WorldWideScience

Sample records for depolarized electrolyzer sde

  1. CRADA Final Report For CRADA NO. CR-12-006 [Operation and Testing of an SO2-depolarized Electrolyzer (SDE) for the Purpose of Hydrogen and Sulfuric Acid Production

    International Nuclear Information System (INIS)

    Summers, W. A.; Colon-Mercado, H. R.; Steimke, J. L.; Zahn, Steffen

    2014-01-01

    Over the past several years, Savannah River National Laboratory (SRNL) has led a team of collaborators under the Department of Energy's (DOE) nuclear hydrogen production program to develop the Hybrid Sulfur (HyS) Process. HyS is a 2-step water-splitting process consisting of high temperature decomposition of sulfuric acid to generate SO 2 , followed by the electrolysis of aqueous SO 2 to generate hydrogen and sulfuric acid. The latter is fed back into the high temperature reactor. SRNL designed and built an SO 2 -depolarized electrolyzer (SDE) and a test facility. Over 40 SDE's were tested using different catalysts, membranes and other components. SRNL demonstrated that an SDE could be operated continuously for approximately 200 hours under certain conditions without buildup of sulfur at the SDE's cathode, thus solving a key technical problem with SDE technology. Air Products and Chemicals, Inc. (APCI) is a major supplier of hydrogen production systems, and they have proprietary technology that could benefit from the SDE developed by SRNS, or some improved version thereof. However, to demonstrate that SRNL's SDE is a truly viable approach to the electrolyzer design, continuous operation for far greater periods of time than 200 hours must be demonstrated, and the electrolyzer must be scaled up to greater hydrogen production capacities. SRNL and Air Products entered into a Cooperative Research and Development Agreement with the objective of demonstrating the effectiveness of the SDE for hydrogen and sulfuric acid production and to demonstrate long-term continuous operation so as to dramatically increase the confidence in the SDE design for commercial operation. SRNL prepared a detailed technical report documenting previous SDE development, including the current SDE design and operating conditions that led to the 200-hour sulfurfree testing. SRNL refurbished its single cell SDE test facility and qualified the equipment for continuous operation. A new membrane

  2. CRADA Final Report For CRADA NO. CR-12-006 [Operation and Testing of an SO2-depolarized Electrolyzer (SDE) for the Purpose of Hydrogen and Sulfuric Acid Production

    Energy Technology Data Exchange (ETDEWEB)

    Summers, W. A. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Colon-Mercado, H. R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Steimke, J. L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Zahn, Steffen [Air Products and Chemicals, Inc., Allentown, PA (United States)

    2014-02-24

    Over the past several years, Savannah River National Laboratory (SRNL) has led a team of collaborators under the Department of Energy’s (DOE) nuclear hydrogen production program to develop the Hybrid Sulfur (HyS) Process. HyS is a 2-step water-splitting process consisting of high temperature decomposition of sulfuric acid to generate SO2, followed by the electrolysis of aqueous SO2 to generate hydrogen and sulfuric acid. The latter is fed back into the high temperature reactor. SRNL designed and built an SO2-depolarized electrolyzer (SDE) and a test facility. Over 40 SDE’s were tested using different catalysts, membranes and other components. SRNL demonstrated that an SDE could be operated continuously for approximately 200 hours under certain conditions without buildup of sulfur at the SDE’s cathode, thus solving a key technical problem with SDE technology. Air Products and Chemicals, Inc. (APCI) is a major supplier of hydrogen production systems, and they have proprietary technology that could benefit from the SDE developed by SRNS, or some improved version thereof. However, to demonstrate that SRNL’s SDE is a truly viable approach to the electrolyzer design, continuous operation for far greater periods of time than 200 hours must be demonstrated, and the electrolyzer must be scaled up to greater hydrogen production capacities. SRNL and Air Products entered into a Cooperative Research and Development Agreement with the objective of demonstrating the effectiveness of the SDE for hydrogen and sulfuric acid production and to demonstrate long-term continuous operation so as to dramatically increase the confidence in the SDE design for commercial operation. SRNL prepared a detailed technical report documenting previous SDE development, including the current SDE design and operating conditions that led to the 200-hour sulfurfree testing. SRNL refurbished its single cell SDE test facility and qualified the equipment for

  3. SDE Plus, SDE and MEP. Annual review 2012; SDE+, SDE en MEP. Jaarbericht 2012

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-05-15

    This annual report describes the applications for SDE subsidy (renewable energy support scheme) in the period 2008-2012, the new SDE Plus which starts in 2013, and the MEP transition scheme (MEP stands for 'Environmental quality of electricity production', predecessor of SDE for the period 2003-2006) and applications from the MEP scheme [Dutch] Het jaarbericht 2012 voor de SDE+, SDE en MEP presenteert de resultaten van de regeling Stimulering Duurzame Energieproductie (SDE+ vanaf 2013 en SDE, 2008-2012) en de voorganger van de SDE, de subsidieregeling Milieukwaliteit van de Elektriciteitsproductie.

  4. SDE with a future; SDE met toekomst

    Energy Technology Data Exchange (ETDEWEB)

    Dieperink, M.A.M. [Houthoff Buruma, Amsterdam (Netherlands)

    2012-11-15

    In 2020, 14% of gross final energy consumption needs to have been generated from renewable sources. To realize this target, market parties in particular need to realize new production installations for renewable energy. Support from the Dutch government is (still) essential in this endeavour. The renewable energy production is therefore subsidized through the Dutch SDE+ scheme (Support scheme for the production of renewable energy). In 2012, 1.7 billion euro was made available for SDE. The SDE subsidy may be insufficient to realize the 14% target. For this reason options for improving the SDE scheme are explored. Moreover substantiation is provided of the benefits SDE offers compared to a supplier obligation. The examples used in this article are limited to PV panels and offshore and onshore wind turbine farms [Dutch] In 2020 moet 14% van het bruto eindgebruik van energie afkomstig zijn van hernieuwbare energiebronnen. Om deze doelstelling te halen, dienen vooral marktpartijen nieuwe productie-installaties voor hernieuwbare energie te realiseren. Overheidsondersteuning is daarbij (nog) essentieel. De hernieuwbare-energieproductie wordt daarom gesubsidieerd op grond van de SDE+-regeling (Stimuleringsregeling Duurzame Energie. In 2012 is daarvoor EUR 1,7 miljard beschikbaar gesteld. De SDE is mogelijk ontoereikend om de 14%-doelstelling te behalen. Om die reden wordt verkend hoe de SDE kan worden verbeterd. Daarnaast wordt onderbouwd welke voordelen de SDE heeft ten opzichte van een leveranciersverplichting. De voorbeelden in dit artikel zijn beperkt tot fotovoltaische zonnepanelen en offshore en onshore windturbineparken.

  5. Study on in-situ electrochemical impedance spectroscopy measurement of anodic reaction in SO_2 depolarized electrolysis process

    International Nuclear Information System (INIS)

    Xue Lulu; Zhang Ping; Chen Songzhe; Wang Laijun

    2014-01-01

    SO_2 depolarized electrolysis (SDE) is the pivotal reaction in hybrid sulfur process, one of the most promising approaches for mass hydrogen production without CO_2 emission. The net result of hybrid sulfur process is to split water into hydrogen and oxygen at a relatively low voltage, which will dramatically decrease the energy consumption for the production of hydrogen. The potential loss of SDE process could be separated into four components, i.e. reversible cell potential, anode overpotential, cathode overpotential and ohmic loss. So far, it has been identified that the total cell potential for the SO_2 depolarized electrolyzer is dominantly controlled by sulfuric acid concentration of the anolyte and electrolysis temperature of the electrolysis process. In this work, an in-situ Electrochemical Impedance Spectroscopy (EIS) measurement of the anodic SDE reaction was conducted. Results show that anodic overpotential is mainly resulted from the SO_2 oxidation reaction other than ohmic resistance or mass transfer limitation. This study extends the understanding to SDE process and gives suggestions for the further improvement of the SDE performance. (author)

  6. Final Report for project titled "New fluoroionomer electrolytes with high conductivity and low SO2 crossover for use in electrolyzers being developed for hydrogen production from nuclear power plants"

    Energy Technology Data Exchange (ETDEWEB)

    Dennis W. Smith; Stephen Creager

    2012-09-13

    Thermochemical water splitting cycles, using the heat of nuclear power plants, offer an alternate highly efficient route for the production of hydrogen. Among the many possible thermochemical cycles for the hydrogen production, the sulfur-based cycles lead the competition in overall energy efficiency. A variant on sulfur-based thermochemical cycles is the Hybrid Sulfur (HyS) Process, which uses a sulfur dioxide depolarized electrolyzer (SDE) to produce hydrogen. The Savannah River National Laboratory (SRNL) selected the fuel cell MEA design concept for the SDE in the HyS process since the MEA concept provides a much smaller cell footprint than conventional parallel plate technology. The electrolyzer oxidizes sulfur dioxide to form sulfuric acid at the anode and reduces protons to form hydrogen at the cathode. The overall electrochemical cell reaction consists of the production of H{sub 2}SO{sub 4} and H{sub 2}. There is a significant need to provide the membrane materials that exhibit reduced sulfur dioxide transport characteristics without sacrificing other important properties such as high ionic conductivity and excellent chemical stability in highly concentrated sulfuric acid solutions saturated with sulfur dioxide. As an alternative membrane, sulfonated Perfluorocyclobutyl aromatic ether polymer (sPFCB) were expected to posses low SO2 permeability due to their stiff backbones as well as high proton conductivity, improved mechanical properties. The major accomplishments of this project were the synthesis, characterizations, and optimizations of suitable electrolyzers for good SDE performance and higher chemical stability against sulfuric acid. SDE performance results of developed sPFCB polyelectrolytes have shown that these membranes exhibit good chemical stability against H{sub 2}SO{sub 4}.

  7. SDE seisab uute põlevkivikaevanduste vastu / Piret Pert

    Index Scriptorium Estoniae

    Pert, Piret

    2006-01-01

    SDE tutvustas pressikonverentsil oma keskkonnapoliitilisi seisukohti. Sotsiaaldemokraadid on vastu uute põlevkivikaevanduste avamisele enne olemasolevate ammendumist, SDE eelnõu kohaselt tuleks uute kaevanduste avamiste kava kinnitamisele Riigikogus

  8. SDE võttis vastu valimisprogrammi / Piret Pert

    Index Scriptorium Estoniae

    Pert, Piret

    2006-01-01

    Peeter Kreitzbergi sõnul on sotsiaaldemokraatidele oluline võitlus korruptsiooni, sundparteistamise ja raha võimuga. SDE esimees Ivari Padar nimetas SDE eesmärgina hooliva ja elamisväärse Eesti. Valdkondadest, millele keskendub SDE valimisprogramm

  9. SDE based regression for random PDEs

    KAUST Repository

    Bayer, Christian

    2016-01-01

    A simulation based method for the numerical solution of PDE with random coefficients is presented. By the Feynman-Kac formula, the solution can be represented as conditional expectation of a functional of a corresponding stochastic differential equation driven by independent noise. A time discretization of the SDE for a set of points in the domain and a subsequent Monte Carlo regression lead to an approximation of the global solution of the random PDE. We provide an initial error and complexity analysis of the proposed method along with numerical examples illustrating its behaviour.

  10. SDE based regression for random PDEs

    KAUST Repository

    Bayer, Christian

    2016-01-06

    A simulation based method for the numerical solution of PDE with random coefficients is presented. By the Feynman-Kac formula, the solution can be represented as conditional expectation of a functional of a corresponding stochastic differential equation driven by independent noise. A time discretization of the SDE for a set of points in the domain and a subsequent Monte Carlo regression lead to an approximation of the global solution of the random PDE. We provide an initial error and complexity analysis of the proposed method along with numerical examples illustrating its behaviour.

  11. High Pressure Electrolyzer System Evaluation

    Science.gov (United States)

    Prokopius, Kevin; Coloza, Anthony

    2010-01-01

    This report documents the continuing efforts to evaluate the operational state of a high pressure PEM based electrolyzer located at the NASA Glenn Research Center. This electrolyzer is a prototype system built by General Electric and refurbished by Hamilton Standard (now named Hamilton Sunstrand). It is capable of producing hydrogen and oxygen at an output pressure of 3000 psi. The electrolyzer has been in storage for a number of years. Evaluation and testing was performed to determine the state of the electrolyzer and provide an estimate of the cost for refurbishment. Pressure testing was performed using nitrogen gas through the oxygen ports to ascertain the status of the internal membranes and seals. It was determined that the integrity of the electrolyzer stack was good as there were no appreciable leaks in the membranes or seals within the stack. In addition to the integrity testing, an itemized list and part cost estimate was produced for the components of the electrolyzer system. An evaluation of the system s present state and an estimate of the cost to bring it back to operational status was also produced.

  12. COMPONENT DEVELOPMENT NEEDS FOR THE HYBRID SULFUR ELECTROLYZER

    Energy Technology Data Exchange (ETDEWEB)

    Hobbs, D; Hector Colon-Mercado, H; Mark Elvington, M

    2008-05-30

    , the kinetic activity decreases. We recommend further testing to determine if these binary alloys will provide the increased reaction kinetic needed to meet the targets. We also plan to test the performance of these catalyst materials for both proton and sulfur dioxide reduction. The latter may provide another parameter by which we can control the reduction of sulfur dioxide upon transport to the cathode catalyst surface. A small scale electrolyzer (2 cm{sup 2}) has been fabricated and successfully installed as an additional tool to evaluate the effect of different operating conditions on electrolyzer and MEA performance. Currently this electrolyzer is limited to testing at temperatures up to 80 C and at atmospheric pressure. Selected electrochemical performance data from the single cell sulfur dioxide depolarized electrolyzer were analyzed with the aid of an empirical equation which takes into account the overpotential of each of the components. By using the empirical equation, the performance data was broken down into its components and a comparison of the potential losses was made. The results indicated that for the testing conditions of 80 C and 30 wt% sulfuric acid, the major overpotential contribution ({approx}70 % of all losses) arise from the slow reaction rate of oxidation of sulfur dioxide. The results indicate that in order to meet the target of hydrogen production at 0.5 A/cm{sup 2} at 0.6 V and 50 wt% sulfuric acid, identification of a better catalyst for sulfur dioxide oxidation will provide the largest gain in electrolyzer performance.

  13. Supplementary advise for geothermal energy in the SDE+ 2013 (Dutch Renewable Energy Scheme); Aanvullend advies geothermie in SDE+ 2013

    Energy Technology Data Exchange (ETDEWEB)

    Lako, P.; Luxembourg, S.L.; Lensink, S.M. [ECN Policy Studies, Petten (Netherlands); In ' t Groen, B. [DNV KEMA, Arnhem (Netherlands)

    2012-12-11

    This memo answers questions from the Ministry of Economic Affairs to ECN and DNV KEMA on the support for geothermal energy projects in the SDE+ 2013 [Dutch] Deze notitie beantwoordt vragen die het Ministerie van Economische Zaken (EZ) aan ECN en DNV KEMA gesteld heeft over de ondersteuning van geothermieprojecten in de SDE+ 2013. De beantwoording van de vragen is in het licht te zien van voorkoming van overstimulering en beperking van overreservering van middelen door de SDE+. Het advies in deze notitie is een aanvulling op het advies op de basisbedragen SDE+ 2013 dat geconsulteerd is met de sector. Na dit advies heeft EZ gevraagd naar de mogelijkheden voor het maximeren van het maximaal subsidiabele productievermogen en de wenselijkheid om de hoogte van de SDE+-subsidie te laten afhangen van het projectvermogen en de potentie van een referentie-installatie voor geothermische warmteopwekking op grote diepte. ECN en DNV KEMA adviseren de SDE+-ondersteuning voor geothermische warmte open te stellen voor grotere projectvermogens dan het vermogen van de referentie-installatie uit het advies voor de basisbedragen 2013.

  14. Electrolyzer assembly method and system

    Energy Technology Data Exchange (ETDEWEB)

    Swala, Dana Ray; Bourgeois, Richard Scott; Paraszczak, Steven; Buckley, Donald Joseph

    2017-05-23

    The present techniques provide a novel electrolyzer and methods for welding components of such electrolyzers. The techniques may use conductors, such as resistance wires, placed in paths around the internal structural features and edges of the components. The conductors may be incorporated into the components during manufacture by injection molding, or other molding techniques, or may be tacked or otherwise applied to the surface of the components after manufacture. When current, a field or other excitation is applied to the conductors, the plastic surrounding the wire is melted. If this plastic is in direct contact with an adjoining component, a strong, hermetic seal may be formed between the two components, including the internal structural features.

  15. Effect of a Green Investment Society on the Dutch Renewable Energy Scheme (SDE); Effect Groene Investeringsmaatschappij op SDE

    Energy Technology Data Exchange (ETDEWEB)

    Lensink, S.M.; Van Stralen, J. [ECN Beleidsstudies, Petten (Netherlands)

    2012-11-27

    On request of the Holland Financial Centre, ECN has projected the potential benefits of a Green Investment Company for the expenditure of the SDE+ Scheme (Renewable Energy Incentivisation Scheme). To this end, a calculation was made of the effects of an interest rebate for sustainable energy projects [Dutch] Op verzoek van Holland Financial Centre heeft ECN geraamd wat de voordelen kunnen zijn van een Groene Investeringsmaatschappij op de uitgaven voor de SDE+ (Stimuleringsregeling Duurzame Energie). Hiertoe diende een berekening gemaakt te worden van de effecten van een rentekorting voor duurzame energieprojecten.

  16. Base rates in the SDE Plus Scheme 2013 (Dutch Renewable Energy Scheme). Final recommendation; Basisbedragen in de SDE+ 2013. Eindadvies

    Energy Technology Data Exchange (ETDEWEB)

    Lensink, S.M.; Mozaffarian, M.; Luxembourg, S.L. [ECN Policy Studies, Petten (Netherlands); Wassenaar, J.A.; Faasen, C.J. [DNV KEMA, Arnhem (Netherlands)

    2012-09-15

    On assignment of the Dutch Ministry of Economic Affairs, Agriculture and Innovation, ECN and DNV KEMA have studied the cost of renewable energy production. This cost assessment for various categories is part of an advice on the subsidy base for the feed-in support scheme SDE+. This report contains the advice on the cost of projects in the Netherlands targeted for realization in 2013. The advice covers technologies for the production of green gas, biogas, renewable electricity and renewable heat [Dutch] Het Ministerie van Economische Zaken, Landbouw en Innovatie (ELI) heeft aan ECN en DNV KEMA advies gevraagd over de hoogte van de basisbedragen in het kader van de SDE+-regeling voor 2013. Dit rapport bevat het eindadvies over de basisbedragen. Evenals bij vergelijkbare onderzoeken in voorgaande jaren, hebben ECN en DNV KEMA in overleg met het ministerie gekozen om de markt te consulteren over het voorgenomen advies. ECN en DNV KEMA adviseren het ministerie over de hoogte van de basisbedragen voor door het ministerie voorgeschreven categorieën. De Minister van ELI beslist over de openstelling van de SDE+-regeling in 2013, de open te stellen categorieen en de basisbedragen voor nieuwe SDE+-beschikkingen in 2013. De uitgangspunten van het advies, zoals opdracht en rekenmethodiek, staan genoemd in Hoofdstuk 2. In Hoofdstuk 3 wordt ingegaan op de werkwijze en randvoorwaarden, zoals flankerend beleid en financiële uitgangspunten. De feed-in-premiestructuur van de SDE+ wordt toegelicht in Hoofdstuk 4. De prijsontwikkelingen voor elektriciteit, gas en biomassa worden toelicht in Hoofdstuk 5. Hoofdstuk 6 geeft per categorie een overzicht van de technisch-economische parameters van de hernieuwbare-energieopties. Hoofdstuk 7 besluit met conclusies waarbij de vertaalslag naar basisbedragen gemaakt is.

  17. Electrolyzers Enhancing Flexibility in Electric Grids

    Directory of Open Access Journals (Sweden)

    Manish Mohanpurkar

    2017-11-01

    Full Text Available This paper presents a real-time simulation with a hardware-in-the-loop (HIL-based approach for verifying the performance of electrolyzer systems in providing grid support. Hydrogen refueling stations may use electrolyzer systems to generate hydrogen and are proposed to have the potential of becoming smarter loads that can proactively provide grid services. On the basis of experimental findings, electrolyzer systems with balance of plant are observed to have a high level of controllability and hence can add flexibility to the grid from the demand side. A generic front end controller (FEC is proposed, which enables an optimal operation of the load on the basis of market and grid conditions. This controller has been simulated and tested in a real-time environment with electrolyzer hardware for a performance assessment. It can optimize the operation of electrolyzer systems on the basis of the information collected by a communication module. Real-time simulation tests are performed to verify the performance of the FEC-driven electrolyzers to provide grid support that enables flexibility, greater economic revenue, and grid support for hydrogen producers under dynamic conditions. The FEC proposed in this paper is tested with electrolyzers, however, it is proposed as a generic control topology that is applicable to any load.

  18. Neutron Depolarization in Superconductors

    Science.gov (United States)

    Zhuchenko, N. K.

    1995-04-01

    The dependences of neutron depolarization on applied magnetic field are deduced along the magnetization hysteresis loop in terms of the Bean model of the critical state. The depolarization in uniaxial superconductors with the reversible magnetization, including uniaxial magnetic superconductors, is also considered. A strong depolarization is expected if the neutrons travel along the vortex lines. On calcule la dépendance en champ magnétique de la dépolarisation des neutrons le long du cycle d'hystérésis en termes du modèle critique de Bean. On considère aussi la dépolarisation dans les supraconducteurs uniaxiaux en fonction de l'aimantation réversible, y compris pour les supraconducteurs magnétiques. On attend une forte dépolarisation si les neutrons se propagent le long des vortex.

  19. Identification of ecosystem parameters by SDE-modelling

    DEFF Research Database (Denmark)

    Stochastic differential equations (SDEs) for ecosystem modelling have attracted increasing attention during recent years. The modelling has mostly been through simulation experiments in order to analyse how system noise propagates through the ordinary differential equation formulation of ecosystem...... models. Estimation of parameters in SDEs is, however, possible by combining Kalman filter techniques and likelihood estimation. By modelling parameters as random walks it is possible to identify linear as well as non-linear interactions between ecosystem components. By formulating a simple linear SDE...

  20. Base rates in the SDE Plus Scheme 2014 (Dutch Renewable Energy Scheme). Final recommendation; Basisbedragen in de SDE+ 2014. Eindadvies

    Energy Technology Data Exchange (ETDEWEB)

    Lensink, S.M. (ed.)

    2013-09-15

    On assignment of the Dutch Ministry of Economic Affairs, ECN and DNV KEMA have studied the cost of renewable electricity production. This cost assessment for various categories is part of advice on the subsidy base rates for the feed-in support scheme SDE+. This report contains the advice on the cost of projects in the Netherlands targeted for realization in 2014, covering installation technologies for the production of green gas, biogas, renewable electricity and renewable heat. A draft version of this advice has been discussed with the market in an open consultation round [Dutch] Het Ministerie van Economische Zaken (EZ) heeft aan ECN en DNV KEMA advies gevraagd over de hoogte van de basisbedragen in het kader van de SDE+-regeling voor 2014. Evenals bij vergelijkbare onderzoeken in voorgaande jaren hebben ECN en DNV KEMA er in overleg met het ministerie voor gekozen om een conceptadvies aan de markt voor te leggen. In de maand juni is de markt geconsulteerd. Dit rapport betreft het eindadvies, waarin de inbreng van de marktpartijen naar inzicht van ECN en DNV KEMA is meegewogen. ECN en DNV KEMA adviseren het ministerie over de hoogte van de basisbedragen voor door het ministerie voorgeschreven categorieen. De Minister van EZ beslist over de openstelling van de SDE+-regeling in 2014, de open te stellen categorieen en de basisbedragen voor nieuwe SDE+-beschikkingen in 2014. Het proces staat beschreven in Hoofdstuk 2. Hoofdstuk 3 behandelt de prijsontwikkelingen voor elektriciteit, gas en biomassa. Hoofdstuk 4 geeft per categorie een overzicht van de technisch-economische parameters van de hernieuwbare-energieopties. Hoofdstuk 5 besluit met conclusies waarbij de vertaalslag naar basisbedragen gemaakt is aan de hand van beknopt beschreven financiele parameters.

  1. Application of neutral electrolyzed water to disinfection of alginate impression.

    Science.gov (United States)

    Nagamatsu, Yuki; Chen, Ker-Kong; Nagamatsu, Hiroshi; Kozono, Yoshio; Shimizu, Hiroshi

    2016-01-01

    Neutral electrolyzed water was developed with new concepts of long-term good durability and minimum corrosiveness to metal in addition to its excellent bactericidal activities similar to acid type of electrolyzed waters. The present study examined the bactericidal effects of the neutral electrolyzed water on disinfection of the alginate impression of a dental arch model contaminated by bacteria. Only 1-min immersion in neutral electrolyzed water could sufficiently disinfect the alginate impression including the metallic tray under ultrasonic with no significant differences from acid electrolyzed waters. No bactericidal effects were found in any electrolyzed water when used as mixing water. Considering the advantages and disadvantages of each electrolyzed water in a comprehensive way, it was suggested that neutral electrolyzed water may be the most appropriate for the disinfection of alginate impression.

  2. The self-disproportionation of enantiomers (SDE): a menace or an opportunity?

    Science.gov (United States)

    Han, Jianlin; Kitagawa, Osamu; Wzorek, Alicja; Klika, Karel D; Soloshonok, Vadim A

    2018-02-21

    Herein we report on the well-documented, yet not widely known, phenomenon of the self-disproportionation of enantiomers (SDE): the spontaneous fractionation of scalemic material into enantioenriched and -depleted fractions when any physicochemical process is applied. The SDE has implications ranging from the origins of prebiotic homochirality to unconventional enantiopurification methods, though the risks of altering the enantiomeric excess (ee) unintentionally, regrettably, remain greatly unappreciated. While recrystallization is well known as an SDE process, occurrences of the SDE in other processes are much less recognized, e.g. sublimation and even distillation. But the most common process that many workers seem to be completely ignorant of is SDE via chromatography and reports have included all manner of structures, all types of interactions, and all forms of chromatography, including GC. The SDE can be either a blessing - as a means to obtain enantiopure samples from scalemates - or a curse, as unwitting alteration of the ee leads to errors in the reporting of results and/or misinterpretation of the system under study. Thus the ramifications of the SDE are relevant to any area involving chirality - natural products, asymmetric synthesis, etc. Moreover, there is grave concern regarding errors in the literature, in addition to the possible occurrence of valid results which may have been overlooked and thus remain unreported, as well as the potential for the SDE to alter the ee, particularly via chromatography, and the following concepts will be conveyed: (1) the SDE occurs under totally achiral conditions of (a) precipitation, (b) centrifugation, (c) evaporation, (d) distillation, (e) crystallization, (f) sublimation, and (g) achiral chromatography ( e.g. column, flash, MPLC, HPLC, SEC, GC, etc. ). (2) The SDE cannot be controlled simply by experimental accuracy and ignorance of the SDE unavoidably leads to mistakes in the recorded and reported stereochemical

  3. Pressure Dome for High-Pressure Electrolyzer

    Science.gov (United States)

    Norman, Timothy; Schmitt, Edwin

    2012-01-01

    A high-strength, low-weight pressure vessel dome was designed specifically to house a high-pressure [2,000 psi (approx. = 13.8 MPa)] electrolyzer. In operation, the dome is filled with an inert gas pressurized to roughly 100 psi (approx. = 690 kPa) above the high, balanced pressure product oxygen and hydrogen gas streams. The inert gas acts to reduce the clamping load on electrolyzer stack tie bolts since the dome pressure acting axially inward helps offset the outward axial forces from the stack gas pressure. Likewise, radial and circumferential stresses on electrolyzer frames are minimized. Because the dome is operated at a higher pressure than the electrolyzer product gas, any external electrolyzer leak prevents oxygen or hydrogen from leaking into the dome. Instead the affected stack gas stream pressure rises detectably, thereby enabling a system shutdown. All electrical and fluid connections to the stack are made inside the pressure dome and require special plumbing and electrical dome interfaces for this to be accomplished. Further benefits of the dome are that it can act as a containment shield in the unlikely event of a catastrophic failure. Studies indicate that, for a given active area (and hence, cell ID), frame outside diameter must become ever larger to support stresses at higher operating pressures. This can lead to a large footprint and increased costs associated with thicker and/or larger diameter end-plates, tie-rods, and the frames themselves. One solution is to employ rings that fit snugly around the frame. This complicates stack assembly and is sometimes difficult to achieve in practice, as its success is strongly dependent on frame and ring tolerances, gas pressure, and operating temperature. A pressure dome permits an otherwise low-pressure stack to operate at higher pressures without growing the electrolyzer hardware. The pressure dome consists of two machined segments. An O-ring is placed in an O-ring groove in the flange of the bottom

  4. USE OF ELECTROLYZED WATER IN ANIMAL PRODUCTION

    Directory of Open Access Journals (Sweden)

    Dana Jirotková

    2012-10-01

    Full Text Available The paper deals with the possibility to use the properties of electrolyzed water to disinfect breeding halls and to water animals. The aim of the research was to find out whether elektrolyzed water used for desinfication of breedings hall and watering of animals influences selected indicators of the meat quality. Electrolyzed water is produced in a patent-protected device Envirolyte that produces biocide solution using potable water with added NaCl. The technology of production guarantees the product is entirely ecological, biologically fully degradable, non-toxic that can replace traditional chemical agents. Possibilities of disinfection using this solution have been verified directly in stables at the interval of 20, 40, 60 min. after application. Staphylococci and streptococci and enterococci were inactive always after 60 minutes of effect. There was significant decrease in the number of total number of microorganisms. Further, the solution of electrolyzed water was used to water poultry; and the affect on some of the properties of poultry meat, changes in pH, colour and loss of water (dripping in particular, was observed. Testing was carried out under working conditions in two breeding halls at a time and the technology of electrolyzed water to disinfect premises and to water chickens was used in one of the halls. When the chickens were slaughter mature, the poultry was slaughtered at the standard slaughterhouse and samples (127 pieces were taken in order to measure pH, colour and loss of water (dripping. The values of pH, colour and loss of water (dripping ascertained, processed by the T-test did not confirm the hypothesis of the assumed possible differences in occurrence of critical values of these indicators in both groups observed.

  5. Novel Electrolyzer Applications: Providing More Than Just Hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Eichman, J.; Harrison, K.; Peters, M.

    2014-09-01

    Hydrogen can be used for many different applications and can be integrated into many different system architectures. One of the methods for producing the hydrogen is to use an electrolyzer. This work explores the flexibility of electrolyzers to behave as responsive loads. Experimental tests were performed for a proton exchange membrane (PEM) and an alkaline electrolyzer to assess the operational flexibility of electrolyzers to behave as responsive loads. The results are compared to the operational requirements to participate in end-user facility energy management, transmission and distribution system support, and wholesale electricity market services. Electrolyzers begin changing their electricity demand within milliseconds of a set-point change. The settling time after a set-point change is on the order of seconds. It took 6.5 minutes for the PEM unit to execute a cold start and 1 minute to turn off. In addition, a frequency disturbance correction test was performed and electrolyzers were able to accelerate the speed that the grid frequency can be restored. Electrolyzers acting as demand response devices can respond sufficiently fast and for a long enough duration to participate in all of the applications explored. Furthermore, electrolyzers can be operated to support a variety of applications while also providing hydrogen for industrial processes, transportation fuel, or heating fuel. Additionally, favorable operating properties and a variety of potential system architectures showcase the flexibility of electrolyzer systems.

  6. Superconductor made by electrolyzed and oxidized water

    OpenAIRE

    Liu, Chia-Jyi; Wu, Tsung-Hsien; Hsu, Lin-Li; Wang, Jung-Sheng; Chen, Shu-Yo; Chang, Wei Jen; Lin, Jiunn-Yuan

    2006-01-01

    By deintercalation of Na+ followed by inserting bilayers of water molecules into the host lattice, the layered cobalt oxide of gamma-Na0.7CoO2 undergoes a topotactic transformation to a layered cobalt oxyhydrate of Na0.35(H2O)1.3CoO2-delta with the c-axis expanded from c = 10.9 anstrom to c = 19.6 anstrom. In this paper, we demonstrate that the superconducting phase of c = 19.6 anstrom can be directly obtained by simply immersing gamma-Na0.7CoO2 powders in electrolyzed/oxidized (EO) water, wh...

  7. SDE and SPME Analysis of Flavor Compounds in Jin Xuan Oolong Tea.

    Science.gov (United States)

    Sheibani, Ershad; Duncan, Susan E; Kuhn, David D; Dietrich, Andrea M; O'Keefe, Sean F

    2016-02-01

    Simultaneous distillation-extraction (SDE) and solid phase micro extraction (SPME) are procedures used for the isolation of flavor compounds in foods. The purpose of this study was to optimize SDE conditions (solvent and time) and to compare SDE with SPME for the isolation of flavor compounds in Jin Xuan oolong tea using GC-MS and GC-O. The concentration of volatile compounds isolated with diethyl ether was higher (P < 0.05) than for dichloromethane and concentration was higher at 40 min (P < 0.05) than 20 or 60 min extractions. For SDE, 128 volatiles were identified using GC-MS and 45 aroma active compounds using GC-O. Trans-nerolidol was the most abundant compound in oolong tea. The number of volatiles identified using GC-MS was lower in SPME than SDE. For SPME, 59 volatiles and 41 aroma active compounds were identified. The composition of the volatiles isolated by the 2 methods differed considerably but provided complementary information. © 2016 Institute of Food Technologists®

  8. Development of device producing electrolyzed water for home care

    International Nuclear Information System (INIS)

    Umimoto, K; Nagata, S; Yanagida, J

    2013-01-01

    When water containing ionic substances is electrolyzed, electrolyzed water with strong bactericidal ability due to the available chlorine(AC) is generated on the anode side. Slightly acidic to neutral electrolyzed water (pH 6.5 to 7.5) is physiological pH and is suitable for biological applications. For producing slightly acidic to neutral electrolyzed water simply, a vertical-type electrolytic tank with an asymmetric structure was made. As a result, a small amount of strongly alkaline water was generated in the upper cathodic small chamber, and a large amount of weakly acidic water generated in the lower anodic large chamber. The pH and AC concentration in solutin mixed with both electrolyzed water were 6.3 and 39.5 ppm, respectively, This solution was slightly acidic to neutral electrolyzed water and had strong bactericidal activity. This device is useful for producing slightly acidic to neutral electrolyzed water as a disinfectant to employ at home care, when considering economic and environmental factors, since it returns to ordinary water after use.

  9. Hydrodynamic analysis and simulation of a flow cell ammonia electrolyzer

    International Nuclear Information System (INIS)

    Diaz, Luis A.; Botte, Gerardine G.

    2015-01-01

    Highlights: • NH_3 electrooxidation mechanism was validated in a bench scale electrolyzer. • All kinetic parameters for NH_3 electro-oxidation were calculated and verified. • Hydrodynamic behavior of the NH_3 electrolyzer was properly described as a CSTR. • CSTR model was successfully applied to simulate a flow ammonia electrolyzer. - Abstract: The hydrodynamic analysis and simulation of a non-ideal single pass flow cell alkaline ammonia electrolyzer was performed after the scale-up of a well-characterized deposited polycrystalline Pt on Ni anode. The hydrodynamic analysis was performed using the residence time distribution (RTD) test. The results of the hydrodynamic investigation provide additional insights for the kinetic analysis of the ammonia electrooxidation reaction on polycrystalline Pt electrocatalysts -which are typically obtained under controlled flow regime, e.g., rotating disk electrode- by including the flow non-uniformity present in the electrolyzer. Based on the RTD function, the ammonia electrolyzer performance was simulated as a non-steady stirred tank reactor (CSTR) and the unknown kinetic parameters were obtained by fitting the simulation results with an experimental current profile, obtaining an adequate prediction of the ammonia conversion. This simplified approach for the simulation of the ammonia electrolyzer could be implemented in process simulation packages and could be used for the design and scale-up of the process for hydrogen production and wastewater remediation.

  10. Universal cell frame for high-pressure water electrolyzer and electrolyzer including the same

    Science.gov (United States)

    Schmitt, Edwin W.; Norman, Timothy J.

    2013-01-08

    Universal cell frame generic for use as an anode frame and as a cathode frame in a water electrolyzer. According to one embodiment, the universal cell frame includes a unitary annular member having a central opening. Four trios of transverse openings are provided in the annular member, each trio being spaced apart by about 90 degrees. A plurality of internal radial passageways fluidly interconnect the central opening and each of the transverse openings of two diametrically-opposed trios of openings, the other two trios of openings lacking corresponding radial passageways. Sealing ribs are provided on the top and bottom surfaces of the annular member. The present invention is also directed at a water electrolyzer that includes two such cell frames, one being used as the anode frame and the other being used as the cathode frame, the cathode frame being rotated 90 degrees relative to the anode frame.

  11. Advanced Oxygen Evolution Catalysts for PEM Electrolyzers, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Future NASA missions require high efficiency, lightweight, long life, and maintenance-free water electrolyzer technologies to generate oxygen and/or hydrogen for...

  12. Electrolyzer for NASA Lunar Regenerative Fuel Cells, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Water electrolyzer stacks are a key component of regenerative fuel cells, designed to replace batteries as a means of storing electric energy on the lunar surface....

