WorldWideScience

Sample records for deposit formation characteristics

  1. Seamounts - characteristics, formation, mineral deposits and biodiversity

    Digital Repository Service at National Institute of Oceanography (India)

    Iyer, S.D.; Mehta, C.M.; Das, P.; Kalangutkar, N.G.

    t a , V o l . 1 0 , N º 3 , S e p t e m b e r 2 0 1 2 , 2 9 5 - 3 0 8 D O I : 1 0 . 1 3 4 4 / 1 0 5 . 0 0 0 0 0 1 7 5 8 A v a i l a b l e o n l i n e a t w w w. g e o l o g i c a - a c t a . c o m Seamounts – characteristics, formation... and phenomena such as seismicity, hydrothermal deposits, biodiversity and possibly atmospheric oxygen (Iyer, 2009). Review works pertaining to seamounts independently concern the geological, biological or physical 1 2 1 1 S . D . I Y E R e t a l . G e o...

  2. Evolution of depositional system and uraniferous characteristics of Damoguaihe formation in Kelulun sag

    International Nuclear Information System (INIS)

    Zhang Zhijie; Yu Xinghe; Zhang Chuanheng; Chen Zhankun

    2005-01-01

    Damoguaihe Formation, which is mainly of alluvial fan, fan delta and lacustrine depositional systems, is the target horizon for the prospecting of sandstone-type uranium deposit in Kelulun sag, Hailaer basin. According to the depositional environment and sediment characteristics, alluvial fan facies is subdivided into upper fan, middle fan and lower fan subfacies; the fan delta facies is subadivided into upper fan delta plain, lower fan delta plain, fan delta front and fan prodelta subfacies. At the northern edge of the sag occurred one fan delta and one alluvial fan, which can mutually transform one into another. The terrigenous coarse-grained clastic deposits in the study area provide favorable condition for the concentration of uranium and especially the main channels and distributary channels on the fan delta and alluvial fan are the most favorable sites for uranium concentration. (authors)

  3. Spectral characteristics of banded iron formations in Singhbhum craton, eastern India: Implications for hematite deposits on Mars

    Directory of Open Access Journals (Sweden)

    Mahima Singh

    2016-11-01

    Full Text Available Banded iron formations (BIFs are major rock units having hematite layers intermittent with silica rich layers and formed by sedimentary processes during late Archean to mid Proterozoic time. In terrestrial environment, hematite deposits are mainly found associated with banded iron formations. The BIFs in Lake Superior (Canada and Carajas (Brazil have been studied by planetary scientists to trace the evolution of hematite deposits on Mars. Hematite deposits are extensively identified in Meridiani region on Mars. Many hypotheses have been proposed to decipher the mechanism for the formation of these deposits. On the basis of geomorphological and mineralogical studies, aqueous environment of deposition is found to be the most supportive mechanism for its secondary iron rich deposits. In the present study, we examined the spectral characteristics of banded iron formations of Joda and Daitari located in Singhbhum craton in eastern India to check its potentiality as an analog to the aqueous/marine environment on Mars. The prominent banding feature of banded iron formations is in the range of few millimeters to few centimeters in thickness. Fe rich bands are darker (gray in color compared to the light reddish jaspilitic chert bands. Thin quartz veins (<4 mm are occasionally observed in the hand-specimens of banded iron formations. Spectral investigations have been conducted in VIS/NIR region of electromagnetic spectrum in the laboratory conditions. Optimum absorption bands identified include 0.65, 0.86, 1.4 and 1.9 μm, in which 0.56 and 0.86 μm absorption bands are due to ferric iron and 1.4 and 1.9 μm bands are due to OH/H2O. To validate the mineralogical results obtained from VIS/NIR spectral radiometry, laser Raman and Fourier transform infrared spectroscopic techniques were utilized and the results were found to be similar. Goethite-hematite association in banded iron formation in Singhbhum craton suggests dehydration activity, which has

  4. Catahoula formation of the Texas coastal plain: origin, geochemical evolution, and characteristics of uranium deposits

    International Nuclear Information System (INIS)

    Galloway, W.E.; Kaiser, W.R.

    1979-01-01

    Uranium was released from volcanic glass deposited within the Catahoula through early pedogenic and diagenetic processes. Pedogenesis was the most efficient process for mobilizing uranium. Original uranium content in fresh Catahoula glass is estimated to have averaged at least 10 ppM; about 5 ppM was mobilized after deposition and made available for migration. Uranium was transported predominantly as uranyl dicarbonate ion. Chlorinity mapping reveals modern ground-water flow patterns. Six utranium deposits representative of the ores were studied. Uranium-bearing meteoric waters were reduced by pre-ore stage pyrite formed by extrinsically introduced fault-leaked sulfide or intrinsically by organic matter. Uranium was concentrated in part by adsorption on Ca-montmorillonite cutans, amorphous TiO 2 , and/or organic matter followed by uranyl reduction to U 4+ in amorphous uranous silicates. Clinoptilolite is not correlative with mineralization. Calcite is pervasive throughout host sands but shows no relationship to uranium mineralization. Presence of marcasite and uranium together at the alteration front strongly supports an acid pH during Catahoula mineralization. Maximum adsorption and minimum solubility of uranium occur at pH 6 in carbonate-rich waters. Log activity ratios of individual waters supersaturated with respect to montmorillonite, taken from montmorillonite-clinoptilolite activity diagrams, show positive correlation with uranium mineralization. High Ca 2+ , Mg 2+ , Al(OH) 4 - , and H + activities promote the formation of montmorillonite relative to clinoptilolite. High saturation ratios for montmorillonite show fair correlation with mineralization. The mineral-solution equilibria approach is a potential method of geochemical exploration. 56 figures, 8 tables

  5. Sedimentological characteristics and depositional processes of sediment gravity flows in rift basins: The Palaeogene Dongying and Shahejie formations, Bohai Bay Basin, China

    Science.gov (United States)

    Liu, Lei; Chen, Hongde; Zhong, Yijiang; Wang, Jun; Xu, Changgui; Chen, Anqing; Du, Xiaofeng

    2017-10-01

    Sediment gravity flow deposits are common, particularly in sandy formations, but their origin has been a matter of debate and there is no consensus about the classification of such deposits. However, sediment gravity flow sandstones are economically important and have the potential to meet a growing demand in oil and gas exploration, so there is a drive to better understand them. This study focuses on sediment gravity flow deposits identified from well cores in Palaeogene deposits from the Liaodong Bay Depression in Bohai Bay Basin, China. We classify the sediment gravity flow deposits into eight lithofacies using lithological characteristics, grain size, and sedimentary structures, and interpret the associated depositional processes. Based on the scale, spatial distribution, and contact relationships of sediment gravity flow deposits, we defined six types of lithofacies associations (LAs) that reflect transformation processes and depositional morphology: LA1 (unconfined proximal breccia deposits), LA2 (confined channel deposits), LA3 (braided-channel lobe deposits), LA4 (unconfined lobe deposits), LA5 (distal sheet deposits), and LA6 (non-channelized sheet deposits). Finally, we established three depositional models that reflect the sedimentological characteristics and depositional processes of sediment gravity flow deposits: (1) slope-apron gravel-rich depositional model, which involves cohesive debris flows deposited as LA1 and dilute turbidity currents deposited as LA5; (2) non-channelized surge-like turbidity current depositional model, which mainly comprises sandy slumping, suspended load dominated turbidity currents, and dilute turbidity currents deposited as LA5 and LA6; and (3) channelized subaqueous-fan depositional model, which consists of non-cohesive bedload dominated turbidity currents, suspended load dominated turbidity currents, and dilute turbidity currents deposited as LA2-LA5, originating from sustained extrabasinal turbidity currents

  6. Geological factors of deposit formation

    International Nuclear Information System (INIS)

    Grushevoj, G.V.

    1980-01-01

    Geologic factors of hydrogenic uranium deposit formation are considered. Structural, formation and lithological-facies factors of deposit formation, connected with zones of stratal oxidation, are characterized. Peculiarities of deposit localization, connected with orogenic structures of Mesozoic and lenozoic age, are described. It is noted that deposits of anagenous group are widely spread in Paleozoic formations, infiltration uranium deposits are localized mainly in Cenozoic sediments, while uranium mineralization both anagenous and infiltration groups are widely developed in Mesozoic sediments. Anagenous deposits were formed in non-oxygen situation, their age varies from 200 to 55 mln years. Infiltration deposit formation is determined by asymmetric oxidation zonation, their age varies from 10 - 40 mln years to dozens of thousand years [ru

  7. Characteristics of depositional environment and evolution of Upper Cretaceous Mishrif Formation, Halfaya Oil field, Iraq based on sedimentary microfacies analysis

    Science.gov (United States)

    Zhong, Yuan; Zhou, Lu; Tan, Xiucheng; Guo, Rui; Zhao, Limin; Li, Fei; Jin, Zhimin; Chen, Yantao

    2018-04-01

    As one of the most important carbonate targets in the Middle East, Upper Cretaceous Mishrif Formation has been highlighted for a long time. Although consensus has been reached on the overall sedimentary background, disputes still exist in understanding the sedimentary environment changes among sub-regions due to relatively limited research, rare outcrop, and incomplete drilled core, which hinders the analysis on sedimentary environment and thus the horizontal and vertical correlation. In this study, taking the Halfaya Oil Field as an example, the sedimentary microfacies analysis method was introduced to comprehensively characterize the cored interval of Mishrif Formation, including Single Layers MC1-1 to MA2. A total of 11 sedimentary microfacies are identified through system identification of sedimentary microfacies and environmental analysis, with reference to the standard microfacies classification in the rimmed carbonate platform. Then three kinds of environments are identified through microfacies assemblage analysis, namely restricted platform, open platform, and platform margin. Systematic analyses indicate that the deposits are mainly developed in the open platform and platform margin. Meanwhile, rock-electricity interpretation model is established according to the electricity response to cored intervals, and is then employed to interpret the uncored intervals, which finally helps build the sedimentary evolution pattern through horizontal and vertical correlation. It is proposed that the Single Layers MC1-1 to MB2-3 were deposited in the open platform featured by low water level, including sub-environments of low-energy shoal within platform and inter-shoal sea; Single Layers MB2-2 to MB1-2B were deposited in the open platform and platform margin, including sub-environments of high-energy shoal on the platform margin, low-energy shoal within platform, inter-shoal sea, and open sea; and Single Layers MB1-2A to MA2 were again deposited in the open platform

  8. Reservoir characteristics of middle pliocene deposits and their role in the formation of oil gas deposits of Azerbaijan shelf of the south Caspian

    International Nuclear Information System (INIS)

    Veliyeva, V.A.; Kabulova, A. Ya.

    2002-01-01

    Full text :Lithology-stratigraphical peculiarities of deposits of lower stage of productive series (P S) of Middle Pliocene their reservoir properties, correlation of individual horizons within the uplifts of the south Caspian was studied. Analysis of arenosity of lower stage of PS was studied. Azerbaijan shelf of South Caspian is located within depression zone of sedimentation basin generally, of Pliocene and post-Pliocene period of time, when sedimentation was mostly intensive and occurred in conditions of more deep sea basin. Azerbaijan shelf of south Caspian covers mainly two oil-gasp-bearing region as Absheron archipelago (north, north-eastern part of region) and Baku archipelago (southern part). Analysis of arenosity along the areas of the studied region showed, that in south-eastern direction and on the south eastern subsidence of each fold, as well as on the north-eastern wing their sand percent considerably increase whereas reservoir properties of sandy interbeds are improved

  9. Formation and types of uranium deposits, uranium resources

    International Nuclear Information System (INIS)

    Dahlkamp, F.J.

    1975-01-01

    To begin with, the formation and origin of uranium deposits is described, and uranium deposits are classified into four basic categories. Of these, those that are of economic interest are described in detail with regard to their characteristic geological features, and their geographic distribution in the western world is outlined. The major facts and data regarding the geological and geochronological classification of these deposits and their size are given in tables and easy-to-interpret diagrams. (RB) [de

  10. Sedimentology and Reservoir Characteristics of Early Cretaceous Fluvio-Deltaic and Lacustrine Deposits, Upper Abu Gabra Formation, Sufyan Sub-basin, Muglad Rift Basin, Sudan

    Science.gov (United States)

    Yassin, Mohamed; Abdullatif, Osman; Hariri, Mustafa

    2017-04-01

    Sufyan Sub-basin is an East-West trending Sub-basin located in the northwestern part of the Muglad Basin (Sudan), in the eastern extension of the West and Central Africa Rift System (WCARS). The Early Cretaceous Abu Gabra Formation considered as the main source rock in the Muglad Basin. In Sufyan Sub-basin the Early Cretaceous Upper Abu Gabra Formation is the main oil-producing reservoir. It is dominated by sandstone and shales deposited in fluvio-deltaic and lacustrine environment during the first rift cycle in the basin. Depositional and post-depositional processes highly influenced the reservoir quality and architecture. This study investigates different scales of reservoir heterogeneities from macro to micro scale. Subsurface facies analysis was analyzed based on the description of six conventional cores from two wells. Approaches include well log analysis, thin sections and scanning electron microscope (SEM) investigations, grain-size, and X-ray diffraction (XRD) analysis of the Abu Gabra sandstone. The cores and well logs analyses revealed six lithofacies representing fluvio-deltaic and lacustrine depositional environment. The sandstone is medium to coarse-grained, poorly to moderately sorted and sub-angular to subrounded, Sub-feldspathic arenite to quartz arenite. On macro-scale, reservoir quality varies within Abu Gabra reservoir where it shows progressive coarsening upward tendencies with different degrees of connectivity. The upper part of the reservoir showed well connected and amalgamated sandstone bodies, the middle to lower parts, however, have moderate to low sandstone bodies' connectivity and amalgamation. On micro-scale, sandstone reservoir quality is directly affected by textures and diagenesis.The XRD and SEM analyses show that kaolinite and chlorite clay are the common clay minerals in the studied samples. Clay matrix and quartz overgrowth have significantly reduced the reservoir porosity and permeability, while the dissolution of feldspars

  11. Metallogenetic condition and mineralization characteristics of uranium deposit No.114

    International Nuclear Information System (INIS)

    Niu Lin; Ma Fei; Yang Wanjin

    1988-01-01

    Deposit No 114 is one of the typical carbonate-type uranium deposits, that are widely distributed in South China. In this paper formational environment of host rock, wall-rock alteration, sulfur, oxygen, carbon isotopes, mineralization temperatures, ore compsitions were studied. Based on the U-Pb isotopic research three mineralization stages in deposit No 114 were established, namely 104 Ma, 61 Ma and 11 Ma. It is suggested, that the deposit No 114 is a polygenetic deposit formed primarily by supergene leaching and hydrothermal reworked. The uranium deposit has multi-sources, the main uranium source of which is from the granite body situated nearby. According to metallogenetic characteristics the authors suggest the favourable geological exploration guides for this kind of ore deposits

  12. Microbial processes in banded iron formation deposition

    DEFF Research Database (Denmark)

    Posth, Nicole; Konhauser, Kurt; Kappler, Andreas

    2013-01-01

    , remains unresolved. Evidence of an anoxic Earth with only localized oxic areas until the Great Oxidation Event ca 2·45 to 2·32 Ga makes the investigation of O2-independent mechanisms for banded iron formation deposition relevant. Recent studies have explored the long-standing proposition that Archean......Banded iron formations have been studied for decades, particularly regarding their potential as archives of the Precambrian environment. In spite of this effort, the mechanism of their deposition and, specifically, the role that microbes played in the precipitation of banded iron formation minerals...... banded iron formations may have been formed, and diagenetically modified, by anaerobic microbial metabolisms. These efforts encompass a wide array of approaches including isotope, ecophysiological and phylogeny studies, molecular and mineral marker analysis, and sedimentological reconstructions. Herein...

  13. Formation, Sintering and Removal of Biomass Ash Deposits

    DEFF Research Database (Denmark)

    Laxminarayan, Yashasvi

    conditions in laboratory-scale setups. Deposit formation was simulated in an Entrained Flow Reactor, to investigate the effect of operating conditions and ash chemistry on the rate of deposit formation. Experiments were performed using model biomass fly ash, prepared from mixtures of K2Si4O9, KCl, K2SO4, Ca....... Moreover, biomass ash deposits may cause severe corrosion of boiler surfaces. Therefore, reducing deposit formation and timely deposit removal are essential for optimal boiler operation. The formation, sintering and removal of boiler deposits has been investigated in this PhD project, by simulating boiler...... temperature increased the sticking probability of the fly ash particles/deposit surface, thereby increasing the rate of deposit formation. However, increasing flue gas velocity resulted in a decrease in the deposit formation rate, due to increased particle rebound. Furthermore, it was observed...

  14. Mineralogical controls on the weathering characteristics of arid continental deposits of the Colorado Plateau

    OpenAIRE

    Tunheim, Ragnhild Johanne

    2015-01-01

    The Permian to Jurassic stratigraphy of the Colorado Plateau includes a number of units that were deposited under arid depositional conditions. These units each show distinctive weathering characteristics which cannot solely be attributed to variation in depositional environment or burial history. The stratigraphic units are the Permian Cutler Formation, the Triassic Chinle Formation, the Jurassic Wingate Sandstone, the Kayenta Formation, the Navajo Sandstone, the Slickrock Member and the Moa...

  15. Using the characteristics of the structure of the upper Frasnian salt bearing formation in prospecting for oil deposits in the Pripyat depression

    Energy Technology Data Exchange (ETDEWEB)

    Yeroshina, D.M.; Kislik, V.Z.; Sinichka, A.M.; Vysotskiy, E.A.

    1984-01-01

    The possibility is shown of using the structure of the upper Frasnian salt bearing formation to establish ancient depressions and uplifts. A gradual wedge out of the lower strata of rock salt towards the domes of the ancient uplifts occurs. It is recommended that several reflecting levels be built up in the base of the salt bearing formation to record the behavior of these strata.

  16. Characteristics of Wet Deposition in Japan

    Science.gov (United States)

    Iwasaki, A.; Arakaki, T.

    2017-12-01

    Acid deposition survey in Japan has started since 1991 by Japan Environmental Laboratories Association (JELA). The JELA has about 60 monitoring sites for wet deposition including remote, rural and urban area. The measured constituents of wet deposition are; precipitation, pH, electric conductivity, major Anions, and major Cations. From those data, we analyze spatial and temporal variations of wet deposition components in Japan. Among the 60 monitoring sites, 39 sampling sites were selected in this study, which have kept sampling continuously between 2003JFY and 2014JFY. All samples were collected by wet-only samplers. To analyze area characteristics, all the areas were divided into 6 regions; Northern part of Japan (NJ), Facing the Japan Sea (JS), Eastern part of Japan (EJ), Central part of Japan (CJ), Western part of Japan (WJ) and Southern West Islands (SW). NO3- and non-sea-salt-SO42- (nss-SO42-) are major components of rain acidification. Especially, between December and February (winter) the air mass from west affected the temporal variations of those acid components and the concentrations were higher in JS and WJ regions than those in other regions. Japanese ministry of the Environment reported that mixing ratio of NO2 in Japan has been less than 0.04ppm since 1976, and that of SO2 has been less than 0.02ppm since 1978. Their concentrations in Japan have remained flat or slowly decreased recently. However the temporal variations of NO3-/nss-SO42- ratio in winter in JS region were significantly increased on average at 2.2% y-1 from 2003JFY to 2014JFY. The results suggest that long-range transboundary air pollutants increased NO3- concentrations and NO3-/nss-SO42- ratio.

  17. Deterioration of the fuel injection parameters as a result of Common Rail injectors deposit formation

    Directory of Open Access Journals (Sweden)

    Stępień Zbigniew

    2017-01-01

    Full Text Available The article describes external and internal Common Rail injectors deposits formed in dynamometer engine simulation tests. It discussed not only the key reasons and factors influencing injector deposit formation but also the resulting way of fuel preparation and engine test approaches. The effects of external coking deposit as well as internal deposits two most common form types that is carboxylic soaps and organic amides on deterioration of the fuel injection parameters were assessed. The assessments covered both deposits impacts on quantitative and qualitative changes of the injectors diagnostic parameters and as a result on deterioration of the injector performance. Finally the comparisons between characteristic of dosage of one fuel injector before test and characteristics few injectors after engine tests of simulated deposit formation were made.

  18. Analysis on depositional system and prospect of sandstone-type uranium deposits of Bayanhua formation in Yilemen basin

    International Nuclear Information System (INIS)

    Sun Zexuan; Li Guoxin; He Fayang; Wei Yunjie

    2002-01-01

    Yilemen basin is a typical Mesozoic intra-mountain one. The author analyses characteristics of depositional system and the prospect of sandstone-type uranium deposit in the sedimentary cover of the Bayanhua Formation, Lower Cretaceous. Authors suggest that the conglomerate, sandstone-conglomerate and sandstone beds of braided stream and delta are favourable horizons for locating phreatic and interlayer oxidation zone sandstone-type uranium deposits, i.e. the northwestern side of Dalai uplifted zone, the Chagantaigebuqi narrow sag, and the southern area of Baolinbuqi

  19. Environment of deposition of the Awgu Formation (Late Cretaceous ...

    African Journals Online (AJOL)

    PROMOTING ACCESS TO AFRICAN RESEARCH ... The Awgu Formation is a linear NE-SW trending sedimentary deposit ... in the fine arenaceous facies, suggest a shallow marine depositional environment not exceeding 50 m water depth. ... Senegal (6); Sierra Leone (1); South Africa (96); South Sudan (1); Sudan (3) ...

  20. Depositional conditions of the coal-bearing Hirka Formation beneath ...

    Indian Academy of Sciences (India)

    This work focuses on the relationship between the coal deposition and explosive volcanism of the Miocene basin, NW central Anatolia, Turkey. The coal-bearing Hirka Formation was deposited over the Galatian Andesitic Complex and/or massive lagoonal environments during the Miocene. The investigated lignite is a high ...

  1. Diagnostic spectral characteristics of damouritization in granite type uranium deposit

    International Nuclear Information System (INIS)

    He Jianguo; Mao Yuxian; Li Jianzhong; Wang Changliang; Feng Mingyue; Rong Jiashu; Zhu Minqiang; Rao Minghui

    2008-01-01

    Spectral characteristics of different alteration type in uranium deposit are the prerequisite of selecting remote sensing spectral bands for uranium reconnaissance and exploration. It is also a basis for mapping alteration zone using imaging spectral data. Taking the No. 201 uranium deposit as example, the paper is focused on the spectral characteristics researching of damouritization in granite type uranium deposite. Through extracting diagnostic spectral feature of damourite and analyzing the reason causing absorption valley, it was found that spectral characteristics of damouritization in Chinese uranium deposit is different from that of illite in the spectral library published abroad. (authors)

  2. Diagnostic spectral characteristics of damouritization in granite type uranium deposit

    Energy Technology Data Exchange (ETDEWEB)

    Jianguo, He; Yuxian, Mao; Jianzhong, Li; Changliang, Wang; Mingyue, Feng; Jiashu, Rong [Beijing Research Inst. of Uranium Geology, Beijing (China); Minqiang, Zhu; Minghui, Rao [East China Univ. of Technology, Fuzhou (China)

    2008-07-15

    Spectral characteristics of different alteration type in uranium deposit are the prerequisite of selecting remote sensing spectral bands for uranium reconnaissance and exploration. It is also a basis for mapping alteration zone using imaging spectral data. Taking the No. 201 uranium deposit as example, the paper is focused on the spectral characteristics researching of damouritization in granite type uranium deposite. Through extracting diagnostic spectral feature of damourite and analyzing the reason causing absorption valley, it was found that spectral characteristics of damouritization in Chinese uranium deposit is different from that of illite in the spectral library published abroad. (authors)

  3. Landscape-geochemical factors of deposit formation

    International Nuclear Information System (INIS)

    Batulin, S.G.

    1980-01-01

    Effect of landscape-geochemical factors on hydrogenic formation of uranium ores is considered. The primary attention is paid to finding reasons for hydrogeochemical background increase in the regions of arid climate. Problems of uranium distribution in alluvial landscapes, hydrogeochemical regime of ground waters, reflecting the effect of waters of the zone of aeration are revealed. Chemical composition of porous solutions in the zone of aeration, as well as historical geochemindstry of landscape a its role from the view point of uranium solution formation in the arid zone are considered [ru

  4. Depositional characteristics of cretaceous cover in Xiangyangshan area of Heilongjiang province and analysis on prospect for sandstone hosted interlayer oxidation zone type uranium deposits

    International Nuclear Information System (INIS)

    Cai Yuqi; Li Shengxiang; Dong Wenming

    2003-01-01

    The depositional systems and characteristics of Cretaceous Cover depositional facies are discussed. In combination with logging curves in Xiangyangshan area, two depositional systems (namely, alluvial fan depositional system and alluvial plain depositional system) and five types of depositional facies are distinguished. Results of detailed research are given for each depositional facies in aspects of lithology, depositional structure, logging curve and grain size distribution pattern. Temporal and spatial distribution features of the depositional facies and the development features of interlayer oxidation zones of the second member of Quantou Formation are analyzed. Finally, conclusions on prospects for sandstone-hosted interlayer oxidation zone type uranium deposits in the study area are given in the aspect of depositional facies. (authors)

  5. Influence of Deposit Formation on Corrosion at a Straw Fired boiler

    DEFF Research Database (Denmark)

    Hansen, Lone Aslaug; Michelsen, Hanne Philbert; Frandsen, Flemming

    2000-01-01

    Straw-fired boilers generally experience severe problems with deposit formation and are expected to suffer from severe superheater corrosion at high steam temperatures due to the large alkali and chlorine content in straw. In this study, deposits collected (1) on air-cooled probes and (2) directly...... at the existing heat transfer surfaces of a straw-fired boiler have been examined. Deposits collected on air-cooled probes were found to consist of an inner layer of KCl and an outer layer of sintered fly ash. Ash deposits formed on the heat transfer surfaces all had a characteristic layered structure......, with a dense layer of K2SO4 present adjacent to the metal surface. It is argued that the K2SO4 layer present adjacent to the metal surface may lead to reduced corrosion rates at this boiler. A discussion of the deposit structure, the K2SO4 layer formation mechanism, and the influence of the inner layer...

  6. The relationship between depositional system and ore-formation of sandstone-type uranium deposits in Dongsheng area, Ordos basin

    International Nuclear Information System (INIS)

    Zhao Honggang; Ou Guangxi

    2006-01-01

    The analysis on depositional system plays a very important role in studying sandstone-type uranium deposits. Based on depositional system analysis and sequence stratigraphy, and through the study of depositional system characteristics and the spatial distribution of sedimentary facies, the evolution of sedimentary environments as well as the sequence stratigraphy of Zhiluo Formation in Dongsheng area, Ordos basin, authors have come to the following conclusions, (1) the spatial distribution of sand bodies is controlled by the planar distribution of sedimentary facies, which, in turn, affects the spatial distribution of ore-hosting sand bodies; (2) the evolution of sedimentary facies and sedimentary environments creates good lithofacies and lithological conditions favorable for interlayer oxidation; (3) the spatial lithologic combination of 'three layer structure' is controlled by sedimentary sequence. (authors)

  7. Size dependent optical characteristics of chemically deposited

    Indian Academy of Sciences (India)

    Keywords. Thin film; ZnS; CBD method; optical properties. Abstract. ZnS thin films of different thicknesses were prepared by chemical bath deposition using thiourea and zinc acetate as S2- and Zn2+ source. The effect of film thickness on the optical and structural properties was studied. The optical absorption studies in the ...

  8. On the characteristics of metallotect features and origin of Chanziping uranium deposit

    International Nuclear Information System (INIS)

    Kang Zili; Liu Haiying

    1991-01-01

    Chanziping Uranium Deposit is one of the representative uranium deposits which lie in the Lower Cambrian Qingxi Formation in China, Chiefly composed of black shale formation. The mineralization is largely controlled by the U-rich strata and bedding-plane faults. The former is the source of ore and ore-bearing wallrock; the latter controls the distributions of ore bodies, and is the source of force for remobilization, and mineralization of uranium and other metallogenetic elements. The formation of this deposit approximately undergoes the following 4 stages: 1. Preliminary enrichment of sedimentary uranium source layer in the Qingxi Formation; 2. Further uranium enrichment during the deformation and metamorphism of strata; 3. Formation of hydrothermal (thermal water) uranium deposit (main metallogenetic epoch) due to dynamic differentation and thermodynamic metamorphism; 4. Formation of rich multiple ore bodies due to the secondary leaching and enrichment. Then, the deposit, which contains strata-bound features, becomes a polygenetic compound uranium deposit. These characteristics may be used as the rules for searching for uranium deposits of this type

  9. Characteristics and model of sandstone type uranium deposit in south of Songliao basin

    International Nuclear Information System (INIS)

    Yu Wenbin; Yu Zhenqing

    2010-01-01

    Through analyzing the uranium deposit tectonic environment, upper cretaceous sequence stratigraphy, depositional system, evolutionary characteristics of sand bodies, the effect of subsequent transformation and the characteristic of uranium deposit, the sandstone type uranium deposit in southern basin is different from typical interlayer oxidation zone sandstone type uranium deposit. The formation and evolution of sandstone-type uranium deposit are controlled by structure fensters; the favorable sedimentary facies type is braided river facies, and the ore body is braided river sand body. The size of uranium deposits is controlled by the local oxidation zone with the characteristics of sandstone type uranium deposit in partial oxidation zone. Uranium ore bodies which distribute in the roof wings of structure fenstes, and occur in gray layers between the upper and lower oxidation zone, showing tabular, and the plate of uranium ore body is controlled by the local oxidation zone. Based on the geological features of sandstone-type uranium deposits, the metallogenic model of local oxidation zones sandstone-type uranium deposits has been set up in the south of Songliao Baisn. (authors)

  10. Evidence for fat, oil, and grease (FOG) deposit formation mechanisms in sewer lines.

    Science.gov (United States)

    He, Xia; Iasmin, Mahbuba; Dean, Lisa O; Lappi, Simon E; Ducoste, Joel J; de los Reyes, Francis L

    2011-05-15

    The presence of hardened and insoluble fats, oil, and grease (FOG) deposits in sewer lines is a major cause of line blockages leading to sanitary sewer overflows (SSOs). Despite the central role that FOG deposits play in SSOs, little is known about the mechanisms of FOG deposit formation in sanitary sewers. In this study, FOG deposits were formed under laboratory conditions from the reaction between free fatty acids and calcium chloride. The calcium and fatty acid profile analysis showed that the laboratory-produced FOG deposit displayed similar characteristics to FOG deposits collected from sanitary sewer lines. Results of FTIR analysis showed that the FOG deposits are metallic salts of fatty acid as revealed by comparisons with FOG deposits collected from sewer lines and pure calcium soaps. Based on the data, we propose that the formation of FOG deposits occurs from the aggregation of excess calcium compressing the double layer of free fatty acid micelles and a saponification reaction between aggregated calcium and free fatty acids.

  11. Types of tectonic structures, sedimentary volcanogenetic formations of a mantle, favourable processes for exogenetic and polygenetic uranium deposits formation

    International Nuclear Information System (INIS)

    Danchev, V.I.; Komarnitskij, G.M.; Levin, V.N.; Shumlyanskij, V.A.

    1985-01-01

    Factors, affecting mineralization processes are considered. Characteristic features of uranium-bearing provinces are as follows: the presence of crust of continental type; deep-seated tectonic structures-rises and saggings, roofs, gneiss domes, rift zones and transform fractures; specialization for uranium of sedimentary and magmatic formations; the presence of manifestation regions of deep thermal and gaseous flow, etc. In uranium-bearing provinces territories favourable for the manifestation of different types of uranium mineralization: metamorphogenetic, polygenetic and exogenetic ones, are singled out. Different epochs of uranium ore formation are established. In sedimentary masses tectonic regime and climate are of special importance, and for epigenetic deposits, formed with an aid of underground waters-hydrogeological conditions. In the limits of the main structural elements of the Earth crust and geotectonic structures of higher orders the following types of sedimentary and volcanic formations can be singled out: 1-formations with exogenous uranium mineralization; 2-formations, accumulated in the epochs of epigenous ore formation; 3-formations fav ourable for epigenous uranium deposit formation; 4-formations unfavourable for the formation and localization of uranium mineralization

  12. Improvements of Nickel Deposit Characteristics by Pulse Plating

    DEFF Research Database (Denmark)

    Tang, Peter Torben; Leisner, Peter; Møller, Per

    1993-01-01

    Investigation of the properties of electroplated nickel, using both pulse plating and conventional di-rect current (DC), has lead to several interesting improvements of deposit characteristics. Investigated properties include; internal stress, tensile strength, yield stress, elongation, hardness...

  13. Depositional environment of the Gombe Formation in the Gongola ...

    African Journals Online (AJOL)

    The depositional environment of the Gombe Formation was determined using grain size parameters in which sixteen sandstone samples and ninety nine pebbles were subjected to granulometric and pebbles morphometric analysis respectively. The granulometric analysis for the sixteen (16) samples of the Gombe ...

  14. Hydraulic experimental investigation on spatial distribution and formation process of tsunami deposit on a slope

    Science.gov (United States)

    Harada, K.; Takahashi, T.; Yamamoto, A.; Sakuraba, M.; Nojima, K.

    2017-12-01

    An important aim of the study of tsunami deposits is to estimate the characteristics of past tsunamis from the tsunami deposits found locally. Based on the tsunami characteristics estimated from tsunami deposit, it is possible to examine tsunami risk assessment in coastal areas. It is considered that tsunami deposits are formed based on the dynamic correlation between tsunami's hydraulic values, sediment particle size, topography, etc. However, it is currently not enough to evaluate the characteristics of tsunamis from tsunami deposits. This is considered to be one of the reasons that the understanding of the formation process of tsunami deposits is not sufficiently understood. In this study, we analyze the measurement results of hydraulic experiment (Yamamoto et al., 2016) and focus on the formation process and distribution of tsunami deposits. Hydraulic experiment was conducted with two-dimensional water channel with a slope. Tsunami was inputted as a bore wave flow. The moving floor section was installed as a seabed slope connecting to shoreline and grain size distribution was set some cases. The water level was measured using ultrasonic displacement gauges, and the flow velocity was measured using propeller current meters and an electromagnetic current meter. The water level and flow velocity was measured at some points. The distribution of tsunami deposit was measured from shoreline to run-up limit on the slope. Yamamoto et al. (2016) reported the measurement results on the distribution of tsunami deposit with wave height and sand grain size. Therefore, in this study, hydraulic analysis of tsunami sediment formation process was examined based on the measurement data. Time series fluctuation of hydraulic parameters such as Froude number, Shields number, Rouse number etc. was calculated to understand on the formation process of tsunami deposit. In the front part of the tsunami, the flow velocity take strong flow from shoreline to around the middle of slope. From

  15. Sedimentary architecture and depositional environment of Kudat Formation, Sabah, Malaysia

    Science.gov (United States)

    Ghaheri, Samira; Suhaili, Mohd; Sapari, Nasiman; Momeni, Mohammadsadegh

    2017-12-01

    Kudat Formation originated from deep marine environment. Three lithofacies association of deep marine turbidity channel was discovered in three Members of the Kudat Formation in Kudat Peninsula, Sabah, Malaysia. Turbidite and deep marine architecture elements was described based on detailed sedimentological studies. Four architecture elements were identified based on each facies association and their lithology properties and character: inner external levee that was formed by turbidity flows spill out from their confinement of channel belt; Lobes sheet that was formed during downslope debris flows associated with levee; Channel fill which sediments deposited from high to low density currents with different value of sediment concentration; and overbank terrace which was formed by rapid suspension sedimentation. The depositional environment of Kudat Formation is shelf to deep marine fan.

  16. High-resolution sequence stratigraphic correlation of the braided river and vertical distribution characteristics of sand body-Take upper member of saihan formation of lower cretaceous in Bayanwula deposit, for instance

    International Nuclear Information System (INIS)

    Dai Mingjian; Peng Yunbiao; Yang Jianxin; Shen Kefeng

    2014-01-01

    In recent years, the high-resolution sequence stratigraphy of which reference surface is base level cycle get rapid development. Its biggest advantage is the ability to apply to the continental sedimentary basins controlled by multiple factors, especially applied to the thin layer contrast of the paleochannel sandstone type uranium reservoir. This paper, by using drill core and logging data, has made the high resolution sequence stratigraphy studies on braided river uranium reservoir of Upper Member of Saihan Formation of Lower Cretaceous (Kls2) in Bayanwula deposit and identified the base level cycle interface. The study interval is divided into one long-term cycle and seven mid-term base level cycle, and high-resolution time stratigraphic framework of the deposit is established. Depth analysis is taken for the relationship between the braided river sand body and base level cycles. And the position, distribution, and genesis in vertical of the braided river sand body are discussed in detail. Ore body is mainly hosted in edge of braided bar sand body, which formed in the low accommodation space, and braided channel and the braided bar interchange. So uranium enriched in the mid-term base level cycle MSC2-MSC5 in the study area. (authors)

  17. Gold particle formation via photoenhanced deposition on lithium niobate

    Energy Technology Data Exchange (ETDEWEB)

    Zaniewski, A.M., E-mail: azaniews@asu.edu; Meeks, V.; Nemanich, R.J.

    2017-05-31

    Highlights: • Gold chloride is reduced into solid gold nanoparticles at the surface of a polarized semiconductor. • Reduction processes are driven by ultraviolet light. • Gold nanoparticle and silver nanoparticle deposition patterns are compared. - Abstract: In this work, we report on a technique to reduce gold chloride into sub-micron particles and nanoparticles. We use photoelectron transfer from periodically polarized lithium niobate (PPLN) illuminated with above band gap light to drive the surface reactions required for the reduction and particle formation. The particle sizes and distributions on the PPLN surface are sensitive to the solution concentration, with inhibited nucleation and large particles (>150 nm) for both low (2E−8M to 9E−7M) and high (1E−5M to 1E−3M) concentrations of gold chloride. At midrange values of the concentration, nucleation is more frequent, resulting in smaller sized particles (<150 nm). We compare the deposition process to that for silver, which has been previously studied. We find that the reduction of gold chloride into nanoparticles is inhibited compared to silver ion reduction, due to the multi-step reaction required for gold particle formation. This also has consequences for the resulting deposition patterns: while silver deposits into nanowires along boundaries between areas with opposite signed polarizations, such patterning of the deposition is not observed for gold, for a wide range of concentrations studied (2E−8 to 1E−3M).

  18. Study of nozzle deposit formation mechanism for direct injection gasoline engines; Chokufun gasoline engine yo nozzle no deposit seisei kaiseki

    Energy Technology Data Exchange (ETDEWEB)

    Kinoshita, M; Saito, A [Toyota Central Research and Development Labs., Inc., Aichi (Japan); Matsushita, S [Toyota Motor Corp., Aichi (Japan); Shibata, H [Nippon Soken, Inc., Tokyo (Japan); Niwa, Y [Denso Corp., Aichi (Japan)

    1997-10-01

    Nozzles in fuel injectors for direct injection gasoline engines are exposed to high temperature combustion gases and soot. In such a rigorous environment, it is a fear that fuel flow rate changes in injectors by deposit formation on nozzles. Fundamental factors of nozzle deposit formation were investigated through injector bench tests and engine dynamometer tests. Deposit formation processes were observed by SEM through engine dynamometer tests. The investigation results reveal nozzle deposit formation mechanism and how to suppress the deposit. 4 refs., 8 figs., 3 tabs.

  19. The characteristics of operation of the Shatlyk gas condensate deposit

    Energy Technology Data Exchange (ETDEWEB)

    Zatov, G.A.; Friman, Yu.M.; Frumson, Yu.V.; Koshayev, T.K.; Stepanov, N.G.; Tverkovkin, S.M.

    1983-01-01

    Results are correlated of the operation of the Shatlyksk deposit for a 10 year period from the start of its development through 1982. The rates of gas withdrawal from the deposits are analyzed, along with the conditions for manifestation of elastic, water thrust modes, the characteristics of the studied wells and other issues. The results of modeling the advancement of stratum waters are cited. The modeling was performed on a computer (EVM) using a system of two dimensional, two phase filtration.

  20. Deposits of the Peruvian Pisco Formation compared to layered deposits on Mars

    Science.gov (United States)

    Sowe, M.; Bishop, J. L.; Gross, C.; Walter, S.

    2013-09-01

    Deposits of the Peruvian Pisco Formation are morphologically similar to the mounds of Juventae Chasma at the equatorial region on Mars (Fig. 1). By analyzing these deposits, we hope to gain information about the environmental conditions that prevailed during sediment deposition and erosion, hence conditions that might be applicable to the Martian layered and hydrated deposits. Mariner 9 data of the Martian mid-latitudes have already shown evidence of the wind-sculptured landforms that display the powerful prevailing eolian regime [1]. In addition, [2] reported on similarities between Martian erosional landforms and those of the rainless coastal desert of central Peru from the Paracas peninsula to the Rio Ica. As indicated by similar erosional patterns, hyper-arid conditions and unidirectional winds must have dominated at least after deposition of the sediments, which are intermixed volcaniclastic materials and evaporate minerals at both locations. Likewise, variations in composition are displayed by alternating layers of different competence. The Pisco formation bears yardangs on siltstones, sandstones and clays with volcaniclastic admixtures [3] whereas the presence of sulphate minerals and the omnipresent mafic mineralogy has been reported for the layered mounds of Juventae Chasma equally [4]. Likewise, a volcanic airfall deposition and lacustrine formation have been proposed for the sulphate-rich deposits of Juventae Chasma [5,6]. In order to find out about potential spectral similarities, we performed a detailed spectral analysis of the surface by using LANDSAT and Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) VNIR/ SWIR data (visible to near-infrared and shortwave infrared region).

  1. Mechanical characteristics of a tool steel layer deposited by using direct energy deposition

    Science.gov (United States)

    Baek, Gyeong Yun; Shin, Gwang Yong; Lee, Eun Mi; Shim, Do Sik; Lee, Ki Yong; Yoon, Hi-Seak; Kim, Myoung Ho

    2017-07-01

    This study focuses on the mechanical characteristics of layered tool steel deposited using direct energy deposition (DED) technology. In the DED technique, a laser beam bonds injected metal powder and a thin layer of substrate via melting. In this study, AISI D2 substrate was hardfaced with AISI H13 and M2 metal powders for mechanical testing. The mechanical and metallurgical characteristics of each specimen were investigated via microstructure observation and hardness, wear, and impact tests. The obtained characteristics were compared with those of heat-treated tool steel. The microstructures of the H13- and M2-deposited specimens show fine cellular-dendrite solidification structures due to melting and subsequent rapid cooling. Moreover, the cellular grains of the deposited M2 layer were smaller than those of the H13 structure. The hardness and wear resistance were most improved in the M2-deposited specimen, yet the H13-deposited specimen had higher fracture toughness than the M2-deposited specimen and heat-treated D2.

  2. Quantifying fat, oil, and grease deposit formation kinetics.

    Science.gov (United States)

    Iasmin, Mahbuba; Dean, Lisa O; Ducoste, Joel J

    2016-01-01

    Fat, oil, and grease (FOG) deposits formed in sanitary sewers are calcium-based saponified solids that are responsible for a significant number of nationwide sanitary sewer overflows (SSOs) across United States. In the current study, the kinetics of lab-based saponified solids were determined to understand the kinetics of FOG deposit formation in sewers for two types of fat (Canola and Beef Tallow) and two types of calcium sources (calcium chloride and calcium sulfate) under three pH (7 ± 0.5, 10 ± 0.5, and ≈14) and two temperature conditions (22 ± 0.5 and 45 ± 0.5 °C). The results of this study displayed quick reactions of a fraction of fats with calcium ions to form calcium based saponified solids. Results further showed that increased palmitic fatty acid content in source fats, the magnitude of the pH, and temperature significantly affect the FOG deposit formation and saponification rates. The experimental data of the kinetics were compared with two empirical models: a) Cotte saponification model and b) Foubert crystallization model and a mass-action based mechanistic model that included alkali driven hydrolysis of triglycerides. Results showed that the mass action based mechanistic model was able to predict changes in the rate of formation of saponified solids under the different experimental conditions compared to both empirical models. The mass-action based saponification model also revealed that the hydrolysis of Beef Tallow was slower compared to liquid Canola fat resulting in smaller quantities of saponified solids. This mechanistic saponification model, with its ability to track the saponified solids chemical precursors, may provide an initial framework to predict the spatial formation of FOG deposits in municipal sewers using system wide sewer collection modeling software. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Deposit formation in DI gasoline engines; Ablagerungsbildung im Benzin-Direkteinspritzmotor

    Energy Technology Data Exchange (ETDEWEB)

    Piock, W.; Leithgoeb, R.; Kropf, R.; Maierhofer, B. [AVL List GmbH, Graz (Austria)

    2003-07-01

    Changes in fuel composition were found to influence deposit formation. There was an excellent correlation between deposit formation in the combustion chamber and the changes in the flow characteristics of the injection system. With alkylate fuels, deposit formation could be reduced by a factor of 2 to 3. With additions of 18 percent ethanol, deposit formation increased, and injector flow was decreased. Further, the deposit formation pattern changed from the combustion chamber roof to the piston bottom, which is a result of the changed wetting pattern caused by the chemical and physical properties of the fuel. The higher deposit formation is a combination of several mechanisms (flow, diffusion, evaporation, interaction between combustion and the liquid film, etc.) and cannot be described by a simple model. (orig.) [German] Erwartungsgemaess konnte durch die Aenderung der Kraftstoffgrundzusammensetzung (Referenz- oder Alkylatkraftstoff) ein wesentlicher Einfluss auf die Ablagerungsbildung erreicht werden. Die Korrelation zwischen den Brennraumablagerungen und der Veraenderung der Durchflusseigenschaften des Einspritzsystem sind sehr gut. Das Ausmass der Verringerung der Ablagerungsbildung beim Uebergang auf Alkylatkraftstoff war jedoch signifikant, da eine Absenkung um einen Faktor 2 bis 3 beobachtet wurde. Die Zugabe von 10% Ethanol zu den Basiskraftstoffen (Dauerlauf 5 und 6) zeigte eine Zunahme der Ablagerungsmasse im Brennraum, welche mit der Durchflussverminderung der Injektoren korreliert. Zusaetzlich wurde auch eine Veraenderung der Verteilung der Ablagerungsmasse vom Brennraumdach zum Kolbenboden beobachtet, welche durch die veraenderte Benetzungssituation im Zusammenwirken mit den geaenderten chemischen und physikalischen Eigenschaften des Kraftstoffes bewirkt wird. Die resultierende Erhoehung der Ablagerungsbildung ist das Ergebnis des Zusammenspiels von mehreren Effekten (Stroemung, Diffusion, Verdampfung, Wechlselwirkung der Verbrennung mit dem

  4. Magma ascent, fragmentation and depositional characteristics of "dry" maar volcanoes: Similarities with vent-facies kimberlite deposits

    Science.gov (United States)

    Berghuijs, Jaap F.; Mattsson, Hannes B.

    2013-02-01

    Several maar craters within the Lake Natron-Engaruka monogenetic volcanic field (LNE-MVF) of northern Tanzania show compelling evidence for magmatic fragmentation and dry deposition. This is in contradiction of the common belief that most maars are formed through the explosive interaction between ascending magma and ground- or surface water. We here present a detailed study on the eruptive and depositional characteristics of the Loolmurwak and Eledoi maar volcanoes, two of the largest craters in the LNE-MVF, focusing on high-resolution stratigraphy, sedimentology, grain size distribution, pyroclast textures and morphologies, bulk geochemistry and mineral chemistry. At both maars, ejected material has been emplaced by a combination of pyroclastic surges and fallout. Indicators of phreatomagmatic fragmentation and wet deposition, such as impact sags, accretionary lapilli, vesiculated tuffs and plastering against obstacles, are absent in the deposits. Juvenile material predominantly occurs as fluidal-shaped vesicular melt droplets and contains no glass shards produced by the breakage of bubble walls. The Eledoi deposits comprise a large amount of inversely graded beds and lenses, which result from grain flow in a dry depositional environment. Preferential deposition of fine material toward the northern side of its crater can be related to effective wind winnowing in a dry eruption plume. This large variety of observations testifies to the dominance of magmatic fragmentation as well as dry deposition at the Loolmurwak and Eledoi maars, which is in line with what has been found for other structures in the LNE-MVF but contrasts with current ideas on maar formation. We infer that a volatile-rich, olivine melilitic magma was formed by small amounts of partial melting at upper mantle depths. With minimum average ascent rates of 5.3 m s- 1 for Loolmurwak and 26.2 m s- 1 for Eledoi, this magma rapidly moved toward the surface and exsolved a substantial amount of volatiles

  5. Geological characteristics of the main deposits in the world. Geological characteristics of French uranium deposits; their consequences on the different stages of valorisation. The uranium market

    International Nuclear Information System (INIS)

    Gangloff, A.; Lenoble, A.; Mabile, J.

    1958-07-01

    This document gathers three contributions. In the first one, after having recalled data regarding uranium ore and metal reserves in Canada, USA, South Africa and France, the author describes and discusses the geological and mineral characteristics of the main deposits in Canada (Great Bear Lake, Ace-Verna and other deposits of the Beaverlodge district, Gunnar, Blind River and Bancroft), in the USA (New Mexico, Colorado and Arizona), and in South Africa (similar structure as observed in Blind River). The second contribution addresses the French uranium deposits by firstly presenting, describing and classifying vein deposits (five types are distinguished) and sedimentary deposits in different geological formations, and by secondly discussing the impacts of these characteristics on exploration, surface exploration works, and mining works. The third contribution proposes an overview of the uranium market: comments of world productions (conventional extraction processes and technical peculiarities, costs and prices, reserves and production in Canada, USA, South Africa, France, Australia and others), presentation of the French program (location and production capacity of uranium production plants, locations of ore extraction), overview of the current situation of the world market (price levels, possible prices after 1962), discussion of the comparison between demands and supplies, overview of the French uranium policy

  6. Inkjet printing of aqueous rivulets: Formation, deposition, and applications

    Science.gov (United States)

    Bromberg, Vadim

    early-time dynamics during rivulet formation in determining the nature of subsequent particle convection and deposition. New flow and deposition phenomena have also been identified and leveraged to develop novel processes for deposition of micron-scale electrically conducting lines of silver nanoparticles. Low-temperature processing of printed silver nitrate lines with environmentally benign Ar plasma to improve electrical properties has also been investigated and will be discussed.

  7. Characteristics of thin film fullerene coatings formed under different deposition conditions by power ion beams

    International Nuclear Information System (INIS)

    Petrov, A.V.; Ryabchikov, A.I.; Struts, V.K.; Usov, Yu.P.; Renk, T.J.

    2007-01-01

    Carbon allotropic form - C 60 and C 70 can be used in microelectronics, superconductors, solar batteries, logic and memory devices to increase processing tool wear resistance, as magnetic nanocomposite materials for record and storage information, in biology, medicine and pharmacology. In many cases it is necessary to have a thin-film containing C 60 and C 70 fullerene carbon coatings. A possibility in principle of thin carbon films formation with nanocrystalline structure and high content ∼30-95% of C 60 and C 70 fullerene mixture using the method of graphite targets sputtering by a power ion beam has been shown. Formation of thin-film containing C 60 and C 70 fullerene carbon coatings were carried out by means of deposition of ablation plasma on silicon substrates. Ablation plasma was generated as result of interaction of high-power pulsed ion beams (HPPIB) with graphite targets of different densities. It has been demonstrated that formation of fullerenes, their amount and characteristics of thin-film coatings depend on the deposition conditions. The key parameter for such process is the deposition rate, which determines thin film formation conditions and, subsequently, its structure and mechanical properties. Nano-hardness, Young module, adhesion to mono-crystalline silicon substrate, friction coefficient, roughness surface of synthesized coatings at the different deposition conditions were measured. These characteristics are under influence of such main process parameters as energy density of HPPIB, which, in turn, determinates the density and temperature of ablation plasma and deposition speed, which is thickness of film deposited for one pulse of ion current. Nano-hardness and Young module meanings are higher at the increasing of power density of ion beam. Adhesion value is less at the high deposition speed. As rule, friction coefficient depends on vice versa from roughness. (authors)

  8. Fat, oil and grease deposits in sewers: characterisation of deposits and formation mechanisms.

    Science.gov (United States)

    Williams, J B; Clarkson, C; Mant, C; Drinkwater, A; May, E

    2012-12-01

    Fat, oil and grease deposits (FOG) in sewers are a major problem and can cause sewer overflows, resulting in environmental damage and health risks. Often simplistically portrayed as cooling of fats, recent research has suggested that saponification may be involved in FOG formation. However there are still questions about the mechanisms effecting transformations in sewers and the role and source of metal cations involved in saponification. This study characterises FOG deposits from pumping stations, sewers and sewage works from different water hardness zones across the UK. The sites all had previous problems with FOG and most catchments contained catering and food preparation establishments. The FOG deposits were highly variable with moisture content ranging from 15 to 95% and oil content from 0 to 548 mg/g. Generally the pumping stations had lower moisture content and higher fat content, followed by the sewers then the sewage works. The water in contact with the FOG had high levels of oil (mean of about 800 mg/L) and this may indicate poor kitchen FOG management practices. FOG fatty acid profiles showed a transformation from unsaturated to saturated forms compared to typical cooking oils. This seems to relate to ageing in the sewer network or the mechanism of formation, as samples from pumping stations had higher proportions of C18:1 compared to C16. This may be due to microbial transformations by bacteria such as Clostridium sp. in a similar process to adipocere formation. There was an association between water hardness and increased Ca levels in FOG along with harder deposits and higher melting points. A link between FOG properties and water hardness has not been previously reported for field samples. This may also be due to microbial processes, such as biocalcification. By developing the understanding of these mechanisms it may be possible to more effectively control FOG deposits, especially when combined with promotion of behavioural change. Copyright © 2012

  9. Beachrock occurrence, characteristics, formation mechanisms and impacts

    Science.gov (United States)

    Vousdoukas, M. I.; Velegrakis, A. F.; Plomaritis, T. A.

    2007-11-01

    Beachrocks are hard coastal sedimentary formations consisting of various beach sediments, lithified through the precipitation of carbonate cements. The objectives of this contribution are to (a) collate and review information on the reported occurrences, characteristics and formation mechanisms of beachrocks and (b) consider their impacts on the coastal zone. The analysis of the available information has shown that (a) beachrock formation is a global and diachronic phenomenon and (b) the great majority of beachrocks are found in tropical/subtropical and low temperate latitude, microtidal coasts. The cementing agents of beachrocks are composed predominantly of the metastable carbonate phases High Magnesian Calcite (HMC) and Aragonite (Ar), appearing in a diverse crystalline morphology. It has been suggested that cement precipitation in the coastal environment is controlled by: (i) the physicochemical conditions; (ii) the presence of organic compounds and microbes; (iii) the magnitude and distribution of the wave energy along the coast; and (iv) the textural characteristics of the constituent sediments. Various theories have been proposed to explain beachrock formation itself, linking the phenomenon to either physicochemical or biological processes. These theories, however, do not seem to be of universal validity and acceptance, as each is able to explain only some of the reported occurrences. The presence of beachrocks appears to affect beach morphodynamics by: (i) 'locking' the beach profile; (ii) modifying the nearshore hydrodynamics; (iii) changing the porous character of the beach and, thus, its response to wave forcing; and (iv) differential bed erosion at the margins of the beachrock outcrops that can alter significantly the long- and, particularly, the cross-shore sediment transport. Therefore, although relict submerged beachrock outcrops may provide some coastal protection by reducing the wave energy impinging onto the coastline, modern beachrocks may

  10. Depositional Architecture of Late Cambrian-Early Ordovician Siliciclastic Barik Formation; Al Huqf Area, Oman

    Science.gov (United States)

    Abbasi, Iftikhar Ahmed

    2017-04-01

    Early Paleozoic siliciclastics sediments of the Haima Supergroup are subdivided into a number of formations and members based on lithological characteristics of various rock sequences. One of the distinct sandstone sequence, the Barik Formation (Late Cambrian-Early Ordovician) of the Andam Group is a major deep gas reservoir in central Oman. The sandstone bodies are prospective reservoir rocks while thick shale and clay interbeds act as effective seal. Part of the Barik Formation (lower and middle part) is exposed in isolated outcrops in Al Huqf area as interbedded multistoried sandstone, and green and red shale. The sandstone bodies are up to 2 meters thick and can be traced laterally for 300 m to over 1 km. Most of sandstone bodies show both lateral and vertical stacking. Two types of sandstone lithofacies are identified on the basis of field characteristics; a plane-bedded sandstone lithofacies capping thick red and green color shale beds, and a cross-bedded sandstone lithofacies overlying the plane-bedded sandstone defining coarsening upward sequences. The plane-bedded sandstone at places contains Cruziana ichnofacies and bivalve fragments indicating deposition by shoreface processes. Thick cross-bedded sandstone is interpreted to be deposited by the fluvial dominated deltaic processes. Load-casts, climbing ripples and flaser-bedding in siltstone and red shale indicate influence of tidal processes at times during the deposition of the formation. This paper summarizes results of a study carried out in Al Huqf area outcrops to analyze the characteristics of the sandstone-body geometry, internal architecture, provenance and diagenetic changes in the lower and middle part of the formation. The study shows build-up of a delta complex and its progradation over a broad, low-angle shelf where fluvial processes operate beside shoreface processes in a vegetation free setting. Keywords: Andam Group, Barik Formation, Ordovician sandstone, Al Huqf, Central Oman,

  11. Impact of biodiesel blend on injector deposit formation

    International Nuclear Information System (INIS)

    Liaquat, A.M.; Masjuki, H.H.; Kalam, M.A.; Rizwanul Fattah, I.M.

    2014-01-01

    Continued legislative pressure to reduce exhaust emissions from CI (compression ignition) has resulted in the development of advanced fuel injection equipment. This advanced injection system produces higher temperatures and pressures at the injector tip, where deposit formation is initiated. In this research, an endurance test was carried out for 250 h on 2 fuel samples; DF (diesel fuel) as baseline fuel and JB20 (20% jatropha biodiesel and 80% DF) in a single-cylinder CI engine. The effects of JB20 on injector nozzle deposits, engine lubricating oil, and fuel economy and exhaust emissions were investigated during the endurance test. According to the results of the investigation, visual inspection showed some deposit accumulation on injectors for both fuel samples. SEM (scanning electron microscopy) and EDX (energy dispersive X-ray spectroscopy) analysis showed greater carbon deposits on and around the injector tip for JB20 compared to the engine running with DF. Similarly, lubricating oil analysis presented excessive wear metal concentrations and decreased viscosity values when the engine was fueled with JB20. Finally, fuel economy and emission results during the endurance test showed higher BSFC (brake specific fuel consumption) and NO x emissions, and lower HC (hydrocarbons) and CO (carbon monoxide) emissions, for the JB20 blend compared to DF. - Highlights: • Endurance test for 250 h on 2 fuel samples; diesel fuel and JB20. • Investigation on effects of JB20 on the injector deposits and exhaust emissions. • Lubricating oil analysis during endurance test. • SEM (scanning electron microscopy) analysis. • EDX (energy dispersive X-ray spectroscopy) analysis

  12. The geological characteristics and forming conditions of granite type uranium-rich ore deposits

    International Nuclear Information System (INIS)

    Li Tiangang; Tong Hangshou; Feng Mingyue; Li Yuexiang; Xu Zhan

    1993-03-01

    The forming conditions and concentration mechanism of rich ore, criteria of ore prospecting and selection of uranium-rich ore target area are introduced in the article that is based on the studying of geological characteristics and conditions of granite type uranium-rich ore deposits of No 201 and 361 and on the comparisons of rich and poor ore deposits in geological conditions. Some new view points are also presented as the separate deposition of uranium minerals and gangue minerals is the main mechanism to form rich ore, for rich ore formation the ore enrichment by superimposition is not a universal regularity and most uranium-rich ore deposits are formed within one mineralization stage or mainly in one mineralization stage

  13. The geological characteristics and forming conditions of granite type uranium-rich ore deposits

    Energy Technology Data Exchange (ETDEWEB)

    Tiangang, Li; Hangshou, Tong; Mingyue, Feng; Yuexiang, Li; Zhan, Xu [Beijing Research Inst. of Uranium Geology (China)

    1993-03-01

    The forming conditions and concentration mechanism of rich ore, criteria of ore prospecting and selection of uranium-rich ore target area are introduced in the article that is based on the studying of geological characteristics and conditions of granite type uranium-rich ore deposits of No 201 and 361 and on the comparisons of rich and poor ore deposits in geological conditions. Some new view points are also presented as the separate deposition of uranium minerals and gangue minerals is the main mechanism to form rich ore, for rich ore formation the ore enrichment by superimposition is not a universal regularity and most uranium-rich ore deposits are formed within one mineralization stage or mainly in one mineralization stage.

  14. Formation and uranium explorating prospect of sub-volcanic granitic complex and rich uranium ore deposit in South China

    International Nuclear Information System (INIS)

    Wang Yusheng

    1997-01-01

    The rich uranium ore deposits are all closely related to tecto-magmatism of late-magmatic cycle whether volcanic types or granitic types in south China. Volcanic type rich uranium deposit has closely relationship with sub-volcanic activity, and granitic type rich uranium deposit is also closely related to mid-fine, unequal particle small massif in late main invasion stage. Based on characteristics of magmatism, we name the rock sub-volcanic granite complex, which is a unique style and closely related to the formation of rich uranium ore deposit

  15. Correlation of splat state with deposition characteristics of cold sprayed niobium coatings

    International Nuclear Information System (INIS)

    Kumar, S.; Ramakrishna, M.; Chavan, N.M.; Joshi, S.V.

    2017-01-01

    The cold spray technique has a great potential to deposit refractory metals for a variety of potential applications. Cold spraying of different metals have been addressed comprehensively to understand the deposition characteristics of the coatings. Since there is no available data on the deposition characteristics of cold sprayed Niobium, impact behavior of splats at different deposition conditions were simulated and numerically analyzed using Finite Element Modeling (FEM) and correlated with the experimental observations that highlight the role of the velocity and temperature of the particle upon impact on the bonding features. The increase in temperature of the splat drastically reduces the flow stress at the interface leading to best inter-splat bonding state. The synergistic effect of the temperature and the velocity leads to the formation of very dense, defect free niobium coating associated with deformation localization including interface melting. Formation of nanocrystalline grains at the inter-splat boundary was confirmed through TEM and compared with the FEM findings. Finally, understanding the deformation and deposition behavior of refractory metal such as niobium will be helpful to engineer the coatings for potential applications. - Graphical abstract: ▪

  16. WOx cluster formation in radio frequency assisted pulsed laser deposition

    International Nuclear Information System (INIS)

    Filipescu, M.; Ossi, P.M.; Dinescu, M.

    2007-01-01

    The influence of oxygen gas pressure and radio-frequency power on the characteristics of the WO x films produced by laser ablation of a W target at room temperature in oxygen reactive atmosphere were investigated. Changing buffer gas pressure in the hundreds of Pa range affects the bond coordination, roughness and morphology of the deposited films, as investigated by micro-Raman spectroscopy, atomic force microscopy and scanning electron microscopy. The combination of radio-frequency discharge and buffer gas pressure on film nanostructure, as reflected by bond coordination, surface morphology and roughness is discussed

  17. Ash formation, deposition, corrosion, and erosion in conventional boilers

    Energy Technology Data Exchange (ETDEWEB)

    Benson, S.A.; Jones, M.L. [Univ. of North Dakota, Grand Forks, ND (United States)

    1995-12-01

    The inorganic components (ash-forming species) associated with coals significantly affect boiler design, efficiency of operation, and lifetimes of boiler parts. During combustion in conventional pulverized fuel boilers, the inorganic components are transformed into inorganic gases, liquids, and solids. This partitioning depends upon the association of the inorganic components in the coal and combustion conditions. The inorganic components are associated as mineral grains and as organically associated elements, and these associations of inorganic components in the fuel directly influence their fate upon combustion. Combustion conditions, such as temperature and atmosphere, influence the volatility and the interaction of inorganic components during combustion and gas cooling, which influences the state and size composition distribution of the particulate and condensed ash species. The intermediate species are transported with the bulk gas flow through the combustion systems, during which time the gases and entrained ash are cooled. Deposition, corrosion, and erosion occur when the ash intermediate species are transported to the heat-transfer surface, react with the surface, accumulate, sinter, and develop strength. Research over the past decade has significantly advanced understanding of ash formation, deposition, corrosion, and erosion mechanisms. Many of the advances in understanding and predicting ash-related issues can be attributed to advanced analytical methods to determine the inorganic composition of fuels and the resulting ash materials. These new analytical techniques have been the key to elucidation of the mechanisms of ash formation and deposition. This information has been used to develop algorithms and computer models to predict the effects of ash on combustion system performance.

  18. Deposition characteristics of titanium coating deposited on SiC fiber by cold-wall chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Xian, E-mail: luo_shenfan@hotmail.com; Wu, Shuai; Yang, Yan-qing; Jin, Na; Liu, Shuai; Huang, Bin

    2016-12-01

    The deposition characteristics of titanium coating on SiC fiber using TiCl{sub 4}-H{sub 2}-Ar gas mixture in a cold-wall chemical vapor deposition were studied by the combination of thermodynamic analysis and experimental studies. The thermodynamic analysis of the reactions in the TiCl{sub 4}-H{sub 2}-Ar system indicates that TiCl{sub 4} transforms to titanium as the following paths: TiCl{sub 4} → TiCl{sub 3} → Ti, or TiCl{sub 4} → TiCl{sub 3} → TiCl{sub 2} → Ti. The experimental results show that typical deposited coating contains two distinct layers: a TiC reaction layer close to SiC fiber and titanium coating which has an atomic percentage of titanium more than 70% and that of carbon lower than 30%. The results illustrate that a carbon diffusion barrier coating needs to be deposited if pure titanium is to be prepared. The deposition rate increases with the increase of temperature, but higher temperature has a negative effect on the surface uniformity of titanium coating. In addition, appropriate argon gas flow rate has a positive effect on smoothing the surface morphology of the coating. - Highlights: • Both thermodynamic analysis and experimental studies were adopted in this work. • The transformation paths of TiCl{sub 4} to Ti is: TiCl{sub 4} → TiCl{sub 3} → Ti, or TiCl{sub 4} → TiCl{sub 3} → TiCl{sub 2} → Ti. • Typical deposited Ti coating on SiC fiber contained two distinct layers. • Deposition temperature is important on deposition rate and morphologies. • Appropriate argon gas flow rate has a positive effect on smoothing of the coating.

  19. Araçatuba Formation: palustrine deposits from the initial sedimentation phase of the Bauru Basin

    Directory of Open Access Journals (Sweden)

    Fernandes Luiz A.

    2003-01-01

    Full Text Available The Bauru Basin (Upper Cretaceous accumulated an essentially sandy continental sedimentary sequence. In a first desertic phase the basaltic substratum was covered by a widespread and homogeneous aeolian sand unit with minor loess intercalations. The substratum relief favored the formation of an endorheic drainage system under semi-arid climate, a process that started the development of the Araçatuba Paleoswamp. The palustrine deposits (Araçatuba Formation comprise siltstone and tipically greenish gray narrow tabular strata of sandstone cemented by carbonate. Moulds and gypsite and dolomite pseudomorphs were identified. The moulds seem to be genetically associated with desiccation cracks, root marks and climbing ripple lamination levels, that, on the whole, indicate calm shallow saline waters undergoing phases of subaerial exposition. At the boundaries of the study area, sand units may exhibit sigmoidal features and convolute bedding structure, which is characteristic of marginal deltaic deposits. The Araçatuba Formation is enclosed in and later overlaid by the aeolian deposits of the Vale do Rio do Peixe Formation.

  20. Singular deposit formation in PWR due to electrokinetic phenomena - application to SG clogging

    Energy Technology Data Exchange (ETDEWEB)

    Guillodo, M.; Muller, T.; Barale, M.; Foucault, M. [AREVA NP SAS, Technical Centre (France); Clinard, M.-H.; Brun, C.; Chahma, F. [AREVA NP SAS, Chemistry and Radiochemistry Group (France); Corredera, G.; De Bouvier, O. [Electricite de France, Centre d' Expertise de I' inspection dans les domaines de la Realisation et de l' Exploitation (France)

    2009-07-01

    The deposits which cause clogging of the 'foils' of the tube support plates (TSP) in Steam Generators (SG) of PWR present two characteristics which put forward that the mechanism at the origin of their formation is different from the mechanism that drives the formation of homogeneous deposits leading to the fouling of the free spans of SG tubes. Clogging occurs near the leading edge of the TSP and the deposits appear as diaphragms localized between both TSP and SG tubing materials, while the major part of the tube/TSP interstice presents little or no significant clogging. This type of deposit seems rather comparable to the ones which were reproduced in Lab tests to explain the flow rate instabilities observed on a French unit during hot shutdown in the 90's. The deposits which cause TSP clogging are owed to a discontinuity of the streaming currents in the vicinity of a surface singularity (orifices, scratches ...) which, in very low conductivity environment, produce local potential variations and/or current loop in the metallic pipe material due to electrokinetic effects. Deposits can be built by two mechanisms which may or not coexist: (i) accumulation of particles stabilized by an electrostatic attraction due to the local variation of electrokinetic potential, and (ii) crystalline growth of magnetite produced by the oxidation of ferrous ions on the anodic branch of a current loop. Lab investigations carried out by AREVA NP Technical Centre since the end of the 90's showed that this type of deposit occurs when the redox potential is higher than a critical value, and can be gradually dissolved when the potential becomes lower than this value which depends on the 'Material - Chemistry' couple. Special emphasis will be given in this paper to the TSP clogging of SG in PWR secondary coolant dealing particularly with the potential strong effect of electrokinetic phenomena in low conductive environment and in high temperature conditions

  1. Formation of fine sediment deposit from a flash flood river in the Mediterranean Sea

    Science.gov (United States)

    Grifoll, Manel; Gracia, Vicenç; Aretxabaleta, Alfredo L.; Guillén, Jorge; Espino, Manuel; Warner, John C.

    2014-01-01

    We identify the mechanisms controlling fine deposits on the inner-shelf in front of the Besòs River, in the northwestern Mediterranean Sea. This river is characterized by a flash flood regime discharging large amounts of water (more than 20 times the mean water discharge) and sediment in very short periods lasting from hours to few days. Numerical model output was compared with bottom sediment observations and used to characterize the multiple spatial and temporal scales involved in offshore sediment deposit formation. A high-resolution (50 m grid size) coupled hydrodynamic-wave-sediment transport model was applied to the initial stages of the sediment dispersal after a storm-related flood event. After the flood, sediment accumulation was predominantly confined to an area near the coastline as a result of preferential deposition during the final stage of the storm. Subsequent reworking occurred due to wave-induced bottom shear stress that resuspended fine materials, with seaward flow exporting them toward the midshelf. Wave characteristics, sediment availability, and shelf circulation determined the transport after the reworking and the final sediment deposition location. One year simulations of the regional area revealed a prevalent southwestward average flow with increased intensity downstream. The circulation pattern was consistent with the observed fine deposit depocenter being shifted southward from the river mouth. At the southern edge, bathymetry controlled the fine deposition by inducing near-bottom flow convergence enhancing bottom shear stress. According to the short-term and long-term analyses, a seasonal pattern in the fine deposit formation is expected.

  2. The Complex Resistivity Spectrum Characteristics About Stratabound Sulfide Deposits

    Science.gov (United States)

    Dong, P.; Sun, B.; Wang, L.; Chen, Z.; Dong, Z.; Wu, Y.

    2010-12-01

    Complex resistivity method has become the key technique of deep prospecting, and widely applied in stratabound sulfide deposits which often form massive ores. However, the complex resistivity spectrum characteristics of stratabound sulfide deposits remains unknown. Through studying variation problem of two-dimensional polarization medium, deducing the differential equations and calculating formula,we applied Cole-Cole model to deduce the spectrum of complex resistivity based on the model of three-node and four-node finite element method, and programmed homologous procedure. We utilized the Earth Model of Geological Layers which has accurate analytical solution to test rationality and accuracy of our modeling. We applied the layer structure provided by drilling results in Chenmenshan copper mine,which is typical strata-bound sulfide deposits in Jiangxi province,China, and calculated the spectra of complex resistivity, then made comparison between modeled and measured values. We find good corellation between them. Our studies may have imporved the interpretation of complex resistivity data, which help apply complex resistivity methods of propecting on stratabound sulfide deposites.

  3. El Paso Formation - a Lower Ordovician platform carbonate deposit

    Energy Technology Data Exchange (ETDEWEB)

    Clemons, R.E.

    1987-05-01

    The eastward-transgressive Lower Ordovician El Paso Formation conformably overlies Bliss Sandstone in southern New Mexico. Locally, lower El Paso was deposited on low hills of plutonic and volcanic rocks. The region subsided gradually throughout Canadian time, receiving the El Paso carbonate rock blanket up to 460 m thick. Lithologic and chronologic correlative rocks were deposited over most of the southwestern US as the first Paleozoic carbonate platform sequence. The El Paso Formation contains four members, listed here in ascending order: Hitt Canyon, Jose, McKelligon, and Padre. Gradually decreasing sand content upward through the Hitt Canyon indicates deepening water and/or greater distance to shore. Girvanella(.) oncolites are locally abundant. Stromatolite mounds near the top of the Hitt Canyon, combined with an influx of sand, ooids, and rounded bioclasts in the Jose Member, recorded a shoaling phase. The overlying McKelligon Member contains little or no sand, and sponge-Calathium mounds are prominent at some locales. Stromatolite mounds are interbedded with sponge-Calathium mounds in a few sections. Lower Padre Member beds are typically silty to sandy and locally contain thinly-laminated zones. The Padre contains more restricted fauna that includes traces of ostracods. Pervasive bioturbation of El Paso beds and fauna consisting of echinoderms, sponges, gastropods, trilobites, Nuia, Calathium, cephalopods, and algae plus minor brachiopods and Pulchrilamina indicate predominating shallow-subtidal environments. Low-energy platform environments, in which a large volume of micritic muds accumulated, were disturbed thousands of times by storms producing abundant thin, poorly washed biosparite, intrasparite, and intrasparrudite lenses.

