WorldWideScience

Sample records for deposition amorphous silicon

  1. Plasma deposition of amorphous silicon-based materials

    CERN Document Server

    Bruno, Giovanni; Madan, Arun

    1995-01-01

    Semiconductors made from amorphous silicon have recently become important for their commercial applications in optical and electronic devices including FAX machines, solar cells, and liquid crystal displays. Plasma Deposition of Amorphous Silicon-Based Materials is a timely, comprehensive reference book written by leading authorities in the field. This volume links the fundamental growth kinetics involving complex plasma chemistry with the resulting semiconductor film properties and the subsequent effect on the performance of the electronic devices produced. Key Features * Focuses on the plasma chemistry of amorphous silicon-based materials * Links fundamental growth kinetics with the resulting semiconductor film properties and performance of electronic devices produced * Features an international group of contributors * Provides the first comprehensive coverage of the subject, from deposition technology to materials characterization to applications and implementation in state-of-the-art devices.

  2. Hot wire deposited hydrogenated amorphous silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Mahan, A.H.; Iwaniczko, E.; Nelson, B.P.; Reedy, R.C. Jr.; Crandall, R.S. [National Renewable Energy Lab., Golden, CO (United States)

    1996-05-01

    This paper details the results of a study in which low H content, high deposition rate hot wire (HW) deposited amorphous silicon (a-Si:H) has been incorporated into a substrate solar cell. The authors find that the treatment of the top surface of the HW i layer while it is being cooled from its high deposition temperature is crucial to device performance. They present data concerning these surface treatments, and correlate these treatments with Schottky device performance. The authors also present first generation HW n-i-p solar cell efficiency data, where a glow discharge (GD) {mu}c-Si(p) layer was added to complete the partial devices. No light trapping layer was used to increase the device Jsc. Their preliminary investigations have yielded efficiencies of up to 6.8% for a cell with a 4000 {Angstrom} thick HW i-layer, which degrade less than 10% after a 900 hour light soak. The authors suggest avenues for further improvement of their devices.

  3. Novel photochemical vapor deposition reactor for amorphous silicon solar cell deposition

    Science.gov (United States)

    Rocheleau, Richard E.; Hegedus, Steven S.; Buchanan, Wayne A.; Jackson, Scott C.

    1987-07-01

    A novel photochemical vapor deposition (photo-CVD) reactor having a flexible ultraviolet-transparent Teflon curtain and a secondary gas flow to eliminate deposition on the window has been used to deposit amorphous silicon films and p-i-n solar cells. The background levels of atmospheric contaminants (H2O, CO2, N2) depend strongly on the vacuum procedures but not on the presence of a Teflon curtain in the reactor. Intrinsic films with a midgap density of states of 3×1015 eV-1 cm-3 and all-photo-CVD pin solar cells with efficiencies of 8.5% have been deposited.

  4. Excellent Silicon Surface Passivation Achieved by Industrial Inductively Coupled Plasma Deposited Hydrogenated Intrinsic Amorphous Silicon Suboxide

    Directory of Open Access Journals (Sweden)

    Jia Ge

    2014-01-01

    Full Text Available We present an alternative method of depositing a high-quality passivation film for heterojunction silicon wafer solar cells, in this paper. The deposition of hydrogenated intrinsic amorphous silicon suboxide is accomplished by decomposing hydrogen, silane, and carbon dioxide in an industrial remote inductively coupled plasma platform. Through the investigation on CO2 partial pressure and process temperature, excellent surface passivation quality and optical properties are achieved. It is found that the hydrogen content in the film is much higher than what is commonly reported in intrinsic amorphous silicon due to oxygen incorporation. The observed slow depletion of hydrogen with increasing temperature greatly enhances its process window as well. The effective lifetime of symmetrically passivated samples under the optimal condition exceeds 4.7 ms on planar n-type Czochralski silicon wafers with a resistivity of 1 Ωcm, which is equivalent to an effective surface recombination velocity of less than 1.7 cms−1 and an implied open-circuit voltage (Voc of 741 mV. A comparison with several high quality passivation schemes for solar cells reveals that the developed inductively coupled plasma deposited films show excellent passivation quality. The excellent optical property and resistance to degradation make it an excellent substitute for industrial heterojunction silicon solar cell production.

  5. Optical bandgap of ultra-thin amorphous silicon films deposited on crystalline silicon by PECVD

    Directory of Open Access Journals (Sweden)

    Yaser Abdulraheem

    2014-05-01

    Full Text Available An optical study based on spectroscopic ellipsometry, performed on ultrathin hydrogenated amorphous silicon (a-Si:H layers, is presented in this work. Ultrathin layers of intrinsic amorphous silicon have been deposited on n-type mono-crystalline silicon (c-Si wafers by plasma enhanced chemical vapor deposition (PECVD. The layer thicknesses along with their optical properties –including their refractive index and optical loss- were characterized by spectroscopic ellipsometry (SE in a wavelength range from 250 nm to 850 nm. The data was fitted to a Tauc-Lorentz optical model and the fitting parameters were extracted and used to compute the refractive index, extinction coefficient and optical bandgap. Furthermore, the a-Si:H film grown on silicon was etched at a controlled rate using a TMAH solution prepared at room temperature. The optical properties along with the Tauc-Lorentz fitting parameters were extracted from the model as the film thickness was reduced. The etch rate for ultrathin a-Si:H layers in TMAH at room temperature was found to slow down drastically as the c-Si interface is approached. From the Tauc-Lorentz parameters obtained from SE, it was found that the a-Si film exhibited properties that evolved with thickness suggesting that the deposited film is non-homogeneous across its depth. It was also found that the degree of crystallinity and optical (Tauc bandgap increased as the layers were reduced in thickness and coming closer to the c-Si substrate interface, suggesting the presence of nano-structured clusters mixed into the amorphous phase for the region close to the crystalline silicon substrate. Further results from Atomic Force Microscopy and Transmission Electron Microscopy confirmed the presence of an interfacial transitional layer between the amorphous film and the underlying substrate showing silicon nano-crystalline enclosures that can lead to quantum confinement effects. Quantum confinement is suggested to be the cause

  6. Optical bandgap of ultra-thin amorphous silicon films deposited on crystalline silicon by PECVD

    Energy Technology Data Exchange (ETDEWEB)

    Abdulraheem, Yaser, E-mail: yaser.abdulraheem@kuniv.edu.kw [Electrical Engineering Department, College of Engineering and Petroleum, Kuwait University. P.O. Box 5969, 13060 Safat (Kuwait); Gordon, Ivan; Bearda, Twan; Meddeb, Hosny; Poortmans, Jozef [IMEC, Kapeldreef 75, 3001, Leuven (Belgium)

    2014-05-15

    An optical study based on spectroscopic ellipsometry, performed on ultrathin hydrogenated amorphous silicon (a-Si:H) layers, is presented in this work. Ultrathin layers of intrinsic amorphous silicon have been deposited on n-type mono-crystalline silicon (c-Si) wafers by plasma enhanced chemical vapor deposition (PECVD). The layer thicknesses along with their optical properties –including their refractive index and optical loss- were characterized by spectroscopic ellipsometry (SE) in a wavelength range from 250 nm to 850 nm. The data was fitted to a Tauc-Lorentz optical model and the fitting parameters were extracted and used to compute the refractive index, extinction coefficient and optical bandgap. Furthermore, the a-Si:H film grown on silicon was etched at a controlled rate using a TMAH solution prepared at room temperature. The optical properties along with the Tauc-Lorentz fitting parameters were extracted from the model as the film thickness was reduced. The etch rate for ultrathin a-Si:H layers in TMAH at room temperature was found to slow down drastically as the c-Si interface is approached. From the Tauc-Lorentz parameters obtained from SE, it was found that the a-Si film exhibited properties that evolved with thickness suggesting that the deposited film is non-homogeneous across its depth. It was also found that the degree of crystallinity and optical (Tauc) bandgap increased as the layers were reduced in thickness and coming closer to the c-Si substrate interface, suggesting the presence of nano-structured clusters mixed into the amorphous phase for the region close to the crystalline silicon substrate. Further results from Atomic Force Microscopy and Transmission Electron Microscopy confirmed the presence of an interfacial transitional layer between the amorphous film and the underlying substrate showing silicon nano-crystalline enclosures that can lead to quantum confinement effects. Quantum confinement is suggested to be the cause of the observed

  7. N-type crystalline silicon films free of amorphous silicon deposited on glass by HCl addition using hot wire chemical vapour deposition.

    Science.gov (United States)

    Chung, Yung-Bin; Park, Hyung-Ki; Lee, Sang-Hoon; Song, Jean-Ho; Hwang, Nong-Moon

    2011-09-01

    Since n-type crystalline silicon films have the electric property much better than those of hydrogenated amorphous and microcrystalline silicon films, they can enhance the performance of advanced electronic devices such as solar cells and thin film transistors (TFTs). Since the formation of amorphous silicon is unavoidable in the low temperature deposition of microcrystalline silicon on a glass substrate at temperatures less than 550 degrees C in the plasma-enhanced chemical vapour deposition and hot wire chemical vapour deposition (HWCVD), crystalline silicon films have not been deposited directly on a glass substrate but fabricated by the post treatment of amorphous silicon films. In this work, by adding the HCl gas, amorphous silicon-free n-type crystalline silicon films could be deposited directly on a glass substrate by HWCVD. The resistivity of the n-type crystalline silicon film for the flow rate ratio of [HCl]/[SiH4] = 7.5 and [PH3]/[SiH4] = 0.042 was 5.31 x 10(-4) ohms cm, which is comparable to the resistivity 1.23 x 10(-3) ohms cm of films prepared by thermal annealing of amorphous silicon films. The absence of amorphous silicon in the film could be confirmed by high resolution transmission electron microscopy.

  8. Photoselective Metal Deposition on Amorphous Silicon p-i-n Solar Cells

    NARCIS (Netherlands)

    Kooij, E.S.; Hamoumi, M.; Kelly, J.J.; Schropp, R.E.I.

    1997-01-01

    A novel method is described for the patternwise metallization of amorphous silicon solar cells, based on photocathodic deposition. The electric field of the p-i-n structure is used for the separation of photogenerated charge carriers. The electrons are driven to the interface of the n+-layer with th

  9. Laser annealing study of PECVD deposited hydrogenated amorphous silicon carbon alloy films

    Science.gov (United States)

    Coscia, U.; Ambrosone, G.; Gesuele, F.; Grossi, V.; Parisi, V.; Schutzmann, S.; Basa, D. K.

    2007-12-01

    The influence of carbon content on the crystallization process has been investigated for the excimer laser annealed hydrogenated amorphous silicon carbon alloy films deposited by Plasma Enhanced Chemical Vapour Deposition (PECVD) technique, using silane methane gas mixture diluted in helium, as well as for the hydrogenated microcrystalline silicon carbon alloy films prepared by PECVD from silane methane gas mixture highly diluted in hydrogen, for comparison. The study demonstrates clearly that the increase in the carbon content prevents the crystallization process in the hydrogen diluted samples while the crystallization process is enhanced in the laser annealing of amorphous samples because of the increase in the absorbed laser energy density that occurs for the amorphous films with the higher carbon content. This, in turn, facilitates the crystallization for the laser annealed samples with higher carbon content, resulting in the formation of SiC crystallites along with Si crystallites.

  10. CW laser induced crystallization of thin amorphous silicon films deposited by EBE and PECVD

    Energy Technology Data Exchange (ETDEWEB)

    Said-Bacar, Z., E-mail: zabardjade@yahoo.fr [InESS (UMR 7163 CNRS-UDS), 23 rue de Loess, 67037 Strasbourg Cedex 2 (France); Prathap, P. [InESS (UMR 7163 CNRS-UDS), 23 rue de Loess, 67037 Strasbourg Cedex 2 (France); Cayron, C. [CEA, LITEN, DEHT, Minatec, 17 rue des Martyrs, 38054 Cedex 9 (France); Mermet, F. [IREPA LASER, Pole API - Parc d' Innovation, 67400 Illkirch (France); Leroy, Y.; Antoni, F.; Slaoui, A.; Fogarassy, E. [InESS (UMR 7163 CNRS-UDS), 23 rue de Loess, 67037 Strasbourg Cedex 2 (France)

    2012-09-15

    Highlights: Black-Right-Pointing-Pointer The effect of hydrogen in CW laser crystallization of hydrogenated amorphous silicon thin films has been investigated. Black-Right-Pointing-Pointer Large hydrogen content results in decohesion of the films due to hydrogen effusion. Black-Right-Pointing-Pointer Very low hydrogen content or hydrogen free amorphous silicon film are suitable for crystallization induced by CW laser. Black-Right-Pointing-Pointer Grains of size between 20 and 100 {mu}m in width and about 200 {mu}m in long in scanning direction are obtained with these latter films. - Abstract: This work presents the Continuous Wave (CW) laser crystallization of thin amorphous silicon (a-Si) films deposited by Plasma Enhanced Chemical Vapor Deposition (PECVD) and by Electron Beam Evaporation (EBE) on low cost glass substrate. The films are characterized by Elastic Recoil Detection Analysis (ERDA) and by Fourier-Transform Infrared (FTIR) spectroscopy to evaluate the hydrogen content. Analysis shows that the PECVD films contain a high hydrogen concentration ({approx}10 at.%) while the EBE films are almost hydrogen-free. It is found that the hydrogen is in a bonding configuration with the a-Si network and in a free form, requiring a long thermal annealing for exodiffusion before the laser treatment to avoid explosive effusion. The CW laser crystallization process of the amorphous silicon films was operated in liquid phase regime. We show by Electron Backscatter Diffraction (EBSD) that polysilicon films with large grains can be obtained with EBE as well as for the PECVD amorphous silicon provided that for the latest the hydrogen content is lower than 2 at.%.

  11. Ion beam assisted deposition of hydrogenated amorphous silicon nitride

    Science.gov (United States)

    Hubler, G. K.; Donovan, E. P.; Gossett, C. R.

    1994-06-01

    Hydrogenated silicon nitride films were produced near room temperature by electron beam evaporation of Si and simultaneous bombardment with a 500 eV ammonia ion beam from a Kaufman ion source and for a variety of ratios of incident charge to evaporant fluxes. The composition of N, Si and H in the films as a function of ion current density was measured by means of Rutherford backscattering and elastic recoil detection analyses. Reflection and transmission spectroscopy in the wavelength range 400 nm to 3125 nm were employed to measure optical thickness and refractive index. From the data we extracted the number of nitrogen atoms in the ammonia beam per unit charge collected, the sputtering coefficient for ammonia incident on Si, and the refractive index versus composition of the alloys. At the highest N composition, the films were clear in the visible with the UV cut-off less than 400 nm, the index was 1.80 which is lower than that of pure Si3N4 and the H content was as high as 27 at.%.

  12. Photoelectronic properties of hydrogenated amorphous silicon films deposited by R. F sputtering and glow discharge methods

    Energy Technology Data Exchange (ETDEWEB)

    Abdel-Rahman, M.; Madkour, H. (Faculty of Science, Aswan (Egypt)); Hassan, H.H.; El-Desouki, S. (Cairo Univ., Giza (Egypt))

    1989-09-01

    Hydrogenated amorphous silicon films a-Si:H were deposited by both R.F. sputtering in a planar magnetron configuration and glow discharge methods on Corning glass substrates at different substrate temperatures. The dc and ac photoconductivities of the deposited films were extensively studied as a function of temperature, photon energy and photo-excitation intensity. The results showed that, the dark and photoconductivities have different dependency regions on temperature with different activation energies in the range of 0.08-0.20 eV. It has been also found that the photoconductivity is influenced by the method of deposition and the deposition parameters, indicating that the density of gap states is sensitive to the deposition conditions. The photoconductivity ({sigma}{sub ph}) has a power dependence on the illumination intensity (I) of the form {sigma}{sub ph} {alpha} I {sup {nu}}, where {nu} is a constant and was found also to be increase with temperature.

  13. Deposition and characterization of amorphous silicon with embedded nanocrystals and microcrystalline silicon for thin film solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Ambrosio, R., E-mail: rambrosi@uacj.mx [Instituto Nacional de Astrofísica, Óptica y Electrónica, INAOE, Puebla (Mexico); Instituto de Ingeniería y Tecnología, Universidad Autónoma de Ciudad Juárez, UACJ, C.J., Chihuahua (Mexico); Moreno, M.; Torres, A. [Instituto Nacional de Astrofísica, Óptica y Electrónica, INAOE, Puebla (Mexico); Carrillo, A. [Instituto de Ingeniería y Tecnología, Universidad Autónoma de Ciudad Juárez, UACJ, C.J., Chihuahua (Mexico); Vivaldo, I.; Cosme, I. [Instituto Nacional de Astrofísica, Óptica y Electrónica, INAOE, Puebla (Mexico); Heredia, A. [Universidad Popular Autónoma del Estado de Puebla, Puebla (Mexico)

    2015-09-15

    Highlights: • Nanostructured silicon thin films were deposited by PECVD. • Polymorphous and microcrystalline were obtained varying the pressure and power. • Structural and optoelectronics properties were studied. • The σ{sub dark} changed by 5 order of magnitude under illumination, V{sub d} was at 2.5 A/s. • The evidence of embedded nanocrystals into the amorphous matrix was investigated. - Abstract: Amorphous silicon thin films with embedded nanocrystals and microcrystalline silicon were deposited by the standard Radio Frequency (RF) Plasma Enhanced Chemical Vapor Deposition (PECVD) technique, from SiH{sub 4}, H{sub 2}, Ar gas mixture at substrate temperature of 200 °C. Two series of films were produced varying deposition parameters as chamber pressure and RF power density. The chemical bonding in the films was characterized by Fourier transform infrared spectroscopy, where it was observed a correlation between the hydrogen content and the morphological and electrical properties in the films. Electrical and optical parameters were extracted in both series of films, as room temperature conductivity (σ{sub RT}), activation energy (E{sub a}), and optical band gap (E{sub g}). As well, structural analysis in the films was performed by Raman spectroscopy and Atomic Force Microscopy (AFM), which gives an indication of the films crystallinity. The photoconductivity changed in a range of 2 and 6 orders of magnitude from dark to AM 1.5 illumination conditions, which is of interest for thin film solar cells applications.

  14. Thermal Conductivity of Amorphous and Nanocrystalline Silicon Films Prepared by Hot-Wire Chemical-Vapor Deposition

    Energy Technology Data Exchange (ETDEWEB)

    Nemeth, William M [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Jugdersuren, B. [Sotera Defense Solutions, Inc.; Kearney, B. T. [Naval Research Laboratory; Queen, D. R. [Naval Research Laboratory; Metcalf, T. H. [Naval Research Laboratory; Culbertson, J. C. [Naval Research Laboratory; Chervin, C. N. [Naval Research Laboratory; Stroud, R. M. [Naval Research Laboratory; Wang, Q. [Formerly NREL; Liu, Xiao [Naval Research Laboratory

    2017-07-31

    We report 3..omega.. thermal conductivity measurements of amorphous and nanocrystalline silicon thin films from 85 to 300 K prepared by hot-wire chemical-vapor deposition, where the crystallinity of the films is controlled by the hydrogen dilution during growth. The thermal conductivity of the amorphous silicon film is in agreement with several previous reports of amorphous silicon prepared by a variety of deposition techniques. The thermal conductivity of the as-grown nanocrystalline silicon film is 70% higher and increases 35% more after an anneal at 600 degrees C. They all have similarly weak temperature dependence. Structural analysis shows that the as-grown nanocrystalline silicon is approximately 60% crystalline, nanograins and grain boundaries included. The nanograins, averaging 9.1 nm in diameter in the as-grown film, are embedded in an amorphous matrix. The grain size increases to 9.7 nm upon annealing, accompanied by the disappearance of the amorphous phase. We extend the models of grain boundary scattering of phonons with two different non-Debye dispersion relations to explain our result of nanocrystalline silicon, confirming the strong grain size dependence of heat transport for nanocrystalline materials. However, the similarity in thermal conductivity between amorphous and nanocrystalline silicon suggests the heat transport mechanisms in both structures may not be as dissimilar as we currently understand.

  15. Thermal conductivity of amorphous and nanocrystalline silicon films prepared by hot-wire chemical-vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Jugdersuren, B.; Kearney, B. T.; Queen, D. R.; Metcalf, T. H.; Culbertson, J. C.; Chervin, C. N.; Stroud, R. M.; Nemeth, W.; Wang, Q.; Liu, Xiao

    2017-07-01

    We report 3..omega.. thermal conductivity measurements of amorphous and nanocrystalline silicon thin films from 85 to 300 K prepared by hot-wire chemical-vapor deposition, where the crystallinity of the films is controlled by the hydrogen dilution during growth. The thermal conductivity of the amorphous silicon film is in agreement with several previous reports of amorphous silicon prepared by a variety of deposition techniques. The thermal conductivity of the as-grown nanocrystalline silicon film is 70% higher and increases 35% more after an anneal at 600 degrees C. They all have similarly weak temperature dependence. Structural analysis shows that the as-grown nanocrystalline silicon is approximately 60% crystalline, nanograins and grain boundaries included. The nanograins, averaging 9.1 nm in diameter in the as-grown film, are embedded in an amorphous matrix. The grain size increases to 9.7 nm upon annealing, accompanied by the disappearance of the amorphous phase. We extend the models of grain boundary scattering of phonons with two different non-Debye dispersion relations to explain our result of nanocrystalline silicon, confirming the strong grain size dependence of heat transport for nanocrystalline materials. However, the similarity in thermal conductivity between amorphous and nanocrystalline silicon suggests the heat transport mechanisms in both structures may not be as dissimilar as we currently understand.

  16. Thermal conductivity of amorphous and nanocrystalline silicon films prepared by hot-wire chemical-vapor deposition

    Science.gov (United States)

    Jugdersuren, B.; Kearney, B. T.; Queen, D. R.; Metcalf, T. H.; Culbertson, J. C.; Chervin, C. N.; Stroud, R. M.; Nemeth, W.; Wang, Q.; Liu, Xiao

    2017-07-01

    We report 3 ω thermal conductivity measurements of amorphous and nanocrystalline silicon thin films from 85 to 300 K prepared by hot-wire chemical-vapor deposition, where the crystallinity of the films is controlled by the hydrogen dilution during growth. The thermal conductivity of the amorphous silicon film is in agreement with several previous reports of amorphous silicon prepared by a variety of deposition techniques. The thermal conductivity of the as-grown nanocrystalline silicon film is 70% higher and increases 35% more after an anneal at 600 ∘C . They all have similarly weak temperature dependence. Structural analysis shows that the as-grown nanocrystalline silicon is approximately 60 % crystalline, nanograins and grain boundaries included. The nanograins, averaging 9.1 nm in diameter in the as-grown film, are embedded in an amorphous matrix. The grain size increases to 9.7 nm upon annealing, accompanied by the disappearance of the amorphous phase. We extend the models of grain boundary scattering of phonons with two different non-Debye dispersion relations to explain our result of nanocrystalline silicon, confirming the strong grain size dependence of heat transport for nanocrystalline materials. However, the similarity in thermal conductivity between amorphous and nanocrystalline silicon suggests the heat transport mechanisms in both structures may not be as dissimilar as we currently understand.

  17. Amorphous Silicon Film Deposition from SiH4 by Chemical Vapor Deposition with Argon Excimer Lamp

    Science.gov (United States)

    Toshikawa, Kiyohiko; Yokotani, Atsushi; Kurosawa, Kou

    2005-11-01

    We have deposited amorphous silicon thin films from monosilane (SiH4) gas by photochemical vapor deposition using a vacuum ultraviolet excimer lamp (VUV-CVD). We used an argon excimer lamp (λ=126 nm, hν=9.8 eV) whose photons are strongly absorbed by SiH4 gas. The substrate temperatures were changed from 25 to 300°C. When the temperature was lower than 150°C, the films included H--Si--H units and H2 molecules in its structure. When it was higher than 150°C, the main structural unit was Si--H.

  18. Aluminium-induced crystallization of amorphous silicon films deposited by DC magnetron sputtering on glasses

    Energy Technology Data Exchange (ETDEWEB)

    Kezzoula, F., E-mail: kezzoula@usa.com [UDTS 2Bd Frantz Fanon 7 merveilles Algiers (Algeria); Laboratory of Materials, Mineral and Composite (LMMC), Boumerdes University (Algeria); Hammouda, A. [UPR CNRS 3079 CEMHTI - 1D Avenue de la Recherche Scientifique, 45071 Orleans Cedex 2 (France); Equipe Couches Minces, Laboratoire de Physique des Materiaux, Faculte de Physique, USTHB, Algiers (Algeria); Universite d' Orleans, 45067 Orleans Cedex 2 (France); Kechouane, M. [Equipe Couches Minces, Laboratoire de Physique des Materiaux, Faculte de Physique, USTHB, Algiers (Algeria); Simon, P. [UPR CNRS 3079 CEMHTI - 1D Avenue de la Recherche Scientifique, 45071 Orleans Cedex 2 (France); Universite d' Orleans, 45067 Orleans Cedex 2 (France); Abaidia, S.E.H. [Laboratory of Materials, Mineral and Composite (LMMC), Boumerdes University (Algeria); Keffous, A. [UDTS 2Bd Frantz Fanon 7 merveilles Algiers (Algeria); Cherfi, R. [Equipe Couches Minces, Laboratoire de Physique des Materiaux, Faculte de Physique, USTHB, Algiers (Algeria); Menari, H.; Manseri, A. [UDTS 2Bd Frantz Fanon 7 merveilles Algiers (Algeria)

    2011-09-15

    Amorphous silicon (a-Si) and hydrogenated amorphous silicon (a-Si:H) films were deposited by DC magnetron sputtering technique with argon and hydrogen plasma mixture on Al deposited by thermal evaporation on glass substrates. The a-Si/Al and a-Si:H/Al thin films were annealed at different temperatures ranging from 250 to 550 deg. C during 4 h in vacuum-sealed bulb. The effects of annealing temperature on optical, structural and morphological properties of as-grown as well as the vacuum-annealed a-Si/Al and a-Si:H/Al thin films are presented in this contribution. The averaged transmittance of a-Si:H/Al film increases upon increasing the annealing temperature. XRD measurements clearly evidence that crystallization is initiated at 450 deg. C. The number and intensity of diffraction peaks appearing in the diffraction patterns are more important in a-Si:H/Al than that in a-Si/Al layers. Results show that a-Si:H films deposited on Al/glass crystallize above 450 deg. C and present better crystallization than the a-Si layers. The presence of hydrogen induces an improvement of structural properties of poly-Si prepared by aluminium-induced crystallization (AIC).

  19. Characteristics of Amorphous Silicon Nitride Films Deposited by LF-PECVD from SiH4/N2

    Institute of Scientific and Technical Information of China (English)

    ZHONG Zhi-qin; ZHANG Yi; YU Zhi-wei; DAI Li-ping; ZHANG Guo-jun; WANG Yu-mei; WANG Gang; WANG Shu-ya

    2009-01-01

    Amorphous silicon nitride films were deposited by low-frequency plasma-enhanced chemical vapor deposition(LF-PECVD) using silane and nitrogen as precursors. Characteristics such as deposition rate,surface morphology,and chemical composition were measured by spectroscopic ellipsometry(SE),atomic force microscope(AFM) and x-ray photoelectron spectroscopy(XPS).It was shown that amorphous silicon nitride film could be prepared by LF-PECVD with good uniformity and even surface.The XPS result indicated that a small quantity of oxygen was involved in the sample,which was discussed in this paper.

  20. Low temperature plasma deposition of silicon thin films: From amorphous to crystalline

    OpenAIRE

    Roca i Cabarrocas, Pere; Cariou, Romain; Labrune, Martin

    2012-01-01

    International audience; We report on the epitaxial growth of crystalline silicon films on (100) oriented crystalline silicon substrates by standard plasma enhanced chemical vapor deposition at 175 °C. Such unexpected epitaxial growth is discussed in the context of deposition processes of silicon thin films, based on silicon radicals and nanocrystals. Our results are supported by previous studies on plasma synthesis of silicon nanocrystals and point toward silicon nanocrystals being the most p...

  1. Hydrogenated Amorphous Silicon Sensor Deposited on Integrated Circuit for Radiation Detection

    CERN Document Server

    Despeisse, M; Jarron, P; Kaplon, J; Moraes, D; Nardulli, A; Powolny, F; Wyrsch, N

    2008-01-01

    Radiation detectors based on the deposition of a 10 to 30 mum thick hydrogenated amorphous silicon (a-Si:H) sensor directly on top of integrated circuits have been developed. The performance of this detector technology has been assessed for the first time in the context of particle detectors. Three different circuits were designed in a quarter micron CMOS technology for these studies. The so-called TFA (Thin-Film on ASIC) detectors obtained after deposition of a-Si:H sensors on the developed circuits are presented. High internal electric fields (104 to 105 V/cm) can be built in the a-Si:H sensor and overcome the low mobility of electrons and holes in this amorphous material. However, the deposited sensor's leakage current at such fields turns out to be an important parameter which limits the performance of a TFA detector. Its detailed study is presented as well as the detector's pixel segmentation. Signal induction by generated free carrier motion in the a-Si:H sensor has been characterized using a 660 nm pul...

  2. Optical and passivating properties of hydrogenated amorphous silicon nitride deposited by plasma enhanced chemical vapour deposition for application on silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Wight, Daniel Nilsen

    2008-07-01

    Within this thesis, several important subjects related to the use of amorphous silicon nitride made by plasma enhanced chemical vapour deposition as an anti-reflective coating on silicon solar cells are presented. The first part of the thesis covers optical simulations to optimise single and double layer anti-reflective coatings with respect to optical performance when situated on a silicon solar cell. The second part investigates the relationship between important physical properties of silicon nitride films when deposited under different conditions. The optical simulations were either based on minimising the reflectance off a silicon nitride/silicon wafer stack or maximising the transmittance through the silicon nitride into the silicon wafer. The former method allowed consideration of the reflectance off the back surface of the wafer, which occurs typically at wavelengths above 1000 nm due to the transparency of silicon at these wavelengths. However, this method does not take into consideration the absorption occurring in the silicon nitride, which is negligible at low refractive indexes but quite significant when the refractive index increases above 2.1. For high-index silicon nitride films, the latter method is more accurate as it considers both reflectance and absorbance in the film to calculate the transmittance into the Si wafer. Both methods reach similar values for film thickness and refractive index for optimised single layer anti-reflective coatings, due to the negligible absorption occurring in these films. For double layer coatings, though, the reflectance based simulations overestimated the optimum refractive index for the bottom layer, which would have lead to excessive absorption if applied to real anti-reflective coatings. The experimental study on physical properties for silicon nitride films deposited under varying conditions concentrated on the estimation of properties important for its applications, such as optical properties, passivation

  3. Nanocrystalline silicon and silicon quantum dots formation within amorphous silicon carbide by plasma enhanced chemical vapour deposition method controlling the Argon dilution of the process gases

    Energy Technology Data Exchange (ETDEWEB)

    Kole, Arindam; Chaudhuri, Partha, E-mail: erpc@iacs.res.in

    2012-11-01

    Structural and optical properties of the amorphous silicon carbide (a-SiC:H) thin films deposited by radio frequency plasma enhanced chemical vapour deposition method from a mixture of silane (SiH{sub 4}) and methane (CH{sub 4}) diluted in argon (Ar) have been studied with variation of Ar dilution from 94% to 98.4%. It is observed that nanocrystalline silicon starts to form within the a-SiC:H matrix by increasing the dilution to 96%. With further increase in Ar dilution to 98% formation of the silicon nanocrystals (nc-Si) with variable size is enhanced. The optical band gap (E{sub g}) of the a-SiC:H film decreases from 2.0 eV to 1.9 eV with increase in Ar dilution from 96% to 98% as the a-SiC:H films gradually become Si rich. On increasing the Ar dilution further to 98.4% leads to the appearance of crystalline silicon quantum dots (c-Si q-dots) of nearly uniform size of 3.5 nm. The quantum confinement effect is apparent from the sharp increase in the E{sub g} value to 2.6 eV. The phase transformation phenomenon from nc-Si within the a-SiC:H films to Si q-dot were further studied by high resolution transmission electron microscopy and the grazing angle X-ray diffraction spectra. A relaxation in the lattice strain has been observed with the formation of Si q-dots.

  4. Scanning transmission electron microscope analysis of amorphous-Si insertion layers prepared by catalytic chemical vapor deposition, causing low surface recombination velocities on crystalline silicon wafers

    OpenAIRE

    2012-01-01

    Microstructures of stacked silicon-nitride/amorphous-silicon/crystalline-silicon (SiN_x/a-Si/c-Si) layers prepared by catalytic chemical vapor deposition were investigated with scanning transmission electron microscopy to clarify the origin of the sensitive dependence of surface recombination velocities (SRVs) of the stacked structure on the thickness of the a-Si layer. Stacked structures with a-Si layers with thicknesses greater than 10 nm exhibit long effective carrier lifetimes, while thos...

  5. Very high frequency plasma deposited amorphous/nanocrystalline silicon tandem solar cells on flexible substrates

    Science.gov (United States)

    Liu, Y.

    2010-02-01

    The work in this thesis is to develop high quality intrinsic layers (especially nc-Si:H) for micromorph silicon tandem solar cells/modules on plastic substrates following the substrate transfer method or knows as the Helianthos procedure. Two objectives are covered in this thesis: (1) preliminary work on trial and optimization of single junction and tandem cells on glass substrate, (2) silicon film depositions on Al foil, and afterwards the characterization and development of these cells/modules on a plastic substrate. The first objective includes the development of suitable ZnO:Al TCO for nc Si:H single junction solar cells, fabrication of the aimed micromorph tandem solar cells on glass, and finally the optimization of the nc-Si:H i-layer for the depositions afterwards on Al foil. Chapter 3 addresses the improvement of texture etching of ZnO:Al by studying the HCl etching effect on ZnO:Al films sputter-deposited in a set substrate heater temperature series. With the texture-etched ZnO:Al front TCO, a single junction nc-Si:H solar cell was deposited with an initial efficiency of 8.33%. Chapter 4 starts with studying the light soaking and annealing effects on micromorph tandem solar cell. In the end, a highly stabilized bottom cell current limited tandem cell was made. The tandem shows an initial efficiency of 10.2%, and degraded only 6.9% after 1600 h of light soaking. In Chapter 5, the nc-Si:H i-layers were studied in 3 pressure and inter-electrode distance series. The correlations between plasma physics and the consequent i-layers’ properties are investigated. We show that the Raman crystalline ratio and porosity of the nc-Si:H layer have an interesting relation with the p•d product. By varying p and d, device quality nc-Si:H layer can be deposited at a high rate of 0.6 nm/s. These results in fact are a very important step for the second objective. The second objective is covered by the entire Chapter 6. All silicon layers are deposited on special aluminum

  6. Amorphous silicon films with high deposition rate prepared using argon and hydrogen diluted silane for stable solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Gogoi, Purabi; Agarwal, Pratima [Department of Physics, IIT Guwahati, Guwahati 781039 (India); Dixit, P.N. [Plasma Processed Materials Division, National Physical Laboratory, New Delhi 110012 (India)

    2007-08-15

    Hydrogenated amorphous silicon films with high deposition rate (4-5 Aa/s) and reduced Staebler-Wronski effect are prepared using a mixture of silane (SiH{sub 4}), hydrogen and argon. The films show an improvement in short and medium range order. The structural, transport and stability studies on the films are done using X-ray diffraction (XRD), scanning electron microscopy (SEM), Raman scattering studies, electrical conductivity and diffusion length measurement. Presence of both atomic hydrogen and Ar{sup *} in the plasma causes breaking of weak Si-Si bonds and subsequent reconstruction of strong bonds resulting in improvement of short and medium range order. The improved structural order enhances the stability of these films against light soaking. High deposition rate is due to the lesser etching of growing surface compared to the case of only hydrogen diluted silane. (author)

  7. Amorphous silicon carbon films prepared by hybrid plasma enhanced chemical vapor/sputtering deposition system: Effects of r.f. power

    Energy Technology Data Exchange (ETDEWEB)

    Rashid, Nur Maisarah Abdul, E-mail: nurmaisarahrashid@gmail.com [Low Dimensional Materials Research Centre, Department of Physics, University of Malaya, 50603 Kuala Lumpur (Malaysia); Ritikos, Richard; Othman, Maisara; Khanis, Noor Hamizah; Gani, Siti Meriam Ab. [Low Dimensional Materials Research Centre, Department of Physics, University of Malaya, 50603 Kuala Lumpur (Malaysia); Muhamad, Muhamad Rasat [Chancellery Office, Multimedia University, Jalan Multimedia, 63100 Cyberjaya, Selangor (Malaysia); Rahman, Saadah Abdul, E-mail: saadah@um.edu.my [Low Dimensional Materials Research Centre, Department of Physics, University of Malaya, 50603 Kuala Lumpur (Malaysia); Chancellery Office, Multimedia University, Jalan Multimedia, 63100 Cyberjaya, Selangor (Malaysia)

    2013-02-01

    Silicon carbon films were deposited using a hybrid radio frequency (r.f.) plasma enhanced chemical vapor deposition (PECVD)/sputtering deposition system at different r.f. powers. This deposition system combines the advantages of r.f. PECVD and sputtering techniques for the deposition of silicon carbon films with the added advantage of eliminating the use of highly toxic silane gas in the deposition process. Silicon (Si) atoms were sputtered from a pure amorphous silicon (a-Si) target by argon (Ar) ions and carbon (C) atoms were incorporated into the film from C based growth radicals generated through the discharge of methane (CH{sub 4}) gas. The effects of r.f. powers of 60, 80, 100, 120 and 150 W applied during the deposition process on the structural and optical properties of the films were investigated. Raman spectroscopic studies showed that the silicon carbon films contain amorphous silicon carbide (SiC) and amorphous carbon (a-C) phases. The r.f. power showed significant influence on the C incorporation in the film structure. The a-C phases became more ordered in films with high C incorporation in the film structure. These films also produced high photoluminescence emission intensity at around 600 nm wavelength as a result of quantum confinement effects from the presence of sp{sup 2} C clusters embedded in the a-SiC and a-C phases in the films. - Highlights: ► Effects of radio frequency (r.f.) power on silicon carbon (SiC) films were studied. ► Hybrid plasma enhanced chemical vapor deposition/sputtering technique was used. ► r.f. power influences C incorporation in the film structure. ► High C incorporation results in higher ordering of the amorphous C phase. ► These films produced high photoluminescence emission intensity.

  8. Approaching Defect-free Amorphous Silicon Nitride by Plasma-assisted Atomic Beam Deposition for High Performance Gate Dielectric

    Science.gov (United States)

    Tsai, Shu-Ju; Wang, Chiang-Lun; Lee, Hung-Chun; Lin, Chun-Yeh; Chen, Jhih-Wei; Shiu, Hong-Wei; Chang, Lo-Yueh; Hsueh, Han-Ting; Chen, Hung-Ying; Tsai, Jyun-Yu; Lu, Ying-Hsin; Chang, Ting-Chang; Tu, Li-Wei; Teng, Hsisheng; Chen, Yi-Chun; Chen, Chia-Hao; Wu, Chung-Lin

    2016-06-01

    In the past few decades, gate insulators with a high dielectric constant (high-k dielectric) enabling a physically thick but dielectrically thin insulating layer, have been used to replace traditional SiOx insulator and to ensure continuous downscaling of Si-based transistor technology. However, due to the non-silicon derivative natures of the high-k metal oxides, transport properties in these dielectrics are still limited by various structural defects on the hetero-interfaces and inside the dielectrics. Here, we show that another insulating silicon compound, amorphous silicon nitride (a-Si3N4), is a promising candidate of effective electrical insulator for use as a high-k dielectric. We have examined a-Si3N4 deposited using the plasma-assisted atomic beam deposition (PA-ABD) technique in an ultra-high vacuum (UHV) environment and demonstrated the absence of defect-related luminescence; it was also found that the electronic structure across the a-Si3N4/Si heterojunction approaches the intrinsic limit, which exhibits large band gap energy and valence band offset. We demonstrate that charge transport properties in the metal/a-Si3N4/Si (MNS) structures approach defect-free limits with a large breakdown field and a low leakage current. Using PA-ABD, our results suggest a general strategy to markedly improve the performance of gate dielectric using a nearly defect-free insulator.

  9. Amorphous carbon-silicon heterojunctions by pulsed Nd:YAG laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Yap, Seong-Shan; Yow, Ho-Kwang [Faculty of Engineering, Multimedia University, Cyberjaya, Selangor 63100 (Malaysia); Tou, Teck-Yong, E-mail: tytou@mmu.edu.m [Faculty of Engineering, Multimedia University, Cyberjaya, Selangor 63100 (Malaysia)

    2009-07-31

    Amorphous carbon (a-C) films were deposited at 10{sup -4} Pa on n-Si (Si-111) and p-Si (Si-100) substrates using a pulsed Nd:YAG laser with fundamental, second- and third-harmonic outputs. These unhydrogenated and undoped a-C films were characterized by visible and UV Raman spectroscopy which indicated the presence of substantial amount of sp{sup 3} hybridized carbon network depending on the laser wavelength. The bulk resistivity in the Au/a-C/indium tin oxide structure varied between (10{sup 9}-10{sup 13}) {Omega} cm - the lowest resistivity was obtained for films deposited by the fundamental laser output at 1064 nm while the highest value was by the third-harmonic laser output at 355 nm. All the a-C/Si heterostructures exhibited a nonlinear current density-voltage characteristic. Under light illumination, by taking into consideration the fill factor of {approx} 0.2 for a-C/n-Si, the conversion efficiency at the highest photovoltage and photocurrent, at an illumination density of 0.175 mW/cm{sup 2} was estimated to be {approx} 0.28%.

  10. Solar Hydrogen Production by Amorphous Silicon Photocathodes Coated with a Magnetron Sputter Deposited Mo2C Catalyst.

    Science.gov (United States)

    Morales-Guio, Carlos G; Thorwarth, Kerstin; Niesen, Bjoern; Liardet, Laurent; Patscheider, Jörg; Ballif, Christophe; Hu, Xile

    2015-06-10

    Coupling of Earth-abundant hydrogen evolution catalysts to photoabsorbers is crucial for the production of hydrogen fuel using sunlight. In this work, we demonstrate the use of magnetron sputtering to deposit Mo2C as an efficient hydrogen evolution reaction catalyst onto surface-protected amorphous silicon (a-Si) photoabsorbers. The a-Si/Mo2C photocathode evolves hydrogen under simulated solar illumination in strongly acidic and alkaline electrolytes. Onsets of photocurrents are observed at potentials as positive as 0.85 V vs RHE. Under AM 1.5G (1 sun) illumination, the photocathodes reach current densities of -11.2 mA cm(-2) at the reversible hydrogen potential in 0.1 M H2SO4 and 1.0 M KOH. The high photovoltage and low-cost of the Mo2C/a-Si assembly make it a promising photocathode for solar hydrogen production.

  11. Hydrogenated amorphous silicon p-i-n solar cells deposited under well controlled ion bombardment using pulse-shaped substrate biasing

    NARCIS (Netherlands)

    Wank, M. A.; van Swaaij, R.; R. van de Sanden,; Zeman, M.

    2012-01-01

    We applied pulse-shaped biasing (PSB) to the expanding thermal plasma deposition of intrinsic hydrogenated amorphous silicon layers at substrate temperatures of 200 degrees C and growth rates of about 1?nm/s. Fourier transform infrared spectroscopy of intrinsic films showed a densification with incr

  12. Accelerated growth from amorphous clusters to metallic nanoparticles observed in electrochemical deposition of platinum within nanopores of porous silicon

    NARCIS (Netherlands)

    Munoz-Noval, Alvaro; Fukami, Kazuhiro; Koyama, Akira; Gallach, Dario; Hermida-Merino, Daniel; Portale, Giuseppe; Kitada, Atsushi; Murase, Kuniaki; Abe, Takeshi; Hayakawa, Shinjiro; Sakka, Tetsuo

    2016-01-01

    This study examined the formation of amorphous platinum (Pt) clusters in nanopores of porous silicon at an initial stage of pore filling. The time dependency of the chemical state and local structure of Pt in the nanoporous silicon were characterized by X-ray absorption fine structure spectroscopy (

  13. ENHANCED GROWTH RATE AND SILANE UTILIZATION IN AMORPHOUS SILICON AND NANOCRYSTALLINE-SILICON SOLAR CELL DEPOSITION VIA GAS PHASE ADDITIVES

    Energy Technology Data Exchange (ETDEWEB)

    Ridgeway, R G; Hegedus, S S; Podraza, N J

    2012-08-31

    Air Products set out to investigate the impact of additives on the deposition rate of both CSi and Si-H films. One criterion for additives was that they could be used in conventional PECVD processing, which would require sufficient vapor pressure to deliver material to the process chamber at the required flow rates. The flow rate required would depend on the size of the substrate onto which silicon films were being deposited, potentially ranging from 200 mm diameter wafers to the 5.7 m2 glass substrates used in GEN 8.5 flat-panel display tools. In choosing higher-order silanes, both disilane and trisilane had sufficient vapor pressure to withdraw gas at the required flow rates of up to 120 sccm. This report presents results obtained from testing at Air Products electronic technology laboratories, located in Allentown, PA, which focused on developing processes on a commercial IC reactor using silane and mixtures of silane plus additives. These processes were deployed to compare deposition rates and film properties with and without additives, with a goal of maximizing the deposition rate while maintaining or improving film properties.

  14. STEM-EELS analysis reveals stable high-density He in nanopores of amorphous silicon coatings deposited by magnetron sputtering.

    Science.gov (United States)

    Schierholz, Roland; Lacroix, Bertrand; Godinho, Vanda; Caballero-Hernández, Jaime; Duchamp, Martial; Fernández, Asunción

    2015-02-20

    A broad interest has been showed recently on the study of nanostructuring of thin films and surfaces obtained by low-energy He plasma treatments and He incorporation via magnetron sputtering. In this paper spatially resolved electron energy-loss spectroscopy in a scanning transmission electron microscope is used to locate and characterize the He state in nanoporous amorphous silicon coatings deposited by magnetron sputtering. A dedicated MATLAB program was developed to quantify the helium density inside individual pores based on the energy position shift or peak intensity of the He K-edge. A good agreement was observed between the high density (∼35-60 at nm(-3)) and pressure (0.3-1.0 GPa) values obtained in nanoscale analysis and the values derived from macroscopic measurements (the composition obtained by proton backscattering spectroscopy coupled to the macroscopic porosity estimated from ellipsometry). This work provides new insights into these novel porous coatings, providing evidence of high-density He located inside the pores and validating the methodology applied here to characterize the formation of pores filled with the helium process gas during deposition. A similar stabilization of condensed He bubbles has been previously demonstrated by high-energy He ion implantation in metals and is newly demonstrated here using a widely employed methodology, magnetron sputtering, for achieving coatings with a high density of homogeneously distributed pores and He storage capacities as high as 21 at%.

  15. Thermal stability of the optical band gap and structural order in hot-wire-deposited amorphous silicon

    CSIR Research Space (South Africa)

    Arendse, CJ

    2009-01-01

    Full Text Available The material properties of hydrogenated amorphous silicon (a-Si:H) have been known to change when exposed to elevated temperatures. In this work researchers report on the thermal stability of the optical band gap and structural disorder in hot...

  16. Neutron irradiation induced amorphization of silicon carbide

    Energy Technology Data Exchange (ETDEWEB)

    Snead, L.L.; Hay, J.C. [Oak Ridge National Lab., TN (United States)

    1998-09-01

    This paper provides the first known observation of silicon carbide fully amorphized under neutron irradiation. Both high purity single crystal hcp and high purity, highly faulted (cubic) chemically vapor deposited (CVD) SiC were irradiated at approximately 60 C to a total fast neutron fluence of 2.6 {times} 10{sup 25} n/m{sup 2}. Amorphization was seen in both materials, as evidenced by TEM, electron diffraction, and x-ray diffraction techniques. Physical properties for the amorphized single crystal material are reported including large changes in density ({minus}10.8%), elastic modulus as measured using a nanoindentation technique ({minus}45%), hardness as measured by nanoindentation ({minus}45%), and standard Vickers hardness ({minus}24%). Similar property changes are observed for the critical temperature for amorphization at this neutron dose and flux, above which amorphization is not possible, is estimated to be greater than 130 C.

  17. Formation of iron disilicide on amorphous silicon

    Science.gov (United States)

    Erlesand, U.; Östling, M.; Bodén, K.

    1991-11-01

    Thin films of iron disilicide, β-FeSi 2 were formed on both amorphous silicon and on crystalline silicon. The β-phase is reported to be semiconducting with a direct band-gap of about 0.85-0.89 eV. This phase is known to form via a nucleation-controlled growth process on crystalline silicon and as a consequence a rather rough silicon/silicide interface is usually formed. In order to improve the interface a bilayer structure of amorphous silicon and iron was sequentially deposited on Czochralski silicon in an e-gun evaporation system. Secondary ion mass spectrometry profiling (SIMS) and scanning electron micrographs revealed an improvement of the interface sharpness. Rutherford backscattering spectrometry (RBS) and X-ray diffractiometry showed β-FeSi 2 formation already at 525°C. It was also observed that the silicide growth was diffusion-controlled, similar to what has been reported for example in the formation of NiSi 2 for the reaction of nickel on amorphous silicon. The kinetics of the FeSi 2 formation in the temperature range 525-625°C was studied by RBS and the activation energy was found to be 1.5 ± 0.1 eV.

  18. High Growth Rate Deposition of Hydrogenated Amorphous Silicon-Germanium Films and Devices Using ECR-PECVD

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yong [Iowa State Univ., Ames, IA (United States)

    2002-01-01

    Hydrogenated amorphous silicon germanium films (a-SiGe:H) and devices have been extensively studied because of the tunable band gap for matching the solar spectrum and mature the fabrication techniques. a-SiGe:H thin film solar cells have great potential for commercial manufacture because of very low cost and adaptability to large-scale manufacturing. Although it has been demonstrated that a-SiGe:H thin films and devices with good quality can be produced successfully, some issues regarding growth chemistry have remained yet unexplored, such as the hydrogen and inert-gas dilution, bombardment effect, and chemical annealing, to name a few. The alloying of the SiGe introduces above an order-of-magnitude higher defect density, which degrades the performance of the a-SiGe:H thin film solar cells. This degradation becomes worse when high growth-rate deposition is required. Preferential attachment of hydrogen to silicon, clustering of Ge and Si, and columnar structure and buried dihydride radicals make the film intolerably bad. The work presented here uses the Electron-Cyclotron-Resonance Plasma-Enhanced Chemical Vapor Deposition (ECR-PECVD) technique to fabricate a-SiGe:H films and devices with high growth rates. Helium gas, together with a small amount of H2, was used as the plasma species. Thickness, optical band gap, conductivity, Urbach energy, mobility-lifetime product, I-V curve, and quantum efficiency were characterized during the process of pursuing good materials. The microstructure of the a-(Si,Ge):H material was probed by Fourier-Transform Infrared spectroscopy. They found that the advantages of using helium as the main plasma species are: (1) high growth rate--the energetic helium ions break the reactive gas more efficiently than hydrogen ions; (2) homogeneous growth--heavy helium ions impinging on the surface promote the surface mobility of the reactive radicals, so that heteroepitaxy growth as clustering of Ge and Si, columnar structure are

  19. Improved amorphous/crystalline silicon interface passivation for heterojunction solar cells by low-temperature chemical vapor deposition and post-annealing treatment.

    Science.gov (United States)

    Wang, Fengyou; Zhang, Xiaodan; Wang, Liguo; Jiang, Yuanjian; Wei, Changchun; Xu, Shengzhi; Zhao, Ying

    2014-10-07

    In this study, hydrogenated amorphous silicon (a-Si:H) thin films are deposited using a radio-frequency plasma-enhanced chemical vapor deposition (RF-PECVD) system. The Si-H configuration of the a-Si:H/c-Si interface is regulated by optimizing the deposition temperature and post-annealing duration to improve the minority carrier lifetime (τeff) of a commercial Czochralski (Cz) silicon wafer. The mechanism of this improvement involves saturation of the microstructural defects with hydrogen evolved within the a-Si:H films due to the transformation from SiH2 into SiH during the annealing process. The post-annealing temperature is controlled to ∼180 °C so that silicon heterojunction solar cells (SHJ) could be prepared without an additional annealing step. To achieve better performance of the SHJ solar cells, we also optimize the thickness of the a-Si:H passivation layer. Finally, complete SHJ solar cells are fabricated using different temperatures for the a-Si:H film deposition to study the influence of the deposition temperature on the solar cell parameters. For the optimized a-Si:H deposition conditions, an efficiency of 18.41% is achieved on a textured Cz silicon wafer.

  20. Growth and Physical Structure of Amorphous Boron Carbide Deposited by Magnetron Sputtering on a Silicon Substrate with a Titanium Interlayer

    Directory of Open Access Journals (Sweden)

    Roberto Caniello

    2013-01-01

    Full Text Available Multilayer amorphous boron carbide coatings were produced by radiofrequency magnetron sputtering on silicon substrates. To improve the adhesion, titanium interlayers with different thickness were interposed between the substrate and the coating. Above three hundreds nanometer, the enhanced roughness of the titanium led to the growth of an amorphous boron carbide with a dense and continuing columnar structure, and no delamination effect was observed. Correspondingly, the adhesion of the coating became three time stronger than in the case of a bare silicon substrate. Physical structure and microstructural proprieties of the coatings were investigated by means of a scan electron microscopy, atomic force microscopy and X-ray diffraction. The adhesion of the films was measured by a scratch tester.

  1. Two-dimensional WS2 nanoribbon deposition by conversion of pre-patterned amorphous silicon

    Science.gov (United States)

    Heyne, Markus H.; de Marneffe, Jean-François; Delabie, Annelies; Caymax, Matty; Neyts, Erik C.; Radu, Iuliana; Huyghebaert, Cedric; De Gendt, Stefan

    2017-01-01

    We present a method for area selective deposition of 2D WS2 nanoribbons with tunable thickness on a dielectric substrate. The process is based on a complete conversion of a pre-patterned, H-terminated Si layer to metallic W by WF6, followed by in situ sulfidation by H2S. The reaction process, performed at 450 °C, yields nanoribbons with lateral dimension down to 20 nm and with random basal plane orientation. The thickness of the nanoribbons is accurately controlled by the thickness of the pre-deposited Si layer. Upon rapid thermal annealing at 900 °C under inert gas, the WS2 basal planes align parallel to the substrate.

  2. Investigation of isochronal annealing on the optical properties of HWCVD amorphous silicon nitride deposited at low temperatures and low gas flow rates

    Science.gov (United States)

    Muller, T. F. G.; Jacobs, S.; Cummings, F. R.; Oliphant, C. J.; Malgas, G. F.; Arendse, C. J.

    2015-06-01

    Hydrogenated amorphous silicon nitride (a-SiNx:H) is used as anti-reflection coatings in commercial solar cells. A final firing step in the production of micro-crystalline silicon solar cells allows hydrogen effusion from the a-SiNx:H into the solar cell, and contributes to bulk passivation of the grain boundaries. In this study a-SiNx:H deposited in a hot-wire chemical vapour deposition (HWCVD) chamber with reduced gas flow rates and filament temperature compared to traditional deposition regimes, were annealed isochronally. The UV-visible reflection spectra of the annealed material were subjected to the Bruggeman Effective Medium Approximation (BEMA) treatment, in which a theoretical amorphous semiconductor was combined with particle inclusions due to the structural complexities of the material. The extraction of the optical functions and ensuing Wemple-DeDomenici analysis of the wavelength-dependent refractive index allowed for the correlation of the macroscopic optical properties with the changes in the local atomic bonding configuration, involving silicon, nitrogen and hydrogen.

  3. Amorphous silicon carbide passivating layers for crystalline-silicon-based heterojunction solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Boccard, Mathieu; Holman, Zachary C. [School of Electrical, Computer, and Energy Engineering, Arizona State University, Tempe, Arizona 85287-5706 (United States)

    2015-08-14

    Amorphous silicon enables the fabrication of very high-efficiency crystalline-silicon-based solar cells due to its combination of excellent passivation of the crystalline silicon surface and permeability to electrical charges. Yet, amongst other limitations, the passivation it provides degrades upon high-temperature processes, limiting possible post-deposition fabrication possibilities (e.g., forcing the use of low-temperature silver pastes). We investigate the potential use of intrinsic amorphous silicon carbide passivating layers to sidestep this issue. The passivation obtained using device-relevant stacks of intrinsic amorphous silicon carbide with various carbon contents and doped amorphous silicon are evaluated, and their stability upon annealing assessed, amorphous silicon carbide being shown to surpass amorphous silicon for temperatures above 300 °C. We demonstrate open-circuit voltage values over 700 mV for complete cells, and an improved temperature stability for the open-circuit voltage. Transport of electrons and holes across the hetero-interface is studied with complete cells having amorphous silicon carbide either on the hole-extracting side or on the electron-extracting side, and a better transport of holes than of electrons is shown. Also, due to slightly improved transparency, complete solar cells using an amorphous silicon carbide passivation layer on the hole-collecting side are demonstrated to show slightly better performances even prior to annealing than obtained with a standard amorphous silicon layer.

  4. Nickel-induced crystallization of amorphous silicon

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, J A; Arce, R D; Buitrago, R H [INTEC (CONICET-UNL), Gueemes 3450, S3000GLN Santa Fe (Argentina); Budini, N; Rinaldi, P, E-mail: jschmidt@intec.unl.edu.a [FIQ - UNL, Santiago del Estero 2829, S3000AOM Santa Fe (Argentina)

    2009-05-01

    The nickel-induced crystallization of hydrogenated amorphous silicon (a-Si:H) is used to obtain large grained polycrystalline silicon thin films on glass substrates. a-Si:H is deposited by plasma enhanced chemical vapour deposition at 200 deg. C, preparing intrinsic and slightly p-doped samples. Each sample was divided in several pieces, over which increasing Ni concentrations were sputtered. Two crystallization methods are compared, conventional furnace annealing (CFA) and rapid thermal annealing (RTA). The crystallization was followed by optical microscopy and scanning electron microscopy observations, X-ray diffraction, and reflectance measurements in the UV region. The large grain sizes obtained - larger than 100{mu}m for the samples crystallized by CFA - are very encouraging for the preparation of low-cost thin film polycrystalline silicon solar cells.

  5. Colloidal Photoluminescent Amorphous Porous Silicon, Methods Of Making Colloidal Photoluminescent Amorphous Porous Silicon, And Methods Of Using Colloidal Photoluminescent Amorphous Porous Silicon

    KAUST Repository

    Chaieb, Sahraoui

    2015-04-09

    Embodiments of the present disclosure provide for a colloidal photoluminescent amorphous porous silicon particle suspension, methods of making a colloidal photoluminescent amorphous porous silicon particle suspension, methods of using a colloidal photoluminescent amorphous porous silicon particle suspension, and the like.

  6. Preparation of high-quality hydrogenated amorphous silicon film with a new microwave electron cyclotron resonance chemical vapour deposition system assisted with hot wire

    Institute of Scientific and Technical Information of China (English)

    Zhu Xiu-Hong; Chen Guang-Hua; Yin Sheng-Yi; Rong Yan-Dong; Zhang Wen-Li; Hu Yue-Hui

    2005-01-01

    The preparation of high-quality hydrogenated amorphous silicon (a-Si:H) film with a new microwave electron cyclotron resonance-chemical vapour deposition (MWECR-CVD) system assisted with hot wire is presented. In this system the hot wire plays an important role in perfecting the microstructure as well as improving the stability and the optoelectronic properties of the a-Si:H film. The experimental results indicate that in the microstructure of the a-Si:H film, the concentration of dihydride is decreased and a trace of microcrystalline occurs, which is useful to improve its stability, and that in the optoelectronic properties of the a-Si:H film, the deposition rate reaches above 2.0nm/s and the photosensitivity increases up to 4.71× 105.

  7. Amorphous silicon crystalline silicon heterojunction solar cells

    CERN Document Server

    Fahrner, Wolfgang Rainer

    2013-01-01

    Amorphous Silicon/Crystalline Silicon Solar Cells deals with some typical properties of heterojunction solar cells, such as their history, the properties and the challenges of the cells, some important measurement tools, some simulation programs and a brief survey of the state of the art, aiming to provide an initial framework in this field and serve as a ready reference for all those interested in the subject. This book helps to "fill in the blanks" on heterojunction solar cells. Readers will receive a comprehensive overview of the principles, structures, processing techniques and the current developmental states of the devices. Prof. Dr. Wolfgang R. Fahrner is a professor at the University of Hagen, Germany and Nanchang University, China.

  8. Silicon nanoparticle optimization and integration into amorphous silicon via PECVD for use in photovoltaics

    Science.gov (United States)

    Klafehn, Grant W.

    An alternative approach to traditional growth methods of nanocrystalline material is co-deposition by injection of separately synthesized silicon nanoparticles into amorphous silicon. Current methods of co-deposition of silicon nanoparticles and amorphous silicon via plasma enhanced chemical vapor deposition allow the two reactors' pressures to affect each other, leading to either poor amorphous silicon quality or uncontrollable nanoparticle size and deposition rate. In this thesis, a technique for greater control of stand-alone silicon nanoparticle size and quality grown was achieved by using a slit nozzle. The nozzle was used to separate the nanoparticle and amorphous reactors, allowing for the ability to control nanoparticle size, crystallinity, and deposition rate during co-deposition, while still allowing for high quality amorphous silicon growth. Changing the width of the nozzle allowed for control of the size of the nanoparticles from 10 to 4.5 nm in diameter, and allowed for the precursor gas flow rate, and thus deposition rate, to be changed with only a 6 % change in size estimated from luminescence emission wavelength. Co-deposited samples were grown within a broad range of flow rates for the silicon nanoparticle precursor gas, resulting in each sample having a different crystal fraction. FTIR, PL, Raman, and XRD were used to analyze their composition. The silicon nanoparticle synthesis was separately optimized to control size and crystallinity, and the influence of the nanoparticle process gases on amorphous silicon growth was also explored. Finally, COMSOL simulations were performed to support and possibly predict Si-NP growth variables that pertain to Si-NP size.

  9. Amorphous silicon carbonitride diaphragm for environmental-cell transmission electron microscope fabricated by low-energy ion beam induced chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Matsutani, Takaomi, E-mail: matutani@ele.kindai.ac.jp [Kindai University, 3-4-1 Kowakae, Higashi-osaka, Osaka 577-8502 (Japan); Yamasaki, Kayo [Kindai University, 3-4-1 Kowakae, Higashi-osaka, Osaka 577-8502 (Japan); Imaeda, Norihiro; Kawasaki, Tadahiro [Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan)

    2015-12-15

    An amorphous silicon carbonitride (a-SiCN) diaphragm for an environmental-cell transmission electron microscope (E-TEM) was fabricated by low-energy ion beam induced chemical vapor deposition (LEIBICVD) with hexamethyldisilazane (HMDSN). The films were prepared by using gaseous HMDSN and N{sub 2}{sup +} ions with energies ranging from 300 to 600 eV. The diaphragms were applied to Si (1 0 0) and a Cu grid with 100-μm-diameter holes. With increasing ion energy, these diaphragms became perfectly smooth surfaces (RMS = 0.43 nm at 600 eV), as confirmed by atomic force microscopy and TEM. The diaphragms were amorphous and transparent to 200 kV electrons, and no charge-up was observed. Fourier transform infrared spectra and X-ray photoelectron spectra revealed that the elimination of organic compounds and formation of Si–N and C–N bonds can be promoted in diaphragms by increasing the ion impact energy. The resistance to electron beams and reaction gases in the E-cell was improved when the diaphragm was formed with high ion energy.

  10. The influence of charge effect on the growth of hydrogenated amorphous silicon by the hot-wire chemical vapor deposition technique

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Q.; Nelson, B.P.; Iwaniczko, E.; Mahan, A.H.; Crandall, R.S.; Benner, J. [National Renewable Energy Lab., Golden, CO (United States)

    1998-09-01

    The authors observe at lower substrate temperatures that the scatter in the dark conductivity on hydrogenated amorphous silicon (a-Si:H) films grown on insulating substrates (e.g., Corning 7059 glass) by the hot-wire chemical vapor deposition technique (HWCVD) can be five orders of magnitude or more. This is especially true at deposition temperatures below 350 C. However, when the authors grow the same materials on substrates with a conductive grid, virtually all of their films have acceptable dark conductivity (< 5 {times} 10{sup {minus}10} S/cm) at all deposition temperatures below 425 C. This is in contrast to only about 20% of the materials grown in this same temperature range on insulating substrates having an acceptable dark conductivity. The authors estimated an average energy of 5 eV electrons reaching the growing surface in vacuum, and did additional experiments to see the influence of both the electron flux and the energy of the electrons on the film growth. Although these effects do not seem to be important for growing a-Si:H by HWCVD on conductive substrates, they help better understand the important parameters for a-Si:H growth, and thus, to optimize these parameters in other applications of HWCVD technology.

  11. Analysis of intermediate pressure SiH4/He capacitively coupled plasma for deposition of an amorphous hydrogenated silicon film in consideration of thermal diffusion effects

    Science.gov (United States)

    Kim, Ho Jun; Lee, Hae June

    2017-08-01

    To achieve rapid, uniform deposition of an amorphous hydrogenated silicon (a-Si:H) film, a capacitively coupled plasma (CCP) is often used at an intermediate pressure (>100 Pa), with a silane (SiH4)-based mixture. At these pressures, heavy particle interactions (such as ion-ion, ion-neutral, and neutral-neutral reactions) contribute significantly to the formation of precursor radicals. By adding a consideration of the thermal diffusion effects to the neutral transport equation, the chemical processes have been numerically analyzed with variation in the number fraction of SiH4 and electrode spacing using a two-dimensional fluid model of radio frequency discharges in a cylindrically symmetric CCP reactor. The non-uniformity of the deposition rate profiles increases consistently as electrode spacing increases, although the non-uniformity of the plasma parameters decreases with the increase of electrode spacing. The simulated deposition rate profiles match well with the experimental data for the change of electrode spacing. Based on the validation of our model, we propose predictive designs to potentially improve the reactor and process by modifying the thermal and electrical surface conditions.

  12. Tritiated amorphous silicon for micropower applications

    Energy Technology Data Exchange (ETDEWEB)

    Kherani, N.P. [Ontario Hydro Technologies, Toronto, Ontario (Canada)]|[Univ. of Toronto, Ontario (Canada); Kosteski, T.; Zukotynski, S. [Univ. of Toronto, Ontario (Canada); Shmayda, W.T. [Ontario Hydro Technologies, Toronto, Ontario (Canada)

    1995-10-01

    The application of tritiated amorphous silicon as an intrinsic energy conversion semiconductor for radioluminescent structures and betavoltaic devices is presented. Theoretical analysis of the betavoltaic application shows an overall efficiency of 18% for tritiated amorphous silicon. This is equivalent to a 330 Ci intrinsic betavoltaic device producing 1 mW of power for 12 years. Photoluminescence studies of hydrogenated amorphous silicon, a-Si:H, show emission in the infra-red with a maximum quantum efficiency of 7.2% at 50 K; this value drops by 3 orders of magnitude at a temperature of 300 K. Similar studies of hydrogenated amorphous carbon show emission in the visible with an estimated quantum efficiency of 1% at 300 K. These results suggest that tritiated amorphous carbon may be the more promising candidate for room temperature radioluminescence in the visible. 18 refs., 5 figs.

  13. Raman Amplifier Based on Amorphous Silicon Nanoparticles

    Directory of Open Access Journals (Sweden)

    M. A. Ferrara

    2012-01-01

    Full Text Available The observation of stimulated Raman scattering in amorphous silicon nanoparticles embedded in Si-rich nitride/silicon superlattice structures (SRN/Si-SLs is reported. Using a 1427 nm continuous-wavelength pump laser, an amplification of Stokes signal up to 0.9 dB/cm at 1540.6 nm and a significant reduction in threshold power of about 40% with respect to silicon are experimentally demonstrated. Our results indicate that amorphous silicon nanoparticles are a great promise for Si-based Raman lasers.

  14. Raman and ellipsometric characterization of hydrogenated amorphous silicon thin films

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Hydrogenated amorphous silicon (a-Si:H) thin films were deposited by plasma-enhanced vapor deposition (PECVD) at different silane temperatures (Tg) before glow-discharge. The effect of Tg on the amorphous network and optoelectronic properties of the films has been investigated by Raman scattering spectra, ellipsometric transmittance spectra, and dark conductivity measurement, respectively. The results show that the increase in Tg leads to an improved ordering of amorphous network on the short and intermediate scales and an increase of both refractive index and absorption coefficient in a-Si:H thin films. It is indicated that the dark conductivity increases by two orders of magnitude when Tg is raised from room temperature (RT) to 433 K. The continuous ordering of amorphous network of a-Si:H thin films deposited at a higher Tg is the main cause for the increase of dark conductivity.

  15. Interference filter with amorphous silicon layer and direct laser recording on it

    Science.gov (United States)

    Kutanov, A.; Sydyk uluu, Nurbek; Snimshikov, I.; Kazakbaeva, Z.

    2016-08-01

    The interference spectral filters with amorphous silicon layer deposited by magnetron sputtering on the reflective metal layer on a glass substrate are developed. Interference filter select from white light source components corresponding to quasimonochromatic wavelength with a narrow bandwidth. The thickness of the amorphous silicon layer determines the center wavelength of the pass band of the filter. It proposed to use interference filter with amorphous silicon layer for direct laser recoding on it. Results on direct laser recording on amorphous silicon layer of the interference filter by single-mode Blu Ray laser (X = 405 nm) with high contrast reflected image are demonstrated.

  16. Solution-processed amorphous silicon surface passivation layers

    Energy Technology Data Exchange (ETDEWEB)

    Mews, Mathias, E-mail: mathias.mews@helmholtz-berlin.de; Sontheimer, Tobias; Korte, Lars; Rech, Bernd [Helmholtz-Zentrum Berlin, Institute of Silicon Photovoltaics, Kekuléstraße 5, D-12489 Berlin (Germany); Mader, Christoph; Traut, Stephan; Wunnicke, Odo [Evonik Industries AG, Creavis Technologies and Innovation, Paul-Baumann-Straße 1, D-45772 Marl (Germany)

    2014-09-22

    Amorphous silicon thin films, fabricated by thermal conversion of neopentasilane, were used to passivate crystalline silicon surfaces. The conversion is investigated using X-ray and constant-final-state-yield photoelectron spectroscopy, and minority charge carrier lifetime spectroscopy. Liquid processed amorphous silicon exhibits high Urbach energies from 90 to 120 meV and 200 meV lower optical band gaps than material prepared by plasma enhanced chemical vapor deposition. Applying a hydrogen plasma treatment, a minority charge carrier lifetime of 1.37 ms at an injection level of 10{sup 15}/cm{sup 3} enabling an implied open circuit voltage of 724 mV was achieved, demonstrating excellent silicon surface passivation.

  17. Numerical analysis of temperature profile and thermal-stress during excimer laser induced heteroepitaxial growth of patterned amorphous silicon and germanium bi-layers deposited on Si(100)

    Energy Technology Data Exchange (ETDEWEB)

    Conde, J.C., E-mail: jconde@uvigo.e [Dpto. Fisica Aplicada, E.T.S.I.I. University of Vigo, Campus Universitario, Rua Maxwell s/n, E-36310 Vigo (Spain); Martin, E. [Dpto. de Mecanica, Maquinas y Motores Termicos y Fluidos, E.T.S.I.I. University of Vigo, Campus Universitario, Rua Maxwell s/n, E-36310 Vigo (Spain); Gontad, F.; Chiussi, S. [Dpto. Fisica Aplicada, E.T.S.I.I. University of Vigo, Campus Universitario, Rua Maxwell s/n, E-36310 Vigo (Spain); Fornarini, L. [Enea-Frascati, Via Enrico Fermi 45, I-00044 Frascati (Roma) (Italy); Leon, B. [Dpto. Fisica Aplicada, E.T.S.I.I. University of Vigo, Campus Universitario, Rua Maxwell s/n, E-36310 Vigo (Spain)

    2010-02-26

    A Finite Element Method (FEM) study of the coupled thermal-stress during the heteroepitaxial growth induced by excimer laser radiation of patterned amorphous hydrogenated silicon (a-Si:H) and germanium (a-Ge:H) bi-layers deposited on a Si(100) wafer is presented. The ArF (193 nm) excimer laser provides high energy densities during very short laser pulse (20 ns) provoking, at the same time, melting and solidification phenomena in the range of several tenths of nanoseconds. These phenomena play an important role during the growth of heteroepitaxial SiGe structures characterized by high Ge concentration buried under a Si rich surface. In addition, the thermal-stresses that appear before the melting and after the solidification processes can also affect to the epitaxial growth of high quality SiGe alloys in these patterned structures and, in consequence, it is necessary to predict their effects. The aim of this work is to estimate the energy threshold and the corresponding thermal-stresses in the interfaces and the borders of these patterned structures.

  18. Amorphous silicon detectors in positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Conti, M. (Istituto Nazionale di Fisica Nucleare, Pisa (Italy) Lawrence Berkeley Lab., CA (USA)); Perez-Mendez, V. (Lawrence Berkeley Lab., CA (USA))

    1989-12-01

    The physics of the detection process is studied and the performances of different Positron Emission Tomography (PET) system are evaluated by theoretical calculation and/or Monte Carlo Simulation (using the EGS code) in this paper, whose table of contents can be summarized as follows: a brief introduction to amorphous silicon detectors and some useful equation is presented; a Tantalum/Amorphous Silicon PET project is studied and the efficiency of the systems is studied by Monte Carlo Simulation; two similar CsI/Amorphous Silicon PET projects are presented and their efficiency and spatial resolution are studied by Monte Carlo Simulation, light yield and time characteristics of the scintillation light are discussed for different scintillators; some experimental result on light yield measurements are presented; a Xenon/Amorphous Silicon PET is presented, the physical mechanism of scintillation in Xenon is explained, a theoretical estimation of total light yield in Xenon and the resulting efficiency is discussed altogether with some consideration of the time resolution of the system; the amorphous silicon integrated electronics is presented, total noise and time resolution are evaluated in each of our applications; the merit parameters {epsilon}{sup 2}{tau}'s are evaluated and compared with other PET systems and conclusions are drawn; and a complete reference list for Xenon scintillation light physics and its applications is presented altogether with the listing of the developed simulation programs.

