco-hydro-geomorphic effects

    Science.gov (United States)

    Bodi, Merche B.; Martin, Deborah; Balfour, Victoria N.; Santin, Cristina; Doerr, Stefan H.; Pereira, Paulo; Cerda, Artemi; Mataix-Solera, Jorge

    2014-01-01

    Fire transforms fuels (i.e. biomass, necromass, soil organic matter) into materials with different chemical and physical properties. One of these materials is ash, which is the particulate residue remaining or deposited on the ground that consists of mineral materials and charred organic components. The quantity and characteristics of ash produced during a wildland fire depend mainly on (1) the total burned fuel (i.e. fuel load), (2) fuel type and (3) its combustion completeness. For a given fuel load and type, a higher combustion completeness will reduce the ash organic carbon content, increasing the relative mineral content, and hence reducing total mass of ash produced. The homogeneity and thickness of the ash layer can vary substantially in space and time and reported average thicknesses range from close to 0 to 50 mm. Ash is a highly mobile material that, after its deposition, may be incorporated into the soil profile, redistributed or removed from a burned site within days or weeks by wind and water erosion to surface depressions, footslopes, streams, lakes, reservoirs and, potentially, into marine deposits.Research on the composition, properties and effects of ash on the burned ecosystem has been conducted on material collected in the field after wildland and prescribed fires as well as on material produced in the laboratory. At low combustion completeness (typically T  450 °C), most organic carbon is volatized and the remaining mineral ash has elevated pH when in solution. It is composed mainly of calcium, magnesium, sodium, potassium, silicon and phosphorous in the form of inorganic carbonates, whereas at T > 580 °C the most common forms are oxides. Ash produced under lower combustion completeness is usually darker, coarser, and less dense and has a higher saturated hydraulic conductivity than ash with higher combustion completeness, although physical reactions with CO2 and when moistened produce further changes in ash characteristics.As a new

  6. The use of Numerical Weather Prediction and a Lagrangian transport (NAME-III) and dispersion (ASHFALL) models to explain patterns of observed ash deposition and dispersion following the August 2012 Te Maari, New Zealand eruption

    Science.gov (United States)

    Turner, Richard; Moore, Stuart; Pardo, Natalia; Kereszturi, Gabor; Uddstrom, Michael; Hurst, Tony; Cronin, Shane

    2014-10-01

    The August 6, 2012 Te Maari, New Zealand eruption produced a very small ash-dominated plume (~ 230,000 m3, 8-10 km high) that was rapidly and widely dispersed, covering 1600 km2 within an hour. This paper documents for the August 6, 2012 Te Maari eruption the upper level (troposphere) plume movement based on ash-detection algorithms applied to IR satellite imagery. It also presents the distribution of airborne ash and wind-influenced ashfall as determined by NAME-III aerial dispersion modelling using observed particle characteristics and grain size distribution measurements (that are also presented) and compares the ashfall with observations. The upper level (troposphere) ash movement was also evaluated from ash-detection algorithms, applied to infra-red satellite imagery and the resulting distributions were compared to those forecast by the numerical dispersion models. Forecasts of upper level ash-dispersion patterns explained the satellite imagery observations well, predicting the correct altitudes when using plausible ash size distributions and release levels. Patterns in proximal ashfall could only be partly explained by aerial dispersal of large particles released at low altitudes in the eruption column. The extreme distal (100-150 km away) observed ashfall distributions also cannot be fully explained by NAME-III when using: reasonably prescribed initial particle size distributions, eruption column height, eruption timing, well forecast winds, and dry sedimentation processes. Aggregation and ice nucleation effects (observed in deposits) were not included in the ash dispersion model, but appear as a plausible mechanism to account for the observed fraction of wind dispersed ash particles < 30 μm deposited but not captured by the models.

  7. Epiclastic deposits associated with large-scale landslides and the formation of erosive calderas in oceanic islands: The example of the La Palma Island (Canary Archipelago)

    Science.gov (United States)

    Colmenero, J. R.; de la Nuez, J.; Casillas, R.; Castillo, C.

    2012-12-01

    The growth and evolution of the La Palma Island has frequently been punctuated by high magnitude mass-wasting events triggered by gravitational collapses of volcanic edifices and by the erosion of the Caldera de Taburiente. These episodes are evidenced by voluminous debris accumulations in the submarine vicinity of the island and the presence of six very-coarse epiclastic units in the geological record of the island. In this paper we study these epiclastic units in order to characterize their stratigraphic architecture and facies associations, and the mechanisms involved in the transport and emplacement of the material associated with large failures and the erosion of volcanic edifices. Emphasis is also placed on characterising the temporal sequence of processes that have occurred on the island and discussing the origin of the Caldera de Taburiente. Three of the units described - La Cumbrecita Breccias and Megabreccias, La Pared de la Caldera Breccias and Conglomerates and La Viña Breccias - are overlying the detachment surfaces of the Santa Cruz de La Palma, Playa de la Veta and Cumbre Nueva landslides, respectively. They mainly represent the products of debris avalanches and debris flows with subordinate stream-flows filling the scars of the landslides. Unit 4, Las Angustias Breccias and Conglomerates, is interpreted as debris-flow or lahar deposits generated by landslides during the growth of the Bejenado Volcano. The uppermost units, the Tazacorte Conglomerates and El Riachuelo Conglomerates, represent water-laid deposits related to the excavation and erosion of the Caldera de Taburiente, and the incision of a valley between the Bejenado Volcano and the Cumbre Nueva scarp, respectively. Our results provide new and valuable data about cyclic events of construction-destruction of volcanic edifices worldwide, and their related processes and deposits.

  8. Laboratory Testing of Magnetic Tracers for Soil Erosion Measurement*1

    Institute of Scientific and Technical Information of China (English)

    HU Guo-Qing; DONG Yuan-Jie; WANG Hui; QIU Xian-Kui; WANG Yan-Hua

    2011-01-01

    Soil erosion, which includes soil detachment, transport, and deposition, is one of the important dynamic land surface processes. The magnetic tracer method is a useful method for studying soil erosion processes. In this study, five types of magnetic tracers were made with fine soil, fly ash, cement, bentonite, and magnetic powder (reduced iron powder) using the method of disk granulation. The tracers were uniformly mixed with soil and tested in the laboratory using simulated rainfall and inflow experiments to simulate the interrill and rill components of soil erosion, in order to select one or more tracers which could be used to study detachment and deposition by the erosive forces of raindrops and surface flow of water on a slope. The results showed that the five types of magnetic tracers with high magnetic susceptibility and a wide range of sizes had a range of 0.99-1.29 gcm-s in bulk density. In the interrill and rill experiments, the tracers FC1 and FC2 which consisted of fly ash and cement at ratios of 1:1 and 2:1, respectively, were transported in phase with soil particles since the magnetic susceptibility of sediment approximated that of the soil which was uneroded and the slopes of the regression equations between the detachment of sediment and magnetic tracers FC1 and FC2 were very close to the expected value of 20, which was the original soil/tracer ratio. The detachment and deposition on slopes could be accurately reflected by the magnetic susceptibility differences. The change in magnetic susceptibility depended on whether deposition or detachment occurred. However, the tracer FS which consisted of fine soil and the tracers FB1 and FB2 which consisted of fly ash and bentonite at ratios of 1:1 and 2:1, respectively, were all unsuitable for soil erosion study since there was no consistent relationship between sediment and tracer detachment for increasing amounts of runoff. Therefore, the tracers FC1 and FC2 could be used to study soil erosion by water.

  9. Refined depositional history and dating of the Tongaporutuan reference section, north Taranaki, New Zealand: new volcanic ash U-Pb zircon ages, biostratigraphy and sedimentation rates

    Science.gov (United States)

    Maier, K.L.; Crundwell, Martin P.; Coble, Matthew A.; Kingsley-Smith, Peter R.; Graham, Stephan A.

    2016-01-01

    This study presents new radiometric ages from volcanic ash beds within a c. 1900 m thick, progradational, deep-water clastic slope succession of late Miocene age exposed along the north Taranaki coast of the North Island, New Zealand. The ash beds yield U–Pb zircon ages ranging from 10.63 ± 0.65 Ma to 8.97 ± 0.22 Ma. The new ages are compatible with and provide corroboration of New Zealand Tongaporutuan Stage planktic foraminiferal and bolboformid biostratigraphic events identified in the same section. The close accord between these two age datasets provides a stratigraphically consistent and coherent basis for examining margin evolution. The arrival of a prograding clastic wedge and ensuing upward shoaling is recorded by sedimentation rates c. 2000 m/Ma–1 that are an order of magnitude higher than sedimentation rates on the precursor deep basin floor. This outcrop study provides new constraints for interpreting analogous subsurface deposits in Taranaki Basin and complements the regional late Miocene biostratigraphic dating framework.

  10. Influence of Fracture Toughness and Microhardness on the Erosive Wear of Cermet Coatings Deposited by Thermal Spray

    Science.gov (United States)

    Mojena, Miguel Reyes; Orozco, Mario Sánchez; Fals, Hipólito Carvajal; Ferraresi, Valtair Antonio; Lima, Carlos Roberto Camello

    2017-02-01

    An evaluation of the relationship between the microhardness and fracture toughness with resistance to erosive wear of WC10Co4Cr, WC-12Co, and Cr3C2-25NiCr coatings was conducted. Powder and flexible cored wire feedstock materials were applied by high-velocity oxygen fuel (HVOF) and flame spray (FS), respectively. The erosive wear mechanism prevailing in the coatings was found to be brittle, which also explains the higher erosion rate for the experimental condition using the particle impact angle of 90 deg and impact velocity of 9.33 m/s. The best wear performance was for the coatings applied by HVOF that attains 1.83 mm3/kg for the 90 deg/3.61 m/s test condition. The coating obtained with the WC-10Co4Cr material using the FSFC method showed tungsten carbide decarburization, justifying its poor mechanical properties and poor performance in the erosive wear test. Flame-sprayed flexicords proved to be a promising alternative to HVOF in obtaining coatings with low porosity and acceptable mechanical properties, especially in applications where the use of the HVOF technique is inadequate because of inaccessibility or excessively high cost. Values of K c for the coatings obtained by HVOF (7.35 to 10.83 MPa.m1/2) were between two and three times greater than the values obtained for the coatings resulting from FSFC (2.39 to 3.59 MPa.m1/2), in a similar manner as with the microhardness.

  11. 北京市平原区农田土壤蚀积特征分析%Analysis on Farmland Soil Erosion and Deposition Features in Beijing Plain

    Institute of Scientific and Technical Information of China (English)

    王仁德; 邹学勇; 赵婧妍; 张艺磊

    2011-01-01

    By bays of field observations, wind-tunnel simulation and laboratory analysis, under the common function of soil wind-erosion and atmospheric dustfall, the farmland soil erosion and sedimentary characteristics in Beijing plain and its effect on soil physical and chemical properties were studied.The results showed that soil erosion intensity in 2009 was 0.64 t/hm2 ,with particle diameter of 20~80 μm in the main;the atmospheric dustfall intensity is 1.00 t/hm2 , with particle diameter of 10~50 μm in the main.The intensity of dustfall was over that of soil erosion, so deposition happenned in farmland surface with strength of about 0.36 t/hm2 · a.Size of dustfall particles was smaller obviously than that of wind-erosion dusts, this leaded to the soil particles becoming finer and finer by long-term erosion and deposition effect.The content of heavy metal elements in dustfall was higher than that of soil and wind-erosion dusts, which leaded to the accumulation of heavy metals in soil.%采用野外观测、风洞模拟和实验室分析等手段,对北京市平原区土壤风蚀和大气降尘两种自然过程共同作用下的农田土壤蚀积状况及其对土壤理化性质的影响问题进行了研究.结果表明,2009年研究区农田土壤风蚀强度为0.64 t/hm2,风蚀物颗粒以粒径在20~80μm的尘粒为主;大气降尘强度为1.00 t/hm2,降尘颗粒以粒径在10~50μm的尘粒为主.降尘强度大于土壤风蚀强度,农田地表以沉积为主,强度约为0.36 t/hm2·a.降尘粒径比风蚀物粒径明显偏细,长期的蚀积作用导致土壤粒度组成变细.降尘中重金属元索的含量明显大于土壤和风蚀物中的含量,长期沉积作用导致土壤中重金属元素的累积.

  12. Ash Aggregates in Proximal Settings

    Science.gov (United States)

    Porritt, L. A.; Russell, K.

    2012-12-01

    Ash aggregates are thought to have formed within and been deposited by the eruption column and plume and dilute density currents and their associated ash clouds. Moist, turbulent ash clouds are considered critical to ash aggregate formation by facilitating both collision and adhesion of particles. Consequently, they are most commonly found in distal deposits. Proximal deposits containing ash aggregates are less commonly observed but do occur. Here we describe two occurrences of vent proximal ash aggregate-rich deposits; the first within a kimberlite pipe where coated ash pellets and accretionary lapilli are found within the intra-vent sequence; and the second in a glaciovolcanic setting where cored pellets (armoured lapilli) occur within Diamond Mine, Canada, are the residual deposits within the conduit and vent of the volcano and are characterised by an abundance of ash aggregates. Coated ash pellets are dominant but are followed in abundance by ash pellets, accretionary lapilli and rare cored pellets. The coated ash pellets typically range from 1 - 5 mm in diameter and have core to rim ratios of approximately 10:1. The formation and preservation of these aggregates elucidates the style and nature of the explosive phase of kimberlite eruption at A418 (and other pipes?). First, these pyroclasts dictate the intensity of the kimberlite eruption; it must be energetic enough to cause intense fragmentation of the kimberlite to produce a substantial volume of very fine ash (sustained plume attended by concomitant production of pyroclastic density currents. The size and internal structure of the armoured lapilli provide constraints on the nature of the initial explosive phase of eruption at Kima'Kho. Their proximity to the vent also indicates rapid aggregation within the eruption plume. Within both sequences rapid aggregation of ash particles occurred in proximity to the vent. However, the conditions were substantially different leading to the production of armoured

  13. Mineralogical composition of boiler fouling and slagging deposits and their relation to fly ashes: the case of Kardia power plant.

    Science.gov (United States)

    Kostakis, George

    2011-01-30

    Slagging and fouling deposits from a pulverized lignite fired steam generating unit of the Kardia power plant (West Macedonia, Greece) were mineralogically investigated. The structure and cohesion of these deposits varied, usually depending on the level height of the boiler unit where they were formed. Some of the deposits had complex phase composition. The dominant components of the deposits of the burner zone and of the lower and intermediate boiler zones were the amorphous, anhydrite and hematite, while those of the highest levels contained amorphous, and anhydrite. Furthermore, in deposits formed in various other boiler areas gehlenite, anorthite, diopside, quartz, Ca(2)SiO(4), brownmillerite and other crystalline phases were also identified, usually in low amounts or in traces. The major part of the phases constituting the deposits were formed in the boiler, since only a minor part derived from the unreacted minerals present in lignite. Anhydrite was generated from the reaction of SO(2) with CaO formed mainly by the calcination of calcite as well as from dehydration of gypsum contained in lignite, while hematite was produced mainly from the oxidation of pyrite. The calcium-containing silicates formed in the boiler were mainly the products of reactions between CaO and minerals contained in the lignite.

  14. Ash in the Soil System

    Science.gov (United States)

    Pereira, P.

    2012-04-01

    , climate/meteorological conditions after the ash spread/fire and soil background characteristics. In addition, after the fire heating can change soil original properties increasing the complexity of the ash effects on soil properties. After fire, ash is highly dynamic and very easily transported by wind until the first rains. When wetted, ash compacts and binds onto soil surface, and wind has low capacity to transport it. The post-rain ash dynamic is influenced by water erosion (in slope areas), infiltration into soil profile and vegetation recuperation. This means that ash produced in one place will have implications in other areas, including not burned areas (e.g wind transport and water erosion). This is a clear indication that ash effects go much further than the fire affected area. Due the heterogeneity of soil and ash properties and their dynamic across the landscape, the impacts of ash on soil system can be diverse, producing a mosaic of different effects and responses after ash treatment and/ or fire. In this communication it will be presented and discussed the advances and scientific development of ash effects and dynamic in soil system.

  15. The behavior of ash species in suspension fired biomass boilers

    DEFF Research Database (Denmark)

    Jensen, Peter Arendt

    of advanced deposit probe measurements have been conducted on biomass powerplants. The measurements have provided insight into the relations between the chemical composition of fuel ash, fly ash and deposits. Furthermore the measurements have provided quantitative data on deposit formation rates as a function...... the interface to the steam tube metal surface. Especially an increased tube temperature makes it more demanding to remove the ash deposit. Modelling of the deposit formation process have been developed by combining sub-models of the ash formation process, the condensation of ash species on tube surfaces, ash...... particle deposition, heat transfer in the deposit and deposit sintering. The model mainly providesinformation on how changes in fuel ash composition and local conditions influences depositformation rate and deposit chemistry. Comparison of the modeling results with laboratory andfull scale data shows...

  16. VARIATION IN EROSION/DEPOSITION RATES OVER THE LAST FIFTTY YEARS ON ALLUVIAL FAN SURFACES OF L. PLEISTOCENE-MID HOLOCENE AGE, ESTIMATIONS USING 137CS SOIL PROFILE DATA, AMARGOSA VALLEY, NEVADA

    Energy Technology Data Exchange (ETDEWEB)

    C. Harrington; R. Kelly; K.T. Ebert

    2005-08-26

    Variations in erosion and deposition for the last fifty years (based on estimates from 137Cs profiles) on surfaces (Late Pleistocene to Late Holocene in age) making up the Fortymile Wash alluvial fan south of Yucca Mountain, is a function of surface age and of desert pavement development or absence. For purposes of comparing erosion and deposition, the surfaces can be examined as three groups: (1) Late Pleistocene surfaces possess areas of desert pavement development with thin Av or sandy A horizons, formed by the trapping capabilities of the pavements. These zones of deposition are complemented by coppice dune formation on similar parts of the surface. Areas on the surface where no pavement development has occurred are erosional in nature with 0.0 +/- 0.0 cm to 1.5 +/- 0.5 cm of erosion occurring primarily by winds blowing across the surface. Overall these surfaces may show either a small net depositional gain or small erosional loss. (2) Early Holocene surfaces have no well-developed desert pavements, but may have residual gravel deposits in small areas on the surfaces. These surfaces show the most consistent erosional surface areas on which it ranges from 1.0 +/-.01 cm to 2.0+/- .01 cm. Fewer depositional forms are found on this age of surface so there is probably a net loss of 1.5 cm across these surfaces. (3) The Late Holocene surfaces show the greatest variability in erosion and deposition. Overbank deposition during floods cover many edges of these surfaces and coppice dune formation also creates depositional features. Erosion rates are highly variable and range from 0.0 +/- 0.0 to a maximum of 2.0+/-.01. Erosion occurs because of the lack of protection of the surface. However, the common areas of deposition probably result in the surface having a small net depositional gain across these surfaces. Thus, the interchannel surfaces of the Fortymile Wash fan show a variety of erosional styles as well as areas of deposition. The fan, therefore, is a dynamic

  17. Erosion and deposition on a beach raised by the 1964 earthquake, Montague Island, Alaska: Chapter H in The Alaska earthquake, March 27, 1964: regional effects

    Science.gov (United States)

    Kirkby, M.J.; Kirkby, Anne V.

    1969-01-01

    During the 1964 Alaska earthquake, tectonic deformation uplifted the southern end of Montague Island as much as 33 feet or more. The uplifted shoreline is rapidly being modified by subaerial and marine processes. The new raised beach is formed in bedrock, sand, gravel, and deltaic bay-head deposits, and the effect of each erosional process was measured in each material. Fieldwork was concentrated in two areas—MacLeod Harbor on the northwest side and Patton Bay on the southeast side of Montague Island. In the unconsolidated deltaic deposits of MacLeod Harbor, 97 percent of the erosion up to June 1965, 15 months after the earthquake, was fluvial, 2.2 percent was by rainwash, and only 0.8 percent was marine; 52 percent of the total available raised beach material had already been removed. The volume removed by stream erosion was proportional to low-flow discharge raised to the power of 0.75 to 0.95, and this volume increased as the bed material became finer. Stream response to the relative fall in base level was very rapid, most of the downcutting in unconsolidated materials occurring within 48 hours of the uplift for streams with low flows greater than 10 cubic feet per second. Since then, erosion by these streams has been predominantly lateral. Streams with lower discharges, in unconsolidated materials, still had knickpoints after 15 months. No response to uplift could be detected in stream courses above the former preearthquake sea level. Where the raised beach is in bedrock, it is being destroyed principally by marine action but at such a low rate that no appreciable erosion of bedrock was found 15 months after the earthquake. A dated rock platform raised earlier has eroded at a mean rate of 0.49 foot per year. In this area the factor limiting the rate of erosion was rock resistance rather than the transporting capacity of the waves. The break in slope between the top of the raised beach and the former seacliff is being obliterated by debris which is

  18. Comparative characteristic and erosion behavior of NiCr coatings deposited by various high-velocity oxyfuel spray processes

    Science.gov (United States)

    Sidhu, Hazoor Singh; Sidhu, Buta Singh; Prakash, S.

    2006-12-01

    The purpose of this study is to analyze and compare the mechanical properties and microstructure details at the interface of high-velocity oxyfuel (HVOF)-sprayed NiCr-coated boiler tube steels, namely ASTM-SA-210 grade A1, ASTM-SA213-T-11, and ASTM-SA213-T-22. Coatings were developed by two different techniques, and in these techniques liquefied petroleum gas was used as the fuel gas. First, the coatings were characterized by metallographic, scanning electron microscopy/energy-dispersive x-ray analysis, x-ray diffraction, surface roughness, and microhardness, and then were subjected to erosion testing. An attempt has been made to describe the transformations taking place during thermal spraying. It is concluded that the HVOF wire spraying process offers a technically viable and cost-effective alternative to HVOF powder spraying process for applications in an energy generation power plant with a point view of life enhancement and to minimize the tube failures because it gives a coating having better resistance to erosion.

  19. Volcanic ash melting under conditions relevant to ash turbine interactions.

    Science.gov (United States)

    Song, Wenjia; Lavallée, Yan; Hess, Kai-Uwe; Kueppers, Ulrich; Cimarelli, Corrado; Dingwell, Donald B

    2016-03-02

    The ingestion of volcanic ash by jet engines is widely recognized as a potentially fatal hazard for aircraft operation. The high temperatures (1,200-2,000 °C) typical of jet engines exacerbate the impact of ash by provoking its melting and sticking to turbine parts. Estimation of this potential hazard is complicated by the fact that chemical composition, which affects the temperature at which volcanic ash becomes liquid, can vary widely amongst volcanoes. Here, based on experiments, we parameterize ash behaviour and develop a model to predict melting and sticking conditions for its global compositional range. The results of our experiments confirm that the common use of sand or dust proxy is wholly inadequate for the prediction of the behaviour of volcanic ash, leading to overestimates of sticking temperature and thus severe underestimates of the thermal hazard. Our model can be used to assess the deposition probability of volcanic ash in jet engines.

  20. Investigation of the Impact of Stone Bunds on Erosion and Deposition Processes combining Conventional and Tracer Methodology in the Gumara Maksegnit Watershed, Northern Highlands of Ethiopia

    Science.gov (United States)

    Obereder, Eva Maria; Wakolbinger, Stefanie; Guzmán, Gema; Strohmeier, Stefan; Demelash, Nigus; Gomez, José Alfonso; Klik, Andreas

    2016-04-01

    Ethiopia is one of the poorest countries of the word, with over 85 % of total population dependent from agriculture. Massive deforestation in the past and missing soil and water conservation (SWC) measures cause severe soil erosion problems in the northern highlands of Ethiopia. Different SWC methods are supposed to prevent ongoing land degradation, which is triggered by rainfall driven soil erosion in the Ethiopian agricultural lands. Common technologies for soil and water conservation are stone bunds, which reduce surface runoff and sediment loss. In June 2015 two field experiments were set up in the Gumara-Maksegnit watershed in Northern Ethiopia. The objective of this study was to evaluate the impact of graded stone bunds on surface runoff and sediment yield by using conventional and tracing approaches. Three consecutive runoff plots of 20 x 4 m length and width, respectively were established along the maximum slope direction. Each one was separated to the downstream one by a stone bund. The experimental setup allowed the measurement of surface runoff along each stone bund and the measurement of overflow over the lowest stone bund. To assess the pathway and the spatial distribution of the sediments a different tracer (Magnetite, Hematite and Goethite) was applied in a 40 cm wide strip at the top of each one of the plots. The second tracer experiment was conducted on the same hillslope. It consisted of a 20 m long hillslope without borders in which a 4 m long and 40 cm wide Magnetite strip was placed at the top. At the end of August 2015 soil samples of 0-2 cm depth were taken in a 1.5 x 1.5 m grid within the area of the hillslope. Soil samples parallel to the stone bund (above and underneath) were taken along 16 m to assess the soil movement/deposition. Tracer concentrations of soil and sediment samples in both trials were analysed. Runoff and sediment were collected in weekly intervals from July to September. Runoff and erosion data, as well as the evaluation

  1. Melting Behavior of Volcanic Ash relevant to Aviation Ash Hazard

    Science.gov (United States)

    Song, W.; Hess, K.; Lavallee, Y.; Cimarelli, C.; Dingwell, D. B.

    2013-12-01

    Volcanic ash is one of the major hazards caused by volcanic eruptions. In particular, the threat to aviation from airborne volcanic ash has been widely recognized and documented. In the past 12 years, more than 60 modern jet airplanes, mostly jumbo jets, have been damaged by drifting clouds of volcanic ash that have contaminated air routes and airport facilities. Seven of these encounters are known to have caused in-flight loss of engine power to jumbo jets carrying a total of more than 2000 passengers. The primary cause of engine thrust loss is that the glass in volcanic ash particles is generated at temperatures far lower than the temperatures in the combustion chamber of a jet engine ( i.e. > 1600 oC) and when the molten volcanic ash particles leave this hottest section of the engine, the resolidified molten volcanic ash particles will be accumulated on the turbine nozzle guide vanes, which reduced the effective flow of air through the engine ultimately causing failure. Thus, it is essential to investigate the melting process and subsequent deposition behavior of volcanic ash under gas turbine conditions. Although few research studies that investigated the deposition behavior of volcanic ash at the high temperature are to be found in public domain, to the best our knowledge, no work addresses the formation of molten volcanic ash. In this work, volcanic ash produced by Santiaguito volcano in Guatemala in November 8, 2012 was selected for study because of their recent activity and potential hazard to aircraft safety. We used the method of accessing the behavior of deposit-forming impurities in high temperature boiler plants on the basis of observations of the change in shape and size of a cylindrical coal ash to study the sintering and fusion phenomena as well as determine the volcanic ash melting behavior by using characteristic temperatures by means of hot stage microscope (HSM), different thermal analysis (DTA) and Thermal Gravimetric Analysis (TGA) to

  2. Laboratory Studies of Ice Nucleation on Volcanic Ash

    Science.gov (United States)

    Tolbert, M. A.; Schill, G. P.; Genareau, K. D.

    2014-12-01

    Ice nucleation on volcanic ash controls both ash aggregation and cloud glaciation, which affect human respiratory health, atmospheric transport, and global climate. We have performed laboratory studies of the depositional and immersion freezing efficiency of three distinct samples of volcanic ash using Raman Microscopy coupled to an environmental cell. Ash from the Fuego (Basaltic Ash, Guatemala), Soufriere Hills (Andesetic Ash, Montserrat), and Taupo (Rhyolitic Ash, New Zealand) volcanoes were chosen to represent different geographical locations and silica content. All ash samples were quantitatively analyzed for both percent crystallinity and mineralogy using X-ray diffraction. We find that all three samples of volcanic ash are excellent depositional ice nuclei, nucleating ice at ice saturation ratios of 1.05 ± 0.1. For immersion freezing, however, only the Taupo ash exhibited efficient heterogeneous ice nucleation activity. Similar to recent studies on mineral dust, we suggest that the mineralogy of volcanic ash may dictate its ice nucleation activity in the immersion mode.

  3. Tin re-deposition and erosion measured by cavity-ring-down-spectroscopy under a high flux plasma beam

    Science.gov (United States)

    Kvon, V.; Al, R.; Bystrov, K.; Peeters, F. J. J.; van de Sanden, M. C. M.; Morgan, T. W.

    2017-08-01

    Cavity-ring-down spectroscopy (CRDS) was implemented to measure the re-deposition of liquid tin under a high flux plasma beam in the linear plasma device Pilot-PSI. A capillary porous system (CPS) consisting of a molybdenum cup and tungsten meshes (pores diameters of 0.2 mm and 0.44 mm) was filled with tin and exposed to argon plasma. The absorption of a UV laser-beam at 286.331 nm was used to determine a number of sputtered neutral tin atoms. The incoming flux of argon ions of ~50 eV was 1.6-2.7  ×  1023 m-2 s-1, and the sample temperature measured by pyrometry varied from 850 °C to 1200 °C during exposures. The use of CRDS for measuring absolute number of particles under such plasma exposure was demonstrated for the first time. The number of sputtered tin particles in the cavity region assuming no losses would be expected to be 5.5  ×  1011-1.2  ×  1012 while CRDS measurements showed only 5.7-9.9  ×  108. About 98-99.8% of sputtered particles were therefore found to not reach the CRDS observation volume. Spectroscopic ratios of Sn I to Sn II ions, as well as equilibrium considerations, indicate that fast ionization as well as plasma entrainment of neutrals is responsible for the discrepancy. This would lead to high re-deposition rates, implying a lowered contamination rate of core plasma and lower required replenishment rates at high-flux conditions than would otherwise be expected.

  4. Mapping ash properties using principal components analysis

    Science.gov (United States)

    Pereira, Paulo; Brevik, Eric; Cerda, Artemi; Ubeda, Xavier; Novara, Agata; Francos, Marcos; Rodrigo-Comino, Jesus; Bogunovic, Igor; Khaledian, Yones

    2017-04-01

    In post-fire environments ash has important benefits for soils, such as protection and source of nutrients, crucial for vegetation recuperation (Jordan et al., 2016; Pereira et al., 2015a; 2016a,b). The thickness and distribution of ash are fundamental aspects for soil protection (Cerdà and Doerr, 2008; Pereira et al., 2015b) and the severity at which was produced is important for the type and amount of elements that is released in soil solution (Bodi et al., 2014). Ash is very mobile material, and it is important were it will be deposited. Until the first rainfalls are is very mobile. After it, bind in the soil surface and is harder to erode. Mapping ash properties in the immediate period after fire is complex, since it is constantly moving (Pereira et al., 2015b). However, is an important task, since according the amount and type of ash produced we can identify the degree of soil protection and the nutrients that will be dissolved. The objective of this work is to apply to map ash properties (CaCO3, pH, and select extractable elements) using a principal component analysis (PCA) in the immediate period after the fire. Four days after the fire we established a grid in a 9x27 m area and took ash samples every 3 meters for a total of 40 sampling points (Pereira et al., 2017). The PCA identified 5 different factors. Factor 1 identified high loadings in electrical conductivity, calcium, and magnesium and negative with aluminum and iron, while Factor 3 had high positive loadings in total phosphorous and silica. Factor 3 showed high positive loadings in sodium and potassium, factor 4 high negative loadings in CaCO3 and pH, and factor 5 high loadings in sodium and potassium. The experimental variograms of the extracted factors showed that the Gaussian model was the most precise to model factor 1, the linear to model factor 2 and the wave hole effect to model factor 3, 4 and 5. The maps produced confirm the patternd observed in the experimental variograms. Factor 1 and 2

  5. Erosion-resistant composite material

    Science.gov (United States)

    Finch, C.B.; Tennery, V.J.; Curlee, R.M.

    A highly erosion-resistant composite material is formed of chemical vapor-deposited titanium diboride on a sintered titanium diboride-nickel substrate. This material may be suitable for use in cutting tools, coal liquefaction systems, etc.

  6. The application of terrestrial laser scanner and SfM photogrammetry in measuring erosion and deposition processes in two opposite slopes in a humid badlands area (central Spanish Pyrenees)

    Science.gov (United States)

    Nadal-Romero, E.; Revuelto, J.; Errea, P.; López-Moreno, J. I.

    2015-08-01

    Erosion and deposition processes in badland areas are usually estimated using traditional observations of topographic changes, measured by erosion pins or profile metres (invasive techniques). In recent times, remote-sensing techniques (non-invasive) have been routinely applied in geomorphology studies, especially in erosion studies. These techniques provide the opportunity to build high-resolution topographic models at centimetre accuracy. By comparing different 3-D point clouds of the same area, obtained at different time intervals, the variations in the terrain and temporal dynamics can be analysed. The aim of this study is to assess and compare the functioning of terrestrial laser scanner (TLS, RIEGL LPM-321) and structure-from-motion photogrammetry (SfM) techniques (Camera FUJIFILM, Finepix x100 and software PhotoScan by AgiSoft) to evaluate erosion and deposition processes in two opposite slopes in a humid badlands area in the central Spanish Pyrenees. Results showed that TLS data sets and SfM photogrammetry techniques provide new opportunities in geomorphological erosion studies. The data we recorded over 1 year demonstrated that north-facing slopes experienced more intense and faster changing geomorphological dynamics than south-facing slopes as well as the highest erosion rates. Different seasonal processes were observed, with the highest topographic differences observed during winter periods and the high-intensity rainfalls in summer. While TLS provided the highest accuracy models, SfM photogrammetry was still a faster methodology in the field and precise at short distances. Both techniques present advantages and disadvantages, and do not require direct contact with the soil and thus prevent the usual surface disturbance of traditional and invasive methods.

  7. Ash transformation during co-firing coal and straw

    DEFF Research Database (Denmark)

    Zheng, Yuanjing; Jensen, Peter Arendt; Jensen, Anker Degn;

    2007-01-01

    Co-firing straw with coal in pulverized fuel boilers can cause problems related to fly ash utilization, deposit formation, corrosion and SCR catalyst deactivation due to the high contents of Cl and K in the ash. To investigate the interaction between coal and straw ash and the effect of coal...... quality on fly ash and deposit properties, straw was co-fired with three kinds of coal in an entrained flow reactor. The compositions of the produced ashes were compared to the available literature data to find suitable scaling parameters that can be used to predict the composition of ash from straw...... importantly, by reaction with Al and Si in the fly ash. About 70-80% K in the fly ash appears as alumina silicates while the remainder K is mainly present as sulphate. Lignite/straw co-firing produces fly ash with relatively high Cl content. This is probably because of the high content of calcium...

  8. HiRISE views enigmatic deposits in the Sirenum Fossae region of Mars

    Science.gov (United States)

    Grant, John A.; Wilson, Sharon A.; Noe Dobrea, Eldar; Fergason, Robin L.; Griffes, Jennifer L.; Moore, Jeffery M.; Howard, Alan D.

    2010-01-01

    HiRISE images together with other recent orbital data from Mars define new characteristics of enigmatic Hesperian-aged deposits in Sirenum Fossae that are mostly 100-200 m thick, drape kilometers of relief, and often display generally low relief surfaces. New characteristics of the deposits, previously mapped as the "Electris deposits," include local detection of meter-scale beds that show truncating relationships, a generally light-toned nature, and a variably blocky, weakly indurated appearance. Boulders shed by erosion of the deposits are readily broken down and contribute little to talus. Thermal inertia values for the deposits are ˜200 J m -2 K -1 s -1/2 and they may incorporate hydrated minerals derived from weathering of basalt. The deposits do not contain anomalous amounts of water or water ice. Deflation may dominate degradation of the deposits over time and points to an inventory of fine-grained sediment. Together with constraints imposed by the regional setting on formation processes, these newly resolved characteristics are most consistent with an eolian origin as a loess-like deposit comprised of redistributed and somewhat altered volcanic ash. Constituent sediments may be derived from airfall ash deposits in the Tharsis region. An origin directly related to airfall ash or similar volcanic materials is less probable and emplacement by alluvial/fluvial, impact, lacustrine, or relict polar processes is even less likely.

  9. 2.8-Ma ash-flow caldera at Chegem River in the northern Caucasus Mountains (Russia), contemporaneous granites, and associated ore deposits

    Science.gov (United States)

    Lipman, P.W.; Bogatikov, O.A.; Tsvetkov, A.A.; Gazis, C.; Gurbanov, A.G.; Hon, K.; Koronovsky, N.V.; Kovalenko, V.I.; Marchev, P.