  13. Effect of electrolyzed reduced water on malondialdehyde levels and ...

    African Journals Online (AJOL)

    Purpose: To evaluate the effects of electrolyzed reduced water (ERW) on .... dehydrated and cleared with alcohol. ... assay tubes were incubated at a temperature of ... oxygen-dependent and oxygen-independent .... Oxidative Medicine and.

  14. Depolarization on Earth-space paths

    Science.gov (United States)

    1981-01-01

    Sources of depolarization effects on the propagation paths of orthogonally-polarized information channels are considered. The main sources of depolarization at millimeter wave frequencies are hydrometeor absorption and scattering in the troposphere. Terms are defined. Mathematical formulations for the effects of the propagation medium characteristics and antenna performance on signals in dual polarization Earth-space links are presented. Techniques for modeling rain and ice depolarization are discussed.

  15. SDE decomposition and A-type stochastic interpretation in nonequilibrium processes

    Science.gov (United States)

    Yuan, Ruoshi; Tang, Ying; Ao, Ping

    2017-12-01

    An innovative theoretical framework for stochastic dynamics based on the decomposition of a stochastic differential equation (SDE) into a dissipative component, a detailed-balance-breaking component, and a dual-role potential landscape has been developed, which has fruitful applications in physics, engineering, chemistry, and biology. It introduces the A-type stochastic interpretation of the SDE beyond the traditional Ito or Stratonovich interpretation or even the α-type interpretation for multidimensional systems. The potential landscape serves as a Hamiltonian-like function in nonequilibrium processes without detailed balance, which extends this important concept from equilibrium statistical physics to the nonequilibrium region. A question on the uniqueness of the SDE decomposition was recently raised. Our review of both the mathematical and physical aspects shows that uniqueness is guaranteed. The demonstration leads to a better understanding of the robustness of the novel framework. In addition, we discuss related issues including the limitations of an approach to obtaining the potential function from a steady-state distribution.

  16. Electrolyzed water and its application in animal houses

    Directory of Open Access Journals (Sweden)

    Weichao ZHENG,Li NI,Baoming LI

    2016-09-01

    Full Text Available Electrolyzed water (EW can be produced by electrolysis of a dilute salt solution. Slightly acidic electrolyzed water (SAEW, pH 5.0—6.5 and neutral electrolyzed water (NEW, pH 6.5—8.5 are considered healthy and environmentally friendly because no hazardous chemicals are added in its production, there is reduced corrosion of surfaces and it minimizes the potential for damage to animal and human health. Over the last decade, EW has become increasingly popular as an alternative disinfectant for decontamination in animal houses. However, there have been some issues related to EW that are not well known, including different mechanisms for generation of SAEW and NEW, and the antimicrobial mechanism of EW. This review covers the definitions of SAEW and NEW, different generation systems for SAEW and NEW, the antimicrobial mecha- nism of EW, and recent developments related to the application of SAEW and NEW in animal houses.

  17. Design of the electrolyzer for the solar hydrogen production system

    International Nuclear Information System (INIS)

    Ibrahim, M.; Kamaruzzaman Sopian; Wan Ramli Wan Daud

    2006-01-01

    This paper presents the theoretical design of hydrogen system. Also, it shown the details steps of theoretical calculation to produce the required amount of hydrogen. Hydrogen is considered the fuel of the future. It is promising alternative for fossil fuel. Since, it is non-pollutant and renewable. The system contains and required equipment are photovoltaic panel, energy storage battery, converter, electrolyzer and hydrogen storage. By using 1.7 V supplied by PV, the simulation results gives 89 1/day of hydrogen. Since, the electrolyzer efficiency assumed to be 50%

  18. An Efficiency Model For Hydrogen Production In A Pressurized Electrolyzer

    Energy Technology Data Exchange (ETDEWEB)

    Smoglie, Cecilia; Lauretta, Ricardo

    2010-09-15

    The use of Hydrogen as clean fuel at a world wide scale requires the development of simple, safe and efficient production and storage technologies. In this work, a methodology is proposed to produce Hydrogen and Oxygen in a self pressurized electrolyzer connected to separate containers that store each of these gases. A mathematical model for Hydrogen production efficiency is proposed to evaluate how such efficiency is affected by parasitic currents in the electrolytic solution. Experimental set-up and results for an electrolyzer are also presented. Comparison of empirical and analytical results shows good agreement.

  19. Heterogeneous incidence and propagation of spreading depolarizations

    Science.gov (United States)

    Kaufmann, Dan; Theriot, Jeremy J; Zyuzin, Jekaterina; Service, C Austin; Chang, Joshua C; Tang, Y Tanye; Bogdanov, Vladimir B; Multon, Sylvie; Schoenen, Jean; Ju, Y Sungtaek

    2016-01-01

    Spreading depolarizations are implicated in a diverse set of neurologic diseases. They are unusual forms of nervous system activity in that they propagate very slowly and approximately concentrically, apparently not respecting the anatomic, synaptic, functional, or vascular architecture of the brain. However, there is evidence that spreading depolarizations are not truly concentric, isotropic, or homogeneous, either in space or in time. Here we present evidence from KCl-induced spreading depolarizations, in mouse and rat, in vivo and in vitro, showing the great variability that these depolarizations can exhibit. This variability can help inform the mechanistic understanding of spreading depolarizations, and it has implications for their phenomenology in neurologic disease. PMID:27562866

  20. Modelling electrolyte conductivity in a water electrolyzer cell

    DEFF Research Database (Denmark)

    Caspersen, Michael; Kirkegaard, Julius Bier

    2012-01-01

    An analytical model describing the hydrogen gas evolution under natural convection in an electrolyzer cell is developed. Main purpose of the model is to investigate the electrolyte conductivity through the cell under various conditions. Cell conductivity is calculated from a parallel resistor...

  1. Effect of electrolyzed reduced water on malondialdehyde levels and ...

    African Journals Online (AJOL)

    Purpose: To evaluate the effects of electrolyzed reduced water (ERW) on malondialdehyde (MDA) levels and neutrophil cells in Wistar rats suffering from aggressive periodontitis. Methods: Wistar rats (Rattus norvegicus) were infected with A. actinomycetemcomitans before being divided into a control group and a treatment ...

  2. Quantum Stackelberg Duopoly Game in Depolarizing Channel

    International Nuclear Information System (INIS)

    Zhu Xia; Kuang Leman

    2008-01-01

    In this paper, we investigate the quantum Stackelberg duopoly (QSD) game in the noise environment with the depolarizing channel expressed by the Kraus-operator representation. It is found that the presence of the damping in the depolarizing channel always leads to the decrease of the quantities of the moves and payoffs of the two players in the QSD game. It is indicated that under certain conditions the first-mover advantage in the QSD game can be weakened due to the presence of the damping in the depolarizing channel.

  3. The Establishment of the SAR images database System Based on Oracle and ArcSDE

    International Nuclear Information System (INIS)

    Zhou, Jijin; Li, Zhen; Chen, Quan; Tian, Bangsen

    2014-01-01

    Synthetic aperture radar is a kind of microwave imaging system, and has the advantages of multi-band, multi-polarization and multi-angle. At present, there is no SAR images database system based on typical features. For solving problems in interpretation and identification, a new SAR images database system of the typical features is urgent in the current development need. In this article, a SAR images database system based on Oracle and ArcSDE was constructed. The main works involving are as follows: (1) SAR image data was calibrated and corrected geometrically and geometrically. Besides, the fully polarimetric image was processed as the coherency matrix[T] to preserve the polarimetric information. (2) After analyzing multiple space borne SAR images, the metadata table was defined as: IMAGEID; Name of features; Latitude and Longitude; Sensor name; Range and Azimuth resolution etc. (3) Through the comparison between GeoRaster and ArcSDE, result showed ArcSDE is a more appropriate technology to store images in a central database. The System stores and manages multisource SAR image data well, reflects scattering, geometry, polarization, band and angle characteristics, and combines with analysis of the managed objects and service objects of the database as well as focuses on constructing SAR image system in the aspects of data browse and data retrieval. According the analysis of characteristics of SAR images such as scattering, polarization, incident angle and wave band information, different weights can be given to these characteristics. Then an interpreted tool is formed to provide an efficient platform for interpretation

  4. Composite Bipolar Plate for Unitized Fuel Cell/Electrolyzer Systems

    Science.gov (United States)

    Mittelsteadt, Cortney K.; Braff, William

    2009-01-01

    In a substantial improvement over present alkaline systems, an advanced hybrid bipolar plate for a unitized fuel cell/electrolyzer has been developed. This design, which operates on pure feed streams (H2/O2 and water, respectively) consists of a porous metallic foil filled with a polymer that has very high water transport properties. Combined with a second metallic plate, the pore-filled metallic plates form a bipolar plate with an empty cavity in the center.

  5. First Observation of a Snake Depolarizing Resonance

    International Nuclear Information System (INIS)

    Phelps, R.; Anferov, V.; Blinov, B.; Crandell, D.; Koutin, S.; Krisch, A.; Liu, T.; Ratner, L.; Wong, V.; Chu, C.; Lee, S.; Rinckel, T.; Schwandt, P.; Sperisen, F.; Stephenson, E.; von Przewoski, B.; Sato, H.

    1997-01-01

    Using a 104MeV stored polarized proton beam and a full Siberian snake, we recently found evidence for a so-called open-quotes snakeclose quotes depolarizing resonance. A full Siberian snake forces the spin tune ν s to be a half integer. Thus, if the vertical betatron tune ν y is set near a quarter integer, then the ν s =n±2ν y second-order snake resonance can depolarize the beam. Indeed, with a full Siberian snake, we found a deep depolarization dip when ν y was equal to 4.756; moreover, when ν y was changed to 4.781, the deep dip disappeared and the polarization was preserved. copyright 1997 The American Physical Society

  6. Depolarization of diffusing spins by paramagnetic impurities

    International Nuclear Information System (INIS)

    Schillaci, M.E.; Hutson, R.L.; Heffner, R.H.; Leon, M.; Dodds, S.A.; Estle, T.L.

    1981-01-01

    We study the depolarization of diffusing spins (muons) interacting with dilute paramagnetic impurities in a solid using a simple computational model which properly treats the muon motion and preserves correct muon-impurity distances. Long-range (dipolar) and nearest-neighbor (contact) interactions are treated together. Diffusion parameters are deduced and model comparisons made for AuGd (300 ppm). (orig.)

  7. Neutron Depolarization in Submicron Ferromagnetic Materials

    NARCIS (Netherlands)

    Rekveldt, M.Th.

    1989-01-01

    The neutron depolarization technique is based on the loss of polarization of a polarized neutron beam after transmission through ferromagnetic substances. This loss, caused by Larmor precession in individual domains, determines the mean domain size, the mean square direction cosines of the domains

  8. A Stability Study of Alkali Doped PBI Membranes for Alkaline Electrolyzer Cells

    DEFF Research Database (Denmark)

    Jensen, Jens Oluf; Aili, David; Hansen, Martin Kalmar

    2014-01-01

    conductivity was similar to a commercial Zirfon membrane and suitable for a water electrolyzer. Some chemical degradation was seen during the aging period, but the crosslinked and the cured materials were both integral after 176 days of aging. A simplified electrolyzer test cell was operated successfully....

  9. Electrolyzed water and its application in the food industry.

    Science.gov (United States)

    Hricova, D; Stephan, R; Zweifel, C

    2008-09-01

    Electrolyzed water (EW) is gaining popularity as a sanitizer in the food industries of many countries. By electrolysis, a dilute sodium chloride solution dissociates into acidic electrolyzed water (AEW), which has a pH of 2 to 3, an oxidation-reduction potential of >1,100 mV, and an active chlorine content of 10 to 90 ppm, and basic electrolyzed water (BEW), which has a pH of 10 to 13 and an oxidation-reduction potential of -800 to -900 mV. Vegetative cells of various bacteria in suspension were generally reduced by > 6.0 log CFU/ml when AEW was used. However, AEW is a less effective bactericide on utensils, surfaces, and food products because of factors such as surface type and the presence of organic matter. Reductions of bacteria on surfaces and utensils or vegetables and fruits mainly ranged from about 2.0 to 6.0 or 1.0 to 3.5 orders of magnitude, respectively. Higher reductions were obtained for tomatoes. For chicken carcasses, pork, and fish, reductions ranged from about 0.8 to 3.0, 1.0 to 1.8, and 0.4 to 2.8 orders of magnitude, respectively. Considerable reductions were achieved with AEW on eggs. On some food commodities, treatment with BEW followed by AEW produced higher reductions than did treatment with AEW only. EW technology deserves consideration when discussing industrial sanitization of equipment and decontamination of food products. Nevertheless, decontamination treatments for food products always should be considered part of an integral food safety system. Such treatments cannot replace strict adherence to good manufacturing and hygiene practices.

  10. Effects of electrolysis time and electric potential on chlorine generation of electrolyzed deep ocean water

    Directory of Open Access Journals (Sweden)

    Guoo-Shyng Wang Hsu

    2017-10-01

    Full Text Available Electrolyzed water is a sustainable disinfectant, which can comply with food safety regulations and is environmentally friendly. A two-factor central composite design was adopted for studying the effects of electrolysis time and electric potential on the chlorine generation efficiency of electrolyzed deep ocean water (DOW. DOW was electrolyzed in a glass electrolyzing cell equipped with platinum–plated titanium anode and cathode. The results showed that chlorine concentration reached maximal level in the batch process. Prolonged electrolysis reduced chlorine concentration in the electrolyte and was detrimental to electrolysis efficiency, especially under high electric potential conditions. Therefore, the optimal choice of electrolysis time depends on the electrolyzable chloride in DOW and cell potential adopted for electrolysis. The higher the electric potential, the faster the chlorine level reaches its maximum, but the lower the electric efficiency will be.

  11. Effects of electrolysis time and electric potential on chlorine generation of electrolyzed deep ocean water.

    Science.gov (United States)

    Hsu, Guoo-Shyng Wang; Lu, Yi-Fa; Hsu, Shun-Yao

    2017-10-01

    Electrolyzed water is a sustainable disinfectant, which can comply with food safety regulations and is environmentally friendly. A two-factor central composite design was adopted for studying the effects of electrolysis time and electric potential on the chlorine generation efficiency of electrolyzed deep ocean water (DOW). DOW was electrolyzed in a glass electrolyzing cell equipped with platinum-plated titanium anode and cathode. The results showed that chlorine concentration reached maximal level in the batch process. Prolonged electrolysis reduced chlorine concentration in the electrolyte and was detrimental to electrolysis efficiency, especially under high electric potential conditions. Therefore, the optimal choice of electrolysis time depends on the electrolyzable chloride in DOW and cell potential adopted for electrolysis. The higher the electric potential, the faster the chlorine level reaches its maximum, but the lower the electric efficiency will be. Copyright © 2016. Published by Elsevier B.V.

  12. Corrosion behaviour of some conventional stainless steels in electrolyzing process

    Directory of Open Access Journals (Sweden)

    Amal NASSAR

    2015-12-01

    Full Text Available In this study, attempts were made to increase the amount of hydrogen generated from the water electrolysis process. Some conventional stainless steels (316; 409; 410 and 430 were used as anode and cathode in electrolysis process. Further study was carried out on the corrosion trend in all the investigated metals. It is observed that the electrode material can effect on the amount of hydrogen generate by electrolyzing process and metal composition of the stainless steels effects on the rate of corrosion.

  13. Development of a pressurized bipolar alkaline water electrolyzer

    Energy Technology Data Exchange (ETDEWEB)

    Neves Junior, Newton Pimenta; Pinto, Edgar A. de Godoi Rodrigues; Silva, Ennio Peres da; Rapelli, Rubia; Pinto, Cristiano da Silva [Universidade Estadual de Campinas (DFA/ IFGW/UNICAMP), SP (Brazil). Inst. de Fisica Gleb Wataghin. Dept. de Fisica Aplicada], Email: nevesjr@unicamp.br; Marin Neto, Antonio Jose; Lopes, Daniel Gabriel; Camargo, Joao Carlos; Ferreira, Paulo F.P. [Hydrogen Technology (HyTron), Campinas, SP (Brazil); Furlan, Andre Luis [Universidade Estadual de Campinas (DE/FEC/UNICAMP), SP (Brazil). Fac. de Engenharia Mecanica

    2010-07-01

    This paper reports the actual development status of a bipolar alkaline water electrolyzer with maximum production capacity of 1 m3/h of hydrogen and controlled by a PLC (Programmable Logic Controller), which also interfaces the electrolytic system with operators and other equipment, such as gas storage tanks, fuel cells and photovoltaic panels. The project also includes the construction of an electrolysis test bench to record electrical parameters (cathode, anode, separator and electrolyte potentials), the amount of produced gases and gas quality determined by gas chromatography. (author)

  14. Recording, analysis, and interpretation of spreading depolarizations in neurointensive care

    DEFF Research Database (Denmark)

    Dreier, Jens P; Fabricius, Martin; Ayata, Cenk

    2017-01-01

    Spreading depolarizations (SD) are waves of abrupt, near-complete breakdown of neuronal transmembrane ion gradients, are the largest possible pathophysiologic disruption of viable cerebral gray matter, and are a crucial mechanism of lesion development. Spreading depolarizations are increasingly r...

  15. Base rates in the SDE Plus Scheme 2014 (Dutch Renewable Energy Scheme). Concept recommendation 'for the market consultation]; Conceptadvies basisbedragen in de SDE+ 2014 [ten behoeve van de marktconsultatie

    Energy Technology Data Exchange (ETDEWEB)

    Lensink, S.M. (ed.) [ECN Policy Studies, Petten (Netherlands)

    2013-05-15

    On assignment of the Dutch Ministry of Economic Affairs, ECN and DNV KEMA have studied the cost of renewable energy production. This cost assessment for various categories is part of an advice on the subsidy base rates for the feed-in support scheme SDE+. This report contains a draft advice on the cost of projects in the Netherlands targeted for realization in 2014. The options advice covers installation technologies for the production of green gas, biogas, renewable electricity and renewable heat. This draft advice has been written to facilitate the market consultation on the 2014 base rates. The open market consultation is to be held in June 2013 [Dutch] Het Ministerie van Economische Zaken (EZ) heeft aan ECN en DNV KEMA advies gevraagd over de hoogte van de basisbedragen in het kader van de SDE+-regeling voor 2014. Evenals bij vergelijkbare onderzoeken in voorgaande jaren hebben ECN en DNV KEMA er in overleg met het ministerie voor gekozen om een conceptadvies aan de markt voor te leggen. Dit rapport betreft het conceptadvies. ECN en DNV KEMA adviseren het ministerie over de hoogte van de basisbedragen voor door het ministerie voorgeschreven categorieen. De Minister van EZ beslist over de openstelling van de SDE+-regeling in 2014, de open te stellen categorieen en de basisbedragen voor nieuwe SDE+-beschikkingen in 2014. Het proces staat beschreven in Hoofdstuk 2. Hoofdstuk 3 behandelt de prijsontwikkelingen voor elektriciteit, gas en biomassa. Hoofdstuk 4 geeft per categorie een overzicht van de technisch-economische parameters van de hernieuwbareenergieopties. Hoofdstuk 5 besluit met conclusies waarbij de vertaalslag naar basisbedragen gemaakt is aan de hand van beknopt beschreven financiele parameters.

  16. Resonant depolarization in electron storage rings equipped with ''siberia snakes''

    International Nuclear Information System (INIS)

    Buon, J.

    1984-11-01

    Resonant depolarization induced by field errors and quantum emissions in an electron ring equipped with two ''siberian snakes'' is investigated with a first order perturbation calculation. It is shown that this depolarization is not reduced by the snakes when the operating energy is set out of the depolarization resonances [fr

  17. A scattering model for rain depolarization

    Science.gov (United States)

    Wiley, P. H.; Stutzman, W. L.; Bostian, C. W.

    1973-01-01

    A method is presented for calculating the amount of depolarization caused by precipitation for a propagation path. In the model the effects of each scatterer and their interactions are accounted for by using a series of simplifying steps. It is necessary only to know the forward scattering properties of a single scatterer. For the case of rain the results of this model for attenuation, differential phase shift, and cross polarization agree very well with the results of the only other model available, that of differential attenuation and differential phase shift. Calculations presented here show that horizontal polarization is more sensitive to depolarization than is vertical polarization for small rain drop canting angle changes. This effect increases with increasing path length.

  18. Entanglement degradation in depolarizing light scattering

    International Nuclear Information System (INIS)

    Aiello, A.; Woerdman, J.P.

    2005-01-01

    Full text: In the classical regime, when a beam of light is scattered by a medium, it may emerge partially or completely depolarized depending on the optical properties of the medium. Correspondingly, in the quantum regime, when an entangled two-photon pair is scattered, the classical depolarization may result in an entanglement degradation. Here, relations between photon scattering, entanglement and multi-mode detection are investigated. We establish a general framework in which one- and two-photon elastic scattering processes can be discussed, and we focus on the study of the intrinsic entanglement degradation caused by a multi-mode detection. We show that any multi-mode scattered state cannot maximally violate the Bell-CHSH inequality because of the momentum spread. The results presented here have general validity and can be applied to both deterministic and random scattering processes. (author)

  19. Correction of Depolarizing Resonances in ELSA

    Science.gov (United States)

    Steier, C.; Husmann, D.

    1997-05-01

    The 3.5 GeV electron stretcherring ELSA (ELectron Stretcher Accelerator) at Bonn University is operational since 1987, both as a continuous beam facility for external fixed target experiments and as a partially dedicated synchrotron light source. For the external experiments an upgrade to polarized electrons is under way. One source of polarized electrons (GaAs crystal, photoeffect using circular polarized laser light) is operational. The studies of minimizing the losses in polarization degree due to crossing of depolarizing resonances that necessarily exist in circular accelerators (storagerings) just started recently. Calculations concerning different correction schemes for the depolarizing resonances in ELSA are presented, and first results of measurements are shown (done by means of a Møller polarimeter in one of the external beamlines).

  20. Electron beam depolarization in a damping ring

    International Nuclear Information System (INIS)

    Minty, M.

    1993-04-01

    Depolarization of a polarized electron beam injected into a damping ring is analyzed by extending calculations conventionally applied to proton synchrotrons. Synchrotron radiation in an electron ring gives rise to both polarizing and depolarizing effects. In a damping ring, the beam is stored for a time much less than the time for self polarization. Spin flip radiation may therefore be neglected. Synchrotron radiation without spin flips, however, must be considered as the resonance strength depends on the vertical betatron oscillation amplitude which changes as the electron beam is radiation damped. An expression for the beam polarization at extraction is derived which takes into account radiation damping. The results are applied to the electron ring at the Stanford Linear Collider and are compared with numerical matrix formalisms

  1. μ+ depolarization in AlGd alloys

    International Nuclear Information System (INIS)

    Kohn, S.; Brown, J.A.; Heffner, R.H.; Huang, C.Y.; Kitchens, T.A. Jr.; Leon, M.; Olsen, C.E.; Schillaci, M.E.

    1979-01-01

    The μ + depolarization rate in dilute AlGd alloys containing 50 and 450 atomic ppm Gd was measured in a transverse field of 80 Oe over the temperature range 6-300 K. For both alloys, Λ increased dramatically above 200 K, reaching values of 0.69 and 0.93 μs -1 , respectively, near room temperature. The results are interpreted as providing evidence for a thermally-activated trapping mechanism. (Auth.)

  2. Neutron depolarization in compressed ferrite powders

    International Nuclear Information System (INIS)

    Rekveldt, M.Th.; Kraan, W.H.

    1976-01-01

    The polarization change of a polarized neutron beam after transmission through a partly magnetized ferromagnetic material can be described by a (3x3) depolarization matrix. This matrix can be expressed in terms of domain quantities such as the reduced mean magnetization M, the mean domain size delta and the mean square direction cosinus γsub(y) of the inner magnetization within the domain, and can be used for measuring magnetic properties of ferromagnetic materials. In the underlying depolarization theory it is assumed that no correlations exist between the direction of the spontaneous magnetization Bs in neighbouring domains, and between the direction of Bs and the individual domain sizes. In order to extend the measuring method for ferromagnetic materials, measurements have been made with different compressed ferrite powders assuming that the mean domain size is equal to the mean particle size. The neutron depolarization matrix is measured as a function of an alternative external magnetic field and interpreted in terms of m, γsub(y), and delta. The possibilities and limitations of the measuring method are discussed

  3. Compton effect thermally activated depolarization dosimeter

    Science.gov (United States)

    Moran, Paul R.

    1978-01-01

    A dosimetry technique for high-energy gamma radiation or X-radiation employs the Compton effect in conjunction with radiation-induced thermally activated depolarization phenomena. A dielectric material is disposed between two electrodes which are electrically short circuited to produce a dosimeter which is then exposed to the gamma or X radiation. The gamma or X-radiation impinging on the dosimeter interacts with the dielectric material directly or with the metal composing the electrode to produce Compton electrons which are emitted preferentially in the direction in which the radiation was traveling. A portion of these electrons becomes trapped in the dielectric material, consequently inducing a stable electrical polarization in the dielectric material. Subsequent heating of the exposed dosimeter to the point of onset of ionic conductivity with the electrodes still shorted through an ammeter causes the dielectric material to depolarize, and the depolarization signal so emitted can be measured and is proportional to the dose of radiation received by the dosimeter.

  4. Estimating Depolarization with the Jones Matrix Quality Factor

    Science.gov (United States)

    Hilfiker, James N.; Hale, Jeffrey S.; Herzinger, Craig M.; Tiwald, Tom; Hong, Nina; Schöche, Stefan; Arwin, Hans

    2017-11-01

    Mueller matrix (MM) measurements offer the ability to quantify the depolarization capability of a sample. Depolarization can be estimated using terms such as the depolarization index or the average degree of polarization. However, these calculations require measurement of the complete MM. We propose an alternate depolarization metric, termed the Jones matrix quality factor, QJM, which does not require the complete MM. This metric provides a measure of how close, in a least-squares sense, a Jones matrix can be found to the measured Mueller matrix. We demonstrate and compare the use of QJM to other traditional calculations of depolarization for both isotropic and anisotropic depolarizing samples; including non-uniform coatings, anisotropic crystal substrates, and beetle cuticles that exhibit both depolarization and circular diattenuation.

  5. Improving the gas productivity of the alkaline electrolyzer through the circulation technique

    Directory of Open Access Journals (Sweden)

    Kitipong Tangphant

    2014-03-01

    Full Text Available This research aims to study and improve the efficiency of a KOH electrolyzer through the gas productivity of the electrolyzer with different the circulation technique. In this work, the conceptual design of an electrolyzer falls into 2 categories; without pumping and with pumping. Direct current electricity at 5 different levels of 10, 15, 20, 25 and 30 A are charged into the system and the gas flow rate generated from the electrolyzer is subsequently monitored. The results show that at 30 A the gas generated from the circulation with pumping and the circulation without pumping are 2.31 litre/min and 1.76 litre/min, respectively. It is also found that the energy consumed by both techniques is the same; however, the circulation with pumping design shows the better gas productivity than that of the circulation without pumping design.

  6. Summary of Market Opportunities for Electric Vehicles and Dispatchable Load in Electrolyzers

    Energy Technology Data Exchange (ETDEWEB)

    Denholm, Paul [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Eichman, Joshua [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Markel, Tony [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Ma, Ookie [U.S Department of Energy, Washington, DC (United States)

    2015-05-19

    Electric vehicles (EVs) and electrolyzers are potentially significant sources of new electric loads. Both are flexible in that the amount of electricity consumed can be varied in response to a variety of factors including the cost of electricity. Because both EVs and electrolyzers can control the timing of electricity purchases, they can minimize energy costs by timing the purchases of energy to periods of lowest costs.

  7. Tune space manipulations in jumping depolarizing resonances

    International Nuclear Information System (INIS)

    Ratner, L.G.; Ahrens, L.A.

    1987-01-01

    In February 1986, the AGS polarized beam reached a momentum of 22 GeV/c with a 45% polarization and an intensity of 1 to 2 x 10 10 polarized protons per pulse at a repetition rate of 2.1 seconds. In order to achieve this, one had to overcome the effect of some 40 depolarizing resonances. In our first commissioning run in 1984, we had reached 16.5 GeV/c using, with suitable modifications, the conventional techniques first used at the Argonne ZGS. This worked well, but we found that the fast tune shifts required to cross the intrinsic depolarizing resonances were causing an increase in beam emittance which led to the need for stronger corrections later in the cycle and to diminished extraction efficiency. For the 1986 run, we were prepared to minimize this emittance growth by the application of slow quadrupole pulses to change the region in tune space in which we operated the first tune quads. In this paper we give a brief description of the conventional corrections, but our main emphasis is on the descriptions of tune space manipulations

  8. Spreading depolarizations and late secondary insults after traumatic brain injury

    DEFF Research Database (Denmark)

    Hartings, Jed A; Strong, Anthony J; Fabricius, Martin

    2009-01-01

    Here we investigated the incidence of cortical spreading depolarizations (spreading depression and peri-infarct depolarization) after traumatic brain injury (TBI) and their relationship to systemic physiologic values during neurointensive care. Subdural electrode strips were placed on peri......-contusional cortex in 32 patients who underwent surgical treatment for TBI. Prospective electrocorticography was performed during neurointensive care with retrospective analysis of hourly nursing chart data. Recordings were 84 hr (median) per patient and 2,503 hr in total. In 17 patients (53%), 280 spreading...... depolarizations (spreading depressions and peri-infarct depolarizations) were observed. Depolarizations occurred in a bimodal pattern with peak incidence on days 1 and 7. The probability of a depolarization occurring increased significantly as a function of declining mean arterial pressure (MAP; R(2) = 0.78; p...

  9. Spreading convulsions, spreading depolarization and epileptogenesis in human cerebral cortex

    DEFF Research Database (Denmark)

    Dreier, Jens P; Major, Sebastian; Pannek, Heinz-Wolfgang

    2012-01-01

    Spreading depolarization of cells in cerebral grey matter is characterized by massive ion translocation, neuronal swelling and large changes in direct current-coupled voltage recording. The near-complete sustained depolarization above the inactivation threshold for action potential generating...... stimulations. Eventually, epileptic field potentials were recorded during the period that had originally seen spreading depression of activity. Such spreading convulsions are characterized by epileptic field potentials on the final shoulder of the large slow potential change of spreading depolarization. We...

  10. Strong Resilience of Topological Codes to Depolarization

    Directory of Open Access Journals (Sweden)

    H. Bombin

    2012-04-01

    Full Text Available The inevitable presence of decoherence effects in systems suitable for quantum computation necessitates effective error-correction schemes to protect information from noise. We compute the stability of the toric code to depolarization by mapping the quantum problem onto a classical disordered eight-vertex Ising model. By studying the stability of the related ferromagnetic phase via both large-scale Monte Carlo simulations and the duality method, we are able to demonstrate an increased error threshold of 18.9(3% when noise correlations are taken into account. Remarkably, this result agrees within error bars with the result for a different class of codes—topological color codes—where the mapping yields interesting new types of interacting eight-vertex models.

  11. Removal of Foodborne Pathogen Biofilms by Acidic Electrolyzed Water

    Directory of Open Access Journals (Sweden)

    Qiao Han

    2017-06-01

    Full Text Available Biofilms, which are complex microbial communities embedded in the protective extracellular polymeric substances (EPS, are difficult to remove in food production facilities. In this study, the use of acidic electrolyzed water (AEW to remove foodborne pathogen biofilms was evaluated. We used a green fluorescent protein-tagged Escherichia coli for monitoring the efficiency of AEW for removing biofilms, where under the optimal treatment conditions, the fluorescent signal of cells in the biofilm disappeared rapidly and the population of biofilm cells was reduced by more than 67%. Additionally, AEW triggered EPS disruption, as indicated by the deformation of the carbohydrate C-O-C bond and deformation of the aromatic rings in the amino acids tyrosine and phenylalanine. These deformations were identified by EPS chemical analysis and Raman spectroscopic analysis. Scanning electron microscopy (SEM images confirmed that the breakup and detachment of biofilm were enhanced after AEW treatment. Further, AEW also eradicated biofilms formed by both Gram-negative bacteria (Vibrio parahaemolyticus and Gram-positive bacteria (Listeria monocytogenes and was observed to inactivate the detached cells which are a potential source of secondary pollution. This study demonstrates that AEW could be a reliable foodborne pathogen biofilm disrupter and an eco-friendly alternative to sanitizers traditionally used in the food industry.

  12. Neutron depolarization studies on magnetization process using pulsed polarized neutrons

    International Nuclear Information System (INIS)

    Mitsuda, Setsuo; Endoh, Yasuo

    1985-01-01

    Neutron depolarization experiments investigating the magnetization processes have been performed by using pulsed polarized neutrons for the first time. Results on both quenched and annealed ferromagnets of Fe 85 Cr 15 alloy indicate the significant difference in the wavelength dependence of depolarization between them. It also constitutes the experimental demonstration of the theoretical prediction of Halpern and Holstein. (author)

  13. Single neuron dynamics during experimentally induced anoxic depolarization

    NARCIS (Netherlands)

    Zandt, B.; Stigen, Tyler; ten Haken, Bernard; Netoff, Theoden; van Putten, Michel Johannes Antonius Maria

    2013-01-01

    We studied single neuron dynamics during anoxic depolarizations, which are often observed in cases of neuronal energy depletion. Anoxic and similar depolarizations play an important role in several pathologies, notably stroke, migraine, and epilepsy. One of the effects of energy depletion was

  14. Spreading Depression, Spreading Depolarizations, and the Cerebral Vasculature

    DEFF Research Database (Denmark)

    Ayata, Cenk; Lauritzen, Martin

    2015-01-01

    Spreading depression (SD) is a transient wave of near-complete neuronal and glial depolarization associated with massive transmembrane ionic and water shifts. It is evolutionarily conserved in the central nervous systems of a wide variety of species from locust to human. The depolarization spreads...

  15. Depolarization Lidar Determination of Cloud-Base Microphysical Properties

    NARCIS (Netherlands)

    Donovan, D.P.; Klein Baltink, H; Henzing, J. S.; de Roode, S.R.; Siebesma, A.P.

    2016-01-01

    The links between multiple-scattering induced depolarization and cloud microphysical properties (e.g. cloud particle number density, effective radius, water content) have long been recognised. Previous efforts to use depolarization information in a quantitative manner to retrieve cloud

  16. Depolarization of ultracold neutrons during their storage in material bottles

    International Nuclear Information System (INIS)

    Serebrov, A.P.; Lasakov, M.S.; Vassiljev, A.V.; Krasnoschekova, I.A.; Rudnev, Yu.P.; Fomin, A.K.; Varlamov, V.E.; Geltenbort, P.; Butterworth, J.; Young, A.R.; Pesavento, U.

    2003-01-01

    The depolarization of ultracold neutrons (UCN) during their storage in traps has been investigated. The neutron spin-flip probability for the materials studied amounts to ∼(1-2)x10 -5 per collision and does not depend on the temperature. The possible connection between the phenomenon of UCN depolarization and that of anomalous losses is discussed

  17. Depolarization of ultracold neutrons during their storage in material bottles

    Energy Technology Data Exchange (ETDEWEB)

    Serebrov, A.P.; Lasakov, M.S.; Vassiljev, A.V.; Krasnoschekova, I.A.; Rudnev, Yu.P.; Fomin, A.K.; Varlamov, V.E.; Geltenbort, P.; Butterworth, J.; Young, A.R.; Pesavento, U

    2003-07-14

    The depolarization of ultracold neutrons (UCN) during their storage in traps has been investigated. The neutron spin-flip probability for the materials studied amounts to {approx}(1-2)x10{sup -5} per collision and does not depend on the temperature. The possible connection between the phenomenon of UCN depolarization and that of anomalous losses is discussed.

  18. Optimization of Photovoltaic Electrolyzer Hybrid systems; taking into account the effect of climate conditions

    International Nuclear Information System (INIS)

    Sayedin, Farid; Maroufmashat, Azadeh; Sattari, Sourena; Elkamel, Ali; Fowler, Michael

    2016-01-01

    Highlights: • The optimal size of directly coupled Photovoltaic–Electrolyzer (PV/EL) is studied. • The effect of climate condition on the performance of PV/EL is studied. • PV/EL energy transfer loss and the levelized cost of hydrogen production minimized. • The model is applied to locations with different climate and solar irradiations. • Solar to electricity/electricity to hydrogen/solar to hydrogen efficiencies are derived. - Abstract: Solar energy will make a valuable contribution for power generation in the future. However the intermittency of solar energy has become an important issue in the utilization of PV system, especially small scale distributed solar energy conversion systems. The issue can be addressed through the management of production and storage of the energy in the form of hydrogen. The hydrogen can be produced by solar photovoltaic (PV) powered electrolysis of water. The amount of transferred energy to an electrolyzer from a PV module is a function of the distance between maximum power points (MPP) of PV module and the electrolyzer operating points. The distance can be minimized by optimizing the number of series and parallel units of the electrolyzer. However the maximum power points are subject to PV module characteristics, solar irradiation and ambient temperature. This means the climate condition can substantially influence the MPP and therefore the optimal size of the PV–Electrolyzer (PV/EL) system. On the other hand, system size can affect the levelized cost of hydrogen production as well. In this paper, the impact of climate conditions on the optimal size and operating conditions of a direct coupled photovoltaic–electrolyzer system has been studied. For this purpose, the optimal size of electrolyzer for six cities which have different climate condition is obtained by considering two solution scenarios, regarding two objectives which are annual energy transfer loss and levelized costs of hydrogen production and then the

  19. Advanced Approaches to Greatly Reduce Hydrogen Gas Crossover Losses in PEM Electrolyzers Operating at High Pressures and Low Current Densities, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — ElectroChem proposes technology advances in its unique PEM IFF water electrolyzer design to meet the NASA requirement for an electrolyzer that will operate very...