  19. Towards upconversion for amorphous silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    de Wild, J.; Rath, J.K.; Schropp, R.E.I. [Utrecht University, Faculty of Science, Debye Institute for Nanomaterials Science, Nanophotonics, P.O. Box 80000, 3508 TA Utrecht (Netherlands); Meijerink, A. [Utrecht University, Faculty of Science, Debye Institute for Nanomaterials Science, Condensed Matter and Interfaces, P.O. Box 80000, 3508 TA Utrecht (Netherlands); van Sark, W.G.J.H.M. [Utrecht University, Copernicus Institute for Sustainable Development and Innovation, Science, Technology and Society, Heidelberglaan 2, 3584 CS Utrecht (Netherlands)

    2010-11-15

    Upconversion of subbandgap light of thin film single junction amorphous silicon solar cells may enhance their performance in the near infrared (NIR). In this paper we report on the application of the NIR-vis upconverter {beta}-NaYF{sub 4}:Yb{sup 3+}(18%) Er{sup 3+}(2%) at the back of an amorphous silicon solar cell in combination with a white back reflector and its response to infrared irradiation. Current-voltage measurements and spectral response measurements were done on experimental solar cells. An enhancement of 10 {mu}A/cm{sup 2} was measured under illumination with a 980 nm diode laser (10 mW). A part of this was due to defect absorption in localized states of the amorphous silicon. (author)

  20. Novel Scheme of Amorphous/Crystalline Silicon Heterojunction Solar Cell

    Energy Technology Data Exchange (ETDEWEB)

    De Iuliis, S.; Geerligs, L.J. [ECN Solar Energy, Petten (Netherlands); Tucci, M.; Serenelli, L.; Salza, E. [ENEA Research Center Casaccia, Roma (Italy); De Cesare, G.; Caputo, D.; Ceccarelli, M. [University ' Sapienza' , Department of Electronic Engineering, Roma (Italy)

    2007-01-15

    In this paper we investigate in detail how the heterostructure concept can be implemented in an interdigitated back contact solar cell, in which both the emitters are formed on the back side of the c-Si wafer by amorphous/crystalline silicon heterostructure, and at the same time the grid-less front surface is passivated by a double layer of amorphous silicon and silicon nitride, which also provides an anti-reflection coating. The entire process, held at temperature below 300C, is photolithography-free, using a metallic self-aligned mask to create the interdigitated pattern, and we show that the alignment is feasible. An open-circuit voltage of 687 mV has been measured on a p-type monocrystalline silicon wafer. The mask-assisted deposition process does not influence the uniformity of the deposited amorphous silicon layers. Photocurrent limits factor has been investigated with the aid of one-dimensional modeling and quantum efficiency measurements. On the other hand several technological aspects that limit the fill factor and the short circuit current density still need improvements.

  1. Amorphous silicon passivation for 23.3% laser processed back contact solar cells

    Science.gov (United States)

    Carstens, Kai; Dahlinger, Morris; Hoffmann, Erik; Zapf-Gottwick, Renate; Werner, Jürgen H.

    2017-08-01

    This paper presents amorphous silicon deposited at temperatures below 200 °C, leading to an excellent passivation layer for boron doped emitter and phosphorus doped back surface field areas in interdigitated back contact solar cells. A higher deposition temperature degrades the passivation of the boron emitter by an increased hydrogen effusion due to lower silicon hydrogen bond energy, proved by hydrogen effusion measurements. The high boron surface doping in crystalline silicon causes a band bending in the amorphous silicon. Under these conditions, at the interface, the intentionally undoped amorphous silicon becomes p-type conducting, with the consequence of an increased dangling bond defect density. For bulk amorphous silicon this effect is described by the defect pool model. We demonstrate, that the defect pool model is also applicable to the interface between amorphous and crystalline silicon. Our simulation shows the shift of the Fermi energy towards the valence band edge to be more pronounced for high temperature deposited amorphous silicon having a small bandgap. Application of optimized amorphous silicon as passivation layer for the boron doped emitter and phosphorus doped back surface field on the rear side of laser processed back contact solar cells, fabricated using four laser processing steps, yields an efficiency of 23.3%.

  2. Laterally inherently thin amorphous-crystalline silicon heterojunction photovoltaic cell

    Science.gov (United States)

    Chowdhury, Zahidur R.; Kherani, Nazir P.

    2014-12-01

    This article reports on an amorphous-crystalline silicon heterojunction photovoltaic cell concept wherein the heterojunction regions are laterally narrow and distributed amidst a backdrop of well-passivated crystalline silicon surface. The localized amorphous-crystalline silicon heterojunctions consisting of the laterally thin emitter and back-surface field regions are precisely aligned under the metal grid-lines and bus-bars while the remaining crystalline silicon surface is passivated using the recently proposed facile grown native oxide-plasma enhanced chemical vapour deposited silicon nitride passivation scheme. The proposed cell concept mitigates parasitic optical absorption losses by relegating amorphous silicon to beneath the shadowed metallized regions and by using optically transparent passivation layer. A photovoltaic conversion efficiency of 13.6% is obtained for an untextured proof-of-concept cell illuminated under AM 1.5 global spectrum; the specific cell performance parameters are VOC of 666 mV, JSC of 29.5 mA-cm-2, and fill-factor of 69.3%. Reduced parasitic absorption, predominantly in the shorter wavelength range, is confirmed with external quantum efficiency measurement.

  3. Methane Flow Rate Effects On The Optical Properties of Amorphous Silicon Carbon (a-SiC:H Films Deposited By DC Sputtering Methods

    Directory of Open Access Journals (Sweden)

    Rosari Saleh

    2002-04-01

    Full Text Available We have investigated the refractive index (n and the optical absorption coeffi cient (α from refl ection and transmission measurements on hydrogenated amorphous silicon carbon (a-SiC:H fi lms. The a-SiC:H fi lms were prepared by dc sputtering method using silicon target in argon and methane gas mixtures. The refractive index (n decreases as the methane fl ow rate increase. The optical absorption coeffi cient (α shifts to higher energy with increasing methane fl ow rate. At higher methane fl ow rate, the fi lms tend to be more disorder and have wider optical gap. The relation of the optical properties and the disorder amorphous network with the compositional properties will be discussed.

  4. Light-induced metastable structural changes in hydrogenated amorphous silicon

    Energy Technology Data Exchange (ETDEWEB)

    Fritzsche, H. [Univ. of Chicago, IL (United States)

    1996-09-01

    Light-induced defects (LID) in hydrogenated amorphous silicon (a-Si:H) and its alloys limit the ultimate efficiency of solar panels made with these materials. This paper reviews a variety of attempts to find the origin of and to eliminate the processes that give rise to LIDs. These attempts include novel deposition processes and the reduction of impurities. Material improvements achieved over the past decade are associated more with the material`s microstructure than with eliminating LIDs. We conclude that metastable LIDs are a natural by-product of structural changes which are generally associated with non-radiative electron-hole recombination in amorphous semiconductors.

  5. Noise and degradation of amorphous silicon devices

    NARCIS (Netherlands)

    Bakker, J.P.R.

    2003-01-01

    Electrical noise measurements are reported on two devices of the disordered semiconductor hydrogenated amorphous silicon (a-Si:H). The material is applied in sandwich structures and in thin-film transistors (TFTs). In a sandwich configuration of an intrinsic layer and two thin doped layers, the obse

  6. Amorphous silicon for thin-film transistors

    NARCIS (Netherlands)

    Schropp, Rudolf Emmanuel Isidore

    1987-01-01

    Hydrogenated amorphous silicon (a-Si:H) has considerable potential as a semiconducting material for large-area photoelectric and photovoltaic applications. Moreover, a-Si:H thin-film transistors (TFT’s) are very well suited as switching devices in addressable liquid crystal display panels and addres

  7. Film adhesion in amorphous silicon solar cells

    Indian Academy of Sciences (India)

    A R M Yusoff; M N Syahrul; K Henkel

    2007-08-01

    A major issue encountered during fabrication of triple junction -Si solar cells on polyimide substrates is the adhesion of the solar cell thin films to the substrates. Here, we present our study of film adhesion in amorphous silicon solar cells made on different polyimide substrates (Kapton VN, Upilex-S and Gouldflex), and the effect of tie coats on film adhesion.

  8. Silicon nanocrystals on amorphous silicon carbide alloy thin films: Control of film properties and nanocrystals growth

    Energy Technology Data Exchange (ETDEWEB)

    Barbe, Jeremy, E-mail: jeremy.barbe@hotmail.com [CEA, Liten, 17 rue des Martyrs, 38054 Grenoble Cedex 9 (France); Universite de Toulouse, UPS, INPT, LAPLACE (Laboratoire Plasma et Conversion d' Energie), 118 route de Narbonne, 31062 Toulouse (France); Xie, Ling; Leifer, Klaus [Department of Engineering Sciences, Uppsala University, Box 534, S-751 21 Uppsala (Sweden); Faucherand, Pascal; Morin, Christine; Rapisarda, Dario; De Vito, Eric [CEA, Liten, 17 rue des Martyrs, 38054 Grenoble Cedex 9 (France); Makasheva, Kremena; Despax, Bernard [Universite de Toulouse, UPS, INPT, LAPLACE (Laboratoire Plasma et Conversion d' Energie), 118 route de Narbonne, 31062 Toulouse (France); CNRS, LAPLACE, F-31062 Toulouse (France); Perraud, Simon [CEA, Liten, 17 rue des Martyrs, 38054 Grenoble Cedex 9 (France)

    2012-11-01

    The present study demonstrates the growth of silicon nanocrystals on amorphous silicon carbide alloy thin films. Amorphous silicon carbide films [a-Si{sub 1-x}C{sub x}:H (with x < 0.3)] were obtained by plasma enhanced chemical vapor deposition from a mixture of silane and methane diluted in hydrogen. The effect of varying the precursor gas-flow ratio on the film properties was investigated. In particular, a wide optical band gap (2.3 eV) was reached by using a high methane-to-silane flow ratio during the deposition of the a-Si{sub 1-x}C{sub x}:H layer. The effect of short-time annealing at 700 Degree-Sign C on the composition and properties of the layer was studied by X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy. It was observed that the silicon-to-carbon ratio in the layer remains unchanged after short-time annealing, but the reorganization of the film due to a large dehydrogenation leads to a higher density of SiC bonds. Moreover, the film remains amorphous after the performed short-time annealing. In a second part, it was shown that a high density (1 Multiplication-Sign 10{sup 12} cm{sup -2}) of silicon nanocrystals can be grown by low pressure chemical vapor deposition on a-Si{sub 0.8}C{sub 0.2} surfaces at 700 Degree-Sign C, from silane diluted in hydrogen. The influence of growth time and silane partial pressure on nanocrystals size and density was studied. It was also found that amorphous silicon carbide surfaces enhance silicon nanocrystal nucleation with respect to SiO{sub 2}, due to the differences in surface chemical properties. - Highlights: Black-Right-Pointing-Pointer Silicon nanocrystals (Si-NC) growth on amorphous silicon carbide alloy thin films Black-Right-Pointing-Pointer Plasma deposited amorphous silicon carbide films with well-controlled properties Black-Right-Pointing-Pointer Study on the thermal effect of 700 Degree-Sign C short-time annealing on the layer properties Black-Right-Pointing-Pointer Low pressure

  9. Enhanced crystallization of amorphous silicon thin films using embedded silicon nanocrystals

    Science.gov (United States)

    Anderson, Curtis Michael

    This thesis is concerned with the production of silicon thin films for photovoltaic applications. Much research has been carried out to find a stable, more efficient alternative to amorphous silicon, resulting in a number of various amorphous/crystalline mixed-phase film structures with properties superior to amorphous silicon. This thesis work details a completely new approach to mixed-phase film deposition, focusing on the fast crystallization of these films. The deposition of amorphous silicon films with embedded nanocrystals was carried out via a dual-plasma system. It is known that plasma conditions to produce high quality films are much different from those to produce particles. Hence the experimental system used here involved two separate plasmas to allow the optimum production of the crystalline nanoparticles and the amorphous film. Both plasmas use 13.56 MHz excitation voltage with diluted silane as the silicon precursor. The nanoparticle production reactor is a flow-through device that can be altered to control the size of the particles from around 5--30 nm average diameter. The film production reactor is a parallel-plate capacitively-coupled plasma system, into which the aerosol-suspended nanoparticles were injected. The nanocrystals could either be "co-deposited" simultaneously with the amorphous film, or be deposited separately in a layer-by-layer technique; both approaches are discussed in detail. Measurements of the film conductivity provide for the first time unambiguous evidence that the presence of nanocrystallites above 5 nm in the amorphous film have a direct impact on the electronic properties of co-deposited films. Further measurements of the film structure by transmission electron microscopy (TEM) and Raman spectroscopy demonstrate clearly the effect of embedded nanocrystals on the annealed crystallization process; the immediate growth of the crystal seeds has been observed. Additionally, a newly discovered mechanism of film crystallization

  10. Open-circuit voltage analysis of p-i-n type amorphous silicon solar cells deposited at low temperature

    Institute of Scientific and Technical Information of China (English)

    Ni Jian; Zhang Jian-Jun; Cao Yu; Wang Xian-Bao; Li Chao; Chen Xin-Liang; Geng Xin-Hua; Zhao Ying

    2011-01-01

    This paper identifies the contributions of p-a-SiC:H layers and i-a-Si:H layers to the open circuit voltage of p-i-n type a-Si:H solar cells deposited at a low temperature of 125 ℃.We find that poor quality p-a-SiC:H films under regular conditions lead to a restriction of open circuit voltage although the band gap of the i-layer varies widely.A significant improvement in open circuit voltage has been obtained by using high quality p-a-SiC:H films optimized at the "low-power regime" under low silane flow rates and high hydrogen dilution conditions.

  11. Research on high-efficiency, single-junction, monolithic, thin-film amorphous silicon solar cells

    Science.gov (United States)

    Wiesmann, H.; Dolan, J.; Fricano, G.; Danginis, V.

    1987-02-01

    A study was undertaken of the optoelectronic properties of amorphous silicon-hydrogen thin films deposited from disilane at high deposition rates. The information derived from this study was used to fabricate amorphous silicon solar cells with efficiencies exceeding 7%. The intrinsic layer of these solar cells was deposited at 15 angstroms/second. Material properties investigated included dark conductivity, photoconductivity, minority carrier diffusion length, and density of states. The solar cells properties characterized were absolute quantum yield and simulated global AM 1.5 efficiencies. Investigations were undertaken utilizing optical and infrared spectroscopy to optimize the microstructures of the intrinsic amorphous silicon. That work was sponsored by the New York State Energy Research and Development Authority. The information was used to optimize the intrinsic layer of amorphous silicon solar cells, resulting in AM 1.5 efficiencies exceeding 7%.

  12. High thermal conductivity of a hydrogenated amorphous silicon film.

    Science.gov (United States)

    Liu, Xiao; Feldman, J L; Cahill, D G; Crandall, R S; Bernstein, N; Photiadis, D M; Mehl, M J; Papaconstantopoulos, D A

    2009-01-23

    We measured the thermal conductivity kappa of an 80 microm thick hydrogenated amorphous silicon film prepared by hot-wire chemical-vapor deposition with the 3omega (80-300 K) and the time-domain thermo-reflectance (300 K) methods. The kappa is higher than any of the previous temperature dependent measurements and shows a strong phonon mean free path dependence. We also applied a Kubo based theory using a tight-binding method on three 1000 atom continuous random network models. The theory gives higher kappa for more ordered models, but not high enough to explain our results, even after extrapolating to lower frequencies with a Boltzmann approach. Our results show that this material is more ordered than any amorphous silicon previously studied.

  13. Similarities in the electrical conduction processes in hydrogenated amorphous silicon oxynitride and silicon nitride

    CERN Document Server

    Kato, H; Ohki, Y; Seol, K S; Noma, T

    2003-01-01

    Electrical conduction at high fields was examined in a series of hydrogenated amorphous silicon oxynitride and silicon nitride films with different nitrogen contents deposited by plasma-enhanced chemical vapour deposition. It was shown that the conduction is attributable to the Poole-Frenkel (PF) emission in the two materials. The energy depths of the PF sites and the dependences on the sample's chemical composition are quite similar for the two samples. It is considered that the PF sites in the two materials are identical.

  14. Effect of surface irradiation during the photo-CVD deposition of a-Si:H thin films. Hikari CVD ho ni yoru amorphous silicon sakuseiji no kiban hikari reiki koka

    Energy Technology Data Exchange (ETDEWEB)

    Tasaka, K.; Doering, H.; Hashimoto, K.; Fujishima, A. (The University of Tokyo, Tokyo (Japan))

    1990-12-06

    This paper shows the impact of the irradiation from an additional light source during the deposition of hydrogenated amorphous silicon by photo-CVD deposition. Using a mercury sensitized photo-CVD process from Disilan (Si {sub 2} H {sub 6}) and hydrogen, silicon was deposited. A 40W low pressure mercury lamp was applied as the light source. A portion of the substrate was in addition irradiated using an Xg-He lamp through a thermal filter. Irradiation of the substrate using only Xg-He lamp produced no deposition, since this light has a wavelength which is too long to produce the SiH {sub 3}-radicals needed for Si deposition. The additional Xg-He light source was discovered to cause an increased thickness of deposited a-Si:H film and a transmission of the band structure. The reasons of these are considered that the influence of irradiation is not limited to film thickness, but that irradiation also impacts the composition of the a-Si:H film so as to cause a reduction in the hydrogen content. 10 figs., 1 tab.

  15. Excimer laser crystallization of amorphous silicon on metallic substrate

    Science.gov (United States)

    Delachat, F.; Antoni, F.; Slaoui, A.; Cayron, C.; Ducros, C.; Lerat, J.-F.; Emeraud, T.; Negru, R.; Huet, K.; Reydet, P.-L.

    2013-06-01

    An attempt has been made to achieve the crystallization of silicon thin film on metallic foils by long pulse duration excimer laser processing. Amorphous silicon thin films (100 nm) were deposited by radiofrequency magnetron sputtering on a commercial metallic alloy (N42-FeNi made of 41 % of Ni) coated by a tantalum nitride (TaN) layer. The TaN coating acts as a barrier layer, preventing the diffusion of metallic impurities in the silicon thin film during the laser annealing. An energy density threshold of 0.3 J cm-2, necessary for surface melting and crystallization of the amorphous silicon, was predicted by a numerical simulation of laser-induced phase transitions and witnessed by Raman analysis. Beyond this fluence, the melt depth increases with the intensification of energy density. A complete crystallization of the layer is achieved for an energy density of 0.9 J cm-2. Scanning electron microscopy unveils the nanostructuring of the silicon after laser irradiation, while cross-sectional transmission electron microscopy reveals the crystallites' columnar growth.

  16. Surface bioactivity of plasma implanted silicon and amorphous carbon

    Institute of Scientific and Technical Information of China (English)

    Paul K CHU

    2004-01-01

    Plasma immersion ion implantation and deposition (PⅢ&D) has been shown to be an effective technique to enhance the surface bioactivity of materials. In this paper, recent progress made in our laboratory on plasma surface modification single-crystal silicon and amorphous carbon is reviewed. Silicon is the most important material in the integrated circuit industry but its surface biocompatibility has not been investigated in details. We have recently performed hydrogen PⅢ into silicon and observed the biomimetic growth of apatite on its surface in simulated body fluid. Diamond-like carbon (DLC) is widely used in the industry due to its excellent mechanical properties and chemical inertness. The use of this material in biomedical engineering has also attracted much attention. It has been observed in our laboratory that doping DLC with nitrogen by means of PⅢ can improve the surface blood compatibility. The properties as well as in vitro biological test results will be discussed in this article.

  17. Amorphous molybdenum silicon superconducting thin films

    Directory of Open Access Journals (Sweden)

    D. Bosworth

    2015-08-01

    Full Text Available Amorphous superconductors have become attractive candidate materials for superconducting nanowire single-photon detectors due to their ease of growth, homogeneity and competitive superconducting properties. To date the majority of devices have been fabricated using WxSi1−x, though other amorphous superconductors such as molybdenum silicide (MoxSi1−x offer increased transition temperature. This study focuses on the properties of MoSi thin films grown by magnetron sputtering. We examine how the composition and growth conditions affect film properties. For 100 nm film thickness, we report that the superconducting transition temperature (Tc reaches a maximum of 7.6 K at a composition of Mo83Si17. The transition temperature and amorphous character can be improved by cooling of the substrate during growth which inhibits formation of a crystalline phase. X-ray diffraction and transmission electron microscopy studies confirm the absence of long range order. We observe that for a range of 6 common substrates (silicon, thermally oxidized silicon, R- and C-plane sapphire, x-plane lithium niobate and quartz, there is no variation in superconducting transition temperature, making MoSi an excellent candidate material for SNSPDs.

  18. On the effect of the amorphous silicon microstructure on the grain size of solid phase crystallized polycrystalline silicon

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Kashish; Branca, Annalisa; Illiberi, Andrea; Creatore, Mariadriana; Sanden, Mauritius C.M. van de [Department of Applied Physics, Eindhoven University of Technology (Netherlands); Tichelaar, Frans D. [Kavli Institute of Nanoscience, Delft University of Technology (Netherlands)

    2011-05-15

    In this paper the effect of the microstructure of remote plasma-deposited amorphous silicon films on the grain size development in polycrystalline silicon upon solid-phase crystallization is reported. The hydrogenated amorphous silicon films are deposited at different microstructure parameter values R* (which represents the distribution of SiH{sub x} bonds in amorphous silicon), at constant hydrogen content. Amorphous silicon films undergo a phase transformation during solid-phase crystallization and the process results in fully (poly-)crystallized films. An increase in amorphous film structural disorder (i.e., an increase in R*), leads to the development of larger grain sizes (in the range of 700-1100 nm). When the microstructure parameter is reduced, the grain size ranges between 100 and 450 nm. These results point to the microstructure parameter having a key role in controlling the grain size of the polycrystalline silicon films and thus the performance of polycrystalline silicon solar cells. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  19. Structure and Optical Properties of Silicon Nanocrystals Embedded in Amorphous Silicon Thin Films Obtained by PECVD

    Directory of Open Access Journals (Sweden)

    B. M. Monroy

    2011-01-01

    Full Text Available Silicon nanocrystals embedded in amorphous silicon matrix were obtained by plasma enhanced chemical vapor deposition using dichlorosilane as silicon precursor. The RF power and dichlorosilane to hydrogen flow rate ratio were varied to obtain different crystalline fractions and average sizes of silicon nanocrystals. High-resolution transmission electron microscopy images and RAMAN measurements confirmed the existence of nanocrystals embedded in the amorphous matrix with average sizes between 2 and 6 nm. Different crystalline fractions (from 12% to 54% can be achieved in these films by regulating the selected growth parameters. The global optical constants of the films were obtained by UV-visible transmittance measurements. Effective band gap variations from 1.78 to 2.3 eV were confirmed by Tauc plot method. Absorption coefficients higher than standard amorphous silicon were obtained in these thin films for specific growth parameters. The relationship between the optical properties is discussed in terms of the different internal nanostructures of the samples.

  20. Three-Terminal Amorphous Silicon Solar Cells

    OpenAIRE

    Cheng-Hung Tai; Chu-Hsuan Lin; Chih-Ming Wang; Chun-Chieh Lin

    2011-01-01

    Many defects exist within amorphous silicon since it is not crystalline. This provides recombination centers, thus reducing the efficiency of a typical a-Si solar cell. A new structure is presented in this paper: a three-terminal a-Si solar cell. The new back-to-back p-i-n/n-i-p structure increased the average electric field in a solar cell. A typical a-Si p-i-n solar cell was also simulated for comparison using the same thickness and material parameters. The 0.28 μm-thick three-terminal a-Si...

  1. Studies of photodegradation in hydrogenated amorphous silicon

    Energy Technology Data Exchange (ETDEWEB)

    Clare, B.W. [Murdoch Univ., WA (Australia). Sch. of Phys. Sci., Eng. and Technol.; Cornish, J.C.L. [Murdoch Univ., WA (Australia). Sch. of Phys. Sci., Eng. and Technol.; Hefter, G.T. [Murdoch Univ., WA (Australia). Sch. of Phys. Sci., Eng. and Technol.; Jennings, P.J. [Murdoch Univ., WA (Australia). Sch. of Phys. Sci., Eng. and Technol.; Lund, C.P. [Murdoch Univ., WA (Australia). Sch. of Phys. Sci., Eng. and Technol.; Santjojo, D.J. [Murdoch Univ., WA (Australia). Sch. of Phys. Sci., Eng. and Technol.; Talukder, M.O.G. [Dept. of Applied Physics and Electronics, Rajshahi Univ. (Bangladesh)

    1996-11-15

    IR absorption spectroscopy was used to study light-induced structural changes in hydrogenated amorphous silicon (a-Si:H) films. Our results suggest that illumination causes migration of H atoms from the interior of the film towards the illuminated surface. As a consequence, a transformation occurs in the bulk of the material leading to the formation of dangling bonds in the i-layer which could act as traps for minority carriers in solar cells. Using these results, we have formulated a model for the photodegradation of a-Si:H alloys. (orig.)

  2. Eigenmode Splitting in all Hydrogenated Amorphous Silicon Nitride Coupled Microcavity

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xian-Gao; HUANG Xin-Fan; CHEN Kun-Ji; QIAN Bo; CHEN San; DING Hong-Lin; LIU Sui; WANG Xiang; XU Jun; LI Wei

    2008-01-01

    Hydrogenated amorphous silicon nitride based coupled optical microcavity is investigated theoretically and experimentally. The theoretical calculation of the transmittance spectra of optical microcavity with one cavity and coupled microcavity with two-cavity is performed.The optical eigenmode splitting for coupled microcavity is found due to the interaction between the neighbouring localized cavities.Experimentally,the coupled cavity samples are prepared by plasma enhanced chemical vapour deposition and characterized by photoluminescence measurements.It is found that the photoluminescence peak wavelength agrees well with the cavity mode in the calculated transmittance spectra.This eigenmode splitting is analogous to the electron state energy splitting in diatom molecules.

  3. Amorphous silicon solar cells on natively textured ZnO grown by PECVD

    NARCIS (Netherlands)

    Löffler, J.; Groenen, R.; Linden, J.L.; Sanden, M.C.M. van de; Schropp, R.E.I.

    2001-01-01

    Natively textured ZnO layers deposited by the expanding thermal plasma CVD technique between 150 and 350°C at a deposition rate between 0.65 and 0.75 nm/s have been investigated with respect to their suitability as front electrode material for amorphous silicon pin solar cells in comparison to refer

  4. SIMILAR POINT-DEFECTS IN CRYSTALLINE AND AMORPHOUS-SILICON

    NARCIS (Netherlands)

    LIANG, ZN; NIESEN, L; VANDENHOVEN, GN; CUSTER, JS

    1994-01-01

    The microscopic nature of defects in ion-implanted crystalline silicon (c-Si) and amorphous silicon (a-Si) has been studied using Mossbauer spectroscopy. The evolution of the local structure around the probe atoms is followed during thermal annealing of ion-beam-created amorphous and ion-beam-damage

  5. Recent developments in amorphous silicon-based solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Beneking, C.; Rech, B.; Foelsch, J.; Wagner, H. [Forschungszentrum Juelich GmbH (Germany). Inst. fuer Schicht- und Ionentechnik

    1996-03-01

    Two examples of recent advances in the field of thin-film, amorphous hydrogenated silicon (a-Si:H) pin solar cells are described: the improved understanding and control of the p/i interface, and the improvement of wide-bandgap a-Si:H material deposited at low substrate temperature as absorber layer for cells with high stabilized open-circuit voltage. Stacked a-Si:H/a-Si:H cells incorporating these concepts exhibit less than 10% (relative) efficiency degradation and show stabilized efficiencies as high as 9 to 10% (modules 8 to 9%). The use of low-gap a-Si:H and its alloys like a-SiGe:H as bottom cell absorber materials in multi-bandgap stacked cells offers additional possibilities. The combination of a-Si:H based top cells with thin-film crystalline silicon-based bottom cells appears as a promising new trend. It offers the perspective to pass significantly beyond the present landmark of 10% module efficiency reached by the technology utilizing exclusively amorphous silicon-based absorber layers, while keeping its advantages of potentially low-cost production. (orig.) 47 refs.

  6. Optical and electrical characterization of crystalline silicon films formed by rapid thermal annealing of amorphous silicon

    Energy Technology Data Exchange (ETDEWEB)

    Baldus-Jeursen, Christopher, E-mail: cjbaldus@uwaterloo.ca; Tarighat, Roohollah Samadzadeh, E-mail: rsamadza@uwaterloo.ca; Sivoththaman, Siva, E-mail: sivoththaman@uwaterloo.ca

    2016-03-31

    The effect of rapid thermal annealing (RTA) on n-type hydrogenated amorphous silicon (a-Si:H) films deposited on single-crystal silicon (c-Si) wafers was studied by electrical and optical methods. Deposition of a-Si:H films by plasma-enhanced chemical vapor deposition (PECVD) was optimized for high deposition rate and maximum film uniformity. RTA processed films were characterized by spreading resistance profiling (SRP), Hall effect, spectroscopic ellipsometry, defect etching, and transmission electron microscopy (TEM). It was found that the films processed between 600 °C and 1000 °C were highly crystalline and that the defect density in the films diminished with increasing thermal budget. Junctions formed by the RTA processed n-type a-Si:H films on p-type c-Si wafers were tested for device applicability. It was established that these films can be used as the emitter layer in n{sup +}p photovoltaic (PV) devices with over 14% conversion efficiency. - Highlights: • Rapid thermal annealing of doped amorphous silicon deposited on single-crystal silicon (c-Si) wafers resulted in highly crystalline films for photovoltaic devices. • As the annealing temperature increased, the electrical and optical properties of the films became increasingly similar to single-crystal silicon. • Annealing temperatures between 500-1000 oC were investigated. Solar cell devices fabricated after annealing at 750 oC were found to be the most suitable compromise between good quality crystalline films and minimal dopant diffusion into the c-Si wafer. • Annealed films were highly conductive without the need for a transparent conducting oxide.

  7. Three-Terminal Amorphous Silicon Solar Cells

    Directory of Open Access Journals (Sweden)

    Cheng-Hung Tai

    2011-01-01

    Full Text Available Many defects exist within amorphous silicon since it is not crystalline. This provides recombination centers, thus reducing the efficiency of a typical a-Si solar cell. A new structure is presented in this paper: a three-terminal a-Si solar cell. The new back-to-back p-i-n/n-i-p structure increased the average electric field in a solar cell. A typical a-Si p-i-n solar cell was also simulated for comparison using the same thickness and material parameters. The 0.28 μm-thick three-terminal a-Si solar cell achieved an efficiency of 11.4%, while the efficiency of a typical a-Si p-i-n solar cell was 9.0%. Furthermore, an efficiency of 11.7% was achieved by thickness optimization of the three-terminal solar cell.

  8. Energy landscape of relaxed amorphous silicon

    Science.gov (United States)

    Valiquette, Francis; Mousseau, Normand

    2003-09-01

    We analyze the structure of the energy landscape of a well-relaxed 1000-atom model of amorphous silicon using the activation-relaxation technique (ART nouveau). Generating more than 40 000 events starting from a single minimum, we find that activated mechanisms are local in nature, that they are distributed uniformly throughout the model, and that the activation energy is limited by the cost of breaking one bond, independently of the complexity of the mechanism. The overall shape of the activation-energy-barrier distribution is also insensitive to the exact details of the configuration, indicating that well-relaxed configurations see essentially the same environment. These results underscore the localized nature of relaxation in this material.

  9. Dynamics of hydrogen in hydrogenated amorphous silicon

    Indian Academy of Sciences (India)

    Ranber Singh; S Prakash

    2003-07-01

    The problem of hydrogen diffusion in hydrogenated amorphous silicon (a-Si:H) is studied semiclassically. It is found that the local hydrogen concentration fluctuations-induced extra potential wells, if intense enough, lead to the localized electronic states in a-Si:H. These localized states are metastable. The trapping of electrons and holes in these states leads to the electrical degradation of the material. These states also act as recombination centers for photo-generated carriers (electrons and holes) which in turn may excite a hydrogen atom from a nearby Si–H bond and breaks the weak (strained) Si–Si bond thereby apparently enhancing the hydrogen diffusion and increasing the light-induced dangling bonds.

  10. Tunable plasticity in amorphous silicon carbide films.

    Science.gov (United States)

    Matsuda, Yusuke; Kim, Namjun; King, Sean W; Bielefeld, Jeff; Stebbins, Jonathan F; Dauskardt, Reinhold H

    2013-08-28

    Plasticity plays a crucial role in the mechanical behavior of engineering materials. For instance, energy dissipation during plastic deformation is vital to the sufficient fracture resistance of engineering materials. Thus, the lack of plasticity in brittle hybrid organic-inorganic glasses (hybrid glasses) often results in a low fracture resistance and has been a significant challenge for their integration and applications. Here, we demonstrate that hydrogenated amorphous silicon carbide films, a class of hybrid glasses, can exhibit a plasticity that is even tunable by controlling their molecular structure and thereby leads to an increased and adjustable fracture resistance in the films. We decouple the plasticity contribution from the fracture resistance of the films by estimating the "work-of-fracture" using a mean-field approach, which provides some insight into a potential connection between the onset of plasticity in the films and the well-known rigidity percolation threshold.

  11. Microcavity effects in the photoluminescence of hydrogenated amorphous silicon nitride

    Science.gov (United States)

    Serpenguzel, Ali; Aydinli, Atilla; Bek, Alpan

    1998-07-01

    Fabry-Perot microcavities are used for the alteration of photoluminescence in hydrogenated amorphous silicon nitride grown with and without ammonia. The photoluminescence is red-near-infrared for the samples grown without ammonia, and blue-green for the samples grown with ammonia. In the Fabry- Perot microcavities, the amplitude of the photoluminescence is enhanced, while its linewidth is reduced with respect to the bulk hydrogenated amorphous silicon nitride. The microcavity was realized by a metallic back mirror and a hydrogenated amorphous silicon nitride--air or a metallic front mirror. The transmittance, reflectance, and absorbance spectra were also measured and calculated. The calculated spectra agree well with the experimental spectra. The hydrogenated amorphous silicon nitride microcavity has potential for becoming a versatile silicon based optoelectronic device such as a color flat panel display, a resonant cavity enhanced light emitting diode, or a laser.

  12. RF Sputtering for preparing substantially pure amorphous silicon monohydride

    Science.gov (United States)

    Jeffrey, Frank R.; Shanks, Howard R.

    1982-10-12

    A process for controlling the dihydride and monohydride bond densities in hydrogenated amorphous silicon produced by reactive rf sputtering of an amorphous silicon target. There is provided a chamber with an amorphous silicon target and a substrate therein with the substrate and the target positioned such that when rf power is applied to the target the substrate is in contact with the sputtering plasma produced thereby. Hydrogen and argon are fed to the chamber and the pressure is reduced in the chamber to a value sufficient to maintain a sputtering plasma therein, and then rf power is applied to the silicon target to provide a power density in the range of from about 7 watts per square inch to about 22 watts per square inch to sputter an amorphous silicon hydride onto the substrate, the dihydride bond density decreasing with an increase in the rf power density. Substantially pure monohydride films may be produced.

  13. Silicon heterojunction solar cell and crystallization of amorphous silicon

    Science.gov (United States)

    Lu, Meijun

    The rapid growth of photovoltaics in the past decade brings on the soaring price and demand for crystalline silicon. Hence it becomes necessary and also profitable to develop solar cells with over 20% efficiency, using thin (˜100mum) silicon wafers. In this respect, diffused junction cells are not the best choice, since the inescapable heating in the diffusion process not only makes it hard to handle thin wafers, but also reduces carriers' bulk lifetime and impairs the crystal quality of the substrate, which could lower cell efficiency. An alternative is the heterojunction cells, such as amorphous silicon/crystalline silicon heterojunction (SHJ) solar cell, where the emitter layer can be grown at low temperature (solar cell, including the importance of intrinsic buffer layer; the discussion on the often observed anomalous "S"-shaped J-V curve (low fill factor) by using band diagram analysis; the surface passivation quality of intrinsic buffer and its relationship to the performance of front-junction SHJ cells. Although the a-Si:H is found to help to achieve high efficiency in c-Si heterojuntion solar cells, it also absorbs short wavelength (cells. Considering this, heterojunction with both a-Si:H emitter and base contact on the back side in an interdigitated pattern, i.e. interdigitated back contact silicon heterojunction (IBC-SHJ) solar cell, is developed. This dissertation will show our progress in developing IBC-SHJ solar cells, including the structure design; device fabrication and characterization; two dimensional simulation by using simulator Sentaurus Device; some special features of IBC-SHJ solar cells; and performance of IBC-SHJ cells without and with back surface buffer layers. Another trend for solar cell industry is thin film solar cells, since they use less materials resulting in lower cost. Polycrystalline silicon (poly-Si) is one promising thin-film material. It has the potential advantages to not only retain the performance and stability of c

  14. Stability of deuterated amorphous silicon solar cells

    CERN Document Server

    Munyeme, G; Van der Meer, L F G; Dijkhuis, J I; Van der Weg, W F; Schropp, R

    2004-01-01

    In order to elucidate the microscopic mechanism for the earlier observed enhanced stability of deuterated amorphous silicon solar cells we conducted a side by-side study of fully deuterated intrinsic layers on crystalline silicon substrates using the free-electron laser facility at Nieuwegein (FELIX) to resonantly excite the Si-D stretching vibration and measure the various relaxation channels available to these modes, and of p-i-n solar cells with identical intrinsic absorber layers on glass/TCO substrates to record the degradation and stabilization of solar cell parameters under prolonged light soaking treatments. From our comparative study it is shown that a-Si:D has a superior resistance against light-induced defect creation as compared to a-Si:H and that this can now be explained in the light of the 'H collision model' since the initial step in the process, the release of H, is more likely than that of D. Thus, a natural explanation for the stability as observed in a-Si:D solar cells is provided.

  15. Infrared Insight into the Network of Hydrogenated Amorphous and Polycrystalline Silicon thin Films

    Directory of Open Access Journals (Sweden)

    Jarmila Mullerova

    2006-01-01

    Full Text Available IR measurements were carried out on both amorphous and polycrystalline silicon samples deposited by PECVDon glass substrate. The transition from amorphous to polycrystalline phase was achieved by increasing dilution of silaneplasma at the deposition process. The samples were found to be mixed phase materials. Commonly, infrared spectra ofhydrogenated silicon thin films yield information about microstructure, hydrogen content and hydrogen bonding to silicon. Inthis paper, additional understanding was retrieved from infrared response. Applying standard optical laws, effective mediatheory and Clausius-Mossoti approach concerning the Si-Si and Si-H bonds under IR irradiation as individual oscillators,refractive indices in the long wavelength limit, crystalline, amorphous and voids volume fractions and the mass density of thefilms were determined. The mass density was found to decrease with increasing crystalline volume fraction, which can beattributed to the void-dominated mechanism of network formation.

  16. Characteristics of Disorder and Defect in Hydrogenated Amorphous Silicon Nitride Thin Films Containing Silicon Nanograins

    Institute of Scientific and Technical Information of China (English)

    DING Wen-ge; YU Wei; ZHANG Jiang-yong; HAN Li; FU Guang-sheng

    2006-01-01

    The hydrogenated amorphous silicon nitride (SiNx) thin films embedded with nano-structural silicon were prepared and the microstructures at the interface of silicon nano-grains/SiNx were identified by the optical absorption and Raman scattering measurements. Characterized by the exponential tail of optical absorption and the band-width of the Raman scattering TO mode, the disorder in the interface region increases with the gas flow ratio increasing. Besides, as reflected by the sub-gap absorption coefficients, the density of interface defect states decreases, which can be attributed to the structural mismatch in the interface region and also the changes of hydrogen content in the deposited films. Additional annealing treatment results in a significant increase of defects and degree of disorder, for which the hydrogen out-diffusion in the annealing process would be responsible.

  17. Study and characterization of an integrated circuit-deposited hydrogenated amorphous silicon sensor for the detection of particles and radiations; Etude et caracterisation d'un capteur en silicium amorphe hydrogene depose sur circuit integre pour la detection de particules et de rayonnements

    Energy Technology Data Exchange (ETDEWEB)

    Despeisse, M

    2006-03-15

    Next generation experiments at the European laboratory of particle physics (CERN) require particle detector alternatives to actual silicon detectors. This thesis presents a novel detector technology, which is based on the deposition of a hydrogenated amorphous silicon sensor on top of an integrated circuit. Performance and limitations of this technology have been assessed for the first time in this thesis in the context of particle detectors. Specific integrated circuits have been designed and the detector segmentation, the interface sensor-chip and the sensor leakage current have been studied in details. The signal induced by the track of an ionizing particle in the sensor has been characterized and results on the signal speed, amplitude and on the sensor resistance to radiation are presented. The results are promising regarding the use of this novel technology for radiation detection, though limitations have been shown for particle physics application. (author)

  18. Performance improvement in amorphous silicon based uncooled microbolometers through pixel design and materials development

    Science.gov (United States)

    Ajmera, Sameer; Brady, John; Hanson, Charles; Schimert, Tom; Syllaios, A. J.; Taylor, Michael

    2011-06-01

    Uncooled amorphous silicon microbolometers have been established as a field-worthy technology for a broad range of applications where performance and form factor are paramount, such as soldier-borne systems. Recent developments in both bolometer materials and pixel design at L-3 in the 17μm pixel node have further advanced the state-of-the-art. Increasing the a-Si material temperature coefficient of resistance (TCR) has the impact of improving NETD sensitivity without increasing thermal time constant (TTC), leading to an improvement in the NETD×TTC product. By tuning the amorphous silicon thin-film microstructure using hydrogen dilution during deposition, films with high TCR have been developed. The electrical properties of these films have been shown to be stable even after thermal cycling to temperatures greater than 300oC enabling wafer-level vacuum packaging currently performed at L-3 to reduce the size and weight of the vacuum packaged unit. Through appropriate selection of conditions during deposition, amorphous silicon of ~3.4% TCR has been integrated into the L-3 microbolometer manufacturing flow. By combining pixel design enhancements with improvements to amorphous silicon thin-film technology, L-3's amorphous silicon microbolometer technology will continue to provide the performance required to meet the needs to tomorrow's war-fighter.

  19. Electronic properties of intrinsic and doped amorphous silicon carbide films

    Energy Technology Data Exchange (ETDEWEB)

    Vetter, M. [Departament d' Enginyeria Electronica, Universitat Politecnica de Catalunya, Gran Capita s/n, Modul C4, E-08034 Barcelona (Spain)]. E-mail: mvetter@eel.upc.edu; Voz, C. [Departament d' Enginyeria Electronica, Universitat Politecnica de Catalunya, Gran Capita s/n, Modul C4, E-08034 Barcelona (Spain); Ferre, R. [Departament d' Enginyeria Electronica, Universitat Politecnica de Catalunya, Gran Capita s/n, Modul C4, E-08034 Barcelona (Spain); Martin, I. [Departament d' Enginyeria Electronica, Universitat Politecnica de Catalunya, Gran Capita s/n, Modul C4, E-08034 Barcelona (Spain); Orpella, A. [Departament d' Enginyeria Electronica, Universitat Politecnica de Catalunya, Gran Capita s/n, Modul C4, E-08034 Barcelona (Spain); Puigdollers, J. [Departament d' Enginyeria Electronica, Universitat Politecnica de Catalunya, Gran Capita s/n, Modul C4, E-08034 Barcelona (Spain); Andreu, J. [Departament de Fisica Aplicada i Optica, Universitat de Barcelona, Av. Diagonal 647, E-08028 Barcelona (Spain); Alcubilla, R. [Departament d' Enginyeria Electronica, Universitat Politecnica de Catalunya, Gran Capita s/n, Modul C4, E-08034 Barcelona (Spain)

    2006-07-26

    Hydrogenated amorphous silicon carbide (a-SiC{sub x} : H) films have shown excellent surface passivation of crystalline silicon. With the aim of large area deposition of these films the influence of the rf plasma power was investigated. It is found that homogenous deposition with effective surface recombination velocity lower than 100 cms{sup -1} is possible up to 6'' diameter in a simple parallel plate reactor by optimizing deposition parameters. For application in solar cell processes the conductivity of these a-SiC{sub x} : H films might become of importance since good surface passivation results from field-effect passivation which needs an insulating dielectric layer. Therefore, the temperature dependence of the dark dc conductivity of these films was investigated in the temperature range from - 20 to 260 deg. C. Two transition temperatures, T {sub s}{approx}80 deg. C and T {sub s}{approx}170 deg. C, were found where conductivity increases, resp. decreases over-exponential. From Arrhenius plots activation energy (E {sub a}) and conductivity pre-factor ({sigma} {sub 0}) were calculated for a large number of samples with different composition. A correlation between E {sub a} and {sigma} {sub 0} was found giving a Meyer-Neldel relation with a slope of 59 mV, corresponding to a material characteristic temperature T {sub m} = 400 deg. C, and an intercept at {sigma} {sub 00} = 0.1 {omega}{sup -1}cm{sup -1}.

  20. Influence of dc bias on amorphous carbon deposited by pulse laser ablation

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Amorphous carbon films were deposited on single-crystalline silicon and K9 glass by pulse laser ablation using different negative substrate bias. Scanning electron microscope (SEM) was used to observe morphology of the surface. Thickness and refractive index of the film deposited on K9 glass were measured by ellipsometry. Micro-hardness of films was measured relatively to single crystal silicon. All films deposited on silicon were analyzed by Raman spectra. All spectra were deconvoluted to three peaks. Line-width ratios varied similarly with bias voltage when the laser energy was kept invariant.

  1. Nanocavity Shrinkage and Preferential Amorphization during Irradiation in Silicon

    Institute of Scientific and Technical Information of China (English)

    ZHU Xian-Fang; WANG Zhan-Guo

    2005-01-01

    @@ We model the recent experimental results and demonstrate that the internal shrinkage of nanocavities in silicon is intrinsically associated with preferential amorphization as induced by self-ion irradiation.

  2. Polarization effects in femtosecond laser induced amorphization of monocrystalline silicon

    Science.gov (United States)

    Bai, Feng; Li, Hong-Jin; Huang, Yuan-Yuan; Fan, Wen-Zhong; Pan, Huai-Hai; Wang, Zhuo; Wang, Cheng-Wei; Qian, Jing; Li, Yang-Bo; Zhao, Quan-Zhong

    2016-10-01

    We have used femtosecond laser pulses to ablate monocrystalline silicon wafer. Raman spectroscopy and X-ray diffraction analysis of ablation surface indicates horizontally polarized laser beam shows an enhancement in amorphization efficiency by a factor of 1.6-1.7 over the circularly polarized laser ablation. This demonstrates that one can tune the amorphization efficiency through the polarization of irradiation laser.

  3. Deposition of amorphous carbon-silver composites

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Zarco, O. [Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexico, Circuito Exterior s/n, Ciudad Universitaria. 04510, Mexico D. F. Mexico (Mexico); Rodil, S.E., E-mail: ser42@iim.unam.m [Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexico, Circuito Exterior s/n, Ciudad Universitaria. 04510, Mexico D. F. Mexico (Mexico); Camacho-Lopez, M.A. [Facultad de Quimica, Universidad Autonoma del Estado de Mexico, Tollocan s/n, esq. Paseo Colon, Toluca, Estado de Mexico, 50110 (Mexico)

    2009-12-31

    Composites of amorphous carbon films and silver were deposited by co-sputtering, where the target (10 cm diameter) was of pure graphite with small inclusion of pure silver (less than 1 cm{sup 2}). The films were deposited under different powers, from 40 to 250 W, and different target-substrate distances. The substrate was earthed and rotated in order to obtain a uniform distribution of the silver content. The addition of the Ag piece into the target increased the deposition rate of the carbon films, which could be related to the higher sputter yield of the silver, but there seems to be also a contribution from a larger emission of secondary electrons from the Ag that enhances the plasma and therefore the sputtering process becomes more efficient. Scanning electron micrographs acquired using backscattered electrons showed that the silver was segregated from the carbon matrix, forming nanoparticles or larger clusters as the power was increased. The X-ray diffraction pattern showed that the silver was crystalline and the carbon matrix remained amorphous, although for certain conditions a peak attributed to fullerene-like structures was obtained. Finally, we used Raman spectroscopy to understand the bonding characteristics of the carbon-silver composites, finding that there are variations in the D/G ratio, which can be correlated to the observed structure and X-ray diffraction results.

  4. Infrared analysis of thin films amorphous, hydrogenated carbon on silicon

    CERN Document Server

    Jacob, W; Schwarz-Selinger, T

    2000-01-01

    The infrared analysis of thin films on a thick substrate is discussed using the example of plasma-deposited, amorphous, hydrogenated carbon layers (a-C:H) on silicon substrates. The framework for the optical analysis of thin films is presented. The main characteristic of thin film optics is the occurrence of interference effects due to the coherent superposition of light multiply reflected at the various internal and external interfaces of the optical system. These interference effects lead to a sinusoidal variation of the transmitted and reflected intensity. As a consequence, the Lambert-Beer law is not applicable for the determination of the absorption coefficient of thin films. Furthermore, observable changes of the transmission and reflection spectra occur in the vicinity of strong absorption bands due to the Kramers-Kronig relation. For a sound data evaluation these effects have to be included in the analysis. To be able to extract the full information contained in a measured optical thin film spectrum, ...

  5. Hydrogen effusion from tritiated amorphous silicon

    Science.gov (United States)

    Kherani, N. P.; Liu, B.; Virk, K.; Kosteski, T.; Gaspari, F.; Shmayda, W. T.; Zukotynski, S.; Chen, K. P.

    2008-01-01

    Results for the effusion and outgassing of tritium from tritiated hydrogenated amorphous silicon (a-Si:H:T) films are presented. The samples were grown by dc-saddle field glow discharge at various substrate temperatures between 150 and 300°C. The tracer property of radioactive tritium is used to detect tritium release. Tritium effusion measurements are performed in a nonvacuum ion chamber and are found to yield similar results as reported for standard high vacuum technique. The results suggest for decreasing substrate temperature the growth of material with an increasing concentration of voids. These data are corroborated by analysis of infrared absorption data in terms of microstructure parameters. For material of low substrate temperature (and high void concentration) tritium outgassing in air at room temperature was studied, and it was found that after 600h about 0.2% of the total hydrogen (hydrogen+tritium) content is released. Two rate limiting processes are identified. The first process, fast tritium outgassing with a time constant of 15h, seems to be related to surface desorption of tritiated water (HTO) with a free energy of desorption of 1.04eV. The second process, slow tritium outgassing with a time constant of 200-300h, appears to be limited by oxygen diffusivity in a growing oxide layer. This material of lowest H stability would lose half of the hydrogen after 60years.

  6. Natively textured ZnO grown by PECVD as front electrode material for amorphous silicon pin solar cells

    NARCIS (Netherlands)

    Löffler, J.; Schropp, R.E.I.; Groenen, Ft.; Van De Sanden, M.C.M.; Linden, J.L.

    2000-01-01

    Natively textured ZnO layers for the application as front electrode material in amorphous silicon pin solar cells have been deposited by Expanding Thermal Plasma Chemical Vapor Deposition. Films deposited in the temperature regime from 150 to 350°C at a rate between 0.65 and 0.75 nm/s have been char

  7. Stable, high-efficiency amorphous silicon solar cells with low hydrogen content

    Energy Technology Data Exchange (ETDEWEB)

    Fortmann, C.M.; Hegedus, S.S. (Institute of Energy Conversion, Newark, DE (United States))

    1992-12-01

    Results and conclusions obtained during a research program of the investigation of amorphous silicon and amorphous silicon based alloy materials and solar cells fabricated by photo-chemical vapor and glow discharge depositions are reported. Investigation of the effects of the hydrogen content in a-si:H i-layers in amorphous silicon solar cells show that cells with lowered hydrogen content i-layers are more stable. A classical thermodynamic formulation of the Staebler-Wronski effect has been developed for standard solar cell operating temperatures and illuminations. Methods have been developed to extract a lumped equivalent circuit from the current voltage characteristic of a single junction solar cell in order to predict its behavior in a multijunction device.

  8. Optoelectronic properties of hot-wire silicon layers deposited at 100 °C

    NARCIS (Netherlands)

    Brinza, M.; van der Werf, C.H.M.; Rath, J.K.; Schropp, R.E.I.

    2008-01-01

    Hot-wire chemical vapor deposition is employed for the deposition of amorphous and microcrystalline silicon layers at substrate temperature kept below 100 °C with the aid of active cooling of the substrate holder. The hydrogen dilution is varied in order to investigate films at the amorphous-to-micr

  9. Hydrogenated amorphous silicon thin film anode for proton conducting batteries

    Science.gov (United States)

    Meng, Tiejun; Young, Kwo; Beglau, David; Yan, Shuli; Zeng, Peng; Cheng, Mark Ming-Cheng

    2016-01-01

    Hydrogenated amorphous Si (a-Si:H) thin films deposited by chemical vapor deposition were used as anode in a non-conventional nickel metal hydride battery using a proton-conducting ionic liquid based non-aqueous electrolyte instead of alkaline solution for the first time, which showed a high specific discharge capacity of 1418 mAh g-1 for the 38th cycle and retained 707 mAh g-1 after 500 cycles. A maximum discharge capacity of 3635 mAh g-1 was obtained at a lower discharge rate, 510 mA g-1. This electrochemical discharge capacity is equivalent to about 3.8 hydrogen atoms stored in each silicon atom. Cyclic voltammogram showed an improved stability 300 mV below the hydrogen evolution potential. Both Raman spectroscopy and Fourier transform infrared spectroscopy studies showed no difference to the pre-existing covalent Si-H bond after electrochemical cycling and charging, indicating a non-covalent nature of the Si-H bonding contributing to the reversible hydrogen storage of the current material. Another a-Si:H thin film was prepared by an rf-sputtering deposition followed by an ex-situ hydrogenation, which showed a discharge capacity of 2377 mAh g-1.

  10. Annealing and deposition effects of the chemical composition of silicon rich nitride

    DEFF Research Database (Denmark)

    Andersen, Karin Nordström; Svendsen, Winnie Edith; Stimpel-Lindner, T.;

    2005-01-01

    Silicon-rich nitride, deposited by LPCVD, is a low stress amorphous material with a high refractive index. After deposition the silicon-rich nitride thin film is annealed at temperatures above 1100 oC to break N-H bonds, which have absorption peaks in the wavelength band important for optical tel...

  11. Low Cost Amorphous Silicon Intrinsic Layer for Thin-Film Tandem Solar Cells

    Directory of Open Access Journals (Sweden)

    Ching-In Wu

    2013-01-01

    Full Text Available The authors propose a methodology to improve both the deposition rate and SiH4 consumption during the deposition of the amorphous silicon intrinsic layer of the a-Si/μc-Si tandem solar cells prepared on Gen 5 glass substrate. It was found that the most important issue is to find out the saturation point of deposition rate which guarantees saturated utilization of the sourcing gas. It was also found that amorphous silicon intrinsic layers with the same k value will result in the same degradation of the fabricated modules. Furthermore, it was found that we could significantly reduce the production cost of the a-Si/μc-Si tandem solar cells prepared on Gen 5 glass substrate by fine-tuning the process parameters.

  12. An alternative system for mycotoxin detection based on amorphous silicon sensors

    Science.gov (United States)

    Caputo, D.; de Cesare, G.; De Rossi, P.; Fanelli, C.; Nascetti, A.; Ricelli, A.; Scipinotti, R.

    2007-05-01

    In this work we investigate, for the first time, the performances of a system based on hydrogenated amorphous silicon photosensors for the detection of Ochratoxin A. The sensor is a n-type/intrinsic/p-type amorphous silicon stacked structure deposited on a glass substrate. The mycotoxin is deposited on a thin layer chromatographic plate and aligned with the sensor. An ultraviolet radiation excites the ochratoxin A, whose fluorescence produces a photocurrent in the sensor. The photocurrent value is proportional to the deposited mycotoxin quantity. An excellent linearity of the detector response over more than two orders of magnitude of ochratoxin A amount is observed. The minimum detected mycotoxin quantity is equal to 0.1ng, suggesting that the presented detection system could be a good candidate to perform rapid and analytical ochratoxin A analysis in different kind of samples.

  13. A fast method to diagnose phase transition from amorphous to microcrystalline silicon

    Institute of Scientific and Technical Information of China (English)

    HOU; GuoFu

    2007-01-01

    A series of hydrogenated silicon thin films were prepared by the radio frequency plasma enhanced chemical vapor deposition method (RF-PECVD) with various silane concentrations. The influence of silane concentration on structural and electrical characteristics of these films was investigated to study the phase transition region from amorphous to microcrystalline phase. At the same time, optical emission spectra (OES) from the plasma during the deposition process were monitored to get information about the plasma properties, Raman spectra were measured to study the structural characteristics of the deposited films. The combinatorial analysis of OES and Raman spectra results demonstrated that the OES can be used as a fast method to diagnose phase transition from amorphous to microcrystalline silicon. At last the physical mechanism, why both OES and Raman can be used to diagnose the phase transition, was analyzed theoretically.……

  14. Silicon nitride at high growth rate using hot wire chemical vapor deposition

    NARCIS (Netherlands)

    Verlaan, V.

    2008-01-01

    Amorphous silicon nitride (SiNx) is a widely studied alloy with many commercial applications. This thesis describes the application of SiNx deposited at high deposition rate using hot wire chemical vapor deposition (HWCVD) for solar cells and thin film transistors (TFTs). The deposition process of H

  15. Silicon nitride at high growth rate using hot wire chemical vapor deposition

    NARCIS (Netherlands)

    Verlaan, V.

    2008-01-01

    Amorphous silicon nitride (SiNx) is a widely studied alloy with many commercial applications. This thesis describes the application of SiNx deposited at high deposition rate using hot wire chemical vapor deposition (HWCVD) for solar cells and thin film transistors (TFTs). The deposition process of H

  16. Nanostructured silicon carbon thin films grown by plasma enhanced chemical vapour deposition technique

    Energy Technology Data Exchange (ETDEWEB)

    Coscia, U. [Dipartimento di Fisica, Università di Napoli “Federico II” Complesso Universitario MSA, via Cinthia, 80126 Napoli (Italy); CNISM Unita' di Napoli, Complesso Universitario MSA, via Cinthia, 80126 Napoli (Italy); Ambrosone, G., E-mail: ambrosone@na.infn.it [Dipartimento di Fisica, Università di Napoli “Federico II” Complesso Universitario MSA, via Cinthia, 80126 Napoli (Italy); SPIN-CNR, Complesso Universitario MSA, via Cinthia, 80126 Napoli (Italy); Basa, D.K. [Department of Physics, Utkal University, Bhubaneswar 751004 (India); Rigato, V. [INFN Laboratori Nazionali Legnaro, 35020 Legnaro (Padova) (Italy); Ferrero, S.; Virga, A. [Dipartimento di Scienza Applicata e Tecnologia, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Torino (Italy)

    2013-09-30

    Nanostructured silicon carbon thin films, composed of Si nanocrystallites embedded in hydrogenated amorphous silicon carbon matrix, have been prepared by varying rf power in ultra high vacuum plasma enhanced chemical vapour deposition system using silane and methane gas mixtures diluted in hydrogen. In this paper we have studied the compositional, structural and electrical properties of these films as a function of rf power. It is shown that with increasing rf power the atomic densities of carbon and hydrogen increase while the atomic density of silicon decreases, resulting in a reduction in the mass density. Further, it is demonstrated that carbon is incorporated into amorphous matrix and it is mainly bonded to silicon. The study has also revealed that the crystalline volume fraction decreases with increase in rf power and that the films deposited with low rf power have a size distribution of large and small crystallites while the films deposited with relatively high power have only small crystallites. Finally, the enhanced transport properties of the nanostructured silicon carbon films, as compared to amorphous counterpart, have been attributed to the presence of Si nanocrystallites. - Highlights: • The mass density of silicon carbon films decreases from 2.3 to 2 g/cm{sup 3}. • Carbon is incorporated in the amorphous phase and it is mainly bonded to silicon. • Nanostructured silicon carbon films are deposited at rf power > 40 W. • Si nanocrystallites in amorphous silicon carbon enhance the electrical properties.

  17. Threshold irradiation dose for amorphization of silicon carbide

    Energy Technology Data Exchange (ETDEWEB)

    Snead, L.L.; Zinkle, S.J. [Oak Ridge National Lab., TN (United States)

    1997-04-01

    The amorphization of silicon carbide due to ion and electron irradiation is reviewed with emphasis on the temperature-dependent critical dose for amorphization. The effect of ion mass and energy on the threshold dose for amorphization is summarized, showing only a weak dependence near room temperature. Results are presented for 0.56 MeV silicon ions implanted into single crystal 6H-SiC as a function of temperature and ion dose. From this, the critical dose for amorphization is found as a function of temperature at depths well separated from the implanted ion region. Results are compared with published data generated using electrons and xenon ions as the irradiating species. High resolution TEM analysis is presented for the Si ion series showing the evolution of elongated amorphous islands oriented such that their major axis is parallel to the free surface. This suggests that surface of strain effects may be influencing the apparent amorphization threshold. Finally, a model for the temperature threshold for amorphization is described using the Si ion irradiation flux and the fitted interstitial migration energy which was found to be {approximately}0.56 eV. This model successfully explains the difference in the temperature-dependent amorphization behavior of SiC irradiated with 0.56 MeV silicon ions at 1 x 10{sup {minus}3} dpa/s and with fission neutrons irradiated at 1 x 10{sup {minus}6} dpa/s irradiated to 15 dpa in the temperature range of {approximately}340 {+-} 10K.

  18. Ab initio modelling of boron related defects in amorphous silicon

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Tiago A.; Torres, Vitor J.B. [Department of Physics, University of Aveiro, Campus Santiago, 3810-193 Aveiro (Portugal)

    2012-10-15

    We have modeled boron related point defects in amorphous silicon, using an ab initio method, the Density functional theory-pseudopotential code Aimpro. The boron atoms were embedded in 64 atom amorphous silicon cubic supercells. The calculations were performed using boron defects in 15 different supercells. These supercells were developed using a modified Wooten-Winer-Weaire bond switching mechanism. In average, the properties of the 15 supercells agree with the observed radial and bond angle distributions, as well the electronic and vibrational density of states and Raman spectra. In amorphous silicon it has been very hard to find real self-interstitials, since for almost all the tested configurations, the amorphous lattice relaxes overall. We found that substitutional boron prefers to be 4-fold coordinated. We find also an intrinsic hole-trap in the non-doped amorphous lattice, which may explain the low efficiency of boron doping. The local vibrational modes are, in average, higher than the correspondent crystalline values (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  19. Comprehensive modeling of ion-implant amorphization in silicon

    Energy Technology Data Exchange (ETDEWEB)

    Mok, K.R.C. [Departamento de E. y Electronica, Universidad de Valladolid, ETSIT Campus Miguel Delibes, 47011 Valladolid (Spain) and Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117576 (Singapore)]. E-mail: g0202446@nus.edu.sg; Jaraiz, M. [Departamento de E. y Electronica, Universidad de Valladolid, ETSIT Campus Miguel Delibes, 47011 Valladolid (Spain); Martin-Bragado, I. [Departamento de E. y Electronica, Universidad de Valladolid, ETSIT Campus Miguel Delibes, 47011 Valladolid (Spain); Synopsys, Karl-Hammerschmidt Strasse 34, D-85609 Aschheim/Dornach (Germany); Rubio, J.E. [Departamento de E. y Electronica, Universidad de Valladolid, ETSIT Campus Miguel Delibes, 47011 Valladolid (Spain); Castrillo, P. [Departamento de E. y Electronica, Universidad de Valladolid, ETSIT Campus Miguel Delibes, 47011 Valladolid (Spain); Pinacho, R. [Departamento de E. y Electronica, Universidad de Valladolid, ETSIT Campus Miguel Delibes, 47011 Valladolid (Spain); Srinivasan, M.P. [Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117576 (Singapore); Benistant, F. [Chartered Semiconductor Manufacturing. 60 Woodlands Industrial Park D, Street 2, Singapore 738406 (Singapore)

    2005-12-05

    A physically based model has been developed to simulate the ion-implant induced damage accumulation up to amorphization in silicon. Based on damage structures known as amorphous pockets (AP), which are three-dimensional, irregularly shaped agglomerates of interstitials (I) and vacancies (V) surrounded by crystalline silicon, the model is able to reproduce a wide range of experimental observations of damage accumulation and amorphization with interdependent implantation parameters. Instead of recrystallizing the I's and V's instantaneously, the recrystallization rate of an AP containing nI and mV is a function of its effective size, defined as min(n, m), irrespective of its internal spatial configuration. The parameters used in the model were calibrated using the experimental silicon amorphous-crystalline transition temperature as a function of dose rate for C, Si, and Ge. The model is able to show the superlinear damage build-up with dose, the extent of amorphous layer and the superadditivity effect of polyatomic ions.

  20. Amorphous Silicon-Germanium Films with Embedded Nanocrystals for Thermal Detectors with Very High Sensitivity

    Directory of Open Access Journals (Sweden)

    Cesar Calleja

    2016-01-01

    Full Text Available We have optimized the deposition conditions of amorphous silicon-germanium films with embedded nanocrystals in a plasma enhanced chemical vapor deposition (PECVD reactor, working at a standard frequency of 13.56 MHz. The objective was to produce films with very large Temperature Coefficient of Resistance (TCR, which is a signature of the sensitivity in thermal detectors (microbolometers. Morphological, electrical, and optical characterization were performed in the films, and we found optimal conditions for obtaining films with very high values of thermal coefficient of resistance (TCR = 7.9% K−1. Our results show that amorphous silicon-germanium films with embedded nanocrystals can be used as thermosensitive films in high performance infrared focal plane arrays (IRFPAs used in commercial thermal cameras.

  1. Solution growth of microcrystalline silicon on amorphous substrates

    Energy Technology Data Exchange (ETDEWEB)

    Heimburger, Robert

    2010-07-05

    This work deals with low-temperature solution growth of micro-crystalline silicon on glass. The task is motivated by the application in low-cost solar cells. As glass is an amorphous material, conventional epitaxy is not applicable. Therefore, growth is conducted in a two-step process. The first step aims at the spatial arrangement of silicon seed crystals on conductive coated glass substrates, which is realized by means of vapor-liquid-solid processing using indium as the solvent. Seed crystals are afterwards enlarged by applying a specially developed steady-state solution growth apparatus. This laboratory prototype mainly consists of a vertical stack of a silicon feeding source and the solvent (indium). The growth substrate can be dipped into the solution from the top. The system can be heated to a temperature below the softening point of the utilized glass substrate. A temperature gradient between feeding source and growth substrate promotes both, supersaturation and material transport by solvent convection. This setup offers advantages over conventional liquid phase epitaxy at low temperatures in terms of achievable layer thickness and required growth times. The need for convective solute transport to gain the desired thickness of at least 50 {mu}m is emphasized by equilibrium calculations in the binary system indium-silicon. Material transport and supersaturation conditions inside the utilized solution growth crucible are analyzed. It results that the solute can be transported from the lower feeding source to the growth substrate by applying an appropriate heating regime. These findings are interpreted by means of a hydrodynamic analysis of fluid flow and supporting FEM simulation. To ensure thermodynamic stability of all materials involved during steady-state solution growth, the ternary phase equilibrium between molybdenum, indium and silicon at 600 C was considered. Based on the obtained results, the use of molybdenum disilicide as conductive coating

  2. Supercontinuum generation in hydrogenated amorphous silicon waveguides at telecommunication wavelengths.

    Science.gov (United States)

    Safioui, Jassem; Leo, François; Kuyken, Bart; Gorza, Simon-Pierre; Selvaraja, Shankar Kumar; Baets, Roel; Emplit, Philippe; Roelkens, Gunther; Massar, Serge

    2014-02-10

    We report supercontinuum (SC) generation centered on the telecommunication C-band (1550 nm) in CMOS compatible hydrogenated amorphous silicon waveguides. A broadening of more than 550 nm is obtained in 1cm long waveguides of different widths using as pump picosecond pulses with on chip peak power as low as 4 W.

  3. First-principles study of hydrogenated amorphous silicon

    NARCIS (Netherlands)

    Jarolimek, K.; Groot, R.A. de; Wijs, G.A. de; Zeman, M.

    2009-01-01

    We use a molecular-dynamics simulation within density-functional theory to prepare realistic structures of hydrogenated amorphous silicon. The procedure consists of heating a crystalline structure of Si64H8 to 2370 K, creating a liquid and subsequently cooling it down to room temperature. The effect

  4. Atomistic models of hydrogenated amorphous silicon nitride from first principles

    NARCIS (Netherlands)

    Jarolimek, K.; Groot, R.A. de; Wijs, G.A. de; Zeman, M.

    2010-01-01

    We present a theoretical study of hydrogenated amorphous silicon nitride (a-SiNx:H), with equal concentrations of Si and N atoms (x=1), for two considerably different densities (2.0 and 3.0 g/cm3). Densities and hydrogen concentration were chosen according to experimental data. Using

  5. Performance of amorphous silicon photovoltaic systems, 1985--1989

    Energy Technology Data Exchange (ETDEWEB)

    1990-04-01

    This report discusses the performance of commercial amorphous silicon modules used in photovoltaic power systems from 1985 through 1989. Topics discussed include initial degradation, reliability, durability, and effects of temperature and solar irradiance on peak power and energy production. 6 refs., 18 figs.

  6. Nanoscale Transformations in Metastable, Amorphous, Silicon-Rich Silica.

    Science.gov (United States)

    Mehonic, Adnan; Buckwell, Mark; Montesi, Luca; Munde, Manveer Singh; Gao, David; Hudziak, Stephen; Chater, Richard J; Fearn, Sarah; McPhail, David; Bosman, Michel; Shluger, Alexander L; Kenyon, Anthony J

    2016-09-01

    Electrically biasing thin films of amorphous, substoichiometric silicon oxide drives surprisingly large structural changes, apparent as density variations, oxygen movement, and ultimately, emission of superoxide ions. Results from this fundamental study are directly relevant to materials that are increasingly used in a range of technologies, and demonstrate a surprising level of field-driven local reordering of a random oxide network.

  7. First-principles study of hydrogenated amorphous silicon

    NARCIS (Netherlands)

    Jarolimek, K.; Groot, R.A. de; Wijs, G.A. de; Zeman, M.

    2009-01-01

    We use a molecular-dynamics simulation within density-functional theory to prepare realistic structures of hydrogenated amorphous silicon. The procedure consists of heating a crystalline structure of Si64H8 to 2370 K, creating a liquid and subsequently cooling it down to room temperature. The effect

  8. Electron energy-loss spectroscopy study of hydrogenated amorphous silicon

    Energy Technology Data Exchange (ETDEWEB)

    Burnham, N.A.; Fisher, R.F.; Asher, S.E.; Kazmerski, L.L.

    1987-07-01

    Electron energy-loss spectroscopy is used to study hydrogenated amorphous silicon (a-Si:H). Core-level and plasma excitations were examined as a function of hydrogen content. This technique and its interpretation reveals a consistent picture of the electron excitations within this important material. The a-Si:H thin films were fabricated by rf sputtering. Their hydrogen concentrations ranged from 0% to 15%. Hydrogen content was determined by infrared spectroscopy and secondary ion mass spectroscopy. X-ray photoelectron spectroscopy and inspection of the silicon Auger-KLL peak confirmed the silicon core levels.

  9. High Efficiency and High Rate Deposited Amorphous Silicon-Based Solar Cells: Final Technical Report, 1 September 2001--6 March 2005

    Energy Technology Data Exchange (ETDEWEB)

    Deng, X.

    2006-01-01

    The objectives for the University of Toledo are to: (1) establish a transferable knowledge and technology base for fabricating high-efficiency triple-junction a-Si-based solar cells, and (2) develop high-rate deposition techniques for the growing a-Si-based and related alloys, including poly-Si, c-Si, a-SiGe, and a-Si films and photovoltaic devices with these materials.

  10. Carrier transport in amorphous silicon utilizing picosecond photoconductivity

    Science.gov (United States)

    Johnson, A. M.

    1981-08-01

    The development of a high-speed electronic measurement capability permitted the direct observation of the transient photoresponse of amorphous silicon (a-Si) with a time resolution of approximately 10ps. This technique was used to measure the initial mobility of photogenerated (2.1eV) free carriers in three types of a-Si having widely different densities of structural defects (i.e., as prepared by: (1) RF glow discharge (a-Si:H); (2) chemical vapor deposition; and (3) evaporation in ultra-high vacuum). In all three types of a-Si, the same initial mobility of approximately 1 cu cm/Vs at room temperature was found. This result tends to confirm the often-made suggestion that the free carrier mobility is determined by the influence of shallow states associated with the disorder in the random atomic network, and is an intrinsic property of a-Si which is unaffected by the method of preparation. The rate of decay of the photocurrent correlates with the density of structural defects and varies from 4ps to 200ps for the three types of a-Si investigated. The initial mobility of a-Si:H was found to be thermally activated. The possible application of extended state transport controlled by multiple trapping and small polaron formation is discussed.

  11. Amorphous silicon rich silicon nitride optical waveguides for high density integrated optics

    DEFF Research Database (Denmark)

    Philipp, Hugh T.; Andersen, Karin Nordström; Svendsen, Winnie Edith

    2004-01-01

    Amorphous silicon rich silicon nitride optical waveguides clad in silica are presented as a high-index contrast platform for high density integrated optics. Performance of different cross-sectional geometries have been measured and are presented with regards to bending loss and insertion loss...

  12. Amorphous silicon rich silicon nitride optical waveguides for high density integrated optics

    DEFF Research Database (Denmark)

    Philipp, Hugh T.; Andersen, Karin Nordström; Svendsen, Winnie Edith

    2004-01-01

    Amorphous silicon rich silicon nitride optical waveguides clad in silica are presented as a high-index contrast platform for high density integrated optics. Performance of different cross-sectional geometries have been measured and are presented with regards to bending loss and insertion loss....... A sample double ring add-drop filter is presented....

  13. High quality crystalline silicon surface passivation by combined intrinsic and n-type hydrogenated amorphous silicon

    NARCIS (Netherlands)

    Schuttauf, J.A.; van der Werf, C.H.M.; Kielen, I.M.; van Sark, W.G.J.H.M.; Rath, J.K.

    2011-01-01

    We investigate the influence of thermal annealing on the passivation quality of crystalline silicon (c-Si) surfaces by intrinsic and n-type hydrogenated amorphous silicon (a-Si:H) films. For temperatures up to 255 C, we find an increase in surface passivation quality, corresponding to a decreased da

  14. Picosecond all-optical switching in hydrogenated amorphous silicon microring resonators

    CERN Document Server

    Pelc, Jason S; Vo, Sonny; Santori, Charles; Fattal, David A; Beausoleil, Raymond G

    2014-01-01

    We utilize cross-phase modulation to observe all-optical switching in microring resonators fabricated with hydrogenated amorphous silicon (a-Si:H). Using 2.7-ps pulses from a mode-locked fiber laser in the telecom C-band, we observe optical switching of a cw telecom-band probe with full-width at half-maximum switching times of 14.8 ps, using approximately 720 fJ of energy deposited in the microring. In comparison with telecom-band optical switching in crystalline silicon microrings, a-Si:H exhibits substantially higher switching speeds due to reduced impact of free-carrier processes.