    1993-01-01

    Diverse latest Pliocene volcanic and plutonic rocks in the north-central Caucasus Mountains of southern Russia are newly interpreted as components of a large caldera system that erupted a compositionally zoned rhyolite-dacite ash-flow sheet at 2.83 ?? 0.02 Ma (sanidine and biotite 40Ar/39Ar). Despite its location within a cratonic collision zone, the Chegem system is structurally and petrologically similar to typical calderas of continental-margin volcanic arcs. Erosional remnants of the outflow Chegem Tuff sheet extend at least 50 km north from the source caldera in the upper Chegem River. These outflow remnants were previously interpreted by others as erupted from several local vents, but petrologic similarities indicate a common origin and correlation with thick intracaldera Chegem Tuff. The 11 ?? 15 km caldera and associated intrusions are superbly exposed over a vertical range of 2,300 m in deep canyons above treeline (elev. to 3,800 m). Densely welded intracaldera Chegem Tuff, previously described by others as a rhyolite lava plateau, forms a single cooling unit, is > 2 km thick, and contains large slide blocks from the caldera walls. Caldera subsidence was accommodated along several concentric ring fractures. No prevolcanic floor is exposed within the central core of the caldera. The caldera-filling tuff is overlain by andesitic lavas and cut by a 2.84 ?? 0.03-Ma porphyritic granodiorite intrusion that has a cooling age analytically indistinguishable from that of the tuffs. The Eldjurta Granite, a pluton exposed low in the next large canyon (Baksan River) 10 km to the northwest of the caldera, yields variable K-feldspar and biotite ages (2.8 to 1.0 Ma) through a 5-km vertical range in surface and drill-hole samples. These variable dates appear to record a prolonged complex cooling history within upper parts of another caldera-related pluton. Major W-Mo ore deposits at the Tirniauz mine are hosted in skarns and hornfels along the roof of the Eldjurta Granite

  10. SEDIMENTATION AND EROSION STUDIES

    Institute of Scientific and Technical Information of China (English)

    Chih Ted YANG

    2005-01-01

    @@ The river systems observed today is the cumulative result of surface, rill, and gully erosion, and sediment transport, scour, and deposition. The divisions of approach between these two related areas are man-made, and are not based on sound science. Most of the erosion studies are done by geologists and agricultural engineers who are concerned of the surface, rill, and gully erosion and the loss of agricultural land productivity. Hydraulic engineers are more interested in the study of sediment transport, scour, and deposition, and their impacts on river engineering and hydraulic structures in rivers and reservoirs. Erosion studies are often based on empirical relationships or field data to determinate the annual sediment yield from a watershed. On the other hand, hydraulic engineers focus their attention on solving equations based on assumed initial and boundary conditions with a time scale of days, hours, or seconds. Both approaches have their complementary strengths and weaknesses. It is important to provide a forum for specialists in both areas to communicate, exchange ideas, and learn from each other.

  11. Characterization of ashes from biofuels

    Energy Technology Data Exchange (ETDEWEB)

    Frandsen, F.J.; Hansen, L.A. [Technical Univ. of Denmark. Dept. of Chemical Engineering (Denmark); Soerensen, H.S. [Geological Survey of Denmark and Greenland (Denmark); Hjuler, K. [dk-TEKNIK. Energy and Environment (Denmark)

    1998-02-01

    One motivation for initiating the present project was that the international standard method of estimating the deposit propensity of solid fuels, of which a number of variants exist (e.g. ISO, ASTM, SD, DIN), has shown to be unsuitable for biomass ashes. This goal was addressed by the development of two new methods for the detection of ash fusibility behaviour based on Simultaneous Thermal Analysis (STA) and High Temperature Light Microscopy (HTLM), respectively. The methods were developed specifically for ashes from biofuels, but are suitable for coal ashes as well. They have been tested using simple salt mixtures, geological standards and samples from straw CHP and coal-straw PF combustion plants. All samples were run in a nitrogen atmosphere at a heating rate of 10 deg. C/min. In comparison with the standard method, the new methods are objective and have superior repeatability and sensitivity. Furthermore, the two methods enable the melting behavior to be characterized by a continuous measurement of melt fraction versus temperature. Due to this two-dimensional resolution of the results, the STA and HTLM methods provide more information than the standard method. The study of bottom ash and fly ash as well as deposit samples from straw test firings at the Haslev and Slagelse Combined Heat and Power plants resulted in a better understanding of mineral behaviour during straw grate firing. In these tests a number of straws were fired which had been carefully selected for having different qualities with respect to sort and potassium and chlorine contents. By studying bottom ashes from Slagelse it was found that the melting behaviour correlated with the deposition rate on a probe situated at the outlet part of the combustion zone. (EG)

  12. Modelling sewer sediment deposition, erosion, and transport processes to predict acute influent and reduce combined sewer overflows and CO(2) emissions.

    Science.gov (United States)

    Mouri, Goro; Oki, Taikan

    2010-01-01

    Understanding of solids deposition, erosion, and transport processes in sewer systems has improved considerably in the past decade. This has provided guidance for controlling sewer solids and associated acute pollutants to protect the environment and improve the operation of wastewater systems. Although measures to decrease combined sewer overflow (CSO) events have reduced the amount of discharged pollution, overflows continue to occur during rainy weather in combined sewer systems. The solution lies in the amount of water allotted to various processes in an effluent treatment system, in impact evaluation of water quality and prediction technology, and in stressing the importance of developing a control technology. Extremely contaminated inflow has been a serious research subject, especially in connection with the influence of rainy weather on nitrogen and organic matter removal efficiency in wastewater treatment plants (WWTP). An intensive investigation of an extremely polluted inflow load to WWTP during rainy weather was conducted in the city of Matsuyama, the region used for the present research on total suspended solid (TSS) concentration. Since the inflow during rainy weather can be as much as 400 times that in dry weather, almost all sewers are unsettled and overflowing when a rain event is more than moderate. Another concern is the energy consumed by wastewater treatment; this problem has become important from the viewpoint of reducing CO(2) emissions and overall costs. Therefore, while establishing a prediction technology for the inflow water quality characteristics of a sewage disposal plant is an important priority, the development of a management/control method for an effluent treatment system that minimises energy consumption and CO(2) emissions due to water disposal is also a pressing research topic with regards to the quality of treated water. The procedure to improve water quality must make use of not only water quality and biotic criteria, but also

  13. Using thermal remanent magnetisation (TRM) to distinguish block and ash flow and debris flow deposits, and to estimate their emplacement temperature: 1991-1995 lava dome eruption at Mt. Unzen Volcano, Japan

    Science.gov (United States)

    Uehara, D.; Cas, R. A. F.; Folkes, C.; Takarada, S.; Oda, H.; Porreca, M.

    2015-09-01

    The 1991-1995 Mt. Unzen eruption (Kyushu, Japan) produced 13 lava domes, approximately 9400 block and ash pyroclastic flows (BAF) resulting from lava dome collapse events and syn- and post-dome collapse debris flow (DF) events. In the field, it can be very difficult to distinguish from field facies characteristics which deposits are primary hot BAF, cold BAF or rock avalanche, or secondary DF deposits. In this study we use a combination of field observations and thermal remanent magnetisation (TRM) analysis of juvenile, lava dome derived clasts from seven deposits of the 1991-1995 Mt. Unzen eruption in order to distinguish between primary BAF deposits and secondary DF deposits and to determine their emplacement temperature. Four major TRM patterns were identified: (1) Type I: clasts with a single magnetic component oriented parallel to the Earth's magnetic field at time and site of emplacement. This indicates that these deposits were deposited at very high temperature, between the Curie temperature of magnetite (~ 540 °C) and the glass transition temperature of the lava dome (~ 745 °C). These clasts are found in high temperature BAF deposits. (2) Type II: clasts with two magnetic components of magnetisation. The lower temperature magnetic components are parallel to the Earth's magnetic field at time of the Unzen eruption. Temperature estimations for these deposits can range from 80 to 540 °C. We found this paleomagnetic behaviour in moderate temperature BAF or warm DF deposits. (3) Type III: clasts with three magnetic components, with a lower temperature component oriented parallel to the Earth's magnetic field at Unzen. The individual clast temperatures estimated for this kind of deposit are usually less than 300 °C. We interpret this paleomagnetic behaviour as the effect of different thermal events during their emplacement history. There are several interpretations for this paleomagnetic behaviour including remobilisation of moderate temperature BAF, warm DF

  14. 冻融和氯盐侵蚀耦合作用下的大掺量粉煤灰混凝土耐久性探讨%Durability of High Fly Ash Content Concrete under the Coupling Effect of Freeze-Thaw and Chlorine Salt Erosion

    Institute of Scientific and Technical Information of China (English)

    艾红梅; 郭建华; 杨晨光; 戴碧琳

    2015-01-01

    The north sea environment is very bad,which damages the concrete seriously,so the current research of concrete durability mainly focuses on the chloride ion penetration,sulphate erosion,freeze - thaw action and so on. Among them,the damage to concrete from chlorine salt erosion and freeze -thaw is particularly serious,so frost resistance and salt stress resistance design of marine engineering is particularly important. Considering the dominant factor of concrete degradation and cost,high fly ash content concrete( HFCC ) is becoming more and more attractive because of its economic and environmental profits. The author mainly discusses the durability of HFCC under the coupling effect of freeze-thaw and chlorine salt.%鉴于北方海洋环境十分恶劣,对混凝土的破坏严重,目前对于海工混凝土耐久性问题的研究主要集中在氯离子渗透、硫酸盐侵蚀、冻融作用等方面。其中,氯盐侵蚀和冻融作用对混凝土造成的破坏尤为严重,所以对海工混凝土进行抗冻、抗盐害的设计尤为重要。出于混凝土劣化的主导因素和经济性的考虑,在海工结构中,大掺量粉煤灰混凝土( High Fly Ash Content Concrete,简称HFCC)以其经济效益和环境效益被人们愈来愈重视。主要对氯盐和冻融耦合作用下的大掺量粉煤灰混凝土的耐久性进行了探讨。

  15. Greenlandic Waste Incineration Fly And Bottom Ash As Secondary Resource In Mortar

    DEFF Research Database (Denmark)

    Kirkelund, Gunvor Marie; Ottosen, Lisbeth M.; Jensen, Pernille Erland

    2016-01-01

    Today, 900 tons incineration fly ash is shipped abroad annually from Greenland for deposits, whereas the 6,000 tons incineration bottom ash is deposited locally. These incineration ashes could be valuable in concrete production, where the cement has to be shipped to Greenland. For this purpose...... and cement with fly ash. Based on the compressive strength tests, it is found that using Greenlandic incineration ashes in mortar as 5% cement replacement could consume all ash instead of disposals, and could thus turn the ashes into a local resource and simultaneously reduce the import of cement....

  16. Oil ash corrosion; A review of utility boiler experience

    Energy Technology Data Exchange (ETDEWEB)

    Paul, L.D. (Babcock and Wilcox Co., Alliance, OH (United States)); Seeley, R.R. (Babcock and Wilcox Canada Ltd., Cambridge, ON (Canada))

    1991-02-01

    In this paper a review of experience with oil ash corrosion is presented along with current design practices used to avoid excessive tube wastage. Factors influencing oil ash corrosion include fuel chemistry, boiler operation, and boiler design. These factors are interdependent and determine the corrosion behavior in utility boilers. Oil ash corrosion occurs when vanadium-containing ash deposits on boiler tube surfaces become molten. These molten ash deposits dissolve protective oxides and scales causing accelerated tube wastage. Vanadium is the major fuel constituent responsible for oil ash corrosion. Vanadium reacts with sodium, sulfur, and chlorine during combustion to produce lower melting temperature ash compositions, which accelerate tube wastage. Limiting tube metal temperatures will prevent ash deposits from becoming molten, thereby avoiding the onset of oil ash corrosion. Tube metal temperatures are limited by the use of a parallel stream flow and by limiting steam outlet temperatures. Operating a boiler with low excess air has helped avoid oil ash corrosion by altering the corrosive combustion products. Air mixing and distribution are essential to the success of this palliative action. High chromium alloys and coatings form more stable protective scaled on tubing surfaces, which result in lower oil ash corrosion rates. However, there is not material totally resistant to oil ash corrosion.

  17. Volcanic ash as an oceanic iron source and sink

    Science.gov (United States)

    Rogan, Nicholas; Achterberg, Eric P.; Le Moigne, Frédéric A. C.; Marsay, Chris M.; Tagliabue, Alessandro; Williams, Richard G.

    2016-03-01

    Volcanic ash deposition to the ocean forms a natural source of iron (Fe) to surface water microbial communities. Inputs of lithogenic material may also facilitate Fe removal through scavenging. Combining dissolved Fe (dFe) and thorium-234 observations alongside modeling, we investigate scavenging of Fe in the North Atlantic following the Eyjafjallajökull volcanic eruption. Under typical conditions biogenic particles dominate scavenging, whereas ash particles dominate during the eruption. The size of particles is important as smaller scavenging particles can become saturated with surface-associated ions. Model simulations indicate that ash deposition associated with Eyjafjallajökull likely led to net Fe removal. Our model suggests a threefold greater stimulation of biological activity if ash deposition had occurred later in the growing season when the region was Fe limited. The implications of ash particle scavenging, eruption timing, and particle saturation need to be considered when assessing the impact of ash deposition on the ocean Fe cycle and productivity.

  18. SOIL EROSION PROCESS RESEARCH AND ITS POTENTIAL IMPACT ON EROSION PREDICTION MODEL DEVELOPMENT

    Institute of Scientific and Technical Information of China (English)

    Chi-hua HUANG; Fenli ZHENG

    2005-01-01

    This paper highlights past efforts in developing erosion process concepts that lead to the development of the current process-based erosion prediction model, i.e., WEPP. Recent progress includes the development of a multiple-box system that can simulate hillslope hydrologic conditions. Laboratory procedures enable the quantification of near-surface hydrologic effects, i.e.,artesian seepage vs. drainage, on the soil erosion process and sediment regime, flow hydraulics, and sediment transport and deposition processes. These recent findings improve soil erosion science and provide new erosion control strategies that may have additional environmental benefits relative to the traditional erosion control practices. The paper also discusses the potential impacts of the erosion process on erosion model development and future research directions of soil erosion process research and model development.

  19. Mechanistic Model for Ash Deposit Formation in Biomass Suspension Firing. Part 1: Model Verification by Use of Entrained Flow Reactor Experiments

    DEFF Research Database (Denmark)

    Hansen, Stine Broholm; Jensen, Peter Arendt; Jappe Frandsen, Flemming

    2017-01-01

    Two models for deposit formation in suspension firing of biomass have been developed. Both models describe deposit buildup by diffusion and subsequent condensation of vapors, thermophoresis of aerosols, convective diffusion of small particles, impaction of large particles, and reaction. The models...... used to describe the deposit formation rates and deposit chemistry observed in a series of entrained flow reactor (EFR) experiments using straw and wood as fuels. It was found that model #1 was not able to describe the observed influence of temperature on the deposit buildup rates, predicting a much...

  20. Ash in fire affected ecosystems

    Science.gov (United States)

    Pereira, Paulo; Jordan, Antonio; Cerda, Artemi; Martin, Deborah

    2015-04-01

    Ash in fire affected ecosystems Ash lefts an important footprint in the ecosystems and has a key role in the immediate period after the fire (Bodi et al., 2014; Pereira et al., 2015). It is an important source of nutrients for plant recover (Pereira et al., 2014a), protects soil from erosion and controls soil hydrological process as runoff, infiltration and water repellency (Cerda and Doerr, 2008; Bodi et al., 2012, Pereira et al., 2014b). Despite the recognition of ash impact and contribution to ecosystems recuperation, it is assumed that we still have little knowledge about the implications of ash in fire affected areas. Regarding this situation we wanted to improve our knowledge in this field and understand the state of the research about fire ash around world. The special issue about "The role of ash in fire affected ecosystems" currently in publication in CATENA born from the necessity of joint efforts, identify research gaps, and discuss future cooperation in this interdisciplinary field. This is the first special issue about fire ash in the international literature. In total it will be published 10 papers focused in different aspects of the impacts of ash in fire affected ecosystems from several parts of the world: • Fire reconstruction using charcoal particles (Burjachs and Espositio, in press) • Ash slurries impact on rheological properties of Runoff (Burns and Gabet, in press) • Methods to analyse ash conductivity and sorbtivity in the laboratory and in the field (Balfour et al., in press) • Termogravimetric and hydrological properties of ash (Dlapa et al. in press) • Effects of ash cover in water infiltration (Leon et al., in press) • Impact of ash in volcanic soils (Dorta Almenar et al., in press; Escuday et al., in press) • Ash PAH and Chemical extracts (Silva et al., in press) • Microbiology (Barreiro et al., in press; Lombao et al., in press) We believe that this special issue will contribute importantly to the better understanding of

  1. Erosion and sediment deposition evaluation in two slopes under different tillage systems using the '1{sup 37C}s fallout' technique

    Energy Technology Data Exchange (ETDEWEB)

    Arthur, Robson C.J.; Oliveira, Roberto A.S.; Bacchi, Osny O.S. [Centro de Energia Nuclear na Agricultura (CENA), Piracicaba, SP (Brazil)]. E-mails: rcarthur@cena.usp.br; betuzzz@yahoo.com.br; osny@cena.usp.br; Correchel, Vladia [Universidade Federal de Goias UFG, Goiania, GO (Brazil)]. E-mail: vladia@agro.ufg.br; Santos, Dileia S.; Sparovek, Gerd [Escola Superior de Agricultura Luiz de Queiroz (ESALQ), Piracicaba, SP (Brazil)]. E-mails: leiass@carpa.ciagri.usp.br; gerd@esalq.usp.br

    2007-07-01

    With the increasing of occupation of the Brazilian Cerrado a series of environmental problems followed by the deforestation as soil erosion and soil compaction are appearing, and many of than are being related to the CT used. The NT cropping system which is being adopted more recently in the 'cerrado' region, has revealed benefic to the soil, mainly in terms of soil erosion control. The objective of the present work was to analyze the effect of the No Tillage NT and Conventional Tillage CT systems on the erosion process and to measure the efficiency of the riparian forest in trapping the sediments produced by erosion coming from crop areas cultivated by both systems trough the technique of 137Cs 'fallout' redistribution analysis. The study was carried out in Goiatuba/GO in two sampling dowslope transects located in areas of CT and NT cropping systems. Samples were taken from five points in transects of 200 and 140 meters long respectively, as well as from three soil profiles of a 30 m transect in the downstream riparian forests of each area. Incremental depth samples were also taken from two pits inside each transect in the forest down to 40 and 60 cm depth for the CT and NT respectively. The soil samples were air dried and sieved and the {sup 137}Cs activity was analyzed for in a gamma ray detector (GEM-20180P, EG and ORTEC) coupled to a multichannel analyzer at CENA/USP. The results indicate variation of {sup 137}Cs in soil profiles and high erosion rates for both cropping areas also indicate a movement of sediments from the two cropping areas to the riparian forest. (author)

  2. Pressure Drop Research of Diesel Particulate Filter for Ash Deposition in Deep Bed%柴油机微粒捕集器灰烬深床沉积压降特性

    Institute of Scientific and Technical Information of China (English)

    龚金科; 陈韬; 鄂加强; 王曙辉; 左青松; 江俊豪

    2013-01-01

    Based on the pattern and morphology of deposited ash at the filter wall,a mathematical model of ash deposition in the deep bed was proposed using a physical model of the spherical unit packed bed.The model describes the variation of trap unit size and permeability and investigates the pressure drop on the filter body.Then an accelerated aging bench test was taken to verify the calculation.Results show that pressure drop is increased significantly in the deep bed filtration phase and becomes flat in the cake filtration phase.The deviation between the calculated and experimental values is less than 8% and this confirms that the model can reasonably describe the ash deposition process at the filter wall.The study has the reference to predict DPF failure and provides theoretical guidance for the optimization of anti-clogging.%基于过滤壁面内灰烬深床沉积规律和形态,运用球状单元填充床多孔介质物理模型,建立了过滤壁面内灰烬深床沉积数学模型.根据该数学模型研究壁面捕集单元尺寸和渗透率随灰烬沉积量和壁面深度的变化规律,以及过滤体压降随深床沉积灰烬质量的变化规律,并通过灰烬沉积加速老化台架试验验证了计算模型.结果表明,灰烬深床沉积阶段过滤体压降明显增加,滤饼沉积阶段压降增加变得平缓,过滤体灰烬深床沉积阶段压降损失计算值与试验值误差不超过8%,该模型能合理描述灰烬在过滤壁面内的沉积过程,为微粒捕集器的抗堵塞优化研究和失效预测提供理论依据.

  3. Erosion and deposition by supercritical density flows during channel avulsion and backfilling: Field examples from coarse-grained deepwater channel-levée complexes (Sandino Forearc Basin, southern Central America)

    Science.gov (United States)

    Lang, Jörg; Brandes, Christian; Winsemann, Jutta

    2017-03-01

    Erosion and deposition by supercritical density flows can strongly impact the facies distribution and architecture of submarine fans. Field examples from coarse-grained channel-levée complexes from the Sandino Forearc Basin (southern Central America) show that cyclic-step and antidune deposits represent common sedimentary facies of these depositional systems and relate to the different stages of avulsion, bypass, levée construction and channel backfilling. During channel avulsion, large-scale scour-fill complexes (18 to 29 m deep, 18 to 25 m wide, 60 to > 120 m long) were incised by supercritical density flows. The multi-storey infill of the large-scale scour-fill complexes comprises amalgamated massive, normally coarse-tail graded or widely spaced subhorizontally stratified conglomerates and pebbly sandstones, interpreted as deposits of the hydraulic-jump zone of cyclic steps. The large-scale scour-fill complexes can be distinguished from small-scale channel fills based on the preservation of a steep upper margin and a coarse-grained infill comprising mainly amalgamated hydraulic-jump zone deposits. Channel fills include repeated successions deposited by cyclic steps with superimposed antidunes. The deposits of the hydraulic-jump zone of cyclic steps comprise regularly spaced scours (0.2 to 2.6 m deep, 0.8 to 23 m long) infilled by intraclast-rich conglomerates or pebbly sandstones, displaying normal coarse-tail grading or backsets. These deposits are laterally and vertically associated with subhorizontally stratified, low-angle cross-stratified or sinusoidally stratified sandstones and pebbly sandstones, which were deposited by antidunes on the stoss side of the cyclic steps during flow re-acceleration. The field examples indicate that so-called spaced stratified deposits may commonly represent antidune deposits with varying stratification styles controlled by the aggradation rate, grain-size distribution and amalgamation. The deposits of small-scale cyclic

  4. Volcanic ash impacts on critical infrastructure

    Science.gov (United States)

    Wilson, Thomas M.; Stewart, Carol; Sword-Daniels, Victoria; Leonard, Graham S.; Johnston, David M.; Cole, Jim W.; Wardman, Johnny; Wilson, Grant; Barnard, Scott T.

    2012-01-01

    supply managers include: monitoring turbidity levels in raw water intakes, and if necessary increasing chlorination to compensate for higher turbidity; managing water demand; and communicating monitoring results with the public to allay fears of contamination. Ash can cause major damage to wastewater disposal systems. Ash deposited onto impervious surfaces such as roads and car parks is very easily washed into storm drains, where it can form intractable masses and lead to long-term flooding problems. It can also enter wastewater treatment plants (WWTPs), both through sewer lines and by direct fallout. Damage to modern WWTPs can run into millions of dollars. Ash falls reduce visibility creating hazards for ground transportation. Dry ash is also readily remobilised by vehicle traffic and wind, and dry and wet ash deposits will reduce traction on paved surfaces, including airport runways. Ash cleanup from road and airports is commonly necessary, but the large volumes make it logistically challenging. Vehicles are vulnerable to ash; it will clog filters and brake systems and abrade moving parts within engines. Lastly, modern telecommunications networks appear to be relatively resilient to volcanic ash fall. Signal attenuation and interference during ash falls has not been reported in eruptions over the past 20 years, with the exception of interference from ash plume-generated lightning. However, some telecommunications equipment is vulnerable to airborne ash, in particular heating, ventilation and air-conditioning (HVAC) systems which may become blocked from ash ingestion leading to overheating. This summary of volcanic ash impacts on critical infrastructure provides insight into the relative vulnerability of infrastructure under a range of different ashfall scenarios. Identifying and quantifying these impacts is an essential step in building resilience within these critical systems. We have attempted to consider interdependencies between sectors in a holistic way using

  5. Erosion sculptures

    Science.gov (United States)

    Ristroph, Leif; Moore, M. N. J.; Childress, Stephen; Shelley, Michael; Zhang, Jun

    2012-11-01

    Erosion by flowing fluids carves the striking landscapes imprinted on the Earth and on the surfaces of our neighboring worlds. In these processes, solid boundaries both influence and are shaped by the surrounding fluid, but the emergence of morphology as a result of this interaction is not well understood. We study the coevolution of shape and flow in the context of clay bodies immersed in fast flowing water. Although commonly viewed as a smoothing process, we discover that erosion sculpts surprisingly sharp points and corners that persist as the body shrinks. These features result from a natural tendency to form surfaces that erode uniformly, and we argue that this principle may also apply to the more complex scenarios that occur in nature.

  6. Fusion characteristics of volcanic ash relevant to aviation hazards

    Science.gov (United States)

    Song, Wenjia; Hess, Kai-Uwe; Damby, David E.; Wadsworth, Fabian B.; Lavallée, Yan; Cimarelli, Corrado; Dingwell, Donald B.

    2014-04-01

    The fusion dynamics of volcanic ash strongly impacts deposition in hot parts of jet engines. In this study, we investigate the sintering behavior of volcanic ash using natural ash of intermediate composition, erupted in 2012 at Santiaguito Volcano, Guatemala. A material science procedure was followed in which we monitored the geometrical evolution of cylindrical-shaped volcanic ash compact upon heating from 50 to 1400°C in a heating microscope. Combined morphological, mineralogical, and rheological analyses helped define the evolution of volcanic ash during fusion and sintering and constrain their sticking potential as well as their ability to flow at characteristic temperatures. For the ash investigated, 1240°C marks the onset of adhesion and flowability. The much higher fusibility of ash compared to that of typical test sands demonstrates for the need of a more extensive fusion characterization of volcanic ash in order to mitigate the risk posed on jet engine operation.

  7. Mechanistic Model for Ash Deposit Formation in Biomass Suspension-Fired Boilers. Part 2: Model Verification by Use of Full Scale Tests

    DEFF Research Database (Denmark)

    Hansen, Stine Broholm; Jensen, Peter Arendt; Jappe Frandsen, Flemming

    2017-01-01

    describes particle sticking or rebound by a combination of the description of (visco)elsatic particles impacting a solid surface and particle capture by a viscous surface. The model is used to predict deposit formation rates measured during tests conducted with probes in full-scale suspension-fired biomass...... of some physical parameters related to the description of surface capture are suggested. Based on these examinations of the model ability to describe observed deposit formation rates, the proposed model can be regarded as a promising tool for description of deposit formation in full-scale biomass......A model for deposit formation in suspension firing of biomass has been developed. The model describes deposit build-up by diffusion and subsequent condensation of vapors, thermoforesis of aerosols, convective diffusion of small particles, impaction of large particles and reaction. The model...

  8. Fly Ash Disposal in Ash Ponds: A Threat to Ground Water Contamination

    Science.gov (United States)

    Singh, R. K.; Gupta, N. C.; Guha, B. K.

    2016-07-01

    Ground water contamination due to deposition of fly ash in ash ponds was assessed by simulating the disposal site conditions using batch leaching test with fly ash samples from three thermal power plants. The periodic analysis of leachates was performed for selected elements, Fe, Cu, Ni, Cr, Pb and Cd in three different extraction solutions to determine the maximum amount that can be leached from fly ash. It was observed that at low pH value, maximum metals are released from the surface of the ash into leachate. The average concentration of these elements found in ground water samples from the nearby area of ash ponds shows that almost all the metals except `Cr' are crossing the prescribed limits of drinking water. The concentration of these elements at this level can endanger public health and environment.

  9. Fly Ash Disposal in Ash Ponds: A Threat to Ground Water Contamination

    Science.gov (United States)

    Singh, R. K.; Gupta, N. C.; Guha, B. K.

    2016-09-01

    Ground water contamination due to deposition of fly ash in ash ponds was assessed by simulating the disposal site conditions using batch leaching test with fly ash samples from three thermal power plants. The periodic analysis of leachates was performed for selected elements, Fe, Cu, Ni, Cr, Pb and Cd in three different extraction solutions to determine the maximum amount that can be leached from fly ash. It was observed that at low pH value, maximum metals are released from the surface of the ash into leachate. The average concentration of these elements found in ground water samples from the nearby area of ash ponds shows that almost all the metals except `Cr' are crossing the prescribed limits of drinking water. The concentration of these elements at this level can endanger public health and environment.

  10. Comparative analysis of heat transfer,ash deposition and attrition performances on different extended surfaces%不同扩展换热面传热、积灰、磨损特性对比

    Institute of Scientific and Technical Information of China (English)

    赵虹; 周霭琳; 施浩勋; 陈理帅; 邓芙蓉; 杨建国; 胡劲逸

    2015-01-01

    To optimize and select the low temperature heat exchanger,comparative analysis on heat transfer, ash deposition and attrition performances of H-finned tubes and spiral finned tubes was conducted,by ther-modynamic calculation and numerical simulation methods.The results show that,with conventional struc-tural parameters,the spiral finned tube with unit length has higher heat transfer efficiency,and its steel consumption (flow resistance)is only 42.87% (61.45%)of that of the H-finned tube when heat transfer rate is the same.Due to the special groove structure,the swirling generated in the H-finned tube has the opposite direction to the malnstream.It shocks to the tube lee side vertically,so the H-finned tube can a-chieve ash self-removing.The abrasion of the H-finned tubes is lighter overall,and the fin has no sideway scouring.Therefore,the spiral finned tube has better heat transfer property while the H-finned tube has ad-vantages in ash deposition and attrition resistance.%为了对低温换热器优化选型,利用热力计算和数值模拟的方法,对比分析了螺旋肋片管和 H型鳍片管的传热、积灰、磨损特性.结果表明:常规结构参数下,单位长度的螺旋肋片管具有更大的换热效率,在达到相同换热量时,其钢材消耗是 H 型鳍片管的42.87%,烟气阻力是 H型鳍片管的61.45%;H 型鳍片管由于其特殊的沟槽结构,形成的涡流方向与主流速度相反,垂直冲刷基管背风面,达到自清灰的目的,其鳍片无侧向气流冲刷,整体磨损较轻.因此,螺旋肋片管的换热性能更好,但 H 型鳍片管的防积灰和耐磨性均优于螺旋肋片管.

  11. Erosion and sediment deposition evaluation on a slope under pasture in Jandaia-GO using the '{sup 137}Cs fallout' technique

    Energy Technology Data Exchange (ETDEWEB)

    Arthur, Robson C.J.; Bacchi, Osny O.S.; Reichardt, Klaus, E-mail: rcarthur@cena.usp.b, E-mail: osny@cena.usp.b, E-mail: klaus@cena.usp.b [Centro de Energia Nuclear na Agricultura (CENA/USP), Piracicaba, SP (Brazil); Oliveira, Carloeme Alves de; Correchel, Vladia, E-mail: vladia@agro.ufg.b, E-mail: carloemeoliveira@hotmail.co [Universidade Federal de Goias (UFG), Goiania, GO (Brazil)

    2009-07-01

    Water erosion is one of the main forms of soil degradation and among the diverse factors that affect it, two of great importance are the soil cover and slope. Estimates of sediment distribution rates associated to the different uses and soil management practices are scarce and the employed methods in these determinations are in general costly and time consuming. Rates of sediment redistribution evaluated by means of the {sup 137}Cs technique are based on the comparison of inventories of individual points of a given position and an inventory of reference, whose value represents the amount of {sup 137}Cs of 'fallout' origin that was added to the local site. This allows evaluating situations of losses and accumulations of sediments by the erosive process. The objective of the present work was to analyze the sediment production in a pasture area and to measure the efficiency of riparian forests in trapping the erosion sediments coming from pasture, through the '{sup 137}Cs fallout' redistribution analysis. The study was carried out in Jandaia/GO, Brazil, in two dowslope transects located in a pasture area. Samples were taken from seven points of two 140 m long transects, as well as from three soil profiles of a 15 m transect in the downstream riparian forests of each transect. Soil profiles were sampled in three layers of 20 cm (0-20, 20-40 and 40-60). The soil samples were air dried, sieved and then analyzed for {sup 137}Cs activity by a gamma ray detector (GEM-20180P, EG and ORTEC) coupled to a multichannel analyzer at CENA/USP. The results indicate variations of {sup 137}Cs activity in soil profiles and high erosion rates to the riparian forest to the pasture areas of the two transects, showing sediment movement from the pasture area to the riparian forest, which suggests that the current width of the forest is not wide enough to trap the sediments produced upslope in the pasture area. (author)

  12. Remote sensing and GIS analysis for mapping spatio-temporal changes of erosion and deposition of two Mediterranean river deltas: The case of the Axios and Aliakmonas rivers, Greece

    Science.gov (United States)

    Petropoulos, George P.; Kalivas, Dionissios P.; Griffiths, Hywel M.; Dimou, Paraskevi P.

    2015-03-01

    Wetlands are among Earth's most dynamic, diverse and varied habitats as the balance between land and water surfaces provide shelter to a unique mixture of plant and animal species. This study explores the changes in two Mediterranean wetland delta environments formed by the Axios and Aliakmonas rivers located in Greece, over a 25-year period (1984-2009). Direct photo-interpretation of four Landsat TM images acquired during the study period was performed. Furthermore, a sophisticated, semi-automatic image classification method based on support vector machines (SVMs) was developed to streamline the mapping process. Deposition and erosion magnitudes at different temporal scales during the study period were quantified using both approaches based on coastline surface area changes. Analysis using both methods was conducted in a geographical information systems (GIS) environment. Direct photo-interpretation, which formed our reference dataset, showed noticeable changes in the coastline deltas of both study areas, with erosion occurring mostly in the earlier periods (1990-2003) in both river deltas followed by deposition in more recent years (2003-2009), but at different magnitudes. Spatial patterns of coastline changes predicted from the SVMs showed similar trends. In absolute terms SVMs predictions of sediment erosion and deposition in the studied area were different in the order of 5-20% in comparison to photo-interpretation, evidencing the potential capability of this method in coastline changes monitoring. One of the main contributions of our work lies to the use of the SVMs classifier in coastal mapping of changes, since to our knowledge use of this technique has been under-explored in this application domain. Furthermore, this study provides important contribution to the understanding of Mediterranean river delta dynamics and their behaviours, and corroborates the usefulness of EO technology and GIS as an effective tool in policy decision making and successful

  13. Insight of the fusion behavior of volcanic ash: Implications for Volcanic ash Hazards to Aircraft Safety

    Science.gov (United States)

    Song, Wenjia; Hess, Kai-Uwe; Küppers, Ulrich; Scheu, Bettina; Cimarelli, Corrado; Lavallée, Yan; Sohyun, Park; Gattermann, Ulf; Müller, Dirk; Dingwell, Donald Bruce

    2014-05-01

    The interaction of volcanic ash with jet turbines during via ingestion of ash into engines operating at supra-volcanic temperatures is widely recognized as a potentially fatal hazard for jet aircraft. In the past 12 years, more than 60 modern jet airplanes, mostly jumbo jets, have been damaged by drifting clouds of volcanic ash that have contaminated air routes and airport facilities. Seven of these encounters are known to have caused in flight loss of engine power to jumbo jets carrying a total of more than 2000 passengers. The fusibility of volcanic ash is believed to impact strongly its deposition in the hotter parts of jet engines. Despite this, explicit investigation of ash sintering using standardized techniques is in its infancy. Volcanic ash may vary widely in its physical state and chemical composition between and even within explosive volcanic eruptions. Thus a comparative study of the fusibility of ash which involves a standard recognized techniques would be highly desirable. In this work, nine samples of fine ash, deposited from co-pyroclastic offrom nine different volcanoes which cover a broad range of chemical composition, were investigated. Eight of them were collected from 2001-2009 eruptions. Because of the currently elevated level of eruptive activity and its potential hazards to aircraft safety and the remaining one sample was collected from a 12,121 ± 114 yr B.P. eruption. We used the method of accessing the behavior of deposit-forming impurities in high temperature boiler plants on the basis of observations of the change in shape and size of a cylindrical coal ash to study the fusion phenomena as well as determine the volcanic ash melting behavior by defining four characteristic temperatures (shrinkage temperature, deformation temperature, hemispherical temperature, and flow temperature) by means of heating microscope instrument and different thermal analysis methods. Here, we find that there are similar sticking ability and flow behavior of

  14. Experiments on Erosion of Mud from the Danish Wadden Sea

    DEFF Research Database (Denmark)

    Johansen, C.; Larsen, Torben; Petersen, O.

    1994-01-01

    Experiments on erosion and consolidation of natural cohesive sediments from the harbour of Esbjerg located in the Danish Watten Sea were conducted using a rotating annular flume. The objective of the paper is to describe the erosion rate of deposited beds and relate the erosion rate...

  15. Quantitative analysis of coastal erosion and deposition on Wuzhizhou Island of Sanya City%三亚市蜈支洲岛海岸侵蚀与沉积的定量分析

    Institute of Scientific and Technical Information of China (English)

    张晓浩; 黄华梅; 吴秋生; 娄全胜; 杨帆; 刘辉

    2015-01-01

    传统的海岸侵蚀和沉积信息的获取多以实地测量为主, 且多用一维或二维指标来表示, 缺少海岸形态变化的三维立体表达.利用中国海监南海航空支队获取的两个时期高密度机载激光雷达点云数据, 构建了蜈支洲岛高精度的5m分辨率数字高程模型; 在此基础上结合同步获取的航空影像生成了蜈支洲岛 0.45m 分辨率的数字正射影像, 并对两期数字正射影像进行监督分类和叠置分析, 提取出发生海岸侵蚀与沉积的区域; 这些侵蚀与沉积区域基本上交替出现在砂质海岸附近.结合蜈支洲岛两期数字高程模型, 提取了12个海岸侵蚀与沉积对象多边形的典型几何属性、形状属性、表面属性和体积属性, 如面积、周长、紧凑系数、平均坡度差、平均坡向差、平均曲率差、总体积变化等.分析结果实现了海岸形变的立体多角度表达, 为海岸带资源的管理和控制规划提供新的研究方法.%Traditionally, information on coastal erosion and deposition is acquired by field surveying, using one-dimensional (1D) or 2D indices, not 3D expression of coastal morphology change. This article shows 5-m resolution high-precision DEMs (digital elevation models ) on Wuzhizhou Island using two periods of airborne Lidar point cloud data acquired by the South China Sea Airborne Detachment of China Marine Surveillance. In combination with synchronously acquired aerial images, 0.45m resolution DOMs (digital orthophoto maps) are created for this area based on the above DEM models. We also execute supervised classification and overlay analysis using DOMs to extract information on coastal erosion and deposition. These erosion and deposition patches appear alternately near the sandy coast. Combining DEMs and coastal erosion/deposition object polygons, we extract geometry, shape, surface, and volume attributes of these 12 polygons, such as area, perimeter, compact index, average slope

  16. Utilization of ash from municipal solid waste combustion. Final report, Phase I

    Energy Technology Data Exchange (ETDEWEB)

    Jones, C.M.; Hartman, R.M.; Kort, D.; Rapues, N.