  4. Biologically induced formation of realgar deposits in soil

    Science.gov (United States)

    Drahota, Petr; Mikutta, Christian; Falteisek, Lukáš; Duchoslav, Vojtěch; Klementová, Mariana

    2017-12-01

    The formation of realgar (As4S4) has recently been identified as a prominent As sequestration pathway in the naturally As-enriched wetland soil at the Mokrsko geochemical anomaly (Czech Republic). Here we used bulk soil and pore water analyses, synchrotron X-ray absorption spectroscopy, S isotopes, and DNA extractions to determine the distribution and speciation of As as a function of soil depth and metabolic properties of microbial communities in wetland soil profiles. Total solid-phase analyses showed that As was strongly correlated with organic matter, caused by a considerable As accumulation (up to 21 g kg-1) in an organic-rich soil horizon artificially buried in 1980 at a depth of ∼80 cm. Extended X-ray absorption fine structure spectroscopy revealed that As in the buried organic horizon was predominantly present as realgar occurring as nanocrystallites (50-100 nm) in millimeter-scale deposits associated with particulate organic matter. The realgar was depleted in the 34S isotope by 9-12.5‰ relative to the aqueous sulfate supplied to the soil, implying its biologically induced formation. Analysis of the microbial communities by 16S rDNA sequencing showed that realgar deposits formed in strictly anaerobic organic-rich domains dominated by sulfate-reducing and fermenting metabolisms. In contrast, realgar deposits were not observed in similar domains with even small contributions of oxidative metabolisms. No association of realgar with specific microbial species was observed. Our investigation shows that strongly reducing microenvironments associated with buried organic matter are significant biogeochemical traps for As, with an estimated As accumulation rate of 61 g As m-2 yr-1. Nevertheless the production of biologically induced realgar in these microenvironments is too slow to lower As groundwater concentrations at our field site (∼6790 mg L-1). Our study demonstrates the intricate link between geochemistry and microbial community dynamics in wetland

  5. Developmental characteristics of parenchyma and fiber cells and their secondary wall deposition in fargesia yunnanensis

    International Nuclear Information System (INIS)

    Wang, S.G.; Zhan, H.; Wan, C.B.; Lin, S.Y.

    2017-01-01

    The aim of this study is to describe and analyse the morphological characteristics of nuclei and the secondary wall deposition in parenchyma and fiber cells during the whole bamboo growth cycle from shoots to old culms, with a further purpose to assess the developmental differences between fibers and parenchyma cells and analyze the secondary wall deposition mechanism. Initially the fiber wall thickness was less than the parenchyma cell thickness in young shoots, but increased significantly after 1 year. Fibers elongated earlier than both their nuclei and parenchyma cells. Fiber nuclei also elongated and presented the spindle shape in longitudinal section. The formation and elongation of long cells were involved in the fast elongation of internodes. In mature culms, the ways of secondary wall deposition for fibers depended on their diameter and positions. Large diameter fibers usually had more cell wall layers than narrow fibers. (author)

  6. Geotechnical and mineralogical characteristics of marl deposits in Jordan

    Science.gov (United States)

    Shaqour, Fathi M.; Jarrar, Ghaleb; Hencher, Steve; Kuisi, Mostafa

    2008-10-01

    Marls and marly limestone deposits cover most of Northern Jordan, where Amman City and its suburbs are located. These deposits serve as foundations for most buildings and roads as well as fill material for structural back filling, especially road bases and sub-bases. The present study aims at investigating the geotechnical characteristics and mineral composition of the marl units of these deposits through field investigations and laboratory testing. Using X-ray diffraction technique along with chemical analysis, representative samples of marl horizons were tested for mineral composition, and for a set of index and geotechnical properties including: specific gravity, grain size, Atterberg limits, Proctor compaction and shear strength properties. The test results show a positive linear relationship as expected between the clay content and both liquid and plastic limits. The tests results also show an inverse linear relationship between the clay content and the maximum dry density in both standard and modified compaction. This is attributed to the adsorption of water by the clay minerals. The relationship is more prominent in the case of modified compaction test. The results also indicate a similar relationship for the angle of internal friction. No clear correlation between cohesion and clay content was apparent.

  7. Method and device for measuring formation characteristics of geological formations

    International Nuclear Information System (INIS)

    Antkiw, S.; Murphy, R.D.

    1981-01-01

    A well-logging system is described which uses a pulsed neutron source and which by combining measurements of gamma spectra and neutron characteristics enables such parameters as salinity, porosity, water saturation, lithology and schistosity to be registered directly. (JIW)

  8. Deposit Mariovo geological characteristics coal quality and quantity

    International Nuclear Information System (INIS)

    Andreevski, Borche

    2008-01-01

    Evaluation of the actual situation with energy resources, in a global scale, shows negative trends, which is result from the numerous complex factors influences. Special influence over these trends has increased requirement and consumption of the fossil fuels, driven by the intensive technological development and unplanned long-term exploitation, which causes huge reduction of the available fossil fuels deposits and significant price oscillations. Additional contribution to this tendency has the fact that potential fossil fuels reserves are controlled from limited number of owners, which allows them to have global geo-strategic control over the energy resources, world politics and other types of influences. In such conditions underdevelopment countries will feel the biggest consequences and they will be forced to provide(conditionally, if there is an energy surplus at the market) and to save considerable financial resources for satisfying their needs. Maximal usage of country's own possessed energy raw material bases the only way out from this situation and it is also used by the countries which are at he greatest development level then ours. If we want to incorporate these reserves into the energetic strategy and energy balances they must be exactly defined and determined. According to the presented approach, paper has aim to make synthesis of previous investigations, through argumentation of geological specifics and quantitative-qualitative characteristics of deposit Mariovo coal given in the available documentation, and also has intention to point out its respectable characteristics. (Author)

  9. Deposit Mariovo geological characteristics coal quality and quantity

    International Nuclear Information System (INIS)

    Andreevski, Borche

    2007-01-01

    Evaluation of the actual situation with energy resources, in a global scale, shows negative trends, which is result from the numerous complex factors influences. Special influence over these trends has increased requirement and consumption of the fossil fuels, driven by the intensive technological development and unplanned long-term exploitation, which causes huge reduction of the available fossil fuels deposits and significant price oscillations. Additional contribution to this tendency has the fact that potential fossil fuels reserves are controlled from limited number of owners, which allows them to have global geo-strategic control over the energy resources, world politics and other types of influences. In such conditions underdevelopment countries will feel the biggest consequences and they will be forced to provide(conditionally, if there is an energy surplus at the market) and to save considerable financial resources for satisfying their needs. Maximal usage of country's own possessed energy raw material bases the only way out from this situation and it is also used by the countries which are at he greatest development level then ours. If we want to incorporate these reserves into the energetic strategy and energy balances they must be exactly defined and determined. According to the presented approach, paper has aim to make synthesis of previous investigations, through argumentation of geological specifics and quantitative-qualitative characteristics of deposit Mariovo coal given in the available documentation, and also has intention to point out its respectable characteristics. (Author)

  10. Formation of amorphous metal alloys by chemical vapor deposition

    Science.gov (United States)

    Mullendore, A.W.

    1988-03-18

    Amorphous alloys are deposited by a process of thermal dissociation of mixtures of organometallic compounds and metalloid hydrides,e.g., transition metal carbonyl, such as nickel carbonyl and diborane. Various sizes and shapes of deposits can be achieved, including near-net-shape free standing articles, multilayer deposits, and the like. Manipulation or absence of a magnetic field affects the nature and the structure of the deposit. 1 fig.

  11. Iron Oxide Deposition from Aqueous Solution and Iron Formations on Mars

    Science.gov (United States)

    Catling, David; Moore, Jeff

    2000-01-01

    Iron formations are ancient, laminated chemical sediments containing at least 15 wt% Fe. We discuss possible mechanisms for their formation in aqueous environments on early Mars. Such iron oxide deposits may be detectable today.

  12. Apparatus and method for determining characteristics of subsurface formations

    International Nuclear Information System (INIS)

    Coates, G.R.

    1978-01-01

    A method for the determination of a composite parameter of the formation water in formations surrounding a borehole using capture cross section data (or the conductivity) of the formation water is described and its use for the accurate determination of characteristics such as water saturation even in shaly regions, is demonstrated. (UK)

  13. ZnO film deposition on Al film and effects of deposition temperature on ZnO film growth characteristics

    International Nuclear Information System (INIS)

    Yoon, Giwan; Yim, Munhyuk; Kim, Donghyun; Linh, Mai; Chai, Dongkyu

    2004-01-01

    The effects of the deposition temperature on the growth characteristics of the ZnO films were studied for film bulk acoustic wave resonator (FBAR) device applications. All films were deposited using a radio frequency magnetron sputtering technique. It was found that the growth characteristics of ZnO films have a strong dependence on the deposition temperature from 25 to 350 deg. C. ZnO films deposited below 200 deg. C exhibited reasonably good columnar grain structures with highly preferred c-axis orientation while those above 200 deg. C showed very poor columnar grain structures with mixed-axis orientation. This study seems very useful for future FBAR device applications

  14. Absorption characteristics of Kupravas deposit clays modified by phosphoric acid

    International Nuclear Information System (INIS)

    Ruplis, A.; Mezinskis, G.; Chaghuri, M.

    1998-01-01

    Literature data suggested that clays may be used as sorbents for waste water treatment. The surface and sorption properties of minerals changes due to the influence of acid rains. The process of recession of clay properties has been modeled in laboratory by treatment of clays with mineral acids at higher temperature that in natural conditions. The present paper is devoted to the study of influence of phosphoric acid on the sorption properties of Kupravas deposit clays. Natural clay samples and samples treated with phosphoric acid were characterized by means of x-ray diffraction an differential thermal analysis (DTA) methods These methods were used also to identify the sample of Lebanese clays. X-ray diffraction analysis data show that the samples of clays from the deposit of Kuprava contain illite and kaolinite while sample of Lebanese clay contains quartz, calcite, and montmorillonite. DTA results show characteristic features of Kuprava clays described in reference with DTA of Lebanese clay clearly demonstrate the presence of large quantity of calcite

  15. Characteristics of airflow and particle deposition in COPD current smokers

    Science.gov (United States)

    Zou, Chunrui; Choi, Jiwoong; Haghighi, Babak; Choi, Sanghun; Hoffman, Eric A.; Lin, Ching-Long

    2017-11-01

    A recent imaging-based cluster analysis of computed tomography (CT) lung images in a chronic obstructive pulmonary disease (COPD) cohort identified four clusters, viz. disease sub-populations. Cluster 1 had relatively normal airway structures; Cluster 2 had wall thickening; Cluster 3 exhibited decreased wall thickness and luminal narrowing; Cluster 4 had a significant decrease of luminal diameter and a significant reduction of lung deformation, thus having relatively low pulmonary functions. To better understand the characteristics of airflow and particle deposition in these clusters, we performed computational fluid and particle dynamics analyses on representative cluster patients and healthy controls using CT-based airway models and subject-specific 3D-1D coupled boundary conditions. The results show that particle deposition in central airways of cluster 4 patients was noticeably increased especially with increasing particle size despite reduced vital capacity as compared to other clusters and healthy controls. This may be attributable in part to significant airway constriction in cluster 4. This study demonstrates the potential application of cluster-guided CFD analysis in disease populations. NIH Grants U01HL114494 and S10-RR022421, and FDA Grant U01FD005837.

  16. Mechanisms of fat, oil and grease (FOG) deposit formation in sewer lines.

    Science.gov (United States)

    He, Xia; de los Reyes, Francis L; Leming, Michael L; Dean, Lisa O; Lappi, Simon E; Ducoste, Joel J

    2013-09-01

    FOG deposits in sewer systems have recently been shown to be metallic salts of fatty acids. However, the fate and transport of FOG deposit reactant constituents and the complex interactions during the FOG deposit formation process are still largely unknown. In this study, batch tests were performed to elucidate the mechanisms of FOG deposit formation that lead to sanitary sewer overflows (SSOs). We report the first formation of FOG deposits on a concrete surface under laboratory conditions that mimic the formation of deposits in sewer systems. Results showed that calcium, the dominant metal in FOG deposits, can be released from concrete surfaces under low pH conditions and contribute to the formation process. Small amounts of additional oil to grease interceptor effluent substantially facilitated the air/water or pipe surface/water interfacial reaction between free fatty acids and calcium to produce surface FOG deposits. Tests of different fatty acids revealed that more viscous FOG deposit solids were formed on concrete surfaces, and concrete corrosion was accelerated, in the presence of unsaturated FFAs versus saturated FFAs. Based on all the data, a comprehensive model was proposed for the mechanisms of FOG deposit formation in sewer systems. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Characteristics of toroidal energy deposition asymmetries in ASDEX

    International Nuclear Information System (INIS)

    Evans, T.E.; Neuhauser, J.; Leuterer, F.; Mueller, E.R.

    1990-01-01

    Large toroidal and poloidal asymmetries with characteristics which are sensitively dependent on q a , the vertical position of the plasma, and the type of additional heating are observed in the energy flow to the ASDEX divertor target plates. The largest asymmetries and total energy depositions are observed during lower hybrid wave injection experiments with approximately 50% of the input energy going to the combined divertor targets and shields. A maximum localized energy density loading of 10 MJ/m 2 is typical under these conditions. Measurements of the asymmetries are consistent with a model in which magnetic islands and ergodicity due to intrinsic magnetic perturbations dominate the energy transpot across the primary magnetic separatrix. The results emphasize the essential role of resonant magnetic perturbations in determining the performance of tokamaks and demonstrate that non-axisymmetric effects caused by small perturbations become increasingly important in determining the transport properties as the injected power is increased. (orig.)

  18. Probe Measurements of Ash Deposit Formation Rate and Shedding in a Biomass Suspension-Fired boiler

    DEFF Research Database (Denmark)

    Shafique Bashir, Muhammad; Jensen, Peter Arendt; Frandsen, Flemming

    The aim of this study was to investigate ash deposit formation rate, heat uptake reduction and deposit removal by using advanced online ash deposition and sootblowing probes in a 350 MWth suspension-fired boiler, utilizing wood and straw pellets as fuel. The influence of fuel type (straw share...

  19. Depositional characteristics of atmospheric polybrominated diphenyl ethers on tree barks

    Directory of Open Access Journals (Sweden)

    Man Young Chun

    2014-07-01

    Full Text Available Objectives This study was conducted to determine the depositional characteristics of several tree barks, including Ginkgo (Ginkgo biloba, Pine (Pinus densiflora, Platanus (Platanus, and Metasequoia (Metasequoia glyptostroboides. These were used as passive air sampler (PAS of atmospheric polybrominated diphenyl ethers (PBDEs. Methods Tree barks were sampled from the same site. PBDEs were analyzed by highresolution gas chromatography/high-resolution mass spectrometer, and the lipid content was measured using the gravimetric method by n-hexane extraction. Results Gingko contained the highest lipid content (7.82 mg/g dry, whereas pine (4.85 mg/g dry, Platanus (3.61 mg/g dry, and Metasequoia (0.97 mg/g dry had relatively lower content. The highest total PBDEs concentration was observed in Metasequoia (83,159.0 pg/g dry, followed by Ginkgo (53,538.4 pg/g dry, Pine (20,266.4 pg/g dry, and Platanus (12,572.0 pg/g dry. There were poor correlations between lipid content and total PBDE concentrations in tree barks (R2=0.1011, p =0.682. Among the PBDE congeners, BDE 206, 207 and 209 were highly brominated PBDEs that are sorbed to particulates in ambient air, which accounted for 90.5% (84.3-95.6% of the concentration and were therefore identified as the main PBDE congener. The concentrations of particulate PBDEs deposited on tree barks were dependent on morphological characteristics such as surface area or roughness of barks. Conclusions Therefore, when using the tree barks as the PAS of the atmospheric PBDEs, samples belonging to same tree species should be collected to reduce errors and to obtain reliable data.

  20. Depositional characteristics of atmospheric polybrominated diphenyl ethers on tree barks.

    Science.gov (United States)

    Chun, Man Young

    2014-07-17

    This study was conducted to determine the depositional characteristics of several tree barks, including Ginkgo (Ginkgo biloba), Pine (Pinus densiflora), Platanus (Platanus), and Metasequoia (Metasequoia glyptostroboides). These were used as passive air sampler (PAS) of atmospheric polybrominated diphenyl ethers (PBDEs). Tree barks were sampled from the same site. PBDEs were analyzed by highresolution gas chromatography/high-resolution mass spectrometer, and the lipid content was measured using the gravimetric method by n-hexane extraction. Gingko contained the highest lipid content (7.82 mg/g dry), whereas pine (4.85 mg/g dry), Platanus (3.61 mg/g dry), and Metasequoia (0.97 mg/g dry) had relatively lower content. The highest total PBDEs concentration was observed in Metasequoia (83,159.0 pg/g dry), followed by Ginkgo (53,538.4 pg/g dry), Pine (20,266.4 pg/g dry), and Platanus (12,572.0 pg/g dry). There were poor correlations between lipid content and total PBDE concentrations in tree barks (R(2)=0.1011, p =0.682). Among the PBDE congeners, BDE 206, 207 and 209 were highly brominated PBDEs that are sorbed to particulates in ambient air, which accounted for 90.5% (84.3-95.6%) of the concentration and were therefore identified as the main PBDE congener. The concentrations of particulate PBDEs deposited on tree barks were dependent on morphological characteristics such as surface area or roughness of barks. Therefore, when using the tree barks as the PAS of the atmospheric PBDEs, samples belonging to same tree species should be collected to reduce errors and to obtain reliable data.

  1. Mechanism of deposit formation on fuel-wetted metal surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Stavinoha, L.L.; Westbrook, S.R.; McInnis, L.A. [Southwest Research Institute, San Antonio, TX (United States)

    1995-05-01

    Experiments were performed in a Single-Tube Heat Exchanger (STHE) apparatus and a Hot Liquid Process Simulator (HLPS) configured and operated to meet Jet Fuel Thermal Oxidation Tester (JFTOT) ASTM D 3241 requirements. The HLPS-JFTOT heater tubes used were 1018 mild steel, 316 stainless steel (SS), 304 stainless steel (SS), and 304 SS tubes coated with aluminum, magnesium, gold, and copper. A low-sulfur Jet A fuel with a breakpoint temperature of 254{degrees}C was used to create deposits on the heater tubes at temperatures of 300{degrees}C, 340{degrees}C, and 380{degrees}C. Deposit thickness was measured by dielectric breakdown voltage and Auger ion milling. Pronounced differences between the deposit thickness measuring techniques suggested that both the Auger milling rate and the dielectric strength of the deposit may be affected by deposit morphology/composition (such as metal ions that may have become included in the bulk of the deposit). Carbon burnoff data were obtained as a means of judging the validity of DMD-derived deposit evaluations. ESCA data suggest that the thinnest deposit was on the magnesium-coated test tube. The Scanning Electron Microscope (SEM) photographs showed marked variations in the deposit morphology and the results suggested that surface composition has a significant effect on the mechanism of deposition. The most dramatic effect observed was that the bulk of deposits moved to tube locations of lower temperature as the maximum temperature of the tube was increased from 300{degrees} to 380{degrees}C, also verified in a single-tube heat exchanger. The results indicate that the deposition rate and quantity at elevated temperatures is not completely temperature dependent, but is limited by the concentration of dissolved oxygen and/or reactive components in the fuel over a temperature range.

  2. REVIEW OF COASTAL CHARACTERISTICS OF IRON SAND DEPOSITS IN CILACAP CENTRAL JAVA

    Directory of Open Access Journals (Sweden)

    Hananto Kurnio

    2017-07-01

    Full Text Available Mineable iron sand deposits in Cilacap – southern coastal area of Central Java have certain coastal characteristics that need to be studied in order to understand its depositional environment. With the knowledge of such environment, it can be applied to look for other places prospective of iron sand deposits that have the same characteristics especially recently when Cilacap’s deposits were almost depleted. Coastal characteristics of iron sand deposit in Cilacap is shown by successive sandy beach ridges separated by marshy valleys typical of prograded coasts and by dunes of sand elongated parallel to the shore line with elevation varies from 0 m to 15 m above sea level. The iron sand deposit was derived from denudation of andesite and “Old Andesite Formation” enriched in magnetite and ilmenite minerals in the steep elevated and deeply weathered rock hinterlands of Cilacap. High sediment loads of Serayu Basin in the hinterland (3,500-4,500 ton/km2/year; Citarum River basin only 800-1,200 ton/km2/year was causing extensive deposition of iron sand in the coastal zone. Key words: coast, characteristic, iron sand, Cilacap Endapan pasir besi yang dapat ditambang di Cilacap – pesisir selatan Jawa Tengah memiliki karakteristik pantai tertentu yang perlu dikaji agar dapat dipahami lingkungan pengendapannya. Dengan pengetahuan tentang lingkungan pengendapan tersebut, dapat diterapkan untuk mencari daerah-daerah lain prospek endapan pasir besi yang memiliki karakteristik yang sama terutama pada akhir-akhir ini ketika endapan Cilacap akan habis. Karakteristik pantai endapan pasir besi di Cilacap dicirikan oleh urutan pematang pantai berpasir yang dipisahkan oleh lembah-lembah berawa khas pantai maju dan oleh gumuk-gumuk pasir memanjang sejajar dengan garis pantai dengan ketinggian bervariasi dari 0 m hingga 15 m dari muka laut. Endapan pasir besi di daerah ini berasal dari proses denudasi andesit dan “Formasi Andesit

  3. Fundamental studies of bloodstain formation and characteristics.

    Science.gov (United States)

    Adam, Craig D

    2012-06-10

    A detailed understanding of blood droplet impact dynamics and stain formation is an essential prerequisite to the interpretation of both individual bloodstains and spatter patterns. The current literature on theoretical models for the spreading and splashing of liquid drops on surfaces relevant to the forensic context of bloodstain formation has been reviewed. These models have been evaluated for a paper substrate using experimental data obtained as function of droplet size, impact velocity and angle. It is shown that for perpendicular impact there are fairly simple mathematical models for the spreading diameter and the number of scallops or spines formed around the stain though these have quite limited ranges of validity in their basic form. In particular, predictions for the diameter are best for small droplets impacting at high velocity and the number of spines saturates for higher impact velocities. In the case of spreading, a modification to the energy conservation model is found to provide excellent agreement with experimental stain diameters across a wide range of impact velocities. For non-perpendicular impact, the width of stains is found to depend principally on the normal component of impact velocity and may be predicted by an appropriate modification to the expression for the perpendicular case. Limitations in the calculation of impact angle from the stain aspect ratio are identified and a theoretical basis for the prediction of spines around an elliptical stain is proposed. Some key issues for future research are identified which include a systematic, quantitative study of the effect of surface properties on bloodstain formation. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  4. Substrate deposit effect on the characteristic of an intertidal macroalgal community

    Digital Repository Service at National Institute of Oceanography (India)

    Imchen, T.

    Present study consists the effect of substrate deposit (silt, clay, sand, gravel and shards of shells) on the characteristic of an intertidal rocky shore macroalgae Macroalgal assemblage was segregated from substrate deposit in two stages Substrate...

  5. Two depositional models for Pliocene coastal plain fluvial systems, Goliad Formation, south Texas Gulf Coastal plain

    International Nuclear Information System (INIS)

    Hoel, H.D.; Galloway, W.E.

    1983-01-01

    The Goliad Formation consists of four depositional systems-the Realitos and Mathis bed-load fluvial systems in the southwest and the Cuero and Eagle Lake mixed-load fluvial systems in the northeast. Five facies are recognized in the Realitos and Mathis bed-load fluvial systems: (1) primary channel-fill facies, (2) chaotic flood channel-fill facies, (3) complex splay facies, (4) flood plain facies, and (5) playa facies. A model for Realitos-Mathis depositional environments shows arid-climate braided stream complexes with extremely coarse sediment load, highly variable discharge, and marked channel instability. Broad, shallow, straight to slightly sinuous primary channels were flanked by wide flood channels. Flood channels passed laterally into broad, low-relief flood plains. Small playas occupied topographic lows near large channel axes. Three facies are recognized in the Cuero and Eagle Lake mixed-load fluvial systems: (1) channel-fill facies, (2) crevasse splay facies, and (3) flood plain facies. A model for Cuero-Eagle Lake depositional environments shows coarse-grained meander belts in a semi-arid climate. Slightly to moderately sinuous meandering streams were flanked by low, poorly developed natural levees. Crevasse splays were common, but tended to be broad and ill-defined. Extensive, low-relief flood plains occupied interaxial areas. The model proposed for the Realitos and Mathis fluvial systems may aid in recognition of analogous ancient depositional systems. In addition, since facies characteristics exercise broad controls on Goliad uranium mineralization, the proposed depositional models aid in defining target zones for Goliad uranium exploration

  6. Factors controlling alkali salt deposition in recovery boilers - particle formation and deposition; Soodakattilan likaantuminen ja siihen vaikuttavien tekijoeiden hallinta - hiukkasten muodostuminen ja depositio

    Energy Technology Data Exchange (ETDEWEB)

    Kauppinen, E.I.; Mikkanen, P.; Ylaetalo, S. [VTT Chemistry, Espoo (Finland); Jokiniemi, J.K.; Lyyraenen, J.; Pyykoenen, J.; Saastamoinen, J. [VTT Energy, Espoo (Finland)

    1996-12-01

    In this project, the aim was to find out those critical factors that control the deposit formation in the recovery boilers. We focus on the particle formation, growth and deposition as well as the single black liquor particle combustion behaviour. The final goal is the development of the predictive model to be used to describe deposit growth and subsequent behaviour as well as the dependence of deposition on black liquor characteristics and boiler operation conditions. During year 1995 an experimental study on the aerosol particle formation within the recovery boiler furnace and a sensitivity study with the Aerosol Behaviour in Combustion (ABC) code were carried out. The experimental study confirmed the fact that the particles are already formed in the recovery boiler furnace. The particle formation is initiated in the boundary layer of the burning droplet or smelt bed, where metals are vaporised and oxidised to form tiny seed particles. Trace amounts of metals were measured in all particle sizes and the sensitivity study with the ABC model gave further evidence of the seed formation was necessary primary step in the particle formation. At the furnace outlet the sintration ratio and the sulfation ratio of the particles were dependent on the furnace temperature and the residence time in the furnace. At ESP inlet three types of particles were observed (1) fine particles with the major mass mode at about 1-2 {mu}m, (2) large agglomerates in sizes larger than 8 {mu}m, and (3) spherical particles about 2-4 {mu}m in size. The fine particles were formed from vapours and the large agglomerates were formed from fine particles agglomerated on heat exchanger surfaces and re-entrained back to flue gas flow. The large agglomerates also contain vapours that have directly condensed to surfaces. The large spherical particles contain silicon and pass the process almost unchanged. (Abstract Truncated)

  7. Termination of BIF deposition in the Paleoproterozoic: the Tongwane Formation, South Africa

    OpenAIRE

    Schroeder, Stefan; Warke, Matthew

    2016-01-01

    The Tongwane Formation (~2.4 Ga) conformably overlies banded iron formations (BIF; Penge Iron Formation) on the Kaapvaal Craton, South Africa. As such, it provides a unique window into depositional processes and environmental conditions in the aftermath of major Archean-Paleoproterozoic BIF deposition, and on the eve of irreversible environmental oxygenation in the Great Oxidation Event (GOE, ~2.35 Ga). This study presents the first sedimentological and bulk-rock geochemical characterization ...

  8. Analysis on sequence stratigraphy and depositional systems of Mangbang formation, upper tertiary in Longchuanjiang basin

    International Nuclear Information System (INIS)

    Sun Zexuan; Yao Yifeng; Chen Yong; Li Guoxin

    2004-01-01

    Longchuanjiang basin is a small Cenozoic intramontane down-faulted basin. This paper, combining the Pliocene structure, the volcanic activities and the sedimentation of the basin, analyses the sequence stratigraphy and the depositional systems of Mangbang formation (the cover of the basin). Based on the analysis of depositional systems of Mangbang formation, the depositional pattern of Pliocene in Longchuanjiang basin is set up. It is suggested that because of the fast accumulation in early down-faulted zone during Pliocene time, the alluvial fan depositional system was dominated at that time. During the middle-late period, the alluvial fan entered the lake forming a combination of fan-fandelta-lacustrine depositional systems. Authors propose a view point that the formation of Mangbang formation sequence was constrained by multistage tectonic movement, and three structural sequences were established, and system tracts were divided. (authors)

  9. Experimental investigation of ash deposits characteristics of co-combustion of coal and rice hull using a digital image technique

    International Nuclear Information System (INIS)

    Qiu, Kunzan; Zhang, Hailong; Zhou, Hao; Zhou, Bin; Li, Letian; Cen, Kefa

    2014-01-01

    This paper investigated the ash deposit characteristics during the co-firing Da Tong (DA) coal with different proportions of rice hull (0%, 5%, 10%, and 20%, based on weight) in a pilot-scale furnace. The growth of ash deposit with a four-stage mode was presented. The stable thickness values of DA coal, 5% rice hull, 10% rice hull, and 20% rice hull were 0.5, 1.4, 2.9, 5.7 cm, with stable heat flux values of 230, 200, 175, and 125 kW/m 2 , respectively. According to the results of scanning electron microscopy with energy dispersive X-ray analysis (SEM-EDX), the amount of Si in the deposits increased with the increasing proportion of rice hull rich in SiO 2 . The X-ray diffraction (XRD) analysis results indicated that most elements except Si were in the amorphous state because of the formation of eutectics. The stable thicknesses of deposits increased exponentially with the proportion of rice hull. The deposit was loose, easy removable but it reduced the heat transfer significantly. Consequently, sootblowing timely was necessary when co-firing DA coal with rice hull. - Highlights: • Digital image technique was used to monitor deposits growth process. • A type of four stages mode of ash deposit growth was presented. • The heat flux of ash deposits fit a three-stage mode. • The addition of rice hull increased the porosity of deposits

  10. Mineralogical and chemical characteristics of marble of Bela Pola deposite

    International Nuclear Information System (INIS)

    Shijakova-Ivanova, Tena; Boev, Blazho; Panov, Zoran; Pavlov, Dejan

    2009-01-01

    This paper presents mineralogical characteristics of marbles from the Bela Pola deposit. We have made mineralogical-chemical analyses of marbles and associated minerals in them. The investigation was carried out at the Faculty of natural and technical sciences - Shtip. Marbles from Bela Pola are dolomite and dolomite-calcite types. Microscope investigations have shown that marbles from Bela Pola have granoblastic structure but at some places it can be found with porphyroblastic structures. Percentage on calcite and dolomite is: 94.08% dolomite, 6.25% is calcite in white marbles. On the other hand calcite is present with 93% in gray marbles. Except dolomite and calcite also appear the following accessoring minerals: quartz, fluorite, corundum and paragonite. In general, after summarizing all the facts, which have resulted from this research we could say that, the Bela Pola marbles are massive, compact and white with high quality. In accordance to all formerly mentioned features, this marbles can be classified in the commercial group of marbles suitable for external application or internal design

  11. Impact of palm biodiesel blend on injector deposit formation

    International Nuclear Information System (INIS)

    Liaquat, A.M.; Masjuki, H.H.; Kalam, M.A.; Fazal, M.A.; Khan, Abdul Faheem; Fayaz, H.; Varman, M.

    2013-01-01

    Highlights: • 250 h Endurance test on 2 fuel samples; diesel fuel and PB20. • Visual inspection of injectors running on DF and PB20 showed deposit accumulation. • SEM and EDS analysis showed less injector deposits for DF compared to PB20 blend. • Engine oil analysis showed higher value of wear particles for PB20 compared to DF. - Abstract: During short term engine operation, renewable fuels derived from vegetable oils, are capable of providing good engine performance. In more extended operations, some of the same fuels can cause degradation of engine performance, excessive carbon and lacquer deposits and actual damage to the engine. Moreover, temperatures in the area of the injector tip due to advanced diesel injection systems may lead to particularly stubborn deposits at and around the injector tip. In this research, an endurance test was carried out for 250 h on 2 fuel samples; DF (diesel fuel) as baseline and PB20 (20% palm biodiesel and 80% DF) in a single cylinder CI engine. The effects of DF and PB20 on injector nozzle deposits, engine lubricating oil, and fuel economy and exhaust emissions were investigated. According to the results of the investigation, visual inspection showed some deposit accumulation on injectors during running on both fuels. Scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS) analysis showed greater carbon deposits on and around the injector tip for PB20 compared to the engine running with DF. Similarly, lubricating oil analysis presented excessive wear metal concentrations, decreased viscosity and increased density values when the engine was fuelled with PB20. Finally, fuel economy and emission results during the endurance test showed higher brake specific fuel consumption (bsfc) and NO x emissions, and lower HC and CO emissions, for the PB20 blend compared to DF

  12. Effect of heat treatment on the characteristics of tool steel deposited by the directed energy deposition process

    Science.gov (United States)

    Park, Jun Seok; Lee, Min-Gyu; Cho, Yong-Jae; Sung, Ji Hyun; Jeong, Myeong-Sik; Lee, Sang-Kon; Choi, Yong-Jin; Kim, Da Hye

    2016-01-01

    The directed energy deposition process has been mainly applied to re-work and the restoration of damaged steel. Differences in material properties between the base and the newly deposited materials are unavoidable, which may affect the mechanical properties and durability of the part. We investigated the effect of heat treatment on the characteristics of tool steel deposited by the DED process. We prepared general tool steel materials of H13 and D2 that were deposited onto heat-treated substrates of H13 and D2, respectively, using a direct metal tooling process. The hardness and microstructure of the deposited steel before and after heat treatment were investigated. The hardness of the deposited H13 steel was higher than that of wrought H13 steel substrate, while that of the deposited D2 was lower than that of wrought D2. The evolution of the microstructures by deposition and heat treatment varied depending on the materials. In particular, the microstructure of the deposited D2 steel after heat treatment consisted of fine carbides in tempered martensite and it is expected that the deposited D2 steel will have isotropic properties and high hardness after heat treatment.

  13. Ash Deposit Formation and Deposit Properties. A Comprehensive Summary of Research Conducted at Sandia's Combustion Research Facility

    Energy Technology Data Exchange (ETDEWEB)

    Larry L. Baxter

    2000-08-01

    This report summarizes experimental and theoretical work performed at Sandia's Combustion Research Facility over the past eight years on the fate of inorganic material during coal combustion. This work has been done under four broad categories: coal characterization, fly ash formation, ash deposition, and deposit property development. The objective was to provide sufficient understanding of these four areas to be able to predict coal behavior in current and advanced conversion systems. This work has led to new characterization techniques for fuels that provide, for the first time, systematic and species specific information regarding the inorganic material. The transformations of inorganic material during combustion can be described in terms of the net effects of the transformations of these individual species. Deposit formation mechanisms provide a framework for predicting deposition rates for abroad range of particle sizes. Predictions based on these rates many times are quite accurate although there are important exceptions. A rigorous framework for evaluating deposit has been established. Substantial data have been obtained with which to exercise this framework, but this portion of the work is less mature than is any other. Accurate prediction of deposit properties as functions of fuel properties, boiler design, and boiler operating conditions represents the single most critical area where additional research is needed.

  14. Facies-controlled reservoir properties in ramp-fan and slope-apron deposits, Miocene Puente Formation, Los Angeles basin

    Energy Technology Data Exchange (ETDEWEB)

    Lyons, K.T.; Geving, R.L.; Suchecki, R.K.

    1989-03-01

    The Miocene Puente Formation in outcrops of the eastern Los Angeles basin is interpreted as a succession of slope-apron and ramp-fan deposits that accumulated in a prism-rise wedge. The principal depositional components of this dominantly base-of-slope and ramp system are ramp-fan channels and lobes, and slope-channel and slope-apron channel/interchannel deposits. Facies-specific textural, compositional, and diagenetic attributes observed in thin section assist in the classification of depositional facies. Specifically, occurrence of carbonate cement, clay mineralogy, and abundance of organic material vary as a function of component facies architecture of the depositional system. Slope and ramp-fan channel-fill sandstones are characterized by pervasive carbonate cements, including poikilotopic and fine-grained calcite, fine-grained and baroque dolomite, and minor siderite. Diagenetic clays predate carbonate cements, and dolomite predates coarser, void-filling calcite. Ramp-fan lobe and interchannel deposits are carbonate free but are rich in detrital clay and organic matter. Diagenetic clays include mixed-layer illite/smectite and kaolinite. Sediments deposited in slope-apron channel fill are virtually cement free except for small amounts of authigenic illite/smectite. Slope-apron interchannel deposits are characterized by high content of organic matter and clay-rich matrix. Potential reservoir characteristics, such as grain size, sorting, and abundance of depositional clay matrix, are related to the primary sedimentary properties of depositional architectural components in the ramp-fan and slope-apron system. Additional diagenetic modifications, without consideration of compaction, were controlled by precipitation reactions associated with fluid flow along pathways related to the depositional architectural framework.

  15. Formation of topographically inverted fluvial deposits on Earth and Mars

    Science.gov (United States)

    Hayden, A.; Lamb, M. P.; Fischer, W. W.; Ewing, R. C.; McElroy, B. J.

    2016-12-01

    Sinuous ridges interpreted as exhumed river deposits (so-called "inverted channels") are common features on Mars that show promise for quantifying ancient martian surface hydrology. Morphological similarity of these inverted channels to river channels led to a "landscape inversion hypothesis" in which the geometries of ridges and ridge networks accurately reflect the geometries of the paleo-river channels and networks. An alternative "deposit inversion hypothesis" proposes that ridges represent eroded fluvial channel-belt deposits with channel-body geometries that may differ significantly from those of the rivers that built the deposit. To investigate these hypotheses we studied the sedimentology and morphology of inverted channels in Jurassic and Cretaceous outcrops in Utah and the Aeolis Dorsa region of Mars. Ridges in Utah extend for hundreds of meters, are tens of meters wide, and stand up to 30 meters above the surrounding plain. A thick ribbon-geometry sandstone or conglomerate body caps overbank mudstone, paleosols, and thin crevasse-splay sandstone beds. Caprock beds consist of stacked dune- to bar-scale trough cross sets, mud intraclasts, and in cases scroll bars indicating meandering. In plan view, ridge networks bifurcate; however, crosscutting relationships show that distinct sandstone channel bodies at distinct stratigraphic levels intersect at these junctions. Ridge-forming sandstone bodies have been narrowed from their original dimensions by cliff retreat and bisected by modern fluvial erosion and mass wasting. We therefore interpret the sinuous ridges in Utah as eroded remnants of channel-belt sandstone bodies formed by laterally migrating and avulsing rivers rather than channel fills - consistent with deposit inversion. If the sinuous ridges in Aeolis Dorsa also formed by deposit inversion, river widths previously interpreted under the landscape inversion hypothesis are overestimated by up to a factor of 10 and discharges by up to a factor of 100.

  16. Discussion on geochemical characteristics, mechanism and prospecting model of gluey type sandstone uranium mineralization--taking Redwell uranium deposit as an example

    International Nuclear Information System (INIS)

    Wang Jinping

    1998-01-01

    Redwell uranium deposit hosted in the red clastic rock formation, is a typical example of gluey type uranium mineralization, which has not been reported so far in China. Based on the study of geochemical characteristics of Redwell deposit, the author discusses the genetic mechanism of this type deposits, and proposes the prospecting model of 4 in 1 of red bed-fault-oil gas-uranium source

  17. Stratigraphy and depositional environments of the upper Pleistocene Chemehuevi Formation along the lower Colorado River

    Science.gov (United States)

    Malmon, Daniel V.; Howard, Keith A.; House, P. Kyle; Lundstrom, Scott C.; Pearthree, Philip A.; Sarna-Wojcicki, Andrei M.; Wan, Elmira; Wahl, David B.

    2011-01-01

    The Chemehuevi Formation forms a conspicuous, widespread, and correlative set of nonmarine sediments lining the valleys of the Colorado River and several of its larger tributaries in the Basin and Range geologic province. These sediments have been examined by geologists since J. S. Newberry visited the region in 1857 and are widely cited in the geologic literature; however their origin remains unresolved and their stratigraphic context has been confused by inconsistent nomenclature and by conflicting interpretations of their origin. This is one of the most prominent stratigraphic units along the river below the Grand Canyon, and the formation records an important event or set of events in the history of the Colorado River. Here we summarize what is known about these deposits throughout their range, present new stratigraphic, sedimentologic, topographic, and tephrochronologic data, and formally define them as a lithostratigraphic unit. The Chemehuevi Formation consists primarily of a bluff-forming mud facies, consisting of gypsum-bearing, horizontally bedded sand, silt, and clay, and a slope-forming sand facies containing poorly bedded, well sorted, quartz rich sand and scattered gravel. The sedimentary characteristics and fossil assemblages of the two facies types suggest that they were deposited in flood plain and channel environments, respectively. In addition to these two primary facies, we identify three other mappable facies in the formation: a thick-bedded rhythmite facies, now drowned by Lake Mead; a valley-margin facies containing abundant locally derived sediment; and several tributary facies consisting of mixed fluvial and lacustrine deposits in the lower parts of major tributary valleys. Observations from the subsurface and at outcrops near the elevation of the modern flood plain suggest that the formation also contains a regional basal gravel member. Surveys of numerous outcrops using high-precision GPS demonstrate that although the sand facies commonly

  18. Chapter 1. The characteristics of borosilicate ores of Ak-Arkhar Deposit of Tajikistan

    International Nuclear Information System (INIS)

    Mirsaidov, U.M.; Kurbonov, A.S.; Mamatov, E.D.

    2015-01-01

    Present article is devoted to characteristics of borosilicate ores of Ak-Arkhar Deposit of Tajikistan. The chemical composition of danburite ore of Ak-Arkhar Deposit was defined. The chemical composition of danburite ore concentrate of Ak-Arkhar Deposit was defined as well.

  19. Research of formation of deposits in technological devices and corrosion of contact devices from stainless steel

    Directory of Open Access Journals (Sweden)

    KATAMANOV Vladimir Leonidovich

    2017-11-01

    Full Text Available The paper shows that for majority of technological plants used to process hydrocarbon raw materials when operating a problem of formation of deposits in still-head pipes after the rectifying and stabilization columns, furnaces and other technology devices in oil processing is still of great importance. The structure of still-head deposits of furnace coils and rectifying columns has been studied by the example of small technological plant (STP of JSC Kondensat (Aksay, the Republic of Kazakhstan. It was determined that key components of these deposits are sulfides of iron and copper as well as elementary sulfur. It is shown that the surface of contact devices of STP – grids made of stainless steel of brand 12X18H10T, is substantially subject to corrosion. These samples are the structures which are still keeping geometry of initial grids, but lost their functional properties and characteristics. When mechanical influence is applied such samples easily transform into gray high-disperse powder. During operation period of STP various corrosion inhibitors and deemulgators (for example, TAL-25-13-R have been tested. At the same time practically all tested brands of corrosion inhibitors couldn't decrease corrosion of stainless steel and formation of firm deposits in still-head pipes of technological devices. The existing corrosion inhibitors create protection on the boundary of phases metallic surface – liquid, but they aren't efficient on the boundary of phases metallic surface – liquid – steam-gas phase (at the temperature of 150–250оC. The authors propose the mechanism of formation of these compounds based on result of corrosion of metal gauzes made of stainless steels brand X6CrNiTi18-10in the presence of sulphurous compounds.An active method of corrosion prevention is recommended to apply. The method is based on creation of nanodimensional anticorrosion coatings from binary compounds (such as titanium nitride or pure metals (Ni, Cr, Ti

  20. Rare Earths in fluorite deposits of Elika Formation (East of Mazandaran Province

    Directory of Open Access Journals (Sweden)

    Zahra Mehraban

    2016-07-01

    Full Text Available Introduction The Central Alborz in eastern Mazandaran province is host to the most important carbonate-hosted fluorite deposits in Iran, such as Pachi-Miana, Sheshroodbar, Era and Kamarposht. In these deposits, mineralization occurs in the upper parts of the middle Triassic Elika formation (Vahabzadeh et al., 2009 and references therein. These deposits have long been studied, and various models are presented for ore genesis. Nevertheless, ore genesis in these deposits is still unclear. The present study of the geochemistry of the REEs of these deposits is intended to improve genetic models. Materials and methods Three hundred samples were taken from above mentioned deposits. Samples were categorized into 5 groups: (1 fluorite ore types, (2 ore-stage calcite, (3 carbonate host rocks, (4 basaltic rock around the deposits, and (5 shale of the Shemshak formation. Fourteen pure fluorite samples, 4 samples of pure calcite, 4 samples of carbonate host rock, 1 sample of basalt and 1 sample of shale were analyzed for REEs by ICP-MS at West Lab in Australia. Results Analytical data on fluorite from the Elika deposits show very low REE concentrations (0.5-18ppm, in calcite(0.5-3ppm in carbonate host rocks – limestone (1.8-7ppm, and in dolomitic limestone 6.5ppm, compared with upper Triassic basalt (43ppm and shale (261ppm. REE in fluorite of these deposits are strongly enriched (10 3 to 10 6 times relative to normal sea water, ore stage calcite and carbonate host rocks, especially for mid-REEs (Eu, Gd and heavy REEs (Lu, Yb, La/Yb=~0.05. Also, LREEs depletion (La/Sm= 2-10 and HREEs (La/Yb=0.01-0.08 relatively enrichment of fluorites compared with limestone (La/Sm=2.5-4, La/Yb=0.1-1.5 and dolomitic limestone (La/Sm=4.28, La/Yb=0.07-0.4 host rocks as well as positive Eu anomaly are the most important REEs signatures in fluorites. Fluorite elsewhere in the world with low total REE conten thas been interpreted to have a sedimentary origin (Ronchi et al

  1. Characteristics of the samples in the FNG fission deposit collection

    Energy Technology Data Exchange (ETDEWEB)

    Meadows, J.W.

    1990-12-01

    Information concerning the samples in the Fast Neutron Generator (FNG) Group's fission deposit collection has been assembled. This includes the physical dimensions, isotopic analyses, half-lives, alpha emission rates specific activities and deposit weights. 10 refs., 9 figs., 5 tabs.

  2. Mass-movement deposits in the lacustrine Eocene Green River Formation, Piceance Basin, western Colorado

    Science.gov (United States)

    Johnson, Ronald C.; Birdwell, Justin E.; Brownfield, Michael E.; Mercier, Tracey J.

    2015-01-01

    The Eocene Green River Formation was deposited in two large Eocene saline lakes, Lake Uinta in the Uinta and Piceance Basins and Lake Gosiute in the Greater Green River Basin. Here we will discuss mass-movement deposits in just the Piceance Basin part of Lake Uinta.

  3. Experimental research on the structural characteristics of high organic soft soil in different deposition ages

    Science.gov (United States)

    Liu, Fei; Lin, Guo-he

    2018-03-01

    High organic soft soil, which is distributed at Ji Lin province in China, has been studied by a lot of scholars. In the paper, structural characteristics with different deposition ages have been researched by experimental tests. Firstly, the characteristics of deposition age, degree of decompositon, high-pressure consolidation and microstructure have been measured by a series of tests. Secondly, structural strengths which were deposited in different ages, have been carried out to test the significant differences of stress-strain relations between remoulded and undisturbed high organic soft soil samples. Results showed that high organic soft soil which is deposited at different ages will influence its structural characteristics.

  4. Geological and Geochemical Characteristics of Skarn Type Lead-Zinc Deposit in Baoshan Block, Yunnan Province

    Science.gov (United States)

    Yao, Xue; Wang, Peng

    2017-11-01

    Baoshan block is an important Pb-Zn-Fe-Cu polymetallic ore-concentration area which is located in southern of the Sanjiang metallogenic belt in western Yunnan. The article is studying about the geological and geochemical characteristics of the skarn type lead-zinc deposit in Baoshan block. The skarn-type lead-zinc deposit Baoshan block is characterized by skarn and skarn marble, and the orebodies are layered, or bedded along the interlayer fault, which are significantly controlled by structure. The research about Stable isotope S, H and O indicates that the ore-forming fluids are mainly derived from magmatic water, partly mixed with parts of metamorphic water and atmospheric precipitation. The initial Sr isotopic Sr87/Sr86 ratio suggests that the ore-forming materials derived from deep concealed magmatic rock, age of Rb-Sr mineralization is similar to that of Yanshanian granite. In conclusion, the Yanshanian tectonic-magmatic-fluid coupling mineralization of Yanshan formation is the main reason for the skarn-type lead-zinc deposit in the Baoshan block.

  5. Supercritical fluid molecular spray film deposition and powder formation

    Science.gov (United States)

    Smith, Richard D.

    1986-01-01

    Solid films are deposited, or fine powders formed, by dissolving a solid material into a supercritical fluid solution at an elevated pressure and then rapidly expanding the solution through a short orifice into a region of relatively low pressure. This produces a molecular spray which is directed against a substrate to deposit a solid thin film thereon, or discharged into a collection chamber to collect a fine powder. Upon expansion and supersonic interaction with background gases in the low pressure region, any clusters of solvent are broken up and the solvent is vaporized and pumped away. Solute concentration in the solution is varied primarily by varying solution pressure to determine, together with flow rate, the rate of deposition and to control in part whether a film or powder is produced and the granularity of each. Solvent clustering and solute nucleation are controlled by manipulating the rate of expansion of the solution and the pressure of the lower pressure region. Solution and low pressure region temperatures are also controlled.

  6. Direct deposition of gas phase generated aerosol gold nanoparticles into biological fluids--corona formation and particle size shifts.

    Directory of Open Access Journals (Sweden)

    Christian R Svensson

    Full Text Available An ongoing discussion whether traditional toxicological methods are sufficient to evaluate the risks associated with nanoparticle inhalation has led to the emergence of Air-Liquid interface toxicology. As a step in this process, this study explores the evolution of particle characteristics as they move from the airborne state into physiological solution. Airborne gold nanoparticles (AuNP are generated using an evaporation-condensation technique. Spherical and agglomerate AuNPs are deposited into physiological solutions of increasing biological complexity. The AuNP size is characterized in air as mobility diameter and in liquid as hydrodynamic diameter. AuNP:Protein aggregation in physiological solutions is determined using dynamic light scattering, particle tracking analysis, and UV absorption spectroscopy. AuNPs deposited into homocysteine buffer form large gold-aggregates. Spherical AuNPs deposited in solutions of albumin were trapped at the Air-Liquid interface but was readily suspended in the solutions with a size close to that of the airborne particles, indicating that AuNP:Protein complex formation is promoted. Deposition into serum and lung fluid resulted in larger complexes, reflecting the formation of a more complex protein corona. UV absorption spectroscopy indicated no further aggregation of the AuNPs after deposition in solution. The corona of the deposited AuNPs shows differences compared to AuNPs generated in suspension. Deposition of AuNPs from the aerosol phase into biological fluids offers a method to study the protein corona formed, upon inhalation and deposition in the lungs in a more realistic way compared to particle liquid suspensions. This is important since the protein corona together with key particle properties (e.g. size, shape and surface reactivity to a large extent may determine the nanoparticle effects and possible translocation to other organs.

  7. Direct Deposition of Gas Phase Generated Aerosol Gold Nanoparticles into Biological Fluids - Corona Formation and Particle Size Shifts

    Science.gov (United States)

    Svensson, Christian R.; Messing, Maria E.; Lundqvist, Martin; Schollin, Alexander; Deppert, Knut; Pagels, Joakim H.; Rissler, Jenny; Cedervall, Tommy

    2013-01-01

    An ongoing discussion whether traditional toxicological methods are sufficient to evaluate the risks associated with nanoparticle inhalation has led to the emergence of Air-Liquid interface toxicology. As a step in this process, this study explores the evolution of particle characteristics as they move from the airborne state into physiological solution. Airborne gold nanoparticles (AuNP) are generated using an evaporation-condensation technique. Spherical and agglomerate AuNPs are deposited into physiological solutions of increasing biological complexity. The AuNP size is characterized in air as mobility diameter and in liquid as hydrodynamic diameter. AuNP:Protein aggregation in physiological solutions is determined using dynamic light scattering, particle tracking analysis, and UV absorption spectroscopy. AuNPs deposited into homocysteine buffer form large gold-aggregates. Spherical AuNPs deposited in solutions of albumin were trapped at the Air-Liquid interface but was readily suspended in the solutions with a size close to that of the airborne particles, indicating that AuNP:Protein complex formation is promoted. Deposition into serum and lung fluid resulted in larger complexes, reflecting the formation of a more complex protein corona. UV absorption spectroscopy indicated no further aggregation of the AuNPs after deposition in solution. The corona of the deposited AuNPs shows differences compared to AuNPs generated in suspension. Deposition of AuNPs from the aerosol phase into biological fluids offers a method to study the protein corona formed, upon inhalation and deposition in the lungs in a more realistic way compared to particle liquid suspensions. This is important since the protein corona together with key particle properties (e.g. size, shape and surface reactivity) to a large extent may determine the nanoparticle effects and possible translocation to other organs. PMID:24086363

  8. Evaluation of Uranium depositional system in sedimentary rocks of Sibolga formation, Tapanuli Tengah

    International Nuclear Information System (INIS)

    I Gde Sukadana; Heri Syaeful

    2016-01-01

    Uranium in nature formed in various deposit type, depends on its sources, process, and depositional environments. Uranium occurrence in Sibolga, hosted in sedimentary rocks of Sibolga Formation, is properly potential to develop; nevertheless, the depositional pattern and uranium mineralization process so far had not been recognized. The research aim is to determine the rock distribution patterns and the existence of uranium grade anomalies based on surface geology and borehole log data. Mineralization occurrences from borehole log data distributed from basalt conglomerate unit (Kgl 1), sandstone 1 unit (Bp 1), conglomerate 2 unit (Kgl 2), and sandstone 2 unit (Bp 2) with their distribution and thickness are thinning to the top. Mineralization distribution in the eastern area, mainly on Kgl 1 unit, dominated by detritus materials from epi-genetic depositional in the form of monazite which is formed along with the formation of granite as its source rock. Meanwhile, mineralization on the upper rocks units formed a channel pattern trending northeast-southwest, which formed in syn-genetic process consist of uraninite, carnotite, and coffinite. Sibolga Formation deposition originated from east to west and uranium deposit formed because of the differences of depositional environment from oxidation in the east to the more reductive in the southwest. The increasing of organic materials in southwest basin caused the reduction condition of depositional environment. (author)

  9. Molecular dynamics simulation of defect formation during energetic Cu deposition

    International Nuclear Information System (INIS)

    Gilmore, Charles M.; Sprague, James A.

    2002-01-01

    The deposition of energetic Cu atoms from 5 to 80 eV onto (0 0 1) Cu was simulated with molecular dynamics. The Cu-Cu interaction potential was a spline of the embedded atom potential developed from equilibrium data, and the universal scattering potential. Incident Cu atoms substituted for first layer substrate atoms by an exchange process at energies as low as 5 eV. Incident Cu atoms of 20 eV penetrated to the second substrate layer, and 20 eV was sufficient energy to produce interstitial defects. Incident atoms of 80 eV penetrated to the third atomic layer, produced interstitials 12 atomic layers into the substrate by focused replacement collision sequences, and produced sputtered atoms with a 16% yield. Interstitial clusters of up to 7 atoms were observed. The observed mechanisms of film growth included: the direct deposition of atoms into film equilibrium atom positions, the exchange of substrate atoms to equilibrium film atoms positions, and the migration of interstitials to equilibrium film atom positions. The relative frequency of each process was a function of incident energy. Since all observed growth mechanisms resulted in film atoms in equilibrium atomic positions, these simulations suggest that stresses in homoepitaxial Cu thin films are due to point defects. Vacancies would produce tensile strain and interstitial atoms would produce compressive strain in the films. It is proposed that immobile interstitial clusters could be responsible for retaining interstitial atoms and clusters in growing metal thin films

  10. depositional environment of the gombe formation in the gongola sub

    African Journals Online (AJOL)

    (Received 16 June 2016; Revision Accepted 25 July 2016) ... The morphometric analysis indicates both fluvial and beach environment with dominance of fluvial ... Formation, the Campano-Maastrichtian Deltaic Gombe ... dominated delta by Carter el al. ... Figure 2: Stratigraphy succession of Benue Trough (Tukur et al. 2015).

  11. Diagenesis, provenance and depositional environments of the Bunter Sandstone Formation

    DEFF Research Database (Denmark)

    Olivarius, Mette; Weibel, Rikke; Friis, Henrik

    The Bunter Sandstone Formation in the northern North German Basin has large geothermal potential with high porosity and permeability (generally >15% and >100 mD, respectively) and with pore fluid temperatures that are adequate for geothermal energy production (c. 55–60˚C). A combined investigation...

  12. Combustion Chamber Deposits and PAH Formation in SI Engines Fueled by Producer Gas from Biomass Gasification

    DEFF Research Database (Denmark)

    Ahrenfeldt, Jesper; Henriksen, Ulrik Birk; Schramm, Jesper

    2003-01-01

    Investigations were made concerning the formation of combustion chamber deposits (CCD) in SI gas engines fueled by producer gas. The main objective was to determine and characterise CCD and PAH formation caused by the presence of the light tar compounds phenol and guaiacol in producer gas from an...

  13. Formation of aluminum films on silicon by ion beam deposition: a comparison with ionized cluster beam deposition

    International Nuclear Information System (INIS)

    Zuhr, R.A.; Haynes, T.E.; Galloway, M.D.; Tanaka, S.; Yamada, A.; Yamada, I.

    1991-01-01

    The direct ion beam deposition (IBD) technique has been used to study the formation of oriented aluminum films on single crystal silicon substrates. In the IBD process, thin film growth is accomplished by decelerating a magnetically analyzed ion beam to low energies (10-200 eV) for direct deposition onto the substrate under UHV conditions. The aluminum-on-silicon system is one which has been studied extensively by ionized cluster beam (ICB) deposition. This technique has produced intriguing results for aluminum, with oriented crystalline films being formed at room temperature in spite of the 25% mismatch in lattice constant between aluminum and silicon. In this work, we have studied the formation of such films by IBD, with emphasis on the effects of ion energy, substrate temperature, and surface cleanliness. Oriented films have been grown on Si(111) at temperatures from 40 to 300degC and with ion energies of 30-120 eV per ion. Completed films were analyzed by ion scattering, X-ray diffraction, scanning-electron microscopy, and optical microscopy. Results achieved for thin films grown by IBD are comparable to those for similar films grown by ICB deposition. (orig.)

  14. Effect of high temperature deposition on CoSi2 phase formation

    International Nuclear Information System (INIS)

    Comrie, C. M.; Ahmed, H.; Smeets, D.; Demeulemeester, J.; Vantomme, A.; Turner, S.; Van Tendeloo, G.; Detavernier, C.

    2013-01-01

    This paper discusses the nucleation behaviour of the CoSi to CoSi 2 transformation from cobalt silicide thin films grown by deposition at elevated substrate temperatures ranging from 375 °C to 600 °C. A combination of channelling, real-time Rutherford backscattering spectrometry, real-time x-ray diffraction, and transmission electron microscopy was used to investigate the effect of the deposition temperature on the subsequent formation temperature of CoSi 2 , its growth behaviour, and the epitaxial quality of the CoSi 2 thus formed. The temperature at which deposition took place was observed to exert a significant and systematic influence on both the formation temperature of CoSi 2 and its growth mechanism. CoSi films grown at the lowest temperatures were found to increase the CoSi 2 nucleation temperature above that of CoSi 2 grown by conventional solid phase reaction, whereas the higher deposition temperatures reduced the nucleation temperature significantly. In addition, a systematic change in growth mechanism of the subsequent CoSi 2 growth occurs as a function of deposition temperature. First, the CoSi 2 growth rate from films grown at the lower reactive deposition temperatures is substantially lower than that grown at higher reactive deposition temperatures, even though the onset of growth occurs at a higher temperature, Second, for deposition temperatures below 450 °C, the growth appears columnar, indicating nucleation controlled growth. Elevated deposition temperatures, on the other hand, render the CoSi 2 formation process layer-by-layer which indicates enhanced nucleation of the CoSi 2 and diffusion controlled growth. Our results further indicate that this observed trend is most likely related to stress and changes in microstructure introduced during reactive deposition of the CoSi film. The deposition temperature therefore provides a handle to tune the CoSi 2 growth mechanism.

  15. MINERALOGICAL AND GEOCHEMICAL EVIDENCE FOR MULTI-STAGE FORMATION OF THE CHERTOVO KORYTO DEPOSIT

    Directory of Open Access Journals (Sweden)

    Yu. I. Tarasova

    2016-01-01

    Full Text Available Introduction. The Lena gold province is one of the largest known gold resources in the world. The history of its exploration is long, but the genesis of gold mineralization hosted in black shales in the Bodaibo synclinorium still remains unclear. The studies face the challenge of discovering sources for the useful component and mechanisms of its redistribution and concentration. This study aims to clarify the time sequence of the ore mineralization in the Chertovo Koryto deposit on the basis of detailed mineralogical and geochemical characteristics of the ore, wallrock metasomatites and the Early Proterozoic host black shales, and to assess the applicability of the Sukhoi Log model for clarifying the Chertovo Koryto origin.Geological setting. The Lena gold province is located in the junction area of the Siberian platform and the Baikal mountain region (Fig. 1. The main element of its geological structure is the Chuya-Tonoda-Nechera anticline. Its axial segment is marked by horsts composed of the Early Proterozoic rocks with abundant granitoid massifs. The Chertovo Koryto deposit is located within the Kevakta ore complex at the Tonoda uplift, the largest tectonically disturbed block between the Kevakta and Amandrak granitoids massifs. The 150 m thick and 1.5 km long ore zone of the Chertovo Koryto deposit is confined to the hanging wall of the fold-fault zone feathering the Amandrak deep fault (Fig. 2.Composition. In the ore zone, rocks of the Mikhailovsk Formation include carbonaceous shales of the feldspar-chlorite-sericite-quartz composition with nest-shaped ore accumulations of the pyrite-quartz composition and quartz veinlets. In our study, we distinguish five mineral associations resulting from heterochronous processes that sequentially replaced each other:- The earliest association related with the quartz-muscovite-sericite metasomatism and the removal of REE and other elements from the rocks and their partial redeposition;- Metamorphic

  16. Fouling deposition characteristic by variation of coal particle size and deposition temperature in DTF (Drop Tube Furnace)

    Energy Technology Data Exchange (ETDEWEB)

    Namkung, Hueon; Jeon, Youngshin; Kim, Hyungtaek [Ajou Univ., Suwon (Korea, Republic of). Div. of Energy Systems Research; Xu, Li-hua [IAE, Suwon (Korea, Republic of). Plant Engineering Center

    2013-07-01

    One of the major operation obstacles in gasification process is ash deposition phenomenon. In this investigation, experiment was carried out to examine coal fouling characteristics using a laminar DTF (Drop Tube Furnace) with variation of operating condition such as different coal size, and probe surface temperature. Four different samples of pulverized coal were injected into DTF under various conditions. The ash particles are deposited on probe by impacting and agglomerating action. Fouling grains are made of eutectic compound, which is made by reacting with acid minerals and alkali minerals, in EPMA (Electron Probe Micro-Analysis). And agglomeration area of fouling at top layer is wide more than it of middle and bottom layer. The major mineral factors of fouling phenomenon are Fe, Ca, and Mg. The deposition quantity of fouling increases with increasing particle size, high alkali mineral (Fe, Ca, and Mg) contents, and ash deposition temperature.

  17. Preliminary protein corona formation stabilizes gold nanoparticles and improves deposition efficiency

    Science.gov (United States)

    Luby, Alexandra O.; Breitner, Emily K.; Comfort, Kristen K.

    2016-08-01

    Due to their advantageous characteristics, gold nanoparticles (AuNPs) are being increasingly utilized in a vast array of biomedical applications. However, the efficacy of these procedures are highly dependent upon strong interactions between AuNPs and the surrounding environment. While the field of nanotechnology has grown exponentially, there is still much to be discovered with regards to the complex interactions between NPs and biological systems. One area of particular interest is the generation of a protein corona, which instantaneously forms when NPs encounter a protein-rich environment. Currently, the corona is viewed as an obstacle and has been identified as the cause for loss of application efficiency in physiological systems. To date, however, no study has explored if the protein corona could be designed and advantageously utilized to improve both NP behavior and application efficacy. Therefore, we sought to identify if the formation of a preliminary protein corona could modify both AuNP characteristics and association with the HaCaT cell model. In this study, a corona comprised solely of epidermal growth factor (EGF) was successfully formed around 10-nm AuNPs. These EGF-AuNPs demonstrated augmented particle stability, a modified corona composition, and increased deposition over stock AuNPs, while remaining biocompatible. Analysis of AuNP dosimetry was repeated under dynamic conditions, with lateral flow significantly disrupting deposition and the nano-cellular interface. Taken together, this study demonstrated the plausibility and potential of utilizing the protein corona as a means to influence NP behavior; however, fluid dynamics remains a major challenge to progressing NP dosimetry.

  18. Implication of Spectral Characteristic of Chlorite Based on Spectrums SWIR in Nuri Deposit of Tibet

    Science.gov (United States)

    Huang, Z.

    2017-12-01

    This contribution reports the spectral characterization of chlorite in Nuri deposit of Tibet. Nuri Cu polymetallic deposit locates in south rim of Eastern of Gangdise in Tibet. It is presented for large metallogenic scale and special mineralized combination. The study area is underlain extensively by lower Cretaceous rocks of Bima Formation, upper Cretaceous to Paleogene Danshiting Formation and the Quaternary Aeolian Sand. Intrusive bodies, which mainly are quartz diorite, granodiorite, monzonitic granitite, moyite, granite porphyry and so on, feature growth gigantic composite granitic batholith. Distribution of Chlorite is very significant for range and degree of influence of hydrothermal alteration in magmatic hydrothermal deposit. From measuring the spectral of rock and mineral using SVC portable spectrograph, it derived consequence of exists some main altered mineral chlorite. The spectra of chlorite show the absorption features at 1390, 2000, 2250, 2340nm which reflect either O-H stretching vibrations and/or Fe-OH and Mg-OH bending vibrations. Chlorite with Mg-rich shows a strong band at 2324 with a shoulder at 2245nm. The iron-rich chlorite has two absorption features which occur at 2356 and 2256nm. From 110 samples containing chlorite which measured in situ using SVC portable spectrometer, the secondary characteristic absorption wavelengths of chlorite were extracted using TSG software and the diagnosis absorption characteristic of chlorite near 2250nm wavelength is from 2232 to 2266nm. According to the absorption characteristics wavelength position near 2250nm, the samples containing chlorite divided into four categories, i.e. Mg-chlorite whose wavelength less than 2245nm, MgFe-chlorite whose wavelength between 2245 and 2250nm, FeMg-chlorite whose wavelength between 2250 and 2258nm, and Fe-chlorite whose wavelength greater than 2258nm. And then chemical composition of chlorite is analyzed by electron probe with JXA-8230 device which shows that the Fe and

  19. Mechanism of potentiostatic deposition of MnO2 and electrochemical characteristics of the deposit in relation to carbohydrate oxidation

    International Nuclear Information System (INIS)

    Das, Debasmita; Sen, Pratik Kumar; Das, Kaushik

    2008-01-01

    Cyclic voltammetric (CV) and chronoamperometric (CA) studies on potentiostatic deposition of MnO 2 on Pt from Mn(II) solution in very weakly alkaline media show the process to be controlled by a one-electron transfer step, which means that the deposition proceeds through the generation of Mn(III). The electrocatalytic activity of the deposited electrode towards carbohydrate oxidation is found to be maximum at an optimum amount of deposition. Chronopotentiometric (CP) and CV measurements show that the oxidation of carbohydrates on the deposited electrodes follows a catalytic EC (electrochemical-chemical) mechanism via electrolytic formation of Mn(V) and its subsequent consumption either by disproportionation or by chemical reaction in the presence of carbohydrates. The rate constants of the reaction of Mn(V) with dextrose and fructose have been obtained from CA results. The relative order of the oxidation currents for dextrose and fructose as well as their dependence on carbohydrate concentration has been discussed. Replacement of Pt by carbon as the electrode support material does not affect the electrocatalytic activity of the MnO 2 deposit. The observed linear variation of the steady state oxidation currents with carbohydrate concentration can be exploited for analytical application

  20. Nanoparticles formation and deposition in the trichel pulse corona

    International Nuclear Information System (INIS)

    Amirov, R H; Samoylov, I S; Petrov, A A

    2013-01-01

    Cathode erosion in the negative corona discharge has been studied in the point-to-plane electrode configuration with Cu cathodes in the Trichel pulse regime. Redeposition of erosion products has been found on the cathode surface in form of agglomerates of 10-nm nanoparticles. Nanocraters and nanoparticles formation in the negative corona discharge has been considered in frames of electro-explosive mechanism of cathode erosion. According to this mechanism the cathode erosion is performed as a consequence of elementary erosion events each of which is caused by a Trichel pulse. A 1-dimentional model of corona-produced nanoparticles dynamics in the gap was elaborated. According to results of the simulation, the redeposition is explained by charging of the nanoparticles due to positive ions adsorption and thermionic emission. The size, temperature and initial velocity of the aerosol nanoparticles have the decisive action on redeposition in the negative corona discharge.

  1. Optical and electrical characteristics of zirconium oxide thin films deposited on silicon substrates by spray pyrolysis

    International Nuclear Information System (INIS)

    Aguilar-Frutis, M.; Araiza, J.J.; Falcony, C.; Garcia, M.

    2002-01-01

    The optical and electrical characteristics of zirconium oxide thin films deposited by spray pyrolysis on silicon substrates are reported. The films were deposited from a spraying solution of zirconium acetylacetonate in N,N-dimethylformamide using an ultrasonic mist generator on (100) Si substrates. The substrate temperature during deposition was in the range of 400 to 600 grad C. Deposition rates up to 16 A/sec were obtained depending on the spraying solution concentration and on the substrate temperature. A refraction index of the order of 2.0 was measured on these films by ellipsometry. The electrical characteristics of the films were determined from the capacitance and current versus voltage measurements. The addition of water mist during the spraying deposition process was also studied in the characteristics of the films. (Authors)

  2. A review of biostratigraphic studies in the olistostrome deposits of Karangsambung Formation

    Science.gov (United States)

    Hendrizan, Marfasran

    2018-02-01

    Planktonic foraminifera is widely used for marine sediment biostratigraphy. Foraminiferal biostratigraphy of Karangsambung Formation is relatively rare to be investigated by previous researchers. A review of foraminiferal biostratigraphy is expected to be early work to perform a research about the ages of Tertiary rock formations in Karangsambung. The research area is formed by olistostrome process; a sedimentary slide deposit characterized by bodies of harder rock mixed and dispersed in a matrix. Biostratigraphic studies based on foraminifera and nannoplankton in Karangsambung Formation are still qualitative analysis using fossils biomarker. However, the age of this formation is still debatable based on foraminifera and nannofossil analysis. Two explanations of debatable ages in Karangsambung Formation that is possibly developed in Karangsambung area: firstly, Karangsambung Formation is characterized by normal sedimentation in some places and other regions such Kali Welaran and Clebok, Village as a product of olistostrome, and secondly, Karangsambung Formation is olistostrome deposit. However, micropaleontology sampling and analysis in matrix clays from olistostrome were ignored causing biostratigraphical results in those matrix clays occurred in normal sedimentation process and achieving the age of middle Eocene to Oligocene. We suppose previous authors picked samples in matrix of Karangsambung Formation from several river sections, which will make misinterpretation of the age of Karangsambung Formation. The age of middle to late Eocene probably is the dates of the older sediment that was reworked by sliding and sampling process and accumulated in Karangsambung Formation. The date of Karangsambung Fm is in Oligocene period based on a finding of several calcareous nannofossils. Detailed micropaleontological analysis of olistostrome deposits in Karangsambung Formation should be reevaluated for new finding of the accurate dating. Re-evaluation should start from

  3. Characteristics of indium zinc oxide films deposited using the facing targets sputtering method for OLEDs applications

    International Nuclear Information System (INIS)

    Rim, Y.S.; Kim, H.J.; Kim, K.H.

    2010-01-01

    The amorphous indium zinc oxide (IZO) thin films were deposited on polyethersulfone (PES) and glass substrates using the facing targets sputtering (FTS) system. The electrical, optical and structural properties of the IZO thin films deposited as functions of sputtering parameters on the glass and PES substrates. An optimal IZO deposition condition is fabricated for organic light-emitting device (OLED) based on glass and PES. The amorphous IZO anode-based OLEDs show superior current density and luminance characteristics.

  4. Geochemical Identification of Windblown Dust Deposits in the Upper Permian Brushy Canyon Formation, Southern New Mexico

    Science.gov (United States)

    Tice, M. M.; Motanated, K.; Weiss, R.

    2009-12-01

    Windblown dust is a potentially important but difficult-to-quantify source of siliciclastics for sedimentary basins worldwide. Positively identifying windblown deposits requires distinguishing them from other low density suspension transport deposits. For instance, laminated very fine grained sandstones and siltstones of the Upper Permian Brushy Canyon Formation have been variously interpreted as 1) the deposits of slow-moving, low-density turbidity currents, 2) distal overbank deposits of turbidity currents, 3) the deposits of turbulent suspensions transported across a pycnocline (interflows), and 4) windblown dust. This facies forms the bulk of Brushy Canyon Formation slope deposits, so understanding its origin is critical to understanding the evolution of the basin as a whole. We use a geochemical mapping technique (x-ray fluorescence microscopy) to show that these rocks are up to two times enriched in very fine sand sized zircon and rutile grains relative to Bouma A divisions of interbedded turbidites, suggesting substantial turbulence during transport. However, in contrast with the A divisions, the laminated sandstones and siltstones never show evidence of scour or amalgamation, implying that flow turbulence did not interact with underlying beds. Moreover, proximal loess deposits are often characterized by elevated Zr/Al2O3. These observations are most consistent with windblown interpretations for Brushy Canyon Formation slope sediments, and suggest that evolution of this early deepwater slope system was controlled largely by short-distance aeolian transport of very fine sand and silt from the coast. Heavy mineral incorporation into Brushy Canyon Formation slope deposits as reflected in laminae-scale bulk Zr and Ti abundances may preserve a long-term record of local wind intensity during the Upper Permian.

  5. Nanoparticle layer deposition for highly controlled multilayer formation based on high-coverage monolayers of nanoparticles

    International Nuclear Information System (INIS)

    Liu, Yue; Williams, Mackenzie G.; Miller, Timothy J.; Teplyakov, Andrew V.

    2016-01-01

    This paper establishes a strategy for chemical deposition of functionalized nanoparticles onto solid substrates in a layer-by-layer process based on self-limiting surface chemical reactions leading to complete monolayer formation within the multilayer system without any additional intermediate layers — nanoparticle layer deposition (NPLD). This approach is fundamentally different from previously established traditional layer-by-layer deposition techniques and is conceptually more similar to well-known atomic and molecular layer deposition processes. The NPLD approach uses efficient chemical functionalization of the solid substrate material and complementary functionalization of nanoparticles to produce a nearly 100% coverage of these nanoparticles with the use of “click chemistry”. Following this initial deposition, a second complete monolayer of nanoparticles is deposited using a copper-catalyzed “click reaction” with the azide-terminated silica nanoparticles of a different size. This layer-by-layer growth is demonstrated to produce stable covalently-bound multilayers of nearly perfect structure over macroscopic solid substrates. The formation of stable covalent bonds is confirmed spectroscopically and the stability of the multilayers produced is tested by sonication in a variety of common solvents. The 1-, 2- and 3-layer structures are interrogated by electron microscopy and atomic force microscopy and the thickness of the multilayers formed is fully consistent with that expected for highly efficient monolayer formation with each cycle of growth. This approach can be extended to include a variety of materials deposited in a predesigned sequence on different substrates with a highly conformal filling. - Highlights: • We investigate the formation of high-coverage monolayers of nanoparticles. • We use “click chemistry” to form these monolayers. • We form multiple layers based on the same strategy. • We confirm the formation of covalent bonds

  6. Influence of distribution characteristics and associated seabed features on exploitation of cobalt-rich manganese deposits

    Digital Repository Service at National Institute of Oceanography (India)

    Yamazaki, T.; Sharma, R.; Tsurusaki, K.