  15. Multi-band silicon quantum dots embedded in an amorphous matrix of silicon carbide

    Science.gov (United States)

    Chang, Geng-rong; Ma, Fei; Ma, Da-yan; Xu, Ke-wei

    2010-11-01

    Silicon quantum dots embedded in an amorphous matrix of silicon carbide were realized by a magnetron co-sputtering process and post-annealing. X-ray photoelectron spectroscopy, glancing x-ray diffraction, Raman spectroscopy and high-resolution transmission electron microscopy were used to characterize the chemical composition and the microstructural properties. The results show that the sizes and size distribution of silicon quantum dots can be tuned by changing the annealing atmosphere and the atom ratio of silicon and carbon in the matrix. A physicochemical mechanism is proposed to demonstrate this formation process. Photoluminescence measurements indicate a multi-band configuration due to the quantum confinement effect of silicon quantum dots with different sizes. The PL spectra are further widened as a result of the existence of amorphous silicon quantum dots. This multi-band configuration would be extremely advantageous in improving the photoelectric conversion efficiency of photovoltaic solar cells.

  16. Bandgap and Carrier Transport Engineering of Quantum Confined Mixed Phase Nanocrystalline/Amorphous Silicon

    Energy Technology Data Exchange (ETDEWEB)

    Guan, Tianyuan; Klafehn, Grant; Kendrick, Chito; Theingi, San; Airuoyo, Idemudia; Lusk, Mark T.; Stradins, Paul; Taylor, Craig; Collins, Reuben T.

    2016-11-21

    Mixed phase nanocrystalline/amorphous-silicon (nc/a-Si:H) thin films with band-gap higher than bulk silicon are prepared by depositing silicon nanoparticles (SiNPs), prepared in a separate deposition zone, and hydrogenated amorphous silicon (a-Si:H), simultaneously. Since the two deposition phases are well decoupled, optimized parameters for each component can apply to the growth process. Photoluminescence spectroscopy (PL) shows that the embedded SiNPs are small enough to exhibit quantum confinement effects. The low temperature PL measurements on the mixed phase reveal a dominant emission feature, which is associated with SiNPs surrounded by a-Si:H. In addition, we compare time dependent low temperature PL measurements for both a-Si:H and mixed phase material under intensive laser exposure for various times up to two hours. The PL intensity of a-Si:H with embedded SiNPs degrades much less than that of pure a-Si:H. We propose this improvement of photostability occurs because carriers generated in the a-Si:H matrix quickly transfer into SiNPs and recombine there instead of recombining in a-Si:H and creating defect states (Staebler-Wronski Effect).

  17. Properties of electrodeposited amorphous Fe-Ni-W alloy deposits

    Institute of Scientific and Technical Information of China (English)

    HE Feng-jiao; WANG Miao; LU Xin

    2006-01-01

    A new technique of electroplating amorphous Fe-Ni-W alloy deposits was proposed. The structure and morphology of Fe-Ni-W alloy deposit were detected by XRD and SEM. The friction and wear behavior of Fe-Ni-W alloy deposit were studied and compared with that of chromium deposit. The corrosion properties against 5% sodium chloride, 5% sulfuric acid and 5% sodium hydroxide were also discussed. The experimental results indicate that Fe-Ni-W alloy deposits have superior properties against wear than hard chromium deposits under dry sliding condition. Under oil sliding condition, except their better wear resistance, the deposits can protect their counterparts against wear. The deposits plated on brass and AISI 1045 steel show good behavior against corrosion of 5% sodium chloride, 5% sulfuric acid and 5% sodium hydroxide. The bath of electroplating amorphous Fe-Ni-W alloy deposits is environmentally friendly and would find widely use in industry.

  18. Pyrolytic transformation from polydihydrosilane to hydrogenated amorphous silicon film

    Energy Technology Data Exchange (ETDEWEB)

    Masuda, Takashi, E-mail: mtakashi@jaist.ac.jp [Japan Science and Technology Agency, ERATO, Shimoda Nano-Liquid Process Project, 2-13 Asahidai, Nomi, Ishikawa, 923-1211 (Japan); Matsuki, Yasuo [Japan Science and Technology Agency, ERATO, Shimoda Nano-Liquid Process Project, 2-13 Asahidai, Nomi, Ishikawa, 923-1211 (Japan); Yokkaichi Research Center, JSR Corporation, 100 Kawajiri-cho, Yokkaichi, Mie, 510-8552 (Japan); Shimoda, Tatsuya [Japan Science and Technology Agency, ERATO, Shimoda Nano-Liquid Process Project, 2-13 Asahidai, Nomi, Ishikawa, 923-1211 (Japan); School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa, 923-1292 (Japan)

    2012-08-31

    The fabrication of thin film silicon devices based on solution processes rather than on conventional vacuum processes is of substantial interest since cost reductions may result. Using a solution process, we coated substrates with polydihydrosilane solution and studied the pyrolytic transformation of the material into hydrogenated amorphous silicon (a-Si:H). From thermal gravimetry and differential thermal analysis data a significant reduction in weight of the material and a construction of Si-Si bonds are concluded for the pyrolysis temperature T{sub p} = 270 to 360 Degree-Sign C. The appearance of amorphous silicon phonon bands in Raman spectra for films prepared at T{sub p} {>=} 330 Degree-Sign C suggests the construction of a three-dimensional amorphous silicon network. Films prepared at T{sub p} {>=} 360 Degree-Sign C exhibit a hydrogen content near 10 at.% and an optical gap near 1.6 eV similar to device-grade vacuum processed a-Si:H. However, the infrared microstructure factor, the spin density, and the photosensitivity require significant improvements. - Highlights: Black-Right-Pointing-Pointer We fabricate hydrogenated amorphous silicon (a-Si:H) films by a solution process. Black-Right-Pointing-Pointer The a-Si:H films are prepared by pyrolytic transformation in polysilane solution. Black-Right-Pointing-Pointer We investigate basic properties in relation to the pyrolysis temperature. Black-Right-Pointing-Pointer Raman spectra, hydrogen content, and optical gap are similar to device-grade a-Si:H. Black-Right-Pointing-Pointer Microstructure factor, spin density, and photoconductivity show poor quality.

  19. Deposited low temperature silicon GHz modulator

    CERN Document Server

    Lee, Yoon Ho Daniel; Lipson, Michal

    2013-01-01

    The majority of silicon photonics is built on silicon-on-insulator (SOI) wafers while the majority of electronics, including CPUs and memory, are built on bulk silicon wafers, limiting broader acceptance of silicon photonics. This discrepancy is a result of silicon photonics's requirement for a single-crystalline silicon (c-Si) layer and a thick undercladding for optical guiding that bulk silicon wafers to not provide. While the undercladding problem can be partially addressed by substrate removal techniques, the complexity of co-integrating photonics with state-of-the-art transistors and real estate competition between electronics and photonics remain problematic. We show here a platform for deposited GHz silicon photonics based on polycrystalline silicon with high optical quality suitable for high performance electro-optic devices. We demonstrate 3 Gbps polysilicon electro-optic modulator fabricated on a deposited polysilicon layer fully compatible with CMOS backend integration. These results open up an arr...

  20. In situ probing of surface hydrides on hydrogenated amorphous silicon using attenuated total reflection infrared spectroscopy

    CERN Document Server

    Kessels, W M M; Sanden, M C M; Aydil, E S

    2002-01-01

    An in situ method based on attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) is presented for detecting surface silicon hydrides on plasma deposited hydrogenated amorphous silicon (a-Si:H) films and for determining their surface concentrations. Surface silicon hydrides are desorbed by exposing the a-Si:H films to low energy ions from a low density Ar plasma and by comparing the infrared spectrum before and after this low energy ion bombardment, the absorptions by surface hydrides can sensitively be separated from absorptions by bulk hydrides incorporated into the film. An experimental comparison with other methods that utilize isotope exchange of the surface hydrogen with deuterium showed good agreement and the advantages and disadvantages of the different methods are discussed. Furthermore, the determination of the composition of the surface hydrogen bondings on the basis of the literature data on hydrogenated crystalline silicon surfaces is presented, and quantification of the h...

  1. The role of hydrogenated amorphous silicon oxide buffer layer on improving the performance of hydrogenated amorphous silicon germanium single-junction solar cells

    Science.gov (United States)

    Sritharathikhun, Jaran; Inthisang, Sorapong; Krajangsang, Taweewat; Krudtad, Patipan; Jaroensathainchok, Suttinan; Hongsingtong, Aswin; Limmanee, Amornrat; Sriprapha, Kobsak

    2016-12-01

    Hydrogenated amorphous silicon oxide (a-Si1-xOx:H) film was used as a buffer layer at the p-layer (μc-Si1-xOx:H)/i-layer (a-Si1-xGex:H) interface for a narrow band gap hydrogenated amorphous silicon germanium (a-Si1-xGex:H) single-junction solar cell. The a-Si1-xOx:H film was deposited by plasma enhanced chemical vapor deposition (PECVD) at 40 MHz in a same processing chamber as depositing the p-type layer. An optimization of the thickness of the a-Si1-xOx:H buffer layer and the CO2/SiH4 ratio was performed in the fabrication of the a-Si1-xGex:H single junction solar cells. By using the wide band gap a-Si1-xOx:H buffer layer with optimum thickness and CO2/SiH4 ratio, the solar cells showed an improvement in the open-circuit voltage (Voc), fill factor (FF), and short circuit current density (Jsc), compared with the solar cells fabricated using the conventional a-Si:H buffer layer. The experimental results indicated the excellent potential of the wide-gap a-Si1-xOx:H buffer layers for narrow band gap a-Si1-xGex:H single junction solar cells.

  2. Preparation and Characterization of Amorphous Layer on Aluminum Alloy Formed by Plasma Electrolytic Deposition (PED)

    Institute of Scientific and Technical Information of China (English)

    GUAN Yong-jun; XIA Yuan

    2004-01-01

    In this investigation, protective layers were formed on aluminum substrate by Plasma Electrolytic Deposition (PED) using sodium silicate solution. The relation between the thickness of the layer and process time were studied. XRD,SEM, EDS were used to study the layer's structure, composition and micrograph. The results show that the deposited layers are amorphous and contain mainly oxygen, silicon, and aluminum. The possible formation mechanism of amorphous [Al-Si-O] layer was proposed: During discharge periods, Al2O3 phase of the passive film and SiO32-near the substrate surface are sintered into xSiO2(1-x)Al2O3 and then transformed into amorphous [Al-Si-O] phase.

  3. Development of laser-fired contacts for amorphous silicon layers obtained by Hot-Wire CVD

    Energy Technology Data Exchange (ETDEWEB)

    Munoz, D. [XaRMAE-Universitat de Barcelona, Departament de Fisica Aplicada i Optica, Diagonal 647, Barcelona 08028 (Spain)], E-mail: delfina@eel.upc.edu; Voz, C.; Blanque, S. [Universitat Politecnica de Catalunya, Grup de Recerca en Micro i Nanotecnologies, Jordi Girona 1-3, Barcelona 08034 (Spain); Ibarz, D.; Bertomeu, J. [XaRMAE-Universitat de Barcelona, Departament de Fisica Aplicada i Optica, Diagonal 647, Barcelona 08028 (Spain); Alcubilla, R. [Universitat Politecnica de Catalunya, Grup de Recerca en Micro i Nanotecnologies, Jordi Girona 1-3, Barcelona 08034 (Spain)

    2009-03-15

    In this work we study aluminium laser-fired contacts for intrinsic amorphous silicon layers deposited by Hot-Wire CVD. This structure could be used as an alternative low temperature back contact for rear passivated heterojunction solar cells. An infrared Nd:YAG laser (1064 nm) has been used to locally fire the aluminium through the thin amorphous silicon layers. Under optimized laser firing parameters, very low specific contact resistances ({rho}{sub c} {approx} 10 m{omega} cm{sup 2}) have been obtained on 2.8 {omega} cm p-type c-Si wafers. This investigation focuses on maintaining the passivation quality of the interface without an excessive increase in the series resistance of the device.

  4. Radial junction amorphous silicon solar cells on PECVD-grown silicon nanowires.

    Science.gov (United States)

    Yu, Linwei; O'Donnell, Benedict; Foldyna, Martin; Roca i Cabarrocas, Pere

    2012-05-17

    Constructing radial junction hydrogenated amorphous silicon (a-Si:H) solar cells on top of silicon nanowires (SiNWs) represents a promising approach towards high performance and cost-effective thin film photovoltaics. We here develop an all-in situ strategy to grow SiNWs, via a vapour-liquid-solid (VLS) mechanism on top of ZnO-coated glass substrate, in a plasma-enhanced chemical vapour deposition (PECVD) reactor. Controlling the distribution of indium catalyst drops allows us to tailor the as-grown SiNW arrays into suitable size and density, which in turn results in both a sufficient light trapping effect and a suitable arrangement allowing for conformal coverage of SiNWs by subsequent a-Si:H layers. We then demonstrate the fabrication of radial junction solar cells and carry on a parametric study designed to shed light on the absorption and quantum efficiency response, as functions of the intrinsic a-Si:H layer thickness and the density of SiNWs. These results lay a solid foundation for future structural optimization and performance ramp-up of the radial junction thin film a-Si:H photovoltaics.

  5. The reliability and stability of multijunction amorphous silicon PV modules

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, D.E. [Solarex, Newtown, PA (United States)

    1995-11-01

    Solarex is developing a manufacturing process for the commercial production of 8 ft{sup 2} multijunction amorphous silicon (a-Si) PV modules starting in 1996. The device structure used in these multijunction modules is: glass/textured tin oxide/p-i-n/p-i-n/ZnO/Al/EVA/Tedlar where the back junction of the tandem structure contains an amorphous silicon germanium alloy. As an interim step, 4 ft{sup 2} multijunction modules have been fabricated in a pilot production mode over the last several months. The distribution of initial conversion efficiencies for an engineering run of 67 modules (4 ft{sup 2}) is shown. Measurements recently performed at NREL indicate that the actual efficiencies are about 5% higher than those shown, and thus exhibit an average initial conversion efficiency of about 9.5%. The data indicates that the process is relatively robust since there were no modules with initial efficiencies less than 7.5%.

  6. Electrochemical degradation of amorphous-silicon photovoltaic modules

    Science.gov (United States)

    Mon, G. R.; Ross, R. G., Jr.

    Techniques of module electrochemical corrosion research, developed during reliability studies of crystalline-silicon modules (C-Si), have been applied to this new investigation into amorphous-silicon (a-Si) module reliability. Amorphous-Si cells, encapsulated in the polymers polyvinyl butyral (PVB) and ethylene vinyl acetate (EVA), were exposed for more than 1200 hours in a controlled 85 C/85 percent RH environment, with a constant 500 volts applied between the cells and an aluminum frame. Plotting power output reduction versus charge transferred reveals that about 50 percent a-Si cell failures can be expected with the passage of 0.1 to 1.0 Coulomb/cm of cell-frame edge length; this threshold is somewhat less than that determined for C-Si modules.

  7. Infrared electroabsorption spectra in amorphous silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Lyou, J.H.; Schiff, E.A.; Hegedus, S.S.; Guha, S.; Yang, J.

    1999-07-01

    The authors report measurements of the infrared spectrum detected by modulating the reverse-bias voltage across amorphous silicon pin solar cells and Schottky barrier diodes. They find a band with a peak energy of 0.8 eV. The existence of this band has not, to their knowledge, been reported previously. The strength of the infrared band depends linearly upon applied bias, as opposed to the quadratic dependence for interband electroabsorption in amorphous silicon. The band's peak energy agrees fairly well with the known optical transition energies for dangling bond defects, but the linear dependence on bias and the magnitude of the signal are surprising if interpreted using an analogy to interband electroabsorption. A model based on absorption by defects near the n/i interface of the diodes accounts well for the infrared spectrum.

  8. Enhanced performance of a structured cyclo olefin copolymer-based amorphous silicon solar cell

    Science.gov (United States)

    Zhan, Xinghua; Chen, Fei; Gao, Mengyu; Tie, Shengnian; Gao, Wei

    2017-07-01

    The submicron array was fabricated onto a cyclo olefin copolymer (COC) film by a hot embossing method. An amorphous silicon p-i-n junction and transparent conductive layers were then deposited onto it through a plasma enhanced chemical vapor deposition (PECVD) and magnetron sputtering. The efficiency of the fabricated COC-based solar cell was measured and the result demonstrated 18.6% increase of the solar cell efficiency when compared to the sample without array structure. The imprinted polymer solar cells with submicron array indeed increase their efficiency.

  9. The model of solid phase crystallization of amorphous silicon under elastic stress

    OpenAIRE

    2000-01-01

    Solid phase crystallization of an amorphous silicon (a-Si) film stressed by a Si3N4 cap was studied by laser Raman spectroscopy. The a-Si films were deposited on Si3N4 (50 nm)/Si(100) substrate by rf sputtering. The stress in an a-Si film was controlled by thickness of a Si3N4 cap layer. The Si3N4 films were also deposited by rf sputtering. It was observed that the crystallization was affected by the stress in a-Si films introduced by the Si3N4 cap layer. The study suggests that the elastic s...

  10. Optimization of transparent and reflecting electrodes for amorphous silicon solar cells. Annual technical report, April 1, 1995--March 31, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Gordon, R.G.; Sato, H.; Liang, H.; Liu, X.; Thornton, J. [Harvard Univ., Cambridge, MA (United States)

    1996-08-01

    The general objective is to develop methods to deposit materials which can be used to make more efficient solar cells. The work is organized into three general tasks: Task 1. Develop improved methods for depositing and using transparent conductors of fluorine-doped zinc oxide in amorphous silicon solar cells Task 2. Deposit and evaluate titanium oxide as a reflection-enhancing diffusion barrier between amorphous silicon and an aluminum or silver back-reflector. Task 3. Deposit and evaluate electrically conductive titanium oxide as a transparent conducting layer on which more efficient and more stable superstrate cells can be deposited. About one-third of the current project resources are allocated to each of these three objectives.

  11. Amorphous Silicon 16—bit Array Photodetector①

    Institute of Scientific and Technical Information of China (English)

    ZHANGShaoqiang; XUZhongyang; 等

    1997-01-01

    An amorphous silicon 16-bit array photodetector with the a-SiC/a-Si heterojunction diode is presented.The fabrication processes of the device were studied systematically.By the optimum of the diode structure and the preparation procedures,the diode with Id<10-12A/mm2 and photocurrentIp≥0.35A/W has been obtained at the wavelength of 632nm.

  12. Evolution of the potential-energy surface of amorphous silicon

    OpenAIRE

    Kallel, Houssem; Mousseau, Normand; Schiettekatte, François

    2010-01-01

    The link between the energy surface of bulk systems and their dynamical properties is generally difficult to establish. Using the activation-relaxation technique (ART nouveau), we follow the change in the barrier distribution of a model of amorphous silicon as a function of the degree of relaxation. We find that while the barrier-height distribution, calculated from the initial minimum, is a unique function that depends only on the level of distribution, the reverse-barrier height distributio...

  13. On the effect of the underlying ZnO:Al layer on the crystallization kinetics of hydrogenated amorphous silicon

    NARCIS (Netherlands)

    Sharma, K.; Ponomarev, M. V.; M. C. M. van de Sanden,; Creatore, M.

    2013-01-01

    In this contribution, we analyze the thickness effect of the underlying aluminum doped-zinc oxide (ZnO:Al) layers on the structural properties and crystallization kinetics of hydrogenated amorphous silicon (a-Si:H) thin films. It is shown that the disorder in as-deposited a-Si:H films, as probed by

  14. Electronic transport in mixed-phase hydrogenated amorphous/nanocrystalline silicon thin films

    Science.gov (United States)

    Wienkes, Lee Raymond

    Interest in mixed-phase silicon thin film materials, composed of an amorphous semiconductor matrix in which nanocrystalline inclusions are embedded, stems in part from potential technological applications, including photovoltaic and thin film transistor technologies. Conventional mixed-phase silicon films are produced in a single plasma reactor, where the conditions of the plasma must be precisely tuned, limiting the ability to adjust the film and nanoparticle parameters independently. The films presented in this thesis are deposited using a novel dual-plasma co-deposition approach in which the nanoparticles are produced separately in an upstream reactor and then injected into a secondary reactor where an amorphous silicon film is being grown. The degree of crystallinity and grain sizes of the films are evaluated using Raman spectroscopy and X-ray diffraction respectively. I describe detailed electronic measurements which reveal three distinct conduction mechanisms in n-type doped mixed-phase amorphous/nanocrystalline silicon thin films over a range of nanocrystallite concentrations and temperatures, covering the transition from fully amorphous to ~30% nanocrystalline. As the temperature is varied from 470 to 10 K, we observe activated conduction, multiphonon hopping (MPH) and Mott variable range hopping (VRH) as the nanocrystal content is increased. The transition from MPH to Mott-VRH hopping around 100K is ascribed to the freeze out of the phonon modes. A conduction model involving the parallel contributions of these three distinct conduction mechanisms is shown to describe both the conductivity and the reduced activation energy data to a high accuracy. Additional support is provided by measurements of thermal equilibration effects and noise spectroscopy, both done above room temperature (>300 K). This thesis provides a clear link between measurement and theory in these complex materials.

  15. Hybrid photovoltaics based on semiconductor nanocrystals and amorphous silicon.

    Science.gov (United States)

    Sun, Baoquan; Findikoglu, Alp T; Sykora, Milan; Werder, Donald J; Klimov, Victor I

    2009-03-01

    Semiconductor nanocrystals (NCs) are promising materials for applications in photovoltaic (PV) structures that could benefit from size-controlled tunability of absorption spectra, the ease of realization of various tandem architectures, and, perhaps, increased conversion efficiency in the ultraviolet region through carrier multiplication. The first practical step toward utilization of the unique properties of NCs in PV technologies could be through their integration into traditional silicon-based solar cells. Here, we demonstrate an example of such hybrid PV structures that combine colloidal NCs with amorphous silicon. In these structures, NCs and silicon are electronically coupled, and the regime of this coupling can be tuned by altering the alignment of NC energy states with regard to silicon band edges. For example, using wide-gap CdSe NCs we demonstrate a photoresponse which is exclusively due to the NCs. On the other hand, in devices comprising narrow-gap PbS NCs, both the NCs and silicon contribute to photocurrent, which results in PV response extending from the visible to the near-infrared region. The hybrid silicon/PbS NC solar cells show external quantum efficiencies of approximately 7% at infrared energies and 50% in the visible and a power conversion efficiency of up to 0.9%. This work demonstrates the feasibility of hybrid PV devices that combine advantages of mature silicon fabrication technologies with the unique electronic properties of semiconductor NCs.

  16. Optical characterization and density of states determination of silicon nanocrystals embedded in amorphous silicon based matrix

    Science.gov (United States)

    van Sebille, M.; Vasudevan, R. A.; Lancee, R. J.; van Swaaij, R. A. C. M. M.; Zeman, M.

    2015-08-01

    We present a non-destructive measurement and simple analysis method for obtaining the absorption coefficient of silicon nanocrystals (NCs) embedded in an amorphous matrix. This method enables us to pinpoint the contribution of silicon NCs to the absorption spectrum of NC containing films. The density of states (DOS) of the amorphous matrix is modelled using the standard model for amorphous silicon while the NCs are modelled using one Gaussian distribution for the occupied states and one for the unoccupied states. For laser annealed a-Si0.66O0.34:H films, our analysis shows a reduction of the NC band gap from approximately 2.34-2.08 eV indicating larger mean NC size for increasing annealing laser fluences, accompanied by a reduction in NC DOS distribution width from 0.28-0.26 eV, indicating a narrower size distribution.

  17. Effect of Ion Bombardment on the Growth and Properties of Hydrogenated Amorphous Silicon-Germanium Alloys

    Science.gov (United States)

    Perrin, Jérôme; Takeda, Yoshihiko; Hirano, Naoto; Matsuura, Hideharu; Matsuda, Akihisa

    1989-01-01

    We report a systematic investigation of the effect of ion bombardment during the growth of amorphous silicon-germanium alloy films from silane and germane rf-glow discharge. Independent control of the plasma and the ion flux and energy is obtained by using a triode configuration. The ion contribution to the total deposition rate can reach 20% on negatively biased substrates. Although the Si and Ge composition of the film does not depend on the ion flux and energy, the optical, structural and electronic properties are drastically modified at low deposition temperatures when the maximum ion energy increases up to 50 eV, and remain constant above 50 eV. For a Ge atomic concentration of 37% and a temperature of 135°C, the optical gap decreases from 1.67 to 1.45 eV. This is correlated with a modification of hydrogen bonding configurations. Silicon dihydride sites disappear and preferential attachment of hydrogen to silicon is reduced in favour of germanium. Moreover the photoconductivity increases which shows that ion bombardment is a key parameter to optimize the quality of low band gap amorphous silicon-germanium alloys.

  18. Two-phase electrochemical lithiation in amorphous silicon.

    Science.gov (United States)

    Wang, Jiang Wei; He, Yu; Fan, Feifei; Liu, Xiao Hua; Xia, Shuman; Liu, Yang; Harris, C Thomas; Li, Hong; Huang, Jian Yu; Mao, Scott X; Zhu, Ting

    2013-02-13

    Lithium-ion batteries have revolutionized portable electronics and will be a key to electrifying transport vehicles and delivering renewable electricity. Amorphous silicon (a-Si) is being intensively studied as a high-capacity anode material for next-generation lithium-ion batteries. Its lithiation has been widely thought to occur through a single-phase mechanism with gentle Li profiles, thus offering a significant potential for mitigating pulverization and capacity fade. Here, we discover a surprising two-phase process of electrochemical lithiation in a-Si by using in situ transmission electron microscopy. The lithiation occurs by the movement of a sharp phase boundary between the a-Si reactant and an amorphous Li(x)Si (a-Li(x)Si, x ~ 2.5) product. Such a striking amorphous-amorphous interface exists until the remaining a-Si is consumed. Then a second step of lithiation sets in without a visible interface, resulting in the final product of a-Li(x)Si (x ~ 3.75). We show that the two-phase lithiation can be the fundamental mechanism underpinning the anomalous morphological change of microfabricated a-Si electrodes, i.e., from a disk shape to a dome shape. Our results represent a significant step toward the understanding of the electrochemically driven reaction and degradation in amorphous materials, which is critical to the development of microstructurally stable electrodes for high-performance lithium-ion batteries.

  19. Growth model of lantern-like amorphous silicon oxide nanowires

    Science.gov (United States)

    Wu, Ping; Zou, Xingquan; Chi, Lingfei; Li, Qiang; Xiao, Tan

    2007-03-01

    Silicon oxide nanowire assemblies with lantern-like morphology were synthesized by thermal evaporation of the mixed powder of SnO2 and active carbon at 1000 °C and using the silicon wafer as substrate and source. The nano-lanterns were characterized by a scanning electron microscope (SEM), high-resolution transmission electron microscope (HRTEM), energy-dispersive spectroscope (EDS) and selective area electron diffraction (SAED). The results show that the nano-lantern has symmetrical morphology, with one end connecting with the silicon wafer and the other end being the tin ball. The diameter of the nano-lantern is about 1.5-3.0 µm. Arc silicon oxide nanowire assemblies between the two ends have diameters ranging from 70 to 150 nm. One single catalyst tin ball catalyzes more than one amorphous nanowires' growth. In addition, the growth mechanism of the nano-lantern is discussed and a growth model is proposed. The multi-nucleation sites round the Sn droplet's perimeter are responsible for the formation of many SiOx nanowires. The growing direction of the nanowires is not in the same direction of the movement of the catalyst tin ball, resulting in the bending of the nanowires and forming the lantern-like silicon oxide morphology. The controllable synthesis of the lantern-like silicon oxide nanostructure may have potential applications in the photoelectronic devices field.

  20. Growth model of lantern-like amorphous silicon oxide nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Wu Ping; Zou Xingquan; Chi Lingfei; Li Qiang; Xiao Tan [Department of Physics, Shantou University, Shantou 515063 (China)

    2007-03-28

    Silicon oxide nanowire assemblies with lantern-like morphology were synthesized by thermal evaporation of the mixed powder of SnO{sub 2} and active carbon at 1000 deg. C and using the silicon wafer as substrate and source. The nano-lanterns were characterized by a scanning electron microscope (SEM), high-resolution transmission electron microscope (HRTEM), energy-dispersive spectroscope (EDS) and selective area electron diffraction (SAED). The results show that the nano-lantern has symmetrical morphology, with one end connecting with the silicon wafer and the other end being the tin ball. The diameter of the nano-lantern is about 1.5-3.0 {mu}m. Arc silicon oxide nanowire assemblies between the two ends have diameters ranging from 70 to 150 nm. One single catalyst tin ball catalyzes more than one amorphous nanowires' growth. In addition, the growth mechanism of the nano-lantern is discussed and a growth model is proposed. The multi-nucleation sites round the Sn droplet's perimeter are responsible for the formation of many SiO{sub x} nanowires. The growing direction of the nanowires is not in the same direction of the movement of the catalyst tin ball, resulting in the bending of the nanowires and forming the lantern-like silicon oxide morphology. The controllable synthesis of the lantern-like silicon oxide nanostructure may have potential applications in the photoelectronic devices field.

  1. Photoluminescence in silicon implanted with silicon ions at amorphizing doses

    Energy Technology Data Exchange (ETDEWEB)

    Sobolev, N. A., E-mail: nick@sobolev.ioffe.rssi.ru; Kalyadin, A. E.; Kyutt, R. N.; Sakharov, V. I.; Serenkov, I. T.; Shek, E. I.; Afrosimov, V. V. [Russian Academy of Sciences, Ioffe Physical Technical Institute (Russian Federation); Tetel' baum, D. I. [Lobachevsky State University, Physicotechnical Research Institute (Russian Federation)

    2011-09-15

    Luminescent and structural properties of n-FZ-Si and n-Cz-Si implanted with Si ions at amorphizing doses and annealed at 1100 Degree-Sign C in a chlorine-containing atmosphere have been studied. An analysis of proton Rutherford backscattering spectra of implanted samples demonstrated that an amorphous layer is formed, and its position and thickness depend on the implantation dose. An X-ray diffraction analysis revealed that defects of the interstitial type are formed in the samples upon annealing. Photoluminescence spectra measured at 78 K and low excitation levels are dominated by the dislocation-related line D1, which is also observed at 300 K. The peak position of this line, its full width at half-maximum, and intensity depend on the conduction type of Si and implantation dose. As the luminescence excitation power is raised, a continuous band appears in the spectrum. A model is suggested that explains the fundamental aspects of the behavior of the photoluminescence spectra in relation to the experimental conditions.

  2. Plasma-initiated rehydrogenation of amorphous silicon to increase the temperature processing window of silicon heterojunction solar cells

    Science.gov (United States)

    Shi, Jianwei; Boccard, Mathieu; Holman, Zachary

    2016-07-01

    The dehydrogenation of intrinsic hydrogenated amorphous silicon (a-Si:H) at temperatures above approximately 300 °C degrades its ability to passivate silicon wafer surfaces. This limits the temperature of post-passivation processing steps during the fabrication of advanced silicon heterojunction or silicon-based tandem solar cells. We demonstrate that a hydrogen plasma can rehydrogenate intrinsic a-Si:H passivation layers that have been dehydrogenated by annealing. The hydrogen plasma treatment fully restores the effective carrier lifetime to several milliseconds in textured crystalline silicon wafers coated with 8-nm-thick intrinsic a-Si:H layers after annealing at temperatures of up to 450 °C. Plasma-initiated rehydrogenation also translates to complete solar cells: A silicon heterojunction solar cell subjected to annealing at 450 °C (following intrinsic a-Si:H deposition) had an open-circuit voltage of less than 600 mV, but an identical cell that received hydrogen plasma treatment reached a voltage of over 710 mV and an efficiency of over 19%.

  3. Amorphous SiC layers for electrically conductive Rugate filters in silicon based solar cells

    Science.gov (United States)

    Janz, S.; Peters, M.; Künle, M.; Gradmann, R.; Suwito, D.

    2010-05-01

    The subject of this work is the development of an electrically conductive Rugate filter for photovoltaic applications. We think that the optical as well as the electrical performance of the filter can be adapted especially to the requirements of crystalline Si thin-film and amorphous/crystalline silicon tandem solar cells. We have deposited amorphous hydrogenated Silicon Carbide layers (a-SixC1-x:H) with the precursor gases methane (CH4), silane (SiH4) and diborane (B2H6) applying Plasma Enhanced Chemical Vapour Deposition (PECVD). Through changing just the precursor flows a floating refractive index n from 1.9 to 3.5 (at 633 nm) could be achieved quite accurately. Different complex layer stacks (up to 200 layers) with a sinusoidal refractive index variation normal to the incident light were deposited in just 80 min on 100x100 mm2. Transmission measurements show good agreement between simulation and experiment which proofs our ability to control the deposition process, the good knowledge of the optical behaviour of the different SiC single layers and the advanced stage of our simulation model. The doped single layers show lateral conductivities which were extremely dependent on the Si/C ratio.

  4. Grain boundary resistance to amorphization of nanocrystalline silicon carbide

    Science.gov (United States)

    Chen, Dong; Gao, Fei; Liu, Bo

    2015-11-01

    Under the C displacement condition, we have used molecular dynamics simulation to examine the effects of grain boundaries (GBs) on the amorphization of nanocrystalline silicon carbide (nc-SiC) by point defect accumulation. The results show that the interstitials are preferentially absorbed and accumulated at GBs that provide the sinks for defect annihilation at low doses, but also driving force to initiate amorphization in the nc-SiC at higher doses. The majority of surviving defects are C interstitials, as either C-Si or C-C dumbbells. The concentration of defect clusters increases with increasing dose, and their distributions are mainly observed along the GBs. Especially these small clusters can subsequently coalesce and form amorphous domains at the GBs during the accumulation of carbon defects. A comparison between displacement amorphized nc-SiC and melt-quenched single crystal SiC shows the similar topological features. At a dose of 0.55 displacements per atom (dpa), the pair correlation function lacks long range order, demonstrating that the nc-SiC is fully amorphilized.

  5. Raman study of localized recrystallization of amorphous silicon induced by laser beam

    KAUST Repository

    Tabet, Nouar A.

    2012-06-01

    The adoption of amorphous silicon based solar cells has been drastically hindered by the low efficiency of these devices, which is mainly due to a low hole mobility. It has been shown that using both crystallized and amorphous silicon layers in solar cells leads to an enhancement of the device performance. In this study the crystallization of a-Si prepared by PECVD under various growth conditions has been investigated. The growth stresses in the films are determined by measuring the curvature change of the silicon substrate before and after film deposition. Localized crystallization is induced by exposing a-Si films to focused 532 nm laser beam of power ranging from 0.08 to 8 mW. The crystallization process is monitored by recording the Raman spectra after various exposures. The results suggest that growth stresses in the films affect the minimum laser power (threshold power). In addition, a detailed analysis of the width and position of the Raman signal indicates that the silicon grains in the crystallized regions are of few nm diameter. © 2012 IEEE.

  6. FTIR study of silicon carbide amorphization by heavy ion irradiations

    Science.gov (United States)

    Costantini, Jean-Marc; Miro, Sandrine; Pluchery, Olivier

    2017-03-01

    We have measured at room temperature (RT) the Fourier-transform infra-red (FTIR) absorption spectra of ion-irradiated thin epitaxial films of cubic silicon carbide (3C–SiC) with 1.1 µm thickness on a 500 µm thick (1 0 0) silicon wafer substrate. Irradiations were carried out at RT with 2.3 MeV 28Si+ ions and 3.0 MeV 84Kr+ ions for various fluences in order to induce amorphization of the SiC film. Ion projected ranges were adjusted to be slightly larger than the film thickness so that the whole SiC layers were homogeneously damaged. FTIR spectra of virgin and irradiated samples were recorded for various incidence angles from normal incidence to Brewster’s angle. We show that the amorphization process in ion-irradiated 3C–SiC films can be monitored non-destructively by FTIR absorption spectroscopy without any major interference of the substrate. The compared evolutions of TO and LO peaks upon ion irradiation yield valuable information on the damage process. Complementary test experiments were also performed on virgin silicon nitride (Si3N4) self-standing films for similar conditions. Asymmetrical shapes were found for TO peaks of SiC, whereas Gaussian profiles are found for LO peaks. Skewed Gaussian profiles, with a standard deviation depending on wave number, were used to fit asymmetrical peaks for both materials. A new methodology for following the amorphization process is proposed on the basis of the evolution of fitted IR absorption peak parameters with ion fluence. Results are discussed with respect to Rutherford backscattering spectrometry channeling and Raman spectroscopy analysis.

  7. Silicon and aluminum doping effects on the microstructure and properties of polymeric amorphous carbon films

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiaoqiang, E-mail: lxq_suse@sina.com [Material Corrosion and Protection Key Laboratory of Sichuan province, Sichuan University of Science and Engineering, Zigong 643000 (China); Hao, Junying, E-mail: jyhao@licp.cas.cn [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Xie, Yuntao [Material Corrosion and Protection Key Laboratory of Sichuan province, Sichuan University of Science and Engineering, Zigong 643000 (China)

    2016-08-30

    Highlights: • Evolution of nanostructure and properties of the polymeric amorphous carbon films were firstly studied. • Si doping enhanced polymerization of the hydrocarbon chains and Al doping resulted in increase in the ordered carbon clusters of polymeric amorphous carbon films. • Soft polymeric amorphous carbon films exhibited an unconventional frictional behaviors with a superior wear resistance. • The mechanical and vacuum tribological properties of the polymeric amorphous carbon films were significantly improved by Si and Al co-doping. - Abstract: Polymeric amorphous carbon films were prepared by radio frequency (R.F. 13.56 MHz) magnetron sputtering deposition. The microstructure evolution of the deposited polymeric films induced by silicon (Si) and aluminum(Al) doping were scrutinized through infrared spectroscopy, multi-wavelength Raman spectroscopy, scanning electron microscopy (SEM) and high resolution transmission electron microscopy (HRTEM). The comparative results show that Si doping can enhance polymerization and Al doping results in an increase in the ordered carbon clusters. Si and Al co-doping into polymeric films leads to the formation of an unusual dual nanostructure consisting of cross-linked polymer-like hydrocarbon chains and fullerene-like carbon clusters. The super-high elasticity and super-low friction coefficients (<0.002) under a high vacuum were obtained through Si and Al co-doping into the films. Unconventionally, the co-doped polymeric films exhibited a superior wear resistance even though they were very soft. The relationship between the microstructure and properties of the polymeric amorphous carbon films with different elements doping are also discussed in detail.

  8. Comment on ``Electron drift mobility in doped amorphous silicon''

    Science.gov (United States)

    Overhof, H.; Silver, M.

    1989-05-01

    Experimental drift-mobility data obtained by different methods in doped amorphous silicon are compared. It is shown that the presence of a long-range random potential will lead to a modification of the drift mobility in one experiment while the corresponding values in other experiments are virtually unaffected. It is shown that this effect accounts for the apparent discrepancy between the results of these experiments rather than the shift of the mobility edge upon doping which was recently proposed by Street, Kakalios, and Hack [Phys. Rev. B 38, 5603 (1988)] in order to understand their data.

  9. Stability of amorphous silicon alloy triple-junction solar cells and modules

    Energy Technology Data Exchange (ETDEWEB)

    Sato, K.; Aiga, M.; Otsubo, M.

    1987-06-25

    Results on reliability test for amorphous silicon alloy triple-junction solar cells and modules are described. It has been found that, for a-SiGe:H pin cells, reduction of the stress in the film is of first importance for stability. Application of low-temperature-deposited microcrystalline p-layer for each sub cell and of thinner i-layers for the middle and the bottom cells improves stability of triple-junction cells, by enhancing the electric field in the i-layers.

  10. Thin metal layer as transparent electrode in n-i-p amorphous silicon solar cells

    Directory of Open Access Journals (Sweden)

    Theuring Martin

    2014-07-01

    Full Text Available In this paper, transparent electrodes, based on a thin silver film and a capping layer, are investigated. Low deposition temperature, flexibility and low material costs are the advantages of this type of electrode. Their applicability in structured n-i-p amorphous silicon solar cells is demonstrated in simulation and experiment. The influence of the individual layer thicknesses on the solar cell performance is discussed and approaches for further improvements are given. For the silver film/capping layer electrode, a higher solar cell efficiency could be achieved compared to a reference ZnO:Al front contact.

  11. Atomic structure of the amorphous nonstoichiometric silicon oxides and nitrides

    Energy Technology Data Exchange (ETDEWEB)

    Gritsenko, V A [Institute of Semiconductor Physics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk (Russian Federation)

    2008-07-31

    In addition to amorphous SiO{sub 2} and Si{sub 3}N{sub 4}, the two key dielectric film materials used in modern silicon devices, the fabrication technology of nonstoichiometric SiO{sub x}N{sub y}, SiN{sub x}, and SiO{sub x} compounds is currently under development. Varying the chemical composition of these compounds allows a wide range of control over their physical - specifically, optical and electrical - properties. The development of technology for synthesizing such films requires a detailed understanding of their atomic structure. Current views on the atomic structure of nonstoichiometric silicon nitrides and oxides are reviewed and summarized. (reviews of topical problems)

  12. Amorphous silicon pixel layers with cesium iodide converters for medical radiography

    Energy Technology Data Exchange (ETDEWEB)

    Jing, T.; Cho, G. [Lawrence Berkeley Lab., CA (United States); Goodman, C.A. [Air Techniques, Inc., Hicksville, NY (United States)] [and others

    1993-11-01

    We describe the properties of evaporated layers of Cesium Iodide (Thallium activated) deposited on substrates that enable easy coupling to amorphous silicon pixel arrays. The CsI(Tl) layers range in thickness from 65 to 220{mu}m. We used the two-boat evaporator system to deposit CsI(Tl) layers. This system ensures the formation of the scintillator film with homogenous thallium concentration which is essential for optimizing the scintillation light emission efficiency. The Tl concentration was kept to 0.1--0.2 mole percent for the highest light output. Temperature annealing can affect the microstructure as well as light output of the CsI(Tl) film. 200--300C temperature annealing can increase the light output by a factor of two. The amorphous silicon pixel arrays are p-i-n diodes approximately l{mu}m thick with transparent electrodes to enable them to detect the scintillation light produced by X-rays incident on the CsI(Tl). Digital radiography requires a good spatial resolution. This is accomplished by making the detector pixel size less then 50{mu}m. The light emission from the CsI(Tl) is collimated by techniques involving the deposition process on pattered substrates. We have measured MTF of greater than 12 line pairs per mm at the 10% level.

  13. Effect of light trapping in an amorphous silicon solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Iftiquar, S.M., E-mail: iftiquar@skku.edu [College of Information and Communication Engineering, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Jung, Juyeon; Park, Hyeongsik [College of Information and Communication Engineering, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Cho, Jaehyun; Shin, Chonghoon [Department of Energy Science, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Park, Jinjoo [College of Information and Communication Engineering, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Jung, Junhee [Department of Energy Science, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Bong, Sungjae [College of Information and Communication Engineering, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Kim, Sunbo [Department of Energy Science, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Yi, Junsin, E-mail: yi@yurim.skku.ac.kr [College of Information and Communication Engineering, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Department of Energy Science, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of)

    2015-07-31

    Light trapping in amorphous silicon based solar cell has been investigated theoretically. The substrate for these cells can be textured, including pyramidally textured c-Si wafer, to improve capture of incident light. A thin silver layer, deposited on the substrate of an n–i–p cell, ultimately goes at the back of the cell structure and can act a back reflector to improve light trapping. The two physical solar cells we investigated had open circuit voltages (V{sub oc}) of 0.87, 0.90 V, short circuit current densities (J{sub sc}) of 14.2, 15.36 mA/cm{sup 2} respectively. The first cell was investigated for the effect on its performance while having and not having light trapping scheme (LT), when thickness of the active layer (d{sub i}) was changed in the range of 100 nm to 800 nm. In both the approaches, for having or not having LT, the short circuit current density increases with d{sub i} while the V{sub oc} and fill factor, decreases steadily. However, maximum cell efficiency can be obtained when d{sub i} = 400 nm, and hence it was considered optimized thickness of the active layer, that was used for further investigation. With the introduction of light trapping to the second cell, it shows a further enhancement in J{sub sc} and red response of the external quantum efficiency to 16.6 mA/cm{sup 2} and by 11.1% respectively. Considering multiple passages of light inside the cell, we obtained an improvement in cell efficiency from 9.7% to 10.6%. - Highlights: • A theoretical analysis of light trapping in p–i–n and n–i–p type solar cells • J{sub sc} increases and V{sub oc} decreases with the increase in i-layer thickness. • Observed optimized thickness of i-layer as 400 nm • J{sub sc} improved from 15.4 mA/cm{sup 2} to 16.6 mA/cm{sup 2} due to the light trapping. • Efficiency (η) improved from 9.7% to 10.6% due to better red response of the EQE.

  14. Crystallization of amorphous silicon by self-propagation of nanoengineered thermites

    Science.gov (United States)

    Hossain, Maruf; Subramanian, Senthil; Bhattacharya, Shantanu; Gao, Yuanfang; Apperson, Steve; Shende, Rajesh; Guha, Suchi; Arif, Mohammad; Bai, Mengjun; Gangopadhyay, Keshab; Gangopadhyay, Shubhra

    2007-03-01

    Crystallization of amorphous silicon (a-Si) thin film occurred by the self-propagation of copper oxide/aluminum thermite nanocomposites. Amorphous Si films were prepared on glass at a temperature of 250°C by plasma enhanced chemical vapor deposition. The platinum heater was patterned on the edge of the substrate and the CuO /Al nanoengineered thermite was spin coated on the substrate that connects the heater and the a-Si film. A voltage source was used to ignite the thermites followed by a piranha solution (4:1 of H2SO4:H2O2) etch for the removal of residual products of thermite reaction. Raman spectroscopy was used to confirm the crystallization of a-Si.

  15. Determining the Onset of Amorphization of Crystalline Silicon due to Hypervelocity Impact

    Science.gov (United States)

    Poletti, C. Shane; Bachlechner, Martina E.

    2009-03-01

    Atomistic simulations were performed to study a hypervelocity impactor striking a silicon/silicon nitride interface with varying silicon substrate thicknesses. Visualization indicates that the crystalline silicon amorphizes upon impact. The objective of the present study is to determine where the boundary between amorphous and crystalline silicon occurrs. In the analysis, the silicon substrate is separated into sixty layers and for each layer the average z displacement is determined. Our results show that the boundary between amorphous and crystalline silicon occurs between layers 20 and 22 for an impactor traveling at 5 km/s. This corresponds to a depth of approximately 32 Angstroms into the silicon. More detailed analyses reveals that the z displacement is noticeably larger for the layers that do not have a silicon atom bonded beneath them compared to the ones that do.

  16. Low temperature deposition of polycrystalline silicon thin films on a flexible polymer substrate by hot wire chemical vapor deposition

    Science.gov (United States)

    Lee, Sang-hoon; Jung, Jae-soo; Lee, Sung-soo; Lee, Sung-bo; Hwang, Nong-moon

    2016-11-01

    For the applications such as flexible displays and solar cells, the direct deposition of crystalline silicon films on a flexible polymer substrate has been a great issue. Here, we investigated the direct deposition of polycrystalline silicon films on a polyimide film at the substrate temperature of 200 °C. The low temperature deposition of crystalline silicon on a flexible substrate has been successfully made based on two ideas. One is that the Si-Cl-H system has a retrograde solubility of silicon in the gas phase near the substrate temperature. The other is the new concept of non-classical crystallization, where films grow by the building block of nanoparticles formed in the gas phase during hot-wire chemical vapor deposition (HWCVD). The total amount of precipitation of silicon nanoparticles decreased with increasing HCl concentration. By adding HCl, the amount and the size of silicon nanoparticles were reduced remarkably, which is related with the low temperature deposition of silicon films of highly crystalline fraction with a very thin amorphous incubation layer. The dark conductivity of the intrinsic film prepared at the flow rate ratio of RHCl=[HCl]/[SiH4]=3.61 was 1.84×10-6 Scm-1 at room temperature. The Hall mobility of the n-type silicon film prepared at RHCl=3.61 was 5.72 cm2 V-1s-1. These electrical properties of silicon films are high enough and could be used in flexible electric devices.

  17. Experimental and Computer Modelling Studies of Metastability of Amorphous Silicon Based Solar Cells

    NARCIS (Netherlands)

    Munyeme, Geoffrey

    2003-01-01

    We present a combination of experimental and computer modelling studies of the light induced degradation in the performance of amorphous silicon based single junction solar cells. Of particular interest in this study is the degradation kinetics of different types of amorphous silicon single junction

  18. The Synthesis and Structural Properties of Crystalline Silicon Quantum Dots upon Thermal Annealing of Hydrogenated Amorphous Si-Rich Silicon Carbide Films

    Science.gov (United States)

    Wen, Guozhi; Zeng, Xiangbin; Li, Xianghu

    2016-08-01

    Silicon quantum dots (QDs) embedded in non-stoichiometric hydrogenated silicon carbide (SiC:H) thin films have been successfully synthesized by plasma-enhanced chemical vapor deposition and post-annealing. The chemical composition analyses have been carried out by x-ray photoelectron spectroscopy (XPS). The bonding configurations have been deduced from Fourier transform infrared absorption measurements (FTIR). The evolution of microstructure with temperature has been characterized by glancing incident x-ray diffraction (XRD) and Raman diffraction spectroscopy. XPS and FTIR show that it is in Si-rich feature and there are a few hydrogenated silicon clusters in the as-grown sample. XRD and Raman diffraction spectroscopy show that it is in amorphous for the as-grown sample, while crystalline silicon QDs have been synthesized in the 900°C annealed sample. Silicon atoms precipitation from the SiC matrix or silicon phase transition from amorphous SiC is enhanced with annealing temperature increase. The average sizes of silicon QDs are about 5.1 nm and 5.6 nm, the number densities are as high as 1.7 × 1012 cm-2 and 3.2 × 1012 cm-2, and the crystalline volume fractions are about 58.3% and 61.3% for the 900°C and 1050°C annealed samples, respectively. These structural properties analyses provide an understanding about the synthesis of silicon QDs upon thermal annealing for applications in next generation optoelectronic and photovoltaic devices.

  19. Layered amorphous silicon as negative electrodes in lithium-ion batteries

    Science.gov (United States)

    Zhao, Leyi; Dvorak, D. J.; Obrovac, M. N.

    2016-11-01

    Chemical delithiation is used to prepare bulk quantities of amorphous silicon powder from lithium-silicon compounds. The amorphous silicon materials formed are air and water stable and are found to have layered structures. When cycled in Li-ion half cells, coatings containing layered amorphous silicon are found to have significantly lower volume expansion during lithiation and improved cycling characteristics compared to that of bulk crystalline Si. We suggest chemical delithiation as a convenient method to synthesize bulk quantities of Si powders containing self-organized void spaces that can accommodate volume expansion during lithiation.

  20. High-stability transparent amorphous oxide TFT with a silicon-doped back-channel layer

    Science.gov (United States)

    Lee, Hyoung-Rae; Park, Jea-Gun

    2014-10-01

    We significantly reduced various electrical instabilities of amorphous indium gallium zinc oxide thin-film transistors (TFTs) by using the co-deposition of silicon on an a-IGZO back channel. This process showed improved stability of the threshold voltage ( V th ) under high temperature and humidity and negative gate-bias illumination stress (NBIS) without any reduction of IDS. The enhanced stability was achieved with silicon, which has higher metal-oxide bonding strengths than gallium does. Additionally, SiO X distributed on the a-IGZO surface reduced the adsorption and the desorption of H2O and O2. This process is applicable to the TFT manufacturing process with a variable sputtering target.

  1. Computational Evaluation of Amorphous Carbon Coating for Durable Silicon Anodes for Lithium-Ion Batteries.

    Science.gov (United States)

    Hwang, Jeongwoon; Ihm, Jisoon; Lee, Kwang-Ryeol; Kim, Seungchul

    2015-10-13

    We investigate the structural, mechanical, and electronic properties of graphite-like amorphous carbon coating on bulky silicon to examine whether it can improve the durability of the silicon anodes of lithium-ion batteries using molecular dynamics simulations and ab-initio electronic structure calculations. Structural models of carbon coating are constructed using molecular dynamics simulations of atomic carbon deposition with low incident energies (1-16 eV). As the incident energy decreases, the ratio of sp² carbons increases, that of sp³ decreases, and the carbon films become more porous. The films prepared with very low incident energy contain lithium-ion conducting channels. Also, those films are electrically conductive to supplement the poor conductivity of silicon and can restore their structure after large deformation to accommodate the volume change during the operations. As a result of this study, we suggest that graphite-like porous carbon coating on silicon will extend the lifetime of the silicon anodes of lithium-ion batteries.

  2. Thin film silicon deposited at 100 C by VHF PECVD: optoelectronic properties and incorporation in solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Brinza, Monica; Rath, Jatindra K.; Schropp, Ruud E.I. [Nanophotonics - Physics of Devices, Debye Institute for Nanomaterials Science, Faculty of Science, Utrecht University, PO Box 80000, 3508 TA Utrecht (Netherlands)

    2010-04-15

    This paper explores the possibility of producing amorphous and nanocrystalline silicon using very high frequency PECVD at a low substrate temperature of 123 C at high deposition rate of 0.4-0.7 nm/s. The quality of these amorphous layers remains similar to that obtained in layers deposited at low deposition rate of 0.1 nm/s. The amorphous-to-nanocrystalline transition is sensitive to deposition chamber history. The microstructure parameter of the best nanocrystalline layers amounts to 0.4. (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  3. Chemical vapor deposition of amorphous ruthenium-phosphorus alloy films

    Energy Technology Data Exchange (ETDEWEB)

    Shin Jinhong [Texas Materials Institute, University of Texas at Austin, Austin, TX 78750 (United States); Waheed, Abdul [Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, TX 78712 (United States); Winkenwerder, Wyatt A. [Department of Chemical Engineering, University of Texas at Austin, Austin, TX 78712 (United States); Kim, Hyun-Woo [Department of Chemical Engineering, University of Texas at Austin, Austin, TX 78712 (United States); Agapiou, Kyriacos [Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, TX 78712 (United States); Jones, Richard A. [Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, TX 78712 (United States); Hwang, Gyeong S. [Department of Chemical Engineering, University of Texas at Austin, Austin, TX 78712 (United States); Ekerdt, John G. [Department of Chemical Engineering, University of Texas at Austin, Austin, TX 78712 (United States)]. E-mail: ekerdt@che.utexas.edu

    2007-05-07

    Chemical vapor deposition growth of amorphous ruthenium-phosphorus films on SiO{sub 2} containing {approx} 15% phosphorus is reported. cis-Ruthenium(II)dihydridotetrakis-(trimethylphosphine), cis-RuH{sub 2}(PMe{sub 3}){sub 4} (Me = CH{sub 3}) was used at growth temperatures ranging from 525 to 575 K. Both Ru and P are zero-valent. The films are metastable, becoming increasingly more polycrystalline upon annealing to 775 and 975 K. Surface studies illustrate that demethylation is quite efficient near 560 K. Precursor adsorption at 135 K or 210 K and heating reveal the precursor undergoes a complex decomposition process in which the hydride and trimethylphosphine ligands are lost at temperatures as low at 280 K. Phosphorus and its manner of incorporation appear responsible for the amorphous-like character. Molecular dynamics simulations are presented to suggest the local structure in the films and the causes for phosphorus stabilizing the amorphous phase.

  4. Preferred orientations of laterally grown silicon films over amorphous substrates using the vapor–liquid–solid technique

    Energy Technology Data Exchange (ETDEWEB)

    LeBoeuf, J. L., E-mail: jerome.leboeuf@mail.mcgill.ca; Brodusch, N.; Gauvin, R.; Quitoriano, N. J. [Department of Mining and Materials Engineering, McGill University, Montreal (Canada)

    2014-12-28

    A novel method has been optimized so that adhesion layers are no longer needed to reliably deposit patterned gold structures on amorphous substrates. Using this technique allows for the fabrication of amorphous oxide templates known as micro-crucibles, which confine a vapor–liquid–solid (VLS) catalyst of nominally pure gold to a specific geometry. Within these confined templates of amorphous materials, faceted silicon crystals have been grown laterally. The novel deposition technique, which enables the nominally pure gold catalyst, involves the undercutting of an initial chromium adhesion layer. Using electron backscatter diffraction it was found that silicon nucleated in these micro-crucibles were 30% single crystals, 45% potentially twinned crystals and 25% polycrystals for the experimental conditions used. Single, potentially twinned, and polycrystals all had an aversion to growth with the (1 0 0) surface parallel to the amorphous substrate. Closer analysis of grain boundaries of potentially twinned and polycrystalline samples revealed that the overwhelming majority of them were of the 60° Σ3 coherent twin boundary type. The large amount of coherent twin boundaries present in the grown, two-dimensional silicon crystals suggest that lateral VLS growth occurs very close to thermodynamic equilibrium. It is suggested that free energy fluctuations during growth or cooling, and impurities were the causes for this twinning.

  5. Electronic properties of embedded graphene: doped amorphous silicon/CVD graphene heterostructures

    Science.gov (United States)

    Arezki, Hakim; Boutchich, Mohamed; Alamarguy, David; Madouri, Ali; Alvarez, José; Cabarrocas, Pere Roca i.; Kleider, Jean-Paul; Yao, Fei; Lee, Young Hee

    2016-10-01

    Large-area graphene film is of great interest for a wide spectrum of electronic applications, such as field effect devices, displays, and solar cells, among many others. Here, we fabricated heterostructures composed of graphene (Gr) grown by chemical vapor deposition (CVD) on copper substrate and transferred to SiO2/Si substrates, capped by n- or p-type doped amorphous silicon (a-Si:H) deposited by plasma-enhanced chemical vapor deposition. Using Raman scattering we show that despite the mechanical strain induced by the a-Si:H deposition, the structural integrity of the graphene is preserved. Moreover, Hall effect measurements directly on the embedded graphene show that the electronic properties of CVD graphene can be modulated according to the doping type of the a-Si:H as well as its phase i.e. amorphous or nanocrystalline. The sheet resistance varies from 360 Ω sq-1 to 1260 Ω sq-1 for the (p)-a-Si:H/Gr (n)-a-Si:H/Gr, respectively. We observed a temperature independent hole mobility of up to 1400 cm2 V-1 s-1 indicating that charge impurity is the principal mechanism limiting the transport in this heterostructure. We have demonstrated that embedding CVD graphene under a-Si:H is a viable route for large scale graphene based solar cells or display applications.

  6. Quantum confinement in amorphous TiO(2) films studied via atomic layer deposition.

    Science.gov (United States)

    King, David M; Du, Xiaohua; Cavanagh, Andrew S; Weimer, Alan W

    2008-11-05

    Despite the significant recent increase in quantum-based optoelectronics device research, few deposition techniques can reliably create the required functional nanoscale systems. Atomic layer deposition (ALD) was used here to study the quantum effects attainable through the use of this ångström-level controlled growth process. Size-dependent quantum confinement has been demonstrated using TiO(2) layers of nanoscale thickness applied to the surfaces of silicon wafers. TiO(2) films were deposited at 100 °C using TiCl(4) and H(2)O(2) in a viscous flow ALD reactor, at a rate of 0.61 Å/cycle. The low-temperature process was utilized to guarantee the amorphous deposition of TiO(2) layers and post-deposition thermal annealing was employed to promote crystallite-size modification. Hydrogen peroxide significantly reduced the residual chlorine that remained from a typical TiCl(4)-H(2)O ALD process at this temperature, down to 1.6%. Spectroscopic ellipsometry was used to quantify the optical properties both below and above the bandgap energy. A central composite design was employed to map the surface response of the film thickness-dependent bandgap shift for the as-deposited case and up to a thermal annealing temperature of 550 °C. The Brus model was used to develop a correlation between the amorphous TiO(2) film thickness and the quantum length to promote equivalent bandgap shifts.

  7. Modelling structure and properties of amorphous silicon boron nitride ceramics

    Directory of Open Access Journals (Sweden)

    Johann Christian Schön

    2011-06-01

    Full Text Available Silicon boron nitride is the parent compound of a new class of high-temperature stable amorphous ceramics constituted of silicon, boron, nitrogen, and carbon, featuring a set of properties that is without precedent, and represents a prototypical random network based on chemical bonds of predominantly covalent character. In contrast to many other amorphous materials of technological interest, a-Si3B3N7 is not produced via glass formation, i.e. by quenching from a melt, the reason being that the binary components, BN and Si3N4, melt incongruently under standard conditions. Neither has it been possible to employ sintering of μm-size powders consisting of binary nitrides BN and Si3N4. Instead, one employs the so-called sol-gel route starting from single component precursors such as TADB ((SiCl3NH(BCl2. In order to determine the atomic structure of this material, it has proven necessary to simulate the actual synthesis route.Many of the exciting properties of these ceramics are closely connected to the details of their amorphous structure. To clarify this structure, it is necessary to employ not only experimental probes on many length scales (X-ray, neutron- and electron scattering; complex NMR experiments; IR- and Raman scattering, but also theoretical approaches. These address the actual synthesis route to a-Si3B3N7, the structural properties, the elastic and vibrational properties, aging and coarsening behaviour, thermal conductivity and the metastable phase diagram both for a-Si3B3N7 and possible silicon boron nitride phases with compositions different from Si3N4: BN = 1 : 3. Here, we present a short comprehensive overview over the insights gained using molecular dynamics and Monte Carlo simulations to explore the energy landscape of a-Si3B3N7, model the actual synthesis route and compute static and transport properties of a-Si3BN7.

  8. Atomic-layer deposition of silicon nitride

    CERN Document Server

    Yokoyama, S; Ooba, K

    1999-01-01

    Atomic-layer deposition (ALD) of silicon nitride has been investigated by means of plasma ALD in which a NH sub 3 plasma is used, catalytic ALD in which NH sub 3 is dissociated by thermal catalytic reaction on a W filament, and temperature-controlled ALD in which only a thermal reaction on the substrate is employed. The NH sub 3 and the silicon source gases (SiH sub 2 Cl sub 2 or SiCl sub 4) were alternately supplied. For all these methods, the film thickness per cycle was saturated at a certain value for a wide range of deposition conditions. In the catalytic ALD, the selective deposition of silicon nitride on hydrogen-terminated Si was achieved, but, it was limited to only a thin (2SiO (evaporative).

  9. Properties of interfaces in amorphous/crystalline silicon heterojunctions

    Energy Technology Data Exchange (ETDEWEB)

    Olibet, Sara; Vallat-Sauvain, Evelyne; Fesquet, Luc; Damon-Lacoste, Jerome; De Wolf, Stefaan; Ballif, Christophe [Ecole Polytechnique Federale de Lausanne (EPFL), IMT, Photovoltaics and Thin Film Electronics Laboratory, Breguet 2, 2000 Neuchatel (Switzerland); Monachon, Christian; Hessler-Wyser, Aicha [Ecole Polytechnique Federale de Lausanne (EPFL), Interdisciplinary Centre for Electron Microscopy (CIME), 1015 Lausanne (Switzerland)

    2010-03-15

    To study recombination at the amorphous/crystalline Si (a-Si:H/c-Si) heterointerface, the amphoteric nature of silicon (Si) dangling bonds is taken into account. Modeling interface recombination measured on various test structures provides insight into the microscopic passivation mechanisms, yielding an excellent interface defect density reduction by intrinsic a-Si:H and tunable field-effect passivation by doped layers. The potential of this model's applicability to recombination at other Si heterointerfaces is demonstrated. Solar cell properties of a-Si:H/c-Si heterojunctions are in good accordance with the microscopic interface properties revealed by modeling, that are, e.g., slight asymmetries in the neutral capture cross-sections and band offsets. The importance of atomically abrupt interfaces and the difficulties to obtain them on pyramidally textured c-Si is studied in combination with transmission electron microscopy. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  10. Si-H bond dynamics in hydrogenated amorphous silicon

    Science.gov (United States)

    Scharff, R. Jason; McGrane, Shawn D.

    2007-08-01

    The ultrafast structural dynamics of the Si-H bond in the rigid solvent environment of an amorphous silicon thin film is investigated using two-dimensional infrared four-wave mixing techniques. The two-dimensional infrared (2DIR) vibrational correlation spectrum resolves the homogeneous line shapes ( 4ps waiting times. The Si-H stretching mode anharmonic shift is determined to be 84cm-1 and decreases slightly with vibrational frequency. The 1→2 linewidth increases with vibrational frequency. Frequency dependent vibrational population times measured by transient grating spectroscopy are also reported. The narrow homogeneous line shape, large inhomogeneous broadening, and lack of spectral diffusion reported here present the ideal backdrop for using a 2DIR probe following electronic pumping to measure the transient structural dynamics implicated in the Staebler-Wronski degradation [Appl. Phys. Lett. 31, 292 (1977)] in a-Si:H based solar cells.

  11. Near-field optical study of 3rd order nonlinear properties of amorphous silicon

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Yun Jin; Park, J.H.; Kim, M.R.; Jhe, Won Ho [Seoul National University, Seoul (Korea, Republic of); Rhee, B.K. [Sogang University, Seoul (Korea, Republic of)

    1999-07-01

    The 3rd order nonlinear properties show optical bleaching (Saturation) and Reverse saturation in absorption aspect, whereas self-focusing and self-defocusing in refraction aspect. Optical bleaching and self-focusing phenomena of those properties in particular can be useful to make the optical beam spot size smaller for application on the higher optical storage density. In this experiment, amorphous silicon layer is used to investigate the effect of 3rd order nonlinear material(1) on the spot size. The amorphous silicon (A-Si) layer is deposited by the method of PECVD on the corning 1737 fusion glass and its thickness is 300 nm. Two experiments are carried out in this work. One is the far-field Z-Scan and the other is the near-field Z-scan where the laser beam spot is scanned by NSOM in the near field region of the material. The former is for investigating the general 3rd order nonlinear properties of amorphous silicon and the latter is for measuring the change of the beam spot size directly. The far-field Z-scan shows Reverse saturation (Im{chi}{sup (3)} {approx} 8 X 10{sup -3} esu) and self-focusing (Re{chi}{sup (3)} {approx} 2 X 10{sup -2} esu) properties for the A-Si layer. In the second experiment, we present the change the beam spot size as a function of the input beam intensity for the A-Si layer. As a result, we find that the stronger the input beam intensity is, the smaller a beam spot size is obtained for A-Si layer. (author)

  12. Correlating the properties of amorphous silicon with its flexibility volume

    Science.gov (United States)

    Fan, Zhao; Ding, Jun; Li, Qing-Jie; Ma, Evan

    2017-04-01

    For metallic glasses, "flexibility volume" has recently been introduced as a property-revealing indicator of the structural state the glass is in. This parameter incorporates the atomic volume and the vibrational mean-square displacement, to combine both static structure and dynamics information. Flexibility volume was shown to quantitatively correlate with the properties of metallic glasses [J. Ding et al., Nat. Commun. 7, 13733 (2016), 10.1038/ncomms13733]. However, it remains to be examined if this parameter is useful for other types of glasses with bonding characteristics, atomic packing structures, as well as properties that are distinctly different from metallic glasses. In this paper, we tackle this issue through systematic molecular-dynamics simulations of amorphous silicon (a -Si) models produced with different cooling rates, as a -Si is a prototypical covalently bonded network glass whose structure and properties cannot be characterized using structural parameters such as free volume used for metallic and polymeric glasses. Specifically, we demonstrate a quantitative prediction of the shear modulus of a -Si from the flexibility for atomic motion. This flexibility volume descriptor, when evaluated on the atomic scale, is shown to also correlate well with local packing, as well as with the propensity for thermal relaxations and shear transformations, providing a metric to map out and explain the structural and mechanical heterogeneity in the amorphous material. This case study of a model of covalently bonded network a -Si, together with our earlier demonstration for metallic glasses, points to the universality of flexibility volume as an indicator of the structure state to link with properties, applicable across amorphous materials with different chemical bonding and atomic packing structures.

  13. Molecular structure of vapor-deposited amorphous selenium

    Science.gov (United States)

    Goldan, A. H.; Li, C.; Pennycook, S. J.; Schneider, J.; Blom, A.; Zhao, W.

    2016-10-01

    The structure of amorphous selenium is clouded with much uncertainty and contradictory results regarding the dominance of polymeric chains versus monomer rings. The analysis of the diffraction radial distribution functions are inconclusive because of the similarities between the crystalline allotropes of selenium in terms of the coordination number, bond length, bond angle, and dihedral angle. Here, we took a much different approach and probed the molecular symmetry of the thermodynamically unstable amorphous state via analysis of structural phase transformations. We verified the structure of the converted metastable and stable crystalline structures using scanning transmission electron microscopy. In addition, given that no experimental technique can tell us the exact three-dimensional atomic arrangements in glassy semiconductors, we performed molecular-dynamic simulations using a well-established empirical three-body interatomic potential. We developed a true vapor-deposited process for the deposition of selenium molecules onto a substrate using empirical molecular vapor compositions and densities. We prepared both vapor-deposited and melt-quenched samples and showed that the simulated radial distribution functions match very well to experiment. The combination of our experimental and molecular-dynamic analyses shows that the structures of vapor- and melt-quenched glassy/amorphous selenium are quite different, based primarily on rings and chains, respectively, reflecting the predominant structure of the parent phase in its thermodynamic equilibrium.

  14. Synthesis of silicon carbide nanowires by solid phase source chemical vapor deposition

    Institute of Scientific and Technical Information of China (English)

    NI Jie; LI Zhengcao; ZHANG Zhengjun

    2007-01-01

    In this paper,we report a simple approach to synthesize silicon carbide(SiC)nanowires by solid phase source chemical vapor deposition(CVD) at relatively low temperatures.3C-SiC nanowires covered by an amorphous shell were obtained on a thin film which was first deposited on silicon substrates,and the nanowires are 20-80 am in diameter and several μm in length,with a growth direction of[200].The growth of the nanowires agrees well on vapor-liquid-solid (VLS)process and the film deposited on the substrates plays an important role in the formation of nanowires.

  15. Amorphous and microcrystalline silicon applied in very thin tandem solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Schicho, Sandra

    2011-07-28

    Thin-film solar cells are fabricated by low-cost production processes, and are therefore an alternative to conventionally used wafer solar cells based on crystalline silicon. Due to the different band gaps, tandem cells that consist of amorphous (a-Si:H) and microcrystalline ({mu}c-Si:H) single junction solar cells deposited on top of each other use the solar spectrum much more efficient than single junction solar cells. The silicon layers are usually deposited on TCO (Transparent Conductive Oxide)-coated glass and metal- or plastic foils. Compared to the CdTe and CIGS based thin-film technologies, silicon thin-film solar cells have the advantage that no limitation of raw material supply is expected and no toxic elements are used. Nevertheless, the production cost per Wattpeak is the decisive factor concerning competitiveness and can be reduced by, e.g., shorter deposition times or reduced material consumption. Both cost-reducing conceptions are simultaneously achieved by reducing the a-Si:H and {mu}c-Si:H absorber layer thicknesses in a tandem device. In the work on hand, the influence of an absorber layer thickness reduction up to 77% on the photovoltaic parameters of a-Si:H/{mu}c-Si:H tandem solar cells was investigated. An industry-oriented Radio Frequency Plasma-Enhanced Chemical Vapour Deposition (RF-PECVD) system was used to deposit the solar cells on glass substrates coated with randomly structured TCO layers. The thicknesses of top and bottom cell absorber layers were varied by adjusting the deposition time. Reduced layer thicknesses lead to lower absorption and, hence, to reduced short-circuit current densities which, however, are partially balanced by higher open-circuit voltages and fill factors. Furthermore, by using very thin amorphous top cells, the light-induced degradation decreases tremendously. Accordingly, a thickness reduction of 75% led to an efficiency loss of only 21 %. By adjusting the parameters for the deposition of a-Si:H top cells, a

  16. Ultrafast deposition of silicon nitride and semiconductor silicon thin films by Hot Wire Chemical Vapor Deposition

    NARCIS (Netherlands)

    Schropp, R.E.I.; van der Werf, C.H.M.; Verlaan, V.; Rath, J.K.; Li, H. B. T.

    2009-01-01

    The technology of Hot Wire Chemical Vapor Deposition (HWCVD) or Catalytic Chemical Vapor Deposition (Cat-CVD) has made great progress during the last couple of years. This review discusses examples of significant progress. Specifically, silicon nitride deposition by HWCVD (HW-SiNx) is highlighted, a

  17. The specific heat of pure and hydrogenated amorphous silicon

    Science.gov (United States)

    Queen, Daniel Robert

    At low temperature, amorphous materials have low energy excitations that result in a heat capacity that is in excess of the Debye heat capacity calculated from the sound velocity. These excitations are ubiquitous to the glassy state and occur with roughly the same density for all glasses. The specific heat has a linear temperature dependence below 1K that has been described by the phenomenological two-level systems (TLS) model in addition to a T 3 temperature dependence which is in excess of the T3 Debye specific heat. It is still unknown what exact mechanism gives rise to the TLS but it is assumed that groups of atoms have configurations that are close in energy and, at low temperature, these atoms can change configurations by tunneling through the energy barrier separating them. It has been an open question as to whether tetrahedrally bonded materials, like amorphous silicon, can support TLS due to the over-constrained nature of their bonding. It is shown in this work that amorphous silicon (a-Si) and hydrogenated amorphous silicon (a-Si:H) have specific heat CP in excess of the Debye specific heat which depends on the details of the growth process. There is a linear term that is due to TLS in addition to an excess T3 contribution. We find that the TLS density depends on number density of atoms in the a-Si film and that the presence of hydrogen in a-Si:H increases CP further. We suggest that regions of low density are sufficiently under-constrained to support tunneling between structural configurations at low temperature as described by the TLS model. The presence of H further lowers the energy barriers for the tunneling process resulting in an increase in TLS density in a-Si:H. The presence of H in a-Si:H network is found to be metastable. Annealing causes H to diffuse away from clustered regions which reduces the density of TLS. A low temperature anomaly is found in the a-Si:H films in their as prepared state that is of unknown origin but appears to take the

  18. Synthesis of Poly-Silicon Thin Films on Glass Substrate Using Laser Initiated Metal Induced Crystallization of Amorphous Silicon for Space Power Application

    Science.gov (United States)

    Abu-Safe, Husam H.; Naseem, Hameed A.; Brown, William D.