    1994-09-01

    This ash study investigates several aspects of Municipal Waste Combustion (MWC) ash utilization to develop an alternative to the present disposal practice of landfilling in a lined monofill. Ash was investigated as a daily or final cover for municipal waste in the landfill to prevent erosion and as a road construction aggregate. Samples of eight mixtures of ash and other materials, and one sample of soil were analyzed for chemical constituents. Biological tests on these mixters were conducted, along with erosion tests and sieve analyses. A chemical analysis of each sieve size was conducted. Geotechnical properties of the most promising materials were made. Findings to this point include: all ash samples take have passed the EPA TCLP testing; chemical analysis of bottom and combined ash samples indicate less than expected variability; selected ash mixtures exhibited very low coefficients of hydraulic conductivity; all but one of the ash mixtures exhibited greater erosion resistance than the currently used landfill cover material; MWC combined analysis indicates this is a viable alternative for landfill cover; MWC ash size reactions and chemical analysis show bottom and combined ash to be a viable alternative for road construction.

  17. Exogenic forces action mechanism in the development process of erosion landform on alluvial plains composed of fluvial-lacustrine deposits in the Taklimakan Desert%塔克拉玛干沙漠河湖相沉积平原风蚀地貌发育的外营力作用机制

    Institute of Scientific and Technical Information of China (English)

    李生宇; 谷峰; 王海峰; 庞营军; 穆桂金; 雷加强; 刘小路; 张忠良; 闫健

    2012-01-01

    河湖相沉积是一种非固结沉积物,是风蚀地貌发育的一种重要地质基础.在塔克拉玛干沙漠中发育在这种沉积物上的风蚀地貌分布非常普遍,但相关研究较少,尚缺乏风蚀地貌发育过程方面的研究.基于野外调查信息和理论分析,结合相关文献,分析了塔克拉玛干沙漠河湖相平原风蚀地貌发育的外营力作用机制.研究结果表明:(1)风蚀地貌发育的外营力作用主要有:风化作用、流水作用、风蚀作用以及重力作用;(2)风蚀作用是风蚀地貌发育的主要外营力,但是风化作用、流水作用和重力作用也发挥着重要的作用,它们的关键作用是形成风蚀突破口,而重力作用和风化作用是促进风蚀地貌后期快速发展的重要作用;(3)各种外营力协同作用和互为条件,它们在风蚀地貌发育的各阶段的重要性不同;(4)沉积层特殊沉积构造和外营力作用共同造成了风蚀地貌形态特征.%Fluvial - lacustrine deposit is a kind of consolidation sediments that is one important geological basis for erosion landform. The erosion landform developed on alluvial plains composed of fluvial - lacustrine deposits is widely distributed. But its relevant studies, especially about the development process of erosion landform are very less. Based on the field survey information, theoretical analysis and some relevant articles, this paper comprehensively analyzed the exogenic forces action mechanism in the development process of erosion landform on alluvial plains composed of fluvial - lacustrine deposits in the Taklimakan Desert. The results show as the following; ( 1) These main exogenic forces including weathering, tunning water, aeolian erosion and gravity drive the erosion land-form development on alluvial plains composed of fluvial - lacustrine deposits in the Taklimakan Desert. (2) Because aeolian activities in the Taklimkan Desert occur very frequent, so aeolian erosion plays a leading

  18. Residual Ash Formation during Suspension-Firing of Biomass

    DEFF Research Database (Denmark)

    Damø, Anne Juul; Jappe Frandsen, Flemming; Jensen, Peter Arendt

    2014-01-01

    Through 50+ years, high quality research has been conducted in order to characterize ash and deposit formation in utility boilers fired with coal, biomass and waste fractions. The basic mechanism of fly ash formation in suspension fired coal boilers is well described, documented and may even...... be modeled relatively precisely. Concerning fly ash formation from biomass or waste fractions, the situation is not nearly as good. Lots of data are available from campaigns where different ash fractions, including sometimes also in-situ ash, have been collected and analyzed chemically and for particle size...... distribution. Thus, there is a good flair of the chemistry of fly ash formed in plants fired with biomass or waste fractions, either alone, or in conjunction with coal. But data on dedicated studies of the physical size development of fly ash, are almost non-existing for biomasses and waste fractions...

  19. The environmental stability and the hazardous geology in seabed erosion and deposition of Jiaozhou bay%胶州湾冲淤灾害地质及环境稳定性分析

    Institute of Scientific and Technical Information of China (English)

    刘运令; 汪亚平; 高建华; 贾建军; 夏小明; 李炎

    2011-01-01

    通过对胶州湾1936~2002年4期海图的地形对比和1986年、2007年2期Landsat-5TM影像的对比,分析了近70多年来胶州湾的冲淤灾害地质形势。根据胶卅I湾近百年来的沉积速率特征将其冲淤灾害形势划分为9类,结果表明:胶州湾在1936~1963年间总体呈现轻微淤积态势,但显浪-红岛连线以东区域(含沧口水道)以轻微侵蚀为主。与前期相比,胶州湾在1963-1982年间的淤积强度明显减弱,基本由轻微淤积转为冲淤平衡状态。该时期内沧口水道转为以较强淤积为主,大沽河水道和岛耳河水道处于大面积轻微侵蚀状态。%Based upon the comparisons between underwater bathymetries digitized from nautical charts (1936--2002) and between coastlines derived from two landsat--5 TM images (1986--2007), the hazardous geology associated with erosion and deposition was ana- lyzed for the past 70 years. During the last century, the sedimentary pattern was divided into nine types according to the depositional rates. The results show that the slight sedi- mentation happened as a whole in Jiaozhou bay from 1936 to 1963, while the slight erosion appeared in the eastern embayment (including Cangkou channel). Unlike before, the dep- osition obviously decreased from 1963 to 1982 and then the sedimentary environment transferred into the equilibrium. Besides, the strong sedimentation was dominant in Cangkou channel during this period. However, the Daguhe and Daoerhe channels were slightly eroded. Subsequently, most of coasts extended obviously towards the sea between 1986 and 2007; the average coastline extending rate was 10^1-10^2 m yr^-1 and the slight erosion was observed on the seabed. Moreover, the analysis of tidal prism and cross-sectional area of tidal inlets shows that the current velocity amplitude and the corresponding equ-coefficient of friction had decreased over the past 70 years in Jiaozhou bay. This indicates that the

  20. Graffiti for science - erosion painting reveals spatially variable erosivity of sediment-laden flows

    Science.gov (United States)

    Beer, Alexander R.; Kirchner, James W.; Turowski, Jens M.

    2016-12-01

    Spatially distributed detection of bedrock erosion is a long-standing challenge. Here we show how the spatial distribution of surface erosion can be visualized and analysed by observing the erosion of paint from natural bedrock surfaces. If the paint is evenly applied, it creates a surface with relatively uniform erodibility, such that spatial variability in the erosion of the paint reflects variations in the erosivity of the flow and its entrained sediment. In a proof-of-concept study, this approach provided direct visual verification that sediment impacts were focused on upstream-facing surfaces in a natural bedrock gorge. Further, erosion painting demonstrated strong cross-stream variations in bedrock erosion, even in the relatively narrow (5 m wide) gorge that we studied. The left side of the gorge experienced high sediment throughput with abundant lateral erosion on the painted wall up to 80 cm above the bed, but the right side of the gorge only showed a narrow erosion band 15-40 cm above the bed, likely due to deposited sediment shielding the lower part of the wall. This erosion pattern therefore reveals spatial stream bed aggradation that occurs during flood events in this channel. The erosion painting method provides a simple technique for mapping sediment impact intensities and qualitatively observing spatially distributed erosion in bedrock stream reaches. It can potentially find wide application in both laboratory and field studies.

  1. Inside the Vent of the 2011-2012 Cordón Caulle Eruption, Chile: The Nature of a Rhyolitic Ash Plume Source

    Science.gov (United States)

    Tuffen, H.; Castro, J. M.; Schipper, C. I.; Wadsworth, F. B.

    2014-12-01

    strong charging induced by high venting velocities through narrow fracture networks. Fluctuating gas/ash ratios and velocities, as observed[1], led to periods of both deposition and erosion. Rafting of earlier ash nozzles down the advancing obsidian flow has created a record of evolving vent dynamics. 1. Schipper C.I. et al., 2013, JVGR 262, 25-37.

  2. Ash fusion temperatures and the transformations of coal ash particles to slag

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, S.K.; Wall, T.F.; Creelman, R.A.; Gupta, R.P. [University of Newcastle, Newcastle, NSW (Australia). CRC for Black Coal Utilisation

    1998-07-01

    A mechanistic study is detailed in which coal ash is heated with its shrinkage measured continuously up to a temperature of 1600{degree}C. The temperature corresponding to the rapid rate of shrinkage correspond to the formation of eutectics identified on phase diagrams. Samples were therefore heated to these temperatures, cooled rapidly and examined using a scanning electron microscope (SEM) to identify the associated chemical and physical changes. The progressive changes in the range of chemical composition (from SEM), the extent of undissolved ash particles and porosity were then quantified and related to homogenisation, viscosity and ash fusion mechanisms. Alternate ash fusion temperatures based on different levels of shrinkage have also been suggested to characterise the ash deposition tendency of the coals. 13 refs., 9 figs.

  3. Can pore-clogging by ash explain post-fire runoff?

    NARCIS (Netherlands)

    Stoof, Cathelijne R.; Gevaert, Anouk I.; Baver, Christine; Hassanpour, Bahareh; Morales, Verónica L.; Zhang, Wei; Martin, Deborah; Giri, Shree K.; Steenhuis, Tammo S.

    2016-01-01

    Ash plays an important role in controlling runoff and erosion processes after wildfire and has frequently been hypothesised to clog soil pores and reduce infiltration. Yet evidence for clogging is incomplete, as research has focussed on identifying the presence of ash in soil; the actual flow pro

  4. Investigation of the chemical composition of ash generated from Kosovo lignite and the possibility for biological land reclamation on ash dumps

    Energy Technology Data Exchange (ETDEWEB)

    Urosevic, D.; Filipovic, R. [Mining Institute Belgrade, Belgrade (Yugoslavia)

    1997-07-01

    This paper presents the results of investigation of the chemical composition and other properties of ash generated in the coal combustion process in the coal-fired power plants Kosovo, in order to determine the possibilities for biological land reclamation on ash dumps and other degraded soil surfaces. It was established that a certain chemical composition of ash has a beneficial effect on biological land reclamation of ash dumps, thus protecting the environment (i.e. the area surrounding the ash dumps), against pollution. It was concluded that, because of the high percentage of calcium and other earth-alkaline and toxic elements, the ash should not be used as substitution for agricultural production. Ash dumps in Kosovo are not so susceptible to erosion since CaO{sub 3} acts as a binding component. 22 refs., 7 tabs.

  5. Interfacial Instability during Granular Erosion.

    Science.gov (United States)

    Lefebvre, Gautier; Merceron, Aymeric; Jop, Pierre

    2016-02-12

    The complex interplay between the topography and the erosion and deposition phenomena is a key feature to model granular flows such as landslides. Here, we investigated the instability that develops during the erosion of a wet granular pile by a dry dense granular flow. The morphology and the propagation of the generated steps are analyzed in relation to the specific erosion mechanism. The selected flowing angle of the confined flow on a dry heap appears to play an important role both in the final state of the experiment, and for the shape of the structures. We show that the development of the instability is governed by the inertia of the flow through the Froude number. We model this instability and predict growth rates that are in agreement with the experiment results.

  6. [Ash Meadows Purchase Proposal

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — A proposal sent to the Richard King Mellon Foundation for a loan to fund the purchase of Ash Meadows by the Nature Conservancy. Ash Meadows, set outside of Las Vegas...

  7. 铝合金电火花沉积层的组织和抗空蚀性能%Microstructure and cavitation erosion resistance of aluminum alloy coatings fabricated by electrospark deposition

    Institute of Scientific and Technical Information of China (English)

    王维夫; 陈军; 徐贤统; 周华侨; 郑玉贵

    2013-01-01

    In order to study the typical microstructure and the feasibility for cavitation-resistant application,the pure Al and Al-Si deposited coatings were prepared on ZL101 aluminum alloy substrate by electrospark deposition (ESD).The microstructural characteristics and cavitation erosion resistances of the coatings were studied.The results show that both of the two deposited coatings display the typical multi-layer structure.The pure Al coating,which is mainly composed of α phase,contains many defects and shows the low hardness value of 50 HV.However,the Al-Si coating with fewer defects shows the hardness value of 75% higher than that of pure Al coating.The Si phases,which are homogeneous distributed in Al-Si coating,are in cell and dendrite morphologies.In Al-Si coating,the addition of Si could decrease the defects in the coatings and improve the interface bounding between different sublayers by augmenting the liquidity of molten dripping.In 4 hours cavitation erosion tests,the cumulative mass loss of pure Al coating is 137.8 mg which is about 189% of the substrate mass lost.However,the cumulative mass loss of Al-Si coating is only 23.6 mg which is 32% of the substrate.The excellent cavitation erosion resistance of the deposited AI-Si coating can be mainly attributed to the good interface bonding and homogeneous distribution of high strength Si phase in the coating.%为了研究铝合金电火花沉积(ESD)的典型组织特征与抗空蚀修复应用的可行性,在ZL101铝合金表面制备了纯Al和Al-Si两种铝基合金ESD沉积涂层,并对所获涂层的典型显微组织和抗空蚀性能进行了研究.结果表明,两种沉积涂层均表现为典型的多层结构.纯Al涂层以α相为主,显微硬度仅为约50 HV,内部缺陷较多.Al-Si涂层内缺陷则较少,Si相呈均匀的枝蔓状分布,其显微硬度较纯铝涂层高约75%.沉积材料中Si元素的加入能够改善沉积微过程中熔融液滴的流动

  8. The climatic impact of supervolcanic ash blankets

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Morgan T.; Sparks, R.S.J. [University of Bristol, Department of Earth Sciences, Bristol (United Kingdom); Valdes, Paul J. [University of Bristol, School of Geographical Sciences, Bristol (United Kingdom)

    2007-11-15

    Supervolcanoes are large caldera systems that can expel vast quantities of ash, volcanic gases in a single eruption, far larger than any recorded in recent history. These super-eruptions have been suggested as possible catalysts for long-term climate change and may be responsible for bottlenecks in human and animal populations. Here, we consider the previously neglected climatic effects of a continent-sized ash deposit with a high albedo and show that a decadal climate forcing is expected. We use a coupled atmosphere-ocean General Circulation Model (GCM) to simulate the effect of an ash blanket from Yellowstone volcano, USA, covering much of North America. Reflectivity measurements of dry volcanic ash show albedo values as high as snow, implying that the effects of an ash blanket would be severe. The modeling results indicate major disturbances to the climate, particularly to oscillatory patterns such as the El Nino Southern Oscillation (ENSO). Atmospheric disruptions would continue for decades after the eruption due to extended ash blanket longevity. The climatic response to an ash blanket is not significant enough to investigate a change to stadial periods at present day boundary conditions, though this is one of several impacts associated with a super-eruption which may induce long-term climatic change. (orig.)

  9. Tolerable soil erosion in Europe

    Science.gov (United States)

    Verheijen, Frank; Jones, Bob; Rickson, Jane; Smith, Celina

    2010-05-01

    Soil loss by erosion has been identified as an important threat to soils in Europe* and is recognised as a contributing process to soil degradation and associated deterioration, or loss, of soil functioning. From a policy perspective, it is imperative to establish well-defined baseline values to evaluate soil erosion monitoring data against. For this purpose, accurate baseline values - i.e. tolerable soil loss - need to be differentiated at appropriate scales for monitoring and, ideally, should take soil functions and even changing environmental conditions into account. The concept of tolerable soil erosion has been interpreted in the scientific literature in two ways: i) maintaining the dynamic equilibrium of soil quantity, and ii) maintaining biomass production, at a location. The first interpretation ignores soil quality by focusing only on soil quantity. The second approach ignores many soil functions by focusing only on the biomass (particularly crop) production function of soil. Considering recognised soil functions, tolerable soil erosion may be defined as 'any mean annual cumulative (all erosion types combined) soil erosion rate at which a deterioration or loss of one or more soil functions does not occur'. Assumptions and problems of this definition will be discussed. Soil functions can generally be judged not to deteriorate as long as soil erosion does not exceed soil formation. At present, this assumption remains largely untested, but applying the precautionary principle appears to be a reasonable starting point. Considering soil formation rates by both weathering and dust deposition, it is estimated that for the majority of soil forming factors in most European situations, soil formation rates probably range from ca. 0.3 - 1.4 t ha-1 yr-1. Although the current agreement on these values seems relatively strong, how the variation within the range is spatially distributed across Europe and how this may be affected by climate, land use and land management

  10. Syn- and post-eruptive erosion, gully formation, and morphological evolution of a tephra ring in tropical climate erupted in 1913 in West Ambrym, Vanuatu

    Science.gov (United States)

    Németh, Károly; Cronin, Shane J.

    2007-04-01

    Syn- and post-eruptive erosion of volcanic cones plays an important role in mass redistribution of tephra over short periods. Descriptions of the early stages of erosion of tephra from monogenetic volcanic cones are rare, particularly those with a well-constrained timing of events. In spite of this lack of data, cone morphologies and erosion features are commonly used for long-term erosion-rate calculations and relative age determinations in volcanic fields. This paper offers new observations which suggest differing constraints on the timing of erosion of a tephra ring may be operating than those conventionally cited. In 1913 a tephra ring was formed as part of an eruption in west Ambrym Island, Vanuatu and is now exposed along a continuous 2.5 km long coastal section. The ring surrounds an oval shaped depression filled by water. It is composed of a succession of a phreatomagmatic fall and base-surge beds, interbedded with thin scoriaceous lapilli units. Toward the outer edges of the ring, base-surge beds are gradually replaced in the succession by fine ash-dominated debris flows and hyperconcentrated flow deposits. The inter-fingering of phreatomagmatic deposits with syn-volcanic reworked volcaniclastic sediments indicates that an ongoing remobilisation of freshly deposited tephra was already occurring during the eruption. Gullies cut into the un-weathered tephra are up to 4 m deep and commonly have c. 1 m of debris flow deposit fill in their bases. There is no indication of weathering, vegetation fragments or soil development between the gully bases and the basal debris flow fills. Gully walls are steep and superficial fans of collapsed sediment are common. Most gullies are heavily vegetated although some active (ephemeral) channels occur. These observations suggest that the majority of the erosion of such tephra rings in tropical climates takes place directly during eruption and possibly for only a period of days to weeks afterward. After establishment of the

  11. The leachability of carbon-14-labelled 3,4-benzopyrene from coal ash into aqueous systems

    NARCIS (Netherlands)

    Besemer, A.C.; Kanij, J.

    1984-01-01

    The leachability of polycyclic aromatic hydrocarbons from coal ash into aqueous systems was studied. Carbon-14-labeled 3,4-Benzopyrene (BaP) was deposited on coal fly ash by adsorption from the liquid phase in quantities of about 10 ??g/g ash. After a thermal treatment in air at 120??C for 2 hours t

  12. The leachability of carbon-14-labelled 3,4-benzopyrene from coal ash into aqueous systems

    NARCIS (Netherlands)

    Besemer, A.C.; Kanij, J.

    1984-01-01

    The leachability of polycyclic aromatic hydrocarbons from coal ash into aqueous systems was studied. Carbon-14-labeled 3,4-Benzopyrene (BaP) was deposited on coal fly ash by adsorption from the liquid phase in quantities of about 10 ??g/g ash. After a thermal treatment in air at 120??C for 2 hours

  13. Permian-Triassic Magmatism Along the Southern Gondwana Margin: Correlating Proximal and Distal Volcanic Deposits

    Science.gov (United States)

    McKay, M. P.; Weislogel, A. L.; Fildani, A.

    2014-12-01

    Active margins are dominated by erosion, structural deformation, tectonic dissection, and igneous intrusions. These destructive processes lead to an incomplete record of past magmatism in active margins. Volcanic airfall tuffs that are transported and deposited in distal sedimentary basins may be more likely to be preserved in the rock record. Tuffs, however, may be affected by atmospheric fractionation during transport, postdepositional weathering, and diagenesis during burial, potentially altering ash texture, mineralogy, and geochemistry. We use outcrop observations, stratigraphic relationships, whole rock geochemistry, U-Pb zircon geochronology, and zircon rare-earth element geochemistry from Permian-Triassic strata of South Africa and South America to correlate distal volcanic ashes to proximal volcanic deposits and plutonic suites within southern Gondwana. U-Pb zircon signals of the tuffs are treated as "detrital"; the distinct zircon signals were then used to correlate distal airfall ashes to potential magmatic sources. This suggests that airfall fractionation of zircon populations is not a significant concern in tuff geochronology. Additionally, zircon inheritance may be a useful tool in matching far-traveled ashes with parental magmatic suites. Although previous studies have shown that the geochemistry of volcanic tuff deposits varies with distance from the volcanic vent, we employ whole rock and zircon REE compositions to differentiate distinct magmatic periods using distal ashes that were deposited >750 km from the volcanic source. The results of this study support a geochronologic interpretation that the Karoo strata of S. Africa are >10 Ma younger than previously thought based on biostratigraphy. Since the Karoo basin is heavily studied as a record of the end-Permian extinction and paleoclimate change, our results have major implication for this key time in Earth History.

  14. Marine mesocosm bacterial colonisation of volcanic ash

    Science.gov (United States)

    Witt, Verena; Cimarelli, Corrado; Ayris, Paul; Kueppers, Ulrich; Erpenbeck, Dirk; Dingwell, Donald; Woerheide, Gert

    2015-04-01

    Volcanic eruptions regularly eject large quantities of ash particles into the atmosphere, which can be deposited via fallout into oceanic environments. Such fallout has the potential to alter pH, light and nutrient availability at local scales. Shallow-water coral reef ecosystems - "rainforests of the sea" - are highly sensitive to disturbances, such as ocean acidification, sedimentation and eutrophication. Therefore, wind-delivered volcanic ash may lead to burial and mortality of such reefs. Coral reef ecosystem resilience may depend on pioneer bacterial colonisation of the ash layer, supporting subsequent establishment of the micro- and ultimately the macro-community. However, which bacteria are involved in pioneer colonisation remain unknown. We hypothesize that physico-chemical properties (i.e., morphology, mineralogy) of the ash may dictate bacterial colonisation. The effect of substrate properties on bacterial colonisation was tested by exposing five substrates: i) quartz sand ii) crystalline ash (Sakurajima, Japan) iii) volcanic glass iv) carbonate reef sand and v) calcite sand of similar grain size, in controlled marine coral reef aquaria under low light conditions for six months. Bacterial communities were screened every month by Automated Ribosomal Intergenic Spacer Analysis of the 16S-23S rRNA Internal Transcribed Spacer region. Multivariate statistics revealed discrete groupings of bacterial communities on substrates of volcanic origin (ash and glass) and reef origin (three sands). Analysis of Similarity supported significantly different communities associated with all substrates (p=0.0001), only quartz did not differ from both carbonate and calcite sands. The ash substrate exhibited the most diverse bacterial community with the most substrate-specific bacterial operational taxonomic units. Our findings suggest that bacterial diversity and community composition during colonisation of volcanic ash in a coral reef-like environment is controlled by the

  15. The Cement Solidification of Municipal Solid Waste Incineration Fly Ash

    Institute of Scientific and Technical Information of China (English)

    HOU Haobo; HE Xinghua; ZHU Shujing; ZHANG Dajie

    2006-01-01

    The chemical composition, the content and the leachability of heavy metals in municipal solid waste incineration ( MSWI) fly ash were tested and analyzed. It is shown that the leachability of Pb and Cr exceeds the leaching toxicity standard, and so the MSWI fly ash is considered as hazardous waste and must be solidifled. The effect of solidifying the MSWI fly ash by cement was studied, and it is indicated that the heavy metals can be well immobilized if the mass fraction of the fly ash is appropriate. The heavy metals were immobilized within cement hydration products through either physical fixation, substitution, deposition or adsorption mechanisms.

  16. Ash transformation in suspension fired boilers co-firing coal and straw

    DEFF Research Database (Denmark)

    Zheng, Yuanjing; Jensen, Peter Arendt; Jensen, Anker Degn

    In this literature report is provided a status for the present knowledge level on ash properties when co-firing coal and biomass. The fly ash formed in boilers using co-firing of coal and straw do have a large influence on ash deposit formation, boiler corrosion, fly ash utilization and operation...... of alkali getter experiments and a discussion of modeling of alkali reaction with kaolin. Presently there is still a need for a better understanding of especially the reaction of potassium with coal ash, thereby making better predictions of co-firing ash properties....

  17. Low temperature magnetic characterisation of fire ash residues

    Science.gov (United States)

    Peters, C.; Thompson, R.; Harrison, A.; Church, M. J.

    Fire ash is ideally suited to mineral magnetic studies. Both modern (generated by controlled burning experiments) and archaeological ash deposits have been studied, with the aim of identifying and quantifying fuel types used in prehistory. Low temperature magnetic measurements were carried out on the ash samples using an MPMS 2 SQUID magnetometer. The low temperature thermo-remanence cooling curves of the modern ash display differences between fuel sources. Wood and well-humified peat ash display an increase in remanence with cooling probably related to a high superparamagnetic component, consistent with room temperature frequency dependent susceptibilities of over 7%. In comparison fibrous-upper peat and peat turf display an unusual decrease in remanence, possibly due to an isotropic point of grains larger than superparamagnetic in size. The differences have been successfully utilised in unmixing calculations to quantify fuel components within four archaeological deposits from the Northern and Western Isles of Scotland.

  18. The stratigraphy, depositional processes, and environment of the late Pleistocene Polallie-period deposits at Mount Hood Volcano, Oregon, USA

    Science.gov (United States)

    Thouret, Jean-Claude

    2005-08-01

    The Polallie eruptive period of Mt. Hood, Oregon, is the last major episode of eruption and dome growth, before the late Holocene activity which was centered at Crater Rock. A volume of 4-8 km 3 of Polallie deposits forms an apron of ca. 60 km 2 on the east, northeast and southeast flanks. The Polallie deposits can be divided, stratigraphically, into four groups: Group I rockslide avalanche and pyroclastic-flow deposits; Group II debris-flow and pyroclastic-flow deposits that suggest some explosive activity and remobilization of pyroclastic debris in a glacial environment; Group III block-and-ash flow deposits that attest to summit dome growth; Group IV alternating debris-flow deposits, glacial sediments, and reworked pyroclastic-flow deposits that indicate a decrease in dome activity and an increase in erosion and transport. Group III clearly indicates frequent episodes of dome growth and collapse, whereas Groups II and IV imply increasing erosion and, conversely, decreasing volcanic activity. The Polallie period occurred in the late Pleistocene during and just after the last Alpine glaciation, which is named Evans Creek in the Cascade Range. According to four K-Ar age dates on lava flows interbedded with Polallie deposits and to published minimum 14C ages on tephra and soils overlying these deposits, the Polallie period had lasted 15,000-22,000 years between 28-34 ka and 12-13 ka. From stratigraphic subdivisions, sedimentary lithofacies and features and from the grain-size and geochemical data, we infer that the Polallie depositional record is a result of the interplay of several processes acting during a long-lasting period of dome growth and destruction. The growth of several domes near the present summit was intermittent, because each group of sediments encompasses primary (pyroclastic) and secondary (volcaniclastic and epiclastic) deposition. Direct deposition of primary material has occurred within intervals of erosion that have probably included meltwater

  19. Concentrated flow erosion processes under planned fire

    Science.gov (United States)

    Langhans, Christoph; Noske, Phil; Van Der Sant, Rene; Lane, Patrick; Sheridan, Gary

    2016-04-01

    The role of wildfire in accelerating erosion rates for a certain period after fire has been well documented. Much less information is available on the erosion rates and processes after planned fires that typically burn at much lower intensity. Observational evidence, and some studies in southern and southeastern Australia suggest that erosion after planned fire can be significant if rainfall intensities exceed critical intensities and durations. Understanding erosion processes and rates under these event conditions is of critical importance for planning of burn locations away from critical human assets such as water supplies and infrastructure. We conducted concentrated flow experiments with the purpose to understand what critical conditions are required for significant erosion to occur on planned burn hillslopes. Concentrated flow runon was applied on pre-wetted, unbounded plots of 10 m at rates of 0.5, 1, 1.5 and 2 L/s, with three replicates for each rates applied at 1m distance of each other. The experiments were carried out at three sites within one burn perimeter with different burn severities ranging from low to high, with two replicates at each site. Runon was applied until an apparent steady state in runoff was reached at the lower plot boundary, which was typically between 0.7 and 2.5 minutes. The experiments were filmed and erosion depth was measured by survey methods at 1m intervals. Soil surface properties, including potential sediment trapping objects were measured and surveyed near the plots. We found that fire severity increased plot scale average erosion depth significantly even as experiments were typically much shorter on the high severity plots. Unit stream power was a good predictor for average erosion depth. Uncontrolled for variations in soil surface properties explained process behaviour: finer, ash rich surface material was much less likely to be trapped by fallen, charred branches and litter than coarser, ash-depleted material. Furthermore

  20. Volcanic ash as fertiliser for the surface ocean

    Directory of Open Access Journals (Sweden)

    B. Langmann

    2010-01-01

    Full Text Available Iron is a key limiting micro-nutrient for marine primary productivity. It can be supplied to the ocean by atmospheric dust deposition. Volcanic ash deposition into the ocean represents another external and so far largely neglected source of iron. This study demonstrates strong evidence for natural fertilisation in the iron-limited oceanic area of the NE Pacific, induced by volcanic ash from the eruption of Kasatochi volcano in August 2008. Atmospheric and oceanic conditions were favourable to generate a massive phytoplankton bloom in the NE Pacific Ocean which for the first time establishes a causal connection between oceanic iron-fertilisation and volcanic ash supply.

  1. Volcanic ash as fertiliser for the surface ocean

    Directory of Open Access Journals (Sweden)

    B. Langmann

    2010-04-01

    Full Text Available Iron is a key limiting micro-nutrient for marine primary productivity. It can be supplied to the ocean by atmospheric dust deposition. Volcanic ash deposition into the ocean represents another external and so far largely neglected source of iron. This study demonstrates strong evidence for natural fertilisation in the iron-limited oceanic area of the NE Pacific, induced by volcanic ash from the eruption of Kasatochi volcano in August 2008. Atmospheric and oceanic conditions were favourable to generate a massive phytoplankton bloom in the NE Pacific Ocean which for the first time strongly suggests a connection between oceanic iron-fertilisation and volcanic ash supply.

  2. MODELING EPHEMERAL GULLY EROSION FOR CONSERVATION PLANNING

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    This paper discusses the overland flow and concentrated flow systems that occur in most farm fields. Concentrated flow areas, which are distinct from overland flow areas, can be a major sediment source and are the main conduits that convey runoff and sediment from most farm fields. Ephemeral gully erosion, which occurs in concentrated flow areas, is similar to but differs from both rill and classical gully erosion. Concentrated flow areas occupy much of the flow path between the end of overland flow areas and defined stream channels. This paper describes the erosion and deposition processes that occur in concentrated flow areas and the effect of soil and cover management on these processes. Ephemeral gully erosion is not estimated with rill-interrill erosion prediction methods, which can result in major errors in estimates of sediment yield leaving farm fields. Much deposition can occur in concentrated flow areas resulting in sediment load leaving a farm field being much less than the sediment produced by rill-interrill and ephemeral gully erosion within the field. This paper describes model structure, topographic representation, and features of ephemeral gully erosion control practices needed in mathematical models used in conservation planning for farm fields.

  3. Fly ash carbon passivation

    Science.gov (United States)

    La Count, Robert B; Baltrus, John P; Kern, Douglas G

    2013-05-14

    A thermal method to passivate the carbon and/or other components in fly ash significantly decreases adsorption. The passivated carbon remains in the fly ash. Heating the fly ash to about 500 and 800 degrees C. under inert gas conditions sharply decreases the amount of surfactant adsorbed by the fly ash recovered after thermal treatment despite the fact that the carbon content remains in the fly ash. Using oxygen and inert gas mixtures, the present invention shows that a thermal treatment to about 500 degrees C. also sharply decreases the surfactant adsorption of the recovered fly ash even though most of the carbon remains intact. Also, thermal treatment to about 800 degrees C. under these same oxidative conditions shows a sharp decrease in surfactant adsorption of the recovered fly ash due to the fact that the carbon has been removed. This experiment simulates the various "carbon burnout" methods and is not a claim in this method. The present invention provides a thermal method of deactivating high carbon fly ash toward adsorption of AEAs while retaining the fly ash carbon. The fly ash can be used, for example, as a partial Portland cement replacement in air-entrained concrete, in conductive and other concretes, and for other applications.

  4. Temporal evolution of wildfire ash and its implications for water pollution

    Science.gov (United States)

    Santin, Cristina; Doerr, Stefan H.; Otero, Xose L.; Chafer, Chris J.

    2015-04-01

    Ash, the burnt residue generated from combustion of vegetation, litter and surface soil, covers the ground after every wildfire. The effects of wildfire ash on the post-fire landscape are many and very diverse. It is a source of nutrients and can, therefore, help the recovery of vegetation after fire. Furthermore, in its initial state, the ash layer on the ground can protect the bare soil from rain splash erosion and can act as an adsorbent layer, preventing or delaying post-fire water erosion by runoff. However, when the adsorbent capability of the ash layer is exceeded, this highly erodible material can be transported into the hydrological network and be a major contributor to water contamination. Most previous studies on post-fire erosion and water contamination have focused on soil erosion and associated sediment transfer and overlooked the ash component or, when considered, ash has been included as an unidentified part of the eroded sediment. One of the reasons for overlooking this key post-fire component is the difficulty of ash sampling before it is lost by wind or water erosion or altered by aging on-site. Here we compare the water contamination potential of ash obtained from two fires in the dry eucalyptus forest environment of the Sydney tablelands, Australia: i) 'aged ash' produced during the severe Balmoral wildfire and sampled two months after the event (Jan. 2014) and ii) 'fresh ash' sampled immediately after a high-intensity experimental fire in the same region (Sept. 2014). At the time of sampling, neither of the ash types had been affected by water erosion, however, the aged ash had been subjected to rainfall events and, potentially, to wind erosion during the two months of exposure. Vegetation type, fuel loads and fire severity, determined using remote sensing and on-site observations, were comparable between both areas sampled. Ash physicochemical properties differed, with 'fresh ash' having higher pH and EC values and higher concentration of

  5. Experimental Investigation of Erosive Wear on the High Chrome Cast Iron Impeller of Slurry Disposal Pump Using Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Sunil Kumar

    2012-05-01

    Full Text Available Erosive wear occurs on the impeller and volute casing of the slurry disposal pump due to the impact of the ash particles on the impeller with a high velocity. Due to erosive wear, pump life become very short. The service life of centrifugal pump, handling slurry can be increased by reducing the erosive wear. In the present work, the experimental investigation of erosive wear has been carried out on the high speed slurry erosion tester to understand the effects of the ash concentration in slurry, rotational speed of the pump impeller and ash particle size on erosive wear. The erosive wear behavior of high chrome cast iron was investigated by Response surface methodology (RSM. Analysis of variance (ANOVA was used for statistical analysis and the modeled values for the response were obtained with the help of modeled equation. The result shows that the ash concentration in slurry and kinetic energy of the moving particles highly contributes to erosive wear of pump impeller as compared to the ash particle size.

  6. EXPERIMENTAL INVESTIGATION OF EROSIVE WEAR ON THE HIGH CHROME CAST IRON IMPELLER OF SLURRY DISPOSAL PUMP USING RESPONSE SURFACE METHODOLOGY

    Directory of Open Access Journals (Sweden)

    Jasbir Singh Ratol

    2012-07-01

    Full Text Available Erosive wear occurs on the impeller and volute casing of the slurry disposal pump due to the impact of the ash particles on the impeller with a high velocity. Due to erosive wear, pump life become very short. The service life of centrifugal pump, handling slurry can be increased by reducing the erosive wear. In the present work, the experimental investigation of erosive wear has been carried out on the high speed slurry erosion tester to understand the effects of the ash concentration in slurry, rotational speed of the pump impeller and ash particle size on erosive wear. The erosive wear behaviour of high chrome cast iron was investigated by Response surface methodology (RSM. Analysis of variance (ANOVA was used for statistical analysis and the modeled values for the response were obtained with the help of modeled equation. The result shows that the ash concentration in slurry and kinetic energy of the moving particles highly contributes to erosive wear of pump impeller as compared to the ash particle size.