  20. Vectorización de algoritmos generales de convergencia fuerte para la solución de ecuaciones diferenciales estocásticas (SDE)

    OpenAIRE

    Quiñones Botero, Carlos Eduardo

    2007-01-01

    La teoría de las Ecuaciones Diferenciales Estocásticas (SDE) ha sido desarrollada en el último medio siglo, pero no se ha creado una librería para la solución numérica de este tipo de ecuaciones. A pesar de que actualmente existen métodos numéricos de alta eficiencia para la solución de las SDE y de que existen aplicaciones académicas e industriales en donde se utilizan, no se ha desarrollado una librería de fuente abierta que implemente vectorizadamente los mejores algoritmos disponibles act...

  1. Treatment of infectious skin defects or ulcers with electrolyzed strong acid aqueous solution.

    Science.gov (United States)

    Sekiya, S; Ohmori, K; Harii, K

    1997-01-01

    A chronic ulcer with an infection such as methicillin-resistant Staphylococcus aureus is hard to heal. Plastic and reconstructive surgeons often encounter such chronic ulcers that are resistant to surgical or various conservative treatments. We applied conservative treatment using an electrolyzed strong acid aqueous solution and obtained satisfactory results. The lesion was washed with the solution or soaked in a bowl of the solution for approximately 20 min twice a day. Fresh electrolyzed strong acid aqueous solution is unstable and should be stored in a cool, dark site in a sealed bottle. It should be used within a week after it has been produced. Here we report on 15 cases of infectious ulcers that were treated by electrolyzed strong acid aqueous solution. Of these cases, 7 patients were healed, 3 were granulated, and in 5, infection subsided. In most cases the lesion became less reddish and less edematous. Discharge or foul odor from the lesion was decreased. Electrolyzed strong acid aqueous solution was especially effective for treating a chronic refractory ulcer combined with diabetes melitus or peripheral circulatory insufficiency. This clinically applied therapy of electrolyzed strong acid aqueous solution was found to be effective so that this new therapeutic technique for ulcer treatment can now be conveniently utilized.

  2. Electrolyzer Performance Analysis of an Integrated Hydrogen Power System for Greenhouse Heating. A Case Study

    Directory of Open Access Journals (Sweden)

    Simone Pascuzzi

    2016-07-01

    Full Text Available A greenhouse containing an integrated system of photovoltaic panels, a water electrolyzer, fuel cells and a geothermal heat pump was set up to investigate suitable solutions for a power system based on solar energy and hydrogen, feeding a self-sufficient, geothermal-heated greenhouse. The electricity produced by the photovoltaic source supplies the electrolyzer; the manufactured hydrogen gas is held in a pressure tank. In these systems, the electrolyzer is a crucial component; the technical challenge is to make it work regularly despite the irregularity of the solar source. The focus of this paper is to study the performance and the real energy efficiency of the electrolyzer, analyzing its operational data collected under different operating conditions affected by the changeable solar radiant energy characterizing the site where the experimental plant was located. The analysis of the measured values allowed evaluation of its suitability for the agricultural requirements such as greenhouse heating. On the strength of the obtained result, a new layout of the battery bank has been designed and exemplified to improve the performance of the electrolyzer. The evaluations resulting from this case study may have a genuine value, therefore assisting in further studies to better understand these devices and their associated technologies.

  3. Real-Time Microscopic Monitoring of Flow, Voltage and Current in the Proton Exchange Membrane Water Electrolyzer.

    Science.gov (United States)

    Lee, Chi-Yuan; Li, Shih-Chun; Chen, Chia-Hung; Huang, Yen-Ting; Wang, Yu-Syuan

    2018-03-15

    Looking for alternative energy sources has been an inevitable trend since the oil crisis, and close attentioned has been paid to hydrogen energy. The proton exchange membrane (PEM) water electrolyzer is characterized by high energy efficiency, high yield, simple system and low operating temperature. The electrolyzer generates hydrogen from water free of any carbon sources (provided the electrons come from renewable sources such as solar and wind), so it is very clean and completely satisfies the environmental requirement. However, in long-term operation of the PEM water electrolyzer, the membrane material durability, catalyst corrosion and nonuniformity of local flow, voltage and current in the electrolyzer can influence the overall performance. It is difficult to measure the internal physical parameters of the PEM water electrolyzer, and the physical parameters are interrelated. Therefore, this study uses micro-electro-mechanical systems (MEMS) technology to develop a flexible integrated microsensor; internal multiple physical information is extracted to determine the optimal working parameters for the PEM water electrolyzer. The real operational data of local flow, voltage and current in the PEM water electrolyzer are measured simultaneously by the flexible integrated microsensor, so as to enhance the performance of the PEM water electrolyzer and to prolong the service life.

  4. Design of electrodes in geometrical control type electrolyzer for oxide electrowinning process

    International Nuclear Information System (INIS)

    Nobuo Okamura; Kenji Koizumi; Tadahiro Washiya; Shinnichi Aose

    2005-01-01

    Japan Nuclear Cycle Development Institute (JNC) has been developing a commercial scale electrolyzer with a throughput of 25 tHM/y for an oxide electrowinning process, a kind of pyrochemical reprocessing process. But it had some significant subjects to be solved before the application to a commercial reprocessing plant. The electrolyzer has some innovative characteristics, such as cold crucible induction melting (CCIM) technology and criticality safety control by shape of the vessel, in order to solve those subjects. These characteristics make a crucible narrow and deep. Therefore an arrangement of the internal components in the crucible is difficult. Two kinds of computer cords that evaluate the temperature distribution and the current density distribution were improved to help a design of the internal constitution. Finally, the internal constitution of the commercial scale electrolyzer was designed by using them in this study. (authors)

  5. Effect of water electrolysis temperature of hydrogen production system using direct coupling photovoltaic and water electrolyzer

    Directory of Open Access Journals (Sweden)

    Tetsuhiko Maeda

    2016-01-01

    Full Text Available We propose control methods of a photovoltaic (PV-water electrolyzer (ELY system that generates hydrogen by controlling the number of ELY cells. The advantage of this direct coupling between PV and ELY is that the power loss of DC/DC converter is avoided. In this study, a total of 15 ELY cells are used. In the previous researches, the electrolyzer temperature was constantly controlled with a thermostat. Actually, the electrolyzer temperature is decided by the balance of the electrolysis loss and the heat loss to the outside. Here, the method to control the number of ELY cells was investigated. Maximum Power Point Tracking efficiency of more than 96% was achieved without ELY temperature control. Furthermore we construct a numerical model taking into account of ELY temperature. Using this model, we performed a numerical simulation of 1-year. Experimental data and the simulation results shows the validity of the proposed control method.

  6. Application of electrolyzer system to enhance frequency stabilization effect of microturbine in a microgrid system

    Energy Technology Data Exchange (ETDEWEB)

    Vachirasricirikul, Sitthidet [Department of Electrical Engineering, Faculty of Engineering, King Mongkut' s Institute of Technology Ladkrabang, Bangkok 10520 (Thailand); Ngamroo, Issarachai; Kaitwanidvilai, Somyot [Center of Excellence for Innovative Energy Systems, King Mongkut' s Institute of Technology Ladkrabang, Bangkok 10520 (Thailand)

    2009-09-15

    It is well known that the power output of microturbine can be controlled to compensate for load change and alleviate the system frequency fluctuations. Nevertheless, the microturbine may not adequately compensate rapid load change due to its slow dynamic response. Moreover, when the intermittent power generations from wind power and photovoltaic are integrated into the system, they may cause severe frequency fluctuation. In order to study the fast dynamic response, this paper applies electrolyzer system to absorb these power fluctuations and enhance the frequency control effect of microturbine in the microgrid system. The robust coordinated controller of electrolyzer and microturbine for frequency stabilization is designed based on a fixed-structure H{sub {infinity}} loop shaping control. Simulation results exhibit the robustness and stabilizing effects of the proposed coordinated electrolyzer and microturbine controllers against system parameters variation and various operating conditions. (author)

  7. Stitching Type Large Aperture Depolarizer for Gas Monitoring Imaging Spectrometer

    Science.gov (United States)

    Liu, X.; Li, M.; An, N.; Zhang, T.; Cao, G.; Cheng, S.

    2018-04-01

    To increase the accuracy of radiation measurement for gas monitoring imaging spectrometer, it is necessary to achieve high levels of depolarization of the incoming beam. The preferred method in space instrument is to introduce the depolarizer into the optical system. It is a combination device of birefringence crystal wedges. Limited to the actual diameter of the crystal, the traditional depolarizer cannot be used in the large aperture imaging spectrometer (greater than 100 mm). In this paper, a stitching type depolarizer is presented. The design theory and numerical calculation model for dual babinet depolarizer were built. As required radiometric accuracies of the imaging spectrometer with 250 mm × 46 mm aperture, a stitching type dual babinet depolarizer was design in detail. Based on designing the optimum structural parmeters the tolerance of wedge angle refractive index, and central thickness were given. The analysis results show that the maximum residual polarization degree of output light from depolarizer is less than 2 %. The design requirements of polarization sensitivity is satisfied.

  8. STITCHING TYPE LARGE APERTURE DEPOLARIZER FOR GAS MONITORING IMAGING SPECTROMETER

    Directory of Open Access Journals (Sweden)

    X. Liu

    2018-04-01

    Full Text Available To increase the accuracy of radiation measurement for gas monitoring imaging spectrometer, it is necessary to achieve high levels of depolarization of the incoming beam. The preferred method in space instrument is to introduce the depolarizer into the optical system. It is a combination device of birefringence crystal wedges. Limited to the actual diameter of the crystal, the traditional depolarizer cannot be used in the large aperture imaging spectrometer (greater than 100 mm. In this paper, a stitching type depolarizer is presented. The design theory and numerical calculation model for dual babinet depolarizer were built. As required radiometric accuracies of the imaging spectrometer with 250 mm × 46 mm aperture, a stitching type dual babinet depolarizer was design in detail. Based on designing the optimum structural parmeters,the tolerance of wedge angle,refractive index, and central thickness were given. The analysis results show that the maximum residual polarization degree of output light from depolarizer is less than 2 %. The design requirements of polarization sensitivity is satisfied.

  9. Depolarization artifacts in dual rotating-compensator Mueller matrix ellipsometry

    International Nuclear Information System (INIS)

    Li, Weiqi; Zhang, Chuanwei; Jiang, Hao; Chen, Xiuguo; Liu, Shiyuan

    2016-01-01

    Noticeable depolarization effects are observed in the measurement of the air using an in-house developed dual rotating-compensator Mueller matrix ellipsometer. We demonstrate that these depolarization effects are essentially artifacts and mainly induced when the compensator with wavelength-dependent optical properties is integrated with the finite bandwidth detector. We define a general formula to represent the actual Mueller matrix of the compensator by taking into account the depolarization artifacts. After incorporating this formula into the system model, a correction method is further proposed, and consequently, improved accuracy can be achieved in the Mueller matrix measurement. (paper)

  10. Electrolyzed-water generator 'SaniBoy'; Eisei jokinsuik kyokyu sochi 'SaniBoy'

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, M; Kakiuchi, H; Muto, K [Fuji Electric Co. Ltd., Tokyo (Japan)

    2000-03-10

    In the food industry, injuries due to food poisoning have been increasing. Especially the mass outbreak of food poisoning by Escherichia coli such as O-157 in 1996 gave warning on the importance of food sanitation management. Public efforts such as the Hazard Analysis and Critical Control Point (HACCP) system have been made to prevent food poisoning. Recently, disinfection made by electrolyzing water with some salt added has attracted attention. Fuji Electric has developed the generator 'SaniBoy' that produces weak alkaline electrolyzed water without wasting water. The environment-friendly 'SaniBoy' will contribute to sanitation in various fields. (author)

  11. High Performance Fuel Cell and Electrolyzer Membrane Electrode Assemblies (MEAs) for Space Energy Storage Systems

    Science.gov (United States)

    Valdez, Thomas I.; Billings, Keith J.; Kisor, Adam; Bennett, William R.; Jakupca, Ian J.; Burke, Kenneth; Hoberecht, Mark A.

    2012-01-01

    Regenerative fuel cells provide a pathway to energy storage system development that are game changers for NASA missions. The fuel cell/ electrolysis MEA performance requirements 0.92 V/ 1.44 V at 200 mA/cm2 can be met. Fuel Cell MEAs have been incorporated into advanced NFT stacks. Electrolyzer stack development in progress. Fuel Cell MEA performance is a strong function of membrane selection, membrane selection will be driven by durability requirements. Electrolyzer MEA performance is catalysts driven, catalyst selection will be driven by durability requirements. Round Trip Efficiency, based on a cell performance, is approximately 65%.

  12. Regenerative Hydrogen-oxygen Fuel Cell-electrolyzer Systems for Orbital Energy Storage

    Science.gov (United States)

    Sheibley, D. W.

    1984-01-01

    Fuel cells have found application in space since Gemini. Over the years technology advances have been factored into the mainstream hardware programs. Performance levels and service lives have been gradually improving. More recently, the storage application for fuel cell-electrolyzer combinations are receiving considerable emphasis. The regenerative system application described here is part of a NASA Fuel Cell Program which was developed to advance the fuel cell and electrolyzer technology required to satisfy the identified power generation and energy storage need of the Agency for space transportation and orbital applications to the year 2000.

  13. A Numerical Study of Forbush Decreases with a 3D Cosmic-Ray Modulation Model Based on an SDE Approach

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Xi; Feng, Xueshang [SIGMA Weather Group, State Key Laboratory of Space Weather, National Space Science Center, Chinese Academy of Sciences, Beijing 100190 (China); Potgieter, Marius S. [Centre for Space Research, North-West University, Potchefstroom 2520 (South Africa); Zhang, Ming [Department of Physics and Space Sciences, Florida Institute of Technology, 150 West University Boulevard, Melbourne, FL 32901 (United States)

    2017-04-10

    Based on the reduced diffusion mechanism for producing Forbush decreases (Fds) in the heliosphere, we constructed a three-dimensional (3D) diffusion barrier, and by incorporating it into a stochastic differential equation (SDE) based time-dependent, cosmic-ray transport model, a 3D numerical model for simulating Fds is built and applied to a period of relatively quiet solar activity. This SDE model generally corroborates previous Fd simulations concerning the effects of the solar magnetic polarity, the tilt angle of the heliospheric current sheet (HCS), and cosmic-ray particle energy. Because the modulation processes in this 3D model are multi-directional, the barrier’s geometrical features affect the intensity profiles of Fds differently. We find that both the latitudinal and longitudinal extent of the barrier have relatively fewer effects on these profiles than its radial extent and the level of decreased diffusion inside the disturbance. We find, with the 3D approach, that the HCS rotational motion causes the relative location from the observation point to the HCS to vary, so that a periodic pattern appears in the cosmic-ray intensity at the observing location. Correspondingly, the magnitude and recovery time of an Fd change, and the recovering intensity profile contains oscillation as well. Investigating the Fd magnitude variation with heliocentric radial distance, we find that the magnitude decreases overall and, additionally, that the Fd magnitude exhibits an oscillating pattern as the radial distance increases, which coincides well with the wavy profile of the HCS under quiet solar modulation conditions.

  14. Neuronal Depolarization Drives Increased Dopamine Synaptic Vesicle Loading via VGLUT.

    Science.gov (United States)

    Aguilar, Jenny I; Dunn, Matthew; Mingote, Susana; Karam, Caline S; Farino, Zachary J; Sonders, Mark S; Choi, Se Joon; Grygoruk, Anna; Zhang, Yuchao; Cela, Carolina; Choi, Ben Jiwon; Flores, Jorge; Freyberg, Robin J; McCabe, Brian D; Mosharov, Eugene V; Krantz, David E; Javitch, Jonathan A; Sulzer, David; Sames, Dalibor; Rayport, Stephen; Freyberg, Zachary

    2017-08-30

    The ability of presynaptic dopamine terminals to tune neurotransmitter release to meet the demands of neuronal activity is critical to neurotransmission. Although vesicle content has been assumed to be static, in vitro data increasingly suggest that cell activity modulates vesicle content. Here, we use a coordinated genetic, pharmacological, and imaging approach in Drosophila to study the presynaptic machinery responsible for these vesicular processes in vivo. We show that cell depolarization increases synaptic vesicle dopamine content prior to release via vesicular hyperacidification. This depolarization-induced hyperacidification is mediated by the vesicular glutamate transporter (VGLUT). Remarkably, both depolarization-induced dopamine vesicle hyperacidification and its dependence on VGLUT2 are seen in ventral midbrain dopamine neurons in the mouse. Together, these data suggest that in response to depolarization, dopamine vesicles utilize a cascade of vesicular transporters to dynamically increase the vesicular pH gradient, thereby increasing dopamine vesicle content. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Possible Depolarization Mechanism due to Low Beta Squeeze

    International Nuclear Information System (INIS)

    Ranjbar, V.; Luccio, A.; Bai, M.

    2008-01-01

    Simulations reveal a potential depolarization mechanism during low beta squeeze. This depolarization appears to be driven by a spin tune modulation caused by spin precession through the strong low beta quads due to the vertical fields. The modulation of the spin tune introduces an additional snake resonance condition at ν s0 ± nν x - ν z l = integer which while the same numerology as the well known sextupole resonance, can operate in the absence of sextupole elements

  16. Invited: A Stability Study of Alkali Doped PBI Membranes for Alkaline Electrolyzer Cells

    DEFF Research Database (Denmark)

    Jensen, Jens Oluf; Aili, David; Hansen, Martin Kalmar

    2014-01-01

    Alkaline fuel cells and electrolyzers are attracting increasing interest. This is to a large extent due to the broad selection of catalyst materials not based on resource limited and expensive noble metals. The first fuel cells in practical use were Francis Thomas Bacon’s based on an alkaline...

  17. Computational model for a high temperature electrolyzer coupled to a HTTR for efficient nuclear hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, Daniel; Rojas, Leorlen; Rosales, Jesus; Castro, Landy; Gamez, Abel; Brayner, Carlos, E-mail: danielgonro@gmail.com [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil); Garcia, Lazaro; Garcia, Carlos; Torre, Raciel de la, E-mail: lgarcia@instec.cu [Instituto Superior de Tecnologias y Ciencias Aplicadas (InSTEC), La Habana (Cuba); Sanchez, Danny [Universidade Estadual de Santa Cruz (UESC), Ilheus, BA (Brazil)

    2015-07-01

    High temperature electrolysis process coupled to a very high temperature reactor (VHTR) is one of the most promising methods for hydrogen production using a nuclear reactor as the primary heat source. However there are not references in the scientific publications of a test facility that allow to evaluate the efficiency of the process and other physical parameters that has to be taken into consideration for its accurate application in the hydrogen economy as a massive production method. For this lack of experimental facilities, mathematical models are one of the most used tools to study this process and theirs flowsheets, in which the electrolyzer is the most important component because of its complexity and importance in the process. A computational fluid dynamic (CFD) model for the evaluation and optimization of the electrolyzer of a high temperature electrolysis hydrogen production process flowsheet was developed using ANSYS FLUENT®. Electrolyzer's operational and design parameters will be optimized in order to obtain the maximum hydrogen production and the higher efficiency in the module. This optimized model of the electrolyzer will be incorporated to a chemical process simulation (CPS) code to study the overall high temperature flowsheet coupled to a high temperature accelerator driven system (ADS) that offers advantages in the transmutation of the spent fuel. (author)

  18. Radiation durability of polymeric materials in solid polymer electrolyzer for fusion tritium plant

    International Nuclear Information System (INIS)

    Iwai, Yasunori; Yamanishi, Toshihiko; Hiroki, Akihiro; Tamada, Masao

    2009-02-01

    This document presents the radiation durability of various polymeric materials applicable to a solid-polymer-electrolyte (SPE) water electrolyzer to be used in the tritium facility of fusion reactor. The SPE water electrolyzers are applied to the water detritiation system (WDS) of the ITER. In the ITER, an electrolyzer should keep its performance during two years operation in the tritiated water of 9TBq/kg, the design tritium concentration of the ITER. The tritium exposure of 9TBq/kg for two years is corresponding to the irradiation of no less than 530 kGy. In this study, the polymeric materials were irradiated with γ-rays or with electron beams at various conditions up to 1600 kGy at room temperature or at 343 K. The change in mechanical and functional properties were investigated by stress-strain measurement, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), X-ray photoelectron spectra (XPS), and so on. Our selection of polymeric materials for a SPE water electrolyzer used in a radiation environment was Pt + Ir applied Nafion N117 ion exchange membrane, VITON O-ring seal and polyimide insulator. (author)

  19. Computational model for a high temperature electrolyzer coupled to a HTTR for efficient nuclear hydrogen production

    International Nuclear Information System (INIS)

    Gonzalez, Daniel; Rojas, Leorlen; Rosales, Jesus; Castro, Landy; Gamez, Abel; Brayner, Carlos; Garcia, Lazaro; Garcia, Carlos; Torre, Raciel de la; Sanchez, Danny

    2015-01-01

    High temperature electrolysis process coupled to a very high temperature reactor (VHTR) is one of the most promising methods for hydrogen production using a nuclear reactor as the primary heat source. However there are not references in the scientific publications of a test facility that allow to evaluate the efficiency of the process and other physical parameters that has to be taken into consideration for its accurate application in the hydrogen economy as a massive production method. For this lack of experimental facilities, mathematical models are one of the most used tools to study this process and theirs flowsheets, in which the electrolyzer is the most important component because of its complexity and importance in the process. A computational fluid dynamic (CFD) model for the evaluation and optimization of the electrolyzer of a high temperature electrolysis hydrogen production process flowsheet was developed using ANSYS FLUENT®. Electrolyzer's operational and design parameters will be optimized in order to obtain the maximum hydrogen production and the higher efficiency in the module. This optimized model of the electrolyzer will be incorporated to a chemical process simulation (CPS) code to study the overall high temperature flowsheet coupled to a high temperature accelerator driven system (ADS) that offers advantages in the transmutation of the spent fuel. (author)

  20. Thermodynamic analysis of combined Solid Oxide Electrolyzer and Fischer–Tropsch processes

    International Nuclear Information System (INIS)

    Stempien, Jan Pawel; Ni, Meng; Sun, Qiang; Chan, Siew Hwa

    2015-01-01

    In this paper a thermodynamic analysis and simple optimization of a combined Solid Oxide Electrolyzer Cell and Fisher–Tropsch Synthesis processes for sustainable hydrocarbons fuel production is reported. Comprehensive models are employed to describe effects of temperature, pressure, reactant composition and molar flux and flow on the system efficiency and final production distribution. The electrolyzer model was developed in-house and validated with experimental data of a typical Solid Oxide Electrolyzer. The Fischer–Tropsch Synthesis model employed lumped kinetics of syngas utilization, which includes inhibiting effect of water content and kinetics of Water–Gas Shift reaction. Product distribution model incorporated olefin re-adsorption and varying physisorption and solubility of hydrocarbons with their carbon number. The results were compared with those reported by Becker et al. with simplified analysis of such process. In the present study an opposite effect of operation at elevated pressure was observed. Proposed optimized system achieved overall efficiency of 66.67% and almost equal spread of light- (31%wt), mid-(36%wt) and heavy-hydrocarbons (33%wt). Paraffins contributed the majority of the yield. - Highlights: • Analysis of Solid Oxide Electrolyzer combined with Fisher Tropsch process. • Efficiency of converting water and carbon dioxide into synthetic fuels above 66%. • Effects of process temperature, pressure, gas flux and compositions were analyzed

  1. Effects of electrode settings on chlorine generation efficiency of electrolyzing seawater.

    Science.gov (United States)

    Hsu, Guoo-Shyng Wang; Hsia, Chih-Wei; Hsu, Shun-Yao

    2015-12-01

    Electrolyzed water has significant disinfection effects, can comply with food safety regulations, and is environmental friendly. We investigated the effects of immersion depth of electrodes, stirring, electrode size, and electrode gap on the properties and chlorine generation efficiency of electrolyzing seawater and its storage stability. Results indicated that temperature and oxidation-reduction potential (ORP) of the seawater increased gradually, whereas electrical conductivity decreased steadily in electrolysis. During the electrolysis process, pH values and electric currents also decreased slightly within small ranges. Additional stirring or immersing the electrodes deep under the seawater significantly increased current density without affecting its electric efficiency and current efficiency. Decreasing electrode size or increasing electrode gap decreased chlorine production and electric current of the process without affecting its electric efficiency and current efficiency. Less than 35% of chlorine in the electrolyzed seawater was lost in a 3-week storage period. The decrement trend leveled off after the 1 st week of storage. The electrolyzing system is a convenient and economical method for producing high-chlorine seawater, which will have high potential applications in agriculture, aquaculture, or food processing. Copyright © 2015. Published by Elsevier B.V.

  2. Effects of electrode settings on chlorine generation efficiency of electrolyzing seawater

    Directory of Open Access Journals (Sweden)

    Guoo-Shyng Wang Hsu

    2015-12-01

    Full Text Available Electrolyzed water has significant disinfection effects, can comply with food safety regulations, and is environmental friendly. We investigated the effects of immersion depth of electrodes, stirring, electrode size, and electrode gap on the properties and chlorine generation efficiency of electrolyzing seawater and its storage stability. Results indicated that temperature and oxidation-reduction potential (ORP of the seawater increased gradually, whereas electrical conductivity decreased steadily in electrolysis. During the electrolysis process, pH values and electric currents also decreased slightly within small ranges. Additional stirring or immersing the electrodes deep under the seawater significantly increased current density without affecting its electric efficiency and current efficiency. Decreasing electrode size or increasing electrode gap decreased chlorine production and electric current of the process without affecting its electric efficiency and current efficiency. Less than 35% of chlorine in the electrolyzed seawater was lost in a 3-week storage period. The decrement trend leveled off after the 1st week of storage. The electrolyzing system is a convenient and economical method for producing high-chlorine seawater, which will have high potential applications in agriculture, aquaculture, or food processing.

  3. Hydrogen-oxygen proton-exchange membrane fuel cells and electrolyzers

    Science.gov (United States)

    Baldwin, R.; Pham, M.; Leonida, A.; Mcelroy, J.; Nalette, T.

    1990-01-01

    A flight experiment is planned for the validation, in a microgravity environment, of several ground-proven simplification features relating to SPE fuel cells and SPE electrolyzers. With a successful experiment, these features can be incorporated into equipment designs for specific extraterrestrial energy storage applications.

  4. Wind energy scenarios up to 2020. Developments in the Netherlands in the framework of the SDE regulation

    International Nuclear Information System (INIS)

    Hoving, P.

    2009-04-01

    The Dutch government relies heavily on wind energy to reach the renewable energy target. Aim for the onshore installed capacity is 4,000 MW in 2020 and the offshore capacity target is 6,000 MW in 2020. In order to reach these targets, the so-called SDE subsidy mechanism exists. The regulation subsidises the financial gap of wind projects. It is unsure whether this SDE regulation, offers enough support to achieve the above targets. The main research question of this study was formulated as follows: Is it possible for the Dutch government to meet the 2020 targets for wind energy, as a part of the renewable energy targets, with the current SDE regulation or should the regulation be altered to create an improved contribution of wind energy? To answer this question, several sub-questions were formulated concerning cost developments, capacity developments, and possible supporting subsidy strategies and the implementation of other policy measures. The research questions were answered with help of a specific spreadsheet model. Cost and capacity developments are the main elements of the model. Cost developments depend on learning effects, material costs and economic aspects. Long term expectations of these aspects are combined to sketch cost developments. Together with the electricity price (APX day-ahead base load index), the costs determine the financial gap of wind energy, that needs to be subsidised. A distinction is made between different capacity categories: new onshore wind turbines, new offshore wind farms and repowering. Repowering is defined as a combination of renewal projects for older onshore turbines which are renovated or replaced at the end of their economic lifetime. The capacity categories differ on the cost aspect and required subsidy payments, but also the capacity potential that can be achieved. The results show that in the most favourable scenario, the targets can be reached with an annual budget equal to that of the 2008 budget (800 million euro). A

  5. Spin Depolarization due to Beam-Beam Interaction in NLC

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, Kathleen A

    2001-01-04

    Calculations of spin depolarization effects due to the beam-beam interaction are presented for several NLC designs. The depolarization comes from both classical (Bargmann-Michel-Telegdi precession) and quantum (Sokolov-Ternov spin-flip) effects. It is anticipated that some physics experiments at future colliders will require a knowledge of the polarization to better than 0.5% precision. We compare the results of CAIN simulations with the analytic estimates of Yokoya and Chen for head-on collisions. We also study the effects of transverse offsets and beamstrahlung-induced energy spread.

  6. The continuum of spreading depolarizations in acute cortical lesion development

    DEFF Research Database (Denmark)

    Hartings, Jed A; Shuttleworth, C William; Kirov, Sergei A

    2017-01-01

    A modern understanding of how cerebral cortical lesions develop after acute brain injury is based on Aristides Leão's historic discoveries of spreading depression and asphyxial/anoxic depolarization. Treated as separate entities for decades, we now appreciate that these events define a continuum....... The causal role of these waves in lesion development has been proven by real-time monitoring of electrophysiology, blood flow, and cytotoxic edema. The spreading depolarization continuum further applies to other models of acute cortical lesions, suggesting that it is a universal principle of cortical lesion...

  7. Venous or arterial blood components trigger more brain swelling, tissue death after acute subdural hematoma compared to elderly atrophic brain with subdural effusion (SDE) model rats.

    Science.gov (United States)

    Wajima, Daisuke; Sato, Fumiya; Kawamura, Kenya; Sugiura, Keisuke; Nakagawa, Ichiro; Motoyama, Yasushi; Park, Young-Soo; Nakase, Hiroyuki

    2017-09-01

    Acute subdural hematoma (ASDH) is a frequent complication of severe head injury, whose secondary ischemic lesions are often responsible for the severity of the disease. We focused on the differences of secondary ischemic lesions caused by the components, 0.4ml venous- or arterial-blood, or saline, infused in the subdural space, evaluating the differences in vivo model, using rats. The saline infused rats are made for elderly atrophic brain with subdural effusion (SDE) model. Our data showed that subdural blood, both venous- and arterial-blood, aggravate brain edema and lesion development more than SDE. This study is the first study, in which different fluids in rats' subdural space, ASDH or SDE are compared with the extension of early and delayed brain damage by measuring brain edema and histological lesion volume. Blood constituents started to affect the degree of ischemia underneath the subdural hemorrhage, leading to more pronounced breakdown of the blood-brain barrier and brain damage. This indicates that further strategies to treat blood-dependent effects more efficiently are in view for patients with ASDH. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Control and Analysis for a Self-Excited Induction Generator for Wind Turbine and Electrolyzer Applications

    Energy Technology Data Exchange (ETDEWEB)

    Muljadi, Eduard [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Na, Woonki [California State University, Fresno; Leighty, Bill [The Leighty Foundation; Kim, Jonghoon [Chungnam National University

    2017-12-14

    Self-Excited Induction Generation(SEIG) is very rugged, simple, lightweight, and it is easy and inexpensive to implement, very simple to control, and requires a very little maintenance. In this variable-speed operation, the SEIG needs a power electronics interface to convert from the variable frequency output voltage of the generator to a DC output voltage for battery or other DC applications. In our study, a SEIG is connected to the power electronics interface such as diode rectifier and DC/DC converter and then an electrolyzer is connected as a final DC load for fuel cell applications. An equivalent circuit model for an electrolyzer is utilized for our application. The control and analysis for the proposed system is carried out by using PSCAD and MATLAB software. This study would be useful for designing and control analysis of power interface circuits for SEIG for a variable speed wind turbine generation with fuel cell applications before the actual implementation.

  9. Sequential Washing with Electrolyzed Alkaline and Acidic Water Effectively Removes Pathogens from Metal Surfaces.

    Directory of Open Access Journals (Sweden)

    Yuichiro Nakano

    Full Text Available Removal of pathogenic organisms from reprocessed surgical instruments is essential to prevent iatrogenic infections. Some bacteria can make persistent biofilms on medical devices. Contamination of non-disposable equipment with prions also represents a serious risk to surgical patients. Efficient disinfection of prions from endoscopes and other instruments such as high-resolution cameras remains problematic because these instruments do not tolerate aggressive chemical or heat treatments. Herein, we develop a new washing system that uses both the alkaline and acidic water produced by electrolysis. Electrolyzed acidic water, containing HCl and HOCl as active substances, has been reported to be an effective disinfectant. A 0.15% NaCl solution was electrolyzed and used immediately to wash bio-contaminated stainless steel model systems with alkaline water (pH 11.9 with sonication, and then with acidic water (pH 2.7 without sonication. Two bacterial species (Staphylococcus aureus and Pseudomonas aeruginosa and a fungus (Candida albicans were effectively removed or inactivated by the washing process. In addition, this process effectively removed or inactivated prions from the stainless steel surfaces. This washing system will be potentially useful for the disinfection of clinical devices such as neuroendoscopes because electrolyzed water is gentle to both patients and equipment and is environmentally sound.

  10. Physicochemical Properties of Edible Chitosan/Hydroxypropyl Methylcellulose/Lysozyme Films Incorporated with Acidic Electrolyzed Water

    Directory of Open Access Journals (Sweden)

    Ewa Brychcy

    2015-01-01

    Full Text Available The treatment with acidic electrolyzed water (AEW is a promising disinfection method due to its effectiveness in reducing microbial population. The aim of the study was to evaluate physicochemical properties of chitosan/HPMC films incorporated with lysozyme and acidic electrolyzed water. In the composite films, decreasing film solubility and increasing concentration of sodium chloride solution and prolongation of electrolysis time were observed. Electrolysis process with sodium chloride induces spongy network of film structure. The use of AEW has not changed chemical composition of films which was proved by 1H NMR, MALDI-TOF, and FT-IR spectroscopy. The research confirmed that electrolysis significantly improved thermomechanical properties of the examined films. The contact angle values of the films were quite similar and ranged between 56° and 73°. The increase of salt concentration used in the electrolysis process had an impact on increasing flexibility of samples. Application of electrolyzed water in commonly used food processing systems is possible. Fusion of AEW and biopolymers may provide better integration with coated food product and multidirectional protecting effect.

  11. Physicochemical and Antibacterial Properties of Carrageenan and Gelatine Hydrosols and Hydrogels Incorporated with Acidic Electrolyzed Water

    Directory of Open Access Journals (Sweden)

    Ewa Brychcy

    2015-12-01

    Full Text Available The article focuses on investigation of the effects of usage of acidic electrolyzed water (AEW with different sodium chloride concentration (0.001%, 0.01%, and 0.1% for the preparation of carrageenan and gelatine hydrosols and hydrogels. To determine physiochemical properties of hydrosols, the pH, oxidation-reduction potential (ORP, available chloride concentration (ACC and rheological parameters such us gelation and flow temperatures were measured. The samples were also characterized using Fourier transform infrared spectroscopy (FT IR and texture profile analysis (TPA. Additionally, the article contains an analysis of antibacterial activity of carrageenan and gelatine hydrosols incorporated with acidic electrolyzed water, against Staphylococcus aureus and Escherichia coli. The FT IR spectra demonstrated that the structure of gelatine and carrageenan are not significantly affected by electrolyzed NaCl solution components. Furthermore, TPA analysis showed that the use of AEW did not cause undesirable changes in hydrogels layer. The microbiological analysis confirmed inhibition of bacterial growth by hydrosols to about 2.10 log reduction. The results showed that the range of reduction of microorganisms depends on the type AEW used. This might be explained by the fact that the lowest pH and the highest ACC values of hydrosols were obtained for samples with the longest period of exposure to electrolysis (10 min and the highest amount of NaCl (0.1% w/v. These results suggest that hydrogels and hydrosols incorporated with AEW may be used for food preservation.

  12. HOGEN{trademark} proton exchange membrane hydrogen generators: Commercialization of PEM electrolyzers

    Energy Technology Data Exchange (ETDEWEB)

    Smith, W.F.; Molter, T.M. [Proton Energy Systems, Inc., Rocky Hill, CT (United States)

    1997-12-31

    PROTON Energy Systems` new HOGEN series hydrogen generators are Proton Exchange Membrane (PEM) based water electrolyzers designed to generate 300 to 1000 Standard Cubic Feet Per Hour (SCFH) of high purity hydrogen at pressures up to 400 psi without the use of mechanical compressors. This paper will describe technology evolution leading to the HOGEN, identify system design performance parameters and describe the physical packaging and interfaces of HOGEN systems. PEM electrolyzers have served US and UK Navy and NASA needs for many years in a variety of diverse programs including oxygen generators for life support applications. In the late 1970`s these systems were advocated for bulk hydrogen generation through a series of DOE sponsored program activities. During the military buildup of the 1980`s commercial deployment of PEM hydrogen generators was de-emphasized as priority was given to new Navy and NASA PEM electrolysis systems. PROTON Energy Systems was founded in 1996 with the primary corporate mission of commercializing PEM hydrogen generators. These systems are specifically designed and priced to meet the needs of commercial markets and produced through manufacturing processes tailored to these applications. The HOGEN series generators are the first step along the path to full commercial deployment of PEM electrolyzer products for both industrial and consumer uses. The 300/1000 series are sized to meet the needs of the industrial gases market today and provide a design base that can transition to serve the needs of a decentralized hydrogen infrastructure tomorrow.