    Method of exploitation, selection of mine site and desing of mining system of cobalt-rich manganese deposits on seamounts would be greatly influenced by the distribution characteristics as well as the associated seabed features, wuch as the seabed...

  7. Diagnostic spectral characteristics and spectrum classification of chloritization in granite-type uranium deposit

    International Nuclear Information System (INIS)

    He Jianguo; Mao Yuxian; Li Jianzhong; Rong Jiashu; Wang Changliang; Feng Mingyue; Zhu Minqiang; Rao Minghui

    2008-01-01

    Diagnostic spectrum characteristics of chlorite (mineral separate) in granite-type uranium deposits are extracted and analyzed. The chlorites are divided into two groups based on the difference between diagnostic absorption valley. (authors)

  8. Diagnostic spectral characteristics and spectrum classification of chloritization in granite-type uranium deposit

    Energy Technology Data Exchange (ETDEWEB)

    Jianguo, He; Yuxian, Mao; Jianzhong, Li; Jiashu, Rong; Changliang, Wang; Mingyue, Feng [Beijing Research Inst. of Uranium Geology, Beijing (China); Minqiang, Zhu; Minghui, Rao [East China Inst. of Technology, Fuzhou (China)

    2008-11-15

    Diagnostic spectrum characteristics of chlorite (mineral separate) in granite-type uranium deposits are extracted and analyzed. The chlorites are divided into two groups based on the difference between diagnostic absorption valley. (authors)

  9. Hydroxyapatite formation on biomedical Ti–Ta–Zr alloys by magnetron sputtering and electrochemical deposition

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyun-Ju [Department of Dental Materials, Research Center of Nano-Interface Activation for Biomaterials, and Research Center for Oral Disease Regulation of the Aged, School of Dentistry, Chosun University, Gwangju (Korea, Republic of); Jeong, Yong-Hoon [Biomechanics and Tissue Engineering Laboratory, Division of Orthodontics, College of Dentistry, The Ohio State University, Columbus, OH (United States); Choe, Han-Cheol, E-mail: hcchoe@chosun.ac.kr [Department of Dental Materials, Research Center of Nano-Interface Activation for Biomaterials, and Research Center for Oral Disease Regulation of the Aged, School of Dentistry, Chosun University, Gwangju (Korea, Republic of); Brantley, William A. [Division of Prosthodontics and Restorative Science, College of Dentistry, The Ohio State University, Columbus, OH (United States)

    2014-12-01

    The purpose of this study was to investigate hydroxyapatite formation on Ti-25Ta-xZr titanium alloys resulting from radio-frequency magnetron sputtering and electrochemical deposition. Electrochemical deposition of hydroxyapatite (HA) was first carried out using a cyclic voltammetry (CV) method at 80 °C in 5 mM Ca (NO{sub 3}){sub 2} + 3 mM NH{sub 4}H{sub 2}PO{sub 4}. Then a physical vapor deposition (PVD) coating was obtained by a radio-frequency (RF) magnetron sputtering technique. The microstructures, phase transformations, and morphologies of the hydroxyapatite films deposited on the titanium alloys were analyzed by optical microscopy (OM), X-ray diffractometer (XRD), energy dispersive X-ray spectroscopy (EDS) and field-emission scanning electron microscopy (FE-SEM). The morphologies of electrochemically deposited HA showed plate-like shapes on the titanium alloys, and the morphologies of the RF-sputtered HA coating had the appearance droplet particles on the plate-like precipitates that had formed by electrochemical deposition. For the RF-sputtered HA coatings, the Ca/P ratio was increased, compared to that for the electrochemically deposited HA surface. Moreover, the RF-sputtered HA coating, consisting of agglomerated droplet particles on the electrochemically deposited HA surface, had better wettability compared to the bulk titanium alloy surface. - Highlights: • Hydroxyapatite (HA) was deposited on Ti–Ta–Zr alloys by radio-frequency (RF) magnetron sputtering and a cyclic voltammetry. • The morphologies of the RF-sputtered HA coating on electrochemical deposits presented plate-like shapes with a droplet particle. • The Ca/P ratio for RF-sputtered HA coatings was greater than that for electrochemical deposited HA coatings. • The RF-sputtered and electrochemical HA coatings had superior wettability compared to the electrochemically deposited coatings.

  10. Hydroxyapatite formation on biomedical Ti–Ta–Zr alloys by magnetron sputtering and electrochemical deposition

    International Nuclear Information System (INIS)

    Kim, Hyun-Ju; Jeong, Yong-Hoon; Choe, Han-Cheol; Brantley, William A.

    2014-01-01

    The purpose of this study was to investigate hydroxyapatite formation on Ti-25Ta-xZr titanium alloys resulting from radio-frequency magnetron sputtering and electrochemical deposition. Electrochemical deposition of hydroxyapatite (HA) was first carried out using a cyclic voltammetry (CV) method at 80 °C in 5 mM Ca (NO 3 ) 2 + 3 mM NH 4 H 2 PO 4 . Then a physical vapor deposition (PVD) coating was obtained by a radio-frequency (RF) magnetron sputtering technique. The microstructures, phase transformations, and morphologies of the hydroxyapatite films deposited on the titanium alloys were analyzed by optical microscopy (OM), X-ray diffractometer (XRD), energy dispersive X-ray spectroscopy (EDS) and field-emission scanning electron microscopy (FE-SEM). The morphologies of electrochemically deposited HA showed plate-like shapes on the titanium alloys, and the morphologies of the RF-sputtered HA coating had the appearance droplet particles on the plate-like precipitates that had formed by electrochemical deposition. For the RF-sputtered HA coatings, the Ca/P ratio was increased, compared to that for the electrochemically deposited HA surface. Moreover, the RF-sputtered HA coating, consisting of agglomerated droplet particles on the electrochemically deposited HA surface, had better wettability compared to the bulk titanium alloy surface. - Highlights: • Hydroxyapatite (HA) was deposited on Ti–Ta–Zr alloys by radio-frequency (RF) magnetron sputtering and a cyclic voltammetry. • The morphologies of the RF-sputtered HA coating on electrochemical deposits presented plate-like shapes with a droplet particle. • The Ca/P ratio for RF-sputtered HA coatings was greater than that for electrochemical deposited HA coatings. • The RF-sputtered and electrochemical HA coatings had superior wettability compared to the electrochemically deposited coatings

  11. Depositional environments of the uranium bearing Cutler Formations, Lisbon Valley, Utah

    International Nuclear Information System (INIS)

    Campbell, J.A.; Steele-Mallory, B.A.

    1979-01-01

    The Cutler Formation in Lisbon Valley, San Juan County, Utah, is composed predominantly of fluvial arkosic sandstones, siltstones, shales, and mudstones that were deposited by meandering streams that flowed across a flood plain and tidal flat close to sea level. Two types of channel deposits are recognized from their sedimentary structures: meandering and distributary. The flood plain was occasionally transgressed by a shallow sea from the west, resulting in the deposition of several thin limestones and marine sandstones. The marine sandstones were deposited as longshore bars. Wind transported sand along the shoreline of the shallow sea, forming a coastal dune field. Marine sandstones and eolian sandstones are more common in the upper Cutler in the southern part of the area, whereas in the central and northern part of the area the formation is predominantly fluvial. Crossbed orientation indicates that Cutler streams flowed S. 67 0 W. on the average, whereas marine currents moved sediment S. 36 0 E. and N. 24 0 W., and wind transported sand S. 80 0 E. The uranium in the Cutler is found in the central and northern part of the area, in the upper part of the formation, in small fluvial sandstone bodies that were deposited predominantly in a distributary environment. No uranium is known in the marine or eolian sandstones. Petrographically, the uranium-bearing sandstones are identical to other Cutler fluvial sandstones except that they contain less calcite and more clay and are slightly coarser grained. Ore formation has modified the host sandstones very little

  12. Depositional environments of the uranium-bearing Cutler Formations, Lisbon Valley, Utah

    Science.gov (United States)

    Campbell, John A.; Steele-Mallory, Brenda A.

    1979-01-01

    The Cutler Formation in Lisbon Valley, San Juan County, Utah, is composed predominantly of fluvial arkosic sandstones, siltstones, shales, and mudstones that were deposited by meandering streams that flowed across a flood plain and tidal flat close to sea level. Two types of channel deposits are recognized from their sedimentary structures: meandering and distributary. The flood plain was occasionally transgressed by a shallow sea from the west, resulting in the deposition of several thin limestones and marine sandstones. The marine sandstones were deposited as longshore bars. Wind transported sand along the shoreline of the shallow sea, forming a coastal dune field. Marine sandstones and eolian sandstones are more common in the upper Cutler in the southern part of the area, whereas in the central and northern part of the area the formation is predominantly fluvial. Crossbed orientation indicates that Cutler streams flowed S. 67? W. on the the average, whereas marine currents moved sediment S. 36? E. and N. 24? W., and wind transported sand S. 800 E. The uranium in the Cutler is found in the central and northern part of the area, in the upper part of the formation, in small fluvial sandstone bodies that were deposited predominantly in a distributary environment. No uranium is known in the marine or eolian sandstones. Petrographically, the uranium-bearing sandstones are identical to other Cutler fluvial sandstones except that they contain less calcite and more clay and are slightly coarser grained. Ore formation has modified the host sandstones very little.

  13. The importance of dissolved free oxygen during formation of sandstone-type uranium deposits

    Science.gov (United States)

    Granger, Harry Clifford; Warren, C.G.

    1979-01-01

    One factor which distinguishes t, he genesis of roll-type uranium deposits from the Uravan Mineral Belt and other sandstone-type uranium deposits may be the presence and concentration of dissolved free oxygen in the ore-forming. solutions. Although dissolved oxygen is a necessary prerequisite for the formation of roll-type deposits, it is proposed that a lack of dissolved oxygen is a prerequisite for the Uravan deposits. Solutions that formed both types of deposits probably had a supergene origin and originated as meteoric water in approximate equilibrium with atmospheric oxygen. Roll-type deposits were formed where the Eh dropped abruptly following consumption of the oxygen by iron sulfide minerals and creation of kinetically active sulfur species that could reduce uranium. The solutions that formed the Uravan deposits, on the other hand, probably first equilibrated with sulfide-free ferrous-ferric detrital minerals and fossil organic matter in the host rock. That is, the uraniferous solutions lost their oxygen without lowering their Eh enough to precipitate uranium. Without oxygen, they then. became incapable of oxidizing iron sulfide minerals. Subsequent localization and formation of ore bodies from these oxygen-depleted solutions, therefore, was not necessarily dependent on large reducing capacities.

  14. Pulsed laser deposition of ITO thin films and their characteristics

    International Nuclear Information System (INIS)

    Zuev, D. A.; Lotin, A. A.; Novodvorsky, O. A.; Lebedev, F. V.; Khramova, O. D.; Petuhov, I. A.; Putilin, Ph. N.; Shatohin, A. N.; Rumyanzeva, M. N.; Gaskov, A. M.

    2012-01-01

    The indium tin oxide (ITO) thin films are grown on quartz glass substrates by the pulsed laser deposition method. The structural, electrical, and optical properties of ITO films are studied as a function of the substrate temperature, the oxygen pressure in the vacuum chamber, and the Sn concentration in the target. The transmittance of grown ITO films in the visible spectral region exceeds 85%. The minimum value of resistivity 1.79 × 10 −4 Ω cm has been achieved in the ITO films with content of Sn 5 at %.

  15. Fundamental study of ash formation and deposition: Effect of reducing stoichiometry

    Energy Technology Data Exchange (ETDEWEB)

    Helble, J.J.; Bool, L.E.; Kang, S.G. [and others

    1995-11-01

    This project is designed to examine the effects of combustion stoichiometry on the fundamental aspects of ash formation and ash deposit initiation. Emphasis is being placed on reducing stoichiometries associated with low-NOx combustion, although a range of oxidant/fuel ratios are being considered. Previous work has demonstrated that ash formation depends strongly upon coal mineralogy, including mineral type, size, amount, and the presence of organically associated inorganic species. Combustion temperature and the oxidation state of iron also play a significant role. As these latter items will vary with changes in stoichiometry, research to determine the net effect on deposition is required.

  16. Kinetics of Hydrocarbon formation in a- C:H Film deposition plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Cal, E de la; Tabares, F L

    1993-07-01

    The formation of C2 and Cp hydrocarbons during the PACVD of a-C:H films from admixtures of methane with H2 and He has been investigated by mass spectrometry under several deposition condition. The time evolution of the observed species indicates that the formation mechanisms of ethylene and acetylene are sensitive to the conditions of the wall during the growing of the film. Acetylene are sensitive to the conditions of the wall during the growing of the film. Acetylene formation was found to be directly related to the formation of the film on top of the carburized metal. (Author) 12 refs.

  17. Kinetics of Hydrocarbon formation in a-C:H Film deposition plasmas

    International Nuclear Information System (INIS)

    Cal, E. de la; Tabares, F. L.

    1993-01-01

    The formation of C2 and Cp hydrocarbons during the PACVD of a-C:H films from admixtures of methane with H2 and He has been investigated by mass spectrometry under several deposition condition. The time evolution of the observed species indicates that the formation mechanisms of ethylene and acetylene are sensitive to the conditions of the wall during the growing of the film. Acetylene are sensitive to the conditions of the wall during the growing of the film. Acetylene formation was found to be directly related to the formation of the film on top of the carburized metal. (Author) 12 refs

  18. Host rock characteristics of uranium deposits of cataclastic-altered granite type

    International Nuclear Information System (INIS)

    Feng Mingyue

    1997-01-01

    The author expounds the host rock characteristics of uranium deposits of cataclastic-altered granite type, i.e., the high initial content of uranium, the high cataclasis of host rocks, the strong alteration of host rocks, the simple composition of host rocks favourable for the leaching of uranium, as well as the low content of harmful associated elements. These characteristics may be regarded as petrological criteria for recognition and prospecting for such type of uranium deposits

  19. Host rock characteristics of uranium deposits of cataclastic-altered granite type

    Energy Technology Data Exchange (ETDEWEB)

    Mingyue, Feng [Beijing Research Inst. of Uranium Geology (China)

    1997-03-01

    The author expounds the host rock characteristics of uranium deposits of cataclastic-altered granite type, i.e., the high initial content of uranium, the high cataclasis of host rocks, the strong alteration of host rocks, the simple composition of host rocks favourable for the leaching of uranium, as well as the low content of harmful associated elements. These characteristics may be regarded as petrological criteria for recognition and prospecting for such type of uranium deposits.

  20. Analysis on depositional system and discussion on ore-formation conditions of channel sandstone type uranium deposit. Taking Dongsheng area, Ordos meso-cenozoic basin as an example

    International Nuclear Information System (INIS)

    Wu Rengui; Yu Dagan; Zhu Minqiang; Zhou Wanpeng; Chen Anping

    2003-01-01

    Applying the theory of depositional system, the depositional facies and depositional systems of the Zhiluo Formation in Dongsheng area are systematically analysed, and the authors proposed that sediments of the Zhiluo Formation are of fluvial facies, and streams of the Zhiluo time experienced three evolution stages, namely: the early braided stream, the middle low sinuosity meandering stream and the late high sinuosity meandering stream. Based on features of paleoclimatic evolution, the Zhiluo Formation is divided into two lithological members. The lower lithological member consists of sediments of braided and low sinuosity meandering streams under humid-ward paleoclimatic conditions forming grey sedimentary formation. The upper member is composed of sediments of meandering streams under arid-hot paleoclimatic conditions representing complex-colored (mainly red) sedimentary formation. It is suggested that uranium mineralization in the study area is of channel sandstone type and controlled by braided channel sediments. Besides, the ore-formation conditions for channel sandstone type uranium deposit are preliminarily discussed

  1. Geomorphology of crater and basin deposits - Emplacement of the Fra Mauro formation

    Science.gov (United States)

    Morrison, R. H.; Oberbeck, V. R.

    1975-01-01

    Characteristics of continuous deposits near lunar craters larger than about 1 km wide are considered, and it is concluded that (1) concentric dunes, radial ridges, and braided lineations result from deposition of the collision products of ejecta from adjacent pairs of similarly oriented secondary-crater chains and are, therefore, concentrations of secondary-crater ejecta; (2) intracrater ridges are produced within preexisting craters surrounding a fresh primary crater by ricocheting and focusing of secondary-crater ejecta from the preexisting craters' walls; and (3) secondary cratering has produced many of the structures of the continuous deposits of relatively small lunar craters and is the dominant process for emplacement of most of the radial facies of the continuous deposits of large lunar craters and basins. The percentages of Imbrium ejecta in deposits and the nature of Imbrium sculpturing are investigated.

  2. Experimental and numerical study of deposit formation in secondary side SG TSP by electrokinetic approach

    International Nuclear Information System (INIS)

    Guillodo, Michael; Foucault, Marc; Ryckelynck, Natacha; Chahma, Farah; Guingo, Mathieu; Mansour, Carine; Alos-Ramos, Olga; Corredera, Geraldine

    2012-09-01

    Corrosion products deposit formation observed in PWR steam generators (SGs) - related to SG free span fouling and SG clogging - is now reported since several years. SG clogging is a localized phenomenon observed between the leading edge of the Tube Support Plate (TSP) and SG tubing materials. Based on visual inspections, it was found that the gaps between SG tubing material and TSP at the lower part of the broached holes were getting progressively blocked. Therefore, for safe operation, most affected PWRs had to be operated at reduced power. TSP blockage was mainly observed for low-pH water chemistry conditioning, which directly depends on the operating water chemistry. The TSP blockage mechanism is complex due to the localized conditions in which flow pattern change, chemistry and electrochemical conditions are not well understood. Electrokinetic considerations could be pointed out to explain the coupling of chemistry, materials and thermohydraulic (T/H) conditions. In this frame AREVA and EDF have launched a long-term R and D program in order to understand the mechanisms driving the formation of SG clogging. This study based on parametric laboratory tests aims to assess the role of secondary water chemistry, material and T/H conditions on deposit formation. The experimental approach focused on electrokinetic measurements of metallic substrates and on the assessment of oxidation properties of materials in secondary side chemistry. An overall analysis of recent results is presented to address SG deposit formation in secondary water chemistry for various conditioning amines - morpholine, ethanolamine and dimethylamine. To complete the study, the experimental results have been correlated to CFD simulations of particle deposition, by means of stochastic Lagrangian models. These calculations have in particular reproduced correctly the location of the most important particle deposit (the leading edge of the test tube), and have stressed the influence of the

  3. Hydraulic mechanism and time-dependent characteristics of loose gully deposits failure induced by rainfall

    Directory of Open Access Journals (Sweden)

    Yong Wu

    2015-12-01

    Full Text Available Failure of loose gully deposits under the effect of rainfall contributes to the potential risk of debris flow. In the past decades, researches on hydraulic mechanism and time-dependent characteristics of loose deposits failure are frequently reported, however adequate measures for reducing debris flow are not available practically. In this context, a time-dependent model was established to determine the changes of water table of loose deposits using hydraulic and topographic theories. In addition, the variation in water table with elapsed time was analyzed. The formulas for calculating hydrodynamic and hydrostatic pressures on each strip and block unit of deposit were proposed, and the slope stability and failure risk of the loose deposits were assessed based on the time-dependent hydraulic characteristics of established model. Finally, the failure mechanism of deposits based on infinite slope theory was illustrated, with an example, to calculate sliding force, anti-sliding force and residual sliding force applied to each slice. The results indicate that failure of gully deposits under the effect of rainfall is the result of continuously increasing hydraulic pressure and water table. The time-dependent characteristics of loose deposit failure are determined by the factors of hydraulic properties, drainage area of interest, rainfall pattern, rainfall duration and intensity.

  4. Sedimentology and geochemistry of early Proterozoic storm-dominated deposits in the transition zone from microbanded Kuruman to granular Griquatown iron-formation, Griqualand West

    International Nuclear Information System (INIS)

    Beukes, N.J.; Klein, C.

    1990-01-01

    A transition from microbanded Kuruman to granular Griquatown iron-formation is described in terms of sedimentological, petrographic, and geochemical characteristics, as well as whole rock carbon and oxygen isotopic compositions. Five major lithofacies are present in the Kuruman-Griquatown transition zone. The lithofacies are arranged in an upward coarsening sequence. It is concluded that the coarsening upward microbanded-granular iron-formation units in the Kuruman-Griquatown sequence represent shallowing upward storm-dominated deposits. 2 refs

  5. Biofilm Formation Characteristics of Pseudomonas lundensis Isolated from Meat.

    Science.gov (United States)

    Liu, Yong-Ji; Xie, Jing; Zhao, Li-Jun; Qian, Yun-Fang; Zhao, Yong; Liu, Xiao

    2015-12-01

    Biofilms formations of spoilage and pathogenic bacteria on food or food contact surfaces have attracted increasing attention. These events may lead to a higher risk of food spoilage and foodborne disease transmission. While Pseudomonas lundensis is one of the most important bacteria that cause spoilage in chilled meat, its capability for biofilm formation has been seldom reported. Here, we investigated biofilm formation characteristics of P. lundensis mainly by using crystal violet staining, and confocal laser scanning microscopy (CLSM). The swarming and swimming motility, biofilm formation in different temperatures (30, 10, and 4 °C) and the protease activity of the target strain were also assessed. The results showed that P. lundensis showed a typical surface-associated motility and was quite capable of forming biofilms in different temperatures (30, 10, and 4 °C). The strain began to adhere to the contact surfaces and form biofilms early in the 4 to 6 h. The biofilms began to be formed in massive amounts after 12 h at 30 °C, and the extracellular polysaccharides increased as the biofilm structure developed. Compared with at 30 °C, more biofilms were formed at 4 and 10 °C even by a low bacterial density. The protease activity in the biofilm was significantly correlated with the biofilm formation. Moreover, the protease activity in biofilm was significantly higher than that of the corresponding planktonic cultures after cultured 12 h at 30 °C. © 2015 Institute of Food Technologists®

  6. Formation of apatite on hydrogenated amorphous silicon (a-Si:H) film deposited by plasma-enhanced chemical vapor deposition

    International Nuclear Information System (INIS)

    Liu Xuanyong; Chu, Paul K.; Ding Chuanxian

    2007-01-01

    Hydrogenated amorphous silicon films were fabricated on p-type, 100 mm diameter silicon wafers by plasma-enhanced chemical vapor deposition (PECVD) using silane and hydrogen. The structure and composition of the hydrogenated amorphous silicon films were investigated using micro-Raman spectroscopy and cross-sectional transmission electron microscopy (XTEM). The hydrogenated amorphous silicon films were subsequently soaked in simulated body fluids to evaluate apatite formation. Carbonate-containing hydroxyapatite (bone-like apatite) was formed on the surface suggesting good bone conductivity. The amorphous structure and presence of surface Si-H bonds are believed to induce apatite formation on the surface of the hydrogenated amorphous silicon film. A good understanding of the surface bioactivity of silicon-based materials and means to produce a bioactive surface is important to the development of silicon-based biosensors and micro-devices that are implanted inside humans

  7. Formation of apatite on hydrogenated amorphous silicon (a-Si:H) film deposited by plasma-enhanced chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Liu Xuanyong [Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050 (China) and Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China)]. E-mail: xyliu@mail.sic.ac.cn; Chu, Paul K. [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China)]. E-mail: paul.chu@cityu.edu.hk; Ding Chuanxian [Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050 (China)

    2007-01-15

    Hydrogenated amorphous silicon films were fabricated on p-type, 100 mm diameter <1 0 0> silicon wafers by plasma-enhanced chemical vapor deposition (PECVD) using silane and hydrogen. The structure and composition of the hydrogenated amorphous silicon films were investigated using micro-Raman spectroscopy and cross-sectional transmission electron microscopy (XTEM). The hydrogenated amorphous silicon films were subsequently soaked in simulated body fluids to evaluate apatite formation. Carbonate-containing hydroxyapatite (bone-like apatite) was formed on the surface suggesting good bone conductivity. The amorphous structure and presence of surface Si-H bonds are believed to induce apatite formation on the surface of the hydrogenated amorphous silicon film. A good understanding of the surface bioactivity of silicon-based materials and means to produce a bioactive surface is important to the development of silicon-based biosensors and micro-devices that are implanted inside humans.

  8. Thorium deposits in the commonwealth of independent states and their prospective characteristics

    International Nuclear Information System (INIS)

    Kotova, V.M.; Skorovarov, J.I.

    1997-01-01

    Since 1956, the All-Russian Research Institute of Chemical Technology has been engaged in the research of assessing thorium deposits and ore occurrence, as well as developing its production technology from various ore types. From the known CIS thorium and thorium-bearing deposits and occurrences (2500) only 241 sites have their resources estimated. They include 132 monazite placers of the Quarternary age, 6 complex Quarternary deposits of placer type (4 polarite, 1 uranium-thorianite and 1 thorium-platinum placers), 66 endogenous deposits and occurrences and 38 complex ones (including zircon-ilmenite Tertiary and older buried placers). This paper gives a summary of the author's attempt to classify thorium deposits according to their genetic types. The proposed classification scheme is based on formational principles and integrates geological-tectonic, magmatic and other criterions. The deposits is based on formation principles and integrates geological-tectonic, magmatic and other criterions. The deposits which are located in igneous, metamorphic and sedimentary rocks are further observed according to their geological setting and types of mother rocks. Thorium deposits are known in the numerous metallogenetic provinces of the CIS. (author). 1 tab

  9. Depositional architecture and sequence stratigraphy of the Upper Jurassic Hanifa Formation, central Saudi Arabia

    Science.gov (United States)

    El-Sorogy, Abdelbaset; Al-Kahtany, Khaled; Almadani, Sattam; Tawfik, Mohamed

    2018-03-01

    To document the depositional architecture and sequence stratigraphy of the Upper Jurassic Hanifa Formation in central Saudi Arabia, three composite sections were examined, measured and thin section analysed at Al-Abakkayn, Sadous and Maashabah mountains. Fourteen microfacies types were identified, from wackestones to boundstones and which permits the recognition of five lithofacies associations in a carbonate platform. Lithofacies associations range from low energy, sponges, foraminifers and bioclastic burrowed offshoal deposits to moderate lithoclstic, peloidal and bioclastic foreshoal deposits in the lower part of the Hanifa while the upper part is dominated by corals, ooidal and peloidal high energy shoal deposits to moderate to low energy peloidal, stromatoporoids and other bioclastics back shoal deposits. The studied Hanifa Formation exhibits an obvious cyclicity, distinguishing from vertical variations in lithofacies types. These microfacies types are arranged in two third order sequences, the first sequence is equivalent to the lower part of the Hanifa Formation (Hawtah member) while the second one is equivalent to the upper part (Ulayyah member). Within these two sequences, there are three to six fourth-order high frequency sequences respectively in the studied sections.

  10. Impact of Macro-economic Factors on Deposit Formation by Ukrainian Population

    Directory of Open Access Journals (Sweden)

    Shevaldina Valentyna H.

    2014-01-01

    Full Text Available The goal of the article is detection of interconnections between the common economic processes and formation of bank deposits by population. The article builds a correlation and regression model of complex assessment of interconnection between macro-economic factors, savings behaviour of population and level of deposits of population in banks for two hour horizons: short-term, which is characterised with deployment of crisis phenomena both in global economy and in Ukrainian economy and the medium-term one. The article characterises the most significant common macro-economic factors. In the result of the study the article establishes that Ukrainian population is oriented at short-term horizon when forming savings due to the uncertainty in future. In the medium-term prospective, savings of the population are formed basically under influence of macro-economic factors, while formation of deposits by Ukrainian population is mostly influenced by socio-psychological factors.

  11. Formation of banded vegetation patterns resulted from interactions between sediment deposition and vegetation growth.

    Science.gov (United States)

    Huang, Tousheng; Zhang, Huayong; Dai, Liming; Cong, Xuebing; Ma, Shengnan

    2018-03-01

    This research investigates the formation of banded vegetation patterns on hillslopes affected by interactions between sediment deposition and vegetation growth. The following two perspectives in the formation of these patterns are taken into consideration: (a) increased sediment deposition from plant interception, and (b) reduced plant biomass caused by sediment accumulation. A spatial model is proposed to describe how the interactions between sediment deposition and vegetation growth promote self-organization of banded vegetation patterns. Based on theoretical and numerical analyses of the proposed spatial model, vegetation bands can result from a Turing instability mechanism. The banded vegetation patterns obtained in this research resemble patterns reported in the literature. Moreover, measured by sediment dynamics, the variation of hillslope landform can be described. The model predicts how treads on hillslopes evolve with the banded patterns. Thus, we provide a quantitative interpretation for coevolution of vegetation patterns and landforms under effects of sediment redistribution. Copyright © 2018. Published by Elsevier Masson SAS.

  12. Post-depositional formation of vivianite-type minerals alters sediment phosphorus records

    NARCIS (Netherlands)

    DIjkstra, Nikki; Hagens, Mathilde; Egger, Matthias; Slomp, Caroline P.

    2018-01-01

    Phosphorus (P) concentrations in sediments are frequently used to reconstruct past environmental conditions in freshwater and marine systems, with high values thought to be indicative of a high biological productivity. Recent studies suggest that the post-depositional formation of vivianite, an

  13. Technical committee meeting on aerosol formation, vapour deposits and sodium vapour trapping. Summary report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1977-01-01

    The papers presented at the LMFBR meeting on aerosol formation covered the following four main topics: theoretical studies on aerosol behaviour and comparison with experimental results; techniques for measurement of aerosols; techniques for trapping sodium vapour and aerosols in gas circuits; design of components having to cope with aerosol deposits. The resulting summaries, conclusions and recommendations which were were agreed upon are presented.

  14. CFD simulation of ash deposit formation in fixed bed biomass furnaces and boilers

    NARCIS (Netherlands)

    Forstner, M.; Hofmeister, G.; Joeller, M.; Dahl, J.; Braun, M.; Kleditzsch, S.; Scharler, R.; Obernberger, I.

    2006-01-01

    In order to describe and predict the formation of ash deposits in biomass fired combustion plants, a mathematical model is being developed and implemented into the CFD code Fluent¿ as a post processing tool. At the present state of development the model covers the release of coarse ash particles and

  15. Technical committee meeting on aerosol formation, vapour deposits and sodium vapour trapping. Summary report

    International Nuclear Information System (INIS)

    1977-01-01

    The papers presented at the LMFBR meeting on aerosol formation covered the following four main topics: theoretical studies on aerosol behaviour and comparison with experimental results; techniques for measurement of aerosols; techniques for trapping sodium vapour and aerosols in gas circuits; design of components having to cope with aerosol deposits. The resulting summaries, conclusions and recommendations which were were agreed upon are presented

  16. Factors controlling deposits in recovery boilers -particle formation and deposition; Soodakattilan likaantuminen ja siihen vaikuttavien tekijoeiden hallinta. Hiukkasten muodostuminen ja depositio

    Energy Technology Data Exchange (ETDEWEB)

    Kauppinen, E I; Mikkanen, P; Tapper, U; Ylaetalo, S; Jaervinen, R [VTT Chemical Technology, Espoo (Finland); Jokiniemi, J K; Pyykoenen, J; Eskola, A [VTT Energy, Espoo (Finland)

    1997-10-01

    In this project the aim is to find critical factors controlling the deposit formation in the recovery boilers. Focus is on particle formation, growth and deposition. During year 1995 the aerosol particle formation was studied by an experimental study within the recovery boiler furnace and by a sensitivity study with the ABC (Aerosol Behaviour in Combustion) computer code. During year 1996 the experimental studies on the aerosol particle formation continued within the furnace and the deposition mechanisms for carry over particles were included in the ABC code and sensitivity studies of the deposition were carried out. The experimental study confirmed the fact that the particles are already formed in the recovery boiler furnace. The particle formation is initiated in the boundary layer of the burning droplet or char bed, where metals are vaporised and oxidised to form tiny seed particles

  17. Sedimentologic characteristics of recent washover deposits from Assateague Island, Maryland

    Science.gov (United States)

    Bernier, Julie C.; Zaremba, Nicholas J.; Wheaton, Cathryn J.; Ellis, Alisha M.; Marot, Marci E.; Smith, Christopher G.

    2016-06-08

    The U.S. Geological Survey has a long history of responding to and documenting the impacts of storms along the Nation’s coasts and incorporating these data into storm impact and coastal change vulnerability assessments. Although physical changes caused by tropical and extratropical storms to the sandy beaches and dunes fronting barrier islands are generally well documented, the interaction between sandy shoreline erosion and overwash with the back-barrier wetland and estuarine environments is poorly constrained. The goal of the Barrier Island and Estuarine Wetland Physical Change Assessment project is to integrate a wetland-change assessment with existing coastal-change assessments for the adjacent sandy dunes and beaches, initially focusing on Assateague Island along the Maryland and Virginia coastline. Assateague Island was impacted by waves and storm surge associated with the passage of Hurricane Sandy in October 2012, causing erosion and overwash along the ocean-facing sandy shoreline as well as erosion and overwash deposition in the back-barrier and estuarine bay environments.

  18. The Kongsberg silver deposits, Norway: Ag-Hg-Sb mineralization and constraints for the formation of the deposits

    Science.gov (United States)

    Kotková, Jana; Kullerud, Kåre; Šrein, Vladimír; Drábek, Milan; Škoda, Radek

    2018-04-01

    The Kongsberg silver district has been investigated by microscopy and electron microprobe analysis, focusing primarily on the Ag-Hg-Sb mineralization within the context of the updated mineral paragenesis. The earliest mineralization stage is represented by sulfides, including acanthite, and sulfosalts. Native silver formed initially through breakdown of early Ag-bearing phases and later through influx of additional Ag-bearing fluids and silver remobilization. The first two generations of native silver were separated in time by the formation of Ni-Co-Fe sulfarsenides and the monoarsenide niccolite along rims of silver crystals. The presence of As-free sulfosalts and the absence of di- and tri-arsenides suggest a lower arsenic/sulfur activity ratio for the Kongsberg deposits compared to other five-element deposits. Native silver shows binary Ag-Hg and Ag-Sb solid solutions, in contrast to the ternary Ag-Hg-Sb compositions typical for other deposits of similar type. Antimonial silver together with allargentum, dyscrasite, and pyrargyrite was documented exclusively from the northern area of the district. Elsewhere, the only Sb-bearing minerals are polybasite and tetrahedrite/freibergite. Hg-rich silver (up to 21 wt% Hg) has been documented only in the central-western area. Myrmekite of freibergite and chalcopyrite reflects exsolution from an original Ag-poor tetrahedrite upon cooling, while myrmekite of pyrite and silver, forming through breakdown of low-temperature phases (argentopyrite or lenaite) upon heating, characterizes the Kongsberg silver district. Based on the stabilities of minerals and mineral assemblages, the formation of the silver mineralization can be constrained to temperatures between 180 and 250 °C.

  19. Stratigraphy, age, and depositional setting of the Miocene Barstow Formation at Harvard Hill, central Mojave Desert, California

    Science.gov (United States)

    Leslie, Shannon R.; Miller, David M.; Wooden, Joseph L.; Vazquez, Jorge A.

    2010-01-01

    New detailed geologic mapping and geochronology of the Barstow Formation at Harvard Hill, 30 km east of Barstow, CA, help to constrain Miocene paleogeography and tectonics of the central Mojave Desert. A northern strand of the Quaternary ENE-striking, sinistral Manix fault divides the Barstow Formation at Harvard Hill into two distinct lithologic assemblages. Strata north of the fault consist of: a green rhyolitic tuff, informally named the Shamrock tuff; lacustrine sandstone; partially silicified thin-bedded to massive limestone; and alluvial sandstone to pebble conglomerate. Strata south of the fault consist of: lacustrine siltstone and sandstone; a rhyolitic tuff dated at 19.1 Ma (U-Pb); rock-avalanche breccia deposits; partially silicified well-bedded to massive limestone; and alluvial sandstone and conglomerate. Our U-Pb zircon dating of the Shamrock tuff by SHRIMP-RG yields a peak probability age of 18.7 ± 0.1 Ma. Distinctive outcrop characteristics, mineralogy, remanent magnetization, and zircon geochemistry (Th/U) suggest that the Shamrock tuff represents a lacustrine facies of the regionally extensive Peach Spring Tuff (PST). Here we compare zircon age and geochemical analyses from the Shamrock tuff with those of the PST at Stoddard Wash and provide new insight into the age of zircon crystallization in the PST rhyolite. Results of our field studies show that Miocene strata at Harvard Hill mostly accumulated in a lacustrine environment, although depositional environments varied from a relatively deep lake to a very shallow lake or even onshore setting. Rock-avalanche breccias and alluvial deposits near the base of the exposed section indicate proximity to a steep basin margin and detrital studies suggest a southern source for coarse-grained deposits; therefore, we may infer a southern basin-margin setting at Harvard Hill during the early Miocene. Our geochronology demonstrates that deposition of the Barstow Formation at Harvard Hill extended from before

  20. Fractal characteristics of an asphaltene deposited heterogeneous surface

    International Nuclear Information System (INIS)

    Amin, J. Sayyad; Ayatollahi, Sh.; Alamdari, A.

    2009-01-01

    Several methods have been employed in recent years to investigate homogeneous surface topography based on image analysis, such as AFM (atomic force microscopy) and SEM (scanning electron microscopy). Fractal analysis of the images provides fractal dimension of the surface which is used as one of the most common surface indices. Surface topography has generally been considered to be mono-fractal. On the other hand, precipitation of organic materials on a rough surface and its irregular growth result in morphology alteration and converts a homogeneous surface to a heterogeneous one. In this case a mono-fractal description of the surface does not completely describe the nature of the altered surface. This work aims to investigate the topography alteration of a glass surface as a result of asphaltene precipitation and its growth at various pressures using a bi-fractal approach. The experimental results of the deposited surfaces were clearly indicating two regions of micro- and macro-asperities namely, surface types I and II, respectively. The fractal plots were indicative of bi-fractal behavior and for each surface type one fractal dimension was calculated. The topography information of the surfaces was obtained by two image analyses, AFM and SEM imaging techniques. Results of the bi-fractal analysis demonstrated that topography alteration in surface type II (macro-asperities) is more evident than that in surface type I (micro-asperities). Compared to surface type II, a better correlation was observed between the fractal dimensions inferred from the AFM images (D A ) and those of the SEM images (D S ) in surface type I.

  1. Discussion on geological characteristics and types of uranium deposit of Mesozoic-cenozoic basin in Guangdong

    International Nuclear Information System (INIS)

    Wang Kesheng; Deng Shihua

    1992-01-01

    Systematic summary is briefly made of the distribution, classification, formation, regional geological setting, uranium deposit type, ore-controlling geological conditions of the Mesozoic-Cenozoic basin in Guangdong area, and on this basis it is proposed that there exist different ore-controlling conditions in different types of basin and different types of deposit can be formed in them, thus indicating the direction for exploration of the basin type uranium deposit from now on and expanding the prospect of ore-finding in the basins in Guangdong area

  2. Basic feature of host rock and its relation to the formation of leachable sandstone type uranium deposit in Shihongtan

    International Nuclear Information System (INIS)

    Quan Zhigao; Zhang Jiamin; Ji Haijun; Sun Yanhuan; Zhang Fa

    2012-01-01

    Basic feature of sedimentology and petrology and lithogeochemistry of middle Jurassic Xishanyao formation were discussed for Shihongtan uranium deposit in the paper. The relation between host rock and ore formation was analysed. It is indicated that the formation of Shihongtan uranium deposit de-ponds on the following host features in sedimentology, petrology, lithogeochemistry and the intense oxidized epigenetic alteration under hot dry climate condition during the formation of peneplain caused by the slow tilting uplift. (authors)

  3. Relationships between environment and characteristics of marine Fe-Mn deposits in the Romanche trench

    International Nuclear Information System (INIS)

    Bonte, Philippe.

    1981-11-01

    The geological characteristics and Fe-Mn deposits from the North wall of the Romanche trench (Atlantic ocean) were studied in order to investigate possible relationships of these deposits with hydrothermalism. The results indicate diffuse hydrothermal activity in all of the rock samples which may explain the notable mineralogical associations observed, such as talc-dolomite-hematite-serpentine. All rock outcrops were covered with Fe-Mn deposits, but no such deposits were noted on sedimentary platforms. The variations in average chemical composition are very low among the different deposits. Hence, the phenomenon which produces these deposits is not localized. From this study, we conclude that marine Fe-Mn deposits result from the continuous supply of terrigenous iron and discontinuous supply of manganese, probably hydrothermal in origin. Detrital particles and numerous chemical elements are scavenged during the accretion process itself, whereas some trace elements, among the least soluble (Co, Ti, Th, Ce), are adsorbed on these deposits, independently of the accretion. This explains the inverse variation of the content of these elements versus deposit thickness [fr

  4. Geology and genesis of uranium deposits in sedimentary and metamorphic formation

    International Nuclear Information System (INIS)

    Danchev, V.I.; Belevtsev, Ya.N.

    1980-01-01

    Main genetic types of uranium deposits in sedimentary cover are described. Their genetic classification is based on the principle of conjugation of ore-forming process with the stages of lithogenesis of ore-enclosing rocks. Examples of poligeneity of uranium mineralization are presented. Texture-structural peculiarities of ores and types of ore-controlling zonality are considered as criteria of definite deposits belonging to various genetic classes. The analysis is given of main regularities of location of exogenous and poligenic uranium deposits. Processes of uranium ore-formation under the conditions of low and high degrees of metamorphism are considered. On the basis of separate types of deposits shown is the possibility of mobilization, transfer and concentration of ore substance, its transformation from primary to secondary forms. Metamorphous and ultrametamorphous deposits are formed as a result of ore element translocation within considerable distances under the effect of endogenous solutions and their concentration in favourable structures. Conclusions on the effect of lithogenesis and metamorphism processes on the ore formation are substantiated by field observations, analyses (including methods of isotopic geochemistry) as well as by experiments

  5. Factors that influence properties of FOG deposits and their formation in sewer collection systems.

    Science.gov (United States)

    Iasmin, Mahbuba; Dean, Lisa O; Lappi, Simon E; Ducoste, Joel J

    2014-02-01

    Understanding the formation of Fat, Oil, and Grease (FOG) deposits in sewer systems is critical to the sustainability of sewer collection systems since they have been implicated in causing sewerage blockages that leads to sanitary sewer overflows (SSOs). Recently, FOG deposits in sewer systems displayed strong similarities with calcium-based fatty acid salts as a result of a saponification reaction. The objective of this study was to quantify the factors that may affect the formation of FOG deposits and their chemical and rheological properties. These factors included the types of fats used in FSEs, environmental conditions (i.e. pH and temperature), and the source of calcium in sewer systems. The results of this study showed that calcium content in the calcium based salts seemed to depend on the solubility limit of the calcium source and influenced by pH and temperature conditions. The fatty acid profile of the calcium-based fatty acid salts produced under alkali driven hydrolysis were identical to the profile of the fat source and did not match the profile of field FOG deposits, which displayed a high fraction of palmitic, a long chain saturated fatty acid. It is hypothesized that selective microbial metabolism of fats and/or biologically induced hydrogenation may contribute to the FOG deposit makeup in sewer system. Therefore, selective removal of palmitic in pretreatment processes may be necessary prior to the discharge of FSE wastes into the sewer collection system. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. The role of microorganisms in the formation of pitch deposits in pulp and paper mills.

    Science.gov (United States)

    Stranger-Johannessen, M

    1984-01-01

    The cause of pitch deposit formation seems still not fully understood. The work reported here demonstrates that microorganisms effect the agglomeration of emulgated resin droplets and the formation of sticky precipitates. Pitch deposits from mills consist mainly of ethanol-soluble resins. It is also the ethanol-soluble fraction of wood resins which forms stable emulsions and which is easily agglomerated by microorganisms. Pitch deposits, collected from various pulp and paper mills, were all found to contain large amounts of microorganisms. Sterile resin emulsions prepared from pitch deposits remained stable over long periods. After inoculation with microorganisms the emulsions were destabilized and the resins completely precipitated as sticky lumps. Various bacteria and fungi are capable of agglomerating the resins, but species isolated from water, pulp and slime in paper mills were usually most effective. Resins from fresh wood were precipitated at a faster rate than aged resins. Problems of pitch formation can be considerably reduced when microbial growth is kept under control in the production system. To be effective, the control measures, e.g. slimicides, must be applied at the right place and time, and in the correct concentrations. This presupposes a thorough knowledge of the plant's microbiological condition which can only be obtained by microbiological examination. Practical cases of the appropriate application of biocides in pulp and paper mill systems are discussed.

  7. Berau coal in East Kalimantan; Its petrographics characteristics and depositional environment

    Directory of Open Access Journals (Sweden)

    Nana Suwarna

    2014-06-01

    Full Text Available http://dx.doi.org/10.17014/ijog.vol2no4.20071To asses the characteristics of the Early to Middle Miocene Berau coal in the Berau Basin, leading to interpretation of coal depositional environments, some fresh outcrop and subcrop samples and also drill cores of the coals have been analyzed microscopically. Coal petrographic analysis was performed on twenty four coal samples from the Middle Miocene Lati Formation. Vitrinite, present in a high value, and ranging between 66.2 - 96.2%, is dominated by vitrinite B. On the other hand, inertinite and exinite, showing a similar value, exist in a low to moderate amount. Vitrinite reflectance, present in a low value, varies from 0.40 - 0.58%. Low mineral matter content is dominated by clay minerals (0.4 - 6.6% with minor pyrite. Transitions from wet and very wet forested swamps to drier conditions with lower tree density are indicated by the higher content of vitrinite B, whilst a reverse trend is indicated by the lower content of vitrinite A. Petrographic indices obtained from facies diagnostic macerals show that an accumulation of the ancient peats under prevailing relatively wet limited influx clastic marsh to very wet forest swamps or moors is considered. The composition of the coal samples supports the interpretation of a system of fluvial to meandering streams in an upper delta plain environment. The original peat-forming vegetation was composed mainly of cellulose rich, shrub-like plants, tree ferns, herbaceous plant communities, with minor amount of trees. Thereby, the organic facies concept is thus applicable in basin studies context and has potential to become an additional tool for depositional environment interpretation.  

  8. REE characteristics and uranium metallogenesis of sandstone-type uranium deposits in northern Sichuan

    International Nuclear Information System (INIS)

    Zhu Xiyang; Wang Yunliang; Wang Zhichang; Zhang Chengjiang

    2004-01-01

    On the basis of the analysis of a large number of samples at sandstone-type uranium deposits in northern Sichuan, this paper analyses the REE composition of country rocks, ores, calcite-veins and uranium minerals, and systematically summarizes their REE geochemical characteristics, and discusses variation regularity of REE during depositional and diagenetic processes. By comparing these characteristics with those of typical hydrothermal volcanics-type and metamorphic rock type uranium deposits both at home and abroad, authors suggest that sandstone-type uranium deposits in northern Sichuan are characterized by REE geochemical features of hydrothermal reworking metallogenesis, the uranium mineralization has experienced two stages: the diagenetic preconcentration and the concentration of hydrothermal reworking

  9. Depositional environments and porosity distribution in regressive limestone reservoirs of the Mishrif Formation, Southern Iraq

    International Nuclear Information System (INIS)

    AlDabbas, Moutaz; AlJassim Jassim; AlJumaily Saad

    2010-01-01

    Eight subsurface sections and a large number of thin sections of the Mishrif Limestone were studied to unravel the depositional facies and environments. The allochems in the Mishrif Formation are dominated by bioclasts, whereas peloids, ooids, and intraclasts are less abundant. The sedimentary microfacies of the Mishrif Formation includes mudstone, wackestone, packstone, grainstone, floatstone, and rudstone, which have been deposited in basinal, outer shelf, slop followed by shoal reef and lagoonal environments. The formation displays various extents of dolomitization and is cemented by calcite and dolomite. The formation has gradational contact with the underlying Rumaila Formation but is unconformably overlain by the Khasib Formation. The unconformity is recognized because the skeletal grains are dominated by Chaophyta (algae), which denotes the change of environment from fully marine to lacustrine environment. Thus, the vertical bioclast analysis indicates that the Mishrif Formation is characterized by two regressive cycles, which control the distribution of reservoir quality as well as the patterns of calcite and dolomite cement distribution. Mishrif Formation gradationally overlies Rumaila Formation. This was indicated by the presence of the green parts of Chaophyta (algae) as main skeletal grains at the uppermost part of well Zb-47, which refer to lacustrine or fresh water environment. Petrographical study shows that the fossils, peloids, oolitis, and intraclasts represent the main allochem. Calcite and dolomite (as diagenetic products) are the predominant mineral components of Mishrif Formation. Fossils were studied as an environmental age and facial boundaries indicators, which are located in a chart using personal computer programs depending on their distributions on the first appearance of species. Fifteen principal sedimentary microfacies have been identified in the Mishrif Formation, which includes lime mudstone, mudstone-wackestone, wackestone

  10. Analysis of Characteristics of Ore about Iron Deposit of Da Hong Mountain in Yun Nan Province

    Directory of Open Access Journals (Sweden)

    Zhang Yuefeng

    2016-01-01

    Full Text Available This thesis aims to analyse the deposit characteristics about Da Hong Mountains Iron ore in Yunnan province. The texture and structure, especially the chemical composition, is different in every section of deposit after comparing. Moreover, the content of SiO2 is much higher than general iron ore. However, the content of other noble metals cannot reach the lowest industrial grade. Da Hong Mountains Iron ore has unique features because of metallogenic periods.

  11. Geochemical characteristics of The Emet (Espey-Hisarcik) borate deposits, Kütahya, Turkey

    Science.gov (United States)

    Koçak, İ.; Koç, Ş.

    2018-06-01

    Nearly 72% world's borate reserves are in western part of Turkey. The Emet (Kütahya) deposit is one of these deposits. The Emet borate deposit, like other deposits in western Anatolia, was deposited in Miocene lacustrine environment whose formation coincides with volcanic activity started in Paleogene and lasted to the beginning of Quaternary. The borate ore displaying lenticular structure is alternated with claystone, marl, tuff and thin bedded limestone. The mineral paragenesis is composed of colemanite, hydroboracite, Veatchite, dolomite, calcite, montmorillonite and illite. The Emet borate deposit has been the subject of various geologic and mineralogical studies. In the present study major and trace element contents of 60 borate samples from this deposit are discussed. Among the trace elements, significant enrichment was found in As, Se, Sr, Cs, Sb and Li. Element correlations indicate volcanic source for boron (exhalations and hydrothermal solutions) whilst other elements are found to be derived from a terrestrial source. According to REE data, high Ce concentrations and anomalies are generally indicative of oxygenated depositional environment whilst low Ce contents facilitated the lake waters to be low oxygenated as a result of H2S-rich hydrothermal solutions. The weak negative anomaly detected only in the Hisarcık region is attributed to lacking of Eu contribution to the lake due to insufficient alteration on the continent.

  12. Main types and metallogenetic characteristics of sandstone-type uranium deposits in central asian mobile belt and its neighbouring area, and the study on prospecting direction of northwest China

    International Nuclear Information System (INIS)

    Fu Chengming

    2007-01-01

    Based on the study of geotectonic setting, formation evolution model and metallogenic characteristics of uranium productive basins, important sandstone-type uranium deposits in Central Asian mobile belt and neighbouring area are divided into five types. The statial distribution pattern of different sandstone-type uranium deposits is analyzed in detail. Geotectonic setting and metallogenetic characteristics are discussed. Finally, the characteristics of basin geodynamics, prospecting type and ore-bearing stratigraphy in Northwest China have been proposed. (authors)

  13. Results of a downhole formation microscanner study in a Juro-Triassic-aged sedimentary deposit (Passaic Formation)

    International Nuclear Information System (INIS)

    Fischer, J.A.; Fischer, J.J.; Bullwinkel, R.J.

    1994-01-01

    Studies to determine the structural and geohydrological properties of the Passaic Formation were performed at two sites. Both sites are located in northeastern New Jersey, within the Juro-Triassic-aged Newark Basin. The Passaic Formation rocks are described in the literature as a reddish brown, thin to massively bedded, sedimentary deposit with lithology ranging from claystone through conglomerate. A fractured open-quotes layer cakeclose quotes model has been proposed (and is generally accepted) to describe the prevailing geohydrological conditions. The Formation MicroScanner tool was used in four wells drilled for these projects (two at each site). In addition to this microresistivity tool, a suite of other oil field geophysical tools (Gamma, Induction, Dipmeter, Temperature, and Neutron probes) were also utilized. The data collected with the Formation MicroScanner were correlated with detailed logs and the continuous core retrieved from three of the wells. Pump test data was also obtained at both sites. The geophysical data obtained at both sites allowed the direct identification of fractures and their orientation in relation to bedding. Fracture and bedding aperture size and orientation were measured. The results, as presented in this paper, show a high degree of inhomogeneity at both sites rather than the conventional layer cake model. For appropriate site analyses it was necessary to significantly refine the previously assumed Passaic Formation geohydrological and structural model. 14 refs., 4 figs

  14. Chemistry and melting characteristics of fireside deposits taken from boiler tubes in waste incinerators

    International Nuclear Information System (INIS)

    Otsuka, Nobuo

    2011-01-01

    Highlights: → We examine tube deposits taken from boilers of municipal solid waste incinerators. → Literature survey is done on the corrosion mechanism of tube steels. → Chemical analyses, X-ray diffraction, DSC, and corrosion test were conducted. → Melting behavior of salt constituents affected the corrosiveness of the deposits. - Abstract: Twenty-three tube deposits taken from seven heat-recovery boilers of municipal solid waste incinerators were examined by chemical analyses and X-ray diffraction. These deposits were measured by Differential Scanning Calorimeter (DSC) in N 2 to investigate their melting characteristics. Sixteen deposits were used to evaluate their corrosiveness to carbon steel by high-temperature corrosion test conducted at 400 o C for 20 h in 1500 ppm HCl - 300 ppm SO 2 - 7.5%O 2 - 7.5%CO 2 - 20%H 2 O - N 2 . Total heat of endothermic reactions of the deposits taking place between 200 and 400 o C can be related to the corrosion rate of carbon steel at 400 o C. Corrosion initiated at temperatures when the deposits started to melt, became severe when fused salt constituents increased, and alleviated when the majority of the deposits became fused. The corrosion can be interpreted as fused salt corrosion caused by chloride and sulfate salts.

  15. Characteristics of uranium mineralization and depositional system of host sediments, Bayantala basin, Inner Mongolia autonomous region

    International Nuclear Information System (INIS)

    Zhu Minqiang; Wu Rengui; Yu Dagan; Chen Anping; Shen Kefeng

    2003-01-01

    Based upon the research of basin fills at the Bayantala basin, the genetic facies of host sediments have been ascertained and the target beds and their range are delineated. The sand bodies of the Upper Member of Tengge'er Formation deposited in fan delta front is favorable to the formation of uranium mineralization of phreatic-interlayer oxidation. The Saihantala Fm deposited in fluvial system can be divided into Lower Member and Upper Member based on depositional microfacies and paleoclimate. The Lower Member of braided system is the most important target bed enriched in organic matter where basal-channel-type uranium mineralization occurs. Features of alteration and mineralization suggest that the early-stage and the late-stage uranium mineralization are related to phreatic oxidation and interlayer oxidation (roll-type) respectively. Meanwhile, the secondary reduction has superimposed over the earlier mineralization in the area caused by hydrocarbons raising along faults

  16. Formation of β-FeSi 2 thin films by partially ionized vapor deposition

    Science.gov (United States)

    Harada, Noriyuki; Takai, Hiroshi

    2003-05-01

    The partially ionized vapor deposition (PIVD) is proposed as a new method to realize low temperature formation of β-FeSi 2 thin films. In this method, Fe is evaporated by E-gun and a few percents of Fe atoms are ionized. We have investigated influences of the ion content and the accelerating voltage of Fe ions on the structural properties of β-FeSi 2 films deposited on Si substrates. It was confirmed that β-FeSi 2 can be formed on Si(1 0 0) substrate by PIVD even at substrate temperature as low as 350, while FeSi by the conventional vacuum deposition. It was concluded that the influence of Fe ions on preferential orientation of β-FeSi 2 depends strongly on the content and the acceleration energy of ions.

  17. Formation of {beta}-FeSi{sub 2} thin films by partially ionized vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Harada, Noriyuki; Takai, Hiroshi

    2003-05-01

    The partially ionized vapor deposition (PIVD) is proposed as a new method to realize low temperature formation of {beta}-FeSi{sub 2} thin films. In this method, Fe is evaporated by E-gun and a few percents of Fe atoms are ionized. We have investigated influences of the ion content and the accelerating voltage of Fe ions on the structural properties of {beta}-FeSi{sub 2} films deposited on Si substrates. It was confirmed that {beta}-FeSi{sub 2} can be formed on Si(1 0 0) substrate by PIVD even at substrate temperature as low as 350, while FeSi by the conventional vacuum deposition. It was concluded that the influence of Fe ions on preferential orientation of {beta}-FeSi{sub 2} depends strongly on the content and the acceleration energy of ions.

  18. Investigation of deposition characteristics and properties of high-rate deposited silicon nitride films prepared by atmospheric pressure plasma chemical vapor deposition

    International Nuclear Information System (INIS)

    Kakiuchi, H.; Nakahama, Y.; Ohmi, H.; Yasutake, K.; Yoshii, K.; Mori, Y.

    2005-01-01

    Silicon nitride (SiN x ) films have been prepared at extremely high deposition rates by the atmospheric pressure plasma chemical vapor deposition (AP-PCVD) technique on Si(001) wafers from gas mixtures containing He, H 2 , SiH 4 and N 2 or NH 3 . A 150 MHz very high frequency (VHF) power supply was used to generate high-density radicals in the atmospheric pressure plasma. Deposition rate, composition and morphology of the SiN x films prepared with various deposition parameters were studied by scanning electron microscopy and Auger electron spectroscopy. Fourier transformation infrared (FTIR) absorption spectroscopy was also used to characterize the structure and the chemical bonding configurations of the films. Furthermore, etching rate with buffered hydrofluoric acid (BHF) solution, refractive index and capacitance-voltage (C-V) characteristics were measured to evaluate the dielectric properties of the films. It was found that effective passivation of dangling bonds and elimination of excessive hydrogen atoms at the film-growing surface seemed to be the most important factor to form SiN x film with a dense Si-N network. The C-V curve of the optimized film showed good interface properties, although further improvement was necessary for use in the industrial metal-insulator-semiconductor (MIS) applications

  19. Combustion Chamber Deposits and PAH Formation in SI Engines Fueled by Producer Gas from Biomass Gasification

    DEFF Research Database (Denmark)

    Ahrenfeldt, Jesper; Henriksen, Ulrik Birk; Schramm, Jesper

    2003-01-01

    Investigations were made concerning the formation of combustion chamber deposits (CCD) in SI gas engines fueled by producer gas. The main objective was to determine and characterise CCD and PAH formation caused by the presence of the light tar compounds phenol and guaiacol in producer gas from...... on filters and a sorbent was used for collection of vapour phase aromatic compounds. The filters and sorbent were analysed for polycyclic aromatic hydrocarbons (PAH) formed during combustion. The measurements showed that there was no significant increase in particulate PAH emissions due to the tar compounds...

  20. Kinetics of Hydrocarbon formation in a-C:H film deposition plasmas

    International Nuclear Information System (INIS)

    De la Cal, E.; Tabares, F.L.

    1993-01-01

    The formation of C 2 and C 3 hydrocarbons during the PACVD of a-C-H films from admixtures of methane with H 2 and He has been investigated by mass spectrometry under several deposition condition. The time evolution of the observed species indicates that the formation mechanism of ethylene and acetylene are sensitive to the conditions of the wall during the growing of the film. Acetylene are sensitive to the conditions of the wall during the growing of the carburized metal. (Author)

  1. The rudist buildup depositional model, reservoir architecture and development strategy of the cretaceous Sarvak formation of Southwest Iran

    Directory of Open Access Journals (Sweden)

    Yang Du

    2015-03-01

    Full Text Available This paper studies the lithofacies, sedimentary facies, depositional models and reservoir architecture of the rudist-bearing Sar-3 zone of Cretaceous Sarvak in the Southwest of Iran by utilizing coring, thin section, XRD data of five coring wells and 3D seismic data. Research results include the following: According to lithofacies features and their association, the rudist-mound and tidal flat are the main microfacies in the Sar-3 depositional time. By investigating the regional tectonic setting and seismic interpretation, a depositional model was built for the Sar-3 zone, which highlights four key points: 1 The distribution of the rudist-buildup is controlled by the paleo-high. 2 The build-up outside of the wide colonize stage but reached the wave-base level in a short time by regression and formation uplift, and was destroyed by the high energy current, then forming the moundy allochthonous deposition after being dispersed and redeposited. 3 The tidal flat develops widely in the upper Sar-3, and the deposition thickness depends on the paleo-structure. The tidal channel develops in the valley and fringe of the Paleo-structure. 4 The exposure within the leaching effect by the meteoric water of the top of Sar-3 is the main controlling factor of the reservoir vertical architecture. The Sar-3 zone featured as the dualistic architecture consists of two regions: the lower is the rudist reef limestone reservoir and the upper is the tidal condense limestone interlayer. The thickness of each is controlled by the paleo-structure. The Paleo-high zone is the preferential development zone. Based on reservoir characteristics of the different zones, a targeted development strategy has been proposed. Keeping the trajectory in the middle of the oil-layer in the paleo-high, and in the paleo-low, make the trajectory crossing the oil-zone and then keep it in the lower.

  2. The depositional environment and petrology of the White Rim Sandstone Member of the Permian Cutler Formation, Canyonlands National Park, Utah

    Science.gov (United States)

    Steele-Mallory, B. A.

    1982-01-01

    The White Rim Sandstone Member of the Cutler Formation of Permian age in Canyonlands National Park, Utah, was deposited in coastal eolian and associated interdune environments. This conclusion is based on stratigraphic relationships primary sedimentary structures, and petrologic features. The White Rim consists of two major genetic units. The first represents a coastal dune field and the second represents related interdune ponds. Distinctive sedimentary structures of the coastal dune unit include large- to medium-scale, unidirectional, tabular-planar cross-bedding; high-index ripples oriented parallel to dip direction of the foresets; coarse-grained lag layers; avalanche or slump marks; and raindrop impressions. Cross-bedding measurements suggest the dunes were deposited as transverse ridges by a dominantly northwest to southeast wind. Distinctive sedimentary structures of the interdune pond unit include wavy, horizontally laminated bedding, adhesion ripples, and desiccation polygons. These features may have been produced by alternate wetting and drying of sediment during water-table fluctuations. Evidence of bioturbation is also present in this unit. Petrologic characteristics of the White Rim helped to define the depositional environment as coastal. A crinoid fragment was identified at one location; both units are enriched in heavy minerals, and small amounts of well rounded, reworked glauconite were found in the White Rim throughout the study area. Earlier work indicates that the White Rim sandstone is late Wolfcampian to early Leonardian in age. During this time, the Canyonlands area was located in a depositional area alternately dominated by marine and nonmarine environments. Results of this study suggest the White Rim represents a coastal dune field that was deposited by predominantly on-shore winds during a period of marine transgression.

  3. Magnetron sputtering cluster apparatus for formation and deposition of size-selected metal nanoparticles

    DEFF Research Database (Denmark)

    Hanif, Muhammad; Popok, Vladimir

    2015-01-01

    selection is achieved using an electrostatic quadrupole mass selector. The deposited silver clusters are studied using atomic force microscopy. The height distributions show typical relative standard size deviation of 9-13% for given sizes in the range between 5-23 nm. Thus, the apparatus demonstrates good...... capability in formation of supported size-selected metal nanoparticles with controllable coverage for various practical applications....

  4. Carbonate deposition, Pyramid Lake subbasin, Nevada: 1. Sequence of formation and elevational distribution of carbonate deposits (Tufas)

    Science.gov (United States)

    Benson, L.

    1994-01-01

    During the late Quarternary, the elevation of terrace cutting and carbonate deposition in the Pyramid Lake subbasin were controlled by constancy of lake level imposed by spill to adjoining subbasins. Sill elevations are 1177-1183 m (Mud Lake Slough Sill), 1207 m (Emerson Pass Sill), and 1265 m (Darwin Pass Sill). Carbonate deposition was favored by: (1) hydrologic closure, (2) proximity to a source of calcium, (3) elevated water temperature, and (4) a solid substrate. The thickness and aspect of tufa are a function oflake-level dynamics. Relatively thin sheets and pendant sheets were deposited during a rising or falling lake. The upper parts of thick reef-form tufas have a horizontal aspect and were deposited in a lake which was stabilized by spill to the Carson Desert subbasin. The lower parts of the reef-form tufas are thinner and their outer surface has a vertical aspect, indicating that the lower part formed in a receding lake. The thickest and most complete sequences of tufa are mounds that border the Pyramid Lake shore. The tops of the tallest mounds reach the elevation of the Darwin Pass Sill and many mounds have been eroded to the elevations of the Mud Lake Slough Sill of the Emerson Pass Sill. The sequence of tufa formation (from oldest to youngest) displayed in these mounds is: (1) a beachrock containing carbonate-cemented volcanic cobbles, (2) broken and eroded old spheroids that contain thinolitic tufa and an outer rind of dense laminated tufa, (3) large cylindrical (tubular) tufas capped by (4) coatings of old dense tufas, and (5) several generations of old branching tufa commonly associated with thin, platy tufas and coatings of thinolitic tufa, (6) young spheroids that contain poorly oriented young thinolitic tufa in the center and several generations of radially oriented young thinolitic tufas near the outer edge, (7) a transitional thinolite-to-branching tufa, (8) two or more layers of young branching tufa, (9) a 0.5-cm-thick layer of fine

  5. Characteristics of the streak clays of the hyacinth gold deposit by the techniques of DRX and AT

    International Nuclear Information System (INIS)

    Trueba Gaetano, R.; Cabrera Diaz, I.; Casanova Gomez, A.; Aguila Terry, A.; Martinez Montalvo, A.; Canel Carreras, L.; Rodriguez Garcia, J. C.; Alonso Perez, J. A.

    2016-01-01

    It is exposed the investigative work of the mineralogical characteristics of different types of clays present in the veins of the Oro Jacinto deposit through the use of XRD and TA analytical techniques, supported by a study of particle size in the range of 2 mm to 63 μm. Significant feature of these samples is that being crushed they generated high content of fine material below 0.074 mm. This size particles range is presented between 17.68% and 50.78% of samples volume, majority particles being smaller than 0.063 mm, this interstratificated fine material with different types of clay makes the fraction below 74 μm present characteristics of clayey material. The results of XRD analysis and comparative Thermo gravimetric that are achieved for samples of 'Jacinto' gold vein deposit indicate that the clays presented in the fine fractions are: chlorite-montmorillonite; illite; hidromoscovite and muscovite, which turned out to be higher in samples of the grain B eatriz . During the ores formation process of the veins S ur Elena , it is evident that the hydrothermal fluids that led to the formation of the rocks, experienced greater degree of alteration during its transformation into argillite, which is manifested in three mineralogical regularities: Low crystallinity of the chlorite-montmorillonite clay. Transformation of muscovite - hidromoscovite into illite. Presence of abundant calcite in some samples. Higher concentrations of iron oxides (goethite). (Author)

  6. Facies distribution, depositional environment, and petrophysical features of the Sharawra Formation, Old Qusaiba Village, Central Saudi Arabia

    Science.gov (United States)

    Abbas, Muhammad Asif; Kaminski, Michael; Umran Dogan, A.

    2016-04-01

    moderate-scale transgressive episodes, while the thin shale interbeds in the middle and upper part of the Sharawra Formation represent small-scale transgressions. Overall, the Sharawra Formation contains a series of repetitive transgressive and regressive events and has been interpreted as a pro-deltaic deposit in previous studies. In the present study, the lowermost sandstone thickly bedded facies lie within the transition zone environment. The siltstone facies and the horizontally stratified facies show a middle shore face environment. The middle shore face environment is present locally. The bioturbation in the uppermost facies is indicative of the upper shore face environment. The porosity values do not vary much, as the average porosity for the sandstone facies is about 15%, for the siltstones it ranges about 7%. The permeability is variable throughout the formation, the values range from 50 to 300 md. Although sandstone has a good porosity and permeability, the siltstone facies exhibit poor petrophysical characteristics. In terms of reservoir characterization, the mineralogical mature, moderately well sorted top most sandstone facies, with appreciable porosity and permeability can be considered as a potential reservoir rock. This study has provided a base for future quantitative studies in this important formation in the area.

  7. Hydraulic experiment on formation mechanism of tsunami deposit and verification of sediment transport model for tsunamis

    Science.gov (United States)

    Yamamoto, A.; Takahashi, T.; Harada, K.; Sakuraba, M.; Nojima, K.

    2017-12-01

    An underestimation of the 2011 Tohoku tsunami caused serious damage in coastal area. Reconsideration for tsunami estimation needs knowledge of paleo tsunamis. The historical records of giant tsunamis are limited, because they had occurred infrequently. Tsunami deposits may include many of tsunami records and are expected to analyze paleo tsunamis. However, present research on tsunami deposits are not able to estimate the tsunami source and its magnitude. Furthermore, numerical models of tsunami and its sediment transport are also important. Takahashi et al. (1999) proposed a model of movable bed condition due to tsunamis, although it has some issues. Improvement of the model needs basic data on sediment transport and deposition. This study investigated the formation mechanism of tsunami deposit by hydraulic experiment using a two-dimensional water channel with slope. In a fixed bed condition experiment, velocity, water level and suspended load concentration were measured at many points. In a movable bed condition, effects of sand grains and bore wave on the deposit were examined. Yamamoto et al. (2016) showed deposition range varied with sand grain sizes. In addition, it is revealed that the range fluctuated by number of waves and wave period. The measurements of velocity and water level showed that flow was clearly different near shoreline and in run-up area. Large velocity by return flow was affected the amount of sand deposit near shoreline. When a cutoff wall was installed on the slope, the amount of sand deposit repeatedly increased and decreased. Especially, sand deposit increased where velocity decreased. Takahashi et al. (1999) adapted the proposed model into Kesennuma bay when the 1960 Chilean tsunami arrived, although the amount of sand transportation was underestimated. The cause of the underestimation is inferred that the velocity of this model was underestimated. A relationship between velocity and sediment transport has to be studied in detail, but

  8. Geological characteristics and genesis of Niangnianggong gold-silver deposit in Liaoning Province, China

    International Nuclear Information System (INIS)

    Hou Zhenyuan

    2013-01-01

    Based on the analysis of geological characteristics and genesis of Niangnianggong deposit, this paper suggested that the deposit is controlled by the EW direction faults and belongs to quartz vein type. Average value of δ 34 S of the ore is 2.19‰, and the variation ranges from 1.6‰ to 4.9‰, which shows the feature of hydrothermal sulfur. The result of lead isotope is fall into original lead zone, which shows the feature of primeval lead system. The result of H-O isotope is close to meteoric line, which means the participation of precipitations. Rb-Sr age of ore is 186.6 Ma, which is similar to the age of diorite dike. Multi-disciplinary analysis concludes that the deposit is a quartz vein type deposit with composite hydrothermal origin. (author)

  9. Investigation of Deposit Formation Mechanisms for Engine In-cylinder Combustion and Exhaust Systems Using Quantitative Analysis and Sustainability Study

    Science.gov (United States)

    Ye, Z.; Meng, Q.; Mohamadian, H. P.; Wang, J. T.; Chen, L.; Zhu, L.

    2007-06-01

    The formation of SI engine combustion deposits is a complex phenomenon which depends on various factors of fuel, oil, additives, and engine. The goal of this study is to examine the effects of operating conditions, gasoline, lubricating oil, and additives on deposit formation. Both an experimental investigation and theoretical analysis are conducted on a single cylinder engine. As a result, the impact of deposits on engine performance and exhaust emissions (HC, NO x ) has been indicated. Using samples from a cylinder head and exhaust pipe as well as switching gases via the dual-gas method (N2, O2), the deposit formation mechanism is thoroughly investigated via the thermogravity analysis approach, where the roles of organic, inorganic, and volatile components of fuel, additives, and oil on deposit formation are identified from thermogravity curves. Sustainable feedback control design is then proposed for potential emission control and performance optimization

  10. Effects of Energy Deposition Characteristics on Localised Forced Ignition of Homogeneous Mixtures

    Directory of Open Access Journals (Sweden)

    Dipal Patel

    2015-06-01

    Full Text Available The effects of the characteristic width of the energy deposition profile and the duration of energy deposition by the ignitor on localised forced ignition of stoichiometric and fuel-lean homogeneous mixtures have been analysed using simplified chemistry three-dimensional compressible Direct Numerical Simulation (DNS for different values of root-mean-square turbulent velocity fluctuation. The localised forced ignition is modelled using a source term in the energy transport equation, which deposits energy in a Gaussian manner from the centre of the ignitor over a stipulated period of time. It has been shown that the width of ignition energy deposition and the duration over which ignition energy is deposited have significant influences on the success of ignition and subsequent flame propagation. An increase in the width of ignition energy deposition (duration of energy deposition for a given amount of ignition energy has been found to have a detrimental effect on the ignition event, which may ultimately lead to misfire. Moreover, an increase in u′ gives rise to augmented heat transfer rate from the hot gas kernel, which in turn leads to a reduction in the extent of overall burning for both stoichiometric and fuel-lean homogeneous mixtures but the detrimental effects of high values of u′ on localised ignition are particularly prevalent for fuel-lean mixtures.

  11. Main geologic characteristics and metallogenic models of uranium deposits in Zhejiang

    International Nuclear Information System (INIS)

    Tang Qitao

    2000-01-01

    Uranium resources in Zhejiang is abundant with numerous mineralization types. According to the genesis they can be classified into: sedimentary-reworking type, hydrothermal type and infiltration type. The author briefly describes main geologic characteristics and metallogenic models of different type uranium deposits

  12. Spectral characteristics of propylitic alteration minerals as a vectoring tool for porphyry copper deposits

    OpenAIRE

    Neal, LC; Wilkinson, JJ; Mason, PJ; Chang, Z

    2018-01-01

    publisher: Elsevier articletitle: Spectral characteristics of propylitic alteration minerals as a vectoring tool for porphyry copper deposits journaltitle: Journal of Geochemical Exploration articlelink: http://dx.doi.org/10.1016/j.gexplo.2017.10.019 content_type: article copyright: © 2017 Elsevier B.V. All rights reserved.