    2007-01-01

    Poly-silicon thin films on glass substrates are synthesized using laser initiated metal induced crystallization of hydrogenated amorphous silicon films. These films can be used to fabricate solar cells on low cost glass and flexible substrates. The process starts by depositing 200 nm amorphous silicon films on the glass substrates. Following this, 200 nm of sputtered aluminum films were deposited on top of the silicon layers. The samples are irradiated with an argon ion cw laser beam for annealing. Laser power densities ranging from 4 to 9 W/cm2 were used in the annealing process. Each area on the sample is irradiated for a different exposure time. Optical microscopy was used to examine any cracks in the films and loss of adhesion to the substrates. X-Ray diffraction patterns from the initial results indicated the crystallization in the films. Scanning electron microscopy shows dendritic growth. The composition analysis of the crystallized films was conducted using Energy Dispersive x-ray Spectroscopy. The results of poly-silicon films synthesis on space qualified flexible substrates such as Kapton are also presented.

  19. Hydrogen related crystallization in intrinsic hydrogenated amorphous silicon films prepared by reactive radiofrequency magnetron sputtering at low temperature

    Energy Technology Data Exchange (ETDEWEB)

    Senouci, D. [Laboratoire de Genie Physique, Universite Ibn-Khaldoun, 14000 Tiaret (Algeria); LPCMME, Departement de Physique, Universite d' Oran Es-senia, 3100, Oran (Algeria); Baghdad, R., E-mail: r_baghdad@mail.univ-tiaret.dz [Laboratoire de Genie Physique, Universite Ibn-Khaldoun, 14000 Tiaret (Algeria); Belfedal, A.; Chahed, L. [LPCMME, Departement de Physique, Universite d' Oran Es-senia, 3100, Oran (Algeria); Portier, X. [CIMAP, CEA, CNRS UMR 6252-ENSICAEN, UCBN, 6 Bvd Marechal Juin, 14050 Caen Cedex (France); Charvet, S. [LPMC, UFR des Sciences, Universite de Picardie Jules Verne, 33 rue Saint-Leu, 80039 Amiens (France); Kim, K.H. [LPICM, Laboratoire de Physique des Interfaces et Couches Minces, CNRS UMR 7647, Ecole Polytechnique, 91128 Palaiseau (France); TOTAL S.A., Gas and Power, R and D Division, Courbevoie (France); Roca i Cabarrocas, P. [LPICM, Laboratoire de Physique des Interfaces et Couches Minces, CNRS UMR 7647, Ecole Polytechnique, 91128 Palaiseau (France); Zellama, K. [LPMC, UFR des Sciences, Universite de Picardie Jules Verne, 33 rue Saint-Leu, 80039 Amiens (France)

    2012-11-01

    We present an investigation on the transition from amorphous to nanocrystalline silicon and associated hydrogen changes during the first steps of hydrogenated nanocrystalline silicon growth for films elaborated by reactive radiofrequency magnetron sputtering at a substrate temperature as low as room temperature and for deposition times varying from 3 to 60 min. Complementary experimental techniques have been used to characterize the films in their as-deposited state. They are completed by thermal hydrogen effusion experiments conducted in the temperature range, from room temperature to 800 Degree-Sign C. The results show that, during the initial stages of growth, the presence of a hydrogen-rich layer is necessary to initiate the crystallization process. - Highlights: Black-Right-Pointing-Pointer Nanocrystalline silicon growth at room temperature. Black-Right-Pointing-Pointer Transition from amorphous to nanocrystalline silicon. Black-Right-Pointing-Pointer Chemical reactions of H atoms with strained Si-Si bonds. Black-Right-Pointing-Pointer H selective etching and chemical transport caused the silicon nucleation.

  20. Solid state photochemistry. Subpanel A-2(b): Metastability in hydrogenated amorphous silicon

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, D. [Solarex Corporation, Newton, PA (United States)

    1996-09-01

    All device quality amorphous silicon based materials exhibit degradation in electronic properties when exposed to sunlight. The photo-induced defects are associated with Si dangling bonds that are created by the recombination and/or trapping of photogenerated carriers. The defects are metastable and can be annealed out at temperatures of about 150 to 200 degrees Centigrade. The density of metastable defects is larger in films that are contaminated with > 10{sup 19} per cubic cm of impurities such as oxygen, carbon and nitrogen. However, recent experimental results indicate that some metastable defects are still present in films with very low impurity concentrations. The photo-induced defects typically saturate after 100 to 1000 hours of exposure to one sun illumination depending on the deposition conditions. There is also experimental evidence that photo-induced structural changes are occurring in the amorphous silicon based materials and that hydrogen may be playing an important role in both the photo-induced structural changes and in the creation of metastable defects.

  1. Fabrication and characterization of monolithically integrated microchannel plates based on amorphous silicon.

    Science.gov (United States)

    Franco, Andrea; Geissbühler, Jonas; Wyrsch, Nicolas; Ballif, Christophe

    2014-04-04

    Microchannel plates are vacuum-based electron multipliers for particle--in particular, photon--detection, with applications ranging from image intensifiers to single-photon detectors. Their key strengths are large signal amplification, large active area, micrometric spatial resolution and picosecond temporal resolution. Here, we present the first microchannel plate made of hydrogenated amorphous silicon (a-Si:H) instead of lead glass. The breakthrough lies in the possibility of realizing amorphous silicon-based microchannel plates (AMCPs) on any kind of substrate. This achievement is based on mastering the deposition of an ultra-thick (80-120 μm) stress-controlled a-Si:H layer from the gas phase at temperatures of about 200 °C and micromachining the channels by dry etching. We fabricated AMCPs that are vertically integrated on metallic anodes of test structures, proving the feasibility of monolithic integration of, for instance, AMCPs on application-specific integrated circuits for signal processing. We show an electron multiplication factor exceeding 30 for an aspect ratio, namely channel length over aperture, of 12.5:1. This result was achieved for input photoelectron currents up to 100 pA, in the continuous illumination regime, which provides a first evidence of the a-Si:H effectiveness in replenishing the electrons dispensed in the multiplication process.

  2. Hardness and stress of amorphous carbon film deposited by glow discharge and ion beam assisting deposition

    CERN Document Server

    Marques, F C

    2000-01-01

    The hardness and stress of amorphous carbon films prepared by glow discharge and by ion beam assisting deposition are investigated. Relatively hard and almost stress free amorphous carbon films were deposited by the glow discharge technique. On the other hand, by using the ion beam assisting deposition, hard films were also obtained with a stress of the same order of those found in tetrahedral amorphous carbon films. A structural analysis indicates that all films are composed of a sp sup 2 -rich network. These results contradict the currently accepted concept that both stress and hardness are only related to the concentration of sp sup 3 sites. Furthermore, the same results also indicate that the sp sup 2 sites may also contribute to the hardness of the films.

  3. Preparation and Characterization of Amorphous Layer on Aluminum Alloy Formed by Plasma Electrolytic Deposition (PED)

    Institute of Scientific and Technical Information of China (English)

    GUANYong-jun; XIAYuan

    2004-01-01

    In this investigation, protective layers were formed on aluminum substrate by Plasma Electrolytic Deposition (PED) using sodium silicate solution. The relation between the thickness of the layer and process time were studied. XRD, SEM, EDS were used to study the layer's structure, composition and micrograph. The results show that the deposited layers are amorphous and contain mainly oxygen, silicon, and aluminum. The possible formation mechanism of amorphous[Al-Si-O] layer was proposed: During discharge periods, Al2O3 phase of the passive film and SiO32- near the substrate surface are sintered into xSiO2(1-x)Al2O3 and then transformed into amorphous [Al-Si-O] phase.

  4. Coaxial carbon plasma gun deposition of amorphous carbon films

    Science.gov (United States)

    Sater, D. M.; Gulino, D. A.; Rutledge, S. K.

    1984-01-01

    A unique plasma gun employing coaxial carbon electrodes was used in an attempt to deposit thin films of amorphous diamond-like carbon. A number of different structural, compositional, and electrical characterization techniques were used to characterize these films. These included scanning electron microscopy, scanning transmission electron microscopy, X ray diffraction and absorption, spectrographic analysis, energy dispersive spectroscopy, and selected area electron diffraction. Optical absorption and electrical resistivity measurements were also performed. The films were determined to be primarily amorphous, with poor adhesion to fused silica substrates. Many inclusions of particulates were found to be present as well. Analysis of these particulates revealed the presence of trace impurities, such as Fe and Cu, which were also found in the graphite electrode material. The electrodes were the source of these impurities. No evidence of diamond-like crystallite structure was found in any of the film samples. Details of the apparatus, experimental procedure, and film characteristics are presented.

  5. Environmental life cycle assessment of roof-integrated flexible amorphous silicon/nanocrystalline silicon solar cell laminate

    NARCIS (Netherlands)

    N.J. Mohr; A. Meijer; M.A.J. Huijbregts; L. Reijnders

    2013-01-01

    This paper presents an environmental life cycle assessment of a roof-integrated flexible solar cell laminate with tandem solar cells composed of amorphous silicon/nanocrystalline silicon (a-Si/nc-Si). The a-Si/nc-Si cells are considered to have 10% conversion efficiency. Their expected service life

  6. Femtosecond Laser Crystallization of Boron-doped Amorphous Hydrogenated Silicon Films

    Directory of Open Access Journals (Sweden)

    P.D. Rybalko

    2016-10-01

    Full Text Available Crystallization of amorphous hydrogenated silicon films with femtosecond laser pulses is one of the promising ways to produce nanocrystalline silicon for photovoltaics. The structure of laser treated films is the most important factor determining materials' electric and photoelectric properties. In this work we investigated the effect of femtosecond laser irradiation of boron doped amorphous hydrogenated silicon films with different fluences on crystalline volume fraction and electrical properties of this material. A sharp increase of conductivity and essential decrease of activation energy of conductivity temperature dependences accompany the crystallization process. The results obtained are explained by increase of boron doping efficiency in crystalline phase of modified silicon film.

  7. A fax-machine amorphous silicon sensor for X-ray detection

    Energy Technology Data Exchange (ETDEWEB)

    Alberdi, J. [Association EURATOM/CIEMAT, Madrid (Spain); Barcala, J.M. [Association EURATOM/CIEMAT, Madrid (Spain); Chvatchkine, V. [Association EURATOM/CIEMAT, Madrid (Spain); Ioudine, I. [Association EURATOM/CIEMAT, Madrid (Spain); Molinero, A. [Association EURATOM/CIEMAT, Madrid (Spain); Navarrete, J.J. [Association EURATOM/CIEMAT, Madrid (Spain); Yuste, C. [Association EURATOM/CIEMAT, Madrid (Spain)

    1996-10-01

    Amorphous silicon detectors have been used, basically, as solar cells for energetics applications. As light detectors, linear sensors are used in fax and photocopier machines because they can be built with a large size, low price and have a high radiation hardness. Due to these performances, amorphous silicon detectors have been used as radiation detectors, and, presently, some groups are developing matrix amorphous silicon detectors with built-in electronics for medical X-ray applications. Our group has been working on the design and development of an X-ray image system based on a commercial fax linear amorphous silicon detector. The sensor scans the selected area and detects light produced by the X-ray in a scintillator placed on the sensor. Image-processing software produces a final image with better resolution and definition. (orig.).

  8. Room Temperature Growth of Hydrogenated Amorphous Silicon Films by Dielectric Barrier Discharge Enhanced CVD

    Institute of Scientific and Technical Information of China (English)

    GUO Yu; ZHANG Xiwen; HAN Gaorong

    2007-01-01

    Hydrogenated amorphous silicon (a-Si:H) films were deposited on Si (100) and glass substrates by dielectric barrier discharge enhanced chemical vapour deposition (DBD-CVD)in (SiH4+H2) atmosphere at room temperature.Results of the thickness measurement,SEM (scanning electron microscope),Raman,and FTIR (Fourier transform infrared spectroscopy) show that with the increase in the applied peak voltage,the deposition rate and network order of the films increase,and the hydrogen bonding configurations mainly in di-hydrogen (Si-H2) and poly hydrogen (SiH2)n are introduced into the films.The UV-visible transmission spectra show that with the decrease in Sill4/ (SiH4+H2) the thin films'band gap shifts from 1.92 eV to 2.17 eV.These experimental results are in agreement with the theoretic analysis of the DBD discharge.The deposition of a-Si:H films by the DBD-CVD method as reported here for the first time is attractive because it allows fast deposition of a-Si:H films on large-area low-melting-point substrates and requires only a low cost of production without additional heating or pumping equipment.

  9. Enhanced photocurrent in thin-film amorphous silicon solar cells via shape controlled three-dimensional nanostructures.

    Science.gov (United States)

    Hilali, Mohamed M; Yang, Shuqiang; Miller, Mike; Xu, Frank; Banerjee, Sanjay; Sreenivasan, S V

    2012-10-12

    In this paper, we have explored manufacturable approaches to sub-wavelength controlled three-dimensional (3D) nano-patterns with the goal of significantly enhancing the photocurrent in amorphous silicon solar cells. Here we demonstrate efficiency enhancement of about 50% over typical flat a-Si thin-film solar cells, and report an enhancement of 20% in optical absorption over Asahi textured glass by fabricating sub-wavelength nano-patterned a-Si on glass substrates. External quantum efficiency showed superior results for the 3D nano-patterned thin-film solar cells due to enhancement of broadband optical absorption. The results further indicate that this enhanced light trapping is achieved with minimal parasitic absorption losses in the deposited transparent conductive oxide for the nano-patterned substrate thin-film amorphous silicon solar cell configuration. Optical simulations are in good agreement with experimental results, and also show a significant enhancement in optical absorption, quantum efficiency and photocurrent.

  10. Optimization of large amorphous silicon and silica structures for molecular dynamics simulations of energetic impacts

    Energy Technology Data Exchange (ETDEWEB)

    Samela, Juha, E-mail: juha.samela@helsinki.fi [Department of Physics and Helsinki Institute of Physics, University of Helsinki, P.O. Box 43, FI-00014 University of Helsinki (Finland); Norris, Scott A. [Southern Methodist University, Dallas, TX 75205 (United States); Nordlund, Kai [Department of Physics and Helsinki Institute of Physics, University of Helsinki, P.O. Box 43, FI-00014 University of Helsinki (Finland); Aziz, Michael J. [School of Engineering and Applied Sciences, Harvard University, 29 Oxford St., Cambridge, MA 02138 (United States)

    2011-07-15

    A practical method to create optimized amorphous silicon and silica structures for molecular dynamics simulations is developed and tested. The method is based on the Wooten, Winer, and Weaire algorithm and combination of small optimized blocks to larger structures. The method makes possible to perform simulations of either very large cluster hypervelocity impacts on amorphous targets or small displacements induced by low energy ion impacts in silicon.

  11. Crystalline Silicon Solar Cells with Thin Silicon Passivation Film Deposited prior to Phosphorous Diffusion

    Directory of Open Access Journals (Sweden)

    Ching-Tao Li

    2014-01-01

    Full Text Available We demonstrate the performance improvement of p-type single-crystalline silicon (sc-Si solar cells resulting from front surface passivation by a thin amorphous silicon (a-Si film deposited prior to phosphorus diffusion. The conversion efficiency was improved for the sample with an a-Si film of ~5 nm thickness deposited on the front surface prior to high-temperature phosphorus diffusion, with respect to the samples with an a-Si film deposited on the front surface after phosphorus diffusion. The improvement in conversion efficiency is 0.4% absolute with respect to a-Si film passivated cells, that is, the cells with an a-Si film deposited on the front surface after phosphorus diffusion. The new technique provided a 0.5% improvement in conversion efficiency compared to the cells without a-Si passivation. Such performance improvements result from reduced surface recombination as well as lowered contact resistance, the latter of which induces a high fill factor of the solar cell.

  12. Improved conductivity of aluminum-doped ZnO: The effect of hydrogen diffusion from a hydrogenated amorphous silicon capping layer

    NARCIS (Netherlands)

    Ponomarev, M. V.; Sharma, K.; Verheijen, M. A.; M. C. M. van de Sanden,; Creatore, M.

    2012-01-01

    Plasma-deposited aluminum-doped ZnO (ZnO:Al) demonstrated a resistivity gradient as function of the film thickness, extending up to about 600 nm. This gradient decreased sharply when the ZnO:Al was capped by a hydrogenated amorphous silicon layer (a-Si:H) and subsequently treated according to the so

  13. Nickel-disilicide-assisted excimer laser crystallization of amorphous silicon

    Institute of Scientific and Technical Information of China (English)

    Liao Yan-Ping; Shao Xi-Bin; Gao Feng-Li; Luo Wen-Sheng; Wu Yuan; Fu Guo-Zhu; Jing Hai; Ma Kai

    2006-01-01

    Polycrystalline silicon (poly-Si) thin film has been prepared by means of nickel-disilicide (NiSi2) assisted excimer laser crystallization (ELC). The process to prepare a sample includes two steps. One step consists of the formation of NiSi2 precipitates by heat-treating the dehydrogenated amorphous silicon (a-Si) coated with a thin layer of Ni. And the other step consists of the formation of poly-Si grains by means of ELC. According to the test results of scanning electron microscopy (SEM), another grain growth model named two-interface grain growth has been proposed to contrast with the conventional Ni-metal-induced lateral crystallization (Ni-MILC) model and the ELC model. That is, an additional grain growth interface other than that in conventional ELC is formed, which consists of NiSi2 precipitates and a-Si.The processes for grain growth according to various excimer laser energy densities delivered to the a-Si film have been discussed. It is discovered that grains with needle shape and most of a uniform orientation are formed which grow up with NiSi2 precipitates as seeds. The reason for the formation of such grains which are different from that of Ni-MILCwithout migration of Ni atoms is not clear. Our model and analysis point out a method to prepare grains with needle shape and mostly of a uniform orientation. If such grains are utilized to make thin-film transistor, its characteristics may be improved.

  14. Laser assisted patterning of hydrogenated amorphous silicon for interdigitated back contact silicon heterojunction solar cell

    Science.gov (United States)

    De Vecchi, S.; Desrues, T.; Souche, F.; Muñoz, D.; Lemiti, M.

    2012-10-01

    This work reports on the elaboration of a new industrial process based on laser selective ablation of dielectric layers for Interdigitated Back Contact Silicon Heterojunction (IBC Si-HJ) solar cells fabrication. Choice of the process is discussed and cells are processed to validate its performance. A pulsed green laser (515nm) with 10-20ns pulse duration is used for hydrogenated amorphous silicon (a-Si:H) layers patterning steps, whereas metallization is made by screen printed. High Open-Circuit Voltage (Voc=699mV) and Fill Factor (FF=78.5%) values are obtained simultaneously on IBC Si-HJ cells, indicating a high surface passivation level and reduced resistive losses. An efficiency of 19% on non textured 26 cm² solar cells has been reached with this new industrial process.

  15. Preparation and characterization of polymer-derived amorphous silicon carbide with silicon-rich stoichiometry

    Energy Technology Data Exchange (ETDEWEB)

    Masuda, Takashi, E-mail: mtakashi@jaist.ac.jp [School of Material and Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292 (Japan); Iwasaka, Akira [School of Material and Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292 (Japan); Takagishi, Hideyuki [Faculty of Symbiotic System Science, Fukushima University, 1 Kanayagawa, Fukushima-shi, Fukushima 960-1296 (Japan); Shimoda, Tatsuya [School of Material and Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292 (Japan)

    2016-08-01

    Polydihydrosilane with pendant hexyl groups was synthesized to obtain silicon-rich amorphous silicon carbide (a-SiC) films via the solution route. Unlike conventional polymeric precursors, this polymer requires neither catalysts nor oxidation for its synthesis and cross-linkage. Therefore, the polymer provides sufficient purity for the fabrication of semiconducting a-SiC. Here, we investigated the correlation of Si/C stoichiometry between the polymer and the resultant a-SiC film. The structural, optical, and electrical properties of the films with various carbon contents were also explored. Experimental results suggested that the excess carbon that did not participate in Si−C configurations was decomposed and was evaporated during polymer-to-SiC conversion. Consequently, the upper limit of the carbon in resultant a-SiC film was < 50 at.%; namely, the polymer provided silicon-rich a-SiC, whereas the conventionally used polycarbosilane inevitably provides carbon-rich one. These features of this unusual polymer open up a frontier of polymer-derived SiC and solution-processed SiC electronics. - Highlights: • Polymeric precursor solution for silicon carbide (SiC) is synthesized. • Semiconducting amorphous SiC is prepared via solution route. • The excess carbon is decomposed during cross-linking resulting in Si-rich SiC films. • The grown SiC films contain substantial amount of hydrogen atoms as SiH{sub n}/CH{sub n} entities. • Presence of CH{sub n} entities induces dangling bonds, causing poor electrical properties.

  16. Atomic structure of intracellular amorphous calcium phosphate deposits.

    Science.gov (United States)

    Betts, F; Blumenthal, N C; Posner, A S; Becker, G L; Lehninger, A L

    1975-06-01

    The radial distribution function calculated from x-ray diffraction of mineralized cytoplasmic structures isolated from the hepatopancreas of the blue crab (Callinectes sapidus) is very similar to that previously found for synthetic amorphous calcium phosphate. Both types of mineral apparently have only short-range atomic order, represented as a neutral ion cluster of about 10 A in longest dimension, whose probable composition is expressed by the formula Ca9(PO4)6. The minor differences observed are attributed to the presence in the biological mineral of significant amounts of Mg-2+ and ATP. Synthetic amorphous calcium phosphate in contact with a solution containing an amount of ATP equivalent to that of the biological mineral failed to undergo conversion to the thermodynamically more stable hydroxyapatite. The amorphous calcium phosphate of the cytoplasmic mineral granules is similarly stable, and does not undergo conversion to hydroxyapatite, presumably owing to the presence of ATP and Mg-2+, known in inhibitors of the conversion process. The physiological implications of mineral deposits consisting of stabilized calcium phosphate ion clusters are discussed.

  17. Picosecond and nanosecond laser annealing and simulation of amorphous silicon thin films for solar cell applications

    Science.gov (United States)

    Theodorakos, I.; Zergioti, I.; Vamvakas, V.; Tsoukalas, D.; Raptis, Y. S.

    2014-01-01

    In this work, a picosecond diode pumped solid state laser and a nanosecond Nd:YAG laser have been used for the annealing and the partial nano-crystallization of an amorphous silicon layer. These experiments were conducted as an alternative/complementary to plasma-enhanced chemical vapor deposition method for fabrication of micromorph tandem solar cell. The laser experimental work was combined with simulations of the annealing process, in terms of temperature distribution evolution, in order to predetermine the optimum annealing conditions. The annealed material was studied, as a function of several annealing parameters (wavelength, pulse duration, fluence), as far as it concerns its structural properties, by X-ray diffraction, SEM, and micro-Raman techniques.

  18. Amorphous silicon pixel radiation detectors and associated thin film transistor electronics readout

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Mendez, V.; Drewery, J.; Hong, W.S.; Jing, T.; Kaplan, S.N.; Lee, H.; Mireshghi, A.

    1994-10-01

    We describe the characteristics of thin (1 {mu}m) and thick (>30 {mu}m) hydrogenated amorphous silicon p-i-n diodes which are optimized for detecting and recording the spatial distribution of charged particles, x-rays and {gamma} rays. For x-ray, {gamma} ray, and charged particle detection we can use thin p-i-n photosensitive diode arrays coupled to evaporated layers of suitable scintillators. For direct detection of charged particles with high resistance to radiation damage, we use the thick p-i-n diode arrays. Deposition techniques using helium dilution, which produce samples with low stress are described. Pixel arrays for flux exposures can be readout by transistor, single diode or two diode switches. Polysilicon charge sensitive pixel amplifiers for single event detection are described. Various applications in nuclear, particle physics, x-ray medical imaging, neutron crystallography, and radionuclide chromatography are discussed.

  19. Experiment and Simulation Study on the Amorphous Silicon Photovoltaic Walls

    Directory of Open Access Journals (Sweden)

    Wenjie Zhang

    2014-01-01

    Full Text Available Based on comparative study on two amorphous silicon photovoltaic walls (a-Si PV walls, the temperature distribution and the instant power were tested; and with EnergyPlus software, similar models of the walls were built to simulate annual power generation and air conditioning load. On typical sunshine day, the corresponding position temperature of nonventilated PV wall was generally 0.5~1.5°C higher than that of ventilated one, while the power generation was 0.2%~0.4% lower, which was consistent with the simulation results with a difference of 0.41% in annual energy output. As simulation results, in summer, comparing the PV walls with normal wall, the heat per unit area of these two photovoltaic walls was 5.25 kWh/m2 (nonventilated and 0.67 kWh/m2 (ventilated higher, respectively. But in winter the heat loss of nonventilated one was smaller, while ventilated PV wall was similar to normal wall. To annual energy consumption of heating and cooling, the building with ventilated PV wall and normal wall was also similar but slightly better than nonventilated one. Therefore, it is inferred that, at low latitudes, such as Zhuhai, China, air gap ventilation is suitable, while the length to thickness ratio of the air gap needs to be taken into account.

  20. Effects of relaxation on the energy landscape of amorphous silicon

    Science.gov (United States)

    Kallel, Houssem; Mousseau, Normand; Schiettekatte, Francois

    2008-03-01

    Amorphous silicon is used in many devices around us, included as a thin-film transistor in most flat screens, it also serves as the reference for the study of disordered network systems. Recently, differential scanning calorimetry and nanocalorimetry measurements (DSC) ^1 have shown that the heat released as the temperature of the sample is raised following implantation, is temperature independent. To understand this behaviour, we characterize the energy landscape of model a-Si. Using the activation-relaxation technique (ART nouveau) with the modified Stillinger-Weber potential, we generate models at four levels of relaxation and identify the relaxation mechanisms by analysing 100 000 events for each model. We find that while the distribution of the activation barriers shifts to higher energy as the system is relaxed, the distribution of the relaxation energies is almost unchanged. The relation between these two phenomena is consistent with the DSC measurements. This work is supported, in part, by NSERC, FQRNT and the CRC Foundation. HK is grateful for a scholarship from the Tunisian Ministry of Higher Education, Scientific Research and Technology. ^1 R. Karmouch et al., Phys. Rev. B 75, 075304 (2007)

  1. Nanohole Structuring for Improved Performance of Hydrogenated Amorphous Silicon Photovoltaics.

    Science.gov (United States)

    Johlin, Eric; Al-Obeidi, Ahmed; Nogay, Gizem; Stuckelberger, Michael; Buonassisi, Tonio; Grossman, Jeffrey C

    2016-06-22

    While low hole mobilities limit the current collection and efficiency of hydrogenated amorphous silicon (a-Si:H) photovoltaic devices, attempts to improve mobility of the material directly have stagnated. Herein, we explore a method of utilizing nanostructuring of a-Si:H devices to allow for improved hole collection in thick absorber layers. This is achieved by etching an array of 150 nm diameter holes into intrinsic a-Si:H and then coating the structured material with p-type a-Si:H and a conformal zinc oxide transparent conducting layer. The inclusion of these nanoholes yields relative power conversion efficiency (PCE) increases of ∼45%, from 7.2 to 10.4% PCE for small area devices. Comparisons of optical properties, time-of-flight mobility measurements, and internal quantum efficiency spectra indicate this efficiency is indeed likely occurring from an improved collection pathway provided by the nanostructuring of the devices. Finally, we estimate that through modest optimizations of the design and fabrication, PCEs of beyond 13% should be obtainable for similar devices.

  2. Diffusion of Gold and Platinum in Amorphous Silicon

    CERN Multimedia

    Voss, T L

    2002-01-01

    By means of radiotracer experiments the diffusion of Au and Pt in radio-frequency-sputtered amorphous silicon (a-Si) was investigated. Specimens of a-Si with homogeneous doping concentrations of Au or Pt in the range 0$\\, - \\,$1,7~at.\\% were produced by co-sputtering of Si and Au or Pt, respectively. An additional tiny concentration of radioactive $^{195}$Au or $^{188}$Pt, about 10~at.ppm, was implanted at ISOLDE. The resulting Gaussian distribution of the implanted atoms served as a probe for measuring diffusion coefficients at various doping concentrations. It was found that for a given doping concentration the diffusion coefficients show Arrhenius-type temperature dependences, where the diffusion enthalpy and the pre-exponential factor depend on the doping concentration. From these results it was concluded that in a-Si Au and Pt undergo direct, interstitial-like diffusion that is retarded by temporary trapping of the radiotracer atoms at vacancy-type defects with different binding enthalpies. In the case o...

  3. Raman spectroscopy of PIN hydrogenated amorphous silicon solar cells

    Science.gov (United States)

    Keya, Kimitaka; Torigoe, Yoshihiro; Toko, Susumu; Yamashita, Daisuke; Seo, Hyunwoong; Itagaki, Naho; Koga, Kazunori; Shiratani, Masaharu

    2015-09-01

    Light-induced degradation of hydrogenated amorphous silicon (a-Si:H) is a key issue for enhancing competitiveness in solar cell market. A-Si:H films with a lower density of Si-H2 bonds shows higher stability. Here we identified Si-H2 bonds in PIN a-Si:H solar cells fabricated by plasma CVD using Raman spectroscopy. A-Si:H solar cell has a structure of B-doped μc-SiC:H (12.5 nm)/ non-doped a-Si:H (250nm)/ P-doped μc-Si:H (40 nm) on glass substrates (Asahi-VU). By irradiating HeNe laser light from N-layer, peaks correspond to Si-H2 bonds (2100 cm-1) and Si-H bonds (2000 cm-1) have been identified in Raman scattering spectra. The intensity ratio of Si-H2 and Si-H ISiH2/ISiH is found to correlate well to light induced degradation of the cells Therefore, Raman spectroscopy is a promising method for studying origin of light-induced degradation of PIN solar cells.

  4. Progress in amorphous silicon solar cells produced by reactive sputtering

    Science.gov (United States)

    Moustakas, T. D.

    The photovoltaic properties of reactively sputtered amorphous silicon are reviewed and it is shown that efficient PIN solar cells can be fabricated by the method of sputtering. The photovoltaic properties of the intrinsic films correlate with their structural and compositional inhomogeneities. Hydrogen incorporation and small levels of phosphorus and boron impurities also affect the photovoltaic properties through reduction of residual dangling bond related defects and modification of their occupation. The optical and transport properties of the doped P and N-films were found to depend sensitively on the amount of hydrogen and boron or phosphorus incorporation into the films as well as on their degree of crystallinity. Combination of the best intrinsic and doped films leads to PIN solar cell structures generating J(sc) of 13 mA/sq cm and V(oc) of between 0.85 to 0.95 volts. The efficiency of these devices, 5 to 6 percent, is limited by the low FF, typically about 50 percent. As a further test to the potential of this technology efficient tandem solar cell structures were fabricated, and device design concepts, such as the incorporation of optically reflective back contacts were tested.

  5. Controlled fluoridation of amorphous carbon films deposited at reactive plasma conditions

    Directory of Open Access Journals (Sweden)

    Yoffe Alexander

    2015-09-01

    Full Text Available A study of the correlations between plasma parameters, gas ratios, and deposited amorphous carbon film properties is presented. The injection of a C4F8/Ar/N2 mixture of gases was successfully used in an inductively coupled plasma system for the preparation of amorphous carbon films with different fluoride doping at room-temperature, using silicon as a substrate. This coating was formed at low-pressure and low-energy using an inductively coupled plasma process. A strong dependence between the ratios of gases during deposition and the composition of the substrate compounds was shown. The values of ratios between Ar (or Ar+N2 and C4F8 - 1:1 and between N2 and Ar - 1:2 in the N2/Ar/C4F8 mixture were found as the best for low fluoridated coatings. In addition, an example of improving the etch-passivation in the Bosch procedure was described. Scanning electron microscopy with energy dispersive spectroscopy options, X-ray diffraction, and X-ray reflectivity were used for quantitative analysis of the deposited films.

  6. Amorphization and reduction of thermal conductivity in porous silicon by irradiation with swift heavy ions

    Energy Technology Data Exchange (ETDEWEB)

    Newby, Pascal J. [Institut des Nanotechnologies de Lyon, Universite de Lyon, INL-UMR5270, CNRS, INSA de Lyon, Villeurbanne 69621 (France); Institut Interdisciplinaire d' Innovation Technologique (3IT), Universite de Sherbrooke, CNRS UMI-LN2, Sherbrooke, Quebec J1K0A5 (Canada); Canut, Bruno; Bluet, Jean-Marie; Lysenko, Vladimir [Institut des Nanotechnologies de Lyon, Universite de Lyon, INL-UMR5270, CNRS, INSA de Lyon, Villeurbanne 69621 (France); Gomes, Severine [Centre de Thermique de Lyon, Universite de Lyon, CETHIL-UMR5008, CNRS, INSA de Lyon, Villeurbanne 69621 (France); Isaiev, Mykola; Burbelo, Roman [Faculty of Physics, Taras Shevchenko National University of Kyiv, 64/13, Volodymyrs' ka St., Kyiv 01601 (Ukraine); Termentzidis, Konstantinos [Laboratoire LEMTA, Universite de Lorraine-CNRS UMR 7563, 54506 Vandoeuvre-les-Nancy cedex (France); Chantrenne, Patrice [Universite de Lyon, INSA de Lyon, MATEIS-UMR CNRS 5510, Villeurbanne 69621 (France); Frechette, Luc G. [Institut Interdisciplinaire d' Innovation Technologique (3IT), Universite de Sherbrooke, CNRS UMI-LN2, Sherbrooke, Quebec J1K0A5 (Canada)

    2013-07-07

    In this article, we demonstrate that the thermal conductivity of nanostructured porous silicon is reduced by amorphization and also that this amorphous phase in porous silicon can be created by swift (high-energy) heavy ion irradiation. Porous silicon samples with 41%-75% porosity are irradiated with 110 MeV uranium ions at six different fluences. Structural characterisation by micro-Raman spectroscopy and SEM imaging show that swift heavy ion irradiation causes the creation of an amorphous phase in porous Si but without suppressing its porous structure. We demonstrate that the amorphization of porous silicon is caused by electronic-regime interactions, which is the first time such an effect is obtained in crystalline silicon with single-ion species. Furthermore, the impact on the thermal conductivity of porous silicon is studied by micro-Raman spectroscopy and scanning thermal microscopy. The creation of an amorphous phase in porous silicon leads to a reduction of its thermal conductivity, up to a factor of 3 compared to the non-irradiated sample. Therefore, this technique could be used to enhance the thermal insulation properties of porous Si. Finally, we show that this treatment can be combined with pre-oxidation at 300 Degree-Sign C, which is known to lower the thermal conductivity of porous Si, in order to obtain an even greater reduction.

  7. Microcrystalline B-doped window layers prepared near amorphous to microcrystalline transition by HWCVD and its application in amorphous silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, P. [Department of Physics/Center of Optical Technologies and Laser Controlled Processes, University of Kaiserslautern, P.O. Box 3049, Kaiserslautern D-67653 (Germany)]. E-mail: kumarp@rhrk.uni-kl.de; Kupich, M. [Department of Physics/Center of Optical Technologies and Laser Controlled Processes, University of Kaiserslautern, P.O. Box 3049, Kaiserslautern D-67653 (Germany); Grunsky, D. [Department of Physics/Center of Optical Technologies and Laser Controlled Processes, University of Kaiserslautern, P.O. Box 3049, Kaiserslautern D-67653 (Germany); Schroeder, B. [Department of Physics/Center of Optical Technologies and Laser Controlled Processes, University of Kaiserslautern, P.O. Box 3049, Kaiserslautern D-67653 (Germany)

    2006-04-20

    The electronic and structural properties of p-type microcrystalline silicon films prepared near the microcrystalline to amorphous ({mu}c-amorphous) transition by hot-wire chemical vapor deposition are studied. Silane is used as a source gas while H{sub 2} as diluent and trimethylboron (TMB) and boron trifluoride (BF{sub 3}) as doping gases. Increasing TMB concentration from 0.01% to 5% favors the amorphous growth whereas for BF{sub 3} the crystalline fraction remains constant. The dark conductivity ({sigma} {sub d}) of {mu}c-Si:H p-layers remains approximately constant for TMB 1-5% at constant crystalline fraction X {sub c}. This dark conductivity behavior is attributed to the decrease in doping efficiency with increasing TMB concentration. The best initial efficiency obtained for a 400 nm amorphous pin solar cell with optimized {mu}c-Si:H p-layer is 7.7% (V {sub oc} = 874 mV, J {sub sc} = 12.91 mA/cm{sup 2}, FF = 68%)

  8. Silicon nitride gradient film as the underlayer of ultra-thin tetrahedral amorphous carbon overcoat for magnetic recording slider

    Energy Technology Data Exchange (ETDEWEB)

    Wang Guigen, E-mail: wanggghit@yahoo.com [Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen 518055 (China); Kuang Xuping; Zhang Huayu; Zhu Can [Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen 518055 (China); Han Jiecai [Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen 518055 (China); Center for Composite Materials, Harbin Institute of Technology, Harbin 150080 (China); Zuo Hongbo [Center for Composite Materials, Harbin Institute of Technology, Harbin 150080 (China); Ma Hongtao [SAE Technologies Development (Dongguan) Co., Ltd., Dongguan 523087 (China)

    2011-12-15

    Highlights: Black-Right-Pointing-Pointer The ultra-thin carbon films with different silicon nitride (Si-N) film underlayers were prepared. Black-Right-Pointing-Pointer It highlighted the influences of Si-N underlayers. Black-Right-Pointing-Pointer The carbon films with Si-N underlayers obtained by nitriding especially at the substrate bias of -150 V, can exhibit better corrosion protection properties - Abstract: There are higher technical requirements for protection overcoat of magnetic recording slider used in high-density storage fields for the future. In this study, silicon nitride (Si-N) composition-gradient films were firstly prepared by nitriding of silicon thin films pre-sputtered on silicon wafers and magnetic recording sliders, using microwave electron cyclotron resonance plasma source. The ultra-thin tetrahedral amorphous carbon films were then deposited on the Si-N films by filtered cathodic vacuum arc method. Compared with amorphous carbon overcoats with conventional silicon underlayers, the overcoats with Si-N underlayers obtained by plasma nitriding especially at the substrate bias of -150 V, can provide better corrosion protection for high-density magnetic recording sliders.

  9. Towards high frequency heterojunction transistors: Electrical characterization of N-doped amorphous silicon-graphene diodes

    Science.gov (United States)

    Strobel, C.; Chavarin, C. A.; Kitzmann, J.; Lupina, G.; Wenger, Ch.; Albert, M.; Bartha, J. W.

    2017-06-01

    N-type doped amorphous hydrogenated silicon (a-Si:H) is deposited on top of graphene (Gr) by means of very high frequency (VHF) and radio frequency plasma-enhanced chemical vapor deposition (PECVD). In order to preserve the structural integrity of the monolayer graphene, a plasma excitation frequency of 140 MHz was successfully applied during the a-Si:H VHF-deposition. Raman spectroscopy results indicate the absence of a defect peak in the graphene spectrum after the VHF-PECVD of (n)-a-Si:H. The diode junction between (n)-a-Si:H and graphene was characterized using temperature dependent current-voltage (IV) and capacitance-voltage measurements, respectively. We demonstrate that the current at the (n)-a-Si:H-graphene interface is dominated by thermionic emission and recombination in the space charge region. The Schottky barrier height (qΦB), derived by temperature dependent IV-characteristics, is about 0.49 eV. The junction properties strongly depend on the applied deposition method of (n)-a-Si:H with a clear advantage of the VHF(140 MHz)-technology. We have demonstrated that (n)-a-Si:H-graphene junctions are a promising technology approach for high frequency heterojunction transistors.

  10. Phosphorus- and boron-doped hydrogenated amorphous silicon films prepared using vaporized liquid cyclopentasilane

    Energy Technology Data Exchange (ETDEWEB)

    Masuda, Takashi, E-mail: mtakashi@jaist.ac.jp [Japan Advanced Institute of Science and Technology, Nomi, Ishikawa, 923-1292 (Japan); Takagishi, Hideyuki; Shen, Zhongrong; Ohdaira, Keisuke; Shimoda, Tatsuya [Japan Advanced Institute of Science and Technology, Nomi, Ishikawa, 923-1292 (Japan); Japan Science and Technology Agency, ALCA, Nomi, Ishikawa, 923-1211 (Japan)

    2015-08-31

    A simple, inexpensive method for fabricating a hydrogenated amorphous silicon (a-Si:H) film using thermal chemical vapor deposition from cyclopentasilane (CPS) at atmospheric pressure with a substrate temperature of 370 °C is described. The reactant gas was generated from liquid CPS by vaporization in the deposition chamber. The vaporized CPS gas was transformed immediately into a-Si:H film on a heated substrate. The a-Si:H films could be doped either n- or p-type by dissolving appropriate amounts of white phosphorus or decaborane, respectively, in the liquid CPS before vaporization. This process allows deposition of doped a-Si:H films of photovoltaic device-quality without the need for handling, storage, or transportation of large amounts of gaseous reactants. - Highlights: • B and P doped a-Si:H films made from liquid materials is presented. • Decaborane and white phosphorus is dissolved in the liquid materials. • A simple, inexpensive method for fabricating a-Si:H films using non-vacuum process. • The doped a-Si:H films with usable quality for photovoltaic devices are deposited.

  11. Preparation of fine silicon particles from amorphous silicon monoxide by the disproportionation reaction

    Science.gov (United States)

    Mamiya, Mikito; Takei, Humihiko; Kikuchi, Masae; Uyeda, Chiaki

    2001-07-01

    Fine Si particles have been prepared by the disproportionation reaction of silicon monoxide (SiO), that is: 2SiO→Si+SiO 2. Amorphous powders of SiO are heated between 900°C and 1400°C in a flow of Ar and the obtained specimens are analyzed by X-ray powder diffraction and high-resolution transmission electron microscopy. The treatments between 1000°C and 1300°C for more than 0.5 h result in origination of Si particles dispersed in amorphous oxide media. The particle size varies from 1-3 to 20-40 nm, depending on the heating temperature. Kinetic analyses of the reaction reveal that the activation energy is 1.1 eV (82.1 kJ mol -1). The specimens annealed above 1350°C changes into a mixture of Si and cristobalite, suggesting a solid state transformation in the surrounding oxides from the amorphous to crystalline states.

  12. On coarse projective integration for atomic deposition in amorphous systems

    Energy Technology Data Exchange (ETDEWEB)

    Chuang, Claire Y., E-mail: yungc@seas.upenn.edu, E-mail: meister@unm.edu, E-mail: zepedaruiz1@llnl.gov; Sinno, Talid, E-mail: talid@seas.upenn.edu [Department of Chemical and Biomolecular Engineering, University of Pennsylvania, 220 South 33rd Street, 311A Towne Building, Philadelphia, Pennsylvania 19104 (United States); Han, Sang M., E-mail: yungc@seas.upenn.edu, E-mail: meister@unm.edu, E-mail: zepedaruiz1@llnl.gov [Department of Chemical and Biological Engineering, University of New Mexico, 1 University of New Mexico, MSC01 1120, Albuquerque, New Mexico 87131 (United States); Zepeda-Ruiz, Luis A., E-mail: yungc@seas.upenn.edu, E-mail: meister@unm.edu, E-mail: zepedaruiz1@llnl.gov [Lawrence Livermore National Laboratory, P.O. Box 808, L-367, Livermore, California 94550 (United States)

    2015-10-07

    Direct molecular dynamics simulation of atomic deposition under realistic conditions is notoriously challenging because of the wide range of time scales that must be captured. Numerous simulation approaches have been proposed to address the problem, often requiring a compromise between model fidelity, algorithmic complexity, and computational efficiency. Coarse projective integration, an example application of the “equation-free” framework, offers an attractive balance between these constraints. Here, periodically applied, short atomistic simulations are employed to compute time derivatives of slowly evolving coarse variables that are then used to numerically integrate differential equations over relatively large time intervals. A key obstacle to the application of this technique in realistic settings is the “lifting” operation in which a valid atomistic configuration is recreated from knowledge of the coarse variables. Using Ge deposition on amorphous SiO{sub 2} substrates as an example application, we present a scheme for lifting realistic atomistic configurations comprised of collections of Ge islands on amorphous SiO{sub 2} using only a few measures of the island size distribution. The approach is shown to provide accurate initial configurations to restart molecular dynamics simulations at arbitrary points in time, enabling the application of coarse projective integration for this morphologically complex system.

  13. Mechanical and piezoresistive properties of thin silicon films deposited by plasma-enhanced chemical vapor deposition and hot-wire chemical vapor deposition at low substrate temperatures

    Science.gov (United States)

    Gaspar, J.; Gualdino, A.; Lemke, B.; Paul, O.; Chu, V.; Conde, J. P.

    2012-07-01

    This paper reports on the mechanical and piezoresistance characterization of hydrogenated amorphous and nanocrystalline silicon thin films deposited by hot-wire chemical vapor deposition (HWCVD) and radio-frequency plasma-enhanced chemical vapor deposition (PECVD) using substrate temperatures between 100 and 250 °C. The microtensile technique is used to determine film properties such as Young's modulus, fracture strength and Weibull parameters, and linear and quadratic piezoresistance coefficients obtained at large applied stresses. The 95%-confidence interval for the elastic constant of the films characterized, 85.9 ± 0.3 GPa, does not depend significantly on the deposition method or on film structure. In contrast, mean fracture strength values range between 256 ± 8 MPa and 600 ± 32 MPa: nanocrystalline layers are slightly stronger than their amorphous counterparts and a pronounced increase in strength is observed for films deposited using HWCVD when compared to those grown by PECVD. Extracted Weibull moduli are below 10. In terms of piezoresistance, n-doped radio-frequency nanocrystalline silicon films deposited at 250 °C present longitudinal piezoresistive coefficients as large as -(2.57 ± 0.03) × 10-10 Pa-1 with marginally nonlinear response. Such values approach those of crystalline silicon and of polysilicon layers deposited at much higher temperatures.

  14. Realistic inversion of diffraction data for an amorphous solid: The case of amorphous silicon

    Science.gov (United States)

    Pandey, Anup; Biswas, Parthapratim; Bhattarai, Bishal; Drabold, D. A.

    2016-12-01

    We apply a method called "force-enhanced atomic refinement" (FEAR) to create a computer model of amorphous silicon (a -Si) based upon the highly precise x-ray diffraction experiments of Laaziri et al. [Phys. Rev. Lett. 82, 3460 (1999), 10.1103/PhysRevLett.82.3460]. The logic underlying our calculation is to estimate the structure of a real sample a -Si using experimental data and chemical information included in a nonbiased way, starting from random coordinates. The model is in close agreement with experiment and also sits at a suitable energy minimum according to density-functional calculations. In agreement with experiments, we find a small concentration of coordination defects that we discuss, including their electronic consequences. The gap states in the FEAR model are delocalized compared to a continuous random network model. The method is more efficient and accurate, in the sense of fitting the diffraction data, than conventional melt-quench methods. We compute the vibrational density of states and the specific heat, and we find that both compare favorably to experiments.

  15. Stable, high-efficiency amorphous silicon solar cells with low hydrogen content. Annual subcontract report, 1 March 1991--31 January 1992

    Energy Technology Data Exchange (ETDEWEB)

    Fortmann, C.M.; Hegedus, S.S. [Institute of Energy Conversion, Newark, DE (United States)

    1992-12-01

    Results and conclusions obtained during a research program of the investigation of amorphous silicon and amorphous silicon based alloy materials and solar cells fabricated by photo-chemical vapor and glow discharge depositions are reported. Investigation of the effects of the hydrogen content in a-si:H i-layers in amorphous silicon solar cells show that cells with lowered hydrogen content i-layers are more stable. A classical thermodynamic formulation of the Staebler-Wronski effect has been developed for standard solar cell operating temperatures and illuminations. Methods have been developed to extract a lumped equivalent circuit from the current voltage characteristic of a single junction solar cell in order to predict its behavior in a multijunction device.

  16. Efficient visible luminescence of nanocrystalline silicon prepared from amorphous silicon films by thermal annealing and stain etching

    Directory of Open Access Journals (Sweden)

    Nikulin Valery

    2011-01-01

    Full Text Available Abstract Films of nanocrystalline silicon (nc-Si were prepared from hydrogenated amorphous silicon (a-Si:H by using rapid thermal annealing. The formed nc-Si films were subjected to stain etching in hydrofluoric acid solutions in order to passivate surfaces of nc-Si. The optical reflectance spectroscopy revealed the nc-Si formation as well as the high optical quality of the formed films. The Raman scattering spectroscopy was used to estimate the mean size and volume fraction of nc-Si in the annealed films, which were about 4 to 8 nm and 44 to 90%, respectively, depending on the annealing regime. In contrast to as-deposited a-Si:H films, the nc-Si films after stain etching exhibited efficient photoluminescence in the spectral range of 600 to 950 nm at room temperature. The photoluminescence intensity and lifetimes of the stain etched nc-Si films were similar to those for conventional porous Si formed by electrochemical etching. The obtained results indicate new possibilities to prepare luminescent thin films for Si-based optoelectronics.

  17. Molybdenum enhanced low-temperature deposition of crystalline silicon nitride

    Science.gov (United States)

    Lowden, Richard A.

    1994-01-01

    A process for chemical vapor deposition of crystalline silicon nitride which comprises the steps of: introducing a mixture of a silicon source, a molybdenum source, a nitrogen source, and a hydrogen source into a vessel containing a suitable substrate; and thermally decomposing the mixture to deposit onto the substrate a coating comprising crystalline silicon nitride containing a dispersion of molybdenum silicide.

  18. 非晶硅锗电池性能的调控研究%Modification to the performance of hydrogenated amorphous silicon germanium thin film solar cell

    Institute of Scientific and Technical Information of China (English)

    刘伯飞; 白立沙; 魏长春; 孙建; 侯国付; 赵颖; 张晓丹

    2013-01-01

    采用射频等离子体增强化学气相沉积技术,研究了非晶硅锗薄膜太阳电池。针对非晶硅锗薄膜材料的本身特性,通过调控硅锗合金中硅锗的比例,实现了对硅锗薄膜太阳电池中开路电压和短路电流密度的分别控制。借助于本征层硅锗材料帯隙梯度的设计,获得了可有效用于多结叠层电池中的非晶硅锗电池。%In this paper, we study hydrogenated amorphous silicon germanium thin film solar cells prepared by the radio frequency plasma-enhanced chemical vapor deposition. In the light of the inherent characteristics of hydrogenated amorphous silicon germanium mate-rial, the modulation of the germanium/silicon ratio in silicon germanium alloys can separately control open circuit voltage (Voc) and short circuit current density (Jsc) of a-SiGe:H thin film solar cells. By the structural design of band gap profiling in the amorphous silicon germanium intrinsic layer, hydrogenated amorphous silicon germanium thin film solar cells, which can be used efficiently as the component cell of multi-junction solar cells, are obtained.

  19. Nanosecond laser ablation and deposition of silicon

    Energy Technology Data Exchange (ETDEWEB)

    Siew, Wee Ong; Tou, Teck Yong [Multimedia University, Faculty of Engineering, Cyberjaya, Selangor (Malaysia); Yap, Seong Shan; Reenaas, Turid Worren [Norwegian University of Science and Technology, Department of Physics, Trondheim (Norway); Ladam, Cecile; Dahl, Oeystein [SINTEF Materials and Chemistry, Trondheim (Norway)

    2011-09-15

    Nanosecond-pulsed KrF (248 nm, 25 ns) and Nd:YAG (1064 nm, 532 nm, 355 nm, 5 ns) lasers were used to ablate a polycrystalline Si target in a background pressure of <10{sup -4} Pa. Si films were deposited on Si and GaAs substrates at room temperature. The surface morphology of the films was characterized using scanning electron microscopy (SEM) and atomic force microscopy (AFM). Round droplets from 20 nm to 5 {mu}m were detected on the deposited films. Raman Spectroscopy indicated that the micron-sized droplets were crystalline and the films were amorphous. The dependence of the properties of the films on laser wavelengths and fluence is discussed. (orig.)

  20. Highly ordered amorphous silicon-carbon alloys obtained by RF PECVD

    CERN Document Server

    Pereyra, I; Carreno, M N P; Prado, R J; Fantini, M C A

    2000-01-01

    We have shown that close to stoichiometry RF PECVD amorphous silicon carbon alloys deposited under silane starving plasma conditions exhibit a tendency towards c-Si C chemical order. Motivated by this trend, we further explore the effect of increasing RF power and H sub 2 dilution of the gaseous mixtures, aiming to obtain the amorphous counterpart of c-Si C by the RF-PECVD technique. Doping experiments were also performed on ordered material using phosphorus and nitrogen as donor impurities and boron and aluminum as acceptor ones. For nitrogen a doping efficiency close to device quality a-Si:H was obtained, the lower activation energy being 0,12 eV with room temperature dark conductivity of 2.10 sup - sup 3 (OMEGA.cm). Nitrogen doping efficiency was higher than phosphorous for all studied samples. For p-type doping, results indicate that, even though the attained conductivity values are not device levels, aluminum doping conducted to a promising shift in the Fermi level. Also, aluminum resulted a more efficie...

  1. XRD and RBS studies of quasi-amorphous zinc oxide layers produced by Atomic Layer Deposition

    Energy Technology Data Exchange (ETDEWEB)

    Guziewicz, Elżbieta, E-mail: guzel@ifpan.edu.pl [Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw (Poland); Turos, Andrzej [Institute of Electronic Materials Technology, Wólczyńska 133, 01-919 Warsaw (Poland); National Centre for Nuclear Research, Soltana 7, 04-500 Otwock (Poland); Stonert, Anna [National Centre for Nuclear Research, Soltana 7, 04-500 Otwock (Poland); Snigurenko, Dmytro; Witkowski, Bartłomiej S. [Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw (Poland); Diduszko, Ryszard [Institute of Electronic Materials Technology, Wólczyńska 133, 01-919 Warsaw (Poland); Behar, Moni [Instituto de Fisica, Universidade do Rio Grande do Sul, 91501 Porto Alegre (Brazil)

    2016-08-01

    Although zinc oxide has been widely investigated for many important applications such as laser diodes, photovoltaics, and sensors, some basic properties of this material have not been established up to now. One of these are stopping power values which are crucial for the Rutherford Backscattering Spectrometry analysis. For this kind of measurements, amorphous materials should be used. In this paper we show the results of stopping power measurements for ZnO films grown by Atomic Layer Deposition. The films were grown on a silicon (100) substrate and parameters of the growth were chosen in a way that prevents crystallization of ZnO films. A series of ZnO films with thickness between 20 and 160 nm have been investigated. Extended film characterization has proven that the obtained nanopolycrystalline ZnO films can be considered as truly amorphous with respect to ion beam applications. ZnO films have been used for precise stopping power measurement of MeV He-ions in the energy range from 200 to 5000 keV. These results provide indispensable data for ion beam modification and analysis of ZnO. - Highlights: • Thin ZnO films of low crystallographic quality were obtained by Atomic Layer Deposition at 60 °C. • Nanopolycrystalline structure and atomically flat surface has been measured by X-ray diffraction. • Stopping power measurements show a very good agreement with the calculated values.

  2. Synchrotron radiation photoemission study of metal overlayers on hydrogenated amorphous silicon at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Pi, J.

    1990-09-21

    In this dissertation, metals deposited on a hydrogenated amorphous silicon (a-Si:H) film at room temperature are studied. The purpose of this work is mainly understanding the electronic properties of the interface, using high-resolution synchrotron radiation photoemission techniques as a probe. Atomic hydrogen plays an important role in passivating dangling bonds of a-Si:H films, thus reducing the gap-state distribution. In addition, singly bonded hydrogen also reduces states at the top of the valence band which are now replaced by deeper Si-H bonding states. The interface is formed by evaporating metal on an a-Si:H film in successive accumulations at room temperature. Au, Ag, and Cr were chosen as the deposited metals. Undoped films were used as substrates. Since some unique features can be found in a-Si:H, such as surface enrichment of hydrogen diffused from the bulk and instability of the free surface, we do not expect the metals/a-Si:H interface to behave exactly as its crystalline counterpart. Metal deposits, at low coverages, are found to gather preferentially around regions deficient in hydrogen. As the thickness is increased, some Si atoms in those regions are likely to leave their sites to intermix with metal overlayers like Au and Cr. 129 refs., 30 figs.

  3. Improvement of small-area, amorphous-silicon thin-film photovoltaics on polymer substrate

    Energy Technology Data Exchange (ETDEWEB)

    Weber, M.F. (Minnesota Mining and Mfg. Co., St. Paul, MN (USA). Applied Technologies Lab.)

    1990-02-01

    This report describes a contract to produce, using roll-to-roll deposition on polyamide substrate, a small-area amorphous-silicon p-i-n photovoltaic (PV) cell with an energy conversion efficiency of 10% under air mass 1.5 insolation. Three improvements were attempted to achieve this goal: (1) zinc oxide, a transparent conducting oxide, was used as a top contact; the zinc oxide conductivity was improved to 8--9 ohms/square sheet resistance with less than 8% average optical absorption. (2) The red light response was improved with dielectric enhanced metal reflecting electrodes, which increased the short-circuit current density by more than 1 mA/Cm{sup 2}; a three-layer dielectric mirror coating was also designed that can increase the current density by another 1 mA/cm{sup 2}. (3) Improving the fill factor of the n-i-p (reverse structured) devices was also achieved in a multichamber deposition system. The overall energy conversion efficiency of the PV cell was 8.36%. Major obstacles to higher efficiencies are (1) controlling the thin-film defects that cause electrical shunts in devices fabricated on enhanced reflection electrodes, and (2) controlling impurities and introducing dopant profiles near the p/i interface in a continuous web deposition system.

  4. Sputtering deposition and characterization of ultrathin amorphous carbon films

    Science.gov (United States)

    Lu, Wei

    1999-11-01

    This dissertation focuses on experimental investigations of ultrathin, ultrasmooth amorphous carbon (a-C) films deposited on Si(100) substrates by radio frequency (RF) sputtering and characterization of the nanomechanical and nanotribological properties and thermal stability of the films. Ultrathin a-C films of thickness 5--100 nm and typical root-mean-square roughness of 0.15--1 nm were deposited on ultrasmooth Si(100) substrates using pure argon as the sputtering gas. A low-pressure RF argon discharge model was used to analyze the plasma parameters in the film growth environment. These plasma parameters correlate the deposition conditions with the film growth processes. Atomic force microscopy (AFM) and surface force microscopy (SFM) were used to characterize the nanomechanical and nanotribological properties of the a-C films. X-ray photoelectron spectroscopy (XPS) was used to investigate the compositions and microstructures of the films. Sputter-etching measurements of the a-C films by energetic argon ion bombardment were used to study the surface binding energy of carbon atoms in a-C films deposited under different conditions. The dependence of film properties on deposition conditions was studied, and relations between nanomechanical and nanotribological properties were discussed in terms of a modified deformation index. The deformation and nanotribology mechanisms of the a-C films were compared with those of other films, such as TiC and Cr films (both 100 nm thick), and bulk Si(100). Reactive RF sputtering of nitrogenated amorphous carbon (a-CNx) films was investigated by introducing nitrogen into the a-C films during film growth by using an argon-nitrogen gas mixture as the sputtering gas. The alloying effect of nitrogen on the film growth and properties, such as hardness and surface energy, was studied and interpreted in terms of the changes in the plasma environment induced due to differences in the composition of the sputtering gas mixture. The thermal

  5. Raman spectra of amorphous carbon films deposited by SWP

    Science.gov (United States)

    Xu, Junqi; Liu, Weiguo; Hang, Lingxia; Su, Junhong; Fan, Huiqing

    2010-10-01

    Amorphous carbon film is one of the most important anti-reflection protective films coated on infrared optical components. In this paper, hydrogen-free amorphous carbon films were deposited by new type surface-wave-sustained plasma (SWP) source with a graphite target at various experiment parameters. The laser Raman spectroscopy at wavelength of 514 nm was used to investigate the structure and bonding of these carbon films. The results showed consanguineous correlations between the intensity ratio ID/IG and the experiment parameters such as microwave power, target voltage and gas pressure applied to the SWP source. Raman spectra proved the structure of these carbon films prepared by SWP technique is typical diamond-like carbon (DLC). The analysis on G peak position and intensity ratio ID/IG indicated that Raman shifts moves to low wavenumber and ID/IG decreases with the increasing of microwave power from 150 W to 330 W. These results means the formation of sp3 bond prefers higher microwave power. DLC films prepared at target voltage of -200 V have higher sp3 content than that of -350 V, moreover, an increase of gas pressure during experiments yields higher sp3 content at the microwave power below 270 W, whereas the change of sp3 content is slight with the various conditions when microwave power exceeds 270 W.

  6. Passivation of c-Si surfaces by sub-nm amorphous silicon capped with silicon nitride

    Energy Technology Data Exchange (ETDEWEB)

    Wan, Yimao, E-mail: yimao.wan@anu.edu.au; Yan, Di; Bullock, James; Zhang, Xinyu; Cuevas, Andres [Research School of Engineering, The Australian National University, Canberra, Australian Capital Territory 0200 (Australia)

    2015-12-07

    A sub-nm hydrogenated amorphous silicon (a-Si:H) film capped with silicon nitride (SiN{sub x}) is shown to provide a high level passivation to crystalline silicon (c-Si) surfaces. When passivated by a 0.8 nm a-Si:H/75 nm SiN{sub x} stack, recombination current density J{sub 0} values of 9, 11, 47, and 87 fA/cm{sup 2} are obtained on 10 Ω·cm n-type, 0.8 Ω·cm p-type, 160 Ω/sq phosphorus-diffused, and 120 Ω/sq boron-diffused silicon surfaces, respectively. The J{sub 0} on n-type 10 Ω·cm wafers is further reduced to 2.5 ± 0.5 fA/cm{sup 2} when the a-Si:H film thickness exceeds 2.5 nm. The passivation by the sub-nm a-Si:H/SiN{sub x} stack is thermally stable at 400 °C in N{sub 2} for 60 min on all four c-Si surfaces. Capacitance–voltage measurements reveal a reduction in interface defect density and film charge density with an increase in a-Si:H thickness. The nearly transparent sub-nm a-Si:H/SiN{sub x} stack is thus demonstrated to be a promising surface passivation and antireflection coating suitable for all types of surfaces encountered in high efficiency c-Si solar cells.

  7. Amorphous and microcrystalline silicon applied in very thin tandem solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Schicho, Sandra

    2011-07-28

    Thin-film solar cells are fabricated by low-cost production processes, and are therefore an alternative to conventionally used wafer solar cells based on crystalline silicon. Due to the different band gaps, tandem cells that consist of amorphous (a-Si:H) and microcrystalline ({mu}c-Si:H) single junction solar cells deposited on top of each other use the solar spectrum much more efficient than single junction solar cells. The silicon layers are usually deposited on TCO (Transparent Conductive Oxide)-coated glass and metal- or plastic foils. Compared to the CdTe and CIGS based thin-film technologies, silicon thin-film solar cells have the advantage that no limitation of raw material supply is expected and no toxic elements are used. Nevertheless, the production cost per Wattpeak is the decisive factor concerning competitiveness and can be reduced by, e.g., shorter deposition times or reduced material consumption. Both cost-reducing conceptions are simultaneously achieved by reducing the a-Si:H and {mu}c-Si:H absorber layer thicknesses in a tandem device. In the work on hand, the influence of an absorber layer thickness reduction up to 77% on the photovoltaic parameters of a-Si:H/{mu}c-Si:H tandem solar cells was investigated. An industry-oriented Radio Frequency Plasma-Enhanced Chemical Vapour Deposition (RF-PECVD) system was used to deposit the solar cells on glass substrates coated with randomly structured TCO layers. The thicknesses of top and bottom cell absorber layers were varied by adjusting the deposition time. Reduced layer thicknesses lead to lower absorption and, hence, to reduced short-circuit current densities which, however, are partially balanced by higher open-circuit voltages and fill factors. Furthermore, by using very thin amorphous top cells, the light-induced degradation decreases tremendously. Accordingly, a thickness reduction of 75% led to an efficiency loss of only 21 %. By adjusting the parameters for the deposition of a-Si:H top cells, a

  8. The effect of substrate bias on titanium carbide/amorphous carbon nanocomposite films deposited by filtered cathodic vacuum arc

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xu, E-mail: zhangxu@bnu.edu.cn [Key Laboratory of Beam Technology and Material Modification of Ministry of Education, College of Nuclear Science and Technology, Beijing Normal University (China); Liang, Hong [Key Laboratory of Beam Technology and Material Modification of Ministry of Education, College of Nuclear Science and Technology, Beijing Normal University (China); Wu, Zhenglong [Analytical and Testing Center, Beijing Normal University (China); Wu, Xiangying; Zhang, Huixing [Key Laboratory of Beam Technology and Material Modification of Ministry of Education, College of Nuclear Science and Technology, Beijing Normal University (China)

    2013-07-15

    The titanium carbide/amorphous carbon nanocomposite films have been deposited on silicon substrate by filtered cathodic vacuum arc (FCVA) technology, the effects of substrate bias on composition, structures and mechanical properties of the films are studied by scanning electron spectroscopy, X-ray diffraction and X-ray photoelectron spectroscopy and nano-indentation. The results show that the Ti content, deposition rate and hardness at first increase and then decrease with increasing the substrate bias. Maximum hardness of the titanium carbide/amorphous carbon nanocomposite film is 51 Gpa prepared at −400 V. The hardness enhancement may be attributed to the compressive stress and the fraction of crystalline TiC phase due to ion bombardment.

  9. Optical Properties of Amorphous AlN Thin Films on Glass and Silicon Substrates Grown by Single Ion Beam Sputtering

    Science.gov (United States)

    Hajakbari, Fatemeh; Mojtahedzadeh Larijani, Majid; Ghoranneviss, Mahmood; Aslaninejad, Morteza; Hojabri, Alireza

    2010-09-01

    The structural and optical properties of aluminum nitride (AlN) films deposited on glass and silicon substrates by single ion beam sputtering technique have been investigated. The X-ray diffraction and Fourier transform infrared spectroscopy (FTIR) study revealed the formation of the amorphous phase of AlN. The optical characteristics of films, such as refractive index, extinction coefficient, and average thickness, were calculated by Swanepoel's method using transmittance measurements. The refractive index and average roughness values of the films increased with film thickness. Moreover, it was found that thickness augmentation leads to a decrease in optical band gap energy calculated using Tauc's relation.

  10. Core-shell amorphous silicon-carbon nanoparticles for high performance anodes in lithium ion batteries

    Science.gov (United States)

    Sourice, Julien; Bordes, Arnaud; Boulineau, Adrien; Alper, John P.; Franger, Sylvain; Quinsac, Axelle; Habert, Aurélie; Leconte, Yann; De Vito, Eric; Porcher, Willy; Reynaud, Cécile; Herlin-Boime, Nathalie; Haon, Cédric

    2016-10-01

    Core-shell silicon-carbon nanoparticles are attractive candidates as active material to increase the capacity of Li-ion batteries while mitigating the detrimental effects of volume expansion upon lithiation. However crystalline silicon suffers from amorphization upon the first charge/discharge cycle and improved stability is expected in starting with amorphous silicon. Here we report the synthesis, in a single-step process, of amorphous silicon nanoparticles coated with a carbon shell (a-Si@C), via a two-stage laser pyrolysis where decomposition of silane and ethylene are conducted in two successive reaction zones. Control of experimental conditions mitigates silicon core crystallization as well as formation of silicon carbide. Auger electron spectroscopy and scanning transmission electron microscopy show a carbon shell about 1 nm in thickness, which prevents detrimental oxidation of the a-Si cores. Cyclic voltammetry demonstrates that the core-shell composite reaches its maximal lithiation during the first sweep, thanks to its amorphous core. After 500 charge/discharge cycles, it retains a capacity of 1250 mAh.g-1 at a C/5 rate and 800 mAh.g-1 at 2C, with an outstanding coulombic efficiency of 99.95%. Moreover, post-mortem observations show an electrode volume expansion of less than 20% and preservation of the nanostructuration.

  11. Electrochemical Impedance Spectroscopy study in micro-grain structured amorphous silicon anodes for lithium-ion batteries

    Science.gov (United States)

    Paloukis, Fotis; Elmasides, Costas; Farmakis, Filippos; Selinis, Petros; Neophytides, Stylianos G.; Georgoulas, Nikolaos

    2016-11-01

    In this paper, a study of the lithiation mechanism of micro-grain structured silicon anode is presented. Micro-grain amorphous silicon was deposited on special copper foil and it is shown that after several decades of galvanostatic cycles, it preserves its granular nature with minor degradation. In order to shed light on the lithiation mechanisms of the micro-grain silicon, Electrochemical Impedance Spectroscopy (EIS) was conducted on silicon half-cells at various State-of-Charge (SoC) and various discharging current values and the Solid-Electrolyte Interphase (SEI) RSEI and polarization resistance Rpol were determined. Results reveal that Rpol highly increases for cell voltages lower than 0.2 V and it strongly depends on the discharging C-rate. From X-ray Photoelectron Spectroscopy (XPS) measurements combined with surface sputtering, the existence of a LixSiyOz interlayer between SEI and silicon is confirmed, which is believed to play an important role to the lithium kinetics. Finally, combining our results, a lithiation mechanism of the micro-grain silicon anode is proposed.

  12. Substrate and Passivation Techniques for Flexible Amorphous Silicon-Based X-ray Detectors

    Directory of Open Access Journals (Sweden)

    Michael A. Marrs

    2016-07-01

    Full Text Available Flexible active matrix display technology has been adapted to create new flexible photo-sensing electronic devices, including flexible X-ray detectors. Monolithic integration of amorphous silicon (a-Si PIN photodiodes on a flexible substrate poses significant challenges associated with the intrinsic film stress of amorphous silicon. This paper examines how altering device structuring and diode passivation layers can greatly improve the electrical performance and the mechanical reliability of the device, thereby eliminating one of the major weaknesses of a-Si PIN diodes in comparison to alternative photodetector technology, such as organic bulk heterojunction photodiodes and amorphous selenium. A dark current of 0.5 pA/mm2 and photodiode quantum efficiency of 74% are possible with a pixelated diode structure with a silicon nitride/SU-8 bilayer passivation structure on a 20 µm-thick polyimide substrate.

  13. Substrate and Passivation Techniques for Flexible Amorphous Silicon-Based X-ray Detectors.

    Science.gov (United States)

    Marrs, Michael A; Raupp, Gregory B

    2016-07-26

    Flexible active matrix display technology has been adapted to create new flexible photo-sensing electronic devices, including flexible X-ray detectors. Monolithic integration of amorphous silicon (a-Si) PIN photodiodes on a flexible substrate poses significant challenges associated with the intrinsic film stress of amorphous silicon. This paper examines how altering device structuring and diode passivation layers can greatly improve the electrical performance and the mechanical reliability of the device, thereby eliminating one of the major weaknesses of a-Si PIN diodes in comparison to alternative photodetector technology, such as organic bulk heterojunction photodiodes and amorphous selenium. A dark current of 0.5 pA/mm² and photodiode quantum efficiency of 74% are possible with a pixelated diode structure with a silicon nitride/SU-8 bilayer passivation structure on a 20 µm-thick polyimide substrate.

  14. Substrate and Passivation Techniques for Flexible Amorphous Silicon-Based X-ray Detectors

    Science.gov (United States)

    Marrs, Michael A.; Raupp, Gregory B.

    2016-01-01

    Flexible active matrix display technology has been adapted to create new flexible photo-sensing electronic devices, including flexible X-ray detectors. Monolithic integration of amorphous silicon (a-Si) PIN photodiodes on a flexible substrate poses significant challenges associated with the intrinsic film stress of amorphous silicon. This paper examines how altering device structuring and diode passivation layers can greatly improve the electrical performance and the mechanical reliability of the device, thereby eliminating one of the major weaknesses of a-Si PIN diodes in comparison to alternative photodetector technology, such as organic bulk heterojunction photodiodes and amorphous selenium. A dark current of 0.5 pA/mm2 and photodiode quantum efficiency of 74% are possible with a pixelated diode structure with a silicon nitride/SU-8 bilayer passivation structure on a 20 µm-thick polyimide substrate. PMID:27472329

  15. Photoemission studies of amorphous silicon induced by P + ion implantation

    Science.gov (United States)

    Petö, G.; Kanski, J.

    1995-12-01

    An amorphous Si layer was formed on a Si (1 0 0) surface by P + implantation at 80 keV. This layer was investigated by means of photoelectron spectroscopy. The resulting spectra are different from earlier spectra on amorphous Si prepared by e-gun evaporation or cathode sputtering. The differences consist of a decreased intensity in the spectral region corresponding to p-states, and appearace of new states at higher binding energy. Qualitativity similar results have been reported for Sb implanted amorphous Ge and the modification seems to be due to the changed short range order.

  16. Silicon epitaxy using tetrasilane at low temperatures in ultra-high vacuum chemical vapor deposition

    Science.gov (United States)

    Hazbun, Ramsey; Hart, John; Hickey, Ryan; Ghosh, Ayana; Fernando, Nalin; Zollner, Stefan; Adam, Thomas N.; Kolodzey, James

    2016-06-01

    The deposition of silicon using tetrasilane as a vapor precursor is described for an ultra-high vacuum chemical vapor deposition tool. The growth rates and morphology of the Si epitaxial layers over a range of temperatures and pressures are presented. The layers were characterized using transmission electron microscopy, x-ray diffraction, spectroscopic ellipsometry, Atomic Force Microscopy, and secondary ion mass spectrometry. Based on this characterization, high quality single crystal silicon epitaxy was observed. Tetrasilane was found to produce higher growth rates relative to lower order silanes, with the ability to deposit crystalline Si at low temperatures (T=400 °C), with significant amorphous growth and reactivity measured as low as 325 °C, indicating the suitability of tetrasilane for low temperature chemical vapor deposition such as for SiGeSn alloys.

  17. Thin film silicon n–i–p solar cells deposited by VHF PECVD at 100 °C substrate temperature

    NARCIS (Netherlands)

    Brinza, M.; Rath, J.K.; Schropp, R.E.I.

    2009-01-01

    The applicability of the very high frequency (VHF) plasma-enhanced chemical vapor deposition (PECVD) technique to the fabrication of solar cells in an n–i–p configuration at 100 °C substrate temperature is being investigated. Amorphous and microcrystalline silicon cells are made with the absorber la

  18. In situ observation of shear-driven amorphization in silicon crystals

    Energy Technology Data Exchange (ETDEWEB)

    He, Yang; Zhong, Li; Fan, Feifei; Wang, Chongmin; Zhu, Ting; Mao, Scott X.

    2016-09-19

    Amorphous materials have attracted great interest in the scientific and technological fields. An amorphous solid usually forms under the externally driven conditions of melt-quenching, irradiation and severe mechanical deformation. However, its dynamic formation process remains elusive. Here we report the in situ atomic-scale observation of dynamic amorphization processes during mechanical straining of nanoscale silicon crystals by high resolution transmission electron microscopy (HRTEM). We observe the shear-driven amorphization (SDA) occurring in a dominant shear band. The SDA involves a sequence of processes starting with the shear-induced diamond-cubic to diamond-hexagonal phase transition that is followed by dislocation nucleation and accumulation in the newly formed phase, leading to the formation of amorphous silicon. The SDA formation through diamond-hexagonal phase is rationalized by its structural conformity with the order in the paracrystalline amorphous silicon, which maybe widely applied to diamond-cubic materials. Besides, the activation of SDA is orientation-dependent through the competition between full dislocation nucleation and partial gliding.