  7. Soil erosion and degradation in Mediterranean Type Ecosystems. The Soil Erosion and Degradation Research Group (SEDER) approach and findings

    Science.gov (United States)

    Cerdà, Artemi; Keesstra, Saskia; Pulido, Manuel; Jordán, Antonio; Novara, Agata; Giménez-Morera, Antonio; Borja, Manuel Esteban Lucas; Francisco Martínez-Murillo, Juan; Rodrigo-Comino, Jesús; Pereira, Paulo; Nadal-Romero, Estela; Taguas, Tani; Úbeda, Xavier; Brevik, Eric C.; Tarolli, Paolo; Bagarello, Vicenzo; Parras Alcantara, Luis; Muñoz-Rojas, Miriam; Oliva, Marc; di Prima, Simone

    2017-04-01

    .1016/j.earscirev.2014.07.005 Bodí, M. B., Martin, D. A., Balfour, V. N., Santín, C., Doerr, S. H., Pereira, P., . . . Mataix-Solera, J. (2014). Wildland fire ash: Production, composition and eco-hydro-geomorphic effects. Earth-Science Reviews, 130, 103-127. doi:10.1016/j.earscirev.2013.12.007 Cerdà, A., González-Pelayo, O., Giménez-Morera, A., Jordán, A., Pereira, P., Novara, A., . . . Ritsema, C. J. (2016). Use of barley straw residues to avoid high erosion and runoff rates on persimmon plantations in eastern spain under low frequency-high magnitude simulated rainfall events. Soil Research, 54(2), 154-165. doi:10.1071/SR15092 Cerdà, A., Lavee, H., Romero-Díaz, A., Hooke, J., & Montanarella, L. (2010). Preface: Soil erosion and degradation in mediterranean type ecosystems. Land Degradation and Development, 21(2), 71-74. doi:10.1002/ldr.968 Dlapa, P., Bodí, M. B., Mataix-Solera, J., Cerdà, A., & Doerr, S. H. (2015). Organic matter and wettability characteristics of wildfire ash from mediterranean conifer forests. Catena, 135, 369-376. doi:10.1016/j.catena.2014.06.018 Keesstra, S., Pereira, P., Novara, A., Brevik, E. C., Azorin-Molina, C., Parras-Alcántara, L., . . . Cerdà, A. (2016). Effects of soil management techniques on soil water erosion in apricot orchards. Science of the Total Environment, 551-552, 357-366. doi:10.1016/j.scitotenv.2016.01.182 Lucas-Borja, M. E., Hedo, J., Cerdá, A., Candel-Pérez, D., & Viñegla, B. (2016). Unravelling the importance of forest age stand and forest structure driving microbiological soil properties, enzymatic activities and soil nutrients content in mediterranean spanish black pine(pinus nigra ar. ssp. salzmannii) forest. Science of the Total Environment, 562, 145-154. doi:10.1016/j.scitotenv.2016.03.160 Novara, A., Cerdà, A., Carmelo, D., Giuseppe, L. P., Antonino, S., & Luciano, G. (2015). Effectiveness of carbon isotopic signature for estimating soil erosion and deposition rates in sicilian vineyards. Soil and

  8. Regular Recycling of Wood Ash to Prevent Waste Production (RecAsh). Technical Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Lars E-mail: lars.t.andersson@skogsstyreslen.se

    2007-03-15

    At present, the extraction of harvest residues is predicted to increase in Sweden and Finland. As an effect of the intensified harvesting, the export of nutrients and acid buffering substances from the growth site is also increased. Wood ash could be used to compensate forest soils for such losses. Most wood fuel ash is today often deposited in landfills. If the wood ash is recycled, wood energy is produced without any significant waste production. Ash recycling would therefore contribute to decreasing the production of waste, and to maintaining the chemical quality of forest waters and biological productivity of forest soils in the long term. The project has developed, analysed and demonstrated two regular ash-recycling systems. It has also distributed knowledge gathered about motives for ash recycling as well as technical and administrative solutions through a range of media (handbooks, workshops, field demonstrations, reports, web page and information videos). Hopefully, the project will contribute to decreasing waste problems related to bio-energy production in the EU at large. The project has been organised as a separate structure at the beneficiary and divided in four geographically defined subprojects, one in Finland and three in Sweden (Central Sweden, Northern Sweden, and South-western Sweden). The work in each subproject has been lead by a subproject leader. Each subproject has organised a regional reference group. A project steering committee has been established consisting of senior officials from all concerned partners. The project had nine main tasks with the following main expected deliverables and output: 1. Development of two complete full-scale ash-recycling systems; 2. Production of handbooks of the ash recycling system; 3. Ash classification study to support national actions for recommendations; 4. Organise regional demonstrations of various technical options for ash treatment and spreading; 5. Organise national seminars and demonstrations of

  9. Emergency wind erosion control

    Science.gov (United States)

    February through May is the critical time for wind erosion in Kansas, but wind erosion can happen any time when high winds occur on smooth, wide fields with low vegetation and poor soil structure. The most effective wind erosion control is to ensure a protective cover of residue or growing crop thro...

  10. Erosion and Errors

    NARCIS (Netherlands)

    Huisman, H.; Heeres, Glenn; Os, van Bertil; Derickx, Willem; Schoorl, J.M.

    2016-01-01

    Slope soil erosion is one of the main threats to archaeological sites. Several methods were applied to establish the erosion rates at archaeological sites. Digital elevation models (DEMs) from three different dates were used. We compared the elevations from these three models to estimate erosion. We

  11. Trace elements in coal ash

    Science.gov (United States)

    Deonarine, Amrika; Kolker, Allan; Doughten, Michael W.

    2015-01-01

    Coal ash is a residual waste product primarily produced by coal combustion for electric power generation. Coal ash includes fly ash, bottom ash, and flue-gas desulfurization products (at powerplants equipped with flue-gas desulfurization systems). Fly ash, the most common form of coal ash, is used in a range of products, especially construction materials. A new Environmental Protection Agency ruling upholds designation of coal ash as a non-hazardous waste under Subtitle D of the Resource Conservation and Recovery Act, allowing for the continued beneficial use of coal ash and also designating procedures and requirements for its storage.

  12. Dental erosion, summary.

    Science.gov (United States)

    ten Cate, J M; Imfeld, T

    1996-04-01

    Although reports on dental erosion have always appeared in the dental literature, there is currently a growing interest among researchers and clinicians. Potential risk factors for dental erosion are changed lifestyle and eating patterns, with increased consumption of acidic foods and beverages. Various gastrointestinal and eating disorders expose the dentition to frequent contacts with very acidic gastric content, which may lead to erosion. Whether these factors indeed lead, on a population scale, to a higher prevalence and incidence of erosion is yet to be established. This article summarizes the different aspects of the prevalence, pathology, etiology, assessment, prevention and treatment of dental erosion, and concludes with recommendations for future research.

  13. Deposit model for volcanogenic uranium deposits

    Science.gov (United States)

    Breit, George N.; Hall, Susan M.

    2011-01-01

    Volcanism is a major contributor to the formation of important uranium deposits both close to centers of eruption and more distal as a result of deposition of ash with leachable uranium. Hydrothermal fluids that are driven by magmatic heat proximal to some volcanic centers directly form some deposits. These fluids leach uranium from U-bearing silicic volcanic rocks and concentrate it at sites of deposition within veins, stockworks, breccias, volcaniclastic rocks, and lacustrine caldera sediments. The volcanogenic uranium deposit model presented here summarizes attributes of those deposits and follows the focus of the International Atomic Energy Agency caldera-hosted uranium deposit model. Although inferred by some to have a volcanic component to their origin, iron oxide-copper-gold deposits with economically recoverable uranium contents are not considered in this model.

  14. Erosion of soil organic carbon: implications for carbon sequestration

    Science.gov (United States)

    Van Oost, Kristof; Van Hemelryck, Hendrik; Harden, Jennifer W.; McPherson, B.J.; Sundquist, E.T.

    2009-01-01

    Agricultural activities have substantially increased rates of soil erosion and deposition, and these processes have a significant impact on carbon (C) mineralization and burial. Here, we present a synthesis of erosion effects on carbon dynamics and discuss the implications of soil erosion for carbon sequestration strategies. We demonstrate that for a range of data-based parameters from the literature, soil erosion results in increased C storage onto land, an effect that is heterogeneous on the landscape and is variable on various timescales. We argue that the magnitude of the erosion term and soil carbon residence time, both strongly influenced by soil management, largely control the strength of the erosion-induced sink. In order to evaluate fully the effects of soil management strategies that promote carbon sequestration, a full carbon account must be made that considers the impact of erosion-enhanced disequilibrium between carbon inputs and decomposition, including effects on net primary productivity and decomposition rates.

  15. Ash chemistry and sintering, verification of the mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Hupa, M.; Skrifvars, B.J. [Aabo Akademi, Turku (Finland)

    1996-12-01

    In this project four sintering mechanisms have been studied, i.e., partial melting with a viscous liquid, partial melting with a non-viscous liquid, chemical reaction sintering and solid state sintering. The work has aimed at improving the understanding of ash sintering mechanisms and quantifying their role in combustion and gasification. The work has been oriented in particular on the understanding of biomass ash behavior. The work has not directly focused on any specific technical application. However, results can also be applied on other fuels such as brown coal, petroleum coke, black liquor and different types of wastes (PDF, RDF, MSW). In one part of study the melting behavior was calculated for ten biomass ashes and compared with lab measurements of sintering tendencies. The comparison showed that the T{sub 15} temperatures, i.e. those temperatures at which the ashes contained 15 % molten phase, correlated fairly well with the temperature at which the sintering measurements detected sintering. This suggests that partial melting can be predicted fairly accurate for some ashes already with the today existing thermodynamic calculation routines. In some cases, however the melting calculations did not correlate with the detected sintering temperatures. In a second part detailed measurements on ash behavior was conducted both in a semi full scale CFB and a lab scale FBC. Ashes and deposits were collected and analyzed in several different ways. These analyses show that the ash chemistry shifts radically when the fuel is shifted. Fuels with silicate based ashes behaved totally different than those with an oxide or salt based ash. The chemistry was also affected by fuel blending. The ultimate goal has been to be able to predict the ash thermal behavior during biomass thermal conversion, using the fuel and ash elemental analyses and a few operational key parameters as the only input data. This goal has not yet today been achieved. (author)

  16. What Controls the Sizes and Shapes of Volcanic Ash? Integrating Morphological, Textural and Geochemical Ash Properties to Decipher Eruptive Processes

    Science.gov (United States)

    Liu, E. J.; Cashman, K. V.; Rust, A.

    2015-12-01

    Volcanic ash particles encompass a diverse spectrum of shapes as a consequence of differences in the magma properties and the magma ascent and eruption conditions. We show how the quantitative analysis of ash particle shapes can be a valuable tool for deciphering magma fragmentation and transport processes. Importantly, integrating morphological data with ash texture (e.g. bubble and crystal sizes) and dissolved volatile data provides valuable insights into the physical and chemical controls on the resulting ash deposit. To explore the influence of magma-water interaction (MWI) on fine ash generation, we apply this multi-component characterisation to tephra from the 2500BC Hverfjall Fires, Iceland. Here, coeval fissure vents spanned sub-aerial to shallow lacustrine environments. Differences in the size and morphology of pyroclasts thus reflect fragmentation mechanisms under different near-surface conditions. Using shape parameters sensitive to both particle roughness and internal vesicularity, we quantify the relative proportions of dense fragments, bubble shards, and vesicular grains from 2-D SEM images. We show that componentry (and particle morphology) varies as a function of grain size, and that this variation can be related back to the bubble size distribution. Although both magmatic and hydromagmatic deposits exhibit similar component assemblages, they differ in how these assemblages change with grain size. These results highlight the benefits of characterising ash deposits over a wide range of grain sizes, and caution against inferring fragmentation mechanism from a narrow grain size range. Elevated matrix glass S concentrations in hydromagmatic ash (600-1500 ppm) compared to those in magmatic ash and scoria lapilli (200-500 ppm) indicate interrupted vesiculation. In contrast to the subaerial 'dry' deposits, fragmentation during MWI likely occurred over a greater range of depths with quench rates sufficient to prevent post-fragmentation degassing. High

  17. Effects of crystallographic properties on the ice nucleation properties of volcanic ash particles

    Science.gov (United States)

    Kulkarni, Gourihar; Nandasiri, Manjula; Zelenyuk, Alla; Beranek, Josef; Madaan, Nitesh; Devaraj, Arun; Shutthanandan, Vaithiyalingam; Thevuthasan, Suntharampillai; Varga, Tamas

    2015-04-01

    Specific chemical and physical properties of volcanic ash particles that could affect their ability to induce ice formation are poorly understood. In this study, the ice nucleating properties of size-selected volcanic ash and mineral dust particles in relation to their surface chemistry and crystalline structure at temperatures ranging from -30 to -38°C were investigated in deposition mode. Ice nucleation efficiency of dust particles was higher compared to ash particles at all temperature and relative humidity conditions. Particle characterization analysis shows that surface elemental composition of ash and dust particles was similar; however, the structural properties of ash samples were different.

  18. Effects Of Crystallographic Properties On The Ice Nucleation Properties Of Volcanic Ash Particles

    Energy Technology Data Exchange (ETDEWEB)

    Kulkarni, Gourihar R.; Nandasiri, Manjula I.; Zelenyuk, Alla; Beranek, Josef; Madaan, Nitesh; Devaraj, Arun; Shutthanandan, V.; Thevuthasan, Suntharampillai; Varga, Tamas

    2015-04-28

    Specific chemical and physical properties of volcanic ash particles that could affect their ability to induce ice formation are poorly understood. In this study, the ice nucleating properties of size-selected volcanic ash and mineral dust particles in relation to their surface chemistry and crystalline structure at temperatures ranging from –30 to –38 °C were investigated in deposition mode. Ice nucleation efficiency of dust particles was higher compared to ash particles at all temperature and relative humidity conditions. Particle characterization analysis shows that surface elemental composition of ash and dust particles was similar; however, the structural properties of ash samples were different.

  19. Ash fusion temperatures and their association with the transformations of coal ash particles to slag

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, S.K.; Wall, T.F.; Gupta, R.P. [Cooperative Research Centre for Black Coal Utilisation, Newcastle, NSW (Australia); Creelman, R.A. [Creelman (R.A.) and Associates, Sydney, NSW (Australia)

    1997-04-01

    Ash deposition on furnace walls in PF (pulverized fuel) furnaces is called slagging when it occurs in the high temperature areas of furnaces directly exposed to flame radiation and fouling in other regions such as tubes in the convection section of the boiler. There are well documented shortcomings of certain approaches relating to their uncertainties as predictive tools for plant performance such as poor repeatability and re-producibility of ash fusion measurements. The nature of physical and chemical changes occurring during melting of coal ash has been investigated in the current study to provide an alternative procedure to the ash fusion test. Shrinkage measurements are frequently used in metallurgy and ceramic science to study the physical properties of materials at high temperatures. The output of this experiment provides three to four `peaks` (maximum rate of shrinkage with temperature) of different intensity and at different temperatures which are related to melting characteristics of the sample. It was concluded that shrinkage extents exceeding 50 percent indicated that the effect of the ash particle size is of secondary importance compared to ash chemistry in determining shrinkage levels, with fine particles giving rapid shrinkage events 10 degrees C lower in temperature. (author). 7 figs., refs.

  20. Erosion of ejecta at Meteor Crater, Arizona

    Science.gov (United States)

    Grant, John A.; Schultz, Peter H.

    1993-01-01

    New methods for estimating erosion at Meteor Crater, Arizona, indicate that continuous ejecta deposits beyond 1/4-1/2 crater radii from the rim have been lowered less than 1 m on the average. This conclusion is based on the results of two approaches: coarsening of unweathered ejecta into surface lag deposits and calculation of the sediment budget within a drainage basin on the ejecta. Preserved ejecta morphologies beneath thin alluvium revealed by ground-penetrating radar provide qualitative support for the derived estimates. Although slightly greater erosion of less resistant ejecta locally has occurred, such deposits were limited in extent, particularly beyond 0.25R-0.5R from the present rim. Subtle but preserved primary ejecta features further support our estimate of minimal erosion of ejecta since the crater formed about 50,000 years ago. Unconsolidated deposits formed during other sudden extreme events exhibit similarly low erosion over the same time frame; the common factor is the presence of large fragments or large fragments in a matrix of finer debris. At Meteor Crater, fluvial and eolian processes remove surrounding fines leaving behind a surface lag of coarse-grained ejecta fragments that armor surfaces and slow vertical lowering.

  1. Erosion and deposition of carbon-carbon nozzle inserts in low-thrust long-duration solid rocket motors%小推力长时间工作固体火箭发动机C/C喉衬的烧蚀与沉积

    Institute of Scientific and Technical Information of China (English)

    张晓光; 王长辉; 刘宇; 熊文波; 任军学

    2011-01-01

    针对C/C喉衬喷管小推力长时间工作固体火箭发动机,分别开展了含铝、不含铝两种推进剂状态的地面试验。根据燃烧室压强及发动机推力测试曲线计算了喷管喉径的瞬变值,对比研究了喉衬的烧蚀、沉积过程,指出含铝推进剂发动机C/C喉衬先后经历初始沉积、沉积消融、持续烧蚀、烧蚀与沉积交替四个阶段,而推进剂不含铝时则没有明显的初始沉积与沉积消融。讨论了推进剂配方、燃烧室压强、喷管结构等因素对喉衬烧蚀、沉积的影响,并提出了相应的改善措施。%In order to study the erosion and deposition process of the carbon-carbon nozzle inserts in low-thrust,long-duration solid rocket applications,two motors using metallized and non-metallized propellants,respectively,were tested.The transient value of the throat diameter was obtained from the pressure and thrust measurements.It was indicated that for metallized propellant the throat experienced four stages as initial deposition,deposition melt,continuous erosion,alternately erosion and deposition,while no initial deposition and melt phenomena were observed in the non-metallized case.Some approaches to minimize throat variation were developed based upon the investigation of the effect of chamber pressure,propellant composition and nozzle configurations on the throat erosion and deposition.

  2. The normalised wildfire ash index (NWAI): a remote sensing approach for quantifying post-wildfire ash loads

    Science.gov (United States)

    Chris, Chafer; Doerr, Stefan; Santin, Cristina

    2017-04-01

    The impacts of wildfire ash, the powdery residue from fuel burning, on post-fire ecosystems are many and diverse. Ash is a source of nutrients and can help the recovery of vegetation. It can also contain substantial amounts of recalcitrant carbon and thus contribute to long-term carbon storage. In its initial state, the ash layer on the ground can protect the bare soil, mitigating post-fire water erosion by runoff. However, when the adsorbent capability of this layer is exceeded, ash can be transported into the hydrological network and be a major contributor to water contamination. Ash can also contribute to post-fire mass movements such as debris flows. The eco-hydro-geomorphic impacts of ash on post-fire ecosystems are therefore important, but remain poorly quantified. A fundamental step in that direction is the understanding of ash production and distribution at the landscape scale, which would allow incorporating ash as a key parameter into post-fire risk models. We have developed a new spectral index (NWAI) using Landsat imagery to model the spatial distribution of ash loads in the post-fire landscape. It was developed based on a severe wildfire that burnt 13,000 ha of dry eucalyptus forest near Sydney and has also been tested for a forested area burnt by the catastrophic 2009 Black Saturday fires near Melbourne. Although ecosystem and fire characteristics differed substantially between the Sydney and Melbourne fires, our NWAI index performs well. In this contribution we will discuss the (i) the principles of the NWAI and (ii) its potential for pollution risk forecasting.

  3. Effect of particle volume fraction on the settling velocity of volcanic ash particles: insights from joint experimental and numerical simulations

    OpenAIRE

    Del Bello, Elisabetta; Taddeucci, Jacopo; de’ Michieli Vitturi, Mattia; Scarlato, Piergiorgio; Andronico, Daniele; Scollo, Simona; Kueppers, Ulrich; Ricci, Tullio

    2017-01-01

    Most of the current ash transport and dispersion models neglect particle-fluid (two-way) and particle-fluid plus particle-particle (four-way) reciprocal interactions during particle fallout from volcanic plumes. These interactions, a function of particle concentration in the plume, could play an important role, explaining, for example, discrepancies between observed and modelled ash deposits. Aiming at a more accurate prediction of volcanic ash dispersal and sedimentation, the settling of ash...

  4. Erosion-corrosion; Erosionkorrosion

    Energy Technology Data Exchange (ETDEWEB)

    Aghili, B

    1999-05-01

    A literature study on erosion-corrosion of pipings in the nuclear industry was performed. Occurred incidents are reviewed, and the mechanism driving the erosion-corrosion is described. Factors that influence the effect in negative or positive direction are treated, as well as programs for control and inspection. Finally, examples of failures from databases on erosion-corrosion are given in an attachment 32 refs, 16 figs, tabs

  5. Extraction of vanadium from athabasca tar sands fly ash

    Science.gov (United States)

    Gomez-Bueno, C. O.; Spink, D. R.; Rempel, G. L.

    1981-06-01

    The production of refinery grade oil from the Alberta tar sands deposits as currently practiced by Suncor (formally Great Canadian Oil Sands Ltd.—GCOS) generates a substantial amount of petroleum coke fly ash which contains appreciable amounts of valuable metals such as vanadium, nickel and titanium. Although the recovery of vanadium from petroleum ash is a well established commercial practice, it is shown in the present work that such processes are not suitable for recovery of vanadium from the GCOS fly ash. The fact that the GCOS fly ash behaves so differently when compared to other petroleum fly ash is attributed to its high silicon and aluminum contents which tie up the metal values in a silica-alumina matrix. Results of experiments carried out in this investigation indicate that such matrices can be broken down by application of a sodium chloride/water roast of the carbon-free fly ash. Based on results from a series of preliminary studies, a detailed investigation was undertaken in order to define optimum conditions for a vanadium extraction process. The process developed involves a high temperature (875 to 950 °C) roasting of the fly ash in the presence of sodium chloride and water vapor carried out in a rotary screw kiln, followed by dilute sodium hydroxide atmosphereic leaching (98 °C) to solublize about 85 pet of the vanadium originally present in the fly ash. It was found that the salt roasting operation, besides enhancing vanadium recovery, also inhibits silicon dissolution during the subsequent leaching step. The salt roasting treatment is found to improve vanadium recovery significantly when the fly ash is fully oxidized. This is easily achieved by burning off the carbon present in the “as received” fly ash under excess air. The basic leaching used in the new process selectively dissolves vanadium from the roasted ash, leaving nickel and titanium untouched.

  6. Can pore-clogging by ash explain post-fire runoff?

    Science.gov (United States)

    Stoof, Cathelijne R.; Gevaert, Anouk I.; Baver, Christine; Hassanpour, Bahareh; Morales, Veronica L.; Zhang, Wei; Martin, Deborah; Giri, Shree K.; Steenhuis, Tammo S.

    2016-01-01

    Ash plays an important role in controlling runoff and erosion processes after wildfire and has frequently been hypothesised to clog soil pores and reduce infiltration. Yet evidence for clogging is incomplete, as research has focussed on identifying the presence of ash in soil; the actual flow processes remain unknown. We conducted laboratory infiltration experiments coupled with microscope observations in pure sands, saturated hydraulic conductivity analysis, and interaction energy calculations, to test whether ash can clog pores (i.e. block pores such that infiltration is hampered and ponding occurs). Although results confirmed previous observations of ash washing into pores, clogging was not observed in the pure sands tested, nor were conditions found for which this does occur. Clogging by means of strong attachment of ash to sand was deemed unlikely given the negative surface charge of the two materials. Ponding due to washing in of ash was also considered improbable given the high saturated conductivity of pure ash and ash–sand mixtures. This first mechanistic step towards analysing ash transport and attachment processes in field soils therefore suggests that pore clogging by ash is unlikely to occur in sands. Discussion is provided on other mechanisms by which ash can affect post-fire hydrology.

  7. Estimating the frequency of volcanic ash clouds over northern Europe

    Science.gov (United States)

    Watson, E. J.; Swindles, G. T.; Savov, I. P.; Lawson, I. T.; Connor, C. B.; Wilson, J. A.

    2017-02-01

    Fine ash produced during explosive volcanic eruptions can be dispersed over a vast area, where it poses a threat to aviation, human health and infrastructure. Here, we focus on northern Europe, which lies in the principal transport direction for volcanic ash from Iceland, one of the most active volcanic regions in the world. We interrogate existing and newly produced geological and written records of past ash fallout over northern Europe in the last 1000 years and estimate the mean return (repose) interval of a volcanic ash cloud over the region to be 44 ± 7 years. We compare tephra records from mainland northern Europe, Great Britain, Ireland and the Faroe Islands, with records of proximal Icelandic volcanism and suggest that an Icelandic eruption with a Volcanic Explosivity Index rating (VEI) ≥ 4 and a silicic magma composition presents the greatest risk of producing volcanic ash that can reach northern Europe. None of the ash clouds in the European record which have a known source eruption are linked to a source eruption with VEI < 4. Our results suggest that ash clouds are more common over northern Europe than previously proposed and indicate the continued threat of ash deposition across northern Europe from eruptions of both Icelandic and North American volcanoes.

  8. Ash cloud aviation advisories

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, T.J.; Ellis, J.S. [Lawrence Livermore National Lab., CA (United States); Schalk, W.W.; Nasstrom, J.S. [EG and G, Inc., Pleasanton, CA (United States)

    1992-06-25

    During the recent (12--22 June 1991) Mount Pinatubo volcano eruptions, the US Air Force Global Weather Central (AFGWC) requested assistance of the US Department of Energy`s Atmospheric Release Advisory Capability (ARAC) in creating volcanic ash cloud aviation advisories for the region of the Philippine Islands. Through application of its three-dimensional material transport and diffusion models using AFGWC meteorological analysis and forecast wind fields ARAC developed extensive analysis and 12-hourly forecast ash cloud position advisories extending to 48 hours for a period of five days. The advisories consisted of ``relative`` ash cloud concentrations in ten layers (surface-5,000 feet, 5,000--10,000 feet and every 10,000 feet to 90,000 feet). The ash was represented as a log-normal size distribution of 10--200 {mu}m diameter solid particles. Size-dependent ``ashfall`` was simulated over time as the eruption clouds dispersed. Except for an internal experimental attempt to model one of the Mount Redoubt, Alaska, eruptions (12/89), ARAC had no prior experience in modeling volcanic eruption ash hazards. For the cataclysmic eruption of 15--16 June, the complex three-dimensional atmospheric structure of the region produced dramatically divergent ash cloud patterns. The large eruptions (> 7--10 km) produced ash plume clouds with strong westward transport over the South China Sea, Southeast Asia, India and beyond. The low-level eruptions (< 7 km) and quasi-steady-state venting produced a plume which generally dispersed to the north and east throughout the support period. Modeling the sequence of eruptions presented a unique challenge. Although the initial approach proved viable, further refinement is necessary and possible. A distinct need exists to quantify eruptions consistently such that ``relative`` ash concentrations relate to specific aviation hazard categories.

  9. An aggregation model for ash particles in volcanic clouds

    Science.gov (United States)

    Costa, A.; Folch, A.; Macedonio, G.; Durant, A.

    2009-12-01

    A large fraction of fine ash particles injected into the atmosphere during explosive eruptions aggregate through complex interactions of surface liquid layers, electrostatic forces, and differences in particle settling velocities. The aggregates formed have a different size and density compared to primary particles formed during eruption which dramatically changes the dynamics of sedimentation from the volcanic cloud. Consequently, the lifetime of ash particles in the atmosphere is reduced and a distal mass deposition maximum is often generated in resulting tephra deposits. A complete and rigorous description of volcanic ash fallout requires the full coupling of models of volcanic cloud dynamics and dispersion, and ash particle transport, aggregation and sedimentation. Furthermore, volcanic ash transport models should include an aggregation model that accounts for the interaction of all particle size classes. The problem with this approach is that simulations would require excessively long computational times thereby prohibiting its application in an operational setting during an explosive volcanic eruption. Here we present a simplified model for ash particle transport and aggregation that includes the effects of water in the volcanic cloud and surrounding atmosphere. The aggregation model assumes a fractal relationship for the number of primary particles in aggregates, average sticking efficiency factors, and collision frequency functions that account for Brownian motion, laminar and turbulent fluid shear, and differential settling velocity. A parametric study on the key parameters of the model was performed. We implemented the aggregation model in the WRF+FALL3D coupled modelling system and applied it to different eruptions where aggregation has been recognized to play an important role, including the August and September 1992 Crater Peak eruptions and the 1980 Mt St Helens eruption. In these cases, mass deposited as a function of deposit area and the particle

  10. Quantifying modern and ancient drainage basin erosion with detrital thermochronology

    Science.gov (United States)

    Ehlers, T. A.; Stock, G. M.; Rahl, J. M.; Farley, K. A.; van der Pluijm, B. A.

    2006-12-01

    Studies of drainage basin erosion and landform evolution are often limited by not knowing where sediment is sourced from and how erosion rates vary over different time scales. Detrital thermochronometer cooling ages collected from modern river sediments and basin deposits provide a promising tool to address these problems. We present two applications of detrital thermochronology to quantify: (1) spatial variations in erosion using modern river sediments; and (2) temporal variations in erosion calculated using syntectonic sedimentary deposits. In our first application, the elevation dependence of detrital apatite (U-Th)/He (AHe) ages is used to track the elevations where sediment is produced from bedrock. The ages are measured in river sediments from the mouth of two catchments in the Sierra Nevada, California, and used as sediment tracers to quantify spatial variations in erosion. We measured ~54 AHe single grain ages from each catchment. Measured AHe age probability density functions (PDFs) were compared with predicted PDFs, calculated by convolving catchment hypsometry with bedrock age-elevation relationships. Statistical comparison of the PDFs evaluates the spatial distribution of erosion in the catchments. Predicted and observed PDFs are statistically identical for the nonglaciated Inyo Creek catchment, indicating uniform erosion. However, a statistically significant lack of older ages is observed in the recently deglaciated Lone Pine catchment, suggesting sediment is derived from the lower half of the catchment; possibly due to sediment storage at higher elevations and/or enhanced erosion at intermediate elevations. Second, we evaluate the ability of detrital thermochronology to record transients in drainage basin erosion on million year time scales. A transient 1D thermal model is used to predict cooling ages in a syntectonic stratigraphic section where sediment is sourced from a region with temporally variable erosion. In simulations with transient erosion

  11. Comparative analysis of soil erosion sensitivity using various quantizations within GIS environment

    NARCIS (Netherlands)

    Paparrizos, Spyridon; Maris, Fotios; Kitikidou, Kyriaki; Anastasiou, Theofilos; Potouridis, Simeon

    2015-01-01

    Soil erosion is a prominent cause of land degradation and desertification in Mediterranean countries. The detrimental effects of soil erosion are exemplified in climate (in particular climate change), topography, human activities and natural disasters. Modelling of erosion and deposition in compl

  12. Modelling catchment-scale erosion patterns in the East African Highlands

    NARCIS (Netherlands)

    Vigiak, O.; Okoba, B.O.; Sterk, G.; Groenenberg, S.

    2005-01-01

    Prompt location of areas exposed to high erosion is of the utmost importance for soil and water conservation planning. Erosion models can be useful tools to locate sources of sediment and areas of deposition within a catchment, but the reliability of model predictions of spatial patterns of erosion

  13. Gas/aerosol-ash interaction in volcanic plumes: New insights from surface analyses of fine ash particles

    Science.gov (United States)

    Delmelle, Pierre; Lambert, Mathieu; Dufrêne, Yves; Gerin, Patrick; Óskarsson, Niels

    2007-07-01

    The reactions occurring between gases/aerosols and silicate ash particles in volcanic eruption plumes remain poorly understood, despite the fact that they are at the origin of a range of volcanic, environmental, atmospheric and health effects. In this study, we apply X-ray photoelectron spectroscopy (XPS), a surface-sensitive technique, to determine the chemical composition of the near-surface region (2-10 nm) of nine ash samples collected from eight volcanoes. In addition, atomic force microscopy (AFM) is used to image the nanometer-scale surface structure of individual ash particles isolated from three samples. We demonstrate that rapid acid dissolution of ash occurs within eruption plumes. This process is favoured by the presence of fluoride and is believed to supply the cations involved in the deposition of sulphate and halide salts onto ash. AFM imaging also has permitted the detection of extremely thin (< 10 nm) coatings on the surface of ash. This material is probably composed of soluble sulphate and halide salts mixed with sparingly soluble fluoride compounds. The surface approach developed here offers promising aspects for better appraising the role of gas/aerosol-ash interaction in dictating the ability of ash to act as sinks for various volcanic and atmospheric chemical species as well as sources for others.

  14. Pyroclastic density currents associated with the 2008-2009 eruption of Chaitén Volcano (Chile): forest disturbances, deposits, and dynamics

    Science.gov (United States)

    Major, Jon J.; Pierson, Thomas C.; Hoblitt, Richard P.; Moreno, Hugo

    2013-01-01

    Explosive activity at Chaitén Volcano in May 2008 and subsequent dome collapses over the following nine months triggered multiple, small-volume pyroclastic density currents (PDCs). The explosive activity triggered PDCs to the north and northeast, which felled modest patches of forest as far as 2 km from the caldera rim. Felled trees pointing in the down-current direction dominate the disturbance zones. The PDC on the north flank of Chaitén left a decimeters-thick, bipartite deposit having a basal layer of poorly sorted, fines-depleted pumice-and-lithic coarse ash and lapilli, which transitions abruptly to fines-enriched pumice-and-lithic coarse ash. The deposit contains fragments of mostly uncharred organics near its base; vegetation protruding above the deposit is uncharred. The nature of the forest disturbance and deposit characteristics suggest the PDC was dilute, of relatively low temperature (-1. It was formed by directionally focused explosions throughout the volcano's prehistoric, intracaldera lava dome. Dilute, low-temperature PDCs that exited the caldera over a low point on the east-southeast caldera rim deposited meters-thick fill of stratified beds of pumice-and-lithic coarse ash and lapilli. They did not fell large trees more than a few hundred of meters from the caldera rim and were thus less energetic than those on the north and northeast flanks. They likely formed by partial collapses of the margins of vertical eruption columns. In the Chaitén River valley south of the volcano, several-meter-thick deposits of two block-and-ash flow (BAF) PDCs are preserved. Both have a coarse ash matrix that supports blocks and lapilli predominantly of lithic rhyolite dome rock, minor obsidian, and local bedrock. One deposit was emplaced by a BAF that traveled an undetermined distance downvalley between June and November 2008, apparently triggered by partial collapse of a newly effused lava dome on that started growing on 12 May. A second, and larger, BAF related

  15. Fusion characterization of biomass ash

    DEFF Research Database (Denmark)

    Ma, Teng; Fan, Chuigang; Hao, Lifang

    2016-01-01

    The ash fusion characteristics are important parameters for thermochemical utilization of biomass. In this research, a method for measuring the fusion characteristics of biomass ash by Thermo-mechanical Analyzer, TMA, is described. The typical TMA shrinking ratio curve can be divided into two...... stages, which are closely related to ash melting behaviors. Several characteristics temperatures based on the TMA curves are used to assess the ash fusion characteristics. A new characteristics temperature, Tm, is proposed to represent the severe melting temperature of biomass ash. The fusion...... characteristics of six types of biomass ash have been measured by TMA. Compared with standard ash fusibility temperatures (AFT) test, TMA is more suitable for measuring the fusion characteristics of biomass ash. The glassy molten areas of the ash samples are sticky and mainly consist of K-Ca-silicates....

  16. Erosion Negril Beach

    NARCIS (Netherlands)

    Ten Ham, D.; Henrotte, J.; Kraaijeveld, R.; Milosevic, M.; Smit, P.