  13. Fossil organic matter characteristics in permafrost deposits of the northeast Siberian Arctic

    Science.gov (United States)

    Lutz Schirrmeister; Guido Grosse; Sebastian Wetterich; Pier Paul Overduin; Jens Straub; Edward A.G. Schuur; Hans-Wolfgang. Hubberton

    2011-01-01

    Permafrost deposits constitute a large organic carbon pool highly vulnerable to degradation and potential carbon release due to global warming. Permafrost sections along coastal and river bank exposures in NE Siberia were studied for organic matter (OM) characteristics and ice content. OM stored in Quaternary permafrost grew, accumulated, froze, partly decomposed, and...

  14. Effect of Energy Input on the Characteristic of AISI H13 and D2 Tool Steels Deposited by a Directed Energy Deposition Process

    Science.gov (United States)

    Park, Jun Seok; Park, Joo Hyun; Lee, Min-Gyu; Sung, Ji Hyun; Cha, Kyoung Je; Kim, Da Hye

    2016-05-01

    Among the many additive manufacturing technologies, the directed energy deposition (DED) process has attracted significant attention because of the application of metal products. Metal deposited by the DED process has different properties than wrought metal because of the rapid solidification rate, the high thermal gradient between the deposited metal and substrate, etc. Additionally, many operating parameters, such as laser power, beam diameter, traverse speed, and powder mass flow rate, must be considered since the characteristics of the deposited metal are affected by the operating parameters. In the present study, the effect of energy input on the characteristics of H13 and D2 steels deposited by a direct metal tooling process based on the DED process was investigated. In particular, we report that the hardness of the deposited H13 and D2 steels decreased with increasing energy input, which we discuss by considering microstructural observations and thermodynamics.

  15. Hydration characteristics and structure formation of cement pastes containing metakaolin

    Directory of Open Access Journals (Sweden)

    Dvorkin Leonid

    2018-01-01

    Full Text Available Metakaolin (MK is one of the most effective mineral admixtures for cement-based composites. The deposits of kaolin clays are wide-spread in the world. Metakaolin is comparable to silica fume as an active mineral admixture for cement-based composites. In this paper, the rheological and mechanical properties of cement paste containing metakaolin are investigated. The effect of MK is more evident at “tight” hydration conditions within mixtures with low water-cement ratio, provided by application of superplasticizers. The cement is replaced with 0 to 15% metakaolin, and superplasticizer content ranged from 0 to 1.5% by weight of cementitious materials (i.e. cement and metakaolin. An equation is derived to describe the relationship between the metakaolin and superplasticizer content and consistency of pastes. There is a linear dependence between metakalolin content and water demand. Second-degree polynomial describe the influence of superplasticizer content. The application of SP and MK may produce cement-water suspensions with water-retaining capacity at 50-70% higher than control suspensions. The investigation of initial structure forming of cement pastes with SP-MK composite admixture indicates the extension of coagulation structure forming phase comparing to the pastes without additives. Crystallization stage was characterized by more intensive strengthening of the paste with SP-MK admixture comparing to the paste without admixtures and paste with SP. Results on the porosity parameters for hardened cement paste indicate a decrease in the average diameter of pores and refinement of pore structure in the presence of metakaolin. A finer pore structure associated with an increase in strength. X-ray analysis data reveal a growing number of small-crystalline low-alkaline calcium hydrosilicates and reducing portlandite content, when MK dosage increases. Scanning electron microscopy (SEM data confirm, that hardened cement paste containing MK has

  16. Cathodoluminescence characteristics of polycrystalline diamond films grown by cyclic deposition method

    International Nuclear Information System (INIS)

    Seo, Soo-Hyung; Park, Chang-Kyun; Park, Jin-Seok

    2002-01-01

    Polycrystalline diamond films were deposited using a cyclic deposition method where the H 2 plasma for etching (t E ) and the CH 4 +H 2 plasma for growing (t G ) are alternately modulated with various modulation ratios (t E /t G ). From the measurement of full width at half maximum and I D /I G intensity ratio obtained from the Raman spectra, it was found that diamond defects and non-diamond carbon phases were reduced a little by adopting the cyclic deposition method. From the cathodoluminescence (CL) characteristics measured for deposited films, the nitrogen-related band (centered at approximately 590 nm) as well as the so-called band-A (centered at approximately 430 nm) were observed. As the cyclic ratio t E /t G increased, the relative intensity ratio of band-A to nitrogen-related band (I A /I N ) was found to monotonically decrease. In addition, analysis of X-ray diffraction spectra and scanning electron microscope morphologies showed that CL characteristics of deposited diamond films were closely related to their crystal orientations and morphologies

  17. Eocene Yegua Formation (Claiborne group) and Jackson group lignite deposits of Texas

    Science.gov (United States)

    Hook, Robert W.; Warwick, Peter D.; Swanson, Sharon M.; Hackley, Paul C.; Warwick, Peter D.; Karlsen, Alexander K.; Merrill, Matthew D.; Valentine, Brett J.

    2011-01-01

    The lignite deposits within the upper Eocene Yegua Formation (Claiborne Group) and the overlying Jackson Group are among the coal resources that were not quantitatively assessed as part of the U.S. Geological Survey's (USGS) National Coal Resource Assessment (NCRA) program in the Gulf Coastal Plain coal province. In the past, these lignite-bearing stratigraphic units often have been evaluated together because of their geographic and stratigraphic proximity (Fisher, 1963; Kaiser, 1974; Kaiser et al., 1980; Jackson and Garner, 1982; Kaiser, 1996) (Figures 1, 2). The term “Yegua-Jackson trend“ is used informally herein for the lignite-bearing outcrops of these Late Eocene deposits in Texas. Lignite beds in the Yegua-Jackson trend generally are higher both in ash yield and sulfur content than those of the underlying Wilcox Group (Figure 2). Recent studies (Senkayi et al., 1987; Ruppert et al., 1994; Warwick et al., 1996, 1997) have shown that some lignite beds within the Yegua-Jackson trend contain partings of volcanic ash and host elevated levels of trace elements that have been identified as potentially hazardous air pollutants (HAPs) in the United States Clean Air Amendments of 1990. Lignite beds within the Yegua Formation are thin (less than or equal to 6 ft) and laterally discontinuous in comparison with most Wilcox Group deposits (Ayers, 1989a); in contrast, the Jackson Group lignite beds range up to 12 ft in total thickness and are relatively continuous laterally, extending nearly 32 mi along strike.

  18. Dimensional and material characteristics of direct deposited tool steel by CO II laser

    Science.gov (United States)

    Choi, J.

    2006-01-01

    Laser aided direct metalimaterial deposition (DMD) process builds metallic parts layer-by-layer directly from the CAD representation. In general, the process uses powdered metaUmaterials fed into a melt pool, creating fully dense parts. Success of this technology in the die and tool industry depends on the parts quality to be achieved. To obtain designed geometric dimensions and material properties, delicate control of the parameters such as laser power, spot diameter, traverse speed and powder mass flow rate is critical. In this paper, the dimensional and material characteristics of directed deposited H13 tool steel by CO II laser are investigated for the DMD process with a feedback height control system. The relationships between DMD process variables and the product characteristics are analyzed using statistical techniques. The performance of the DMD process is examined with the material characteristics of hardness, porosity, microstructure, and composition.

  19. Two main types of uranium deposit within phanerozoic formations of Ukraine

    International Nuclear Information System (INIS)

    Shumlyanskiy, V.A.

    1997-01-01

    The two main types of uranium deposits occurring within Phanaerozoic formations of Ukraine are described. They consist of uraniferous bearing bitumen in the Upper Carboniferous to Lower Triassic red beds, and infiltration (roll front type) uranium ores, occurring in the sediments filling ancient Paleogene river valleys. The first deposit type include black to dark brown beds of disseminated to massive bitumen occurring respectively as ozyantraxolite and oxykerite. These beds include uranium, as well as other metals. This uranium mineralization is dated at 195 to 200 million years old. The second type includes infiltration deposits in Paleogene coal bearing sediments, with the uranium mineralization occurring in the upper part of the sequence. The sediments occur within paleovallyes eroded into the underlying crystalline basement of the Ukraine shield and its weathered crust. The paleovalleys extend to a depth of 70 to 90 metres. The coal bearing sediments are overlain by sediments of younger age. Several uranium deposits of the second type are known, including a few identified as being of industrial grade. (author). 7 figs

  20. Magnesium–Gold Alloy Formation by Underpotential Deposition of Magnesium onto Gold from Nitrate Melts

    Directory of Open Access Journals (Sweden)

    Vesna S. Cvetković

    2017-03-01

    Full Text Available Magnesium underpotential deposition on gold electrodes from magnesium nitrate –ammonium nitrate melts has been investigated. Linear sweep voltammetry and potential step were used as electrochemical techniques. Scanning electron microscopy (SEM, energy dispersive spectrometry (EDS and X-ray diffraction (XRD were used for characterization of obtained electrode surfaces. It was observed that reduction processes of nitrate, nitrite and traces of water (when present, in the Mg underpotential range studied, proceeded simultaneously with magnesium underpotential deposition. There was no clear evidence of Mg/Au alloy formation induced by Mg UPD from the melt made from eutectic mixture [Mg(NO32·6H2O + NH4NO3·XH2O]. However, EDS and XRD analysis showed magnesium present in the gold substrate and four different Mg/Au alloys being formed as a result of magnesium underpotential deposition and interdiffusion between Mg deposit and Au substrate from the melt made of a nonaqueous [Mg(NO32 + NH4NO3] eutectic mixture at 460 K.

  1. PECULIAR FEATURES PERTAINING TO SOIL DEPOSIT FORMATION IN THE MESOPOTAMIA ZONE OF IRAQ

    Directory of Open Access Journals (Sweden)

    A. Al-Robai Ali

    2013-01-01

    Full Text Available The paper considers geological conditions for sedimentary mantle formation. In the geological past limestone deposits and sedimentation rock mass from fragmentary materials brought by water flows were formed in the southern part of the stretched geosyncline which had been submerged by shallow sea. By lapse of time deposits were transferred into sandstone, siltstone and mudstone that represented the bottom part of rock mass. Continental conditions were established as a result of orogenic process which took place nearly 30–50 million years ago. Erosional activity of wind and flowing waters was observed on the surface for a long period of time.The top part of soil rock mass is represented by alluvial deposits of the rivers Tigris and Euphrates. During the process of sediment deposition more full-flowing Tigris caused more complicated dynamics of water channels  including meandering and changeability of inter-bedding.Engineering and geological investigations have been carried out with the purpose to study structure of soil rock mass in various regions of the country (Al-Diwaniya, Khidr, Al-Nasiriya and Khila. Specific drill columns have been selected on the basis of analysis of soil rock masses.  Theses drill columns may serve for further selection of rational types of foundations (shallow foundation, piles foundation or creation of artificial foundations (cementing, armoring etc.. 

  2. Influences of different oxidants on the characteristics of HfAlOx films deposited by atomic layer deposition

    International Nuclear Information System (INIS)

    Fan Ji-Bin; Liu Hong-Xia; Ma Fei; Zhuo Qing-Qing; Hao Yue

    2013-01-01

    A comparative study of two kinds of oxidants (H 2 O and O 3 ) with the combinations of two metal precursors [trimethylaluminum (TMA) and tetrakis(ethylmethylamino) hafnium (TEMAH)] for atomic layer deposition (ALD) hafnium aluminum oxide (HfAlO x ) films is carried out. The effects of different oxidants on the physical properties and electrical characteristics of HfAlO x films are studied. The preliminary testing results indicate that the impurity level of HfAlO x films grown with both H 2 O and O 3 used as oxidants can be well controlled, which has significant effects on the dielectric constant, valence band, electrical properties, and stability of HfAlO x film. Additional thermal annealing effects on the properties of HfAlO x films grown with different oxidants are also investigated. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  3. Geochemical Aspects of Formation of Large Oil Deposits in the Volga-Ural Sedimentary Basin

    Science.gov (United States)

    Plotnikova, I.; Nosova, F.; Pronin, N.; Nosova, J.; Budkevich, T.

    2012-04-01

    C35/hC34, GAM / HOP, S27/S28/S29 (steranes), DIA / REG, Ts / Tm, MOR / HOP, NOR / HOP, TET / TRI, C29SSR, C29BBAA, C31HSR, S30STER, TRI / PENT, TRI / HOP. Comparison in the rock-oil system was performed primarily according to the parameters indicating the depositional environment of the source rock that contains syngenetic DOM - according to the coefficients that determine lithological conditions for the formation of the supposed oil-source bed strata (DIA / REG, Ts / Tm, NOR / HOP, TRI / HOP and STER / PENT). Biomarker ratios indicate a different type of sedimentation basins. Sediments, which accumulated DOM from Semilukskiy horizon, can be characterized by low clay content, or its absence, that is consistent with the carbonate type of cut of the horizon. The bacterial material that was accumulated under reducing conditions of sedimentation appeared to be the source of syngenetic OM. Chemofossils found in oils from Pashiyskiy horizon are typical of sedimentary strata that contain clay - for clastic rocks, which in the study area are mainly represented by deposits and Eyfel Givetian layers of the Middle Devonian and lowfransk substage of the Upper Devonian. The study of correlations obtained for the different coefficients of OM and oils showed that only the relationships between Ts/Tm and DIA/REG and between NOR/HOP and TRI/HOP are characteristic of close, almost similar values of correlation both for the dispersed organic matter and for oil. In all other cases, the character of the correlation of OM is significantly different from that of oil. The differences in values and ranges of biomarker ratios as well as the character of their correlation indicates the absence of genetic connection between the oil from Pashiyskiy horizon for the dispersed organic matter from Semilukskiy horizon. This conclusion is based on the study of five biomarker parameters (DIA/REG, Ts/Tm, NOR/HOP, TRI/HOP and STER/PENT). The research results described in the article clearly indicate the

  4. Discussion on distribution characteristics of calcareous sandstone in Shihongtan uranium deposit and its genesis

    International Nuclear Information System (INIS)

    Zhu Huanqiao; Qiao Haiming; Jia Heng; Xu Gaozhong

    2007-01-01

    Based on the observation and statistics on the calcareous sandstone in the ore host layer in Shihongtan uranium deposit, this paper finds that the calcareous sandstone occurs on and off near the top or wash surface of the sandbody as beads-strings lens along the layer and concentrates in the area where the ore bodies are rich. In lithology, the calcareous sandstone is of coarse grain and fairly well sorted. According to the analysis on the lithogeochemical features and the carbon and oxygen isotopes of calcareous sandstones, it is realized that there some genetic relation between the formation of calcareous sandstone and uranium mineralization in the oxidation-deoxidation transitional belt, that is the precipitation and enrichment of uranium is accompanied by the deposition of carbonate and formation of calcareous sandstone. (authors)

  5. Structural and genetic characteristics of uranium phosphates metasomatic deposits in limestones

    Energy Technology Data Exchange (ETDEWEB)

    Korolev, K G; Pigul' skij, V I; Prozorov, V G

    1985-01-01

    Voluminous literature on structural and genetic peculiarities of phosphorus-uranium deposits in Ordovician volcanogenic-sedimentary masses, is analyzed to clarify the reasons for their formation. On the basis of geologo-structural and mineralogo-geochemical research, it has been established that phosphorus-uranium mineralization is of metasomatic, postgeosyncline, intraorogenetic character. Mineralization is related to filtration of uprising fluids along rupture untrafolding violations. Formation of metasomatic ore bodies took place under hypabyssal conditions in closed structures by means of endogenous replacement of both carbonate and alumosilicate rocks, including intrusive volcanic and sedimentary complexes. The scale of phosphorus-uranium deposits depends on tectonic peculiarities of ore-containing medium much more than on lithological ones.

  6. THE ROLE OF CRYOGENIC PROCESSES IN THE FORMATION OF LOESS DEPOSITS

    Directory of Open Access Journals (Sweden)

    Vyacheslav N. Konishchev

    2015-01-01

    Full Text Available The paper describes a new approach to the analysis of the genetic nature of mineral substances in loess deposits. In permafrost under the influence of multiple alternate freezing and thawing in dispersed deposits, quartz particles accumulate the 0.05-0.01 mm fraction, while feldspars are crushed to a coarse fraction of 0.1-0.05 mm. In dispersed sediments formed in temperate and warm climatic zones, the granulometric spectrum of quartz and feldspar has the opposite pattern. The proposed methodology is based on a differential analysis of the distribution of these minerals by the granulometric spectrum. We have proposed two criteria - the coefficient of cryogenic contrast (CCC and the coefficient of distribution of heavy minerals, which allow determination of the degree of participation of cryogenic processes in the formation of loess sediments and processes of aeolian or water sedimentation.

  7. Investigation of droplet formation in pulsed Nd:YAG laser deposition of metals and silicon

    Energy Technology Data Exchange (ETDEWEB)

    Siew, Wee-Ong; Lee, Wai-Keat; Wong, Hin-Yong; Tou, Teck-Yong [Multimedia University, Faculty of Engineering, Cyberjaya, Selangor (Malaysia); Yong, Thian-Khok [Multimedia University, Faculty of Engineering, Cyberjaya, Selangor (Malaysia); Universiti Tunku Abdul Rahman, Faculty of Engineering and Science, Kuala Lumpur (Malaysia); Yap, Seong-Shan [Multimedia University, Faculty of Engineering, Cyberjaya, Selangor (Malaysia); Norwegian University of Science and Technology, Institute of Physics, Trondheim (Norway)

    2010-12-15

    In the process of pulsed laser deposition of nickel (Ni) and ruthenium (Ru) thin films, the occurrence of phase explosion in ablation was found to affect the deposition rate and enhance the optical emissions from the plasma plume. Faster thin-film growth rates coincide with the onset of phase explosion as a result of superheating and/or sub-surface boiling which also increased the particulates found on the thin-film surface. These particulates were predominantly droplets which may not be round but flattened and also debris for the case of silicon (Si) ablation. The droplets from Ni and Ru thin films were compared in terms of size distribution and number density for different laser fluences. The origins of these particulates were correlated to the bubble and ripple formations on the targets while the transfer to the thin film surface was attributed to the laser-induced ejection from the targets. (orig.)

  8. Investigation of droplet formation in pulsed Nd:YAG laser deposition of metals and silicon

    International Nuclear Information System (INIS)

    Siew, Wee-Ong; Lee, Wai-Keat; Wong, Hin-Yong; Tou, Teck-Yong; Yong, Thian-Khok; Yap, Seong-Shan

    2010-01-01

    In the process of pulsed laser deposition of nickel (Ni) and ruthenium (Ru) thin films, the occurrence of phase explosion in ablation was found to affect the deposition rate and enhance the optical emissions from the plasma plume. Faster thin-film growth rates coincide with the onset of phase explosion as a result of superheating and/or sub-surface boiling which also increased the particulates found on the thin-film surface. These particulates were predominantly droplets which may not be round but flattened and also debris for the case of silicon (Si) ablation. The droplets from Ni and Ru thin films were compared in terms of size distribution and number density for different laser fluences. The origins of these particulates were correlated to the bubble and ripple formations on the targets while the transfer to the thin film surface was attributed to the laser-induced ejection from the targets. (orig.)

  9. The conjunction of factors that lead to formation of giant gold provinces and deposits in non-arc settings

    Directory of Open Access Journals (Sweden)

    David I. Groves

    2016-05-01

    In contrast to their province scale similarities, the different giant gold deposit styles show contrasting critical controls at the district to deposit scale. For orogenic gold deposits, the giants appear to have formed by conjunction of a greater number of parameters to those that control smaller deposits, with resultant geometrical and lithostratigraphic complexity as a guide to their location. There are few giant IRGS due to their inferior fluid-flux systems relative to orogenic gold deposits, and those few giants are essentially preservational exceptions. Many Carlin-type deposits are giants due to the exceptional conjunction of both structural and lithological parameters that caused reactive and permeable rocks, enriched in syngenetic gold, to be located below an impermeable cap along antiformal “trends”. Hydrocarbons probably played an important role in concentrating metal. The supergiant Post-Betze deposit has additional ore zones in strain heterogeneities surrounding the pre-gold Goldstrike stock. All unequivocal IOCG deposits are giant or near-giant deposits in terms of gold-equivalent resources, partly due to economic factors for this relatively poorly understood, low Cu-Au grade deposit type. The supergiant Olympic Dam deposit, the most shallowly formed deposit among the larger IOCGs, probably owes its origin to eruption of volatile-rich hybrid magma at surface, with formation of a large maar and intense and widespread brecciation, alteration and Cu-Au-U deposition in a huge rock volume.

  10. Geochemical and iron isotopic insights into hydrothermal iron oxyhydroxide deposit formation at Loihi Seamount

    Science.gov (United States)

    Rouxel, Olivier; Toner, Brandy; Germain, Yoan; Glazer, Brian

    2018-01-01

    Low-temperature hydrothermal vents, such as those encountered at Loihi Seamount, harbor abundant microbial communities and provide ideal systems to test hypotheses on biotic versus abiotic formation of hydrous ferric oxide (FeOx) deposits at the seafloor. Hydrothermal activity at Loihi Seamount produces abundant microbial mats associated with rust-colored FeOx deposits and variably encrusted with Mn-oxyhydroxides. Here, we applied Fe isotope systematics together with major and trace element geochemistry to study the formation mechanisms and preservation of such mineralized microbial mats. Iron isotope composition of warm (oxidation of Fe(II) during mixing of the hydrothermal fluid with seawater. By comparing the results with experimentally determined Fe isotope fractionation factors, we determined that less than 20% of Fe(II) is oxidized within active microbial mats, although this number may reach 80% in aged or less active deposits. These results are consistent with Fe(II) oxidation mediated by microbial processes considering the expected slow kinetics of abiotic Fe oxidation in low oxygen bottom water at Loihi Seamount. In contrast, FeOx deposits recovered at extinct sites have distinctly negative Fe-isotope values down to -1.77‰ together with significant enrichment in Mn and occurrence of negative Ce anomalies. These results are best explained by the near-complete oxidation of an isotopically light Fe(II) source produced during the waning stage of hydrothermal activity under more oxidizing conditions. Light Fe isotope values of FeOx are therefore generated by subsurface precipitation of isotopically heavy Fe-oxides rather than by the activity of dissimilatory Fe reduction in the subsurface. Overall, Fe-isotope compositions of microbial mats at Loihi Seamount display a remarkable range between -1.2‰ and +1.6‰ which indicate that Fe isotope compositions of hydrothermal Fe-oxide precipitates are particularly sensitive to local environmental conditions where

  11. Self-organized formation of metal-carbon nanostructures by hyperthermal ion deposition

    Energy Technology Data Exchange (ETDEWEB)

    Hannstein, I.K.

    2006-04-26

    The quasi-simultaneous deposition of mass-selected hyperthermal carbon and metal ions results in a variety of interesting film morphologies, depending on the metal used and the deposition conditions. The observed features are of the order of a few nanometres and are therefore interesting for future potential applications in the various fields of nanotechnology. The present study focuses on the structural analysis of amorphous carbon films containing either copper, silver, gold, or iron using amongst others Rutherford Backscattering Spectroscopy, High Resolution Transmission Electron Microscopy, and Energy Dispersive X-Ray Spectroscopy. The film morphologies found are as follows: copper-containing films consist of copper nanoclusters with sizes ranging from about 3 to 9 nm uniformly distributed throughout the amorphous carbon matrix. The cluster size hereby rises with the copper content of the films. The silver containing films decompose into a pure amorphous carbon film with silver agglomerates at the surface. Both, the gold- and the iron-containing films show a multilayer structure of metal-rich layers with higher cluster density separated by metal-depleted amorphous carbon layers. The layer distances are of the order of up to 15 nm in the case of gold-carbon films and 7 nm in the case of iron-carbon films. The formation of theses different structures cannot be treated in the context of conventional self-organization mechanisms basing upon thermal diffusion and equilibrium thermodynamics. Instead, an ion-induced atomic transport, sputtering effects, and the stability of small metal clusters were taken into account in order to model the structure formation processes. A similar multilayer morphology was recently also reported in the literature for metal-carbon films grown by magnetron sputtering techniques. In order to investigate, whether the mechanisms are the same as in the case of the ion beam deposited films described above, first experiments were conducted

  12. Environmental Characteristics of Carbonatite and Alkaline Intrusion-related Rare Earth Element (REE) Deposits

    Science.gov (United States)

    Seal, R. R., II; Piatak, N. M.

    2017-12-01

    Carbonatites and alkaline intrusions are important sources of REEs. Environmental risks related to these deposit types have been assessed through literature review and evaluation of the geochemical properties of representative samples of mill tailings and their leachates. The main ore mineral in carbonatite deposits is bastnasite [(Ce,La)(CO3)F], which is found with dolomite and calcite ( 65 %), barite (20 - 25 %), plus a number of minor accessory minerals including sulfides such as galena and pyrite. Generally, alkaline intrusion-related REE deposits either occur in layered complexes or with dikes and veins cutting alkaline intrusions. Such intrusions have a more diverse group of REE ore minerals that include fluorcarbonates, oxides, silicates, and phosphates. Ore also can include minor calcite and iron (Fe), lead (Pb), and zinc (Zn) sulfides. The acid-generating potential of both deposit types is low because of a predominance of carbonate minerals in the carbonatite deposits, the presence of feldspars and minor calcite in alkaline intrusion-related deposits, and to only minor to trace occurrence of potentially acid-generating sulfide minerals. Both deposit types, however, are produced by igneous and hydrothermal processes that enrich high-field strength, incompatible elements, which typically are excluded from common rock-forming minerals. Elements such as yttrium (Y), niobium Nb), zirconium (Zr), hafnium (Hf), tungsten (W), titanium (Ti), tantalum (Ta), scandium (Sc), thorium (Th), and uranium (U) can be characteristic of these deposits and may be of environmental concern. Most of these elements, including the REEs, but with the exception of U, have low solubilities in water at the near-neutral pH values expected around these deposits. Mill tailings from carbonatite deposits can exceed residential soil and sediment criteria for Pb, and leachates from mill tailings can exceed drinking water guidelines for Pb. The greatest environmental challenges, however, are

  13. Deposition characteristics of copper particles on roughened substrates through kinetic spraying

    International Nuclear Information System (INIS)

    Kumar, S.; Bae, Gyuyeol; Lee, Changhee

    2009-01-01

    In this paper, a systematic study of copper particle deposition behavior on polished and roughened surfaces (aluminum and copper) in kinetic spray process has been performed. The particle deformation behavior was simulated through finite element analysis (FEA) software ABAQUS explicit 6.7-2. The particle-substrate contact time, contact temperature and contact area upon impact have been estimated for smooth and three different roughened substrate cases. Copper powders were deposited on smooth and grit-blasted copper and aluminium substrates and characterized through scanning electron microscopy and Romulus bond strength analyzer. The results indicate that the deformation and the resultant bonding were higher for the roughened substrates than that of smooth. The characteristic factors for bonding are reported and discussed. Thus the substrate roughness appears to be beneficial for the initial deposition efficiency of the kinetic spray process.

  14. Formation and hydraulic effects of deposits in high temperature sodium coolant systems

    International Nuclear Information System (INIS)

    Yunker, W.

    1976-01-01

    Deposition of sodium impurities in the high temperature (600 0 C), high flow (Reynolds Number approximately equal to 8 x 10 4 ) regions of a sodium coolant circuit is being studied to determine its possible hydraulic effects. Increases in flow impedance (pressure drop/volume flow 2 ) of up to 30 percent have been detected in an annular flow sensor. The apparatus and preliminary results of these tests are presented. Continuing tests are to specifically identify the materials involved and the system conditions under which the formations occur

  15. Negative ion mass spectra and particulate formation in rf silane plasma deposition experiments

    International Nuclear Information System (INIS)

    Howling, A.A.; Dorier, J.L.; Hollenstein, C.

    1992-09-01

    Negative ions have been clearly identified in silane rf plasmas used for the deposition of amorphous silicon. Mass spectra were measured for monosilicon up to pentasilicon negative ion radical groups in power-modulated plasmas by means of a mass spectrometer mounted just outside the glow region. Negative ions were only observed over a limited range of power modulation frequency which corresponds to particle-free conditions. The importance of negative ions regarding particulate formation is demonstrated and commented upon. (author) 3 figs., 19 refs

  16. Dimer and String Formation during Low Temperature Silicon Deposition on Si(100)

    DEFF Research Database (Denmark)

    Smith, A. P.; Jonsson, Hannes

    1996-01-01

    We present theoretical results based on density functional theory and kinetic Monte Carlo simulations of silicon deposition and address observations made in recently reported low temperature scanning tunneling microscopy studies. A mechanism is presented which explains dimer formation on top...... of the substrate's dimer rows at 160 K and up to room temperature, while between-row dimers and longer strings of adatoms (''diluted dimer rows'') form at higher temperature. A crossover occurs at around room temperature between two different mechanisms for adatom diffusion in our model....

  17. Paleoenvironmental reconstruction of the Oligocene-Miocene deposits of the Tethyan Seaway, Qom Formation, Central Iran

    Science.gov (United States)

    Dabaghi Sadr, Fatemeh; Schmiedl, Gerhard

    2017-04-01

    The Cenozoic climate transition from greenhouse to icehouse conditions was associated with major paleogeographic changes in the Tethyan realm. The closure of the Tethyan Seaway and its Iranian gateways during the terminal Paleogene and early Neogene, between approximately 28 and 18 million years, influenced the latitudinal exchange of water masses and energy and is documented in sediment successions of the Qom formation in central Iran. Little is known on the spatial expression and the exact depositional histories of the Qom Formation on orbital time-scales, including a lack of quantitative sea-level reconstructions and studies on the impact of climatic and tectonic changes on marine ecosystems and sedimentation processes. The PhD project focuses on the investigation of lithostratigraphy, biostratigraphy, paleoecology and paleoenvironmental evolution of the Iranian gateways based on late Oligocene to early Miocene foraminiferal faunas and carbonate facies from selected sediment sections of the Qom Basin. The Qom Formation was deposited in the Central Iranian back-arc basin during the Oligocene-Miocene. In this study foraminiferal faunas and carbonate microfacies were studied based on total 191 samples of two section of Qom Formation. One of them is Molkabad section, which is located northwest of Molkabad mountains, southeast of Garmsar. The section mainly consists of limestones, calcareous marls, marls, and gypsum-bearing marls with a total thickness of 760 meters. The Qom Formation at Molkabad section overlies Eocene rocks with an unconformity and consists of the following lithostratigraphic units (from the lower to upper part): Lithothamnium Limestone, Lower Marl Limestone, Bryozoa Limestone, and Upper Marl Group. The Molkabad fault separates the Qom Formation from the overlying Upper Red Formation. The other section is located at Navab anticline in Qom Formation .The section mainly consist of limestone, marl, and gypsum with a total thickness of 318 meters Navab

  18. Main geologic characteristics of paleochannel-type sandstone-hosted uranium deposits and relevant prospecting and exploration policy

    International Nuclear Information System (INIS)

    Chen Zuyi

    1999-01-01

    The author summarizes main prospecting and exploration-related geologic characteristics of paleochannel-type sandstone-hosted uranium deposits such as the structural control over the spatial emplacement of the deposit, the near-source occurrence, the phreatic oxidation origin, the occurrence of the uranium mineralization mostly in one horizon etc. On the basis of analyzing the above characteristics the prospecting and exploration policy of such uranium deposits is proposed

  19. Formation of the Wiesloch Mississippi Valley-type Zn-Pb-Ag deposit in the extensional setting of the Upper Rhinegraben, SW Germany

    Science.gov (United States)

    Pfaff, Katharina; Hildebrandt, Ludwig H.; Leach, David L.; Jacob, Dorrit E.; Markl, Gregor

    2010-01-01

    The Mississippi Valley-type (MVT) Zn-Pb-Ag deposit in the Wiesloch area, Southwest Germany, is controlled by graben-related faults of the Upper Rhinegraben. Mineralization occurs as vein fillings and irregular replacement ore bodies consisting of sphalerite, banded sphalerite, galena, pyrite, sulfosalts (jordanite and geocronite), barite, and calcite in the Middle Triassic carbonate host rock. Combining paragenetic information, fluid inclusion investigations, stable isotope and mineral chemistry with thermodynamic modeling, we have derived a model for the formation of the Wiesloch deposit. This model involves fluid mixing between ascending hot brines (originating in the crystalline basement) with sedimentary formation waters. The ascending brines originally had a near-neutral pH (around 6) and intermediate oxidation state, reflecting equilibrium with granites and gneisses in the basement. During fluid ascent and cooling, the pH of the brine shifted towards more acidic (around 4) and the oxidation state increased to conditions above the hematite-magnetite buffer. These chemical characteristics contrast strongly with those of the pore and fracture fluid residing in the limestone aquifer, which had a pH between 8 and 9 in equilibrium with calcite and was rather reduced due to the presence of organic matter in the limestone. Mixing between these two fluids resulted in a strong decrease in the solubility of silver-bearing sphalerite and galena, and calcite. Besides Wiesloch, several Pb-Zn deposits are known along the Upper Rhinegraben, including hydrothermal vein-type deposits like Badenweiler and the Michael mine near Lahr. They all share the same fluid origin and formation process and only differ in details of their host rock and fluid cooling paths. The mechanism of fluid mixing also seems to be responsible for the formation of other MVT deposits in Europe (e.g., Reocin, Northern Spain; Treves, Southern France; and Cracow-Silesia, Poland), which show notable

  20. Landscape characteristics of Rhizophora mangle forests and propagule deposition in coastal environments of Florida (USA)

    Science.gov (United States)

    Sengupta, R.; Middleton, B.; Yan, C.; Zuro, M.; Hartman, H.

    2005-01-01

    Field dispersal studies are seldom conducted at regional scales even though reliable information on mid-range dispersal distance is essential for models of colonization. The purpose of this study was to examine the potential distance of dispersal of Rhizophora mangle propagules by comparing deposition density with landscape characteristics of mangrove forests. Propagule density was estimated at various distances to mangrove sources (R. mangle) on beaches in southwestern Florida in both high-and low-energy environments, either facing open gulf waters vs. sheltered, respectively. Remote sensing and Geographic Information Systems were used to identify source forests and to determine their landscape characteristics (forest size and distance to deposition area) for the regression analyses. Our results indicated that increasing density of propagules stranded on beaches was related negatively to the distance of the deposition sites from the nearest stands of R. mangle and that deposition was greatly diminished 2 km or more from the source. Measures of fragmentation such as the area of the R. mangle forests were related to propagule deposition but only in low-energy environments. Our results suggest that geographic models involving the colonization of coastal mangrove systems should include dispersal dynamics at mid-range scales, i.e., for our purposes here, beyond the local scale of the forest and up to 5 km distant. Studies of mangrove propagule deposition at various spatial scales are key to understanding regeneration limitations in natural gaps and restoration areas. Therefore, our study of mid-range propagule dispersal has broad application to plant ecology, restoration, and modeling. ?? Springer 2005.

  1. Formation of metal nanoparticles by short-distance sputter deposition in a reactive ion etching chamber

    International Nuclear Information System (INIS)

    Nie Min; Meng, Dennis Desheng; Sun Kai

    2009-01-01

    A new method is reported to form metal nanoparticles by sputter deposition inside a reactive ion etching chamber with a very short target-substrate distance. The distribution and morphology of nanoparticles are found to be affected by the distance, the ion concentration, and the sputtering time. Densely distributed nanoparticles of various compositions were fabricated on the substrates that were kept at a distance of 130 μm or smaller from the target. When the distance was increased to 510 μm, island structures were formed, indicating the tendency to form continuous thin film with longer distance. The observed trend for nanoparticle formation is opposite to the previously reported mechanism for the formation of nanoparticles by sputtering. A new mechanism based on the seeding effect of the substrate is proposed to interpret the experimental results.

  2. Liquid-liquid phase separation and cluster formation at deposition of metals under inhomogeneous magnetic field

    Science.gov (United States)

    Gorobets, O. Yu; Gorobets, Yu I.; Rospotniuk, V. P.; Grebinaha, V. I.; Kyba, A. A.

    2017-10-01

    The formation and dynamic of expansion and deformation of the liquid-liquid interface of an electrolyte at deposition of metals at the surface of the magnetized steel ball is considered in this paper. The electrochemical processes were investigated in an external magnetic field directed at an arbitrary angle to the force of gravity. These processes are accompanied by the formation of effectively paramagnetic clusters of electrochemical products - magnions. Tyndall effect was used for detection of the presence of magnions near the magnetized steel electrode in a solution. The shape of the interface separating the regions with different concentration of magnions, i.e. different magnetic susceptibilities, was described theoretically based on the equation of hydrostatic equilibrium which takes into account magnetic, hydrostatic and osmotic pressures.

  3. Evaluation of burnup characteristics and energy deposition during NSRR pulse irradiation tests on irradiated BWR fuels

    International Nuclear Information System (INIS)

    Nakamura, Takehiko; Yoshinaga, Makio

    2000-11-01

    Pulse irradiation tests of irradiated fuel are performed in the Nuclear Safety Research Reactor (NSRR) to investigate the fuel behavior under Reactivity Initiated Accident Conditions (RIA). The severity of the RIA is represented by energy deposition or peak fuel enthalpy during the power excursion. In case of the irradiated fuel tests, the energy deposition varies depending both on the amounts and distribution of residual fissile and neutron absorbing fission products generated during the base irradiation. Thus, proper fuel burnup characterization, especially for low enriched commercial fuels, is important, because plutonium (Pu) takes a large part of fissile and its generation depends on the neutron spectrum during the base irradiation. Fuel burnup calculations were conducted with ORIGEN2, RODBURN and SWAT codes for the BWR fuels tested in the NSRR. The calculation results were compared with the measured isotope concentrations and used for the NSRR neutron calculations to evaluate energy depositions of the test fuel. The comparison of the code calculations and the measurements revealed that the neutron spectrum change due to difference in void fraction altered Pu generation and energy deposition in the NSRR tests considerably. With the properly evaluated neutron spectrum, the combined burnup and NSRR neutron calculation gave reasonably good evaluation of the energy deposition. The calculations provided radial distributions of the fission product accumulation during the base irradiation and power distribution during the NSRR pulse irradiation, which were important for the evaluation of both burnup characteristics and fission gas release behavior. (author)

  4. The Shublik Formation and adjacent strata in northeastern Alaska description, minor elements, depositional environments and diagenesis

    Science.gov (United States)

    Tourtelot, Harry Allison; Tailleur, Irvin L.

    1971-01-01

    occurrence of silver and 300 ppm lead in gouge along a shear plane may be the result of metals introduced from an extraneous source. The deposits reflect a marine environment that deepened somewhat following deposition of the Sadlerochit Formation and then shoaled during deposition of the upper limestone-siltstone unit. This apparently resulted from a moderate transgression and regression of the sea with respect to a northwest-trending line between Barrow and the Brooks Range at the International Boundary. Nearer shore facies appear eastward. The phosphate in nodules, fossil molds and oolites, appears to have formed diagenetically within the uncompacted sediment.

  5. Structural, optical and electrical characteristics of ITO thin films deposited by sputtering on different polyester substrates

    International Nuclear Information System (INIS)

    Guillen, C.; Herrero, J.

    2008-01-01

    Indium tin oxide (ITO) thin films were deposited by sputtering at room temperature on glass and different polyester substrates; namely polyarylate (PA), polycarbonate (PC) and polyethylene terephtalate (PET). The influence of the substrate on the structural, optical and electrical characteristics of the ITO layers was investigated. The sputtered films exhibited crystallization in the (2 2 2) orientation, with higher mean crystallite size and lower structural distortion onto PET than onto PA, PC or glass substrates. ITO films deposited onto PET showed also higher band gap energy, higher carrier concentration and lower resistivity than the ITO layers onto the other tested substrates. These optical and electrical characteristics have been related to the structural distortion that was found dependent on the specific polyester substrate

  6. Fertility of Rare-Metal Peraluminous Granites and Formation Conditions of Tungsten Deposits

    Science.gov (United States)

    Syritso, L. F.; Badanina, E. V.; Abushkevich, V. S.; Volkova, E. V.; Terekhov, A. V.

    2018-01-01

    The tungsten distribution in rocks of the Kukulbei Complex in eastern Transbaikal region results in a high potential of rare-metal peraluminous granites (RPG) for W mineralization and displays a different behavior of W in Li-F and "standard" RPG. These subtypes differ in the behavior of W in melt, spatial localization of mineralization, and the timing of wolframite crystallization relative to the age of the parental granitic rocks. The significant of W concentration is assumed to be due to fractionation of the Li-F melt; however, wolframite mineralization in Li-F enriched granite is not typical in nature. The results of experiments and our calculations of W solubility in granitic melt show that wolframite hardly ever crystallizes directly from melt; it likely migrates in the fluid phase and is then removes from the magma chamber to the host rocks, where secondary concentration takes place in exocontact greisens and quartz-cassiterite-wolframite veins. At the same time, the isotopic age of accessory wolframite (139.5 ± 2.1 Ma) within the Orlovka massif of Li-F granite is close to the formation age of the massif (140.6 ± 2.9 Ma). A different W behavior is recorded in the RPG subtype with a low lithium and fluorine concentration, exemplified by the Spokoininsky massif. There is no significant W gain in the melt. All varieties of wolframite mineralization in the Spokoininsky massif are derived from greisens, veins, and pegmatoids yielding the same crystallization ages (139.5 ± 1.1 Ma), which are 0.9-1.8 Ma later (taking into account the mean-square weighted deviation) than the Spokoininsky granite formation (144.5 ± 1.4 Ma). Perhaps this period corresponds to the time of transition from the magmatic stage to hydrothermal alteration. Comparison of the isotope characteristics (Rb-Sr and Sm-Nd isotope systems) of rocks and the associated ore minerals (wolframite, cassiterite) from all examined deposits shows a depletion in ɛNd values for ore minerals relative to the

  7. Catahoula formation as a source of sedimentary uranium deposits in east Texas

    International Nuclear Information System (INIS)

    Ledger, E.B.; Tieh, T.T.

    1983-01-01

    Volcanic glass-rich mudstone and siltstone samples from the Oligocene/Miocene Catahoula formation of Jasper County, Texas, and coeval volcaniclastic rock samples from Trans-Pecos, Texas, have been compared as to U, Th, Zr, Ti, K, Rb, and Sr contents. Uranium is slightly greater in the distal ash (5.85 ppM U) compared to the Trans-Pecos samples (average 5.41 ppM U). Diagenetic and pedogenetic alteration of Catahoula volcanic glass releases uranium to solution and, under favorable conditions, this uranium may accumulate to form ore bodies. Uranium has been produced from such ore bodies in south Texas, but economic deposits are not known in east Texas. Significant differences between south and east Texas include: (1) a greater amount of volcanic debris delivered to south Texas, both as air-fall ash and stream-transported material, (2) delivery of only air-fill ash to east Texas, (3) the possibility of more petroleum-related reductants such as H 2 S in south Texas, and (4) pervasive glass alteration with subsequent uranium release in south Texas due to late calichification. These differences argue against economic deposits of the south Texas type being found in east Texas. If economic deposits occur they are likely to be far downdip making exploration difficult and expensive

  8. Geochronology of the Thompson Creek Mo Deposit: Evidence for the Formation of Arc-related Mo Deposits

    Science.gov (United States)

    Lawrence, C. D.; Coleman, D. S.; Stein, H. J.

    2016-12-01

    The Thompson Creek Mo deposit in central ID, has been categorized as an arc-related Mo deposit due to the location, grade of Mo, and relative lack of enrichments in F, Rb, and Nb, compared to the Climax-type Mo deposits. Geochronology from this arc-related deposit provides an opportunity to compare and contrast magmatism, and mineralization to that in Climax-type deposits. Distinct pulses of magmatism were required to form the Thompson Creek Mo deposit, which is consistent with recent geochronology from Climax-type deposits. Molybdenite Re-Os geochronology from five veins requires at least three pulses of magmatism and mineralization between 89.39 +/- 0.37 and 88.47 +/- 0.16 Ma. Zircon U-Pb ages from these mineralized samples overlap with molybdenite mineralization, but show a much wider range (91.01 +/- 0.37 to 87.27 +/- 0.69). Previous work from Climax-type Mo deposits suggest a correlation between a super eruption, and the subsequent rapid (<1 Ma) onset, and completion of Mo mineralizing intrusions. The longer life (3-4 Ma) for the Thompson Creek Mo deposit suggests that the mineralizing intrusions for arc-related Mo deposits may not need to have as high [Mo] as the Climax-type deposits. This study also finds a shift in the source of magmatism from the pre- to syn-mineralizing intrusions. Zircons from pre-mineralizing intrusions have much higher (15-60 pg) concentrations of radiogenic Pb than zircons from mineralized intrusions, which all have less than 15 pg, though whole rock [U] are similar.

  9. Interpretation of postdepositional processes related to the formation and destruction of the Jackpile-Paguate uranium deposit, northwest New Mexico

    International Nuclear Information System (INIS)

    Adams, S.S.; Curtis, H.S.; Hafen, P.L.; Salek-Nejad, H.

    1978-01-01

    This paper presents aspects of geological studies conducted on the Jackpile-Paguate uranium deposit in northwestern New Mexico in order to document and interpret certain geological characteristics of the deposit and suggest a sequence of processes which have formed and, in part, destroyed the deposits. The principle contributions of the paper are the field and petrologic observations and the interpretations they permit. 29 refs

  10. The hydrogeochemical characteristics of the certain uranium deposit and their relationship with uranium mineralization

    International Nuclear Information System (INIS)

    Li Huanguang

    2010-01-01

    On the basis of previous work, this paper studies characteristics of the stratum,lithology,structure, ore bodies, ore and wall rocks and the relations between hydrochemical characteristics and uranium mineraliztion are stressed and anaysed.The environmental index of hydrogeochemisty is closely related with the uranium form, migration,and precipitation. According to negative ion, the ground water is classified into HCO3-,SO42-, HCO3--SO42-and HCO3-Cl-. For deposit genesis, uranium source comes from two parts; there are five mineralizations such as leaching, adsorption, hydrogeochemistry, palaeo-climatology and geothermal mineralization. Hydrogeochemical mineralization is the key process.. (authors)

  11. Electrochemical Investigation on the Formation of Cu Nanowires by Electroless Deposition

    Directory of Open Access Journals (Sweden)

    Felizco Jenichi Clairvaux E.

    2015-01-01

    Full Text Available The growth of copper (Cu nanowires by electroless deposition in aqueous solution at 60-80 °C was studied from an electrochemical perspective using in situ mixed potential measurements and potential-pH diagrams. Scanning Electron Microscopy (SEM showed that thick and short nanowires were obtained at high temperatures, while long and thin nanowires result from low reaction temperatures. In situ mixed potential measurements reveal that Cu(II reduction is more favored at higher reaction temperatures, hastening the reduction reaction. The fast reaction leads to a high concentration of Cu atoms in the solution. As a result, Cu deposition occurs rapidly, such that they attached on both sides and ends of the primary Cu nanowires. This results to the formation of thick and short structures. On the other hand, thin and long nanowires are obtained due to the slow reduction reaction, which gives the Cu atoms more time to orderly attach in a wire-like formation.

  12. The contribution of lateritization processes to the formation of the kaolin deposits from eastern Amazon

    Science.gov (United States)

    da Costa, Marcondes Lima; Sousa, Daniel José Lima; Angélica, Rômulo Simões

    The eastern region of the Amazon is home to the most important kaolin bauxite producing district in Brazil, referred to as the Paragominas-Capim kaolin bauxite district, which has a reserve of at least 1.0 billion tons of high-quality kaolin used in the paper coating industry. The kaolin deposits are closely related to sedimentary rocks of the Parnaíba basin and their lateritic cover. Two large deposits are already being mined: IRCC (Ipixuna) and PPSA (Paragominas). The geology of the IRCC mine is comprised of the kaolin-bearing lower unit (truncated mature laterite succession derived from the Ipixuna/Itapecuru formation) and the upper unit (immature lateritized Barreiras formation). The lower kaolin unit is characterized by a sandy facies at the bottom and a soft (ore) with flint facies at the top. It is formed by kaolinite, quartz, some iron oxi-hydroxides, mica and several accessories and heavy minerals. The mangrove covering; and immature lateritization - partial kaolin ferruginization during the Pleistocene.

  13. Late Cretaceous coal overlying karstic bauxite deposits in the Parnassus-Ghiona Unit, Central Greece: Coal characteristics and depositional environment

    Energy Technology Data Exchange (ETDEWEB)

    Kalaitzidis, Stavros; Siavalas, George; Christanis, Kimon [Dept. of Geology, University of Patras, 26504 Rio-Patras (Greece); Skarpelis, Nikos [Dept. of Geology and Geoenvironment, University of Athens, 15784 Zografou (Greece); Araujo, Carla Viviane [Petrobras-Cenpes GEOQ/PDEXP, Rua Horacio Macedo n 950, Cidade Universitaria - Ilha do Fundao, 21941-915 Rio de Janeiro (Brazil)

    2010-04-01

    The Pera-Lakkos coal located on top of bauxite deposits in the Ghiona mining district (Central Greece), is the only known Mesozoic (Late Cretaceous) coal in the country. It was derived from herbaceous plants and algae growing in mildly brackish mires that formed behind a barrier system during a regression of the sea, on a karstified limestone partly filled in with bauxitic detritus. Petrological, mineralogical and geochemical data point to the predominance of reducing conditions and intense organic matter degradation in the palaeomires. O/C vs. H/C and OI vs. HI plots, based on elemental analysis and Rock-Eval data, characterize kerogen types I/II. This reflects the relatively high liptinite content of the coal. Besides kerogen composition, O/C vs. H/C plot for the Pera-Lakkos coals is in accordance with a catagenesis stage of maturation in contrast with vitrinite reflectance and T{sub max} from Rock-Eval pyrolysis, which indicate the onset of oil window maturation stage. Suppression of vitrinite reflectance should be considered and the high liptinite content corroborates this hypothesis. Despite some favourable aspects for petroleum generation presented by the Pera-Lakkos coal, its maximum thickness (up to 50 cm) points to a restricted potential for petroleum generation. Coal oxidation took place either during the late stage of peat formation, due to wave action accompanying the subsequent marine transgression, or epigenetically after the emergence of the whole sequence due to percolation of drainage waters. Both options are also supported by the REE shale-normalized profiles, which demonstrate an upwards depletion in the coal layer. Oxidation also affected pyrite included in the coal; this led to the formation of acidic (sulfate-rich) solutions, which percolated downwards resulting in bleaching of the upper part of the underlying bauxite. (author)

  14. An Investigation on the Formation of Carbon Nanotubes by Two-Stage Chemical Vapor Deposition

    Directory of Open Access Journals (Sweden)

    M. S. Shamsudin

    2012-01-01

    Full Text Available High density of carbon nanotubes (CNTs has been synthesized from agricultural hydrocarbon: camphor oil using a one-hour synthesis time and a titanium dioxide sol gel catalyst. The pyrolysis temperature is studied in the range of 700–900°C at increments of 50°C. The synthesis process is done using a custom-made two-stage catalytic chemical vapor deposition apparatus. The CNT characteristics are investigated by field emission scanning electron microscopy and micro-Raman spectroscopy. The experimental results showed that structural properties of CNT are highly dependent on pyrolysis temperature changes.

  15. Evidence for microbial activity in the formation of carbonate-hosted Zn-Pb deposits

    Science.gov (United States)

    Kucha, H.; Raith, J.

    2009-04-01

    *Kucha H **Raith J *University of Mining and Metallurgy, Faculty of Geology, Geophysics and Environmental Protection, Mickiewicza 30, PL-30-059 Krakow, Poland. ** University of Leoben, Department of Applied Geosciences and Geophysics, A-8700 Leoben, Peter Tunner Str. 5, Austria Evidence for microbial activity in the formation of carbonate-hosted Zn-Pb deposits To date evaluation of bacterial processes in the formation of carbonate-hosted Zn-Pb deposits is largely based on sulphur isotope evidence. However, during a past few years, textural criteria, have been established, which support the bacterial origin of many of these deposits. This has received a strong support from micro-, and nano-textures of naturally growing bacterial films in a flooded tunnel within carbonates that host the Piquette Zn-Pb deposit (Druschel et al., 2002). Bacterial textures, micro- and nano textures found in carbonate-hosted Zn-Pb deposits are: i)wavy bacterial films up to a few mm thick to up to a few cm long composed of peloids, ii)semimassive agglomeration of peloids in the carbonate matrix, and iii)solitary peloids dispersed in the carbonate matrix. Peloids are usually composed of a distinct 50-90um core most often made up of Zn-bearing calcite surrounded by 30-60um thick dentate rim composed of ZnS. Etching of Zn-carbonate cores reveals 1 - 2um ZnS filaments, and numerous 15 to 90nm large ZnS nano-spheres (Kucha et al., 2005). In massive ore composite Zn-calcite - sphalerite peloids are entirely replaced by zinc sulphide, and form peloids ghosts within banded sulphide layers. Bacterially derived micro- and nano-textures have been observed in the following carbonate-hosted Zn-Pb deposits: 1)Irish-type Zn-Pb deposits. In the Navan deposit the basic sulphur is isotopically light bacteriogenic S (Fallick at al., 2001). This is corroborated by semimassive agglomerations of composite peloids (Zn-calcite-ZnS corona or ZnS core-melnikovite corona). Etching of Zn-calcite core reveals globular

  16. The characteristics of original geochemical halo in fault zone and its prospecting significance in Xiangyangping uranium deposit

    International Nuclear Information System (INIS)

    Ouyang Pingning; Huang Manxiang; Liu Xinyang; Chen Yue; Xiao Jianjun

    2012-01-01

    Xiangyangping uranium deposit is a hydrothermal filling deposit controlled by faults. The axial zonation of original element along the fault is sequence of Ni-Rb-Bi-Sn-Cu-W-Hg→As-U-Sb-Mo→Sr-Zn which shows the characteristics of superimposed halos and multiphase mineralization. The distribution characteristics of original halos along structure suggests that uranium mineralization may possess multi-enrichment zones along axial and strata tend. These characteristics are of prospecting significance. (authors)

  17. Tungsten chemical vapor deposition characteristics using SiH4 in a single wafer system

    International Nuclear Information System (INIS)

    Rosler, R.S.; Mendonca, J.; Rice, M.J. Jr.

    1988-01-01

    Several workers have recently begun using silane as a high-rate, low-temperature alternative to hydrogen for the reduction of WF 6 in the chemical vapor deposition of W. The deposition and film characteristics of both selective and blanket W using this new chemistry are explored in a radiantly heated single wafer system using closed-loop temperature control with a thermocouple in direct contact with the backside of the wafer. Selective W deposition rates of up to 1.5 μm/min were measured over the temperature range 250--550 0 C with blanket W rates typically 2--5 x lower. Resistivity is in the 10--15 μΩcm range at 300 0 C for SiH 4 /WF 6 ratios of 0.2 to 1.0, while above 400 0 C the range is 7.5--8.5 μΩcm. Si content in the W films is quite low at 10 16 to 10 17 atoms/cm 3 . Adhesion to silicon is excellent at temperatures of 350 0 C and above. Selective W using SiH 4 reduction for doped silicon contact fill shows none of the consumption or encroachment problems common to H 2 reduction, although selectivity is more sensitive. Contact resistance for p + and n + silicon contacts are comparable to aluminum controls and to previously published data. Blanket deposition into narrow geometries gives ≥0% step coverage and without keyholes in the 250--450 0 C deposition temperature range. For low-SiH 4 flows, deposition at 500 0 C causes small keyholes, while at 550 0 C even larger keyholes result. At higher SiH 4 flows, keyholes are typically not seen from 250 to 550 0 C

  18. Geology and Characteristics of Pb-Zn-Cu-Ag Skarn Deposit at Ruwai, Lamandau Regency, Central Kalimantan

    Directory of Open Access Journals (Sweden)

    Arifudin Idrus

    2014-06-01

    Full Text Available DOI: 10.17014/ijog.v6i4.126This study is dealing with geology and characteristics of mineralogy, geochemistry, and physicochemical conditions of hydrothermal fluid responsible for the formation of skarn Pb-Zn-Cu-Ag deposit at Ruwai, Lamandau Regency, Central Kalimantan. The formation of Ruwai skarn is genetically associated with calcareous rocks consisting of limestone and siltstone (derived from marl? controlled by NNE-SSW-trending strike slip faults. It is localized along N 70° E-trending thrust fault, which also acts as the contact zone between sedimentary and volcanic rocks in the area. The Ruwai skarn is mineralogically characterized by prograde alteration comprising garnet (andradite and clino-pyroxene (wollastonite, and retrograde alteration composed of epidote, chlorite, calcite, and sericite. Ore mineralization is typified by sphalerite, galena, and chalcopyrite, formed at early retrograde stage. Galena is typically enriched in silver up to 0.45 wt % and bismuth of about 1 wt %. No Ag-sulphides are identified within the ore body. Geochemically, SiO is enriched and CaO is depleted in limestone, consistent with silicic alteration (quartz and calc-silicate and decarbonatization of the wallrock. The measured resources of the deposit are 2,297,185 tonnes at average grades of 14.98 % Zn, 6.44% Pb, 2.49 % Cu, and 370.87 g/t Ag. Ruwai skarn orebody was originated at moderate temperatures of 250 - 266 °C and low salinity of 0.3 - 0.5 wt.% NaCl eq. The late retrograde stage was formed at low temperature of 190 - 220 °C and low salinity of ~0.35 wt.% NaCl eq., which was influenced by meteoric water incursion at the late stage of the Ruwai Pb-Zn-Cu-Ag skarn formation.

  19. Cathode deposits in fullerene formation — microstructural evidence for independent pathways of pyrolytic carbon and nanobody formation

    Science.gov (United States)

    Taylor, G. H.; Gerald, J. D. Fitz; Pang, L.; Wilson, M. A.

    1994-01-01

    Microstructures in cathode deposits formed during fullerene production by electrical arcing in helium have been examined in detail. This has provided new information about the mechanisms by which nanobodies (nanotubes and nanoparticles) and pyrolytic carbon are deposited. Nanobodies and pyrolytic carbon form independently; the former probably grow in the plasma then deposit on the electrode but much of the latter deposits directly on the electrode surface.

  20. Post-depositional formation of vivianite-type minerals alters sediment phosphorus records

    Directory of Open Access Journals (Sweden)

    N. Dijkstra

    2018-02-01

    Full Text Available Phosphorus (P concentrations in sediments are frequently used to reconstruct past environmental conditions in freshwater and marine systems, with high values thought to be indicative of a high biological productivity. Recent studies suggest that the post-depositional formation of vivianite, an iron(II-phosphate mineral, might significantly alter trends in P with sediment depth. To assess its importance, we investigate a sediment record from the Bornholm Basin that was retrieved during the Integrated Ocean Drilling Program (IODP Baltic Sea Paleoenvironment Expedition 347 in 2013, consisting of lake sediments overlain by brackish–marine deposits. Combining bulk sediment geochemistry with microanalysis using scanning electron microscope energy dispersive spectroscopy (SEM-EDS and synchrotron-based X-ray absorption spectroscopy (XAS, we demonstrate that vivianite-type minerals rich in manganese and magnesium are present in the lake deposits just below the transition to the brackish–marine sediments (at 11.5 to 12 m sediment depth. In this depth interval, phosphate that diffuses down from the organic-rich, brackish–marine sediments meets porewaters rich in dissolved iron in the lake sediments, resulting in the precipitation of iron(II phosphate. Results from a reactive transport model suggest that the peak in iron(II phosphate originally occurred at the lake–marine transition (9 to 10 m and moved downwards due to changes in the depth of a sulfidization front. However, its current position relative to the lake–marine transition is stable as the vivianite-type minerals and active sulfidization fronts have been spatially separated over time. Experiments in which vivianite was subjected to sulfidic conditions demonstrate that incorporation of manganese or magnesium in vivianite does not affect its susceptibility to sulfide-induced dissolution. Our work highlights that post-depositional formation of iron(II phosphates such as vivianite has

  1. Post-depositional formation of vivianite-type minerals alters sediment phosphorus records

    Science.gov (United States)

    Dijkstra, Nikki; Hagens, Mathilde; Egger, Matthias; Slomp, Caroline P.

    2018-02-01

    Phosphorus (P) concentrations in sediments are frequently used to reconstruct past environmental conditions in freshwater and marine systems, with high values thought to be indicative of a high biological productivity. Recent studies suggest that the post-depositional formation of vivianite, an iron(II)-phosphate mineral, might significantly alter trends in P with sediment depth. To assess its importance, we investigate a sediment record from the Bornholm Basin that was retrieved during the Integrated Ocean Drilling Program (IODP) Baltic Sea Paleoenvironment Expedition 347 in 2013, consisting of lake sediments overlain by brackish-marine deposits. Combining bulk sediment geochemistry with microanalysis using scanning electron microscope energy dispersive spectroscopy (SEM-EDS) and synchrotron-based X-ray absorption spectroscopy (XAS), we demonstrate that vivianite-type minerals rich in manganese and magnesium are present in the lake deposits just below the transition to the brackish-marine sediments (at 11.5 to 12 m sediment depth). In this depth interval, phosphate that diffuses down from the organic-rich, brackish-marine sediments meets porewaters rich in dissolved iron in the lake sediments, resulting in the precipitation of iron(II) phosphate. Results from a reactive transport model suggest that the peak in iron(II) phosphate originally occurred at the lake-marine transition (9 to 10 m) and moved downwards due to changes in the depth of a sulfidization front. However, its current position relative to the lake-marine transition is stable as the vivianite-type minerals and active sulfidization fronts have been spatially separated over time. Experiments in which vivianite was subjected to sulfidic conditions demonstrate that incorporation of manganese or magnesium in vivianite does not affect its susceptibility to sulfide-induced dissolution. Our work highlights that post-depositional formation of iron(II) phosphates such as vivianite has the potential to strongly

  2. Formation conditions for regenerated uranium blacks in uranium-molybdenum deposits

    International Nuclear Information System (INIS)

    Skvortsova, K.V.; Sychev, I.V.; Modnikov, I.S.; Zhil'tsova, I.G.

    1980-01-01

    Formation conditions of regenerated uranium blacks in the zone of incomplete oxidation and cementation of uranium-molybdenum deposit have been studied. Mixed and regenerated blacks were differed from residual ones by the method of determining excess quantity of lead isotope (Pb 206 ) in ores. Determined were the most favourable conditions for formation of regenerated uranium blacks: sheets of brittle and permeable volcanic rocks characterized by heterogeneous structure of a section, by considerable development of gentle interlayer strippings and zones of hydrothermal alteration; predominance of reduction conditions in a media over oxidation ones under limited oxygen access and other oxidating agents; the composition of hypogenic ores characterized by optimum correlations of uranium minerals, sulfides and carbonates affecting violations of pH in oxidating solutions in the range of 5-6; the initial composition of ground water resulting from climatic conditions of the region and the composition of ore-bearing strata and others. Conditions unfavourable for the formation of regenerated uranium blacks are shown

  3. Facies characteristics of the basal part of the Talchir Formation ...

    Indian Academy of Sciences (India)

    Keywords. Gondwana sedimentation; Talchir Formation; Talchir Basin; debris flow; entrained turbidity current. ... in the Tikra river in the northern part of the basin. (figure 1). ... The arrow shows load structure at the clay-silt interface (the scale is.

  4. Characteristics of Methane Hydrate Formation in Artificial and Natural Media

    OpenAIRE

    Peng Zhang; Qingbai Wu; Yuzhong Yang

    2013-01-01

    The formation of methane hydrate in two significantly different media was investigated, using silica gel as an artificial medium and loess as a natural medium. The methane hydrate formation was observed through the depletion of water in the matrix, measured via the matrix potential and the relationship between the matrix potential and the water content was determined using established equations. The velocity of methane hydrate nucleation slowed over the course of the reaction, as it relied on...

  5. Characteristics of zinc oxide nanorod array/titanium oxide film heterojunction prepared by aqueous solution deposition

    Science.gov (United States)

    Lee, Ming-Kwei; Hong, Min-Hsuan; Li, Bo-Wei

    2016-07-01

    The characteristics of a ZnO nanorod array/TiO2 film heterojunction were investigated. A TiO2 film was prepared on glass by aqueous solution deposition with precursors of ammonium hexafluorotitanate and boric acid at 40 °C. Then, a ZnO seed layer was prepared on a TiO2 film/glass substrate by RF sputtering. A vertically oriented ZnO nanorod array was grown on a ZnO seed layer/TiO2 film/glass substrate by aqueous solution deposition with precursors of zinc nitrate and hexamethylenetetramine (HMT) at 70 °C. After thermal annealing in N2O ambient at 300 °C, this heterojunction used as an oxygen gas sensor shows much better rise time, decay time, and on/off current ratio than as-grown and annealed ZnO nanorods.

  6. Atmospheric pressure chemical vapor deposition (APCVD) grown bi-layer graphene transistor characteristics at high temperature

    KAUST Repository

    Qaisi, Ramy M.

    2014-05-15

    We report the characteristics of atmospheric chemical vapor deposition grown bilayer graphene transistors fabricated on ultra-scaled (10 nm) high-κ dielectric aluminum oxide (Al2O3) at elevated temperatures. We observed that the drive current increased by >400% as temperature increased from room temperature to 250 °C. Low gate leakage was maintained for prolonged exposure at 100 °C but increased significantly at temperatures >200 °C. These results provide important insights for considering chemical vapor deposition graphene on aluminum oxide for high temperature applications where low power and high frequency operation are required. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Atmospheric pressure chemical vapor deposition (APCVD) grown bi-layer graphene transistor characteristics at high temperature

    KAUST Repository

    Qaisi, Ramy M.; Smith, Casey; Hussain, Muhammad Mustafa

    2014-01-01

    We report the characteristics of atmospheric chemical vapor deposition grown bilayer graphene transistors fabricated on ultra-scaled (10 nm) high-κ dielectric aluminum oxide (Al2O3) at elevated temperatures. We observed that the drive current increased by >400% as temperature increased from room temperature to 250 °C. Low gate leakage was maintained for prolonged exposure at 100 °C but increased significantly at temperatures >200 °C. These results provide important insights for considering chemical vapor deposition graphene on aluminum oxide for high temperature applications where low power and high frequency operation are required. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Characteristics of isotope geology of sandstone-type uranium deposit in Turpan-Hami Basin

    International Nuclear Information System (INIS)

    Liu Hanbin; Xia Yuliang; Lin Jinrong; Fan Guang

    2003-01-01

    This paper expounds the isotope characteristics of in-situ leachable sandstone-type uranium deposit of Shihongtan in the southwestern part of Turpan-Hami basin. The results suggest that uranium mineralization age of 48 ± 2 Ma and 28 ± 4 Ma are obtained. The ages of the porphyritic granite and gneissic granite from the southwestern area are 422 ± 5 Ma and 268 ± 23 Ma. The U-Pb age of clastic zircons from ore-bearing sandstone is 283 ± 67 Ma, which is corresponding to the age of gneissic granite of the provenance area indicating the material source of uraniferous sandstone.Based. The sources are uraniferous sandstone accumulated during the deposition and the uranium leached from provenance area rocks by weathering. (authors)

  9. Coal characteristics from 'Priskupshtina' deposit and technological parameters for briquetting (Macedonia)

    International Nuclear Information System (INIS)

    Damjanovski, Dragan

    1998-01-01

    The use of small class coal as well as the lack of formed fuel needed for the industry and for the consumer goods has been a long lasting problem, and a challenge for the researchers of the Republic of Macedonia. For that purpose, all-inclusive analysis of the quality of the coals in Macedonia, their reserves and technical characteristics, as well as analysis of the petrographic structure were made. Classification of the deposits and the research for the possibility of making briquettes was done, too. Laboratory investigations in the coal deposit 'Priskupshtina' were carried out. The analysis of the coal briquetting show that the expected results in coordination with the required standards were not obtained. Spatially the results from the coal calorific value, its hardness and atmospheric resistance. Standard methods were used for the researches without connective means and the achieved results were mutually correlated. Technical-economic verification is necessary in the further process. (Author)

  10. Effect of Radio-Frequency and Low-Frequency Bias Voltage on the Formation of Amorphous Carbon Films Deposited by Plasma Enhanced Chemical Vapor Deposition

    International Nuclear Information System (INIS)

    Manis-Levy, Hadar; Mintz, Moshe H.; Livneh, Tsachi; Zukerman Ido; Raveh, Avi

    2014-01-01

    The effect of radio-frequency (RF) or low-frequency (LF) bias voltage on the formation of amorphous hydrogenated carbon (a-C:H) films was studied on silicon substrates with a low methane (CH 4 ) concentration (2–10 vol.%) in CH 4 +Ar mixtures. The bias substrate was applied either by RF (13.56 MHz) or by LF (150 kHz) power supply. The highest hardness values (∼18–22 GPa) with lower hydrogen content in the films (∼20 at.%) deposited at 10 vol.% CH 4 , was achieved by using the RF bias. However, the films deposited using the LF bias, under similar RF plasma generation power and CH 4 concentration (50 W and 10 vol.%, respectively), displayed lower hardness (∼6–12 GPa) with high hydrogen content (∼40 at.%). The structures analyzed by Fourier Transform Infrared (FTIR) and Raman scattering measurements provide an indication of trans-polyacetylene structure formation. However, its excessive formation in the films deposited by the LF bias method is consistent with its higher bonded hydrogen concentration and low level of hardness, as compared to the film prepared by the RF bias method. It was found that the effect of RF bias on the film structure and properties is stronger than the effect of the low-frequency (LF) bias under identical radio-frequency (RF) powered electrode and identical PECVD (plasma enhanced chemical vapor deposition) system configuration. (plasma technology)

  11. IMPROVING DEPOSIT POLICY BANK ON THE BASIS OF ANALYSIS OF THE INFLUENCE OF DEPOSIT PORTFOLIO STRUCTURE ON FORMATION OF INVESTMENT RESOURCE

    Directory of Open Access Journals (Sweden)

    Viadrova I.

    2018-01-01

    Full Text Available Introduction. The banking system as a part of the national economy contributes to the development of various branches of economy and trade, enabling the realization of economic interests of economic entities. One of the important tasks of the monetary system is the accumulation of financial resources necessary for the implementation of credit and investment projects and their further distribution. This task is performed by banking institutions by attracting funds from individuals and legal entities. The size of the bank’s resource base and the scale of its operations depend on the operations of attraction of funds. The priority task of the banking institution is the predominance of attracting long-term investments over short-term ones. That is why the problem that exists in the disproportion of the maturity of borrowed funds, the prevalence of short-term deposits over long-term and the minimum amount of long-term resources in the bank’s deposit portfolio is particularly relevant. Purpose. The purpose of the work is to generalize the theoretical aspects of bank deposit activity and to determine the optimal structure of the deposit portfolio for carrying out of credit and investment activity. Results. The article summarizes the essence of the concept of “deposit policy”, identifies the peculiarities of its formation and analyzes the main external and internal factors that have an impact on the deposit policy of domestic banks. The analysis of the dynamics and structure of deposit operations of banks at the state level was carried out and the analysis of deposit policy of a bank of foreign bank groups – PJSC “Ukrsotsbank” for 2010-2017 was provided. In this work, the factors of influence are investigated: external and internal, which determine the ways of formation of deposit policy by banks of Ukraine. The influence of the structure of the deposit portfolio of Ukrainian banks on the formation of the investment resource is analyzed

  12. Formation conditions and prospecting criteria for sandstone uranium deposit of interlayer oxidation type

    International Nuclear Information System (INIS)

    Huang Shijie

    1994-01-01

    This paper comprehensively analyses the geotectonic setting and favourable conditions, such as structure of the basin, sedimentary facies and paleogeography, geomorphology and climate, hydrodynamics and hydrogeochemistry, the development of interlayered oxidation etc, necessary for the formation of sandstone uranium deposit of interlayered oxidation type. The following prospecting criteria is proposed, namely: abundant uranium source, arid climate, stable big basin, flat-lying sandstone bed, big alluvial fan, little change in sedimentary facies, intercalation of sandstone and mudstone beds, shallow burying of sandstone bed, well-aquiferous sandstone bed, high permeability of sandstone bed, development of interlayered oxidation, and high content of reductant in sandstone. In addition, the 6 in 1 hydrogenic genetic model is proposed

  13. 87Sr enrichment of ophiolitic sulphide deposits in Cyprus confirms ore formation by circulating seawater

    International Nuclear Information System (INIS)

    Chapman, H.J.; Spooner, E.T.C.

    1977-01-01

    The hypothesis that seawater was the source of the hydrothermal fluid which formed the Upper Cretaceous ophiolitic cupriferous pyrite ore deposits of the Troodos Massif (Cyprus) has been tested by analysing the strontium isotopic composition of thirteen mineralized samples from four mines. Initial 87 Sr/ 86 Sr ratios range from 0.7052+-0.0001 to 0.7075+-0.00002, the latter value being indistinguishable from that of Upper Cretaceous seawater at 0.7076+-0.0006 (2 sigma). Hence, the mineralized metabasalt samples have been contaminated with 87 Sr, relative to initial magmatic strontium isotope ratios of the Troodos ophiolitic complex (0.70338+-0.00010 to 0.70365+-0.00005). Since seawater was the only source of strontium available during formation of the Troodos Complex which was isotopically relatively enriched in 87 Sr, the data confirm that seawater was the source of the hydrothermal oreforming fluid. (Auth.)

  14. Energy deposition and the formation of biologically significant lesions by accelerated ions

    International Nuclear Information System (INIS)

    Kiefer, J.

    1985-01-01

    The assumption that the number of biologically significant lesions depends only on the amount of of energy absorbed in a critical cellular site is not able to explain the increase of RBE with LET and leads to large discrepancies between predicted and measured inactivation cross sections in the LET range between 20 and 200 keV.μm -1 . It has, therefore, to be concluded that not only the amount of energy absorbed but also the spatial pattern of this deposition plays a decisive role. In the model presented it is postulated that two or more energy deposition events in nanometre sites are required for the formation of biologically significant lesions. This cooperative action has to take place in very short times so that only interactions within a single particle track contribute. The mathematical treatment will be outlined and qualitatively shown that the model is able to predict RBE-LET relationships. The calculations use a track structure model based on classical collision mechanics. It is compared with existing experimental results showing good agreement at least for higher particle energies. (author)

  15. Formation of microchannels from low-temperature plasma-deposited silicon oxynitride

    Science.gov (United States)

    Matzke, Carolyn M.; Ashby, Carol I. H.; Bridges, Monica M.; Manginell, Ronald P.