  19. Amorphization of silicon induced by nanodroplet impact: A molecular dynamics study

    Science.gov (United States)

    Saiz, Fernan; Gamero-Castaño, Manuel

    2012-09-01

    The hypervelocity impact of electrosprayed nanodroplets on crystalline silicon produces an amorphous layer with a thickness comparable to the droplet diameters. The phase transition is puzzling considering that amorphization has not been observed in macroscopic shock compression of silicon, the only apparent difference being the several orders of magnitude disparity between the sizes of the macroscopic and nanodroplet projectiles. This article investigates the physics of the amorphization by modeling the impact of a nanodrop on single-crystal silicon via molecular dynamics. The simulation shows that the amorphization results from the heating and subsequent melting of a thin layer of silicon surrounding the impact area, followed by an ultrafast quenching with cooling rates surpassing 1013 K/s. These conditions impede crystalline growth in the supercooled liquid phase, which finally undergoes a glass transition to render a disordered solid phase. The high temperature field near the impact interface is a localized effect. The significantly different temperatures and cooling rates near the surface and in the bulk explain why amorphization occurs in nanodroplet impact, while it is absent in macroscopic shock compression. Since these high temperatures and ultrafast quenching rates are likely to occur in other materials, nanodroplet impact may become a general amorphatization technique for treating the surfaces of most crystalline substrates.

  20. Surface plasmon enhanced photoluminescence in amorphous silicon carbide films by adjusting Ag island film sizes

    Institute of Scientific and Technical Information of China (English)

    Yu Wei; Wang Xin-Zhan; Dai Wan-Lei; Lu Wan-Bing; Liu Yu-Mei; Fu Guang-Sheng

    2013-01-01

    Ag island films with different sizes are deposited on hydrogenated amorphous silicon carbide (α-SiC∶H) films,and the influences of Ag island films on the optical properties of the α-SiC∶H films are investigated.Atomic force microscope images show that Ag nanoislands are formed after Ag coating,and the size of the Ag islands increases with increasing Ag deposition time.The extinction spectra indicate that two resonance absorption peaks which correspond to out-of-plane and in-plane surface plasmon modes of the Ag island films are obtained,and the resonance peak shifts toward longer wavelength with increasing Ag island size.The photoluminescence (PL) enhancement or quenching depends on the size of Ag islands,and PL enhancement by 1.6 times on the main PL band is obtained when the sputtering time is 10 min.Analyses show that the influence of surface plasmons on the PL of α-SiC:H is determined by the competition between the scattering and absorption of Ag islands,and PL enhancement is obtained when scattering is the main interaction between the Ag islands and incident light.

  1. Effect of the initial structure on the electrical property of crystalline silicon films deposited on glass by hot-wire chemical vapor deposition.

    Science.gov (United States)

    Chung, Yung-Bin; Lee, Sang-Hoon; Bae, Sung-Hwan; Park, Hyung-Ki; Jung, Jae-Soo; Hwang, Nong-Moon

    2012-07-01

    Crystalline silicon films on an inexpensive glass substrate are currently prepared by depositing an amorphous silicon film and then crystallizing it by excimer laser annealing, rapid thermal annealing, or metal-induced crystallization because crystalline silicon films cannot be directly deposited on glass at a low temperature. It was recently shown that by adding HCI gas in the hot-wire chemical vapor deposition (HWCVD) process, the crystalline silicon film can be directly deposited on a glass substrate without additional annealing. The electrical properties of silicon films prepared using a gas mixture of SiH4 and HCl in the HWCVD process could be further improved by controlling the initial structure, which was achieved by adjusting the delay time in deposition. The size of the silicon particles in the initial structure increased with increasing delay time, which increased the mobility and decreased the resistivity of the deposited films. The 0 and 5 min delay times produced the silicon particle sizes of approximately 10 and approximately 28 nm, respectively, in the initial microstructure, which produced the final films, after deposition for 300 sec, of resistivities of 0.32 and 0.13 Omega-cm, mobilities of 1.06 and 1.48 cm2 V(-1) S(-1), and relative densities of 0.87 and 0.92, respectively.

  2. Study on the effect of process conditions on the thermo-optic coefficient of amorphous silicon films

    Science.gov (United States)

    Zhou, Xiang; Liu, Shuang; Tang, Haihua; Zhong, Zhiyong; Liu, Yong

    2016-05-01

    A thermo-optical coefficient (TOC) test platform based on FILMeasure-20 was designed and the thermal coefficient of hydrogenated amorphous silicon (a-Si:H) thin films material at 1330 nm was tested. a-Si:H were deposited on the quartz glass using a plasma-enhanced chemical vapor deposition (PECVD) system. Fourier transform infrared spectrometer (FTIR) was used to characterize the infrared spectral feature of films. The hydrogen content of films was influenced by different radio frequency (RF) power and deposition pressure conditions according to the FTIR spectra and theoretical analysis, and the thermo-optic effect of a-Si:H varied with temperature characteristics. Experimental results indicated that selecting the appropriate process conditions to prepare a-Si:H films can effectively increase or avoid the impact of thermo-optical effect on the optical devices.

  3. Light Entrapping, Modeling & Effect of Passivation on Amorphous Silicon Based PV Cell

    OpenAIRE

    Md Mostafizur Rahman; Md. Moidul Islam; Mission Kumar Debnath; Saifullah, S.M.; Samera Hossein; Nusrat Jahan Bristy

    2016-01-01

    This research paper present efforts to enhance the performance of amorphous silicon p-i-n type solar cell using sidewall passivation. For sidewall passivation, MEMS insulation material Al2O3 was used. The main objective of this paper is to observe the effect of sidewall passivation in amorphous silicon solar cell and increase the conversion efficiency of the solar cell. Passivation of Al2O3 is found effective to subdue reverse leakage. It increases the electric potential generated in the desi...

  4. Origin of the ESR signal with g=2.0055 in amorphous silicon

    OpenAIRE

    1990-01-01

    Defect-state wave functions for threefold- and fivefold-coordinated Si atoms in amorphous silicon clusters have been calculated with use of a first-principles linear combination of the atomic orbitals method in order to clarify the origin of the ESR signal with g=2.0055 in amorphous silicon. The wave function of the defect state originating from the threefold-coordinated Si atom is strongly localized on this atom. On the other hand, that for the fivefold-coordinated Si atom is extended on thi...

  5. Elastic behavior of amorphous-crystalline silicon nanocomposite: An atomistic view

    Science.gov (United States)

    Das, Suvankar; Dutta, Amlan

    2017-01-01

    In the context of mechanical properties, nanocomposites with homogeneous chemical composition throughout the matrix and the dispersed phase are of particular interest. In this study, the elastic moduli of amorphous-crystalline silicon nanocomposite have been estimated using atomistic simulations. A comparison with the theoretical model reveals that the elastic behavior is significantly influenced by the crystal-amorphous interphase. On observing the effect of volume-fraction of the crystalline phase, an anomalous trend for the bulk modulus is obtained. This phenomenon is attributed to the relaxation displacements of the amorphous atoms.

  6. Anode properties of silicon-rich amorphous silicon suboxide films in all-solid-state lithium batteries

    Science.gov (United States)

    Miyazaki, Reona; Ohta, Narumi; Ohnishi, Tsuyoshi; Takada, Kazunori

    2016-10-01

    This paper reports the effects of introducing oxygen into amorphous silicon films on their anode properties in all-solid-state lithium batteries. Although poor cycling performance is a critical issue in silicon anodes, it has been effectively improved by introducing even a small amount of oxygen, that is, even in Si-rich amorphous silicon suboxide (a-SiOx) films. Because of the small amount of oxygen in the films, high cycling performance has been achieved without lowering the capacity and power density: an a-Si film delivers discharge capacity of 2500 mAh g-1 under high discharge current density of 10 mA cm-2 (35 C). These results demonstrate that a-SiOx is a promising candidate for high-capacity anode materials in solid-state batteries.

  7. Influence of deposition rate on the structural properties of plasma-enhanced CVD epitaxial silicon

    Science.gov (United States)

    Chen, Wanghua; Cariou, Romain; Hamon, Gwenaëlle; Léal, Ronan; Maurice, Jean-Luc; Cabarrocas, Pere Roca i

    2017-01-01

    Solar cells based on epitaxial silicon layers as the absorber attract increasing attention because of the potential cost reduction. In this work, we studied the influence of the deposition rate on the structural properties of epitaxial silicon layers produced by plasma-enhanced chemical vapor deposition (epi-PECVD) using silane as a precursor and hydrogen as a carrier gas. We found that the crystalline quality of epi-PECVD layers depends on their thickness and deposition rate. Moreover, increasing the deposition rate may lead to epitaxy breakdown. In that case, we observe the formation of embedded amorphous silicon cones in the epi-PECVD layer. To explain this phenomenon, we develop a model based on the coupling of hydrogen and built-in strain. By optimizing the deposition conditions to avoid epitaxy breakdown, including substrate temperatures and plasma potential, we have been able to synthesize epi-PECVD layers up to a deposition rate of 8.3 Å/s. In such case, we found that the incorporation of hydrogen in the hydrogenated crystalline silicon can reach 4 at. % at a substrate temperature of 350 °C. PMID:28262840

  8. Effect of amorphous C films deposited by RF magnetron sputtering on smoothing K9 glass substrate

    Science.gov (United States)

    Deng, Songwen; Qi, Hongji; Wei, Chaoyang; Yi, Kui; Fan, Zhengxiu; Shao, Jianda

    2009-12-01

    Soft X-ray multilayer reflectors must be deposited on super-smooth surface such as super-polished silicon wafers or glasses, which are complicate, time-consuming and expensive to produce. To overcome this shortage, C films deposited by RF magnetron sputtering were considered to smooth the K9 glass substrates' surface in the present paper. The structure of C films was systematically studied by XRD and Raman spectrum. The surface morphology and rms-roughness were obtained by AFM. Then, we calculated the impact of the C layers on the reflectivity curve of Mo/Si soft X-ray multilayer reflector around 13.5 nm. The C films exhibit typical amorphous state. With the increasing of power and thickness, the content of sp3 hybrid bonding decreases while the amount or size of well-organized graphite clusters increases. The surface rms-roughness decreases from 2.4 nm to 0.62 nm after smoothed by an 80 nm thick C layer deposited in 500 W, which is the smoothest C layer surface we have obtained. The calculation results show that the theoretical normal incidence reflectivity of Mo/Si multilayer at 13.5 nm increases from 7% to 63%.

  9. Proton irradiation effects of amorphous silicon solar cell for solar power satellite

    Energy Technology Data Exchange (ETDEWEB)

    Morita, Yousuke; Oshima, Takeshi [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment; Sasaki, Susumu; Kuroda, Hideo; Ushirokawa, Akio

    1997-03-01

    Flexible amorphous silicon(fa-Si) solar cell module, a thin film type, is regarded as a realistic power generator for solar power satellite. The radiation resistance of fa-Si cells was investigated by the irradiations of 3,4 and 10 MeV protons. The hydrogen gas treatment of the irradiated fa-Si cells was also studied. The fa-Si cell shows high radiation resistance for proton irradiations, compared with a crystalline silicon solar cell. (author)

  10. Preparation of microcrystalline single junction and amorphous-microcrystalline tandem silicon solar cells entirely by hot-wire CVD

    Energy Technology Data Exchange (ETDEWEB)

    Kupich, M.; Grunsky, D.; Kumar, P.; Schroeder, B. [University of Kaiserslautern (Germany). Department of Physics

    2004-01-25

    The hot-wire chemical vapour deposition (HWCVD) has been used to prepare highly conducting p- and n-doped microcrystalline silicon thin layers as well as highly photoconducting, low defect density intrinsic microcrystalline silicon films. These films were incorporated in all-HWCVD, all-microcrystalline nip and pin solar cells, achieving conversion efficiencies of {eta}=5.4% and 4.5%, respectively. At present, only the nip-structures are found to be stable against light-induced degradation. Furthermore, microcrystalline nip and pin structures have been successfully incorporated as bottom cells in all-hot-wire amorphous-microcrystalline nipnip- and pinpin-tandem solar cells for the first time. So far, the highest conversion efficiencies of the 'micromorph' tandem structures are {eta}=5.7% for pinpin-solar cells and 7.0% for nipnip solar cells. (author)

  11. Physics and technology of amorphous-crystalline heterostructure silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Sark, Wilfried G.J.H.M. van [Utrecht Univ. (Netherlands). Copernicus Institute, Science Technology and Society; Roca, Francesco [Unita Tecnologie Portici, Napoli (Italy). ENEA - Agenzia Nazionale per le Nuove Tecnologie, l' Energia e lo Sviluppo Economico Sostenibile; Korte, Lars [Helmholtz-Zentrum Berlin fuer Materialien und Energie (Germany). Inst. Silizium-Photovoltaik

    2012-07-01

    The challenge of developing photovoltaic (PV) technology to a cost-competitive alternative for established energy sources can be achieved using simple, high-throughput mass-production compatible processes. Issues to be addressed for large scale PV deployment in large power plants or in building integrated applications are enhancing the performance of solar energy systems by increasing solar cell efficiency, using low amounts of materials which are durable, stable, and abundant on earth, and reducing manufacturing and installation cost. Today's solar cell multi-GW market is dominated by crystalline silicon (c-Si) wafer technology, however new cell concepts are entering the market. One very promising solar cell design to answer these needs is the silicon hetero-junction solar cell, of which the emitter and back surface field are basically produced by a low temperature growth of ultra-thin layers of amorphous silicon. In this design, amorphous silicon (a-Si:H) constitutes both ''emitter'' and ''base-contact/back surface field'' on both sides of a thin crystalline silicon wafer-base (c-Si) where the photogenerated electrons and holes are generated; at the same time, a Si:H passivates the c-Si surface. Recently, cell efficiencies above 23% have been demonstrated for such solar cells. In this book, the editors present an overview of the state-of-the-art in physics and technology of amorphous-crystalline heterostructure silicon solar cells. (orig.)

  12. Plasma deposition of microcrystalline silicon solar cells. Looking beyond the glass

    Energy Technology Data Exchange (ETDEWEB)

    Donker, M.N. van den

    2006-07-01

    Microcrystalline silicon emerged in the past decade as highly interesting material for application in efficient and stable thin film silicon solar cells. It consists of nanometer-sized crystallites embedded in a micrometer-sized columnar structure, which gradually evolves during the SiH{sub 4} based deposition process starting from an amorphous incubation layer. Understanding of and control over this transient and multi-scale growth process is essential in the route towards low-cost microcrystalline silicon solar cells. This thesis presents an experimental study on the technologically relevant high rate (5-10 Aa s{sup -1}) parallel plate plasma deposition process of state-of-the-art microcrystalline silicon solar cells. The objective of the work was to explore and understand the physical limits of the plasma deposition process as well as to develop diagnostics suitable for process control in eventual solar cell production. Among the developed non-invasive process diagnostics were a pyrometer, an optical spectrometer, a mass spectrometer and a voltage probe. Complete thin film silicon solar cells and modules were deposited and characterized. (orig.)

  13. Non-classical crystallization of silicon thin films during hot wire chemical vapor deposition

    Science.gov (United States)

    Jung, Jae-Soo; Lee, Sang-Hoon; Kim, Da-Seul; Kim, Kun-Su; Park, Soon-Won; Hwang, Nong-Moon

    2017-01-01

    The deposition behavior of silicon films by hot wire chemical vapor deposition (HWCVD) was approached by non-classical crystallization, where the building block of deposition is a nanoparticle generated in the gas phase of the reactor. The puzzling phenomenon of the formation of an amorphous incubation layer on glass could be explained by the liquid-like property of small charged nanoparticles (CNPs), which are generated in the initial stage of the HWCVD process. Using the liquid-like property of small CNPs, homo-epitaxial growth as thick as 150 nm could be successfully grown on a silicon wafer at 600 °C under the processing condition where CNPs as small as possible could be supplied steadily by a cyclic process which periodically resets the process. The size of CNPs turned out to be an important parameter in the microstructure evolution of thin films.

  14. Amorphization of silicon by bombardment with oxygen ions of energy below 5 keV

    Energy Technology Data Exchange (ETDEWEB)

    Zhukovskii, P.V.; Stel' makh, V.F.; Tkachev, V.D.

    1977-04-01

    Silicon was bombarded with /sup 16/O/sup +/ ions of 1.0 and 3.0 keV energies at room temperature. This bombardment created point defects which joined up to form amorphous layers about 100 A thick. (AIP)

  15. Amorphous Silicon Position Detectors for the Link Alignment System of the CMS Detector: Users Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Calderon, A.; Gomez, G.; Gonzalez-Sanchez, F. J.; Martinez-Rivero, C.; Matorras, F.; Rodrigo, T.; Ruiz-Arbol, P.; Scodellaro, L.; Vila, I.; Virto, A. L.; Alberdi, J.; Arce, P.; Barcala, J.M.; Calvo, E.; Ferrando, A.; Josa, M. I.; Molinero, A.; Navarrete, J.; Oller, J. C.; Yuste, C.

    2007-07-01

    We present the general characteristics, calibration procedures and measured performance of the Amorphous Silicon Position Detectors installed in the Link Alignment System of the CMS Detector for laser beam detection and reconstruction and give the Data Base to be used as a Handbook during CMS operation. (Author) 10 refs.

  16. Four-wave mixing Bragg scattering in hydrogenated amorphous silicon waveguides.

    Science.gov (United States)

    Li, Kangmei; Sun, Hongcheng; Foster, Amy C

    2017-04-15

    We demonstrate 15% on-chip conversion efficiency of four-wave mixing Bragg scattering in a hydrogenated amorphous silicon waveguide with only 55 and 194 mW peak pump powers in the waveguide. The lightwaves can be maintained in the telecommunication band, and the operational bandwidth is measured to be larger than 4 nm.

  17. Light Entrapping, Modeling & Effect of Passivation on Amorphous Silicon Based PV Cell

    Directory of Open Access Journals (Sweden)

    Md. Mostafizur Rahman

    2016-07-01

    Full Text Available This research paper present efforts to enhance the performance of amorphous silicon p-i-n type solar cell using sidewall passivation. For sidewall passivation, MEMS insulation material Al2O3 was used. The main objective of this paper is to observe the effect of sidewall passivation in amorphous silicon solar cell and increase the conversion efficiency of the solar cell. Passivation of Al2O3 is found effective to subdue reverse leakage. It increases the electric potential generated in the designed solar cell. It also increases the current density generated in the solar cell by suppressing the leakage. Enhancement in J-V curve was observed after adding sidewall passivation. The short circuit current density (Jsc increased from 14.7 mA/cm2 to 18.5 mA/cm2, open circuit voltage (Voc improved from 0.87 V to 0.89 V, and the fill factor also slightly increased. Due to the sidewall of passivation of Al2O3, conversion efficiency of amorphous silicon solar cell increased by 29.07%. At the end, this research was a success to improve the efficiency of the amorphous silicon solar cell by adding sidewall passivation.

  18. Using amorphous silicon solar cells to boost the viability of luminescent solar concentrators

    NARCIS (Netherlands)

    Farrell, D.J.; van Sark, W.G.J.H.M.; Velthuijsen, S.; Schropp, R.E.I.

    2010-01-01

    We have, for the first time, designed and fabricated hydrogenated amorphous silicon solar cells to be used in conjunction with Luminescent Solar Concentrators (LSCs). LSCs are planar plastic sheets doped with organic dyes that absorb solar illumination and down shift the energy to narrowband

  19. Method of forming semiconducting amorphous silicon films from the thermal decomposition of fluorohydridodisilanes

    Science.gov (United States)

    Sharp, Kenneth G.; D'Errico, John J.

    1988-01-01

    The invention relates to a method of forming amorphous, photoconductive, and semiconductive silicon films on a substrate by the vapor phase thermal decomposition of a fluorohydridodisilane or a mixture of fluorohydridodisilanes. The invention is useful for the protection of surfaces including electronic devices.

  20. Results from multipoint alignment monitoring using the new generation of amorphous silicon position detectors

    Energy Technology Data Exchange (ETDEWEB)

    Alberdi, J.; Arce, P.; Barcala, J.M.; Calvo, E. [CIEMAT, 28040 Madrid (Spain); Ferrando, A. [CIEMAT, 28040 Madrid (Spain)], E-mail: antonio.ferrando@ciemat.es; Josa, M.I.; Molinero, A.; Navarrete, J.; Oller, J.C.; Yuste, C. [CIEMAT, 28040 Madrid (Spain); Calderon, A.; Gomez, G.; Gonzalez-Sanchez, F.J.; Martinez-Rivero, C.; Matorras, F.; Rodrigo, T.; Ruiz-Arbol, P.; Sobron, M.; Vila, I.; Virto, A.L. [Instituto de Fisica de Cantabria (IFCA), CSIC-University of Cantabria Santander (Spain)] (and others)

    2008-08-11

    We present the measured performance of a new generation of large sensitive area (28x28 mm{sup 2}) semitransparent amorphous silicon position detector sensors. More than 100 units have been characterized. They show a very high performance. To illustrate a multipoint application, we present results from the monitoring of five sensors placed in a 5.5-m-long light path.

  1. Multipoint alignment monitoring with amorphous silicon position detectors in a complex light path

    Energy Technology Data Exchange (ETDEWEB)

    Alberdi, J.; Arce, P.; Barcala, J.M.; Calvo, E. [CIEMAT, Madrid (Spain); Ferrando, A., E-mail: antonio.ferrando@ciemat.e [CIEMAT, Madrid (Spain); Josa, M.I.; Molinero, A.; Navarrete, J.; Oller, J.C.; Yuste, C. [CIEMAT, Madrid (Spain); Calderon, A.; Gomez, G.; Gonzalez-Sanchez, F.J.; Martinez-Rivero, C.; Matorras, F.; Rodrigo, T.; Ruiz-Arbol, P.; Sobron, M.; Vila, I.; Virto, A.L. [Instituto de Fisica de Cantabria. CSIC-University of Cantabria, Santander (Spain)

    2010-12-01

    This document presents an application of the new generation of amorphous silicon position detecting (ASPD) sensors to multipoint alignment. Twelve units are monitored along a 20 m long laser beam, where the light path is deflected by 90{sup o} using a pentaprism.

  2. Construction process and read-out electronics of amorphous silicon position detectors for multipoint alignment monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Koehler, C.; Schubert, M.B.; Lutz, B.; Werner, J.H. [Steinbeis-Transferzentrum fuer Angewandte Photovoltaik und Duennschichttechnik, Stuttgart (Germany); Alberdi, J.; Arce, P.; Barcala, J.M.; Calvo, E. [CIEMAT, Madrid (Spain); Ferrando, A. [CIEMAT, Madrid (Spain)], E-mail: antonio.ferrando@ciemat.es; Josa, M.I.; Molinero, A.; Navarrete, J.; Oller, J.C.; Yuste, C. [CIEMAT, Madrid (Spain); Calderon, A.; Fernandez, M.G.; Gomez, G.; Gonzalez-Sanchez, F.J.; Martinez-Rivero, C.; Matorras, F. [Instituto de Fisica de Cantabria IFCA/CSIC-University of Cantabria, Santander (Spain)] (and others)

    2009-09-01

    We describe the construction process of large-area high-performance transparent amorphous silicon position detecting sensors. Details about the characteristics of the associated local electronic board (LEB), specially designed for these sensors, are given. In addition we report on the performance of a multipoint alignment monitoring application of 12 sensors in a 13 m long light path.

  3. Thermal ideality factor of hydrogenated amorphous silicon p-i-n solar cells

    NARCIS (Netherlands)

    Kind, R.; Van Swaaij, R.A.C.M.M.; Rubinelli, F.A.; Solntsev, S.; Zeman, M.

    2011-01-01

    The performance of hydrogenated amorphous silicon (a-Si:H) p-i-n solar cells is limited, as they contain a relatively high concentration of defects. The dark current voltage (JV) characteristics at low forward voltages of these devices are dominated by recombination processes. The recombination rate

  4. A comparison of degradation in three amorphous silicon PV module technologies

    Energy Technology Data Exchange (ETDEWEB)

    Radue, C.; van Dyk, E.E. [Physics Department, PO Box 77000, Nelson Mandela Metropolitan University, Port Elizabeth 6031 (South Africa)

    2010-03-15

    Three commercial amorphous silicon modules manufactured by monolithic integration and consisting of three technology types were analysed in this study. These modules were deployed outdoors for 14 months and underwent degradation. All three modules experienced the typical light-induced degradation (LID) described by the Staebler-Wronski effect, and this was followed by further degradation. A 14 W single junction amorphous silicon module degraded by about 45% of the initial measured maximum power output (P{sub MAX}) at the end of the study. A maximum of 30% of this has been attributed to LID and the further 15% to cell mismatch and cell degradation. The other two modules, a 64 W triple junction amorphous silicon module, and a 68 W flexible triple junction amorphous silicon module, exhibited LID followed by seasonal variation in the degraded P{sub MAX}. The 64 W module showed a maximum degradation in P{sub MAX} of about 22%. This is approximately 4% more than the manufacturer allowed for the initial LID. However, the seasonal variation in P{sub MAX} seems to be centred around the manufacturer's rating ({+-}4%). The 68 W flexible module has shown a maximum decrease in P{sub MAX} of about 27%. This decrease is about 17% greater than the manufacturer allowed for the initial LID. (author)

  5. Friction and wear behavior of electrodeposited amorphous Fe-Co-W alloy deposits

    Institute of Scientific and Technical Information of China (English)

    何凤姣; 雷惊天; 陆欣; 黄宇宁

    2004-01-01

    The microstructures, friction and wear behavior under dry sliding condition of electrodeposited amorphous Fe-Co-W alloy deposits heat treated at different temperatures were studied. A comparative study of hard chrome deposit under the same testing condition was also made. The experimental results show that the hardness and wear resistance of amorphous Fe-Co-W alloy deposits are improved with the increasing of heat treatment temperature, and reach the maximum value at 800 ℃, then decrease above 800 ℃. Under 40 N load, the wear resistance properties of the alloy deposits heat treated at 800 ℃ are superior to those of hard chrome deposit. The main wear mechanisms of amorphous Fe-Co-W alloy deposits heat treated below 600 ℃ are peeling, plastic and flowing deformation; when the deposits are heat treated above 700 ℃, they are plastic and flowing deformation. While the main wear mechanisms of hard chrome are abrasive wear, fatigue and peeling.

  6. Modelling the structure factors and pair distribution functions of amorphous germanium, silicon and carbon

    Energy Technology Data Exchange (ETDEWEB)

    Dalgic, Seyfettin; Gonzalez, Luis Enrique; Baer, Shalom; Silbert, Moises

    2002-12-01

    We present the results of calculations of the static structure factor S(k) and the pair distribution function g(r) of the tetrahedral amorphous semiconductors germanium, silicon and carbon using the structural diffusion model (SDM). The results obtained with the SDM for S(k) and g(r) are of comparable quality with those obtained by the unconstrained Reverse Monte Carlo simulations and existing ab initio molecular dynamics simulations for these systems. We have found that g(r) exhibits a small peak, or shoulder, a weak remnant of the prominent third neighbour peak present in the crystalline phase of these systems. This feature has been experimentally found to be present in recently reported high energy X-ray experiments of amorphous silicon (Phys. Rev. B 60 (1999) 13520), as well as in the previous X-ray diffraction of as-evaporated amorphous germanium (Phys. Rev. B 50 (1994) 539)

  7. Purification and deposition of silicon by an iodide disproportionation reaction

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Tihu (Littleton, CO); Ciszek, Theodore F. (Evergreen, CO)

    2002-01-01

    Method and apparatus for producing purified bulk silicon from highly impure metallurgical-grade silicon source material at atmospheric pressure. Method involves: (1) initially reacting iodine and metallurgical-grade silicon to create silicon tetraiodide and impurity iodide byproducts in a cold-wall reactor chamber; (2) isolating silicon tetraiodide from the impurity iodide byproducts and purifying it by distillation in a distillation chamber; and (3) transferring the purified silicon tetraiodide back to the cold-wall reactor chamber, reacting it with additional iodine and metallurgical-grade silicon to produce silicon diiodide and depositing the silicon diiodide onto a substrate within the cold-wall reactor chamber. The two chambers are at atmospheric pressure and the system is open to allow the introduction of additional source material and to remove and replace finished substrates.

  8. Crystalline-Amorphous Core−Shell Silicon Nanowires for High Capacity and High Current Battery Electrodes

    KAUST Repository

    Cui, Li-Feng

    2009-01-14

    Silicon is an attractive alloy-type anode material for lithium ion batteries because of its highest known capacity (4200 mAh/g). However silicon\\'s large volume change upon lithium insertion and extraction, which causes pulverization and capacity fading, has limited its applications. Designing nanoscale hierarchical structures is a novel approach to address the issues associated with the large volume changes. In this letter, we introduce a core-shell design of silicon nanowires for highpower and long-life lithium battery electrodes. Silicon crystalline- amorphous core-shell nanowires were grown directly on stainless steel current collectors by a simple one-step synthesis. Amorphous Si shells instead of crystalline Si cores can be selected to be electrochemically active due to the difference of their lithiation potentials. Therefore, crystalline Si cores function as a stable mechanical support and an efficient electrical conducting pathway while amorphous shells store Li ions. We demonstrate here that these core-shell nanowires have high charge storage capacity (̃1000 mAh/g, 3 times of carbon) with ̃90% capacity retention over 100 cycles. They also show excellent electrochemical performance at high rate charging and discharging (6.8 A/g, ̃20 times of carbon at 1 h rate). © 2009 American Chemical Society.

  9. Amorphous Silicon Carbide Passivating Layers to Enable Higher Processing Temperature in Crystalline Silicon Heterojunction Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Boccard, Mathieu [Arizona State Univ., Mesa, AZ (United States); Holman, Zachary [Arizona State Univ., Mesa, AZ (United States)

    2015-04-06

    "Very efficient crystalline silicon (c-Si) solar cells have been demonstrated when thin layers of intrinsic and doped hydrogenated amorphous silicon (a-Si:H) are used for passivation and carrier selectivity in a heterojunction device. One limitation of this device structure is the (parasitic) absorption in the front passivation/collection a-Si:H layers; another is the degradation of the a-Si:H-based passivation upon temperature, limiting the post-processes to approximately 200°C thus restricting the contacting possibilities and potential tandem device fabrication. To alleviate these two limitations, we explore the potential of amorphous silicon carbide (a-SiC:H), a widely studied material in use in standard a-Si:H thin-film solar cells, which is known for its wider bandgap, increased hydrogen content and stronger hydrogen bonding compared to a-Si:H. We study the surface passivation of solar-grade textured n-type c-Si wafers for symmetrical stacks of 10-nm-thick intrinsic a-SiC:H with various carbon content followed by either p-doped or n-doped a-Si:H (referred to as i/p or i/n stacks). For both doping types, passivation (assessed through carrier lifetime measurements) is degraded by increasing the carbon content in the intrinsic a-SiC:H layer. Yet, this hierarchy is reversed after annealing at 350°C or more due to drastic passivation improvements upon annealing when an a-SiC:H layer is used. After annealing at 350°C, lifetimes of 0.4 ms and 2.0 ms are reported for i/p and i/n stacks, respectively, when using an intrinsic a-SiC:H layer with approximately 10% of carbon (initial lifetimes of 0.3 ms and 0.1 ms, respectively, corresponding to a 30% and 20-fold increase, respectively). For stacks of pure a-Si:H material the lifetimes degrade from 1.2 ms and 2.0 ms for i/p and i/n stacks, respectively, to less than 0.1 ms and 1.1 ms (12-fold and 2-fold decrease, respectively). For complete solar cells using pure a-Si:H i/p and i/n stacks, the open-circuit voltage (Voc

  10. AMORPHOUS SILICON ELECTRONIC STRUCTURE MODELING AND BASIC ELECTRO-PHYSICAL PARAMETERS CALCULATION

    Directory of Open Access Journals (Sweden)

    B. A. Golodenko

    2014-01-01

    Full Text Available Summary. The amorphous semiconductor has any unique processing characteristics and it is perspective material for electronic engineering. However, we have not authentic information about they atomic structure and it is essential knot for execution calculation they electronic states and electro physical properties. The author's methods give to us decision such problem. This method allowed to calculation the amorphous silicon modeling cluster atomics Cartesian coordinates, determined spectrum and density its electronic states and calculation the basics electro physical properties of the modeling cluster. At that determined numerical means of the energy gap, energy Fermi, electron concentration inside valence and conduction band for modeling cluster. The find results provides real ability for purposeful control to type and amorphous semiconductor charge carriers concentration and else provides relation between atomic construction and other amorphous substance physical properties, for example, heat capacity, magnetic susceptibility and other thermodynamic sizes.

  11. Optimization of process parameters in a large-area hot-wire CVD reactor for the deposition of amorphous silicon (a-Si:H) for solar cell application with highly uniform material quality

    Energy Technology Data Exchange (ETDEWEB)

    Pflueger, A.; Mukherjee, C.; Schroeder, B. [Department of Physics, Center of Materials Science, University of Kaiserslautern, P.O. Box 3049, D-67653 Kaiserslautern (Germany)

    2002-07-01

    Scale-up of a-Si:H-based thin film applications such as solar cells, entirely or partly prepared by hot-wire chemical vapor deposition (HWCVD), requires research on the deposition process in a large-area HWCVD system. The influence of gas supply and filament geometry on thickness uniformity has already been reported, but their influence on material quality is systematically studied for the first time. The optimization of deposition parameters for obtaining best material quality in our large-area HWCVD system resulted in an optimum filament temperature, T{sub fil}{approx}1600C, pressure, p=8mTorr and silane flow, F(SiH{sub 4})=100sccm, keeping the substrate temperature at T{sub S}=200C. A special gas supply (gas shower with tiny holes of uniform size) and a filament grid, consisting of six filaments with an interfilament distance, d{sub fil}=4cm were used. The optimum filament-to-substrate distance was found to be d{sub fil-S}=8.4cm. While studying the influence of different d{sub fil} and gas supply configurations on the material quality, the above-mentioned setup and parameters yield best results for both uniformity and material quality. With the setup mentioned, we could achieve device quality a-Si:H films with a thickness uniformity of {+-}2.5% on a circular area of 20cm in diameter. The material, grown at a deposition rate of r{sub d}{approx}4A/s, was characterized on nine positions of the 30cmx30cm substrate area, and revealed reasonable uniformity of the opto-electronic properties, e.g photosensitivity, {sigma}{sub Ph}/{sigma}{sub D}=(2.46{+-}0.7)x10{sup 5}, microstructure factor, R=0.17{+-}0.05, defect densities, N{sub d(PDS)}=(2.06{+-}0.6)x10{sup 17}cm{sup -3} and N{sub d(CPM)}=(2.05{+-}0.5)x10{sup 16}cm{sup -3} (film properties are given as mean values and standard deviations). Finally, we fabricated pin solar cells, with the i-layer deposited on small-area p-substrates distributed over an area of 20cmx20cm in this large-area deposition system, and

  12. Amorphous Silicon Single-Junction Thin-Film Solar Cell Exceeding 10% Efficiency by Design Optimization

    Directory of Open Access Journals (Sweden)

    Mohammed Ikbal Kabir

    2012-01-01

    Full Text Available The conversion efficiency of a solar cell can substantially be increased by improved material properties and associated designs. At first, this study has adopted AMPS-1D (analysis of microelectronic and photonic structures simulation technique to design and optimize the cell parameters prior to fabrication, where the optimum design parameters can be validated. Solar cells of single junction based on hydrogenated amorphous silicon (a-Si:H have been analyzed by using AMPS-1D simulator. The investigation has been made based on important model parameters such as thickness, doping concentrations, bandgap, and operating temperature and so forth. The efficiency of single junction a-Si:H can be achieved as high as over 19% after parametric optimization in the simulation, which might seem unrealistic with presently available technologies. Therefore, the numerically designed and optimized a-SiC:H/a-SiC:H-buffer/a-Si:H/a-Si:H solar cells have been fabricated by using PECVD (plasma-enhanced chemical vapor deposition, where the best initial conversion efficiency of 10.02% has been achieved ( V,  mA/cm2 and for a small area cell (0.086 cm2. The quantum efficiency (QE characteristic shows the cell’s better spectral response in the wavelength range of 400 nm–650 nm, which proves it to be a potential candidate as the middle cell in a-Si-based multijunction structures.

  13. Low-level boron doping and light-induced effects in amorphous silicon pin solar cells

    Science.gov (United States)

    Moeller, M.; Rauscher, B.; Kruehler, W.; Plaettner, R.; Pfleiderer, H.

    Amorphous silicon solar cells with the structure pin/ITO produced in the laboratory show an AM1 efficiency of up to 7.4 percent on 6 sq mm. The impact of doping the i-layer slightly with boron on the cell performance was studied together with its possible influence on the cell stability. Cells exposed to continuous AM1 illumination (up to 2000 hours) show a degradation of the efficiency. Differences in the bias-voltage during the deposition lead to significant differences in the stability whereas the influence of boron doping was not so prominent. The nu-tau-products for electrons and holes were shown to degrade differently through light-soaking for different doping-level. A further investigation was made by evaluating the frequency dependence of the capacitance via a new p i n junction model to obtain the density of states and the drift field in the i-layer for doping and light-soaking.

  14. Electric properties of undoped hydrogenated amorphous silicon semiconductors irradiated with self-ions

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Shin-ichiro, E-mail: sato.shinichiro@jaea.go.jp [Japan Atomic Energy Agency (JAEA), 1233 Watanuki, Takasaki, Gunma 370-1292 (Japan); Sai, Hitoshi [National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568 (Japan); Ohshima, Takeshi [Japan Atomic Energy Agency (JAEA), 1233 Watanuki, Takasaki, Gunma 370-1292 (Japan); Imaizumi, Mitsuru; Shimazaki, Kazunori [Japan Aerospace Exploration Agency (JAXA), 2-1-1 Sengen, Tsukuba, Ibaraki 305-8505 (Japan); Kondo, Michio [National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568 (Japan)

    2012-08-15

    This paper reports dark conductivity (DC), photoconductivity (PC), and Seebeck coefficient variations of undoped hydrogenated amorphous silicon semiconductors irradiated with protons and Si ions. Both the DC and PC values show nonmonotonic variations with increasing a fluence in the case of proton irradiation, whereas the monotonic decreases are observed in the case of Si ion irradiation. From results of the Seebeck coefficient variation due to proton irradiation, it is shown that the increase in DC and PC in the low fluence regime is caused by donor-center generation. Also, it is shown by analyzing the proton energy dependence and the energy deposition process that the donor-center generation is based on the electronic excitation effect. On the other hand, the decrease in DC and PC in the high fluence regime is attributed to the carrier removal effect and the carrier lifetime decrease due to the accumulation of dangling bonds, respectively. The dangling bond generation due to ion irradiation is mainly caused by the displacement damage effect and therefore it is different from the generation process in the Staebler-Wronski effect.

  15. Ultrafast optical control using the Kerr nonlinearity in hydrogenated amorphous silicon microcylindrical resonators

    Science.gov (United States)

    Vukovic, N.; Healy, N.; Suhailin, F. H.; Mehta, P.; Day, T. D.; Badding, J. V.; Peacock, A. C.

    2013-10-01

    Microresonators are ideal systems for probing nonlinear phenomena at low thresholds due to their small mode volumes and high quality (Q) factors. As such, they have found use both for fundamental studies of light-matter interactions as well as for applications in areas ranging from telecommunications to medicine. In particular, semiconductor-based resonators with large Kerr nonlinearities have great potential for high speed, low power all-optical processing. Here we present experiments to characterize the size of the Kerr induced resonance wavelength shifting in a hydrogenated amorphous silicon resonator and demonstrate its potential for ultrafast all-optical modulation and switching. Large wavelength shifts are observed for low pump powers due to the high nonlinearity of the amorphous silicon material and the strong mode confinement in the microcylindrical resonator. The threshold energy for switching is less than a picojoule, representing a significant step towards advantageous low power silicon-based photonic technologies.

  16. The multilayered structure of ultrathin amorphous carbon films synthesized by filtered cathodic vacuum arc deposition

    KAUST Repository

    Wang, Na

    2013-08-01

    The structure of ultrathin amorphous carbon (a-C) films synthesized by filtered cathodic vacuum arc (FCVA) deposition was investigated by high-resolution transmission electron microscopy, electron energy loss spectroscopy, and x-ray photoelectron spectroscopy. Results of the plasmon excitation energy shift and through-thickness elemental concentration show a multilayered a-C film structure comprising an interface layer consisting of C, Si, and, possibly, SiC, a buffer layer with continuously increasing sp 3 fraction, a relatively thicker layer (bulk film) of constant sp 3 content, and an ultrathin surface layer rich in sp 2 hybridization. A detailed study of the C K-edge spectrum indicates that the buffer layer between the interface layer and the bulk film is due to the partial backscattering of C+ ions interacting with the heavy atoms of the silicon substrate. The results of this study provide insight into the minimum thickness of a-C films deposited by FCVA under optimum substrate bias conditions. Copyright © 2013 Materials Research Society.

  17. Sub-amorphous thermal conductivity in ultrathin crystalline silicon nanotubes.

    Science.gov (United States)

    Wingert, Matthew C; Kwon, Soonshin; Hu, Ming; Poulikakos, Dimos; Xiang, Jie; Chen, Renkun

    2015-04-08

    Thermal transport behavior in nanostructures has become increasingly important for understanding and designing next generation electronic and energy devices. This has fueled vibrant research targeting both the causes and ability to induce extraordinary reductions of thermal conductivity in crystalline materials, which has predominantly been achieved by understanding that the phonon mean free path (MFP) is limited by the characteristic size of crystalline nanostructures, known as the boundary scattering or Casimir limit. Herein, by using a highly sensitive measurement system, we show that crystalline Si (c-Si) nanotubes (NTs) with shell thickness as thin as ∼5 nm exhibit a low thermal conductivity of ∼1.1 W m(-1) K(-1). Importantly, this value is lower than the apparent boundary scattering limit and is even about 30% lower than the measured value for amorphous Si (a-Si) NTs with similar geometries. This finding diverges from the prevailing general notion that amorphous materials represent the lower limit of thermal transport but can be explained by the strong elastic softening effect observed in the c-Si NTs, measured as a 6-fold reduction in Young's modulus compared to bulk Si and nearly half that of the a-Si NTs. These results illustrate the potent prospect of employing the elastic softening effect to engineer lower than amorphous, or subamorphous, thermal conductivity in ultrathin crystalline nanostructures.

  18. A Comparison of Photo-Induced Hysteresis Between Hydrogenated Amorphous Silicon and Amorphous IGZO Thin-Film Transistors.

    Science.gov (United States)

    Ha, Tae-Jun; Cho, Won-Ju; Chung, Hong-Bay; Koo, Sang-Mo

    2015-09-01

    We investigate photo-induced instability in thin-film transistors (TFTs) consisting of amorphous indium-gallium-zinc-oxide (a-IGZO) as active semiconducting layers by comparing with hydrogenated amorphous silicon (a-Si:H). An a-IGZO TFT exhibits a large hysteresis window in the illuminated measuring condition but no hysteresis window in the dark condition. On the contrary, a large hysteresis window measured in the dark condition in a-Si:H was not observed in the illuminated condition. Even though such materials possess the structure of amorphous phase, optical responses or photo instability in TFTs looks different from each other. Photo-induced hysteresis results from initially trapped charges at the interface between semiconductor and dielectric films or in the gate dielectric which possess absorption energy to interact with deep trap-states and affect the movement of Fermi energy level. In order to support our claim, we also perform CV characteristics in photo-induced hysteresis and demonstrate thermal-activated hysteresis. We believe that this work can provide important information to understand different material systems for optical engineering which includes charge transport and band transition.

  19. INFLUENCE OF THE SILICON INTERLAYER ON DIAMOND-LIKE CARBON FILMS DEPOSITED ON GLASS SUBSTRATES

    Directory of Open Access Journals (Sweden)

    Deiler Antonio Lima Oliveira

    2012-06-01

    Full Text Available Diamond-like carbon (DLC films as a hard protective coating have achieved great success in a diversity of technological applications. However, adhesion of DLC films to substrates can restrict their applications. The influence of a silicon interlayer in order to improve DLC adhesion on glass substrates was investigated. Amorphous silicon interlayer and DLC films were deposited using plasma enhanced chemical vapor deposition from silane and methane, respectively. The bonding structure, transmittance, refraction index, and adherence of the films were also evaluated regarding the thickness of the silicon interlayer. Raman scattering spectroscopy did not show any substantial difference in DLC structure due to the interlayer thickness of the silicon. Optical measurements showed a sharp decrease of transmittance in the ultra-violet region caused by the fundamental absorption of the light. In addition, the absorption edge of transmittance shifted toward longer wavelength side in the ultra-violet region as the thickness of the silicon interlayer increased. The tribological results showed an increase of DLC adherence as the silicon interlayer increased, which was characterized by less cracks around the grooves.

  20. Reactive Infiltration of Silicon Melt Through Microporous Amorphous Carbon Preforms

    Science.gov (United States)

    Sangsuwan, P.; Tewari, S. N.; Gatica, J. E.; Singh, M.; Dickerson, R.

    1999-01-01

    The kinetics of unidirectional capillary infiltration of silicon melt into microporous carbon preforms have been investigated as a function of the pore morphology and melt temperature. The infiltrated specimens showed alternating bands of dark and bright regions, which corresponded to the unreacted free carbon and free silicon regions, respectively. The decrease in the infiltration front velocity for increasing infiltration distances, is in qualitative agreement with the closed-form solution of capillarity driven fluid flow through constant cross section cylindrical pores. However, drastic changes in the thermal response and infiltration front morphologies were observed for minute differences in the preforms microstructure. This suggests the need for a dynamic percolation model that would account for the exothermic nature of the silicon-carbon chemical reaction and the associated pore closing phenomenon.

  1. High hydrogen dilution and low substrate temperature cause columnar growth of hydrogenated amorphous silicon

    Energy Technology Data Exchange (ETDEWEB)

    Bronsveld, Paula C.P.; Rath, Jatindra K.; Schropp, Ruud E.I. [Debye Institute for Nanomaterials Science, Nanophotonics - Physics of Devices, Utrecht University, P.O. Box 80000, 3508 TA Utrecht (Netherlands); Mates, Tomas; Fejfar, Antonin; Kocka, Jan [Institute of Physics, Academy of Sciences of the Czech Republic, Cukrovarnicka 10, 162 53 Praha 6 (Czech Republic)

    2010-03-15

    Columnar growth was observed in the amorphous part of mixed phase layers deposited at very low substrate temperatures. The width of the columns and the layer thickness at which they are first distinguishable in a cross-sectional transmission electron microscope (X-TEM) image, about 120 nm, is similar for the substrate temperature range of 40-100 C, but the columns are less well developed when either the substrate temperature is increased or the dilution ratio is lowered. This growth behaviour and the incubation layer are attributed to hydrogen-induced surface diffusion of growth precursors resulting in an amorphous-amorphous roughness transition. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  2. Development of an SU-8 MEMS process with two metal electrodes using amorphous silicon as a sacrificial material

    KAUST Repository

    Ramadan, Khaled S.

    2013-02-08

    This work presents an SU-8 surface micromachining process using amorphous silicon as a sacrificial material, which also incorporates two metal layers for electrical excitation. SU-8 is a photo-patternable polymer that is used as a structural layer for MEMS and microfluidic applications due to its mechanical properties, biocompatibility and low cost. Amorphous silicon is used as a sacrificial layer in MEMS applications because it can be deposited in large thicknesses, and can be released in a dry method using XeF2, which alleviates release-based stiction problems related to MEMS applications. In this work, an SU-8 MEMS process was developed using ;-Si as a sacrificial layer. Two conductive metal electrodes were integrated in this process to allow out-of-plane electrostatic actuation for applications like MEMS switches and variable capacitors. In order to facilitate more flexibility for MEMS designers, the process can fabricate dimples that can be conductive or nonconductive. Additionally, this SU-8 process can fabricate SU-8 MEMS structures of a single layer of two different thicknesses. Process parameters were optimized for two sets of thicknesses: thin (5-10 m) and thick (130 m). The process was tested fabricating MEMS switches, capacitors and thermal actuators. © 2013 IOP Publishing Ltd.

  3. Optimization of Recombination Layer in the Tunnel Junction of Amorphous Silicon Thin-Film Tandem Solar Cells

    Directory of Open Access Journals (Sweden)

    Yang-Shin Lin

    2011-01-01

    Full Text Available The amorphous silicon/amorphous silicon (a-Si/a-Si tandem solar cells have attracted much attention in recent years, due to the high efficiency and low manufacturing cost compared to the single-junction a-Si solar cells. In this paper, the tandem cells are fabricated by high-frequency plasma-enhanced chemical vapor deposition (HF-PECVD at 27.1 MHz. The effects of the recombination layer and the i-layer thickness matching on the cell performance have been investigated. The results show that the tandem cell with a p+ recombination layer and i2/i1 thickness ratio of 6 exhibits a maximum efficiency of 9.0% with the open-circuit voltage (Voc of 1.59 V, short-circuit current density (Jsc of 7.96 mA/cm2, and a fill factor (FF of 0.70. After light-soaking test, our a-Si/a-Si tandem cell with p+ recombination layer shows the excellent stability and the stabilized efficiency of 8.7%.

  4. Large Polycrystalline Silicon Grains Prepared by Excimer Laser Crystallization of Sputtered Amorphous Silicon Film with Process Temperature at 100 °C

    Science.gov (United States)

    He, Ming; Ishihara, Ryoichi; Neihof, Ellen J. J.; van Andel, Yvonne; Schellevis, Hugo; Metselaar, Wim; Beenakker, Kees

    2007-03-01

    Large polycrystalline silicon (poly-Si) grains with a diameter of 1.8 μm are successfully prepared by excimer laser crystallization (ELC) of a sputtered amorphous silicon (α-Si) film at a maximum process temperature of 100 °C. By pulsed DC magnetron sputtering, α-Si is deposited on a non-structured oxidized wafer. It is found that the α-Si film deposited with a bias is easily ablated during ELC, even at an energy density below the super lateral growth (SLG) region. However, the α-Si film deposited without a bias can endure an energy density well beyond the SLG region without ablation. This zero-bias sputtered α-Si film with a high compressive stress has a low Ar content and a high density, which is beneficial for the suppression of ablation. Large grains with a petal-like shape can be obtained in a wide energy density window, which can be a result from some fine crystallites in the α-Si matrix. These large grains with a low process temperature are promising for the direct formation of system circuits as well as a high-quality display on a plastic foil.

  5. Unusually High and Anisotropic Thermal Conductivity in Amorphous Silicon Nanostructures.

    Science.gov (United States)

    Kwon, Soonshin; Zheng, Jianlin; Wingert, Matthew C; Cui, Shuang; Chen, Renkun

    2017-03-28

    Amorphous Si (a-Si) nanostructures are ubiquitous in numerous electronic and optoelectronic devices. Amorphous materials are considered to possess the lower limit to the thermal conductivity (κ), which is ∼1 W·m(-1) K(-1) for a-Si. However, recent work suggested that κ of micrometer-thick a-Si films can be greater than 3 W·m(-1) K(-1), which is contributed to by propagating vibrational modes, referred to as "propagons". However, precise determination of κ in a-Si has been elusive. Here, we used structures of a-Si nanotubes and suspended a-Si films that enabled precise in-plane thermal conductivity (κ∥) measurement within a wide thickness range of 5 nm to 1.7 μm. We showed unexpectedly high κ∥ in a-Si nanostructures, reaching ∼3.0 and 5.3 W·m(-1) K(-1) at ∼100 nm and 1.7 μm, respectively. Furthermore, the measured κ∥ is significantly higher than the cross-plane κ on the same films. This unusually high and anisotropic thermal conductivity in the amorphous Si nanostructure manifests the surprisingly broad propagon mean free path distribution, which is found to range from 10 nm to 10 μm, in the disordered and atomically isotropic structure. This result provides an unambiguous answer to the century-old problem regarding mean free path distribution of propagons and also sheds light on the design and performance of numerous a-Si based electronic and optoelectronic devices.

  6. Ionizing Energy Depositions After Fast Neutron Interactions in Silicon

    CERN Document Server

    Bergmann, Benedikt; Caicedo, Ivan; Kierstead, James; Takai, Helio; Frojdh, Erik

    2016-01-01

    In this study we present the ionizing energy depositions in a 300 μm thick silicon layer after fast neutron impact. With the Time-of-Flight (ToF) technique, the ionizing energy deposition spectra of recoil silicons and secondary charged particles were assigned to (quasi-)monoenergetic neutron energies in the range from 180 keV to hundreds of MeV. We show and interpret representative measured energy spectra. By separating the ionizing energy losses of the recoil silicon from energy depositions by products of nuclear reactions, the competition of ionizing (IEL) and non-ionizing energy losses (NIEL) of a recoil silicon within the silicon lattice was investigated. The data give supplementary information to the results of a previous measurement and are compared with different theoretical predictions.

  7. Silicon nitride and intrinsic amorphous silicon double antireflection coatings for thin-film solar cells on foreign substrates

    Energy Technology Data Exchange (ETDEWEB)

    Li, Da; Kunz, Thomas [Bavarian Center for Applied Energy Research (ZAE Bayern), Division: Photovoltaics and Thermosensoric, Haberstr. 2a, 91058 Erlangen (Germany); Wolf, Nadine [Bavarian Center for Applied Energy Research (ZAE Bayern), Division: Energy Efficiency, Am Galgenberg 87, 97074 Wuerzburg (Germany); Liebig, Jan Philipp [Materials Science and Engineering, Institute I, University of Erlangen-Nuremberg, Martensstr. 5, 91058 Erlangen (Germany); Wittmann, Stephan; Ahmad, Taimoor; Hessmann, Maik T.; Auer, Richard [Bavarian Center for Applied Energy Research (ZAE Bayern), Division: Photovoltaics and Thermosensoric, Haberstr. 2a, 91058 Erlangen (Germany); Göken, Mathias [Materials Science and Engineering, Institute I, University of Erlangen-Nuremberg, Martensstr. 5, 91058 Erlangen (Germany); Brabec, Christoph J. [Bavarian Center for Applied Energy Research (ZAE Bayern), Division: Photovoltaics and Thermosensoric, Haberstr. 2a, 91058 Erlangen (Germany); Institute of Materials for Electronics and Energy Technology, University of Erlangen-Nuremberg, Martensstr. 7, 91058 Erlangen (Germany)

    2015-05-29

    Hydrogenated intrinsic amorphous silicon (a-Si:H) was investigated as a surface passivation method for crystalline silicon thin film solar cells on graphite substrates. The results of the experiments, including quantum efficiency and current density-voltage measurements, show improvements in cell performance. This improvement is due to surface passivation by an a-Si:H(i) layer, which increases the open circuit voltage and the fill factor. In comparison with our previous work, we have achieved an increase of 0.6% absolute cell efficiency for a 40 μm thick 4 cm{sup 2} aperture area on the graphite substrate. The optical properties of the SiN{sub x}/a-Si:H(i) stack were studied using spectroscopic ellipsometer techniques. Scanning transmission electron microscopy inside a scanning electron microscope was applied to characterize the cross section of the SiN{sub x}/a-Si:H(i) stack using focus ion beam preparation. - Highlights: • We report a 10.8% efficiency for thin-film silicon solar cell on graphite. • Hydrogenated intrinsic amorphous silicon was applied for surface passivation. • SiN{sub x}/a-Si:H(i) stacks were characterized by spectroscopic ellipsometer techniques. • Cross-section micrograph was obtained by scanning transmission electron microscopy. • Quantum efficiency and J-V measurements show improvements in the cell performance.

  8. Exploring the deposition of oxides on silicon for photovoltaic cells by pulsed laser deposition

    NARCIS (Netherlands)

    Doeswijk, Lianne M.; Moor, de Hugo H.C.; Rogalla, Horst; Blank, Dave H.A.

    2002-01-01

    Since most commercially available solar cells are still made from silicon, we are exploring the introduction of passivating qualities in oxides, with the potential to serve as an antireflection coating. Pulsed laser deposition (PLD) was used to deposit TiO2 and SrTiO3 coatings on silicon substrates.

  9. Innovative Characterization of Amorphous and Thin-Film Silicon for Improved Module Performance: 1 February 2005 - 31 July 2008

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, P. C.; Williams, G. A.

    2009-09-01

    Electron spin resonance and nuclear magnetic resonance was done on amorphous silicon samples (modules with a-Si:H and a-SixGe1-x:H intrinsic layer) to study defects that contribute to Staebler-Wronski effect.

  10. Modeling the Crystallization of Amorphous Silicon Thin Films Using a High Repetition Rate Scanning Laser

    Directory of Open Access Journals (Sweden)

    R. Černý

    2000-01-01

    Full Text Available An optimum design of experimental setup for the preparation of polycrystalline silicon (pc-Si films from amorphous layers applicable in the solar cell production is analyzed in the paper. In the computational simulations, the influence of basic characteristic parameters of the experimental procedure on the mechanisms of pc-Si lateral growth is studied. Among these parameters, the energy density of the applied laser and the thickness of the amorphous silicon (a-Si layer are identified as the most significant. As an optimum solution, the mechanism of pc-Si growth consisting in repeated melting of a part of already crystallized pc-Si layer by the scanning laser is proposed.

  11. Highly efficient ultrathin-film amorphous silicon solar cells on top of imprinted periodic nanodot arrays

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Wensheng, E-mail: yws118@gmail.com; Gu, Min, E-mail: mgu@swin.edu.au [Centre for Micro-Photonics, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, Victoria 3122 (Australia); Tao, Zhikuo [College of Electronic Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023 (China); Ong, Thiam Min Brian [Plasma Sources and Application Center, NIE, Nanyang Technological University, 1 Nanyang Walk, Singapore 637616 (Singapore); Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 3 Research Link, Singapore 117602 (Singapore)

    2015-03-02

    The addressing of the light absorption and conversion efficiency is critical to the ultrathin-film hydrogenated amorphous silicon (a-Si:H) solar cells. We systematically investigate ultrathin a-Si:H solar cells with a 100 nm absorber on top of imprinted hexagonal nanodot arrays. Experimental evidences are demonstrated for not only notable silver nanodot arrays but also lower-cost ITO and Al:ZnO nanodot arrays. The measured external quantum efficiency is explained by the simulation results. The J{sub sc} values are 12.1, 13.0, and 14.3 mA/cm{sup 2} and efficiencies are 6.6%, 7.5%, and 8.3% for ITO, Al:ZnO, and silver nanodot arrays, respectively. Simulated optical absorption distribution shows high light trapping within amorphous silicon layer.

  12. Comprehensive analysis of passive generation of parabolic similaritons in tapered hydrogenated amorphous silicon photonic wires.

    Science.gov (United States)

    Mei, Chao; Li, Feng; Yuan, Jinhui; Kang, Zhe; Zhang, Xianting; Yan, Binbin; Sang, Xinzhu; Wu, Qiang; Zhou, Xian; Zhong, Kangping; Wang, Liang; Wang, Kuiru; Yu, Chongxiu; Wai, P K A

    2017-06-19

    Parabolic pulses have important applications in both basic and applied sciences, such as high power optical amplification, optical communications, all-optical signal processing, etc. The generation of parabolic similaritons in tapered hydrogenated amorphous silicon photonic wires at telecom (λ ~ 1550 nm) and mid-IR (λ ≥ 2100 nm) wavelengths is demonstrated and analyzed. The self-similar theory of parabolic pulse generation in passive waveguides with increasing nonlinearity is presented. A generalized nonlinear Schrödinger equation is used to describe the coupled dynamics of optical field in the tapered hydrogenated amorphous silicon photonic wires with either decreasing dispersion or increasing nonlinearity. The impacts of length dependent higher-order effects, linear and nonlinear losses including two-photon absorption, and photon-generated free carriers, on the pulse evolutions are characterized. Numerical simulations show that initial Gaussian pulses will evolve into the parabolic pulses in the waveguide taper designed.

  13. The optoelectronic properties of silicon films deposited by inductively coupled plasma CVD

    Energy Technology Data Exchange (ETDEWEB)

    Qin Yanli; Yan Hengqing; Li Fei; Qiao Li; Liu Qiming [Department of Physics, Lanzhou University, Lanzhou 730000 (China); He Deyan, E-mail: hedy@lzu.edu.cn [Department of Physics, Lanzhou University, Lanzhou 730000 (China)

    2010-11-15

    Hydrogenated amorphous and microcrystalline silicon films were deposited by inductively coupled plasma chemical vapor deposition (ICP-CVD) at low substrate temperatures using H{sub 2}-diluted SiH{sub 4} as a source gas. High-density plasma generated by inductively coupled excitation facilitates the crystallization of silicon films at low temperatures, and microcrystalline silicon films were obtained at the substrate temperature as low as 180 deg. C. The columnar structure of the films becomes more and more compact with an increase of their crystallinity. The reduction of hydrogen content in the films causes a narrowing of the optical bandgap and an enhancement of the absorption with increasing the substrate temperature. The microcrystalline silicon films show two electronic transport mechanisms: one is related to the density of state distribution in the temperature region near room temperature and the other is the variable range hopping between localized electronic states close to the Fermi level below 170 K. A reasonable explanation is presented for the dependence of the optoelectronic properties on the microstructure of the silicon films. The films prepared at a substrate temperature of 300 deg. C have highly crystalline and compact columnar structure, high optical absorption coefficient and electrical conductivity, and a low hydrogen content of 3.8%.

  14. Full breast digital mammography with an amorphous silicon-based flat panel detector: Physical characteristics of a clinical prototype

    OpenAIRE

    2000-01-01

    The physical characteristics of a clinical prototype amorphous silicon-based flat panel imager for full-breast digital mammography have been investigated. The imager employs a thin thallium doped CsI scintillator on an amorphous silicon matrix of detector elements with a pixel pitch of 100 μm. Objective criteria such as modulation transfer function (MTF), noise power spectrum, detective quantum efficiency (DQE), and noise equivalent quanta were employed for this evaluation. The presampling MT...

  15. Improved stability of hydrogenated amorphous-silicon photosensitivity by ultraviolet illumination

    Science.gov (United States)

    Branz, Howard M.; Xu, Yueqin; Heck, Stephan; Gao, Wei

    2002-10-01

    Postdeposition ultraviolet (UV) illumination, followed by etching, improves the stability of hydrogenated amorphous-silicon thin films against subsequent light-induced degradation of photosensitivity. The etch removes a heavily damaged layer extending about 100 nm below the surface, but beneath the damage, the UV has improved the stability of 200 to 300 nm of bulk film. The open-circuit voltage of Schottky solar cells is also stabilized by UV-etch treatment. Possible mechanisms are discussed.

  16. Magneto-optical switch with amorphous silicon waveguides on magneto-optical garnet

    Science.gov (United States)

    Ishida, Eiichi; Miura, Kengo; Shoji, Yuya; Mizumoto, Tetsuya; Nishiyama, Nobuhiko; Arai, Shigehisa

    2016-08-01

    We fabricated a magneto-optical (MO) switch with a hydrogenated amorphous silicon waveguide on an MO garnet. The switch is composed of a 2 × 2 Mach-Zehnder interferometer (MZI). The switch state is controlled by an MO phase shift through a magnetic field generated by a current flowing in an electrode located on the MZI. The switching operation was successfully demonstrated with an extinction ratio of 11.7 dB at a wavelength of 1550 nm.

  17. Tandem solar cells made from amorphous silicon and polymer bulk heterojunction sub-cells.

    Science.gov (United States)

    Park, Sung Heum; Shin, Insoo; Kim, Kwang Ho; Street, Robert; Roy, Anshuman; Heeger, Alan J

    2015-01-14

    A tandem solar cell based on a combination of an amorphous silicon (a-Si) and polymer solar cell (PSC) is demonstrated. As these tandem devices can be readily fabricated by low-cost methods, they require only a minor increase in the total manufacturing cost. Therefore, a combination of a-Si and PSC provides a compelling solution to reduce the cost of electricity produced by photovoltaics.

  18. Results on photon and neutron irradiation of semitransparent amorphous-silicon sensors

    CERN Document Server

    Carabe, J; Ferrando, A; Fuentes, J; Gandia, J J; Josa-Mutuberria, I; Molinero, A; Oller, J C; Arce, P; Calvo, E; Figueroa, C F; García, N; Matorras, F; Rodrigo, T; Vila, I; Virto, A L; Fenyvesi, A; Molnár, J; Sohler, D

    2000-01-01

    Semitransparent amorphous-silicon sensors are basic elements for laser 2D position reconstruction in the CMS multipoint alignment link system. Some of the sensors have to work in a very hard radiation environment. Two different sensor types have been irradiated with /sup 60/Co photons (up to 100 kGy) and fast neutrons (up to 10/sup 15 / cm/sup -2/), and the subsequent change in their performance has been measured. (13 refs).

  19. First Measurements of the Performance of New Semitransparent Amorphous Silicon Sensor Prototypes

    Energy Technology Data Exchange (ETDEWEB)

    Calderon, A.; Calvo, E.; Martinez-Rivero, C.; Matorras, F.; Rodrigo, T.; Sobron, M.; Vila, I.; Virto, A. L.; Alberdi, J.; Arce, P.; Barcala, J. M.; Ferrando, A.; Josa, M. I.; Luque, J. M.; Molinero, A.; Navarrete, J.; Oller, J. C.; Yuste, C.

    2004-07-01

    We present first results on the performance of a new generation of semitransparent amorphous silicon position detectors having good properties such as an intrinsic position resolution better than 5{mu}m, an spatial point reconstruction precision better than 10 {mu}m, deflection angles smaller than 10{mu}rad and transmission in the visible and NIR higher than 70%. In addition the sensitive area is very large: 30x30 cm''3. (Author) 10 refs.

  20. 2H-SiC Dendritic Nanocrystals In Situ Formation from Amorphous Silicon Carbide under Electron Beam Irradiation

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Under electron beam irradiation, the in-situ formation of 2H-SiC dentritic nanocrystals from amorphous silicon carbide at room temperature was observed. The homogenous transition mainly occurs at the thin edge and on the surface of specimen where the energy obtained from electron beam irradiation is high enough to cause the amorphous crystallizing into 2H-SiC.

  1. Characterization of amorphous hydrogenated carbon films deposited by MFPUMST at different ratios of mixed gases

    Indian Academy of Sciences (India)

    Haiyang Dai; Changyong Zhan; Hui Jiang; Ningkang Huang

    2012-12-01

    Amorphous hydrogenated carbon films (-C:H) on -type (100) silicon wafers were prepared with a middle frequency pulsed unbalanced magnetron sputtering technique (MFPUMST) at different ratios of methane–argon gases. The band characteristics, mechanical properties as well as refractive index were measured by Raman spectra, X-ray photoelectron spectroscopy (XPS), nano-indentation tests and spectroscopic ellipsometry. It is found that the 3 fraction increases with increasing Ar concentration in the range of 17–50%, and then decreases when Ar concentration exceeds 50%. The nano-indentation tests reveal that nano-hardness and elastic modulus of the films increase with increasing Ar concentration in the range of 17–50%, while decreases with increasing Ar concentration from 50% to 86%. The variations in the nano-hardness and the elastic modulus could be interpreted due to different 3 fractions in the prepared -C:H films. The variation of refractive index with wavelength have the same tendency for the -C:H films prepared at different Ar concentrations, they decrease with increasing wavelength from 600 to 1700 nm. For certain wavelengths within 600–1700 nm, refractive index has the highest value at the Ar concentration of 50%, and it is smaller at the Ar concentration of 86% than at 17%. The results given above indicate that ratio of mixed gases has a strong influence on bonding configuration and properties of -C:H films during deposition. The related mechanism is discussed in this paper.

  2. The structure and physical properties of paracrystalline atomistic models of amorphous silicon.

    Energy Technology Data Exchange (ETDEWEB)

    Voyles, P. M.; Zotov, N.; Nakhmanson, S. M.; Drabold, D. A.; Gibson, J. M.; Treacy, M. M. J.; Keblinski, P.; Materials Science Division; Univ. of Illinois; Univ. Bayreuth; Ohio Univ.; NEC Research Inst.; Rensselaer Polytechnic Inst.

    2001-11-01

    We have examined the structure and physical properties of paracrystalline molecular dynamics models of amorphous silicon. Simulations from these models show qualitative agreement with the results of recent mesoscale fluctuation electron microscopy experiments on amorphous silicon and germanium. Such agreement is not found in simulations from continuous random network models. The paracrystalline models consist of topologically crystalline grains which are strongly strained and a disordered matrix between them. We present extensive structural and topological characterization of the medium range order present in the paracrystalline models and examine their physical properties, such as the vibrational density of states, Raman spectra, and electron density of states. We show by direct simulation that the ratio of the transverse acoustic mode to transverse optical mode intensities I{sub TA}/I{sub TO} in the vibrational density of states and the Raman spectrum can provide a measure of medium range order. In general, we conclude that the current paracrystalline models are a good qualitative representation of the paracrystalline structures observed in the experiment and thus provide guidelines toward understanding structure and properties of medium-range-ordered structures of amorphous semiconductors as well as other amorphous materials.

  3. Continuum simulation of solid phase epitaxial regrowth of amorphized silicon including most advanced physical interactions

    Energy Technology Data Exchange (ETDEWEB)

    Delalleau, Julien; Simola, Roberto [STMicroelectronics, ZI de Rousset, BP 2, 13106 Rousset (France); Pakfar, Ardechir; Tavernier, Clement [STMicroelectronics, 850 rue Jean Monnet, 38926 Crolles Cedex (France); Bazizi, El-Medhi [STMicroelectronics, 850 rue Jean Monnet, 38926 Crolles Cedex (France); LAAS/CNRS, University of Toulouse, 7 av. Col. Roche, 31077 Toulouse (France); CEMES/CNRS, 29 rue J. Marvig, 31055 Toulouse (France)

    2011-03-15

    Solid-phase-epitaxial regrowth (SPER) of Si amorphized by ion implantation is considered as a potential solution for the fabrication of highly-activated ultra-shallow junctions for future technology nodes of Si CMOS devices. In the frame of 32 and 22 nm technologies node development, SPER occurs after amorphizing implantations used in source/drain regions. To get an accurate simulation of dopant activation and junction depth position, a suitable continuum SPER model, implemented into a commercial simulator, is now mandatory. This TCAD model must consider the different physical effects associated with SPER: silicon regrowth rate, dopants redistribution snow plough effect, and interaction with silicon point defects. In this work, using a previously established model, we have implemented an improved physically based model for SPER and, several formulations have been developed to enable a robust/accurate modeling of the recrystallization velocity. It takes into account the direct interaction between amorphous/crystalline interface kinetics and point defects, and a regrowth rate dependent on temperature. Simulation results of dopant concentration profiles are in good agreement with experimental data and can provide important insight for optimizing the bulk silicon process as well in one dimension as two dimensions. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  4. Characterization of transparent conductive oxide films and their effect on amorphous/crystalline silicon heterojunction solar cells

    Science.gov (United States)

    Meng, Fanying; Shi, Jianhua; Shen, Leilei; Zhang, Liping; Liu, Jinning; Liu, Yucheng; Yu, Jian; Bao, Jian; Liu, Zhengxin

    2017-04-01

    Three different dopant indium oxide thin films were fabricated at low temperatures by reactive plasma deposition and sputtering. The optical and electrical characteristics of these films were analyzed as a function of the Hall electron concentration. Furthermore, these films were applied to amorphous/crystalline silicon heterojunction solar cells as transparent electrodes. Consequently, it was demonstrated that the high Hall mobility, high refractive index, and low extinction coefficient of transparent conductive oxide (TCO) films contribute to the high product of short-circuit current density and fill factor and conversion efficiency. Furthermore, it was found that the solar cell with a finger spacing of 1.9 mm on a 125 × 125 mm2 Si wafer is highly tolerant to TCO film resistivity when the electron concentration is less than 4.0 × 1020 cm-3.

  5. Hydrogenated Silicon Carbide Thin Films Prepared with High Deposition Rate by Hot Wire Chemical Vapor Deposition Method

    Directory of Open Access Journals (Sweden)

    M. M. Kamble

    2014-01-01

    Full Text Available Structural, optical, and electrical properties of hydrogenated silicon carbide (SiC:H films, deposited from silane (SiH4 and methane (CH4 gas mixture by HW-CVD method, were investigated. Film properties are carefully and systematically studied as function of deposition pressure which is varied between 200 mTorr and 500 mTorr. The deposition rate is found to be reasonably high (9.4 nm/s deposition pressure amorphization occurs in SiC:H films. FTIR spectroscopy analysis shows that bond density of C–H decreases while Si–C and Si–H bond densities increase with increasing deposition pressure. Total hydrogen content increases with increasing deposition pressure and was found to be <20 at.%. The absence of band ~1300–1600 cm−1 in the Raman spectra implies negligible C–C bond concentration and formation of nearly stoichiometric SiC:H films. The band gap shows increasing trend with increasing deposition pressure. The high value of Urbach energy suggests increased structural disorder in SiC:H films. Finally, it has been concluded that CH4 can be used as effective carbon source in HW-CVD method to prepare stoichiometric SiC:H films.

  6. Efficient nanorod-based amorphous silicon solar cells with advanced light trapping

    Energy Technology Data Exchange (ETDEWEB)

    Kuang, Y. [Physics of Devices, Debye Institute for Nanomaterials Science, Utrecht University, High Tech Campus, Building 21, 5656 AE Eindhoven (Netherlands); Department of Applied Physics, Plasma & Materials Processing, Eindhoven University of Technology (TUE), P.O. Box 513, 5600 MB Eindhoven (Netherlands); Lare, M. C. van; Polman, A. [Center for Nanophotonics, FOM Institute AMOLF, Science Park 104, 1098 XG Amsterdam (Netherlands); Veldhuizen, L. W.; Schropp, R. E. I., E-mail: r.e.i.schropp@tue.nl [Department of Applied Physics, Plasma & Materials Processing, Eindhoven University of Technology (TUE), P.O. Box 513, 5600 MB Eindhoven (Netherlands); Rath, J. K. [Physics of Devices, Debye Institute for Nanomaterials Science, Utrecht University, High Tech Campus, Building 21, 5656 AE Eindhoven (Netherlands)

    2015-11-14

    We present a simple, low-cost, and scalable approach for the fabrication of efficient nanorod-based solar cells. Templates with arrays of self-assembled ZnO nanorods with tunable morphology are synthesized by chemical bath deposition using a low process temperature at 80 °C. The nanorod templates are conformally coated with hydrogenated amorphous silicon light absorber layers of 100 nm and 200 nm thickness. An initial efficiency of up to 9.0% is achieved for the optimized design. External quantum efficiency measurements on the nanorod cells show a substantial photocurrent enhancement both in the red and the blue parts of the solar spectrum. Key insights in the light trapping mechanisms in these arrays are obtained via a combination of three-dimensional finite-difference time-domain simulations, optical absorption, and external quantum efficiency measurements. Front surface patterns enhance the light incoupling in the blue, while rear side patterns lead to enhanced light trapping in the red. The red response in the nanorod cells is limited by absorption in the patterned Ag back contact. With these findings, we develop and experimentally realize a further advanced design with patterned front and back sides while keeping the Ag reflector flat, showing significantly enhanced scattering from the back reflector with reduced parasitic absorption in the Ag and thus higher photocurrent generation. Many of the findings in this work can serve to provide insights for further optimization of nanostructures for thin-film solar cells in a broad range of materials.