    2006-01-01

    The ongoing erosion of the Negril Beach has become worse the past decade. In most places along the coast line, the beach will be gone in approximately 10 years. This will result in a major decrease of incomes that are made by the local tourist sector. To prevent the erosion this study has been perfo

  17. Saliva and dental erosion

    Science.gov (United States)

    BUZALAF, Marília Afonso Rabelo; HANNAS, Angélicas Reis; KATO, Melissa Thiemi

    2012-01-01

    Dental erosion is a multifactorial condition. The consideration of chemical, biological and behavioral factors is fundamental for its prevention and therapy. Among the biological factors, saliva is one of the most important parameters in the protection against erosive wear. Objective This review discusses the role of salivary factors on the development of dental erosion. Material and Methods A search was undertaken on MEDLINE website for papers from 1969 to 2010. The keywords used in the research were "saliva", "acquired pellicle", "salivary flow", "salivary buffering capacity" and "dental erosion". Inclusion of studies, data extraction and quality assessment were undertaken independently and in duplicate by two members of the review team. Disagreements were solved by discussion and consensus or by a third party. Results Several characteristics and properties of saliva play an important role in dental erosion. Salivary clearance gradually eliminates the acids through swallowing and saliva presents buffering capacity causing neutralization and buffering of dietary acids. Salivary flow allows dilution of the acids. In addition, saliva is supersaturated with respect to tooth mineral, providing calcium, phosphate and fluoride necessary for remineralization after an erosive challenge. Furthermore, many proteins present in saliva and acquired pellicle play an important role in dental erosion. Conclusions Saliva is the most important biological factor affecting the progression of dental erosion. Knowledge of its components and properties involved in this protective role can drive the development of preventive measures targeting to enhance its known beneficial effects. PMID:23138733

  18. Saliva and dental erosion

    Directory of Open Access Journals (Sweden)

    Marília Afonso Rabelo Buzalaf

    2012-10-01

    Full Text Available Dental erosion is a multifactorial condition. The consideration of chemical, biological and behavioral factors is fundamental for its prevention and therapy. Among the biological factors, saliva is one of the most important parameters in the protection against erosive wear. Objective: This review discusses the role of salivary factors on the development of dental erosion. Material and Methods: A search was undertaken on MeDLINe website for papers from 1969 to 2010. The keywords used in the research were "saliva", "acquired pellicle", "salivary flow", "salivary buffering capacity" and "dental erosion". Inclusion of studies, data extraction and quality assessment were undertaken independently and in duplicate by two members of the review team. Disagreements were solved by discussion and consensus or by a third party. Results: Several characteristics and properties of saliva play an important role in dental erosion. Salivary clearance gradually eliminates the acids through swallowing and saliva presents buffering capacity causing neutralization and buffering of dietary acids. Salivary flow allows dilution of the acids. In addition, saliva is supersaturated with respect to tooth mineral, providing calcium, phosphate and fluoride necessary for remineralization after an erosive challenge. Furthermore, many proteins present in saliva and acquired pellicle play an important role in dental erosion. Conclusions: Saliva is the most important biological factor affecting the progression of dental erosion. Knowledge of its components and properties involved in this protective role can drive the development of preventive measures targeting to enhance its known beneficial effects.

  19. Ash dispersal dynamics: state of the art and perspectives

    Science.gov (United States)

    Sulpizio, R.

    2013-05-01

    Volcanic ash, during dispersal and deposition, is among the major hazards from explosive eruptions. Volcanic ash fallout can disrupt communities downwind, interrupt surface transportation networks and lead to closure of airports. Airborne ash seriously threatens modern jet aircraft in flight. In several documented cases, encounters between aircraft and volcanic clouds have resulted in engine flameout and near crashes, so there is a need to accurately predict the trajectory of volcanic ash clouds in order to improve aviation safety and reduce economic losses. The ash clouds affect aviation even in distal regions, as demonstrated by several eruptions with far-range dispersal. Recent examples include Crater Peak 1992, Tungurahua 1999-2001, Mount Cleveland 2001, Chaitén 2008, Eyjafjallajökull 2010, Grimsvötn 2011, and Cordón-Caulle 2011. Amongst these, the April-May 2010 eruption of Eyjafjallajökull in Iceland provoked the largest civil aviation breakdown. Accumulation of tephra can produce roof collapse, interruption of lifelines (roads, railways, etc.), disruption to airport operations, and damage to communications and electrical power lines. Deposition of ash decreases soil permeability, increases surface runoff, and promotes floods. Ash leaching can result in the pollution of water resources, damage to agriculture, pastures, and livestock, impinge on aquatic ecosystems, and alteration of the geochemical environment on the seafloor. Despite the potential big impact, the dispersal dynamics of volcanic ash is still an unsolved problem for volcanologists, which claims for fiture high level research. Here, a critical overview about models (field, experimental and numerical) for inversion of field data to gain insights on physics of dispersal of volcanic ash is proposed. A special focus is devoted to some physical parameters that are far from a satisfactory inversion (e.g. reconstruction of total grain size distribution), and clues for future research are suggested.

  20. Ash transformation in suspension fired boilers co-firing coal and straw

    DEFF Research Database (Denmark)

    Zheng, Yuanjing; Jensen, Peter Arendt; Jensen, Anker Degn

    of flue gas cleaning equipment. This survey includes discussions on the inorganic constituents transformation during straw and coal combustion, alkali-ash and alkali sulfur reactions, a survey of power plant and test rig co-firing experiments, a discussion of equilibrium calculations, a discussion......In this literature report is provided a status for the present knowledge level on ash properties when co-firing coal and biomass. The fly ash formed in boilers using co-firing of coal and straw do have a large influence on ash deposit formation, boiler corrosion, fly ash utilization and operation...... of alkali getter experiments and a discussion of modeling of alkali reaction with kaolin. Presently there is still a need for a better understanding of especially the reaction of potassium with coal ash, thereby making better predictions of co-firing ash properties....

  1. Three Years Measuring Sediment Erosion and Deposition from the Largest Dam Removal Ever at Weekly-­to-­Monthly Scales Using SfM: Elwha River, Washington, USA.

    Science.gov (United States)

    Ritchie, A.; Randle, T. J.; Bountry, J.; Warrick, J. A.

    2015-12-01

    The stepwise removal of two dams on the Elwha River beginning in September 2011 exposed ~21 million cubic meters of sediment to fluvial erosion and created an unprecedented opportunity to monitor reservoir sediment erosion and river evolution during base level adjustment and a pulsed sediment release. We have conducted more than 60 aerial surveys with a Cessna 172 using a simple custom wing-mount for consumer grade cameras and SfM photogrammetry to produce orthoimagery and digital elevation models in near-real-time at weekly to monthly time intervals. Multiple lidar flights and ground survey campaigns have provided estimates of both systematic and random error for this uniquely dense dataset. Co-registration of multiple surveys during processing reduces systematic error and allows boot-strapping of subsequently established ground control to earlier flights. Measurements chronicle the erosion of 12 million cubic meters of reservoir sediment and record corresponding changes in channel braiding, wood loading and bank erosion. These data capture reservoir and river channel responses to dam removal at resolutions comparable to hydrologic forcing events, allowing us to quantify reservoir sediment budgets on a per-storm basis. This allows for the analysis of sediment transported relative to rates of reservoir drawdown and river stream power for dozens of intervals of time. Temporal decoupling of peak sediment flux and bank erosion rates is noted from these analyses. This dataset illustrates some of the challenges and opportunities emerging with the advent of big data in remote sensing of earth surface processes.

  2. Advances in Predicting Soil Erosion After Fire Using the Rangeland Hydrology and Erosion Model

    Science.gov (United States)

    Al-Hamdan, Osama Z.; Pierson, Frederick B.; Nearing, Mark A.; Williams, C. Jason; Hernandez, Mariano; Boll, Jan; Nouwakpo, Sayjro; Weltz, Mark A.; Spaeth, Kenneth E.

    2017-04-01

    The magnitude of erosion from a hillslope is governed by the availability of sediment and connectivity of overland flow and erosion processes. For undisturbed conditions, sediment is mainly detached and transported by rainsplash and sheetflow (splash-sheet) processes in bare batches, but sediment generally only travels a short distance before deposition. On recently disturbed sites (e.g., after fire), bare ground is more extensive and runoff and erosion rates are higher relative to undisturbed conditions. Increased erosion following disturbance occurs largely due to a shift from splash-sheet to concentrated-flow-dominated processes. On long-disturbed sites (e.g., after woody plant encroachment), years of soil loss can limit sediment availability and soil erosion. In contrast, recently burned landscapes typically have ample sediment available and generate high erosion rates. This presentation highlights recent advancements in hillslope erosion prediction by the Rangeland Hydrology and Erosion Model (RHEM) that accommodate recently burned conditions. The RHEM tool is a process-based model that was developed specifically for predicting hillslope runoff and erosion on rangeland ecosystems. The advancements presented here include development of empirical equations to predict erodibility parameters for conditions in which erosion by concentrated flow processes is limited (by runoff or sediment availability) and an erodibility parameter for conditions in which erosion by concentrated flow processes is the dominant erosion mechanism and sediment is amply available (burned conditions). The data used for developing and evaluating the erodibility parameter equations were obtained from rainfall simulation databases maintained by the USDA-Agricultural Research Service. The data span undisturbed, long-disturbed, and recently burned conditions. For undisturbed and long-disturbed conditions, a regression analysis was applied to derive the relationship between splash

  3. An objective method for mapping hazardous flow deposits from the stratigraphic record of stratovolcanoes: a case example from Montagne Pelée

    Science.gov (United States)

    Burt, M. L.; Wadge, G.; Curnow, R. N.

    2001-06-01

    A method is described that enables a variety of maps, which indicate the probabilities of deposition, to be constructed in a reproducible manner from the stratigraphie information typically available at well-studied stratovoicanoes. These maps can then be used as a basis for hazard assessment. The sampling of the deposits of previous eruptions is subject to uncertainties due to erosion, sectoral deposition and non-exposure. A model-based, iterative algorithm is used to compensate for the incomplete sampling. For each site, the available evidence from the other sites is used to estimate the probability of deposition for missing deposits. A geographical information system (GIS)-based method that uses Thiessen polygons to represent the presence or absence of deposits, together with simple cartographic rules based on depositional processes, then defines the extent of deposition. The combined operation of these two techniques is presented for Montagne Pelée in Martinique, using the amended stratigraphic record of Smith and Roobol (1990) for the past 6000 years. Three types of maps are created: maps for individual depositional events (the 1902 block-and-ash flow and surge deposits are used to verify the technique); maps for different deposit types aggregated over 6000 years of activity; and scenario maps which, in Montagne Pelée’s case, recognise that during the next Peléean or Plinian eruption a variety of hazards will have to be confronted.

  4. Multiphase flow modelling of volcanic ash particle settling in water using adaptive unstructured meshes

    OpenAIRE

    Jacobs, C.T.; Collins, G S; M. D. Piggott; S. C. Kramer; Wilson, C.R.G.

    2013-01-01

    Small-scale experiments of volcanic ash particle settling in water have demonstrated that ash particles can either settle slowly and individually, or rapidly and collectively as a gravitationally unstable ash-laden plume. This has important implications for the emplacement of tephra deposits on the seabed. Numerical modelling has the potential to extend the results of laboratory experiments to larger scales and explore the conditions under which plumes may form and persist, but many existing ...

  5. Effects of fire on ash thickness in a Lithuanian grassland and short-term spatio-temporal changes

    Directory of Open Access Journals (Sweden)

    P. Pereira

    2012-12-01

    Full Text Available Ash thickness is a key variable in the protection of soil against erosion agents after planned and unplanned fires. Thicker ash provides better protection against raindrop impact and reduces the runoff response by retaining water and promoting water infiltration although little is known about the distribution and the evolution of the ash layer after the fires. Ash thickness measurements were conducted along two transects (flat and sloping areas following a a grid experimental design. Both transects extended from the burned area into an adjacent unburned area. We analysed ash thickness evolution according to time and fire severity. In order to interpolate data with accuracy and identify the techniques with the least bias, several interpolation methods were tested in the grid plot. Overall, the fire had a low severity. The fire significantly reduced the ground cover, especially on sloping areas owing to the higher fire severity and/or less biomass previous to the fire. Ash thickness depends on fire severity and is thin where fire severity was higher and thicker in lower fire severity sites. The ash thickness decreased with time after the fire. Between 4 and 16 days after the fire, ash was transported by wind. The major reduction took place between 16 and 34 days after the fire as a result of rainfall, and was more efficient where fire severity was higher. Between 34 and 45 days after the fire no significant differences in ash thickness were identified among ash colours and only traces of the ash layer remained. The omni-directional experimental variograms shown that variable structure did not change importantly with the time, however, the most accurate interpolation methods were different highlighting the slight different patterns of ash thickness distribution with the time. The ash spatial variability increased with the time, particularly on the slope, as a result of water erosion.

  6. MAT 126 ASH Course Tutorial / Tutorialoutlet

    OpenAIRE

    stylia

    2015-01-01

    For more course tutorials visit www.tutorialoutlet.com   MAT 126 Week 1 DQ 1 (Ash) MAT 126 Week 1 Quiz (Ash) MAT 126 Week 1 Written Assignment (Arithmetic and geometric sequence) (Ash) MAT 126 Week 2 DQ 1 (Ash) MAT 126 Week 2 DQ 2 (Ash) MAT 126 Week 2 Assignment Is It Fat Free (Ash) MAT 126 Week 2 Quiz (Ash) MAT 126 Week 3 DQ 1 (Ash) MAT 126 Week 3 DQ 2 (Ash) MAT 126 Week 3 Assignment Quadratic Equations (Ash) MAT 126 Week 3 Quiz (Ash) MAT 126...

  7. Polyanhydride degradation and erosion.

    Science.gov (United States)

    Göpferich, A; Tessmar, J

    2002-10-16

    It was the intention of this paper to give a survey on the degradation and erosion of polyanhydrides. Due to the multitude of polymers that have been synthesized in this class of material in recent years, it was not possible to discuss all polyanhydrides that have gained in significance based on their application. It was rather the intention to provide a broad picture on polyanhydride degradation and erosion based on the knowledge that we have from those polymers that have been intensively investigated. To reach this goal this review contains several sections. First, the foundation for an understanding of the nomenclature are laid by defining degradation and erosion which was deemed necessary because many different definitions exist in the current literature. Next, the properties of major classes of anhydrides are reviewed and the impact of geometry on degradation and erosion is discussed. A complicated issue is the control of drug release from degradable polymers. Therefore, the aspect of erosion-controlled release and drug stability inside polyanhydrides are discussed. Towards the end of the paper models are briefly reviewed that describe the erosion of polyanhydrides. Empirical models as well as Monte-Carlo-based approaches are described. Finally it is outlined how theoretical models can help to answer the question why polyanhydrides are surface eroding. A look at the microstructure and the results from these models lead to the conclusion that polyanhydrides are surface eroding due to their fast degradation. However they switch to bulk erosion once the device dimensions drop below a critical limit.

  8. Sets resilient to erosion

    CERN Document Server

    Pegden, Wesley

    2011-01-01

    The erosion of a set in Euclidean space by a radius r>0 is the subset of X consisting of points at distance >/-r from the complement of X. A set is resilient to erosion if it is similar to its erosion by some positive radius. We give a somewhat surprising characterization of resilient sets, consisting in one part of simple geometric constraints on convex resilient sets, and, in another, a correspondence between nonconvex resilient sets and scale-invariant (e.g., 'exact fractal') sets.

  9. Bank erosion events and processes in the Upper Severn basin

    Directory of Open Access Journals (Sweden)

    D. M. Lawler

    1997-01-01

    Full Text Available This paper examines river bank retreat rates, individual erosion events, and the processes that drive them in the Upper Severn basin, mid-Wales, UK. Traditional erosion pin networks were used to deliver information on patterns of downstream change in erosion rates. In addition, the novel automatic Photo-Electronic Erosion Pin (PEEP monitoring system was deployed to generate near-continuous data on the temporal distribution of bank erosion and accretion: this allowed focus on the magnitude and timing of individual erosional and depositional events in relation to specific flow episodes. Erosion dynamics data from throughout the Upper Severn basin are combined with detailed information on bank material properties and spatial change in channel hydraulics derived from direct field survey, to assess the relationships between flow properties and bank erosion rates. Results show that bank erosion rates generally increase downstream, but relate more strongly to discharge than to reach-mean shear stress, which peaks near the basin head. Downstream changes in erosion mechanisms and boundary materials, across the upland/lowland transition (especially the degree of development of composite bank material profiles, are especially significant. Examples of sequences of bank erosion events show how the PEEP system can (a quantify the impact of individual, rather than aggregated, forcing events, (b reveal the full complexity of bank response to given driving agents, including delayed erosion events, and (c establish hypotheses of process-control in bank erosion systems. These findings have important implications for the way in which bank erosion problems are researched and managed. The complex responses demonstrated have special significance for the way in which bank processes and channel-margin sediment injections should be handled in river dynamics models.

  10. Modeling transport and aggregation of volcanic ash particles

    Science.gov (United States)

    Costa, Antonio; Folch, Arnau; Macedonio, Giovanni; Durant, Adam

    2010-05-01

    A complete description of ash aggregation processes in volcanic clouds is an very arduous task and the full coupling of ash transport and ash aggregation models is still computationally prohibitive. A large fraction of fine ash injected in the atmosphere during explosive eruptions aggregate because of complex interactions of surface liquid layers, electrostatic forces, and differences in settling velocities. The formation of aggregates of size and density different from those of the primary particles dramatically changes the sedimentation dynamics and results in lower atmospheric residence times of ash particles and in the formation of secondary maxima of tephra deposit. Volcanic ash transport models should include a full aggregation model accounting for all particle class interaction. However this approach would require prohibitive computational times. Here we present a simplified model for wet aggregation that accounts for both atmospheric and volcanic water transport. The aggregation model assumes a fractal relationship for the number of primary particles in aggregates, average efficiencies factors, and collision frequency functions accounting for Brownian motion, laminar and turbulent fluid shear, and differential settling velocity. We implemented the aggregation model in the WRF+FALL3D coupled modelling system and applied it to different eruptions where aggregation has been recognized to play an important role, such as the August and September 1992 Crater Peak eruptions and the 1980 Mt St Helens eruption. Moreover, understanding aggregation processes in volcanic clouds will contribute to mitigate the risks related with volcanic ash transport and sedimentation.

  11. Rheology of fly ashes from coal and biomass co-combustion

    DEFF Research Database (Denmark)

    Arvelakis, Stelios; Frandsen, Flemming

    2010-01-01

    The presence of large amounts of alkali metals, chlorine and sulphur in most biomass fuels - compared to coal - can create serious ash-related problems such as deposition, agglomeration and/or corrosion. This paper discusses the viscosity characteristics of fly ash from the co-combustion of various...

  12. Ash properties of some dominant Greek forest species

    Energy Technology Data Exchange (ETDEWEB)

    Liodakis, S. [Laboratory of Inorganic and Analytical Chemistry, Department of Chemical Engineering, National Technical University of Athens (NTUA), 9 Iroon Polytechniou Street, Athens 157 73 (Greece)]. E-mail: liodakis@central.ntua.gr; Katsigiannis, G. [Laboratory of Inorganic and Analytical Chemistry, Department of Chemical Engineering, National Technical University of Athens (NTUA), 9 Iroon Polytechniou Street, Athens 157 73 (Greece); Kakali, G. [Laboratory of Inorganic and Analytical Chemistry, Department of Chemical Engineering, National Technical University of Athens (NTUA), 9 Iroon Polytechniou Street, Athens 157 73 (Greece)

    2005-10-15

    The elemental and chemical wood ash compositions of six dominant Greek fuels was investigated using a variety of techniques, including thermal gravimetric analysis (TG), differential thermal analysis (DTA), atomic absorption spectroscopy (AAS) and X-ray diffraction (XRD). In addition, the alkalinity of wood ash was determined by titration. The ash was prepared by combustion at low (600 deg. C), middle (800 deg. C) and high temperatures (1000 deg. C). The ash composition is very important because thousands of hectares of wildlands are burned annually in Greece. The resulting deposits affect soil properties (i.e., pH) and provide a source of inorganic constituents (i.e., Ca, K, Na, Mg, etc.), while the most soluble compounds (i.e., sodium and potassium hydroxides and carbonates) do not persist through the wet season. The samples selected were: Pinus halepensis (Aleppo pine), Pinus brutia (Calabrian pine), Olea europaea (Olive), Cupressus sempervirens (Italian cypress), Pistacia lentiscus (Mastic tree), Quercus coccifera (Holly oak)

  13. Surface area, porosity and water adsorption properties of fine volcanic ash particles

    Science.gov (United States)

    Delmelle, Pierre; Villiéras, Frédéric; Pelletier, Manuel

    2005-02-01

    Our understanding on how ash particles in volcanic plumes react with coexisting gases and aerosols is still rudimentary, despite the importance of these reactions in influencing the chemistry and dynamics of a plume. In this study, six samples of fine ash (500 Å. All the specimens had similar pore size distributions, with a small peak centered around 50 Å. These findings suggest that fine ash particles have relatively undifferentiated surface textures, irrespective of the chemical composition and eruption type. Adsorption isotherms for water vapour revealed that the capacity of the ash samples for water adsorption is systematically larger than predicted from the nitrogen adsorption as values. Enhanced reactivity of the ash surface towards water may result from (i) hydration of bulk ash constituents; (ii) hydration of surface compounds; and/or (iii) hydroxylation of the surface of the ash. The later mechanism may lead to irreversible retention of water. Based on these experiments, we predict that volcanic ash is covered by a complete monolayer of water under ambient atmospheric conditions. In addition, capillary condensation within ash pores should allow for deposition of condensed water on to ash particles before water reaches saturation in the plume. The total mass of water vapour retained by 1 g of fine ash at 0.95 relative water vapour pressure is calculated to be ~10-2 g. Some volcanic implications of this study are discussed.

  14. Implementation of routine ash predictions using a general purpose atmospheric dispersion model (HYSPLIT) adapted for calculating ash thickness on the ground.

    Science.gov (United States)

    Hurst, Tony; Davis, Cory; Deligne, Natalia

    2016-04-01

    GNS Science currently produces twice-daily forecasts of the likely ash deposition if any of the active or recently active volcanoes in New Zealand was to erupt, with a number of alternative possible eruptions for each volcano. These use our ASHFALL program for calculating ash thickness, which uses 1-D wind profiles at the location of each volcano derived from Numerical Weather Prediction (NWP) model output supplied by MetService. HYSPLIT is a hybrid Lagrangian dispersion model, developed by NOAA/ARL, which is used by MetService in its role as a Volcanic Ash Advisory Centre, to model airborne volcanic ash, with meteorological data provided by external and in-house NWP models. A by-product of the HYSPLIT volcanic ash dispersion simulations is the deposition rate at the ground surface. Comparison of HYSPLIT with ASHFALL showed that alterations to the standard fall velocity model were required to deal with ash particles larger than about 50 microns, which make up the bulk of ash deposits near a volcano. It also required the ash injected into the dispersion model to have a concentration based on a typical umbrella-shaped eruption column, rather than uniform across all levels. The different parameters used in HYSPLIT also caused us to revisit what possible combinations of eruption size and column height were appropriate to model as a likely eruption. We are now running HYSPLIT to produce alternative ash forecasts. It is apparent that there are many times at which the 3-D wind model used in HYSPLIT gives a substantially different ash deposition pattern to the 1-D wind model of ASHFALL, and the use of HYSPLIT will give more accurate predictions. ASHFALL is likely still to be used for probabilistic hazard forecasting, in which very large numbers of runs are required, as HYSPLIT takes much more computer time.

  15. Hydration of fly ash cement

    Energy Technology Data Exchange (ETDEWEB)

    Etsuo Sakai; Shigeyoshi Miyahara; Shigenari Ohsawa; Seung-Heun Lee; Masaki Daimon [Tokyo Institute of Technology, Tokyo (Japan). Department of Metallurgy and Ceramics Science, Graduate School of Science and Engineering

    2005-06-01

    It is necessary to establish the material design system for the utilization of large amounts of fly ash as blended cement instead of disposing of it as a waste. Cement blended with fly ash is also required as a countermeasure to reduce the amount of CO{sub 2} generation. In this study, the influences of the glass content and the basicity of glass phase on the hydration of fly ash cement were clarified and hydration over a long curing time was characterized. Two kinds of fly ash with different glass content, one with 38.2% and another with 76.6%, were used. The hydration ratio of fly ash was increased by increasing the glass content in fly ash in the specimens cured for 270 days. When the glass content of fly ash is low, the basicity of glass phase tends to decrease. Reactivity of fly ash is controlled by the basicity of the glass phase in fly ash during a period from 28 to 270 days. However, at an age of 360 days, the reaction ratios of fly ash show almost identical values with different glass contents. Fly ash also affected the hydration of cement clinker minerals in fly ash cement. While the hydration of alite was accelerated, that of belite was retarded at a late stage.

  16. Fusion characterization of biomass ash

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Teng [State Key Laboratory ofMultiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, No. 1 Zhongguancun North Second Street, Beijing 100190 (China); Sino-Danish Center for Education and Research, Beijing, 100190 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Fan, Chuigang; Hao, Lifang [State Key Laboratory ofMultiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, No. 1 Zhongguancun North Second Street, Beijing 100190 (China); Li, Songgeng, E-mail: sgli@ipe.ac.cn [State Key Laboratory ofMultiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, No. 1 Zhongguancun North Second Street, Beijing 100190 (China); Song, Wenli [State Key Laboratory ofMultiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, No. 1 Zhongguancun North Second Street, Beijing 100190 (China); Lin, Weigang [State Key Laboratory ofMultiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, No. 1 Zhongguancun North Second Street, Beijing 100190 (China); Department of Chemical and Biochemical Engineering, Technical University of Denmark, 2800 Kgs. Lyngby (Denmark)

    2016-08-20

    Highlights: • A novel method is proposed to analyze fusion characteristics of biomass ash. • T{sub m} can represent the severe melting temperature of biomass ash. • Compared with AFT, TMA is the better choice to analyze the fusion characteristics of biomass ash. - Abstract: The ash fusion characteristics are important parameters for thermochemical utilization of biomass. In this research, a method for measuring the fusion characteristics of biomass ash by Thermo-mechanical Analyzer, TMA, is described. The typical TMA shrinking ratio curve can be divided into two stages, which are closely related to ash melting behaviors. Several characteristics temperatures based on the TMA curves are used to assess the ash fusion characteristics. A new characteristics temperature, T{sub m}, is proposed to represent the severe melting temperature of biomass ash. The fusion characteristics of six types of biomass ash have been measured by TMA. Compared with standard ash fusibility temperatures (AFT) test, TMA is more suitable for measuring the fusion characteristics of biomass ash. The glassy molten areas of the ash samples are sticky and mainly consist of K-Ca-silicates.

  17. Electrodialytic treatment of fly ash

    DEFF Research Database (Denmark)

    Jensen, Pernille Erland; Pedersen, Anne Juul; Kirkelund, Gunvor Marie

    Heavy metals are removed from the fly ashes by an electrodialytic treatment with the aim of up-grading the ashes for reuse in stead of disposal in landfill.A great potential for upgrading of bio- and waste incineration ashes by electrodialytic treatment exists. In the future, the applicability...

  18. Erosion Testing of Coatings for V-22 Aircraft Applications

    Directory of Open Access Journals (Sweden)

    G. Y. Richardson

    2003-01-01

    Full Text Available High-velocity (183 m/sec sand erosion tests in a wind tunnel were conducted to evaluate developmental coatings from three separate companies under funding by the Navy's phase I small business innovative research program. The purpose of the coatings was to address a particular problem the V-22 tilt-rotor aircraft (Osprey was having with regard to ingestion of sand particles by a titanium impeller that was associated with the aircraft's environmental control system. The three coatings that were deposited on titanium substrates and erosion-tested included (1 SixCy/DLC multilayers deposited by chemical vapor deposition (CVD; (2 WC/TaC/TiC processed by electrospark deposition; and (3 polymer ceramic mixtures applied by means of an aqueous synthesis. The erosion test results are presented; they provided the basis for assessing the suitability of some of these coatings for the intended application.

  19. Erosion, sediment transportation and accumulation in rivers

    Institute of Scientific and Technical Information of China (English)

    N.I.ALEKSEEVSKIY; K.M.BERKOVICH; R.S.CHALOV

    2008-01-01

    The present paper analyses the interrelation between erosion,sediment transportation and accumulation proposed by N.I.Makkaveyev (1908-1983) and its further development in modem studies of river channel processes in Russia.Spatio-temporal linkages between erosion and accumulation are defined considering channel processes at different scales - river longitudinal profile,channel morphological patterns,alluvial bedforms (bars,dunes) and individual sediment particles.Relations between river geomorphic activity,flow transportation capacity and sediment budgets are established (sediment input and output;channel bed erosion and sediment entrainment into flow -termination of sediment transport and its deposition).Channel planforms,floodplain segments separated by the latter and alluvial channel bedforms are shown to be geomorphic expressions of sediment transport process at different spatial and temporal scales.This paper is dedicated to the 100th anniversary of N.I.Makkaveyev,Professor of the Moscow State University,author of the book "River channel and erosion in its basin" (1955).That book is regarded in Russia as the pioneering work which initiated the complex hydrological and geographical studies of channel processes and laid a basis for the theory of unified fluvial erosion-accumulation process.

  20. Modelling erosion on a daily basis

    Science.gov (United States)

    Pikha Shrestha, Dhruba; Jetten, Victor

    2016-04-01

    Effect of soil erosion causing negative impact on ecosystem services and food security is well known. To assess annual erosion rates various empirical models have been extensively used in all the climatic regions. While these models are simple to operate and do not require lot of input data, the effect of extreme rain is not taken into account in the annual estimations. For analysing the effects of extreme rain the event- based models become handy. These models can simulate detail erosional processes including particle detachment, transportation and deposition of sediments during a storm. But they are not applicable for estimating annual erosion rates. Moreover storm event data may not be available everywhere which prohibits their extensive use. In this paper we describe a method by adapting the revised MMF model to assess erosion on daily basis so that the effects of extreme rains are taken into account. We couple it to a simple surface soil moisture balance on a daily basis and include estimation of daily vegetation cover changes. Annual soil loss is calculated by adding daily erosion rates. We compare the obtained results with that obtained from applying the revised MMF model in a case study in the Mamora plateau in northwest Morocco which is affected by severe gully formation. The results show clearly the effects of exceptional rain in erosional processes which cannot be captured in an annual model.

  1. Actinides, accelerators and erosion

    OpenAIRE

    Fifield L. K.; Tims S.G.

    2012-01-01

    Fallout isotopes can be used as artificial tracers of soil erosion and sediment accumulation. The most commonly used isotope to date has been 137Cs. Concentrations of 137Cs are, however, significantly lower in the Southern Hemisphere, and furthermore have now declined to 35% of original values due to radioactive decay. As a consequence the future utility of 137Cs is limited in Australia, with many erosion applications becoming untenable within the next 20 years, and there is a need to replace...

  2. 苏北废黄河三角洲岸线变迁与海岸冲淤动态遥感监测%Remote Sensing Based Dynamic Monitoring of Coastline Change and Coastal Erosion and Deposition of the Abandoned Yellow River Delta in Northern Area of Jiangsu Province

    Institute of Scientific and Technical Information of China (English)

    王志一; 徐素宁; 姜艳辉; 梅军军; 吕铁硬

    2013-01-01

      近几十年来,我国的砂质、淤泥质海岸正呈现侵蚀加剧的演变趋向。随着卫星遥感数据在光谱、时间和空间分辨率方面的不断提高,海岸侵蚀和淤积监测具备了精度越来越高的数据源。在前人研究的基础上,以废黄河三角洲海岸为研究对象,利用遥感技术和野外实地调查对海岸岸线变迁及冲淤动态进行了研究。研究表明:遥感技术在岸线变迁、侵蚀淤积监测和预测方面具有其他技术无可比拟的优势,在海岸带地质环境监测中的应用已成为具有实用价值的技术。%The sandy and silty coast in China has shown an increasing trend of erosion in recent years. The improvement of spec2 tral, temporal, and spatial resolut ion of the satellite remote sensing data has provided the high2accuracy remote sensing data sources for the monitoring of the coastal erosion and deposition. Base on t he previous studies, the remot e sensing technique and filed survey were used to investigate t he coastline change and coastal erosion and deposition of the abandoned Yel ow River Del2 ta in the northern area of Jiangsu province. The results showed that t he remote sensing technique has the unparal eled advanta2 ges for monitoring and predict ing the coastline changes and coastal erosion and deposition compared w ith other technologies, and it has pract ical significance for monit oring the coastal geological environment .

  3. Measurement of erosion: Is it possible?

    NARCIS (Netherlands)

    Stroosnijder, L.

    2005-01-01

    Reasons for erosion measurements are: (1) to determine the environmental impact of erosion and conservation practices, (2) scientific erosion research; (3) development and evaluation of erosion control technology; (4) development of erosion prediction technology and (5) allocation of conservation

  4. Measurement of erosion: Is it possible?

    NARCIS (Netherlands)

    Stroosnijder, L.

    2005-01-01

    Reasons for erosion measurements are: (1) to determine the environmental impact of erosion and conservation practices, (2) scientific erosion research; (3) development and evaluation of erosion control technology; (4) development of erosion prediction technology and (5) allocation of conservation re

  5. Experimental studies on pulp and paper mill sludge ash behavior in fluidized bed combustors

    Energy Technology Data Exchange (ETDEWEB)

    Latva-Somppi, J. [VTT Chemical Technology, Espoo (Finland). Process Technology

    1998-11-01

    Ash formation during the fluidized bed combustion (FBC) of pulp and paper mill sludges has been experimentally studied on an industrial and bench scale. The methods included aerosol measurements, chemical and crystalline composition analyses, thermogravimetry and electron microscopy. Fly ash mass and number size distributions and elemental enrichment in submicron particles and bottom ash were measured. Fly ash, bottom ash and ash deposits were characterized and their formation mechanisms are discussed. During combustion the fine paper-making additives in sludge, clay minerals and calcite, sintered fanning porous agglomerates. The fly ash mass mean size was 7.5 - 15 lam and the supermicron particles included 93.6 - 97.3 % of the fly ash. Condensation of the volatilized inorganic species formed spherical submicron particles in the fly ash. Their mass concentration was almost negligible when co-firing paper mill sludges and wood. This suggests that the fraction of the volatilized inorganic species in the paper mill sludges was low. Results from pulp mill sludge and bark co-firing were different. A clear mass mode below 0.3 pm, presenting 2.2 - 5.0 weight-% of the fly ash was detected. The condensed species included K, Na, S and Cl. Their mass fraction was higher in the pulp mill sludge than in the paper mill sludge. Evidently this resulted in increased volatilization and formation of condensed particles. The following trace elements were enriched in the submicron ash during pulp mill sludge and wood co-firing: As, Cd, Rb and Pb. The main part of the volatile species was, however, captured in the bulk ash. Presumably, this was due to the high surface area concentration in the bulk ash. Sludge moisture was observed to reduce the inorganic species volatilization. Probably steam vaporization from the wet sludge through the burning layer decreased combustion temperatures on char surface and less char was produced. Hence, the volatilization of ash forming species was

  6. MGT 330 ASH Course Tutorial / Tutorialoutlet

    OpenAIRE

    alfoniz

    2015-01-01

    For more course tutorials visit www.tutorialoutlet.com   MGT 330 Week 1 Individual Assignment Functions of Management Paper (Ash) MGT 330 Week 1 DQ 1 (Ash) MGT 330 Week 1 DQ 2 (Ash) MGT 330 Week 1 DQ 3 (Ash) MGT 330 Week 1 Summary (Ash) MGT 330 Week 2 Team Assignment External Internal Factors Paper (Ash) MGT 330 Week 2 Individual Assignment Delegation (Ash) MGT 330 Week 2 Summary (Ash) MGT 330 Week 2 DQ 1 (Ash) MGT 330 Week 2 DQ 2 (Ash) MGT 330 W...

  7. Bank erosion along the dam-regulated lower Roanoke River, North Carolina

    Science.gov (United States)

    Hupp, C.R.; Schenk, E.R.; Richter, J.M.; Peet, Robert K.; Townsend, Phil A.

    2009-01-01

    Dam construction and its impact on downstream fluvial processes may substantially alter ambient bank stability and erosion. Three high dams (completed between 1953 and 1963) were built along the Piedmont portion of the Roanoke River, North Carolina; just downstream the lower part of the river flows across largely unconsolidated Coastal Plain deposits. To document bank erosion rates along the lower Roanoke River, >700 bank-erosion pins were installed along 66 bank transects. Additionally, discrete measurements of channel bathymetry, turbidity, and presence or absence of mass wasting were documented along the entire study reach (153 km). A bank-erosion- floodplain-deposition sediment budget was estimated for the lower river. Bank toe erosion related to consistently high low-flow stages may play a large role in increased mid- and upper-bank erosion. Present bank-erosion rates are relatively high and are greatest along the middle reaches (mean 63 mm/yr) and on lower parts of the bank on all reaches. Erosion rates were likely higher along upstream reaches than present erosion rates, such that erosion-rate maxima have since migrated downstream. Mass wasting and turbidity also peak along the middle reaches; floodplain sedimentation systematically increases downstream in the study reach. The lower Roanoke River isnet depositional (on floodplain) with a surplus of ??2,800,000 m3yr. Results suggest that unmeasured erosion, particularly mass wasting, may partly explain this surplus and should be part of sediment budgets downstream of dams. ?? 2009 The Geological Society of America.

  8. Water repellency of fly ash-enriched forest soils from eastern Germany

    Energy Technology Data Exchange (ETDEWEB)

    Hartmann, P.; Fleige, H.; Horn, R. [Forest Research Institute, Freiburg (Germany). Dept. of Soils & Environment

    2010-12-15

    Fly ash-enriched soils occur widely throughout the industrial regions of eastern Germany and in other heavily industrialized areas. A limited amount of research has suggested that fly ash enrichment alters the water repellency (WR) characteristics of soil. This study concentrates on the influence of fly ash enrichment on WR of forest soils with a focus on forest floor horizons (FFHs). The soils were a Technosol developed from pure lignite fly ash, FFHs with lignite fly ash, and FFHs without lignite fly ash enrichment. Three different methods were used to characterize soil WR. Additionally, carbon composition was determined using {sup 13}C-NMR spectra to interpret the influence of the organic matter. This study showed that the actual WR characteristics of undisturbed, fly ash-enriched soils can be explained in terms of the composition of soil organic matter, with the fly ash content playing only a minimal role. Regardless of the huge amounts of mainly mineral fly ash enrichment, all undisturbed FFHs were comparable in their WR characteristics and their carbon compositions, which were dominated by recently-formed organic substances. The pure fly ash deposit was strongly influenced by lignite remains, with the topsoil having a greater content of recent plant residues. Thus, the undisturbed topsoil was more repellent than the subsoil. When homogenized samples were used, we found a distinct effect of fly ash enrichment and structure on WR. Water repellency of the pure fly ash horizons did not differ distinctly, while the fly ash enrichment in the FFHs caused a significant reduction in WR. These results led to the assumption that water-repellent structures of the topsoils were probably the result of hydrophobic coatings of recently formed organic substances, whereby the initially high wettability of the mainly mineral, hydrophilic fly ash particles was reduced.