  13. The problem of radiative depolarization in the 'Siberian Snake'

    International Nuclear Information System (INIS)

    Schwitters, R.

    1979-01-01

    As pointed out by Derbenev and Kondratenko and by the LEP Study Group, a 'Siberian Snake' may be a convenient method for providing longitudinally polarized beams at LEP. The author shows that at the highest LEP energies (approximately>60 GeV) synchrotron radiation with spin-flip may depolarize the beams. (Auth.)

  14. Depolarization temperature and piezoelectric properties of Na1/2 ...

    Indian Academy of Sciences (India)

    1/2Bi1/2(Zn1/3Nb2/3)O3, was synthesized using the two-stage calcination method and depolarization temperatures and piezoelectric properties were also investigated. The XRD analysis showed that the ceramics system had a morphotropic ...

  15. Depolarization temperature and piezoelectric properties of TiO3 ...

    Indian Academy of Sciences (India)

    WINTEC

    2TiO3–Na1/2Bi1/2(Zn1/3Nb2/3)O3, was synthesized using the two-stage calcination method and depolarization temperatures and piezoelectric properties were also investigated. The XRD analysis showed that the ceramics system had a ...

  16. Twomey effect in subtropical stratocumulus clouds from UV depolarization lidar

    NARCIS (Netherlands)

    de Graaf, M.; Brown, Jessica; Donovan, D.P.; Nicolae, D.; Makoto, A.; Vassilis, A.; Balis, D.; Behrendt, A.; Comeron, A.; Gibert, F.; Landulfo, E.; McCormick, M.P.; Senff, C.; Veselovskii, I.; Wandinger, U.

    2018-01-01

    Marine stratocumulus clouds are important climate regulators, reflecting sunlight over a dark ocean background. A UV-depolarization lidar on Ascension, a small remote island in the south Atlantic, measured cloud droplet sizes and number concentration using an inversion method based on Monte Carlo

  17. Polygeneration system based on PEMFC, CPVT and electrolyzer: Dynamic simulation and energetic and economic analysis

    International Nuclear Information System (INIS)

    Calise, Francesco; Figaj, Rafal Damian; Massarotti, Nicola; Mauro, Alessandro; Vanoli, Laura

    2017-01-01

    Highlights: • A novel polygeneration system is presented. • System includes CPVT collectors, PEM fuel cell, absorption chiller and electrolyzer. • The system provides heating/cooling, domestic hot water, electricity, hydrogen and oxygen. • The system simple payback period is 12.5 years, 5.8 years in case of incentive. • The optimal fuel cell nominal power results 100 kW. - Abstract: This paper presents a dynamic simulation model and an energetic and economic analysis of novel polygeneration system. The system integrates: cogenerative Proton Exchange Membrane Fuel Cell (PEMFC), Concentrated PhotoVoltaic-Thermal (CPVT) collectors, alkaline electrolyzer and single-stage LiBr/H_2O absorption chiller. The plant is designed to supply electrical energy, space heating or cooling and domestic hot water for a small university building. The system produces hydrogen and oxygen, the first one is stored and then it is supplied to the fuel cell, while the second one is sold. The electrolyzer system is powered only by the CPVT collectors, only a small amount of the solar electrical energy is available to the user. Such electric energy along with the one produced by the PEM fuel cell are used by the user and/or supplied to the grid. The system is designed and dynamically simulated using TRNSYS software package. This study is based on a model previously developed by the authors. In particular, the system was modified in order to implement the new components (CPVT, alkaline electrolyzer, hydrogen and oxygen system) in this work. Special attention is paid to the control strategy of the proposed system in order to achieve the optimal system configuration. Daily, weekly and yearly results carried out with the dynamic simulation are presented. Finally, a sensitivity analysis was performed in order to determine the system performance as a function of the main design parameters. The energetic and economic analysis shows that the system can ensure significant energy savings and it

  18. Spreading depolarizations increase delayed brain injury in a rat model of subarachnoid hemorrhage

    NARCIS (Netherlands)

    Hamming, Arend M.; Wermer, Marieke J. H.; Rudrapatna, S. Umesh; Lanier, Christian; van Os, Hine J. A.; van den Bergh, Walter M.; Ferrari, Michel D.; van der Toorn, Annette; van den Maagdenberg, Arn M. J. M.; Stowe, Ann M.; Dijkhuizen, Rick M.

    Spreading depolarizations may contribute to delayed cerebral ischemia after aneurysmal subarachnoid hemorrhage, but the effect of spreading depolarizations on brain lesion progression after subarachnoid hemorrhage has not yet been assessed directly. Therefore, we tested the hypothesis that

  19. Spreading depolarizations occur in human ischemic stroke with high incidence

    DEFF Research Database (Denmark)

    Dohmen, C.; Sakowitz, O.W.; Fabricius, M.

    2008-01-01

    Objective: Cortical spreading depression (CSD) and periinfarct depolarization (PID) have been shown in various experimental models of stroke to cause secondary neuronal damage and infarct expansion. For decades it has been questioned whether CSD or PID occur in human ischemic stroke. Here, we...... potential change spreading between adjacent channels was accompanied by transient depression of ECoG activity. In PID, a slow potential change spread between neighboring channels despite already established suppression of ECoG activity. Most CSDs and PIDs appeared repetitively in clusters. CSD or PID...... was observed in all but two patients. In these two patients, the electrode strip had been placed over infarcted tissue, and accordingly, no local ECoG or recurrent transient depolarization activity occurred throughout the observation period. Interpretation: CSD and PID occurred spontaneously with high...

  20. Linear theory of beam depolarization due to vertical betatron motion

    International Nuclear Information System (INIS)

    Chao, A.W.; Schwitters, R.F.

    1976-06-01

    It is well known that vertical betatron motion in the presence of quantum fluctuations leads to some degree of depolarization of a transversely polarized beam in electron-positron storage rings even for energies away from spin resonances. Analytic formulations of this problem, which require the use of simplifying assumptions, generally have shown that there exist operating energies where typical storage rings should exhibit significant beam polarization. Due to the importance of beam polarization in many experiments, we present here a complete calculation of the depolarization rate to lowest order in the perturbing fields, which are taken to be linear functions of the betatron motion about the equilibrium orbit. The results are applicable to most high energy storage rings. Explicit calculations are given for SPEAR and PEP. 7 refs., 8 figs

  1. Piezoelectric effect in polarized and electrically depolarized ferrotextures

    International Nuclear Information System (INIS)

    Luchaninov, A.G.; Shil'nikov, A.V.; Shuvalov, L.A.

    1999-01-01

    Piezoelectric moduli were calculated for ferroelectric textures in the states with the greatest possible (in terms of symmetry) polarization and the zero polarization (obtained from the former by electrical depolarization). The calculations were performed for the textures of crystals of the classes 2, 3, 4, 6, mm2, 3m, 4mm,and 6mm. The experimental results for lead zirconate-titanate- and barium-titanate-based piezoelectric ceramic are reported

  2. Beam-beam depolarization in SPEAR and PEP

    International Nuclear Information System (INIS)

    Montague, B.W.

    1977-01-01

    In this note some approximate estimates are made of depolarization due to beam-beam forces in SPEAR and PEP, using the results of a calculation by Kondratenko. The model assumes head-on collisions between bunches of Gaussian distribution in the transverse directions; the force on the weak-beam particle is taken to be a δ-function at the interaction point. 1 ref

  3. Scattering and depolarization of polarized neutrons in ferrofluids

    International Nuclear Information System (INIS)

    Balasoiu, M.; Dokukin, E.B.; Kozhevnikov, S.V.; Nikitenko, Y.V.

    1999-01-01

    On the SPN - 1 polarized neutron spectrometer at IBR -2 high - flux pulsed rector there were carried out preliminary measurements on transmission and polarization of a neutron beam passing through a magnetic colloidal system of Fe 3 O 4 particles in transformer oil and dodecane carriers. It was found that in the ferrofluids with magnetite particles exist, dependent on the particle volume concentration and the magnitude of the external magnetic field, effects of depolarization and nuclear - magnetic small angle scattering. (author)

  4. On the polarization and depolarization of the electromagnetic waves

    International Nuclear Information System (INIS)

    Borghese, Ferdinando; Denti, Paolo; Saija, Rosalba; Cecchi-Pestellini, Cesare

    2005-01-01

    We discuss a general description of the polarization of monochromatic electromagnetic waves that proves useful when the customary description in terms of Stokes parameters does not apply. We also show how this description can be exploited to study the depolarization of linearly polarized waves in the interior of porous model cosmic dust grains. The results that we discuss may affect our understanding of several problems that are relevant for astrobiology

  5. Atrioventricular depolarization differences identify coronary artery anomalies in Kawasaki disease.

    Science.gov (United States)

    Cortez, Daniel; Sharma, Nandita; Jone, Pei-Ni

    2017-03-01

    Kawasaki disease (KD) is the leading cause of acquired heart disease in children. Signal average electrocardiogram changes in patients during the acute phase of KD with coronary artery anomalies (CAA) include depolarization changes. We set out to determine if 12-lead-derived atrioventricular depolarization differences can identify CAA in patients with KD. A blinded, retrospective case-control study of patients with KD was performed. Deep Q waves, corrected QT-intervals (QTc), spatial QRS-T angles, T-wave vector magnitudes (RMS-T), and a novel parameter for assessment of atrioventricular depolarization difference (the spatial PR angle) and a two dimensional PR angle were assessed. Comparisons between groups were performed to test for significant differences. One hundred one patients with KD were evaluated, with 68 having CAA (67.3%, mean age 3.6 ± 3.0 years, 82.6% male), and 32 without CAA (31.7%, mean age 2.7 ± 3.2 years, 70.4% male). The spatial PR angle significantly discriminated KD patients with CAA from those without, 59.7° ± 31.1° versus 41.6° ± 11.5° (p differences, measured by the spatial or two dimensional PR angle differentiate KD patients with CAA versus those without. © 2016 Wiley Periodicals, Inc.

  6. Elastodynamic metasurface: Depolarization of mechanical waves and time effects

    Energy Technology Data Exchange (ETDEWEB)

    Boutin, Claude, E-mail: claude.boutin@entpe.fr [Ecole Nationale des Travaux Publics de l' Etat, Université de Lyon, LGCB, UMR CNRS 5513, Vaulx-en-Velin (France); Schwan, Logan [Acoustics Research Center, University of Salford, Newton Building, Salford M5 4WT (United Kingdom); Dietz, Matthew S. [Department of Civil Engineering, University of Bristol, Queen' s Building, Bristol BS8 1TR (United Kingdom)

    2015-02-14

    We report the concept of microstructured surfaces with inner resonance in the field of elastodynamics, so-called elastodynamic metasurfaces. Such metasurfaces allow for wavefield manipulation of mechanical waves by tuning the boundary conditions at specific frequencies. In particular, they can be used to depolarize elastic waves without introducing heterogeneities in the medium itself; the physical means to do so in homogeneous elastic media used to remain, surprisingly, an open question while depolarization is commonplace in electromagnetism. The principle relies on the anisotropic behaviour of a subwavelength array of resonators: Their subwavelength configuration confines the Bragg interferences scattered by resonators into a boundary layer. The effective behaviour of the resonating array is expressed with homogenization as an unconventional impedance, the frequency-dependence, and anisotropy of which lead to depolarization and time effects. The concept of the elastodynamic metasurface is tested experimentally and results bear testament to its efficacy and robustness. Elastodynamic metasurfaces are easily realized and analytically predictable, opening new possibilities in tomography techniques, ultrasonics, geophysics, vibration control, materials and structure design.

  7. Influence of thermal reduced depolarization on a repetition-frequency laser amplifier and compensation

    Institute of Scientific and Technical Information of China (English)

    Xin-ying Jiang; Xiong-wei Yan; Zhen-guo Wang; Jian-gang Zheng; Ming-zhong Li; Jing-qin Su

    2015-01-01

    Thermal stress can induce birefringence in a laser medium, which can cause depolarization of the laser. The depolarization effect will be very severe in a high-average-power laser. Because the depolarization will make the frequency doubling efficiency decline, it should be compensated. In this paper, the thermal characteristics of two kinds of materials are analyzed in respect of temperature, thermal deformation and thermal stress. The depolarization result from thermal stress was simulated. Depolarization on non-uniform pumping was also simulated, and the compensation method is discussed.

  8. Energy and Beam-Offset dependence of the Luminosity weighted depolarization for CLIC

    CERN Document Server

    Esberg, Jakob; Uggerhoj, Ulrik; Dalena, Barbara

    2011-01-01

    We report on simulations of e+e- depolarization due to beam-beam effects. These effects are studied for CLIC at 3 TeV, using GUINEA PIG++. We find a strong energy dependence of the luminosity weighted depolarization. In the luminosity peak at CLIC the total luminosity weighted depolarization remains below the one per-mil level. The effect of a vertical offset on the energy dependent depolarization is investigated. The depolarization in the luminosity peak remains below per-cent level even for 5sy offsets.

  9. Behaviour and lifetime of electrolyzers electrolysing enriched tritium containing waste water from reprocessing

    International Nuclear Information System (INIS)

    Riedel, H.J.; Ullrich, W.

    1988-01-01

    In order to define a representative waste composition for the experimental tests, the different streams of tritiated waste water which are expected to arise from the operation of the Wackersdorf reprocessing plant were identified as well as their chemical and radiochemical composition. Results obtained by pretreatment applying distillation and the decontamination factors thus achieved will be presented, as well as data concerning the effects of the remaining contaminations in the distillate on the solid-polymer electrode and the generated hydrogen and oxygen flow of the electrolyser used operating in a neutral solution. Additional investigations were performed using a TELEDYNE electrolyzer which operates in an alkaline solution

  10. Study of Seal Glass for Solid Oxide Fuel/Electrolyzer Cells

    OpenAIRE

    Mahapatra, Manoj Kumar

    2009-01-01

    Seal glass is essential and plays a crucial role in solid oxide fuel/electrolyzer cell performance and durability. A seal glass should have a combination of thermal, chemical, mechanical, and electrical properties in order to seal different cell components and stacks and prevent gas leakage. All the desired properties can simultaneously be obtained in a seal glass by suitable compositional design. In this dissertation, SrO-La₂O₃-A₂O₃-B₂O₃3-SiO₂ based seal glasses have been developed and compo...

  11. The application of alkaline and acidic electrolyzed water in the sterilization of chicken breasts and beef liver

    OpenAIRE

    Shimamura, Yuko; Shinke, Momoka; Hiraishi, Miki; Tsuchiya, Yusuke; Masuda, Shuichi

    2015-01-01

    Abstract The sterilization effect of a combination treatment with alkaline electrolyzed water (AlEW) and strong acidic electrolyzed water (StAEW) on fresh chicken breasts and beef liver was evaluated. Samples (1, 5, and 10?g) were inoculated with Salmonella Enteritidis NBRC3313, Escherichia coli ATCC 10798, Staphylococcus aureus FDA209P, and S.?aureus C?29 [staphylococcal enterotoxin A (SEA) productive strain] and subjected to a dipping combination treatment (4?C and 25?C for 3?min) with AlEW...

  12. Electrolyzed-water generator 'SaniBoy'; Eisei jokinsuik kyokyu sochi 'SaniBoy'

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, M.; Kakiuchi, H.; Muto, K. [Fuji Electric Co. Ltd., Tokyo (Japan)

    2000-03-10

    In the food industry, injuries due to food poisoning have been increasing. Especially the mass outbreak of food poisoning by Escherichia coli such as O-157 in 1996 gave warning on the importance of food sanitation management. Public efforts such as the Hazard Analysis and Critical Control Point (HACCP) system have been made to prevent food poisoning. Recently, disinfection made by electrolyzing water with some salt added has attracted attention. Fuji Electric has developed the generator 'SaniBoy' that produces weak alkaline electrolyzed water without wasting water. The environment-friendly 'SaniBoy' will contribute to sanitation in various fields. (author)

  13. Remarkable magnitude of the self-disproportionation of enantiomers (SDE) via achiral chromatography: application to the practical-scale enantiopurification of β-amino acid esters.

    Science.gov (United States)

    Wzorek, Alicja; Sato, Azusa; Drabowicz, Józef; Soloshonok, Vadim A; Klika, Karel D

    2016-02-01

    We report the best performance yet for the self-disproportionation of enantiomers (SDE) via achiral chromatography as typically used in laboratories for the isolated yield of the excess enantiomer using N-acetyl β-amino acid ethyl esters. The results are the most convincing ever demonstration of the capability of the SDE for practical-scale enantiopurification as comparable, or even superior for some systems, to that of recrystallization. For example, from a sample of 94.4 % ee, a yield of 71 % of enantiopure material was isolated in a single chromatographic run. Moreover, the lack of an esoteric structural entity, e.g. strongly polarizing groups, such as, for instance CF3, highlights the fact that the phenomenon is not dependent on the presence of such and thus the process is relevant to any usual-type structure. In contrast to recrystallization, the procedure is predictable, general, and dependable, boding well for its widespread application in routine laboratory settings.

  14. Itô-SDE MCMC method for Bayesian characterization of errors associated with data limitations in stochastic expansion methods for uncertainty quantification

    Science.gov (United States)

    Arnst, M.; Abello Álvarez, B.; Ponthot, J.-P.; Boman, R.

    2017-11-01

    This paper is concerned with the characterization and the propagation of errors associated with data limitations in polynomial-chaos-based stochastic methods for uncertainty quantification. Such an issue can arise in uncertainty quantification when only a limited amount of data is available. When the available information does not suffice to accurately determine the probability distributions that must be assigned to the uncertain variables, the Bayesian method for assigning these probability distributions becomes attractive because it allows the stochastic model to account explicitly for insufficiency of the available information. In previous work, such applications of the Bayesian method had already been implemented by using the Metropolis-Hastings and Gibbs Markov Chain Monte Carlo (MCMC) methods. In this paper, we present an alternative implementation, which uses an alternative MCMC method built around an Itô stochastic differential equation (SDE) that is ergodic for the Bayesian posterior. We draw together from the mathematics literature a number of formal properties of this Itô SDE that lend support to its use in the implementation of the Bayesian method, and we describe its discretization, including the choice of the free parameters, by using the implicit Euler method. We demonstrate the proposed methodology on a problem of uncertainty quantification in a complex nonlinear engineering application relevant to metal forming.

  15. The Development of Nano-Composite Electrodes for Solid Oxide Electrolyzers

    Energy Technology Data Exchange (ETDEWEB)

    Gorte, Raymond J.; Vohs, John M.

    2014-03-26

    Solid oxide fuel cells (SOFC) and electrolyzers (SOE) offer an attractive means for converting between electrical and chemical energy. Because they operate at high temperatures and are usually based on electrolytes that are oxygen-ion conducting ceramics, such as yttria-stabilized zirconia (YSZ), they are equally capable of converting between CO and CO2 as between H2 and H2O. When operated in the SOFC mode, they are able to operate on hydrocarbon fuels so long as there are no materials within the anode that can catalyze carbon formation. Compared to other types of electrolyzers, SOE can exhibit the highest efficiencies because the theoretical Nernst potential is lower at high temperatures and because the electrode overpotentials in SOE tend to be much lower. Finally, pure H2 can be produced without an external electrical source by electrolysis of steam at one electrode and oxidation of any fuel at the other electrode through a process known as Natural-Gas Assisted Steam Electrolysis. This final report describes results from studies of novel electrodes for SOE and SOFC prepared by infiltration methods.

  16. Synthesis of superconducting cobalt oxyhydrates using a novel method: Electrolyzed and oxidized water

    International Nuclear Information System (INIS)

    Liu, C.-J.; Wu, T.-H.; Hsu, L.-L.; Wang, J.-S.; Chen, S.-Y.

    2007-01-01

    By deintercalation of Na + followed by inserting bilayers of water molecules into the host lattice, the layered cobalt oxide of γ-Na 0.7 CoO 2 undergoes a topotactic transformation to a layered cobalt oxyhydrate of Na 0.35 (H 2 O) 1.3 CoO 2-δ with the c-axis expanded from c ∼ 10.9 A to c ∼ 19.6 A. In this paper, we demonstrate that the superconducting phase of c ∼ 19.6 A can be directly obtained by simply immersing γ-Na 0.7 CoO 2 powders in electrolyzed/oxidized (EO) water, which is readily available from a commercial electrolyzed water generator. We found that high oxidation-reduction potential of EO water drives the oxidation of the cobalt ions accompanying by the formation of the superconductive c ∼ 19.6 A phase. Our results demonstrate how EO water can be used to oxidize the cobalt ions and hence form superconducting cobalt oxyhydrates in a clean and simple way and may provide an economic and environment-friendly route to oxidize the transition metal of complex metal oxides

  17. Synthesis of superconducting cobalt oxyhydrates using a novel method: Electrolyzed and oxidized water

    Science.gov (United States)

    Liu, Chia-Jyi; Wu, Tsung-Hsien; Hsu, Lin-Li; Wang, Jung-Sheng; Chen, Shu-Yo

    2007-09-01

    By deintercalation of Na+ followed by inserting bilayers of water molecules into the host lattice, the layered cobalt oxide of γ-Na0.7CoO2 undergoes a topotactic transformation to a layered cobalt oxyhydrate of Na0.35(H2O)1.3CoO2-δ with the c-axis expanded from c ≈ 10.9 Å to c ≈ 19.6 Å. In this paper, we demonstrate that the superconducting phase of c ≈ 19.6 Å can be directly obtained by simply immersing γ-Na0.7CoO2 powders in electrolyzed/oxidized (EO) water, which is readily available from a commercial electrolyzed water generator. We found that high oxidation-reduction potential of EO water drives the oxidation of the cobalt ions accompanying by the formation of the superconductive c ≈ 19.6 Å phase. Our results demonstrate how EO water can be used to oxidize the cobalt ions and hence form superconducting cobalt oxyhydrates in a clean and simple way and may provide an economic and environment-friendly route to oxidize the transition metal of complex metal oxides.

  18. Synthesis of superconducting cobalt oxyhydrates using a novel method: Electrolyzed and oxidized water

    Energy Technology Data Exchange (ETDEWEB)

    Liu, C.-J. [Department of Physics, National Changhua University of Education, Changhua 50007, Taiwan (China)], E-mail: liucj@cc.ncue.edu.tw; Wu, T.-H.; Hsu, L.-L.; Wang, J.-S.; Chen, S.-Y. [Department of Physics, National Changhua University of Education, Changhua 50007, Taiwan (China)

    2007-09-01

    By deintercalation of Na{sup +} followed by inserting bilayers of water molecules into the host lattice, the layered cobalt oxide of {gamma}-Na{sub 0.7}CoO{sub 2} undergoes a topotactic transformation to a layered cobalt oxyhydrate of Na{sub 0.35}(H{sub 2}O){sub 1.3}CoO{sub 2-{delta}} with the c-axis expanded from c {approx} 10.9 A to c {approx} 19.6 A. In this paper, we demonstrate that the superconducting phase of c {approx} 19.6 A can be directly obtained by simply immersing {gamma}-Na{sub 0.7}CoO{sub 2} powders in electrolyzed/oxidized (EO) water, which is readily available from a commercial electrolyzed water generator. We found that high oxidation-reduction potential of EO water drives the oxidation of the cobalt ions accompanying by the formation of the superconductive c {approx} 19.6 A phase. Our results demonstrate how EO water can be used to oxidize the cobalt ions and hence form superconducting cobalt oxyhydrates in a clean and simple way and may provide an economic and environment-friendly route to oxidize the transition metal of complex metal oxides.

  19. Graphitic Carbon Nitride as a Catalyst Support in Fuel Cells and Electrolyzers

    International Nuclear Information System (INIS)

    Mansor, Noramalina; Miller, Thomas S.; Dedigama, Ishanka; Jorge, Ana Belen; Jia, Jingjing; Brázdová, Veronika; Mattevi, Cecilia; Gibbs, Chris; Hodgson, David; Shearing, Paul R.; Howard, Christopher A.; Corà, Furio; Shaffer, Milo; Brett, Daniel J.L.

    2016-01-01

    Highlights: • Graphitic carbon nitride (gCN) describes many materials with different structures. • gCNs can exhibit excellent mechanical, chemical and thermal resistance. • A major obstacle for pure gCN catalyst supports is limited electronic conductivity. • Composite/Hybrid gCN structures show excellent performance as catalyst supports. • gCNs have great potential for use in fuel calls and water electrolyzers. - Abstract: Electrochemical power sources, such as polymer electrolyte membrane fuel cells (PEMFCs), require the use of precious metal catalysts which are deposited as nanoparticles onto supports in order to minimize their mass loading and therefore cost. State-of-the-art/commercial supports are based on forms of carbon black. However, carbon supports present disadvantages including corrosion in the operating fuel cell environment and loss of catalyst activity. Here we review recent work examining the potential of different varieties of graphitic carbon nitride (gCN) as catalyst supports, highlighting their likely benefits, as well as the challenges associated with their implementation. The performance of gCN and hybrid gCN-carbon materials as PEMFC electrodes is discussed, as well as their potential for use in alkaline systems and water electrolyzers. We illustrate the discussion with examples taken from our own recent studies.

  20. Overcoming weak intrinsic depolarizing resonances with energy-jump

    International Nuclear Information System (INIS)

    Huang, H.; Ahrens, L.; Alessi, J.G.

    1997-01-01

    In the recent polarized proton runs in the AGS, a 5% partial snake was used successfully to overcome the imperfection depolarizing resonances. Polarized proton beam was accelerated up to the required RHIC injection energy of 25 GeV. However, significant amount of polarization was lost at 0+ν y , 12+ν y and 36+ν y , which is believed to be partially due to the coupling resonances. To overcome the coupling resonance, an energy-jump was generated by rapidly changing the beam circumference using the powerful AGS rf system. It clearly demonstrates that the novel energy-jump method can successfully overcome coupling resonances and weak intrinsic resonances

  1. Thermally stimulated depolarization currents in ThO2

    International Nuclear Information System (INIS)

    Campos, L.L.

    1979-01-01

    Thermally Stimulated Depolarization Currents (TSDC) have been detected in polycrystalline samples of ThO 2 in the temperature range 100K - 350K. The induced polarization is found to be due to migration of charge carriers over microscopic distances with trapping at grain boundaries. Moreover the density of charges carriers released from trapping sites, upon heating the cooled previously dc biased specimen, decreases for increasing sintering temperature, suggesting the use of the technique to the study of grain growth in the bulk of ceramic nuclear oxides [pt

  2. Concentration depolarization of luminescence of Eu3+-doped glasses

    International Nuclear Information System (INIS)

    Bodunov, E.N.; Lebedev, V.P.; Malyshev, V.A.; Przheuskij, A.K.

    1989-01-01

    Experimental study of concentrational depolarization luminescence (CDL) of phosphate and germanate glasses, containing Eu 3+ ions, has been carried out. On the basis of three-body self-consistent approximation the theory of CDL is conceived, which takes into account Eu-Eu interaction of higher multipolarities. By comparing the theory with the experiment energy transfer radii for Eu-Eu dipole-dipole, dipole-quadrupole and quadrupole-quadrupole interactions are determined. The attempt to discriminate Eu-Eu interaction types in the studied range of Eu 3+ ion concentration change has failed owing to law accuracy of luminescence emittance anisotropy measurement

  3. Neutron depolarization effects in a high-Tc superconductor (abstract)

    Science.gov (United States)

    Nunes, A. C.; Pickart, S. J.; Crow, L.; Goyette, R.; McGuire, T. R.; Shinde, S.; Shaw, T. M.

    1988-11-01

    Using the polarized beam small-angle neutron scattering spectrometer at the Rhode Island Nuclear Science Center Reactor, we have observed significant depolarization of a neutron beam by passage through polycrystalline high-Tc superconductors, specifically 123 Y-Ba-Cu-O prepared and characterized at the IBM Watson Research Center. We believe that this technique will prove useful in studying aspects of these materials, such as the penetration depth of shielding currents, the presence and structure of trapped flux vortices, and grain size effects on the supercurrent distribution in polycrystalline samples. The two samples showed sharp transitions at 87 and 89 K, and have been studied at temperatures of 77 K; the second sample has also been studied at 4 K. The transition to the superconducting state was monitored by the shift in resonant frequency of a coil surrounding the sample. No measurable depolarization was observed in either sample at 77 K in both the field-cooled and zero-field-cooled states, using applied fields of 0 (nominal), 54, and 1400 Oe. This negative result may be connected with the fact that the material is still in the reversible region as indicated by susceptibility measurements, but it allows an estimate of the upper bound of possible inhomogeneous internal fields, assuming a distance scale for the superconducting regions. For the 10-μm grain size suggested by photomicrographs, this upper bound for the field turns out to be 1.2 kOe, which seems reasonable. At 4 K a significant depolarization was observed when the sample was cooled in low fields and a field of 1400 Oe was subsequently applied. This result suggests that flux lines are penetrating the sample. Further investigations are being carried out to determine the field and temperature dependence of the depolarization, and attempts will be made to model it quantitatively in terms of possible internal field distributions. We are also searching for possible diffraction effects from ordered vortex

  4. Depolarization of fluorescence of polyatomic molecules in noble gas solvents

    Science.gov (United States)

    Blokhin, A. P.; Gelin, M. F.; Kalosha, I. I.; Matylitsky, V. V.; Erohin, N. P.; Barashkov, M. V.; Tolkachev, V. A.

    2001-10-01

    The collisional depolarization of fluorescence is studied for p-quarterphenyl (PQP) in He, Ar, Xe solvents, under pressures ranging from zero to nearly atmospheric. The results are interpreted within the Keilson-Storer model of the orientational relaxation and smooth rigid body collision dynamics. This allows us to estimate the rate of the angular momentum scrambling due to encounters of PQP with its partners. The collisions are shown to be neither strong nor weak, so that the averaged number of encounters giving rise to the PQP angular momentum randomization equals to 33 (PQP-He), 4.5 (PQP-Ar), and 2.1 (PQP-Xe).

  5. Analysis of spin depolarizing effects in electron storage rings

    International Nuclear Information System (INIS)

    Boege, M.

    1994-05-01

    In this thesis spin depolarizing effects in electron storage rings are analyzed and the depolarizing effects in the HERA electron storage ring are studied in detail. At high beam energies the equilibrium polarization is limited by nonlinear effects. This will be particularly true in the case of HERA, when the socalled ''spin rotators'' are inserted which are designed to provide longitudinal electron polarization for the HERMES experiment in 1994 and later for the H1 and ZEUS experiment. It is very important to quantify the influence of these effects theoretically by a proper modelling of HERA, so that ways can be found to get a high degree of polarization in the real machine. In this thesis HERA is modelled by the Monte-Carlo tracking program SITROS which was originally written by J. Kewisch in 1982 to study the polarization in PETRA. The first part of the thesis is devoted to a detailed description of the fundamental theoretical concepts on which the program is based. Then the approximations which are needed to overcome computing time limitations are explained and their influence on the simulation result is discussed. The systematic and statistical errors are studied in detail. Extensions of the program which allow a comparison of SITROS with the results given by ''linear'' theory are explained. (orig.)

  6. Storage ring lattice calibration using resonant spin depolarization

    Directory of Open Access Journals (Sweden)

    K. P. Wootton

    2013-07-01

    Full Text Available This paper presents measurements of the GeV-scale electron beam energy for the storage rings at the synchrotron light source facilities Australian Synchrotron (AS and SPEAR3 at SLAC. Resonant spin depolarization was employed in the beam energy measurement, since it is presently the highest precision technique and an uncertainty of order 10^{-6} was achieved at SPEAR3 and AS. Using the resonant depolarization technique, the beam energy was measured at various rf frequencies to measure the linear momentum compaction factor. This measured linear momentum compaction factor was used to evaluate models of the beam trajectory through combined-function bending magnets. The main bending magnets of both lattices are rectangular, horizontally defocusing gradient bending magnets. Four modeling approaches are compared for the beam trajectory through the bending magnet: a circular trajectory, linear and nonlinear hyperbolic cosine trajectories, and numerical evaluation of the trajectory through the measured magnetic field map. Within the uncertainty of the measurement the momentum compaction factor is shown to agree with the numerical model of the trajectory within the bending magnet, and disagree with the hyperbolic cosine approximation.

  7. Calibration procedure and wavelength correction for neutron depolarization experiments

    International Nuclear Information System (INIS)

    Roest, W.; Rekveldt, M.T.

    1992-01-01

    The neutron polarimeter, for which an extended calibration procedure is described here, enables one to investigate magnetic properties of materials. Such an investigation is carried out by offering a polarized neutron beam in the x-, y- and z-direction successively and, after transmission through the sample, by analysing the polarization in all three directions. The result is a 3x3 depolarization matrix. After the polarizer, the neutron beam has a polarization along the z-direction. Two coil systems creating a magnetic field in the yz-plane perpendicular to the beam direction provide the possibility to direct the polarization in the x-, y- and z-direction by means of Larmor precession of the polarization in these fields. New research areas, where small depolarization effects together with considerable polarization rotation are measured, have caused a need for more accuracy in, and better knowledge of the calibration of the polarimeter. The calibration procedure use up to now and the improvements made on it are described. (orig.)

  8. Carbon Nitride Materials as Efficient Catalyst Supports for Proton Exchange Membrane Water Electrolyzers

    Directory of Open Access Journals (Sweden)

    Ana Belen Jorge

    2018-06-01

    Full Text Available Carbon nitride materials with graphitic to polymeric structures (gCNH were investigated as catalyst supports for the proton exchange membrane (PEM water electrolyzers using IrO2 nanoparticles as oxygen evolution electrocatalyst. Here, the performance of IrO2 nanoparticles formed and deposited in situ onto carbon nitride support for PEM water electrolysis was explored based on previous preliminary studies conducted in related systems. The results revealed that this preparation route catalyzed the decomposition of the carbon nitride to form a material with much lower N content. This resulted in a significant enhancement of the performance of the gCNH-IrO2 (or N-doped C-IrO2 electrocatalyst that was likely attributed to higher electrical conductivity of the N-doped carbon support.

  9. One-step electrosynthesis of ethylene and ethanol from CO2 in an alkaline electrolyzer

    Science.gov (United States)

    Ma, Sichao; Sadakiyo, Masaaki; Luo, Raymond; Heima, Minako; Yamauchi, Miho; Kenis, Paul J. A.

    2016-01-01

    Electroreduction of CO2 has potential for storing otherwise wasted intermittent renewable energy, while reducing emission of CO2 into the atmosphere. Identifying robust and efficient electrocatalysts and associated optimum operating conditions to produce hydrocarbons at high energetic efficiency (low overpotential) remains a challenge. In this study, four Cu nanoparticle catalysts of different morphology and composition (amount of surface oxide) are synthesized and their activities towards CO2 reduction are characterized in an alkaline electrolyzer. Use of catalysts with large surface roughness results in a combined Faradaic efficiency (46%) for the electroreduction of CO2 to ethylene and ethanol in combination with current densities of ∼200 mA cm-2, a 10-fold increase in performance achieved at much lower overpotential (only catalysts bring electrochemical reduction processes such as presented here closer to practical application.

  10. Towards long-term stable solid state electrolyzers with infiltrated catalysts

    DEFF Research Database (Denmark)

    Ovtar, Simona; Chen, Ming; Brodersen, Karen

    conventional power plants or fuel cells. Key challenges for a successful commercialization of solid oxide electrolyzers are up scale it, reduce cost and improve durability. Therefore, large efforts are allocated to improve cell performance. As a relatively novel method to introduce electro......Renewable energy sources like wind and solar are widely considered as the key technologies to cover our growing demands. However, the fluctuating nature of these sources requires a flexible energy system and storage technologies to ensure that energy supply can be covered in a stable and affordable......-catalysts into the porous structure of the electrodes, infiltration has shown very efficient. Solid oxide cells with infiltrated electrodes have been reported to show improved performance compared to conventional cells [1]. In this study, the development of infiltration procedures to improve the stability and catalytic...

  11. Gradient Meshed and Toughened SOEC (Solid Oxide Electrolyzer Cell) Composite Seal with Self-Healing Capabilities

    Energy Technology Data Exchange (ETDEWEB)

    Kathy Lu; W. T. Reynolds, Jr.

    2010-06-08

    High-temperature electrolysis of water steam is a promising approach for hydrogen production. The potential is even more promising when abundant heat source from nuclear power reactors can be efficiently utilized. Hydrogen production through the above approach also allows for low electric consumption. Overall energy conversion efficiencies for high temperature electrolysis are in the 45-50% range compared to ~30% for the conventional electrolysis. Under such motivation, this research is focused on increasing the operation time and high temperature stability of solid oxide electrolyzer cells (SOEC) for splitting water into hydrogen. Specifically, our focus is to improve the SOEC seal thermal stability and performances by alleviating thermal stress and seal cracking issues.