    2000-01-01

    A process for forming one or more fluid microchannels on a substrate is disclosed that is compatible with the formation of integrated circuitry on the substrate. The microchannels can be formed below an upper surface of the substrate, above the upper surface, or both. The microchannels are formed by depositing a covering layer of silicon oxynitride over a mold formed of a sacrificial material such as photoresist which can later be removed. The silicon oxynitride is deposited at a low temperature (.ltoreq.100.degree. C.) and preferably near room temperature using a high-density plasma (e.g. an electron-cyclotron resonance plasma or an inductively-coupled plasma). In some embodiments of the present invention, the microchannels can be completely lined with silicon oxynitride to present a uniform material composition to a fluid therein. The present invention has applications for forming microchannels for use in chromatography and electrophoresis. Additionally, the microchannels can be used for electrokinetic pumping, or for localized or global substrate cooling.

  16. Ore Characteristics and Fluid Inclusion of the Base Metal Vein Deposit in Moncong Bincanai Area, Gowa, South Sulawesi, Indonesia

    Directory of Open Access Journals (Sweden)

    Asmariyadi Asmariyadi

    2014-07-01

    Full Text Available DOI: 10.17014/ijog.v7i4.146This paper is dealing with ore characteristics and fluid inclusion of the Moncong Bincanai, Biringbulu Subregency of Gowa Regency, South Sulawesi Province, Indonesia. The mineralization is a vein type, with the orientation of N170oE /65oSW, hosted in open-space filling within basalt. The mineralization consists of galena, sphalerite, chalcopyrite, and pyrite. Vein thickness ranges from 5 - 17 cm, showing a crustiform banding texture, with a sequence from outer to centre: quartz, carbonate (siderite, sulphide. The quartz displays primary growth textures such as comb, crystalline, saccharoidal, and colloform. Analytical methods applied include AAS and fluid inclusion microthermometry. Chemical composition of the vein indicates an average of Pb = 47.92%, Cu = 1.27%, Zn = 1.02%, and Fe = 9.46%, which shows a significant concentration of Pb. Fluid inclusion microthermometry results indicate a range of formation temperature of 240 - 250C and salinity of the responsible hydrothermal fluid of 2.1 - 2.5 wt.% NaCl eq. The deposit is categorized into low-sulfidation epithermal deposits, which was formed within a range of 410 - 440 m below paleosurface.

  17. Indoor organic and inorganic pollutants: In-situ formation and dry deposition in Southeastern Brazil

    Science.gov (United States)

    Allen, Andrew G.; Miguel, Antonio H.

    We have measured indoor and outdoor levels of particle- and gas-phase pollutants, collected in offices, restaurants and a hotel at six different sites in and around the cities of São Paulo and Campinas, Brazil, during summer 1993. Gas-phase species included acetic acid, formic acid, nitrous acid, hydrochloric acid, sulfur dioxide, nitric acid, oxalic acid, and pyruvic acid. Fine mode ( 3 μm dp) species measured included chloride, potassium, acetate, nitrate, magnesium, formate, sodium, pyruvate, nitrite, calcium, sulfate, oxalate, and ammonium. One sample (˜ 6 h) was simultaneously collected indoors and outdoors at each site during regular working hours. Indoor samplers were located ca. 1.5 m from the floor, and the outdoors immediately outside the window. Indoor/outdoor concentration ratios suggest that fine potassium chloride was produced indoors in appreciable amounts at both restaurants studied and, to a lesser extent, in the three offices as well. Indoor fine nitrate particles found in restaurants appear to have been produced by fuel combustion; a small fraction may have resulted from dry deposition of nitric acid onto existing fine particles. Indoor and outdoor concentrations of fine- and coarse-mode acetate suggest their production at all sites. The average concentration of gas-phase acetic acid was 42 μg m -3 indoors compared to 9.0 μg m -3 outdoors. In-situ formation of nitrous acid and acetic acid appears to have occurred at all indoor sites. High levels of formic and acetic acids were produced indoors at a pizzeria that used wood for cooking. Nitrous acid average concentrations for all sites were 8.4 μm m -3 indoors and 3.2 μm m -3 outdoors. Indoor/outdoor ratios at all sites suggest that dry deposition indoors may have occurred for hydrochloric acid, nitric acid and sulfur dioxide and that fine-mode sulfate infiltrate buildings from outside at most sites.

  18. LITHOSTRATIGRAPHY, CONODONT BIOSTRATIGRAPHY AND DEPOSITIONAL ENVIRONMENT OF THE MIDDLE DEVONIAN (GIVETIAN TO EARLY CARBONIFEROUS (TOURNAISIAN LIPAK FORMATION IN THE PIN VALLEY OF SPITI (NW INDIA

    Directory of Open Access Journals (Sweden)

    ERICH DRAGANITS

    2002-03-01

    Full Text Available Bed-by-bed lithostratigraphic sections combined with sequence stratigraphy and conodont biostratigraphy provide new information on the depositional environment and age of the Lipak Formation in the Pin Valley (Spiti. The formation comprises mixed siliciclastic and calcareous sediments at lower levels, richly fossiliferous limestones with two distinct sandstone incursions at higher levels, and dark mudstones followed by a thin siltstone interval. The upper limit of the Lipak Formation is defined by the angular unconformity below the sandstones of the Permian Gechang Formation. Lithologic correlation with sections in upper Lahaul indicates that, in the Pin Valley, the formation has been truncated just below its characteristic gypsum horizon. The lower boundary of the Lipak Formation is gradational from coastal arenites of the Muth Formation; the mappable boundary is drawn at the first appearance of dark carbonaceous, argillaceous siltstone and shale.Sedimentary structures, microfacies and conodont faunas indicate a general shallow marine depositional environment of the Lipak Formation in the Pin Valley; five sequence stratigraphic units have been distinguished. Conodont data demonstrate that the lowest 33 m of the Lipak Formation of the Pin Valley is mid to late Early varcus Subzone with characteristic species of Icriodus and Bipennatus. A previously unrecognised hiatus at c. 33 m above the base, at the boundary of sequence stratigraphic units S1 and S2, represents the interval Middle varcus Subzone to at least the end of the late Famennian Early expansa Zone. Because this hiatus does not correspond to a mappable boundary, no division of the Lipak Formation into named stratigraphic units is suggested, but we refer informally to the sediments represented by cycle S1 as Lipak A, and the sediments represented by cycles S2-S5 as Lipak B. Determination of S1 as Early varcus Subzone provides a maximum age for the gradationally underlying Muth Formation

  19. Depositional system of the Bayangobi formation, lower cretaceous and its control over in-situ leachable sandstone-type uranium deposits in Chagandelesu area, Inner Mongolia

    International Nuclear Information System (INIS)

    Zhang Wanliang

    2002-01-01

    Chagandelesu area is situated in the eastern part of Bayangobi basin, Inner Mongolia. In the Early Cretaceous, a detrital rock series (Bayangobi Formation) with a thickness of about 1000 m was formed within a down-faulted basin under the extensional tectonic regime. The Bayangobi Formation is the prospecting target for interlayer oxidation zone sandstone-type uranium deposits, and is divided into three lithologic members: the lower member-- proluvial (alluvial), subaqueous fan or fan-delta facies sediments; the middle member-shallow lacustrine-semi-deep lacustrine-deep lacustrine facies sediments; the upper member-littoral shallow lacustrine or delta facies sediments. The facies order of Bayangobi Formation represents the evolution process of basin water from the shallow (early period) to the deep (middle period) then again to the shallow (late period) level. The Bayangobi Formation composed of a third sequence order reflects respectively a lowstand system tract (LST), a transgressive system tract (TST) and a highstand system tract (HST). The author also makes an analysis on physical properties of psammites of Bayangobi Formation, and proposes that psammites of delta and littoral shallow lacustrine facies are favourable for the formation of interlayer oxidation zone sandstone-type uranium deposits

  20. Mineralogy, geologic and physico-chemical characteristics of uranotitanate formation

    International Nuclear Information System (INIS)

    Korolev, K.G.; Miguta, A.K.; Polyakova, V.M.; Rumyantseva, G.V.

    1979-01-01

    Results of experimental and field study of varieties of brannerite and davidite are described. Special attention is paid to medium-low temperature variety of brannerite, which is the component of the majority of known uranotitanate ores. Natural concentrations of uranium are characterized: geologic peculiarities of their localization, mineral paragenesis, periore alterations. Syntheses of brannerite and davidite have been realized for the first time under hydrothermal conditions. Complex multiphase products of uranium titanate transformation, decomposition reactions of brannerite into constituent oxides in particular. Peculiarities of uranium and titanium migration in aqueous solutions at high temperatures and pressures are discussed. The processes of brannerite and davidite formation in hydrothermal conditions and from the melts are considered. Application of thermodynamic calculations of equilibria to the reactions of solid phase formation out of diluted ( -6 M) solutions and to the solid dispersoids in general is found to be erroneous as the formation of the latters is connected with kinetic phenomena

  1. Formation of Sclerotic Hydrate Deposits in a Pipe for Extraction of a Gas from a Dome Separator

    Science.gov (United States)

    Urazov, R. R.; Chiglinstev, I. A.; Nasyrov, A. A.

    2017-09-01

    The theory of formation of hydrate deposits on the walls of a pipe for extraction of a gas from a dome separator designed for the accident-related collection of hydrocarbons on the ocean floor is considered. A mathematical model has been constructed for definition of a steady movement of a gas in such a pipe with gas-hydrate deposition under the conditions of changes in the velocity, temperature, pressure, and moisture content of the gas flow.

  2. Role of Sulfur in the Formation of Magmatic-Hydrothermal Copper-Gold Deposits

    Science.gov (United States)

    Seo, J.; Guillong, M.; Heinrich, C.

    2009-05-01

    Sulfur plays essential roles in hydrothermal ore-forming processes [1], which calls for precise and accurate quantitative sulfur determination in fluid inclusions. Feasibility tests for sulfur quantification by comparing data from both LA-Quadrupole (Q) - ICP-MS and LA-High Resolution (HR) - ICP-MS show that reliable sulfur quantification in fluid inclusions is possible [2], provided that a very careful baseline correction is applied. We investigate the metal transporting capabilities of sulfur by measuring sulfur together with copper and other elements in cogenetic brine and vapor inclusions ('boiling assemblages') in single healed crack hosted by quartz veins. Samples are from high-temperature magmatic-hydrothermal ore deposits and miarolitic cavities of barren granitoid. Clear compositional correlations of sulfur with copper and gold were found. A molar S/Cu ratio commonly close to 2 but never above 2, indicates sulfur-complexed metal transportation in the high-temperature hydrothermal vapor, and probably also in the Na-Fe-K-Cl-enriched brines. Vapor/brine partitioning trends of the S and Cu are shown to be related with the chemistry of the fluids (possibly by various sulfur speciations in varying pH, fO2) and causative magma source. In the boiling hydrothermal environments, higher vapor partitioning of Cu and S is observed at reduced and peraluminous Sn-W granite, whereas oxidized and perakaline porphyry-style deposits have a lower partitioning to the vapor although the total concentration of S, Cu, Au in both fluid phase is higher than in the Sn-W granite [3]. Vapor inclusion in the boiling assemblages from magmatic-hydrothermal ore deposits and granitic intrusions generally contain an excess of sulfur over ore metals such as Cu, Fe, and Mo. This allows efficient sulfide ore precipitation in high-temperature porphyry-type deposits, and complexation of gold by the remaining sulfide down to lower temperatures. The results confirm earlier interpretations [1] and

  3. Atomic layer deposition of Pd and Pt nanoparticles for catalysis: on the mechanisms of nanoparticle formation

    International Nuclear Information System (INIS)

    Mackus, Adriaan J M; Weber, Matthieu J; Thissen, Nick F W; Garcia-Alonso, Diana; Vervuurt, René H J; Assali, Simone; Bol, Ageeth A; Verheijen, Marcel A; Kessels, Wilhelmus M M

    2016-01-01

    The deposition of Pd and Pt nanoparticles by atomic layer deposition (ALD) has been studied extensively in recent years for the synthesis of nanoparticles for catalysis. For these applications, it is essential to synthesize nanoparticles with well-defined sizes and a high density on large-surface-area supports. Although the potential of ALD for synthesizing active nanocatalysts for various chemical reactions has been demonstrated, insight into how to control the nanoparticle properties (i.e. size, composition) by choosing suitable processing conditions is lacking. Furthermore, there is little understanding of the reaction mechanisms during the nucleation stage of metal ALD. In this work, nanoparticles synthesized with four different ALD processes (two for Pd and two for Pt) were extensively studied by transmission electron spectroscopy. Using these datasets as a starting point, the growth characteristics and reaction mechanisms of Pd and Pt ALD relevant for the synthesis of nanoparticles are discussed. The results reveal that ALD allows for the preparation of particles with control of the particle size, although it is also shown that the particle size distribution is strongly dependent on the processing conditions. Moreover, this paper discusses the opportunities and limitations of the use of ALD in the synthesis of nanocatalysts. (paper)

  4. Characteristics of Methane Hydrate Formation in Artificial and Natural Media

    Directory of Open Access Journals (Sweden)

    Qingbai Wu

    2013-03-01

    Full Text Available The formation of methane hydrate in two significantly different media was investigated, using silica gel as an artificial medium and loess as a natural medium. The methane hydrate formation was observed through the depletion of water in the matrix, measured via the matrix potential and the relationship between the matrix potential and the water content was determined using established equations. The velocity of methane hydrate nucleation slowed over the course of the reaction, as it relied on water transfer to the hydrate surfaces with lower Gibbs free energy after nucleation. Significant differences in the reactions in the two types of media arose from differences in the water retention capacity and lithology of media due to the internal surface area and pore size distributions. Compared with methane hydrate formation in silica gel, the reaction in loess was much slower and formed far less methane hydrate. The results of this study will advance the understanding of how the properties of the environment affect the formation of gas hydrates in nature.

  5. Age of formation deposition Tunes, Sierra de la Ventana Foldbelt, Argentina

    International Nuclear Information System (INIS)

    Alessandretti, L.; Philipp, R.; Chemale, F.; Ramos, V.

    2010-01-01

    The Sierra de la Ventana, located in east-central Argentina, is the most important recharge area within the South American Plate, an extensive Paleozoic basin, which evolved from a passive margin basin to basin - ante country. The basin developed on the southwestern edge of the supercontinent Gondwana, where magmatic activity occurred in large areal and temporal scale during the Paleozoic, particularly during the Permian . Tufáceos horizons that occur in the Sierra de la Ventana and the Cape Foldbelt Basins and San Rafael, Paraná, Sauce Grande and Karoo can be correlated with this period of intense magmatic activity . Five igneous zircons in an interleaved tufácea layer with sandstones and mudstones of the Tunas Formation, through the U / Pb method were dated using LA - MC - ICP - MS . Yielded an age of 274.3 ± 4.8 Concord Ma for tuffs of the Tunas Formation . Inherited zircons with ages between 623 and 374 Ma, indicate provenance of Patagonian region. Analysis of x -ray diffraction allowed the identification of quartz, plagioclase, smectite and illite mineral constituents of the tufts . The presence of abundant quartz and plagioclase suggests a dacitic volcanism nature to volcanism of southwestern Gondwanan margin and smectite is interpreted as a product of alteration of volcanic material deposited in an aqueous environment

  6. Spatial and Temporal Characteristics of Insulator Contaminations Revealed by Daily Observations of Equivalent Salt Deposit Density

    Directory of Open Access Journals (Sweden)

    Ling Ruan

    2015-01-01

    Full Text Available The accurate estimation of deposits adhering on insulators is of great significance to prevent pollution flashovers which cause huge costs worldwide. Researchers have developed sensors using different technologies to monitor insulator contamination on a fine time scale. However, there is lack of analysis of these data to reveal spatial and temporal characteristics of insulator contamination, and as a result the scheduling of periodical maintenance of power facilities is highly dependent on personal experience. Owing to the deployment of novel sensors, daily Equivalent Salt Deposit Density (ESDD observations of over two years were collected and analyzed for the first time. Results from 16 sites distributed in four regions of Hubei demonstrated that spatial heterogeneity can be seen at both the fine and coarse geographical scales, suggesting that current polluted area maps are necessary but are not sufficient conditions to guide the maintenance of power facilities. Both the local emission and the regional air pollution condition exert evident influences on deposit accumulation. A relationship between ESDD and PM10 was revealed by using regression analysis, proving that air pollution exerts influence on pollution accumulations on insulators. Moreover, the seasonality of ESDD was discovered for the first time by means of time series analysis, which could help engineers select appropriate times to clean the contamination. Besides, the trend component shows that the ESDD increases in a negative exponential fashion with the accumulation date (ESDD = a − b × exp(−time at a long time scale in real environments.

  7. Stratigraphy and sedimentology of a dry to wet eolian depositional system, Burns formation, Meridiani Planum, Mars

    Science.gov (United States)

    Grotzinger, J. P.; Arvidson, R. E.; Bell, J. F.; Calvin, W.; Clark, B. C.; Fike, D. A.; Golombek, M.; Greeley, R.; Haldemann, A.; Herkenhoff, K. E.; Jolliff, B. L.; Knoll, A. H.; Malin, M.; McLennan, S. M.; Parker, T.; Soderblom, L.; Sohl-Dickstein, J. N.; Squyres, S. W.; Tosca, N. J.; Watters, W. A.

    2005-11-01

    Outcrop exposures of sedimentary rocks at the Opportunity landing site (Meridiani Planum) form a set of genetically related strata defined here informally as the Burns formation. This formation can be subdivided into lower, middle, and upper units which, respectively, represent eolian dune, eolian sand sheet, and mixed eolian sand sheet and interdune facies associations. Collectively, these three units are at least 7 m thick and define a "wetting-upward" succession which records a progressive increase in the influence of groundwater and, ultimately, surface water in controlling primary depositional processes. The Burns lower unit is interpreted as a dry dune field (though grain composition indicates an evaporitic source), whose preserved record of large-scale cross-bedded sandstones indicates either superimposed bedforms of variable size or reactivation of lee-side slip faces by episodic (possibly seasonal) changes in wind direction. The boundary between the lower and middle units is a significant eolian deflation surface. This surface is interpreted to record eolian erosion down to the capillary fringe of the water table, where increased resistance to wind-induced erosion was promoted by increased sediment cohesiveness in the capillary fringe. The overlying Burns middle unit is characterized by fine-scale planar-laminated to low-angle-stratified sandstones. These sandstones accumulated during lateral migration of eolian impact ripples over the flat to gently undulating sand sheet surface. In terrestrial settings, sand sheets may form an intermediate environment between dune fields and interdune or playa surfaces. The contact between the middle and upper units of the Burns formation is interpreted as a diagenetic front, where recrystallization in the phreatic or capillary zones may have occurred. The upper unit of the Burns formation contains a mixture of sand sheet facies and interdune facies. Interdune facies include wavy bedding, irregular lamination with

  8. Morphology, conductivity, and wetting characteristics of PEDOT:PSS thin films deposited by spin and spray coating

    Energy Technology Data Exchange (ETDEWEB)

    Zabihi, F.; Xie, Y.; Gao, S.; Eslamian, M., E-mail: Morteza.Eslamian@sjtu.edu.cn

    2015-05-30

    Highlights: • Nanostructure of spun-on and spray-on PEDOT:PSS thin films is studied. • A correlation is established between the film nanostructure and electrical conductivity. • Effect of process parameters is studied on the film characteristics. • A high solution concentration, high process temperature and multiple deposition layers are recommended. - Abstract: The goal of this paper is to study the characteristics of PEDOT:PSS thin films and the effects of varying the processing parameters on the structure, functionality, and surface wetting of spun-on and spray-on PEDOT:PSS thin films. PEDOT:PSS is a polymer mixture, which is electrically conductive and transparent and, therefore, is an attractive material for some optoelectronic applications, such as organic and perovskite solar cells. In this work, the films are fabricated using spin coating (a lab-scale method) and spray coating (an up-scalable method). The effects of spinning speed, drying time, and post-annealing temperature on spun-on samples and the effects of the substrate temperature and number of spray passes (deposition layers) on spray-on samples, as well as the effect of precursor solution concentration on both cases are investigated. Various characterization tools, such as AFM, SEM, XRD, confocal laser scanning microscopy (CLSM), and electrical conductivity measurements are used to determine the film roughness, thickness, structure, and morphology. The solution precursor physical data, such as contact angle on glass substrates, viscosity, and interfacial tension, are also obtained within a practical range of temperatures and concentrations. It is found that in both spin and spray coating routes, only well-controlled operating conditions result in the formation of conductive and defect-free PEDOT:PSS films. The formation of PEDOT:PSS thin films with small grains composed of PEDOT forming the core of the grains and PSS forming a shell or coating, which are evenly distributed in a PSS

  9. Morphology, conductivity, and wetting characteristics of PEDOT:PSS thin films deposited by spin and spray coating

    International Nuclear Information System (INIS)

    Zabihi, F.; Xie, Y.; Gao, S.; Eslamian, M.

    2015-01-01

    Highlights: • Nanostructure of spun-on and spray-on PEDOT:PSS thin films is studied. • A correlation is established between the film nanostructure and electrical conductivity. • Effect of process parameters is studied on the film characteristics. • A high solution concentration, high process temperature and multiple deposition layers are recommended. - Abstract: The goal of this paper is to study the characteristics of PEDOT:PSS thin films and the effects of varying the processing parameters on the structure, functionality, and surface wetting of spun-on and spray-on PEDOT:PSS thin films. PEDOT:PSS is a polymer mixture, which is electrically conductive and transparent and, therefore, is an attractive material for some optoelectronic applications, such as organic and perovskite solar cells. In this work, the films are fabricated using spin coating (a lab-scale method) and spray coating (an up-scalable method). The effects of spinning speed, drying time, and post-annealing temperature on spun-on samples and the effects of the substrate temperature and number of spray passes (deposition layers) on spray-on samples, as well as the effect of precursor solution concentration on both cases are investigated. Various characterization tools, such as AFM, SEM, XRD, confocal laser scanning microscopy (CLSM), and electrical conductivity measurements are used to determine the film roughness, thickness, structure, and morphology. The solution precursor physical data, such as contact angle on glass substrates, viscosity, and interfacial tension, are also obtained within a practical range of temperatures and concentrations. It is found that in both spin and spray coating routes, only well-controlled operating conditions result in the formation of conductive and defect-free PEDOT:PSS films. The formation of PEDOT:PSS thin films with small grains composed of PEDOT forming the core of the grains and PSS forming a shell or coating, which are evenly distributed in a PSS

  10. Advanced fuels for gas turbines: Fuel system corrosion, hot path deposit formation and emissions

    International Nuclear Information System (INIS)

    Seljak, Tine; Širok, Brane; Katrašnik, Tomaž

    2016-01-01

    Highlights: • Technical feasibility analysis of alternative fuels requires a holistic approach. • Fuel, combustion, corrosion and component functionality are strongly related. • Used approach defines design constraints for microturbines using alternative fuels. - Abstract: To further expand the knowledge base on the use of innovative fuels in the micro gas turbines, this paper provides insight into interrelation between specific fuel properties and their impact on combustion and emission formation phenomena in micro gas turbines for stationary power generation as well as their impact on material corrosion and deposit formation. The objective of this study is to identify potential issues that can be related to specific fuel properties and to propose counter measures for achieving stable, durable, efficient and low emission operation of the micro gas turbine while utilizing advanced/innovative fuels. This is done by coupling combustion and emission formation analyses to analyses of material degradation and degradation of component functionality while interpreting them through fuel-specific properties. To ensure sufficiently broad range of fuel properties to demonstrate the applicability of the method, two different fuels with significantly different properties are analysed, i.e. tire pyrolysis oil and liquefied wood. It is shown that extent of required micro gas turbine adaptations strongly correlates with deviations of the fuel properties from those of the baseline fuel. Through the study, these adaptations are supported by in-depth analyses of impacts of fuel properties on different components, parameters and subsystems and their quantification. This holistic approach is further used to propose methodologies and innovative approaches for constraining a design space of micro gas turbine to successfully utilize wide spectra of alternative/innovative fuels.

  11. Depositional environment, sand provenance, and diagenesis of the Basal Salina Formation (lower Eocene), northwestern Peru

    Science.gov (United States)

    Marsaglia, K. M.; Carozzi, A. V.

    The Basal Salina Formation is a lower Eocene transgressive sequence consisting of interbedded shales, siltstones, and conglomeratic sandstones. This formation occurs in the Talara basin of northwestern Peru and is one of a series of complexly faulted hydrocarbon-producing formations within this extensional forearc basin. These sediments were probably deposited in a fan-delta complex that developed along the ancestral Amotape Mountains during the early Eocene. Most of the sediment was derived from the low-grade metamorphic and plutonic rocks that comprise the Amotape Mountains, and their sedimentary cover. Detrital modes of these sandstones reflect the complex tectonic history of the area, rather than the overall forearc setting. Unlike most forearc sediments, these are highly quartzose, with only minor percentages of volcanic detritus. This sand is variably indurated and cemented by chlorite, quartz, calcite, and kaolinite. Clay-mineral matrix assemblages show gradational changes with depth, from primarily detrital kaolinite to diagenetic chlorite and mixed-layered illite/smectite. Basal Salina sandstones exhibit a paragenetic sequence that may be tied to early meteoric influx or late-stage influx of thermally driven brines associated with hydrocarbon migration. Much of the porosity is secondary, resulting from a first-stage dissolution of silicic constituents (volcanic lithic fragments, feldspar, and fibrous quartz) and a later dissolution of surrounding carbonate cement. Types of pores include skeletal grains, grain molds, elongate pores, and fracture porosity. Measured porosity values range up to 24% and coarser samples tend to be more porous. Permeability is enhanced by fractures and deterred by clay-mineral cements and alteration residues.

  12. Sedimentary environments and stratigraphy of the carbonate-silicilastic deposits of the Shirgesht Formation: implications for eustasy and local tectonism in the Kalmard Block, Central Iran

    Directory of Open Access Journals (Sweden)

    aram bayetgoll

    2015-10-01

    Full Text Available Introduction   Sedimentological and sequence stratigraphic analysis providing insight into the main relationships between sequence architecture and stacking pattern, syn/post-depositional tectonics, and eustatic sea-level fluctuations (Gawthorpe and Leeder 2000; Zecchin et al. 2003, 2004; Carpentier et al. 2007. Relative variations in sea level are due to tectonic activity and eustasy. The Shirgesht Formation in the Kalmard Block of Central Iran provides a useful case study for to determine the processes responsible on internal architecture and stacking pattern of depositional sequences in a half-graben basin. In the Shirgesht Formation, siliciclastic and carbonate successions of the Kalmard Basin, the cyclic stratigraphic record is the result of the complex interaction of regional uplift, eustasy, local tectonics, sediment supply, and sedimentary processes (Bayet-Goll 2009, 2014; Hosseini-Barzi and Bayet-Goll 2009.     Material & Methods   Lower Paleozoic successions in Tabas and Kalmard blocks from Central Iran share the faunal and floral characteristics with other Gondwana sectors such as south-western Europe and north Africa–Middle East (Ghaderi et al. 2009. The geology of these areas was outlined by Ruttner et al. (1968 and by Bruton et al. (2004. The Cambrian-Middle Triassic strata in the Kalmard Block were deposited in a shallow water platform that possesses lithologic dissimilarities with the Tabas area (Aghanabati 2004. The occurrence of two active faults indicates clearly that Kalmard basin formed a mobile zone throughout the Paleozoic so that lithostratigraphic units show considerably contrasting facies in comparison with Tabas basin (Hosseini-Barzi and Bayet-Goll 2009; Bayet-Goll 2014 . The Shirgesht Formation in the Block Kalmard is mainly composed of carbonate-siliciclastic successions that disconformability overlain Kalmard Formation (attributed to Pre-Cambrian and is underlain by Gachal (Carboniferous or Rahdar (Devonian

  13. Electrical and structural characteristics of spray deposited (Zn O)x-(Cd O)1-x

    International Nuclear Information System (INIS)

    Alarcon F, G.; Pelaez R, A.; Villa G, M.; Carmona T, S.; Luna G, J. A.; Aguilar F, M.; Vasquez P, B.; Falcony, C.

    2013-01-01

    (Zn O) x (Cd O) 1-x thin films were deposited on glass substrates at 300 and 400 C by ultrasonic spray pyrolysis with compositions ranging from Cd O to Zn O. The electrical properties were obtained by impedance spectroscopy and Hall Effect measurements. Scanning electron microscopy, energy dispersive spectroscopy, and X-ray diffraction, were used to study the structural characteristics of the films. Ellipsometry, in addition, was used to confirm the structural characteristics. The films as deposited resulted mainly polycrystalline and dense, depending on the substrate temperature and on their relative composition. All the films showed n-type conductivity and the films with intermediate compositions resulted in a mixture of both phases; Cd O and Zn O. Hall Effect measurements showed that the highest conductivity of Cd O was close to 1 x 10 3 (Ω-cm) -1 , the highest value obtained for Cd O, without doping. Impedance spectroscopy confirmed the Hall Effect results, showing that the highly conducting character of Cd O influenced dramatically the conductivity of the (Zn O) x (Cd O) 1-x films. In addition, depending on the substrate temperature and on the relative composition of the films, both, the bulk or grains, as well as the grain boundaries properties limit the conductivity in them. (Author)

  14. Shape memory characteristics of sputter-deposited Ti-Ni thin films

    International Nuclear Information System (INIS)

    Miyazaki, Shuichi; Ishida, Akira.

    1994-01-01

    Ti-Ni shape memory alloy thin films were deposited using an RF magnetron sputtering apparatus. The as-sputtered films were heat-treated in order to crystallize and memorize. After the heat treatment, the shape memory characteristics have been investigated using DSC and thermomechanical tests. Upon cooling the thin films, the solution-treated films showed a single peak in the DSC curve indicating a single stage transformation occurring from B2 to the martensitic phase, while the age-treated films showed double peaks indicating a two-stage transformation, i.e., from B2 to the R-phase, then to the martensitic phase. A perfect shape memory effect was achieved in these sputter-deposited Ti-Ni thin films in association both with the R-phase and martensitic transformations. Transformation temperatures increased linearly with increasing applied stress. The transformation strain also increased with increasing stress. The shape memory characteristics were strongly affected by heat-treatment conditions. (author)

  15. The Hidden Watershed's Journals: the Informational Characteristics of Biomarkers in Sedimentary Deposits

    Science.gov (United States)

    Guerrero, F. J.; Hatten, J. A.

    2014-12-01

    The historical reconstruction of past environmental changes in watersheds is essential to understand watershed response to disturbances and how those diturbances could affect the provision of valuable goods like water. That reconstruction requires the interpretation of natural records, mainly associated to sedimentary deposits that store detailed information in the form of specific biogenic molecules (i.e. biomarkers). In forested watersheds terrestrial vegetation is an important source of biomarkers like those associated to Lignin, a complex organic polymer used by plants to provide physical support in its tissues. Through litter inputs Lignin is deposited in soils and then is transported to sedimentary environments by rivers (e.g. floodplains, lake bottoms), serving as a source of information about vegetation changes in watersheds. In spite of the critical character of the information extracted from biomarkers in sedimentary records, the very concept of information is still used in a metaphorical sense, even though it was formally defined more than 60 years ago and has been applied extensively in ecology (e.g. Shannon's diversity index). Furthermore, sophisticated techniques are being used to deliver more complex molecular data that require examination and validation as indicators for watershed historical reconstructions. My research aims to explore the applicability of some information metrics (i.e. diversity indices, information coefficients) to a diverse molecular set derived from the chemical depolymerization of lignin deposited in floodplains and lake sediments in different basins. This approach attempts to assess the informational characteristics of Lignin as an indicator of natural/human-induced perturbations in forested watersheds. The formal assessment of the informational characteristics of natural records could have a profound impact not only in our methodological approaches but also in our philosophical view about information and communication in

  16. Mineralogical and geochemical characteristics of the Noamundi-Koira basin iron ore deposits (India)

    Science.gov (United States)

    Mirza, Azimuddin; Alvi, Shabbar Habib; Ilbeyli, Nurdane

    2015-04-01

    India is one of the richest sources of iron ore deposits in the world; and one of them is located in the Noamundi-Koira basin, Singhbhum-Orissa craton. The geological comparative studies of banded iron formation (BIF) and associated iron ores of Noamundi-Koira iron ore deposits, belonging to the iron ore group in eastern India, focus on the study of mineralogy and major elemental compositions along with the geological evaluation of different iron ores. The basement of the Singhbhum-Orissa craton is metasedimentary rocks which can be traced in a broadly elliptical pattern of granitoids, surrounded by metasediments and metavolcanics of Greenstone Belt association. The Singhbhum granitoid is intrusive into these old rocks and to younger, mid Archaean metasediments, including iron formations, schists and metaquartzites and siliciclastics of the Precambrian Iron Ore Group (Saha et al., 1994; Sharma, 1994). The iron ore of Noamundi-Koira can be divided into seven categories (Van Schalkwyk and Beukes 1986). They are massive, hard laminated, soft laminated, martite-goethite, powdery blue dust and lateritic ore. Although it is more or less accepted that the parent rock of iron ore is banded hematite jasper (BHJ), the presence of disseminated martite in BHJ suggests that the magnetite of protore was converted to martite. In the study area, possible genesis of high-grade hematite ore could have occurred in two steps. In the first stage, shallow, meteoric fluids affect primary, unaltered BIF by simultaneously oxidizing magnetite to martite and replacing quartz with hydrous iron oxides. In the second stage of supergene processes, deep burial upgrades the hydrous iron oxides to microplaty hematite. Removal of silica from BIF and successive precipitation of iron resulted in the formation of martite- goethite ore. Soft laminated ores were formed where precipitation of iron was partial or absent. The leached out space remains with time and the interstitial space is generally filled

  17. Principal types of precambrian uranium-gold deposits and their metallogenetic characteristics in China

    International Nuclear Information System (INIS)

    Liang Liang; Zhong Zhiyun.

    1988-01-01

    Principal types of Precambrian uranium-gold deposits are follows: paleo-conglomerate uranium-deposit, stratified or strata-bound uranium-gold deposit, unconformity-related uranium deposit (no or seldem gold) and greenstone gold deposit. The main types of gold deposits in China is greenstone one which is characterized by later age, high grade metamorphism and a large time difference between diagenesis of host rocks and gold metallogenesis. Gold deposits are spatially distributed in the uplift area, whereas uranium deposits are distributed in the downfaulted belt. Furthermore, both uranium and gold deposits are controlled by regional fractures

  18. Accessing the Impact of Sea-Salt Emissions on Aerosol Chemical Formation and Deposition Over Pearl River Delta, China

    Science.gov (United States)

    Fan, Q.; Wang, X.; Liu, Y.; Wu, D.; Chan, P. W.; Fan, S.; Feng, Y.

    2015-12-01

    Sea-salt aerosol (SSA) emissions have a significant impact on aerosol pollution and haze formation in the coastal areas. In this study, Models-3/CMAQ modeling system was utilized to access the impact of SSA emissions on aerosol chemical formation and deposition over Pearl River Delta (PRD), China in July 2006. More SSAs were transported inland from the open-ocean under the southeast wind in summertime. Two experiments (with and without SSA emissions in the CMAQ model) were set up to compare the modeling results with each other. The results showed that the increase of sulfate concentrations were more attributable to the primary emissions of coarse SO42- particles in SSA, while the increase of nitrate concentrations were more attributable to secondary chemical formations, known as the mechanisms of chloride depletion in SSA. In the coastal areas, 17.62 % of SO42-, 26.6% of NO3- and 38.2% of PM10 were attributed to SSA emissions, while those portions were less than 1% in the inland areas. The increases of PM10 and its components due to SSA emissions resulted in higher deposition fluxes over PRD, particularly in the coastal areas, except for the wet deposition of nitrate. Nitrate was more sensitive to SSA emissions in chemical formations than sulfate and dry deposition of aerosol was also more sensitive than that for wet deposition. Process analysis of sulfate and nitrate was applied to find out the difference of physical and chemical mechanisms between Guangzhou (the inland areas) and Zhuhai (the coastal areas). The negative contributions of dry deposition process to both sulfate and nitrate concentrations increased if SSA emissions were taken into account in the model, especially for Zhuhai. The negative contributions of cloud process also increased due to cloud scavenging and wet deposition process. In the coastal area, the gas-to-particle conversions became more active with high contributions of aerosol process to nitrate concentrations.

  19. Formation mechanism of self-potential at ISL-amenable interlayer oxidation zone sandstone-type uranium deposit and the simulation and application of self-potential anomalies

    International Nuclear Information System (INIS)

    Tang Hongzhi; Liu Qingcheng; Su Zhaofeng; Gong Yuling

    2006-01-01

    Based on the analysis of geochemical characteristics and metallogenic physico-chemical conditions of ISL-amenable sandstone-type uranium deposits, the formation mechanism of self-potential field is discussed, a mathematic calculation model has been set up, and the simulation calculation has been performed for self-potential anomalies above uranium ore bodies of ordinary form, features of survey curve are analysed and methods for correcting topography at self-potential anomalies are discussed, and a simulation curve of self-potential in the area of slope topography has been presented. Finally, the availability of the method is demonstrated by an example. (authors)

  20. The geochemistry of claystone-shale deposits from the Maastritchian Patti formation, Southern Bida basin, Nigeria

    Directory of Open Access Journals (Sweden)

    O Okunlola

    2012-07-01

    Full Text Available An inorganic geochemical study of a claystone and shale sequence from the Patti Formation around Ahoko in the Southern Bida basin, Nigeria, was carried out to determine the basin's depositional conditions,provenance and tectonics. Representative samples underwent mineralogical and geochemical analysis involving major, trace and rare earth element analysis.Mineralogical studies using X-ray diffraction analysis revealed prominent kaolinite, dickite and illite peaks; accessory minerals included quartz and microcline. Major element abundance showed thatthe shale samples had SiO2 (61.26%, Al2O3 (16.88% and Fe2O3 (3.75% constituting more than 79% of bulk chemical composition whilst claystone samples contained SiO2 (67.79%, Al2O3 (17.81% andFe2O3 (1.67%. Higher SiO2, Ba, Sr, V, and Nb concentrations were observed in claystone samples rather than shale whereas the shale samples were observed to be more Zr-, Ni- and Zn-enriched than theclaystone ones. The shale and claystone samples showed slightly light rare earth enrichment and slightly flat heavy rare earth depleted patterns having a negative Eu and Tm anomaly. High TiO2 and Rb/K2Ovalues also indicated that the shale and claystone samples were matured. Geochemical parameters such as U, U/Th, Ni/Co and Cu/Zn ratios indicated that these shales were deposited in oxic conditions; theAl2O3/TiO2 ratio suggested that intermediate igneous rocks were probable source rocks for the shales, while mafic rocks were suggested as being source rocks for the claystone. However, the La/Sc, Th/Sc, Th/Co ratios and shales and claystone plots revealed that they came within the range given for felsic rocks as provenance, thereby suggesting mixed provenace for the sediments. A passive-margin tectonic settingwas adduced for the sedimentary sequences.

  1. Metallogenic characteristics, model and exploration prospect for the paleo-interlayer-oxidation type sandstone-hosted uranium deposits in China

    International Nuclear Information System (INIS)

    Huang Jingbai; Li Shengxiang

    2007-01-01

    In this paper, the paleo-interlayer-oxidation type sandstone-hosted uranium deposits occurred in the Meso-Cenozoic continental basins in China are divided into 3 subtype, they are stratum over lapping buried subtype, structure-uplifting destroy subtype and faulted-folding conserved subtype. The metallogenic characteristics, metallogenic model and exploration prospect for these 3 subtypes uranium deposits are discussed. It is proposed that the paleo-interlayer-oxidation type sandstone-hosted uranium deposits, besides the recent interlayer oxidation type sandstone-hosted uranium deposits, are of great prospecting potential in the Meso-Cenozoic continental basins in China. Therefore, the metallogenic theory of these types uranium deposits should be conscientiously summarized and replenished continuously so as to propel forward the exploration of the sandstone-hosted uranium deposits in China. (authors)

  2. Characteristics of microbial community involved in early biofilms formation under the influence of wastewater treatment plant effluent.

    Science.gov (United States)

    Peng, Yuke; Li, Jie; Lu, Junling; Xiao, Lin; Yang, Liuyan

    2018-04-01

    Effluents from wastewater treatment plants (WWTPs) containing microorganisms and residual nutrients can influence the biofilm formation. Although the process and mechanism of bacterial biofilm formation have been well characterized, little is known about the characteristics and interaction of bacteria, archaea and eukaryotes in the early colonization, especially under the influence of WWTP effluent. The aim of this study was to characterize the important bacterial, archaeal and eukaryotic species in the early stage of biofilm formation downstream of the WWTP outlet. Water and biofilm samples were collected 24 and 48hr after the deposition of bio-cords in the stream. Illumina Miseq sequencing of the 16S and 18S rDNA showed that, among the three domains, the bacterial biofilm community had the largest alpha and beta diversity. The early bacterial colonizers appeared to be "biofilm-specific", with only a few dominant operational taxonomic units (OTUs) shared between the biofilm and the ambient water environment. Alpha-proteobacteria and Ciliophora tended to dominate the bacterial and eukaryotic communities, respectively, of the early biofilm already at 24hr, whereas archaea played only a minor role during the early stage of colonization. The network analysis showed that the three domains of microbial community connected highly during the early colonization and it might be a characteristic of the microbial communities in the biofilm formation process where co-occurrence relationships could drive coexistence and diversity maintenance within the microbial communities. Copyright © 2017. Published by Elsevier B.V.

  3. Elimination of impurity phase formation in FePt magnetic thin films prepared by pulsed laser deposition

    International Nuclear Information System (INIS)

    Wang, Ying; Medwal, Rohit; Sehdev, Neeru; Yadian, Boluo; Tan, T.L.; Lee, P.; Talebitaher, A.; Ilyas, Usman; Ramanujan, R.V.; Huang, Yizhong; Rawat, R.S.

    2014-01-01

    The formation of impurity phases in FePt thin films severely degrades its magnetic properties. The X-ray diffraction patterns of FePt thin films, synthesized using pulsed laser deposition (PLD), showed peaks corresponding to impurity phases, resulting in softer magnetic properties. A systematic investigation was carried to determine the factors that might have led to impurity phase formation. The factors include (i) PLD target composition, (ii) substrate material, (iii) annealing parameters such as temperature, duration and ambience and (iv) PLD deposition parameters such as chamber ambience, laser energy fluence and target–substrate distance. Depositions on the different substrates revealed impurity phase formation only on Si substrates. It was found that the target composition, PLD chamber ambience, and annealing ambience were not the factors that caused the impurity phase formation. The annealing temperature and duration influenced the impurity phases, but are not the cause of their formation. A decrease in the laser energy fluence and increase of the target–substrate distance resulted in elimination of the impurity phases and enhancement in the magnetic and structural properties of FePt thin films. The energy of the ablated plasma species, controlled by the laser energy fluence and the target–substrate distance, is found to be the main factor responsible for the formation of the impurity phases.

  4. Water Transfer Characteristics during Methane Hydrate Formation Processes in Layered Media

    Directory of Open Access Journals (Sweden)

    Yousheng Deng

    2011-08-01

    Full Text Available Gas hydrate formation processes in porous media are always accompanied by water transfer. To study the transfer characteristics comprehensively, two kinds of layered media consisting of coarse sand and loess were used to form methane hydrate in them. An apparatus with three PF-meter sensors detecting water content and temperature changes in media during the formation processes was applied to study the water transfer characteristics. It was experimentally observed that the hydrate formation configurations in different layered media were similar; however, the water transfer characteristics and water conversion ratios were different.

  5. LPG and NH3 sensing characteristics of DC electrochemically deposited Co3O4 films

    Science.gov (United States)

    Shelke, P. N.; Khollam, Y. B.; Gunjal, S. D.; Koinkar, P. M.; Jadkar, S. R.; Mohite, K. C.

    2015-03-01

    Present communication reports the LPG and NH3 sensing properties of Co3O4 films prepared on throughly cleaned stainless steel (SS) and copper (CU) substrates by using DC electrochemical deposition method followed by air annealing at 350°C/2 h. The resultant films are characterized by using X-ray diffraction (XRD), Raman spectroscopy and scanning electron microscopy (SEM). The LPG and NH3 gas sensing properties of these films are measured at room temperature (RT) by using static gas sensing system at different concentrations of test gas ranging from 25 ppm to 350 ppm. The XRD and Raman spectroscopy studies clearly indicated the formation of pure cubic spinel Co3O4 in all films. The LPG and NH3 gas sensing properties of films showed (i) the increase in sensitivity factor (S.F.) with gas concentrations and (ii) more sensibility to LPG as compared to NH3 gas. In case of NH3 gas (conc. 150 ppm) and LPG gas (conc. 60 ppm) sensing, the maximum S.F. = 270 and 258 are found for the films deposited on CU substrates, respectively. For all films, the response time (3-5 min.) is found to be much higher than the recovery time (30-50 sec). For all films, the response and recovery time are found to be higher for LPG as compared to NH3 gas. Further, repeatability-reproducibility in gas sensing properties is clearly noted by analysis of data for number of cycles recorded for all films from different set of depositions.

  6. Arctic deep-water ferromanganese-oxide deposits reflect the unique characteristics of the Arctic Ocean

    Science.gov (United States)

    Hein, James; Konstantinova, Natalia; Mikesell, Mariah; Mizell, Kira; Fitzsimmons, Jessica N.; Lam, Phoebe; Jensen, Laramie T.; Xiang, Yang; Gartman, Amy; Cherkashov, Georgy; Hutchinson, Deborah; Till, Claire P.

    2017-01-01

    Little is known about marine mineral deposits in the Arctic Ocean, an ocean dominated by continental shelf and basins semi-closed to deep-water circulation. Here, we present data for ferromanganese crusts and nodules collected from the Amerasia Arctic Ocean in 2008, 2009, and 2012 (HLY0805, HLY0905, HLY1202). We determined mineral and chemical compositions of the crusts and nodules and the onset of their formation. Water column samples from the GEOTRACES program were analyzed for dissolved and particulate scandium concentrations, an element uniquely enriched in these deposits.The Arctic crusts and nodules are characterized by unique mineral and chemical compositions with atypically high growth rates, detrital contents, Fe/Mn ratios, and low Si/Al ratios, compared to deposits found elsewhere. High detritus reflects erosion of submarine outcrops and North America and Siberia cratons, transport by rivers and glaciers to the sea, and distribution by sea ice, brines, and currents. Uniquely high Fe/Mn ratios are attributed to expansive continental shelves, where diagenetic cycling releases Fe to bottom waters, and density flows transport shelf bottom water to the open Arctic Ocean. Low Mn contents reflect the lack of a mid-water oxygen minimum zone that would act as a reservoir for dissolved Mn. The potential host phases and sources for elements with uniquely high contents are discussed with an emphasis on scandium. Scandium sorption onto Fe oxyhydroxides and Sc-rich detritus account for atypically high scandium contents. The opening of Fram Strait in the Miocene and ventilation of the deep basins initiated Fe-Mn crust growth ∼15 Myr ago.

  7. Distribution characteristics of Shihongtan uranium deposits calcareous sandstone and discussion on their genesis

    International Nuclear Information System (INIS)

    Zhu Huanqiao; Jia Heng; Xu Gaozhong; Li Zhanyou

    2007-12-01

    It is considered that the calcareous sandstone appear at layer along of a bunch of pear lens on and off, localled near up and down surface of sandbody or washed surface, has sandstone of more macro-grain and more gradation through statistics and analysis of calcareous sandstone in goal layer in Shihongtan uranium deposits. The calcareous sandstone accumulation thickness chorogram demonstrated that the calcareous sandstone centralized distribution in the ore body growth area, thus it can be seen, in the oxidation reduction intermediate belt the calcareous sandstone forms with the uranium mine has the certain origin relation. Choropleth map of summed thickness of calcareous sandstone deserves that it mainly appear in area of uranium body and related cause of formation of ore body of interlayer deacidizing--oxidation belt. (authors)

  8. Urban characteristics attributable to density-driven tie formation

    Science.gov (United States)

    Pan, Wei; Ghoshal, Gourab; Krumme, Coco; Cebrian, Manuel; Pentland, Alex

    2013-06-01

    Motivated by empirical evidence on the interplay between geography, population density and societal interaction, we propose a generative process for the evolution of social structure in cities. Our analytical and simulation results predict both super-linear scaling of social-tie density and information contagion as a function of the population. Here we demonstrate that our model provides a robust and accurate fit for the dependency of city characteristics with city-size, ranging from individual-level dyadic interactions (number of acquaintances, volume of communication) to population level variables (contagious disease rates, patenting activity, economic productivity and crime) without the need to appeal to heterogeneity, modularity, specialization or hierarchy.

  9. The genesis of the Nissi peatland (northwestern Greece) as an example of peat and lignite deposit formation in Greece

    Energy Technology Data Exchange (ETDEWEB)

    Christianis, K. (University of Patras, Patras (Greece). Dept of Geology)

    1994-07-01

    The Nissi Fen is located in a 12 km[sup 2] intramontane basin in northwestern Greece. Since the last glacial, limnotelmatic and pure telmatic conditions, controlled mainly by karstic springs and partly by surface waters, favoured peat formation in the basin, resulting in the accumulation of a peat deposit up to 15 m thick. The present fen occupies a large area of almost 9 km[sup 2]. Flora cover comprises mainly Cyperaceae ([ital Cladium mariscus] and [ital Carex] species), while [ital Phragmites australis] extend along the banks of a river flowing through the basin, as well as around a lake in the southern part of the fen. These species also contributed to the peat formation. The Nissi peatland shows many genetic similarities to the Philippi peat deposit, Eastern Macedonia, and may be considered as a recent analogue to the lignite deposits in the basins of Ptolemais, Western Macedonia and Megalopolis, the Peloponnese. 36 refs., 5 figs.

  10. Formation and properties of surface-anchored polymer assemblies with tunable physico-chemical characteristics

    Science.gov (United States)

    Wu, Tao

    We describe two new methodologies leading to the formation of novel surface-anchored polymer assemblies on solid substrates. While the main goal is to understand the fundamentals pertaining to the preparation and properties of the surface-bound polymer assemblies (including neutral and chargeable polymers), several examples also are mentioned throughout the Thesis that point out to practical applications of such structures. The first method is based on generating assemblies comprising anchored polymers with a gradual variation of grafting densities on solid substrates. These structures are prepared by first covering the substrate with a molecular gradient of the polymerization initiator, followed by polymerization from these substrate-bound initiator centers ("grafting from"). We apply this technique to prepare grafting density gradients of poly(acryl amide) (PAAm) and poly(acrylic acid) (PAA) on silica-covered substrates. We show that using the grafting density gradient geometry, the characteristics of surface-anchored polymers in both the low grafting density ("mushroom") regime as well as the high grafting density ("brush") regime can be accessed conveniently on a single sample. We use a battery of experimental methods, including Fourier transform infrared spectroscopy (FTIR), Near-edge absorption fine structure spectroscopy (NEXAFS), contact angle, ellipsometry, to study the characteristics of the surface-bound polymer layers. We also probe the scaling laws of neutral polymer as a function of grafting density, and for weak polyelectrolyte, in addition to the grafting density, we study the affect of solution ionic strength and pH values. In the second novel method, which we coined as "mechanically assisted polymer assembly" (MAPA), we form surface anchored polymers by "grafting from" polymerization initiators deposited on elastic surfaces that have been previously extended uniaxially by a certain length increment, Deltax. Upon releasing the strain in the

  11. Formation mechanisms and characteristics of transition patterns in oblique detonations

    Science.gov (United States)

    Miao, Shikun; Zhou, Jin; Liu, Shijie; Cai, Xiaodong

    2018-01-01

    The transition structures of wedge-induced oblique detonation waves (ODWs) in high-enthalpy supersonic combustible mixtures are studied with two-dimensional reactive Euler simulations based on the open-source program AMROC (Adaptive Mesh Refinement in Object-oriented C++). The formation mechanisms of different transition patterns are investigated through theoretical analysis and numerical simulations. Results show that transition patterns of ODWs depend on the pressure ratio Pd/Ps, (Pd, Ps are the pressure behind the ODW and the pressure behind the induced shock, respectively). When Pd/Ps > 1.3, an abrupt transition occurs, while when Pd/Ps 1.02Φ∗ (Φ∗ is the critical velocity ratio calculated with an empirical formula).

  12. Depositional History and Sequence Stratigraphy of the Middle Ordovician Yeongheung Formation (Yeongweol Group), Taebaeksan Basin, mid-east Korea

    Science.gov (United States)

    Kwon, Yoo Jin; Kwon, Yi Kyun

    2017-04-01

    The Middle Ordovician Yeongheung Formation consists of numerous meter-scale, shallowing-upward cycles which were deposited on a shallow-marine carbonate platform. Many diagnostic sedimentary textures and structures such as supratidal laminite, tepee structure, and solution-collapsed breccia are observed, which enable to infer the dry climate and high salinity conditions during deposition of the formation. In order to understand its depositional history, this study focuses on vertical and spatial stacking patterns of the second- to third-order sequences through the detailed outcrop description and geologic mapping. A total 19 lithofacies have been recognized, which can be grouped into 5 facies associations (FAs): FA1 (Supratidal flat), FA2 (Supratidal or dolomitization of peritidal facies), FA3 (Intertidal flat), FA4 (Shallow subtidal to peritidal platform), FA5 (Shallow subtidal shoal). Global mega-sequence boundary (Sauk-Tippecanoe) occurs in solution-collapsed breccia zone in the lower part of the formation. Correlation of the shallowing-upward cycle stacking pattern across the study area defines 6 transgressive-regressive depositional sequences. Each depositional sequences comprises a package of vertical and spatial staking of shallow subtidal cycles in the lower part and peritidal cycles in the upper part of the formation. According to sequence stratigraphic interpretation, the reconstructed relative sea-level curve of the Yeongweol platform is very similar to that of the Taebaek platform. Based on the absence of siliciclastic sequence such as the Jigunsan Formation and the lithologic & stratigraphic differences, however, the Yeongweol and Taebaek groups might not belong to a single depositional system within the North China platform. The Yeongweol Group can be divided by the four subunits into their unique lithologic successions and geographic distributions. The Eastern subunit of the Yeongweol Group is composed dominantly of carbonate rocks with a high

  13. Stratigraphy and environments of deposition of the Cretaceous Hell Creek Formation (reconnaissance) and the Paleocene Ludlow Formation (detailed), southwestern North Dakota. Report of investigations No. 56

    International Nuclear Information System (INIS)

    Moore, W.L.

    1976-01-01

    The Cretaceous Hell Creek and Paleocene Ludlow Formations of southwestern North Dakota, with the exception of the included lignite beds and minor amounts of concretions and nodules, are almost exclusively clastic sediments and sedimentary rocks. Massive clays, clays alternating with silts and sands, sandstones filling channels and other depressions, sheet sandstones, and lignites are the dominant sediment and rock types present. These sediments and sedimentary rocks were mostly deposited in a continental environment and were largely alluvial, lacustrine or paludal in origin; though marginal marine deposition, in part, is indicated by the occurrence of brackish water faunas in portions of the upper Ludlow Formation. With the possible exception of a persistent lignite near the base, persistent lignites are not present in the Hell Creek Formation. The Ludlow can be subdivided into several informal units, typically coal-bounded, which can be traced laterally over large areas. This informal subdivision permits isolation of stratigraphic units for the study of local environments of deposition. Channel and depression fill sandstones of the Ludlow Formation have a relatively low permeability and a high organic content at the surface and, for this reason, are considered poor prospective uranium host rocks. The lighter colored yellow winnowed sheet sandstones of the Ludlow are more permeable and relatively free of organic matter. They are considered as possible host rocks for uranium occurring in association with an oxidation/reduction interface at shallow depths. The uranium potential is enhanced where the latter sandstones occur along paleodivides which have been overlain by the Oligocene White River Formation, or in local areas where the latter formation is still preserved. Light yellow winnowed sheet sandstones are rare in the Hell Creek Formation, and the chances for uranium prospects in this interval seem correspondingly reduced

  14. Long-term evolution of radio-active waste storage in geological formations: analogy with the weathering of mineral deposits

    International Nuclear Information System (INIS)

    Cantinolle, P.; Griffault, L.; Jebrak, M.

    1986-01-01

    The aim of this study was to select examples of mineral deposits and their weathering environment, showing the long-term behaviour, in geological time, measuring (area, volume) some constituent elements of radio-active waste storage subject to the hazards of hydrogeochemical weathering. Initially, a feasibility study was made to collate data available within the BRGM (mining group and public service) and from literature dealing with weathering of deposits. It was thus discovered that the analogy between radio-active waste storage and mineral deposits could be approached in two different yet complementary ways: - one approach is to observe the behaviour of a mineral deposit in relation to the country rocks. For this a bibliographic metallogenic study was made. The other approach is to observe the behaviour of chemical elements during deposition of a mineral deposit whose genesis is similar to the spatial and thermal environment of a deposit of radio-active waste in a geological formation. For this two sites were selected corresponding to hydrothermal systems showing strong analogies to those expected in the neighbourhood of the storage sites. These two sites, Langenberg in the Vosges and La Telhaie in Brittany, were the subject of complementary analytical work [fr

  15. Characteristics of a sandy depositional lobe on the outer Mississippi fan from SeaMARC IA sidescan sonar images

    Science.gov (United States)

    Twichell, David C.; Schwab, William C.; Nelson, C. Hans; Kenyon, Neil H.; Lee, Homa J.

    1992-01-01

    SeaMARC IA sidescan sonar images of the distal reaches of a depositional lobe on the Mississippi Fan show that channelized rather than unconfined transport was the dominant transport mechanism for coarse-grained sediment during the formation of this part of the deep-sea fan. Overbank sheet flow of sands was not an important process in the transport and deposition of the sandy and silty sediment found on this fan. The dendritic distributary pattern and the high order of splaying of the channels, only one of which appears to have been active at a time, suggest that coarse-grained deposits on this fan are laterally discontinuous.

  16. Seasonal and annual variations and regional characteristics of wet and dry deposition amounts in East Asian region

    Science.gov (United States)

    Sato, K.; Tsuyoshi, O.; Endo, T.; Yagoh, H.; Matsuda, K.

    2011-12-01

    Emission of sulfur and nitrogen compounds in Asian region has been remarkably increased with recent rapid economical growth (Ohara et al., 2007). To appropriately assess the influence of air pollutants on the ecosystem, it is important to quantitatively determine the atmospheric deposition of air pollutants. Here, Seasonal and annual variations and regional characteristics of estimated wet and dry deposition amounts at 27 monitoring sites of Acid Deposition Monitoring Network in East Asia (EANET) from 2003 to 2009 are discussed. Wet deposition sample was collected every 24 hours or 1 week by a wet only sampler. Wet deposition amounts were calculated by the product of the volume-weighted concentrations of ionic species (SO42-, NO3-, and NH4+) in the precipitation and precipitation amount measured by a standard rain gauge at each site. Dry deposition amount was estimated by the inferential method which was originated the model developed by Wesely and Hicks (1977) and modified by Matsuda (2008). The components examined for dry deposition were sulfur compounds (gaseous SO2 and particulate SO42-) and nitrogen compounds (gaseous HNO3 and NH3, particulate NO3- and NH4+). Dry deposition was calculated by the product of the deposition velocity estimated by the inferential method for forest and grass surfaces and the monitored air concentration of each compound. The mean annual dry deposition amounts for sulfur and nitrogen compounds in Japanese sites were in the range of 5-37 and 7-50 mmol m-2 year-1, respectively. The regional characteristics of dry deposition amounts in Japan were similar between sulfur and nitrogen compounds, which showed higher deposition in the Sea of Japan side and the western Japan. The mean annual total (wet + dry) deposition amounts for sulfur and nitrogen compounds in Japanese sites were in the range of 28-77 and 22-130 mmol m-2 year-1, respectively. The contributions of dry deposition to the total deposition amounts were 10-55% and 13-56% for

  17. Geologic characteristics of sediment- and volcanic-hosted disseminated gold deposits - Search for an occurrence model

    Science.gov (United States)

    White, Donald E.; Fournier, Robert O.; Rytuba, James J.; Rye, Robert O.; Cunningham, Charles G.; Berger, Byron R.; Silberman, Miles L.; Bonham, Harold F.; Strachan, Donald G.; Birak, Donald J.; Hawkins, Robert J.; Tooker, Edwin W.; Tooker, Edwin W.

    1985-01-01

    The current expansion of resource information, particularly on "disseminated" gold, and the improved technologies now available for resource investigations should place us in an enhanced position for developing a better predictive methodology for meeting one of the important responsibilities of the U.S. Geological Survey-to examine and assess the mineral resources of the geologic terranes composing the public (and privately owned) lands of the United States. The first step is systematic organization of these data. Geologic-occurrence models are an effective systematic method by which to organize large amounts of resource information into a logical sequence facilitating its use more effectively in meeting several industry and Survey objectives, which include the exploration for resources and the assessment of resource potential for land-use decisions. Such models also provide a scientific basis for metallogenesis research, which considers the observable features or attributes of ore occurrence and their "fit" into the Earth's resource puzzle. The use of models in making resource assessments/appraisals was addressed by Shawe (1981), who reported the results of a workshop on methods for resource appraisal of Wilderness and Conterminous United States Mineral Appraisal Program (CUSMAP; 1:250,000-scale quadrangles) areas. The Survey's main objective in the 1982 workshop was to evaluate the status of knowledge about disseminated or very fine grained gold deposits and, if possible, to develop an occurrence model(s).This report on the workshop proceedings has three main objectives: (1) Education through the publication of a summary review and presentation of new thinking and observations about the scientific bases for those geologic processes and environments that foster disseminated gold-ore formation; (2) systematic organization of available geologic, geochemical, and geophysical information for a range of typical disseminated gold deposits (including recognition of gaps

  18. Fluid inclusion characteristics and geological significance of the Dajinshan W-Sn polymetallic deposit in Yunfu, Guangdong Province

    Science.gov (United States)

    Yu, Zhangfa; Chen, Maohong; Zhao, Haijie

    2015-05-01

    The Dajinshan tungsten-tin polymetallic deposit is a quartz-vein-type ore deposit located in Western Guangdong Province. The ore bodies show a fairly simple shape and mainly occur as tungsten-tin polymetallic-bearing sulfide quartz veins, including quartz vein, quartz-greisens, and sulfide quartz veins, and their distribution is spatially related to Dajinshan granitoids. The formation of the deposit experienced three stages: a wolframite-molybdenite-quartz stage, a wolframite-cassiterite-sulfide-quartz stage, and a fluorite-calcite-carbonate stage. Based on detailed petrographic observations, we conducted microthermometric and Raman microspectroscopic studies of fluid inclusions formed at different ore-forming stages in the Dajinshan tungsten-tin polymetallic deposit, identifying four dominant types of fluid inclusions: aqueous two-phase inclusions, CO2-bearing inclusions, solid or daughter mineral-bearing inclusions, and gas-rich inclusions. The gas compositions of ore-forming fluids in the Dajinshan tungsten-tin polymetallic deposit are mostly CO2, CH4, and H2O. The hydrogen, oxygen, and sulfur isotopic data imply that the ore-forming fluids in the Dajinshan tungsten-tin polymetallic deposit were mainly derived from magmatic fluids, mixed with meteoric water in the ore-formation process. These results indicate that the fluid mixing and boiling led to the decomposition of the metal complex in ore-forming fluids and ore deposition.

  19. Discussion on the petrochemistry characteristics and uranium deposit of Xiazhuang pluton in northern Guangdong province

    International Nuclear Information System (INIS)

    Wu Jiguang

    2011-01-01

    The element characteristic of Indo-Chinese epoch Xiazhuang granite is rich in silicon (SiO 2 =69.13%∼73.39%), alkalis (K 2 O+Na 2 O=7.49%∼8.69%), the ASI=1.01∼1.21 and ratio of w (K 2 O)/w (Na 2 O)>1, Xiazhuang pluton is belong to high potassium calcium-alkaline and aluminous series rocks. It shows that the pluton is typical S-type granite, little part is A-type granite character. Under the extension tectonic setting of lithosphere, the Xiazhuang pluton is partial melting product that making up metamorphic mud and sandstone together. By analysing the tectonic setting,the pluton is belong to post-collision granite that original rock provide abundant of uranium content for granite and the tectonic setting of forming provide the moving channels and occurrence space for uranium deposit. (authors)

  20. Characteristic of selected frequency luminescence for paleo-debris flow deposits in Jiangjia valley

    International Nuclear Information System (INIS)

    Liu Zhaowen; Wei Mingjian; Pan Baolin; Liu Chao; Li Dongxu

    2008-01-01

    Eight paleo-debris flow samples from Nideping, Duozhao, Dawazi valley, and Jiangjia valley in Yunnan Province were tested with BG2003 luminescence spectrograph. The characteristic spectra of the selected frequency luminescence of paleo-debris flow deposits from the different locations were obtained. Excited at 488 nm, the wavelengths of emission photons from all samples are 300, 310, 320, 400 and 460 nm. With green excitation (532 nm), the wavelengths of emission photons from all samples are 300, 310, 320 and 460 nm. Then it is determined that the luminescence spectrographs of Nideping are almost same in different time, however, they are different in Dawazi valley and Duozhao. Taking Nideping for example, excited at green, the debris flow substances from the upper, middle, or lower zone of this platform. Response to increasing irradiation dose at 310, 320, and 460 nm, we can define the wavelengths used for dating. (authors)

  1. Oxygen in the Martian atmosphere: Regulation of PO2 by the deposition of iron formations on Mars

    Science.gov (United States)

    Burns, Roger G.

    1992-01-01

    During Earth's early history, and prior to the evolution of its present day oxygenated atmosphere, extensive iron rich siliceous sedimentary rocks were deposited, consisting of alternating layers of silica (chert) and iron oxide minerals (hematite and magnetite). The banding in iron formations recorded changes of atmosphere-hydrosphere interactions near sea level in the ancient ocean, which induced the oxidation of dissolved ferrous iron, precipitation of insoluble ferric oxides and silica, and regulation of oxygen in Earth's early atmosphere. Similarities between the Archean Earth and the composition of the present day atmosphere on Mars, together with the pervasive presence of ferric oxides in the Martian regolith suggest that iron formation might also have been deposited on Mars and influenced the oxygen content of the Martian atmosphere. Such a possibility is discussed here with a view to assessing whether the oxygen content of the Martian atmosphere has been regulated by the chemical precipitation of iron formations on Mars.

  2. Effect of voltage on the characteristics of magnesium-lanthanum deposits synthesized by an electrodeposition process

    Energy Technology Data Exchange (ETDEWEB)

    Sahli, M. [Laboratoire de Physique Energétique, Université de Constantine 1 (Algeria); Chetehouna, K.; Gascoin, N. [INSA-CVL, Univ. Orléans, PRISME, EA 4229, F-18020, Bourges (France); Bellel, N. [Laboratoire de Physique Energétique, Université de Constantine 1 (Algeria); Tadini, P., E-mail: tadini.pietro@gmail.com [INSA-CVL, Univ. Orléans, PRISME, EA 4229, F-18020, Bourges (France)

    2017-04-15

    This work deals with the characterization of magnesium-lanthanum powders deposits produced with an electrodeposition technique using an aqueous solution based on magnesium chloride and lanthanum(III) nitrate. In recent years, the interest for magnesium-based alloys is growing due to their potential use as solid state systems for hydrogen storage. This work is a preliminary study on the synthesis of magnesium-lanthanum powders oriented to their later evaluation in systems for hydrogen storage. Magnesium and Lanthanum are deposited on a copper plate used as a cathode. Chemical composition, structure and morphology are investigated by EDS, XRD, FTIR and SEM. The effect of voltage on powders characteristics is studied considering three values (3, 3.5 and 4 V). EDS analysis shows the presence of three major elements (Mg, La and O) with a little amount of Cl. The weight percentages of Mg and O increase whereas the one of La decreases with the growth of voltage. Morphological characterization reveals that heterogeneous chemical structures are formed on the surface of the electrode and the size of aggregates decreases with the increase of voltage. From the results of X-ray analysis the deposits reveal the significant presence of two phases: Mg(OH){sub 2} and La(OH){sub 3}. The peaks originating from the Mg(OH){sub 2} phase has a non-monotonic behavior and those of La(OH){sub 3} phase increase with the increase of voltage. FTIR analysis confirms the presence of the two phases identified in XRD diffractograms and exhibits that their corresponding transmittance values increase for higher voltage values. - Highlights: • Synthesis of magnesium-lanthanum deposits by an electrodeposition process. • Voltage effect is investigated using different physicochemical analysis techniques (EDS, XRD, FTIR and SEM). • The EDS analysis shows the presence of three major elements (Mg, La and O) and a little amount of Cl. • Two phases, namely Mg(OH){sub 2} and La(OH){sub 3} are

  3. Chemical characteristics, deposition fluxes and source apportionment of precipitation components in the Jiaozhou Bay, North China

    Science.gov (United States)

    Xing, Jianwei; Song, Jinming; Yuan, Huamao; Li, Xuegang; Li, Ning; Duan, Liqin; Qu, Baoxiao; Wang, Qidong; Kang, Xuming

    2017-07-01

    To systematically illustrate the chemical characteristics, deposition fluxes and potential sources of the major components in precipitation, 49 rainwater and snow water samples were collected in the Jiaozhou Bay from June 2015 to May 2016. We determined the pH, electric conductivity (EC) and the concentrations of main ions (Na+, K+, Ca2 +, Mg2 +, NH4+, SO42 -, NO3-, Cl- and F-) as well as analyzed their source contributions and atmospheric transport. The results showed that the precipitation samples were severely acidified with an annual volume-weighted mean (VWM) pH of 4.77. The frequency of acid precipitation (pH pollution level over the Jiaozhou Bay. Surprisingly, NH4+ (40.4%), which is higher than Ca2 + (29.3%), is the dominant species of cations, which is different from that in most areas of China. SO42 - was the most abundant anions, and accounted for 41.6% of the total anions. The wet deposition fluxes of sulfur (S) was 12.98 kg ha- 1 yr- 1. Rainfall, emission intensity and long-range transport of natural and anthropogenic pollutants together control the concentrations and wet deposition fluxes of chemical components in the precipitation. Non-sea-salt SO42 - and NO3- were the primary acid components while NH4+ and non-sea-salt Ca2 + were the dominating neutralizing constituents. The comparatively lower rainwater concentration of Ca2 + in the Jiaozhou Bay than that in other regions in Northern China likely to be a cause for the strong acidity of precipitation. Based on the combined enrichment factor and correlation analysis, the integrated contributions of sea-salt, crustal and anthropogenic sources to the total ions of precipitation were estimated to be 28.7%, 14.5% and 56.8%, respectively. However, the marine source fraction of SO42 - may be underestimated as the contribution from marine phytoplankton was neglected. Therefore, the precipitation components in the Jiaozhou Bay present complex chemical characteristics under the combined effects of natural

  4. Formation of fouling deposits on a carbon steel surface from Colombian heavy crude oil under preheating conditions

    Science.gov (United States)

    Muñoz Pinto, D. A.; Cuervo Camargo, S. M.; Orozco Parra, M.; Laverde, D.; García Vergara, S.; Blanco Pinzon, C.

    2016-02-01

    Fouling in heat exchangers is produced by the deposition of undesired materials on metal surfaces. As fouling progresses, pressure drop and heat transfer resistance is observed and therefore the overall thermal efficiency of the equipment diminishes. Fouling is mainly caused by the deposition of suspended particles, such as those from chemical reactions, crystallization of certain salts, and some corrosion processes. In order to understand the formation of fouling deposits from Colombian heavy oil (API≈12.3) on carbon steel SA 516 Gr 70, a batch stirred tank reactor was used. The reactor was operated at a constant pressure of 340psi while varying the temperature and reaction times. To evaluate the formation of deposits on the metal surfaces, the steel samples were characterized by gravimetric analysis and Scanning Electron Microscopy (SEM). On the exposed surfaces, the results revealed an increase in the total mass derived from the deposition of salt compounds, iron oxides and alkaline metals. In general, fouling was modulated by both the temperature and the reaction time, but under the experimental conditions, the temperature seems to be the predominant variable that controls and accelerates fouling.

  5. Geological characteristics of the main deposits in the world. Geological characteristics of French uranium deposits; their consequences on the different stages of valorisation. The uranium market; Caracteres geologiques des principaux gisements du monde. Caracteres geologiques des gisements francais d'uranium; leurs consequences dans les differents stades de la mise en valeur. Le marche de l'uranium

    Energy Technology Data Exchange (ETDEWEB)

    Gangloff, A.; Lenoble, A.; Mabile, J.

    1958-07-15

    This document gathers three contributions. In the first one, after having recalled data regarding uranium ore and metal reserves in Canada, USA, South Africa and France, the author describes and discusses the geological and mineral characteristics of the main deposits in Canada (Great Bear Lake, Ace-Verna and other deposits of the Beaverlodge district, Gunnar, Blind River and Bancroft), in the USA (New Mexico, Colorado and Arizona), and in South Africa (similar structure as observed in Blind River). The second contribution addresses the French uranium deposits by firstly presenting, describing and classifying vein deposits (five types are distinguished) and sedimentary deposits in different geological formations, and by secondly discussing the impacts of these characteristics on exploration, surface exploration works, and mining works. The third contribution proposes an overview of the uranium market: comments of world productions (conventional extraction processes and technical peculiarities, costs and prices, reserves and production in Canada, USA, South Africa, France, Australia and others), presentation of the French program (location and production capacity of uranium production plants, locations of ore extraction), overview of the current situation of the world market (price levels, possible prices after 1962), discussion of the comparison between demands and supplies, overview of the French uranium policy.

  6. Metal mobility during metamorphism and formation of orogenic gold deposits: Insights from the Dalradian of Scotland

    OpenAIRE

    Engström, Adam

    2013-01-01

    Orogenic gold deposits occur within metamorphic belts throughout the world and have through time represented the source for over 25% of the world’s gold production. Although orogenic gold deposits are of great economic importance, controversies exist on the subject of fluid and metal sources and there have been few studies of gold´s distribution and mobility outside of large economic deposits. Research made by Pitcairn et al. (2006), on the Mesozoic Otago and Alpine schists of New Zealand, ob...