  9. Materials characterization of railgun erosion phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Machado, B.I., E-mail: bimachado@miners.utep.edu [Department of Metallurgical and Materials Engineering, University of Texas at El Paso, El Paso, TX 79968 (United States); Murr, L.E.; Martinez, E.; Gaytan, S.M. [Department of Metallurgical and Materials Engineering, University of Texas at El Paso, El Paso, TX 79968 (United States); Satapathy, S. [Institute for Advanced Technology, University of Texas at Austin, Austin, TX 78759 (United States)

    2011-09-25

    Highlights: {yields} Al projectile tribomaterial deposition was observed onto Cu conducting rails in experimental railgun system. {yields} Extreme deformation was observed at the Al/Cu interface by DRX leads to erosion-product deposition. {yields} Creation of nanograins created by DRX allows for mixing at the Al/Cu interface. {yields} No evidence of traditional alloying between Al/Cu observed. - Abstract: This paper describes the observations of aluminum projectile (or armature) tribomaterial deposition onto copper (stator) conducting rails in an experimental solid-armature railgun system, by optical, and scanning and transmission electron microscopy. The extreme deformation at the aluminum/copper interface creates a solid-state flow regime by dynamic recrystallization which also leads to the erosion-product deposition. Melting of the low-temperature aluminum deposit also contributes to the rail damage and degradation of electromagnetic behavior. The creation of nano-grains by dynamic recrystallization allows for mixing at the aluminum/copper interface, and there is no evidence for traditional alloying.

  10. Phosphorus recovery from sewage sludge ash through an electrodialytic process

    DEFF Research Database (Denmark)

    Guedes, Paula; Couto, Nazare; Ottosen, Lisbeth M.

    2014-01-01

    The electrodialytic separation process (ED) was applied to sewage sludge ash (SSA) aiming at phosphorus (P) recovery. As the SSA may have high heavy metals contents, their removal was also assessed. Two SSA were sampled, one immediately after incineration (SA) and the other from an open deposit (SB...

  11. Characteristics of 137Cs deposition in steppe area

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Soil wind erosion in the semiarid steppe area was studied using the 137Cs tracing technique. Comparisons of 137Cs deposition characteristics between different soil profiles indicated that slight aeolian activities occurred on sandy grasslands and semi-fixed dunes with erosion/deposition rates of less than 0.108 cm/a, whereas they were intense on semi-shifting dunes with erosion/deposition rates of higher than 1.35 cm/a.

  12. Coastal Erosion Control Methods

    Science.gov (United States)

    Greene, V.

    2016-12-01

    Coastal erosion is bad because the ecosystem there will be washed away and the animals could drown or be displaced and have to adapt to a new ecosystem that they are not prepared for. I'm interested in this problem because if there aren't beaches when I grow up I won't be able to do the things I would really like to do. I would like to be a marine biologist. Secondly, I don't want to see beach houses washed away. I would like to see people live in harmony with their environment. So, to study ways in which to preserve beaches I will make and use models that test different erosion controls. Two different ideas for erosion control I tested are using seaweed or a rock berm. I think the rock berm will work better than the model of seaweed because the seaweed is under water and the waves can carry the sand over the seaweed, and the rock berm will work better because the rocks will help break the waves up before they reach the shore and the waves can not carry the sand over the rocks that are above the water. To investigate this I got a container to use to model the Gulf of Mexico coastline. I performed several test runs using sand and water in the container to mimic the beach and waves from the Gulf of Mexico hitting the shoreline. I did three trials for the control (no erosion control), seaweed and a rock berm. Rock berms are a border of a raised area of rock. The model for seaweed that I used was plastic shopping bags cut into strips and glued to the bottom of my container to mimic seaweed. My results were that the control had the most erosion which ranged from 2.75 - 3 inches over 3 trials. The seaweed was a little better than the control but was very variable and ranged from 1.5 - 3 inches over 3 trials. The rock berm worked the best out of all at controlling erosion with erosion ranging from 1.5 - 2 inches. My hypothesis was correct because the rock berm did best to control erosion compared to the control which had no erosion control and the model with seaweed.

  13. Dynamics of pyroclastic density currents: Conditions that promote substrate erosion and self-channelization - Mount St Helens, Washington (USA)

    Science.gov (United States)

    Brand, Brittany D.; Mackaman-Lofland, Chelsea; Pollock, Nicholas M.; Bendaña, Sylvana; Dawson, Blaine; Wichgers, Pamela

    2014-04-01

    features but typically has a basal lithic-rich region, is variably fines-depleted and contains pumice lobes, suggesting density segregation in a less concentrated current relative to Unit III. Deep, erosive channels cut by the Unit III current and thick lithic levee deposits within Unit IV occur in an area where debris avalanche relief is limited, suggesting self-channelization developed as a function of internal flow dynamics. An increase in the proportion and size of lithic blocks is found (1) downstream of debris avalanche hummocks, suggesting the PDCs were energetic enough to locally entrain accidental lithics from the hummocks and transport them tens of meters downstream, and (2) within large channels cut by later PDCs into earlier PDC deposits, suggesting self-channelization of the flows increased the carrying capacity of the subsequent channelized currents. Finally, the combination of thick, massive deposits with a high percentage of fine ash within Unit III and in the medial-distal depositional regions of Units II-IV suggests that the PDCs developed and maintained a high internal pore pressure during transport and deposition. The most important results include our ability to understand the role of internal pore pressure on current mobility, the influence of self-channelization on carrying capacity of the currents and the influence of surface roughness on substrate erosion. These observations have critical consequences for understanding the flow dynamics and hazard potential of PDCs.

  14. Composite Ni-Co-fly ash coatings on 5083 aluminium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Panagopoulos, C.N., E-mail: chpanag@metal.ntua.gr [Laboratory of Physical Metallurgy, National Technical University of Athens, Zografos, 15780 Athens (Greece); Georgiou, E.P.; Tsopani, A.; Piperi, L. [Laboratory of Physical Metallurgy, National Technical University of Athens, Zografos, 15780 Athens (Greece)

    2011-03-15

    Ni-Co-fly ash coatings were deposited on zincate treated 5083 wrought aluminium alloy substrates with the aid of the electrodeposition technique. Structural and chemical characterization of the produced composite coatings was performed with the aid of X-ray diffraction (XRD), scanning electron microscopy (SEM) and electron dispersive X-ray analysis (EDS) techniques. The Ni-Co-fly ash coatings were found to consist of a crystalline Ni-Co solid solution with dispersed fly ash particles. In addition, chemical analysis of the Ni-Co matrix showed that it consisted of 80 wt.% Ni and 20 wt.% Co. The co-deposition of fly ash particles leads to a significant increase of the microhardness of the coating. The corrosion behaviour of the Ni-Co-fly ash/zincate coated aluminium alloy, in a 0.3 M NaCl solution (pH = 3.5), was studied by means of potentiodynamic corrosion experiments.

  15. Macroscopic erosion of divertor and first wall armour in future tokamaks

    Science.gov (United States)

    Würz, H.; Bazylev, B.; Landman, I.; Pestchanyi, S.; Safronov, V.

    2002-12-01

    Sputtering, evaporation and macroscopic erosion determine the lifetime of the 'in vessel' armour materials CFC, tungsten and beryllium presently under discussion for future tokamaks. For CFC armour macroscopic erosion means brittle destruction and dust formation whereas for metallic armour melt layer erosion by melt motion and droplet splashing. Available results on macroscopic erosion from hot plasma and e-beam simulation experiments and from tokamaks are critically evaluated and a comprehensive discussion of experimental and numerical macroscopic erosion and its extrapolation to future tokamaks is given. Shielding of divertor armour materials by their own vapor exists during plasma disruptions. The evolving plasma shield protects the armour from high heat loads, absorbs the incoming energy and reradiates it volumetrically thus reducing drastically the deposited energy. As a result, vertical target erosion by vaporization turns out to be of the order of a few microns per disruption event and macroscopic erosion becomes the dominant erosion source.

  16. Composition, diagenetic transformation and alkalinity potential of oil shale ash sediments

    Energy Technology Data Exchange (ETDEWEB)

    Motlep, Riho, E-mail: riho.motlep@ut.ee [Department of Geology, University of Tartu, Ravila 14A, 50411 Tartu (Estonia); Sild, Terje, E-mail: terje.sild@maaamet.ee [Estonian Land Board, Mustamaee tee 51, 10621 Tallinn (Estonia); Puura, Erik, E-mail: erik.puura@ut.ee [Institute of Technology, University of Tartu, Nooruse 1, 50411 Tartu (Estonia); Kirsimaee, Kalle, E-mail: kalle.kirsimae@ut.ee [Department of Geology, University of Tartu, Ravila 14A, 50411 Tartu (Estonia)

    2010-12-15

    Oil shale is a primary fuel in the Estonian energy sector. After combustion 45-48% of the oil shale is left over as ash, producing about 5-7 Mt of ash, which is deposited on ash plateaus annually almost without any reuse. This study focuses on oil shale ash plateau sediment mineralogy, its hydration and diagenetic transformations, a study that has not been addressed. Oil shale ash wastes are considered as the biggest pollution sources in Estonia and thus determining the composition and properties of oil shale ash sediment are important to assess its environmental implications and also its possible reusability. A study of fresh ash and drillcore samples from ash plateau sediment was conducted by X-ray diffractometry and scanning electron microscopy. The oil shale is highly calcareous, and the ash that remains after combustion is derived from the decomposition of carbonate minerals. It is rich in lime and anhydrite that are unstable phases under hydrous conditions. These processes and the diagenetic alteration of other phases determine the composition of the plateau sediment. Dominant phases in the ash are hydration and associated transformation products: calcite, ettringite, portlandite and hydrocalumite. The prevailing mineral phases (portlandite, ettringite) cause highly alkaline leachates, pH 12-13. Neutralization of these leachates under natural conditions, by rainwater leaching/neutralization and slow transformation (e.g. carbonation) of the aforementioned unstable phases into more stable forms, takes, at best, hundreds or even hundreds of thousands of years.

  17. Spreading dynamic of viscous volcanic ash in stimulated jet engine conditions

    Science.gov (United States)

    song, wenjia; Lavallée, Yan; Hess, Kai-Uwe; Kueppers, Ulrich; Cimarelli, Corrado

    2016-04-01

    The ingestion of volcanic ash is widely recognised as a potentially fatal hazard for aircraft operation. The volcanic ash deposition process in a jet turbine is potentially complex. Volcanic ash in the air stream enters the inner liners of the combustors and partially or completely melts under the flames up to 2000 °C, at which point part of the ash deposits in the combustor fuel nozzle. Molten volcanic particles within high energy airflow escape the combustor to enter the turbine and impact the stationary (e.g., inlet nozzle guide vanes) and rotating airfoils (e.g., first stage high-pressure turbine blades) at high speed (up to Mach 1.25) in different directions, with the result that ash may stick, flow and remain liquid or solidify. Thus, the wetting behaviour of molten volcanic ash particle is fundamental to investigate impingement phenomena of ash droplet on the surface of real jet engine operation. The topic of wetting has received tremendous interest from both fundamental and applied points of view. However, due to the interdisciplinary gap between jet engine engineering and geology science, explicit investigation of wetting behaviour of volcanic ash at high temperature is in its infancy. We have taken a big step towards meeting this challenge. Here, we experimentally and theoretically investigate the wetting behaviour of viscous volcanic ash over a wide temperature range from 1100 to 1550 °C using an improved sessile-drop method. The results of our experiment demonstrate that temperature and viscosity play a critical role in determining the wetting possibility and governing the spreading kinetics of volcanic ash at high temperatures. Our systemic analysis of spreading of molten volcanic ash systems allows us to report on the fundamental differences between the mechanisms controlling spreading of organic liquids at room temperature and molten volcanic ash droplets.

  18. Science You Can Use Bulletin: From watersheds to the web: Online tools for modeling forest soil erosion

    Science.gov (United States)

    Sue Miller; Bill Elliot; Pete Robichaud; Randy Foltz; Dennis Flanagan; Erin Brooks

    2014-01-01

    Forest erosion can lead to topsoil loss, and also to damaging deposits of sediment in aquatic ecosystems. For this reason, forest managers must be able to estimate the erosion potential of both planned management activities and catastrophic events, in order to decide where to use limited funds to focus erosion control efforts. To meet this need, scientists from RMRS (...

  19. Biological and chemical interactions excelerating the removal of impurities from fly ashes

    Directory of Open Access Journals (Sweden)

    Štyriaková Iveta

    2002-03-01

    Full Text Available The mesophilic bacteria were isolated from the deposit of fly ash in Chalmová (Slovakia and identified using the BBL identification system. Bacillus cereus was the dominant species in this deposit of aluminosilicate minerals. Under laboratory conditions , Bacillus cereus accelerated the extraction of major and trace impurities in fly ash during bioleaching processes. This process was dependent on bacterial adhesion and production of organic acids. The effect of organic acids produced by bacteria was detected especially in sites where impregnated metals were found in the aluminosilicate structure. Amorphous spherical aluminosilicate particles in allotriomorphic aluminosilicate grains represent a main mineral component of fly-ash in which also elements such as Fe, Ti, Mn, As are bound. The rate of mobilization of Al, Si and Ti from coal fly ash under biochemically relevant conditions in vitro was previously shown to depend on the quantity of the ash microspheres. The qualitative EDS analyse of leachates confirmed the extraction of toxic elements (As and Mn from the initial sample of fly ash.Heterotrophic bacteria of Bacillus genus are capable to remove impurities from deposited fly-ash. A long-term deposition of energy fly-ash causes chemical and mineralogical changes as a result of weathering processes. Depending on the composition of coal concentrate containing SiO2, Al2O3, Fe2O3, CaO, MgO and other oxides, fly ash can provide a useful preliminary batch for the preparation of glass-ceramics or zeolite after extracting of bacterially dissolved elements from it. The mobility of major impurities (Ca and Fe and heavy metals, caused by biochemical leaching of fly ash, suggests the possibility of the development of an alternative way of this raw material treatment. The advantage of bioleaching is relatively low cost and the subsequent low demand for energy compared with conventional technologies.

  20. Hail formation triggers rapid ash aggregation in volcanic plumes.

    Science.gov (United States)

    Van Eaton, Alexa R; Mastin, Larry G; Herzog, Michael; Schwaiger, Hans F; Schneider, David J; Wallace, Kristi L; Clarke, Amanda B

    2015-08-03

    During explosive eruptions, airborne particles collide and stick together, accelerating the fallout of volcanic ash and climate-forcing aerosols. This aggregation process remains a major source of uncertainty both in ash dispersal forecasting and interpretation of eruptions from the geological record. Here we illuminate the mechanisms and timescales of particle aggregation from a well-characterized 'wet' eruption. The 2009 eruption of Redoubt Volcano, Alaska, incorporated water from the surface (in this case, a glacier), which is a common occurrence during explosive volcanism worldwide. Observations from C-band weather radar, fall deposits and numerical modelling demonstrate that hail-forming processes in the eruption plume triggered aggregation of ∼95% of the fine ash and stripped much of the erupted mass out of the atmosphere within 30 min. Based on these findings, we propose a mechanism of hail-like ash aggregation that contributes to the anomalously rapid fallout of fine ash and occurrence of concentrically layered aggregates in volcanic deposits.

  1. ADVANCED POWER SYSTEMS ASH BEHAVIOR IN POWER SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    ZYGARLICKE, CHRISTOPHER J; MCCOLLOR, DONALD P; KAY, JOHN P; SWANSON, MICHAEL L

    1998-09-01

    The overall goal of this initiative is to develop fundamental knowledge of ash behavior in power systems for the purpose of increasing power production efficiency, reducing operation and maintenance costs, and reducing greenhouse gas emissions into the atmosphere. The specific objectives of this initiative focus primarily on ash behavior related to advanced power systems and include the following: Determine the current status of the fundamental ash interactions and deposition formation mechanisms as already reported through previous or ongoing projects at the EERC or in the literature. Determine sintering mechanisms for temperatures and particle compositions that are less well known and remain for the most part undetermined. Identify the relationship between the temperature of critical viscosity (Tcv ) as measured in a viscometer and the crystallization occurring in the melt. Perform a literature search on the use of heated-stage microscopy (HSM) for examining in situ ash-sintering phenomena and then validate the use of HSM in the determination of viscosity in spherical ash particles. Ascertain the formation and stability of specific mineral or amorphous phases in deposits typical of advanced power systems. Evaluate corrosion for alloys being used in supercritical combustion systems.

  2. Ash Management Review—Applications of Biomass Bottom Ash

    Directory of Open Access Journals (Sweden)

    Harpuneet S. Ghuman

    2012-10-01

    Full Text Available In industrialized countries, it is expected that the future generation of bioenergy will be from the direct combustion of residues and wastes obtained from biomass. Bioenergy production using woody biomass is a fast developing application since this fuel source is considered to be carbon neutral. The harnessing of bioenergy from these sources produces residue in the form of ash. As the demand for bioenergy production increases, ash and residue volumes will increase. Major challenges will arise relating to the efficient management of these byproducts. The primary concerns for ash are its storage, disposal, use and the presence of unburned carbon. The continual increase in ash volume will result in decreased ash storage facilities (in cases of limited room for landfill expansion, as well as increased handling, transporting and spreading costs. The utilization of ash has been the focus of many studies, hence this review investigates the likely environmental and technological challenges that increased ash generation may cause. The presence of alkali metals, alkaline earth metals, chlorine, sulphur and silicon influences the reactivity and leaching to the inorganic phases which may have significant impacts on soils and the recycling of soil nutrient. Discussed are some of the existing technologies for the processing of ash. Unburned carbon present in ash allows for the exploration of using ash as a fuel. The paper proposes sieve fractionation as a suitable method for the separation of unburnt carbon present in bottom ash obtained from a fixed-bed combustion system, followed by the application of the gasification technology to particle sizes of energy importance. It is hoped that this process will significantly reduce the volume of ash disposed at landfills.

  3. Environmental impacts of the Tennessee Valley Authority Kingston coal ash spill. 2. Effect of coal ash on methylmercury in historically contaminated river sediments.

    Science.gov (United States)

    Deonarine, Amrika; Bartov, Gideon; Johnson, Thomas M; Ruhl, Laura; Vengosh, Avner; Hsu-Kim, Heileen

    2013-02-19

    The Tennessee Valley Authority Kingston coal ash spill in December 2008 deposited approximately 4.1 million m(3) of fly ash and bottom ash into the Emory and Clinch River system (Harriman, Tennessee, U.S.A.). The objective of this study was to investigate the impact of the ash on surface water and sediment quality over an eighteen month period after the spill, with a specific focus on mercury and methylmercury in sediments. Our results indicated that surface water quality was not impaired with respect to total mercury concentrations. However, in the sediments of the Emory River near the coal ash spill, total mercury concentrations were 3- to 4-times greater than sediments several miles upstream of the ash spill. Similarly, methylmercury content in the Emory and Clinch River sediments near the ash spill were slightly elevated (up to a factor of 3) at certain locations compared to upstream sediments. Up to 2% of the total mercury in sediments containing coal ash was present as methylmercury. Mercury isotope composition and sediment geochemical data suggested that elevated methylmercury concentrations occurred in regions where native sediments were mixed with coal ash (e.g., less than 28% as coal ash in the Emory River). This coal ash may have provided substrates (such as sulfate) that stimulated biomethylation of mercury. The production of methylmercury in these areas is a concern because this neurotoxic organomercury compound can be highly bioaccumulative. Future risk assessments of coal ash spills should consider not only the leaching potential of mercury from the wastes but also the potential for methylmercury production in receiving waters.

  4. A mechanical erosion model for two-phase mass flows

    CERN Document Server

    Pudasaini, Shiva P

    2016-01-01

    Erosion, entrainment and deposition are complex and dominant, but yet poorly understood, mechanical processes in geophysical mass flows. Here, we propose a novel, process-based, two-phase, erosion-deposition model capable of adequately describing these complex phenomena commonly observed in landslides, avalanches, debris flows and bedload transport. The model is based on the jump in the momentum flux including changes of material and flow properties along the flow-bed interface and enhances an existing general two-phase mass flow model (Pudasaini, 2012). A two-phase variably saturated erodible basal morphology is introduced and allows for the evolution of erosion-deposition-depths, incorporating the inherent physical process including momentum and rheological changes of the flowing mixture. By rigorous derivation, we show that appropriate incorporation of the mass and momentum productions or losses in conservative model formulation is essential for the physically correct and mathematically consistent descript...

  5. MGT 401 ASH Course Tutorial / Tutorialoutlet

    OpenAIRE

    kennith

    2015-01-01

    For more course tutorials visit www.tutorialoutlet.com   MGT 401 Week 1 Individual Assignment Strategic Management Process Paper (Ash) MGT 401 Week 1 Class Activity Week 1 (Ash) MGT 401 Week 1 DQ 1 (Ash) MGT 401 Week 1 DQ 2 (Ash) MGT 401 Week 2 Learning Team Business Model Comparison Example (Ash) MGT 401 Week 2 DQ 1 (Ash) MGT 401 Week 2 DQ 2 (Ash) MGT 401 Week 2 Class Activity (Ash) MGT 401 Week 3 Individual Assignment Business Plan Evaluation (Ash) ...

  6. How does slope form affect erosion in CATFLOW-SED?

    Science.gov (United States)

    Gabelmann, Petra; Wienhöfer, Jan; Zehe, Erwin

    2016-04-01

    Erosion is a severe environmental problem in agro-ecosystems with highly erodible loess soils. It is controlled by various factors, e.g. rainfall intensity, initial wetness conditions, soil type, land use and tillage practice. Furthermore slope form and gradient have been shown to influence erosion amounts to a large extent. Within the last fifty years, various erosion models have been developed to describe the erosion process, estimate erosion amounts and identify erosion-prone areas. These models differ in terms of complexity, the processes which are considered, and the data required for model calibration and they can be categorised into empirical or statistical, conceptual, and physically-based models. CATFLOW-SED is a process-based hydrology and erosion model that can operate on catchment and hillslope scales. Soil water dynamics are described by the Richards equation including effective approaches for preferential flow. Evapotranspiration is simulated using an approach based on the Penman-Monteith equation. The model simulates overland flow using the diffusion wave equation. Soil detachment is related to the attacking forces of rainfall and overland flow, and the erosion resistance of soil. Sediment transport capacity and sediment deposition are related to overland flow velocity using the equation of Engelund and Hansen and the sinking velocity of grain sizes respectively. We performed a study to analyse the erosion process on different virtual hillslopes, with varying slope gradient and slope form, using the CATFLOW-SED model. We explored the role of landform on erosion and sedimentation, particularly we look for forms that either maximise or minimise erosion. Results indicate the importance to performing the process implementation within physically meaningful limits and choose appropriate model parameters respectively.

  7. The pathogenesis of bone erosions in gouty arthritis.

    Science.gov (United States)

    Schlesinger, Naomi; Thiele, Ralf G

    2010-11-01

    The characteristic radiographic hallmarks of chronic gouty arthritis are the presence of macroscopic tophi and erosions with overhanging edges and relative preservation of the joint space. In recent years there has been more insight into the processes underlying the development of bone erosions in gouty arthritis. This review discusses the mechanical, pathological, cellular and immunological factors that may have a role in the pathogenesis of bone erosions in gouty arthritis. It highlights the evidence suggesting that monosodium urate crystal deposition is associated with the presence of underlying osteoarthritis and the important role of osteoclasts and the receptor for activation of nuclear factor κ B (RANK) and RANK ligand (RANK-RANKL) pathway in the pathogenesis of gouty erosions. Gouty arthritis is primarily driven by interleukin 1β (IL-1β). IL-1β has been implicated in bone destruction and erosions in other inflammatory arthridities. Thus, future IL-1 inhibitors may prevent and treat erosion formation due to tophaceous gouty arthritis. This review discusses imaging modalities and highlights ultrasongraphic evidence suggesting a significant relationship between the presence of the gouty tophus and bone erosions as well as the frequent presence of persistent low-grade inflammation in asymptomatic chronic tophaceous gouty arthritis on high-resolution ultrasonography. It is the tophus eroding the underlying bone that is pivotal for the development of bone erosions in gouty arthritis.

  8. Monitoring Riverbank Erosion in Mountain Catchments Using Terrestrial Laser Scanning

    Directory of Open Access Journals (Sweden)

    Laura Longoni

    2016-03-01

    Full Text Available Sediment yield is a key factor in river basins management due to the various and adverse consequences that erosion and sediment transport in rivers may have on the environment. Although various contributions can be found in the literature about sediment yield modeling and bank erosion monitoring, the link between weather conditions, river flow rate and bank erosion remains scarcely known. Thus, a basin scale assessment of sediment yield due to riverbank erosion is an objective hard to be reached. In order to enhance the current knowledge in this field, a monitoring method based on high resolution 3D model reconstruction of riverbanks, surveyed by multi-temporal terrestrial laser scanning, was applied to four banks in Val Tartano, Northern Italy. Six data acquisitions over one year were taken, with the aim to better understand the erosion processes and their triggering factors by means of more frequent observations compared to usual annual campaigns. The objective of the research is to address three key questions concerning bank erosion: “how” erosion happens, “when” during the year and “how much” sediment is eroded. The method proved to be effective and able to measure both eroded and deposited volume in the surveyed area. Finally an attempt to extrapolate basin scale volume for bank erosion is presented.

  9. Physical erosion modelling of complex morphodynamics in the upper Val d'Orcia: a combination of EROSION 3D, UAV, SFM and CANUPO

    Science.gov (United States)

    Buchholz, Arno; Kaiser, Andreas; Neugirg, Fabian; Schindewolf, Marcus; Schmidt, Jürgen

    2017-04-01

    Throughout the Mediterranean Basin soil erosion is both a widely spread and a landscape shaping process. In order to increase the understanding of morphodynamics inside large Italian badland areas, so called Calanchi, the process based erosion model EROSION 3D was parameterized by artificial rainfall simulations, soil sampling and an UAV based high resolution digital elevation model. Vegetation structures were removed with the CANUPO-classifier in CloudCompare. The rainfall experiments proved to be a convenient but costly tool for deriving the model input parameters. While building up the model, different composition of the inhomogeneous soil surface was considered. A diverse behavior against erosion by water was observed. The results showed that the deposition surfaces of rotational or translational slides, besides calanco depth contour, tend to degrade. Although these deposits present a comparatively low bulk density, they reduce the infiltration due to soil surface clogging and cause less erosion resistances. The differential consideration of erosion sub-processes turns out as particularly challenging. The simulation of a reference year showed an annual soil export from the catchment of 43 t/ha, which corresponds to an average surface lowering of 3 mm. Sheet erosion represents an amount of about 5% of the total erosion of badlands. Furthermore, infiltration depth, amount of runoff, sediment concentration, and grain size composition of the deposits were calculated. This study makes a contribution to the understanding of denudation processes in Calanchi badlands. The presented process-based modeling of badlands is contributing a new aspect to erosion research.

  10. Clinical studies of dental erosion and erosive wear

    National Research Council Canada - National Science Library

    Huysmans, M.C.D.N.J.M; Chew, H.P; Ellwood, R.P

    2011-01-01

    We define erosion as a partial demineralisation of enamel or dentine by intrinsic or extrinsic acids and erosive tooth wear as the accelerated loss of dental hard tissue through the combined effect...

  11. Effect of Vegetation Changes on Soil Erosion on the Loess Plateau

    Institute of Scientific and Technical Information of China (English)

    ZHENG Fen-Li

    2006-01-01

    Vegetation is one of the key factors affecting soil erosion on the Loess Plateau. The effects of vegetation destruction and vegetation restoration on soil erosion were quantified using data from long-term field runoff plots established on the eastern slope of the Ziwuling secondary forest region, China and a field survey. The results showed that before the secondary vegetation restoration period (before about 1866-1872), soil erosion in the Ziwuling region of the Loess Plateau was similar to the current erosion conditions in neighboring regions, where the soil erosion rate now is 8 000 to 10 000t km-2 year-1. After the secondary vegetation restoration, soil erosion was very low; influences of rainfall and slope gradient on soil erosion were small; the vegetation effect on soil erosion was predominant; shallow gully and gully erosion ceased; and sediment deposition occurred in shallow gully and gully channels. In modern times when human activities destroyed secondary forests, soil erosion increased markedly, and erosion rates in the deforested lands reached 10 000 to24 000 t km-2 year-1, which was 797 to 1682 times greater than those in the forested land prior to deforestation. Rainfall intensity and landform greatly affected the soil erosion process after deforestation. These results showed that accelerated erosion caused by vegetation destruction played a key role in soil degradation and eco-environmental deterioration in deforested regions.

  12. Atomic Oxygen Erosion Yield Dependence Upon Texture Development in Polymers

    Science.gov (United States)

    Banks, Bruce A.; Loftus, Ryan J.; Miller, Sharon K.

    2016-01-01

    The atomic oxygen erosion yield (volume of a polymer that is lost due to oxidation per incident atom) of polymers is typically assumed to be reasonably constant with increasing fluence. However polymers containing ash or inorganic pigments, tend to have erosion yields that decrease with fluence due to an increasing presence of protective particles on the polymer surface. This paper investigates two additional possible causes for erosion yields of polymers that are dependent upon atomic oxygen. These are the development of surface texture which can cause the erosion yield to change with fluence due to changes in the aspect ratio of the surface texture that develops and polymer specific atomic oxygen interaction parameters. The surface texture development under directed hyperthermal attack produces higher aspect ratio surface texture than isotropic thermal energy atomic oxygen attack. The fluence dependence of erosion yields is documented for low Kapton H (DuPont, Wilmington, DE) effective fluences for a variety of polymers under directed hyperthermal and isotropic thermal energy attack.

  13. Influence of mineral and chemical composition of coal ashes on their fusibility

    Energy Technology Data Exchange (ETDEWEB)

    Vassilev, S.V.; Kitano, K.; Takeda, S.; Tsurue, T. [Bulgarian Academy of Sciences, Sofia (Bulgaria). Institute of Applied Mineralogy

    1995-10-01

    The relationships between ash-fusion temperature (AFT) and mineral and chemical composition of coals and coal ashes from a wide variety of deposits (41) were studied by a melting test, X-ray diffractometry, light microscopy, differential-thermal, thermogravimetric and chemical analyses. A reliable explanation and prediction of AFT only from the total chemical composition of coal ash is inadequate because most important are the modes of elemental combination (minerals and phases) in coal and coal ash, as well as their behaviour during heating. The coals, which have low-melting temperature ashes, are lower rank coals with increased concentrations of S, Ca, Mg, Fe and Na and respectively, sulphates, carbonates, sulphides, oxides, montmorillonite, and feldspars. The coals with high-melting temperature ashes have an advanced rank and increased contents of Si, Al and Ti and respectively, quartz, kaolinite, illite and rutile, as well as some Fe oxides and siderite. The behaviour of chemical components and various coal and coal-ash minerals during heating is discussed, and their refractory and fluxing influence on ash fusibility is described. Lower AFT is related to increased proportions of the fluxing sulphate, silicate and oxide minerals such as anhydrite, acid plagioclases, K feldspars, Ca silicates and hematite in high-temperature coal ashes. Higher AFT is a result of decreased fluxing minerals and increased refractory minerals such as quartz, metakaolinite, mullite, and rutile in these ashes. Defined softening, hemispherical and fluid ash-fusion temperatures fit various processes of inorganic transformations which are discussed. A reliable explanation and prediction of ash-fusion characteristics can be made when the coal and coal-ash minerals and their amounts, as well as their refractory and fluxing action during heating, are known. 31 refs., 7 figs., 5 tabs.

  14. Ash dust co-centration in the vicinity of the ash disposal site depending on the size of the pond (“Water Mirror”

    Directory of Open Access Journals (Sweden)

    Zoran Gršić

    2010-09-01

    Full Text Available Thermal power plants Nikola Tesla “A” and “B” are large sources of ash from their ashes/slag deposit sites. Total sizes of ashes/slag depots are 600ha and 382ha, with active cassettes having dimensions ∼200 ha and ∼130 ha. The active cassettes of the disposal sites are covered by rather large waste ponds, the sizes of vary depending on the working condition of a sluice system and on meteorological conditions. Modeling of ash lifting was attempted using results from the dust lifting research. The relation between sizes of ponds and air dust concentration in the vicinity of ash disposal sites was analyzed. As expected, greater sizes of dried disposal site surfaces in combination with stronger winds gave greater dust emission and greater air dust concentration.

  15. Bentonite erosion. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Birgersson, Martin; Boergesson, Lennart; Hedstroem, Magnus; Karnland, Ola; Nilsson, Ulf (Clay Technology AB, Lund (Sweden))

    2009-12-15

    Low saline water may reach KBS-3 repository depth, e.g. during periods of glaciation. Under such aqueous conditions, the montmorillonite part of the bentonite buffer might transform into a sol and thereby be transported away with flowing water in fractures. The primary aim with this report is to improve the understanding of the basic principles for this possible montmorillonite particle release. The report includes experimental and theoretical work performed at Clay Technology. Natural bentonite and ion-exchanged purified montmorillonite from three different geographical origins, Wyoming (U.S.), Milos (Greece) and Kutch (India) have been studied. Experimental and/or theoretical investigations have been performed with respect to: - Free swelling ability; - Rheological properties; - Rate of bentonite loss into fractures; - Filtering; - Ion exchange; - Sol formation ability; - Ion diffusion; - Mass loss due to erosion. The performed erosion experiments show that erosion does not occur in a mixed calcium/sodium montmorillonite with at least 20% calcium in exchange positions, when the external solution contains above 4 mM charge equivalents. This result is in agreement with the presented conceptual view of sol formation and measured equilibrium properties in mixed calcium/sodium montmorillonite. The findings imply that the buffer will be stable for non-glacial conditions. However, erosion due to sol formation cannot be ruled out for glacial conditions.

  16. Erosion of dust aggregates

    CERN Document Server

    Seizinger, Alexander; Kley, Wilhelm

    2013-01-01

    Aims: The aim of this work is to gain a deeper insight into how much different aggregate types are affected by erosion. Especially, it is important to study the influence of the velocity of the impacting projectiles. We also want to provide models for dust growth in protoplanetary disks with simple recipes to account for erosion effects. Methods: To study the erosion of dust aggregates we employed a molecular dynamics approach that features a detailed micro-physical model of the interaction of spherical grains. For the first time, the model has been extended by introducing a new visco-elastic damping force which requires a proper calibration. Afterwards, different sample generation methods were used to cover a wide range of aggregate types. Results: The visco-elastic damping force introduced in this work turns out to be crucial to reproduce results obtained from laboratory experiments. After proper calibration, we find that erosion occurs for impact velocities of 5 m/s and above. Though fractal aggregates as ...

  17. Dune erosion above revetments

    NARCIS (Netherlands)

    Van Thiel de Vries, J.S.M.

    2012-01-01

    In a situation with a narrow dune, the dune base can be protected with a revetment to reduce dune erosion during extreme events. To quantify the effects of a revetment on storm impact, the functionality of the numerical storm impact model XBeach (Roelvink et al., 2009) is extended to account for the

  18. Dielectric properties of fly ash

    Indian Academy of Sciences (India)

    S C Raghavendra; R L Raibagkar; A B Kulkarni

    2002-02-01

    This paper reports the dielectric properties of fly ash. The dielectric measurements were performed as a function of frequency and temperature. The sample of fly ash shows almost similar behaviour in the frequency and temperature range studied. The large value of dielectric constant in the typical frequency range is because of orientation polarization and tight binding force between the ions or atoms in the fly ash. The sample of fly ash is of great scientific and technological interest because of its high value of dielectric constant (104).

  19. Erosion by an Alpine glacier.

    Science.gov (United States)

    Herman, Frédéric; Beyssac, Olivier; Brughelli, Mattia; Lane, Stuart N; Leprince, Sébastien; Adatte, Thierry; Lin, Jiao Y Y; Avouac, Jean-Philippe; Cox, Simon C

    2015-10-09

    Assessing the impact of glaciation on Earth's surface requires understanding glacial erosion processes. Developing erosion theories is challenging because of the complex nature of the erosion processes and the difficulty of examining the ice/bedrock interface of contemporary glaciers. We demonstrate that the glacial erosion rate is proportional to the ice-sliding velocity squared, by quantifying spatial variations in ice-sliding velocity and the erosion rate of a fast-flowing Alpine glacier. The nonlinear behavior implies a high erosion sensitivity to small variations in topographic slope and precipitation. A nonlinear rate law suggests that abrasion may dominate over other erosion processes in fast-flowing glaciers. It may also explain the wide range of observed glacial erosion rates and, in part, the impact of glaciation on mountainous landscapes during the past few million years. Copyright © 2015, American Association for the Advancement of Science.