  12. Optimization of BSCF-SDC composite air electrode for intermediate temperature solid oxide electrolyzer cell

    International Nuclear Information System (INIS)

    Heidari, Dorna; Javadpour, Sirus; Chan, Siew Hwa

    2017-01-01

    Highlights: • Effect of BSCF-SDC composite air electrode on SOEC electrochemical performance. • Effects on performance of BSCF-SDC air electrode, fuel humidity and temperature. • Desired IT-SOEC performance by compositing the BSCF air electrode with SDC. - Abstract: Solid oxide electrolyzer cells (SOECs) are devises which recently have attracted lots of attention due to their advantages. Their high operating temperature leads to mechanical compatibility issues such as thermal expansion mismatch between layers of material in the cell. The aim of this study is to mitigate the issue of thermal expansion mismatch between Ba_0_._5Sr_0_._5Co_0_._8Fe_0_._2O_3_−_δ (BSCF) and samaria doped ceria, Sm_0_._2Ce_0_._8O_1_._9 (SDC), enhance the triple-phase boundaries and improve the adhesion of the electrode to the electrolytes, hence improve the cell performance. To make BSCF more thermo-mechanically compatible with the SDC electrolyte, the formation of a composite electrode by introducing SDC as the compositing material is proposed. In this study, 10 wt.%, 20 wt.%, 30 wt.%, 40 wt.%, and 50 wt.% of commercial SDC powder was mixed with BSCF powder, prepared by sol-gel method, to make the composite air electrode. After successfully synthesizing the BSCF-SDC/YSZ-SDC/Ni-YSZ electrolyzer cell, the electrochemical performance was tested for the intermediate-temperature SOEC (IT-SOEC), over the temperature range of 650–800 °C. The microstructure of each sample was studied by field emission electron microscopy (FESEM, JEOL, JSM 6340F) for possible pin holes. The result of this study proves that the sample with 20% SDC-80% BSCF shows the highest performance among the investigated cells.

  13. Rayleigh scattering and depolarization ratio in linear alkylbenzene

    International Nuclear Information System (INIS)

    Liu, Qian; Zhou, Xiang; Huang, Wenqian; Zhang, Yuning; Wu, Wenjie; Luo, Wentai; Yu, Miao; Zheng, Yangheng; Zhou, Li; Cao, Jun; Wang, Yifang

    2015-01-01

    It is planned to use linear alkylbenzene (LAB) as the organic solvent for the Jiangmen Underground Neutrino Observatory (JUNO) liquid scintillator detectors, due to its ultra-transparency. However, the current Rayleigh scattering length calculation for LAB disagrees with the experimental measurement. This paper reports for the first time that the Rayleigh scattering of LAB is anisotropic, with a depolarization ratio of 0.31±0.01(stat.)±0.01(sys.). We use an indirect method for Rayleigh scattering measurement with the Einstein–Smoluchowski–Cabannes formula, and the Rayleigh scattering length of LAB is determined to be 28.2±1.0 m at 430 nm

  14. Linear Depolarization of Lidar Returns by Aged Smoke Particles

    Science.gov (United States)

    Mishchenko, Michael I.; Dlugach, Janna M.; Liu, Li

    2016-01-01

    We use the numerically exact (superposition) T-matrix method to analyze recent measurements of the backscattering linear depolarization ratio (LDR) for a plume of aged smoke at lidar wavelengths ranging from 355 to 1064 nm. We show that the unique spectral dependence of the measured LDRs can be modeled, but only by assuming expressly nonspherical morphologies of smoke particles containing substantial amounts of nonabsorbing (or weakly absorbing) refractory materials such as sulfates. Our results demonstrate that spectral backscattering LDR measurements can be indicative of the presence of morphologically complex smoke particles, but additional (e.g., passive polarimetric or bistatic lidar) measurements may be required for a definitive characterization of the particle morphology and composition.

  15. Chloride regulates afferent arteriolar contraction in response to depolarization

    DEFF Research Database (Denmark)

    Hansen, P B; Jensen, B L; Skott, O

    1998-01-01

    -Renal vascular reactivity is influenced by the level of dietary salt intake. Recent in vitro data suggest that afferent arteriolar contractility is modulated by extracellular chloride. In the present study, we assessed the influence of chloride on K+-induced contraction in isolated perfused rabbit...... afferent arterioles. In 70% of vessels examined, K+-induced contraction was abolished by acute substitution of bath chloride. Consecutive addition of Cl- (30, 60, 80, 100, 110, and 117 mmol/L) restored the sensitivity to K+, and half-maximal response was observed at 82 mmol/L chloride. The calcium channel...... antagonist diltiazem (10(-6) mol/L) abolished K+-induced contractions. Bicarbonate did not modify the sensitivity to chloride. Norepinephrine (10(-6) mol/L) induced full contraction in depolarized vessels even in the absence of chloride. Iodide and nitrate were substituted for chloride with no inhibitory...

  16. Compensating Faraday Depolarization by Magnetic Helicity in the Solar Corona

    Energy Technology Data Exchange (ETDEWEB)

    Brandenburg, Axel; Ashurova, Mohira B. [Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, CO 80303 (United States); Jabbari, Sarah, E-mail: brandenb@nordita.org [School of Mathematical Sciences and Monash Centre for Astrophysics, Monash University, Clayton, VIC 3800 (Australia)

    2017-08-20

    A turbulent dynamo in spherical geometry with an outer corona is simulated to study the sign of magnetic helicity in the outer parts. In agreement with earlier studies, the sign in the outer corona is found to be opposite to that inside the dynamo. Line-of-sight observations of polarized emission are synthesized to explore the feasibility of using the local reduction of Faraday depolarization to infer the sign of helicity of magnetic fields in the solar corona. This approach was previously identified as an observational diagnostic in the context of galactic magnetic fields. Based on our simulations, we show that this method can be successful in the solar context if sufficient statistics are gathered by using averages over ring segments in the corona separately for the regions north and south of the solar equator.

  17. Depolarization due to the resonance tail during a fast resonance jump

    International Nuclear Information System (INIS)

    Ruth, R.D.

    1980-01-01

    The mechanism of depolarization due to a fast resonance jump is studied. The dominant effect for cases of interest is not dependent on the rate of passage through resonance, but rather on the size of the resonance jump as compared to the width, epsilon, of the resonance. The results are applied to a calculation of depolarization in the AGS at Brookhaven National Laboratory

  18. Dependence of negative muon depolarization on molecular weight and temperature in organic compounds

    International Nuclear Information System (INIS)

    Djuraev, A.A.; Evseev, V.S.; Obukhov, Yu.V.; Roganov, V.S.

    2009-01-01

    An atomic capture of negative muons in the aliphatic spirit series, the dependence of muon rest polarization on the molecular weight of spirit have been studied. The temperature dependence of depolarization in benzole and styrene has been obtained. The results on depolarization are being interpreted basing on notions about chemical interactions of mesic atoms in organic compounds. (author)

  19. Simple non-Markovian microscopic models for the depolarizing channel of a single qubit

    International Nuclear Information System (INIS)

    Fonseca Romero, K M; Lo Franco, R

    2012-01-01

    The archetypal one-qubit noisy channels - depolarizing, phase-damping and amplitude-damping channels - describe both Markovian and non-Markovian evolution. Simple microscopic models for the depolarizing channel, both classical and quantum, are considered. Microscopic models that describe phase-damping and amplitude-damping channels are briefly reviewed.

  20. A rotational diffusion coefficient of the 70s ribosome determined by depolarized laser light scattering

    NARCIS (Netherlands)

    Bruining, J.; Fijnaut, H.M.

    We have obtained a rotational diffusion coefficient of the 70S ribosome isolated from Escherichia-coli (MRE-600), from the depolarized light scattering spectrum measured by photon correlation spectroscopy. The intensity correlation function of depolarized scattered light contains contributions due

  1. Spreading depolarizations have prolonged direct current shifts and are associated with poor outcome in brain trauma

    DEFF Research Database (Denmark)

    Hartings, Jed A; Watanabe, Tomas; Bullock, M Ross

    2011-01-01

    , although prolonged events have not been observed in animal models. To determine whether detrimental penumbral-type depolarizations occur in human brain trauma, we analysed electrocorticographic recordings obtained by subdural electrode-strip monitoring during intensive care. Of 53 patients studied, 10......Cortical spreading depolarizations occur spontaneously after ischaemic, haemorrhagic and traumatic brain injury. Their effects vary spatially and temporally as graded phenomena, from infarction to complete recovery, and are reflected in the duration of depolarization measured by the negative direct...... current shift of electrocorticographic recordings. In the focal ischaemic penumbra, peri-infarct depolarizations have prolonged direct current shifts and cause progressive recruitment of the penumbra into the core infarct. In traumatic brain injury, the effects of spreading depolarizations are unknown...

  2. Modulation of electromagnetic fields by a depolarizer of random polarizer array

    DEFF Research Database (Denmark)

    Ma, Ning; Hanson, Steen Grüner; Wang, Wei

    2016-01-01

    The statistical properties of the electric fields with random changes of the polarization state in space generated by a depolarizer are investigated on the basis of the coherence matrix. The depolarizer is a polarizer array composed of a multitude of contiguous square cells of polarizers with ran......The statistical properties of the electric fields with random changes of the polarization state in space generated by a depolarizer are investigated on the basis of the coherence matrix. The depolarizer is a polarizer array composed of a multitude of contiguous square cells of polarizers...... with randomly distributed polarization angles, where the incident fields experience a random polarization modulation after passing through the depolarizer. The propagation of the modulated electric fields through any quadratic optical system is examined within the framework of the complex ABCD matrix to show...

  3. Surface decontamination of Type 304L stainless steel with electrolytically generated hydrogen: Design and operation of the electrolyzer

    International Nuclear Information System (INIS)

    Bellanger, G.

    1993-01-01

    The surface of tritiated Type 304L stainless steel is decontaminated by isotopic exchange with the hydrogen generated in an electrolyzer. This steel had previously been exposed to tritium in a tritium gas facility for several years. The electrolyzer for the decontamination uses a conducting solid polymer electrolyte made of a Nafion membrane. The cathode where the hydrogen is formed is nickel deposited on one of the polymer surfaces. This cathode is placed next to the region of the steel to be decontaminated. The decontamination involves, essentially, the tritiated oxide layers of which the initial radioactivity is ∼ 5 kBq/cm 2 . After treatment for 1 h, the decontamination factor is 8. 9 refs., 16 figs., 2 tabs

  4. Depolarizing Effects of Daikenchuto on Interstitial Cells of Cajal from Mouse Small Intestine.

    Science.gov (United States)

    Kim, Hyungwoo; Kim, Hyun Jung; Yang, Dongki; Jung, Myeong Ho; Kim, Byung Joo

    2017-01-01

    Daikenchuto (DKT; TJ-100, TU-100), a traditional herbal medicineis used in modern medicine to treat gastrointestinal (GI) functional disorders. Interstitial cells of Cajal (ICCs) are the pacemaker cells of the GI tract and play important roles in the regulation of GI motility. The objective of this study was to investigate the effects of DKT on the pacemaker potentials (PPs) of cultured ICCs from murine small intestine. Enzymatic digestions were used to dissociate ICCs from mouse small intestine tissues. All experiments on ICCs were performed after 12 h of culture. The whole-cell patch-clamp configuration was used to record ICC PPs (current clamp mode). All experiments were performed at 30-32°C. In current-clamp modeDKT depolarized and concentration-dependently decreased the amplitudes of PPs. Y25130 (a 5-HT 3 receptor antagonist) or SB269970 (a 5-HT 7 receptor antagonist) did not block DKT-induced PP depolarization, but RS39604 (a 5-HT 4 receptor antagonist) did. Methoctramine (a muscarinic M 2 receptor antagonist) failed to block DKT-induced PP depolarization, but pretreating 4-diphenylacetoxy-N-methylpiperidine methiodide (a muscarinic M 3 receptor antagonist) facilitated blockade of DKT-induced PP depolarization. Pretreatment with an external Ca 2+ -free solution or thapsigargin abolished PPsand under these conditions, DKT did not induce PP depolarization. Furthermore Ginseng radix and Zingiberis rhizomes depolarized PPs, whereas Zanthoxyli fructus fruit (the third component of DKT) hyperpolarized PPs. These results suggest that DKT depolarizes ICC PPs in an internal or external Ca 2+ -dependent manner by stimulating 5-HT 4 and M 3 receptors. Furthermore, the authors suspect that the component in DKT largely responsible for depolarization is probably also a component of Ginseng radix and Zingiberis rhizomes. Daikenchuto (DKT) depolarized and concentration-dependently decreased the amplitudes of pacemaker potentials (PPs)Y25130 (a 5-HT 3 receptor antagonist) or

  5. Effect of Strongly Alkaline Electrolyzed Water on Silk Degumming and the Physical Properties of the Fibroin Fiber.

    Directory of Open Access Journals (Sweden)

    Ting-Ting Cao

    Full Text Available Strongly alkaline electrolyzed water (SAEW was prepared by electrolysis of tap water in a laboratory-made water electrolyzer. The pH of stored SAEW was stable for more than one month. The hardness of the electrolyzed water was 30% lower and the Na(+ concentration was 18% higher than those of the tap water. Silkworm cocoon shells were boiled in pH 11.50 SAEW at a ratio of 1∶40∼80 (W/V for 20 min and the sericin layers around the silk fibroin fibers were removed completely. The tensile properties and thermal decomposition temperature of a single filament of silk fibroin obtained by the SAEW method were almost the same as those for the fiber obtained by the neutral soap, and much higher than those for the fiber obtained by Na2CO3 degumming. The results demonstrate that SAEW is an environmentally friendly and pollution-free silk degumming agent that allows highly efficient, low cost recovery of sericin.

  6. The anomalous depolarization anisotropy in the central backscattering area for turbid medium with Mie scatterers

    Science.gov (United States)

    Wang, Xuezhen; Lai, Jiancheng; Song, Yang; Li, Zhenhua

    2018-05-01

    It is generally recognized that circularly polarized light is preferentially maintained over linearly polarized light in turbid medium with Mie scatterers. However, in this work, the anomalous depolarization anisotropy is reported in the backscattering area near the point of illumination. Both experimental and Monte Carlo simulations show preferential retention of linear polarization states compared to circular polarization states in a specific backscattering area. Further analysis indicates that the anomalous depolarization behavior in the specific area is induced by lateral scattering events, which own low circular polarization memory. In addition, it is also found that the size of the anomalous depolarization area is related to the transport mean free path of the turbid medium.

  7. Interaction between depolarization effects, interface layer, and fatigue behavior in PZT thin film capacitors

    Science.gov (United States)

    Böttger, U.; Waser, R.

    2017-07-01

    The existence of non-ferroelectric regions in ferroelectric thin films evokes depolarization effects leading to a tilt of the P(E) hysteresis loop. The analysis of measured hysteresis of lead zirconate titanate (PZT) thin films is used to determine a depolarization factor which contains quantitative information about interfacial layers as well as ferroelectrically passive zones in the bulk. The derived interfacial capacitance is smaller than that estimated from conventional extrapolation techniques. In addition, the concept of depolarization is used for the investigation of fatigue behavior of PZT thin films indicating that the mechanism of seed inhibition, which is responsible for the effect, occurs in the entire film.

  8. Autoassociação de misturas dos Surfactantes Dodecanoato de Sódio (SDoD e Decanoato de Sódio (SDeC com o Polímero Hidrofobicamente Modificado Etil(HidroxietilCelulose (EHEC

    Directory of Open Access Journals (Sweden)

    Alexandre G. Dal-Bó

    2011-01-01

    Full Text Available In this work, the interactions between the non-ionic polymer of ethyl(hydroxyethylcellulose (EHEC and mixed anionic surfactant sodium dodecanoate (SDoD-sodium decanoate (SDeC in aqueous media, at pH 9.2 (20 mM borate/NaOH buffer were investigated by electric conductivity and light transmittance measurements at 25 ºC. The parameters of the surfactant to polymer association processes such as the critical aggregation concentration and saturation of the polymer by surfactants were determined from plots of specific conductivity vs total surfactant concentration, [surfactant]tot = [SDoD] + [SDeC]. Through the results was not observed a specific link of polymer with the surfactant, implying therefore a phenomenon only cooperative association.

  9. Application of slightly acidic electrolyzed water for inactivating microbes in a layer breeding house.

    Science.gov (United States)

    Hao, X X; Li, B M; Wang, C Y; Zhang, Q; Cao, W

    2013-10-01

    Lots of microorganisms exist in layer houses can cause bird diseases and worker health concerns. Spraying chemical disinfectants is an effective way to decontaminate pathogenic microorganisms in the air and on surfaces in poultry houses. Slightly acidic electrolyzed water (SAEW, pH 5.0-6.5) is an ideal, environmentally friendly broad-spectrum disinfectant to prevent and control bacterial or viral infection in layer farms. The purpose of this work was to investigate the cleaning effectiveness of SAEW for inactivating the microbes in layer houses. The effect of SAEW was evaluated by solid materials and surface disinfection in a hen house. Results indicate that SAEW with an available chlorine concentration of 250 mg/L, pH value of 6.19, and oxygen reduction potential of 974 mV inactivated 100% of bacteria and fungi in solid materials (dusts, feces, feather, and feed), which is more efficient than common chemical disinfectant such as benzalkonium chloride solution (1:1,000 vol/vol) and povidone-iodine solution (1:1,000 vol/vol). Also, it significantly reduced the microbes on the equipment or facility surfaces (P < 0.05), including floor, wall, feed trough, and water pipe surfaces. Moreover, SAEW effectively decreased the survival rates of Salmonella and Escherichia coli by 21 and 16 percentage points. In addition, spraying the target with tap water before disinfection plays an important role in spray disinfection.

  10. Suitability of electrolyzed oxidizing water for the disinfection of hard surfaces and equipment in radiology.

    Science.gov (United States)

    Pintaric, Robert; Matela, Joze; Pintaric, Stefan

    2015-01-01

    Hospitals are faced with increasingly resistant strains of micro-organisms. When it comes to disinfection, individual parts of electronic equipment of angiology diagnostics such as patient couches of computer tomography (CT) and magnetic resonance imaging (MRI) scanners prove to be very hard to disinfect. Disinfectants of choice are therefore expected to possess properties such as rapid, residue-free action without any damaging effect on the sensitive electronic equipment. This paper discusses the use of the neutral electrolyzed oxidizing water (EOW) as a biocide for the disinfection of diagnostic rooms and equipment. The CT and MRI rooms were aerosolized with EOW using aerosolization device. The presence of micro-organisms before and after the aerosolization was recorded with the help of sedimentation and cyclone air sampling. Total body count (TBC) was evaluated in absolute and log values. The number of micro-organisms in hospital rooms was low as expected. Nevertheless, a possible TBC reduction between 78.99-92.50% or 50.50-70.60% in log values was recorded. The research has shown that the use of EOW for the air and hard surface disinfection can considerably reduce the presence of micro-organisms and consequently the possibility of hospital infections. It has also demonstrated that the sedimentation procedure is insufficient for the TBC determination. The use of Biocide aerosolization proved to be efficient and safe in all applied ways. Also, no eventual damage to exposed devices or staff was recorded.

  11. Fully printed and integrated electrolyzer cells with additive manufacturing for high-efficiency water splitting

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Gaoqiang; Mo, Jingke; Kang, Zhenye; Dohrmann, Yeshi; List, Frederick A.; Green, Johney B.; Babu, Sudarsanam S.; Zhang, Feng-Yuan

    2018-04-01

    Using additive manufacturing (AM) technology, a fundamental material and structure innovation was proposed to significantly increase the energy efficiency, and to reduce the weight, volume and component quantity of proton exchange membrane electrolyzer cells (PEMECs). Four conventional parts (liquid/gas diffusion layer, bipolar plate, gasket, and current distributor) in a PEMEC were integrated into one multifunctional AM plate without committing to tools or molds for the first time. In addition, since the interfacial contact resistances between those parts were eliminated, the comprehensive in-situ characterizations of AM cells showed that an excellent energy efficiency of up to 86.48% was achieved at 2 A/cm2 and 80 degrees C, and the hydrogen generation rate was increased by 61.81% compared to the conventional cell. More importantly, the highly complex inner structures of the AM integrated multifunctional plates also exhibit the potential to break limitations of conventional manufacture methods for hydrogen generation and to open a door for the development of other energy conversion devices, including fuel cells, solar cells and batteries.

  12. Control of spoiler Pseudomonas spp. on fresh cut vegetables by neutral electrolyzed water.

    Science.gov (United States)

    Pinto, Loris; Ippolito, Antonio; Baruzzi, Federico

    2015-09-01

    In the present study, we evaluated the antimicrobial activity of neutral electrolyzed water (NEW) against 14 strains of spoilage Pseudomonas of fresh cut vegetables under cold storage. The NEW, produced from solutions of potassium and sodium chloride, and sodium bicarbonate developed up to 4000 mg/L of free chlorine, depending on the salt and relative concentration used. The antimicrobial effect of the NEW was evaluated against different bacterial strains at 10(5) cells/ml, with different combinations of free chlorine concentration/contact time; all concentrations above 100 mg/L, regardless of the salt used, were found to be bactericidal already after 2 min. When catalogna chicory and lettuce leaves were dipped for 5 min in diluted NEW, microbial loads of mesophilic bacteria and Enterobacteriaceae were reduced on average of 1.7 log cfu/g. In addition, when lettuce leaves were dipped in a cellular suspension of the spoiler Pseudomonas chicorii I3C strain, diluted NEW was able to reduce Pseudomonas population of about 1.0 log cfu/g. Thanks to its high antimicrobial activity against spoilage microorganisms, and low cost of operation, the application of cycles of electrolysis to the washing water looks as an effective tool in controlling fresh cut vegetable microbial spoilage contamination occurring during washing steps. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Development of Portable Flow-Through Electrochemical Sanitizing Unit to Generate Near Neutral Electrolyzed Water.

    Science.gov (United States)

    Zhang, Jufang; Yang, Hongshun; Chan, Joel Zhi Yang

    2018-03-01

    We developed a portable flow-through, electrochemical sanitizing unit to produce near neutral pH electrolyzed water (producing NEW). Two methods of redirecting cathode yields back to the anode chamber and redirecting anode yields the cathode chamber were used. The NEW yields were evaluated, including: free available chlorine (FAC), oxidation-reduction potential (ORP), and pH. The performances of 2 electrodes (RuO 2 -IrO 2 /TiO 2 and IrO 2 -Ta 2 O 5 /TiO 2 ) were investigated. The unit produced NEW at pH 6.46 to 7.17, an ORP of 805.5 to 895.8 mV, and FAC of 3.7 to 82.0 mg/L. The NEW produced by redirecting cathode yields had stronger bactericidal effects than the NEW produced by redirecting anode yields or NEW produced by mixing the commercial unit's anode and cathode product (P portable flow-through, NEW-producing unit has great potential in a wide range of applications, such as organic farm, households, and small food industries. The examined sanitizing treatments showed effective control of Escherichia coli O157:H7 and Listeria monocytogenes. © 2018 Institute of Food Technologists®.

  14. The use of ultrasound and slightly acidic electrolyzed water as alternative technologies in the meat industry

    Directory of Open Access Journals (Sweden)

    Flores, D. R. M.,

    2017-06-01

    Full Text Available The quality of meat from different animal species is defined by chemical, physical sensory and microbiological characteristics, which can be influenced by procedures during the slaughter of animals. Technologies such as ultrasound (US and slightly acidic electrolyzed water (SAEW are being studied in order to assist in food processing and in developing methods that are economically viable and environmentally sustainable. The aim of this paper is to discuss the relationship between US and SAEW in relation to tenderness, microbiology, and oxidation of meat. The meat industry was a pioneer in the use of the ultrasound, which initially aimed to determine the layer of fat on carcasses and subsequently improve the tenderness of the meat. Recently studies mention that the ultrasound and SAEW can influence the microbiological parameters. The combination of both technologies should also be considered, with the possibility of enhancing the antimicrobial effects. However, there is little information regarding oxidative parameters promoted in meat for these two alternative technologies, where the individual or when interspersed use. Knowing the actions and consequences of ultrasound and SAEW in meat will enable the opening of new perspectives about the application of these technologies in the meat industry.

  15. Energetic evaluation of high pressure PEM electrolyzer systems for intermediate storage of renewable energies

    International Nuclear Information System (INIS)

    Bensmann, B.; Hanke-Rauschenbach, R.; Peña Arias, I.K.; Sundmacher, K.

    2013-01-01

    Three pathways for high pressure hydrogen production by means of water electrolysis are energetically compared. Besides the two classic paths, comprising either the pressurization of the product gas (path I) or the mechanical pressurization of the feed water (path II), a third path is discussed. It involves the electrochemical co-compression during the electrolysis. The energetic evaluation is based on a uniform model description of the different hydrogen production pathways. It consists of integral, steady-state balances for energy, entropy and mass as well as a modern equation of state. From this the reversible energy demand is used to identify the inherent thermodynamic drawbacks of the pathways. The additional consideration of irreversibilities allows for the determination of efficiency losses due to device specific characteristics. For hydrogen delivery pressures of up to 40 bar the classical pathways are out-performed by path III. Since the hydrogen is already produced at elevated pressure this eliminates the need for an energy consuming mechanical hydrogen compression and spares the additional energy demand due to the oxygen pressurization. However, with increasing pressure differences the hydrogen back-diffusion strongly decreases the Faradaic efficiency of the asymmetric electrolyzer that has to be compensated by an additional energy supply

  16. Predictive models for PEM-electrolyzer performance using adaptive neuro-fuzzy inference systems

    Energy Technology Data Exchange (ETDEWEB)

    Becker, Steffen [University of Tasmania, Hobart 7001, Tasmania (Australia); Karri, Vishy [Australian College of Kuwait (Kuwait)

    2010-09-15

    Predictive models were built using neural network based Adaptive Neuro-Fuzzy Inference Systems for hydrogen flow rate, electrolyzer system-efficiency and stack-efficiency respectively. A comprehensive experimental database forms the foundation for the predictive models. It is argued that, due to the high costs associated with the hydrogen measuring equipment; these reliable predictive models can be implemented as virtual sensors. These models can also be used on-line for monitoring and safety of hydrogen equipment. The quantitative accuracy of the predictive models is appraised using statistical techniques. These mathematical models are found to be reliable predictive tools with an excellent accuracy of {+-}3% compared with experimental values. The predictive nature of these models did not show any significant bias to either over prediction or under prediction. These predictive models, built on a sound mathematical and quantitative basis, can be seen as a step towards establishing hydrogen performance prediction models as generic virtual sensors for wider safety and monitoring applications. (author)

  17. Thermally stimulated depolarization currents in the natural fluorite

    International Nuclear Information System (INIS)

    Valerio, Mario Ernesto Giroldo

    1986-01-01

    The present work deals with natural calcium fluoride from Criciuma, Santa Catarina. Thermally Stimulated Depolarization Currents (TSDC) can be used to determine the properties of dipole defects present in this crystal. The TSDC spectrum of this material shows three bands in the temperature range of 80 to 450 K. The first one, at 130 K, is due the dipoles formed by a trivalent impurity and an interstitial fluorine ion in the next nearest position of an impurity ion (nn R s 3+ -F i - ). The second one, at 102 k, is due to the presence of small aggregates of dipoles (like a dimer). The last band, at 360 k is due to the formation of Large Clusters. The continuous distribution model gave the best fit for these bands with mean activation energies of 0.41 eV, 0.595 eV and 1.02 eV for the first, second and third band respectively. Thermal treatments can modify the number of dipoles, dimers and clusters present in the crystal. The variation in the areas under each band can be used to measure this effect. In this work we used thermal treatments between 15 minutes and 10 hours and temperatures between 200 deg C and 500 deg C. For thermal treatments at 300 deg C, the dipoles and dimers are created and the clusters are destroyed as the time of thermal treatment increases. At 400 deg C the clusters are created and the dipoles and dimers and 350 deg C for the clusters. (author)

  18. Speed of disentanglement in multiqubit systems under a depolarizing channel

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Fu-Lin, E-mail: flzhang@tju.edu.cn; Jiang, Yue; Liang, Mai-Lin, E-mail: mailinliang@yahoo.com.cn

    2013-06-15

    We investigate the speed of disentanglement in the multiqubit systems under the local depolarizing channel, in which each qubit is independently coupled to the environment. We focus on the bipartition entanglement between one qubit and the remaining qubits constituting the system, which is measured by the negativity. For the two-qubit system, the speed for the pure state completely depends on its entanglement. The upper and lower bounds of the speed for arbitrary two-qubit states, and the necessary conditions for a state achieving them, are obtained. For the three-qubit system, we study the speed for pure states, whose entanglement properties can be completely described by five local-unitary-transformation invariants. An analytical expression of the relation between the speed and the invariants is derived. The speed is enhanced by the three-tangle which is the entanglement among the three qubits, but reduced by the two-qubit correlations outside the concurrence. The decay of the negativity can be restrained by the other two negativity with the coequal sense. The unbalance between two qubits can reduce the speed of disentanglement of the remaining qubit in the system, and even can retrieve the entanglement partially. For the k-qubit systems in an arbitrary superposition of Greenberger–Horne–Zeilinger state and W state, the speed depends almost entirely on the amount of the negativity when k increases to five or six. An alternative quantitative definition for the robustness of entanglement is presented based on the speed of disentanglement, with comparison to the widely studied robustness measured by the critical amount of noise parameter where the entanglement vanishes. In the limit of large number of particles, the alternative robustness of the Greenberger–Horne–Zeilinger-type states is inversely proportional to k, and the one of the W states approaches 1/√(k)

  19. Light depolarization induced by metallic tips in apertureless near-field optical microscopy and tip-enhanced Raman spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Gucciardi, P G [CNR-Istituto per i Processi Chimico-Fisici, sezione Messina, Salita Sperone, Contrada Papardo, I-98158 Faro Superiore, Messina (Italy); Lopes, M; Deturche, R; Julien, C; Barchiesi, D; Chapelle, M Lamy de la [Institut Charles Delaunay-CNRS FRE 2848, Laboratoire de Nanotechnologie et d' Instrumentation Optique, Universite de Technologie de Troyes, 12 rue Marie Curie, BP2060, 10010 Troyes (France)

    2008-05-28

    We have investigated the depolarization effects of light scattered by sharp tips used for apertureless near-field optical microscopy. Dielectric and metal coated tips have been investigated and depolarization factors between 5 and 30% have been measured, changing as a function of the incident light polarization and of the tip shape. The experimental results are in good agreement with theoretical calculations performed by the finite element method, giving a near-field depolarization factor close to 10%. The effect of depolarization has been investigated in polarized tip-enhanced Raman spectroscopy (TERS) experiments; the depolarization gives rise to forbidden Raman modes in Si crystals.

  20. Preliminary evidence that ketamine inhibits spreading depolarizations in acute human brain injury

    DEFF Research Database (Denmark)

    Sakowitz, Oliver W; Kiening, Karl L; Krajewski, Kara L

    2009-01-01

    by the noncompetitive N-methyl-d-aspartate receptor antagonist ketamine. This restored electrocorticographic activity. CONCLUSIONS: These anecdotal electrocorticographic findings suggest that ketamine has an inhibitory effect on spreading depolarizations in humans. This is of potential interest for future...

  1. Depolarization Rayleigh scattering as a means of molecular concentration determination in plasmas

    NARCIS (Netherlands)

    Meulenbroeks, R.F.G.; Schram, D.C.; Jaegers, L.J.M.; Sanden, van de M.C.M.

    1992-01-01

    The difference in polarization for Rayleigh scattered radiation on spherically and nonspherically symmetric scattering objects has been used to obtain molecular species concentrations in plasmas of simple composition. Using a Rayleigh scattering diagnostic, the depolarized component of the scattered

  2. Weak Depolarizing Resonances in the 3-TeV VLHC Booster

    International Nuclear Information System (INIS)

    Anferov, V.A.

    1999-01-01

    The possibility of polarized-proton-beam acceleration in the proposed low-field 3-TeV VLHC booster is considered. We find that the low-field combined function magnets in the booster's long FODO cells cause an inadvertent cancellation of most depolarizing fields due to a mechanism suggested earlier by Chao and Derbenev [Part.Accel.36, 25 (1991)]. The strongest spin-depolarizing resonances in the 3-TeV booster seem to be similar in strength to those in the 250-GeV RHIC. Moreover, the strength of the 3-TeV booster's strongest intrinsic depolarizing resonances decreases with energy, in contrast with the energy growth of the depolarizing resonance's strength in most proton synchrotrons. copyright 1999 The American Physical Society

  3. A review of depolarization modeling for earth-space radio paths at frequencies above 10 GHz

    Science.gov (United States)

    Bostian, C. W.; Stutzman, W. L.; Gaines, J. M.

    1982-01-01

    A review is presented of models for the depolarization, caused by scattering from raindrops and ice crystals, that limits the performance of dual-polarized satellite communication systems at frequencies above 10 GHz. The physical mechanisms of depolarization as well as theoretical formulations and empirical data are examined. Three theoretical models, the transmission, attenuation-derived, and scaling models, are described and their relative merits are considered.

  4. Chlorovirus-mediated membrane depolarization of Chlorella alters secondary active transport of solutes.

    Science.gov (United States)

    Agarkova, Irina; Dunigan, David; Gurnon, James; Greiner, Timo; Barres, Julia; Thiel, Gerhard; Van Etten, James L

    2008-12-01

    Paramecium bursaria chlorella virus 1 (PBCV-1) is the prototype of a family of large, double-stranded DNA, plaque-forming viruses that infect certain eukaryotic chlorella-like green algae from the genus Chlorovirus. PBCV-1 infection results in rapid host membrane depolarization and potassium ion release. One interesting feature of certain chloroviruses is that they code for functional potassium ion-selective channel proteins (Kcv) that are considered responsible for the host membrane depolarization and, as a consequence, the efflux of potassium ions. This report examines the relationship between cellular depolarization and solute uptake. Annotation of the virus host Chlorella strain NC64A genome revealed 482 putative transporter-encoding genes; 224 are secondary active transporters. Solute uptake experiments using seven radioactive compounds revealed that virus infection alters the transport of all the solutes. However, the degree of inhibition varied depending on the solute. Experiments with nystatin, a drug known to depolarize cell membranes, produced changes in solute uptake that are similar but not identical to those that occurred during virus infection. Therefore, these studies indicate that chlorovirus infection causes a rapid and sustained depolarization of the host plasma membrane and that this depolarization leads to the inhibition of secondary active transporters that changes solute uptake.

  5. Dibucaine mitigates spreading depolarization in human neocortical slices and prevents acute dendritic injury in the ischemic rodent neocortex.

    Directory of Open Access Journals (Sweden)

    W Christopher Risher

    Full Text Available Spreading depolarizations that occur in patients with malignant stroke, subarachnoid/intracranial hemorrhage, and traumatic brain injury are known to facilitate neuronal damage in metabolically compromised brain tissue. The dramatic failure of brain ion homeostasis caused by propagating spreading depolarizations results in neuronal and astroglial swelling. In essence, swelling is the initial response and a sign of the acute neuronal injury that follows if energy deprivation is maintained. Choosing spreading depolarizations as a target for therapeutic intervention, we have used human brain slices and in vivo real-time two-photon laser scanning microscopy in the mouse neocortex to study potentially useful therapeutics against spreading depolarization-induced injury.We have shown that anoxic or terminal depolarization, a spreading depolarization wave ignited in the ischemic core where neurons cannot repolarize, can be evoked in human slices from pediatric brains during simulated ischemia induced by oxygen/glucose deprivation or by exposure to ouabain. Changes in light transmittance (LT tracked terminal depolarization in time and space. Though spreading depolarizations are notoriously difficult to block, terminal depolarization onset was delayed by dibucaine, a local amide anesthetic and sodium channel blocker. Remarkably, the occurrence of ouabain-induced terminal depolarization was delayed at a concentration of 1 µM that preserves synaptic function. Moreover, in vivo two-photon imaging in the penumbra revealed that, though spreading depolarizations did still occur, spreading depolarization-induced dendritic injury was inhibited by dibucaine administered intravenously at 2.5 mg/kg in a mouse stroke model.Dibucaine mitigated the effects of spreading depolarization at a concentration that could be well-tolerated therapeutically. Hence, dibucaine is a promising candidate to protect the brain from ischemic injury with an approach that does not rely on

  6. Presence of hydrogen peroxide, a source of hydroxyl radicals, in acid electrolyzed water.

    Directory of Open Access Journals (Sweden)

    Takayuki Mokudai

    Full Text Available BACKGROUND: Acid electrolyzed water (AEW, which is produced through the electrolysis of dilute sodium chloride (NaCl or potassium chloride solution, is used as a disinfectant in various fields because of its potent antimicrobial activity. The hydroxyl radical, an oxygen radical species, is often suggested as a putative active ingredient for AEW antimicrobial activity. METHODOLOGY/PRINCIPAL FINDINGS: The aim of the present study is to detect hydroxyl radicals in AEW. The hydroxyl radicals in AEW prepared under different conditions were determined using an electron spin resonance (ESR technique. A signal from 5,5-dimethyl-1-pyrroline N-oxide (DMPO-OH, an adduct of DMPO and the hydroxyl radical, was detected in AEW prepared by double or triple electrolyses of 1% NaCl but not of 0.1% NaCl solution. Then the presence of hydrogen peroxide as a proposed source of hydroxyl radicals was examined using a combination of ESR and a Fenton reaction. The DMPO-OH signal was clearly detected, even in AEW prepared by single electrolysis of 0.1% NaCl solution, when ferrous sulfate was added to induce a Fenton reaction, indicating the presence of hydrogen peroxide in the AEW. Since sodium formate, a hydroxyl radical scavenger, did not affect the bactericidal activity of AEW, it is concluded that the radical is unlikely to contribute to the antimicrobial activity of AEW, although a small amount of the radical is produced from hydrogen peroxide. Dimethyl sulfoxide, the other hydroxyl radical scavenger used in the present study, canceled the bactericidal activity of AEW, accompanied by complete depletion of free available chlorine, suggesting that hypochlorous acid is probably a major contributor to the antimicrobial activity. CONCLUSIONS: It is strongly suggested that although hydrogen peroxide is present in AEW as a source of hydroxyl radicals, the antimicrobial activity of AEW does not depend on these radicals.