  7. Enhanced field emission characteristics of boron doped diamond films grown by microwave plasma assisted chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Koinkar, Pankaj M. [Center for International Cooperation in Engineering Education (CICEE), University of Tokushima, 2-1 Minami-josanjima-cho, Tokushima 770-8506 (Japan); Patil, Sandip S. [Center for Advanced Studies in Materials Science and Condensed Matter Physics, Department of Physics, University of Pune, Pune 411007 (India); Kim, Tae-Gyu [Department of Nano System and Process Engineering, Pusan National University, 50 Cheonghak-ri, Samrangjin-eup, Miryang, Gyeongnam, Pusan 627-706 (Korea, Republic of); Yonekura, Daisuke [Department of Mechanical Engineering, University of Tokushima, 2-1 Minami-josanjima-cho, Tokushima 770-8506 (Japan); More, Mahendra A., E-mail: mam@physics.unipune.ac.in [Center for Advanced Studies in Materials Science and Condensed Matter Physics, Department of Physics, University of Pune, Pune 411007 (India); Joag, Dilip S. [Center for Advanced Studies in Materials Science and Condensed Matter Physics, Department of Physics, University of Pune, Pune 411007 (India); Murakami, Ri-ichi, E-mail: murakami@me.tokushima-u.ac.jp [Department of Mechanical Engineering, University of Tokushima, 2-1 Minami-josanjima-cho, Tokushima 770-8506 (Japan)

    2011-01-01

    Boron doped diamond films were synthesized on silicon substrates by microwave plasma chemical vapor deposition (MPCVD) technique. The effect of B{sub 2}O{sub 3} concentration varied from 1000 to 5000 ppm on the field emission characteristics was examined. The surface morphology and quality of films were characterized by scanning electron microscope (SEM) and Raman spectroscopy. The surface morphology obtained by SEM showed variation from facetted microcrystal covered with nanometric grains to cauliflower of nanocrystalline diamond (NCD) particles with increasing B{sub 2}O{sub 3} concentration. The Raman spectra confirm the formation of NCD films. The field emission properties of NCD films were observed to improve upon increasing boron concentration. The values of the onset field and threshold field are observed to be as low as 0.36 and 0.08 V/{mu}m, respectively. The field emission current stability investigated at the preset value of {approx}1 {mu}A is observed to be good, in each case. The enhanced field emission properties are attributed to the better electrical conductivity coupled with the nanometric features of the diamond films.

  8. Using isotope geochemistry to discuss the role of crust-mantle interaction in the formation of endogenetic mega-deposits

    International Nuclear Information System (INIS)

    Zhang Lisheng

    2005-01-01

    Isotope characteristics of some mega-deposits from literature and new results on twenty deposits (ten of them are mega-deposits) show that there exists traces of crust-mantle interaction. It has been established that the interaction all took place in the mantle under many situations. The theory of isotope geochemistry on the genesis of mega-deposits has been discussed. According to the theory, these deposits are a kind of special phenomena, but they have a common factor, i.e. mantle metasomatism produced by the crust-mantle interaction in the mantle no matter what the ore-forming elements diversity may be. The granites with great accumulation of uncompatible elements can be considered as the analogues of mega-deposits. According to the statistical results, it is possible that they formed at a period before about 2 Ga during which the recycling of the materials was accompanied with the obvious crust-mantle interaction and can produce the volatile components which are poor in the mantle. (authors)

  9. INVESTIGATION OF FOULING DEPOSIT FORMATION DURING PASTEURIZATION OF CHILI SAUCE BY USING LAB-SCALE CONCENTRIC TUBE-PASTEURIZER

    Directory of Open Access Journals (Sweden)

    NUR ATIKA ALI

    2014-06-01

    Full Text Available This paper investigates the characteristics of fouling deposits obtained from chilli sauce pasteurization. A lab-scale concentric tube-pasteurizer was used to pasteurize the chilli sauce at 0.712 kg/min and 90±5°C. It was operated for 3 hours. Temperature changes were recorded during pasteurization and the data was used to plot the heat transfer profile and the fouling resistance profile. The thickness of the fouling deposit was also measured and the image was taken for every hour. The fouling deposit was collected at every hour to test its stickiness, hardness and flow behaviour. Proximate analysis was also performed and it shows that the fouling deposit from the chilli sauce is categorized as carbohydrate-based fouling deposits. Activation energy of chilli sauce is 7049.4 J.mole-1 which shows a greater effect of temperature on the viscosity. The hardness, stickiness of fouling deposit and the heat resistance increases as the chilli sauce continuously flows inside the heat exchanger.

  10. Cu-Al alloy formation by thermal annealing of Cu/Al multilayer films deposited by cyclic metal organic chemical vapor deposition

    Science.gov (United States)

    Moon, Hock Key; Yoon, Jaehong; Kim, Hyungjun; Lee, Nae-Eung

    2013-05-01

    One of the most important issues in future Cu-based interconnects is to suppress the resistivity increase in the Cu interconnect line while decreasing the line width below 30 nm. For the purpose of mitigating the resistivity increase in the nanoscale Cu line, alloying Cu with traces of other elements is investigated. The formation of a Cu alloy layer using chemical vapor deposition or electroplating has been rarely studied because of the difficulty in forming Cu alloys with elements such as Al. In this work, Cu-Al alloy films were successfully formed after thermal annealing of Cu/Al multilayers deposited by cyclic metal-organic chemical vapor deposition (C-MOCVD). After the C-MOCVD of Cu/Al multilayers without gas phase reaction between the Cu and Al precursors in the reactor, thermal annealing was used to form Cu-Al alloy films with a small Al content fraction. The resistivity of the alloy films was dependent on the Al precursor delivery time and was lower than that of the aluminum-free Cu film. No presence of intermetallic compounds were detected in the alloy films by X-ray diffraction measurements and transmission electron spectroscopy.

  11. Vegetation succession as affected by decreasing nitrogen deposition, soil characteristics and site management: A modelling approach

    NARCIS (Netherlands)

    Wamelink, G.W.W.; Dobben, van H.F.; Berendse, F.

    2009-01-01

    After many years of increasing nitrogen deposition, the deposition rates are now decreasing. A major question is whether this will result in the expected positive effects on plant species diversity. Long-term experiments that investigate the effects of decreasing deposition are not available. Model

  12. The Bairendaba silver polymetallic deposit in Inner Mongolia, China: characteristics of ore-forming fluid and genetic type of ore deposit

    Science.gov (United States)

    Wang, Ying; Xie, Yuling; Wu, Haoran

    2018-02-01

    Bairendaba silver-polymetallic deposit is located in the middle south of the Xing Meng orogenic belt, and in the silver-polymetallic metallogenic belt on the west slope of the southern of Great Xing’an Range. Based on studying of the fluid inclusion, we discuss the characteristics of ore-forming fluid and the metallic genesis of the Bairendaba silver-polymetallic deposit. By means of the analysis of the fluid inclusions, homogenization temperature, salinity and composition were studied in quartz and fluorite. The result is as the follows: with homogenization temperatures of fluid inclusions in quartz veins being 196∼312 °C, the average 244.52 °C, and fluid salinity 2.90∼9.08 wt%NaCl; with homogenization temperatures of fluid inclusions in fluorite being 127∼306 °C, the average 196.92 °C, and fluid salinity 2.90∼9.34 wt% NaCl. The ore-forming fluid is mainly composed of water and the gas. The results of laser Raman analysis show that the gas phase is mainly CH4. It shows that the ore-forming fluid is characterized by medium-low temperature and low-salinity system. The temperature of ore-forming fluid is from high to low, and the salinity from high to low, and the meteoric water or metamorphic water is added during deposit. According to the geological characteristics of the mining area, it is considered that the genetic type of the ore deposit should be the fault-controlled and the medium-low temperature hydrothermal deposit related to magmatic hydrothermal activities.

  13. Characteristics of chlorites from Huangnihu uranium deposit and their implications in uranium metallogenic environment in the southern part of Jiangxi Province

    International Nuclear Information System (INIS)

    Hu Zhihua; Lin Jinrong; Pang Yaqing; Gao Fei; Rong Jiashu; Guo Shuying

    2013-01-01

    Chlorite is genetically related to uranium mineralization in Huangnihu uranium deposit. By means of microscopic and electronic microprobe analysis, the authors investigated chemical composition and texture of the chlorite and found that chlorite in Huangnihu deposit has the following characteristics: 1. they are mainly Fe-rich chlorite composed of chamosite and brunsvigite, of which chemical composition is mainly affected by mud and mafic rock; 2. the Fe-Mg and Al"I"V-Si substitution dominates the octahedral substitution supplemented by Al"V"I-Fe substitution; the oolitic chlorite and biotite feinted chlorite closely associated with uranium were formed at temperatures of 216.23 ∼ 256.73℃ (average 228.6℃). The chemical composition and forming environment of the oolitic chlorite and biotite illusion chlorite suggests that Huangnihu uranium deposit is a low-moderate temperature hydrothermal uranium deposit formed in a reducing environment and iron-rich formation, the ore-forming fluid mainly originated from shale rock, partly from ultramafic or mafic liquid. (authors)

  14. Investigation of the formation of deposits of calcium sulfate on a metallic wall: detection and growth initiation

    International Nuclear Information System (INIS)

    Guillermin, Roger

    1970-01-01

    Whereas the formation of calcium sulfate deposits on walls of (water desalination) heat exchanger tubes increases the load loss and decreases the heat exchange coefficient, measuring the load loss or measuring heat transfer in an exchanger could be a method to determine whether scaling occurs. In this research thesis, the author aims at a computational assessing of the sensitivity of such methods in conditions easily obtained in laboratory and allowing, if possible, the identification of the different steps of deposit formation. Then, the author considers some discontinuous methods, possibly more sensitive but more difficult to adjust, but which are not interesting in an industrial point of view: methods based on weighing, on chemical dosing, on radioactive measurements (tracers, auto-radiography, beta backscattering), optical methods and electric methods (piezoelectric quartz, conductivity measurements)

  15. Lithostratigraphy, depositional environments and sedimentology of the Permian Vryheid Formation (Karoo Supergroup), Arnot North, Witbank Coalfield, South Africa

    OpenAIRE

    2009-01-01

    M.Sc. This work documents the lithostratigraphy and interpreted depositional environments of the Permian Vryheid Formation in the most northern proximal setting yet studied in the Witbank Coalfield. Data from 924 boreholes from two mining companies (Anglo Operations Ltd. and Xstrata Coal Ltd.) drilled over 50 years, covering an area of 910km2 revealed a 35m sequence of terrigenous clastic sedimentary rocks containing two coal seams. These seams are numbered No. 1 at the base and No. 2 at t...

  16. Aspects of alkali chloride chemistry on deposit formation and high temperature corrosion in biomass and waste fired boilers

    OpenAIRE

    Broström, Markus

    2010-01-01

    Combustion of biomass and waste has several environmental, economical and political advantages over the use of fossil fuels for the generation of heat and electricity. However, these fuels often have a significantly different composition and the combustion is therefore associated with additional operational problems. A high content of chlorine and alkali metals (potassium and sodium) often causes problems with deposit formation and high temperature corrosion. Some different aspects of these i...

  17. Depressurization and boiling of a single magmatic fluid as a mechanism for tin-tungsten deposit formation

    OpenAIRE

    Maximilian Korges; Philipp Weis; Volker Lüders; Oscar Laurent

    2018-01-01

    Tin (Sn) and tungsten (W) mineralization are commonly associated with each other in relation to highly evolved granites, but economical ore grades are restricted to rare global occurrences and mineralization styles are highly variable, indicating different mechanisms for ore formation. The Sn-W Zinnwald deposit in the Erzgebirge (Germany and the Czech Republic) in the roof zone of a Variscan Li-F granite hosts two contrasting styles of mineralization: (1) cassiterite (Sn) in greisen bodies, a...

  18. Depositional environments as a guide to uranium mineralization in the Chinle formation, San Rafael Swell, Utah

    International Nuclear Information System (INIS)

    Lupe, R.

    1977-01-01

    The sedimentary textures resulting from depositional processes operating in low-energy environments appear to have influenced uranium mineralization. The Chinle consists of three fining-upward, fluvial-lacustrine sequences. Uranium minerals are concentrated in the lower part of the lowest sequence in areas where sediments of low-energy environment are complexly interbedded with sediments of other environments. Areas favorable for uranium exploration exist in the subsurface to the north, west, and south of the Chinle outcrop in the Swell. This determination is based on the spatial distribution of depositional environments and the pattern of Chinle deposition through time. 8 refs

  19. Towards a CFD-based mechanistic deposit formation model for straw-fired boilers

    DEFF Research Database (Denmark)

    Kær, Søren Knudsen; Rosendahl, Lasse Aistrup; Baxter, L.L.

    2006-01-01

    is configured entirely through a graphical user interface integrated in the standard FLUENTe interface. The model considers fine and coarse mode ash deposition and sticking mechanisms for the complete deposit growth, as well as an influence on the local boundary conditions for heat transfer due to thermal...... in the reminder of the paper. The growth of deposits on furnace walls and super heater tubes is treated including the impact on heat transfer rates determined by the CFD code. Based on the commercial CFD code FLUENTe, the overall model is fully implemented through the User Defined Functions. The model...

  20. Apatite formation behaviour during metasomatism in the Bathtub Intrusion (Babbitt deposit, Duluth Complex, USA)

    Science.gov (United States)

    Raič, Sara; Mogessie, Aberra; Krenn, Kurt; Hauzenberger, Christoph A.; Tropper, Peter

    2016-04-01

    The mineralized troctolitic Bathtub intrusion (Duluth Complex, NE-Minnesota) is known for its famous Cu-Ni-Sulfide±PGM Babbitt deposit, where platinum group minerals (PGMs) are either hosted by primary magmatic sulfides (base metal sulfides) or associated with hydrothermally altered portions. This secondary generation of PGMs is present in alteration patches and suggests the involvement of hydrothermal fluids in the mobilization of platinum-group elements (PGEs). Accessory fluorapatite in these samples reveals besides H2O- and CO2-rich primary fluid inclusions, textural and compositional variations that also record magmatic and metasomatic events. Based on detailed back-scattered electron imaging (BSE) and laser ablation-inductively coupled plasma-mass spectrometry (LA-ICPMS), a primary magmatic origin is reflected by homogeneous or zoned grains, where zoning patterns are either concentric or oscillatory, with respect to LREE. Late magmatic to hydrothermal processes are indicated by grains with bright LREE-enriched rims or conversion textures with REE-enriched patches in the interior of the apatite. A metasomatic formation of monazite from apatite is documented by the presence of monazite inclusions in apatite and newly grown monazite at altered apatite rims. They formed by the release of REEs from the apatite during a fluid-induced alteration, based on the coupled substitution Ca2+ + P5+ = REE3+ + Si4+ (Rønsbo 1989; Rønsbo 2008). Samples with monazite inclusions in apatite further display occurrences of PGMs associated with hydrothermal alteration patches (chlorite + amphibole). The presence of H2O- and CO2-rich fluid inclusions in apatite, the metasomatically induced monazite growth, as well as the occurrence of PGMs in hydrothermally alteration zones, also suggest the involvement of aqueous chloride complexes in a H2O dominated fluid in the transportation of LREE and redistribution of the second generation of PGEs. Rønsbo, J.G. (1989): Coupled substitutions

  1. Deposit Formation in a 150 MWe Utility PF-Boiler during Co-combustion of Coal and Straw

    DEFF Research Database (Denmark)

    Andersen, Karin Hedebo; Frandsen, Flemming; Hansen, P. F. B.

    2000-01-01

    A conventional pc-fired boiler at the Danish energy company I/S Midtkraft has been converted to coal-straw co-combustion, and a 2 year demonstration program was initiated in January 1996, addressing several aspects of coal-straw co-combustion. Deposition trials were performed as part of the demon......A conventional pc-fired boiler at the Danish energy company I/S Midtkraft has been converted to coal-straw co-combustion, and a 2 year demonstration program was initiated in January 1996, addressing several aspects of coal-straw co-combustion. Deposition trials were performed as part...... problematic deposits. Go-firing straw also caused a change in the structure of the upstream deposits. During coal combustion an ordered, "finger" structure of the larger particles with small particles between was observed, whereas during co-combustion a more random deposition of the larger particles among...... arise when burning other coals, particularly coals with a high S or alkali metal content or a low content of ash. The behavior of K, Ca, S, and Cl was evaluated by use of thermodynamic calculations. The thermodynamically stable species agree with the observed behavior in the experiments, i.e. formation...

  2. Study of the Formation of Eutectic Melt of Uranium and Thermal Analysis for the Salt Distillation of Uranium Deposits

    International Nuclear Information System (INIS)

    Park, Sung Bin; Hwang, Sung Chan; Kang, Young Ho; Park, Ki Min; Jun, Wan Gi; Lee, Han Soo; Cho, Dong Wook

    2010-01-01

    Uranium deposits from an electrorefining process contain about 30% salt. In order to recover pure uranium and transform it into an ingot, the salts have to be removed from the uranium deposits. Major process variables for the salt distillation process of the uranium deposits are hold temperature and vacuum pressure. Effects of the variables on the salt removal efficiency were studied in the previous study 1. By applying the Hertz-Langmuir relation to the salt evaporation of the uranium deposits, the evaporation coefficients were obtained at the various conditions. The operational conditions for achieving above 99% salt removal were deduced. The salt distilled uranium deposits tend to form the eutectic melt with iron, nickel, chromium for structural material of salt evaporator. In this study, we investigated the hold temperature limitation in order to prevent the formation of the eutectic melt between uranium and other metals. The reactions between the uranium metal and stainless steel were tested at various conditions. And for enhancing the evaporation rate of the salt and the efficient recovery of the distilled salt, the thermal analysis of the salt distiller was conducted by using commercial CFX software. From the thermal analysis, the effect of Ar gas flow on the evaporation of the salt was studied.

  3. Sedimentary environments and stratigraphy of the carbonate-silicilastic deposits of the Shirgesht Formation: implications for eustasy and local tectonism in the Kalmard Block, Central Iran

    Directory of Open Access Journals (Sweden)

    reza Mousavi-Harami

    2015-09-01

    Full Text Available   Introduction   Sedimentological and sequence stratigraphic analysis providing insight into the main relationships between sequence architecture and stacking pattern, syn/post-depositional tectonics, and eustatic sea-level fluctuations (Gawthorpe and Leeder 2000 Zecchin et al. 2003, 2004 Carpentier et al. 2007. Relative variations in sea level are due to tectonic activity and eustasy. The Shirgesht Formation in the Kalmard Block of Central Iran provides a useful case study for to determine the processes responsible on internal architecture and stacking pattern of depositional sequences in a half-graben basin. In the Shirgesht Formation, siliciclastic and carbonate successions of the Kalmard Basin, the cyclic stratigraphic record is the result of the complex interaction of regional uplift, eustasy, local tectonics, sediment supply, and sedimentary processes (Bayet-Goll 2009, 2014 Hosseini-Barzi and Bayet-Goll 2009.     Material & Methods   Lower Paleozoic successions in Tabas and Kalmard blocks from Central Iran share the faunal and floral characteristics with other Gondwana sectors such as south-western Europe and north Africa–Middle East (Ghaderi et al. 2009. The geology of these areas was outlined by Ruttner et al. (1968 and by Bruton et al. (2004. The Cambrian-Middle Triassic strata in the Kalmard Block were deposited in a shallow water platform that possesses lithologic dissimilarities with the Tabas area (Aghanabati 2004. The occurrence of two active faults indicates clearly that Kalmard basin formed a mobile zone throughout the Paleozoic so that lithostratigraphic units show considerably contrasting facies in comparison with Tabas basin (Hosseini-Barzi and Bayet-Goll 2009 Bayet-Goll 2014 . The Shirgesht Formation in the Block Kalmard is mainly composed of carbonate-siliciclastic successions that disconformability overlain Kalmard Formation (attributed to Pre-Cambrian and is underlain by Gachal (Carboniferous or

  4. Numerical study on morphology and solidification characteristics of successive droplet depositions on a substrate

    Science.gov (United States)

    Adaikalanathan, Vimalan

    accounting for the latent heat. It is coupled with the flow solver through an Enthalpy-Porosity technique. A modified boundary condition which incorporates the contact resistance has also been implemented. The case of multiple eutectic solder droplet depositions has been simulated to study the various aspects of splat morphology and solidification characteristics. Effects of impact conditions on single as well as successive droplet depositions have been examined. The role of convection terms in the energy equation has been emphasized and quantitatively analysed. The effect of impact velocity is manifested as surface curvature of the pre-solidified splat and in turn, affects morphology of the subsequent droplets. Initial droplet temperature influences the solidification time of both single and multiple droplets. Under certain conditions, remelting of pre-solidified splat has been observed and its causes have been discussed. Contact resistance has been reported in the literature and has been found to have a strong influence not only on the heat transfer but also the spreading behaviour. Frequency of successive impingements is also an important factor affecting the metallurgical bonding properties.

  5. Mechanical Characteristic of Remanufacturing of FV520B Precipitation Hardening Stainless Steel Using MAG Surfacing Deposition

    Directory of Open Access Journals (Sweden)

    LIU Jian

    2017-10-01

    Full Text Available Surfacing deposition forming method was adopted to carry out remanufacturing experiment of FV520B precipitation hardening stainless steel. Then the mechanical property characteristic of the remanufacturing layer was tested and studied, contrasted with the corresponding property of substrate. The results show that the remanufacturing layer, formed with MAG surfacing of FV520B precipitation hardening stainless steel has mechanical characteristic with high strength and hardness, the tensile strength reaches 1195MPa, exceeds 1092MPa of substrate, yield strength is 776MPa and average hardness is 336HV, is close to the corresponding property of substrate which is 859MPa and 353HV respectively; however, the elongation and impact toughness of the remanufacturing layer is merely 8.92% and 61J/cm2 respectively, it has a large gap with the corresponding property 19.72% and 144J/cm2 respectively of substrate. Fracture and microstructure analysis on specimens shows that the microstructure of remanufacturing layer is fast cooling non-equilibrium crystallized lath martensite, and carbide precipitated strengthening phase such as NbC, MoC, M23C6,etc, which is the reason that remanufacturing layer has high strength and high hardness. But as lack of aging treatment and Cu strengthening phase, and the weak interface between contaminating brittle phase or large size spherical particles and substrate will deteriorate the deformability and induce stress concentration and cracking when the material is load-carrying, and is the main reason of the remanufacturing layer having lower static tensile elongation and impact toughness.

  6. Effects of electrochemical-deposition method and microstructure on the capacitive characteristics of nano-sized manganese oxide

    International Nuclear Information System (INIS)

    Shinomiya, Takuya; Gupta, Vinay; Miura, Norio

    2006-01-01

    The amorphous nano-structured manganese oxide was electrochemically deposited onto a stainless-steel electrode. The structure and surface morphology of the obtained manganese oxide were studied by means of X-ray diffraction analysis and scanning electron microscopy. The capacitive characteristics of the manganese oxide electrodes were investigated by means of cyclic voltammetry and constant current charge-discharge cycling. The morphological and capacitive characteristics of the hydrous manganese oxide was found to be strongly influenced by the electrochemical deposition conditions. The highest specific capacitance value of ca. 410 F g -1 and the specific power of ca. 54 kW kg -1 were obtained at 400 mV s -1 sweep rate of potentiodynamic deposition condition. The cyclic-life data showed that the specific capacitance was highly stable up to 10,000 cycles examined. This suggests the excellent cyclic stability of the obtained amorphous hydrous manganese oxide for supercapacitor application

  7. Effects of electrochemical-deposition method and microstructure on the capacitive characteristics of nano-sized manganese oxide

    Energy Technology Data Exchange (ETDEWEB)

    Shinomiya, Takuya; Gupta, Vinay; Miura, Norio [Art, Science and Technology Center for Cooperative Research, Kyushu University, Kasuga-shi, Fukuoka 816-8580 (Japan)

    2006-06-01

    The amorphous nano-structured manganese oxide was electrochemically deposited onto a stainless-steel electrode. The structure and surface morphology of the obtained manganese oxide were studied by means of X-ray diffraction analysis and scanning electron microscopy. The capacitive characteristics of the manganese oxide electrodes were investigated by means of cyclic voltammetry and constant current charge-discharge cycling. The morphological and capacitive characteristics of the hydrous manganese oxide was found to be strongly influenced by the electrochemical deposition conditions. The highest specific capacitance value of ca. 410Fg{sup -1} and the specific power of ca. 54kWkg{sup -1} were obtained at 400mVs{sup -1} sweep rate of potentiodynamic deposition condition. The cyclic-life data showed that the specific capacitance was highly stable up to 10,000 cycles examined. This suggests the excellent cyclic stability of the obtained amorphous hydrous manganese oxide for supercapacitor application. (author)

  8. Heat deposition, damage, and tritium breeding characteristics in thick liquid wall blanket concepts

    International Nuclear Information System (INIS)

    Youssef, M.Z.; Abdou, M.A.

    2000-01-01

    The advanced power extraction (APEX) study aims at exploring new and innovative blanket concepts that can efficiently extract power from fusion devices with high neutron wall load. Among the concepts under investigation is the free liquid FW/liquid blanket concept in which a fast flowing liquid FW (∼2-3 cm) is followed by thick flowing blanket (B) of ∼40-50 cm thickness with minimal amount of structure. The liquid FW/B are contained inside the vacuum vessel (VV) with a shielding zone (S) located either behind the VV and outside the vacuum boundary (case A) or placed after the FW/B and inside the VV (case B). In this paper we investigate the nuclear characteristics of this concept in terms of: (1) attenuation capability of the liquid FW/B/S and protection of the VV and magnet against radiation damage; (2) profiles of tritium production rate and tritium breeding ratio (TBR) for several liquid candidates; and (3) profiles of heat deposition rate and power multiplication. The candidate liquid breeders considered are Li, Flibe, Li-Sn, and Li-Pb. Parameters varied are (1) FW/B thickness, L, (2) Li-6 enrichment and (3) thickness of the shield

  9. Geochemical characteristics of trace and rare earth elements in Xiangyangping uranium deposit of Guangxi

    International Nuclear Information System (INIS)

    Chen Qi; Xiao Jianjun; Fan Liting; Wen Cheng

    2013-01-01

    The trace and rare earth elements analysis were performed on two kinds ore-hosting rocks (Xiangcaoping granite and Douzhashan granite), alternated cataclastic granite and uranium ores in Xiangyangping uranium deposit of Guangxi. The results show that both of the two kinds granites display similar maturity features of highly evolved crust with the enrichment of Rb, Th, U, Ta and Pb, the depletion of Ba and Sr, high Rb/Sr and low Nb/Ta ratio, moderately rich light rare earth elements, strong negative Eu anomaly. Moreover, Douzhashan granite have higher Rb/Sr ratio and U content, which indicate it experienced more sufficient magma evolution and have higher potential of uranium source. There are almost no change in the content of trace and rare earth elements and distribution patterns during chloritization, hydromicazation and potash feldspathization of granite, but there occurred uranium enrichment and mineralization and REE remobilization while hematitization was superposed. This suggest that hematitization is most closely correlated with uranium mineralization in the working area. Because Most hematitization cataclastic rocks and uranium ore display similar geochemical characteristics to Douzhashan granite with relative high Rb/Sr and low Nb/Ta, Zr/Hf, ΣREE, LREE/HREE ration, and the trace and rare earth elements content and distribution patterns of some Xiangcaoping hematitization cataclastic rocks are between the two kinds of granite, therefore it can be concluded that the mineralization materials were mainly from Douzhashan granite and partly from Xiangcaoping granite. (authors)

  10. Mineralogical-Chemical Characteristics of Calcite from Zletovo, Sasa and Buchim Deposits

    International Nuclear Information System (INIS)

    Shijakova-lvanova, Tena; Paneva-Zajkova, Vesna; Donova, Ilinka

    2006-01-01

    The paper presents mineralogical-chemical characteristics, dependence between some elements and concentration of some calcite elements of Zletovo, Sasa and Buchim deposits. Calcite from Sasa, Zletovo and Buchim occurs in rhombohedral crystals of different size. The colour is white, but in Buchim it is white, pink, and yellow. Their twinning is very common. Chemical composition of calcite was determined by AES-ICP. Results show that in calcite from Buchim the concentration of Ba is much higher in pink calcite from than in white or yellow. The concentration of Zn and Ph is the lowest in white calcite. The calcite from Zletovo contains much higher concentrations of Pb, Zn, Sr, but calcite of Buchim which is pink contains higher amounts of Ba and Co. The concentrations of CaO, MgO, and MnO in all calcite simples are approximately equal. Concentration of all other elements in calcite of Sasa, Zletovo and Buchim is approximately equal. TG and DTA curves out on all simples were recorded.The decompositions of the samples of calcite starts at different temperature and it is not finish until 1000 o C. (Author)

  11. Characteristics of Iron-Palladium alloy thin films deposited by magnetron sputtering

    Science.gov (United States)

    Chiu, Y.-J.; Shen, C.-Y.; Chang, H.-W.; Jian, S.-R.

    2018-06-01

    The microstructural features, magnetic, nanomechanical properties and wettability behaviors of Iron-Palladium (FePd) alloy thin films are investigated by using X-ray diffraction (XRD), atomic force microscopy (AFM), vibrating sample magnetometer (VSM), nanoindentation and water contact angle (CA) techniques, respectively. The FePd alloy thin films were deposited on glass substrates using a magnetron sputtering system. The post-annealing processes of FePd alloy thin films were carried out at 400 °C and 750 °C and resulted in a significant increase of both the average grain size and surface roughness. The XRD analysis showed that FePd alloy thin films exhibited a predominant (1 1 1) orientation. The magnetic field dependence of magnetization of all FePd thin films are measured at room temperature showed the ferromagnetic characteristics. The nanoindentation with continuous stiffness measurement (CSM) is used to measure the hardness and Young's modulus of present films. The contact angle (θCA) increased with increasing surface roughness. The maximum θCA of 75° was achieved for the FePd alloy thin film after annealing at 750 °C and a surface roughness of 4.2 nm.

  12. [Spectral characteristics and implication of granite from pozaiying molybdenite deposits in west of Guangdong].

    Science.gov (United States)

    An, Yan-Fei; Zhong, Li-li; Zhou, Yang-Zhang; Chen, Qing; Li, Xing-yuan

    2014-06-01

    Some granite samples from Pozaiying molybdenite deposits in the west of Guangdong were retrieved to characterize the spectral signature of XRD, FT-NIR and Raman. The results show that compared to the Porphyry granite and granite in the far zone, the signal of XRD and Raman of granite in near zone is weaker while the signal of FT-NIR is stronger. The authors' analyses indicate that the FWHM of quartz (101) peak in XRD, Sericite peak (4 529 cm(-1)) in FT-NIR and quartz peak in Raman shift from the latter are higher than those of former two. Those spectral characteristics indicate that compared with other samples, the content of petrogenetic mineral in samples from near zone is lower while the content of alteration mineral is higher, and its crystallinity and crystallization temperatures are both lower. The authors' studies suggest that there may be an alteration zone, embracing the granite-porphyry, which comprised low temperature mineral, and the quartz-porphyry which related to molybdenite mineralization belongs to the zone near Guanshanzhang mass.

  13. Etching characteristics and application of physical-vapor-deposited amorphous carbon for multilevel resist

    International Nuclear Information System (INIS)

    Kim, H. T.; Kwon, B. S.; Lee, N.-E.; Park, Y. S.; Cho, H. J.; Hong, B.

    2008-01-01

    For the fabrication of a multilevel resist (MLR) based on a very thin, physical-vapor-deposited (PVD) amorphous carbon (a-C) layer, the etching characteristics of the PVD a-C layer with a SiO x hard mask were investigated in a dual-frequency superimposed capacitively coupled plasma etcher by varying the following process parameters in O 2 /N 2 /Ar plasmas: high-frequency/low-frequency combination (f HF /f LF ), HF/LF power ratio (P HF /P LF ), and O 2 and N 2 flow rates. The very thin nature of the a-C layer helps to keep the aspect ratio of the etched features low. The etch rate of the PVD a-C layer increased with decreasing f HF /f LF combination and increasing P LF and was initially increased but then decreased with increasing N 2 flow rate in O 2 /N 2 /Ar plasmas. The application of a 30 nm PVD a-C layer in the MLR structure of ArF PR/BARC/SiO x /PVD a-C/TEOS oxide supported the possibility of using a very thin PVD a-C layer as an etch-mask layer for the TEOS-oxide layer

  14. Cathodoluminescence characteristics of sandstone and the implications for sandstone type No. 512 uranium deposit

    International Nuclear Information System (INIS)

    Liu Xiaodong; Guan Taiyang

    1998-12-01

    Cathodoluminescence (CL) technique, as a special petrologic tool, has been applied to the studies of uranium hosted sandstone from No. 512 uranium deposit located in Xinjiang Autonomous Region, Northwest China. The detrital grains including quartz, feldspar, debris and cements display distinguishing CL properties. The quartz grains mainly demonstrate brown and dark blue CL, feldspar grains demonstrate blue and bright blue CL, calcite cement displays bright yellow-orange and orange-red CL with significant CL zoning, while the debris, mud and sand cements have dark red CL, multicolor CL or non-luminescence. The characteristics of overgrowth, fracture healing, and the original contact relations of detrital grains appear much more significant with CL than that with conventional visual methods. Much more information can be contributed by CL technique to decipher the provenance area, to explain the cementation, consolidation and other diagenesis processes of sandstone. The CL technique also provides and efficient tool for identifying detrital grains and cements, and for more precisely estimating the proportions of various detrital grains and cement components in sandstone. The CL emission of uranium hosted sandstone revealed the existence of radiation-damage rims of quartz grains at the places with a little or no uranium minerals nearby, which may imply a uranium-leaching episode during the diagenesis of sandstone

  15. The Cannery Formation--Devonian to Early Permian arc-marginal deposits within the Alexander Terrane, Southeastern Alaska

    Science.gov (United States)

    Karl, Susan M.; Layer, Paul W.; Harris, Anita G.; Haeussler, Peter J.; Murchey, Benita L.

    2011-01-01

    cherts on both Admiralty and Kupreanof Islands contain radiolarians as young as Permian, the age of the Cannery Formation is herein extended to Late Devonian through early Permian, to include the early Permian rocks exposed in its type locality. The Cannery Formation is folded and faulted, and its stratigraphic thickness is unknown but inferred to be several hundred meters. The Cannery Formation represents an extended period of marine deposition in moderately deep water, with slow rates of deposition and limited clastic input during Devonian through Pennsylvanian time and increasing argillaceous, volcaniclastic, and bioclastic input during the Permian. The Cannery Formation comprises upper Paleozoic rocks in the Alexander terrane of southeastern Alaska. In the pre-Permian upper Paleozoic, the tectonic setting of the Alexander terrane consisted of two or more evolved oceanic arcs. The lower Permian section is represented by a distinctive suite of rocks in the Alexander terrane, which includes sedimentary and volcanic rocks containing early Permian fossils, metamorphosed rocks with early Permian cooling ages, and intrusive rocks with early Permian cooling ages, that form discrete northwest-trending belts. After restoration of 180 km of dextral displacement of the Chilkat-Chichagof block on the Chatham Strait Fault, these belts consist, from northeast to southwest, of (1) bedded chert, siliceous argillite, volcaniclastic turbidites, pillow basalt, and limestone of the Cannery Formation and the Porcupine Slate of Gilbert and others (1987); (2) greenschist-facies Paleozoic metasedimentary and metavolcanic rocks that have Permian cooling ages; (3) silty limestone and calcareous argillite interbedded with pillow basalt and volcaniclastic rocks of the Halleck Formation and the William Henry Bay area; and (4) intermediate-composition and syenitic plutons. These belts correspond to components of an accretionary complex, contemporary metamorphic rocks, forearc-basin deposits,

  16. Formation conditions of uranium minerals in oxidation zone of uranium deposits

    International Nuclear Information System (INIS)

    Li Youzhu

    2005-01-01

    The paper concerns about the summary and classification of hydrothermal uranium deposit with oxidation zone. Based on the summary of observation results of forty uranium deposits located in CIS and Bulgaria which are of different sizes and industrial-genetic types, analysis on available published information concerning oxidation and uranium mineral enrichment in supergenic zone, oxidation zone classification of hydrothermal uranium had been put forward according to the general system of the exogenetic uranium concentration. (authors)

  17. Ash Deposit Formation and Removal in a Straw and Wood Suspension-Fired Boiler

    DEFF Research Database (Denmark)

    Shafique Bashir, Muhammad; Jensen, Peter Arendt; Frandsen, Flemming

    ). The shedding investigation was also made when the nearby plant sootblower (4m below) was working. It was identified that the mass uptake signal remained stable and the deposits in small pieces were continuously removed during 35% and 65% straw-firing. Previous findings of Vattenfall indicated that a mixture...... was limited to two weeks when 100% straw was fired due to ash deposition in the superheater region that has tube spacing specified for coal-firing (113mm). A series of 3-5 days deposit probe experiments were conducted utilizing 35 to 100% straw with wood on mass basis. The applied deposit probe was water...... two hours deposit mass uptake rate was 52.8 (g/m2/h), while it was 353.8 (g/m2/h) during 100% straw-firing. All tests in the superheater region for all applied straw shares indicated that with increase in straw share, final deposit mass uptake increased. The comparison of current and previous full...

  18. Thaumasite formation in hydraulic mortars by atmospheric SO2 deposition

    Directory of Open Access Journals (Sweden)

    Blanco-Varela, M. T.

    2001-12-01

    Full Text Available Sulphation of mortars and concretes is a function of diverse environmental factors (SO2 aerosol, temperature, etc as well as some material characteristics. One of the phases that could be formed as consequence of the sulphation of the hydraulic binder is thaumasite. In this paper different hydraulic mortars have been exposed to laboratory exposure chambers in order to reproduce thaumasite formation due to atmospheric SO2. Under the laboratory exposure conditions, thaumasite was formed in hydraulic lime mortars, and mortars elaborated with ordinary Portland cement as well as mineralized white portland cement. However, thaumasite was not formed in mortars made of lime and pozzolan. The first product formed as a result of the SO2-mortar interaction was gypsum. Gypsum reacted with calcite and C-S-H gel, present in the samples, giving place to thaumasite. Low temperature promotes thaumasite formation.

    La sulfatación de morteros y hormigones depende de las condiciones ambientales (SO2 aerosol, temperatura, etc., así como de las características del material. Una de las fases que se puede formar como consecuencia de la sulfatación de los ligantes hidráulicos es la taumasita. En este trabajo se han expuesto diferentes morteros hidráulicos en cámaras de laboratorio con el fin de reproducir la formación de taumasita por efecto del SO2 atmosférico. Bajo las condiciones de laboratorio se formó taumasita en los morteros de cal hidráulica y en los morteros fabricados con cemento portland y cemento blanco mineralizado. Sin embargo, cuando el ligante utilizado en los morteros fue cal y puzolana, no se formó taumasita. El yeso fue el primer producto formado en la interacción entre los morteros y el SO2. A continuación, este yeso reaccionó con la calcita y el gel C-S-H dando lugar a la formación de taumasita. Las bajas temperaturas favorecieron la formación de taumasita.

  19. Regional paleohydrologic and paleoclimatic settings of wetland/lacustrine depositional systems in the Morrison Formation (Upper Jurassic), Western Interior, USA

    Science.gov (United States)

    Dunagan, S.P.; Turner, C.E.

    2004-01-01

    During deposition of the Upper Jurassic Morrison Formation, water that originated as precipitation in uplands to the west of the Western Interior depositional basin infiltrated regional aquifers that underlay the basin. This regional groundwater system delivered water into the otherwise dry continental interior basin where it discharged to form two major wetland/lacustrine successions. A freshwater carbonate wetland/lacustrine succession formed in the distal reaches of the basin, where regional groundwater discharged into the Denver-Julesburg Basin, which was a smaller structural basin within the more extensive Western Interior depositional basin. An alkaline-saline wetland/lacustrine complex (Lake T'oo'dichi') formed farther upstream, where shallower aquifers discharged into the San Juan/Paradox Basin, which was another small structural basin in the Western Interior depositional basin. These were both wetlands in the sense that groundwater was the major source of water. Input from surface and meteoric water was limited. In both basins, lacustrine conditions developed during episodes of increased input of surface water. Inclusion of wetlands in our interpretation of what had previously been considered largely lacustrine systems has important implications for paleohydrology and paleoclimatology. The distal carbonate wetland/lacustrine deposits are well developed in the Morrison Formation of east-central Colorado, occupying a stratigraphic interval that is equivalent to the "lower" Morrison but extends into the "upper" Morrison Formation. Sedimentologic, paleontologic, and isotopic evidence indicate that regional groundwater discharge maintained shallow, hydrologically open, well oxygenated, perennial carbonate wetlands and lakes despite the semi-arid climate. Wetland deposits include charophyte-rich wackestone and green mudstone. Lacustrine episodes, in which surface water input was significant, were times of carbonate and siliciclastic deposition in scarce deltaic

  20. CHARACTERISTICS OF STRUCTURE FORMATION IN COOKED SAUSAGE PRODUCTS USING SONOCHEMICAL TECHNOLOGIES

    Directory of Open Access Journals (Sweden)

    A. M. Yevtushenko

    2016-01-01

    Full Text Available This paper studies the features of formation of sausage product structure in the process of cooking. It is shown that the viscosity of sausage meat varies in a complex manner and has three characteristic areas. The characteristic parameters that determine the formation of the structure of sausages for each area were found. It is established that the use of the cavitation brine gives the finished product a gentle consistence, elasticity and distinct taste that makes it more preferable for the consumer.

  1. Latitudinal and longitudinal distribution of the Chernobyl fallout in Finland and deposition characteristics

    International Nuclear Information System (INIS)

    Lang, S.; Raunemaa, T.; Kulmala, M.; Rauhamaa, M.

    1988-01-01

    After the Chernobyl accident radionuclide measurements in vegetation were performed at the University of Helsinki. Concentrations were determined in young and old pine needles (Pinus sylvestris). These results have been used for aerial deposition studies. The analyses have showed that different mechanisms for aerosol deposition of different radionuclides can be estimated. In this study the results of the radionuclide measurements of pine needles are used for a special geographical deposition comparison. (author)

  2. Study on characteristics of U-Ra equilibrium coefficient at Qianjiadian uranium deposit

    International Nuclear Information System (INIS)

    Zhang Mingyu; Tian Shifeng; Zhang Zegui; Xia Yuliang; Liu Hanbin

    2004-01-01

    Calculation methods of U-Ra equilibrium coefficient for in-situ leachable sandstone-type uranium deposits in general, and for Qianjiadian sandstone-type uranium deposit in particular are proposed and discussed in this paper. Variation features of U-Ra equilibrium coefficient at Qianjiadian sandstone-type uranium deposit are analyzed as well. These results provide a scientific basis for the correction of radioactivity logging data, the delineation of uranium ore bodies and the calculation of uranium resources. (authors)

  3. Multivariate Analysis Of Ground Water Characteristics Of Geological Formations Of Enugu State Of Nigeria

    Directory of Open Access Journals (Sweden)

    Orakwe

    2015-08-01

    Full Text Available Abstract The chemometric data mining techniques using principal factor analysis PFA and hierarchical cluster analysis CA was employed to evaluate and to examine the borehole characteristics of geological formations of Enugu State of Nigeria to determine the latent structure of the borehole characteristics and to classify 9 borehole parameters from 49 locations into borehole groups of similar characteristics. PFA extracted three factors which accounted for a large proportion of the variation in the data 77.305 of the variance. Out of nine parameters examined the first PFA had the highest number of variables loading on a single factor where four borehole parameters borehole depth borehole casing static water level and dynamic water level loaded on it with positive coefficient as the most significant parameters responsible for variation in borehole characteristics in the study. The CA employed in this study to identified three clusters. The first cluster delineated stations that characterise Awgu sandstone geological formation while the second cluster delineated Agbani sandstone geological formation. The third cluster delineated Ajali sandstone formation. The CA grouping of the borehole parameters showed similar trend with PFA hence validating the efficiency of chemometric data mining techniques in grouping of variations in the borehole characteristics in the geological zone of the study area.

  4. Computer Simulation of Temperature Parameter for Diamond Formation by Using Hot-Filament Chemical Vapor Deposition

    Directory of Open Access Journals (Sweden)

    Chang Weon Song

    2017-12-01

    Full Text Available To optimize the deposition parameters of diamond films, the temperature, pressure, and distance between the filament and the susceptor need to be considered. However, it is difficult to precisely measure and predict the filament and susceptor temperature in relation to the applied power in a hot filament chemical vapor deposition (HF-CVD system. In this study, the temperature distribution inside the system was numerically calculated for the applied powers of 12, 14, 16, and 18 kW. The applied power needed to achieve the appropriate temperature at a constant pressure and other conditions was deduced, and applied to actual experimental depositions. The numerical simulation was conducted using the commercial computational fluent dynamics software ANSYS-FLUENT. To account for radiative heat-transfer in the HF-CVD reactor, the discrete ordinate (DO model was used. The temperatures of the filament surface and the susceptor at different power levels were predicted to be 2512–2802 K and 1076–1198 K, respectively. Based on the numerical calculations, experiments were performed. The simulated temperatures for the filament surface were in good agreement with the experimental temperatures measured using a two-color pyrometer. The results showed that the highest deposition rate and the lowest deposition of non-diamond was obtained at a power of 16 kW.

  5. Hydrophobic and optical characteristics of graphene and graphene oxide films transferred onto functionalized silica particles deposited glass surface

    Science.gov (United States)

    Yilbas, B. S.; Ibrahim, A.; Ali, H.; Khaled, M.; Laoui, T.

    2018-06-01

    Hydrophobic and optical transmittance characteristics of the functionalized silica particles on the glass surface prior and after transfer of graphene and graphene oxide films on the surface are examined. Nano-size silica particles are synthesized and functionalized via chemical grafting and deposited onto a glass surface. Graphene film, grown on copper substrate, was transferred onto the functionalized silica particles surface through direct fishing method. Graphene oxide layer was deposited onto the functionalized silica particles surface via spin coating technique. Morphological, hydrophobic, and optical characteristics of the functionalized silica particles deposited surface prior and after graphene and graphene oxide films transfer are examined using the analytical tools. It is found that the functionalized silica particles are agglomerated at the surface forming packed structures with few micro/nano size pores. This arrangement gives rise to water droplet contact angle and contact angle hysteresis in the order of 163° and 2°, respectively, and remains almost uniform over the entire surface. Transferring graphene and depositing graphene oxide films over the functionalized silica particles surface lowers the water droplet contact angle slightly (157-160°) and increases the contact angle hysteresis (4°). The addition of the graphene and graphene oxide films onto the surface of the deposited functionalized silica particles improves the optical transmittance.

  6. Geochemistry and fluid characteristics of the Dalli porphyry Cu-Au deposit, Central Iran

    Science.gov (United States)

    Zarasvandi, Alireza; Rezaei, Mohsen; Raith, Johann; Lentz, David; Azimzadeh, Amir-Mortaza; Pourkaseb, Hooshang

    2015-11-01

    The Miocene Dalli porphyry Cu-Au deposit in the central part of Urumieh-Dokhtar magmatic arc is the first reported Au-rich porphyry Cu deposit in the Zagros orogenic belt. The Cu-Au mineralization is mainly hosted in diorite and quartz diorite intrusions, presenting as numerous veinlets in the altered wall rocks, with potassic, phyllic, and propylitic alteration developed. Based on the mineral assemblages and crosscutting relations of veinlets, hydrothermal mineralization-alteration occurred in at least three stages, characterized by veinlets of (1) Qtz + Kfs + Mag ± Ccp, (2) Qtz + Py + Ccp ± Bn ± Cv ± Cc and, (3) Qtz + Chl + Bt. The ore-bearing intrusions exhibit typical geochemical characteristics of subduction zone magmas, including LREE fractionated pattern, strong enrichment in LILE (Cs, Rb, Ba, Pb, and U), and depletion of HFSE, with marked negative Ti and Nb anomalies. The adakite-like ore-hosting porphyry intrusions are characterized by a systematic gradual decreasing and increasing of Y and Eu/Eu∗ with increasing SiO2 content, respectively. Moreover, they exhibit a significant increasing trend of Sr/Y with decreasing of Y, which indicates progressive hornblende fractionation and suppression of plagioclase fractionation during the evolution toward high water content of parental magma. A relatively flat HREE pattern with low Dyn/Ybn and Nb/Ta values may represent that amphibole played a more important role than garnet in the generation of the adakitic melts in the thickened lower crust. Based on the phase assemblages confirmed by detailed laser Raman spectroscopy analyses and proportion of solid, liquid, and gaseous components, five types of fluid inclusions were recognized, which are categorized as; (1) liquid-rich two phase (liquidH2O + vaporH2O) (IIA), (2) vapor-rich two phase (vaporH2O/CO2 + liquidH2O) (IIB), (3) high saline simple fluids (IIIA; liquidH2O + vaporH2O + Hl), (4) high saline opaque mineral-bearing fluids (IIIB; liquidH2O + vaporH2O

  7. Microstructural and wear characteristics of cobalt free, nickel base intermetallic alloy deposited by laser cladding

    International Nuclear Information System (INIS)

    Awasthi, Reena; Kumar, Santosh; Viswanadham, C.S.; Srivastava, D.; Dey, G.K.; Limaye, P.K.

    2011-01-01

    This paper describes the microstructural and wear characteristics of Ni base intermetallic hardfacing alloy (Tribaloy-700) deposited on stainless steel-316 L substrate by laser cladding technique. Cobalt base hardfacing alloys have been most commonly used hardfacing alloys for application involving wear, corrosion and high temperature resistance. However, the high cost and scarcity of cobalt led to the development of cobalt free hardfacing alloys. Further, in the nuclear industry, the use of cobalt base alloys is limited due to the induced activity of long lived radioisotope 60 Co formed. These difficulties led to the development of various nickel and iron base alloys to replace cobalt base hardfacing alloys. In the present study Ni base intermetallic alloy, free of Cobalt was deposited on stainless steel- 316 L substrate by laser cladding technique. Traditionally, welding and thermal spraying are the most commonly employed hardfacing techniques. Laser cladding has been explored for the deposition of less diluted and fusion-bonded Nickel base clad layer on stainless steel substrate with a low heat input. The laser cladding parameters (Laser power density: 200 W/mm 2 , scanning speed: 430 mm/min, and powder feed rate: 14 gm/min) resulted in defect free clad with minimal dilution of the substrate. The microstructure of the clad layer was examined by Optical microscopy, Scanning electron microscopy, with energy dispersive spectroscopy. The phase analysis was performed by X-ray diffraction technique. The clad layer exhibited sharp substrate/clad interface in the order of planar, cellular, and dendritic from the interface upwards. Dilution of clad with Fe from substrate was very low passing from ∼ 15% at the interface (∼ 40 μm) to ∼ 6% in the clad layer. The clad layer was characterized by the presence of hexagonal closed packed (hcp, MgZn 2 type) intermetallic Laves phase dispersed in the eutectic of Laves and face centered cubic (fcc) gamma solid solution. The

  8. Energy and dose characteristics of ion bombardment during pulsed laser deposition of thin films under pulsed electric field

    International Nuclear Information System (INIS)

    Fominski, V.Yu.; Nevolin, V.N.; Smurov, I.

    2004-01-01

    Experiments on pulsed laser deposition of Fe films on Si substrates were performed with the aim to analyze the role of factors determining the formation of an energy spectrum and a dose of ions bombarding the film in strong pulsed electric fields. The amplitude of the high-voltage pulse (-40 kV) applied to the substrate and the laser fluence at the Fe target were fixed during the deposition. Owing to the high laser fluence (8 J/cm 2 ) at a relatively low power (20 mJ), the ionization of the laser plume was high, but the Fe vapor pressure near the substrate was low enough to avoid arcing. Electric signals from a target exposed to laser radiation were measured under different conditions (at different delay times) of application of electric pulses. The Si(100) substrates were analyzed using Rutherford ion backscattering/channeling spectrometry. The ion implantation dose occurred to be the highest if the high-voltage pulse was applied at a moment of time when the ion component of the plume approached the substrate. In this case, the implanted ions had the highest energy determined by the amplitude of the electric pulse. An advance or delay in applying a high-voltage pulse caused the ion dose and energy to decrease. A physical model incorporating three possible modes of ion implantation was proposed for the interpretation of the experimental results. If a laser plume was formed in the external field, ions were accelerated from the front of the dense plasma, and the ion current depended on the gas-dynamic expansion of the plume. The application of a high-voltage pulse, at the instant when the front approached the substrate, maintained the mode that was characteristic of the traditional plasma immersion ion implantation, and the ion current was governed by the dynamics of the plasma sheath in the substrate-to-target gap. In the case of an extremely late application of a high-voltage pulse, ions retained in the entire volume of the experimental chamber (as a result of the

  9. Characteristics of debris avalanche deposits inferred from source volume estimate and hummock morphology around Mt. Erciyes, central Turkey

    Science.gov (United States)

    Hayakawa, Yuichi S.; Yoshida, Hidetsugu; Obanawa, Hiroyuki; Naruhashi, Ryutaro; Okumura, Koji; Zaiki, Masumi; Kontani, Ryoichi

    2018-02-01

    Debris avalanches caused by volcano sector collapse often form characteristic depositional landforms such as hummocks. Sedimentological and geomorphological analyses of debris avalanche deposits (DADs) are crucial to clarify the size, mechanisms, and emplacement of debris avalanches. We describe the morphology of hummocks on the northeastern flank of Mt. Erciyes in Kayseri, central Turkey, likely formed in the late Pleistocene. Using a remotely piloted aircraft system (RPAS) and the structure-from-motion and multi-view stereo (SfM-MVS) photogrammetry, we obtained high-definition digital elevation model (DEM) and orthorectified images of the hummocks to investigate their geometric features. We estimated the source volume of the DAD by reconstructing the topography of the volcano edifice using a satellite-based DEM. We examined the topographic cross sections based on the slopes around the scar regarded as remnant topography. Spatial distribution of hummocks is anomalously concentrated at a certain distance from the source, unlike those that follow the distance-size relationship. The high-definition land surface data by RPAS and SfM revealed that many of the hummocks are aligned toward the flow direction of the debris avalanche, suggesting that the extensional regime of the debris avalanche was dominant. However, some displaced hummocks were also found, indicating that the compressional regime of the flow contributed to the formation of hummocks. These indicate that the flow and emplacement of the avalanche were constrained by the topography. The existing caldera wall forced the initial eastward flow to move northward, and the north-side caldera wall forced the flow into the narrow and steepened outlet valley where the sliding debris underwent a compressional regime, and out into the unconfined terrain where the debris was most likely emplaced on an extensional regime. Also, the estimated volume of 12-15 × 108 m3 gives a mean thickness of 60-75 m, which is much

  10. Characteristics of debris avalanche deposits inferred from source volume estimate and hummock morphology around Mt. Erciyes, central Turkey

    Directory of Open Access Journals (Sweden)

    Y. S. Hayakawa

    2018-02-01

    Full Text Available Debris avalanches caused by volcano sector collapse often form characteristic depositional landforms such as hummocks. Sedimentological and geomorphological analyses of debris avalanche deposits (DADs are crucial to clarify the size, mechanisms, and emplacement of debris avalanches. We describe the morphology of hummocks on the northeastern flank of Mt. Erciyes in Kayseri, central Turkey, likely formed in the late Pleistocene. Using a remotely piloted aircraft system (RPAS and the structure-from-motion and multi-view stereo (SfM–MVS photogrammetry, we obtained high-definition digital elevation model (DEM and orthorectified images of the hummocks to investigate their geometric features. We estimated the source volume of the DAD by reconstructing the topography of the volcano edifice using a satellite-based DEM. We examined the topographic cross sections based on the slopes around the scar regarded as remnant topography. Spatial distribution of hummocks is anomalously concentrated at a certain distance from the source, unlike those that follow the distance–size relationship. The high-definition land surface data by RPAS and SfM revealed that many of the hummocks are aligned toward the flow direction of the debris avalanche, suggesting that the extensional regime of the debris avalanche was dominant. However, some displaced hummocks were also found, indicating that the compressional regime of the flow contributed to the formation of hummocks. These indicate that the flow and emplacement of the avalanche were constrained by the topography. The existing caldera wall forced the initial eastward flow to move northward, and the north-side caldera wall forced the flow into the narrow and steepened outlet valley where the sliding debris underwent a compressional regime, and out into the unconfined terrain where the debris was most likely emplaced on an extensional regime. Also, the estimated volume of 12–15 × 108 m3 gives a mean thickness of

  11. Depositional conditions for the Kuna Formation, Red Dog Zn-PB-Ag-Barite District, Alaska, inferred from isotopic and chemical proxies

    Science.gov (United States)

    Johnson, Craig A.; Dumoulin, Julie A.; Burruss, Robert A.; Slack, John F.

    2015-01-01

    Water column redox conditions, degree of restriction of the depositional basin, and other paleoenvironmental parameters have been determined for the Mississippian Kuna Formation of northwestern Alaska from stratigraphic profiles of Mo, Fe/Al, and S isotopes in pyrite, C isotopes in organic matter, and N isotopes in bulk rock. This unit is important because it hosts the Red Dog and Anarraaq Zn-Pb-Ag ± barite deposits, which together constitute one of the largest zinc resources in the world. The isotopic and chemical proxies record a deep basin environment that became isolated from the open ocean, became increasingly reducing, and ultimately became euxinic. The basin was ventilated briefly and then became isolated again just prior to its demise as a discrete depocenter with the transition to the overlying Siksikpuk Formation. Ventilation corresponded approximately to the initiation of bedded barite deposition in the district, whereas the demise of the basin corresponded approximately to the formation of the massive sulfide deposits. The changes in basin circulation during deposition of the upper Kuna Formation may have had multiple immediate causes, but the underlying driver was probably extensional tectonic activity that also facilitated fluid flow beneath the basin floor. Although the formation of sediment-hosted sulfide deposits is generally favored by highly reducing conditions, the Zn-Pb deposits of the Red Dog district are not found in the major euxinic facies of the Kuna basin, nor did they form during the main period of euxinia. Rather, the deposits occur where strata were permeable to migrating fluids and where excess H2S was available beyond what was produced in situ by decomposition of local sedimentary organic matter. The known deposits formed mainly by replacement of calcareous strata that gained H2S from nearby highly carbonaceous beds (Anarraaq deposit) or by fracturing and vein formation in strata that produced excess H2S by reductive dissolution of

  12. Palaeontology of the upper Turonian paralic deposits of the Sainte-Mondane Formation, Aquitaine Basin, France

    Energy Technology Data Exchange (ETDEWEB)

    Neraudenau, D.; Saint Martin, S.; Battern, D.J.; Colin, J.P.; Daviero-Gomez, V.; Girard, V.; Gomez, B.; Nohra, Y.A.; Polette, F.; Platel, J.P.; Saint Martin, J.P.; Vullo, R.

    2016-07-01

    The upper Turonian lignite deposits of Sainte-Mondane, Dordogne (Aquitaine Basin, SW France), consist of clays bearing translucent, orange to red, amber micrograins. The amber exhibits different types of microbial inclusions. The clays contain several conifers including the genera Brachyphyllum, Frenelopsis and Glenrosa, and a few leaf fragments of eudicot angiosperms. Among the plant meso-fossils the occurrence of Costatheca, Spermatites and abundant, diverse, megaspores, including species of Ariadnaesporites, Bacutriletes, Echitriletes, Erlansonisporites, Maexisporites, Minerisporites and Verrutriletes, is noteworthy. Pollen grains of the Normapolles group are important components of the palynomorph assemblage. The clays were deposited in a calm, estuarine or lagoonal, muddy environment. The overlying lignitic sands contain large fossil wood pieces of the conifer Agathoxylon, small solitary corals, fragmentary oysters and pectinids, echinoid spines, a few teeth of marine selachians and bony fishes, but no amber is present. These sands were deposited in a high-energy coastal marine environment. (Author)

  13. Bipolar resistive switching characteristics of low temperature grown ZnO thin films by plasma-enhanced atomic layer deposition

    International Nuclear Information System (INIS)

    Zhang Jian; Yang Hui; Zhang Qilong; Dong Shurong; Luo, J. K.

    2013-01-01

    ZnO films deposited by plasma-enhanced atomic layer deposition (PEALD) have been used to investigate resistive memory behavior. The bipolar resistance switching properties were observed in the Al/PEALD-ZnO/Pt devices. The resistance ratio for the high and low resistance states (HRS/LRS) is more than 10 3 , better than ZnO devices deposited by other methods. The dominant conduction mechanisms of HRS and LRS are trap-controlled space charge limited current and Ohmic behavior, respectively. The resistive switching behavior is induced upon the formation/disruption of conducting filaments. This study demonstrated that the PEALD-ZnO films have better properties for the application in 3D resistance random access memory.

  14. The formation mechanism and prognosis on the prospect of pegmatite type uranium deposit in Eastern Qinling of China

    International Nuclear Information System (INIS)

    Feng Mingyue; Rong Jiashu; Sun Zhifu; Xu Ziyang; Xie Hongjie; Liu Qifeng

    1996-12-01

    Lithologies of Qinling Group are composed of pelite-felsic metamorphic rocks, basic metamorphic rocks and calcareous metamorphic rocks. The Pelite-felsic metamorphic rocks account for the most part of the sequence and the bulk of the Qinling Group. The Pelite-felsic metamorphic rocks associated with uranium-hosting pegmatite are characterized by high content of SiO 2 and alkali, higher content of potassium than that of sodium, and moderate content of uranium. The granites in Eastern Qinling can be divided into two genetic types, i.e. I-type and S-type. Three types of pegmatites located in the study region can be attributed to one series of unified evolution of remelting magma and are connected with each other, as well as differ from each other. They resulted from partial melting of Qinling Group. Uhosting pegmatite is the new U-hosting body. The pegmatite-type uranium deposit are of new type too. The formation of such deposit is attributed to gaseous transfer differentiation. The plate subduction of recent tectonic regime, the dome-formed granite Massif, the pegmatite vein system that resulted from the metamorphism of Qinling Group occurred in Qinling during Early Paleozoic are the main conditions for the formation of pegmatite-type uranium deposits. (5 refs., 10 tabs.)

  15. The formation mechanism and prognosis on the prospect of pegmatite type uranium deposit in Eastern Qinling of China

    Energy Technology Data Exchange (ETDEWEB)

    Mingyue, Feng; Jiashu, Rong; Zhifu, Sun; Ziyang, Xu; Hongjie, Xie [Beijing Research Inst. of Uranium Geology (China); Qifeng, Liu [North-West of Geologic Exploration of Nuclear Industry, Xi` an (China)

    1996-12-01

    Lithologies of Qinling Group are composed of pelite-felsic metamorphic rocks, basic metamorphic rocks and calcareous metamorphic rocks. The Pelite-felsic metamorphic rocks account for the most part of the sequence and the bulk of the Qinling Group. The Pelite-felsic metamorphic rocks associated with uranium-hosting pegmatite are characterized by high content of SiO{sub 2} and alkali, higher content of potassium than that of sodium, and moderate content of uranium. The granites in Eastern Qinling can be divided into two genetic types, i.e. I-type and S-type. Three types of pegmatites located in the study region can be attributed to one series of unified evolution of remelting magma and are connected with each other, as well as differ from each other. They resulted from partial melting of Qinling Group. Uhosting pegmatite is the new U-hosting body. The pegmatite-type uranium deposit are of new type too. The formation of such deposit is attributed to gaseous transfer differentiation. The plate subduction of recent tectonic regime, the dome-formed granite Massif, the pegmatite vein system that resulted from the metamorphism of Qinling Group occurred in Qinling during Early Paleozoic are the main conditions for the formation of pegmatite-type uranium deposits. (5 refs., 10 tabs.).

  16. Deposit Formation during Coal-Straw Co-Combustion in a Utility PF-Boiler

    DEFF Research Database (Denmark)

    Andersen, Karin Hedebo

    1998-01-01

    the combustion conditions, including the method of introduction of the straw to the boiler, as well as the amount of Fe introduced as Pyrite with the coal.No significant effect could be found in the deposition probe samples for an increase in probe metal temperature from 540°C to 620°C. The importance of deposit...... area. The evaluation was performed for an opposed-wall fired and tangentially fired boiler, which are compared to the wall-fired MKS1. Two major aspects were evaluated: The effect of flue gas temperatures and the effect of mixing. However, no final recommandation for choise of boilertype can be given...

  17. Mud deposit formation on the open coast of the larger Patos Lagoon-Cassino Beach system

    Science.gov (United States)

    Vinzon, S. B.; Winterwerp, J. C.; Nogueira, R.; de Boer, G. J.

    2009-03-01

    This paper proposes an explanation of the mud deposits on the inner Shelf of Cassino Beach, South Brazil, by using computational modeling. These mud deposits are mainly formed by sediments delivered from Patos Lagoon, a coastal lagoon connected to the Shelf, next to Cassino Beach. The deposits are characterized by (soft) mud layers of about 1 m thick and are found between the -5 and -20 isobaths. Two hydrodynamic models of the larger Patos Lagoon-Cassino Beach system were calibrated against water elevation measured for a 5 months period, and against currents and salinity measured for a week period. The circulation patterns and water exchange through the mouth were analyzed as a function of local and remote wind effects, and river discharges. The remote wind effect mainly governs the quantity of water exchange with the Lagoon through its effect on mean sea level as a result of Ekman dynamics, while river discharges are important for the salinity of the exchanged water masses. Local winds augment the export-import rates by set-up and set-down within the Lagoon, but their effects are much smaller than those of the remote wind. Currents patterns on the inner Shelf during water outflow revealed a recirculation zone south of the Lagoon, induced by the local geometry and bathymetry of the system. This recirculation zone coincides with observed locations of mud deposition. Water, hence suspended sediment export occurs when remote and local winds are from the N-E, which explains why fine sediment deposits are mainly found south of the Lagoon's breakwater. A sensitivity analysis with the numerical model quantified the contribution of the various mechanisms driving the transport and fate of the fine suspended sediments, i.e. the effects of remote and local wind, of the astronomical tide, of river discharge and fresh-salt water-induced density currents, and of earth rotation. It is concluded that gravitational circulation and earth rotation affects the further dispersion of

  18. The role of magmas in the formation of hydrothermal ore deposits

    Science.gov (United States)

    Hedenquist, Jeffrey W.; Lowenstern, Jacob B.

    1994-01-01

    Magmatic fluids, both vapour and hypersaline liquid, are a primary source of many components in hydrothermal ore deposits formed in volcanic arcs. These components, including metals and their ligands, become concentrated in magmas in various ways from various sources, including subducted oceanic crust. Leaching of rocks also contributes components to the hydrothermal fluid—a process enhanced where acid magmatic vapours are absorbed by deeply circulating meteoric waters. Advances in understanding the hydrothermal systems that formed these ore deposits have come from the study of their active equivalents, represented at the surface by hot springs and volcanic fumaroles.

  19. TPR system: a powerful technique to monitor carbon nanotube formation during chemical vapour deposition

    International Nuclear Information System (INIS)

    Tristao, Juliana Cristina; Moura, Flavia Cristina Camilo; Lago, Rochel Montero; Sapag, Karim

    2010-01-01

    In this work, a TPR (Temperature Programmed Reduction) system is used as a powerful tool to monitor carbon nanotubes production during CVD (Chemical Vapour Deposition), The experiments were carried out using catalyst precursors based on Fe-Mo supported on Al 2 O 3 and methane as carbon source. As methane reacts on the Fe metal surface, carbon is deposited and H2 is produced. TPR is very sensitive to the presence of H2 and affords information on the temperature where catalyst is active to form different forms of carbon, the reaction kinetics, the catalyst deactivation and carbon yields. (author)

  20. Improvement on the electrochemical characteristics of graphite anodes by coating of the pyrolytic carbon using tumbling chemical vapor deposition

    International Nuclear Information System (INIS)

    Han, Young-Soo; Lee, Jai-Young

    2003-01-01

    The electrochemical characteristics of graphite coated with pyrolytic carbon materials using tumbling chemical vapor deposition (CVD) process have been studied for the active material of anodes in lithium ion secondary batteries. Coating of pyrolytic carbons on the surface of graphite particles, which tumble in a rotating reactor tube, was performed through the pyrolysis of liquid propane gas (LPG). The surface morphology of these graphite particles coated with pyrolytic carbon has been observed with scanning electron microscopy (SEM). The surface of graphite particles can well be covered with pyrolytic carbon by tumbling CVD. High-resolution transmission electron microscopy (HRTEM) image of these carbon particles shows that the core part is highly ordered carbon, while the shell part is disordered carbon. We have found that the new-type carbon obtained from tumbling CVD has a uniform core (graphite)-shell (pyrolytic carbon) structure. The electrochemical property of the new-type carbons has been examined using a charge-discharge cycler. The coating of pyrolytic carbon on the surface of graphite can effectively reduce the initial irreversible capacity by 47.5%. Cyclability and rate-capability of theses carbons with the core-shell structure are much better than those of bare graphite. From electrochemical impedance spectroscopy (EIS) spectra, it is found that the coating of pyrolytic carbon on the surface of graphite causes the decrease of the contact resistance in the carbon electrodes, which means the formation of solid electrolyte interface (SEI) layer is suppressed. We suggest that coating of pyrolytic carbon by the tumbling CVD is an effective method in improving the electrochemical properties of graphite electrodes for lithium ion secondary batteries

  1. Improvements of deposited interpolysilicon dielectric characteristics with RTP N/sub 2/O-anneal

    NARCIS (Netherlands)

    Klootwijk, J.H.; Weusthof, Marcel H.H.; van Kranenburg, H.; Woerlee, P.H.; Wallinga, Hans

    1996-01-01

    Nitridation of deposited instead of thermally grown oxides was studied to form high-quality inter-polysilicon dielectric layers for nonvolatile memories. It was found that by optimizing the texture and morphology of the polysilicon layers, and by optimizing the post-dielectric deposition-anneal,

  2. Influence of laser irradiation on deposition characteristics of cold sprayed Stellite-6 coatings

    Science.gov (United States)

    Li, Bo; Jin, Yan; Yao, Jianhua; Li, Zhihong; Zhang, Qunli; Zhang, Xin

    2018-03-01

    Depositing hard materials such as Stellite-6 solely by cold spray (CS) is challengeable due to limited ability of plastic deformation. In this study, the deposition of Stellite-6 powder was achieved by supersonic laser deposition (SLD) which combines CS with synchronous laser irradiation. The surface morphology, deposition efficiency, track shape of Stellite-6 coatings produced over a range of laser irradiation temperatures were examined so as to reveal the effects of varying laser energy inputting on the deposition process of high strength material. The microstructure, phase composition and wear/corrosion resistant properties of the as-deposited Stellite-6 coatings were also investigated. The experimental results demonstrate that the surface flatness and deposition efficiency increase with laser irradiation temperature due to the softening effect induced by laser heating. The as-deposited Stellite-6 tracks show asymmetric shapes which are influenced by the relative configuration of powder stream and laser beam. The SLD coatings can preserve the original microstructure and phase of the feedstock material due to relatively low laser energy inputting, which result in the superior wear/corrosion resistant properties as compared to the counterpart prepared by laser cladding.

  3. Bulk deposition of base cationic nutrients in China's forests: Annual rates and spatial characteristics

    Science.gov (United States)

    Enzai Du; Wim de Vries; Steven McNulty; Mark E. Fenn

    2018-01-01

    Base cations, such as potassium (K+), calcium (Ca2+) and magnesium (Mg2+), are essential nutrients for plant growth and their atmospheric inputs can buffer the effect of acid deposition by nitrogen (N) and sulphur (S) compounds. However, the spatial variation in atmospheric deposition of these base...

  4. Growth characteristics of inclined columns produced by Glancing Angle Deposition (GLAD) and colloidal lithography

    DEFF Research Database (Denmark)

    Foss, Morten; Besenbacher, Flemming; Sutherland, Duncan S

    2011-01-01

    Nanocolumns were produced by performing Glancing Angle Deposition (GLAD) onto self-assembled template arrays consisting of platinum coated polystyrene spheres. By varying the angle of incidence (θ = 35°, 10° and 5°) and the deposited surface mass density it was possible to control the shape of th...

  5. Study of deposition characteristics of multi-nozzle near-field electrospinning in electric field crossover interference conditions

    Directory of Open Access Journals (Sweden)

    Wang Han

    2015-04-01

    Full Text Available Nanostructured components have been receiving considerable attention in recent years. One advantage is the use of near-field electrospinning (NFES in microdevice manufacture. Multi-nozzle NFES is offered as a technique to increase the high-precision production rate of components. The deposition characteristics of the multi-nozzles were observed and analyzed based on the mutual influence of the jets under varied conditions. It was discovered that the mutual distance of deposition becomes larger with increases in working distance and nozzle spacing, but the influence of voltage is not particularly apparent. This paper discusses the results and conclusions of the experimental investigation and theoretical derivation.

  6. Petrographic characteristics and depositional environment of Miocene Can coals, Canakkale-Turkey

    Energy Technology Data Exchange (ETDEWEB)

    Guerdal, Guelbin; Bozcu, Mustafa [Canakkale Onsekiz Mart University, Engineering and Architecture Faculty (Turkey)

    2011-01-01

    In this study, petrographic examinations along with proximate, calorific value, ultimate, sulphur form and XRD analyses were performed in order to determine the coal characteristics and the depositional environment of the Miocene Can coals. Seventy coal samples were taken from cores and open pit mines. The investigated Can coals are humic coals and classified as lignite to sub-bituminous coal based on the random huminite reflectance (0.38-0.54% R{sub r}), volatile matter (45.50-62.25 wt.%, daf) and calorific value (3419-6479 kcal/kg, maf). The sulphur content of the Can coals changes from 0.30 up to 12.23 wt.%, and a broad range of ash contents was observed varying between 2.46 wt.% and 41.19 wt.%. Huminite is the most abundant maceral group (74-95 vol.% mmf) consisting of mostly humocollinite (gelinite) which is followed by relatively low liptinite (2-18 vol.% mmf) and inertinite content (2-13 vol.% mmf). In general, major mineral contents of coal samples are clay minerals, quartz, mica, pyrite and feldspar. The Can-Etili lignite basin consists of mainly volcano-clastics, fluviatile and lacustrine clastic sediments and contains only one lignite seam with 17 m average thickness. In order to assess the development of paleo-mires, coal facies diagrams were obtained from maceral composition. According to the Vegetation Index (VI) and Ground Water Index (GWI), the Can coal accumulated in inundated marsh, limnic and swamp environments under a rheotrophic hydrological regime. In general, the facies interpretations are in accordance with the observed sedimentalogical data. (author)

  7. Structural characteristics of cohesive flow deposits, and a sedimentological approach on their flow mechanisms.

    Science.gov (United States)

    Tripsanas, E. K.; Bryant, W. R.; Prior, D. B.