  7. High spatial resolution radiation detectors based on hydrogenated amorphous silicon and scintillator

    Energy Technology Data Exchange (ETDEWEB)

    Jing, Tao [Univ. of California, Berkeley, CA (United States). Dept. of Engineering-Nuclear Engineering

    1995-05-01

    Hydrogenated amorphous silicon (a-Si:H) as a large-area thin film semiconductor with ease of doping and low-cost fabrication capability has given a new impetus to the field of imaging sensors; its high radiation resistance also makes it a good material for radiation detectors. In addition, large-area microelectronics based on a-Si:H or polysilicon can be made with full integration of peripheral circuits, including readout switches and shift registers on the same substrate. Thin a-Si:H p-i-n photodiodes coupled to suitable scintillators are shown to be suitable for detecting charged particles, electrons, and X-rays. The response speed of CsI/a-Si:H diode combinations to individual particulate radiation is limited by the scintillation light decay since the charge collection time of the diode is very short (< 10ns). The reverse current of the detector is analyzed in term of contact injection, thermal generation, field enhanced emission (Poole-Frenkel effect), and edge leakage. A good collection efficiency for a diode is obtained by optimizing the p layer of the diode thickness and composition. The CsI(Tl) scintillator coupled to an a-Si:H photodiode detector shows a capability for detecting minimum ionizing particles with S/N ~20. In such an arrangement a p-i-n diode is operated in a photovoltaic mode (reverse bias). In addition, a p-i-n diode can also work as a photoconductor under forward bias and produces a gain yield of 3--8 for shaping times of 1 {micro}s. The mechanism of the formation of structured CsI scintillator layers is analyzed. Initial nucleation in the deposited layer is sensitive to the type of substrate medium, with imperfections generally catalyzing nucleation. Therefore, the microgeometry of a patterned substrate has a significant effect on the structure of the CsI growth.

  8. Plasmonic enhancement of amorphous silicon solar photovoltaic cells with hexagonal silver arrays made with nanosphere lithography

    Science.gov (United States)

    Zhang, C.; Guney, D. O.; Pearce, J. M.

    2016-10-01

    Nanosphere lithography (NSL) provides an opportunity for a low-cost and scalable method to optically engineer solar photovoltaic (PV) cells. For PV applications, NSL is widely used in rear contact scenarios to excite surface plasmon polariton and/or high order diffractions, however, the top contact scenarios using NSL are rare. In this paper a systematic simulation study is conducted to determine the capability of achieving efficiency enhancement in hydrogenated amorphous silicon (a-Si:H) solar cells using NSL as a top contact plasmonic optical enhancer. The study focuses on triangular prism and sphere arrays as they are the most commonly and easily acquired through direct deposition or low-temperature annealing, respectively. For optical enhancement, a characteristic absorption profile is generated and analyzed to determine the effects of size, shape and spacing of plasmonic structures compared to an un-enhanced reference cell. The factors affecting NSL-enhanced PV performance include absorption, shielding effects, diffraction, and scattering. In the triangular prism array, parasitic absorption of the silver particles proves to be problematic, and although it can be alleviated by increasing the particle spacing, no useful enhancement was observed in the triangular prism arrays that were simulated. Sphere arrays, on the other hand, have broad scattering cross-sections that create useful scattering fields at several sizes and spacing intervals. For the simulated sphere arrays the highest enhancement found was 7.4%, which was fabricated with a 250 nm radius nanosphere and a 50 nm silver thickness, followed by annealing in inert gas. These results are promising and provide a path towards the commercialization of plasmonic a-Si:H solar cells using NSL fabrication techniques.

  9. Protective silicon coating for nanodiamonds using atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Lu, J. [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, Hebei 066004 (China); College of Materials Science and Engineering, Yanshan University, Qinhuangdao, Hebei 066004 (China); Wang, Y.H. [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, Hebei 066004 (China); College of Materials Science and Engineering, Yanshan University, Qinhuangdao, Hebei 066004 (China); Zang, J.B. [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, Hebei 066004 (China) and College of Materials Science and Engineering, Yanshan University, Qinhuangdao, Hebei 066004 (China)]. E-mail: diamondzjb@163.com; Li, Y.N. [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, Hebei 066004 (China); College of Materials Science and Engineering, Yanshan University, Qinhuangdao, Hebei 066004 (China)

    2007-01-30

    Ultrathin silicon coating was deposited on nanodiamonds using atomic layer deposition (ALD) from gaseous monosilane (SiH{sub 4}). The coating was performed by sequential reaction of SiH{sub 4} saturated adsorption and in situ decomposition. X-ray diffraction (XRD) and transmission electron microscopy (TEM) were utilized to investigate the structural and morphological properties of the coating. Thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) were used to compare the thermal stability of nanodiamonds before and after silicon coating. The results confirmed that the deposited cubic phase silicon coating was even and continuous. The protective silicon coating could effectively improve the oxidation resistance of nanodiamonds in air flow, which facilitates the applications of nanodiamonds that are commonly hampered by their poor thermal stability.

  10. Nanofluidic channels by anodic bonding of amorphous silicon to glass to study ion-accumulation and ion-depletion effect.

    Science.gov (United States)

    Datta, Arindom; Gangopadhyay, Shubhra; Temkin, Henryk; Pu, Qiaosheng; Liu, Shaorong

    2006-01-15

    A unique phenomenon, ion-enrichment and ion-depletion effect, exists in nanofluidic channels and is observed in amorphous silicon (alpha-Si) nanochannels as shallow as 50 nm. As a voltage is applied across a nanochannel, ions are rapidly enriched at one end and depleted at the other end of the nanochannel. alpha-Si is deposited on glass by plasma enhanced chemical vapor deposition and is selectively etched to form nanochannels. The depth of nanochannels is defined by the thickness of the alpha-Si layer. Low temperature anodic bonding of alpha-Si to glass was used to seal the channel with a second glass wafer. The strength of the anodic bond was optimized by the introduction of a silicon nitride adhesion promoting layer and double-sided bonding resulting from the electric field reversal. Completed channels, 50 nm in depth, 5 micron wide, and 1 mm long were completely and reliably sealed. Structures based on nanochannels 50-300 nm deep were successfully incorporated into nanofluidic devices to investigate ionic accumulation and depletion effect due to overlapping of electric double layer.

  11. Nitrogen-doped amorphous carbon-silicon core-shell structures for high-power supercapacitor electrodes

    Science.gov (United States)

    Tali, S. A. Safiabadi; Soleimani-Amiri, S.; Sanaee, Z.; Mohajerzadeh, S.

    2017-02-01

    We report successful deposition of nitrogen-doped amorphous carbon films to realize high-power core-shell supercapacitor electrodes. A catalyst-free method is proposed to deposit large-area stable, highly conformal and highly conductive nitrogen-doped amorphous carbon (a-C:N) films by means of a direct-current plasma enhanced chemical vapor deposition technique (DC-PECVD). This approach exploits C2H2 and N2 gases as the sources of carbon and nitrogen constituents and can be applied to various micro and nanostructures. Although as-deposited a-C:N films have a porous surface, their porosity can be significantly improved through a modification process consisting of Ni-assisted annealing and etching steps. The electrochemical analyses demonstrated the superior performance of the modified a-C:N as a supercapacitor active material, where specific capacitance densities as high as 42 F/g and 8.5 mF/cm2 (45 F/cm3) on silicon microrod arrays were achieved. Furthermore, this supercapacitor electrode showed less than 6% degradation of capacitance over 5000 cycles of a galvanostatic charge-discharge test. It also exhibited a relatively high energy density of 2.3 × 103 Wh/m3 (8.3 × 106 J/m3) and ultra-high power density of 2.6 × 108 W/m3 which is among the highest reported values.

  12. Thin film solar cells with Si nanocrystallites embedded in amorphous intrinsic layers by hot-wire chemical vapor deposition.

    Science.gov (United States)

    Park, Seungil; Parida, Bhaskar; Kim, Keunjoo

    2013-05-01

    We investigated the thin film growths of hydrogenated silicon by hot-wire chemical vapor deposition with different flow rates of SiH4 and H2 mixture ambient and fabricated thin film solar cells by implementing the intrinsic layers to SiC/Si heterojunction p-i-n structures. The film samples showed the different infrared absorption spectra of 2,000 and 2,100 cm(-1), which are corresponding to the chemical bonds of SiH and SiH2, respectively. The a-Si:H sample with the relatively high silane concentration provides the absorption peak of SiH bond, but the microc-Si:H sample with the relatively low silane concentration provides the absorption peak of SiH2 bond as well as SiH bond. Furthermore, the microc-Si:H sample showed the Raman spectral shift of 520 cm(-1) for crystalline phase Si bonds as well as the 480 cm(-1) for the amorphous phase Si bonds. These bonding structures are very consistent with the further analysis of the long-wavelength photoconduction tail and the formation of nanocrystalline Si structures. The microc-Si:H thin film solar cell has the photovoltaic behavior of open circuit voltage similar to crystalline silicon thin film solar cell, indicating that microc-Si:H thin film with the mixed phase of amorphous and nanocrystalline structures show the carrier transportation through the channel of nanocrystallites.

  13. Structural and optical studies on hot wire chemical vapour deposited hydrogenated silicon films at low substrate temperature

    Energy Technology Data Exchange (ETDEWEB)

    Gogoi, Purabi; Agarwal, Pratima [Department of Physics, Indian Institute of Technology Guwahati, Guwahati 781 039, Assam (India)

    2009-02-15

    Thin films of hydrogenated silicon are deposited by hot wire chemical vapour deposition technique, as an alternative of plasma enhanced chemical vapour deposition technique. By varying the hydrogen and silane flow rate, we deposited the films ranging from pure amorphous to nanocrystallite-embedded amorphous in nature. In this paper we report extensively studied structural and optical properties of these films. It is observed that the rms bond angle deviation decreases with increase in hydrogen flow rate, which is an indication of improved order in the films. We discuss this under the light of breaking of weak Si-Si bonds and subsequent formation of strong Si-Si bonds and coverage of the growing surface by atomic hydrogen. (author)

  14. Silicon carbide and other films and method of deposition

    Science.gov (United States)

    Mehregany, Mehran (Inventor); Zorman, Christian A. (Inventor); Fu, Xiao-An (Inventor); Dunning, Jeremy (Inventor)

    2011-01-01

    A method of depositing a ceramic film, particularly a silicon carbide film, on a substrate is disclosed in which the residual stress, residual stress gradient, and resistivity are controlled. Also disclosed are substrates having a deposited film with these controlled properties and devices, particularly MEMS and NEMS devices, having substrates with films having these properties.

  15. Thermal stability of hot-wire deposited amorphous silicon

    CSIR Research Space (South Africa)

    Arendse, CJ

    2006-04-01

    Full Text Available of vacancy clustering at 400 -C, caused by the alignment of unterminated Si dangling-bonds that consequently results in an increase in the defect size, concentration or both. Raman scattering shows evidence that no crystallization is induced at 400 -C...

  16. In situ transmission infrared spectroscopy of high-kappa oxide atomic layer deposition onto silicon surfaces

    Science.gov (United States)

    Ho, Ming-Tsung

    Ultra-thin aluminum oxide (Al2O3) and hafnium oxide (HfO2) layers have been grown by atomic layer deposition (ALD) using tri-methyl-aluminum (TMA) and tetrakis-ethyl-methyl-amino-hafnium (TEMAH) respectively with heavy water (D2O) as the oxidizing agent. Several different silicon surfaces were used as substrates such as hydrogen terminated silicon (H/Si), SC2 (or RCA 2) cleaned native silicon oxide (SiO 2/Si), and silicon (oxy)nitride. In-situ transmission Fourier transform infrared spectroscopy (FTIR) has been adopted for the study of the growth mechanisms during ALD of these films. The vibrational spectra of gas phase TEMAH and its reaction byproducts with oxidants have also been investigated. Density functional theory (DFT) normal mode calculations show a good agreement with the experimental data when it is combined with linear wave-number scaling method and Fermi resonance mechanism. Ether (-C-O-C-) and tertiary alkylamine (N(R1R 2R3)) compounds are the two most dominant products of TEMAH reacting with oxygen gas and water. When ozone is used as the oxidant, gas phase CH2O, CH3NO2, CH3-N=C=O and other compounds containing -(C=O)- and --C-O-C- (or --O-C-) segments are observed. With substrate temperatures less than 400°C and 300°C for TMA and TEMAH respectively, Al oxide and Hf oxide ALD can be appropriately performed on silicon surfaces. Thin silicon (oxy)nitride thermally grown in ammonia on silicon substrate can significantly reduce silicon oxide interlayer formation during ALD and post-deposition annealing. The crystallization temperature of amorphous ALD grown HfO2 on nitridized silicon is 600°C, which is 100°C higher than on the other silicon surfaces. When HfO2 is grown on H/Si(111) at 100°C deposition temperature, minimum 5--10 ALD cycles are required for the full surface coverage. The steric effect can be seen by the evolution of the H-Si stretching mode at 2083 cm-1. The observed red shift of H-Si stretching to ˜ 2060 cm-1 can be caused by Si

  17. Physical characterization of sputter-deposited amorphous tungsten oxynitride thin films

    Energy Technology Data Exchange (ETDEWEB)

    Nunez, O.R.; Moreno Tarango, A.J. [Department of Mechanical Engineering, University of Texas at El Paso, El Paso, TX 79968 (United States); Murphy, N.R. [Air Force Research Laboratory, Materials and Manufacturing Directorate, Wright-Patterson Air Force Base (WPAFB), Dayton, OH 45433 (United States); Phinney, L.C.; Hossain, K. [Amethyst Research Inc., 123 Case Circle, Ardmore, OK 73401 (United States); Ramana, C.V., E-mail: rvchintalapalle@utep.edu [Department of Mechanical Engineering, University of Texas at El Paso, El Paso, TX 79968 (United States)

    2015-12-01

    Tungsten oxynitride (W–O–N) thin films were deposited onto silicon (100) and quartz substrates using direct current (DC) sputtering. Composition variations in the W–O–N films were obtained by varying the nitrogen gas flow rate from 0 to 20 sccm, while keeping the total gas flow constant at 40 sccm using 20 sccm of argon with the balance comprised of oxygen. The resulting crystallinity, optical properties, and chemical composition of the DC sputtered W–O–N films were evaluated. All the W–O–N films measured were shown to be amorphous using X-ray diffraction. Spectrophotometry results indicate that the optical parameters, namely, the transmission magnitude and band gap (E{sub g}), are highly dependent on the nitrogen content in the reactive gas mixture. Within the W–O–N system, E{sub g} was able to be precisely tailored between 2.9 eV and 1.9 eV, corresponding to fully stoichiometric WO{sub 3} and highly nitrided W–O–N, respectively. Rutherford backscattering spectrometry (RBS) coupled with X-ray photoelectron spectroscopy (XPS) measurements indicate that the composition of the films varies from WO{sub 3} to W–O–N composite oxynitride films. - Highlights: • W–O–N films of ~ 100 nm thick were sputter-deposited by varying nitrogen gas flow rate. • Nitrogen incorporation into W-oxide is effective at or after 9 sccm flow rate of nitrogen. • The band gap significantly decreases from ~ 3.0 eV to ~ 2.1 eV with progressive increase in nitrogen content. • A composite oxide-semiconductor of W–O–N is proposed to explain the optical properties.

  18. Study of the effect of boron doping on the solid phase crystallisation of hydrogenated amorphous silicon films

    Energy Technology Data Exchange (ETDEWEB)

    Westra, J.M.; Swaaij, R.A.C.M.M. van [Photovoltaic Materials and Devices, Department of Sustainable Electrical Energy, Delft University of Technology, Delft (Netherlands); Šutta, P. [New Technologies-Research Centre, University of West Bohemia, Plzen (Czech Republic); Sharma, K.; Creatore, M. [Department of Applied Physics, Eindhoven University of Technology, Eindhoven (Netherlands); Zeman, M. [Photovoltaic Materials and Devices, Department of Sustainable Electrical Energy, Delft University of Technology, Delft (Netherlands)

    2014-10-01

    Thin-film polycrystalline silicon on glass obtained by crystallization of hydrogenated amorphous silicon (a-Si:H) films is an interesting alternative for thin-film silicon solar cells. Although the solar-cell efficiencies are still limited, this technique offers excellent opportunity to study the influence of B-doping on the crystallisation process of a-Si:H. Our approach is to slowly crystallize B-doped a-Si:H films by solid phase crystallization in the temperature range 580–600°C. We use plasma-enhanced chemical vapour deposition (PECVD) and expanding thermal plasma chemical vapour deposition (ETPCVD) for the B-doped a-Si:H deposition. In this work we show the first in-situ study of the crystallization process of B-doped a-Si:H films produced by ETPCVD and make a comparison to the crystallization of intrinsic ETPCVD deposited a-Si:H as well as intrinsic and B-doped a-Si:H films deposited by PECVD. The crystallization process is investigated by in-situ x-ray diffraction, using a high temperature chamber for the annealing procedure. The study shows a strong decrease in the time required for full crystallisation for B-doped a-Si:H films compared to the intrinsic films. The time before the onset of crystallisation is reduced by the incorporation of B as is the grain growth velocity. The time to full crystallisation can be manipulated by the B{sub 2}H{sub 6}-to-SiH{sub 4} ratio used during the deposition and by the microstructure of the as-deposited a-Si:H films. - Highlights: • Solid-phase crystallization of B-doped a-Si:H films is presented. • Crystallization study of B-doped and intrinsic a-Si:H by in-situ x-ray diffraction • The microstructure and B-doping of a-Si:H influences the crystallisation process. • B enhances the grain growth rate, but the effect on the nucleation rate is limited.

  19. Impact of contamination on hydrogenated amorphous silicon thin films and solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Woerdenweber, Jan

    2011-09-26

    This thesis deals with atmospheric contamination and cross-contamination of boron (single-chamber process) of the intrinsic absorber layer (i-layer) of p-i-n thin film solar cells based on hydrogenated amorphous silicon. The atmospheric contaminations were introduced by means of intentional leaks. Hereby, the focus is on the influence of contamination species (oxygen and nitrogen), quantity of contamination (leak flow), source of contamination (leaks at chamber wall or in the process gas pipe), and plasma power on the properties of solar cells. Thereby, the minimum requirements for the purity of vacuum and process gas as well as leak conditions of the recipient and gas pipe system have been determined. Additionally, deposition regimes were developed, where the incorporation of impurities is significantly suppressed. For standard processes critical levels of nitrogen and oxygen contamination are determined to be {proportional_to} 4 x 10{sup 18} cm{sup -3} and {proportional_to} 2 x 10{sup 19} cm{sup -3}, respectively, for a leak situated at the chamber wall. Above these concentrations the solar cell efficiency deteriorates. In literature, incorporation of oxygen and nitrogen in doping configuration is assumed to be the reason for the cell deterioration. This assumption is supported by additional material studies of contaminated absorber layers done in this work. The difference in critical concentration is due to the higher doping efficiency of nitrogen compared to that for oxygen. Nevertheless, applying an air leak the critical concentrations of O and N are reached almost simultaneously since the incorporation probability of oxygen is about one order of magnitude higher compared to that for nitrogen. Applying a leak in the process gas pipe the critical oxygen contamination level increases to {proportional_to} 2 x 10{sup 20} cm{sup -3} whereas the critical nitrogen level remains unchanged compared to a chamber wall leak. Applying a deposition regime with a very high

  20. Infrared modulation spectroscopy of interfaces in amorphous silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Kai; Schiff, E.A. [Department of Physics, Syracuse University, 13244-1130 Syracuse, NY (United States); Ganguly, G. [BP Solar, 23168 Toano, VA (United States)

    2002-04-01

    We report infrared depletion modulation spectra for near-interface states in a-Si pin solar cells. The effect of additional visible illumination (optical bias) was explored as a means to separate the spectra for n/i and p/i interface states. We found a sharp, optical bias-induced spectral line near 0.8 eV. We attribute this line due to internal optical transitions of dopant-defect complexes in the a-SiC:H:B p-layer of the cells. We discuss the spatial location of the depletion modulation regions, and suggest that this location shifts across the n/i and p/i interfaces for cells with differing deposition and illumination conditions.

  1. High-rate deposition of nano-crystalline silicon thin films on plastics

    Energy Technology Data Exchange (ETDEWEB)

    Marins, E.; Guduru, V.; Cerqueira, F.; Alpuim, P. [Centro de Fisica, Universidade do Minho, 4800-058 Guimaraes, 4710-057 Braga (Portugal); Ribeiro, M. [Centro de Nanotecnologia e Materiais Tecnicos, Funcionais e Inteligentes (CeNTI), 4760-034 Vila Nova de Famalicao (Portugal); Bouattour, A. [Institut fuer Physikalische Elektronik (ipe), Universitaet Stuttgart, 70569 Stuttgart (Germany)

    2011-03-15

    Nanocrystalline silicon (nc-Si:H) is commonly used in the bottom cell of tandem solar cells. With an indirect bandgap, nc-Si:H requires thicker ({proportional_to}1 {mu}m) films for efficient light harvesting than amorphous Si (a-Si:H) does. Therefore, thin-film high deposition rates are crucial for further cost reduction of highly efficient a-Si:H based photovoltaic technology. Plastic substrates allow for further cost reduction by enabling roll-to-roll inline deposition. In this work, high nc-Si:H deposition rates on plastic were achieved at low substrate temperature (150 C) by standard Radio-frequency (13.56 MHz) Plasma Enhanced Chemical Vapor Deposition. Focus was on the influence of deposition pressure, inter-electrode distance (1.2 cm) and high power coupled to the plasma, on the hydrogen-to-silane dilution ratios (HD) necessary to achieve the amorphous-to-nanocrystalline phase transition and on the resulting film deposition rate. For each pressure and rf-power, there is a value of HD for which the films start to exhibit a certain amount of crystalline fraction. For constant rf-power, this value increases with pressure. Within the parameter range studied the deposition rate was highest (0.38 nm/s) for nc-Si:H films deposited at 6 Torr, 700 mW/cm{sup 2} using HD of 98.5%. Decreasing the pressure to 3 Torr (1.5 Torr) and rf-power to 350 mW/cm{sup 2} using HD - 98.5% deposition rate is 0.12 nm/s (0.076 nm/s). Raman crystalline fraction of these films is 72, 62 and 53% for the 6, 3 and 1.5 Torr films, respectively (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  2. A Study of The Evolution of The Silicon Nanocrystallites in The Amorphous Silicon Carbide Under Argon Dilution of the Source Gases

    Directory of Open Access Journals (Sweden)

    A. Kole

    2011-01-01

    Full Text Available Structural evolution of the hydrogenated amorphous silicon carbide (a-SiC:H films deposited by rf-PECVD from a mixture of SiH4 and CH4 diluted in Ar shows that a smooth transition from amorphous to nanocrystalline phase occurs in the material by increasing the Ar dilution. The optical band gap (Eg decreases from 1.99 eV to 1.91 eV and the H-content (CH decreases from 14.32 at% to 5.29 at% by increasing the dilution from 94 % to 98 %. at 98 % Ar dilution, the material contains irregular shape Si nanocrystallites with sizes over 10 nm. Increasing the Ar dilution further to 98.4 % leads to a reduction of the size of the Si nanocrystals to regular shape Si quantum dots of size about 5 nm. The quantum confinement effect is apparent from the increase in the Eg value to 2.6 eV at 98.4 % Ar dilution. Formation of Si quantum dots may be explained by the etching of the nanocrystallites of Si by the energetic ion bombardment from the plasma.

  3. Programmable SERS active substrates for chemical and biosensing applications using amorphous/crystalline hybrid silicon nanomaterial

    Science.gov (United States)

    Powell, Jeffery Alexander; Venkatakrishnan, Krishnan; Tan, Bo

    2016-01-01

    We present the creation of a unique nanostructured amorphous/crystalline hybrid silicon material that exhibits surface enhanced Raman scattering (SERS) activity. This nanomaterial is an interconnected network of amorphous/crystalline nanospheroids which form a nanoweb structure; to our knowledge this material has not been previously observed nor has it been applied for use as a SERS sensing material. This material is formed using a femtosecond synthesis technique which facilitates a laser plume ion condensation formation mechanism. By fine-tuning the laser plume temperature and ion interaction mechanisms within the plume, we are able to precisely program the relative proportion of crystalline Si to amorphous Si content in the nanospheroids as well as the size distribution of individual nanospheroids and the size of Raman hotspot nanogaps. With the use of Rhodamine 6G (R6G) and Crystal Violet (CV) chemical dyes, we have been able to observe a maximum enhancement factor of 5.38 × 106 and 3.72 × 106 respectively, for the hybrid nanomaterial compared to a bulk Si wafer substrate. With the creation of a silicon-based nanomaterial capable of SERS detection of analytes, this work demonstrates a redefinition of the role of nanostructured Si from an inactive to SERS active role in nano-Raman sensing applications.

  4. Low-mobility solar cells: a device physics primer with application to amorphous silicon

    Energy Technology Data Exchange (ETDEWEB)

    Schiff, E.A. [Syracuse University, New York (United States). Department of Physics

    2003-07-01

    The properties of pin solar cells based on photogeneration of charge carriers into low-mobility materials were calculated for two models. Ideal p- and n-type electrode layers were assumed in both cases. The first, elementary case involves only band mobilities and direct electron-hole recombination. An analytical approximation indicates that the power in thick cells rises as the 1/4 power of the lower band mobility, which reflects the buildup of space-charge under illumination. The approximation agrees well with computer simulation. The second model includes exponential bandtail trapping, which is commonly invoked to account for very low hole drift mobilities in amorphous silicon and other amorphous semiconductors. The two models have similar qualitative behavior. Predictions for the solar conversion efficiency of amorphous silicon-based cells that are limited by valence bandtail trapping are presented. The predictions account adequately for the efficiencies of present a-Si : H cells in their 'as-prepared' state (without light-soaking), and indicate the improvement that may be expected if hole drift mobilities (and valence bandtail widths) can be improved. (author)

  5. Properties of N-rich Silicon Nitride Film Deposited by Plasma-Enhanced Atomic Layer Deposition

    Science.gov (United States)

    Jhang, Pei-Ci; Lu, Chi-Pin; Shieh, Jung-Yu; Yang, Ling-Wu; Yang, Tahone; Chen, Kuang-Chao; Lu, Chih-Yuan

    2017-07-01

    An N-rich silicon nitride film, with a lower refractive index (RI) than the stoichiometric silicon nitride (RI = 2.01), was deposited by alternating the exposure of dichlorosilane (DCS, SiH2Cl2) and that of ammonia (NH3) in a plasma-enhanced atomic layer deposition (PEALD) process. In this process, the plasma ammonia was easily decomposed to reactive radicals by RF power activating so that the N-rich silicon nitride was easily formed by excited ammonia radicals. The growth kinetics of N-rich silicon nitride were examined at various deposition temperatures ranging from 400 °C to 630 °C; the activation energy (Ea) decreased as the deposition temperature decreased below 550 °C. N-rich silicon nitride film with a wide range of values of refractive index (RI) (RI = 1.86-2.00) was obtained by regulating the deposition temperature. At the optimal deposition temperature, the effects of RF power, NH3 flow rate and NH3 flow time were on the characteristics of the N-rich silicon nitride film were evaluated. The results thus reveal that the properties of the N-rich silicon nitride film that was formed by under plasma-enhanced atomic layer deposition (PEALD) are dominated by deposition temperature. In charge trap flash (CTF) study, an N-rich silicon nitride film was applied to MAONOS device as a charge-trapping layer. The films exhibit excellent electron trapping ability and favor a fresh cell data retention performance as the deposition temperature decreased.

  6. Structural and optical properties of thin films porous amorphous silicon carbide formed by Ag-assisted photochemical etching

    Energy Technology Data Exchange (ETDEWEB)

    Boukezzata, A., E-mail: assiab2006@yahoo.fr [Silicon Technology Development Unit (UDTS), 02 Bd. Frantz FANON, B.P. 140 Algiers (Algeria); Keffous, A., E-mail: keffousa@yahoo.fr [Silicon Technology Development Unit (UDTS), 02 Bd. Frantz FANON, B.P. 140 Algiers (Algeria); Cheriet, A.; Belkacem, Y.; Gabouze, N.; Manseri, A. [Silicon Technology Development Unit (UDTS), 02 Bd. Frantz FANON, B.P. 140 Algiers (Algeria); Nezzal, G. [Houari Boumediene University (USTHB), Chemical Faculty, Algiers (Algeria); Kechouane, M.; Bright, A. [Houari Boumediene University, Physical Faculty, Algiers (Algeria); Guerbous, L. [Algerian Nuclear Research Center (CRNA), Algiers (Algeria); Menari, H. [Silicon Technology Development Unit (UDTS), 02 Bd. Frantz FANON, B.P. 140 Algiers (Algeria)

    2010-07-01

    In this work, we present the formation of porous layers on hydrogenated amorphous SiC (a-SiC: H) by Ag-assisted photochemical etching using HF/K{sub 2}S{sub 2}O{sub 8} solution under UV illumination at 254 nm wavelength. The amorphous films a-SiC: H were elaborated by d.c. magnetron sputtering using a hot pressed polycrystalline 6H-SiC target. Because of the high resistivity of the SiC layer, around 1.6 M{Omega} cm and in order to facilitate the chemical etching, a thin metallic film of high purity silver (Ag) has been deposited under vacuum onto the thin a-SiC: H layer. The etched surface was characterized by scanning electron microscopy, secondary ion mass spectroscopy, infrared spectroscopy and photoluminescence. The results show that the morphology of etched a-SiC: H surface evolves with etching time. For an etching time of 20 min the surface presents a hemispherical crater, indicating that the porous SiC layer is perforated. Photoluminescence characterization of etched a-SiC: H samples for 20 min shows a high and an intense blue PL, whereas it has been shown that the PL decreases for higher etching time. Finally, a dissolution mechanism of the silicon carbide in 1HF/1K{sub 2}S{sub 2}O{sub 8} solution has been proposed.

  7. Method of porous diamond deposition on porous silicon

    Science.gov (United States)

    Baranauskas, Vitor; Peterlevitz, Alfredo C.; Chang, Dahge C.; Durrant, Steven F.

    2001-12-01

    In this paper, we discuss the experimental results of the fabrication of porous diamond/porous silicon and porous diamond structures by chemical vapor deposition of diamond over a skeleton of porous silicon, replicating the porous surface geometry around the Si pores and also creating new porous diamond structures. Scanning electron microscopy (SEM) revealed that the diamond nuclei are deposited on the top of the porous silicon skeleton, forming isolated grains in the first nucleation stages, and then growing like the usual structure of most ceramic materials, making a self-sustained porous diamond structure. Raman spectroscopy revealed that the diamond films are of good quality, close to that of diamond films grown on crystalline silicon.

  8. Research and development of photovoltaic power system. Interface studies of amorphous silicon; Taiyoko hatsuden system no kenkyu kaihatsu. Amorphous silicon kaimen no kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Konagai, M. [Tokyo Institute of Technology, Tokyo (Japan). Faculty of Engineering

    1994-12-01

    This paper reports the result obtained during fiscal 1994 on research on interface of amorphous silicon for solar cells. In research on amorphous solar cells using ZnO for transparent electrically conductive films, considerations were given on a growth mechanism of a ZnO film using the MOCVD process. It was made clear that the ZnO film grows with Zn(OH)2 working as a film forming species. It was also shown that the larger the ZnO particle size is, the more the solar cell efficiency is improved. Furthermore, theoretical elucidation was made on effects of rear face of an interface on cell characteristics, and experimental discussions were given subsequently. In research on solar cells using hydrogen diluted `i` layers, delta-doped solar cells were fabricated based on basic data obtained in the previous fiscal year, and the hydrogen dilution effect was evaluated from the cell characteristics. When the hydrogen dilution ratio is increased from zero to one, the conversion efficiency has improved from 12.2% to 12.6%. In addition, experiments and discussions were given on solar cells fabricated by using SiH2Cl2. 9 figs.

  9. Photo-excited hot carrier dynamics in hydrogenated amorphous silicon imaged by 4D electron microscopy

    Science.gov (United States)

    Liao, Bolin; Najafi, Ebrahim; Li, Heng; Minnich, Austin J.; Zewail, Ahmed H.

    2017-09-01

    Charge carrier dynamics in amorphous semiconductors has been a topic of intense research that has been propelled by modern applications in thin-film solar cells, transistors and optical sensors. Charge transport in these materials differs fundamentally from that in crystalline semiconductors owing to the lack of long-range order and high defect density. Despite the existence of well-established experimental techniques such as photoconductivity time-of-flight and ultrafast optical measurements, many aspects of the dynamics of photo-excited charge carriers in amorphous semiconductors remain poorly understood. Here, we demonstrate direct imaging of carrier dynamics in space and time after photo-excitation in hydrogenated amorphous silicon (a-Si:H) by scanning ultrafast electron microscopy (SUEM). We observe an unexpected regime of fast diffusion immediately after photoexcitation, together with spontaneous electron-hole separation and charge trapping induced by the atomic disorder. Our findings demonstrate the rich dynamics of hot carrier transport in amorphous semiconductors that can be revealed by direct imaging based on SUEM.

  10. Band offsets at the crystalline / hydrogenated amorphous silicon interface from first-principles

    Science.gov (United States)

    Hazrati, Ebrahim; Jarolimek, Karol; de Wijs, Gilles A.; InstituteMolecules; Materials Team

    2015-03-01

    The heterojunction formed between crystalline silicon (c-Si) and hydrogenated amorphous silicon (a-Si:H) is a key component of a new type of high-efficiency silicon solar cell. Since a-Si:H has a larger band gap than c-Si, band offsets are formed at the interface. A band offset at the minority carrier band will mitigate recombination and lead to an increased efficiency. Experimental values of band offsets scatter in a broad range. However, a recent meta-analysis of the results (W. van Sark et al.pp. 405, Springer 2012) gives a larger valence offset (0.40 eV) than the conduction offset (0.15 eV). In light of the conflicting reports our goal is to calculate the band offsets at the c-Si/a-Si:H interface from first-principles. We have prepared several atomistic models of the interface. The crystalline part is terminated with (111) surfaces on both sides. The amorphous structure is generated by simulating an annealing process at 1100 K, with DFT molecular dynamics. Once the atomistic is ready it can be used to calculate the electronic structure of the interface. Our preliminary results show that the valence offset is larger than the conduction band offset.

  11. Absorption enhancement in amorphous silicon thin films via plasmonic resonances in nickel silicide nanoparticles

    Science.gov (United States)

    Hachtel, Jordan; Shen, Xiao; Pantelides, Sokrates; Sachan, Ritesh; Gonzalez, Carlos; Dyck, Ondrej; Fu, Shaofang; Kalnayaraman, Ramki; Rack, Phillip; Duscher, Gerd

    2013-03-01

    Silicon is a near ideal material for photovoltaics due to its low cost, abundance, and well documented optical properties. The sole detriment of Si in photovoltaics is poor absorption in the infrared. Nanoparticle surface plasmon resonances are predicted to increase absorption by scattering to angles greater than the critical angle for total internal reflection (16° for a Si/air interface), trapping the light in the film. Experiments confirm that nickel silicide nanoparticles embedded in amorphous silicon increases absorption significantly in the infrared. However, it remains to be seen if electron-hole pair generation is increased in the solar cell, or whether the light is absorbed by the nanoparticles themselves. The nature of the absorption is explored by a study of the surface plasmon resonances through electron energy loss spectrometry and scanning transmission electron microscopy experiments, as well as first principles density functional theory calculations. Initial experimental results do not show strong plasmon resonances on the nanoparticle surfaces. Calculations of the optical properties of the nickel silicide particles in amorphous silicon are performed to understand why this resonance is suppressed. Work supported by NSF EPS 1004083 (TN-SCORE).

  12. Atmospheric Pressure Plasma CVD of Amorphous Hydrogenated Silicon Carbonitride (a-SiCN:H) Films Using Triethylsilane and Nitrogen

    Energy Technology Data Exchange (ETDEWEB)

    Srinivasan Guruvenket; Steven Andrie; Mark Simon; Kyle W. Johnson; Robert A. Sailer

    2011-10-04

    Amorphous hydrogenated silicon carbonitride (a-SiCN:H) thin films are synthesized by atmospheric pressure plasma enhanced chemical vapor (AP-PECVD) deposition using the Surfx Atomflow{trademark} 250D APPJ source with triethylsilane (HSiEt{sub 3}, TES) and nitrogen as the precursor and the reactive gases, respectively. The effect of the substrate temperature (T{sub s}) on the growth characteristics and the properties of a-SiCN:H films was evaluated. The properties of the films were investigated via scanning electron microscopy (SEM), atomic force microscopy (AFM) for surface morphological analyses, Fourier transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS) for chemical and compositional analyses; spectroscopic ellipsometry for optical properties and thickness determination and nanoindentation to determine the mechanical properties of the a-SiCN:H films. Films deposited at low T{sub s} depict organic like features, while the films deposited at high T{sub s} depict ceramic like features. FTIR and XPS studies reveal that an increases in T{sub s} helps in the elimination of organic moieties and incorporation of nitrogen in the film. Films deposited at T{sub s} of 425 C have an index of refraction (n) of 1.84 and hardness (H) of 14.8 GPa. A decrease in the deposition rate between T{sub s} of 25 and 250 C and increase in deposition rate between T{sub s} of 250 and 425 C indicate that the growth of a-SiCN:H films at lower T{sub s} are surface reaction controlled, while at high temperatures film growth is mass-transport controlled. Based on the experimental results, a potential route for film growth is proposed.

  13. Amorphous carbon film deposition on inner surface of tubes using atmospheric pressure pulsed filamentary plasma source

    CERN Document Server

    Pothiraja, Ramasamy; Awakowicz, Peter

    2011-01-01

    Uniform amorphous carbon film is deposited on the inner surface of quartz tube having the inner diameter of 6 mm and the outer diameter of 8 mm. A pulsed filamentary plasma source is used for the deposition. Long plasma filaments (~ 140 mm) as a positive discharge are generated inside the tube in argon with methane admixture. FTIR-ATR, XRD, SEM, LSM and XPS analyses give the conclusion that deposited film is amorphous composed of non-hydrogenated sp2 carbon and hydrogenated sp3 carbon. Plasma is characterized using optical emission spectroscopy, voltage-current measurement, microphotography and numerical simulation. On the basis of observed plasma parameters, the kinetics of the film deposition process is discussed.

  14. Thermal conductivity of amorphous Al2O3/TiO2 nanolaminates deposited by atomic layer deposition.

    Science.gov (United States)

    Ali, Saima; Juntunen, Taneli; Sintonen, Sakari; Ylivaara, Oili M E; Puurunen, Riikka L; Lipsanen, Harri; Tittonen, Ilkka; Hannula, Simo-Pekka

    2016-11-04

    The thermophysical properties of Al2O3/TiO2 nanolaminates deposited by atomic layer deposition (ALD) are studied as a function of bilayer thickness and relative TiO2 content (0%-100%) while the total nominal thickness of the nanolaminates was kept at 100 nm. Cross-plane thermal conductivity of the nanolaminates is measured at room temperature using the nanosecond transient thermoreflectance method. Based on the measurements, the nanolaminates have reduced thermal conductivity as compared to the pure amorphous thin films, suggesting that interfaces have a non-negligible effect on thermal transport in amorphous nanolaminates. For a fixed number of interfaces, we find that approximately equal material content of Al2O3 and TiO2 produces the lowest value of thermal conductivity. The thermal conductivity reduces with increasing interface density up to 0.4 nm(-1), above which the thermal conductivity is found to be constant. The value of thermal interface resistance approximated by the use of diffuse mismatch model was found to be 0.45 m(2) K GW(-1), and a comparative study employing this value supports the interpretation of non-negligible interface resistance affecting the overall thermal conductivity also in the amorphous limit. Finally, no clear trend in thermal conductivity values was found for nanolaminates grown at different deposition temperatures, suggesting that the temperature in the ALD process has a non-trivial while modest effect on the overall thermal conductivity in amorphous nanolaminates.

  15. Thermal conductivity of amorphous Al2O3/TiO2 nanolaminates deposited by atomic layer deposition

    Science.gov (United States)

    Ali, Saima; Juntunen, Taneli; Sintonen, Sakari; Ylivaara, Oili M. E.; Puurunen, Riikka L.; Lipsanen, Harri; Tittonen, Ilkka; Hannula, Simo-Pekka

    2016-11-01

    The thermophysical properties of Al2O3/TiO2 nanolaminates deposited by atomic layer deposition (ALD) are studied as a function of bilayer thickness and relative TiO2 content (0%-100%) while the total nominal thickness of the nanolaminates was kept at 100 nm. Cross-plane thermal conductivity of the nanolaminates is measured at room temperature using the nanosecond transient thermoreflectance method. Based on the measurements, the nanolaminates have reduced thermal conductivity as compared to the pure amorphous thin films, suggesting that interfaces have a non-negligible effect on thermal transport in amorphous nanolaminates. For a fixed number of interfaces, we find that approximately equal material content of Al2O3 and TiO2 produces the lowest value of thermal conductivity. The thermal conductivity reduces with increasing interface density up to 0.4 nm-1, above which the thermal conductivity is found to be constant. The value of thermal interface resistance approximated by the use of diffuse mismatch model was found to be 0.45 m2 K GW-1, and a comparative study employing this value supports the interpretation of non-negligible interface resistance affecting the overall thermal conductivity also in the amorphous limit. Finally, no clear trend in thermal conductivity values was found for nanolaminates grown at different deposition temperatures, suggesting that the temperature in the ALD process has a non-trivial while modest effect on the overall thermal conductivity in amorphous nanolaminates.

  16. Development of Thin Film Amorphous Silicon Tandem Junction Based Photocathodes Providing High Open-Circuit Voltages for Hydrogen Production

    Directory of Open Access Journals (Sweden)

    F. Urbain

    2014-01-01

    Full Text Available Hydrogenated amorphous silicon thin film tandem solar cells (a-Si:H/a-Si:H have been developed with focus on high open-circuit voltages for the direct application as photocathodes in photoelectrochemical water splitting devices. By temperature variation during deposition of the intrinsic a-Si:H absorber layers the band gap energy of a-Si:H absorber layers, correlating with the hydrogen content of the material, can be adjusted and combined in a way that a-Si:H/a-Si:H tandem solar cells provide open-circuit voltages up to 1.87 V. The applicability of the tandem solar cells as photocathodes was investigated in a photoelectrochemical cell (PEC measurement set-up. With platinum as a catalyst, the a-Si:H/a-Si:H based photocathodes exhibit a high photocurrent onset potential of 1.76 V versus the reversible hydrogen electrode (RHE and a photocurrent of 5.3 mA/cm2 at 0 V versus RHE (under halogen lamp illumination. Our results provide evidence that a direct application of thin film silicon based photocathodes fulfills the main thermodynamic requirements to generate hydrogen. Furthermore, the presented approach may provide an efficient and low-cost route to solar hydrogen production.

  17. Gettering of interstitial iron in silicon by plasma-enhanced chemical vapour deposited silicon nitride films

    Science.gov (United States)

    Liu, A. Y.; Sun, C.; Markevich, V. P.; Peaker, A. R.; Murphy, J. D.; Macdonald, D.

    2016-11-01

    It is known that the interstitial iron concentration in silicon is reduced after annealing silicon wafers coated with plasma-enhanced chemical vapour deposited (PECVD) silicon nitride films. The underlying mechanism for the significant iron reduction has remained unclear and is investigated in this work. Secondary ion mass spectrometry (SIMS) depth profiling of iron is performed on annealed iron-contaminated single-crystalline silicon wafers passivated with PECVD silicon nitride films. SIMS measurements reveal a high concentration of iron uniformly distributed in the annealed silicon nitride films. This accumulation of iron in the silicon nitride film matches the interstitial iron loss in the silicon bulk. This finding conclusively shows that the interstitial iron is gettered by the silicon nitride films during annealing over a wide temperature range from 250 °C to 900 °C, via a segregation gettering effect. Further experimental evidence is presented to support this finding. Deep-level transient spectroscopy analysis shows that no new electrically active defects are formed in the silicon bulk after annealing iron-containing silicon with silicon nitride films, confirming that the interstitial iron loss is not due to a change in the chemical structure of iron related defects in the silicon bulk. In addition, once the annealed silicon nitride films are removed, subsequent high temperature processes do not result in any reappearance of iron. Finally, the experimentally measured iron decay kinetics are shown to agree with a model of iron diffusion to the surface gettering sites, indicating a diffusion-limited iron gettering process for temperatures below 700 °C. The gettering process is found to become reaction-limited at higher temperatures.

  18. Fabrication and Modeling of Ambipolar Hydrogenated Amorphous Silicon Thin Film Transistors.

    Science.gov (United States)

    1986-08-01

    that over 150 die can be fabricated on a single 2in Si wafer. Individual die are 4 -- ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ - -- rM M- ri- PA NX RA "’K Kno ’--tx...Kusian, and B. Bullemer, "An Ambipolar Amorphous- Silicon Field-Effect Transistor," Siemens Forsch.-u. Entwickl.-Ber., vol. 14, no. 3, pp. 114-119...1985. 99. H. Pfleiderer, W. Kusian, and B. Bullemer, "An Ambipolar Field-Effect Transistor Model," Siemens Forsch.-u. Entwicki.-Ber., vol. 14, no. 2, pp

  19. Review of amorphous silicon based particle detectors: the quest for single particle detection

    Science.gov (United States)

    Wyrsch, N.; Ballif, C.

    2016-10-01

    Hydrogenated amorphous silicon (a-Si:H) is attractive for radiation detectors because of its radiation resistance and processability over large areas with mature Si microfabrication techniques. While the use of a-Si:H for medical imaging has been very successful, the development of detectors for particle tracking and minimum-ionizing-particle detection has lagged, with almost no practical implementation. This paper reviews the development of various types of a-Si:H-based detectors and discusses their respective achievements and limitations. It also presents more recent developments of detectors that could potentially achieve single particle detection and be integrated in a monolithic fashion into a variety of applications.

  20. Large Size High Performance Transparent Amorphous Silicon Sensors for Laser Beam Position Detection and Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Calderon, A.; Martinez Rivero, C.; Matorras, F.; Rodrigo, T.; Sobron, M.; Vila, I.; Virto; Alberdi, J.; Arce, P.; Barcala, J. M.; Calvo, E.; Ferrando, A.; Josa, M. I.; Luque, J. M.; Molinero, A.; Navarrete, J.; Oller, J. C.; Kohler, C.; Lutz, B.; Schubert, M. B.

    2006-09-04

    We present the measured performance of a new generation of semitransparente amorphous silicon position detectors. They have a large sensitive area (30 x 30 mm2) and show good properties such as a high response (about 20 mA/W), an intinsic position resolution better than 3 m, a spatial point reconstruction precision better than 10 m, deflection angles smaller than 10 rad and a transmission power in the visible and NIR higher than 70%. In addition, multipoint alignment monitoring, using up to five sensors lined along a light path of about 5 meters, can be achieved with a resolution better than 20m. (Author)

  1. Large-size high-performance transparent amorphous silicon sensors for laser beam position detection

    Energy Technology Data Exchange (ETDEWEB)

    Calderon, A. [Instituto de Fisica de Cantabria. CSIC-University of Cantabria, Santander (Spain); Martinez-Rivero, C. [Instituto de Fisica de Cantabria. CSIC-University of Cantabria, Santander (Spain); Matorras, F. [Instituto de Fisica de Cantabria. CSIC-University of Cantabria, Santander (Spain); Rodrigo, T. [Instituto de Fisica de Cantabria. CSIC-University of Cantabria, Santander (Spain); Sobron, M. [Instituto de Fisica de Cantabria. CSIC-University of Cantabria, Santander (Spain); Vila, I. [Instituto de Fisica de Cantabria. CSIC-University of Cantabria, Santander (Spain); Virto, A.L. [Instituto de Fisica de Cantabria. CSIC-University of Cantabria, Santander (Spain); Alberdi, J. [CIEMAT, Madrid (Spain); Arce, P. [CIEMAT, Madrid (Spain); Barcala, J.M. [CIEMAT, Madrid (Spain); Calvo, E. [CIEMAT, Madrid (Spain); Ferrando, A. [CIEMAT, Madrid (Spain)]. E-mail: antonio.ferrando@ciemat.es; Josa, M.I. [CIEMAT, Madrid (Spain); Luque, J.M. [CIEMAT, Madrid (Spain); Molinero, A. [CIEMAT, Madrid (Spain); Navarrete, J. [CIEMAT, Madrid (Spain); Oller, J.C. [CIEMAT, Madrid (Spain); Yuste, C. [CIEMAT, Madrid (Spain); Koehler, C. [Steinbeis-Transferzentrum fuer Angewandte Photovoltaik und Duennschichttechnik, Stuttgart (Germany); Lutz, B. [Steinbeis-Transferzentrum fuer Angewandte Photovoltaik und Duennschichttechnik, Stuttgart (Germany); Schubert, M.B. [Steinbeis-Transferzentrum fuer Angewandte Photovoltaik und Duennschichttechnik, Stuttgart (Germany); Werner, J.H. [Steinbeis-Transferzentrum fuer Angewandte Photovoltaik und Duennschichttechnik, Stuttgart (Germany)

    2006-09-15

    We present the measured performance of a new generation of semitransparent amorphous silicon position detectors. They have a large sensitive area (30x30mm{sup 2}) and show good properties such as a high response (about 20mA/W), an intrinsic position resolution better than 3{mu}m, a spatial-point reconstruction precision better than 10{mu}m, deflection angles smaller than 10{mu}rad and a transmission power in the visible and NIR higher than 70%.

  2. Amorphous Silicon Solar cells with a Core-Shell Nanograting Structure

    CERN Document Server

    Yang, L; Okuno, Y; He, S

    2011-01-01

    We systematically investigate the optical behaviors of an amorphous silicon solar cell based on a core-shell nanograting structure. The horizontally propagating Bloch waves and Surface Plasmon Polariton (SPP) waves lead to significant absorption enhancements and consequently short-circuit current enhancements of this structure, compared with the conventional planar one. The perpendicular carrier collection makes this structure optically thick and electronically thin. An optimal design is achieved through full-field numerical simulation, and physical explanation is given. Our numerical results show that this configuration has ultrabroadband, omnidirectional and polarization-insensitive responses, and has a great potential in photovoltaics.

  3. Nonlinear properties of and nonlinear processing in hydrogenated amorphous silicon waveguides

    DEFF Research Database (Denmark)

    Kuyken, B.; Ji, Hua; Clemmen, S.

    2011-01-01

    We propose hydrogenated amorphous silicon nanowires as a platform for nonlinear optics in the telecommunication wavelength range. Extraction of the nonlinear parameter of these photonic nanowires reveals a figure of merit larger than 2. It is observed that the nonlinear optical properties...... of these waveguides degrade with time, but that this degradation can be reversed by annealing the samples. A four wave mixing conversion efficiency of + 12 dB is demonstrated in a 320 Gbit/s serial optical waveform data sampling experiment in a 4 mm long photonic nanowire....

  4. Defects left after regrowth of amorphous silicon on crystalline Si : C (V) and DLTS studies

    OpenAIRE

    Castaing, J.; Cass, T.

    1985-01-01

    n and p-type silicon have been self-ion implanted at 77 K with multi-energetic beams. This process was used to amorphize a 0.4 μm layer with a minimum amount of damage in the underlying crystal. After regrowth by a 550 °C anneal, the remaining defects were assessed by capacitance-voltage (C(V )) measurements and deep level transient spectroscopy (DLTS). In n-type Si, a buried layer of deep donors in large concentration was found, whereas in p-type Si, their concentration was small. These trap...

  5. Spectroscopy and structural properties of amorphous and nanocrystalline silicon carbide thin films

    NARCIS (Netherlands)

    Halindintwali, Sylvain; Knoesen, D.; Julies, B.A.; Arendse, C.J.; Muller, T.; Gengler, Régis Y.N.; Rudolf, P.; Loosdrecht, P.H.M. van

    2011-01-01

    Amorphous SiC:H thin films were grown by hot wire chemical vapour deposition from a SiH4/CH4/H2 mixture at a substrate temperature below 400 °C. Thermal annealing in an argon environment up to 900 °C shows that the films crystallize as μc-Si:H and SiC with a porous microstructure that favours an oxi

  6. Spectroscopy and structural properties of amorphous and nanocrystalline silicon carbide thin films

    NARCIS (Netherlands)

    Halindintwali, Sylvain; Knoesen, D.; Julies, B.A.; Arendse, C.J.; Muller, T.; Gengler, Régis Y.N.; Rudolf, P.; Loosdrecht, P.H.M. van

    2011-01-01

    Amorphous SiC:H thin films were grown by hot wire chemical vapour deposition from a SiH4/CH4/H2 mixture at a substrate temperature below 400 °C. Thermal annealing in an argon environment up to 900 °C shows that the films crystallize as μc-Si:H and SiC with a porous microstructure that favours an

  7. Phase transitions from semiconductive amorphous to conductive polycrystalline in indium silicon oxide thin films

    Science.gov (United States)

    Mitoma, Nobuhiko; Da, Bo; Yoshikawa, Hideki; Nabatame, Toshihide; Takahashi, Makoto; Ito, Kazuhiro; Kizu, Takio; Fujiwara, Akihiko; Tsukagoshi, Kazuhito

    2016-11-01

    The enhancement in electrical conductivity and optical transparency induced by a phase transition from amorphous to polycrystalline in lightly silicon-doped indium oxide (InSiO) thin films is studied. The phase transition caused by simple thermal annealing transforms the InSiO thin films from semiconductors to conductors. Silicon atoms form SiO4 tetrahedra in InSiO, which enhances the overlap of In 5s orbitals as a result of the distortion of InO6 octahedral networks. Desorption of weakly bonded oxygen releases electrons from deep subgap states and enhances the electrical conductivity and optical transparency of the films. Optical absorption and X-ray photoelectron spectroscopy measurements reveal that the phase transition causes a Fermi energy shift of ˜0.2 eV.

  8. Two-dimensional modeling of the back amorphous-crystalline silicon heterojunction (BACH) photovoltaic device

    Science.gov (United States)

    Chowdhury, Zahidur R.; Chutinan, Alongkarn; Gougam, Adel B.; Kherani, Nazir P.; Zukotynski, Stefan

    2010-06-01

    Back Amorphous-Crystalline Silicon Heterojunction (BACH)1 solar cell can be fabricated using low temperature processes while integrating high efficiency features of heterojunction silicon solar cells and back-contact homojunction solar cells. This article presents a two-dimensional modeling study of the BACH cell concept. A parametric study of the BACH cell has been carried out using Sentaurus after benchmarking the software. A detailed model describing the optical generation is defined. Solar cell efficiency of 24.4% is obtained for AM 1.5 global spectrum with VOC of greater than 720 mV and JSC exceeding 40 mA/cm2, considering realistic surface passivation quality and other dominant recombination processes.

  9. Hydex Glass and Amorphous Silicon for Integrated Nonlinear Optical Signal Processing

    CERN Document Server

    Morandotti, Roberto

    2015-01-01

    Photonic integrated circuits that exploit nonlinear optics in order to generate and process signals all-optically have achieved performance far superior to that possible electronically - particularly with respect to speed. Although silicon-on-insulator has been the leading platform for nonlinear optics for some time, its high two-photon absorption at telecommunications wavelengths poses a fundamental limitation. We review the recent achievements based in new CMOS-compatible platforms that are better suited than SOI for nonlinear optics, focusing on amorphous silicon and Hydex glass. We highlight their potential as well as the challenges to achieving practical solutions for many key applications. These material systems have opened up many new capabilities such as on-chip optical frequency comb generation and ultrafast optical pulse generation and measurement.

  10. Solid phase epitaxy amorphous silicon re-growth: some insight from empirical molecular dynamics simulation

    CERN Document Server

    Krzeminski, Christophe; 10.1140/epjb/e2011-10958-7

    2011-01-01

    The modelling of interface migration and the associated diffusion mechanisms at the nanoscale level is a challenging issue. For many technological applications ranging from nanoelectronic devices to solar cells, more knowledge of the mechanisms governing the migration of the silicon amorphous/crystalline interface and dopant diffusion during solid phase epitaxy is needed. In this work, silicon recrystallisation in the framework of solid phase epitaxy and the influence on orientation effects have been investigated at the atomic level using empirical molecular dynamics simulations. The morphology and the migration process of the interface has been observed to be highly dependent on the original inter-facial atomic structure. The [100] interface migration is a quasi-planar ideal process whereas the cases [110] and [111] are much more complex with a more diffuse interface. For [110], the interface migration corresponds to the formation and dissolution of nanofacets whereas for [111] a defective based bilayer reor...

  11. Spin transport, magnetoresistance, and electrically detected magnetic resonance in amorphous hydrogenated silicon nitride

    Science.gov (United States)

    Mutch, Michael J.; Lenahan, Patrick M.; King, Sean W.

    2016-08-01

    We report on a study of spin transport via electrically detected magnetic resonance (EDMR) and near-zero field magnetoresistance (MR) in silicon nitride films. Silicon nitrides have long been important materials in solid state electronics. Although electronic transport in these materials is not well understood, electron paramagnetic resonance studies have identified a single dominating paramagnetic defect and have also provided physical and chemical descriptions of the defects, called K centers. Our EDMR and MR measurements clearly link the near-zero field MR response to the K centers and also indicate that K center energy levels are approximately 3.1 eV above the a-SiN:H valence band edge. In addition, our results suggest an approach for the study of defect mediated spin-transport in inorganic amorphous insulators via variable electric field and variable frequency EDMR and MR which may be widely applicable.

  12. Study of the amorphization of surface silicon layers implanted by low-energy helium ions

    Science.gov (United States)

    Lomov, A. A.; Myakon'kikh, A. V.; Oreshko, A. P.; Shemukhin, A. A.

    2016-03-01

    The structural changes in surface layers of Si(001) substrates subjected to plasma-immersion implantation by (2-5)-keV helium ions to a dose of D = 6 × 1015-5 × 1017 cm-2 have been studied by highresolution X-ray diffraction, Rutherford backscattering, and spectral ellipsometry. It is found that the joint application of these methods makes it possible to determine the density depth distribution ρ( z) in an implanted layer, its phase state, and elemental composition. Treatment of silicon substrates in helium plasma to doses of 6 × 1016 cm-2 leads to the formation of a 20- to 30-nm-thick amorphized surface layer with a density close to the silicon density. An increase in the helium dose causes the formation of an internal porous layer.

  13. Surface morphology and grain analysis of successively industrially grown amorphous hydrogenated carbon films (a-C:H) on silicon

    Energy Technology Data Exchange (ETDEWEB)

    Catena, Alberto [Department of Physics, University of Koblenz-Landau, 56070 Koblenz (Germany); McJunkin, Thomas [Department of Physics, The Ohio State University, 43210 Columbus, Ohio (United States); Agnello, Simonpietro; Gelardi, Franco M. [Department of Physics and Chemistry, University of Palermo, 90100 Palermo (Italy); Wehner, Stefan [Department of Physics, University of Koblenz-Landau, 56070 Koblenz (Germany); Fischer, Christian B., E-mail: chrbfischer@uni-koblenz.de [Department of Physics, University of Koblenz-Landau, 56070 Koblenz (Germany)

    2015-08-30

    Graphical abstract: - Highlights: • Two different a-C:H coatings in various thicknesses on Si (1 0 0) have been studied. • For both types no significant difference in surface morphology is detectable. • The grain number with respect to their height appears randomly distributed. • In average no grain higher than 14 nm and larger than 0.05 μm{sup 2} was observed. • A height to area correlation confines all detected grains to a limited region. - Abstract: Silicon (1 0 0) has been gradually covered by amorphous hydrogenated carbon (a-C:H) films via an industrial process. Two types of these diamond-like carbon (DLC) coatings, one more flexible (f-DLC) and one more robust (r-DLC), have been investigated. Both types have been grown by a radio frequency plasma-enhanced chemical vapor deposition (RF-PECVD) technique with acetylene plasma. Surface morphologies have been studied in detail by atomic force microscopy (AFM) and Raman spectroscopy has been used to investigate the DLC structure. Both types appeared to have very similar morphology and sp{sup 2} carbon arrangement. The average height and area for single grains have been analyzed for all depositions. A random distribution of grain heights was found for both types. The individual grain structures between the f- and r-type revealed differences: the shape for the f-DLC grains is steeper than for the r-DLC grains. By correlating the average grain heights to the average grain areas for all depositions a limited region is identified, suggesting a certain regularity during the DLC deposition mechanisms that confines both values. A growth of the sp{sup 2} carbon entities for high r-DLC depositions is revealed and connected to a structural rearrangement of carbon atom hybridizations and hydrogen content in the DLC structure.

  14. Electrical conductivity and crystallization of amorphous bismuth ruthenate thin films deposited by spray pyrolysis.

    Science.gov (United States)

    Ryll, Thomas; Brunner, Andreas; Ellenbroek, Stefan; Bieberle-Hutter, Anja; Rupp, Jennifer L M; Gauckler, Ludwig J

    2010-11-14

    Amorphous oxide thin films with tailored functionality will be crucial for the next generation of micro-electro-mechanical-systems (MEMS). Due to potentially favorable electronic and catalytic properties, amorphous bismuth ruthenate thin films might be applied in this regard. We report on the deposition of amorphous bismuth ruthenate thin films by spray pyrolysis, their crystallization behavior and electrical conductivity. At room temperature the 200 nm thin amorphous films exhibit a high electrical conductivity of 7.7 × 10(4) S m(-1), which was found to be slightly thermally activated (E(a) = 4.1 × 10(-3) eV). It follows that a long-range order of the RuO(6) octahedra is no precondition for the electrical conductivity of Bi(3)Ru(3)O(11). Upon heating to the temperature range between 490 °C and 580 °C the initially amorphous films crystallize rapidly. Simultaneously, a transition from a dense and continuous film to isolated Bi(3)Ru(3)O(11) particles on the substrate takes place. Solid-state agglomeration is proposed as the mechanism responsible for disintegration. The area specific resistance of Bi(3)Ru(3)O(11) particles contacted by Pt paste on gadolinia doped ceria electrolyte pellets was found to be 7 Ω cm(2) at 607 °C in air. Amorphous bismuth ruthenate thin films are proposed for application in electrochemical devices operating at low temperatures, where a high electrical conductivity is required.

  15. Direct deposition of gold on silicon with focused ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Nebiker, P.W.; Doebeli, M. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Muehle, R. [Eidgenoessische Technische Hochschule, Zurich (Switzerland)

    1997-09-01

    Irradiation with ions at very low energies (below 500 eV) no longer induces a removal of substrate material, but the ions are directly deposited on the surface. In this way, gold has been deposited on silicon with focused ion beam exposure and the properties of the film have been investigated with atomic force microscopy and Auger electron spectroscopy. (author) 3 figs., 1 ref.

  16. The Metastable Persistence of Vapor-Deposited Amorphous Ice at Anomalously High Temperatures

    Science.gov (United States)

    Blake, David F.; Jenniskens, Peter; DeVincenzi, Donald L. (Technical Monitor)

    1995-01-01

    Studies of the gas release, vaporization behavior and infrared (IR) spectral properties of amorphous and crystalline water ice have direct application to cometary and planetary outgassing phenomena and contribute to an understanding of the physical properties of astrophysical ices. Several investigators report anomalous phenomena related to the warming of vapor-deposited astrophysical ice analogs. However gas release, ice volatilization and IR spectral features are secondary or tertiary manifestations of ice structure or morphology. These observations are useful in mimicking the bulk physical and chemical phenomena taking place in cometary and other extraterrestrial ices but do not directly reveal the structural changes which are their root cause. The phenomenological interpretation of spectral and gas release data is probably the cause of somewhat contradictory explanations invoked to account for differences in water ice behavior in similar temperature regimes. It is the microstructure, micromorphology and microchemical heterogeneity of astrophysical ices which must be characterized if the mechanisms underlying the observed phenomena are to be understood. We have been using a modified Transmission Electron Microscope to characterize the structure of vapor-deposited astrophysical ice analogs as a function of their deposition, temperature history and composition. For the present experiments, pure water vapor is deposited at high vacuum onto a 15 K amorphous carbon film inside an Hitachi H-500H TEM. The resulting ice film (approx. 0.05 micrometers thick) is warmed at the rate of 1 K per minute and diffraction patterns are collected at 1 K intervals. These patterns are converted into radial intensity distributions which are calibrated using patterns of crystalline gold deposited on a small part of the carbon substrate. The small intensity contributed by the amorphous substrate is removed by background subtraction. The proportions of amorphous and crystalline material

  17. Strong enhancement of spontaneous emission in amorphous-silicon-nitride photonic crystal based coupled-microcavity structures

    Energy Technology Data Exchange (ETDEWEB)

    Bayindir, M.; Tanriseven, S.; Aydinli, A.; Ozbay, E. [Bilkent Univ., Ankara (Turkey). Dept. of Physics

    2001-07-01

    We investigated photoluminescence (PL) from one-dimensional photonic band gap structures. The photonic crystals, a Fabry-Perot (FP) resonator and a coupled-microcavity (CMC) structure, were fabricated by using alternating hydrogenated amorphous-silicon-nitride and hydrogenated amorphous-silicon-oxide layers. It was observed that these structures strongly modify the PL spectra from optically active amorphous-silicon-nitride thin films. Narrow-band and wide-band PL spectra were achieved in the FP microcavity and the CMC structure, respectively. The angle dependence of PL peak of the FP resonator was also investigated. We also observed that the spontaneous emission increased drastically at the coupled-cavity band edge of the CMC structure due to extremely low group velocity and long photon lifetime. The measurements agree well with the transfer-matrix method results and the prediction of the tight-binding approximation. (orig.)

  18. Strong enhancement of spontaneous emission in amorphous-silicon-nitride photonic crystal based coupled-microcavity structures

    Science.gov (United States)

    Bayindir, M.; Tanriseven, S.; Aydinli, A.; Ozbay, E.

    We investigated photoluminescence (PL) from one-dimensional photonic band gap structures. The photonic crystals, a Fabry-Perot (FP) resonator and a coupled-microcavity (CMC) structure, were fabricated by using alternating hydrogenated amorphous-silicon-nitride and hydrogenated amorphous-silicon-oxide layers. It was observed that these structures strongly modify the PL spectra from optically active amorphous-silicon-nitride thin films. Narrow-band and wide-band PL spectra were achieved in the FP microcavity and the CMC structure, respectively. The angle dependence of PL peak of the FP resonator was also investigated. We also observed that the spontaneous emission increased drastically at the coupled-cavity band edge of the CMC structure due to extremely low group velocity and long photon lifetime. The measurements agree well with the transfer-matrix method results and the prediction of the tight-binding approximation.

  19. Fourier transform infrared analysis of ceramic powders: Quantitative determination of alpha, beta, and amorphous phases of silicon nitride

    Energy Technology Data Exchange (ETDEWEB)

    Trout, T.K.; Bellama, J.M.; Brinckman, F.E.; Faltynek, R.A.

    1989-03-01

    Fourier transform infrared spectroscopy (FT-IR) forms the basis for determining the morphological composition of mixtures containing alpha, beta, and amorphous phases of silicon nitride. The analytical technique, involving multiple linear regression treatment of Kubelka-Munk absorbance values from diffuse reflectance measurements, yields specific percent composition data for the amorphous phase as well as the crystalline phases in ternary mixtures of 0--1% by weight Si/sub 3/N/sub 4/ in potassium bromide.

  20. Amorphous boron coatings produced with vacuum arc deposition technology

    CERN Document Server

    Klepper, C C; Yadlowsky, E J; Carlson, E P; Keitz, M D; Williams, J M; Zuhr, R A; Poker, D B

    2002-01-01

    In principle, boron (B) as a material has many excellent surface properties, including corrosion resistance, very high hardness, refractory properties, and a strong tendency to bond with most substrates. The potential technological benefits of the material have not been realized, because it is difficult to deposit it as coatings. B is difficult to evaporate, does not sputter well, and cannot be thermally sprayed. In this article, first successful deposition results from a robust system, based on the vacuum (cathodic) arc technology, are reported. Adherent coatings have been produced on 1100 Al, CP-Ti, Ti-6Al-4V, 316 SS, hard chrome plate, and 52 100 steel. Composition and thickness analyses have been performed by Rutherford backscattering spectroscopy. Hardness (H) and modules (E) have been evaluated by nanoindentation. The coatings are very pure and have properties characteristic of B suboxides. A microhardness of up to 27 GPa has been measured on a 400-nm-thick film deposited on 52 100 steel, with a corresp...

  1. RF Reactive Magnetron Sputter Deposition of Silicon Sub-Oxides

    NARCIS (Netherlands)

    Hattum, E.D. van

    2007-01-01

    RF reactive magnetron plasma sputter deposition of silicon sub oxide E.D. van Hattum Department of Physics and Astronomy, Faculty of Sciences, Utrecht University The work described in the thesis has been inspired and stimulated by the use of SiOx layers in the direct inductive printing technology, w

  2. Low-temperature deposition of crystalline silicon nitride nanoparticles by hot-wire chemical vapor deposition

    Science.gov (United States)

    Kim, Chan-Soo; Youn, Woong-Kyu; Lee, Dong-Kwon; Seol, Kwang-Soo; Hwang, Nong-Moon

    2009-07-01

    The nanocrystalline alpha silicon nitride (α-Si 3N 4) was deposited on a silicon substrate by hot-wire chemical vapor deposition at the substrate temperature of 700 °C under 4 and 40 Torr at the wire temperatures of 1430 and 1730 °C, with a gas mixture of SiH 4 and NH 3. The size and density of crystalline nanoparticles on the substrate increased with increasing wire temperature. With increasing reactor pressure, the crystallinity of α-Si 3N 4 nanoparticles increased, but the deposition rate decreased.

  3. Achieving thermography with a thermal security camera using uncooled amorphous silicon microbolometer image sensors

    Science.gov (United States)

    Wang, Yu-Wei; Tesdahl, Curtis; Owens, Jim; Dorn, David

    2012-06-01

    Advancements in uncooled microbolometer technology over the last several years have opened up many commercial applications which had been previously cost prohibitive. Thermal technology is no longer limited to the military and government market segments. One type of thermal sensor with low NETD which is available in the commercial market segment is the uncooled amorphous silicon (α-Si) microbolometer image sensor. Typical thermal security cameras focus on providing the best image quality by auto tonemaping (contrast enhancing) the image, which provides the best contrast depending on the temperature range of the scene. While this may provide enough information to detect objects and activities, there are further benefits of being able to estimate the actual object temperatures in a scene. This thermographic ability can provide functionality beyond typical security cameras by being able to monitor processes. Example applications of thermography[2] with thermal camera include: monitoring electrical circuits, industrial machinery, building thermal leaks, oil/gas pipelines, power substations, etc...[3][5] This paper discusses the methodology of estimating object temperatures by characterizing/calibrating different components inside a thermal camera utilizing an uncooled amorphous silicon microbolometer image sensor. Plots of system performance across camera operating temperatures will be shown.

  4. AZO-Ag-AZO transparent electrode for amorphous silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Theuring, Martin, E-mail: martin.theuring@next-energy.de; Vehse, Martin; Maydell, Karsten von; Agert, Carsten

    2014-05-02

    Metal-based transparent electrodes can be fabricated at low temperatures, which is crucial for various substrate materials and solar cells. In this work, an oxide-metal-oxide (OMO) transparent electrode based on aluminum zinc oxide (AZO) and silver is compared to AZO layers, fabricated at different temperatures and indium tin oxides. With the OMO structure, a sheet resistance of 7.1/square and a transparency above 80% for almost the entire visible spectrum were achieved. The possible application of such electrodes on a textured solar cell was demonstrated on the example of a rough ZnO substrate. An OMO structure is benchmarked in a n-i-p amorphous silicon solar cell against an AZO front contact fabricated at 200 °C. In the experiment, the OMO electrode shows a superior performance with an efficiency gain of 30%. - Highlights: • Multilayer transparent electrode based on aluminum zinc oxide (AZO) and Ag • Comparison of AZO-Ag-AZO transparent electrode to AZO and indium tin oxide • Performance of AZO-Ag-AZO transparent electrodes on textured surfaces • Comparison of amorphous silicon solar cells with different transparent electrodes.

  5. Flexible amorphous silicon solar cells and their application to PV systems

    Energy Technology Data Exchange (ETDEWEB)

    Ichikawa, Y.; Fujikake, S.; Yoshida, T.; Sakai, H.; Natsume, F. [Fuji Electric Co. Ltd., Yokosuka, Kanagawa (Japan). New Energy Lab.

    1996-12-31

    Hydrogenated amorphous silicon (a-Si:H) solar cells are regarded as the next generation product following crystalline silicon (c-Si) solar cells. The performance of the large area cells has been improved to a practical application level and the durability has been confirmed by a number of outdoor tests at demonstration sites under various climatic conditions. The mass production technology for realizing low cost a-Si photovoltaic (PV) modules, however, has not been developed very well and is still in an elementary stage. A flexible a-Si:H PV module has been developed, which is rolled up around a cylindrical core, has a width of about 1 m, and is able to be cut to any length. The amorphous solar cell fabricated on a heat resistant plastic film with a thickness of 50 {mu}m has a new monolithic series connected structure named SCAF (Series-Connection through Apertures formed on Film) to obtain a high output voltage required for practical use. The details of the structure and the technology of the fabrication process are described as well as some of its applications. (author). 11 figs., 3 refs.

  6. Depth profile study on Raman spectra of high-energy-electron-irradiated hydrogenated amorphous silicon films

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    According to the different penetration depths for the incident lights of 472 nm and 532 nm in hydrogenated amorphous silicon (a-Si:H) thin films, the depth profile study on Raman spectra of a-Si:H films was carried out. The network ordering evolution in the near surface and interior region of the unirradiated and irradiated a-Si:H films was investigated. The results show that there is a structural improvement in the shortand intermediate-range order towards the surface of the unirradiated a-Si:H films. The amorphous silicon network in the near and interior region becomes more disordered on the shortand intermediate-range scales after being irradiated with high energy electrons. However, the surface of the irradiated films becomes more disordered in comparison with their interior region, indicating that the created defects caused by electron irradiation are concentrated in the near surface of the irradiated films. Annealing eliminates the irradiation effects on a-Si:H thin films and the structural order of the irradiated films is similar to that of the unirradiated ones after being annealed. There exists a structural improvement in the shortand intermediate-range order towards the surface of the irradiated a-Si:H films after being annealed.