  7. Effectiveness of Neutral Electrolyzed Water on Incidence of Fungal Rot on Tomato Fruits ( Solanum lycopersicum L.).

    Science.gov (United States)

    Vásquez-López, Alfonso; Villarreal-Barajas, Tania; Rodríguez-Ortiz, Gerardo

    2016-10-01

    We assessed the effect of neutral electrolyzed water (NEW) on the incidence of rot on tomato ( Solanum lycopersicum L.) fruits inoculated with Fusarium oxysporum , Galactomyces geotrichum , and Alternaria sp. at sites with lesions. The inoculated fruits were treated with NEW at 10, 30, and 60 mg liter -1 active chlorine, with copper oxychloride fungicide, and with sterile distilled water (control) for 3, 5, and 10 min. In the experiment with F. oxysporum , 50 to 80% of the control fruits and 50 to 60% of the fruits treated with the fungicide exhibited symptoms of rot at the inoculated sites. The lowest incidence recorded was 30% for fruits treated with NEW at 60 mg liter -1 active chlorine with an immersion time of 5 min. In the experiment with G. geotrichum , incidence of rot on control fruits was 70 to 90%, and for treatment with fungicide rot incidence was 50 to 90%. NEW at 60 mg liter -1 active chlorine significantly reduced incidence of symptomatic fruit: only 30% of the inoculated fruits washed for 5 min had damage from rot. In the experiment with Alternaria sp., 60 to 90% of the fruits in the control group and 60 to 70% of the fruits in the fungicide group were symptomatic. The lowest incidence was recorded for the treatment in which the fruits were submerged in NEW with 60 mg liter -1 active chlorine for 3 min. In this group, 40 to 50% of the fruits exhibited symptoms of rot. These results were obtained 8 days after inoculation. NEW, with 60 mg liter -1 active chlorine, significantly reduced incidence of rot symptoms on fruits inoculated with one of the experimental fungi relative to the control (P ≤ 0.05). NEW at 60 mg liter -1 is effective in the control of fungal rot in tomatoes.

  8. Kinetic aspects of the behavior of a continuous electrolyzer dedicated to actinides and lanthanides oxidation applied to their separation

    International Nuclear Information System (INIS)

    Eysseric, C.; Chifflet, H.; Picart, S.; Adnet, J.M.

    2000-01-01

    As part of SESAME developments, a continuous electrochemical reactor has been tested for the in-line oxidation of various species as americium, ruthenium or cerium. The cerium(III) case has been chosen as a model to develop a predictive kinetic modeling of the reactor performances for oxidations. The optimal effect of an oxidation mediator may be described and the importance of some parameters was pointed out like the residence time, the anode material and the concentrations ratio between the substrate to oxidize and the mediator. This modeling will be extrapolated to the optimal electrolyzer design for the americium oxidation in the presence of lacunary heteropolyanions. (authors)

  9. Characterization of ventricular depolarization and repolarization changes in a porcine model of myocardial infarction.

    Science.gov (United States)

    Romero, Daniel; Ringborn, Michael; Demidova, Marina; Koul, Sasha; Laguna, Pablo; Platonov, Pyotr G; Pueyo, Esther

    2012-12-01

    In this study, several electrocardiogram (ECG)-derived indices corresponding to both ventricular depolarization and repolarization were evaluated during acute myocardial ischemia in an experimental model of myocardial infarction produced by 40 min coronary balloon inflation in 13 pigs. Significant changes were rapidly observed from minute 4 after the start of coronary occlusion, achieving their maximum values between 11 and 22 min for depolarization and between 9 and 12 min for repolarization indices, respectively. Subsequently, these maximum changes started to decrease during the latter part of the occlusion. Depolarization changes associated with the second half of the QRS complex showed a significant but inverse correlation with the myocardium at risk (MaR) estimated by scintigraphic images. The correlation between MaR and changes of the downward slope of the QRS complex, [Formula: see text], evaluated at the two more relevant peaks observed during the occlusion, was r = -0.75, p evolution, respectively. Repolarization changes, analyzed by evaluation of ST segment elevation at the main observed positive peak, also showed negative, however non-significant correlation with MaR: r = -0.34, p = 0.28. Our results suggest that changes evaluated in the latter part of the depolarization, such as those described by [Formula: see text], which are influenced by R-wave amplitude, QRS width and ST level variations simultaneously, correlate better with the amount of ischemia than other indices evaluated in the earlier part of depolarization or during the ST segment.

  10. Mechanism of blue-light-induced plasma-membrane depolarization in etiolated cucumber hypocotyls

    Science.gov (United States)

    Spalding, E. P.; Cosgrove, D. J.

    1992-01-01

    A large, transient depolarization of the plasma membrane precedes the rapid blue-light (BL)-induced growth suppression in etiolated seedlings of Cucumis sativus L. The mechanism of this voltage transient was investigated by applying inhibitors of ion channels and the plasma-membrane H(+)-ATPase, by manipulating extracellular ion concentrations, and by measuring cell input resistance and ATP levels. The depolarizing phase was not affected by Ca(2+)-channel blockers (verapamil, La3+) or by reducing extracellular free Ca2+ by treatment with ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA). However, these treatments did reduce the rate of repolarization, indicating an inward movement of Ca2+ is involved. No effects of the K(+)-channel blocker tetraethylammonium (TEA+) were detected. Vanadate and KCN, used to inhibit the H(+)-ATPase, reduced or completely inhibited the BL-induced depolarization. Levels of ATP increased by 11-26% after 1-2 min of BL. Input resistance of trichrome cells, measured with double-barreled microelectrodes, remained constant during the onset of the depolarization but decreased as the membrane voltage became more positive than -90 mV. The results indicate that the depolarization mechanism initially involves inactivation of the H(+)-ATPase with subsequent transient activation of one or more types of ion channels.

  11. Electrochemical performance of Ni/TiO{sub 2} hollow sphere in proton exchange membrane water electrolyzers system

    Energy Technology Data Exchange (ETDEWEB)

    Chattopadhyay, Jayeeta; Srivastava, Rohit; Srivastava, Prem Kumar [Birla Institute of Technology, Jharkhand (India)

    2013-08-15

    This work presents the electrocatalytic evaluation of Ni/TiO{sub 2} hollow sphere materials in PEM water electrolysis cell. All the electrocatalysts have shown remarkably enhanced electrocatalytic properties in comparison with their performance in aqueous electrolysis cell. According to cyclic voltammetric results, 0.36 A cm{sup −2} peak current density has been exhibited in hydrogen evolution reaction (HER) from 30 wt% Ni/TiO{sub 2} electrocatalyst. 15 wt% Ni-doped titania sample has shown the best result in oxygen evolution reaction (OER) with the anodic peak current density of 0.3 A cm{sup −2}. In the anodic polarization curves, the performance of 15 wt% Ni/TiO{sub 2} hollow sphere electrocatalyst was evaluated up to 140 mA cm{sup −2} at comparatively lower over-potential value. 20 wt% Ni/TiO{sub 2} hollow sphere electrocatalyst has also shown electrochemical stability in PEM water electrolyzer for 48 h long analysis. The comparative electrocatalytic behavior of hollow spherical materials with non-sphericals is also presented, which clearly shows the influence of hollow spherical structure in greater electrocatalytic activity of the materials. The physical characterization of all the hollow spherical materials is presented in this work, which has confirmed their better electrochemical behavior in PEM water electrolyzer.

  12. The application of alkaline and acidic electrolyzed water in the sterilization of chicken breasts and beef liver.

    Science.gov (United States)

    Shimamura, Yuko; Shinke, Momoka; Hiraishi, Miki; Tsuchiya, Yusuke; Masuda, Shuichi

    2016-05-01

    The sterilization effect of a combination treatment with alkaline electrolyzed water (AlEW) and strong acidic electrolyzed water (StAEW) on fresh chicken breasts and beef liver was evaluated. Samples (1, 5, and 10 g) were inoculated with Salmonella Enteritidis NBRC3313, Escherichia coli ATCC 10798, Staphylococcus aureus FDA209P, and S. aureus C-29 [staphylococcal enterotoxin A (SEA) productive strain] and subjected to a dipping combination treatment (4°C and 25°C for 3 min) with AlEW and StAEW. Combination treatment with AlEW and StAEW significantly reduced the bacteria, and reduction of more than 1 log colony-forming units (CFU)/g was achieved. Furthermore, this combination treatment significantly decreased the SEA gene expression level in samples. Some quality variables of the meat samples such as pH, lipid oxidation, color, amino-acid content, texture, and sensory characteristics showed no significant differences between the combination treatment with AlEW and StAEW and the untreated control.

  13. Estimation of the hydrogen flux from a PEM electrolyzer, based in the solar irradiation measured in Zacatecas Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Duron-Torres, S.M.; Villagrana-Munoz, L.E.; Garcia-Saldivar, V.M.; Escalante-Garcia, I.L. [Univ. Autonoma de Zacatecas, Zacatecas (Mexico). Unidad Academica de Ciencias Quimicas; Arriaga-Hurtado, L.G. [Centro de Investigacion y Desarrollo Tecnologico en Electroquimica, Pedro Escobedo (Mexico)

    2010-07-15

    The current cost of obtaining hydrogen from electrolyzers is higher than the cost of producing fossil fuels. However, with advances in technology and greater use of alternative energy sources, the cost of electrolytic hydrogen production may decrease to the point of being competitive. This study calculated how much hydrogen can be produced in a typical polymer exchange membrane (PEM) electrolyzer. Local solar irradiation measurements were carried out from November 2007 to April 2008 at the Campus Siglo 21 Solarimetric Station at Zacatecas University in Mexico. The mean irradiation measured was 6.6 kW-h per m{sup 2}. Based on the solar data obtained at the station, the hydrogen produced by a typical solar-hydrogen (SH) system was evaluated. The study showed that an important quantity of hydrogen as an energy vector could be obtained from solar radiation. April was determined to be the month of maximum hydrogen production. The lowest hydrogen production was in November. The data obtained during this study can be used to evaluate the solar renewable energy resource expressed as hydrogen production. 19 refs., 1 tab., 4 figs.

  14. Electrochemical oxidation of cyanide on 3D Ti-RuO2 anode using a filter-press electrolyzer.

    Science.gov (United States)

    Pérez, Tzayam; López, Rosa L; Nava, José L; Lázaro, Isabel; Velasco, Guillermo; Cruz, Roel; Rodríguez, Israel

    2017-06-01

    The novelty of this communication lies in the use of a Ti-RuO 2 anode which has not been tested for the oxidation of free cyanide in alkaline media at concentrations similar to those found in wastewater from the Merrill Crowe process (100 mg L -1 KCN and pH 11), which is typically used for the recovery of gold and silver. The anode was prepared by the Pechini method and characterized by SEM. Linear sweep voltammetries on a Ti-RuO 2 rotating disk electrode (RDE) confirmed that cyanide is oxidized at 0.45 cyanide was investigated on Ti-RuO 2 meshes fitted into a filter-press electrolyzer. Bulk electrolyzes were performed at constant potentials of 0.85 V and 0.95 V and at different mean linear flow rates ranging between 1.2 and 4.9 cm s -1 . The bulk anodic oxidation of cyanide at 0.85 V and 3.7 cm s -1 achieved a degradation of 94%, with current efficiencies of 38% and an energy consumption of 24.6 kWh m -3 . Moreover, the degradation sequence of cyanide was also examined by HPLC. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Electrochemical performance of Ni/TiO_2 hollow sphere in proton exchange membrane water electrolyzers system

    International Nuclear Information System (INIS)

    Chattopadhyay, Jayeeta; Srivastava, Rohit; Srivastava, Prem Kumar

    2013-01-01

    This work presents the electrocatalytic evaluation of Ni/TiO_2 hollow sphere materials in PEM water electrolysis cell. All the electrocatalysts have shown remarkably enhanced electrocatalytic properties in comparison with their performance in aqueous electrolysis cell. According to cyclic voltammetric results, 0.36 A cm"−"2 peak current density has been exhibited in hydrogen evolution reaction (HER) from 30 wt% Ni/TiO_2 electrocatalyst. 15 wt% Ni-doped titania sample has shown the best result in oxygen evolution reaction (OER) with the anodic peak current density of 0.3 A cm"−"2. In the anodic polarization curves, the performance of 15 wt% Ni/TiO_2 hollow sphere electrocatalyst was evaluated up to 140 mA cm"−"2 at comparatively lower over-potential value. 20 wt% Ni/TiO_2 hollow sphere electrocatalyst has also shown electrochemical stability in PEM water electrolyzer for 48 h long analysis. The comparative electrocatalytic behavior of hollow spherical materials with non-sphericals is also presented, which clearly shows the influence of hollow spherical structure in greater electrocatalytic activity of the materials. The physical characterization of all the hollow spherical materials is presented in this work, which has confirmed their better electrochemical behavior in PEM water electrolyzer

  16. Energy flows modelling of a PEM electrolyzer-Photovoltaic generator-PEM fuel cell coupling dedicated to stationary applications

    International Nuclear Information System (INIS)

    Agbli, Krehi Serge

    2012-01-01

    A standalone multi-source system based on the coupling of photovoltaic energy and both a PEM electrolyzer and a PEMFC for stationary application is studied. The system gathers photovoltaic array as main energy source, ultra-capacitors and batteries packs in order to smooth respectively fast and medium dynamic by supplying the load or by absorbing photovoltaic source overproduction. Because of the necessity of fuel availability, especially for islanding application like this one, a PEM electrolyzer is integrated to the system for in situ hydrogen production. The relevance of PEMFC system powered by solar hydrogen is pointed out before examining hydrogen storage issue. Energetic and economic analyses have been performed leading to the choice of the pressurised hydrogen storage (in the bottle) rather than hydrogen storage both as liquid and within metal hydride. The main purpose being the proper management of the power flows in order to meet the energy requirement (the load) without power cut, a graphical modelling tool namely Energetic Macroscopic Representation (EMR) is used because of its analysis and control strengths. The EMR ability to describe multi-physics energetic tools is used to develop a PEM electrolyzer model. The multi-domain interaction between the electrical, the electrochemical, the thermodynamic and the fluidic domain is emphasised. Moreover, the temperature variation influence on the electrochemical parameters of the electrolyzer is taken into account by the developed EMR model. Afterwards, thanks to the modular feature of the EMR, the different models of each energetic entity of the system are performed before their assembling leading to the overall system EMR model. By using scale effect allowing extending the energetic tool power range from the experimental validation one to another one, the energetic system sizing is performed according to a household power profile. Then, by the help of the multi-level representation, the maximal control

  17. A reversible electrolyzer-fuel cell system based on PEM technology

    International Nuclear Information System (INIS)

    Grigoriev, S.A.; Millet, P.; Fateev, V.N.

    2009-01-01

    'Full text': A reversible electrolyzer-fuel cell is an electrochemical system which can be alternatively operated in water electrolysis or H 2 /O 2 (air) fuel cell modes. Whereas proton-exchange membrane (PEM) water electrolysis and PEM fuel cell technologies are individually well-established, it is still a very challenging task to develop efficient reversible systems which can maintain interesting electrochemical performances during a significant number of cycles. Results reported in this communication are related to R and D on bi-functional catalysts, electrocatalytic layers, gas diffusion layers/current collectors and reversible PEM stack design. Electrodes which do not change their redox status when the operation mode of the cell is switched from electrolysis to fuel cell are more specifically considered. In particular, it is shown that, when the anode is composed of Pt-Ir layers (ca. 0.5/0.5 wt. ratio), best electrochemical performances are obtained (for both for water and hydrogen oxidation reactions) when an Ir layer is placed face-to-face with the membrane. Cathodic electrocatalytic layers made of Pt/C were prepared and optimized by adding PTFE to obtain the required hydrophobic-hydrophilic properties for effective oxygen and protons electro-reduction. Gas diffusion electrodes made of porous carbon materials and bi-porous titanium sheets with appropriate water management properties have also been developed. A two-cell stack with 250 cm 2 active area electrodes has been assembled using the optimized components and successfully tested. Results are rather close to those obtained for individual water electrolysis and H 2 /O 2 fuel cells with the same noble metal loadings and similar operating conditions. For instance, at a current density of 0.2 A/cm 2 , typical cell voltages of ca. 1.55 and 0.70 V were respectively obtained during water electrolysis and H 2 /O 2 fuel cell operation, using Nafion-1135 as solid polymer electrolyte and noble metal loadings 2

  18. AN INVESTIGATION INTO THE EFFECT OF PHOTOVOLTAIC MODULE ELECTRIC PROPERTIES ON MAXIMUM POWER POINT TRAJECTORY WITH THE AIM OF ITS ALIGNMENT WITH ELECTROLYZER U-I CHARACTERISTIC

    Directory of Open Access Journals (Sweden)

    Mihajlo Firak

    2010-01-01

    Full Text Available In order to combine a photovoltaic module and an electrolyzer to produce hydrogen from water, an intermediate DC/DC converter can be used to adapt output power features of the module to input power features of the electrolyzer. This can also be done without using electronics, which results in saving as much as 700 USD/kW, as previous investigation has shown. A more sophisticated investigation should be carried out with the aim of improving high system efficiency, resulting in matching the photovoltaic module maximum power point trajectory (the maximum power point path in the U-I plane as a result of solar irradiance change to the operating characteristic of the electrolyzer. This paper presents an analysis of the influences of photovoltaic module electric properties, such as series and parallel resistance and non-ideality factor, on the maximum power point trajectory at different levels of solar irradiance. The possibility of various inclinations (right - vertical - left in relation to an arbitrary chosen operating characteristic of the electrolyzer is also demonstrated. Simulated results are obtained by using Matlab/Simulink simulations of the well known one-diode model. Simulations have been confirmed with experiments on a real photovoltaic module where solar irradiance, solar cell temperature, electric current, and voltage in the circuit with variable ohmic resistance have been measured.

  19. Currents of thermally stimulated depolarization in CaIn2S4 single crystals

    International Nuclear Information System (INIS)

    Tagiev, B.G.; Tagiev, O.B.; Dzhabbarov, R.B.; Musaeva, N.N.

    1996-01-01

    The results of investigation into currents of thermally stimulated depolarization in CaIn 2 S 4 monocrystals are presented for the first time. Spectra of thermally stimulated depolarization for In-CaIn S4 -In structures are measured under T=99 K at various rates of heat, times of polarization and times of expectation following switching off of electrical field up to beginning of measurements of shorting. The main parameters of capture cross section, partial factor, concentration of traps, are determined. It is determined that one may observed a biomolecular mechanism with a strong secondary capture in CaIn 2 S 4 monocrystals. 9 refs.; 4 figs

  20. A stochastic model of depolarization enhancement due to large energy spread in electron storage rings

    International Nuclear Information System (INIS)

    Buon, J.

    1988-10-01

    A new semiclassical and stochastic model of spin diffusion is used to obtain numerical predictions for depolarization enhancement due to beam energy spread. It confirms the results of previous models for the synchrotron sidebands of isolated spin resonances. A satisfactory agreement is obtained with the width of a synchrotron satellite observed at SPEAR. For HERA and LEP, at Z 0 energy, the depolarization enhancement is of the order of a few units and increases very rapidly with the energy spread. Large reduction of polarization degree is expected in these rings

  1. Analytic calculation of depolarization due to large energy spread in high-energy electron storage rings

    International Nuclear Information System (INIS)

    Buon, J.

    1989-08-01

    A new semiclassical and stochastic model of spin diffusion is used to obtain numerical predictions for depolarization enhancement due to beam energy spread. It confirms the results of previous models for the synchrotron sidebands of spin resonances. A satisfactory agreement is obtained with the width of a synchrotron satellite observed at SPEAR. For HERA, TRISTAN, and LEP at Z 0 energy, the depolarization enhancement is of the order of a few units and increases very rapidly with the energy spread. Large reduction of polarization degree is expected in these rings

  2. Beam depolarization and gain saturation in neodymium rods with a diameter of 85 mm

    Energy Technology Data Exchange (ETDEWEB)

    Sukhanov, V N; Ugodenko, A A

    1990-04-01

    Depolarization and gain saturation were investigated in rod amplifiers using phosphate and silicate Nd glasses 85 mm in diameter and 300 mm in length at a pulse duration of 35 ns. Total depolarization losses over the rod cross section were measured for various radial distributions of the small-signal gain. For the phosphate glass the losses amounted to 3-6 percent; for the silicate glass, they amounted to 4-7 percent. Saturation energy densities of 4.5 + or - 0.4 and 8.0 + or - 0.7 J/sq cm were obtained for the phosphate and silicate glass, respectively. 8 refs.

  3. Detection of spreading depolarization with intraparenchymal electrodes in the injured human brain

    DEFF Research Database (Denmark)

    Jeffcote, Toby; Hinzman, Jason M; Jewell, Sharon L

    2014-01-01

    be detected using intra-cortical electrodes, opening the way for electrode insertion via burr hole. METHODS: Animal work was carried out on adult Sprague-Dawley rats in a laboratory setting to investigate the feasibility of recording depolarization events. Subsequently, 8 human patients requiring craniotomy...... for craniotomy. The method provides a new investigative tool for the evaluation of the contribution of these events to secondary brain injury in human patients.......BACKGROUND: Spreading depolarization events following ischemic and traumatic brain injury are associated with poor patient outcome. Currently, monitoring these events is limited to patients in whom subdural electrodes can be placed at open craniotomy. This study examined whether these events can...

  4. Measurement of the depolarization rate of positive muons in copper and aluminium

    International Nuclear Information System (INIS)

    Gauster, W.B.; Heffner, R.H.; Huang, C.Y.; Hutson, R.L.; Leon, M.; Parkin, D.M.; Schillaci, M.E.; Triftshaeuser, W.; Wampler, W.R.

    1977-01-01

    Positive muon spin rotation experiments for polycrystalline Cu and Al from 19 K to temperatures near the melting points are reported. At low temperatures, the depolarization associated with localization of the muons at octahedral interstitial sites is seen in Cu, while in Al only slight depolarization is observed below 250 K. At high temperatures, no evidence for trapping of positive muons at vacancies in thermal equilibrium is found for either metal. It is concluded that the muons either diffuse too slowly to find vacancies or, if they do find vacancies, are bound too weakly to remain trapped. (author)

  5. Síndrome da apneia obstrutiva do sono (Saos e sonolência diurna excessiva (SDE: influência sobre os riscos e eventos de queda em idosos

    Directory of Open Access Journals (Sweden)

    Renata Afonso Burgos

    Full Text Available INTRODUÇÃO: Muitos países vêm experimentando o processo de envelhecimento populacional e a consequente elevação das doenças associadas a ele, como dificuldade de manter o equilíbrio, perdas na qualidade do sono e síndrome da apneia obstrutiva do sono (Saos. OBJETIVOS:Investigar a correlação entre a Saos e sonolência diurna excessiva (SDE com os riscos e eventos de quedas em indivíduos idosos. MATERIAIS E MÉTODOS:Estudo descritivo, comparativo, de corte transversal com amostra de 75 indivíduos com idade igual ou superior a 60 anos, gêneros masculino e feminino. Foram utilizados o mini-exame do estado mental; escalas de depressão geriátrica simplificada; de sonolência de epworth; de avaliação do equilíbrio de tinneti; índice de massa corporal (IMC; registros estabilométricos das oscilações posturais ântero-posterior (AP e médio-lateral (ML. RESULTADOS: Maior prevalência de Saos no gênero masculino. Não foi encontrada correlação com significância estatística (Pearson, p ≤ 0,01 entre as variáveis IMC e estabilometria. Não houve correlação estatisticamente significativa (ANOVA, p ≤ 0,05 entre IMC (subgrupos normal, sobrepeso, graus I, II, III, e IV e estabilometria; entre os graus de severidade de Saos e estabilometria; entre dados estabilométricos de subgrupos de IMC e mesmo grau de severidade de Saos; entre dados estabilométricos de subgrupos de IMC e diferentes graus de Saos; entre os diferentes graus de Saos (GC, G1, (GC e G2, subgrupos de IMC e registros estabilométricos. CONCLUSÃO: Não foram encontrados resultados que corroborassem a hipótese de proporcionalidade entre graus de severidade de Saos, IMC e registro estabilométrico.

  6. Viability of sublethally injured coliform bacteria on fresh-cut cabbage stored in high CO2 atmospheres following rinsing with electrolyzed water.

    Science.gov (United States)

    Izumi, Hidemi; Inoue, Ayano

    2018-02-02

    The extent of sublethally injured coliform bacteria on shredded cabbage, either rinsed or not rinsed with electrolyzed water, was evaluated during storage in air and high CO 2 controlled atmospheres (5%, 10%, and 15%) at 5°C and 10°C using the thin agar layer (TAL) method. Sublethally injured coliform bacteria on nonrinsed shredded cabbage were either absent or they were injured at a 64-65% level when present. Rinsing of shredded cabbage with electrolyzed water containing 25ppm available chlorine reduced the coliform counts by 0.4 to 1.1 log and caused sublethal injury ranging from 42 to 77%. Pantoea ananatis was one of the species injured by chlorine stress. When shredded cabbage, nonrinsed or rinsed with electrolyzed water, was stored in air and high CO 2 atmospheres at 5°C for 7days and 10°C for 5days, coliform counts on TAL plates increased from 3.3-4.5 to 6.5-9.0 log CFU/g during storage, with the increase being greater at 10°C than at 5°C. High CO 2 of 10% and 15% reduced the bacterial growth on shredded cabbage during storage at 5°C. Although injured coliform bacteria were not found on nonrinsed shredded cabbage on the initial day, injured coliforms at a range of 49-84% were detected on samples stored in air and high CO 2 atmospheres at 5°C and 10°C. Injured cells were detected more frequently during storage at both temperatures irrespective of the CO 2 atmosphere when shredded cabbage was rinsed with electrolyzed water. These results indicated that injured coliform bacteria on shredded cabbage, either rinsed or not rinsed with electrolyzed water, exhibited different degrees of injury during storage regardless of the CO 2 atmosphere and temperature tested. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Production of sustainable methane from renewable energy and captured carbon dioxide with the use of Solid Oxide Electrolyzer: A thermodynamic assessment

    International Nuclear Information System (INIS)

    Stempien, Jan Pawel; Ni, Meng; Sun, Qiang; Chan, Siew Hwa

    2015-01-01

    A possible pathway for renewable and sustainable methane production from captured carbon dioxide, water (or seawater) and renewable electricity is proposed and analysed. The proposed system includes Solid Oxide Electrolyzer Cell combined with ex-situ methane synthesis reactor comprising Sabatier, Methanation and Water-Gas Shift reactions. A well validated electrochemical model is used to describe the behaviour of the electrolyzer for steam/carbon dioxide co-electrolysis. The methane synthesis reactor is modelled by a set of equations based on thermodynamic equilibrium reaction constants. Effects of current density, temperature, pressure and initial steam to carbon dioxide ratio on system performance are analysed and their effects are discussed. It is found that a simple, single-pass system without heat recuperation could achieve a maximum overall energy efficiency of 60.87% (based on lower heating value), a maximum electrical energy efficiency of 81.08% (based on lower heating value), and a maximum amount of methane production of ∼1.52 Nm 3  h −1  m −2 of electrolyzer. It is also found that conversion of ∼100% captured carbon dioxide is possible in the proposed system. - Highlights: • Analysis of Solid Oxide Electrolyzer combined with methane synthesis process. • Efficiency of converting water and carbon dioxide into synthetic, renewable methane above 81%. • Effects of process temperature, pressure, gas flux and compositions were analysed. • Methane production of ∼1.52 [Nm 3 h −1 m −2 of electrolyzer]. • Conversion of ∼100% of captured CO 2 is possible

  8. Neutron depolarization measurements of HoCo2 near the magnetic phase transition

    International Nuclear Information System (INIS)

    Kraan, W.

    1976-09-01

    The magnetic phase transition in HoCo 2 at zero applied field is investigated. The Landau theory of magnetic phase transition is discussed. The experimental technique for neutron depolarization measurements in the temperature range 65-90 K is described

  9. Weaver mutant mouse cerebellar granule cells respond normally to chronic depolarization

    DEFF Research Database (Denmark)

    Bjerregaard, Annette; Mogensen, Helle Smidt; Hack, N

    1997-01-01

    We studied the effects of chronic K(+)-induced membrane depolarization and treatment with N-methyl-D-aspartate (NMDA) on cerebellar granule cells (CGCs) from weaver mutant mice and non-weaver litter-mates. The weaver mutation is a Gly-to-Ser substitution in a conserved region of the Girk2 G prote...

  10. Molecular anisotropy effects in carbon K-edge scattering: depolarized diffuse scattering and optical anisotropy

    Energy Technology Data Exchange (ETDEWEB)

    Stone, Kevin H.

    2014-07-14

    Some polymer properties, such as conductivity, are very sensitive to short- and intermediate-range orientational and positional ordering of anisotropic molecular functional groups, and yet means to characterize orientational order in disordered systems are very limited. We demonstrate that resonant scattering at the carbon K-edge is uniquely sensitive to short-range orientation correlations in polymers through depolarized scattering at high momentum transfers, using atactic polystyrene as a well-characterized test system. Depolarized scattering is found to coexist with unpolarized fluorescence, and to exhibit pronounced anisotropy. We also quantify the spatially averaged optical anisotropy from low-angle reflectivity measurements, finding anisotropy consistent with prior visible, x-ray absorption, and theoretical studies. The average anisotropy is much smaller than that in the depolarized scattering and the two have different character. Both measurements exhibit clear spectral signatures from the phenyl rings and the polyethylene-like backbone. Discussion focuses on analysis considerations and prospects for using this depolarized scattering for studies of disorder in soft condensed matter.

  11. Charge movement and depolarization-contraction coupling in arthropod vs. vertebrate skeletal muscle.

    OpenAIRE

    Scheuer, T; Gilly, W F

    1986-01-01

    Voltage-dependent charge movement has been characterized in arthropod skeletal muscle. Charge movement in scorpion (Centuroides sculpturatus) muscle is distinguishable from that in vertebrate skeletal muscle by criteria of kinetics, voltage dependence, and pharmacology. The function of scorpion charge movement is gating of calcium channels in the sarcolemma, and depolarization-contraction coupling relies on calcium influx through these channels.

  12. Neutron depolarization study of static and dynamic magnetic properties of ferromagnets

    International Nuclear Information System (INIS)

    Stuesser, N.

    1986-01-01

    In this thesis neutron depolarization experiments are performed on amorphous and crystalline ferromagnetic materials. The subjects studied are concerned with 'domain structure in magnetically weak uniaxial amorphous ferromagnetic ribbons', 'static critical behaviour at the ferromagnetic-paramagnetic phase transition', 'small magnetic anisotropy in nickel near T c ', and 'magnetization reversal in conducting ferromagnets'. 87 refs.; 37 figs.; 3 tabs

  13. Depolarization-induced release of amino acids from the vestibular nuclear complex.

    Science.gov (United States)

    Godfrey, Donald A; Sun, Yizhe; Frisch, Christopher; Godfrey, Matthew A; Rubin, Allan M

    2012-04-01

    There is evidence from immunohistochemistry, quantitative microchemistry, and pharmacology for several amino acids as neurotransmitters in the vestibular nuclear complex (VNC), including glutamate, γ-aminobutyrate (GABA), and glycine. However, evidence from measurements of release has been limited. The purpose of this study was to measure depolarization-stimulated calcium-dependent release of amino acids from the VNC in brain slices. Coronal slices containing predominantly the VNC were prepared from rats and perfused with artificial cerebrospinal fluid (ACSF) in an interface chamber. Fluid was collected from the chamber just downstream from the VNC using a microsiphon. Depolarization was induced by 50 mM potassium in either control calcium and magnesium concentrations or reduced calcium and elevated magnesium. Amino acid concentrations in effluent fluid were measured by high performance liquid chromatography. Glutamate release increased fivefold during depolarization in control calcium concentration and twofold in low calcium/high magnesium. These same ratios were 6 and 1.5 for GABA, 2 and 1.3 for glycine, and 2 and 1.5 for aspartate. Differences between release in control and low calcium/high magnesium ACSF were statistically significant for glutamate, GABA, and glycine. Glutamine release decreased during and after depolarization, and taurine release slowly increased. No evidence for calcium-dependent release was found for serine, glutamine, alanine, threonine, arginine, taurine, or tyrosine. Our results support glutamate and GABA as major neurotransmitters in the VNC. They also support glycine as a neurotransmitter and some function for taurine.

  14. Role of astrocytes in depolarization-coupled release of glutamate in cerebellar cultures

    DEFF Research Database (Denmark)

    Bak, Lasse K; Waagepetersen, Helle S; Schousboe, Arne

    2004-01-01

    Release of preloaded D-[3H]aspartate in response to depolarization induced by high potassium, N-methyl-D-aspartate (NMDA), alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) or the endogenous agonist glutamate was studied using cultured glutamatergic cerebellar granule neurons, cerebell...

  15. Two regulatory RNA elements affect TisB-dependent depolarization and persister formation.

    Science.gov (United States)

    Berghoff, Bork A; Hoekzema, Mirthe; Aulbach, Lena; Wagner, E Gerhart H

    2017-03-01

    Bacterial survival strategies involve phenotypic diversity which is generated by regulatory factors and noisy expression of effector proteins. The question of how bacteria exploit regulatory RNAs to make decisions between phenotypes is central to a general understanding of these universal regulators. We investigated the TisB/IstR-1 toxin-antitoxin system of Escherichia coli to appreciate the role of the RNA antitoxin IstR-1 in TisB-dependent depolarization of the inner membrane and persister formation. Persisters are phenotypic variants that have become transiently drug-tolerant by arresting growth. The RNA antitoxin IstR-1 sets a threshold for TisB-dependent depolarization under DNA-damaging conditions, resulting in two sub-populations: polarized and depolarized cells. Furthermore, our data indicate that an inhibitory 5' UTR structure in the tisB mRNA serves as a regulatory RNA element that delays TisB translation to avoid inappropriate depolarization when DNA damage is low. Investigation of the persister sub-population further revealed that both regulatory RNA elements affect persister levels as well as persistence time. This work provides an intriguing example of how bacteria exploit regulatory RNAs to control phenotypic heterogeneity. © 2016 John Wiley & Sons Ltd.

  16. Normal chemotaxis in Dictyostelium discoideum cells with a depolarized plasma membrane potential

    NARCIS (Netherlands)

    Duijn, Bert van; Vogelzang, Sake A.; Ypey, Dirk L.; Molen, Loek G. van der; Haastert, Peter J.M. van

    1990-01-01

    We examined a possible role for the plasma membrane potential in signal transduction during cyclic AMP-induced chemotaxis in the cellular slime mold Dictyostelium discoideum. Chemotaxis, cyclic GMP and cyclic AMP responses in cells with a depolarized membrane potential were measured. Cells can be

  17. Alkaline electrolyzer and V2G system DIgSILENT models for demand response analysis in future distribution networks

    DEFF Research Database (Denmark)

    Diaz de Cerio Mendaza, Iker; Bak-Jensen, Birgitte; Chen, Zhe

    2013-01-01

    Grid instabilities originated by unsteady generation, characteristic consequence of some renewable energy resources such as wind and solar power, claims for new power balance solutions in largely penetrated systems. Denmark's solid investment in these energy sources has awaked a need of rethinking...... about the future control and operation of the power system. A widespread idea to face these challenges is to have a flexible demand easily adjustable to the system variations. Electrothermal loads, electric vehicles and hydrogen generation are among the most mentioned technologies capable to respond......, under certain strategies, to these variations. This paper presents two DIgSILENT PowerFactory models: an alkaline electrolyzer and a vehicle to the grid system. The models were performed using DIgSILENT Simulation Language, aiming to be used for long-term distribution systems simulations. Two voltage...

  18. A Novel Hybrid Reformer-Electrolyzer-Purifier (REP) for Distributed Production of Low-Cost, Low Greenhouse Gas Hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Jahnke, Fred C. [FuelCell Energy, Inc., Danbury, CT (United States)

    2017-03-28

    FuelCell Energy with support from the Department of Energy’s Office of Energy Efficiency and Renewable Energy (EERE) has investigated the production of low-cost, low CO2 hydrogen using a molten carbonate fuel cell operating as an electrolyzer. We confirmed the feasibility of the technology by testing a large-scale short stack. Economic analysis was done with the assistance of the National Fuel Cell Center at the University of California, Irvine and we found the technology to be attractive, especially for distributed hydrogen. We explored the performance under various operating parameters and developed an accurate model for further analysis and development calculations. We achieved the expected results, meeting all program goals. We identified additional uses of the technology such as for CO2 capture, power storage, and power load leveling.

  19. Electrochemical Impedance Spectroscopy on Industrially-Relevant Solid Oxide Electrolyzer Cell Stacks: A Powerful Tool for in-Situ Investigations of Degradation Mechanisms

    DEFF Research Database (Denmark)

    Zielke, Philipp; Høgh, Jens Valdemar Thorvald; Chen, Ming

    2016-01-01

    that energy services can be covered in a stable and affordable manner. One promising solution is the synthetic fuel production by solid oxide electrolyzers. Electricity can be stored in a power-to-gas process during times of excess electricity production and then further converted to liquid fuels for e.......g. transportation, or at high demands converted back to electricity by either conventional power plants or fuel cells. One of today’s biggest hurdles for a successful commercialization of solid oxide electrolyzers is the stack’s lifetime with current industry targets in the order of five to ten years. To identify......In the current efforts of moving energy production to renewable sources, wind and solar energy are widely considered as the key technologies to cover our growing demands. However, the fluctuating nature of these sources requires a flexible energy system and storage technologies to ensure...