  20. Severe Environmental Corrosion Erosion Facility

    Data.gov (United States)

    Federal Laboratory Consortium — NETL’s Severe Environment Corrosion Erosion Facility in Albany, OR, allows researchers to safely examine the performance of materials in highly corrosive or erosive...

  1. Auto consolidated cohesive sediments erosion; Erosion des sediments cohesifs en autoconsolidation

    Energy Technology Data Exchange (ETDEWEB)

    Ternat, F

    2007-02-15

    Pollutants and suspended matters of a river can accumulate into the sedimentary column. Once deposited, they are submitted to self-weight consolidation processes, ageing and burying, leading to an increase of their erosion resistance. Pollutant fluxes can be related to sedimentary fluxes, determined by threshold laws. In this work, an erosion threshold model is suggested by introducing a cohesion force into the usual force balance. A model of cohesion is developed on the basis of interactions between argillaceous cohesive particles (clays), particularly the Van der Waals force, whose parameterization is ensured by means of granulometry and porosity. Artificial erosion experiments were performed in a recirculating erosion flume with natural cored sediments where critical shear stress measurements were performed. Other analyses provided granulometry and porosity. The results obtained constitute a good database for the literature. The model is then applied to the experimental conditions and gives good agreement with measurements. An example of the accounting for self-weight consolidation processes is finally suggested, before finishing on a Mohr like diagram dedicated to soft cohesive sediment erosion. (author)

  2. Multifrequency radar imaging of ash plumes: an experiment at Stromboli

    Science.gov (United States)

    Donnadieu, Franck; Freret-Lorgeril, Valentin; Delanoë, Julien; Vinson, Jean-Paul; Peyrin, Frédéric; Hervier, Claude; Caudoux, Christophe; Van Baelen, Joël; Latchimy, Thierry

    2016-04-01

    the beam, providing additional constraints on particle sizes and sedimentation process from ash clouds. Furthermore, proximal deposits were analyzed by sieving samples collected near the craters and processing data from a laser disdrometer. Ash samples constantly show a unimodal distribution ranging from 44 microns to 1 mm (more rarely 2 mm), with a mode in the range 0.1-0.3 mm. This is expected to be representative of the coarse content of the ash plumes generated by Strombolian explosions at Stromboli, i.e. mainly coarse ash, and will be used to constrain inversions of the radar signals.

  3. Ash formation under pressurized pulverized coal combustion conditions

    Science.gov (United States)

    Davila Latorre, Aura Cecilia

    Coal combustion is a source of inorganic particulate matter (ash), which can deposit in boilers and also be emitted into the atmosphere becoming part of ambient fine particulate matter (PM 2.5). In order to decrease coal combustion emissions per unit of power produced, higher efficiency systems have been proposed, including systems operating at elevated pressures. These new operating conditions will affect pollutant formation mechanisms, particularly those associated with the conversion of mineral matter to ash. Ash particle formation mechanisms are particularly sensitive to changes in pressure as they are related to the structure of coal char particles at early stages of combustion. To assess the importance of pressure on ash particle formation, pyrolyzed chars and ash particles from pressurized pulverized combustion of two bituminous and one subbituminous U.S. coals at operating pressures up to 30 atm were studied. Pressure changes the distribution of char particle types, changing the spatial distribution of the minerals during the combustion process and therefore affecting particle formation mechanisms. Chars were examined by Scanning Electron Microscopy (SEM) and classified into two different types (cenospheric and solid) depending on porosity and wall thickness. A correlation for estimating the amount of these cenospheric char particles was then proposed for bituminous coals based on the operating conditions and coal maceral analysis. The ash particle size distribution of the coals combusted at different operating pressures was measured using Computer Controlled Scanning Electron Microscopy (CCSEM). The results of the char characterization and ash particle size distribution measurements were then incorporated into an ash particle formation algorithm that was proposed and implemented. The model predicts ash particle size and composition distributions at elevated pressures under conditions of complete char burnout. Ash predictions were calculated by first

  4. Volcanic ash infrared signature: realistic ash particle shapes compared to spherical ash particles

    Directory of Open Access Journals (Sweden)

    A. Kylling

    2013-10-01

    Full Text Available The reverse absorption technique is often used to detect volcanic clouds from thermal infrared satellite measurements. From these measurements particle size and mass loading may also be estimated using radiative transfer modelling. The radiative transfer modelling usually assumes that the ash particles are spherical. We calculate thermal infrared optical properties of highly irregular and porous ash particles and compare these with mass- and volume-equivalent spherical models. Furthermore, brightness temperatures pertinent to satellite observing geometry are calculated for the different ash particle shapes. Non-spherical shapes and volume-equivalent spheres are found to produce a detectable ash signal for larger particle sizes than mass-equivalent spheres. The assumption of mass-equivalent spheres for ash mass loading estimates will underestimate the mass loading by several tens of percent compared to morphologically complex inhomogeneous ash particles.

  5. Volcanic ash infrared signature: realistic ash particle shapes compared to spherical ash particles

    Science.gov (United States)

    Kylling, A.; Kahnert, M.; Lindqvist, H.; Nousiainen, T.

    2013-10-01

    The reverse absorption technique is often used to detect volcanic clouds from thermal infrared satellite measurements. From these measurements particle size and mass loading may also be estimated using radiative transfer modelling. The radiative transfer modelling usually assumes that the ash particles are spherical. We calculate thermal infrared optical properties of highly irregular and porous ash particles and compare these with mass- and volume-equivalent spherical models. Furthermore, brightness temperatures pertinent to satellite observing geometry are calculated for the different ash particle shapes. Non-spherical shapes and volume-equivalent spheres are found to produce a detectable ash signal for larger particle sizes than mass-equivalent spheres. The assumption of mass-equivalent spheres for ash mass loading estimates will underestimate the mass loading by several tens of percent compared to morphologically complex inhomogeneous ash particles.

  6. Influence of Bed Ash and Fly Ash Replacement in Mortars

    Directory of Open Access Journals (Sweden)

    S. L. Summoogum-Utchanah

    2015-03-01

    Full Text Available The study evaluates the influence of fly ash and bottom ash as partial cement substitutes in mortars by studying the particle size distribution, consistency, flow, fresh density, air content, compressive strength and flexural strength characteristics. The results revealed that fly ash and cement had relatively the same particle size distribution unlike bottom ash. In the fresh state, as the amount of pozzolans increased in the mixtures, the mortars showed an enhancement in workability, were susceptible to water loss by bleeding, and exhibited a decline in fresh density. The early strength gains of the fly ash samples were low but reached higher than the control after 28 days of curing. The flexural strength increased as the fly ash content rose to reach a maximum at 20 % replacement. However, the 2-day compressive strength of bottom ash samples was higher than the control but decreased after 28 days of curing while the flexural strength declined with addition of bottom ash except at 5 % substitution.

  7. Spatial models for monitoring the spatio-temporal evolution of ashes after fire – a case study of a burnt grassland in Lithuania

    Directory of Open Access Journals (Sweden)

    P. Pereira

    2013-05-01

    Full Text Available Ash thickness is a key variable in the protection of soil against erosion agents after planned and unplanned fires. Ash thickness measurements were conducted along two transects (flat and sloping areas following a grided experimental design. In order to interpolate data with accuracy and identify the techniques with the least bias, several interpolation methods were tested in the grided plot. Overall, the fire had a low severity. However, the fire significantly reduced the ground cover, especially on sloping areas, owing to the higher fire severity and/or less biomass previous to the fire. Ash thickness depended on fire severity and was thin where fire severity was higher and thicker in lower fire severity sites. The ash thickness decreased with time after the fire. Between 4 and 16 days after the fire, ash was transported by wind. The greatest reduction took place between 16 and 34 days after the fire as a result of rainfall, and was more efficient where fire severity was higher. Between 34 and 45 days after the fire, no significant differences in ash thickness were identified among ash colours and only traces of the ash layer remained. The omni-directional experimental variograms showed that variable structure did not change significantly with time. The ash spatial variability increased with time, particularly on the slope, as a result of water erosion.

  8. Organic carbon redistribution due to erosion at various spatial scales

    Science.gov (United States)

    Jakab, Gergely; Szabó, Judit; Szalai, Zoltán; Mészáros, Erzsébet; Szabó, Boglárka; Centeri, Csaba

    2016-04-01

    Soil organic carbon (SOC) has a crucial role both in terms of crop production and climate change mitigation. Soil could be an effective sink of atmospheric carbon since in agricultural areas the carbon content of the soil is much lower than its capacity. The main obstacle against carbon charge of the soils is cultivation and erosion. Soil detachment, delivery and deposition are rather scale dependent processes that is why it is difficult to compare or extrapolate results among scales. Present case study aims to compare the SOC content and soil organic matter (SOM) compound of the detached soil particles on the ridge to those that are deposited at the bottom of the catena in order to clarify the role of delivery in soil erosion. Initial soil erosion was modelled using a laboratory rainfall simulator at the point scale. Deposition was surveyed and analysed by 3D sampling from drillings on the sedimentary parts at the field scale. At the detachment phase carbon enrichment (50-100%) and C/N ratio increase were found in each aggregate size class of the detached soil particles. Variations in SOM compounds suggested that a very intensive SOM exchange took place during initial erosion processes and delivery. In addition to the selective erosion selective SOC deposition were also found at the field scale. Two topographical hotspots were identified as the place of SOC surplus deposition. In these patches SOM compounds were deposited separately due to different geomorphologic positions. The lower patch next to the end of an ephemeral gully was dominated by less polymerized more aromatic SOM, while the upper one was ruled by high molecular weighted aliphatic SOM. Difference in SOM compound was manifested also in different sediment morphology. The topographically higher deposition patch were covered by aggregates while the lower one was found to be sealed by individual soil particles. Present study was supported by the National Hungarian Research Found K100180, G. Jakab was

  9. Fly ash quality and utilization

    Energy Technology Data Exchange (ETDEWEB)

    Barta, L.E.; Lachner, L.; Wenzel, G.B. [Inst. for Energy, Budapest (Hungary); Beer, M.J. [Massachusetts Inst. of Technology, Cambridge, MA (United States)

    1995-12-01

    The quality of fly ash is of considerable importance to fly ash utilizers. The fly ash puzzolanic activity is one of the most important properties that determines the role of fly ash as a binding agent in the cementing process. The puzzolanic activity, however is a function of fly ash particle size and chemical composition. These parameters are closely related to the process of fly ash formation in pulverized coal fired furnaces. In turn, it is essential to understand the transformation of mineral matter during coal combustion. Due to the particle-to-particle variation of coal properties and the random coalescence of mineral particles, the properties of fly ash particles e.g. size, SiO{sub 2} content, viscosity can change considerably from particle to particle. These variations can be described by the use of the probability theory. Since the mean values of these randomly changing parameters are not sufficient to describe the behavior of individual fly ash particles during the formation of concrete, therefore it is necessary to investigate the distribution of these variables. Examples of these variations were examined by the Computer Controlled Scanning Electron Microscopy (CCSEM) for particle size and chemical composition for Texas lignite and Eagel Butte mineral matter and fly ash. The effect of combustion on the variations of these properties for both the fly ash and mineral matter were studied by using a laminar flow reactor. It is shown in our paper, that there are significant variations (about 40-50% around the mean values) of the above-listed properties for both coal samples. By comparing the particle size and chemical composition distributions of the mineral matter and fly ash, it was possible to conclude that for the Texas lignite mineral matter, the combustion did not effect significantly the distribution of these properties, however, for the Eagel Butte coal the combustion had a major impact on these mineral matter parameters.

  10. Simulated Impacts of Emerald Ash Borer on Throughfall and Stemflow Inputs of Water and Nitrogen in Black Ash Wetlands in Northern Michigan

    Science.gov (United States)

    Pypker, T. G.; Davis, J.; Van Grinsven, M. J.; Bolton, N. W.; Shannon, J.; Kolka, R. K.; Nelson, J.; Wagenbrenner, J. W.

    2014-12-01

    Emerald ash borer (Agrilus planipennis Fairmaire (EAB)) is an invasive insect that effectively kills ash trees (genus: Fraxinus) greater than 2.5 cm in diameter, resulting in near-complete stand mortality within 3-4 years. Black ash wetlands occupy approximately 270,000 ha in Michigan, and have 40 to 90% of the basal area occupied by black ash (F. nigra Marshall); hence the loss of black ash may result in dramatic changes in the canopy hydrology and nutrient deposition. We assessed the impact of a simulated EAB invasion on throughfall and stemflow quantity and nitrogen (N) content in 9 uninfected black ash wetlands located in the Upper Peninsula of Michigan. Within the 9 stands, 3 stands were left untreated ('Control'), 3 stands had all the black ash trees manually girdled ('Girdled') and 3 had all the black ash trees felled by chainsaw ('Clearcut'). We measured the quantity and inorganic-N content of throughfall using an array of randomly placed collectors (n = 16 per site). Stemflow was monitored at 2 sites (n = 12 trees) on the 3 most common tree species (black ash, yellow birch (Betula alleghaniensis Britt.) and red maple (Acer rubra L.)). Preliminary results indicate that relative to the Control, average monthly throughfall was 25% and 1% greater in the Clearcut and Girdled sites, respectively. While the loss of the ash trees resulted in greater throughfall inputs in the Clearcut sites, water table heights did not significantly change as a result of the treatments. Stemflow from live black ash trees was lower than from the yellow birch and red maple trees. As a result, we predict stemflow will increase over time as species with smoother bark and less upright branching begin replacing the black ash. Hence, the change in tree species may result in a greater concentration of inorganic-N inputs to the base of the trees, thereby altering the distribution of inorganic-N inputs into the wetland. Our preliminary results show no significant change in the total

  11. Volcanic ash hazard climatology for an eruption of Hekla Volcano, Iceland

    Science.gov (United States)

    Leadbetter, Susan J.; Hort, Matthew C.

    2011-01-01

    Ash produced by a volcanic eruption on Iceland can be hazardous for both the transatlantic flight paths and European airports and airspace. In order to begin to quantify the risk to aircraft, this study explored the probability of ash from a short explosive eruption of Hekla Volcano (63.98°N, 19.7°W) reaching European airspace. Transport, dispersion and deposition of the ash cloud from a three hour 'explosive' eruption with an initial plume height of 12 km was simulated using the Met Office's Numerical Atmospheric-dispersion Modelling Environment, NAME, the model used operationally by the London Volcanic Ash Advisory Centre. Eruptions were simulated over a six year period, from 2003 until 2008, and ash clouds were tracked for four days following each eruption. Results showed that a rapid spread of volcanic ash is possible, with all countries in Europe facing the possibility of an airborne ash concentration exceeding International Civil Aviation Organization (ICAO) limits within 24 h of an eruption. An additional high impact, low probability event which could occur is the southward spread of the ash cloud which would block transatlantic flights approaching and leaving Europe. Probabilities of significant concentrations of ash are highest to the east of Iceland, with probabilities exceeding 20% in most countries north of 50°N. Deposition probabilities were highest at Scottish and Scandinavian airports. There is some seasonal variability in the probabilities; ash is more likely to reach southern Europe in winter when the mean winds across the continent are northerly. Ash concentrations usually remain higher for longer during summer when the mean wind speeds are lower.

  12. The ash in forest fire affected soils control the soil losses. Part 1. The pioneer research

    Science.gov (United States)

    Cerdà, Artemi; Pereira, Paulo

    2013-04-01

    After forest fires, the ash and the remaining vegetation cover on the soil surface are the main protection against erosion agents. The control ash exert on runoff generation mechanism was researched during the 90's (Cerdà, 1998a; 1998b). This pioneer research demonstrated that after forest fires there is a short period of time that runoff and surface wash by water is controlled by the high infiltration rates achieved by the soil, which were high due to the effect of ash acting as a mulch. The research of Cerdà (1998a; 1998b) also contributed to demonstrate that runoff was enhanced four month later upon the wash of the ash by the runoff, but also due to the removal of ash due to dissolution and water infiltration. As a consequence of the ephemeral ash cover the runoff and erosion reached the peak after the removal of the ash (usually four month), and for two years the soil erosion reached the peak (Cerdà, 1998a). Research developed during the last decade shown that the ash and the litter cover together contribute to reduce the soil losses after the forest fire (Cerdà and Doerr, 2008). The fate of the ash is related to the climatic conditions of the post-fire season, as intense thunderstorms erode the ash layer and low intensity rainfall contribute to a higher infiltration rate and the recovery of the vegetation. Another, key factor found during the last two decades that determine the fate of the ash and the soil and water losses is the impact of the fauna (Cerdà and Doerr, 2010). During the last decade new techniques were developed to study the impact of ash in the soil system, such as the one to monitor the ash changes by means of high spatial resolution photography (Pérez Cabello et al., 2012), and laboratory approaches that show the impact of ash as a key factor in the soil hydrology throughout the control they exert on the soil water repellency (Bodí et al., 2012). Laboratory approaches also shown that the fire severity is a key factor on the ash chemical

  13. Volcanic ash supports a diverse bacterial community in a marine mesocosm

    Science.gov (United States)

    Verena Witt,; Paul M Ayris,; Damby, David; Corrado Cimarelli,; Ulrich Kueppers,; Donald B Dingwell,; Gert Wörheide,

    2017-01-01

    Shallow-water coral reef ecosystems, particularly those already impaired by anthropogenic pressures, may be highly sensitive to disturbances from natural catastrophic events, such as volcanic eruptions. Explosive volcanic eruptions expel large quantities of silicate ash particles into the atmosphere, which can disperse across millions of square kilometres and deposit into coral reef ecosystems. Following heavy ash deposition, mass mortality of reef biota is expected, but little is known about the recovery of post-burial reef ecosystems. Reef regeneration depends partly upon the capacity of the ash deposit to be colonised by waterborne bacterial communities and may be influenced to an unknown extent by the physiochemical properties of the ash substrate itself. To determine the potential for volcanic ash to support pioneer bacterial colonisation, we exposed five well-characterised volcanic and coral reef substrates to a marine aquarium under low light conditions for 3 months: volcanic ash, synthetic volcanic glass, carbonate reef sand, calcite sand and quartz sand. Multivariate statistical analysis of Automated Ribosomal Intergenic Spacer Analysis (ARISA) fingerprinting data demonstrates clear segregation of volcanic substrates from the quartz and coral reef substrates over 3 months of bacterial colonisation. Overall bacterial diversity showed shared and substrate-specific bacterial communities; however, the volcanic ash substrate supported the most diverse bacterial community. These data suggest a significant influence of substrate properties (composition, granulometry and colour) on bacterial settlement. Our findings provide first insights into physicochemical controls on pioneer bacterial colonisation of volcanic ash and highlight the potential for volcanic ash deposits to support bacterial diversity in the aftermath of reef burial, on timescales that could permit cascading effects on larval settlement.

  14. Hall Effect Thruster Plume Contamination and Erosion Study

    Science.gov (United States)

    Jaworske, Donald A.

    2000-01-01

    The objective of the Hall effect thruster plume contamination and erosion study was to evaluate the impact of a xenon ion plume on various samples placed in the vicinity of a Hall effect thruster for a continuous 100 hour exposure. NASA Glenn Research Center was responsible for the pre- and post-test evaluation of three sample types placed around the thruster: solar cell cover glass, RTV silicone, and Kapton(R). Mass and profilometer), were used to identify the degree of deposition and/or erosion on the solar cell cover glass, RTV silicone, and Kapton@ samples. Transmittance, reflectance, solar absorptance, and room temperature emittance were used to identify the degree of performance degradation of the solar cell cover glass samples alone. Auger spectroscopy was used to identify the chemical constituents found on the surface of the exposed solar cell cover glass samples. Chemical analysis indicated some boron nitride contamination on the samples, from boron nitride insulators used in the body of the thruster. However, erosion outweighted contamination. All samples exhibited some degree of erosion. with the most erosion occurring near the centerline of the plume and the least occurring at the +/- 90 deg positions. For the solar cell cover glass samples, erosion progressed through the antireflective coating and into the microsheet glass itself. Erosion occurred in the solar cell cover glass, RTV silicone and Kapton(R) at different rates. All optical properties changed with the degree of erosion, with solar absorptance and room temperature emittance increasing with erosion. The transmittance of some samples decreased while the reflectance of some samples increased and others decreased. All results are consistent with an energetic plume of xenon ions serving as a source for erosion.

  15. HIS 103 ASH course tutorial/tutorialoutlet

    OpenAIRE

    NARESH 1

    2015-01-01

    For more course tutorials visit www.tutorialoutlet.com   HIS 103 Week 1 DQ 1 (Transition to Agriculture) (Ash) HIS 103 Week 1 DQ 2 (Early Complex Societies) (Ash) HIS 103 Week 1 Quiz (Ash) HIS 103 Week 1 Assignment (Ash) HIS 103 Week 2 Assignment Greco Roman Influence Paper (Ash) HIS 103 Week 2 DQ 1 Chinese Social and Political Order Systems (Ash) HIS 103 Week 2 DQ 2 Caste System (Ash) HIS 103 Week 2 Quiz (Ash) HIS 103 Week 3 Assignment Black Death Dra...

  16. Volcanic ash vs. sand and dust - "to stick or not to stick" in jet engines

    Science.gov (United States)

    Kueppers, U.; Song, W.; Lavallée, Y.; Hess, K. U.; Cimarelli, C.; Dingwell, D. B.

    2015-12-01

    Safe air travel activity requires clean flight corridors. But particles scattered in the atmosphere, whether volcanic ash, dust or sand, may present a critical threat to aviation safety. When these foreign particles are ingested into jet engines, whose interiors (e.g., the combustor and turbine blades) reach 1200-2000 °C, they can abrade, melt, and stick to the internal components of the engine, clogging ventilation traps of the cooling system as well as imparting substantial damage and potentially resulting in catastrophic system failure. To date, no criterion predicts ash behaviour at high temperature. Here, we experimentally develop the first quantitative model to predict melting and sticking conditions for the compositional range of volcanic ash encountered worldwide (Fig.1). The assumption that volcanic ash can be approximated by sand or dust is wholly inadequate, leading to an overestimation of sticking temperature and a correspondingly severe underestimation of the thermal hazard. Our findings confirm that the melting/softening behaviour of volcanic ash at high temperatures is essentially controlled by the composition of erupted ash - which may serve as an accurate proxy of the thermal hazard potential of volcanic ash interaction with jet engines. The criterion proposed here successfully parameterizes the potentially complex "melting" process of volcanic ash and can be used to assess the deposition probability of volcanic ash upon ingestion into hot jet engines.

  17. Emerald Ash Borer (Coleoptera: Buprestidae)

    Science.gov (United States)

    The emerald ash borer, Agrilus planipennis Fairmaire, is an invasive beetle from Asia that has caused large scale ash (Fraxinus spp.) mortality in North America. This book chapter reviews the taxonomy, biology, life history of this invasive pest and its associated natural enemies in both its native ...

  18. Leaching from biomass combustion ash

    DEFF Research Database (Denmark)

    Maresca, Alberto; Astrup, Thomas Fruergaard

    2014-01-01

    The use of biomass combustion ashes for fertilizing and liming purposes has been widely addressed in scientific literature. Nevertheless, the content of potentially toxic compounds raises concerns for a possible contamination of the soil. During this study five ash samples generated at four...

  19. Wildfire Ash: Chemical Composition, Ash-Soil Interactions and Environmental Impacts

    Science.gov (United States)

    Brook, Anna; Hamzi, Seham; Wittenberg, Lea

    2015-04-01

    Of the five classical factors of soil formation, climate, parent material, topography, time, organisms, and recently recognized human activity, it is the latter factor which discretely includes fire and post-burn impact. However, it is considered that soil undergoing fire just experience a temporary removal of the top organic horizon, thus slightly modified and often labeled as 'temporarily disturbed' soil or soil 'under restoration/rehabilitation'. In fact the suggested seventh factor, post-burned produced ash, can act both dependently and independently of the other soil forming factors (Levin et al., 2013; Certini 2013). They are interdependent in cases where ash influences occur on time scales similar to 'natural' soil formation (Keesstra et ai., 2014) such as changes in vegetation. On the other hand, in post-fire areas a strong dependency is expected between soil-water retention mechanism, climate and topography. Wild-land fires exert many changes on the physical, chemical, mineralogical, biological, and morphological properties of soil that, in turn, affect the soil's hydrology and nutrient flux, modifying its ability to support vegetation and resist erosion. The ash produced by forest fires is a complex mixture composed of organic and inorganic particles characterized by vary physical-chemical and morphological properties. The importance of this study is straightforwardly related to the frequency and large-scales wildfires in Mediterranean region. In fact, wildfires are major environmental and land management concern in the world, where the number and severity of wildfires has increased during the past decades (Bodi, 2013). Certini (2013) assumed that cumulatively all of the vegetated land is burned in about 31 years annually affecting 330-430 Mha (over 3% of the Earth's surface) and wide range of land cover types worldwide including forests, peatlands, shrublands and grasslands. Whereas, the fire is identified as an important factor in soil formation, the

  20. Carbon Erosion in the Great Karoo Region of South Africa

    Science.gov (United States)

    Krenz, Juliane; Greenwood, Philip; Kuhn, Brigitte; Foster, Ian; Boardman, John; Meadows, Mike; Kuhn, Nikolaus

    2015-04-01

    Work undertaken in the seasonally arid upland areas of the Great Karoo region of South Africa has established a link between land degradation and overgrazing which began in the second half of the 18th century when European farmers first settled the area. Ongoing land use change and shifting rainfall patterns resulted in the development of badlands on foot slopes of upland areas, and gully systems on valley bottoms. As a consequence of agricultural intensification and overgrazing, accompanied by a higher water demand, many small reservoirs were constructed, most of which are now in-filled with sediment. The deposited material serves as an environmental archive by which land use change over the last 100 years can be analysed, but with a particular focus on erosion and deposition of soil-associated carbon (C). It is assumed that erosion caused an initial flush of carbon rich soil which was subsequently buried and stored off-site. Despite this assumption, however the net-effect of erosion on carbon dioxide emissions is still unknown. In this project, preliminary results are presented from an investigation to determine whether land degradation in the Karoo has resulted in a shift from a net sink of C to a net source of C. Firstly, a high resolution digital elevation model was generated and erosion modelling was then employed to create an erosion risk map showing areas most prone to erosion. Information from the model output then served as the basis for ground-truthing and on-site erosion mapping. Secondly, sediment deposits from silted reservoirs were analysed for varying physicochemical parameters, in order to reconstruct spatial patterns of erosion and deposition. Analysis of total carbon (TC) content revealed a sharp decrease with decreasing depth. This provisionally suggests that land degradation during and after post-European settlement probably led to accelerated erosion of the relatively fertile surface soils. This presumably resulted in the rapid in-filling of

  1. Bank Erosion in a Peatland Forest Ditch

    Science.gov (United States)

    Stenberg, Leena; Finér, Leena; Nieminen, Mika; Sarkkola, Sakari; Koivusalo, Harri

    2013-04-01

    Peatlands have been drained for forestry extensively in Finland since 1950's, but nowadays the drainage is shifted from the initial ditching to the ditch network maintenance, which refers to the cleaning of existing ditches and to the digging of complementary ditches in the drained areas. Ditch maintenance operations lead to sediment load that is considered to be among the most harmful environmental effects of forestry. Excess sediment loads cause adverse effects to the receiving waters and their ecosystems in terms of increased turbidity, which reduces primary production, and siltation, which ruins the spawning grounds of fish. To understand the underlying mechanisms behind the sediment load at the source areas, a field experiment was conducted for studying the bank erosion of a newly cleaned ditch. That was done on a shallow peated area with fine textured mineral subsoil (sandy loam) since such areas are assessed to have the greatest risk for sediment load generation. Bank erosion was quantified by using a pin meter, and its suitability for detecting microtopographic changes of ditch side wall in drained peatland conditions was evaluated. Artificial irrigation was applied in the vicinity of a ditch to generate a seepage face that speeds up the erosion process. The ditch bank microtopography was measured five times for a four meter long section of the ditch by using a large set of pin meter measurements. The measurements from the different times were spatially interpolated over 2 x 2 cm grid using ordinary kriging and erosion and deposition were estimated as the difference in the grid surface between the measurement times. The results revealed that bank erosion occurred soon after the ditch was cleaned, but the eroded material was deposited on the lower bank areas and at the bottom of the ditch where it is potentially transported further during peak discharge events. Pin meter proved to be suitable for measuring bank erosion of peatland forest ditch, although the

  2. Erosion and sedimentation chronology of three watersheds in Maryland

    Energy Technology Data Exchange (ETDEWEB)

    Segovia, A.V.; Foss, J.E.; Fanning, D.; Demas, G.

    1983-08-01

    Three small watersheds located in the Piedmont and Eastern Shore of Maryland were studied. The investigation included descriptions of residual and depositional soils. Buried soil horizons were dated by Carbon-14. In addition, phytoliths were studied to identify the vegetation contemporaneous with the deposition of soil levels. The presence of vertical successions of soil profiles indicate that rates of erosion and redeposition of soils varied in the last thousand years. Noticeable soil horizons were formed during long periods of slow erosion and little deposition, following short intervals of fast erosion and redeposition. Soil erosion was strong after the European contact, as a result of deforestation and intensive agricultural use of the land. The presence of corn phytoliths in this part of the section, the scarcity of grass phytolith and the presence of diatom tests in the soils of a closed depression suggest that erosion was caused by slash-burn methods of agriculture. Thus, the last two episodes of accumulation are ascribed to nonclimatic causes in contrast to previous episodes during the Holocene which were probably caused by climatic fluctuations.

  3. Models of ash-laden intrusions in a stratified atmosphere

    Science.gov (United States)

    Hogg, Andrew; Johnson, Chris; Sparks, Steve; Huppert, Herbert; Woodhouse, Mark; Phillips, Jeremy

    2013-04-01

    Recent volcanic eruptions and the associated dispersion of ash through the atmosphere have led to widespread closures of airspace, for example the 2010 eruption of Eyjafjallajokull and 2011 eruption of Puyehue-Cordón Caulle. These episodes bring into sharp focus the need to predict quantitatively the transport and deposition of fine ash and in particular, its interaction with atmospheric wind. Many models of this process are based upon capturing the physics of advection with the wind, turbulence-induced diffusion and gravitational settling. Buoyancy-induced processes, associated with the density of the ash cloud and the background stratification of the atmosphere, are neglected and it is this issue that we address in this contribution. In particular, we suggest that the buoyancy-induced motion may account for the relatively thin distal ash layers that have been observed in the atmosphere and their relatively weak cross-wind spreading. We formulate a new model for buoyancy-driven spreading in the atmosphere in which we treat the evolving ash layer as relatively shallow so that its motion is predominantly horizontal and the pressure locally hydrostatic. The motion is driven by horizontal pressure gradients along with interfacial drag between the flowing ash layer and the surrounding atmosphere. Ash-laden fluid is delivered to this intrusion from a plume source and has risen through the atmosphere to its height of neutral buoyancy. The ash particles are then transported horizontally by the intrusion and progressively settle out of it to sediment through the atmosphere and form the deposit on the ground. This model is integrated numerically and analysed asymptotically in various regimes, including scenarios in which the atmosphere is quiescent and in which there is a sustained wind. The results yield predictions for the variation of the thickness of the intrusion with distance from the source and for how the concentration of ash is reduced due to settling. They

  4. Particle erosion of infrared materials

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Erosion test of some infrared (IR) optical crystals (Ge,ZnS,MgF2,and quartz) was conducted with a number of different erodents (glass bead,and angular SiC,SiO2,Al2O3 by a homemade gas-blasting erosion tester.The influence of impact angle,impact velocity,erodent,and erosion time on the erosion rate and the effect of erosion on their IR transmittance were studied.The damaged surface morphology was characterized by scanning electron microscopy,and the erosion mechanism was explored.All of the materials show the maximum in wear versus impact angle at 90°,confirming their brittle failure behavior.It is found that the erosion rate is dependent on the erodent velocity by a power law,and it is highly correlated to the hardness of the erodent.The erosion rate-time curves do not show an incubation state,but an accelerated erosion period followed a maximum erosion (steady state).The decrease of IR transmittance is direct proportion to the erosion rate.Although the material loss occurs primarily by brittle process,ductile behavior is clearly an important feature,especially for MgF2 and ZnS.

  5. High ash fuels for diesel engines II; Korkean tuhkapitoisuuden omaavan polttoaineen kaeyttoe dieselvoimaloissa II

    Energy Technology Data Exchange (ETDEWEB)

    Norrmen, E.; Vestergren, R.; Svahn, P. [Wartsila Diesel International Ltd, Vaasa (Finland)

    1996-12-01

    Heavy fuel oils containing a large amount of ash, that is used in some geographically restricted areas, can cause problems with deposit formation and hot corrosion, leading to burned exhaust gas valves in some diesel engines. The Liekki 2 programs Use of high ash fuel in diesel power plants I and II have been initiated to clarify the mechanisms of deposit formation, and start and propagation of hot corrosion. The aim is to get enough knowledge to enable the development of the Waertsilae diesel engines to be able to handle heavy fuel with a very high ash content. The chemistry, sintering, melting, and corrosiveness of deposits from different part of the diesel engine and on different exhaust valve materials, as well as the chemistry in different depths of the deposit have been investigated. Theories for the mechanisms mentioned above have been developed. Additives changing the sintering/melting point and physical properties of the formed deposits have been screened. Exhaust gas particle measurements have been performed when running on high ash fuel, both without deposit modifying fuel additive and with. The results have been used to verify the ABC (Aerosol Behaviour in Combustion) model, and the particle chemistry and morphology has been examined. Several tests, also high load endurance tests have been run in diesel engines with high ash fuels. (author)

  6. An integrated assessment of soil erosion dynamics with special emphasis on gully erosion: Case studies from South Africa and Iran

    Science.gov (United States)

    Maerker, Michael; Sommer, Christian; Zakerinejad, Reza; Cama, Elena

    2017-04-01

    Soil erosion by water is a significant problem in arid and semi arid areas of large parts of Iran. Water erosion is one of the most effective phenomena that leads to decreasing soil productivity and pollution of water resources. Especially in semiarid areas like in the Mazayjan watershed in the Southwestern Fars province as well as in the Mkomazi catchment in Kwa Zulu Natal, South Africa, gully erosion contributes to the sediment dynamics in a significant way. Consequently, the intention of this research is to identify the different types of soil erosion processes acting in the area with a stochastic approach and to assess the process dynamics in an integrative way. Therefore, we applied GIS, and satellite image analysis techniques to derive input information for the numeric models. For sheet and rill erosion the Unit Stream Power-based Erosion Deposition Model (USPED) was utilized. The spatial distribution of gully erosion was assessed using a statistical approach which used three variables (stream power index, slope, and flow accumulation) to predict the spatial distribution of gullies in the study area. The eroded gully volumes were estimated for a multiple years period by fieldwork and Google Earth high resolution images as well as with structure for motion algorithm. Finally, the gully retreat rates were integrated into the USPED model. The results show that the integration of the SPI approach to quantify gully erosion with the USPED model is a suitable method to qualitatively and quantitatively assess water erosion processes in data scarce areas. The application of GIS and stochastic model approaches to spatialize the USPED model input yield valuable results for the prediction of soil erosion in the test areas. The results of this research help to develop an appropriate management of soil and water resources in the study areas.

  7. Quantitative analysis of the 16-17 September 2013 resuspended ash event in Iceland

    Science.gov (United States)

    Kylling, Arve; Beckett, Frances; Sigurdardottir, Gudmunda Maria; von Loewis, Sibylle; Witham, Claire

    2015-04-01

    In Iceland more than 20,000 km2 of sandy deserts are active with aeolian processes. Annually on average 34-135 days are dusty making it one of the dustiest areas of the world. Substantial amounts of dust are transported southward and deposited in the North-Atlantic possibly providing significant iron fertilization to regions deficient in iron. Volcanic ash including resuspended ash may have an adverse effect on ecosystems and human health, and resuspended ash levels may be high enough to cause problems to aviation. A strong gale force northerly wind prevailed over south east Iceland on 16-17 September, 2013. During this period ash from the recent eruptions of Eyjafjallajokull (2010) and Grimsvotn (2011) was resuspended into the air and blown southwards. The event was captured by surface based optical particle counters (OPC) in Iceland, and cloudless skies south of Iceland made it possible to observe the resuspended ash by the Moderate Resolution Imaging Spectroradiometer (MODIS) as the ash was transported more than 320 km over the ocean. The aim of this study is to quantify the amount of ash that was resuspended during the event. Simulations of the event using the Numerical Atmospheric dispersion Modeling Environment (NAME) agree well with the location of the resuspended ash cloud observed by MODIS. By comparing the simulated height of the resuspended ash cloud to meteorological data we show that the maximum height of the cloud coincides with a temperature inversion at about 1300 m asl. The total mass column loading was retrieved from infrared MODIS channels using the ash cloud height identified from the dispersion model output. The OPC data provide surface ash concentrations. Using the satellite and OPC measurements the NAME dispersion model output was calibrated and the total resuspended ash amount for the whole event estimated.

  8. Actinides, accelerators and erosion

    Science.gov (United States)

    Tims, S. G.; Fifield, L. K.