  7. Amorphous silicon based p-i-i-n photodetectors for point-of-care testing

    Energy Technology Data Exchange (ETDEWEB)

    Furin, Dominik; Proll, Guenther; Gauglitz, Guenther [Universitaet Tuebingen, Institut fuer Physikalische und Theoretische Chemie, Auf der Morgenstelle 8, 72076 Tuebingen (Germany); Thielmann, Johannes; Harendt, Christine [Institut fuer Mikroelektronik Stuttgart, Allmandring 30a, 70569 Stuttgart (Germany); Pfaefflin, Albrecht; Schleicher, Erwin [Universitaetsklinikum und Medizinische Fakultaet, Universitaetsklinikum Tuebingen, Geissweg 3, 72076 Tuebingen (Germany); Schubert, Markus B. [Institut fuer Physikalische Elektronik, Universitaet Stuttgart, Pfaffenwaldring 47, 70569 Stuttgart (Germany); Saemann, Marc

    2010-04-15

    Modern medical diagnostics demands point-of-care testing (POCT) systems for quick tests in clinical or out-patient environments. This investigation combines the Reflectometric Interference Spectroscopy (RIfS) with thin film technology for a highly sensitive, direct optical and label-free detection of proteins, e.g. inflammation or cardiovascular markers. Amorphous silicon (a-Si) based thin film photodetectors replace the so far needed spectrometer and permit downsizing of the POCT system. Photodetectors with p-i-i-n structure adjust their spectral sensitivity according to the applied read-out voltage. The use of amorphous silicon carbide in the p-type and the first intrinsic layer enhances the sensitivity through very low dark currents of the photodetectors and enables the adjustment of their absorption characteristics. Integrating the thin film photodetectors on the rear side of the RIfS substrate eliminates optical losses and distortions, as compared to the standard RIfS setup. An integrated Application Specific Integrated Circuit (ASIC) chip performs a current-frequency conversion to accurately detect the photocurrent of up to eight parallel photodetector channels. In addition to the optimization of the photo-detectors, this contribution presents first successful direct optical and label-free RIfS measurements of C-reactive protein (CRP) and D-dimer in buffer solution in physiological relevant concentrations. (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  8. Three hydrogenated amorphous silicon photodiodes stacked for an above integrated circuit colour sensor

    Energy Technology Data Exchange (ETDEWEB)

    Gidon, Pierre; Giffard, Benoit; Moussy, Norbert; Parrein, Pascale; Poupinet, Ludovic [CEA-LETI, MINATEC, CEA-Grenoble, 17 rue des Martyrs, 38054 Grenoble Cedex 9 (France)

    2010-03-15

    We present theoretical simulation and experimental results of a new colour pixel structure. This pixel catches the light in three stacked amorphous silicon photodiodes encompassed between transparent electrodes. The optical structure has been simulated for signal optimisation. The thickness of each stacked layer is chosen in order to absorb the maximum of light and the three signals allow to linearly calculate the CIE colour coordinates 1 with minimum error and noise. The whole process is compatible with an above integrated circuit (IC) approach. Each photodiode is an n-i-p structure. For optical reason, the upper diode must be controlled down to 25 nm thickness. The first test pixel structure allows a good recovering of colour coordinates. The measured absorption spectrum of each photodiode is in good agreement with our simulations. This specific stack with three photodiodes per pixel totalises two times more signal than an above IC pixel under a standard Bayer pattern 2,3. In each square of this GretagMacbeth chart is the reference colour on the right and the experimentally measured colour on the left with three amorphous silicon photodiodes per pixel. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  9. Silica nanoparticles on front glass for efficiency enhancement in superstrate-type amorphous silicon solar cells

    Science.gov (United States)

    Das, Sonali; Banerjee, Chandan; Kundu, Avra; Dey, Prasenjit; Saha, Hiranmay; Datta, Swapan K.

    2013-10-01

    Antireflective coating on front glass of superstrate-type single junction amorphous silicon solar cells (SCs) has been applied using highly monodispersed and stable silica nanoparticles (NPs). The silica NPs having 300 nm diameter were synthesized by Stober technique where the size of the NPs was controlled by varying the alcohol medium. The synthesized silica NPs were analysed by dynamic light scattering technique and Fourier transform infrared spectroscopy. The NPs were spin coated on glass side of fluorinated tin oxide (SnO2: F) coated glass superstrate and optimization of the concentration of the colloidal solution, spin speed and number of coated layers was done to achieve minimum reflection characteristics. An estimation of the distribution of the NPs for different optimization parameters has been done using field-emission scanning electron microscopy. Subsequently, the transparent conducting oxide coated glass with the layer having the minimum reflectance is used for fabrication of amorphous silicon SC. Electrical analysis of the fabricated cell indicates an improvement of 6.5% in short-circuit current density from a reference of 12.40 mA cm-2 while the open circuit voltage and the fill factor remains unaltered. A realistic optical model has also been proposed to gain an insight into the system.

  10. Band Offsets at the Interface between Crystalline and Amorphous Silicon from First Principles

    Science.gov (United States)

    Jarolimek, K.; Hazrati, E.; de Groot, R. A.; de Wijs, G. A.

    2017-07-01

    The band offsets between crystalline and hydrogenated amorphous silicon (a -Si ∶H ) are key parameters governing the charge transport in modern silicon heterojunction solar cells. They are an important input for macroscopic simulators that are used to further optimize the solar cell. Past experimental studies, using x-ray photoelectron spectroscopy (XPS) and capacitance-voltage measurements, have yielded conflicting results on the band offset. Here, we present a computational study on the band offsets. It is based on atomistic models and density-functional theory (DFT). The amorphous part of the interface is obtained by relatively long DFT first-principles molecular-dynamics runs at an elevated temperature on 30 statistically independent samples. In order to obtain a realistic conduction-band position the electronic structure of the interface is calculated with a hybrid functional. We find a slight asymmetry in the band offsets, where the offset in the valence band (0.29 eV) is larger than in the conduction band (0.17 eV). Our results are in agreement with the latest XPS measurements that report a valence-band offset of 0.3 eV [M. Liebhaber et al., Appl. Phys. Lett. 106, 031601 (2015), 10.1063/1.4906195].

  11. Amorphous silicon thin-film solar cells on glass fiber textiles

    Energy Technology Data Exchange (ETDEWEB)

    Plentz, Jonathan, E-mail: jonathan.plentz@leibniz-ipht.de; Andrä, Gudrun; Pliewischkies, Torsten; Brückner, Uwe; Eisenhawer, Björn; Falk, Fritz

    2016-02-15

    Graphical abstract: - Highlights: • Amorphous silicon solar cells on textile glass fiber fabrics are demonstrated. • Open circuit voltages of 883 mV show shunt-free contacting on non-planar fabrics. • Short-circuit current densities of 3.7 mA/cm{sup 2} are limited by transmission losses. • Fill factors of 43.1% and pseudo fill factors of 70.2% show high series resistance. • Efficiencies of 1.4% and pseudo efficiencies of 2.1% realized on textile fabrics. - Abstract: In this contribution, amorphous silicon thin-film solar cells on textile glass fiber fabrics for smart textiles are prepared and the photovoltaic performance is characterized. These solar cells on fabrics delivered open circuit voltages up to 883 mV. This shows that shunt-free contacting of the solar cells was successful, even in case of non-planar fabrics. The short-circuit current densities up to 3.7 mA/cm{sup 2} are limited by transmission losses in a 10 nm thin titanium layer, which was used as a semi-transparent contact. The low conductivity of this layer limits the fill factor to 43.1%. Pseudo fill factors, neglecting the series resistance, up to 70.2% were measured. Efficiencies up to 1.4% and pseudo efficiencies up to 2.1% were realized on textile fabrics. A transparent conductive oxide could further improve the efficiency to above 5%.

  12. Non-negligible Contributions to Thermal Conductivity From Localized Modes in Amorphous Silicon Dioxide

    Science.gov (United States)

    Lv, Wei; Henry, Asegun

    2016-10-01

    Thermal conductivity is important for almost all applications involving heat transfer. The theory and modeling of crystalline materials is in some sense a solved problem, where one can now calculate their thermal conductivity from first principles using expressions based on the phonon gas model (PGM). However, modeling of amorphous materials still has many open questions, because the PGM itself becomes questionable when one cannot rigorously define the phonon velocities. In this report, we used our recently developed Green-Kubo modal analysis (GKMA) method to study amorphous silicon dioxide (a-SiO2). The predicted thermal conductivities exhibit excellent agreement with experiments and anharmonic effects are included in the thermal conductivity calculation for all the modes in a-SiO2 for the first time. Previously, localized modes (locons) have been thought to have a negligible contribution to thermal conductivity, due to their highly localized nature. However, in a-SiO2 our results indicate that locons contribute more than 10% to the total thermal conductivity from 400 K to 800 K and they are largely responsible for the increase in thermal conductivity of a-SiO2 above room temperature. This is an effect that cannot be explained by previous methods and therefore offers new insight into the nature of phonon transport in amorphous/glassy materials.

  13. Non-negligible Contributions to Thermal Conductivity From Localized Modes in Amorphous Silicon Dioxide.

    Science.gov (United States)

    Lv, Wei; Henry, Asegun

    2016-10-21

    Thermal conductivity is important for almost all applications involving heat transfer. The theory and modeling of crystalline materials is in some sense a solved problem, where one can now calculate their thermal conductivity from first principles using expressions based on the phonon gas model (PGM). However, modeling of amorphous materials still has many open questions, because the PGM itself becomes questionable when one cannot rigorously define the phonon velocities. In this report, we used our recently developed Green-Kubo modal analysis (GKMA) method to study amorphous silicon dioxide (a-SiO2). The predicted thermal conductivities exhibit excellent agreement with experiments and anharmonic effects are included in the thermal conductivity calculation for all the modes in a-SiO2 for the first time. Previously, localized modes (locons) have been thought to have a negligible contribution to thermal conductivity, due to their highly localized nature. However, in a-SiO2 our results indicate that locons contribute more than 10% to the total thermal conductivity from 400 K to 800 K and they are largely responsible for the increase in thermal conductivity of a-SiO2 above room temperature. This is an effect that cannot be explained by previous methods and therefore offers new insight into the nature of phonon transport in amorphous/glassy materials.

  14. Fabrication of amorphous micro-ring arrays in crystalline silicon using ultrashort laser pulses

    Science.gov (United States)

    Fuentes-Edfuf, Yasser; Garcia-Lechuga, Mario; Puerto, Daniel; Florian, Camilo; Garcia-Leis, Adianez; Sanchez-Cortes, Santiago; Solis, Javier; Siegel, Jan

    2017-05-01

    We demonstrate a simple way to fabricate amorphous micro-rings in crystalline silicon using direct laser writing. This method is based on the fact that the phase of a thin surface layer can be changed into the amorphous phase by irradiation with a few ultrashort laser pulses (800 nm wavelength and 100 fs duration). Surface-depressed amorphous rings with a central crystalline disk can be fabricated without the need for beam shaping, featuring attractive optical, topographical, and electrical properties. The underlying formation mechanism and phase change pathway have been investigated by means of fs-resolved microscopy, identifying fluence-dependent melting and solidification dynamics of the material as the responsible mechanism. We demonstrate that the lateral dimensions of the rings can be scaled and that the rings can be stitched together, forming extended arrays of structures not limited to annular shapes. This technique and the resulting structures may find applications in a variety of fields such as optics, nanoelectronics, and mechatronics.

  15. Direct measurement of free-energy barrier to nucleation of crystallites in amorphous silicon thin films

    Science.gov (United States)

    Shi, Frank G.

    1994-01-01

    A method is introduced to measure the free-energy barrier W(sup *), the activation energy, and activation entropy to nucleation of crystallites in amorphous solids, independent of the energy barrier to growth. The method allows one to determine the temperature dependence of W(sup *), and the effect of the preparation conditions of the initial amorphous phase, the dopants, and the crystallization methds on W(sup *). The method is applied to determine the free-energy barrier to nucleation of crystallites in amorphous silicon (a-Si) thin films. For thermally induced nucleation in a-Si thin films with annealing temperatures in the range of from 824 to 983 K, the free-energy barrier W(sup *) to nucleation of silicon crystals is about 2.0 - 2.1 eV regardless of the preparation conditions of the films. The observation supports the idea that a-Si transforms into an intermediate amorphous state through the structural relaxation prior to the onset of nucleation of crystallites in a-Si. The observation also indicates that the activation entropy may be an insignificant part of the free-energy barrier for the nucleation of crystallites in a-Si. Compared with the free-energy barrier to nucleation of crystallites in undoped a-Si films, a significant reduction is observed in the free-energy barrier to nucleation in Cu-doped a-Si films. For a-Si under irradiation of Xe(2+) at 10(exp 5) eV, the free-energy barrier to ion-induced nucleation of crystallites is shown to be about half of the value associated with thermal-induced nucleation of crystallites in a-Si under the otherwise same conditions, which is much more significant than previously expected. The present method has a general kinetic basis; it thus should be equally applicable to nucleation of crystallites in any amorphous elemental semiconductors and semiconductor alloys, metallic and polymeric glasses, and to nucleation of crystallites in melts and solutions.

  16. Wet chemical treatment of boron doped emitters on n-type (1 0 0) c-Si prior to amorphous silicon passivation

    Energy Technology Data Exchange (ETDEWEB)

    Meddeb, H., E-mail: hosny.meddeb@gmail.com [KACST-Intel Consortium Center of Excellence in Nano-manufacturing Applications (CENA), Riyadh (Saudi Arabia); IMEC, Kapeldreef 75, B-3001 Leuven (Belgium); Research and Technology Center of Energy, Photovoltaic Department, Borj-Cedria Science and Technology Park, BP 95, 2050 (Tunisia); University of Carthage, Faculty of Sciences of Bizerta (Tunisia); Bearda, T.; Recaman Payo, M.; Abdelwahab, I. [IMEC, Kapeldreef 75, B-3001 Leuven (Belgium); Abdulraheem, Y. [Electrical Engineering Department, College of Engineering & Petroleum, Kuwait University, P.O. Box 5969, 13060 Safat (Kuwait); Ezzaouia, H. [Research and Technology Center of Energy, Photovoltaic Department, Borj-Cedria Science and Technology Park, BP 95, 2050 (Tunisia); Gordon, I.; Szlufcik, J. [IMEC, Kapeldreef 75, B-3001 Leuven (Belgium); Poortmans, J. [IMEC, Kapeldreef 75, B-3001 Leuven (Belgium); Department of Electrical Engineering (ESAT), K.U. Leuven, 3001 Leuven (Belgium); Faculty of Sciences, University of Hasselt, Martelarenlaan 42, 3500 Hasselt (Belgium)

    2015-02-15

    Highlights: • The influence of the cleaning process using different HF-based cleaning on the amorphous silicon passivation of homojunction boron doped emitters is analyzed. • The effect of boron doping level on surface characteristics after wet chemical cleaning: For heavily doped surfaces, the reduction in contact angle was less pronounced, which proves that such surfaces are more resistant to oxide formation and remain hydrophobic for a longer time. In the case of low HF concentration, XPS measurements show higher oxygen concentrations for samples with higher doping level, probably due to the incomplete removal of the native oxide. • Higher effective lifetime is achieved at lower doping for all considered different chemical pre-treatments. • A post-deposition annealing improves the passivation level yielding emitter saturation currents determined by Auger recombination in the order of 70 fA/cm{sup 2} and below. • The dominance of Auger recombination over other type of B-induced defects on lifetime quality in the case of our p+ emitter. - Abstract: The influence of the cleaning process on the amorphous silicon passivation of homojunction emitters is investigated. A significant variation in the passivation quality following different cleaning sequences is not observed, even though differences in cleaning performance are evident. These results point out the effectiveness of our cleaning treatment and provide a hydrogen termination for intrinsic amorphous silicon passivation. A post-deposition treatment improves the passivation level yielding emitter saturation currents determined by Auger recombination in the order of 70 fA/cm{sup 2} and below.

  17. Amorphization of silicon via electronic processes induced by irradiation with fullerenes; Amorphisation du silicium par processus electroniques induits par irradiation avec des fullerenes

    Energy Technology Data Exchange (ETDEWEB)

    Canut, B.; Bonardi, N.; Ramos, S.M.M. [Universite Claude Bernard, Dept. de Physique des Materiaux, UMR CNRS, 69 - Lyon (France); Della Negra, S. [Institut de Physique Nucleaire, (IN2P3/CNRS) 91 - Orsay (France)

    1999-07-01

    For the first time it is shown that single crystalline silicon is sensitive to collective electronic excitations. Irradiations with C{sub 60} clusters accelerated in the 10 MeV range induce the formation of amorphous latent tracks in this material. This result has never been observed with high energy heavy ions, it means that what may matter is the very high electronic energy density deposited in the silicon by the incident cluster. TEM (transmission electronic microscopy) analysis of irradiated samples have enable us to measure surface damage cross-sections: 55 nm{sup 2} and 87 nm{sup 2} for irradiations with C{sub 60}{sup 2+} beams and C{sub 60}{sup 3+} beams accelerated respectively to 30 and 40 MeV. (A.C.)

  18. Amorphous particle deposition and product quality under different conditions in a spray dryer

    Institute of Scientific and Technical Information of China (English)

    Meng Wai Woo; Wan Ramli Wan Daud; Siti Masrinda Tasirin; Meor Zainal Meor Talib

    2008-01-01

    Deposition of amorphous particles, as a prevalent problem particularly in the spray drying of fruit and vegetable juices, is due to low-molecular weight sugars and is strongly dependent on the condition of the particles upon collision with the dryer wall. This paper investigates the condition of the amorphous particles impacting the wall at different drying conditions with the aim of elucidating the deposition mechanism and physical phenomena in the drying chamber. A model sucrose-maltodextrin solution was used to represent the low-molecular-weight sugar. Particle deposits were collected on sampling plates placed inside the dryer for analyses of moisture content, particle rigidity (using SEM) and size distribution. Moisture content was adopted as a general indicator of stickiness. Product particles collected at the bottom of the experimental dryer were found to have higher moisture than particle deposits on samplers inside the dryer. Moisture content profile in the dryer shows that apart from the atomizer region, where particles are relatively wet, particle deposits at other regions exhibit similar lower moisture content. At the highest temperature adopted in the experiments, particles became rubbery suggesting liquid-bridge formation as the dominant deposition mechanism. Further analysis on particles size distribution reveals a particle segregation mechanism whereby smaller particles follow preferentially to the central air stream while larger particles tend to re-circulate in the chamber, as predicted in past CFD simulation. The findings from this work will form the basis and provide validating data for further modeling of wall deposition of amorphous particles in spray drying using CFD.

  19. High-Efficiency Amorphous Silicon Alloy Based Solar Cells and Modules; Final Technical Progress Report, 30 May 2002--31 May 2005

    Energy Technology Data Exchange (ETDEWEB)

    Guha, S.; Yang, J.

    2005-10-01

    The principal objective of this R&D program is to expand, enhance, and accelerate knowledge and capabilities for development of high-efficiency hydrogenated amorphous silicon (a-Si:H) and amorphous silicon-germanium alloy (a-SiGe:H) related thin-film multijunction solar cells and modules with low manufacturing cost and high reliability. Our strategy has been to use the spectrum-splitting triple-junction structure, a-Si:H/a-SiGe:H/a-SiGe:H, to improve solar cell and module efficiency, stability, and throughput of production. The methodology used to achieve the objectives included: (1) explore the highest stable efficiency using the triple-junction structure deposited using RF glow discharge at a low rate, (2) fabricate the devices at a high deposition rate for high throughput and low cost, and (3) develop an optimized recipe using the R&D batch large-area reactor to help the design and optimization of the roll-to-roll production machines. For short-term goals, we have worked on the improvement of a-Si:H and a-SiGe:H alloy solar cells. a-Si:H and a-SiGe:H are the foundation of current a-Si:H based thin-film photovoltaic technology. Any improvement in cell efficiency, throughput, and cost reduction will immediately improve operation efficiency of our manufacturing plant, allowing us to further expand our production capacity.

  20. Improving the performance of amorphous and crystalline silicon heterojunction solar cells by monitoring surface passivation

    Energy Technology Data Exchange (ETDEWEB)

    Schuettauf, J.W.A.; Van der Werf, C.H.M.; Kielen, I.M.; Van Sark, W.G.J.H.M.; Rath, J.K.; Schropp, R.E.I. [Utrecht University, Debye Institute for Nanomaterials Science, Nanophotonics, Physics of Devices, Princetonplein 5, 3584 CC Utrecht (Netherlands)

    2012-09-15

    The influence of thermal annealing on the crystalline silicon surface passivating properties of selected amorphous silicon containing layer stacks (including intrinsic and doped films), as well as the correlation with silicon heterojunction solar cell performance has been investigated. All samples have been isochronally annealed for 1 h in an N{sub 2} ambient at temperatures between 150C and 300C in incremental steps of 15C. For intrinsic films and intrinsic/n-type stacks, an improvement in passivation quality is observed up to 255C and 270C, respectively, and a deterioration at higher temperatures. For intrinsic/n-type a-Si:H layer stacks, a maximum minority carrier lifetime of 13.3 ms at an injection level of 10{sup 15} cm{sup -3} has been measured. In contrast, for intrinsic/p-type a-Si:H layer stacks, a deterioration in passivation is observed upon annealing over the whole temperature range. Comparing the lifetime values and trends for the different layer stacks to the performance of the corresponding cells, it is inferred that the intrinsic/p-layer stack is limiting device performance. Furthermore, thermal annealing of p-type layers should be avoided entirely. We therefore propose an adapted processing sequence, leading to a substantial improvement in efficiency to 16.7%, well above the efficiency of 15.8% obtained with the 'standard' processing sequence.

  1. Plasma-enhanced chemical vapor deposition of amorphous Si on graphene

    Science.gov (United States)

    Lupina, G.; Strobel, C.; Dabrowski, J.; Lippert, G.; Kitzmann, J.; Krause, H. M.; Wenger, Ch.; Lukosius, M.; Wolff, A.; Albert, M.; Bartha, J. W.

    2016-05-01

    Plasma-enhanced chemical vapor deposition of thin a-Si:H layers on transferred large area graphene is investigated. Radio frequency (RF, 13.56 MHz) and very high frequency (VHF, 140 MHz) plasma processes are compared. Both methods provide conformal coating of graphene with Si layers as thin as 20 nm without any additional seed layer. The RF plasma process results in amorphization of the graphene layer. In contrast, the VHF process keeps the high crystalline quality of the graphene layer almost intact. Correlation analysis of Raman 2D and G band positions indicates that Si deposition induces reduction of the initial doping in graphene and an increase of compressive strain. Upon rapid thermal annealing, the amorphous Si layer undergoes dehydrogenation and transformation into a polycrystalline film, whereby a high crystalline quality of graphene is preserved.

  2. Enhancement of porous silicon photoluminescence by electroless deposition of nickel

    Energy Technology Data Exchange (ETDEWEB)

    Amdouni, S. [Unité de nanomatériaux et photonique, Université El Manar, Faculté des Sciences de Tunis, Département de Physique, 2092 El Manar, Tunis Tunisia (Tunisia); Rahmani, M., E-mail: rahmanimehdi79@yahoo.com [Unité de nanomatériaux et photonique, Université El Manar, Faculté des Sciences de Tunis, Département de Physique, 2092 El Manar, Tunis Tunisia (Tunisia); Zaïbi, M.-A [Unité de nanomatériaux et photonique, Université El Manar, Faculté des Sciences de Tunis, Département de Physique, 2092 El Manar, Tunis Tunisia (Tunisia); Ecole Nationale Supérieure des Ingénieurs de Tunis, Université de Tunis, 5 Avenue Taha Hussein, 1008 Tunis (Tunisia); Oueslati, M. [Unité de nanomatériaux et photonique, Université El Manar, Faculté des Sciences de Tunis, Département de Physique, 2092 El Manar, Tunis Tunisia (Tunisia)

    2015-01-15

    Nickel-porous silicon nanocomposites (PS/Ni) are elaborated by an electroless deposition method using NiCl{sub 2} aqueous solution. The presence of nickel ions in the porous layer is confirmed by Fourier Transformed InfraRed spectroscopy (FTIR) and Raman spectroscopy. The photoluminescence (PL) spectra of PS/Ni, prepared at different electroless durations (t{sub edp}), are analyzed. A remarkable enhancement in the integrated PL intensity of PS containing nickel was observed. The lower t{sub edp} favor the deposition of nickel in PS, hence the silicon dangling bonds at the porous surface are quenched and this was increased the PL intensity. However, for the longer t{sub edp}, the PL intensity has been considerably decreased due to the destruction of some Si nanocrystallites. The PL spectra of PS/Ni, for t{sub edp} less than 8 min, show a multiband profile indicating the creation of new luminescent centers by Ni elements which induces a strong modification in the emission mechanisms. - Highlights: • Deposition of Ni ions into porous silicon (PS) layer using the electroless method. • Formation of Ni–O bonds on the porous layer. • The photoluminescence (PL) intensity of PS is enhanced after Ni deposition. • The increase of the PL is due to the contribution of radiative centers related to Ni.

  3. Simulation and experimental verification of silicon dioxide deposition by PECVD

    Science.gov (United States)

    Xu, Qing; Li, Yu-Xing; Li, Xiao-Ning; Wang, Jia-Bin; Yang, Fan; Yang, Yi; Ren, Tian-Ling

    2017-02-01

    Deposition of silicon dioxide in high-density plasma is an important process in integrated circuit manufacturing. A software named CFD-ACE was used to simulate the mechanism of plasma in the chamber of plasma enhanced chemical vapor deposition (PECVD) system, and the evolution of the feature profile was simulated based on CFD-TOPO. Simulation and experiment of silicon dioxide that deposited in SiH4/N2O mixture by PECVD system was researched. The particle density, energy and angular distribution in the chamber were simulated and discussed. We also studied how the depth/width ratio affected the step coverage of the trench and analyzed the deposition rate of silicon dioxide on the feature scale. X-ray photoelectron spectroscopy (XPS) was used to analyze the elemental composition of thin films. Images of the feature profiles were taken by scanning electron microscope (SEM). The simulation results were in good agreement with experimental, which could guide the semiconductor device manufacture.

  4. Infrared transient grating measurements of the dynamics of hydrogen local mode vibrations in amorphous silicon-germanium

    NARCIS (Netherlands)

    Jobson, K.W.; Wells, J.P.R.; Schropp, R.E.I.; Vinh, N.Q.; Dijkhuis, J.I.

    2008-01-01

    We report on picosecond, time-resolved measurements of the vibrational relaxation and decay pathways of the Si–H and Ge–H stretching modes in hydrogenated amorphous silicon-germanium thin films (a-SiGe:H). It is demonstrated that the decay of both modes has a nonexponential shape, attributable to th

  5. Infrared transient grating measurements of the dynamics of hydrogen local mode vibrations in amorphous silicon-germanium

    NARCIS (Netherlands)

    Jobson, K. W.; Wells, J. P. R.; Schropp, R. E. I.; Vinh, N. Q.; Dijkhuis, J. I.

    2008-01-01

    We report on picosecond, time-resolved measurements of the vibrational relaxation and decay pathways of the Si-H and Ge-H stretching modes in hydrogenated amorphous silicon-germanium thin films (a-SiGe: H). It is demonstrated that the decay of both modes has a nonexponential shape, attributable to t

  6. Charge deep-level transient spectroscopy study of high-energy-electron-beam-irradiated hydrogenated amorphous silicon

    NARCIS (Netherlands)

    Klaver, A.; Nádaždy, V.; Zeman, M.; Swaaiij, R.A.C.M.M.

    2006-01-01

    We present a study of changes in the defect density of states in hydrogenated amorphous silicon (a-Si:H) due to high-energy electron irradiation using charged deep-level transient spectroscopy. It was found that defect states near the conduction band were removed, while in other band gap regions the

  7. Photovoltaic manufacturing technology monolithic amorphous silicon modules on continuous polymer substrates: Final technical report, July 5, 1995--December 31, 1999

    Energy Technology Data Exchange (ETDEWEB)

    Jeffrey, F.

    2000-03-28

    Iowa Thin Film Technologies is completing a three-phase program that has increased throughput and decreased costs in nearly all aspects of its thin-film photovoltaic manufacturing process. The overall manufacturing costs have been reduced by 61 percent through implementation of the improvements developed under this program. Development of the ability to use a 1-mil substrate, rather than the standard 2-mil substrate, results in a 50 percent cost-saving for this material. Process development on a single-pass amorphous silicon deposition system has resulted in a 37 percent throughput improvement. A wide range of process and machine improvements have been implemented on the transparent conducting oxide deposition system. These include detailed parameter optimization of deposition temperatures, process gas flows, carrier gas flows, and web speeds. An overall process throughput improvement of 275 percent was achieved based on this work. The new alignment technique was developed for the laser scriber and printer systems, which improved registration accuracy from 100 microns to 10 microns. The new technique also reduced alignment time for these registration systems significantly. This resulted in a throughput increase of 75 percent on the scriber and 600 percent on the printer. Automated techniques were designed and implemented for the module assembly processes. These include automated busbar attachment, roll-based lamination, and automated die cutting of finished modules. These processes were previously done by hand labor. Throughput improvements ranged from 200 percent to 1200 percent, relative to hand labor rates. A wide range of potential encapsulation materials were evaluated for suitability in a roll lamination process and for cost-effectiveness. A combination material was found that has a cost that is only 10 percent of the standard EVA/Tefzel cost and is suitable for medium-lifetime applications. The 20-year lifetime applications still require the more expensive

  8. Ultrafast all-optical arithmetic logic based on hydrogenated amorphous silicon microring resonators

    Science.gov (United States)

    Gostimirovic, Dusan; Ye, Winnie N.

    2016-03-01

    For decades, the semiconductor industry has been steadily shrinking transistor sizes to fit more performance into a single silicon-based integrated chip. This technology has become the driving force for advances in education, transportation, and health, among others. However, transistor sizes are quickly approaching their physical limits (channel lengths are now only a few silicon atoms in length), and Moore's law will likely soon be brought to a stand-still despite many unique attempts to keep it going (FinFETs, high-k dielectrics, etc.). This technology must then be pushed further by exploring (almost) entirely new methodologies. Given the explosive growth of optical-based long-haul telecommunications, we look to apply the use of high-speed optics as a substitute to the digital model; where slow, lossy, and noisy metal interconnections act as a major bottleneck to performance. We combine the (nonlinear) optical Kerr effect with a single add-drop microring resonator to perform the fundamental AND-XOR logical operations of a half adder, by all-optical means. This process is also applied to subtraction, higher-order addition, and the realization of an all-optical arithmetic logic unit (ALU). The rings use hydrogenated amorphous silicon as a material with superior nonlinear properties to crystalline silicon, while still maintaining CMOS-compatibility and the many benefits that come with it (low cost, ease of fabrication, etc.). Our method allows for multi-gigabit-per-second data rates while maintaining simplicity and spatial minimalism in design for high-capacity manufacturing potential.

  9. An overview of uncooled infrared sensors technology based on amorphous silicon and silicon germanium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Ambrosio, Roberto; Mireles, Jose Jr. [Technology and Engineering Institute, Ciudad Juarez University UACJ, Av. Del Charro 450N, 32310 Chihuahua (Mexico); Moreno, Mario; Torres, Alfonso; Kosarev, Andrey [National Institute for Astrophysics Optics and Electronics INAOE, Luis E. Erro 1, PO Box 51 and 216, 7200 Puebla (Mexico); Heredia, Aurelio [Universidad Popular Autonoma del Estado de Puebla, 21 sur 1103 Col. Santiago, 72160 Puebla (Mexico)

    2010-04-15

    At the present time there are commercially available large un-cooled micro-bolometer arrays (as large as 1024 x 768 pixels) for a variety of thermal imaging applications. Different thermo-sensing materials have been employed as thermo sensing elements as Vanadium Oxide (VO{sub x}), metals, and amorphous and polycrystalline semiconductors. Those materials present good characteristics but also have some disadvantages. As a consequence none of the commercially available arrays contain optimum pixels with an optimum thermo-sensing material. This paper reviews the development of the un-cooled bolometer technology and the research achievements on this area, with special attention on the key factors that would lead to improve the pixels performance characteristics. The work considers the R and D of microbolometer arrays and the integration with MEMS and IC technologies. A comparative study with the state of the art and data reported in literature is presented. Finally, further directions of uncooled bolometer based in thin films materials are also discussed in this paper. (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  10. Characterization of doped hydrogenated nanocrystalline silicon films prepared by plasma enhanced chemical vapour deposition

    Institute of Scientific and Technical Information of China (English)

    Wang Jin-Liang; Wu Er-Xing

    2007-01-01

    The B-and P-doped hydrogenated nanocrystalline silicon films (nc-Si:H) are prepared by plasma-enhanced chemical vapour deposition (PECVD) .The microstructures of doped nc-Si:H films are carefully and systematically char acterized by using high resolution electron microscopy (HREM) ,Raman scattering,x-ray diffraction (XRD) ,Auger electron spectroscopy (AES) ,and resonant nucleus reaction (RNR) .The results show that as the doping concentration of PH3 increases,the average grain size (d) tends to decrease and the crystalline volume percentage (Xc) increases simultaneously.For the B-doped samples,as the doping concentration of B2H6 increases,no obvious change in the value of d is observed,but the value of Xc is found to decrease.This is especially apparent in the case of heavy B2H6 doped samples,where the films change from nanocrystalline to amorphous.

  11. Nanometric Cutting of Silicon with an Amorphous-Crystalline Layered Structure: A Molecular Dynamics Study

    Science.gov (United States)

    Wang, Jinshi; Fang, Fengzhou; Zhang, Xiaodong

    2017-01-01

    Materials with specific nanometric layers are of great value in both theoretical and applied research. The nanometric layer could have a significant influence on the response to the mechanical loading. In this paper, the nanometric cutting on the layered systems of silicon has been studied by molecular dynamics. This kind of composite structure with amorphous layer and crystalline substrate is important for nanomachining. Material deformation, stress status, and chip formation, which are the key issues in nano-cutting, are analyzed. A new chip formation mechanism, i.e., the mixture of extrusion and shear, has been observed. In addition, from the perspective of engineering, some specific composite models show the desired properties due to the low subsurface damage or large material removal rate. The results enrich the cutting theory and provide guidance on nanometric machining.

  12. High-Sensitivity X-ray Polarimetry with Amorphous Silicon Active-Matrix Pixel Proportional Counters

    Science.gov (United States)

    Black, J. K.; Deines-Jones, P.; Jahoda, K.; Ready, S. E.; Street, R. A.

    2003-01-01

    Photoelectric X-ray polarimeters based on pixel micropattern gas detectors (MPGDs) offer order-of-magnitude improvement in sensitivity over more traditional techniques based on X-ray scattering. This new technique places some of the most interesting astronomical observations within reach of even a small, dedicated mission. The most sensitive instrument would be a photoelectric polarimeter at the focus of 2 a very large mirror, such as the planned XEUS. Our efforts are focused on a smaller pathfinder mission, which would achieve its greatest sensitivity with large-area, low-background, collimated polarimeters. We have recently demonstrated a MPGD polarimeter using amorphous silicon thin-film transistor (TFT) readout suitable for the focal plane of an X-ray telescope. All the technologies used in the demonstration polarimeter are scalable to the areas required for a high-sensitivity collimated polarimeter. Leywords: X-ray polarimetry, particle tracking, proportional counter, GEM, pixel readout

  13. 10.5% efficient polymer and amorphous silicon hybrid tandem photovoltaic cell.

    Science.gov (United States)

    Kim, Jeehwan; Hong, Ziruo; Li, Gang; Song, Tze-bin; Chey, Jay; Lee, Yun Seog; You, Jingbi; Chen, Chun-Chao; Sadana, Devendra K; Yang, Yang

    2015-03-04

    Thin-film solar cells made with amorphous silicon (a-Si:H) or organic semiconductors are considered as promising renewable energy sources due to their low manufacturing cost and light weight. However, the efficiency of single-junction a-Si:H or organic solar cells is typically photovoltaic cell by employing an a-Si:H film as a front sub-cell and a low band gap polymer:fullerene blend film as a back cell on planar glass substrates. Monolithic integration of 6.0% efficienct a-Si:H and 7.5% efficient polymer:fullerene blend solar cells results in a power conversion efficiency of 10.5%. Such high-efficiency thin-film tandem cells can be achieved by optical management and interface engineering of fully optimized high-performance front and back cells without sacrificing photovoltaic performance in both cells.

  14. Serially Connected Micro Amorphous Silicon Solar Cells for Compact High-Voltage Sources

    Directory of Open Access Journals (Sweden)

    Jiyoon Nam

    2016-01-01

    Full Text Available We demonstrate a compact amorphous silicon (a-Si solar module to be used as high-voltage power supply. In comparison with the organic solar module, the main advantages of the a-Si solar module are its compatibility with photolithography techniques and relatively high power conversion efficiency. The open circuit voltage of a-Si solar cells can be easily controlled by serially interconnecting a-Si solar cells. Moreover, the a-Si solar module can be easily patterned by photolithography in any desired shapes with high areal densities. Using the photolithographic technique, we fabricate a compact a-Si solar module with noticeable photovoltaic characteristics as compared with the reported values for high-voltage power supplies.

  15. 10.5% efficient polymer and amorphous silicon hybrid tandem photovoltaic cell

    Science.gov (United States)

    Kim, Jeehwan; Hong, Ziruo; Li, Gang; Song, Tze-Bin; Chey, Jay; Lee, Yun Seog; You, Jingbi; Chen, Chun-Chao; Sadana, Devendra K.; Yang, Yang

    2015-03-01

    Thin-film solar cells made with amorphous silicon (a-Si:H) or organic semiconductors are considered as promising renewable energy sources due to their low manufacturing cost and light weight. However, the efficiency of single-junction a-Si:H or organic solar cells is typically photovoltaic cell by employing an a-Si:H film as a front sub-cell and a low band gap polymer:fullerene blend film as a back cell on planar glass substrates. Monolithic integration of 6.0% efficienct a-Si:H and 7.5% efficient polymer:fullerene blend solar cells results in a power conversion efficiency of 10.5%. Such high-efficiency thin-film tandem cells can be achieved by optical management and interface engineering of fully optimized high-performance front and back cells without sacrificing photovoltaic performance in both cells.

  16. Using amorphous silicon solar cells to boost the viability of luminescent solar concentrators

    Energy Technology Data Exchange (ETDEWEB)

    Farrell, Daniel J. [Physics Department, Imperial College London, South Kensington campus, SW7 2AZ, London (United Kingdom); Sark, Wilfried G.J.H.M. van [Utrecht University, Faculty of Science, Debye Institute for Nanomaterials Science, Nanophotonics - Physics of Devices, P.O. Box 80000, 3508 TA Utrecht (Netherlands); Utrecht University, Copernicus Institute for Sustainable Development and Innovation, Science, Technology and Society, Heidelberglaan 2, 3584 CS Utrecht (Netherlands); Velthuijsen, Steven T.; Schropp, Ruud E.I. [Utrecht University, Faculty of Science, Debye Institute for Nanomaterials Science, Nanophotonics - Physics of Devices, P.O. Box 80000, 3508 TA Utrecht (Netherlands)

    2010-04-15

    We have, for the first time, designed and fabricated hydrogenated amorphous silicon solar cells to be used in conjunction with Luminescent Solar Concentrators (LSCs). LSCs are planar plastic sheets doped with organic dyes that absorb solar illumination and down shift the energy to narrowband luminescence which is collected by solar cells attached to the sheet edge. We fabricated an LSC module with two bonded solar cells and performed characterisation with the cells connected in series and parallel configurations. We find that the LSC module has an optical collection efficiency of 9.5% and an optimum power conversion efficiency of approaching 1% when the cells are in a parallel connection. (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  17. Direct visualization of photoinduced glassy dynamics on the amorphous silicon carbide surface by STM movies

    Science.gov (United States)

    Nguyen, Duc; Nienhaus, Lea; Haasch, Richard T.; Lyding, Joseph; Gruebele, Martin

    2015-03-01

    Glassy dynamics can be controlled by light irradiation. Sub- and above-bandgap irradiation cause numerous phenomena in glasses including photorelaxation, photoexpansion, photodarkening and pohtoinduced fluidity. We used scanning tunneling microscopy to study surface glassy dynamics of amorphous silicon carbide irradiated with above- bandgap 532 nm light. Surface clusters of ~ 4-5 glass forming unit in diameter hop mostly in a two-state fashion, both without and with irradiation. Upon irradiation, the average surface hopping activity increases by a factor of 3. A very long (~1 day) movie of individual clusters with varying laser power density provides direct evidence for photoinduced enhanced hopping on the glass surfaces. We propose two mechanisms: heating and electronic for the photoenhanced surface dynamics.

  18. Acoustically induced optical second harmonic generation in hydrogenated amorphous silicon films

    CERN Document Server

    Ebothe, J; Cabarrocas, P R I; Godet, C; Equer, B

    2003-01-01

    Acoustically induced second harmonic generation (AISHG) in hydrogenated amorphous silicon (a-Si : H) films of different morphology has been observed. We have found that with increasing acoustical power, the optical SHG of Gd : YAB laser light (lambda = 2.03 mu m) increases and reaches its maximum value at an acoustical power density of about 2.10 W cm sup - sup 2. With decreasing temperature, the AISHG signal strongly increases below 48 K and correlates well with the temperature behaviour of differential scanning calorimetry indicating near-surface temperature phase transition. The AISHG maxima were observed at acoustical frequencies of 10-11, 14-16, 20-22 and 23-26 kHz. The independently performed measurements of the acoustically induced IR spectra have shown that the origin of the observed phenomenon is the acoustically induced electron-phonon anharmonicity in samples of different morphology.

  19. Investigation of the degradation of a thin-film hydrogenated amorphous silicon photovoltaic module

    Energy Technology Data Exchange (ETDEWEB)

    van Dyk, E.E.; Audouard, A.; Meyer, E.L. [Department of Physics, Nelson Mandela Metropolitan University, P.O. Box 77000, Port Elizabeth 6031 (South Africa); Woolard, C.D. [Department of Chemistry, Nelson Mandela Metropolitan University, P.O. Box 77000, Port Elizabeth 6031 (South Africa)

    2007-01-23

    The degradation of a thin-film hydrogenated single-junction amorphous silicon (a-Si:H) photovoltaic (PV) module has been studied. We investigated the different modes of electrical and physical degradation of a-Si:H PV modules by employing a degradation and failure assessment procedure used in conjunction with analytical techniques, including, scanning electron microscopy (SEM) and thermogravimetry. This paper reveals that due to their thickness, thin films are very sensitive to the type of degradation observed. Moreover, this paper deals with the problems associated with the module encapsulant, poly(ethylene-co-vinylacetate) (EVA). The main objective of this study was to establish the influence of outdoor environmental conditions on the performance of a thin-film PV module comprising a-Si:H single-junction cells. (author)

  20. Processing Research on Chemically Vapor Deposited Silicon Nitride.

    Science.gov (United States)

    1979-12-01

    7 A-A79 328 GENERAL ELECTR IC Co PHILADELPH IA PA RE-ENTRY AND ENV--ETC F/S 3/ PROCESING RESEARCH ON CHEMICALLY VAPR DEPOSITED SILICON HITRI ETCIU) I...NH)2] x-- .Si3N 4 as well as NH 3 2) 3SiCI + 6H --- 3i + 6 HC - Si N 4 2 (V,l1) 3 4 pressure may play a part in shifting the deposition sequence from...hot-wall reactor should be further refined with em- phasis on the formation of figured geometries (hemispherical and ogive shells). As part of this

  1. The structural characterisation of HWCVD-deposited nanocrystalline silicon films

    Directory of Open Access Journals (Sweden)

    Bibhu P. Swain

    2009-12-01

    Full Text Available Nanocrystalline silicon (nc-Si films were deposited by hot-wire chemical vapour deposition (HWCVD in the presence of varying H2 concentrations and their structural and interfacial character investigated by X-ray diffraction, small-angle X-ray scattering (SAXS and Raman spectroscopy. The crystalline fraction was around 30–50% and the nc-Si crystallite size was in the range 20–35 nm. The SAXS results were analysed by Guinier plot, scaling factor, and correlation distance. The nc-Si grains displayed a mass fractal appearance, and the interfacial inhomogeneity distance was ~2 nm.

  2. Band-gap engineering by molecular mechanical strain-induced giant tuning of the luminescence in colloidal amorphous porous silicon nanostructures

    KAUST Repository

    Mughal, Asad Jahangir

    2014-01-01

    Nano-silicon is a nanostructured material in which quantum or spatial confinement is the origin of the material\\'s luminescence. When nano-silicon is broken into colloidal crystalline nanoparticles, its luminescence can be tuned across the visible spectrum only when the sizes of the nanoparticles, which are obtained via painstaking filtration methods that are difficult to scale up because of low yield, vary. Bright and tunable colloidal amorphous porous silicon nanostructures have not yet been reported. In this letter, we report on a 100 nm modulation in the emission of freestanding colloidal amorphous porous silicon nanostructures via band-gap engineering. The mechanism responsible for this tunable modulation, which is independent of the size of the individual particles and their distribution, is the distortion of the molecular orbitals by a strained silicon-silicon bond angle. This mechanism is also responsible for the amorphous-to-crystalline transformation of silicon. This journal is

  3. Band-gap engineering by molecular mechanical strain-induced giant tuning of the luminescence in colloidal amorphous porous silicon nanostructures.

    Science.gov (United States)

    Mughal, A; El Demellawi, J K; Chaieb, Sahraoui

    2014-12-14

    Nano-silicon is a nanostructured material in which quantum or spatial confinement is the origin of the material's luminescence. When nano-silicon is broken into colloidal crystalline nanoparticles, its luminescence can be tuned across the visible spectrum only when the sizes of the nanoparticles, which are obtained via painstaking filtration methods that are difficult to scale up because of low yield, vary. Bright and tunable colloidal amorphous porous silicon nanostructures have not yet been reported. In this letter, we report on a 100 nm modulation in the emission of freestanding colloidal amorphous porous silicon nanostructures via band-gap engineering. The mechanism responsible for this tunable modulation, which is independent of the size of the individual particles and their distribution, is the distortion of the molecular orbitals by a strained silicon-silicon bond angle. This mechanism is also responsible for the amorphous-to-crystalline transformation of silicon.

  4. Advanced optical modelling of dynamically deposited silicon nitride layers

    Science.gov (United States)

    Borojevic, N.; Hameiri, Z.; Winderbaum, S.

    2016-07-01

    Dynamic deposition of silicon nitrides using in-line plasma enhanced chemical vapor deposition systems results in non-uniform structure of the dielectric layer. Appropriate analysis of such layers requires the optical characterization to be performed as a function of the layer's depth. This work presents a method to characterize dynamically deposited silicon nitride layers. The method is based on the fitting of experimental spectroscopic ellipsometry data via grading of Tauc-Lorentz optical parameters through the depth of the layer. When compared with the standard Tauc-Lorentz fitting procedure, used in previous studies, the improved method is demonstrating better quality fits to the experimental data and revealing more accurate optical properties of the dielectric layers. The most significant advantage of the method is the ability to extract the depth profile of the optical properties along the direction of the layer normal. This is enabling a better understanding of layers deposited using dynamic plasma enhanced chemical vapor deposition systems frequently used in the photovoltaic industry.

  5. Thermal decomposition of silane to form hydrogenated amorphous Si

    Science.gov (United States)

    Strongin, M.; Ghosh, A.K.; Wiesmann, H.J.; Rock, E.B.; Lutz, H.A. III

    Hydrogenated amorphous silicon is produced by thermally decomposing silane (SiH/sub 4/) or other gases comprising H and Si, at elevated temperatures of about 1700 to 2300/sup 0/C, in a vacuum of about 10/sup -8/ to 10/sup -4/ torr. A gaseous mixture is formed of atomic hydrogen and atomic silicon. The gaseous mixture is deposited onto a substrate to form hydrogenated amorphous silicon.

  6. Effect of back reflectors on photon absorption in thin-film amorphous silicon solar cells

    Science.gov (United States)

    Hossain, Mohammad I.; Qarony, Wayesh; Hossain, M. Khalid; Debnath, M. K.; Uddin, M. Jalal; Tsang, Yuen Hong

    2017-08-01

    In thin-film solar cells, the photocurrent conversion productivity can be distinctly boosted-up utilizing a proper back reflector. Herein, the impact of different smooth and textured back reflectors was explored and effectuated to study the optical phenomena with interface engineering strategies and characteristics of transparent contacts. A unique type of wet-chemically textured glass-substrate 3D etching mask used in superstrate (p-i-n) amorphous silicon-based solar cell along with legitimated back reflector permits joining the standard light-trapping methodologies, which are utilized to upgrade the energy conversion efficiency (ECE). To investigate the optical and electrical properties of solar cell structure, the optical simulations in three-dimensional measurements (3D) were performed utilizing finite-difference time-domain (FDTD) technique. This design methodology allows to determine the power losses, quantum efficiencies, and short-circuit current densities of various layers in such solar cell. The short-circuit current densities for different reflectors were varied from 11.50 to 13.27 and 13.81 to 16.36 mA/cm2 for the smooth and pyramidal textured solar cells, individually. Contrasted with the comparable flat reference cell, the short-circuit current density of textured solar cell was increased by around 24%, and most extreme outer quantum efficiencies rose from 79 to 86.5%. The photon absorption was fundamentally improved in the spectral region from 600 to 800 nm with no decrease of photocurrent shorter than 600-nm wavelength. Therefore, these optimized designs will help to build the effective plans next-generation amorphous silicon-based solar cells.

  7. Spectroscopic Ellipsometry Studies of n-i-p Hydrogenated Amorphous Silicon Based Photovoltaic Devices

    Directory of Open Access Journals (Sweden)

    Laxmi Karki Gautam

    2016-02-01

    Full Text Available Optimization of thin film photovoltaics (PV relies on characterizing the optoelectronic and structural properties of each layer and correlating these properties with device performance. Growth evolution diagrams have been used to guide production of materials with good optoelectronic properties in the full hydrogenated amorphous silicon (a-Si:H PV device configuration. The nucleation and evolution of crystallites forming from the amorphous phase were studied using in situ near-infrared to ultraviolet spectroscopic ellipsometry during growth of films prepared as a function of hydrogen to reactive gas flow ratio R = [H2]/[SiH4]. In conjunction with higher photon energy measurements, the presence and relative absorption strength of silicon-hydrogen infrared modes were measured by infrared extended ellipsometry measurements to gain insight into chemical bonding. Structural and optical models have been developed for the back reflector (BR structure consisting of sputtered undoped zinc oxide (ZnO on top of silver (Ag coated glass substrates. Characterization of the free-carrier absorption properties in Ag and the ZnO + Ag interface as well as phonon modes in ZnO were also studied by spectroscopic ellipsometry. Measurements ranging from 0.04 to 5 eV were used to extract layer thicknesses, composition, and optical response in the form of complex dielectric function spectra (ε = ε1 + iε2 for Ag, ZnO, the ZnO + Ag interface, and undoped a-Si:H layer in a substrate n-i-p a-Si:H based PV device structure.

  8. Light emission in forward and reverse bias operation in OLED with amorphous silicon carbon nitride thin films

    Energy Technology Data Exchange (ETDEWEB)

    Reyes, R [Facultad de Ingenieria Quimica y Textil, Universidad Nacional de Ingenieria, Av. Tupac Amaru SN, Lima (Peru); Cremona, M [Departamento de Fisica, PontifIcia Universidade Catolica de Rio de Janeiro, PUC-Rio, Cx. Postal 38071, Rio de Janeiro, RJ, CEP 22453-970 (Brazil); Achete, C A, E-mail: rreyes@uni.edu.pe [Departamento de Engenheria Metalurgica e de Materiais, Universidade Federal do Rio de Janeiro, Cx. Postal 68505, Rio de Janeiro, RJ, CEP 21945-970 (Brazil)

    2011-01-01

    Amorphous silicon carbon nitride (a-SiC:N) thin films deposited by magnetron sputtering were used in the structure of an organic light emitting diode (OLED), obtaining an OLED operating in forward and reverse bias mode. The device consist of the heterojunction structure ITO/a-SiC:N/Hole Transport Layer (HTL)/ Electron Transport Layer (ETL)/a-SiC:N/Al. As hole transporting layer was used a thin film of 1-(3-methylphenyl)-1,2,3,4 tetrahydroquinoline - 6 - carboxyaldehyde - 1,1'- diphenylhydrazone (MTCD), while the tris(8-hydroxyquinoline aluminum) (Alq{sub 3}) is used as electron transport and emitting layer. A significant increase in the voltage operation compared to the conventional ITO/MTCD/Alq{sub 3}/Al structure was observed, so the onset of electroluminescence occurs at about 22 V in the forward and reverse bias mode of operation. The electroluminescence spectra is similar in both cases, only slightly shifted 0.14 eV to lower energies in relation to the conventional device.

  9. The effect of amorphous silicon surface hydrogenation on morphology, wettability and its implication on the adsorption of proteins

    Science.gov (United States)

    Filali, Larbi; Brahmi, Yamina; Sib, Jamal Dine; Bouhekka, Ahmed; Benlakehal, Djamel; Bouizem, Yahya; Kebab, Aissa; Chahed, Larbi

    2016-10-01

    We study the effect of amorphous silicon (a-Si) surface hydrogenation on Bovine Serum Albumin (BSA) adsorption. A set of (a-Si) films was prepared by radio frequency magnetron sputtering (RFMS) and after deposition; they were treated in molecular hydrogen ambient at different pressures (1-3 Pa). Fourier transform infrared attenuated total reflection (FTIR-ATR) spectroscopy and spectroscopic ellipsometry (SE) were used to study the hydrogenation effect and BSA adsorption. Atomic force microscopy (AFM) was used to evaluate morphological changes caused by hydrogenation. The wettability of the films was measured using contact angle measurement, and in the case of the hydrogenated surfaces, it was found to be driven by surface roughness. FTIR-ATR spectroscopy and SE measurements show that proteins had the strongest affinity toward the surfaces with the highest hydrogen content and their secondary structure was affected by a significant decrease of the α-helix component (-27%) compared with the proteins adsorbed on the un-treated surface, which had a predominantly α-helix (45%) structure. The adsorbed protein layer was found to be densely packed with a large thickness (30.9 nm) on the hydrogen-rich surfaces. The most important result is that the surface hydrogen content was the dominant factor, compared to wettability and morphology, for protein adsorption.

  10. Characterization of amorphous yttria layers deposited by aqueous solutions of Y-chelate alkoxides complex

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young-Soon, E-mail: kyscjb@i-sunam.com; Lee, Yu-Ri; Kim, Byeong-Joo; Lee, Jae-Hun; Moon, Seung-Hyun; Lee, Hunju

    2015-01-15

    Highlights: • Economical method for crack-free amorphous yttria layer deposition by dip coating. • Simpler process for planar yttria film as a diffusion barrier and nucleation layer. • Easy control over the film properties with better characteristics. • Easy control over the thickness of the deposited films. • A feasible process that can be easily adopted by HTSCC industries. - Abstract: Crack-free amorphous yttria layers were deposited by dip coating in solutions of different Y-chelate alkoxides complex. Three Y-chelate solutions of different concentrations were prepared using yttrium acetate tetrahydrate, yttrium stearic acid as Y source materials. PEG, diethanolamine were used as chelating agents, while ethanol, methanol and tetradecane were used as solvent. Three different combinations of chelating and solvents were used to prepare solutions for Y{sub 2}O{sub 3} dip coating on SUS, electropolished and non-electropolished Hastelloy C-276 substrates. The thickness of the films was varied by changing the number of dipping cycles. At an optimized condition, the substrate surface roughness (rms) value was reduced from ∼50 nm to ∼1 nm over a 10 × 10 μm{sup 2} area. After Y{sub 2}O{sub 3} deposition, MgO was deposited using ion-beam assisted deposition (IBAD), then LaMnO{sub 3} (LMO) was deposited using sputtering and GdBCO was deposited using reactive co-evaporation by deposition and reaction (RCE-DR). Detailed X-ray study indicates that LMO/MgO/Y{sub 2}O{sub 3} and GdBCO/LMO/MgO/Y{sub 2}O{sub 3} stack films have good out-of-plane and in-plane textures with strong c-axis alignment. The critical current (Ic) of GdBCO/LMO/MgO/Y{sub 2}O{sub 3} multilayer structure varied from 190 to 420 A/cm with different solutions, when measured at 77 K. These results demonstrated that amorphous yttria can be easily deposited by dip coating using Y-chelates complex as a diffusion barrier and nucleation layer.

  11. RF power control for fabricating amorphous silicon nitride without Si-nanocrystals and its effect on defects and luminescence

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Seunghun [Department of Physics, University of Seoul, Seoul 130-743 (Korea, Republic of); Advanced Materials Division, Korea Research Institute of Chemical Technology (KRICT), Daejeon 305-600 (Korea, Republic of); Han, Moonsup, E-mail: mhan@uos.ac.kr [Department of Physics, University of Seoul, Seoul 130-743 (Korea, Republic of)

    2014-11-25

    Highlights: • We fabricated a-SiN{sub x} without Si-nanocrystals by using PECVD. • We investigated comprehensively the defects in a-SiN{sub x} and the relation between their defects and PL by providing energy-level diagram. • We succeeded to tune efficiently the whole range of visible luminescence with one system based material. • We conclude that RF power-control provides an efficient way to tune the color. - Abstract: We studied defect and luminescence properties of amorphous silicon nitride (a-SiN{sub x}) without silicon nanocrystals (Si-NC) fabricated by plasma-enhanced chemical vapor deposition under a controlled radio-frequency (RF) power with subsequent post-annealing. The photoluminescence (PL) intensity became stronger and the central PL peak position shifted from 2.85 eV to 1.35 eV as the applied RF power decreased from 100 W to 60 W. Through the analyses of the PL and the photoluminescence excitation (PLE) spectra we classified different kinds of defect states that each sample contains. On the basis of a further analysis of the chemical states of the Si 2p and the N 1s core-levels by X-ray photoelectron spectroscopy, we discuss the reason that the 60 W sample contains more defect states than other samples and clarify the origin of the strong luminescence observed in the 60 W sample without Si-NC fabricated at relatively low RF power. In addition, this work shows also that the RF power control could provide an efficient way to select a color or all colors for the display devices by tuning the various kinds of defects in a-SiN{sub x} thin films.

  12. Structure of silicon oxide films prepared by vacuum deposition

    Science.gov (United States)

    Saito, Yoshio; Kaito, Chihiro; Nishio, Kenzo; Naiki, Toshio

    1985-05-01

    The structure of thin silicon oxide films 5 nm in thickness, which were prepared by electron beam evaporation of SiO 2 glass onto a NaCl substrate, has been examined by high resolution electron microscopy and diffraction. Although the films which were prepared with substrate temperatures ranging from room up to 400°C gave rise to amorphous haloes, lattice fringes in areas 1-2 nm in extent were, however, seen in the micrographs. It is shown that the film is composed of α-quartz micro-crystallites. Crystals of α-cristobalite with sizes of several tens of nanometers appeared at a substrate temperature of 500°C. At a substrate temperature of 600°C, β-cristobalite crystals with sizes of several tens of nanometers appeared. The structural changes due to the substrate temperature were attributed to incorporation of sodium atoms from the substrate into the SiO 2 film.

  13. Study of an Amorphous Silicon Oxide Buffer Layer for p-Type Microcrystalline Silicon Oxide/n-Type Crystalline Silicon Heterojunction Solar Cells and Their Temperature Dependence

    Directory of Open Access Journals (Sweden)

    Taweewat Krajangsang

    2014-01-01

    Full Text Available Intrinsic hydrogenated amorphous silicon oxide (i-a-SiO:H films were used as front and rear buffer layers in crystalline silicon heterojunction (c-Si-HJ solar cells. The surface passivity and effective lifetime of these i-a-SiO:H films on an n-type silicon wafer were improved by increasing the CO2/SiH4 ratios in the films. Using i-a-SiO:H as the front and rear buffer layers in c-Si-HJ solar cells was investigated. The front i-a-SiO:H buffer layer thickness and the CO2/SiH4 ratio influenced the open-circuit voltage (Voc, fill factor (FF, and temperature coefficient (TC of the c-Si-HJ solar cells. The highest total area efficiency obtained was 18.5% (Voc=700 mV, Jsc=33.5 mA/cm2, and FF=0.79. The TC normalized for this c-Si-HJ solar cell efficiency was −0.301%/°C.

  14. Identifying Electronic Properties Relevant to Improving the Performance and Stability of Amorphous Silicon Based Photovoltaic Cells: Final Subcontract Report, 27 November 2002--31 March 2005

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, J. D.

    2005-11-01

    A major effort during this subcontract period has been to evaluate the microcrystalline Si material under development at United Solar Ovonics Corporation (USOC). This material is actually a hydrogenated nanocrystalline form of Si and it will be denoted in this report as nc-Si:H. Second, we continued our studies of the BP Solar high-growth samples. Third, we evaluated amorphous silicon-germanium alloys produced by the hot-wire chemical vapor deposition growth process. This method holds some potential for higher deposition rate Ge alloy materials with good electronic properties. In addition to these three major focus areas, we examined a couple of amorphous germanium (a-Ge:H) samples produced by the ECR method at Iowa State University. Our studies of the electron cyclotron resonance a-Ge:H indicated that the Iowa State a Ge:H material had quite superior electronic properties, both in terms of the drive-level capacitance profiling deduced defect densities, and the transient photocapacitance deduced Urbach energies. Also, we characterized several United Solar a Si:H samples deposited very close to the microcrystalline phase transition. These samples exhibited good electronic properties, with midgap defect densities slightly less than 1 x 1016 cm-3 in the fully light-degraded state.

  15. Atomic layer deposition TiO{sub 2} coated porous silicon surface: Structural characterization and morphological features

    Energy Technology Data Exchange (ETDEWEB)

    Iatsunskyi, Igor, E-mail: igoyat@amu.edu.pl [NanoBioMedical Centre, Adam Mickiewicz University, 85 Umultowska str., 61-614, Poznan (Poland); Department of Experimental Physics, Odessa National I.I. Mechnikov University, 42, Pastera str., 65023 Odessa (Ukraine); Jancelewicz, Mariusz; Nowaczyk, Grzegorz [NanoBioMedical Centre, Adam Mickiewicz University, 85 Umultowska str., 61-614, Poznan (Poland); Kempiński, Mateusz [NanoBioMedical Centre, Adam Mickiewicz University, 85 Umultowska str., 61-614, Poznan (Poland); Faculty of Physics, Adam Mickiewicz University, Umultowska 85, 61-614 Poland (Poland); Peplińska, Barbara [NanoBioMedical Centre, Adam Mickiewicz University, 85 Umultowska str., 61-614, Poznan (Poland); Department of Macromolecular Physics, Adam Mickiewicz University, Umultowska 85, 61-614 Poznan (Poland); Jarek, Marcin; Załęski, Karol [NanoBioMedical Centre, Adam Mickiewicz University, 85 Umultowska str., 61-614, Poznan (Poland); Jurga, Stefan [NanoBioMedical Centre, Adam Mickiewicz University, 85 Umultowska str., 61-614, Poznan (Poland); Department of Macromolecular Physics, Adam Mickiewicz University, Umultowska 85, 61-614 Poznan (Poland); Smyntyna, Valentyn [Department of Experimental Physics, Odessa National I.I. Mechnikov University, 42, Pastera str., 65023 Odessa (Ukraine)

    2015-08-31

    TiO{sub 2} thin films were grown on highly-doped p-Si (100) macro- and mesoporous structures by atomic layer deposition (ALD) using TiCl{sub 4} and deionized water as precursors at 300 °C. The crystalline structure, chemical composition, and morphology of the deposited films and initial silicon nanostructures were investigated by scanning electron microscopy, transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, micro-Raman spectroscopy and X-ray diffraction (XRD). The mean size of TiO{sub 2} crystallites was determined by TEM, XRD and Raman spectroscopy. It was shown that the mean crystallite size and the crystallinity of the TiO{sub 2} are influenced dramatically by the morphology of the porous silicon, with the mesoporous silicon resulting in a much finer grain size and amorphous structure than the macroporous silicon having a partially crystal anatase phase. A simple model of the ALD layer growth inside the pores was presented. - Highlights: • The morphology and chemical composition of TiO{sub 2} and porous Si were established. • The approximate size of TiO{sub 2} nanocrystals was estimated. • The model of the atomic layer deposition coating in the porous Si was presented.

  16. Numerical Analysis of Lamellar Gratings for Light-Trapping in Amorphous Silicon Solar Cells

    CERN Document Server

    Gablinger, David I

    2015-01-01

    In this paper, we calculate the material specific absorption accurately using a modal method by determining the integral of the Poynting vector around the boundary of a specific material. Given that the accuracy of our method is only determined by the number of modes included, the material specific absorption can be used as a quality measure for the light-trapping performance. We use this method to investigate metallic gratings and find nearly degenerate plasmons at the interface between metal and amorphous silicon (a-Si). The plasmons cause large undesired absorption in the metal part of a grating as used in a-Si cells. We explore ways to alleviate the parasitic absorption in the metal by appropriate choice of the geometry. Separating the diffraction grating from the back reflector helps, lining silver or aluminum with a dielectric helps as well. Gratings with depth > 60nm are preferred, and periods > 600nm are not useful. Maximum absorption in silicon can occur for less thick a-Si than is standard. We also ...

  17. The Effects of Hydrogen on the Potential-Energy Surface of Amorphous Silicon

    Science.gov (United States)

    Joly, Jean-Francois; Mousseau, Normand

    2012-02-01

    Hydrogenated amorphous silicon (a-Si:H) is an important semiconducting material used in many applications from solar cells to transistors. In 2010, Houssem et al. [1], using the open-ended saddle-point search method, ART nouveau, studied the characteristics of the potential energy landscape of a-Si as a function of relaxation. Here, we extend this study and follow the impact of hydrogen doping on the same a-Si models as a function of doping level. Hydrogen atoms are first attached to dangling bonds, then are positioned to relieve strained bonds of fivefold coordinated silicon atoms. Once these sites are saturated, further doping is achieved with a Monte-Carlo bond switching method that preserves coordination and reduces stress [2]. Bonded interactions are described with a modified Stillinger-Weber potential and non-bonded Si-H and H-H interactions with an adapted Slater-Buckingham potential. Large series of ART nouveau searches are initiated on each model, resulting in an extended catalogue of events that characterize the evolution of potential energy surface as a function of H-doping. [4pt] [1] Houssem et al., Phys Rev. Lett., 105, 045503 (2010)[0pt] [2] Mousseau et al., Phys Rev. B, 41, 3702 (1990)

  18. Physical properties of ultrafast deposited micro- and nanothickness amorphous hydrogenated carbon films for medical devices and prostheses.

    Science.gov (United States)

    Zaharia, T; Sullivan, I L; Saied, S O; Bosch, R C; Bijker, M D

    2007-02-01

    Hydrogenated amorphous carbon films with diamond-like structures have been formed on different substrates at very low energies and temperatures by a plasma-enhanced chemical vapour deposition (PECVD) process employing acetylene as the precursor gas. The plasma source was of a cascaded arc type with argon as the carrier gas. The films grown at very high deposition rates were found to have a practical thickness limit of approximately 1.5 microm, above which delamination from the substrate occurred. Deposition on silicon (100), glass, and plastic substrates has been studied and the films characterized in terms of sp3 content, roughness, hardness, adhesion, and optical properties. Deposition rates of up to 20 nm/s have been achieved at substrate temperatures below 100 degrees C. A typical sp3 content of 60-75 per cent in the films was determined by X-ray-generated Auger electron spectroscopy (XAES). The hardness, reduced modulus, and adhesion of the films were measured using a MicroMaterials NanoTest indenter/scratch tester. Hardness was found to vary from 4 to 13 GPa depending on the admixed acetylene flow and substrate temperature. The adhesion of the film to the substrate was significantly influenced by the substrate temperature and whether an in situ d.c. cleaning was employed prior to the deposition process. The hydrogen content in the film was measured by a combination of the Fourier transformation infrared (FTIR) spectroscopy and Rutherford backscattering (RBS) techniques. From the results it is concluded that the films formed by the process described here are ideal for the coating of long-term implantable medical devices, such as prostheses, stents, invasive probes, catheters, biosensors, etc. The properties reported in this publication are comparable with good-quality films deposited by other PECVD methods. The advantages of these films are the low ion energy and temperature of deposition, ensuring that no damage is done to sensitive substrates, very high

  19. Plasma enhanced atomic layer deposition of silicon nitride using neopentasilane

    Energy Technology Data Exchange (ETDEWEB)

    Weeks, Stephen, E-mail: Stephen.Weeks@intermolecular.com; Nowling, Greg; Fuchigami, Nobi; Bowes, Michael; Littau, Karl [Intermolecular, 3011 North 1st Street, San Jose, California 95134 (United States)

    2016-01-15

    Progress in transistor scaling has increased the demands on the material properties of silicon nitride (SiN{sub x}) thin films used in device fabrication and at the same time placed stringent restrictions on the deposition conditions employed. Recently, low temperature plasma enhanced atomic layer deposition has emerged as a viable technique for depositing these films with a thermal budget compatible with semiconductor processing at sub-32 nm technology nodes. For these depositions, it is desirable to use precursors that are free from carbon and halogens that can incorporate into the film. Beyond this, it is necessary to develop processing schemes that minimize the wet etch rate of the film as it will be subjected to wet chemical processing in subsequent fabrication steps. In this work, the authors introduce low temperature deposition of SiN{sub x} using neopentasilane [NPS, (SiH{sub 3}){sub 4}Si] in a plasma enhanced atomic layer deposition process with a direct N{sub 2} plasma. The growth with NPS is compared to a more common precursor, trisilylamine [TSA, (SiH{sub 3}){sub 3 }N] at identical process conditions. The wet etch rates of the films deposited with NPS are characterized at different plasma conditions and the impact of ion energy is discussed.

  20. Band engineering of amorphous silicon ruthenium thin film and its near-infrared absorption enhancement combined with nano-holes pattern on back surface of silicon substrate

    Science.gov (United States)

    Guo, Anran; Zhong, Hao; Li, Wei; Gu, Deen; Jiang, Xiangdong; Jiang, Yadong

    2016-10-01

    Silicon is widely used in semiconductor industry but has poor performance in near-infrared photoelectronic devices because of its bandgap limit. In this study, a narrow bandgap silicon rich semiconductor is achieved by introducing ruthenium (Ru) into amorphous silicon (a-Si) to form amorphous silicon ruthenium (a-Si1-xRux) thin films through co-sputtering. The increase of Ru concentration leads to an enhancement of light absorption and a narrower bandgap. Meanwhile, a specific light trapping technique is employed to realize high absorption of a-Si1-xRux thin film in a finite thickness to avoid unnecessary carrier recombination. A double-layer absorber comprising of a-Si1-xRux thin film and silicon random nano-holes layer is formed on the back surface of silicon substrates, and significantly improves near-infrared absorption while the leaky light intensity is less than 5%. This novel absorber, combining narrow bandgap thin film with light trapping structure, may have a potential application in near-infrared photoelectronic devices.

  1. Surface smoothing effect of an amorphous thin film deposited by atomic layer deposition on a surface with nano-sized roughness

    Directory of Open Access Journals (Sweden)

    W. S. Lau

    2014-02-01

    Full Text Available Previously, Lau (one of the authors pointed out that the deposition of an amorphous thin film by atomic layer deposition (ALD on a substrate with nano-sized roughness probably has a surface smoothing effect. In this letter, polycrystalline zinc oxide deposited by ALD onto a smooth substrate was used as a substrate with nano-sized roughness. Atomic force microscopy (AFM and cross-sectional transmission electron microscopy (XTEM were used to demonstrate that an amorphous aluminum oxide thin film deposited by ALD can reduce the surface roughness of a polycrystalline zinc oxide coated substrate.

  2. Thermal post-deposition treatment effects on nanocrystalline hydrogenated silicon prepared by PECVD under different hydrogen flow rates

    Science.gov (United States)

    Amor, Sana Ben; Meddeb, Hosny; Daik, Ridha; Othman, Afef Ben; Slama, Sonia Ben; Dimassi, Wissem; Ezzaouia, Hatem

    2016-01-01

    In this paper, hydrogenated nanocrystalline silicon (nc-Si:H) thin films were deposited on mono-crystalline silicon substrate by plasma enhanced chemical vapor deposition (PECVD) under different hydrogen flow rates followed by a thermal treatment in an infrared furnace at different temperature ranging from 300 to 900 °C. The investigated structural, morphological and optoelectronic properties of samples were found to be strongly dependent on the annealing temperature. Raman spectroscopy revealed that nc-Si:H films contain crystalline, amorphous and mixed structures as well. We find that post-deposition thermal treatment may lead to a tendency for structural improvement and a decrease of the disorder in the film network at moderate temperature under 500 °C. As for annealing at higher temperature up to 900 °C induces the recrystallization of the film which is correlated with the grain size and volume fraction in the layer. We demonstrate that high annealing temperature can lead to a decrease of silicon-hydrogen bonds corresponding to a reduction of the amorphous matrix in the layer promoting the formation of covalent Si-Si bonds. The effusion of the hydrogen from the grown film leads to increase its density and therefore induces a decrease in the thickness of the layer. For post-deposition thermal treatment in temperature range under 700 °C, the post-deposition anneal seems to be crucial for obtaining good passivation quality as expressed by a minority carrier lifetime of 17 μs, as it allows a significant reduction in defect states at the layer/substrate interface. While for a temperature higher than 900 °C, the lifetime reduction is obtained because of hydrogen effusion phenomenon, thus a tendency for crystallization in the grown film.

  3. Photocatalytic C60-amorphous TiO2 composites prepared by atomic layer deposition

    Science.gov (United States)

    Justh, Nóra; Firkala, Tamás; László, Krisztina; Lábár, János; Szilágyi, Imre Miklós

    2017-10-01

    Nanocomposites of TiO2 and single fullerene (C60) molecule are prepared by atomic layer deposition (ALD). To create nucleation sites for the ALD reaction, the bare fullerene is functionalized by H2SO4/HNO3 treatment, which results in C60-SO3H. After a NaOH washing step the intermediate hydrolyzes into C60sbnd OH. This process and the consecutive ALD growth of TiO2 are monitored with FTIR, TG/DTA-MS, EDX, Raman, FTIR, XRD, and TEM measurements. Although the TiO2 grown by ALD at 80 and 160 °C onto fullerol is amorphous it enhances the decomposition of methyl orange under UV exposure. This study proves that amorphous TiO2 grown by low temperature ALD has photocatalytic activity, and it can be used e.g. as self-cleaning coatings also on heat sensitive substrates.