    2003-04-01

    A large number of Jumbo Piston cores (up to 20 m long), acquired from the continental slope and rise of the Northwest Gulf of Mexico (Bryant Canyon area and eastern Sigsbee Escarpment), have recovered various mass-transport deposits. The main cause of slope instabilities over these areas is oversteepening of the slopes due to the seaward mobilization of the underlying allochthonous salt masses. Cohesive flow deposits were the most common recoveries in the sediment cores. Four types of cohesive flow deposits have been recognized: a) fluid debris flow, b) mud flow, c) mud-matrix dominated debris flow, and d) clast-dominated debris flow deposits. The first type is characterized by its relatively small thickness (less than 1 m), a mud matrix with small (less than 0.5 cm) and soft mud-clasts, and a faint layering. The mud-clasts reveal a normal grading and become more abundant towards the base of each layer. That reveals that their deposition resulted by several successive surges/pulses, developed in the main flow, than the sudden “freezing” of the whole flow. The main difference between mud flow and mud-matrix dominated debris flow deposits is the presence of small to large mud-clasts in the later. Both deposits consist of a chaotic mud-matrix, and a basal shear laminated zone, where the strongest shearing of the flow was exhibited. Convolute laminations, fault-like surfaces, thrust faults, and microfaults are interpreted as occurring during the “freezing” of the flows and/or by adjustments of the rested deposits. Clast-dominated debris flow deposits consist of three zones: a) an upper plug-zone, characterized by large interlocked clasts, b) a mid-zone, of higher reworked, inversely graded clasts, floating in a mud-matrix, and c) a lower shear laminated zone. The structure of the last three cohesive flow deposits indicate that they represent deposition of typical Bingham flows, consisting of an upper plug-zone in which the yield stress is not exceeded and an

  8. CONCENTRIC TUBE-FOULING RIG FOR INVESTIGATION OF FOULING DEPOSIT FORMATION FROM PASTEURISER OF VISCOUS FOOD LIQUID

    Directory of Open Access Journals (Sweden)

    N. I. KHALID

    2013-02-01

    Full Text Available This paper reports the work on developing concentric tube-fouling rig, a new fouling deposit monitoring device. This device can detect and quantify the level of fouling deposit formation. It can also functioning as sampler for fouling deposit study, which can be attached at any food processing equipment. The design is initiated with conceptual design. The rig is designed with inner diameter of 7 cm and with tube length of 37 cm. A spiral insert with 34.5 cm length and with 5.4 cm diameter is fitted inside the tube to ensure the fluid flows around the tube. In this work, the rig is attached to the lab-scale concentric tube-pasteurizer to test its effectiveness and to collect a fouling sample after pasteurization of pink guava puree. Temperature changes are recorded during the pasteurization and the data is used to plot the heat transfer profile. Thickness of the fouling deposit is also measured. The trends for thickness, heat resistance profile and heat transfer profile for concentric tube-fouling rig matched the trends obtained from lab-scale concentric tube-pasteurizer very well. The findings from this work have shown a good potential of this rig however there is a limitation with spiral insert, which is discussed in this paper.

  9. Carbonate Formation And Diagenesis In Pastos Grandes Laguna (Bolivia): Modern Analog For The South Atlantic Cretaceous Presalt Travertinoid Deposits

    Science.gov (United States)

    Muller, E.; Ader, M.; Gérard, E.; Virgone, A.; Gaucher, E.; Bougeault, C.; Durlet, C.; Moreira, M. A.; Virgile, R.; Vennin, E.; Agogué, H.; Hugoni, M.

    2017-12-01

    The Cretaceous Presalt travertinoid deposits of the South Atlantic are usually considered as "strange deposits" having poor equivalents in modern environments. Pastos Grandes Laguna, which is located in a 2.9 Ma caldera on the andean-bolivian Altiplano (at 4450 m), is intersected by active faults with hydrothermal fluids and presents a spherulitic plateform with similar sedimentological facies to the Presalt: halite and bedded evaporites, shrub-shaped calcites, ooids, pisolites and various stromatolites. Pastos Grandes Laguna is certainly one of the best modern analog of the Presalt for investigating the on going processes of carbonate deposition and diagenesis and the influence of biology. During two expeditions, we recovered samples of gas, water and microbial mats from the hydrothermal sources to the evaporating zones on the spherulitic plateform. These samples are being analyzed to determine 1) the influence of the gases emitted at the hydrothermal sources (chemical and isotopic composition) on the chemistry of the Laguna and the mineralogy of its sediments and 2) the role of ecosystems that develop in this environment on carbonate formation. Preliminary results on gas composition, corrected for the atmospheric contribution, indicates a magmatic source of CO2 partly mantellic associated with a small crustal contribution. Other initial results have so far indicated that CO2 gas emissions, evaporation, as well as photosynthesis and respiration play a role on water chemistry and carbonate precipitation. This study will contribute to the overall understanding of the role of organisms in sedimentation and the predictive diagenetic evolution of hydrothermal and lacustrine deposits.

  10. Understanding the spatial formation and accumulation of fats, oils and grease deposits in the sewer collection system.

    Science.gov (United States)

    Dominic, Christopher Cyril Sandeep; Szakasits, Megan; Dean, Lisa O; Ducoste, Joel J

    2013-01-01

    Sanitary sewer overflows are caused by the accumulation of insoluble calcium salts of fatty acids, which are formed by the reaction between fats, oils and grease (FOG) and calcium found in wastewaters. Different sewer structural configurations (i.e., manholes, pipes, wet wells), which vary spatially, along with other obstructions (roots intrusion) and pipe deformations (pipe sags), may influence the detrimental buildup of FOG deposits. The purpose of this study was to quantify the spatial variation in FOG deposit formation and accumulation in a pilot-scale sewer collection system. The pilot system contained straight pipes, manholes, roots intrusion, and a pipe sag. Calcium and oil were injected into the system and operated at alkaline (pH = 10) and neutral (pH = 7) pH conditions. Results showed that solid accumulations were slightly higher at neutral pH. Fourier transform infrared (FTIR) analysis on the solids samples confirmed that the solids were indeed calcium-based fatty acid salts. However, the fatty acid profiles of the solids deviated from the profile found from FOG deposits in sewer systems, which were primarily saturated fatty acids. These results confirm the work done previously by researchers and suggest an alternative fate of unsaturated fatty acids that does not lead to their incorporation in FOG deposits in full-scale sewer systems.

  11. Shedding of ash deposits

    DEFF Research Database (Denmark)

    Zbogar, Ana; Frandsen, Flemming; Jensen, Peter Arendt

    2009-01-01

    Ash deposits formed during fuel thermal conversion and located on furnace walls and on convective pass tubes, may seriously inhibit the transfer of heat to the working fluid and hence reduce the overall process efficiency. Combustion of biomass causes formation of large quantities of troublesome...... ash deposits which contain significant concentrations of alkali, and earth-alkali metals. The specific composition of biomass deposits give different characteristics as compared to coal ash deposits, i.e. different physical significance of the deposition mechanisms, lower melting temperatures, etc....... Low melting temperatures make straw ashes especially troublesome, since their stickiness is higher at lower temperatures, compared to coal ashes. Increased stickiness will eventually lead to a higher collection efficiency of incoming ash particles, meaning that the deposit may grow even faster...

  12. Characteristics of a sandy depositional lobe on the outerMississippi Fan from Sea MARC 1A sidescan sonar images

    Science.gov (United States)

    Twichell, D.C.; Schwab, W.C.; Nelson, C.H.; Kenyon, Neil H.; Lee, H.J.

    1992-01-01

    Shows that channelized rather than unconfined transport was the dominant transport mechanism for coarse-grained sediment during the formation of this part of the deep-sea fan. The dendritic distributary pattern and the high order of splaying of the channels, only one of which appears to have been active at a time, suggest that coarse- grained deposits on this fan are laterally discontinuous. -from Authors

  13. Formation, clearance, deposition, pathogenicity, and identification of biopharmaceutical-related immune complexes: review and case studies.

    Science.gov (United States)

    Rojko, Jennifer L; Evans, Mark G; Price, Shari A; Han, Bora; Waine, Gary; DeWitte, Mark; Haynes, Jill; Freimark, Bruce; Martin, Pauline; Raymond, James T; Evering, Winston; Rebelatto, Marlon C; Schenck, Emanuel; Horvath, Christopher

    2014-06-01

    Vascular inflammation, infusion reactions, glomerulopathies, and other potentially adverse effects may be observed in laboratory animals, including monkeys, on toxicity studies of therapeutic monoclonal antibodies and recombinant human protein drugs. Histopathologic and immunohistochemical (IHC) evaluation suggests these effects may be mediated by deposition of immune complexes (ICs) containing the drug, endogenous immunoglobulin, and/or complement components in the affected tissues. ICs may be observed in glomerulus, blood vessels, synovium, lung, liver, skin, eye, choroid plexus, or other tissues or bound to neutrophils, monocytes/macrophages, or platelets. IC deposition may activate complement, kinin, and/or coagulation/fibrinolytic pathways and result in a systemic proinflammatory response. IC clearance is biphasic in humans and monkeys (first from plasma to liver and/or spleen, second from liver or spleen). IC deposition/clearance is affected by IC composition, immunomodulation, and/or complement activation. Case studies are presented from toxicity study monkeys or rats and indicate IHC-IC deposition patterns similar to those predicted by experimental studies of IC-mediated reactions to heterologous protein administration to monkeys and other species. The IHC-staining patterns are consistent with findings associated with generalized and localized IC-associated pathology in humans. However, manifestations of immunogenicity in preclinical species are generally not considered predictive to humans. © 2014 by The Author(s).

  14. Formation of tilted clusters in the electrochemical deposition of copper on n-gas(001)

    DEFF Research Database (Denmark)

    Smilgies, D.M.; Feidenhans'l, Robert Krarup; Scherb, G.

    1996-01-01

    Using in-situ synchrotron X-ray diffraction, we have studied the epitaxial properties of Cu clusters electrochemically deposited on n-GaAs(001) substrates. The Cu clusters have (001) base planes and their [100] directions are aligned with the [110] directions of the GaAs(001) surface unit cell, b...

  15. THE FORMATION OF BIMETALLIC CONNECTION IN WELDER DEPOSITION UNDER LASER WELDING WITH THE FILLER WIRE FEED

    Directory of Open Access Journals (Sweden)

    A. P. Yelistratov

    2017-01-01

    Full Text Available The metallurgical and technological features of welding deposition in a robotic unit with a semiconductor laser are analyzed. The prospects of using beam with low energy density in the spot heating for applying metallic layers using filler wire are shown. 

  16. An analytical–numerical model of laser direct metal deposition track and microstructure formation

    International Nuclear Information System (INIS)

    Ahsan, M Naveed; Pinkerton, Andrew J

    2011-01-01

    Multiple analytical and numerical models of the laser metal deposition process have been presented, but most rely on sequential solution of the energy and mass balance equations or discretization of the problem domain. Laser direct metal deposition is a complex process involving multiple interdependent processes which can be best simulated using a fully coupled mass-energy balance solution. In this work a coupled analytical–numerical solution is presented. Sub-models of the powder stream, quasi-stationary conduction in the substrate and powder assimilation into the area of the substrate above the liquidus temperature are combined. An iterative feedback loop is used to ensure mass and energy balances are maintained at the melt pool. The model is verified using Ti–6Al–4V single track deposition, produced with a coaxial nozzle and a diode laser. The model predictions of local temperature history, the track profile and microstructure scale show good agreement with the experimental results. The model is a useful industrial aid and alternative to finite element methods for selecting the parameters to use for laser direct metal deposition when separate geometric and microstructural outcomes are required

  17. Slope-apron deposition in an ordovician arc-related setting: The Vuelta de Las Tolas Member (Suri Formation), Famatina Basin, northwest Argentina

    Science.gov (United States)

    Mangano, M.G.; Buatois, L.A.

    1997-01-01

    The Ordovician Suri Formation is part of the infill of the Famatina Basin of northwest Argentina, which formed in an active setting along the western margin of early Paleozoic Gondwana. The lower part of this formation, the Vuelta de Las Tolas Member, records sedimentation on a slope apron formed in an intra-arc basin situated on a flooded continental arc platform. The coincidence of a thick Arenig-Llanvirn sedimentary succession and volcanic-plutonic arc rocks suggests an extensional or transtensional arc setting, and is consistent with evidence of an extensional regime within the volcanic arc in the northern Puna region. The studied stratigraphic sections consist of volcanic rocks and six sedimentary facies. The facies can be clustered into four facies associations. Association 1, composed of facies A (laminated siltstones and mudstones) and B (massive mudstones and siltstones), is interpreted to have accumulated from silty-muddy high-and low-density turbidity currents and highly fluid, silty debris flows, with subsequent reworking by bottom currents, and to a lesser extent, hemipelagic suspension in an open-slope setting. Facies association 2 is dominated by facies C (current-rippled siltstones) strata. These deposits are interpreted to record overbank sedimentation from fine-grained turbidity currents. Facies E (matrix-supported volcanic breccias) interbedded with andesitic lava units comprises facies association 3. Deposition was contemporaneous with subaqueous volcanic activity, and accumulated from cohesive debris flows in a coarse-grained wedge at the base of slope. Facies association 4 is typified by facies D (vitric fine-grained sandstones and siltstones) and F (channelized and graded volcanic conglomerates and breccias) deposits. These strata commonly display thinning-and fining-upward trends, indicating sedimentation from highly-concentrated volcaniclastic turbidity currents in a channelized system. The general characteristics of these deposits of fresh

  18. Membranous nephropathy (bubbling appearance and spike formation) without immunoglobulin deposition in a patient with systemic lupus erythematosus.

    Science.gov (United States)

    Miura, Naoto; Mori, Yuki; Yoshino, Masabumi; Suga, Norihiro; Kitagawa, Wataru; Yamada, Harutaka; Nishikawa, Kazuhiro; Imai, Hirokazu

    2008-12-01

    A 53-year-old Japanese man with systemic lupus erythematosus developed proteinuria and hematuria after a urinary stone episode. A light microscopic study of a kidney biopsy specimen demonstrated a bubbling appearance and spike formation of the basement membrane. Immunofluorescent studies revealed that there were no significant depositions of immunoglobulins, such as IgG (-), IgA (-), IgM (+/-), kappa light chain (+/-), lambda light chain (+/-), or C3 (-) in the glomerular capillary wall, though C1q was present as one-plus positive staining in mesangial areas. Electron microscopic studies showed that the thickness of the basement membrane varied from thin to thick without electron dense deposits, and that the cellular components of the podocyte were irregularly present in the basement membrane. Urinary protein decreased after the usage of prednisolone and mizoribine; however, proteinuria aggravated after an episode of urinary stone during the same treatment.

  19. The development condition of longitudinal channels of a Lower Cretaceous formation and its perspective for sandstone type uranium deposits in the Erlian basin, northern China

    International Nuclear Information System (INIS)

    Qin, M.; Xu, Q.; Liu, W.; Song, J.; Chen, D.; Wei, S.

    2014-01-01

    The palaeochannel, which is classified as basal and interformational types on the basis of geological setting, is an important host for the sandstone type uranium deposit. Diversities exist in development conditions and uranium minerogenetic potential of the two types of palaeochanneles. The Erlian basin, about 105 km"2 and adjacent to channel-type uranium deposit provinces in Russia and Mongolia, is one of main uraniferous basins in the north of China. It is significant to research into development conditions of palaeochannels for uranium mineral exploration in the Erlian basin. 1. Geological background: The Erlian basin consists of five depressions which divide the basin and form alternations with uplifts and depressions. Sedimentary capping strata of the basin mainly is the Lower Cretaceous Bayanhua group (K1b) which consists of the Aershan group (K1ba), Tenger group (K1bt) and Saihan group (K1bs) from bottom to top. The Saihan group, which is the product in the phase of depression, is the most important uranous strata in the Erlian basin. 2. Development characteristic and condition of the longitudinal palaeochannel of the Saihan formation: Large-scale longitudinal multi-palaeochannels are identified in the center and northeast of the basin, such as the QiHaRiGeTu-SaiHanGaoBi palaeochannel (CH01), BaYanWuLa palaeochannel (CH02) and GaoLiHan palaeochanne l(CH03), et al., which character the length from several 10s of km to 100 km, width of several 10s of km and thickness of sand bodies from 20 m to 130 m, more or less. Palaeochannels of the Saihan formation are interformational type because the underlay is argillite at the top of the Tenggeer formation. Restrictive geological environments and conditions are necessary to form longitudinal channels and mainly are as follows: (1) the basin in the sustained step of depression; (2) sharp gradient (>5°?) in parts of sub-depressions and sufficient sedimentary supply from the upstream; (3) elongate erosional lowlands or

  20. Effect of chemical treatment on surface characteristics of sputter deposited Ti-rich NiTi shape memory alloy thin-films

    International Nuclear Information System (INIS)

    Sharma, S.K.; Mohan, S.

    2014-01-01

    Graphical abstract: FTIR spectra recorded for sputter deposited (a) untreated and (b) chemically treated NiTi SMA thin-films. - Highlights: • The effect of chemical treatment on surface properties of NiTi films demonstrated. • Chemically treated films offer strong ability to form protective TiO 2 layer. • TiO 2 layer formation offer great application prospects in biomedical fields. - Abstract: NiTi thin-films were deposited by DC magnetron sputtering from single alloy target (Ni/Ti:45/55 at.%). The rate of deposition and thickness of sputter deposited films were maintained to ∼35 nm min −1 and 4 μm respectively. A set of sputter deposited NiTi films were selected for specific chemical treatment with the solution comprising of de-ionized water, HF and HNO 3 respectively. The influence of chemical treatment on surface characteristics of NiTi films before and after chemical treatment was investigated for their structure, micro-structure and composition using different analytical techniques. Prior to chemical treatment, the composition of NiTi films using energy dispersive X-ray dispersive spectroscopy (EDS), were found to be 51.8 atomic percent of Ti and 48.2 atomic percent of Ni. The structure and morphology of these films were investigated by X-ray diffraction (XRD) and scanning electron microscopy (SEM). XRD investigations, demonstrated the presence of dominant Austenite (1 1 0) phase along with Martensite phase, for untreated NiTi films whereas some additional diffraction peaks viz. (1 0 0), (1 0 1), and (2 0 0) corresponding to Rutile and Anatase phase of Titanium dioxide (TiO 2 ) along with parent Austenite (1 1 0) phase were observed for chemically treated NiTi films. FTIR studies, it can be concluded that chemically treated films have higher tendency to form metal oxide/hydroxide than the untreated NiTi films. XPS investigations, demonstrated the presence of Ni-free surface and formation of a protective metal oxide (TiO 2 ) layer on the surface of

  1. Characteristics and 40Ar/39Ar geochronology of the Erdenet Cu-Mo deposit, Mongolia

    Science.gov (United States)

    Kavalieris, Imants; Khashgerel, Bat-Erdene; Morgan, Leah; Undrakhtamir, Alexander; Borohul, Adiya

    2017-01-01

    50 to 200 m from the granodiorite porphyry contact, although D veins (and chalcopyrite) extend outward to the propylitic zone.The Erdenet porphyry system, was overprinted by advanced argillic alteration, which outcrops 2 km northwest of the pit, and forms a lithocap that extends over 10 × 2.5 km. It is characterized by residual quartz, andalusite, Na-Ca and K-alunite, diaspore, pyrophyllite, zunyite, topaz, dickite, and kaolinite. The upper part of the porphyry Cu-Mo deposit (removed by mining), comprised a bornite-chalcocite enriched zone up to 300 m thick with an average grade of 0.7 wt % Cu and up to 5 wt % Cu locally. Based on hypogene bornite-chalcocite mineral textures and high-sulfidation state mineralogy, the enriched zone is inferred to be of hypogene origin, but modified by supergene processes. Consequently, it may be related to formation of the lithocap.Previous Re-Os dates of 240.4 and 240.7 ± 0.8 Ma for molybdenite in quartz veins are comparable to new 40Ar/39Ar dates of 239.7 ± 1.6 and 240 ± 2 Ma for muscovite that envelops D veins. One 40Ar/39Ar date on K-alunite from the lithocap of 223.5 ± 1.9 Ma suggests that it may be about 16 m.y. younger than Erdenet, but this result needs to be verified by further dating.

  2. Morphological Characteristics of Au Films Deposited on Ti: A Combined SEM-AFM Study

    Directory of Open Access Journals (Sweden)

    Francesco Ruffino

    2018-03-01

    Full Text Available Deposited Au films and coatings are, nowadays, routinely used as active or passive elements in several innovative electronic, optoelectronic, sensing, and energy devices. In these devices, the physical properties of the Au films are strongly determined by the films nanoscale structure. In addition, in these devices, often, a layer of Ti is employed to promote adhesion and, so, influencing the nanoscale structure of the deposited Au film. In this work, we present experimental analysis on the nanoscale cross-section and surface morphology of Au films deposited on Ti. In particular, we sputter-deposited thick (>100 nm thickness Au films on Ti foils and we used Scanning Electron Microscopy to analyze the films cross-sectional and surface morphology as a function of the Au film thickness and deposition angle. In addition, we analyzed the Au films surface morphology by Atomic Force Microscopy which allowed quantifying the films surface roughness versus the film thickness and deposition angle. The results establish a relation between the Au films cross-sectional and surface morphologies and surface roughness to the film thickness and deposition angle. These results allow setting a general working framework to obtain Au films on Ti with specific morphological and topographic properties for desired applications in which the Ti adhesion layer is needed for Au.

  3. Improvement on the electrical characteristics of Pd/HfO{sub 2}/6H-SiC MIS capacitors using post deposition annealing and post metallization annealing

    Energy Technology Data Exchange (ETDEWEB)

    Esakky, Papanasam, E-mail: papanasamte@gmail.com; Kailath, Binsu J

    2017-08-15

    Highlights: • Post deposition annealing (PDA) and post metallization annealing (PMA) on the electrical characteristics of Pd/HfO{sub 2}/6H-SiC MIS capacitors. • Post deposition N{sub 2}O plasma annealing inhibits crystallization of HfO{sub 2} during high temperature annealing. • Plasma annealing followed by RTA in N{sub 2} results in formation of hafnium silicate at the HfO{sub 2}-SiC interface. • PDA reduces interface state density (D{sub it}) and gate leakage current density (J{sub g}) by order. • PMA in forming gas for 40 min results in better passivation and reduces D{sub it} by two orders and J{sub g} by thrice. - Abstract: HfO{sub 2} as a gate dielectric enables high electric field operation of SiC MIS structure and as gas sensor HfO{sub 2}/SiC capacitors offer higher sensitivity than SiO{sub 2}/SiC capacitors. The issue of higher density of oxygen vacancies and associated higher leakage current necessitates better passivation of HfO{sub 2}/SiC interface. Effect of post deposition annealing in N{sub 2}O plasma and post metallization annealing in forming gas on the structural and electrical characteristics of Pd/HfO{sub 2}/SiC MIS capacitors are reported in this work. N{sub 2}O plasma annealing suppresses crystallization during high temperature annealing thereby improving the thermal stability and plasma annealing followed by rapid thermal annealing in N{sub 2} result in formation of Hf silicate at the HfO{sub 2}/SiC interface resulting in order of magnitude lower density of interface states and gate leakage current. Post metallization annealing in forming gas for 40 min reduces interface state density by two orders while gate leakage current density is reduced by thrice. Post deposition annealing in N{sub 2}O plasma and post metallization annealing in forming gas are observed to be effective passivation techniques improving the electrical characteristics of HfO{sub 2}/SiC capacitors.

  4. The influence of nanoparticle aggregation on formation of ZrO{sub 2} electrolyte thin films by electrophoretic deposition

    Energy Technology Data Exchange (ETDEWEB)

    Kalinina, E.G., E-mail: kalinina@iep.uran.ru [Institute of Electrophysics, Russian Academy of Sciences, Ural Branch, 106 Amundsen Street, 620016 Ekaterinburg (Russian Federation); Ural Federal University, 19 Mira Street, 620002 Ekaterinburg (Russian Federation); Efimov, A.A. [Moscow Institute of Physics and Technology, 9 Institutskii per., 141700 Dolgoprudny, Moscow Region (Russian Federation); Safronov, A.P. [Institute of Electrophysics, Russian Academy of Sciences, Ural Branch, 106 Amundsen Street, 620016 Ekaterinburg (Russian Federation); Ural Federal University, 19 Mira Street, 620002 Ekaterinburg (Russian Federation)

    2016-08-01

    The paper presents the results of the studies of electrically stabilized nonaqueous suspensions of ZrO{sub 2} stabilized by Y{sub 2}O{sub 3} (YSZ) nanoparticles with an average diameter of 11 nm for the formation of green films of electrolyte for solid oxide fuel cells. Nanoparticles were de-aggregated to different degrees, which were provided by the ultrasonic treatment and the centrifugation, and monitored by the dynamic light scattering. YSZ green thin films were obtained by the electrophoretic deposition (EPD) on dense lanthanum strontium manganite cathodes using suspensions with the average diameter of aggregates: 107; 66; 53 nm. To investigate the possibilities of EPD we used the model drying of the same suspensions cast upon the same substrates. It was shown that the structure and the morphology of the green films obtained by EPD was different compared to the films prepared by the model drying of the suspension. The drying of the stable suspension resulted in the formation of loose aggregates on the surface. The efficient packing of electrically stabilized particles was prevented by the forces of electrostatic repulsion between them. In the case of EPD the electrocoagulation of particles near the cathode takes place with the formation of dense aggregates. As a result, uncharged spherical aggregates with an average size of about 100–200 nm settle on the surface of the cathode and pack into a uniform dense coating suitable for the subsequent sintering of a gas-tight coating for the solid YSZ electrolyte. - Highlights: • Impact of nanoparticle aggregation on the electrophoretic deposition is studied. • Sedimentation of stabilized particles results in formation of loose aggregates. • The formation of dense layer is facilitated by electrocoagulation of particles.

  5. The influence of nanoparticle aggregation on formation of ZrO_2 electrolyte thin films by electrophoretic deposition

    International Nuclear Information System (INIS)

    Kalinina, E.G.; Efimov, A.A.; Safronov, A.P.

    2016-01-01

    The paper presents the results of the studies of electrically stabilized nonaqueous suspensions of ZrO_2 stabilized by Y_2O_3 (YSZ) nanoparticles with an average diameter of 11 nm for the formation of green films of electrolyte for solid oxide fuel cells. Nanoparticles were de-aggregated to different degrees, which were provided by the ultrasonic treatment and the centrifugation, and monitored by the dynamic light scattering. YSZ green thin films were obtained by the electrophoretic deposition (EPD) on dense lanthanum strontium manganite cathodes using suspensions with the average diameter of aggregates: 107; 66; 53 nm. To investigate the possibilities of EPD we used the model drying of the same suspensions cast upon the same substrates. It was shown that the structure and the morphology of the green films obtained by EPD was different compared to the films prepared by the model drying of the suspension. The drying of the stable suspension resulted in the formation of loose aggregates on the surface. The efficient packing of electrically stabilized particles was prevented by the forces of electrostatic repulsion between them. In the case of EPD the electrocoagulation of particles near the cathode takes place with the formation of dense aggregates. As a result, uncharged spherical aggregates with an average size of about 100–200 nm settle on the surface of the cathode and pack into a uniform dense coating suitable for the subsequent sintering of a gas-tight coating for the solid YSZ electrolyte. - Highlights: • Impact of nanoparticle aggregation on the electrophoretic deposition is studied. • Sedimentation of stabilized particles results in formation of loose aggregates. • The formation of dense layer is facilitated by electrocoagulation of particles.

  6. Lithofacies, age, depositional setting, and geochemistry of the Otuk Formation in the Red Dog District, northwestern Alaska

    Science.gov (United States)

    Dumoulin, Julie A.; Burruss, Robert A.; Blome, Charles D.

    2013-01-01

    Complete penetration of the Otuk Formation in a continuous drill core (diamond-drill hole, DDH 927) from the Red Dog District illuminates the facies, age, depositional environment, source rock potential, and isotope stratigraphy of this unit in northwestern Alaska. The section, in the Wolverine Creek plate of the Endicott Mountains Allochthon (EMA), is ~82 meters (m) thick and appears structurally uncomplicated. Bedding dips are generally low and thicknesses recorded are close to true thicknesses. Preliminary synthesis of sedimentologic, paleontologic, and isotopic data suggests that the Otuk succession in DDH 927 is a largely complete, albeit condensed, marine Triassic section in conformable contact with marine Permian and Jurassic strata. The Otuk Formation in DDH 927 gradationally overlies gray siliceous mudstone of the Siksikpuk Formation (Permian, based on regional correlations) and underlies black organic-rich mudstone of the Kingak(?) Shale (Jurassic?, based on regional correlations). The informal shale, chert, and limestone members of the Otuk are recognized in DDH 927, but the Jurassic Blankenship Member is absent. The lower (shale) member consists of 28 m of black to light gray, silty shale with as much as 6.9 weight percent total organic carbon (TOC). Thin limy layers near the base of this member contain bivalve fragments (Claraia sp.?) consistent with an Early Triassic (Griesbachian-early Smithian) age. Gray radiolarian chert dominates the middle member (25 m thick) and yields radiolarians of Middle Triassic (Anisian and Ladinian) and Late Triassic (Carnian-late middle Norian) ages. Black to light gray silty shale, like that in the lower member, forms interbeds that range from a few millimeters to 7 centimeters in thickness through much of the middle member. A distinctive, 2.4-m-thick interval of black shale and calcareous radiolarite ~17 m above the base of the member has as much as 9.8 weight percent TOC, and a 1.9-m-thick interval of limy to cherty

  7. Sulfur and lead isotope characteristics of the Pontes e Lacerda gold deposits, SW Amazonian Craton Brazil

    International Nuclear Information System (INIS)

    Geraldes, M.C.; Tassinari, C.C.G.; Babinski; M; Iyer, S

    2001-01-01

    This work deals with the characterization of the S and Pb isotope signatures in sulfides from the Pontes e Lacerda mesothermal gold deposits located in the SW sector of Amazonian craton. Stable and radiogenic isotopes have played an important role in the study of ore deposited and hydrothermal processes and they are most useful when can be used together. The purpose of this study is to constrain the sources and the mechanisms of gold deposition in Pontes e Lacerda region which may be a helpful contribution to an exploratory model in the area (au)

  8. Simultaneous coastal measurements of ozone deposition fluxes and iodine-mediated particle emission fluxes with subsequent CCN formation

    Directory of Open Access Journals (Sweden)

    J. D. Whitehead

    2010-01-01

    Full Text Available Here we present the first observations of simultaneous ozone deposition fluxes and ultrafine particle emission fluxes over an extensive infra-littoral zone. Fluxes were measured by the eddy covariance technique at the Station Biologique de Roscoff, on the coast of Brittany, north-west France. This site overlooks a very wide (3 km littoral zone controlled by very deep tides (9.6 m exposing extensive macroalgae beds available for significant iodine mediated photochemical production of ultrafine particles. The aspect at the Station Biologique de Roscoff provides an extensive and relatively flat, uniform fetch within which micrometeorological techniques may be utilized to study links between ozone deposition to macroalgae (and sea water and ultrafine particle production.

    Ozone deposition to seawater at high tide was significantly slower (vd[O3]=0.302±0.095 mm s−1 than low tidal deposition. A statistically significant difference in the deposition velocities to macroalgae at low tide was observed between night time (vd[O3]=1.00±0.10 mm s−1 and daytime (vd[O3]=2.05±0.16 mm s−1 when ultrafine particle formation results in apparent particle emission. Very high emission fluxes of ultrafine particles were observed during daytime periods at low tides ranging from 50 000 particles cm−2 s−1 to greater than 200 000 particles cm−2 s−1 during some of the lowest tides. These emission fluxes exhibited a significant relationship with particle number concentrations comparable with previous observations at another location. Apparent particle growth rates were estimated to be in the range 17–150 nm h−1 for particles in the size range 3–10 nm. Under certain conditions, particle growth may be inferred to continue to greater than 120 nm over tens

  9. Phase formation and microstructure evolution of arc ion deposited Cr2AlC coating after heat treatment

    International Nuclear Information System (INIS)

    Li, J.J.; Qian, Y.H.; Niu, D.; Zhang, M.M.; Liu, Z.M.; Li, M.S.

    2012-01-01

    Highlights: ► Cr 2 AlC coating was prepared by arc ion plating combined with post annealing. ► The coating deposited by arc ion plating without heating was amorphous. ► Amorphous coating transformed to crystalline Cr 2 AlC after annealing at 620 °C in Ar. - Abstract: Due to the excellent oxidation and hot corrosion resistance and matched thermal expansion coefficient to normal alloys, Cr 2 AlC has potential applications as high-temperature protective coating. In the present work, the preparation of Cr 2 AlC coating has been achieved through cathodic arc deposition method combined with heat post-treatment. It was found that the coating, deposited from Cr 2 AlC compound target in the unintentional heating condition, was amorphous. After annealing at 620 °C in Ar for 20 h, the amorphous Cr–Al–C coating happened to crystallize and transformed to crystalline Cr 2 AlC as the major phase. It is obvious that the formation temperature of Cr 2 AlC was decreased from about 1050 °C for sintered bulk to around 620 °C for the as-deposited coating, resulting from the homogeneous mixture of the Cr, Al and C at atomic level in the Cr–Al–C coating. Apart from crystalline Cr 2 AlC, the annealed coating also contained AlCr 2 and little Cr 7 C 3 . AlCr 2 formed due to the loss of C during deposition, and little Cr 7 C 3 always existed in the sintered Cr 2 AlC compound target as impurity phase.

  10. Chemical characteristics of atmospheric deposition collected at two ENEA stations near Bologna

    International Nuclear Information System (INIS)

    Barilli, L.; Olivieri, P.; Salvi, S.; Morselli, L.; Grandi, E.; Ianuccilli, A.

    1997-06-01

    This article presents the results of the measurements of the water quality in acid rains, collected by a Wet and Dry Sampler in 1994 and in 1995 at two ENEA stations, Brasimone and Bologna town, belonging to the RIDEP network and characterized by different geography and different anthropogenic sources. In the Bologna station from April 95 an innovative sampler DAS (Dry Deposition on Aquatic Surface) has been activated. The monitoring has allowed determining the wet deposition fluxes in both the stations and pointing out the differences between two areas characterized by different topology. Besides the DAS sampler has allowed evaluating the total deposition fluxes (wet and dry deposition) in the Bologna station and comparing them with the ''critical loads'' pertaining to the examined territory

  11. In situ formation deposited ZnO nanoparticles on silk fabrics under ultrasound irradiation.

    Science.gov (United States)

    Khanjani, Somayeh; Morsali, Ali; Joo, Sang W

    2013-03-01

    Deposition of zinc(II) oxide (ZnO) nanoparticles on the surface of silk fabrics was prepared by sequential dipping steps in alternating bath of potassium hydroxide and zinc nitrate under ultrasound irradiation. This coating involves in situ generation and deposition of ZnO in a one step. The effects of ultrasound irradiation, concentration and sequential dipping steps on growth of the ZnO nanoparticles have been studied. Results show a decrease in the particles size as increasing power of ultrasound irradiation. Also, increasing of the concentration and sequential dipping steps increase particle size. The physicochemical properties of the nanoparticles were determined by powder X-ray diffraction (XRD), scanning electron microscopy (SEM) and wavelength dispersive X-ray (WDX). Copyright © 2012 Elsevier B.V. All rights reserved.

  12. The late cretaceous Donlin Creek gold deposit, Southwestern Alaska: Controls on epizonal ore formation

    Science.gov (United States)

    Goldfarb, R.J.; Ayuso, R.; Miller, M.L.; Ebert, S.W.; Marsh, E.E.; Petsel, S.A.; Miller, L.D.; Bradley, D.; Johnson, Chad; McClelland, W.

    2004-01-01

    The Donlin Creek gold deposit, southwestern Alaska, has an indicated and inferred resource of approximately 25 million ounces (Moz) Au at a cutoff grade of 1.5 g/t. The ca. 70 Ma deposit is hosted in the Late Cretaceous Kuskokwim flysch basin, which developed in the back part of the are region of an active continental margin, on previously accreted oceanic terranes and continental fragments. A hypabyssal, mainly rhyolitic to rhyodacitic, and commonly porphyritic, 8- ?? 3-km dike complex, part of a regional ca. 77 to 58 Ma magmatic arc, formed a structurally competent host for the mineralization. This deposit is subdivided into about one dozen distinct prospects, most of which consist of dense quartz ?? carbonate veinlet networks that fill north-northeast-striking extensional fractures in the northeast-trending igneous rocks. The sulfide mineral assemblage is dominated by arsenopyrite, pyrite, and, typically younger, stibnite; gold is refractory within the arsenopyrite. Sericitization, carbonatization, and suffidation were the main alteration processes. Fluid inclusion studies of the quartz that hosts the resource indicate dominantly aqueous ore fluids with also about 3 to 7 mol percent CO2 ?? CH4 and a few tenths to a few mole percent NaCl + KCl. The gold-bearing fluids were mainly homogeneously trapped at approximately 275?? to 300??C and at depths of 1 to 2 km. Some of the younger stibnite may have been deposited by late-stage aqueous fluids at lower temperature. Measured ??18O values for the gold-bearing quartz range between 11 and 25 per mil; the estimated ??18O fluid values range from 7 to 12 per mil, suggesting a mainly crustally derived fluid. A broad range of measured ??D values for hydrothermal micas, between -150 and -80 per mil, is suggestive of a contribution from devolatilization of organic matter and/or minor amounts of mixing with meteoric fluids. Gold-associated hydrothermal sulfide minerals are characterized by ??34S values mainly between -16 and

  13. Hydrogeological characteristics and hydraulic discharge forecast of Uranium Deposit No.320

    International Nuclear Information System (INIS)

    Hao Fulin.

    1987-01-01

    The water and heat sources of Uranium Deposit No.320 have been discussed according to the water-controlling specific features of the regional strata and geological structures(including water transmitting and bearing structures), which provide evidence for the forecasting of hydraulic discharge. On the basis of the hydrogeological study of the deposit, the author draws up a plan for combining the mine drainage with the urban water supply and making comprehensively use of the thermal water resource

  14. The Role of Porosity in the Formation of Coastal Boulder Deposits - Hurricane Versus Tsunami

    Science.gov (United States)

    Spiske, M.; Boeroecz, Z.; Bahlburg, H.

    2007-12-01

    Coastal boulder deposits are a consequence of high-energy wave impacts, such as storms, hurricanes or tsunami. Distinguishing parameters between storm, hurricane and tsunami origin are distance of a deposit from the coast, boulder weight and inferred wave height. Formulas to calculate minimum wave heights of both storm and tsunami waves depend on accurate determination of boulder dimensions and lithology from the respective deposits. At present however, boulder porosity appears to be commonly neglected, leading to significant errors in determined bulk density, especially when boulders consist of reef or coral limestone. This limits precise calculations of wave heights and hampers a clear distinction between storm, hurricane and tsunami origin. Our study uses Archimedean and optical 3D-profilometry measurements for the determination of porosities and bulk densities of reef and coral limestone boulders from the islands of Aruba, Bonaire and Curaçao (ABC Islands, Netherlands Antilles). Due to the high porosities (up to 68 %) of the enclosed coral species, the weights of the reef rock boulders are as low as 20 % of previously calculated values. Hence minimum calculated heights both for tsunami and hurricane waves are smaller than previously proposed. We show that hurricane action appears to be the likely depositional mechanism for boulders on the ABC Islands, since 1) our calculations result in tsunami wave heights which do not permit the overtopping of coastal platforms on the ABC Islands, 2) boulder fields lie on the windward (eastern) sides of the islands, 3) recent hurricanes transported boulders up to 35 m3 and 4) the scarcity of tsunami events affecting the coasts of the ABC Islands compared to frequent impacts of tropical storms and hurricanes.

  15. Sodium vapour aerosol formation and sodium deposition current work within the United Kingdom

    Energy Technology Data Exchange (ETDEWEB)

    Hawtin, P [Chemical Engineering Division, Atomic Energy Research Establishment, Harwell, Didcot, Oxon (United Kingdom); Seed, G [Nuclear Power Company (Risley) Ltd, Risley, Warrington, Cheshire (United Kingdom)

    1977-01-01

    The significance to reactor operation of sodium transport through the cover gas of a sodium-cooled fast reactor and its subsequent deposition on cooled reactor surfaces is fully appreciated in the UK. A programme of work is therefore underway designed to understand the mechanism of sodium transport under these conditions. This paper described the work which has so far been completed, discussed the work presently in progress, and outlines future plans. (author)

  16. Analysis on paleo-hydrogeological conditions of uranium formation in Sawafuqi uranium deposit

    International Nuclear Information System (INIS)

    Lin Xiaobin; Hao Weilin; Wang Zhiming

    2013-01-01

    Sawafuqi uranium deposit is located in Kuergan intermontane basin of the South Tianshan (STS) fold belt. On the basis of regional tectonics, paleogeography, paleoclimate and related data, the evolution of intermontane basin could be divided into three hydrogeological cycles. The relationship of uranium mineralization to each cycle was analyzed from the perspective of the evolution of palaeo-hydrogeological conditions, and the uranium metallogenic model in palaeohydrogeology under strongly constructive background was established. (authors)

  17. Mineralogical and geochemical evidence for multi-stage formation of the Chertovo Koryto deposit

    OpenAIRE

    TARASOVA YULIA I.; SOTSKAYA OLGA T.; SKUZOVATOV SERGEI YU.; VANIN VADIM A.; KULIKOVA ZOYA I.; BUDYAK ALEKSANDER E.

    2016-01-01

    Introduction. The Lena gold province is one of the largest known gold resources in the world. The history of its exploration is long, but the genesis of gold mineralization hosted in black shales in the Bodaibo synclinorium still remains unclear. The studies face the challenge of discovering sources for the useful component and mechanisms of its redistribution and concentration. This study aims to clarify the time sequence of the ore mineralization in the Chertovo Koryto deposit on the basis ...

  18. Improvement on the electrical characteristics of Pd/HfO2/6H-SiC MIS capacitors using post deposition annealing and post metallization annealing

    Science.gov (United States)

    Esakky, Papanasam; Kailath, Binsu J.

    2017-08-01

    HfO2 as a gate dielectric enables high electric field operation of SiC MIS structure and as gas sensor HfO2/SiC capacitors offer higher sensitivity than SiO2/SiC capacitors. The issue of higher density of oxygen vacancies and associated higher leakage current necessitates better passivation of HfO2/SiC interface. Effect of post deposition annealing in N2O plasma and post metallization annealing in forming gas on the structural and electrical characteristics of Pd/HfO2/SiC MIS capacitors are reported in this work. N2O plasma annealing suppresses crystallization during high temperature annealing thereby improving the thermal stability and plasma annealing followed by rapid thermal annealing in N2 result in formation of Hf silicate at the HfO2/SiC interface resulting in order of magnitude lower density of interface states and gate leakage current. Post metallization annealing in forming gas for 40 min reduces interface state density by two orders while gate leakage current density is reduced by thrice. Post deposition annealing in N2O plasma and post metallization annealing in forming gas are observed to be effective passivation techniques improving the electrical characteristics of HfO2/SiC capacitors.

  19. Microbial involvement in the formation of Cambrian sea-floor silica-iron oxide deposits, Australia

    Science.gov (United States)

    Duhig, Nathan C.; Davidson, Garry J.; Stolz, Joe

    1992-06-01

    The Cambrian-Ordovician Mount Windsor volcanic belt in northern Australia is host to stratiform lenses of massive ferruginous chert that are spatially associated with volcanogenic massive sulfide occurrences, in particular the Thalanga zinc-lead-copper-silver deposit. The rocks are composed principally of Fe2O3 and SiO2, with very low concentrations of alkalic elements, and lithogenous elements such as Al, Zr, and Ti; they are interpreted as nearly pure chemical sediments. Textural evidence is documented of the integral role of filamentous bacteria (and/or fungi) in depositing iron from hydrothermal fluids, and of the inorganic precipitation of silica-iron-oxyhydroxide gels that subsequently matured to subcrystalline and crystalline silica forms. At least three distinct iron-accumulating microbial forms are distinguished: networks of septate filaments, nonseptate filament networks, and extremely coarse branching filaments that do not reconnect. Values for δ34S in disseminated pyrite are up to 50‰ lighter than those of contemporaneous Cambrian seawater, suggesting postdepositional colonization of some ironstones by sulfur-reducing bacteria. The site not only preserves the textural interplay of biological and inorganic depositional processes in exhalites, but also extends the oldest known instance of microbial mediation in vent-proximal hydrothermal iron precipitation to at least 500 Ma.

  20. Formation of textured microstructure by mist deposition of TiO2 nanoparticles

    International Nuclear Information System (INIS)

    Qin, Gang; Watanabe, Akira

    2013-01-01

    Unique and various textured TiO 2 films have been easily fabricated by mist deposition method on silicon and glass substrates with mild preparation conditions. Two kinds of TiO 2 nanoparticle with different shape, size, and crystal form were used as starting material, which resulted in a simple preparation process under low temperature and ordinary pressure. It was easy to control the thickness, morphology, and roughness of textured TiO 2 film by adjusting the mist deposition conditions such as deposition time, temperature, and the shape and size of nanoparticles. The optical properties of textured TiO 2 films before and after spin coating of Ag nanoparticles were investigated. The angular dependence of the reflectance was obviously reduced by textured TiO 2 surface and such effect was enhanced by Ag nanoparticles coating. A broad plasmon band of Ag grains was observed in the absorption spectrum of the textured Ag nanoparticle-coated TiO 2 film

  1. Formation of epitaxial Al 2O 3/NiAl(1 1 0) films: aluminium deposition

    Science.gov (United States)

    Lykhach, Y.; Moroz, V.; Yoshitake, M.

    2005-02-01

    Structure of epitaxial Al 2O 3 layers formed on NiAl(1 1 0) substrates has been studied by means of reflection high-energy electron diffraction (RHEED). The elucidated structure was compared to the model suggested for 0.5 nm-thick Al 2O 3 layers [K. Müller, H. Lindner, D.M. Zehner, G. Ownby, Verh. Dtsch. Phys. Ges. 25 (1990) 1130; R.M. Jaeger, H. Kuhlenbeck, H.J. Freund, Surf. Sci. 259 (1991) 235]. The stepwise growth of Al 2O 3 film, involving deposition and subsequent oxidation of aluminium onto epitaxial 0.5 nm-thick Al 2O 3 layers, has been investigated. Aluminium was deposited at room temperature, whereas its oxidation took place during annealing at 1070 K. The Al 2O 3 thickness was monitored by means of Auger electron spectroscopy (AES). It was found that Al 2O 3 layer follows the structure of 0.5 nm thick Al 2O 3 film, although a tilting of Al 2O 3(1 1 1) surface plane with respect to NiAl(1 1 0) surface appeared after Al deposition.

  2. Soot formation characteristics of gasoline surrogate fuels in counterflow diffusion flames

    KAUST Repository

    Choi, Byungchul

    2011-01-01

    The characteristics of polycyclic aromatic hydrocarbon (PAH) and soot for gasoline surrogate fuels have been investigated in counterflow diffusion flames by adopting laser-induced fluorescence (LIF) and laser-induced incandescence (LII) techniques for both soot formation and soot formation/oxidation flames. Tested fuels were three binary mixtures from the primary reference fuels of n-heptane, iso-octane, and toluene. The result showed that PAH and soot maintained near zero level for all mixtures of n-heptane/iso-octane case under present experimental conditions. For n-heptane/toluene and iso-octane/toluene mixtures, PAH initially increased and then decreased with the toluene ratio, exhibiting a synergistic effect. The soot formation increased monotonically with the toluene ratio, however the effect of toluene on soot formation was minimal for relatively small toluene ratios. These results implied that even though toluene had a dominant role in soot and PAH formations, small amount of toluene had a minimal effect on soot formation. Numerical simulations have also been conducted by adopting recently proposed two kinetic mechanisms. The synergistic behavior of aromatic rings was predicted similar to the experimental PAH measurement, however, the degree of the synergistic effect was over-predicted for the soot formation flame, indicating the need for refinements in the kinetic mechanisms. © 2010 Published by Elsevier Inc. on behalf of The Combustion Institute. All rights reserved.

  3. The Eocene Rusayl Formation, Oman, carbonaceous rocks in calcareous shelf sediments: Environment of deposition, alteration and hydrocarbon potential

    Energy Technology Data Exchange (ETDEWEB)

    Dill, H.G.; Wehner, H.; Kus, J. [Federal Institute for Geosciences and Natural Resources, P.O. Box 510163, D-30631 Hannover (Germany); Botz, R. [University Kiel, Geological-Paleontological Department, Olshausenstrasse 40-60, D-24118 Kiel (Germany); Berner, Z.; Stueben, D. [Technical University Karlsruhe, Institute for Mineralogy and Geochemistry, Fritz-Haber-Weg 2, D-76131 Karlsruhe (Germany); Al-Sayigh, A. [Sultan Qaboos University, Geological Dept. PO Box 36, Al-Khod (Oman)

    2007-10-01

    Paralic carbonaceous series intercalated among calcareous shelf sediments have seldom been investigated. During the early Eocene, calcareous and siliciclastic sediments were deposited on a wide shelf in front of low-reliefed hinterland in the Al Khawd region in NE Oman. The siliciclastic-calcareous sediments originated from strongly reworked debris of the Arabic Shield. The underlying Semail Ophiolite did not act as a direct source of debris but provided some heat to increase the maturity of carbonaceous rocks and modify the isotope signal of the calcareous minerals in the Rusayl Formation. A multidisciplinary approach involving sedimentology, mineralogy, chemistry, coal petrography and paleontology resulted in the establishment of nine stratigraphic lithofacies units and provides the reader with a full picture from deposition of the mixed carbonaceous-calcareous-siliciclastic rocks to the most recent stages of post-depositional alteration of the Paleogene formations. The calcareous Jafnayn Formation (lithofacies unit I) developed in a subtidal to intertidal regime, influenced episodically by storms. Deepening of the calcareous shelf towards younger series was ground to a halt by paleosols developing on a disconformity (lithofacies unit II) and heralding the onset of the Rusayl Formation. The stratigraphic lithofacies units III and IV reflect mangrove swamps which from time to time were flooded through washover fans from the open sea. The presence of Spinozonocolpites and the taxon Avicennia, which today belong to a coastal marsh vegetational community, furnish palynological evidence to the idea of extensive mangrove swamps in the Rusayl Formation [El Beialy, S.Y., 1998. Stratigraphic and palaeonenvironmental significance of Eocene palynomorphs from the Rusayl Shale Formation, Al Khawd, northern Oman. Review of Palaeobotany and Palynology 102, 249-258]. During the upper Rusayl Formation (lithofacies units V through VII) algal mats episodically flooded by marine

  4. Geology and climatic indicators in the Westphalian A New Glasgow formation, Nova Scotia, Canada: implications for the genesis of coal and of sandstone-hosted lead deposits

    Energy Technology Data Exchange (ETDEWEB)

    Chandler, F.W. [Geological Survey of Canada, Ottawa, ON (Canada)

    1998-03-01

    Disagreement exists on whether the early Pennsylvanian climate of the Euramerican coal province was everwet or seasonal. Abundant paleopedological evidence, including calcrete-bearing vertisols, shows that during formation of Westphalian C to Stephanian coals in Nova Scotia, the climate was tropical and seasonal with a pronounced by dry season; but interpretation of Westphalian A-B coal-bearing sequences lacks this form of evidence. Development of calcrete-bearing vertisols in alluvial fan deposits of the Westphalian A New Glasgow formation indicate that a tropical climate with a pronounced dry season was already in force by early Westphalian time. During the dry season, the coal swamps of the early Westphalian Joggins and Springhill Mines formations were fed by groundwater from coeval alluvial fan deposits of the Polly Brook Formation at the basin margin. Sedimentological evidence indicates that, similarly, groundwater flowed northward from the toe of the New Glasgow alluvial fan, but correlative palustrine sediments have not been found on land in the New Glasgow area. The possibility remains of an early Westphalian coalfield associated with the New Glasgow formation to the north under the Northumberland Strait and Gulf of St. Lawrence. Formation of the Yava sandstone-hosted lead deposit in the fluvial Silver Mine Formation of Cape Breton Island, a stratigraphic equivalent of the Cumberland Basin coal swamps, indicates that such deposits can form in fluvial strata deposited under a tropical seasonal climate with a pronounced dry season.

  5. Modeling the geometric formation and powder deposition mass in laser induction hybrid cladding

    International Nuclear Information System (INIS)

    Huang, Yong Jun; Yuan, Sheng Fa

    2012-01-01

    A new laser induction hybrid cladding technique on cylinder work piece is presented. Based on a series of laser induction hybrid experiments by off axial powder feeding, the predicting models of individual clad geometric formation and powder catchment were developed in terms of powder feeding rate, laser special energy and induction energy density using multiple regression analysis. In addition, confirmation tests were performed to make a comparison between the predicting results and measured ones. Via the experiments and analysis, the conclusions can be lead to that the process parameters have crucial influence on the clad geometric formation and powder catchment, and that the predicting model reflects well the relationship between the clad geometric formation and process parameters in laser induction hybrid cladding

  6. Evaluation of the various biokinetic models of liberation from characteristic deposition fraction of brazilian population sample

    International Nuclear Information System (INIS)

    Reis, Arlene A. dos; Cardoso, Joaquim C.S.; Lourenco, Maria Cristina

    2005-01-01

    The Publication 66 of International Commission of Radiological Protection (ICRP, 1994) presented the Human Respiratory tract Model that simulates the deposition and translocation of radioactive material in the air that penetrates in the body by inhalation. The main objective of this study is to evaluate the variation in fractional activity absorbed into blood when physiological and morphological parameters from Brazilian population are applied in the deposition model. The clearance model was implemented in the software Excel (version 2000) using a system of differential equations to solve simultaneous process of translocation and absorption of material deposited. After implementation were applied in the model fractional deposition calculated by deposition model using physiological and morphological parameters from Brazilian population. The results show that the variation in the clearance model depends on the material dissolution. For materials of rapid absorption, the variations calculated are not significant. Materials of moderate and slow absorption, presented variation greater than 20% in fractional activity absorbed into blood, depending on levels of exercise. (author)

  7. Magmatic-vapor expansion and the formation of high-sulfidation gold deposits: Chemical controls on alteration and mineralization

    Science.gov (United States)

    Henley, R.W.; Berger, B.R.

    2011-01-01

    Large bulk-tonnage high-sulfidation gold deposits, such as Yanacocha, Peru, are the surface expression of structurally-controlled lode gold deposits, such as El Indio, Chile. Both formed in active andesite-dacite volcanic terranes. Fluid inclusion, stable isotope and geologic data show that lode deposits formed within 1500. m of the paleo-surface as a consequence of the expansion of low-salinity, low-density magmatic vapor with very limited, if any, groundwater mixing. They are characterized by an initial 'Sulfate' Stage of advanced argillic wallrock alteration ?? alunite commonly with intense silicification followed by a 'Sulfide' Stage - a succession of discrete sulfide-sulfosalt veins that may be ore grade in gold and silver. Fluid inclusions in quartz formed during wallrock alteration have homogenization temperatures between 100 and over 500 ??C and preserve a record of a vapor-rich environment. Recent data for El Indio and similar deposits show that at the commencement of the Sulfide Stage, 'condensation' of Cu-As-S sulfosalt melts with trace concentrations of Sb, Te, Bi, Ag and Au occurred at > 600 ??C following pyrite deposition. Euhedral quartz crystals were simultaneously deposited from the vapor phase during crystallization of the vapor-saturated melt occurs to Fe-tennantite with progressive non-equilibrium fractionation of heavy metals between melt-vapor and solid. Vugs containing a range of sulfides, sulfosalts and gold record the changing composition of the vapor. Published fluid inclusion and mineralogical data are reviewed in the context of geological relationships to establish boundary conditions through which to trace the expansion of magmatic vapor from source to surface and consequent alteration and mineralization. Initially heat loss from the vapor is high resulting in the formation of acid condensate permeating through the wallrock. This Sulfate Stage alteration effectively isolates the expansion of magmatic vapor in subsurface fracture arrays

  8. Characterization of organic matter associated with uranium deposits in the Francevillian formation of Gabon (Lower Proterozoic)

    International Nuclear Information System (INIS)

    Cortial, F.; Gauthier-Lafaye, F.; Weber, F.; Oberlin, A.

    1990-01-01

    Elemental analysis, organic petrography, and high-resolution transmission electron microscopy were used to study organic matter in Lower Proterozoic rocks of the Francevillian Series in Africa. Results show a convincing relationship between solid bitumens derived from thermal alteration of crude oil, and deposition of uraninite ores. Evidence is presented that suggests the presence of migration paths for crude oil in associated sandstones. Moreover, the solid bitumens appear to have been further altered by radiation damage as a consequence of oxidation and uranium mineralization. (author)

  9. Formation Dynamics of CH3NH3PbI3 Perovskite Following Two-Step Layer Deposition.

    Science.gov (United States)

    Patel, Jay B; Milot, Rebecca L; Wright, Adam D; Herz, Laura M; Johnston, Michael B

    2016-01-07

    Hybrid metal-halide perovskites have emerged as a leading class of semiconductors for optoelectronic devices because of their desirable material properties and versatile fabrication methods. However, little is known about the chemical transformations that occur in the initial stages of perovskite crystal formation. Here we follow the real-time formation dynamics of MAPbI3 from a bilayer of lead iodide (PbI2) and methylammonium iodide (MAI) deposited through a two-step thermal evaporation process. By lowering the substrate temperature during deposition, we are able to initially inhibit intermixing of the two layers. We subsequently use infrared and visible light transmission, X-ray diffraction, and photoluminescence lifetime measurements to reveal the room-temperature transformations that occur in vacuum and ambient air, as MAI diffuses into the PbI2 lattice to form MAPbI3. In vacuum, the transformation to MAPbI3 is incomplete as unreacted MAI is retained in the film. However, exposure to moist air allows for conversion of the unreacted MAI to MAPbI3, demonstrating that moisture is essential in making MAI more mobile and thus aiding perovskite crystallization. These dynamic processes are reflected in the observed charge-carrier lifetimes, which strongly fluctuate during periods of large ion migration but steadily increase with improving crystallinity.

  10. Mass and energy deposition effects of implanted ions on solid sodium formate

    Energy Technology Data Exchange (ETDEWEB)

    Wang Xiangqin E-mail: clshao@mail.ipp.ac.cn; Shao Chunlin; Yao Jianming; Yu Zengliang

    2000-07-01

    Solid sodium formate was implanted by low energy N{sup +}, H{sup +}, and Ar{sup +} ions. Measured with electron paramagnetic resonance (EPR) and Fourier-transform infrared (FT-IR), it was observed that new -CH{sub 2}-, -CH{sub 3}- groups and COO{sup -} radical ion were produced in the implanted sodium formate. Analyzing with the highly sensitive ninhydrin reaction, it was found that a new -NH{sub 2} functional group was formed upon N{sup +} ion implantation, and its yield increased along with implantation dose but decreased with the ion's energy.

  11. Performance assessment of an alpha waste deposit in a clay formation

    International Nuclear Information System (INIS)

    Quercia, F.; D'Alessandro, M.; Saltelli, A.

    1987-01-01

    The probabilistic code LISA (Long term Isolation Safety Assessment) has been used to assess the risk related to the disposal of alpha waste in a geological formation. The code has been modified to take into account waste form properties and leaching processes pertinent to alpha waste produced at fuel reprocessing plants. The exercise refers to a repository in a deep clay formation located at Harwell (U.K.) where some hydrogeological data were available. Radionuclide migration through repository and geological barriers has been simulated together with biosphere contamination. Results of the assessment are presented as dose rate (or risk) distributions; a sensitivity analysis on input parameters has been performed

  12. Effect of the post-deposition annealing on electrical characteristics of MIS structures with HfO{sub 2}/SiO{sub 2} gate dielectric stacks

    Energy Technology Data Exchange (ETDEWEB)

    Taube, Andrzej [Institute of Electron Technology, Al. Lotnikow 32/46, 02-668 Warsaw (Poland); Institute of Microelectronics and Optoelectronics, Warsaw University of Technology, Koszykowa 75, 00-662 Warsaw (Poland); Mroczynski, Robert, E-mail: rmroczyn@elka.pw.edu.pl [Institute of Microelectronics and Optoelectronics, Warsaw University of Technology, Koszykowa 75, 00-662 Warsaw (Poland); Korwin-Mikke, Katarzyna [Institute of Electron Technology, Al. Lotnikow 32/46, 02-668 Warsaw (Poland); Gieraltowska, Sylwia [Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw (Poland); Szmidt, Jan [Institute of Microelectronics and Optoelectronics, Warsaw University of Technology, Koszykowa 75, 00-662 Warsaw (Poland); Piotrowska, Anna [Institute of Electron Technology, Al. Lotnikow 32/46, 02-668 Warsaw (Poland)

    2012-09-01

    In this work, we report on effects of post-deposition annealing on electrical characteristics of metal-insulator-semiconductor (MIS) structures with HfO{sub 2}/SiO{sub 2} double gate dielectric stacks. Obtained results have shown the deterioration of electro-physical properties of MIS structures, e.g. higher interface traps density in the middle of silicon forbidden band (D{sub itmb}), as well as non-uniform distribution and decrease of breakdown voltage (U{sub br}) values, after annealing above 400 Degree-Sign C. Two potential hypothesis of such behavior were proposed: the formation of interfacial layer between hafnia and silicon dioxide and the increase of crystallinity of HfO{sub 2} due to the high temperature treatment. Furthermore, the analysis of conduction mechanisms in investigated stacks revealed Poole-Frenkel (P-F) tunneling at broad range of electric field intensity.

  13. Surface and corrosion characteristics of carbon plasma implanted and deposited nickel-titanium alloy

    International Nuclear Information System (INIS)

    Poon, R.W.Y.; Liu, X.Y.; Chung, C.Y.; Chu, P.K.; Yeung, K.W.K.; Lu, W.W.; Cheung, K.M.C.

    2005-01-01

    Nickel-titanium shape memory alloys (NiTi) are potentially useful in orthopedic implants on account of their super-elastic and shape memory properties. However, the materials are prone to surface corrosion and the most common problem is out-diffusion of harmful Ni ions from the substrate into body tissues and fluids. In order to improve the corrosion resistance and related surface properties, we used the technique of plasma immersion ion implantation and deposition to deposit an amorphous hydrogenated carbon coating onto NiTi and implant carbon into NiTi. Both the deposited amorphous carbon film and carbon plasma implanted samples exhibit much improved corrosion resistances and surface mechanical properties and possible mechanisms are suggested

  14. Field electron emission characteristics of chemical vapour deposition diamond films with controlled sp2 phase concentration

    International Nuclear Information System (INIS)

    Lu, X.; Yang, Q.; Xiao, C.; Hirose, A.

    2008-01-01

    Diamond films were synthesized in a microwave plasma-enhanced chemical vapour deposition reactor. The microstructure and surface morphology of deposited films were characterized by Raman spectroscope and scanning electron microscope. The sp 2 phase concentration in diamond films was varied and its effect on the field electron emission (FEE) properties was investigated. Diamond films deposited under higher methane concentration exhibit better FEE property including lower turn-on electric field and larger emission current. The predominating factor modifying the FEE property is presumed to be the increase of sp 2 phase concentration. The influence of bias voltage on the FEE property of diamond films is not monotonic. Postgrowth acid treatment reduces the sp 2 phase content in diamond films without changing diamond grain sizes. The corresponding FEE property was degraded

  15. Ablation characteristics and reaction mechanism of insulation materials under slag deposition condition

    Science.gov (United States)

    Guan, Yiwen; Li, Jiang; Liu, Yang

    2017-07-01

    Current understanding of the physical and chemical processes involved in the ablation of insulation materials by highly aluminized solid propellants is limited. The study on the heat transfer and ablation principle of ethylene propylene diene monomer (EPDM) materials under slag deposition condition is essential for future design or modification of large solid rocket motors (SRMs) for launch application. In this paper, the alumina liquid flow pattern and the deposition principle in full-scale SRM engines are discussed. The interaction mechanism between the alumina droplets and the wall are analyzed. Then, an experimental method was developed to simulate the insulation material ablation under slag deposition condition. Experimental study was conducted based on a laboratory-scale device. Meanwhile, from the analysis of the cross-sectional morphology and chemical composition of the charring layer after ablation, the reaction mechanism of the charring layer under deposition condition was discussed, and the main reaction equation was derived. The numerical simulation and experimental results show the following. (i) The alumina droplet flow in the deposition section of the laboratory-scale device is similar to that of a full-scale SRM. (ii) The charring layer of the EPDM insulator displays a porous tight/loose structure under high-temperature slag deposition condition. (iii) A seven-step carbothermal reduction in the alumina is derived and established under high-pressure and high-temperature environment in the SRM combustion chamber. (iv) The analysis using thermodynamic software indicates that the reaction of the alumina and charring layer initially forms Al4C3 during the operation. Then, Al element and Al2OC compound are subsequently produced with the reduction in the release of gas CO as well with continuous environmental heating.

  16. CuFeO2 formation using fused deposition modeling 3D printing and sintering technique

    Science.gov (United States)

    Salea, A.; Dasaesamoh, A.; Prathumwan, R.; Kongkaew, T.; Subannajui, K.

    2017-09-01

    CuFeO2 is a metal oxide mineral material which is called delafossite. It can potentially be used as a chemical catalyst, and gas sensing material. There are methods to fabricate CuFeO2 such as chemical synthesis, sintering, sputtering, and chemical vapor deposition. In our work, CuFeO2 is prepared by Fused Deposition Modeling (FDM) 3D printing. The composite filament which composed of Cu and Fe elements is printed in three dimensions, and then sintered and annealed at high temperature to obtain CuFeO2. Suitable polymer blend and maximum percent volume of metal powder are studied. When percent volume of metal powder is increased, melt flow rate of polymer blend is also increased. The most suitable printing condition is reported and the properties of CuFeO2 are observed by Scanning Electron Microscopy, and Dynamic Scanning Calorimeter, X-ray diffraction. As a new method to produce semiconductor, this technique has a potential to allow any scientist or students to design and print a catalyst or sensing material by the most conventional 3D printing machine which is commonly used around the world.

  17. Formation of graphene on BN substrate by vapor deposition method and size effects on its structure

    Science.gov (United States)

    Giang, Nguyen Hoang; Hanh, Tran Thi Thu; Ngoc, Le Nhu; Nga, Nguyen To; Van Hoang, Vo

    2018-04-01

    We report MD simulation of the growth of graphene by the vapor deposition on a two-dimensional hBN substrate. The systems (containing carbon vapor and hBN substrate) are relaxed at high temperature (1500 K), and then it is cooled down to room one (300 K). Carbon atoms interact with the substrate via the Lennard-Jones potential while the interaction between carbon atoms is computed via the Tersoff potential. Depending on the size of the model, different crystalline honeycomb structures have been found. Structural properties of the graphene obtained at 300 K are studied by analyzing radial distribution functions (RDFs), coordination numbers, ring statistics, interatomic distances, bond-angle distributions and 2D visualization of atomic configurations. We find that the models containing various numbers of atoms have a honeycomb structure. Besides, differences in structural properties of graphene formed by the vapor deposition on the substrate and free standing one are found. Moreover, the size effect on the structure is significant.

  18. Use of cycle stacking patterns to define third-order depositional sequences: Middle to Late Cambrian Bonanza King Formation, southern Great basin

    Energy Technology Data Exchange (ETDEWEB)

    Montanez, I.P.; Droser, M.L. (Univ. of California, Riverside (United States))

    1991-03-01

    The Middle to Late Cambrian Bonanza King Formation (CA, NV) is characterized by superimposed scales of cyclicity. Small-scale cycles (0.5 to 10m) occur as shallowing-upward peritidal and subtidal cycles that repeat at high frequencies (10{sup 4} to 10{sup 5}). Systematic changes in stacking patterns of meter-scale cycles define several large-scale (50-250 m) third-order depositional sequences in the Bonanza King Formation. Third-order depositional sequences can be traced within ranges and correlated regionally across the platform. Peritidal cycles in the Bonanza King Formation are both subtidal- and tidal flat-dominated. Tidal flat-dominated cycles consist of muddy bases grading upward into thrombolites or columnar stromatolites all capped by planar stromatolites. Subtidal cycles in the Bonanza King Formation consist of grainstone bases that commonly fine upward and contain stacked hardgrounds. These are overlain by digitate-algal bioherms with grainstone channel fills and/or bioturbated ribbon carbonates with grainstone lenses. Transgressive depositional facies of third-order depositional sequences consist primarily of stacks of subtidal-dominated pertidial cycles and subtidal cycles, whereas regressive depositional facies are dominated by stacks of tidal flat-dominated peritidal cycles and regoliths developed over laminite cycle caps. The use of high frequency cycles in the Bonanza King Formation to delineate regionally developed third-order depositional sequences thus provides a link between cycle stratigraphy and sequence stratigraphy.

  19. Power characteristics of the metal compounds formation process during the friction stir welding

    Directory of Open Access Journals (Sweden)

    Rzaev Radmir

    2017-01-01

    Full Text Available An influence of the power characteristics on the formation process of the uniform metals compound during the welding with friction stirringis being examined in this article.A dependency between the machine-tool engine power input and the instrument tilt during the FSW for the aluminum alloy AD31, copper alloy M1, titanium alloy OT4-1 and steel St-3 low-alloyed has been explored. A question of the stabilization of power consumption process while the establishment of superplastic condition of welded metal during the FSW has also been reviewed. A dependency revealed between the power characteristics, the geometry of the formation, the rotation speeds, the longitudinal displacement of the tool and its dimensions for fixed values of the parameters during the FSW.

  20. Imaging characteristics of subcutaneous amyloid deposits in diabetic patients: the ''insulin ball''

    International Nuclear Information System (INIS)

    Tanio, Noriko; Nozaki, Taiki; Matsusako, Masaki; Starkey, Jay; Suzuki, Koyu

    2018-01-01

    The purpose of this study was to describe the imaging characteristics of subcutaneous amyloid deposits occurring at sites of insulin injection, commonly known as ''insulin balls,'' in diabetic patients on ultrasound, CT, and MRI with pathologic correlation. We retrospectively reviewed the radiographic findings of 14 lesions in 9 patients diagnosed with subcutaneous amyloid deposits at our institution between 2005-2015. Three board-certified radiologists analyzed the following: (1) the shape, size, margin, morphologic characteristics, and blood flow on US using the color Doppler signal, (2) shape, size, margin, attenuation, and presence or absence of contrast enhancement on CT, and (3) shape, size, margin, signal intensity, and presence or absence of contrast enhancement on MRI. All lesions showed ill-defined hypovascular subcutaneous nodules with irregular margins. The median diameter of lesions was 50.4 mm on US, 46.8 mm on CT, and 51.4 mm on MRI. The internal echogenicity of subcutaneous amyloid deposits was hypoechoic and heterogeneous on US. All lesions showed isodensity compared to muscle with irregular margins and minimal contrast enhancement on CT. Both T1- and T2-weighted MR images showed low signal intensity compared with subcutaneous fat. Normal diffusion and minimal contrast enhancement were seen. Subcutaneous amyloid deposits which cause insulin resistance are typically ill-defined and heterogeneous hypovascular subcutaneous nodules with irregular margins on imaging that correspond to insulin injection sites. It is also characteristic that T2WI shows low intensity compared with fat on MRI, reflective of the amyloid content. (orig.)

  1. Imaging characteristics of subcutaneous amyloid deposits in diabetic patients: the ''insulin ball''

    Energy Technology Data Exchange (ETDEWEB)

    Tanio, Noriko; Nozaki, Taiki; Matsusako, Masaki; Starkey, Jay [St. Luke' s International Hospital, Department of Radiology, Tokyo (Japan); Suzuki, Koyu [St. Luke' s International Hospital, Department of Pathology, Tokyo (Japan)

    2018-01-15

    The purpose of this study was to describe the imaging characteristics of subcutaneous amyloid deposits occurring at sites of insulin injection, commonly known as ''insulin balls,'' in diabetic patients on ultrasound, CT, and MRI with pathologic correlation. We retrospectively reviewed the radiographic findings of 14 lesions in 9 patients diagnosed with subcutaneous amyloid deposits at our institution between 2005-2015. Three board-certified radiologists analyzed the following: (1) the shape, size, margin, morphologic characteristics, and blood flow on US using the color Doppler signal, (2) shape, size, margin, attenuation, and presence or absence of contrast enhancement on CT, and (3) shape, size, margin, signal intensity, and presence or absence of contrast enhancement on MRI. All lesions showed ill-defined hypovascular subcutaneous nodules with irregular margins. The median diameter of lesions was 50.4 mm on US, 46.8 mm on CT, and 51.4 mm on MRI. The internal echogenicity of subcutaneous amyloid deposits was hypoechoic and heterogeneous on US. All lesions showed isodensity compared to muscle with irregular margins and minimal contrast enhancement on CT. Both T1- and T2-weighted MR images showed low signal intensity compared with subcutaneous fat. Normal diffusion and minimal contrast enhancement were seen. Subcutaneous amyloid deposits which cause insulin resistance are typically ill-defined and heterogeneous hypovascular subcutaneous nodules with irregular margins on imaging that correspond to insulin injection sites. It is also characteristic that T2WI shows low intensity compared with fat on MRI, reflective of the amyloid content. (orig.)

  2. Method and apparatus for determining characteristics of clay-bearing formations

    International Nuclear Information System (INIS)

    Fertl, W.H.; Ruhovets, N.

    1986-01-01

    This invention relates to methods and apparatus for determining characteristics of clay-bearing geological formations by radioactivity well logging. In its broadest aspect, the invention comprises the steps of determining the volume of clay contained in the earth formations; determining a first property of the formations functionally related to the volume of clay; and determining a second property functionally related to the first property, the second property indicating potential clay swelling. In particular, the volume of clay is determined using electrical signals generated in response to the energy and frequency of detected radiations. The method is carried out with a well logging instrument that includes a high-resolution gamma ray spectrometer that traverses a borehole, whereby natural radiation strikes a scintillation crystal contained therein

  3. Electrophoretic Deposition of SnO2 Nanoparticles and Its LPG Sensing Characteristics

    Directory of Open Access Journals (Sweden)

    Göktuğ Günkaya

    2015-01-01

    Full Text Available Homogenized SnO2 nanoparticles (60 nm in acetylacetone mediums, both with and without iodine, were deposited onto platinum coated alumina substrate and interdigital electrodes using the electrophoretic deposition (EPD method for gas sensor applications. Homogeneous and porous film layers were processed and analyzed at various coating times and voltages. The structure of the deposited films was characterized by a scanning electron microscopy (SEM. The gas sensing properties of the SnO2 films were investigated using liquid petroleum gas (LPG for various lower explosive limits (LEL. The results showed that porous, crack-free, and homogeneous SnO2 films were achieved for 5 and 15 sec at 100 and 150 V EPD parameters using an iodine-free acetylacetone based SnO2 suspension. The optimum sintering for the deposited SnO2 nanoparticles was observed at 500°C for 5 min. The results showed that the sensitivity of the films was increased with the operating temperature. The coated films with EPD demonstrated a better sensitivity for the 20 LEL LPG concentrations at a 450°C operating temperature. The maximum sensitivity of the SnO2 sensors at 450°C to 20 LEL LPG was 30.

  4. Maps showing characteristics of the Cabo Rojo West offshore sand deposit, southwestern Puerto Rico

    Science.gov (United States)

    Trumbull, James V.A.; Trias, Juan L.

    1982-01-01

    This report presents detailed information on a deposit of well-sorted coarse calcareous sand in water depths of 10-20 m in an area between 1 and 6 km west and southwest fo the promontory of Cabo Rojo, the southwesternmost corner of Puerto Rico. 