  20. On the nature of the fast depolarization of muons in condensed nitrogen

    International Nuclear Information System (INIS)

    Duginov, V.N.; Grebinnik, V.G.; Kirillov, B.F.

    1990-01-01

    Temperature dependences of the depolarization rate, the muon precession initial amplitude and phase in liquid and crystalline nitrogen with the oxygen content of 10 -6 have been measured. It has been shown that muon spin relaxation parameters in nitrogen do not change at the reduction of the oxygen impurity content from 0.7x10 -4 to 10 -6 . The fast depolarization of muons in condensed nitrogen is apparently due to the formation of muonium atoms. The muon precession initial phase has been measured as a function of the perpendicular magnetic field to determine the state of short-lived muonium in nitrogen. It has been determined that muonium in nitrogen is in an excited state. 14 refs.; 3 figs

  1. Surface potential at a ferroelectric grain due to asymmetric screening of depolarization fields

    Energy Technology Data Exchange (ETDEWEB)

    Genenko, Yuri A., E-mail: genenko@mm.tu-darmstadt.de; Hirsch, Ofer [Technische Universität Darmstadt, Darmstadt (Germany); Erhart, Paul [Chalmers University of Technology, Gothenburg (Sweden)

    2014-03-14

    Nonlinear screening of electric depolarization fields, generated by a stripe domain structure in a ferroelectric grain of a polycrystalline material, is studied within a semiconductor model of ferroelectrics. It is shown that the maximum strength of local depolarization fields is rather determined by the electronic band gap than by the spontaneous polarization magnitude. Furthermore, field screening due to electronic band bending and due to presence of intrinsic defects leads to asymmetric space charge regions near the grain boundary, which produce an effective dipole layer at the surface of the grain. This results in the formation of a potential difference between the grain surface and its interior of the order of 1 V, which can be of either sign depending on defect transition levels and concentrations. Exemplary acceptor doping of BaTiO{sub 3} is shown to allow tuning of the said surface potential in the region between 0.1 and 1.3 V.

  2. Lactate per se improves the excitability of depolarized rat skeletal muscle by reducing the Cl- conductance

    DEFF Research Database (Denmark)

    de Paoli, Frank Vincenzo; Ørtenblad, Niels; Pedersen, Thomas Holm

    2010-01-01

    Studies on rats have shown that lactic acid can improve excitability and function of depolarized muscles. The effect has been related to the ensuing reduction in intracellular pH causing inhibition of muscle fibre Cl- channels. Since, however, several carboxylic acids with structural similarities...... to lactate can inhibit muscle Cl- channels it is possible that lactate per se can increase muscle excitability by exerting a direct effect on these channels. We therefore examined effects of lactate on the function of intact muscles and skinned fibres together with effects on pH and Cl- conductance....... In muscles where extracellular compound action potentials (M-waves) and tetanic force response to excitation were reduced by 82±4 and 83±2 %, respectively, by depolarization with 11 mM extracellular K+, both M-waves and force exhibited an up to 4-fold increase when 20 mM lactate was added. This effect...

  3. Neutron depolarization study of internal stresses in amorphous Fe40Ni40B20

    International Nuclear Information System (INIS)

    de Jong, M.; Sietsma, J.; Rekveldt, M.T.; van den Beukel, A.

    1997-01-01

    The magnetic domain structure of amorphous ferromagnets with nonzero magnetostriction is mainly determined by the internal stress state because of the magneto-elastic coupling. The stress and field dependence of the domain structure contains important information on the internal stresses in the material. The three-dimensional neutron depolarization technique has been used to study the stress- and field-dependence of the bulk domain structures in both as-quenched and annealed ribbons of the metallic glass Fe 40 Ni 40 B 20 . A three-layer domain structure model corresponding to compressive and tensile internal stresses is presented to explain the measured data. The influence of surface roughness on the interpretation of neutron depolarization measurements in amorphous ribbons is discussed. Finally, the internal stress relaxation due to the annealing is explained in terms of the viscous behaviour of the glass. copyright 1997 American Institute of Physics

  4. Quantum key distribution with several intercept-resend attacks via a depolarizing channel

    International Nuclear Information System (INIS)

    Dehmani, Mustapha; Errahmani, Mohamed; Ez-Zahraouy, Hamid; Benyoussef, Abdelilah

    2012-01-01

    The disturbance effect of a depolarizing channel on the security of the quantum key distribution of the four-state BB84 protocol, with multiple sequential intercept-resend attacks of many eavesdroppers, has been studied. The quantum bit error rate and the mutual information are computed for an arbitrary number N of eavesdroppers. It is found that the quantum error rate decreases with increasing the depolarizing parameter p characterizing the noise of the channel. For p tr of p below which the information is secure and otherwise the information is not secure. The value of p tr decreases with increasing the number of attacks. In contrast, for p ⩾ 0.165, the information is not secure independently of the number of eavesdroppers. Phase diagrams corresponding to the secure—unsecure information are also established. (paper)

  5. Generation of vector beams using a double-wedge depolarizer: Non-quantum entanglement

    Science.gov (United States)

    Samlan, C. T.; Viswanathan, Nirmal K.

    2016-07-01

    Propagation of horizontally polarized Gaussian beam through a double-wedge depolarizer generates vector beams with spatially varying state of polarization. Jones calculus is used to show that such beams are maximally nonseparable on the basis of even (Gaussian)-odd (Hermite-Gaussian) mode parity and horizontal-vertical polarization state. The maximum nonseparability in the two degrees of freedom of the vector beam at the double wedge depolarizer output is verified experimentally using a modified Sagnac interferometer and linear analyser projected interferograms to measure the concurrence 0.94±0.002 and violation of Clauser-Horne-Shimony-Holt form of Bell-like inequality 2.704±0.024. The investigation is carried out in the context of the use of vector beams for metrological applications.

  6. Effect of the depolarization field on coherent optical properties in semiconductor quantum dots

    Science.gov (United States)

    Mitsumori, Yasuyoshi; Watanabe, Shunta; Asakura, Kenta; Seki, Keisuke; Edamatsu, Keiichi; Akahane, Kouichi; Yamamoto, Naokatsu

    2018-06-01

    We study the photon echo spectrum of self-assembled semiconductor quantum dots using femtosecond light pulses. The spectrum shape changes from a single-peaked to a double-peaked structure as the time delay between the two excitation pulses is increased. The spectrum change is reproduced by numerical calculations, which include the depolarization field induced by the biexciton-exciton transition as well as the conventional local-field effect for the exciton-ground-state transition in a quantum dot. Our findings suggest that various optical transitions in tightly localized systems generate a depolarization field, which renormalizes the resonant frequency with a change in the polarization itself, leading to unique optical properties.

  7. Coherence and Polarization of Polarization Speckle Generated by Depolarizers and Their Changes through Complex ABCD Matrix

    DEFF Research Database (Denmark)

    Ma, Ning; Hanson, Steen Grüner; Lee, Tim K.

    2015-01-01

    Recent research work on speckle patterns indicates a variation of the polarization state during propagation and its nonuniformly spatial distribution. The preliminary step for the investigation of this polarization speckle is the generation of the corresponding field. In this paper, a kind...... of special depolarizer: the random roughness birefringent screen (RRBS) is introduced to meet this requirement. The statistical properties of the field generated by the depolarizer is investigated and illustrated in terms of the 2x2 beam coherence and polarization matrix (BCPM) with the corresponding degree...... of coherence (DoC). and degree of polarization (DoP) P. The changes of the coherence and polarization when the speckle field propagates through any optical system are analysed within the framework of the complex ABCD-matrix theory....

  8. Isoflurane depolarizes bronchopulmonary C neurons by inhibiting transient A-type and delayed rectifier potassium channels.

    Science.gov (United States)

    Zhang, Zhenxiong; Zhuang, Jianguo; Zhang, Cancan; Xu, Fadi

    2013-04-01

    Inhalation of isoflurane (ISO), a widely used volatile anesthetic, can produce clinical tachypnea. In dogs, this response is reportedly mediated by bronchopulmonary C-fibers (PCFs), but the relevant mechanisms remain unclear. Activation of transient A-type potassium current (IA) channels and delayed rectifier potassium current (IK) channels hyperpolarizes neurons, and inhibition of both channels by ISO increases neural firing. Due to the presence of these channels in the cell bodies of rat PCFs, we determined whether ISO could stimulate PCFs to produce tachypnea in anesthetized rats, and, if so, whether this response resulted from ISO-induced depolarization of the pulmonary C neurons via the inhibition of IA and IK. We recorded ventilatory responses to 5% ISO exposure in anesthetized rats before and after blocking PCF conduction and the responses of pulmonary C neurons (extracellularly recorded) to ISO exposure. ISO-induced (1mM) changes in pulmonary C neuron membrane potential and IA/IK were tested using the perforated patch clamp technique. We found that: (1) ISO inhalation evoked a brief tachypnea (∼7s) and that this response disappeared after blocking PCF conduction; (2) the ISO significantly elevated (by 138%) the firing rate of most pulmonary C neurons (17 out of 21) in the nodose ganglion; and (3) ISO perfusion depolarized the pulmonary C neurons in the vitro and inhibited both IA and IK, and this evoked-depolarization was largely diminished after blocking both IA and IK. Our results suggest that ISO is able to stimulate PCFs to elicit tachypnea in rats, at least partly, via inhibiting IA and IK, thereby depolarizing the pulmonary C neurons. Copyright © 2013. Published by Elsevier B.V.

  9. Fluorescence/depolarization lidar for mid-range stand-off detection of biological agents

    Science.gov (United States)

    Mierczyk, Z.; Kopczyński, K.; Zygmunt, M.; Wojtanowski, J.; Młynczak, J.; Gawlikowski, A.; Młodzianko, A.; Piotrowski, W.; Gietka, A.; Knysak, P.; Drozd, T.; Muzal, M.; Kaszczuk, M.; Ostrowski, R.; Jakubaszek, M.

    2011-06-01

    LIDAR system for real-time standoff detection of bio-agents is presented and preliminary experimental results are discussed. The detection approach is based on two independent physical phenomena: (1) laser induced fluorescence (LIF), (2) depolarization resulting from elastic scattering on non-spherical particles. The device includes three laser sources, two receiving telescopes, depolarization component and spectral signature analyzing spectrograph. It was designed to provide the stand-off detection capability at ranges from 200 m up to several kilometers. The system as a whole forms a mobile platform for vehicle or building installation. Additionally, it's combined with a scanning mechanics and advanced software, which enable to conduct the semi-automatic monitoring of a specified space sector. For fluorescence excitation, 3-rd (355 nm) and 4-th (266 nm) harmonics of Nd:YAG pulsed lasers are used. They emit short (~6 ns) pulses with the repetition rate of 20 Hz. Collecting optics for fluorescence echo detection and spectral content analysis includes 25 mm diameter f/4 Newton telescope, Czerny Turner spectrograph and 32-channel PMT. Depending on the grating applied, the spectral resolution from 20 nm up to 3 nm per channel can be achieved. The system is also equipped with an eye-safe (1.5 μm) Nd:YAG OPO laser for elastic backscattering/depolarization detection. The optical echo signal is collected by Cassegrain telescope with aperture diameter of 12.5 mm. Depolarization detection component based on polarizing beam-splitter serves as the stand-off particle-shape analyzer, which is very valuable in case of non-spherical bio-aerosols sensing.

  10. Collisional broadening of depolarized spectral lines of hydrogen gases at low temperatures

    International Nuclear Information System (INIS)

    Hout, K.D. van den.

    1978-01-01

    Experimental results are presented for the collisional broadening and shift of H 2 , D 2 and HD rotational Raman and depolarized Rayleigh lines at various temperatures between 25 K and 300 K. These are then discussed within the context of current theoretical concepts. For a few temperatures the line broadening cross sections are also reported as a function of the ortho-para composition for H 2 and D 2 . (C.F.)

  11. Coherence and polarization speckle generated by a rough-surfaced retardation plate depolarizer

    DEFF Research Database (Denmark)

    Ma, Ning; Hanson, Steen Grüner; Takeda, Mitsuo

    2015-01-01

    of position introducing random phase differences between the two orthogonal components of the electric vector. Under the assumption of Gaussian statistics with zero mean, the surface model for the depolarizer of the rough-surfaced retardation plate is obtained. The propagation of the modulated fields through...... any quadratic optical system is examined within the framework of the complex ABCD matrix theory to show how the degree of coherence and polarization of the beam changes on propagation, including propagation in free space...

  12. Seizures, refractory status epilepticus, and depolarization block as endogenous brain activities

    Science.gov (United States)

    El Houssaini, Kenza; Ivanov, Anton I.; Bernard, Christophe; Jirsa, Viktor K.

    2015-01-01

    Epilepsy, refractory status epilepticus, and depolarization block are pathological brain activities whose mechanisms are poorly understood. Using a generic mathematical model of seizure activity, we show that these activities coexist under certain conditions spanning the range of possible brain activities. We perform a detailed bifurcation analysis and predict strategies to escape from some of the pathological states. Experimental results using rodent data provide support of the model, highlighting the concept that these pathological activities belong to the endogenous repertoire of brain activities.

  13. Operation method study based on the energy balance of an independent microgrid using solar-powered water electrolyzer and an electric heat pump

    International Nuclear Information System (INIS)

    Obara, Shin'ya; Watanabe, Seizi; Rengarajan, Balaji

    2011-01-01

    A completely energy-independent microgrid (green microgrid) was examined in this work with the aims of abating greenhouse gas emissions by spreading the use of green energy, providing energy backup systems for disaster, and increasing the energy utilization efficiency with the use of exhaust heat. This paper analyzed the energy supply to six houses in a cold region. The green microgrid consisted of photovoltaics, water electrolyzers, proton-exchange membrane fuel cells (PEFCs), and heat pumps. To investigate the operation method and the capacity of each piece of equipment in the arrangement, a distributed system with two or more sets of equipment and a central system with one set of equipment were analyzed by a genetic algorithm. By introducing the prior energy need pattern of a cold region into the proposed system, the operation method and equipment capacity based on the power and heat balance were clarified. By introducing the partial load performance of a water electrolyzer and a PEFC into the analysis program, the operation method of each system was investigated. It was found that the area of a solar cell of a distributed system could be reduced by 12% as compared to a central system. -- Highlights: → A completely energy-independent microgrid (green microgrid) was planned. → The green microgrid consisted of photovoltaics, water electrolyzers, PEM-FCs, and heat pumps. → Operation of a concentrated system and a distributed system. → Investigate of the operation method and the capacity of each piece of equipment.

  14. Homogenization via the strong-permittivity-fluctuation theory with nonzero depolarization volume

    Science.gov (United States)

    Mackay, Tom G.

    2004-08-01

    The depolarization dyadic provides the scattering response of a single inclusion particle embedded within a homogenous background medium. These dyadics play a central role in formalisms used to estimate the effective constitutive parameters of homogenized composite mediums (HCMs). Conventionally, the inclusion particle is taken to be vanishingly small; this allows the pointwise singularity of the dyadic Green function associated with the background medium to be employed as the depolarization dyadic. A more accurate approach is pursued in this communication by taking into account the nonzero spatial extent of inclusion particles. Depolarization dyadics corresponding to inclusion particles of nonzero volume are incorporated within the strong-permittivity-fluctuation theory (SPFT). The linear dimensions of inclusion particles are assumed to be small relative to the electromagnetic wavelength(s) and the SPFT correlation length. The influence of the size of inclusion particles upon SPFT estimates of the HCM constitutive parameters is investigated for anisotropic dielectric HCMs.In particular, the interplay between correlation length and inclusion size is explored.

  15. Effects of in vitro hypoxia on depolarization-stimulated accumulation of inositol phosphates in synaptosomes

    International Nuclear Information System (INIS)

    Huang, H.M.; Gibson, G.E.

    1989-01-01

    The effects of potassium and in vitro histotoxic hypoxia on phosphatidylinositol turnover in rat cortical synaptosomes were determined. [2- 3 H] Inositol prelabelled rat synaptosomes were prepared from cerebral cortex slices that had been incubated with [2- 3 H] inositol. Depolarization with 60 mM KCl increased [2- 3 H] inositol phosphates in a time dependent manner. Depolarization with 60 mM KCl increased [2- 3 H]inositol trisphosphate transiently at 5 s. K + induced rapid formation of [2- 3 H] inositol monophosphate with time. One minute of hypoxia enhance sium-stimulate [2 3 H]inositol bisphosphate and maintained an elevated level for at least 5 min. K + stimulated gradual formation of [2- 3 H] inositol monophosphate with time. One minute of hypoxia enhanced potassium-stimulated [2- 3 H] inositol bisphosphate formation. However, 30 min of hypoxia impaired potassium-stimulated accumulation of [2- 3 H]inositol phosphates. The effects of histotoxic hypoxia were all dependent upon calcium in the medium and on K + -depolarization. Thus, hypoxia altered the K + induced accumulation of inositol phosphates in prelabelled synaptosomes in a time dependent, biphasic manner that was calcium dependent

  16. Thermal Stress-Induced Depolarization Loss in Conventional and Panda-Shaped Photonic Crystal Fiber Lasers

    Science.gov (United States)

    Mousavi, Seyedeh Laleh; Sabaeian, Mohammad

    2016-10-01

    We report on the modeling of the depolarization loss in the conventional and panda-shaped photonic crystal fiber lasers (PCFLs) due to the self-heating of the fiber, which we call it thermal stress-induced depolarization loss (TSIDL). We first calculated the temperature distribution over the fiber cross sections and then calculated the thermal stresses/strains as a function of heat load per meter. Thermal stress-induced birefringence (TSIB), which is defined as | n x - n y |, in the core and cladding regions was calculated. Finally, TSIDL was calculated for the conventional and panda-shaped PCFLs as a function of fiber length and, respectively, saturated values of 22 and 25 % were obtained which were independent of heat load per meter. For panda-shaped PCFLs, prior to being saturated, an oscillating and damping behavior against the fiber length was seen where in some lengths reached 35 %. The results are close to an experimental value of 30 % reported for a pulsed PCFL (Limpert et al., Opt Express 12:1313-1319, 2004) where the authors reported a degree of polarization of 70 % (i.e., a depolarization of 30 %). The most important result of this work is a saturation behavior of TSIDL at long-enough lengths of the fiber laser which is independent of heat load per meter. To our knowledge, this the first report of TSIBL for PCFLs.

  17. First observation of the depolarization of Thomson scattering radiation by a fusion plasma

    Science.gov (United States)

    Giudicotti, L.; Kempenaars, M.; McCormack, O.; Flanagan, J.; Pasqualotto, R.; contributors, JET

    2018-04-01

    We report the first experimental observation of the depolarization of the Thomson scattering (TS) radiation, a relativistic effect expected to occur in very high {{T}e} plasmas and never observed so far in a fusion machine. A set of unused optical fibers in the collection optics of the high resolution Thomson scattering system of JET has been used to detect the depolarized TS radiation during a JET campaign with {{T}e}≤slant 8 keV . A linear polarizer with the axis perpendicular to the direction of the incident E-field was placed in front of a fiber optic pair observing a region close to the plasma core, while another fiber pair with no polariser simultaneously observed an adjacent plasma region. The measured intensity ratio was found to be consistent with the theory, taking into account sensitivity coefficients of the two measurement channels determined with post-experiment calibrations and Raman scattering. This depolarization effect is at the basis of polarimetric TS, a different and complementary method for the analysis of TS spectra that can provide significant advantages for {{T}e} measurements in very hot plasmas such as in ITER ≤ft({{T}e}≤slant 40 keV \\right) .

  18. Large plasma-membrane depolarization precedes rapid blue-light-induced growth inhibition in cucumber

    Science.gov (United States)

    Spalding, E. P.; Cosgrove, D. J.

    1989-01-01

    Blue-light (BL)-induced suppression of elongation of etiolated Cucumis sativus L. hypocotyls began after a 30-s lag time, which was halved by increasing the fluence rate from 10 to 100 micromoles m-2 s-1. Prior to the growth suppression, the plasma-membrane of the irradiated cells depolarized by as much as 100 mV, then returned within 2-3 min to near its initial value. The potential difference measured with surface electrodes changed with an identical time course but opposite polarity. The lag time for the change in surface potential showed an inverse dependence on fluence rate, similar to the lag for the growth inhibition. Green light and red light caused neither the electrical response nor the rapid inhibition of growth. The depolarization by BL did not propagate to nonirradiated regions and exhibited a refractory period of about 10 min following a BL pulse. Fluence-response relationships for the electrical and growth responses provide correlational evidence that the plasma-membrane depolarization reflects an event in the transduction chain of this light-growth response.

  19. Ferroelectric behavior of a lead titanate nanosphere due to depolarization fields and mechanical stresses

    Energy Technology Data Exchange (ETDEWEB)

    Andrade Landeta, J.; Lascano, I.

    2017-07-01

    A theorical model has been developed based on the theory of Ginzburg-Landau-Devonshire to study and predict the effects the decreasing of size particle in a nanosphere of PbTiO3 subjected to the action of depolarization fields and mechanical stress. It was considered that the nanosphere is surrounded by a layer of space charges on its surface, and containing 180° domains generated by minimizing free energy of depolarization. Energy density of depolarization, wall domain and electro-elastic energy have been incorporated into the free energy of the theory Ginzburg-Landau-Devonshire. Free energy minimization was performed to determine the spontaneous polarization and transition temperature system. These results show that the transition temperature for nanosphere is substantially smaller than the corresponding bulk material. Also, it has been obtained that the stability of the ferroelectric phase of nanosphere is favored for configurations with a large number of 180° domains, with the decreasing of thickness space charge layer, and the application of tensile stress and decreases with compressive stress. (Author)

  20. Acidic electrolyzed water as a novel transmitting medium for high hydrostatic pressure reduction of bacterial loads on shelled fresh shrimp

    Directory of Open Access Journals (Sweden)

    Suping eDu

    2016-03-01

    Full Text Available Acidic electrolyzed water (AEW, a novel non-thermal sterilization technology, is widely used in the food industry. In this study, we firstly investigated the effect of AEW as a new pressure transmitting medium for high hydrostatic pressure (AEW-HHP processing on microorganisms inactivation on shelled fresh shrimp. The optimal conditions of AEW-HHP for Vibrio parahaemolyticus inactivation on sterile shelled fresh shrimp were obtained using response surface methodology: NaCl concentration to electrolysis 1.5 g/L, treatment pressure 400 MPa, treatment time 10 min. Under the optimal conditions mentioned above, AEW dramatically enhanced the efficiency of HHP for inactivating V. parahaemolyticus and Listeria monocytogenes on artificially contaminated shelled fresh shrimp, and the log reductions were up to 6.08 and 5.71 log10 CFU/g respectively, while the common HHP could only inactivate the two pathogens up to 4.74 and 4.31 log10 CFU/g respectively. Meanwhile, scanning electron microscopy (SEM showed the same phenomenon. For the naturally contaminated shelled fresh shrimp, AEW-HHP could also significantly reduce the micro flora when examined using plate count and PCR-DGGE. There were also no significant changes, histologically, in the muscle tissues of shrimps undergoing the AEW-HHP treatment. In summary, using AEW as a new transmitting medium for HHP processing is an innovative non thermal technology for improving the food safety of shrimp and other aquatic products.

  1. Mathematical modeling of the coupled transport and electrochemical reactions in solid oxide steam electrolyzer for hydrogen production

    International Nuclear Information System (INIS)

    Ni, Meng; Leung, Michael K.H.; Leung, Dennis Y.C.

    2007-01-01

    A mathematical model was developed to simulate the coupled transport/electrochemical reaction phenomena in a solid oxide steam electrolyzer (SOSE) at the micro-scale level. Ohm's law, dusty gas model (DGM), Darcy's law, and the generalized Butler Volmer equation were employed to determine the transport of electronic/ionic charges and gas species as well as the electrochemical reactions. Parametric analyses were performed to investigate the effects of operating parameters and micro-structural parameters on SOSE potential. The results substantiated the fact that SOSE potential could be effectively decreased by increasing the operating temperature. In addition, higher steam molar fraction would enhance the operation of SOSE with lower potential. The effect of particle sizes on SOSE potential was studied with due consideration on the SOSE activation and concentration overpotentials. Optimal particle sizes that could minimize the SOSE potential were obtained. It was also found that decreasing electrode porosity could monotonically decrease the SOSE potential. Besides, optimal values of volumetric fraction of electronic particles were found to minimize electrode total overpotentials. In order to optimize electrode microstructure to minimize SOSE electricity consumption, the concept of 'functionally graded materials (FGM)' was introduced to lower the SOSE potential. The advanced design of particle size graded SOSE was found effective for minimizing electrical energy consumption resulting in efficient SOSE hydrogen production. The micro-scale model was capable of predicting SOSE hydrogen production performance and would be a useful tool for design optimization

  2. Acidic Electrolyzed Water as a Novel Transmitting Medium for High Hydrostatic Pressure Reduction of Bacterial Loads on Shelled Fresh Shrimp

    Science.gov (United States)

    Du, Suping; Zhang, Zhaohuan; Xiao, Lili; Lou, Yang; Pan, Yingjie; Zhao, Yong

    2016-01-01

    Acidic electrolyzed water (AEW), a novel non-thermal sterilization technology, is widely used in the food industry. In this study, we firstly investigated the effect of AEW as a new pressure transmitting medium for high hydrostatic pressure (AEW-HHP) processing on microorganisms inactivation on shelled fresh shrimp. The optimal conditions of AEW-HHP for Vibrio parahaemolyticus inactivation on sterile shelled fresh shrimp were obtained using response surface methodology: NaCl concentration to electrolysis 1.5 g/L, treatment pressure 400 MPa, treatment time 10 min. Under the optimal conditions mentioned above, AEW dramatically enhanced the efficiency of HHP for inactivating V. parahaemolyticus and Listeria monocytogenes on artificially contaminated shelled fresh shrimp, and the log reductions were up to 6.08 and 5.71 log10 CFU/g respectively, while the common HHP could only inactivate the two pathogens up to 4.74 and 4.31 log10 CFU/g respectively. Meanwhile, scanning electron microscopy (SEM) showed the same phenomenon. For the naturally contaminated shelled fresh shrimp, AEW-HHP could also significantly reduce the micro flora when examined using plate count and PCR-DGGE. There were also no significant changes, histologically, in the muscle tissues of shrimps undergoing the AEW-HHP treatment. In summary, using AEW as a new transmitting medium for HHP processing is an innovative non thermal technology for improving the food safety of shrimp and other aquatic products. PMID:27014228

  3. Postsynaptic Depolarization Enhances GABA Drive to Dorsomedial Hypothalamic Neurons through Somatodendritic Cholecystokinin Release.

    Science.gov (United States)

    Crosby, Karen M; Baimoukhametova, Dinara V; Bains, Jaideep S; Pittman, Quentin J

    2015-09-23

    Somatodendritically released peptides alter synaptic function through a variety of mechanisms, including autocrine actions that liberate retrograde transmitters. Cholecystokinin (CCK) is a neuropeptide expressed in neurons in the dorsomedial hypothalamic nucleus (DMH), a region implicated in satiety and stress. There are clear demonstrations that exogenous CCK modulates food intake and neuropeptide expression in the DMH, but there is no information on how endogenous CCK alters synaptic properties. Here, we provide the first report of somatodendritic release of CCK in the brain in male Sprague Dawley rats. CCK is released from DMH neurons in response to repeated postsynaptic depolarizations, and acts in an autocrine fashion on CCK2 receptors to enhance postsynaptic NMDA receptor function and liberate the retrograde transmitter, nitric oxide (NO). NO subsequently acts presynaptically to enhance GABA release through a soluble guanylate cyclase-mediated pathway. These data provide the first demonstration of synaptic actions of somatodendritically released CCK in the hypothalamus and reveal a new form of retrograde plasticity, depolarization-induced potentiation of inhibition. Significance statement: Somatodendritic signaling using endocannabinoids or nitric oxide to alter the efficacy of afferent transmission is well established. Despite early convincing evidence for somatodendritic release of neurohypophysial peptides in the hypothalamus, there is only limited evidence for this mode of release for other peptides. Here, we provide the first evidence for somatodendritic release of the satiety peptide cholecystokinin (CCK) in the brain. We also reveal a new form of synaptic plasticity in which postsynaptic depolarization results in enhancement of inhibition through the somatodendritic release of CCK. Copyright © 2015 the authors 0270-6474/15/3513160-11$15.00/0.

  4. Depolarization-stimulated 42K+ efflux in rat aorta is calcium- and cellular volume-dependent

    International Nuclear Information System (INIS)

    Magliola, L.; Jones, A.W.

    1987-01-01

    The purpose of this study was to investigate the factors controlling membrane permeability to potassium of smooth muscle cells from rat aorta stimulated by depolarization. The increase 42 K+ efflux (change in the rate constant) induced by depolarization (application of high concentrations of potassium chloride) was inhibited significantly by the calcium antagonists diltiazem and nisoldipine. Parallel inhibitory effects on contraction were observed. Diltiazem also inhibited potassium-stimulated 36 Cl- efflux. The addition of 25-150 mM KCl to normal physiologic solution stimulated 42 K+ efflux in a concentration-dependent manner. Diltiazem suppressed potassium-stimulated 42 K+ efflux approximately 90% at 25 mM KCl and approximately 40% at 150 mM KCl. The ability of nisoldipine to inhibit 42 K+ efflux also diminished as the potassium chloride concentration was elevated. The component of efflux that was resistant to calcium antagonists probably resulted from a decrease in the electrochemical gradient for potassium. Cellular water did not change during potassium addition. Substitution of 80 and 150 mM KCl for sodium chloride produced cellular swelling and enhanced potassium-stimulated 42 K+ efflux compared with potassium chloride addition. The addition of sucrose to prevent cellular swelling reduced efflux response to potassium substitution toward that of potassium addition. A hypoosmolar physiologic solution produced an increase in the 42 K+ efflux and a contracture that were both prevented by the addition of sucrose. We concluded that the depolarization-mediated 42 K+ efflux has three components: one is calcium dependent; a second is dependent on cellular volume; and a third is resistant to inhibition by calcium antagonists

  5. Accuracy of depolarization and delay spread predictions using advanced ray-based modeling in indoor scenarios

    Directory of Open Access Journals (Sweden)

    Mani Francesco

    2011-01-01

    Full Text Available Abstract This article investigates the prediction accuracy of an advanced deterministic propagation model in terms of channel depolarization and frequency selectivity for indoor wireless propagation. In addition to specular reflection and diffraction, the developed ray tracing tool considers penetration through dielectric blocks and/or diffuse scattering mechanisms. The sensitivity and prediction accuracy analysis is based on two measurement campaigns carried out in a warehouse and an office building. It is shown that the implementation of diffuse scattering into RT significantly increases the accuracy of the cross-polar discrimination prediction, whereas the delay-spread prediction is only marginally improved.

  6. From depolarization-dependent contractions in gastrointestinal smooth muscle to aortic pulse-synchronized contractions

    Directory of Open Access Journals (Sweden)

    Marion SB

    2014-03-01

    Full Text Available Sarah B Marion, Allen W MangelRTI Health Solutions, Research Triangle Park, NC, USAAbstract: For decades, it was believed that the diameter of gastrointestinal smooth muscle cells is sufficiently narrow, and that the diffusion of calcium across the plasma membrane is sufficient, to support contractile activity. Thus, depolarization-triggered release of intracellular calcium was not believed to be operative in gastrointestinal smooth muscle. However, after the incubation of muscle segments in solutions devoid of calcium and containing the calcium chelator ethylene glycol tetraacetic acid, an alternative electrical event occurred that was distinct from normal slow waves and spikes. Subsequently, it was demonstrated in gastrointestinal smooth muscle segments that membrane depolarization associated with this alternative electrical event triggered rhythmic contractions by release of intracellular calcium. Although this concept of depolarization-triggered calcium release was iconoclastic, it has now been demonstrated in multiple gastrointestinal smooth muscle preparations. On the basis of these observations, we investigated whether a rhythmic electrical and mechanical event would occur in aortic smooth muscle under the same calcium-free conditions. The incubation of aortic segments in a solution with no added calcium plus ethylene glycol tetraacetic acid induced a fast electrical event without corresponding tension changes. On the basis of the frequency of these fast electrical events, we pursued, contrary to what has been established dogma for more than three centuries, the question of whether the smooth muscle wall of the aorta undergoes rhythmic activation during the cardiac cycle. As with depolarization-triggered contractile activity in gastrointestinal smooth muscle, it was “well known” that rhythmic activation of the aorta does not occur in synchrony with the heartbeat. In a series of experiments, however, it was demonstrated that rhythmic

  7. Depolarization corrections to the coercive field in thin-film ferroelectrics

    International Nuclear Information System (INIS)

    Dawber, M; Chandra, P; Littlewood, P B; Scott, J F

    2003-01-01

    Empirically, the coercive field needed to reverse the polarization in a ferroelectric increases with decreasing film thickness. For ferroelectric films of 100 μm to 100 nm in thickness the coercive field has been successfully described by a semi-empirical scaling law. Accounting for depolarization corrections, we show that this scaling behaviour is consistent with field measurements of ultrathin ferroelectric capacitors down to one nanometre in film thickness. Our results also indicate that the minimum film thickness, determined by a polarization instability, can be tuned by the choice of electrodes, and recommendations for next-generation ferroelectric devices are discussed. (letter to the editor)

  8. Depolarization corrections to the coercive field in thin-film ferroelectrics

    CERN Document Server

    Dawber, M; Littlewood, P B; Scott, J F

    2003-01-01

    Empirically, the coercive field needed to reverse the polarization in a ferroelectric increases with decreasing film thickness. For ferroelectric films of 100 mu m to 100 nm in thickness the coercive field has been successfully described by a semi-empirical scaling law. Accounting for depolarization corrections, we show that this scaling behaviour is consistent with field measurements of ultrathin ferroelectric capacitors down to one nanometre in film thickness. Our results also indicate that the minimum film thickness, determined by a polarization instability, can be tuned by the choice of electrodes, and recommendations for next-generation ferroelectric devices are discussed. (letter to the editor)

  9. A neutron depolarization study of magnetic inhomogeneities in weak-link superconductors

    International Nuclear Information System (INIS)

    Zhuchenko, N.K.; Yagud, R.Z.

    1993-01-01

    Neutron depolarization measurements in the mixed state of both high-T c and low-T c weak-link superconductors have been carried out. Samples of YBCO, BSCCO, SnMo 6 S 8 and 0.5 Nb-0.5 Ti of different magnetic prehistory were analyzed at temperatures T 4.2 K under applied magnetic fields II <= 16.5 kOe. We ascribe the appearance of magnetic inhomogeneities and their hysteresis behaviour to the interaction between dipole magnetic fields (diamagnetic and paramagnetic ones) and applied magnetic fields

  10. The use of thermally stimulated depolarization currents to study grain growth in ceramic thorium dioxide

    International Nuclear Information System (INIS)

    Muccillo, R.; Campos, L.L.

    1979-01-01

    Depolarization Current Spectra resulting from the destruction of the thermoelectret state in polycrystalline ThO 2 samples have been detected in the temperature range 100K-350K. The induced polarization is found to be due to migration of charge carriers over microscopic distances in the bulk of the specimens with trapping at grain boundaries. Moreover the density of charge carriers released from trapping sites, upon heating the cooled previously dc biased specimen decreases for increasing sintering temperature, suggesting the use of the technique to the study of grain growth in the bulk of ceramic oxides. (Author) [pt

  11. Magnetic-field dependence of impurity-induced muon depolarization in noble metals

    International Nuclear Information System (INIS)

    Schillaci, M.E.; Heffner, R.H.; Hutson, R.L.; Leon, M.; Cooke, D.W.; Dodds, S.A.; Richards, P.M.; MacLaughlin, D.E.; Boekema, C.

    1983-01-01

    We have measured the magnetic-field dependence of the muon depolarization rate up to 5 kOe in AuGd (350 ppM), AgGd (340 ppM) and AgEr (300 ppM). A simple model which includes both dipolar and nearest-neighbor contact interactions between the muon and the magnetic impurity does not fit the data. An axial crystal-field interaction, arising from the electric-field gradient induced by the muon at the site of the impurity, is found to dominate the Hamiltonian, and may have a large effect on the field dependence

  12. Magnetic field dependence of impurity-induced muon depolarization in noble metals

    Energy Technology Data Exchange (ETDEWEB)

    Schillaci, M.E.; Heffner, R.H.; Hutson, R.L.; Leon, M.; Cooke, D.W.; Yaouanc, A. (Los Alamos National Lab., NM (USA)); Dodds, S.A. (Rice Univ., Houston, TX (USA). Dept. of Physics); Richards, P.M. (Sandia National Labs., Albuquerque, NM (USA)); MacLaughlin, D.E. (California Univ., Riverside (USA)); Boekema, C. (Texas Tech Univ., Lubbock (USA))

    1984-01-01

    The authors have measured the magnetic field dependence of the muon depolarization rate up to 5 kOe in AuGd (350 ppm), AgGd (340 ppm) and AgEr (300 ppm). A simple model which includes both dipolar and nearest-neighbor contact interactions between the muon and the magnetic impurity does not fit the data. An axial crystal-field interaction, arising from the electric field gradient induced by the muon at the site of the impurity, is found to dominate the Hamiltonian, and may have a large effect on the field dependence.