  4. A critical appraisal of the factors affecting energy production from amorphous silicon photovoltaic arrays in a maritime climate

    Energy Technology Data Exchange (ETDEWEB)

    Gottschalg, R.; Betts, T.R.; Williams, S.R.; Sauter, D.; Infield, D.G. [Loughborough University (United Kingdom). Department of Electronic and Electrical Engineering, Centre for Renewable Energy Systems Technology; Kearney, M.J. [University of Surrey, Guildford (United Kingdom). School of Electronics and Physical Sciences, Advanced Technology Institute

    2004-12-01

    Contradictory reports exist in the literature regarding the energy production from amorphous silicon photovoltaic arrays. The majority claims high-energy output compared to crystalline silicon arrays of the same power rating (i.e. high kW h/kW{sub p}), but some reports point to less favourable comparisons. The reasons for these conflicting reports are investigated using long-term measurements of the I-V characteristics of a number of amorphous silicon devices, in conjunction with in situ measurements of the solar spectrum and other relevant environmental parameters. It is shown that the variation in the performance of devices produced by different manufacturers is so significant that one cannot speak of the performance of amorphous silicon devices in general; one has to investigate each type of amorphous silicon panel separately. The causes of differences in energy production are investigated in detail. The major factor impacting on the seasonal performance in the UK is identified to be variations in the solar spectrum. Single junction devices exhibit some seasonal thermal annealing but multi-junctions do not show this effect at a significant level. Scope for further improvement is identified, largely in the photon absorption. The response to different spectra can be modified to some extent, which would bridge the gap between the best and the worst performers in the field. It is also shown that in the case of multi-junction devices an optimised current matching might bring a 5% increase in energy production for this location. Differences in the magnitude of the fill factor have been identified to be the second most significant cause for performance variation between the different samples in the test, suggesting additional scope for improvement. (author)

  5. Deposition of silicon films in presence of nitrogen plasma—A feasibility study

    Indian Academy of Sciences (India)

    Sheetal J Patil; Dhananjay S Bodas; G J Phatak; S A Gangal

    2002-10-01

    A design, development and validation work of plasma based ‘activated reactive evaporation (ARE) system’ is implemented for the deposition of the silicon films in presence of nitrogen plasma on substrate maintained at room temperature. This plasma based deposition system involves evaporation of pure silicon by e-beam gun in presence of nitrogen plasma, excited by inductively coupled RF source (13.56 MHz). The activated silicon reacts with the ionized nitrogen and the films get deposited on silicon substrate. Different physical and process related parameters are changed. The grown films are characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM) and ellipsometry. The results indicate that the film contains silicon nitride and a phase of silicon oxy nitride deposited even at room temperature. This shows the feasibility of using the ARE technique for the deposition of silicon films in nitrogen plasma.

  6. Pulsed laser deposition of silicon dioxide thin films with silicone targets for fabricating waveguide devices

    Science.gov (United States)

    Okoshi, Masayuki; Kuramatsu, Masaaki; Inoue, Narumi

    2002-06-01

    Silicon dioxide (SiO2) thin films were deposited at room temperature by 193-nm ArF excimer laser ablation of silicone in oxygen atmosphere. Only the side chains of the target were photo-dissociated during ablation to deposit Si-O bonds on a substrate in high laser fluence at about 10 J/cm2. Oxygen gas worked to oxidize the Si-O bonds ejected from the target to from SiO2 thin films at the gas pressure of 4.4 X 10-2 Torr, in addition to reducing the isolated carbon mixed into the films. We also found that the deposited rate could control refractive index of the films. The refractive index of the film deposited at 0.05 nm/pulse is greater than that of the film at 0.1 nm/pulse. Thus, a 0.2-micrometers thick SiO2 cladding film deposited at 0.1 nm/pulse was firstly formed on the whole surface of a 100- micrometers -thick polyester film, and then a 0.6 micrometers -thick SiO2 core film at 0.05 nm/pulse was fabricated in a line on the sample. The sample functioned as a waveguide device for a 633-nm line of He-Ne laser.

  7. Tuning the properties of Ge-quantum dots superlattices in amorphous silica matrix through deposition conditions

    OpenAIRE

    Pinto, S. R. C.; Buljan, M.; Chahboun, A.; M. A. Roldan; Bernstorff, S.; Varela, M.; S. J. Pennycook; Barradas, N. P.; Alves, E.; Molina, S.I.; Ramos, Marta M. D.; Gomes, M.J.M.

    2012-01-01

    In this work, we investigate the structural properties of Ge quantum dot lattices in amorphous silica matrix, prepared by low-temperature magnetron sputtering deposition of (GeþSiO2)/SiO2 multilayers. The dependence of quantum dot shape, size, separation, and arrangement type on the Ge-rich (GeþSiO2) layer thickness is studied. We show that the quantum dots are elongated along the growth direction, perpendicular to the multilayer surface. The size of the quantum dots and their separation a...

  8. Observation by conductive-probe atomic force microscopy of strongly inverted surface layers at the hydrogenated amorphous silicon/crystalline silicon heterojunctions

    Science.gov (United States)

    Maslova, O. A.; Alvarez, J.; Gushina, E. V.; Favre, W.; Gueunier-Farret, M. E.; Gudovskikh, A. S.; Ankudinov, A. V.; Terukov, E. I.; Kleider, J. P.

    2010-12-01

    Heterojunctions made of hydrogenated amorphous silicon (a-Si:H) and crystalline silicon (c-Si) are examined by conducting probe atomic force microscopy. Conductive channels at both (n )a-Si:H/(p)c-Si and (p)a-Si:H/(n)c-Si interfaces are clearly revealed. These are attributed to two-dimension electron and hole gases due to strong inversion layers at the c-Si surface in agreement with previous planar conductance measurements. The presence of a hole gas in (p )a-Si:H/(n)c-Si structures implies a quite large valence band offset (EVc-Si-EVa-Si:H>0.25 eV).

  9. Femtosecond laser-controlled self-assembly of amorphous-crystalline nanogratings in silicon

    Science.gov (United States)

    Puerto, Daniel; Garcia-Lechuga, Mario; Hernandez-Rueda, Javier; Garcia-Leis, Adianez; Sanchez-Cortes, Santiago; Solis, Javier; Siegel, Jan

    2016-07-01

    Self-assembly (SA) of molecular units to form regular, periodic extended structures is a powerful bottom-up technique for nanopatterning, inspired by nature. SA can be triggered in all classes of solid materials, for instance, by femtosecond laser pulses leading to the formation of laser-induced periodic surface structures (LIPSS) with a period slightly shorter than the laser wavelength. This approach, though, typically involves considerable material ablation, which leads to an unwanted increase of the surface roughness. We present a new strategy to fabricate high-precision nanograting structures in silicon, consisting of alternating amorphous and crystalline lines, with almost no material removal. The strategy can be applied to static irradiation experiments and can be extended into one and two dimensions by scanning the laser beam over the sample surface. We demonstrate that lines and areas with parallel nanofringe patterns can be written by an adequate choice of spot size, repetition rate and scan velocity, keeping a constant effective pulse number (N eff) per area for a given laser wavelength. A deviation from this pulse number leads either to inhomogeneous or ablative structures. Furthermore, we demonstrate that this approach can be used with different laser systems having widely different wavelengths (1030 nm, 800 nm, 400 nm), pulse durations (370 fs, 100 fs) and repetition rates (500 kHz, 100 Hz, single pulse) and that the grating period can also be tuned by changing the angle of laser beam incidence. The grating structures can be erased by irradiation with a single nanosecond laser pulse, triggering recrystallization of the amorphous stripes. Given the large differences in electrical conductivity between the two phases, our structures could find new applications in nanoelectronics.

  10. Characterization of microstructure and mechanical behavior of sputter deposited Ti-containing amorphous carbon coatings.

    Energy Technology Data Exchange (ETDEWEB)

    Feng, B.; Cao, D. M.; Meng, W. J.; Xu, J.; Tittsworth, R. C.; Rehn, L. E.; Baldo, P. M.; Doll, G. L.; Materials Science Division; Louisiana State Univ.; The Timken Company

    2001-12-03

    We report on the characterization of microstructure and mechanical properties of sputter deposited Ti-containing amorphous carbon (Ti-aC) coatings as a function of Ti composition. Ti-aC coatings have been deposited by unbalanced magnetron sputter deposition, in an industrial-scale four-target coating deposition system. The composition and microstructure of the Ti-aC coatings have been characterized in detail by combining the techniques of Rutherford backscattering spectrometry (RBS) and hydrogen elastic recoil detection (ERD), transmission electron microscopy (TEM), X-ray absorption near edge structure (XANES) spectroscopy and extended X-ray absorption fine structure (EXAFS) spectroscopy. At Ti compositions <4at.%, Ti atoms dissolve in an amorphous carbon (a-C) matrix. The dissolution limit of Ti atoms in an a-C matrix is determined to be between 4 and 8 at.%. At Ti compositions >8 at.%, XANES and EXAFS data indicate that the average Ti atomic bonding environment in Ti-aC coatings resembles that in cubic B1-TiC, consistent with TEM observation of precipitation of TiC nanocrystallites in the a-C matrix. Beyond the Ti dissolution limit, the Ti-aC coatings are nanocomposites with nanocrystalline TiC clusters embedded in an a-C matrix. A large scale, quasi one-dimensional composition modulation in the Ti-aC coatings was observed due to the particular coating deposition geometry. Elastic stiffness and hardness of the Ti-aC coatings were measured by instrumented nanoindentation and found to vary systematically as a function of Ti composition. Unlubricated friction coefficient of Ti-aC coatings against WC-Co balls was found to increase as the Ti composition increases. As Ti composition increases, the overall mechanical behavior of the Ti-aC coatings becomes more TiC-like.

  11. Lab-on-chip system combining a microfluidic-ELISA with an array of amorphous silicon photosensors for the detection of celiac disease epitopes

    National Research Council Canada - National Science Library

    Francesca Costantini; Cristiana Sberna; Giulia Petrucci; Cesare Manetti; Giampiero de Cesare; Augusto Nascetti; Domenico Caputo

    2015-01-01

    This work presents a lab-on-chip system, which combines a glass-polydimethilsiloxane microfluidic network and an array of amorphous silicon photosensors for the diagnosis and follow-up of Celiac disease...

  12. Multilayered silicone oil droplets of narrow size distribution: preparation and improved deposition on hair.

    Science.gov (United States)

    Nazir, Habiba; Wang, Lianyan; Lian, Guoping; Zhu, Shiping; Zhang, Yueling; Liu, Yuan; Ma, Guanghui

    2012-12-01

    Silicone oil droplets have limited deposition on hair due to electrostatic repulsion with negative surface charge of hair substrates. Aiming to improve silicone deposition on hair substrates, surface properties of uniform-sized silicone oil droplets (produced by membrane emulsification) were modified using layer-by-layer electrostatic deposition. By using this method, silicone oil droplets were coated with large molecular weight polymers, i.e. quaternized chitosan and alginate, and low molecular weight compounds, i.e. diallyl dimethyl ammonium chloride and glycerol to obtain six alternate layers of different surface charges. It was found that the dispersion of coated silicone oil droplets of narrow size distribution exhibited much improved mechanical strength and increased viscosity against shear compared to uncoated droplets. These multilayered silicone oil droplets were then added into model shampoos and conditioners to study the effect of charge and molecular weight of coating materials on silicone oil deposition on hair. The results clearly demonstrated that surface charge and charge density have significant influence on silicone oil deposition. Droplets with higher positive charge density resulted in increased deposition of silicone on hair due to electrostatic attraction. Characterization of the hair surface potential, wetting properties and friction certified the results further, showing reduced friction, decreased wetting angle and positive surface potential of high density positively charged silicone oil droplets. Therefore, LBL surface modification combined with membrane emulsification is a promising method for preparing multilayered silicone oil droplets of increased mechanical strength, viscosity and deposition on hair.

  13. Amorphous inclusions during Ge and GeSn epitaxial growth via chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Gencarelli, F., E-mail: federica.gencarelli@imec.be [imec, Kapeldreef 75, 3001 Leuven (Belgium); Dept. of Metallurgy and Materials Engineering, KU Leuven, B-3001 Leuven (Belgium); Shimura, Y. [imec, Kapeldreef 75, 3001 Leuven (Belgium); Nuclear and Radiation Physics Section, KU Leuven, B-3001 Leuven (Belgium); Kumar, A. [imec, Kapeldreef 75, 3001 Leuven (Belgium); Nuclear and Radiation Physics Section, KU Leuven, B-3001 Leuven (Belgium); Vincent, B.; Moussa, A.; Vanhaeren, D.; Richard, O.; Bender, H. [imec, Kapeldreef 75, 3001 Leuven (Belgium); Vandervorst, W. [imec, Kapeldreef 75, 3001 Leuven (Belgium); Nuclear and Radiation Physics Section, KU Leuven, B-3001 Leuven (Belgium); Caymax, M.; Loo, R. [imec, Kapeldreef 75, 3001 Leuven (Belgium); Heyns, M. [imec, Kapeldreef 75, 3001 Leuven (Belgium); Dept. of Metallurgy and Materials Engineering, KU Leuven, B-3001 Leuven (Belgium)

    2015-09-01

    In this work, we discuss the characteristics of particular island-type features with an amorphous core that are developed during the low temperature epitaxial growth of Ge and GeSn layers by means of chemical vapor deposition with Ge{sub 2}H{sub 6}. Although further investigations are needed to unambiguously identify the origin of these features, we suggest that they are originated by the formation of clusters of H and/or contaminants atoms during growth. These would initially cause the formation of pits with crystalline rough facets over them, resulting in ring-shaped islands. Then, when an excess surface energy is overcome, an amorphous phase would nucleate inside the pits and fill them. Reducing the pressure and/or increasing the growth temperature can be effective ways to prevent the formation of these features, likely due to a reduction of the surface passivation from H and/or contaminant atoms. - Highlights: • Island features with amorphous cores develop during low T Ge(Sn) CVD with Ge{sub 2}H{sub 6.} • These features are thoroughly characterized in order to understand their origin. • A model is proposed to describe the possible evolution of these features. • Lower pressures and/or higher temperatures avoid the formation of these features.

  14. The Temperature Dependence Coefficients of Amorphous Silicon and Crystalline Photovoltaic Modules Using Malaysian Field Test Investigation

    Directory of Open Access Journals (Sweden)

    Sulaiman Shaari

    2009-01-01

    Full Text Available The temperature dependence coefficients of amorphous silicon and crystalline photovoltaic (PV modules using Malaysian field data have been obtained using linear regression technique. This is achieved by studying three test stand-alone PV-battery systems using 62 Wp a-Si, 225 Wp multi-crystalline and 225 Wp mono-crystalline PV modules. These systems were designed to provide electricity for rural domestic loads at 200 W, 500 W and 530 W respectively. The systems were installed in the field with data monitored using data loggers. Upon analysis, the study found that the normalized power output per operating array temperature for the amorphous silicon modules, multi-crystalline modules and mono-crystalline modules were: +0.037 per°C, +0.0225 per °C and +0.0263 per °C respectively. In addition, at a solar irradiance value of 500 Wm-2, the current, voltage, power and efficiency dependence coefficients on operating array temperatures obtained from linear regression were: +37.0 mA per °C, -31.8 mV per °C, -0.1036 W per °C and -0.0214% per °C, for the a-Si modules, +22.5 mA per °C, -39.4 mV per °C, -0.2525 W per °C, -0.072 % per °C for the multi-crystalline modules and +26.3 mA per °C, -32.6 mV per °C, -0.1742 W per °C, -0.0523 % per °C for the mono-crystalline modules. These findings have a direct impact on all systems design and sizing in similar climate regions. It is thus recommended that the design and sizing of PV systems in the hot and humid climate regions of the globe give due address to these findings.

  15. Quenching of porous silicon photoluminescence by deposition of metal adsorbates

    Energy Technology Data Exchange (ETDEWEB)

    Andsager, D.; Hilliard, J.; Hetrick, J.M.; AbuHassan, L.H.; Plisch, M.; Nayfeh, M.H. (Department of Physics, University of Illinois at Urbana-Champaign, 1110 West Green Street, Urbana, Illinois 61801 (United States))

    1993-10-01

    Various metals were deposited on luminescent porous silicon (PS) by immersion in metal ion solutions and by evaporation. The photoluminescence (PL) was quenched upon immersion in ionic solutions of Cu, Ag, and Au but not noticeably quenched in other ionic solutions. Evaporation of 100 A of Cu or 110 A of Au was not observed to quench PL. Auger electron spectroscopy performed on samples quenched and then immediately removed from solution showed a metallic concentration in the PS layer of order 10 at.%, but persisting to a depth of order 3000 A.

  16. Photostability Assessment in Amorphous-Silicon Solar Cells; Determinacion de la Fotoestabilidad en Celulas Solares de Silicio Amorfo

    Energy Technology Data Exchange (ETDEWEB)

    Gandia, J. J.; Carabe, J.; Fabero, F.; Jimenez, R.; Rivero, J. M. [Ciemat, Madrid (Spain)

    2000-07-01

    The present status of amorphous-silicon-solar-cell research and development at CIEMAT requires the possibility to characterise the devices prepared from the point of view of their stability against sunlight exposure. Therefore a set of tools providing such a capacity has been developed. Together with an introduction to photovoltaic applications of amorphous silicon and to the photodegradation problem, the present work describes the process of setting up these tools. An indoor controlled-photodegradation facility has been designed and built, and a procedure has been developed for the measurement of J-V characteristics in well established conditions. This method is suitable for a kinds of solar cells, even for those for which no model is still available. The photodegradation and characterisation of some cells has allowed to validate both the new testing facility and method. (Author) 14 refs.

  17. Irreversible lithium storage during lithiation of amorphous silicon thin film electrodes studied by in-situ neutron reflectometry

    Science.gov (United States)

    Jerliu, Bujar; Hüger, Erwin; Horisberger, Michael; Stahn, Jochen; Schmidt, Harald

    2017-08-01

    Amorphous silicon is a promising high-capacity anode material for application in lithium-ion batteries. However, a huge drawback of the material is that the large capacity losses taking place during cycling lead to an unstable performance. In this study we investigate the capacity losses occurring during galvanostatic lithiation of amorphous silicon thin film electrodes by in-situ neutron reflectometry experiments for the first ten cycles. As determined from the analysis of the neutron scattering length density and of the film thickness, the capacity losses are due to irreversible storage of lithium in the electrode. The amount of stored lithium increases during cycling to 20% of the maximum theoretical capacity after the 10th cycle. Possible explanations are discussed.

  18. Behavioral data of thin-film single junction amorphous silicon (a-Si) photovoltaic modules under outdoor long term exposure.

    Science.gov (United States)

    Kichou, Sofiane; Silvestre, Santiago; Nofuentes, Gustavo; Torres-Ramírez, Miguel; Chouder, Aissa; Guasch, Daniel

    2016-06-01

    Four years׳ behavioral data of thin-film single junction amorphous silicon (a-Si) photovoltaic (PV) modules installed in a relatively dry and sunny inland site with a Continental-Mediterranean climate (in the city of Jaén, Spain) are presented in this article. The shared data contributes to clarify how the Light Induced Degradation (LID) impacts the output power generated by the PV array, especially in the first days of exposure under outdoor conditions. Furthermore, a valuable methodology is provided in this data article permitting the assessment of the degradation rate and the stabilization period of the PV modules. Further discussions and interpretations concerning the data shared in this article can be found in the research paper "Characterization of degradation and evaluation of model parameters of amorphous silicon photovoltaic modules under outdoor long term exposure" (Kichou et al., 2016) [1].

  19. More stable hybrid organic solar cells deposited on amorphous Si electron transfer layer

    Energy Technology Data Exchange (ETDEWEB)

    Samiee, Mehran; Modtland, Brian; Dalal, Vikram L., E-mail: vdalal@iastate.edu [Iowa State University, Dept. of Electrical and Computer Engineering, Ames, Iowa 50011 (United States); Aidarkhanov, Damir [Nazarbayev University, Astana (Kazakhstan)

    2014-05-26

    We report on defect densities, performance, and stability of organic/inorganic hybrid solar cells produced using n-doped inorganic amorphous silicon-carbide layers as the electron transport layer (ETL). The organic material was poly-3-hexyl-thiophene (P3HT) and heterojunction was formed using phenyl-C{sub 71}-Butyric-Acid-Methyl Ester (PCBM). For comparison, inverted solar cells fabricated using Cs{sub 2}CO{sub 3} as ETL were fabricated. Defect densities and subgap quantum efficiency curves were found to be nearly identical for both types of cells. The cells were subjected to 2xsun illumination and it was found that the cells produced using doped a-Si as ETL were much more stable than the cells produced using Cs{sub 2}CO{sub 3}.

  20. Neutron diffraction and thermal studies of amorphous CS{sub 2} realised by low-temperature vapour deposition

    Energy Technology Data Exchange (ETDEWEB)

    Yamamuro, O.; Matsuo, T. [Osaka Univ., Dept. of Chemistry, Graduate School of Sciences (Japan); Onoda-Yamamuro, N. [Tokyo Denki Univ., College of Sciences and Technology (Japan); Takeda, K. [Naruto Univ., Dept. of Chemistry, Tokushima (Japan); Munemura, H.; Tanaka, S.; Misawa, M. [Niigata Univ. (Japan). Faculty of Science

    2003-08-01

    We have succeeded in preparing amorphous carbon disulphide (CS{sub 2}) by depositing its vapour on a cold substrate at 10 K. Complete formation of the amorphous state has been confirmed by neutron diffraction and differential thermal analysis (DTA). The amorphous sample crystallized at ca. 70 K, which is lower than the hypothetical glass transition temperature (92 K) estimated from the DTA data of the (CS{sub 2}){sub x}(S{sub 2}Cl{sub 2}){sub 1-x} binary mixture. CS{sub 2}, a symmetric linear tri-atomic molecule, is the simplest of the amorphized molecular substances whose structural and thermal information has been reported so far. Comparison of the static structure factors S(Q) has shown that the orientational correlation of CS{sub 2} molecules may be much stronger in the amorphous state than in the liquid state at higher temperature. (authors)

  1. Thin-film amorphous silicon alloy research partnership, Phase I. Annual technical progress report, February 2, 1995--February 1, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Guha, S. [United Solar Systems Corp., Troy, MI (United States)

    1996-04-01

    The principal objective of this R&D program is to expand, enhance and accelerate knowledge and capabilities for the development of high-performance, two-terminal multifunction amorphous silicon (a-Si) alloy modules. The near-term goal of the program is to achieve 12% stable module efficiency by 1998 using the multifunction approach. This report describes research on back reflectors of Ag/TiO{sub 2}/ZnO.

  2. Study of the deposition process of vinpocetine on the surface of porous silicon

    Science.gov (United States)

    Lenshin, A. S.; Polkovnikova, Yu. A.; Seredin, P. V.

    Currently the most prospective way in pharmacotherapy is the obtaining of nanoparticles involving pharmaceutical substances. Application of porous inorganic materials on the basis of silicon is among the main features in solving of this problem. The present work is concerned with the problem of the deposition of pharmaceutical drug with nootropic activity - vinpocetine - into porous silicon. Silicon nanoparticles were obtained by electrochemical anodic etching of Si plates. The process of vinpocetine deposition was studied in dependence of the deposition time. As a result of the investigations it was found that infrared transmission spectra of porous silicon with the deposited vinpocetine revealed the absorption bands characteristic of vinpocetine substance.

  3. Electronic structure of the amorphous-crystalline Silicon heterostructure contact; Die elektronische Struktur des amorph-kristallinen Silizium-Heterostruktur-Kontakts

    Energy Technology Data Exchange (ETDEWEB)

    Korte, L.

    2006-07-01

    In the present work, the electronic density of states of hydrogenated amorphous silicon (a-Si:H) layers in the thickness range from 300 down to {proportional_to}2 nm was examined by Near-UV-photoelectron spectroscopy (NUV-PES). The measurements yield a mean density (averaged over all directions in k space) of the extended states in the valence band close to the band edge E{sub v}, down to approximately E{sub v}-1 eV, as well as the density of states in the band-gap between E{sub v} and the Fermi level E{sub f}. An analytic model for the density of states was fitted to the measured yield data. The model describes the extended states close to the band edge as well as the localized states in the band gap. The defect parameters obtained from the fits to the 300 nm sample are elevated with respect to literature data. In contrast to PES the photocurrent measurement yield the defect parameters averaged over the entire layer thickness. Finally, the photocurrent measurements can be evaluated in the Tauc plot to yield the optical band-gap, E{sub g}{sup opt}=1.76(5) eV. The methodology developed in the first part of the thesis (PES measurement and fit of the model density of states) was then applied to various series of approximately 10 nm thin a-Si:H layers on c-Si substrates, where the deposition temperature of the layers and the concentration of their doping both by phosphorus and boron were varied. The experimental results can be summarized as follows: Ultrathin a-Si:H layers show an optimum of the deposition-temperature around 230 C. The optimum is characterized by an Urbach energy of 66(1) meV and a defect-density of 2,9(3).10{sup 18} cm{sup -3}. For undoped layers, the Fermi level lies E{sub F}-E{sub V}{sup {mu}}=1.04(6) eV, the films are therefore slightly n-type. Conductivity measurements at identically prepared thick layers on glass allow to determine the distance of the Fermi level to the conduction band mobility edge, E{sub C}{sup {mu}}-E{sub F}. Both for the

  4. Selective palladium electrochemical deposition onto AFM-scratched silicon surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Santinacci, L.; Djenizian, T.; Hildebrand, H.; Ecoffey, S.; Mokdad, H.; Campanella, T.; Schmuki, P

    2003-09-30

    The present work investigates the selective electrochemical deposition of palladium nano-structures into scratches produced through thin oxide layers covering p-Si (1 0 0) surfaces. Using an atomic force microscope equipped with a single-crystalline diamond tip scratches in the 100 nm range were produced through a 10 nm thick dry oxide layer. Pd deposition was carried out in PdCl{sub 2} (0.01 g l{sup -1})+HCl (0.1 M) by cathodic potential steps. Investigation of the palladium nucleation and growth processes onto silicon surfaces is presented. Under optimized conditions sub-100 nm palladium structures can be obtained with a very high selectivity.

  5. Field emission properties of amorphous GaN ultrathin films fabricated by pulsed laser deposition

    Institute of Scientific and Technical Information of China (English)

    WANG FengYing; WANG RuZhi; ZHAO Wei; SONG XueMei; WANG Bo; YAN Hui

    2009-01-01

    Amorphous gallium nitride (a-GaN) films with thicknesses of 5 and 300 nm are deposited on n-Si (100) substrates by pulsed laser deposition (PLD), and their field emission (FE) properties are studied. It shows that compared with thicker (300 nm) a-GaN film, better FE performance is obtained on ultrathin (5 nm) a-GaN film with a threshold field of 0.78 V/μm, which is the lowest value ever reported. Furthermore, the current density reaches 42 mA/cm~2 when the applied field is 3.72 V/μm. These experimental results unambiguously confirm Binh's theoretical analysis (Birth et al. Phys Rev Lett, 2000, 85(4): 864-867) that the FE performance would be prominently enhanced with the coating of an ultra-thin wide band-gap semiconductor film.

  6. Nanoporosity induced by ion implantation in deposited amorphous Ge thin films

    Energy Technology Data Exchange (ETDEWEB)

    Romano, L.; Impellizzeri, G.; Ruffino, F.; Miritello, M.; Grimaldi, M. G. [IMM-CNR MATIS and Dipartimento di Fisica e Astronomia, Universita di Catania, Via S. Sofia 64, I-95123 Catania (Italy); Bosco, L. [Scuola Superiore di Catania, Via Valdisavoia 9, I-95123 Catania (Italy)

    2012-06-01

    The formation of a nano-porous structure in amorphous Ge thin film (sputter-deposited on SiO{sub 2}) during ion irradiation at room temperature with 300 keV Ge{sup +} has been observed. The porous film showed a sponge-like structure substantially different from the columnar structure reported for ion implanted bulk Ge. The voids size and structure resulted to be strongly affected by the material preparation, while the volume expansion turned out to be determined only by the nuclear deposition energy. In SiGe alloys, the swelling occurs only if the Ge concentration is above 90%. These findings rely on peculiar characteristics related to the mechanism of voids nucleation and growth, but they are crucial for future applications of active nanostructured layers such as low cost chemical and biochemical sensing devices or electrodes in batteries.

  7. Composition and Microstructure of Magnetron Sputtering Deposited Ti-containing Amorphous Carbon Films

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Ti-containing carbon films were deposited by using magnetron sputtering deposition. The composition and microstructure of the carbon films were characterized in detail by combining the techniques of Rutherford backscattering spectrometry (RBS), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) and transmission electron microscopy (TEM). It is found that carbon films contain Ti 18 at pct; after Ti incorporation, the films consist of titanium carbide; C1s peak appears at 283.4 eV and it could be divided into 283.29 and 284.55 eV, representing sp2 and sp3, respectively, and sp2 is superior to sp3. This Ti-containing film with dominating sp2 bonds is nanocomposites with nanocrystalline TiC clusters embedded in an amorphous carbon matrix, which could be proved by XRD and TEM.

  8. Femtosecond and nanosecond pulsed laser deposition of silicon and germanium

    Energy Technology Data Exchange (ETDEWEB)

    Reenaas, Turid Worren [Department of Physics, Norwegian University of Science and Technology, 7491 Trondheim (Norway); Lee, Yen Sian [Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia); Department of Physics, Faculty of Science, University of Malaya, 50603 Kuala Lumpur (Malaysia); Chowdhury, Fatema Rezwana; Gupta, Manisha; Tsui, Ying Yin [Department of Electrical and Computer Engineering, University of Alberta (Canada); Tou, Teck Yong [Faculty of Engineering, Multimedia University, 63100 Cyberjaya, Selangor (Malaysia); Yap, Seong Ling [Department of Physics, Faculty of Science, University of Malaya, 50603 Kuala Lumpur (Malaysia); Kok, Soon Yie [Faculty of Engineering, Multimedia University, 63100 Cyberjaya, Selangor (Malaysia); Yap, Seong Shan, E-mail: seongshan@gmail.com [Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2015-11-01

    Highlights: • Ge and Si were deposited by fs and ns laser at room temperature and at vacuum. • Ion of 10{sup 4} ms{sup −1} and 30–200 eV was obtained for ns ablation for Ge and Si. • Highly energetic ions of 10{sup 5} ms{sup −1} with 2–7 KeV were produced in fs laser ablation. • Nanocrystalline Si and Ge were deposited by using fs laser. • Nanoparticles < 10 nm haven been obtained by fs laser. - Abstract: 150 fs Ti:Sapphire laser pulsed laser deposition of Si and Ge were compared to a nanosecond KrF laser (25 ns). The ablation thresholds for ns lasers were about 2.5 J cm{sup −2} for Si and 2.1 J cm{sup −2} for Ge. The values were about 5–10 times lower when fs laser were used. The power densities were 10{sup 8}–10{sup 9} W cm{sup −2} for ns but 10{sup 12} W cm{sup −2} for fs. By using an ion probe, the ions emission at different fluence were measured where the emitting ions achieving the velocity in the range of 7–40 km s{sup −1} and kinetic energy in the range of 30–200 eV for ns laser. The ion produced by fs laser was measured to be highly energetic, 90–200 km s{sup −1}, 2–10 KeV. Two ion peaks were detected above specific laser fluence for both ns and fs laser ablation. Under fs laser ablation, the films were dominated by nano-sized crystalline particles, drastically different from nanosecond pulsed laser deposition where amorphous films were obtained. The ions characteristics and effects of pulse length on the properties of the deposited films were discussed.

  9. New Method of Depositing the Nanostructured Amorphous Carbon for Carbon Based Solar Cell Applications

    Directory of Open Access Journals (Sweden)

    A. N. Fadzilah

    2013-01-01

    Full Text Available Nanostructured amorphous carbon (a-C solar cells were successfully deposited via a self-designed aerosol-assisted chemical vapor deposition (AACVD. The fabricated solar cell with the configuration of Au/p-C/n-Si/Au achieved efficiency ( of % for device deposited at 500°C, % for 450°C, and % for 400°C. Photoresponse characteristic was highlighted under illumination (AM 1.5 illuminations: 100 mW/cm2, 25°C, where conductivity increased when the sample was being hit by light. Transmittance spectrum exhibits a large transmittance value (85% and absorption coefficient value of  cm−1 at the visible range from 390 to 790 nm. The nanostructured a-C thin film deposited at higher temperature possesses lower transmittance due to higher absorption as a result of the higher content of sp2-bonded carbon atoms. From Tauc’s plot, optical band gap ( was determined, and decreased as deposition temperature increased (1.2 eV, 1.0 eV, 0.7 eV. On the other hand, FESEM images exhibited a nanostructured sized a-C with the particle size less than 100 nm. To the best of our knowledge, the presence of nanostructured particle of a-C by a self-prepared AACVD has not frequently been reported.

  10. Properties of amorphous SiC coatings deposited on WC-Co substrates

    Directory of Open Access Journals (Sweden)

    A.K. Costa

    2003-01-01

    Full Text Available In this work, silicon carbide films were deposited onto tungsten carbide from a sintered SiC target on a r.f. magnetron sputtering system. Based on previous results about the influence of r.f. power and argon pressure upon the properties of films deposited on silicon substrates, suitable conditions were chosen to produce high quality films on WC-Co pieces. Deposition parameters were chosen in order to obtain high deposition rates (about 30 nm/min at 400 W rf power and acceptable residual stresses (1.5 GPa. Argon pressure affects the energy of particles so that films with higher hardness (30 GPa were obtained at low pressures (0.05 Pa. Wear rates of the coated pieces against a chromium steel ball in a diamond suspension medium were found to be about half of the uncoated ones. Hardness and wear resistance measurements were done also in thermally annealed (200-800 °C samples revealing the effectiveness of SiC coatings to protect tool material against severe mechanical degradation resulting of high temperature (above 500 °C oxidation.

  11. Highly conductive boron doped micro/nanocrystalline silicon thin films deposited by VHF-PECVD for solar cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Juneja, Sucheta; Sudhakar, S., E-mail: sudhakars@nplindia.org; Gope, Jhuma; Lodhi, Kalpana; Sharma, Mansi; Kumar, Sushil

    2015-09-15

    Graphical abstract: AFM images of boron doped micro/nanocrystalline silicon films at different diborane gas flow. - Highlights: • High deposition rate of 10 Å/s was achieved for boron doped silicon films. • Wide range of optical band gap from 1.32 eV to 1.84 eV observed for the deposited films. - Abstract: Boron doped hydrogenated micro/nanocrystalline silicon (μc/nc-Si:H) thin films have been deposited by plasma enhanced chemical vapor deposition technique (PECVD) using silane (SiH{sub 4}) diluted in argon. Diborane (B{sub 2}H{sub 6}) was used as the dopant gas and deposition was carried out at substrate temperature of 200 °C. The diborane flow (F{sub B}) varied in the range 0.00–0.30. Here, we report the effects of B{sub 2}H{sub 6} doping on electronic, optical and structural properties of hydrogenated micro/nanocrystalline silicon films. The structural properties were analyzed by atomic force microscopy (AFM) and X-ray diffraction (XRD). The doped micro/nano crystalline silicon films presented a crystallographic orientation preferentially in the (1 1 1) and (2 2 0) plane. We resolve the deposition parameters that lead to the formation of p-type micro/nanocrystalline silicon thin films with very high value of conductivity and lower optical band gap. Correlations between structural and electrical properties were also studied. Based on temperature dependent conductivity measurements, it has been observed that the room temperature dark conductivity varies in the range 1.45 × 10{sup −4} Ω{sup −1} cm{sup −1} to 2.02 Ω{sup −1} cm{sup −1} for the B-doped films. Meanwhile, the corresponding value of activation energies decreased to 0.06 eV for the B-doped films, which indicates the doped μc/nc-Si films with high conductivity can be achieved and these films prove to be a very good candidate for application in amorphous and micro/nano crystalline silicon solar cells as a p-type window layer.

  12. Optical properties of plasma deposited amorphous carbon nitride films on polymer substrates

    Energy Technology Data Exchange (ETDEWEB)

    Mohamed, S.H., E-mail: abo_95@yahoo.co [Physics Department, Faculty of Science, Sohag University, 82524 Sohag (Egypt); El-Hossary, F.M. [Physics Department, Faculty of Science, Sohag University, 82524 Sohag (Egypt); Gamal, G.A.; Kahlid, M.M. [Physics Department, Faculty of Science, South Valley University, 83523 Qena (Egypt)

    2010-01-01

    Amorphous carbon nitride thin films were deposited on polymer substrates using radio frequency (rf) plasma in a mixture of nitrogen (N{sub 2}) and acetylene (C{sub 2}H{sub 2}) gasses. The samples were prepared at different rf plasma power (350, 400, 450, 500, and 550 W), at constant plasma exposure time of 10 min, and constant N{sub 2}/C{sub 2}H{sub 2} ratio of 50%. The crystal structure and surface morphology of the prepared samples were examined using X-ray diffraction and atomic force microscopy analysis, respectively. The absence of the carbon nitride diffraction peaks confirms the amorphous nature of these films. The root mean square roughness of the films increased from 3.77 to 25.22 nm as the power increased from 350 to 550 W. The thickness and the deposition rate were found to increase with increasing plasma power. Over the whole studied wavelength range, from 200 to 2500 nm, the transmittance decreased with increasing plasma power. A shift in the onset of absorption towards higher wavelengths with increasing plasma power, indicating a decrease in the optical band gap, has been observed. The refractive index values were found to decrease while the extinction coefficient increased with increasing plasma power.

  13. Towards new binary compounds: Synthesis of amorphous phosphorus carbide by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Hart, Judy N., E-mail: Judy.Hart@bristol.ac.uk [School of Chemistry, University of Bristol, Bristol BS8 1TS (United Kingdom); May, Paul W.; Allan, Neil L. [School of Chemistry, University of Bristol, Bristol BS8 1TS (United Kingdom); Hallam, Keith R. [Interface Analysis Centre, University of Bristol, 121 St. Michaels Hill, Bristol BS2 8BS (United Kingdom); Claeyssens, Frederik [Kroto Research Institute, Department of Materials Science and Engineering, University of Sheffield, Broad Lane, Sheffield S3 7HQ (United Kingdom); Fuge, Gareth M.; Ruda, Michelle [School of Chemistry, University of Bristol, Bristol BS8 1TS (United Kingdom); Heard, Peter J. [Interface Analysis Centre, University of Bristol, 121 St. Michaels Hill, Bristol BS2 8BS (United Kingdom)

    2013-02-15

    We have recently undertaken comprehensive computational studies predicting possible crystal structures of the as yet unknown phosphorus carbide as a function of composition. In this work, we report the synthesis of amorphous phosphorus-carbon films by pulsed laser deposition. The local bonding environments of carbon and phosphorus in the synthesised materials have been analysed by x-ray photoelectron spectroscopy; we have found strong evidence for the formation of direct P-C bonding and hence phosphorus carbide. There is a good agreement between the bonding environments found in this phosphorus carbide material and those predicted in the computational work. In particular, the local bonding environments are consistent with those found in the {beta}-InS-like structures that we predict to be low in energy for phosphorus:carbon ratios between 0.25 and 1. Highlights: Black-Right-Pointing-Pointer We have synthesised amorphous phosphorus-carbon films by pulsed laser deposition. Black-Right-Pointing-Pointer X-ray photoelectron spectroscopy results indicate formation of direct P-C bonds and hence phosphorus carbide. Black-Right-Pointing-Pointer Local bonding environments are consistent with those in predicted structures.

  14. Effective interface state effects in hydrogenated amorphous-crystalline silicon heterostructures using ultraviolet laser photocarrier radiometry

    Science.gov (United States)

    Melnikov, A.; Mandelis, A.; Halliop, B.; Kherani, N. P.

    2013-12-01

    Ultraviolet photocarrier radiometry (UV-PCR) was used for the characterization of thin-film (nanolayer) intrinsic hydrogenated amorphous silicon (i-a-Si:H) on c-Si. The small absorption depth (approximately 10 nm at 355 nm laser excitation) leads to strong influence of the nanolayer parameters on the propagation and recombination of the photocarrier density wave (CDW) within the layer and the substrate. A theoretical PCR model including the presence of effective interface carrier traps was developed and used to evaluate the transport parameters of the substrate c-Si as well as those of the i-a-Si:H nanolayer. Unlike conventional optoelectronic characterization methods such as photoconductance, photovoltage, and photoluminescence, UV-PCR can be applied to more complete quantitative characterization of a-Si:H/c-Si heterojunction solar cells, including transport properties and defect structures. The quantitative results elucidate the strong effect of a front-surface passivating nanolayer on the transport properties of the entire structure as the result of effective a-Si:H/c-Si interface trap neutralization through occupation. A further dramatic improvement of those properties with the addition of a back-surface passivating nanolayer is observed and interpreted as the result of the interaction of the increased excess bulk CDW with, and more complete occupation and neutralization of, effective front interface traps.

  15. Light trapping in amorphous silicon solar cells with periodic grating structures

    Energy Technology Data Exchange (ETDEWEB)

    Lia, Haihua; Wang, Qingkang; Chen, Jian [National Key Laboratory of Micro /Nano Fabrication Technology, Key Laboratory for Thin Film and Microfabrication Technology of Ministry of Education, Research Institute of Micro/Nano Science and Technology, Shanghai Jiao Tong University, Shanghai 200240 (China); Krc, J. [University of Ljubljana, Faculty of Electrical Engineering, Trzaska25, 1000 Ljubljana (Slovenia); Soppe, W.J. [Energy research Center of the Netherlands ECN, P. O. Box 1, 1755 ZG Pettern (Netherlands)

    2012-03-15

    We report on the design of amorphous silicon solar cells with the periodic grating structures. It is a combination of an anti-reflection structure and the metallic reflection grating. Optical coupling and light trapping in thin-film solar cells are studied numerically using the Rigorous Coupled Wave Analysis enhanced by the Modal Transmission Line theory. The impact of the structure parameters of the gratings is investigated. The results revealed that within the incident angles of - 40{sup 0} to + 40{sup 0} the reflectivity of the cell with a period of 0.5 {mu}m, a filling factor of 0.1 and a groove depth of 0.4 {mu}m is 4%-22.7% in the wavelength range of 0.3-0.6 {mu}m and 1%-20.8% in the wavelength range of 0.6-0.84 {mu}m, the absorption enhancement of the a-Si layer is 0.4%-10.8% and 20%-385%, respectively.

  16. Field collapse due to band-tail charge in amorphous silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Qi; Crandall, R.S. [National Renewable Energy Lab., Golden, CO (United States); Schiff, E.A. [Syracuse Univ., NY (United States)

    1996-05-01

    It is common for the fill factor to decrease with increasing illumination intensity in hydrogenated amorphous silicon solar cells. This is especially critical for thicker solar cells, because the decrease is more severe than in thinner cells. Usually, the fill factor under uniformly absorbed red light changes much more than under strongly absorbed blue light. The cause of this is usually assumed to arise from space charge trapped in deep defect states. The authors model this behavior of solar cells using the Analysis of Microelectronic and Photonic Structures (AMPS) simulation program. The simulation shows that the decrease in fill factor is caused by photogenerated space charge trapped in the band-tail states rather than in defects. This charge screens the applied field, reducing the internal field. Owing to its lower drift mobility, the space charge due to holes exceeds that due to electrons and is the main cause of the field screening. The space charge in midgap states is small compared with that in the tails and can be ignored under normal solar-cell operating conditions. Experimentally, the authors measured the photocapacitance as a means to probe the collapsed field. They also explored the light intensity dependence of photocapacitance and explain the decrease of FF with the increasing light intensity.

  17. 25th anniversary article: organic field-effect transistors: the path beyond amorphous silicon.

    Science.gov (United States)

    Sirringhaus, Henning

    2014-03-05

    Over the past 25 years, organic field-effect transistors (OFETs) have witnessed impressive improvements in materials performance by 3-4 orders of magnitude, and many of the key materials discoveries have been published in Advanced Materials. This includes some of the most recent demonstrations of organic field-effect transistors with performance that clearly exceeds that of benchmark amorphous silicon-based devices. In this article, state-of-the-art in OFETs are reviewed in light of requirements for demanding future applications, in particular active-matrix addressing for flexible organic light-emitting diode (OLED) displays. An overview is provided over both small molecule and conjugated polymer materials for which field-effect mobilities exceeding > 1 cm(2) V(-1) s(-1) have been reported. Current understanding is also reviewed of their charge transport physics that allows reaching such unexpectedly high mobilities in these weakly van der Waals bonded and structurally comparatively disordered materials with a view towards understanding the potential for further improvement in performance in the future.

  18. Morphological and Chemical Analysis Of Degraded Single Junction Amorphous Silicon Module.

    Science.gov (United States)

    Osayemwenre, Gilbert; Meyer, Edson; Mamphweli, Sampson

    2017-01-01

    Photovoltaic solar modules have different defects and degradation characteristic modes. These defects/degradation modes normally heats up some regions in the PV module, depending on the degree and size of the localised heat or hot spot, the localized heat can rise above the temperature limit of the module thereby cause damage to the structural orientation. The presence of severe defect and degradation correlates with high temperature gradients that usually results in morphological damage especially under outdoor conditions. The present study investigates the effect of defect/degradation on the surface morphology of the single junction amorphous silicon modules (a-Si:H) during outdoor deployment. The observed structural damage was analysed using scanning electron microscope (SEM) and energy dispersion X-ray (EDX) to ascertain the elemental composition. Results show huge discrepancies in the chemical composition constitute alone different regions. The presence of high concentration of carbon and oxygen was found in the affected region. The authors sincerely thank GMDRC University of Fort Hare for financial support. The authors also wish to thank Eskom for financing this project.

  19. Memory effect in MOS structures containing amorphous or crystalline silicon nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Meier, Sebastian; Brueggemann, Rudolf; Bauer, Gottfried Heinrich [Institute of Physics, Carl von Ossietzky University Oldenburg, D-26111 Oldenburg (Germany); Nedev, Nicola [Istituto de Ingenieria, Universidad Autonoma de Baja California, Benito Juarez Blvd., s/n, C.P. 21280, Mexicali, Baja California (Mexico); Manolov, Emmo; Nesheva, Diana; Levi, Zelma [Insitute of Solid State Physics, Bulgarian Academy of Science, 72 Tzarigradsko Chaussee Blvd., 1784 Sofia (Bulgaria)

    2008-07-01

    Amorphous and crystalline silicon nanoparticles (Si-NPs) embedded in a SiO{sub 2} matrix are fabricated by thermal annealing of Metal/SiO{sub 2}/SiO{sub x}/c-Si structures (x=1.15) at 700 C or 1000 C in N{sub 2} atmosphere for 30 or 60 minutes. High frequency C-V measurements show that the samples can be charged negatively or positively by applying a positive or negative bias voltage to the gate. A memory effect, due to the Si-NPs in the SiO{sub 2} matrix, is observed. The method of measurement with open circuit between two measurements leads to the retention characteristic where the structures retain about 50% of negative charge trapped in Si-NPs for 24 hours. A second method, where the flat-band voltage is applied as bias voltage, shows shorter retention characteristics. There the Si-NPs retain 50% of their charge after 10 hours.

  20. Anomalous enhancement in radiation induced conductivity of hydrogenated amorphous silicon semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Shin-ichiro, E-mail: sato.shinichiro@jaea.go.jp [Japan Atomic Energy Agency (JAEA), 1233 Watanuki, Takasaki, Gunma 370-1292 (Japan); Sai, Hitoshi [National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568 (Japan); Ohshima, Takeshi [Japan Atomic Energy Agency (JAEA), 1233 Watanuki, Takasaki, Gunma 370-1292 (Japan); Imaizumi, Mitsuru; Shimazaki, Kazunori [Japan Aerospace Exploration Agency (JAXA), 2-1-1 Sengen, Tsukuba, Ibaraki 305-8505 (Japan); Kondo, Michio [National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568 (Japan)

    2012-09-01

    Electric conductivity variations of undoped hydrogenated amorphous silicon (a-Si:H) semiconductors induced by swift protons are investigated. The results show that the conductivity drastically increases at first and then decreases on further irradiation. The conductivity enhancement is observed only in the low fluence regime and lasts for a prolonged period of time when proton irradiation stops in this fluence regime. On the other hand, the photosensitivity has a minimum value around the conductivity peak. This fact indicates that non-equilibrium carriers do not play a dominant role in the electric conduction in this fluence regime. It is found that the anomalous conductivity enhancement in the low fluence regime is dominated by donor center generation. At higher fluences the conductivity during irradiation is dominated by non-equilibrium carriers as the generated donor centers disappear. It is also found that the RIC in the high fluence regime is proportional to the carrier generation rate. This indicates that the recombination process of non-equilibrium carriers is dominated by indirect recombination via defect levels.

  1. Image quality vs. radiation dose for a flat-panel amorphous silicon detector: a phantom study.

    Science.gov (United States)

    Geijer, H; Beckman, K W; Andersson, T; Persliden, J

    2001-01-01

    The aim of this study was to investigate the image quality for a flat-panel amorphous silicon detector at various radiation dose settings and to compare the results with storage phosphor plates and a screen-film system. A CDRAD 2.0 contrast-detail phantom was imaged with a flat-panel detector (Philips Medical Systems, Eindhoven, The Netherlands) at three different dose levels with settings for intravenous urography. The same phantom was imaged with storage phosphor plates at a simulated system speed of 200 and a screen-film system with a system speed of 160. Entrance surface doses were recorded for all images. At each setting, three images were read by four independent observers. The flat-panel detector had equal image quality at less than half the radiation dose compared with storage phosphor plates. The difference was even larger when compared with film with the flat-panel detector having equal image quality at approximately one-fifth the dose. The flat-panel detector has a very favourable combination of image quality vs radiation dose compared with storage phosphor plates and screen film.

  2. Image quality vs radiation dose for a flat-panel amorphous silicon detector: a phantom study

    Energy Technology Data Exchange (ETDEWEB)

    Geijer, H.; Andersson, T. [Dept. of Radiology, Oerebro Medical Centre Hospital (Sweden); Beckman, K.W.; Persliden, J. [Dept. of Medical Physics, Oerebro Medical Centre Hospital (Sweden)

    2001-09-01

    The aim of this study was to investigate the image quality for a flat-panel amorphous silicon detector at various radiation dose settings and to compare the results with storage phosphor plates and a screen-film system. A CDRAD 2.0 contrast-detail phantom was imaged with a flat-panel detector (Philips Medical Systems, Eindhoven, The Netherlands) at three different dose levels with settings for intravenous urography. The same phantom was imaged with storage phosphor plates at a simulated system speed of 200 and a screen-film system with a system speed of 160. Entrance surface doses were recorded for all images. At each setting, three images were read by four independent observers. The flat-panel detector had equal image quality at less than half the radiation dose compared with storage phosphor plates. The difference was even larger when compared with film with the flat-panel detector having equal image quality at approximately one-fifth the dose. The flat-panel detector has a very favourable combination of image quality vs radiation dose compared with storage phosphor plates and screen film. (orig.)

  3. In vivo Characterization of Amorphous Silicon Carbide As a Biomaterial for Chronic Neural Interfaces.

    Science.gov (United States)

    Knaack, Gretchen L; McHail, Daniel G; Borda, German; Koo, Beomseo; Peixoto, Nathalia; Cogan, Stuart F; Dumas, Theodore C; Pancrazio, Joseph J

    2016-01-01

    Implantable microelectrode arrays (MEAs) offer clinical promise for prosthetic devices by enabling restoration of communication and control of artificial limbs. While proof-of-concept recordings from MEAs have been promising, work in animal models demonstrates that the obtained signals degrade over time. Both material robustness and tissue response are acknowledged to have a role in device lifetime. Amorphous Silicon carbide (a-SiC), a robust material that is corrosion resistant, has emerged as an alternative encapsulation layer for implantable devices. We systematically examined the impact of a-SiC coating on Si probes by immunohistochemical characterization of key markers implicated in tissue-device response. After implantation, we performed device capture immunohistochemical labeling of neurons, astrocytes, and activated microglia/macrophages after 4 and 8 weeks of implantation. Neuron loss and microglia activation were similar between Si and a-SiC coated probes, while tissue implanted with a-SiC displayed a reduction in astrocytes adjacent to the probe. These results suggest that a-SiC has a similar biocompatibility profile as Si, and may be suitable for implantable MEA applications as a hermetic coating to prevent material degradation.

  4. Tailoring the Mechanical Properties of High-Aspect-Ratio Carbon Nanotube Arrays using Amorphous Silicon Carbide Coatings

    NARCIS (Netherlands)

    Poelma, R.H.; Morana, B.; Vollebregt, S.; Schlangen, H.E.J.G.; Van Zeijl, H.W.; Fan, X.; Zhang, G.Q.

    2014-01-01

    The porous nature of carbon nanotube (CNT) arrays allows for the unique opportunity to tailor their mechanical response by the infiltration and deposition of nanoscale conformal coatings. Here, we fabricate novel photo-lithographically defined CNT pillars that are conformally coated with amorphous s

  5. Tailoring the Mechanical Properties of High-Aspect-Ratio Carbon Nanotube Arrays using Amorphous Silicon Carbide Coatings

    NARCIS (Netherlands)

    Poelma, R.H.; Morana, B.; Vollebregt, S.; Schlangen, H.E.J.G.; Van Zeijl, H.W.; Fan, X.; Zhang, G.Q.

    2014-01-01

    The porous nature of carbon nanotube (CNT) arrays allows for the unique opportunity to tailor their mechanical response by the infiltration and deposition of nanoscale conformal coatings. Here, we fabricate novel photo-lithographically defined CNT pillars that are conformally coated with amorphous

  6. The effect of amorphous silicon surface hydrogenation on morphology, wettability and its implication on the adsorption of proteins

    Energy Technology Data Exchange (ETDEWEB)

    Filali, Larbi, E-mail: larbifilali5@gmail.com [Laboratoire de Physique des Couches Minces et Matériaux pour l' Electronique, Université d' Oran 1, Ahmed Ben Bella, BP 1524, El M' naouar 31100 Oran (Algeria); Brahmi, Yamina; Sib, Jamal Dine [Laboratoire de Physique des Couches Minces et Matériaux pour l' Electronique, Université d' Oran 1, Ahmed Ben Bella, BP 1524, El M' naouar 31100 Oran (Algeria); Bouhekka, Ahmed [Laboratoire de Physique des Couches Minces et Matériaux pour l' Electronique, Université d' Oran 1, Ahmed Ben Bella, BP 1524, El M' naouar 31100 Oran (Algeria); Département de Physique, Université Hassiba Ben Bouali, 02000 Chlef (Algeria); Benlakehal, Djamel; Bouizem, Yahya; Kebab, Aissa; Chahed, Larbi [Laboratoire de Physique des Couches Minces et Matériaux pour l' Electronique, Université d' Oran 1, Ahmed Ben Bella, BP 1524, El M' naouar 31100 Oran (Algeria)

    2016-10-30

    Highlights: • Hydrogenation of the surfaces had the effect of reducing the roughness by way of shadow etching. • Roughness was the driving factor affecting the wettability of the hydrogenated surfaces. • Bovine Serum Albumin proteins favored the surfaces with highest hydrogen content. • Surface modification induced secondary structure change of adsorbed proteins. - Abstract: We study the effect of amorphous silicon (a-Si) surface hydrogenation on Bovine Serum Albumin (BSA) adsorption. A set of (a-Si) films was prepared by radio frequency magnetron sputtering (RFMS) and after deposition; they were treated in molecular hydrogen ambient at different pressures (1–3 Pa). Fourier transform infrared attenuated total reflection (FTIR-ATR) spectroscopy and spectroscopic ellipsometry (SE) were used to study the hydrogenation effect and BSA adsorption. Atomic force microscopy (AFM) was used to evaluate morphological changes caused by hydrogenation. The wettability of the films was measured using contact angle measurement, and in the case of the hydrogenated surfaces, it was found to be driven by surface roughness. FTIR-ATR spectroscopy and SE measurements show that proteins had the strongest affinity toward the surfaces with the highest hydrogen content and their secondary structure was affected by a significant decrease of the α-helix component (-27%) compared with the proteins adsorbed on the un-treated surface, which had a predominantly α-helix (45%) structure. The adsorbed protein layer was found to be densely packed with a large thickness (30.9 nm) on the hydrogen-rich surfaces. The most important result is that the surface hydrogen content was the dominant factor, compared to wettability and morphology, for protein adsorption.

  7. Hydrogen plasma treatment of silicon dioxide for improved silane deposition.

    Science.gov (United States)

    Gupta, Vipul; Madaan, Nitesh; Jensen, David S; Kunzler, Shawn C; Linford, Matthew R

    2013-03-19

    We describe a method for plasma cleaning silicon surfaces in a commercial tool that removes adventitious organic contamination and enhances silane deposition. As shown by wetting, ellipsometry, and XPS, hydrogen, oxygen, and argon plasmas effectively clean Si/SiO2 surfaces. However, only hydrogen plasmas appear to enhance subsequent low-pressure chemical vapor deposition of silanes. Chemical differences between the surfaces were confirmed via (i) deposition of two different silanes: octyldimethylmethoxysilane and butyldimethylmethoxysilane, as evidenced by spectroscopic ellipsometry and wetting, and (ii) a principal components analysis (PCA) of TOF-SIMS data taken from the different plasma-treated surfaces. AFM shows no increase in surface roughness after H2 or O2 plasma treatment of Si/SiO2. The effects of surface treatment with H2/O2 plasmas in different gas ratios, which should allow greater control of surface chemistry, and the duration of the H2 plasma (complete surface treatment appeared to take place quickly) are also presented. We believe that this work is significant because of the importance of silanes as surface functionalization reagents, and in particular because of the increasing importance of gas phase silane deposition.

  8. High deposition rate nanocrystalline silicon with enhanced homogeneity

    Energy Technology Data Exchange (ETDEWEB)

    Verkerk, Arjan; Rath, Jatindra K.; Schropp, Ruud [Section Nanophotonics-Physics of Devices, Debye Institute for Nanomaterials Science, Faculty of Science, Utrecht University, P.O. Box 80000, 3508 TA Utrecht (Netherlands)

    2010-03-15

    High rate growth of hydrogenated nanocrystalline silicon (nc-Si:H) brings additional challenges for the homogeneity in the growth direction, since the start-up effects affect a larger portion of the film, and the very high degree of depletion increases the influence of back diffusion from the inactive region into the plasma zone. It was calculated that back diffusion plays a role in the regime for high deposition rate (4.5 nm/s) via the residence time for particles in the plasma and the corresponding diffusion length for silane from outside the plasma. The stabilization time for back diffusion was derived and found to be on the order of tens of seconds. Experiment showed that the incubation layer for nc-Si:H is very thick in films deposited at a high rate compared to films deposited in a regime of lower deposition rate. The use of a hydrogen plasma start greatly reduced this incubation layer. Further control of the crystalline fraction could be achieved via slight reduction of the degree of depletion via the silane flow. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  9. High deposition rate processes for the fabrication of microcrystalline silicon thin films

    Energy Technology Data Exchange (ETDEWEB)

    Michard, S. [Institute of Energy and Climate Research 5 - Photovoltaik, Forschungszentrum Jülich, 52425 Jülich (Germany); Meier, M., E-mail: ma.meier@fz-juelich.de [Institute of Energy and Climate Research 5 - Photovoltaik, Forschungszentrum Jülich, 52425 Jülich (Germany); Grootoonk, B.; Astakhov, O.; Gordijn, A.; Finger, F. [Institute of Energy and Climate Research 5 - Photovoltaik, Forschungszentrum Jülich, 52425 Jülich (Germany)

    2013-05-15

    The increase of deposition rate of microcrystalline silicon absorber layers is an essential point for cost reduction in the mass production of thin-film silicon solar cells. In this work we explored a broad range of plasma enhanced chemical vapor deposition (PECVD) parameters in order to increase the deposition rate of intrinsic microcrystalline silicon layers keeping the industrial relevant material quality standards. We combined plasma excitation frequencies in the VHF band with the high pressure high power depletion regime using new deposition facilities and achieved deposition rates as high as 2.8 nm/s. The material quality evaluated from photosensitivity and electron spin resonance measurements is similar to standard microcrystalline silicon deposited at low growth rates. The influence of the deposition power and the deposition pressure on the electrical and structural film properties was investigated.

  10. Characterization of amorphous and nanocomposite Nb–Si–C thin films deposited by DC magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Nedfors, Nils, E-mail: nils.nedfors@kemi.uu.se [Department of Chemistry, The Ångström Laboratory, Uppsala University, SE-751 21 Uppsala (Sweden); Tengstrand, Olof [Thin Film Physics Division, Department of Physics, Chemistry and Biology (IFM), Linköping University, SE-581 83 Linköping (Sweden); Flink, Axel [Thin Film Physics Division, Department of Physics, Chemistry and Biology (IFM), Linköping University, SE-581 83 Linköping (Sweden); Impact Coatings AB, Westmansgatan 29, SE-582-16 Linköping (Sweden); Eklund, Per; Hultman, Lars [Thin Film Physics Division, Department of Physics, Chemistry and Biology (IFM), Linköping University, SE-581 83 Linköping (Sweden); Jansson, Ulf [Department of Chemistry, The Ångström Laboratory, Uppsala University, SE-751 21 Uppsala (Sweden)

    2013-10-31

    Two series of Nb–Si–C thin films of different composition have been deposited using DC magnetron sputtering. In the first series the carbon content was kept at about 55 at.% while the Si/Nb ratio was varied and in the second series the C/Nb ratio was varied instead while the Si content was kept at about 45 at.%. The microstructure is strongly dependent on Si content and Nb–Si–C films containing more than 25 at.% Si exhibit an amorphous structure as determined by X-ray diffraction. Transmission electron microscopy, however, induces crystallisation during analysis, thus obstructing a more detailed analysis of the amorphous structure. X-ray photo-electron spectroscopy suggests that the amorphous films consist of a mixture of chemical bonds such as Nb–Si, Nb–C, and Si–C. The addition of Si results in a hardness decrease from 22 GPa for the binary Nb–C film to 18 – 19 GPa for the Si-containing films, while film resistivity increases from 211 μΩcm to 3215 μΩcm. Comparison with recently published results on DC magnetron sputtered Zr–Si–C films, deposited in the same system using the same Ar-plasma pressure, bias, and a slightly lower substrate temperature (300 °C instead of 350 °C), shows that hardness is primarily dependent on the amount of Si–C bonds rather than type of transition metal. The reduced elastic modulus on the other hand shows a dependency on the type of transition metal for the films. These trends for the mechanical properties suggest that high wear resistant (high H/E and H{sup 3}/E{sup 2} ratio) Me–Si–C films can be achieved by appropriate choice of film composition and transition metal. - Highlights: • Si reduces crystallinity, amorphous structure for films containing > 25 at.% Si. • Electron beam induced crystallization during transmission electron microscopy. • Hardness and resistivity are primarily dependent on the relative amount of C–Si bonds.

  11. atomic layer deposition of amorphous niobium carbide-based thin film superconductors.

    Energy Technology Data Exchange (ETDEWEB)

    Prolier, T.; Klug, J. A.; Elam, J. W.; Claus, H.; Becker, N. G.; Pellin, M. J. (Materials Science Division)

    2011-01-01

    Niobium carbide thin films were synthesized by atomic layer deposition (ALD) using trimethylaluminum (TMA), NbF{sub 5}, and NbCl{sub 5} precursors. In situ quartz crystal microbalance (QCM) measurements performed at 200 and 290 C revealed controlled, linear deposition with a high growth rate of 5.7 and 4.5 {angstrom}/cycle, respectively. The chemical composition, growth rate, structure, and electronic properties of the films were studied over the deposition temperature range 125-350 C. Varying amounts of impurities, including amorphous carbon (a-C), AlF{sub 3}, NbF{sub x}, and NbCl{sub x}, were found in all samples. A strong growth temperature dependence of film composition, growth rate, and room temperature DC resistivity was observed. Increasing film density, decreasing total impurity concentration, and decreasing resistivity were observed as a function of increasing deposition temperature for films grown with either NbF{sub 5} or NbCl{sub 5}. Superconducting quantum interference device (SQUID) magnetometry measurements down to 1.2 K revealed a superconducting transition at T{sub c} = 1.8 K in a 75 nm thick film grown at 350 C with TMA and NbF{sub 5}. The superconducting critical temperature could be increased up to 3.8 K with additional use of NH{sub 3} during ALD film growth.

  12. Atomic layer deposition of amorphous niobium carbide-based thin film superconductors.

    Energy Technology Data Exchange (ETDEWEB)

    Klug, J. A.; Prolier, T.; Elam, J. W.; Becker, N. G.; Pellin, M. J. (Energy Systems); ( HEP); ( MSD); (Illinois Inst. Tech.)

    2011-01-01

    Niobium carbide thin films were synthesized by atomic layer deposition (ALD) using trimethylaluminum (TMA), NbF{sub 5}, and NbCl{sub 5} precursors. In situ quartz crystal microbalance (QCM) measurements performed at 200 and 290 C revealed controlled, linear deposition with a high growth rate of 5.7 and 4.5 {angstrom}/cycle, respectively. The chemical composition, growth rate, structure, and electronic properties of the films were studied over the deposition temperature range 125-350 C. Varying amounts of impurities, including amorphous carbon (a-C), AlF{sub 3}, NbF{sub x}, and NbCl{sub x}, were found in all samples. A strong growth temperature dependence of film composition, growth rate, and room temperature DC resistivity was observed. Increasing film density, decreasing total impurity concentration, and decreasing resistivity were observed as a function of increasing deposition temperature for films grown with either NbF{sub 5} or NbCl{sub 5}. Superconducting quantum interference device (SQUID) magnetometry measurements down to 1.2 K revealed a superconducting transition at T{sub c} = 1.8 K in a 75 nm thick film grown at 350 C with TMA and NbF{sub 5}. The superconducting critical temperature could be increased up to 3.8 K with additional use of NH{sub 3} during ALD film growth.

  13. Temperature dependence of the photoluminescence from ensembles of amorphous silicon nanoparticles with various average sizes.

    Science.gov (United States)

    Brüggemann, R; Nesheva, D; Meier, S; Bineva, I

    2011-02-01

    Amorphous SiO(x) thin films with three different oxygen contents (x = 1.3, 1.5, and 1.7) have been deposited by thermal evaporation of SiO in vacuum. Partial phase separation in the films has been induced by annealing at 773 or 973 K in argon for 60 and 120 min and thus Si-SiO(x) composite films have been prepared containing amorphous Si nanoparticles of various sizes (Photoluminescence from the films has been measured in the temperature range 20-296 K. The single Gauss band observed in the photoluminescence spectra of the samples with x = 1.3 and centered in the range 1.55-1.75 eV has been related to radiative recombination in Si nanoparticles. Two bands, a red-orange one (related to radiative recombination in Si nanoparticles) and a green band peaked at approximately 2.3 eV (related to radiative recombination via defects) have been resolved in the photoluminescence spectra of the films with x = 1.5 and 1.7. The band in the spectra of the x = 1.3 samples has shown a relative strong thermal quenching but it is significantly weaker than the photoluminescence quenching in bulk a-Si. Besides, the higher the initial oxygen content, the weaker is the photoluminescence thermal quenching. These observations have been related to carrier confinement which is stronger in smaller nanoparticles. The thermally induced photoluminescence decrease with increasing temperature in the samples with x = 1.3 obeys the relation that is characteristic for bulk a-Si:H while the photoluminescence decrease in x = 1.5 and 1.7 samples is of Arrhenius type. We suggest that in nanoparticles larger than 2 nm recombination via band tail states is the dominating photoluminescence mechanism while in smaller nanoparticles exciton-like recombination dominates.

  14. Band engineering of amorphous silicon ruthenium thin film and its near-infrared absorption enhancement combined with nano-holes pattern on back surface of silicon substrate

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Anran; Zhong, Hao [State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054 (China); Li, Wei, E-mail: wli@uestc.edu.cn [State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054 (China); Gu, Deen; Jiang, Xiangdong [School of Optoelectronic Information, University of Electronic Science and Technology of China, Chengdu 610054 (China); Jiang, Yadong [State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054 (China)

    2016-10-30

    Highlights: • The increase of Ru concentration leads to a narrower bandgap of a-Si{sub 1-x}Ru{sub x} thin film. • The absorption coefficient of a-Si{sub 1-x}Ru{sub x} is higher than that of SiGe. • A double-layer absorber comprising of a-Si{sub 1-x}Ru{sub x} film and Si nano-holes layer is achieved. - Abstract: Silicon is widely used in semiconductor industry but has poor performance in near-infrared photoelectronic devices because of its bandgap limit. In this study, a narrow bandgap silicon rich semiconductor is achieved by introducing ruthenium (Ru) into amorphous silicon (a-Si) to form amorphous silicon ruthenium (a-Si{sub 1-x}Ru{sub x}) thin films through co-sputtering. The increase of Ru concentration leads to an enhancement of light absorption and a narrower bandgap. Meanwhile, a specific light trapping technique is employed to realize high absorption of a-Si{sub 1-x}Ru{sub x} thin film in a finite thickness to avoid unnecessary carrier recombination. A double-layer absorber comprising of a-Si{sub 1-x}Ru{sub x} thin film and silicon random nano-holes layer is formed on the back surface of silicon substrates, and significantly improves near-infrared absorption while the leaky light intensity is less than 5%. This novel absorber, combining narrow bandgap thin film with light trapping structure, may have a potential application in near-infrared photoelectronic devices.

  15. Stress control of silicon nitride films deposited by plasma enhanced chemical vapor deposition

    Science.gov (United States)

    Li, Dong-ling; Feng, Xiao-fei; Wen, Zhi-yu; Shang, Zheng-guo; She, Yin

    2016-07-01

    Stress controllable silicon nitride (SiNx) films deposited by plasma enhanced chemical vapor deposition (PECVD) are reported. Low stress SiNx films were deposited in both high frequency (HF) mode and dual frequency (HF/LF) mode. By optimizing process parameters, stress free (-0.27 MPa) SiNx films were obtained with the deposition rate of 45.5 nm/min and the refractive index of 2.06. Furthermore, at HF/LF mode, the stress is significantly influenced by LF ratio and LF power, and can be controlled to be 10 MPa with the LF ratio of 17% and LF power of 150 W. However, LF power has a little effect on the deposition rate due to the interaction between HF power and LF power. The deposited SiNx films have good mechanical and optical properties, low deposition temperature and controllable stress, and can be widely used in integrated circuit (IC), micro-electro-mechanical systems (MEMS) and bio-MEMS.

  16. Classical molecular dynamics and quantum abs-initio studies on lithium-intercalation in interconnected hollow spherical nano-spheres of amorphous Silicon

    DEFF Research Database (Denmark)

    Bhowmik, Arghya; Malik, R.; Prakash, S.;

    2016-01-01

    interconnected hollow nano-spheres of amorphous silicon have been found to exhibit high cyclability. The absence of fracture upon lithiation and the high cyclability has been attributed to reduction in intercalation stress due to hollow spherical geometry of the silicon nano-particles. The present work argues...

  17. Optical bandgap of ultra-thin amorphous silicon films deposited on crystalline silicon by PECVD

    National Research Council Canada - National Science Library

    Abdulraheem, Yaser; Gordon, Ivan; Bearda, Twan; Meddeb, Hosny; Poortmans, Jozef

    2014-01-01

    ...) in a wavelength range from 250 nm to 850 nm. The data was fitted to a Tauc-Lorentz optical model and the fitting parameters were extracted and used to compute the refractive index, extinction coefficient and optical bandgap...

  18. Enhancement of R6G fluorescence by N-type porous silicon deposited with gold nanoparticles

    Science.gov (United States)

    Mo, Jia-qing; Jiang, Jing; Zhai, Zhen-gang; Shi, Fu-gui; Jia, Zhen-hong

    2017-01-01

    By the electrochemical anodization method, we achieve the single-layer macroporous silicon on the N-type silicon, and prepare gold nanoparticles with sodium citrate reduction method. Through injecting the gold nanoparticles into the porous silicon by immersion, the fluorescence quenching mechanism of porous silicon influenced by gold nanoparticles is analyzed. Then the macroporous silicon deposited with gold nanoparticles is utilized to enhance the fluorescence of rhodamine 6G (R6G). It is found that when the macroporous silicon is deposited with gold nanoparticles for 6 h, the maximum fluorescence enhancement of R6G (about ten times) can be realized. The N-type porous silicon deposited with gold nanoparticles can be an excellent substrate for fluorescence detection.

  19. Low-temperature atomic layer deposition of MoO{sub x} for silicon heterojunction solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Macco, B.; Vos, M.F.J.; Thissen, N.F.W.; Bol, A.A. [Department of Applied Physics, Eindhoven University of Technology, Eindhoven (Netherlands); Kessels, W.M.M. [Department of Applied Physics, Eindhoven University of Technology, Eindhoven (Netherlands); Solliance Solar Research, Eindhoven (Netherlands)

    2015-07-15

    The preparation of high-quality molybdenum oxide (MoO{sub x}) is demonstrated by plasma-enhanced atomic layer deposition (ALD) at substrate temperatures down to 50 C. The films are amorphous, slightly substoichiometric with respect to MoO{sub 3}, and free of other elements apart from hydrogen (<11 at%). The films have a high transparency in the visible region and their compatibility with a-Si:H passivation schemes is demonstrated. It is discussed that these aspects, in conjunction with the low processing temperature and the ability to deposit very thin conformal films, make this ALD process promising for the future application of MoO{sub x} in hole-selective contacts for silicon heterojunction solar cells. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  20. Microcrystalline silicon from very high frequency plasma deposition and hot-wire CVD for ``micromorph`` tandem solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Brummack, H.; Brueggemann, R.; Wanka, H.N.; Hierzenberger, A.; Schubert, M.B. [Univ. Stuttgart (Germany). Inst. fuer Physikalische Elektronik

    1997-12-31

    The authors have grown microcrystalline silicon from a glow discharge at very high frequencies of 55 MHz and 170 MHz with high hydrogen dilution, and also, at more than 10 times higher growth rates, similar films by hot-wire chemical vapor deposition. Both kinds of materials have extensively been characterized and compared in terms of structural, optical and electronic properties, which greatly improve by deposition in a multi- instead of a single-chamber system. Incorporation of these different materials into pin solar cells results in open circuit voltages of about 400 mV as long as the doped layers are microcrystalline and rise to more than 870 mV if amorphous p- and n-layers are used. Quantum efficiencies and fill factors are still poor but leave room for further improvement, as clearly demonstrated by a remarkable reverse bias quantum efficiency gain.