  5. Principal geological characteristics of the volcanic-type uranium deposits in China

    International Nuclear Information System (INIS)

    Fang Xiheng

    2009-01-01

    The volcanic-type uranium deposits in China distribute in two gigantic active belts, that is, circum-Pacific belt and latitudinal structure belt crossing Europe-Asia. The volcanic-type uranium deposits occur in continental volcanics,which are mainly composed of acid or alkali volcanics. Based on the study of 87 Sr/ 86 Sr initial ratio, REE distribution pattern and melt inclusion thermometry of volcanics, it is found that volcanic magma originated mainly from high-temperature melt of sialsphere and they were propably contaiminated partially by mantle materials. The volcanic eruption was controlled by regional fault and formed eruption belt, the beld can be divided into several sub-belt which was comprised by a serial eruption centres. The volcanic-type uranium deposits occur by the side of down-faulted red basin or associated with basic swarm. This means that the uranium mineralization is related to deep tectonics-magmatism. The paper proposes that the moderate erosion of volcanic belt is an important precondition to find uranium deposits. (authors)

  6. The Role of Organic Matter in the Formation of High-Grade Al Deposits of the Dopolan Karst Type Bauxite, Iran: Mineralogy, Geochemistry, and Sulfur Isotope Data

    Directory of Open Access Journals (Sweden)

    Somayeh Salamab Ellahi

    2017-06-01

    Full Text Available Mineralogical and geochemical analyses of the Dopolan karstic bauxite ore were performed to identify the characteristics of four bauxite horizons, which comprise from top to bottom, bauxitic kaolinite, diaspore-rich bauxite, clay-rich bauxite, and pyrite-rich bauxite. Diaspore, kaolinite, and pyrite are the main minerals; böhmite, muscovite, rutile, and anatase are the accessory minerals. The main minerals of the Dopolan bauxite deposit indicate slightly acidic to alkaline reducing conditions during bauxitization. Immobile elements (Nb, Ta, Zr, Hf, and rare earth elements are enriched in the diaspore-rich horizon, which also has the highest alumina content, whereas redox sensitive elements (e.g., Cr, Cu, Ni, Pb, Zn, Ag, U, and V are enriched in the lowest horizon of pyrite-rich bauxite. The presence of a high content of organic matter was identified in different horizons of bauxitic ore from wet chemistry. The presence of organic matter favored Fe bioleaching, which resulted in Al enrichment and the formation of diaspore-rich bauxite. The leached Fe2+ reacted with the hydrogen sulfur that was produced due to bacterial metabolism, resulting in the formation of the pyrite-rich horizon towards the bottom of the Dopolan bauxite horizons. Biogeochemical activity in the Dopolan bauxitic ore was deduced from the reducing environment of bauxitization, and the deposition of framboidal and cubic or cubic/octahedral pyrite crystals, with large negative values of δ34S of pyrite (−10‰ to −34‰ and preserved fossil cells of microorganisms.

  7. Influence of humidity on the growth characteristics and properties of chemical bath-deposited ZnS thin films

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Yi-Cheng; Chao, Yen-Tai [Department of Mechatronics Engineering, National Changhua University of Education, Changhua 50007, Taiwan (China); Yao, Pin-Chuan, E-mail: pcyao@mail.dyu.edu.tw [Department of Materials Science and Engineering, Da-Yeh University, Dacun, Changhua 51591, Taiwan (China)

    2014-07-01

    In this study, the effect of humidity on the growth characteristics and properties of chemical bath-deposited ZnS thin films was systematically investigated. All deposition was conducted by an open CBD system under various relative humidity levels (RH) or by a hermetic CBD system as a comparison. It shows, for films deposited by an open system, the ambient humidity plays an important role in the quality of the resultant films. Damp environments lead to powdery films. Generally, all films prepared in this study using NH{sub 3} and hydrazine hydrate as the complexing agents were amorphous or poorly crystalline. For an open system, the [H{sup +}] from the dissolved carbon dioxide in the air competes with the ammonium ions in the bath solution. According to Le Châtelier's principle, more ammonia was consumed, which favors the free [Zn{sup +2}] in the solution, facilitating the homogeneous precipitation of Zn(OH){sub 2} and giving rise to a powdery film. The x-ray photoelectron spectrum shows, for an open system, the content of Zn–O compounds in the form of Zn(OH){sub 2} and ZnO, etc., is increased by the relative humidity of the environment. The visible transmittance is reduced by RH. The higher optical band gap of the as-deposited films could be attributed to the quantum confinement effects due to the small grain size of the polycrystalline ZnS films over the substrates.

  8. Formation and physical properties of YBCO thick films grown by using the electrophoretic deposition method

    CERN Document Server

    Kim, U J; Kim, Y C; Han, S K; Kang, K Y

    1999-01-01

    Thick films of the YBa sub 2 Cu sub 3 O subgamma sub - subdelta (YBCO) superconductor were prepared by using the electrophoretic deposition technique and a flexible wire as the substrate. The transition temperature of the wires was 91 K, the intragranular magnetic critical current density J sub c sub g sup m sup a sup g was about 10 sup 5 A/cm sup 2 at 77 K in a weak field, and the transport J sub c sup t sup r sup a sup n sup s was about 365 A/cm sup 2 at 77 K. We calculated the intergranular magnetic critical current J sub c sub J sup m sup a sup g and the activation energy from the AC-susceptibility measurements, and their values were about 444 A/cm sup 2 at 77 K and 2.02 eV, respectively.

  9. First direct observations linking confined supercritical turbidity currents to their depositional architecture and facies characteristics

    Science.gov (United States)

    Hage, S.; Cartigny, M.; Hughes Clarke, J. E.; Clare, M. A.; Sumner, E.; Hubbard, S. M.; Talling, P.; Lintern, G.; Stacey, C.; Vardy, M. E.; Hunt, J.; Vendettuoli, D.; Yokokawa, M.; Hizzett, J. L.; Vellinga, A. J.; Azpiroz, M.

    2017-12-01

    Turbidity currents transfer globally significant amounts of sediment via submarine channels from the continental margin to deep submarine fans. Submarine channel inception is thought to result from erosive, supercritical turbidity currents that are common in proximal settings of the marine realm. Recent monitoring of submarine processes have provided the first measurements of supercritical turbidity currents (Hughes Clarke, 2016), demonstrating that they drive the upstream migration of crescentic bedforms in confined submarine channels. Although upstream-migrating bedforms are common in confined channels across the world's oceans, there is considerable debate over the type of deposits that they produce. It is important to understand what types of deposit record these supercritical bedforms to potentially identify them from geological archives. For the first time, we combine direct measurements from supercritical field-scale turbidity currents with the facies and depositional architecture resulting from such flows. We show how the subsurface architecture evolves in a highly active channel at Squamish submarine delta, British Columbia, Canada. Repeated upstream migration of bedforms is found to create two main deposit geometries. First, regular back-stepping beds result from flow deceleration on the slightly-inclined sides of the bedforms. Second, lens-shaped scour fills composed of massive deposits result from erosion of the back-stepping beds by subsequent turbidity currents. We relate our findings to a range of ancient outcrop studies to demonstrate that supercritical flows are common in proximal settings through the geological record. This study provides the first direct observation-based model to identify confined supercritical turbidity currents and their associated upslope-migrating bedforms in the sedimentary record. This is important for correctly identifying the proximal sites of ancient submarine channels that served as past conduits for globally

  10. Characteristics of LaB{sub 6} thin films grown by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Craciun, Valentin; Socol, Gabriel; Craciun, Doina, E-mail: doina.craciun@inflpr.ro [National Institute for Lasers, Plasma, and Radiation Physics, Magurele 077125 (Romania); Cristea, Daniel [Materials Science Department, Transilvania University of Brasov, Brasov 500036 (Romania); Lambers, Eric [Major Analytical Instrumentation Center (MAIC), University of Florida, Gainesville, Florida 32611 (United States); Trusca, Roxana [Faculty of Applied Chemistry and Material Science, Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, Bucharest 011061, 060042 (Romania); Fairchild, Steven [Air Force Research Laboratory, Materials and Manufacturing Directorate (AFRL/RXA) Wright-Patterson AFB, Ohio 45433-7707 (United States); Back, Tyson; Gruen, Greggory [Air Force Research Laboratory, Materials and Manufacturing Directorate (AFRL/RXA) Wright-Patterson AFB, Ohio 45433-7707 and Energy and Environmental Engineering Division, University of Dayton Research Institute, Dayton, Ohio 45469-0170 (United States)

    2016-09-15

    LaB{sub 6} thin films were deposited at a temperature of 500 °C under vacuum or Ar atmosphere by the pulsed laser deposition technique on (100) Si substrates using a KrF laser. Grazing incidence x-ray diffraction investigations found that films were nanocrystalline, with grain size dimensions from 86 to 102 nm and exhibited microstrain values around 1.1%. Simulations of the x-ray reflectivity curves acquired from the deposited films showed that films had a density around 4.55 g/cm{sup 3}, and were very smooth, with a surface roughness root-mean-square of 1.5 nm, which was also confirmed by scanning electron and atomic force microscopy measurements. All films were covered by a ∼2 nm thick contamination layer that formed when samples were exposed to the ambient. Auger electron spectroscopy investigations found very low oxygen impurity levels below 1.5 at. % once the contamination surface layer was removed by Ar ion sputtering. Four point probe measurements showed that films were conductive, with a resistivity value around 200 μΩ cm for those deposited under Ar atmosphere and slightly higher for those deposited under vacuum. Nanoindentation and scratch investigations showed that films were rather hard, H ∼ 16 GPa, E ∼ 165 GPa, and adherent to the substrate. Thermionic emission measurements indicated a work function value of 2.66 eV, very similar to other reported values for LaB{sub 6}.

  11. Incipiently drowned platform deposit in cyclic Ordovician shelf sequence: Lower Ordovician Chepultepec Formation, Virginia

    Energy Technology Data Exchange (ETDEWEB)

    Bova, J.A.; Read, J.F.

    1983-03-01

    The Chepultepec interval, 145 to 260 m (476 to 853 ft) thick, in Virginia contains the Lower Member up to 150 m (492 ft) thick, and the Upper Member, up to 85 m (279 ft) thick, of peritidal cyclic limestone and dolomite, and a Middle Member, up to 110 m (360 ft) thick, of subtidal limestone and bioherms, passing northwestward into cyclic facies. Calculated long term subsidence rates were 4 to 5 cm/1000 yr (mature passive margin rates), shelf gradients were 6 cm/km, and average duration of cycles was 140,00 years. Peritidal cyclic sequences are upward shallowing sequences of pellet-skeletal limestone, thrombolites, rippled calcisiltites and intraclast grainstone, and laminite caps. They formed by rapid transgression with apparent submergence increments averaging approximately 2 m (6.5 ft) in Lower Member and 3.5 m (11.4 ft), Upper Member. Deposition during Middle Member time was dominated by skeletal limestone-mudstone, calcisiltite with storm generated fining-upward sequences, and burrow-mixed units that were formed near fair-weather wave base, along with thrombolite bioherms. Locally, there are upward shallowing sequences, of basal wackestone/mudstone to calcisiltite to bioherm complexes (locally with erosional scalloped tops). Following each submergence, carbonate sedimentation was able to build to sea level prior to renewed submergence. Large submergence events caused tidal flats to be shifted far to the west, and they were unable to prograde out onto the open shelf because of insufficient time before subsidence was renewed, and because the open shelf setting inhibited tidal flat deposition. The Middle Member represents an incipiently drowned sequence that developed by repeated submergence events.

  12. Association between catastrophic paleovegetation changes during Devonian-Carboniferous boundary and the formation of giant massive sulfide deposits

    Science.gov (United States)

    Menor-Salván, Cesar; Tornos, Fernando; Fernández-Remolar, David; Amils, Ricardo

    2010-11-01

    The Iberian Pyrite Belt (SW Iberia) is one of the largest sulfur anomalies in the Earth's crust. In the southern Iberian Pyrite Belt, more than 820 Mt of exhalative massive sulfides were deposited in less than one million years at the Devonian-Carboniferous boundary. The shale of the ore-bearing horizon contains biomarkers indicating major biogenic activity in a methanogenic setting, including a five-fold increase in typical vascular plant biomarkers and a significant anomaly in those probably indicating the presence of thermophilic Archaea. This contrasts with signatures in the average sedimentary rocks of the basin that indicate the sediments settled in oxic to sub-oxic environments, and that they have only minor biomarkers derived from continental paleoflora. These data show that the formation of the mineralization was not only related to major hydrothermal activity synchronous with volcanism but may also have been controlled by the input of large amounts of organic matter, mostly derived from the degradation of woodland detritus sourced in the nearby continent. This massive influx of organic matter could have accelerated extremophilic microbial activity that used short-chain hydrocarbons as electron donors for seawater sulfate reduction, resulting in concomitant massive sulfide precipitation. We propose that the giant massive sulfide deposits resulted from overlapping of geological and biological processes that occurred at the Devonian to Carboniferous transition, including: (1) continent collision during the onset of the Variscan orogeny leading to major paleogeographic changes and volcanism; (2) dramatic stress of continental ecosystems due to the combination of climatic change, volcanism, variations in the sea level and erosion on a regional scale; (3) major biomass destruction and increase of organic supply to marine environments; and, (4) generation of anoxic conditions and the thriving of sulfate reducing microorganisms. Under these conditions, massive

  13. Applying a new understanding of supergene REE deposit formation to global exploration initiatives for environmentally sustainable resources

    Science.gov (United States)

    Hardy, Liam; Smith, Martin; Hood, Leo; Heller, Shaun; Faltyn, Rowan; Blum, Astrid; Bamberger, Axel

    2017-04-01

    Two new models have recently been proposed for the formation of REE ion-adsorption deposits and it is likely that they are both active in their related study profiles described in the Ambohimirahavavy Complex in Madagascar (Marquis et al, 2016) and the Serra de Monchique (SDM) complex in Portugal (Hardy et al, 2016). These are two separate environments presenting two different soil systems in terms of flora, protolith and structure. In the latosol profiles of SDM the natural sweating cycle of eucalyptus trees is proposed as the main geochemical cycling control for some 40% of Fe and 30% of Y, which have been observed migrating up and down profile seasonally between upper horizons and the rooting depths of these intensively farmed trees. If, through their natural cycle, eucalyptus trees in SDM are capable of concentrating depleted protolithic Y contents of 4-10ppm to some 140-160ppm in their enriched 150-200cm deep E horizons in only the 40 years since they were introduced to the region (Jenkins, 1979), then what potential deposits and concentrations may lay underneath older plantations across Brazil, Chile, China and most importantly, Australia, where these trees naturally cover some 16% of the entire continent. Eucalyptus is mostly farmed as pulp for paper mills and has lost its market value with the demand for paper decreasing, as the demand for REEs increases, ironically driven by the demand for the accessible technology to replace paper (EPA, 2012). Not only might there be great resources below these forests, but the removal of the aggressive intrusive species would be welcomed across Southern Europe and South America where they have limited market value and have destroyed local ecosystems and water supplies (Brito, 1999), where local people are actively seeking an alternative use of their lands. References: Brito, J. G. (1999). Management strategies for conservation of the lizard Lacerta schreiberi in Portugal. Biological conservation, 311-319. EPA. (2012

  14. Architectural elements and bounding surfaces in fluvial deposits: anatomy of the Kayenta formation (lower jurassic), Southwest Colorado

    Science.gov (United States)

    Miall, Andrew D.

    1988-03-01

    Three well-exposed outcrops in the Kayenta Formation (Lower Jurassic), near Dove Creek in southwestern Colorado, were studied using lateral profiles, in order to test recent regarding architectural-element analysis and the classification and interpretation of internal bounding surfaces. Examination of bounding surfaces within and between elements in the Kayenta outcrops raises problems in applying the three-fold classification of Allen (1983). Enlarging this classification to a six-fold hierarchy permits the discrimination of surfaces intermediate between Allen's second- and third-order types, corresponding to the upper bounding surfaces of macroforms, and internal erosional "reactivation" surfaces within the macroforms. Examples of the first five types of surface occur in the Kayenta outcrops at Dove Creek. The new classifications is offered as a general solution to the problem of description of complex, three-dimensional fluvial sandstone bodies. The Kayenta Formation at Dove Creek consists of a multistorey sandstone body, including the deposits of lateral- and downstream-accreted macroforms. The storeys show no internal cyclicity, neither within individual elements nor through the overall vertical thickness of the formation. Low paleocurrent variance indicates low sinuosity flow, whereas macroform geometry and orientation suggest low to moderate sinuosity. The many internal minor erosion surfaces draped with mud and followed by intraclast breccias imply frequent rapid stage fluctuation, consistent with variable (seasonal? monsonal? ephemmeral?) flow. The results suggest a fluvial architecture similar to that of the South Saskatchewan River, through with a three-dimensional geometry unlike that interpreted from surface studies of that river.

  15. Seasonal phosphatase activity in three characteristic soils of the English uplands polluted by long-term atmospheric nitrogen deposition

    International Nuclear Information System (INIS)

    Turner, B.L.; Baxter, Robert; Whitton, B.A.

    2002-01-01

    High soil phosphatase activities confirm strong biological phosphorus limitations due to nitrogen deposition. - Phosphomonoesterase activities were determined monthly during a seasonal cycle in three characteristic soil types of the English uplands that have been subject to long-term atmospheric nitrogen deposition. Activities (μmol para-nitrophenol g -1 soil dry wt. h -1 ) ranged between 83.9 and 307 in a blanket peat (total carbon 318 mg g -1 , pH 3.9), 45.2-86.4 in an acid organic grassland soil (total carbon 354 mg g -1 , pH 3.7) and 10.4-21.1 in a calcareous grassland soil (total carbon 140 mg g -1 , pH 7.3). These are amongst the highest reported soil phosphomonoesterase activities and confirm the strong biological phosphorus limitation in this environment

  16. Cross-stratified Wood: Enigmatic Woody Debris Deposits in Warm-Polar Fluvial Sediments (Pliocene Beaufort Formation, Nunavut)

    Science.gov (United States)

    Davies, N. S.; Gosse, J. C.; Rybczynski, N.

    2012-04-01

    Woody debris has been an important sediment component and a significant geomorphic agent in pristine fluvial systems since the Devonian. In recent years a large volume of research has focussed on various aspects of the importance of woody debris within the fluvial realm; from the evolutionary significance of fossil wood accumulations in the rock record to studies of the biogeomorphological and ecological importance of woody debris in modern rivers. In this presentation we describe cross-stratified woody debris deposits comprising organic detritus from a boreal-type treeline forest that included species of pine, birch, poplar, alder, spruce, eastern cedar, and larch, in both shrub and tree form. The cross-stratified wood is an enigmatic subset of fine woody debris which, to our knowledge, has never before been described from either the global stratigraphic record or modern fluvial environments. The deposits we describe are located within the Pliocene Beaufort Formation on Meighen Island, Nunavut, Canada, at a latitude of 80°N, and are compared with other cross-stratified woody debris deposits that have been noted elsewhere in the Pliocene of the Canadian Arctic. We make the robust observation that these deposits appear to be geographically and stratigraphically restricted to polar latitudes from a period of warm climatic conditions during the Pliocene (15-20 °C warmer mean annual temperature than the present day). In this regard it is possible to speculate that the transport of large amounts of woody debris as bedload is potentially a unique feature of forested high latitude rivers. Such bedload deposition requires a large amount of woody debris with a greater density than the fluid transporting it. The softwood composition of the debris suggests that this was most likely attained by saturation and subsequent entrainment of extensive accumulations of deadwood, promoted by unusually high rates of tree mortality and low rates of bacterial decomposition arising from

  17. Surface Characteristics and Catalytic Activity of Copper Deposited Porous Silicon Powder

    Directory of Open Access Journals (Sweden)

    Muhammad Yusri Abdul Halim

    2014-12-01

    Full Text Available Porous structured silicon or porous silicon (PS powder was prepared by chemical etching of silicon powder in an etchant solution of HF: HNO3: H2O (1:3:5 v/v. An immersion time of 4 min was sufficient for depositing Cu metal from an aqueous solution of CuSO4 in the presence of HF. Scanning electron microscopy (SEM analysis revealed that the Cu particles aggregated upon an increase in metal content from 3.3 wt% to 9.8 wt%. H2-temperature programmed reduction (H2-TPR profiles reveal that re-oxidation of the Cu particles occurs after deposition. Furthermore, the profiles denote the existence of various sizes of Cu metal on the PS. The Cu-PS powders show excellent catalytic reduction on the p-nitrophenol regardless of the Cu loadings.

  18. The formation of the Late Cretaceous Xishan Sn-W deposit, South China: Geochronological and geochemical perspectives

    Science.gov (United States)

    Zhang, Lipeng; Zhang, Rongqing; Hu, Yongbin; Liang, Jinlong; Ouyang, Zhixia; He, Junjie; Chen, Yuxiao; Guo, Jia; Sun, Weidong

    2017-10-01

    The Xishan Sn-W deposit is spatially related to K-feldspar granites in the Yangchun basin, western Guangdong Province, South China. LA-ICP-MS zircon U-Pb dating for the Xishan pluton defines an emplacement age of 79 Ma (78.1 ± 0.9 Ma; 79.0 ± 1.2 Ma; 79.3 ± 0.8 Ma), consistent with the mineralization age of the Xishan Sn-W deposit constrained by molybdenite Re-Os isochron age (79.4 ± 4.5 Ma) and LA-ICP-MS cassiterite U-Pb ages (78.1 ± 0.9 Ma and 79.0 ± 1.2 Ma) for the cassiterite-quartz vein. These indicate a close genetic relationship between the granite and Sn-W mineralization. The Xishan K-feldspar granites have geochemical characteristics of A-type granites, e.g., high total alkali (Na2O + K2O = 7.88-10.07 wt.%), high Ga/Al ratios (10000*Ga/Al > 2.6) and high Zr + Nb + Ce + Y concentrations (> 350 ppm). They are further classified as A2-type granites. The whole-rock isotopic compositions of K-feldspar granites (initial 87Sr/86Sr = 0.705256-0.706181; εNd(t) = - 5.4 to - 4.8) and zircon εHf(t) values (- 7.8 to 2.0) suggest a mixed magma source. The low zircon Ce4 +/Ce3 + ratios (12-88) of K-feldspar granites suggest low oxygen fugacities, which is key for enrichment of tin in primary magmas. The K-feldspar granites have experienced strong differentiation as indicated by their high Rb/Sr and K/Rb ratios, and low Nb/Ta and Zr/Hf ratios, which play an important role in ore-forming element transportation and concentration. A-type granite characteristics of the Xishan pluton show that it formed in an extensional environment. The high F and low Cl characteristics of the K-feldspar granite are most probably attributed to slab rollback. In the Late Cretaceous, the Xishan Sn-W deposit was located near the interaction of the circum-Pacific and the Tethys tectonic realms. Late Cretaceous Sn-W deposits, including the Xishan deposit, form an EW-trending belt from Guangdong to Yunnan Province in South China. This belt is in accordance with the direction of the Neo

  19. LPG sensing characteristics of electrospray deposited SnO2 nanoparticles

    International Nuclear Information System (INIS)

    Gürbüz, Mevlüt; Günkaya, Göktuğ; Doğan, Aydın

    2014-01-01

    Highlights: • SnO 2 nanopowder was deposited on conductive substrates using ESD technique. • Solution flow rate, coating time, substrate–nozzle distance and solid/alcohol ratio were studied to optimize SnO 2 film structure. • The gas sensing properties of tin oxide films were investigated using LPG. • The sensitivity of the films was increased with operating temperature. • The best sensitivity was observed for 20 LEL LPG at 450 °C operating temperature. - Abstract: In this study, SnO 2 films were fabricated on conductive substrate such as aluminum and platinum coated alumina using electro-spray deposition (ESD) method for gas sensor applications. Solution flow rate, coating time, substrate–nozzle distance and solid/alcohol ratio were studied to optimize SnO 2 film structure. The morphology of the deposited films was characterized by stereo and scanning electron microscopy (SEM). The gas sensing properties of tin oxide films were investigated using liquid petroleum gas (LPG) for various lower explosive limit (LEL). The results obtained from microscopic analyses show that optimum SnO 2 films were evaluated at flow rate of 0.05 ml/min, at distance of 6 cm, for 10 min deposition time, for 20 gSnO 2 /L ethanol ratio and at 7 kV DC electric field. By the results obtained from the gas sensing behavior, the sensitivity of the films was increased with operating temperature. The films showed better sensitivity for 20 LEL LPG concentration at 450 °C operating temperature

  20. Interrelationship of density and lithological characteristics of intersaline deposits of the Pripyatskiy basin

    Energy Technology Data Exchange (ETDEWEB)

    Anpilogov, A.P.; Bulyga, V.Kh.; Ksenofontov, V.A.; Ur' yev, I.I.

    1980-01-01

    Based on materials of lithological study and zoning of the lower Zadonskiy, upper Zadonskiy and Yeletskiy deposits of the Pripyatskiy basin with regard for the depth of occurrence of the rocks, a map was compiled for isodensities of the intersaline complex. Variability in the values of density over the area and the total correspondence of the configuration of isodens to the extent of the lithological fields and the main geostructural elements are established.

  1. Deltaic Depositional Systems, Evolution Characteristics, and Petroleum Potential, Palaeogene Sub-Basin, South China Sea

    Science.gov (United States)

    Li, Yuan; Wang, Hua; Zhang, Guotao

    2015-04-01

    Deltaic depositional systems are detailed characterized by morphology and facies in a Palaeogene continental sub-basin of Beibuwan Basin, South China Sea. Based on examination of 435 m of conventional cores from 30 wells, three major types of deltaic facies have been recognized: delta, beach and shoreface. Morphology and facies asymmetry between the down-drift and the up-drift sides present a typical asymmetric delta system:1) the down-rift, sourced primarily by the feeding river, are influenced by mixed river and wave processes. Deposits on this side are muddy and consist of barrier, bar, bay-fill, and bayhead delta facies with variable bioturbation intensity; 2)the up-rift, in contrast, is sourced by a second sediment source and typically consists of laterally continuous sandy beach and shoreface facies. Finally, two fundamentally different depositional models are established and reflect a different style of sequence stratigraphic patterns: 1) Multiple-stage faults slopes developed in the down-rift side feed fine grained sediment into two stages channelized front deltaic system; 2) Flexure slope break of the up-rift side, combining with deeper gradual slopes, conversely, feed coarser grained sediment from larger drainages into sandy beach and shoreface systems. Such a distinction has well explained the differentiation of the proven hydrocarbon reserves because the up-rift consists of well-sorted, mature, and laterally continuous homogeneous beach-shoreface reservoirs, whereas the down-rift, in contrast, is muddier and consists of less continuous, less mature, heterolithic reservoirs. The Delta asymmetry concepts and models don't only challenge the traditional definition of deltas in Fushan sub-basin, but also provides strong theoretical support for the future exploration. This process-based model may be applicable to many deep-water settings and provides a framework within which to interpret the stratigraphic and spatial distribution of these complex deposits.

  2. Characteristics of the Triassic Source Rocks of the Aitutu Formation in the (West Timor Basin

    Directory of Open Access Journals (Sweden)

    Asep Kurnia Permana

    2014-12-01

    Full Text Available DOI:10.17014/ijog.v1i3.192The Triassic rocks of the (West Timor Basin have been identified that was mainly deposited in the  marine environment. The fine grained clastics and carbonate  rocks of this Triassic marine  facies are considered to be the most promising source rocks potential in this basin. In this paper we present geochemical and petrographic data from outcrop samples of the Triassic carbonate Aitutu Formation, due to emphasized the organic maturation, kerogen type of the organic matter and the origin of the organic matter.  A representative of selected sample were subjected to the Rock-Eval Pyrolisis, vitrinite reflectance and thermal alteration index, bitumen extraction, were analyzed on the GC-MS. The samples were collected from marine deposit of the Triassic Sequence. The TOC values of the analyzed sample range between rich and rich organic richness (0.51% - 9.16%, wt.%, TOC, which consists mainly of type II and III kerogen and the organic matter consider to be predominantly oil/gas prone and gas prone potential. The thermal maturity assessed from Tmax, TAI, and vitrinite reflectance shows an immature to early peak mature stage of the organic matter. The GC-MS analyses of the biomarkers indicate mainly the organic matter derived from mixed source rocks facies containing alga debris and higher plant terrestrial origin.

  3. Formation mechanism of uranium minerals at sandstone-type uranium deposits

    International Nuclear Information System (INIS)

    Li Shengfu; Zhang Yun

    2004-01-01

    By analyzing the behavior and existence form of uranium in different geochemical environments, existence form of uranium and uranium minerals species, this paper expounds the formation mechanism of main commercial uranium mineral--pitchblende: (1) uranium is a valence-changeable element. It is reactivated and migrates in oxidized environment, and is reduced and precipitated in reducing environment; (2) [UO 2 (CO 3 ) 3 ] 4- , [UO 2 (CO 3 ) 2 ] 2- coming from oxidized environment react with reductants such as organic matter, sulfide and low-valence iron at the redox front to form simple uranium oxide--pitchblende; (3)the adsorption of uranium by organic matter and clay minerals accelerates the reduction and the concentration of uranium. Therefore, it is considered, that the reduction of SO 4 2- by organic matter to form H 2 S, and the reduction of UO 2 2+ by H 2 S are the main reasons for the formation of pitchblende. This reaction is extensively and universally available in neutral and weakly alkaline carbonate solution. The existense of reductants such as H 2 S is the basic factor leading to the decrease of Eh in environments and the oversaturation of UO 2 2+ at the redox front in groundwater, thus accelerating the adsorption and the precipitation of uranium

  4. Preliminary report on the geology of uranium deposits in the Browns Park Formation in Moffat County, Colorado, and Carbon County, Wyoming

    International Nuclear Information System (INIS)

    Ormond, A.

    1957-06-01

    Uranium was first discovered in the Browns Park Formation in 1951 in the Miller Hill area of south-central Wyoming. Since that time economically important deposits in this formation have been discovered and developed in the Poison Basin of south-central Wyoming and in the Maybell area of northwest Colorado. The Browns Park is the youngest formation (Miocene) in the region and overlies older rocks with angular unconformity. The formation consists of a basal conglomerate, fluviatile, lacustrine, and eolian sandstones, and locally a few thin beds of clay, tuff, and algal limestone. The sandstones are predominantly fine- to medium-grained and consist of quartz grains, scattered black chert grains, and interstitial clay. The uranium deposits are of the sandstone-impregnation type and are not confined to specific stratigraphic horizons. The important ore minerals are autunite and uranophane in oxidized sandstones, and uraninite and coffinite in unoxidized sandstones. Uranium is often associated with limonite and calcium carbonate in concretionary forms. Woody material, thought to play an important part in the deposition of uranium in many sandstone-type deposits, is not present in the deposits of the Browns Park Formation. However, organic carbon in the form of petroleum and petroleum residues has been observed in association with uranium in both the Poison Basin and the Maybell areas

  5. Electrical and physical characteristics for crystalline atomic layer deposited beryllium oxide thin film on Si and GaAs substrates

    International Nuclear Information System (INIS)

    Yum, J.H.; Akyol, T.; Lei, M.; Ferrer, D.A.; Hudnall, Todd W.; Downer, M.; Bielawski, C.W.; Bersuker, G.; Lee, J.C.; Banerjee, S.K.

    2012-01-01

    In a previous study, atomic layer deposited (ALD) BeO exhibited less interface defect density and hysteresis, as well as less frequency dispersion and leakage current density, at the same equivalent oxide thickness than Al 2 O 3 . Furthermore, its self-cleaning effect was better. In this study, the physical and electrical characteristics of ALD BeO grown on Si and GaAs substrates are further evaluated as a gate dielectric layer in III–V metal-oxide-semiconductor devices using transmission electron microscopy, selective area electron diffraction, second harmonic generation, and electrical analysis. An as-grown ALD BeO thin film was revealed as a layered single crystal structure, unlike the well-known ALD dielectrics that exhibit either poly-crystalline or amorphous structures. Low defect density in highly ordered ALD BeO film, less variability in electrical characteristics, and great stability under electrical stress were demonstrated. - Highlights: ► BeO is an excellent electrical insulator, but good thermal conductor. ► Highly crystalline film of BeO has been grown using atomic layer deposition. ► An ALD BeO precursor, which is not commercially available, has been synthesized. ► Physical and electrical characteristics have been investigated.

  6. Triassic regolithization: A major stage of pre-enrichment in the formation of unconformity related deposits in Southern France

    International Nuclear Information System (INIS)

    Schmitt, J.M.; Clement, J.Y.

    1989-01-01

    The formation of unconformity related uranium deposits in Canada and Australia is currently thought to have involved some stage of preconcentration within the Proterozoic regolith. Uranium deposits in the southern Massif central (France) are spatially linked to the Mesozoic unconformity. Under this unconformity, rocks of the Hercynian basement as well as Permo-Carboniferous sediments show a regolithic alteration dating back to the Late Permian to Late Triassic period. On the elevated parts of the Triassic landscape, 30 to 50 m deep weathering profiles are preserved. Three main zones can be distinguished: a lower pink coloured zone, showing partly albitized and chloritized rocks: a middle bleached zone with neogenic clays; and an upper reddish zone with Fe-Mn oxyhydroxides. Towards the Triassic basin, much deeper (200-300 m) alteration profiles are observed on Permo-Carboniferous sediments. The two upper regolithic zones are present, but the lower albitized one is very developed with two subzones: analcite/albite at the top, and K-feldspar/albite at the bottom. Geochemical data show that potassium is fixed in the uppermost horizons of the regolith, whereas sodium is transported towards the lower horizons and basin areas and fixed in analcite/albite zones. Uranium, vanadium, copper and less mobile elements such as titanium and zirconium are strongly leached from the weathering profiles in elevated parts of the landscape but are enriched in basin zones of albitization up to 5-15 times. Thus, solutions generated from the weathering profiles have brought about a major redistribution of uranium in the Triassic landscape. The remarkable applanation and tectonic stability of the area as well as a subarid climate seem to have favoured this 'regolithization' process. In southern France, geochemical differentiation during the Triassic has thus given rise to important uranium pre-enrichment, and the regolith is a major control for later uranium deposits. (author). 16 refs, 8

  7. Role of chlorine in the nanocrystalline silicon film formation by rf plasma-enhanced chemical vapor deposition of chlorinated materials

    International Nuclear Information System (INIS)

    Shirai, Hajime

    2004-01-01

    We demonstrate the disorder-induced low-temperature crystallization in the nanocrystalline silicon film growth by rf plasma-enhanced chemical vapor deposition of H 2 -diluted SiH 2 Cl 2 and SiCl 4 . The combination of the chemical reactivity of SiCld (d: dangling bond) and SiHCl complexes and the release of the disorder-induced stress near the growing surface tightly correlate with the phase transitionity of SiCld and SiHCl complexes near the growing surface with the aid of atomic hydrogen, which induce higher degree of disorder in the a-Si network. These features are most prominent in the SiCl 4 compared with those of SiH 2 Cl 2 and SiH 4 , which preferentially enhance the nanocrystalline Si formation

  8. Conditions of uranium-bearing calcite formation in ore-enclosing sediments of the Semizbaj deposit (Kazakhstan)

    International Nuclear Information System (INIS)

    Kondrat'eva, I.A.; Maksimova, I.G.; Dojnikova, O.I.

    1995-01-01

    Consideration is given to results of investigation into uranium-bearing calcite, forming the cement of gravelly-sandy rocks of the Semizbaj uranium deposit. Core sampling in prospecting boreholes were used to establish geological conditions, place and time of uranium-bearing calcite formation. Calcite was investigated by optical, electron-microscope and radiographic methods. It is shown that uranium in calcite doesn't form its own mineral phase and exists in scattered state. Uranium in calcite-bearing minerals is present in isomorphic form. Uranium content in calcite was equal to 0.009-0.15 %. It is proposed that mineralization, formed in sedimentary rocks by processes of ground-stratum oxidation, is the source of uranium, enriching calcite. refs., 5 figs., 2 tabs

  9. The organic geochemistry characteristic simple analyse of Shihongtan sandstone-type uranium deposit in Turpan-Hami basin

    International Nuclear Information System (INIS)

    Qiao Haiming; Cai Jinfang; Shang Gaofeng; Song Zhe

    2007-12-01

    The Shihongtan uranium deposit in Turpan-Hami basin is an interlayer oxi- dized zone type sandstone uranium deposit. The deposit occurs in the coal-bear- ing detrital rocks of braided meandering steam facies in the Middle Jurassic Xishanyao formation. There is a great deal of organic matter in the ore-hosting bed. There is distinct content of organic carbon, soluble organic matter, acidolysis hydrocarbon in various geochemistry belt rock, and the maximum content in the ore belt. Organics carbon mother-material type is sapropelic humus, organic matter is under mature stage, Acidolysis hydrocarbon is coal-gas type. Uranium content in rock is positive correlativity to soluble organics and acidolysis hydrocarbon by statistical count, The role of organic matter in sandstone type uranium metallogenetic process is analysed, it is thought that material decomposed under oxygenic coalition is advantage to uranium dissolution and migration in groundwater, material decomposed and polymerized under oxygen-deficient condition forms reducing and adsorption geochemistry barrier for uranium precipitation, play a important role in uranium metallogenetic process. (authors)

  10. Iliac artery mural thrombus formation. Effect of antiplatelet therapy on 111In-platelet deposition in baboons

    International Nuclear Information System (INIS)

    Hanson, S.R.; Paxton, L.D.; Harker, L.A.

    1986-01-01

    To measure the rate, extent, and time course of arterial mural thrombus formation in vivo and to assess the effects of antiplatelet therapy in that setting, we have studied autologous 111 In-platelet deposition induced by experimental iliac artery aneurysms in baboons. Scintillation camera imaging analyses were performed at 1, 24, 48, and 72 hours after implantation of the device. Correction for tissue attenuation was determined by using a small, comparably located 111 In source implanted at the time of surgery. In five animals, 111 In-platelet activity accumulated progressively after device implantation, reaching a maximum after the third day. Repeat image analysis carried out 2 weeks after the surgical procedure also showed progressive accumulation of 111 In-platelets over 3 days but at markedly reduced amounts as compared with the initial study. In five additional animals, treatment with a combination of aspirin and dipyridamole begun 1 hour after surgical implantation reduced 111 In-platelet deposition to negligible levels by the third day. Although platelet survival time was shortened and platelet turnover was reciprocally increased in all operated animals, platelet survival and turnover were not affected by antiplatelet therapy. We conclude that, in contrast to platelet survival and turnover measurements, 111 In-platelet imaging is a reliable and sensitive method for localizing and quantifying focal arterial thrombi and for assessing the effects of antiplatelet therapy

  11. Sandstone-type uranium deposits

    International Nuclear Information System (INIS)

    Austin, S.R.; D'Andrea, R.F. Jr.

    1978-01-01

    Three overall factors are necessary for formation of uranium deposits in sandstone: a source of uranium, host rocks capable of transmitting uranium-bearing solutions, and a precipitant. Possible sources of uranium in sandstone-type deposits include groundwaters emanating from granitic highlands, arkosic sediments, tuffaceous material within or overlying the host rocks, connate fluids, and overlying black shales. The first three sources are considered the most likely. Host rocks are generally immature sandstones deposited in alluvial-fan, intermontane-basin or marginal-marine environments, but uranium deposits do occur in well-winnowed barrier-bar or eolian sands. Host rocks for uranium deposits generally show coefficients of permeability on the order of 1 to 100 gal/day/ft 2 . Precipitants are normally agents capable of reducing uranium from the uranyl to the uranous state. The association of uranium with organic matter is unequivocal; H 2 S, a powerful reductant, may have been present at the time of formation of some deposits but may go unnoticed today. Vanadium can serve to preserve the tabular characteristics of some deposits in the near-surface environment, but is considered an unlikely primary precipitant for uranium. Uranium deposits in sandstone are divided into two overall types: peneconcordant deposits, which occur in locally reducing environments in otherwise oxidized sandstones; and roll-type deposits, which occur at the margin of an area where an oxidized groundwater has permeated an otherwise reduced sandstone. Uranium deposits are further broken down into four subclasses; these are described

  12. Feasibility of electrospray deposition for rapid screening of the cocrystal formation and single step, continuous production of pharmaceutical nanococrystals.

    Science.gov (United States)

    Emami, Shahram; Siahi-Shadbad, Mohammadreza; Barzegar-Jalali, Mohammad; Adibkia, Khosro

    2018-06-01

    This study employed electrospray deposition (ESD) for simultaneous synthesis and particle engineering of cocrystals. Exploring new methods for the efficient production of cocrystals with desired particle properties is an essential demand. The possibility of cocrystal formation by ESD was examined for indomethacin-saccharin, indomethacin-nicotinamide, naproxen-nicotinamide, and naproxen-iso-nicotinamide cocrystals. Solutions of the drug and coformer at stoichiometric ratios were sprayed to a high electric field which caused rapid evaporation of the solvent and the formation of fine particles. The phase purity, size, and morphology of products were compared with reference cocrystals. Experiments were performed to evaluate the effects of stoichiometric ratio, concentration and solvent type on the cocrystal formation. Physical stability and dissolution properties of the electrosprayed cocrystals were also compared with reference cocrystals. ESD was found to be an efficient and rapid method to produce cocrystals for all studied systems other than indomethacin-nicotinamide. Pure cocrystals only formed at a specific drug:coformer ratio. The solvent type has a weak effect on the cocrystal formation and morphology. Electrosprayed cocrystals exhibited nano to micrometer sizes with distinct morphologies with comparable physical stability with reference cocrystals. Nanococrystals of indomethacin-saccharin with a mean size of 219 nm displayed a threefold higher dissolution rate than solvent evaporated cocrystal. ESD successfully was utilized to produce pure cocrystals of poorly soluble drugs with different morphologies and sizes ranging from nano to micrometer sizes in one step. This study highlighted the usefulness of ESD for simultaneous preparation and particle engineering of pharmaceutical cocrystals.

  13. Geology and formation of titaniferous placer deposits in Upper Jogaz Valley area, Fanuj, Sistan and Baluchestan province, Iran

    Directory of Open Access Journals (Sweden)

    Seyed Javad Moghaddasi

    2015-10-01

    Full Text Available Introduction The Fanuj titaniferous placer deposits are located 35 km northwest of the Fanuj, Sistan and Baluchestan province (1 . The studied area comprises a (2 small part of the late Cretaceous Fanuj-Maskutan (Rameshk ophiolite complex (Arshadi and Mahdavi, 1987. Reconnaissance and comprehensive exploration programs in the Fanuj district (East of the 1:100000 Fanuj quadrangle map,Yazdi, 2010 revealed that the Upper Jogaz Valley area has the highest concentration of titaniferous placer deposits. In this study, geology and formation of the titaniferous placer deposits in Upper Jogaz Valley area are discussed. Materials and Methods (3 Forty samples were collected from surface and drainage sediments to evaluate the potential for titaniferous placers. Mineralogical studies indicated the high Ti (ilmenite bearing areas, which led to detailed exploration by 29 shallow drill holes and 9 trenches. A total of 61 sub-surface samples were collected for heavy mineral studies and ore grade determination. The exploration studies suggest that the the Upper Jogaz Valley area in the Fanuj district has a high potential for titaniferous placer deposits. Extensive exposures of black sands in the sreambeds of this area suggested detailed sampling, so that 12 holes were drilled (2-3 m depthfrom which 26 samples were collected, and five trenches were excavated to 2-4 m depth (4. The distribution of drill holes and trenches were plotted with “Logplot” software for further interpretation. Twenty-two samples from these drill holes were analyzed for TiO2. Results The reconnaissance and comprehensive exploration in Fanuj district shows that the Upper Jogaz Valley area has the highest concentration of titaniferous placer deposits. The general geology of the region and petrology and mineralogy of collected samples suggest that the source rock of the Upper Jogaz Valley titaniferous placers is the hornblende- and olivine-gabbro unit of the Fanuj-Ramesh ophiolites. The Ti

  14. Growth and etching characteristics of gallium oxide thin films by pulsed laser deposition

    International Nuclear Information System (INIS)

    Ou, Sin-Liang; Wuu, Dong-Sing; Fu, Yu-Chuan; Liu, Shu-Ping; Horng, Ray-Hua; Liu, Lei; Feng, Zhe-Chuan

    2012-01-01

    Highlights: ► The β-Ga2O3 thin films are prepared by pulsed laser deposition. ► The substrate temperature affects the structural, optical and etching properties of the grown films. ► The optical transmittance and band gap of the films increased with increasing the substrate temperature. ► The etching treatments for gallium oxide are performed in 49 mol% HF solution at room temperature. ► The gallium oxide thin film grown at 400 °C has the highest etching rate of 490 nm s −1 . - Abstract: The gallium oxide films were deposited on (0 0 1) sapphire at various substrate temperatures from 400 to 1000 °C by pulsed laser deposition using a KrF excimer laser. The etching treatments for as-grown gallium oxide were performed in a 49 mol% HF solution at room temperature. The structural, optical and etching properties of the grown films were investigated in terms of high resolution X-ray diffraction, optical transmittance, atomic force microscopy, and X-ray photoelectron spectroscopy. The phase transition from amorphous to polycrystalline β-Ga 2 O 3 structure was observed with increasing growth temperature. From the optical transmittance measurements, the films grown at 550–1000 °C exhibit a clear absorption edge at deep ultraviolet region around 250–275 nm wavelength. It was found that the optical band gap of gallium oxide films increased from 4.56 to 4.87 eV when the substrate temperature increased from 400 to 1000 °C. As the substrate temperature increases, the crystallinity of gallium oxide film is enhanced and the etching rate is decreased. The high etching rate of 490 nm s −1 for gallium oxide film grown at 400 °C could be due to its amorphous phase, which is referred to higher void ratio and looser atomic structure.

  15. Characteristics of tungsten oxide thin films prepared on the flexible substrates using pulsed laser deposition

    International Nuclear Information System (INIS)

    Suda, Yoshiaki; Kawasaki, Hiroharu; Ohshima, Tamiko; Yagyuu, Yoshihito

    2008-01-01

    Tungsten trioxide (WO 3 ) thin films have been prepared on the flexible indium tin oxide (ITO) substrates by pulsed laser deposition (PLD) using WO 3 targets in oxygen gas. Color of the WO 3 film on the flexible ITO substrates depends on the oxygen gas mixture. The plasma plume produced by PLD using a Nd:YAG laser and WO 3 target is investigated by temporal and spatial-resolved optical emission spectroscopy. WO 3 films prepared on the flexible ITO substrates show electrochromic properties, even when the substrates are bent. The film color changes from blue to transparent within 10-20 s after the applied DC voltage is turned off

  16. Forest condition and chemical characteristics of atmospheric depositions: research and monitoring network in Lombardy

    Directory of Open Access Journals (Sweden)

    Flaminio DI GIROLAMO

    2002-09-01

    Full Text Available Since 1987, the Regional Forestry Board of Lombardy and the Water Research Institute of the National Research Council have been carrying out surveys of forest conditions and the response of the ecosystem to environmental factors. The study approach is based on a large number of permanent plots for extensive monitoring (Level 1. At this level, crown condition is assessed annually, and soil condition and the nutritional status of forests surveyed. Some of the permanent plots were selected for intensive monitoring (Level 2, focussing mainly on the impact of atmospheric pollution on forest ecosystems. Level 2 monitoring also includes increment analyses, ground vegetation assessment, atmospheric deposition, soil solution analyses and climatic observations. This paper summarises the main results of a pluriannual research, which provides a general picture of the state of forest health in the region and focuses on more detailed investigations, described as case studies. Modified wet and dry samplers which use a water surface to collect dry deposition were used in a pluriannual field campaign at five sites in alpine and prealpine areas, to measure the total atmospheric depositions and to evaluate the nitrogen and sulphate exceedances of critical loads. Throughfall and bulk precipitation chemistry were studied for five years (June 1994-May 1999 at two high elevation forest sites (Val Gerola and Val Masino which were known to differ in terms of tree health, as assessed by live crown condition. Results indicated a higher contribution from the dry deposition of N-NO3 -, N-NH4 + and H+ and considerable canopy leaching of Ca2+, K+ and weak organic acids at Val Gerola, where the symptoms of damage were more evident. In the area of Val Masino (SO, included since 1997 in the national CONECOFOR network, investigations focused on the effectiveness of the biological compartment in modifying fluxes of atmospheric elements, and on the role of nitrogen both as an

  17. Metallogenic characteristics of volcanic hydrothermal type U-Au-polymetallic deposits in Yanshan-Liaoning region

    International Nuclear Information System (INIS)

    Luo Yi; Zhou Dean; He Yiqiang; Tao Quan; Xia Yuliang; Cui Huanmin; Zhu Deling

    1996-03-01

    Yanshan-Liaoning area is located in the east part of the northern margin of North-China platform. It is a famous metallogenic region of Mesozoic volcanic hydrothermal type U-Au-polymetallic deposits in the country. The metallogenesis is controlled by a united Late Mesozoic continental taphrogenic volcano-magmatic activity. The metallogenic epochs are concentrated in Late Jurassic-Early Cretaceous periods. The metallogenic media are moderate and moderate-low temperature volcanic hydrothermal solutions originated from the mixing of volcano-magmatic water, metamorphic water and atmospheric water. The ore-forming materials are mainly derived from enrichment type upper mantle and lower crust. (8 refs., 5 figs.)

  18. The Chimborazo sector collapse and debris avalanche : deposit characteristics as evidence of emplacement mechanisms

    OpenAIRE

    Bernard, B.; Vries de, B. V.; Barba, D.; Leyrit, H.; Robin, Claude; Alcaraz, S.; Samaniego, Pablo

    2008-01-01

    Chimborazo is a Late Pleistocene to Holocene stratovolcano located at the southwest end of the main Ecuadorian volcanic arc. It experienced a large sector collapse and debris avalanche (DA) of the initial edifice (CH-1). This left a 4 km wide scar, removing 8.0 +/- 0.5 km(3) of the edifice. The debris avalanche deposit (DAD) is abundantly exposed throughout the Riobamba Basin to the Rio Chambo, more than 35 km southeast of the volcano. The DAD averages a thickness of 40 m, covers about 280 km...

  19. Anodisation of sputter deposited aluminium–titanium coatings: Effect of microstructure on optical characteristics

    DEFF Research Database (Denmark)

    Aggerbeck, Martin; Junker-Holst, Andreas; Vestergaard Nielsen, Daniel

    2014-01-01

    Magnetron sputtered coatings of aluminium containing up to 18 wt.% titanium were deposited on aluminium substrates to study the effect of microstructure on the optical appearance of the anodised layer. The microstructure and morphology were studied using transmission electron microscopy (TEM), X......-ray diffraction (XRD), and glow discharge optical emission spectroscopy (GDOES), while the optical appearance was investigated using photospectrometry. The microstructure of the coatings was varied by heat treatment, resulting in the precipitation of Al3Ti phases. The reflectance of the anodised surfaces...

  20. Microfacies characteristics, sedimentary environments and sequence stratigraphy of Upper Cretaceous deposits in northwest of Nehbandan (Basiran section

    Directory of Open Access Journals (Sweden)

    Mohammad nabi Gorgij

    2015-10-01

    Full Text Available Introduction   The Basiran stratigraphic section is located about 160 km northwest of Nehbandan.The section was measured in detail at 59 06 30 N and 31 52 50 E. Nehbandan area with respect to fourfold geological subdivision of Iran is part of Central Iran that is located in the eastern flank of Lut Block which first time are studied by Stocklin et al.in 1972. Gorgij (2001 stratigraphically and paleontologically investigate Upper Cretaceous deposits in Mighan and Basiran sections. Upper Cretaceous deposits in in this area consists of 275m conglomerate,alternation of conglomerate-sandstone, sandy limestone -marl and limy marl, marl with intercalation of limestone-sandy limestone thin beds and medium-bedded to massive limestone. Microfacies analysis led to the recognition of 9 microfacies that are related to 5 belts; Coast, tidal flat, lagoon, shoal, shallow open marine and deep open marine environments. Main part of the section are deposited in the open marine environment that consist of marl,marly limestone and limestone. The doals of this study are : (1 describing and determining main carbonate and siliciclastic microfacies of late Cretaceous deposits (2 interpreting and providing depositional model for reconstruction of its paleoenvironmental setting based on microfacies characteristics (3 dividing the section based on lithostratigraphic principles and (4 recognizing a sequence stratigraphic model of this successions based on the vertical variation of facies,stratal key beds and stratal packing pattern.       Material and Method   The Basiran section as a complete stratigraphic section was measured and described. Up to 68 samples (indicated by KB1 to KB68 were collected and 170 thin sections are prepared. Based on field observations, sedimentological characteristics, parasequence stacking patterns, sequence boundary types and other key stratigraphical surfaces are identified and were obtained. Scheme of Dunham (1962 and Embry and Klovan

  1. Microfacies characteristics, sedimentary environments and sequence stratigraphy of Upper Cretaceous deposits in northwest of Nehbandan (Basiran section

    Directory of Open Access Journals (Sweden)

    Azadeh Bordbar

    2015-09-01

    Full Text Available   Introduction   The Basiran stratigraphic section is located about 160 km northwest of Nehbandan.The section was measured in detail at 59 06 30 N and 31 52 50 E. Nehbandan area with respect to fourfold geological subdivision of Iran is part of Central Iran that is located in the eastern flank of Lut Block which first time are studied by Stocklin et al.in 1972. Gorgij (2001 stratigraphically and paleontologically investigate Upper Cretaceous deposits in Mighan and Basiran sections. Upper Cretaceous deposits in in this area consists of 275m conglomerate,alternation of conglomerate-sandstone, sandy limestone -marl and limy marl, marl with intercalation of limestone-sandy limestone thin beds and medium-bedded to massive limestone. Microfacies analysis led to the recognition of 9 microfacies that are related to 5 belts Coast, tidal flat, lagoon, shoal, shallow open marine and deep open marine environments. Main part of the section are deposited in the open marine environment that consist of marl,marly limestone and limestone. The doals of this study are : (1 describing and determining main carbonate and siliciclastic microfacies of late Cretaceous deposits (2 interpreting and providing depositional model for reconstruction of its paleoenvironmental setting based on microfacies characteristics (3 dividing the section based on lithostratigraphic principles and (4 recognizing a sequence stratigraphic model of this successions based on the vertical variation of facies,stratal key beds and stratal packing pattern.       Material and Method   The Basiran section as a complete stratigraphic section was measured and described. Up to 68 samples (indicated by KB1 to KB68 were collected and 170 thin sections are prepared. Based on field observations, sedimentological characteristics, parasequence stacking patterns, sequence boundary types and other key stratigraphical surfaces are identified and were obtained. Scheme of Dunham (1962 and Embry

  2. Stratigraphic implications of uranium deposits

    International Nuclear Information System (INIS)

    Langford, F.F.

    1980-01-01

    One of the most consistent characteristics of economic uranium deposits is their restricted stratigraphic distribution. Uraninite deposited with direct igneous affiliation contains thorium, whereas chemical precipitates in sedimentary rocks are characterized by thorium-free primary uranium minerals with vanadium and selenium. In marine sediments, these minerals form low-grade disseminations; but in terrestrial sediments, chiefly fluvial sandstones, the concentration of uranium varies widely, with the high-grade portions constituting ore. Pitchblende vein deposits not only exhibit the same chemical characteristics as the Colorado-type sandstone deposits, but they have a stratigraphically consistent position at unconformities covered by fluvial sandstones. If deposits in such diverse situations have critical features in common, they are likely to have had many features of their origin in common. Thus, vein deposits in Saskatchewan and Australia may have analogues in areas that contain Colorado-type sandstone deposits. In New Mexico, the presence of continental sandstones with peneconformable uranium deposits should also indicate good prospecting ground for unconformity-type vein deposits. All unconformities within the periods of continental deposition ranging from Permian to Cretaceous should have uranium potential. Some situations, such as the onlap of the Abo Formation onto Precambrian basement in the Zuni Mountains, may be directly comparable to Saskatchewan deposition. However, uranium occurrences in the upper part of the Entrada Sandstone suggest that unconformities underlain by sedimentary rocks may also be exploration targets

  3. Depositional environments, provenance and paleoclimatic implications of Ordovician siliciclastic rocks of the Thango Formation, Spiti Valley, Tethys Himalaya, northern India

    Science.gov (United States)

    Rashid, Shaik A.; Ganai, Javid A.

    2018-05-01

    Recently published findings indicate that the Ordovician period has been much more dynamic than previously anticipated thus making this period significant in geological time. The Ordovician of India can best be studied in the Spiti region because the Spiti basin records the complete uninterrupted history of excellent marine sedimentary rocks starting from Cambrian to Paleogene which were deposited along the northern margin of India. Due to these reasons the geochemical data on the Ordovician rocks from the Spiti region is uncommon. The present geochemical study on the Ordovician Thango Formation (Sanugba Group) is mainly aimed to understand the provenance and the paleoclimatic conditions. The sandstones are the dominant lithology of the Thango Formation with intercalations of minor amount of shales. Detailed petrographic and sedimentological analysis of these rocks suggest that three major depositional environments, viz., fluvial, transitional and marine prevailed in the basin representing transgressive and regressive phases. The major and trace element ratios such as SiO2/Al2O3, K2O/Na2O and La-Th- Sc discrimination diagram suggest that these rocks were deposited in passive margin tectonic settings. Various geochemical discriminants and elemental ratios such as K2O/Na2O, Al2O3/TiO2, La/Sc, Th/Sc, Cr/Th, Zr/Sc, (Gd/Yb)N and pronounced negative Eu anomalies indicate the rocks to be the product of weathering of post-Archean granites. The striking similarities of the multi-elemental spider diagrams of the studied sediments and the Himalayan granitoids indicate that sediments are sourced from the Proterozoic orogenic belts of the Himalayan region. Chemical index of alteration (CIA) values of the studied sediments (55-72) suggest that the source rocks underwent low to moderate degree of chemical weathering. The span of the CIA values (55-72) recorded in the sediments from the Spiti region may have resulted from varying degrees of weathering conditions in the source area

  4. Formation of the Vysoká-Zlatno Cu-Au skarn-porphyry deposit, Slovakia

    Science.gov (United States)

    Koděra, Peter; Lexa, Jaroslav; Fallick, Anthony E.

    2010-12-01

    The central zone of the Miocene Štiavnica stratovolcano hosts several occurrences of Cu-Au skarn-porphyry mineralisation, related to granodiorite/quartz-diorite porphyry dyke clusters and stocks. Vysoká-Zlatno is the largest deposit (13.4 Mt at 0.52% Cu), with mineralised Mg-Ca exo- and endoskarns, developed at the prevolcanic basement level. The alteration pattern includes an internal K- and Na-Ca silicate zone, surrounded by phyllic and argillic zones, laterally grading into a propylitic zone. Fluid inclusions in quartz veinlets in the internal zone contain mostly saline brines with 31-70 wt.% NaCl eq. and temperatures of liquid-vapour homogenization (Th) of 186-575°C, indicating fluid heterogenisation. Garnet contains inclusions of variable salinity with 1-31 wt.% NaCl eq. and Th of 320-360°C. Quartz-chalcopyrite veinlets host mostly low-salinity fluid inclusions with 0-3 wt.% NaCl eq. and Th of 323-364°C. Data from sphalerite from the margin of the system indicate mixing with dilute and cooler fluids. The isotopic composition of fluids in equilibrium with K-alteration and most skarn minerals (both prograde and retrograde) indicates predominantly a magmatic origin (δ18Ofluid 2.5-12.3‰) with a minor meteoric component. Corresponding low δDfluid values are probably related to isotopic fractionation during exsolution of the fluid from crystallising magma in an open system. The data suggest the general pattern of a distant source of magmatic fluids that ascended above a zone of hydraulic fracturing below the temperature of ductile-brittle transition. The magma chamber at ˜5-6 km depth exsolved single-phase fluids, whose properties were controlled by changing PT conditions along their fluid paths. During early stages, ascending fluids display liquid-vapour immiscibility, followed by physical separation of both phases. Low-salinity liquid associated with ore veinlets probably represents a single-phase magmatic fluid/magmatic vapour which contracted into

  5. Using wire shaping techniques and holographic optics to optimize deposition characteristics in wire-based laser cladding.

    Science.gov (United States)

    Goffin, N J; Higginson, R L; Tyrer, J R

    2016-12-01

    In laser cladding, the potential benefits of wire feeding are considerable. Typical problems with the use of powder, such as gas entrapment, sub-100% material density and low deposition rate are all avoided with the use of wire. However, the use of a powder-based source material is the industry standard, with wire-based deposition generally regarded as an academic curiosity. This is because, although wire-based methods have been shown to be capable of superior quality results, the wire-based process is more difficult to control. In this work, the potential for wire shaping techniques, combined with existing holographic optical element knowledge, is investigated in order to further improve the processing characteristics. Experiments with pre-placed wire showed the ability of shaped wire to provide uniformity of wire melting compared with standard round wire, giving reduced power density requirements and superior control of clad track dilution. When feeding with flat wire, the resulting clad tracks showed a greater level of quality consistency and became less sensitive to alterations in processing conditions. In addition, a 22% increase in deposition rate was achieved. Stacking of multiple layers demonstrated the ability to create fully dense, three-dimensional structures, with directional metallurgical grain growth and uniform chemical structure.

  6. Three air quality studies: Great Lakes ozone formation and nitrogen dry deposition; and Tucson aerosol chemical characterization

    Science.gov (United States)

    Foley, Theresa

    The Clean Air Act of 1970 was promulgated after thousands of lives were lost in four catastrophic air pollution events. It authorized the establishment of National Ambient Air Quality Standards or (NAAQS) for six pollutants that are harmful to human health and welfare: carbon monoxide, lead, nitrogen dioxide, particulate matter, ozone and sulfur dioxide. The Clean Air Act also led to the establishment of the United Stated Environmental Protection Agency (US EPA) to set and enforce regulations. The first paper in this dissertation studies ozone in the Lake Michigan region (Foley, T., Betterton, E.A., Jacko, R., Hillery, J., 2011. Lake Michigan air quality: The 1994-2003 LADCO Aircraft Project (LAP). Atmospheric Environment 45, 3192-3202.) The Chicago-Milwaukee-Gary metropolitan area has been unable to meet the ozone NAAQS since the Clean Air Act was implemented. The Lake Michigan Air Directors' Consortium (LADCO) hypothesized that land breezes transport ozone precursor compounds over the lake, where a large air/water temperature difference creates a shallow conduction layer, which is an efficient reaction chamber for ozone formation. In the afternoon, lake breezes and prevailing synoptic winds then transport ozone back over the land. To further evaluate this hypothesis, LADCO sponsored the 1994-2003 LADCO Aircraft Project (LAP) to measure the air quality over Lake Michigan and the surrounding areas. This study has found that the LAP data supports this hypothesis of ozone formation, which has strong implications for ozone control strategies in the Lake Michigan region. The second paper is this dissertation (Foley, T., Betterton, E.A., Wolf, A.M.A., 2012. Ambient PM10 and metal concentrations measured in the Sunnyside Unified School District, Tucson, Arizona. Journal of the Arizona-Nevada Academy of Science, 43, 67-76) evaluated the airborne concentrations of PM10 (particulate matter with an aerodynamic diameter of 10 microns or less) and eight metalloids and metals

  7. Effects of phosphorus on the electrical characteristics of plasma deposited hydrogenated amorphous silicon carbide thin films

    Science.gov (United States)

    Alcinkaya, Burak; Sel, Kivanc

    2018-01-01

    The properties of phosphorus doped hydrogenated amorphous silicon carbide (a-SiCx:H) thin films, that were deposited by plasma enhanced chemical vapor deposition technique with four different carbon contents (x), were analyzed and compared with those of the intrinsic a-SiCx:H thin films. The carbon contents of the films were determined by X-ray photoelectron spectroscopy. The thickness and optical energies, such as Tauc, E04 and Urbach energies, of the thin films were determined by UV-Visible transmittance spectroscopy. The electrical properties of the films, such as conductivities and activation energies were analyzed by temperature dependent current-voltage measurements. Finally, the conduction mechanisms of the films were investigated by numerical analysis, in which the standard transport mechanism in the extended states and the nearest neighbor hopping mechanism in the band tail states were taken into consideration. It was determined that, by the effect of phosphorus doping the dominant conduction mechanism was the standard transport mechanism for all carbon contents.

  8. Petrographic characteristics of rocks with magnetite deposits of Vrbno (Jesieniki - Czech Republic

    Directory of Open Access Journals (Sweden)

    Miłosz A. Huber

    2011-11-01

    Full Text Available Introduction: The subject of this paper is a study the metamorphite shists from the old mines around the Mala Moravka-Karlova Studianka in which is magnetite ore, with ferrous chlorites present.Materials and methods: Samples were taken directly from the reservoir and the surrounding of the ore, then the samples were observed in the microscope in transmitted and reflected light, and were carried out X-ray analysis of XRD and SEM-EDS.Results: In the quartz-chlorite slates occur fibroblastic structure with numerous microfolds. X-ray analysis of rocks indicates the presence of calcite, quartz and ferrous chlorites of magnesium-ferrous group. The ore has a steel-gray color, granoblastic structure, layered, compact texture, sometimes with microfolds and deformations. The ore has a lenticular layers of quartz. Background of the ore are doubly and triply twinned magnetite and hematite idioblasts in some cases.Conclusions: The ore zone analysis indicates hydrothermal origin of the ore, which escaped to the earth surface by means of exhalations was deposited as sediment in clayey material. These deposits were metamorphosed in the chlorite facies.

  9. Characteristics of a-IGZO/ITO hybrid layer deposited by magnetron sputtering.

    Science.gov (United States)

    Bang, Joon-Ho; Park, Hee-Woo; Cho, Sang-Hyun; Song, Pung-Keun

    2012-04-01

    Transparent a-IGZO (In-Ga-Zn-O) films have been actively studied for use in the fabrication of high-quality TFTs. In this study, a-IGZO films and a-IGZO/ITO double layers were deposited by DC magnetron sputtering under various oxygen flow rates. The a-IGZO films showed an amorphous structure up to 500 degrees C. The deposition rate of these films decreased with an increase in the amount of oxygen gas. The amount of indium atoms in the film was confirmed to be 11.4% higher than the target. The resistivity of double layer follows the rules for parallel DC circuits The maximum Hall mobility of the a-IGZO/ITO double layers was found to be 37.42 cm2/V x N s. The electrical properties of the double layers were strongly dependent on their thickness ratio. The IGZO/ITO double layer was subjected to compressive stress, while the ITO/IGZO double layer was subjected to tensile stress. The bending tolerance was found to depend on the a-IGZO thickness.

  10. Effect of plastic strain on shape memory characteristics in sputter-deposited Ti-Ni thin films

    International Nuclear Information System (INIS)

    Nomura, K.

    1995-01-01

    The plastic strain which is introduced during cooling and heating under a constant stress has an influence upon the transformation and deformation characteristics of sputter-deposited Ti-Ni shape memory alloy thin films. With increasing the accumulated plastic strain, Ms rises and recovery strain increases. The changes in such characteristics are due to the internal stress field that is formed by plastic deformation. However, the change in Ms in Ti-50.5at%Ni is larger than that in Ti-48.9at%Ni, although the plastic strain in the former is lower than that in the latter. In order to understand this point, the effective internal stresses were estimated in both alloys; the internal stress in the former is more effectively created by the introduction of plastic strain than in the latter. (orig.)

  11. On the Tengiz petroleum deposit previous study

    International Nuclear Information System (INIS)

    Nysangaliev, A.N.; Kuspangaliev, T.K.

    1997-01-01

    Tengiz petroleum deposit previous study is described. Some consideration about structure of productive formation, specific characteristic properties of petroleum-bearing collectors are presented. Recommendation on their detail study and using of experience on exploration and development of petroleum deposit which have analogy on most important geological and industrial parameters are given. (author)

  12. Mechanistic Model for Ash Deposit Formation in Biomass Suspension Firing. Part 1: Model Verification by Use of Entrained Flow Reactor Experiments

    DEFF Research Database (Denmark)

    Hansen, Stine Broholm; Jensen, Peter Arendt; Jappe Frandsen, Flemming

    2017-01-01

    used to describe the deposit formation rates and deposit chemistry observed in a series of entrained flow reactor (EFR) experiments using straw and wood as fuels. It was found that model #1 was not able to describe the observed influence of temperature on the deposit buildup rates, predicting a much...... differ in the description of the sticking probability of impacted particles: model #1 employs a reference viscosity in the description of the sticking probability, while model #2 combines impaction of viscoelastic particles on a solid surface with particle capture by a viscous surface. Both models were...

  13. Geological study on the metal flux and ore deposit formation in the ocean

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Se-Won; Lee, Sung-Rock; Choi, Hun-Soo [Korea Institute of Geology Mining and Materials, Taejon (KR)] (and others)

    1999-12-01

    The resource potential of the Mn-crusts is increasing by the growth of the world cobalt demand. Platinum and phosphate are also assumed to be recovered as well as cobalt, nickel, copper, and ferromanganese. The behaviour of the platinum group elements and the rare earth elements in the Mn-crust were reported in the previous studies, but the characteristics of the other rare elements were still not known in detail. Major, minor, and trace elements of the characteristic and representative 40 Mn-crust samples in the Pacific, Atlantic. and Indian Ocean were analyzed. Mn-crusts can be divided into three genetic types, such as, hydrogenetic type, hydrothermal type, and hydrothermal-hydrogenetic type. Te, Mo, Tl, Sb, Bi and etc. were enriched in general. And it is considered that such elements could be by-products in die Mn-crusts as well as economically important elements, such as Co, Ni, Mn, and Pt. The variation according to the genetic types and locations was observed. The chemical compositions of the each genetic type were also analyzed by the method of the Q-mode factor analysis. One objective of the Research voyage SAA3 (TAN 9909) was to conduct sea floor sampling and camera towing along the transacts across the known flow path of the Deep Western Boundary Current (DWBC) perpendicular to the lowermost margin of the Campbell Plateau and Bollons Seamount, primarily to collect Mn nodules. During the cruise, two successful camera and dredge transacts were completed. The first transect was located at the southern end of Leg 1 traversing the abyssal plain from the flank of Campbell Plateau through flow associated with the Antarctic Circumpolar Current and the overlying Subantarctic Front (SAF). The second was located at the northern end of Leg 2 traversing towards Bounty Platform through flow associated with the DWBC and the overlying SAF. As a result, from the 12 successful dredges, over 4000 manganese nodules, ranging in size from <2-40 cm, and cumulatively weighing

  14. Formation of patterned arrays of Au nanoparticles on SiC surface by template confined dewetting of normal and oblique deposited nanoscale films

    Energy Technology Data Exchange (ETDEWEB)

    Ruffino, F., E-mail: francesco.ruffino@ct.infn.it; Grimaldi, M.G.

    2013-06-01

    We report on the formation of patterned arrays of Au nanoparticles (NPs) on 6H SiC surface. To this end, we exploit the thermal-induced dewetting properties of a template confined deposited nanoscale Au film. In this approach, the Au surface pattern order, on the SiC substrate, is established by a template confined deposition using a micrometric template. Then, a dewetting process of the patterned Au film is induced by thermal processes. We compare the results, about the patterns formation, obtained for normal and oblique deposited Au films. We show that the normal and oblique depositions, through the same template, originate different patterns of the Au film. As a consequence of these different starting patterns, after the thermal processes, different patterns for the arrays of NPs originating from the dewetting mechanisms are obtained. For each fixed deposition angle α, the pattern evolution is analyzed, by scanning electron microscopy, as a function of the annealing time at 1173 K (900 °C). From these analyses, quantitative evaluations on the NPs size evolution are drawn. - Highlights: • Micrometric template-confined nanoscale gold films are deposited on silicon carbide. • The dewetting process of template-confined gold films on silicon carbide is studied. • Comparison of dewetting process of normal and oblique deposited gold films is drawn. • Patterned arrays of gold nanoparticles on silicon carbide surface are produced.

  15. Formation of patterned arrays of Au nanoparticles on SiC surface by template confined dewetting of normal and oblique deposited nanoscale films

    International Nuclear Information System (INIS)

    Ruffino, F.; Grimaldi, M.G.

    2013-01-01

    We report on the formation of patterned arrays of Au nanoparticles (NPs) on 6H SiC surface. To this end, we exploit the thermal-induced dewetting properties of a template confined deposited nanoscale Au film. In this approach, the Au surface pattern order, on the SiC substrate, is established by a template confined deposition using a micrometric template. Then, a dewetting process of the patterned Au film is induced by thermal processes. We compare the results, about the patterns formation, obtained for normal and oblique deposited Au films. We show that the normal and oblique depositions, through the same template, originate different patterns of the Au film. As a consequence of these different starting patterns, after the thermal processes, different patterns for the arrays of NPs originating from the dewetting mechanisms are obtained. For each fixed deposition angle α, the pattern evolution is analyzed, by scanning electron microscopy, as a function of the annealing time at 1173 K (900 °C). From these analyses, quantitative evaluations on the NPs size evolution are drawn. - Highlights: • Micrometric template-confined nanoscale gold films are deposited on silicon carbide. • The dewetting process of template-confined gold films on silicon carbide is studied. • Comparison of dewetting process of normal and oblique deposited gold films is drawn. • Patterned arrays of gold nanoparticles on silicon carbide surface are produced

  16. Formation of Ge dot or film in Ge/Si heterostructure by using sub-monolayer carbon deposition on top and in-situ post annealing

    Energy Technology Data Exchange (ETDEWEB)

    Itoh, Yuhki, E-mail: itoh.yuhki@ecei.tohoku.ac.jp; Hatakeyama, Shinji; Kawashima, Tomoyuki; Washio, Katsuyoshi

    2016-03-01

    Effects of carbon (C) atoms on solid-phase epitaxial growth of Ge on Si(100) have been studied. C and Ge layers were deposited on Si(100) substrates at low temperature (150–300 °C) by using solid-source molecular beam epitaxy (MBE) system and subsequently annealed at 650 °C in the MBE chamber. The surface morphology after annealing changed depending on deposited amounts of C and deposition temperature of Ge. Ge dots were formed for small amounts of C while smooth Ge films were formed by large amounts of C varying with the Ge deposition temperature. The surface morphology after annealing was also affected by the as-deposited Ge crystallinity. The change in surface morphology depending on the amounts of deposited C was considered to be affected by the formation of Ge–C bonds which relieved the misfit strain between Ge and Si. The crystallinity of Ge deteriorated with increasing C coverage due to the incorporation of insoluble C atoms in the shape of both dots and films. - Highlights: • Effects of carbon on solid-phase epitaxy of C/Ge/Si(100) were studied. • Surface morphology changed depending on C amounts and Ge deposition temperature. • Solid-phase growth of Ge changed from large dots to smooth films with C coverage. • Transition of surface morphology was affected by the formation of Ge–C bonds.

  17. Sedimentological a