    2012-10-01

    Fallout isotopes can be used as artificial tracers of soil erosion and sediment accumulation. The most commonly used isotope to date has been 137Cs. Concentrations of 137Cs are, however, significantly lower in the Southern Hemisphere, and furthermore have now declined to 35% of original values due to radioactive decay. As a consequence the future utility of 137Cs is limited in Australia, with many erosion applications becoming untenable within the next 20 years, and there is a need to replace it with another tracer. Plutonium could fill this role, and has the advantages that there were six times as many atoms of Pu as of 137Cs in fallout, and any loss to decay has been negligible due to the long half-lives of the plutonium isotopes. Uranium-236 is another long-lived fallout isotope with significant potential for exploitation as a tracer of soil and sediment movement. Uranium is expected to be more mobile in soils than plutonium (or caesium), and hence the 236U/Pu ratio will vary with soil depth, and so could provide an independent measure of the amount of soil loss. In this paper we discuss accelerator based ultra-sensitive measurements of plutonium and 236U isotopes and their advantages over 137Cs as tracers of soil erosion and sediment movement.

  9. Actinides, accelerators and erosion

    Directory of Open Access Journals (Sweden)

    Fifield L.K.

    2012-10-01

    Full Text Available Fallout isotopes can be used as artificial tracers of soil erosion and sediment accumulation. The most commonly used isotope to date has been 137Cs. Concentrations of 137Cs are, however, significantly lower in the Southern Hemisphere, and furthermore have now declined to 35% of original values due to radioactive decay. As a consequence the future utility of 137Cs is limited in Australia, with many erosion applications becoming untenable within the next 20 years, and there is a need to replace it with another tracer. Plutonium could fill this role, and has the advantages that there were six times as many atoms of Pu as of 137Cs in fallout, and any loss to decay has been negligible due to the long half-lives of the plutonium isotopes. Uranium-236 is another long-lived fallout isotope with significant potential for exploitation as a tracer of soil and sediment movement. Uranium is expected to be more mobile in soils than plutonium (or caesium, and hence the 236U/Pu ratio will vary with soil depth, and so could provide an independent measure of the amount of soil loss. In this paper we discuss accelerator based ultra-sensitive measurements of plutonium and 236U isotopes and their advantages over 137Cs as tracers of soil erosion and sediment movement.

  10. Erosive wear of a surface coated hydroturbine steel

    Indian Academy of Sciences (India)

    Akhilesh K Chauhan; D B Goel; S Prakash

    2010-08-01

    In the present investigation, stellite-6, Cr3C2–NiCr and WC–Co–Cr coatings were deposited by DGun on a hot rolled 21Cr–4Ni–N steel meant for fabrication of hydro turbine underwater parts. The coatings have been characterized for microstructure, porosity, microhardness and crystalline nature. The erosion experiments were carried out using an air jet erosion test rig at a velocity of 120 ms-1 and impingement angles of 30° and 90°. Silicon carbide particles of size ranging between 500 and 700 m were used as erodent. Scanning electron microscopy (SEM) technique was used to analyse the nature and mechanism of erosion. Erosion behaviour is observed to be influenced largely by the nature and extent of porosity in the surface coatings.

  11. Quantifying coastal erosion rates using anatomical change in exposed tree roots at Porquerolles Island (Var, France).

    Science.gov (United States)

    Morel, Pauline; Corona, Christophe; Lopez-Saez, Jérôme; Rovéra, Georges; Dewez, Thomas; Stoffel, Markus; Berger, Frédéric

    2017-04-01

    Rocky coasts are the most common type of ocean-land contacts and can be found in all types of morphogenetic environments. Most work on rocky environments focused on the impacts of modern sea level rise on cliff stability derived from sequential surveys, direct measurements or erosional features in anthropogenic structures. Studies mainly focused on rapid erosion so that little is known about erosion rates of the French Mediterranean coastal area. Using anatomical reactions in roots, has been successfully used in various environments in the past to quantify continuous denudation rates, mostly in relation with gullying processes (Vandekerckhove, 2001; Malik, 2008), aerial (or sheet) (Bodoque et al., 2005; Lopez Saez et al., 2011; Lucia et al., 2011), river bank (Malik, 2006; Hitz et al., 2008a; Stoffel et al., 2012), or lake shore (Fantucci, 2007) erosion, but never so far on coastal cliffs environment. This study aims at exploring the potential of dendrogeomorphic approach to quantify multidecadal changes in coastal environments on Porquerolles Island (Var, France). We sampled 56 discs from Pinus halepensis Mill. roots on former alluvial deposits eroded by present day sea level (escarpments of a few meter in height) and on sandy-gravelly cliffs. We were able to dates erosion pulses as well as changes in cliff geometry with annual resolution over 30-40 years showing an average erosion rate of 2.1 cm yr-1. Our results are consistent with those found in the study of Giuliano (2015) on Mediterranean coastal environment. This contribution therefore demonstrates that dendrogeomorphic analyses of roots clearly have significant potential and are a powerful tool for the quantification of multidecadal cliff retreats rates in areas where measurements of past erosion is lacking. References: Bodoque J, Díez-Herrero A, Martín-Duque J, Rubiales J, Godfrey A, Pedraza J, Carrasco R, Sanz M. 2005. Sheet erosion rates determined by using dendrogeomorphological analysis of exposed

  12. A Simple Close Range Photogrammetry Technique to Assess Soil Erosion in the Field

    Science.gov (United States)

    Evaluating the performance of a soil erosion prediction model depends on the ability to accurately measure the gain or loss of sediment in an area. Recent development in acquiring detailed surface elevation data (DEM) makes it feasible to assess soil erosion and deposition spatially. Digital photogr...

  13. Extending the capabilities of CFD codes to assess ash related problems

    DEFF Research Database (Denmark)

    Kær, Søren Knudsen; Rosendahl, Lasse Aistrup; Baxter, B. B.

    2004-01-01

    entirely through a graphical userinterface integrated in the standard FLUENT? interface. The modelconsiders fine and coarse mode ash deposition and stickingmechanisms for the complete deposit growth, as well as an influenceon the local boundary conditions for heat transfer due to thermalresistance changes...

  14. pH-dependent leaching of dump coal ash - retrospective environmental analysis

    Energy Technology Data Exchange (ETDEWEB)

    Popovic, A.; Djordjevic, D. [University of Belgrade, Belgrade (Serbia). Dept. of Chemistry

    2009-07-01

    Trace and major elements in coal ash particles from dump of 'Nikola Tesla A' power plant in Obrenovac near Belgrade (Serbia) can cause pollution, due to leaching by atmospheric and surface waters. In order to assess this leaching potential, dump ash samples were subjected to extraction with solutions of decreasing pH values (8.50, 7.00, 5.50, and 4.00), imitating the reactions of the alkaline ash particles with the possible alkaline, neutral, and acidic (e.g., acid rain) waters. The most recently deposited ash represents the greatest environmental threat, while 'aged' ash, because of permanent leaching on the dump, was shown to have already lost this pollution potential. On the basis of the determined leachability, it was possible to perform an estimation of the acidity of the regional rainfalls in the last decades.

  15. Investigation of migratory bird mortality associated with exposure to Soda Ash Mine tailings water in southwestern Wyoming

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Soda ash is a pulverized mineral, commonly referred to as “trona”, and harvested from underground deposits in southwestern Wyoming. Four companies own 5 mining...

  16. Deposit Shedding in Biomass-Fired Boilers: Shear Adhesion Strength Measurements

    DEFF Research Database (Denmark)

    Laxminarayan, Yashasvi; Jensen, Peter Arendt; Wu, Hao

    2017-01-01

    a significant effect under the investigated conditions. Addition of compounds which increase the melt fraction of the ash dposit, typically by forming a eutectic system, increases the adhesion strength, whereas addition of inert compounds with a high melting point decreases the adhesion strength. Furthermore......Ash deposition on boiler surfaces is a major problem encountered in biomass combustion. Timely removal of ash deposits is essentialfor optimal boiler operation. In order to improve the understanding of deposit shedding in boilers, this study investigates the adhesion strength of biomass ash from...... off by an electrically controlled arm, and the corresponding adhesion strength was measured. The effect of sintering temperature, sintering time, deposit composition, thermal shocks on the deposit, and steel type was investigated. The results reveal that the adhesion strength of ash deposits...

  17. Hail formation triggers rapid ash aggregation in volcanic plumes

    Science.gov (United States)

    Van Eaton, Alexa; Mastin, Larry G.; Herzog, M.; Schwaiger, Hans F.; Schneider, David J.; Wallace, Kristi; Clarke, Amanda B

    2015-01-01

    During explosive eruptions, airborne particles collide and stick together, accelerating the fallout of volcanic ash and climate-forcing aerosols. This aggregation process remains a major source of uncertainty both in ash dispersal forecasting and interpretation of eruptions from the geological record. Here we illuminate the mechanisms and timescales of particle aggregation from a well-characterized ‘wet’ eruption. The 2009 eruption of Redoubt Volcano in Alaska incorporated water from the surface (in this case, a glacier), which is a common occurrence during explosive volcanism worldwide. Observations from C-band weather radar, fall deposits, and numerical modeling demonstrate that volcanic hail formed rapidly in the eruption plume, leading to mixed-phase aggregation of ~95% of the fine ash and stripping much of the cloud out of the atmosphere within 30 minutes. Based on these findings, we propose a mechanism of hail-like aggregation that contributes to the anomalously rapid fallout of fine ash and the occurrence of concentrically-layered aggregates in volcanic deposits.

  18. Spatial distribution of soil erosion and suspended sediment transport rate for Chou-Shui river basin

    Indian Academy of Sciences (India)

    Chin-Ping Lin; Ching-Nuo Chen; Yu-Min Wang; Chih-Heng Tsai; Chang-Tai Tsai

    2014-10-01

    In this study, a Physiographic Soil Erosion–Deposition Model (PSED) is applied for better management of a watershed. The PSED model can effectively evaluate the key parameters of watershed management: surface runoff discharge, suspended sediment transport rate, quantity of soil erosion, and spatial distribution of soil erosion and deposition. A basin usually contains multiple watersheds. These watersheds may have complex topography and heterogeneous physiographic properties. The PSED model, containing a physiographic rainfall-runoff model and a basin scale erosion–deposition model, can simulate the physical mechanism of the entire erosion process based on a detailed calculation of bed-load transportation, surface soil entrainment, and the deposition mechanism. With the assistance of Geographic Information Systems (GIS), the PSED model can handle and analyze extremely large hydrologic and physiographic datasets and simulate the physical erosion process without the need for simplification. We verified the PSED model using three typhoon events and 40 rainfall events. The application of PSED to Chou-Shui River basin shows that the PSED model can accurately estimate discharge hydrographs, suspended sediment transport rates, and sediment yield. Additionally, we obtained reasonable quantities of soil erosion as well as the spatial distribution of soil erosion and deposition. The results show that the PSED model is capable of calculating spatially distributed soil erosion and suspended sediment transport rates for a basin with multiple watersheds even if these watersheds have complex topography and heterogeneous physiographic properties.

  19. Dynamics of pyroclastic density currents: Conditions that promote substrate erosion and self-channelization - Mount St Helens, Washington (Invited)

    Science.gov (United States)

    Brand, B. D.; Pollock, N. M.; Mackaman-Lofland, C. A.; Bendana, S.

    2013-12-01

    elutriation or segregation of lithics and pumice, suggesting a highly concentrated current where size-density segregation was suppressed. Unit IV shows similar depositional features but typically has a basal lithic region, is variably fines-depleted and contains pumice lobes, suggesting density segregation in a less concentrated current relative to Unit III. Deep, erosive channels cut by the Unit III current and thick lithic levee deposits within Unit IV occur in an area where debris avalanche relief is limited, suggesting self-channelization developed as a function of internal flow dynamics. Finally, the combination of thick, massive deposits with a high percentage of fine ash within Unit III and in the medial-distal depositional regions of Units II-IV suggests the PDCs developed and maintained a high internal pore pressure during transport and deposition. Thus the most important results of this work include our ability to understand the role of internal pore pressure on current mobility, the influence of self-channelization on carrying capacity of the currents and the influence of surface roughness on substrate erosion. These observations have critical consequences for understanding the flow dynamics and hazard potential of PDCs.

  20. Rainfall and wet and dry cycle's impact on ash thickness. A laboratory experiment

    Science.gov (United States)

    Pereira, Paulo; Keestra, Saskia; Peters, Piet; Cerdà, Artemi

    2016-04-01

    Ash is the most important and effective soil protection in the immediate period after the fire (Cerda and Doerr, 2008; Pereira et al., 2015a). This protection can last for days or weeks depending on the fire severity, topography of the burned area and post-fire meteorological conditions. In the initial period after the fire, ash is easily transported by wind. However after the first rainfalls, ash is eroded, or bind in soil surface (Pereira et al., 2013, 2015a). Ash thickness has implications on soil protection. The soil protection against the erosion and the ash capacity to retain water increases with the ash thickness (Bodi et al., 2014). Ash cover is very important after fire because store water and releases into soil a large amount of nutrients, fundamental to vegetation recuperation (Pereira et al., 2014). Despite the importance of ash thickness in post fire environments, little information is available about the effects of rainfall and wet and dry cycle's effects on ash thickness. This work aims to fill this gap. The objective of this study is to investigate the impacts of rainfall and wet and dry cycles in the ash thickness of two different under laboratory conditions. Litter from Oak (Quercus robur) and Spruce (Picea abis) were collected to and exposed during 2 hours to produce ash at 200 and 400 C. Subsequently a layer of 15 mm ash was spread on soil surface in small boxes (24x32 cm) and then subjected to rainfall simulation. Boxes were placed at a 17% of inclination and a rainfall intensity of 55 mm/h during 40 minutes was applied. After the rainfall simulation the plots were stored in an Oven at the temperature of 25 C during four days, in order to identify the effects of wet and dry cycles (Bodi et al., 2013). Ash thickness was measured after the first rainfall (AFR), before the second rainfall (BSR) - after the dry period of 4 days - and after the second rainfall (ASR). In each box a grid with 57 points was designed in order to analyse ash thickness

  1. Application of advanced technologies to ash-related problems in boilers

    Energy Technology Data Exchange (ETDEWEB)

    Baxter, L.L. [Sandia National Labs., Livermore, CA (United States); Richards, G.; Harb, J. [Brigham Young Univ., Provo, UT (United States). Chemical Engineering Dept.

    1995-01-01

    Prediction of ash behavior in boilers has, for many years, been based on relatively simple relationships involving the composition of inorganic material in fuels. In recent years, advanced analyses for both fuels and deposits have seen increasing use in the solid fuel combustion community. The combination of the standard and advanced analyses, together with a knowledge of boiler design and operating conditions, allow better interpretation of ash behavior in boilers than has previously been possible. This paper discusses several case histories where advanced technologies have been applied to interpret ash behavior in boilers where standard techniques were insufficient. Included in the discussion are: (1) the behavior of blends of fuels; (2) explanations for markedly different behavior between fuels with similar ASTM characteristics; and (3) effects of boiler operating conditions on ash deposit formation.

  2. A terminological matter: paragenesis, antigravitative erosion or antigravitational erosion ?

    Directory of Open Access Journals (Sweden)

    Pasini G.

    2009-07-01

    Full Text Available In the speleological literature three terms are utilized to designate the “ascending erosion”: paragenesis (= paragénésis, coined in1968, antigravitative erosion (= erosione antigravitativa, coined in 1966 and antigravitational erosion (wrong English translation ofthe Italian term erosione antigravitativa, utilized later on. The term paragenesis should be abandoned because of the priority of theterm erosione antigravitativa - on the ground of the “law of priority” – and because of its ambiguous etimology. On the other hand,the term antigravitational erosion should be forsaken in favour of the term antigravitative erosion, given the meaning that the termsgravitation and gravity have in Physics. Therefore, to designate the phenomenon of the “ascending erosion” there would be nothingleft but the term antigravitative erosion.The antigravitative erosion process and its recognizability are illustrated.Examples of caves with evident antigravitative erosion phenomena, developed in different karstifiable rocks and in several partsof the world, are given.It is recalled that the antigravitative erosion is a phenomenon well-known since 1942 and widely proven and supported, and that it isrelatively easy – in many cases - to recognize the antigravitative origin of karstic passages.It is stressed that the antigravitative erosion is an important phenomenon, exclusive of the karstic caves and unique in nature.

  3. 49 CFR 230.69 - Ash pans.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Ash pans. 230.69 Section 230.69 Transportation... TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Steam Locomotives and Tenders Ash Pans § 230.69 Ash pans. Ash pans shall be securely supported from mud-rings or frames with no part less than...

  4. Environmental consequences of recycling wood-ash to forests. Extended abstracts from the SNS Workshop

    Energy Technology Data Exchange (ETDEWEB)

    Hoegbom, L.; Nohrstedt, H.Oe. (comps.)

    2001-10-01

    Brash from forest cuttings, together with bark and other by-products from forest industries, could be important energy sources. However, large-scale biomass extraction from forests could cause them to lose substantial amounts of nutrients. This has raised the possibility of recycling the wood-ash in order to compensate for the higher nutrient losses and to sustain future forest production. Addition of wood-ash is also proposed as a method to compensate for loss of lime potential caused by ongoing acidification due to N and S deposition. In this report, several aspects of wood-ash recycling are covered including the status and use of biofuel in the different countries represented at the meeting, as well as the environmental impact and consequences of its use. The report contains extended abstracts from a number of oral presentations given at an SNS funded workshop at Grimsoe. The presentations cover various aspects of recycling wood-ash to the forest and peatlands in the Nordic countries. The aims were to broaden knowledge of how issues concerning wood-ash are addressed, and to provide a basis for integrating wood-ash related research in Nordic countries. The titles of the presentations are: The need for and effects of wood-ash application in Danish forests; Bioenergy from forests in Norway - status and future research challenges; Effects of wood-ash fertilization on soil chemistry; Recycling wood-ash - effects on stem growth in Swedish coniferous stands on mineral soils; {sup 137}Cs in different conifer forest compartments following wood-ash addition; Ground- and field- vegetation after recycling crushed wood-ash to forest sites; Ash fertilization and leaching of nutrients from drained peatland; Ash fertilization as used on Finland's drained and forested mires; Wood-ash addition to an acid and highly N loaded Norway spruce site in SW Sweden; Wood-ash and ectomycorrhizal community structure; Effect of Cd-containing wood-ash on the microflora of coniferous

  5. Analysing the Cenozoic depositional record

    DEFF Research Database (Denmark)

    Goledowski, Bartosz; Clausen, O.R.; Nielsen, S.B.

    It is well known that sediment deposition in the North Sea and on the Norwegian Shelf varied significantly during the Cenozoic as a consequence of varying erosion rate mainly in Western Scandinavia, in Scotland and in the Alps. Recent results have demonstrated that a causal relationship exists...... of variations in erosion rates. Here we present the rationale behind the project, the data available and some preliminary results. The dense seismic and well coverage in the area makes it possible to estimate the rate of deposition of matrix mass. Assuming that sediment storage is not important, this provides...

  6. 震区山洪泥石流野外监测与侵蚀产沙研究%Field monitoring and erosion-deposition sediment of flash-flood debris flow in suffered areas-a case study at Lianhuaxin Gully

    Institute of Scientific and Technical Information of China (English)

    韩用顺; 黄鹏; 朱颖彦; 胡凯衡

    2012-01-01

      The flash flood and debris flow in the suffered areas by Wenchuan earthquake aroused a wide at⁃tention at home and abroad because of their tremendous damage and frequent occurrence. It is significant to conduct field monitoring of flash flood and debris flow and to study their development features for assur⁃ing public security and preventing flash flood and debris flow. In this paper,Lianhuaxin gully,the epicen⁃ter of Wenchuan Earthquake,was taken as a study area and different kinds of slope debris flow and gully debris flow were selected to make field surveying. Three-level field observation stations and 56 control points were established in different slope, ridge, submit and small watershed of study area. From 2010 to 2012,four large-scale flash-flood debris flows and corresponding slopes,channels,sections and surface de⁃formations were monitored by means of GPS, total station, leveling instrument, 3D-laser scanning system, InSar and high-resolution images. Three-dimension digital terrain models with large scale were set up to study the erosion,development and evolution features of different kinds of debris flows. The paper also dis⁃cussed the fluvial process and erosion-deposition characteristics of flash flood debris flow. The results show that:(1) flash flood and debris flow are still at rapid development stage after earthquake, become more and more frequent and can be monitored through 3S technologie;(2) in the upper reaches of study area, flash-flood debris flow is typical of violent erosion and deposit with serious erosion at the incision ratio of 3.98m/a in the middle and right slope and even with the maximum incision depth of 5m at a debris flow event but with moderate deposit on the left slope;(3) the middle reaches of gully are still characterized by serious erosion with the maximum incision depth of 3m but its intensity decreased with the incision ra⁃tio of 1.23m/a;(4) the lower reaches of gully generally have a moderate erosion with

  7. Robotic weld overlay coatings for erosion control. Final technical progress report, July 1992--July 1995

    Energy Technology Data Exchange (ETDEWEB)

    Levin, B.F.; DuPont, J.N.; Marder, A.R.

    1995-10-15

    The erosion behavior of weld overlay coatings has been studied. Eleven weld overlay alloys were deposited on 1018 steel substrates using the plasma arc welding process and erosion tested at 400{degrees}C at 90{degrees} and 30{degrees} particle impact angles. The microstructure of each coating was characterized before erosion testing. A relative ranking of the coatings erosion resistance was developed by determining the steady state erosion rates. Ultimet, Inconel-625, and 316L SS coatings showed the best erosion resistance at both impact angles. It was found that weld overlays that exhibit good abrasion resistance did not show good erosion resistance. Erosion tests were also performed for selected wrought materials with chemical composition similar to weld overlays. Eroded surfaces of the wrought and weld alloys were examined by Scanning Electron Microscopy (SEM). Microhardness tests were performed on the eroded samples below the erosion surface to determine size of the plastically deformed region. It was found that one group of coatings experienced significant plastic deformation as a result of erosion while the other did not. It was also established that, in the steady state erosion regime, the size of the plastically deformed region is constant.

  8. Characteristics variation of coal combustion residues in an Indian ash pond.

    Science.gov (United States)

    Asokan, Pappu; Saxena, Mohini; Aparna, Asokan; Asolekar, Shyam R; Asoletar, Shyam R

    2004-08-01

    Coal-fired power plants all over the world are cited as one of the major sources that generate huge quantities of coal combustion residues (CCRs) as solid wastes. Most frequently CCRs are collected through electrostatic precipitators, mixed with bottom ash by hydraulic systems and deposited in ash ponds. The quality of the CCRs at different locations in one of the ash ponds in Central India was evaluated to understand the variation in characteristics with a view to effective utilization. Results revealed that the presence of fine particles (distance from the ash slurry inlet zone in the ash pond. Wide variations in the bulk density (800-980 kg m(-3)), porosity (45-57%) and water-holding capacity (57.5-75.7%) of CCRs were recorded. With increasing distance the pH of the CCRs decreased (from 9.0 to 8.2) and electrical conductivity increased (from 0.25 to 0.65 dS m(-3)). The presence of almost all the heavy metals in CCRs exhibited an increase with distance from the ash slurry discharge zone due to the increase in surface area (from 0.1038 to 2.3076 m2 g(-1)) of CCRs particles. The present paper describes the variation of characteristics of CCRs deposited in the ash pond and their potential applications.

  9. Fluvial processes on Mars: Erosion and sedimentation

    Science.gov (United States)

    Squyres, Steven W.

    1988-01-01

    One of the most important discoveries of the Mariner 9 and Viking missions to Mars was evidence of change of the Martian surface by the action of liquid water. From the standpoint of a Mars Rover/Sample Return Mission, fluvial activity on Mars is important in two ways: (1) channel formation has deeply eroded the Martian crust, providing access to relatively undisturbed subsurface units; and (2) much of the material eroded from channels may have been deposited in standing bodies of liquid water. The most striking fluvial erosion features on Mars are the outflow channels. A second type of channel apparently caused by flow of liquid water is the valley systems. These are similar to terrestial drainage systems. The sedimentary deposits of outflow channels are often difficult to identfy. No obvious deposits such as deltaic accumulations are visible in Viking images. Another set of deposits that may be water lain and that date approx. from the epoch of outflow channels are the layered deposits in the Valles Marineris. From the standpoint of a Mars Rover/Sample Return mission, the problem with all of these water-lain sediments is their age, or rather the lack of it.

  10. Quantitative Chemical Analysis of Slag Ash of Novocherkassk State District Power Plant

    Directory of Open Access Journals (Sweden)

    Tatyana Germanovna Korotkova

    2017-02-01

    Full Text Available Quantitative chemical composition of ash and slag mix generated upon combustion of Donetsk culm is determined. It is established that ash and slag mix of Novocherkassk state district power plant (SDPP (Rostov region, Russia after coal combustion has the following composition: iron – 2.3%; mineral constituents – 75.8%; calcium oxide – 20.4%; aluminum oxide – 0.0118%; water – 1.3022%; manganese oxide – 0.18%; copper oxide – 0.0043%; plumbum – 0.0017%; it is qualified as hazard class IV for environment. Cadmium, mercury, arsenic, selenium, antimony, bismuth are contained in trace amounts < 0.1 mg/kg. In order to reduce dust emissions the cleaning stage I of gas scrubbing facility is equipped with group cyclone comprised of four cyclone units. Medium and coarse particles under the action of centrifugal force are deposited in the cyclone. This promoted decrease in dust load on bag filters, the cleaning stage II. Qualitative chemical composition of ash captured by group cyclone and that of ash captured by bag filter are determined. Cadmium, copper, plumbum, zinc, iron, manganese, and calcium are contained in coarse and fine particles captured by group cyclone and bag filter. Aluminum referred to light metals is completely captured by cyclone. The ash dust in its bulk is of dark gray color. The ash captured by cyclone contains coarse particles of black color and the ash captured bag filter contains fine particles of light colors (gray-yellow color producing silky gloss. This is characteristic for ash dust after combustion of Donetsk culm. The main component of the ash is silicon dioxide, its content in the ash captured by filter reaches 91%. These fine particles create light tone of this ash.

  11. Spatial trends in S and Cl in ash leachates of the May 18th, 1980 eruption of Mt. St Helens

    Science.gov (United States)

    Ayris, Paul M.; Delmelle, Pierre; Durant, Adam J.; Damby, David E.; Maters, Elena C.

    2014-05-01

    It has long been known that surficial deposits of salts and acids on volcanic ash particles derive from interactions of ash with sulphur and halide species within the eruption plume and volcanic cloud. These compounds are mobilised as ash particles are wetted, and beneficial or detrimental environmental and health impacts may be induced where the most concentrated solutions are produced. However, limited mechanistic understanding of gas-ash interactions currently precludes prediction of the spatial distribution or variation in leachate chemistry and concentration following an eruption. Sampling and leachate analysis of freshly-fallen ash therefore offers the sole method by which such variations can be observed. Previous ash leachate studies often involve a limited number of ash samples, and utilise a 'one-dimensional' analysis that considers variation in terms of absolute distance from the source volcano. Here, we demonstrate that extensive sampling and a 'two-dimensional' analysis can uncover more complex spatial trends. We compiled over 358 leachate compositions from the May 18th 1980 eruption of Mt. St. Helens. Of the water-extracted leachates, only 95 compositions from ash sampled at 45 localities between 35 and 1129 km from the volcano are sufficiently documented to be retrospectively comparable. To consider the effects of intra-deposit variability, we calculated average concentrations of leachate data within 11×22 km grid cells across the region, and defined a data quality parameter to reflect confidence in the derived values. To investigate any dependence of leachate composition on the grain size distribution, we generated an interpolated map of geometric specific surface area variation across the deposit, normalising ash leachate data to the calculated specific surface area at the corresponding sampling location. The data treatment identifies S and Cl enrichments in proximal blast deposits; relatively constant Cl concentrations across the ashfall deposits

  12. Ice nucleating properties of volcanic ash particles from the Eyjafjallajökull volcanic eruption

    Science.gov (United States)

    Kulkarni, G.; Zelenyuk, A.; Beranek, J.

    2011-12-01

    The volcanic ash from the volcanic emissions can significantly contribute to the natural source of aerosols in the atmosphere. In the vicinity and downwind of eruption site, the transported ash might have a stronger impact on the aviation industry, regional air quality, and climate. Despite the environmental significance of ash, our understanding of ash particles reacting with other volcanic plume constituents is rudimentary. In particular, the complex interactions between the water vapor and ash particles under different meteorological conditions that lead to cloud hydrometeors are poorly understood. To improve our understanding, we focus on investigating the ice formation properties of ash particles collected from the recent volcanic eruption. It was observed that the ash particles are less efficient ice nuclei compared to the natural dust particles in the deposition nucleation regime, but have similar efficiencies in the condensation freezing mode. The ice nucleated ash particles are separated from the interstitial particles, and further evaporated to understand the elemental composition, size, shape and morphology of the ice residue using the single particle mass spectrometer. The elemental composition reveals that majority of the elements are also present in the natural dust particles, but subtle differences are observed. This suggests that particle properties play an important role in the ice nucleation process.

  13. AshMeadowsNaucorid_CH

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — These data identify the areas where final critical habitat for the Ash Meadows Naucorid (Ambrysus amargosus) occur. "Nevada, Nye County. Point of Rocks Springs and...

  14. AshMeadowsNaucorid_CH

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — These data identify the areas where final critical habitat for the Ash Meadows Naucorid (Ambrysus amargosus) occur. "Nevada, Nye County. Point of Rocks Springs and...

  15. Underestimated risks of recurrent long-range ash dispersal from northern Pacific Arc volcanoes

    Science.gov (United States)

    Bourne, A. J.; Abbott, P. M.; Albert, P. G.; Cook, E.; Pearce, N. J. G.; Ponomareva, V.; Svensson, A.; Davies, S. M.

    2016-07-01

    Widespread ash dispersal poses a significant natural hazard to society, particularly in relation to disruption to aviation. Assessing the extent of the threat of far-travelled ash clouds on flight paths is substantially hindered by an incomplete volcanic history and an underestimation of the potential reach of distant eruptive centres. The risk of extensive ash clouds to aviation is thus poorly quantified. New evidence is presented of explosive Late Pleistocene eruptions in the Pacific Arc, currently undocumented in the proximal geological record, which dispersed ash up to 8000 km from source. Twelve microscopic ash deposits or cryptotephra, invisible to the naked eye, discovered within Greenland ice-cores, and ranging in age between 11.1 and 83.7 ka b2k, are compositionally matched to northern Pacific Arc sources including Japan, Kamchatka, Cascades and Alaska. Only two cryptotephra deposits are correlated to known high-magnitude eruptions (Towada-H, Japan, ca 15 ka BP and Mount St Helens Set M, ca 28 ka BP). For the remaining 10 deposits, there is no evidence of age- and compositionally-equivalent eruptive events in regional volcanic stratigraphies. This highlights the inherent problem of under-reporting eruptions and the dangers of underestimating the long-term risk of widespread ash dispersal for trans-Pacific and trans-Atlantic flight routes.

  16. Underestimated risks of recurrent long-range ash dispersal from northern Pacific Arc volcanoes.

    Science.gov (United States)

    Bourne, A J; Abbott, P M; Albert, P G; Cook, E; Pearce, N J G; Ponomareva, V; Svensson, A; Davies, S M

    2016-01-01

    Widespread ash dispersal poses a significant natural hazard to society, particularly in relation to disruption to aviation. Assessing the extent of the threat of far-travelled ash clouds on flight paths is substantially hindered by an incomplete volcanic history and an underestimation of the potential reach of distant eruptive centres. The risk of extensive ash clouds to aviation is thus poorly quantified. New evidence is presented of explosive Late Pleistocene eruptions in the Pacific Arc, currently undocumented in the proximal geological record, which dispersed ash up to 8000 km from source. Twelve microscopic ash deposits or cryptotephra, invisible to the naked eye, discovered within Greenland ice-cores, and ranging in age between 11.1 and 83.7 ka b2k, are compositionally matched to northern Pacific Arc sources including Japan, Kamchatka, Cascades and Alaska. Only two cryptotephra deposits are correlated to known high-magnitude eruptions (Towada-H, Japan, ca 15 ka BP and Mount St Helens Set M, ca 28 ka BP). For the remaining 10 deposits, there is no evidence of age- and compositionally-equivalent eruptive events in regional volcanic stratigraphies. This highlights the inherent problem of under-reporting eruptions and the dangers of underestimating the long-term risk of widespread ash dispersal for trans-Pacific and trans-Atlantic flight routes.

  17. Effect of Fly Ash on TSA Resistance of Cement-based Material

    Institute of Scientific and Technical Information of China (English)

    ZHANG Fengchen; MA Baoguo; WU Shengxing; ZHOU Jikai

    2011-01-01

    Thaumasite form of sulfate attack (TSA) is a major concern in evaluating durability of concrete structures subjected to sulfate and carbonate ions. By means of Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM),and energy dispersive spectrum (EDS)as well as Raman spectra of erosion substances, effect of fly ash on TSA resistance of Portland cement-based material were investigated. Immersed in magnesium sulfate solution with 33 800 ppm mass concentration of SO42- at 5±2 ℃ for 15 weeks, ratio of compressive strength loss decreased as binder replacement ratio of fly ash increased. Furthermore, when binder replacement of fly ash was 60%, compressive strength increased. When thaumasite came into being in samples with 0, 15% binder replacement ratio of fly ash, ettringite and gypsum appeared in those with 30%, 45%, 60% binder replacement ratio of fly ash. Results mentioned above showed that fly ash can restrain formation of thaumasite and improve TSA resistance of Portland cement-based material sufficiently.

  18. Fly ash. Quality recycling material

    Energy Technology Data Exchange (ETDEWEB)

    Blomster, D.; Leisio, C.

    1996-11-01

    Imatran Voima`s coal-fired power plants not only generate power and heat but also produce fly ash which is suitable raw material for recycling. This material for recycling is produced in the flue gas cleaning process. It is economical and, thanks to close quality control, is suitable for use as a raw material in the building materials industry, in asphalt production, and in earthworks. Structures made from fly ash are also safe from an environmental point of view. (orig.)

  19. Fly ash. Quality recycling material

    Energy Technology Data Exchange (ETDEWEB)

    Blomster, D.; Leisio, C.

    1996-11-01

    Imatran Voima`s coal-fired power plants not only generate power and heat but also produce fly ash which is suitable raw material for recycling. This material for recycling is produced in the flue gas cleaning process. It is economical and, thanks to close quality control, is suitable for use as a raw material in the building materials industry, in asphalt production, and in earthworks. Structures made from fly ash are also safe from an environmental point of view. (orig.)

  20. Hot-Gas Filter Ash Characterization Project

    Energy Technology Data Exchange (ETDEWEB)

    Swanson, M.L.; Hurley, J.P.; Dockter, B.A.; O`Keefe, C.A.

    1997-07-01

    Large-scale hot-gas filter testing over the past 10 years has revealed numerous cases of cake buildup on filter elements that has been difficult, if not impossible, to remove. At times, the cake can blind or bridge between candle filters, leading to filter failure. Physical factors, including particle-size distribution, particle shape, the aerodynamics of deposition, and system temperature, contribute to the difficulty in removing the cake, but chemical factors such as surface composition and gas-solid reactions also play roles in helping to bond the ash to the filters or to itself. This project is designed to perform the research necessary to determine the fuel-, sorbent-, and operations-related conditions that lead to blinding or bridging of hot-gas particle filters. The objectives of the project are threefold: (1) Determine the mechanisms by which a difficult-to-clean ash is formed and how it bridges hot-gas filters (2) Develop a method to determine the rate of bridging based on analyses of the feed coal and sorbent, filter properties, and system operating conditions and (3) Suggest and test ways to prevent filter bridging.

  1. Uncertainty in soil carbon accounting due to unrecognized soil erosion.

    Science.gov (United States)

    Sanderman, Jonathan; Chappell, Adrian

    2013-01-01

    The movement of soil organic carbon (SOC) during erosion and deposition events represents a major perturbation to the terrestrial carbon cycle. Despite the recognized impact soil redistribution can have on the carbon cycle, few major carbon accounting models currently allow for soil mass flux. Here, we modified a commonly used SOC model to include a soil redistribution term and then applied it to scenarios which explore the implications of unrecognized erosion and deposition for SOC accounting. We show that models that assume a static landscape may be calibrated incorrectly as erosion of SOC is hidden within the decay constants. This implicit inclusion of erosion then limits the predictive capacity of these models when applied to sites with different soil redistribution histories. Decay constants were found to be 15-50% slower when an erosion rate of 15 t soil ha(-1)  yr(-1) was explicitly included in the SOC model calibration. Static models cannot account for SOC change resulting from agricultural management practices focused on reducing erosion rates. Without accounting for soil redistribution, a soil sampling scheme which uses a fixed depth to support model development can create large errors in actual and relative changes in SOC stocks. When modest levels of erosion were ignored, the combined uncertainty in carbon sequestration rates was 0.3-1.0 t CO2  ha(-1)  yr(-1) . This range is similar to expected sequestration rates for many management options aimed at increasing SOC levels. It is evident from these analyses that explicit recognition of soil redistribution is critical to the success of a carbon monitoring or trading scheme which seeks to credit agricultural activities.

  2. Modelling soil carbon fate under erosion process in vineyard

    Science.gov (United States)

    Novara, Agata; Scalenghe, Riccardo; Minacapilli, Mario; Maltese, Antonino; Capodici, Fulvio; Borgogno Mondino, Enrico; Gristina, Luciano

    2017-04-01

    Soil erosion processes in vineyards beyond water runoff and sediment transport have a strong effect on soil organic carbon loss (SOC) and redi