  13. Depolarization Ratio Profiles Calibration and Observations of Aerosol and Cloud in the Tibetan Plateau Based on Polarization Raman Lidar

    Directory of Open Access Journals (Sweden)

    Guangyao Dai

    2018-03-01

    Full Text Available A brief description of the Water vapor, Cloud and Aerosol Lidar (WACAL system is provided. To calibrate the volume linear depolarization ratio, the concept of “ Δ 90 ° -calibration” is applied in this study. This effective and accurate calibration method is adjusted according to the design of WACAL. Error calculations and analysis of the gain ratio, calibrated volume linear depolarization ratio and particle linear depolarization ratio are provided as well. In this method, the influences of the gain ratio, the rotation angle of the plane of polarization and the polarizing beam splitter are discussed in depth. Two groups of measurements with half wave plate (HWP at angles of (0 ° , 45 ° and (22.5 ° , −22.5 ° are operated to calibrate the volume linear depolarization ratio. Then, the particle linear depolarization ratios measured by WACAL and CALIOP (the Cloud-Aerosol Lidar with Orthogonal Polarization during the simultaneous observations were compared. Good agreements are found. The calibration method was applied in the third Tibetan Plateau Experiment of Atmospheric Sciences (TIPEX III in 2013 and 2014 in China. Vertical profiles of the particle depolarization ratio of clouds and aerosol in the Tibetan Plateau were measured with WACAL in Litang (30.03° N, 100.28° E, 3949 m above sea level (a.s.l. in 2013 and Naqu (31.48° N, 92.06° E, 4508 m a.s.l. in 2014. Then an analysis on the polarizing properties of the aerosol, clouds and cirrus over the Tibetan Plateau is provided. The particle depolarization ratio of cirrus clouds varies from 0.36 to 0.52, with a mean value of 0.44 ± 0.04. Cirrus clouds occurred between 5.2 and 12 km above ground level (a.g.l.. The cloud thickness ranges from 0.12 to 2.55 km with a mean thickness of 1.22 ± 0.70 km. It is found that the particle depolarization ratio of cirrus clouds become larger as the height increases. However, the increase rate of the particle depolarization ratio becomes smaller as

  14. Ameliorative Effects of Neutral Electrolyzed Water on Growth Performance, Biochemical Constituents, and Histopathological Changes in Turkey Poults during Aflatoxicosis

    Directory of Open Access Journals (Sweden)

    Denise Gómez-Espinosa

    2017-03-01

    Full Text Available Different in vitro and in silico approaches from our research group have demonstrated that neutral electrolyzed water (NEW can be used to detoxify aflatoxins. The objective of this investigation was to evaluate the ability of NEW to detoxify B-aflatoxins (AFB1 and AFB2 in contaminated maize and to confirm detoxification in an in vivo experimental model. Batches of aflatoxin-contaminated maize were detoxified with NEW and mixed in commercial feed. A total of 240 6-day-old female large white Nicholas-700 turkey poults were randomly divided into four treatments of six replicates each (10 turkeys per replicate, which were fed ad libitum for two weeks with the following dietary treatments: (1 control feed containing aflatoxin-free maize (CONTROL; (2 feed containing the aflatoxin-contaminated maize (AF; (3 feed containing the aflatoxin-contaminated maize detoxified with NEW (AF + NEW; and (4 control feed containing aflatoxin-free maize treated with NEW (NEW. Compared to the control groups, turkey poults of the AF group significantly reduced body weight gain and increased feed conversion ratio and mortality rate; whereas turkey poults of the AF + NEW group did not present significant differences on productive parameters. In addition, alterations in serum biochemical constituents, enzyme activities, relative organ weight, gross morphological changes and histopathological studies were significantly mitigated by the aflatoxin-detoxification procedure. From these results, it is concluded that the treatment of aflatoxin-contaminated maize with NEW provided reasonable protection against the effects caused by aflatoxins in young turkey poults.

  15. Dielectric relaxation of 2-ethyl-1-hexanol around the glass transition by thermally stimulated depolarization currents.

    Science.gov (United States)

    Arrese-Igor, S; Alegría, A; Colmenero, J

    2015-06-07

    We explore new routes for characterizing the Debye-like and α relaxation in 2-ethyl-1-hexanol (2E1H) monoalcohol by using low frequency dielectric techniques including thermally stimulated depolarization current (TSDC) techniques and isothermal depolarization current methods. In this way, we have improved the resolution of the overlapped processes making it possible the analysis of the data in terms of a mode composition as expected for a chain-like response. Furthermore the explored ultralow frequencies enabled to study dynamics at relatively low temperatures close to the glass transition (Tg). Results show, on the one hand, that Debye-like and α relaxation timescales dramatically approach to each other upon decreasing temperature to Tg. On the other hand, the analysis of partial polarization TSDC data confirms the single exponential character of the Debye-like relaxation in 2E1H and rules out the presence of Rouse type modes in the scenario of a chain-like response. Finally, on crossing the glass transition, the Debye-like relaxation shows non-equilibrium effects which are further emphasized by aging treatment and would presumably emerge as a result of the arrest of the structural relaxation below Tg.

  16. Stability and morphology of Ag nanoplatelets probed by depolarized dynamic light scattering

    Science.gov (United States)

    Zimbone, M.; Contino, A.; Maccarrone, G.; Musumeci, P.; Lo Faro, M. J.; Calcagno, L.

    2018-06-01

    The stability of silver nanoplatelet (NP) suspensions prepared with different concentrations of trisodium citrate (TSC) was studied by depolarized dynamic light scattering (DDLS) and UV–vis spectrometry. The morphology of the nanoparticles, as well as the color and stability of the sols, are tuned by the concentration of the capping agent. The nanoparticles prepared with high TSC concentration (>10‑4 M) are blue triangular NPs showing a slight truncation of the tips with aging. When low TSC concentrations are used, the color of the sols changes from blue to yellow with aging time and a strong modification of the morphology occurs: the nanoparticle shape changes from triangular to spherical. Remarkably, they show a high degree of anisotropy. The aging process was followed by the UV–vis spectra and by measuring the rotational diffusion coefficient by DDLS, providing information on the nanoparticle size and shape evolution. The high intensity of depolarized signal and the high value of rotational diffusion coefficient suggest that the aging process increases the thickness and the roughness of the nanoparticles

  17. Mitochondrial depolarization in yeast zygotes inhibits clonal expansion of selfish mtDNA.

    Science.gov (United States)

    Karavaeva, Iuliia E; Golyshev, Sergey A; Smirnova, Ekaterina A; Sokolov, Svyatoslav S; Severin, Fedor F; Knorre, Dmitry A

    2017-04-01

    Non-identical copies of mitochondrial DNA (mtDNA) compete with each other within a cell and the ultimate variant of mtDNA present depends on their relative replication rates. Using yeast Saccharomyces cerevisiae cells as a model, we studied the effects of mitochondrial inhibitors on the competition between wild-type mtDNA and mutant selfish mtDNA in heteroplasmic zygotes. We found that decreasing mitochondrial transmembrane potential by adding uncouplers or valinomycin changes the competition outcomes in favor of the wild-type mtDNA. This effect was significantly lower in cells with disrupted mitochondria fission or repression of the autophagy-related genes ATG8 , ATG32 or ATG33 , implying that heteroplasmic zygotes activate mitochondrial degradation in response to the depolarization. Moreover, the rate of mitochondrially targeted GFP turnover was higher in zygotes treated with uncoupler than in haploid cells or untreated zygotes. Finally, we showed that vacuoles of zygotes with uncoupler-activated autophagy contained DNA. Taken together, our data demonstrate that mitochondrial depolarization inhibits clonal expansion of selfish mtDNA and this effect depends on mitochondrial fission and autophagy. These observations suggest an activation of mitochondria quality control mechanisms in heteroplasmic yeast zygotes. © 2017. Published by The Company of Biologists Ltd.

  18. T-matrix modeling of linear depolarization by morphologically complex soot and soot-containing aerosols

    International Nuclear Information System (INIS)

    Mishchenko, Michael I.; Liu, Li; Mackowski, Daniel W.

    2013-01-01

    We use state-of-the-art public-domain Fortran codes based on the T-matrix method to calculate orientation and ensemble averaged scattering matrix elements for a variety of morphologically complex black carbon (BC) and BC-containing aerosol particles, with a special emphasis on the linear depolarization ratio (LDR). We explain theoretically the quasi-Rayleigh LDR peak at side-scattering angles typical of low-density soot fractals and conclude that the measurement of this feature enables one to evaluate the compactness state of BC clusters and trace the evolution of low-density fluffy fractals into densely packed aggregates. We show that small backscattering LDRs measured with ground-based, airborne, and spaceborne lidars for fresh smoke generally agree with the values predicted theoretically for fluffy BC fractals and densely packed near-spheroidal BC aggregates. To reproduce higher lidar LDRs observed for aged smoke, one needs alternative particle models such as shape mixtures of BC spheroids or cylinders. -- Highlights: ► New superposition T-matrix code is applied to soot aerosols. ► Quasi-Rayleigh side-scattering peak in linear depolarization (LD) is explained. ► LD measurements can be used for morphological characterization of soot aerosols

  19. Combination treatment of alkaline electrolyzed water and citric acid with mild heat to ensure microbial safety, shelf-life and sensory quality of shredded carrots.

    Science.gov (United States)

    Rahman, S M E; Jin, Yong-Guo; Oh, Deog-Hwan

    2011-05-01

    The objective of this study was to determine the synergistic effect of alkaline electrolyzed water and citric acid with mild heat against background and pathogenic microorganisms on carrots. Shredded carrots were inoculated with approximately 6-7 log CFU/g of Escherichia coli O157:H7 (932, and 933) and Listeria monocytogenes (ATCC 19116, and 19111) and then dip treated with alkaline electrolyzed water (AlEW), acidic electrolyzed water (AcEW), 100 ppm sodium hypochlorite (NaOCl), deionized water (DaIW), or 1% citric acid (CA) alone or with combinations of AlEW and 1% CA (AlEW + CA). The populations of spoilage bacteria on the carrots were investigated after various exposure times (1, 3, and 5 min) and treatment at different dipping temperatures (1, 20, 40, and 50 °C) and then optimal condition (3 min at 50 °C) was applied against foodborne pathogens on the carrots. When compared to the untreated control, treatment AcEW most effectively reduced the numbers of total bacteria, yeast and fungi, followed by AlEW and 100 ppm NaOCl. Exposure to all treatments for 3 min significantly reduced the numbers of total bacteria, yeast and fungi on the carrots. As the dipping temperature increased from 1 °C to 50 °C, the reductions of total bacteria, yeast and fungi increased significantly from 0.22 to 2.67 log CFU/g during the wash treatment (p ≤ 0.05). The combined 1% citric acid and AlEW treatment at 50 °C showed a reduction of the total bacterial count and the yeast and fungi of around 3.7 log CFU/g, as well as effective reduction of L. monocytogenes (3.97 log CFU/g), and E. Coli O157:H7 (4 log CFU/g). Combinations of alkaline electrolyzed water and citric acid better maintained the sensory and microbial quality of the fresh-cut carrots and enhanced the overall shelf-life of the produce. Copyright © 2010 Elsevier Ltd. All rights reserved.

  20. Isolated Full Bridge Boost DC-DC Converter Designed for Bidirectional Operation of Fuel Cells/Electrolyzer Cells in Grid-Tie Applications

    DEFF Research Database (Denmark)

    Pittini, Riccardo; Zhang, Zhe; Andersen, Michael A. E.

    2013-01-01

    Energy production from renewable energy sources is continuously varying, for this reason energy storage is becoming more and more important as the percentage of green energy increases. Newly developed fuel cells can operate in reverse mode as electrolyzer cells; therefore, they are becoming...... current. Dc-dc converter efficiency plays a fundamental role in the overall system efficiency since processed energy is always flowing through the converter; for this reason, loss analysis and optimization are a key component of the converter design. The paper presents an isolated full bridge boost dc...

  1. LAP-ND: a new instrument for vector polarization analysis and neutron depolarization measurements at FRJ-2

    International Nuclear Information System (INIS)

    Ioffe, Alexander; Bussmann, Klaus; Dohmen, Ludwig; Axelrod, Leonid; Gordeev, Gennadi; Brueckel, Thomas

    2004-01-01

    The method of vector analysis of the neutron polarization allows for the determination of both the magnitude and the direction of the magnetization vector in the sample. A directional distribution of the magnetization in a sample results in a spread of the direction of the polarization vector in space and thus in the depolarization of the incident beam. A new neutron depolarization set up is installed at the research reactor FRJ-2 of the Forschungszentrum Juelich. The main feature of the set up is the use of rather long wavelength, λ=(4-6.5) A, neutrons thus allowing for a significant increase in the sensitivity of depolarization measurements. The set up uses a non-cryogenic zero-field sample chamber with the residual magnetic field of about 1 mG. It will be used for the determination of the sample magnetization at mesoscopic and macroscopic levels and for the study of magnetic phase transitions, magnetic nanostructures, magnetic glasses, etc

  2. Contribution of corner reflections from oriented ice crystals to backscattering and depolarization characteristics for off-zenith lidar profiling

    Science.gov (United States)

    Borovoi, Anatoli G.; Konoshonkin, Alexander V.; Kustova, Natalia V.; Veselovskii, Igor A.

    2018-06-01

    Backscattering Mueller matrix and the depolarization and color ratios for quasi-horizontally oriented hexagonal ice plates have been calculated within the framework of the physical optics approximation. In the case of a tilted lidar, the dependence of the color and depolarization ratios on polarization of the incident light has been analyzed. It is shown that the corner reflection effect inherent to the pristine hexagonal ice crystals results in sharp peaks of both the backscattering cross section and depolarization ratio at the lidar tilts of about 30° off zenith. The experimental results obtained recently by Veselovskii et al. [13] at the lidar tilt of 43° have been interpreted as a partial manifestation of the corner reflection effect. The retrieval of the vertical profile of the ice crystal fraction consisting of quasi-horizontally oriented hexagonal plates has been demonstrated.

  3. LAP-ND: a new instrument for vector polarization analysis and neutron depolarization measurements at FRJ-2

    Energy Technology Data Exchange (ETDEWEB)

    Ioffe, Alexander; Bussmann, Klaus; Dohmen, Ludwig; Axelrod, Leonid; Gordeev, Gennadi; Brueckel, Thomas

    2004-07-15

    The method of vector analysis of the neutron polarization allows for the determination of both the magnitude and the direction of the magnetization vector in the sample. A directional distribution of the magnetization in a sample results in a spread of the direction of the polarization vector in space and thus in the depolarization of the incident beam. A new neutron depolarization set up is installed at the research reactor FRJ-2 of the Forschungszentrum Juelich. The main feature of the set up is the use of rather long wavelength, {lambda}=(4-6.5) A, neutrons thus allowing for a significant increase in the sensitivity of depolarization measurements. The set up uses a non-cryogenic zero-field sample chamber with the residual magnetic field of about 1 mG. It will be used for the determination of the sample magnetization at mesoscopic and macroscopic levels and for the study of magnetic phase transitions, magnetic nanostructures, magnetic glasses, etc.

  4. Depolarization changes during acute myocardial ischemia by evaluation of QRS slopes: standard lead and vectorial approach.

    Science.gov (United States)

    Romero, Daniel; Ringborn, Michael; Laguna, Pablo; Pahlm, Olle; Pueyo, Esther

    2011-01-01

    Diagnosis and risk stratification of patients with acute coronary syndromes can be improved by adding information from the depolarization phase (QRS complex) to the conventionally used ST-T segment changes. In this study, ischemia-induced changes in the main three slopes of the QRS complex, upward ( ℑ(US)) and downward ( ℑ(DS) ) slopes of the R wave as well as the upward ( ℑ(TS)) slope of the terminal S wave, were evaluated as to represent a robust measure of pathological changes within the depolarization phase. From ECG recordings both in a resting state (control recordings) and during percutaneous coronary intervention (PCI)-induced transmural ischemia, we developed a method for quantification of ℑ(US), ℑ(DS), and ℑ(TS) that incorporates dynamic ECG normalization so as to improve the sensitivity in the detection of ischemia-induced changes. The same method was also applied on leads obtained by projection of QRS loops onto their dominant directions. We show that ℑ(US), ℑ(DS), and ℑ(TS) present high stability in the resting state, thus providing a stable reference for ischemia characterization. Maximum relative factors of change ( ℜ(ℑ)) during PCI were found in leads derived from the QRS loop, reaching 10.5 and 13.7 times their normal variations in the control for ℑ(US) and ℑ(DS), respectively. For standard leads, the relative factors of change were 6.01 and 9.31. The ℑ(TS) index presented a similar behavior to that of ℑ(DS). The timing for the occurrence of significant changes in ℑ(US) and ℑ(DS) varied with lead, ranging from 30 s to 2 min after initiation of coronary occlusion. In the present ischemia model, relative ℑ(DS) changes were smaller than ST changes in most leads, however with only modest correlation between the two indices, suggesting they present different information about the ischemic process. We conclude that QRS slopes offer a robust tool for evaluating depolarization changes during myocardial ischemia.

  5. Experimental observation of spontaneous depolarized guided acoustic-wave Brillouin scattering in side cores of a multicore fiber

    Science.gov (United States)

    Hayashi, Neisei; Mizuno, Yosuke; Nakamura, Kentaro; Set, Sze Yun; Yamashita, Shinji

    2018-06-01

    Spontaneous depolarized guided acoustic-wave Brillouin scattering (GAWBS) was experimentally observed in one of the side cores of an uncoated multicore fiber (MCF). The frequency bandwidth in the side core was up to ∼400 MHz, which is 0.5 times that in the central core. The GAWBS spectrum of the side core of the MCF included intrinsic peaks, which had different acoustic resonance frequencies from those of the central core. In addition, the spontaneous depolarized GAWBS in the central/side core was unaffected by that in the other core. These results will lead to the development of polarization/phase modulators using an MCF.

  6. Recovery of slow potentials in AC-coupled electrocorticography: application to spreading depolarizations in rat and human cerebral cortex

    DEFF Research Database (Denmark)

    Hartings, Jed A; Watanabe, Tomas; Dreier, Jens P

    2009-01-01

    Cortical spreading depolarizations (spreading depressions and peri-infarct depolarizations) are a pathology intrinsic to acute brain injury, generating large negative extracellular slow potential changes (SPCs) that, lasting on the order of minutes, are studied with DC-coupled recordings in animals...... of the inverse filter was validated by its ability to recover both simulated and real low-frequency input test signals. The inverse filter was then applied to AC-coupled ECoG recordings from five patients who underwent invasive monitoring after aneurysmal subarachnoid hemorrhage. For 117 SPCs, the inverse filter...

  7. Overcoming the Instability of Nanoparticle-Based Catalyst Films in Alkaline Electrolyzers by using Self-Assembling and Self-Healing Films.

    Science.gov (United States)

    Barwe, Stefan; Masa, Justus; Andronescu, Corina; Mei, Bastian; Schuhmann, Wolfgang; Ventosa, Edgar

    2017-07-10

    Engineering stable electrodes using highly active catalyst nanopowders for electrochemical water splitting remains a challenge. We report an innovative and general approach for attaining highly stable catalyst films with self-healing capability based on the in situ self-assembly of catalyst particles during electrolysis. The catalyst particles are added to the electrolyte forming a suspension that is pumped through the electrolyzer. Particles with negatively charged surfaces stick onto the anode, while particles with positively charged surfaces stick to the cathode. The self-assembled catalyst films have self-healing properties as long as sufficient catalyst particles are present in the electrolyte. The proof-of-concept was demonstrated in a non-zero gap alkaline electrolyzer using NiFe-LDH and Ni x B catalyst nanopowders for anode and cathode, respectively. Steady cell voltages were maintained for at least three weeks during continuous electrolysis at 50-100 mA cm -2 . © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Thermally induced depolarization in terbium gallium garnet ceramics rod with natural convection cooling

    Czech Academy of Sciences Publication Activity Database

    Slezák, Ondřej; Yasuhara, R.; Lucianetti, Antonio; Vojna, David; Mocek, Tomáš

    2015-01-01

    Roč. 17, č. 6 (2015), s. 1-8, č. článku 065610. ISSN 2040-8978 R&D Projects: GA MŠk ED2.1.00/01.0027; GA MŠk EE2.3.20.0143; GA MŠk EE2.3.30.0057 Grant - others:HILASE(XE) CZ.1.05/2.1.00/01.0027; OP VK 6(XE) CZ.1.07/2.3.00/20.0143; OP VK 4 POSTDOK(XE) CZ.1.07/2.3.00/30.0057 Institutional support: RVO:68378271 Keywords : stress-induced birefringence * thermal depolarization * high-power lasers Subject RIV: BH - Optics, Masers, Lasers OBOR OECD: Optics (including laser optics and quantum optics) Impact factor: 1.847, year: 2015

  9. Measurement of the broadening and depolarization of a Gaussian beam to transmit in fog water

    International Nuclear Information System (INIS)

    Serrano, G.; Reynoso, E; Davila, J. A.

    2012-01-01

    In this paper, we develop a controlled experimental environment in the laboratory, a waterproof camera where it will introduce artificial fog and become a beam of linearly polarized Gaussian laser light, creating sprawl, broadening and depolarization is studied with a system capable of measuring such phenomena. Most studies on dispersion have focused on the lobes of backscattering, however the correct conditions with the incident light beam a substantial fraction of light is scattered in the forward direction forming a widened light lobe. With this light lobe formed could be studied with extreme precision many factors such as the existence of single or multiple scattering and the amount by which this is carried out. This is of great importance in the estimation of lidar returns because these foundations can learn important information such as extinction and backscatter coefficients, particulate pollutants in the atmosphere and thus understand the operation model of nature. (Author)

  10. Study of depolarization of deuteron and proton beams in the Nuclotron ring

    CERN Document Server

    Golubeva, N Y; Kondratenko, A M; Kondratenko, A M; Mikhajlov, V A; Strokovsky, E A

    2002-01-01

    The scheme for acceleration of polarized deuterons at the Nuclotron accelerator facility includes a cryogenic polarized deuteron source 'Polaris', a 5 MeV/nucl. linac, a superconducting heavy ion synchrotron of a 6 GeV/nucl. energy with 10 s spill slow extraction, thin internal targets and wide net of external beam lines. This scheme also allows one to generate high energy polarized proton and neutron beams with well determined characteristics. There are two principal problems of polarized particle acceleration: to keep spin orientation during beam acceleration and to produce the high ion intensity sufficient for data taking in physics experiments. The first problem is discussed in this paper. The reasons of depolarization effects in the mentioned parts of the Nuclotron have been analysed and four methods of the polarization conserving have been suggested. They are the spin resonance strength compensation increasing of the resonance strength, the betatron tune jump and the spin tune jump. Among their number, ...

  11. Adiabatic Siberian snake turn-on and acceleration through depolarizing resonances

    International Nuclear Information System (INIS)

    Koulsha, A.V.; Anferov, V.A.; Baiod, R.

    1993-01-01

    The authors plan to install in the IUCF Cooler Ring a rampable partial (30%) Siberian snake to test if the spin polarization is preserved during adiabatic turn-on. They also plan to use this ramped snake to accelerate polarized protons to 370 MeV while passing through two depolarizing resonances. The Siberian snake will consist of two small rampable warm solenoids placed symmetrically on either side of the exciting cold 2 T·m solenoid which would run dc at about 0.5 T·m. Ramping each warm magnet from about -0.25T·m to + 0.25 T·m. Recent experiments showed that turning on the snake in 100 msec at 370 MeV causes no serious beam loss

  12. Depolarization in the elastic scattering of 17 MeV polarized protons from 9Be

    International Nuclear Information System (INIS)

    Baker, M.P.

    1975-01-01

    The Wolfenstein depolarization parameter D(theta) was measured for the elastic scattering of 17-MeV protons from 9 Be at laboratory scattering angles between 70 0 and 120 0 in 10 0 steps with uncertainties ranging from 0.05 to 0.07. The reaction was initiated by polarized protons and the polarization of those protons elastically scattered by the 9 Be analyzed using a high-resolution, silicon polarimeter. Several of the measured values of D(theta) differed significantly from unity, indicating non-zero probability for proton spin-flip in the elastic scattering process. Theoretical estimates of the depolarization-parameter angular distribution have been made using a multipole expansion of the elastic-scattering amplitude in terms of the amount of angular momentum transferred to the target nucleus during the scattering process. Here the J = 0, 1 and 2 contributions to the scattering amplitude have been explicitly treated for the scattering from 9 Be(I = 3 / 2 ). The J = 0 terms are calculated using the standard, spherical optical-model. The J = 1 and 2 terms can be calculated using DWBA. Both spherical and tensor forms are considered for the J = 1 interaction. The spin-flip probabilities predicted assuming reasonable strengths for the J = 1 potentials are much smaller than those observed experimentally. The J = 2 contribution to the spin-flip probability is calculated assuming a rotational model for 9 Be. Predictions of the J = 2, elastic spin-flip probability are substantially larger than the predictions for the J = 1 contribution and are in rough agreement with the present data. The results of recent coupled-channels calculations also support the conclusion that large elastic spin-flip probabilities can be produced by the J = 2 term in the elastic scattering amplitude

  13. Rat hypocretin/orexin neurons are maintained in a depolarized state by TRPC channels.

    Directory of Open Access Journals (Sweden)

    Vesna Cvetkovic-Lopes

    Full Text Available In a previous study we proposed that the depolarized state of the wake-promoting hypocretin/orexin (hcrt/orx neurons was independent of synaptic inputs as it persisted in tetrodotoxin and low calcium/high magnesium solutions. Here we show first that these cells are hyperpolarized when external sodium is lowered, suggesting that non-selective cation channels (NSCCs could be involved. As canonical transient receptor channels (TRPCs are known to form NSCCs, we looked for TRPCs subunits using single-cell RT-PCR and found that TRPC6 mRNA was detectable in a small minority, TRPC1, TRPC3 and TRPC7 in a majority and TRPC4 and 5 in the vast majority (∼90% of hcrt/orx neurons. Using intracellular applications of TRPC antibodies against subunits known to form NSCCs, we then found that only TRPC5 antibodies elicited an outward current, together with hyperpolarization and inhibition of the cells. These effects were blocked by co-application of a TRPC5 antigen peptide. Voltage-clamp ramps in the presence or absence of TRPC5 antibodies indicated the presence of a current with a reversal potential close to -15 mV. Application of the non-selective TRPC channel blocker, flufenamic acid, had a similar effect, which could be occluded in cells pre-loaded with TRPC5 antibodies. Finally, using the same TRPC5 antibodies we found that most hcrt/orx cells show immunostaining for the TRPC5 subunit. These results suggest that hcrt/orx neurons are endowed with a constitutively active non-selective cation current which depends on TRPC channels containing the TRPC5 subunit and which is responsible for the depolarized and active state of these cells.

  14. Depolarization of the electron spin in storage rings by nonlinear spin-orbit coupling

    International Nuclear Information System (INIS)

    Kewisch, J.

    1985-10-01

    Electrons and positrons which circulate in the storage ring are polarized at the emission of synchrotron radiation by the so called Sokolov-Ternov effect. This polarization is on the one hand of large interest for the study of the weak interaction, on the other hand it can be used for the accurate measurement of the beam energy and by this of the mass of elementary particles. The transverse and longitudinal particle vibrations simultaneously excited by the synchrotron radiation however can effect that this polarization is destroyed. This effect is called spin-orbit coupling. For the calculation of the spin-orbit coupling the computer program SITROS was written. This program is a tracking program: The motion of some sample particles and their spin vectors are calculated for some thousand circulations. From this the mean depolarization and by extrapolation the degree of polarization of the equilibrium state is determined. Contrarily to the known program SLIM which is based on perturbational calculations in SITROS the nonlinear forces in the storage ring can be regarded. By this the calculation of depolarizing higher order resonances is made possible. In this thesis the equations of motion for the orbital and spin motion of the electrons are derived which form the base for the program SITROS. The functions of the program and the approximations necessary for the saving of calculational time are explained. The comparison of the SITROS results with the measurement results obtained at the PETRA storage ring shows that the SITROS program is a useful means for the planning and calculation of storage rings with polarized electron beams. (orig.) [de

  15. Inactivation of E. coli O157:H7 on blueberries by electrolyzed water, ultraviolet light, and ozone.

    Science.gov (United States)

    Kim, Chyer; Hung, Yen-Con

    2012-04-01

    Increased interest in blueberries due to their nutritional and health benefits has led to an increase in consumption. However, blueberries are consumed mostly raw or minimally processed and are susceptible to microbial contamination like other type of fresh produce. This study was, therefore, undertaken to evaluate the efficacy of electrostatic spray of electrolyzed oxidizing (EO) water, UV light, ozone, and a combination of ozone and UV light in killing Escherichia coli O157:H7 on blueberries. A 5-strain mixture of E. coli O157:H7 were inoculated on the calyx and skin of blueberries and then subjected to the treatments. Electrostatic EO water spray reduced initial populations of E. coli O157:H7 by only 0.13 to 0.24 log CFU/g and 0.88 to 1.10 log CFU/g on calyx and skin of blueberries, respectively. Ozone treatment with 4000 mg/L reduced E. coli O157:H7 by only 0.66 and 0.72 log CFU/g on calyx and skin of blueberries, respectively. UV light at 20 mW/cm² for 10 min was the most promising single technology and achieved 2.14 and greater than 4.05 log reductions of E. coli O157:H7 on the calyx and skin of blueberries, respectively. The combination treatment of 1 min ozone and followed by a 2 min UV achieved more than 1 and 2 log additional reductions on blueberry calyx than UV or ozone alone, respectively. Outbreaks of foodborne illnesses have been associated with consumption of fresh produce. Many methods for removing pathogens as well as minimizing their effect on quality of treated produce have been investigated. UV technology and its combination with ozone used in this study to inactive E. coli O157:H7 on blueberries was found effective. Results from this study may help producers and processors in developing hurdle technologies for the delivery of safer blueberries to consumers. © 2012 Institute of Food Technologists®

  16. Implementation of depolarization due to beam-beam effects in the beam-beam interaction simulation tool GUINEA-PIG++

    Science.gov (United States)

    Rimbault, C.; Le Meur, G.; Blampuy, F.; Bambade, P.; Schulte, D.

    2009-12-01

    Depolarization is a new feature in the beam-beam simulation tool GUINEA-PIG++ (GP++). The results of this simulation are studied and compared with another beam-beam simulation tool, CAIN, considering different beam parameters for the International Linear Collider (ILC) with a centre-of-mass energy of 500 GeV.

  17. Permissive effect of dexamethasone on the increase of proenkephalin mRNA induced by depolarization of chromaffin cells

    International Nuclear Information System (INIS)

    Naranjo, J.R.; Mocchetti, I.; Schwartz, J.P.; Costa, E.

    1986-01-01

    In cultured bovine chromaffin cells, changes in the dynamic state of enkephalin stores elicited experimentally were studied by measuring cellular proenkephalin mRNA, as well as enkephalin precursors and authentic enkephalin content of cells and culture media. In parallel, tyrosine hydroxylase mRNA and catecholamine cell content were also determined. Low concentrations (0.5-100 pM) of dexamethasone increased the cell contents of proenkephalin mRNA and enkephalin-containing peptides. High concentrations of the hormone(1 μM) were required to increase the cell contents of tyrosine hydroxylase mRNA and catecholamines. Depolarization of the cells with 10 μM veratridine resulted in a depletion of enkephalin and catecholamine stores after 24 hr. The enkephalin, but not the catecholamine, content was restored by 48 hr. An increase in proenkephalin mRNA content might account for the recovery; this increase was curtailed by tetrodotoxin and enhanced by 10 pM dexamethasone. Tyrosine hydroxylase mRNA content was not significantly modified by depolarization, even in the presence of 1 μM dexamethasone. Aldosterone, progesterone, testosterone, or estradiol (1 μM) failed to change proenkephalin mRNA. Hence, dexamethasone appears to exert a specific permissive action on the stimulation of the proenkephalin gene elicited by depolarization. Though the catecholamines and enkephalins are localized in the same chromaffin granules and are coreleased by depolarization, the genes coding for the processes that are rate limiting in the production of these neuromodulators can be differentially regulated

  18. Spreading depolarization-modulating drugs and delayed cerebral ischemia after subarachnoid hemorrhage : A hypothesis-generating retrospective clinical study

    NARCIS (Netherlands)

    Hamming, Arend M.; Mulder, Inge A.; Gathier, Celine S.; van den Bergh, Walter M.; Dankbaar, Jan Willem; Hoff, Reinier G.; Vandertop, W. Peter; Verbaan, Dagmar; Ferrari, Michel D.; Rinkel, Gabriel J. E.; Algra, Ale; Wermer, Marieke J. H.

    2016-01-01

    Background: Delayed cerebral ischemia (DCI) occurs in approximately one-third of patients with aneurysmal subarachnoid hemorrhage (aSAH). A proposed underlying mechanism for DCI is spreading depolarization (SD). Our aim was to, retrospectively, investigate the influence of the use of SD-modulating

  19. Orexins depolarize rostral ventrolateral medulla neurons and increase arterial pressure and heart rate in rats mainly via orexin 2 receptors.

    Science.gov (United States)

    Huang, Shang-Cheng; Dai, Yu-Wen E; Lee, Yen-Hsien; Chiou, Lih-Chu; Hwang, Ling-Ling

    2010-08-01

    An injection of orexin A or B into the cisterna magna or the rostral ventrolateral medulla (RVLM), where bulbospinal vasomotor neurons are located, elevated arterial pressure (AP) and heart rate (HR). We examined how orexins affected RVLM neurons to regulate cardiovascular functions by using in vitro recordings of neuronal activity of the RVLM and in vivo measurement of cardiovascular functions in rats. Orexin A and B concentration-dependently depolarized RVLM neurons. At 100 nM, both peptides excited 42% of RVLM neurons. Tetrodotoxin failed to block orexin-induced depolarization. In the presence of N-(2-methyl-6-benzoxazolyl)-N'-1, 5-naphthyridin-4-yl urea (SB-334867), an orexin 1 receptor (OX(1)R) antagonist, orexin A depolarized 42% of RVLM neurons with a smaller, but not significantly different, amplitude (4.9 +/- 0.8 versus 7.2 +/- 1.1 mV). In the presence of (2S)-1- (3,4-dihydro-6,7-dimethoxy-2(1H)-isoquinolinyl)-3,3-dimethyl-2-[(4-pyridinylmethyl)amino]-1-butanone hydrochloride (TCS OX2 29), an orexin 2 receptor (OX(2)R) antagonist, orexin A depolarized 25% of RVLM neurons with a significantly smaller amplitude (1.7 +/- 0.5 mV). Coapplication of both antagonists completely eliminated orexin A-induced depolarization. An OX(2)R agonist, [Ala(11),D-Leu(15)]-orexin B, concentration-dependently depolarized RVLM neurons. Regarding neuronal phenotypes, orexins depolarized 88% of adrenergic, 43% of nonadrenergic, and 36 to 41% of rhythmically firing RVLM neurons. Intracisternal TCS OX2 29 (3 and 10 nmol) suppressed intracisternal orexin A-induced increases of AP and HR, whereas intracisternal SB-334867 (3 and 10 nmol) had no effect on the orexin A-induced increase of HR but suppressed the orexin A-induced pressor response at 10 nmol. We concluded that orexins directly excite RVLM neurons, which include bulbospinal vasomotor neurons, and regulate cardiovascular function mainly via the OX(2)R, with a smaller contribution from the OX(1)R.

  20. Slow Bursting Neurons of Mouse Cortical Layer 6b Are Depolarized by Hypocretin/Orexin and Major Transmitters of Arousal.

    Science.gov (United States)

    Wenger Combremont, Anne-Laure; Bayer, Laurence; Dupré, Anouk; Mühlethaler, Michel; Serafin, Mauro

    2016-01-01

    Neurons firing spontaneously in bursts in the absence of synaptic transmission have been previously recorded in different layers of cortical brain slices. It has been suggested that such neurons could contribute to the generation of alternating UP and DOWN states, a pattern of activity seen during slow-wave sleep. Here, we show that in layer 6b (L6b), known from our previous studies to contain neurons highly responsive to the wake-promoting transmitter hypocretin/orexin (hcrt/orx), there is a set of neurons, endowed with distinct intrinsic properties, which displayed a strong propensity to fire spontaneously in rhythmic bursts. In response to small depolarizing steps, they responded with a delayed firing of action potentials which, upon higher depolarizing steps, invariably inactivated and were followed by a depolarized plateau potential and a depolarizing afterpotential. These cells also displayed a strong hyperpolarization-activated rectification compatible with the presence of an I h current. Most L6b neurons with such properties were able to fire spontaneously in bursts. Their bursting activity was of intrinsic origin as it persisted not only in presence of blockers of ionotropic glutamatergic and GABAergic receptors but also in a condition of complete synaptic blockade. However, a small number of these neurons displayed a mix of intrinsic bursting and synaptically driven recurrent UP and DOWN states. Most of the bursting L6b neurons were depolarized and excited by hcrt/orx through a direct postsynaptic mechanism that led to tonic firing and eventually inactivation. Similarly, they were directly excited by noradrenaline, histamine, dopamine, and neurotensin. Finally, the intracellular injection of these cells with dye and their subsequent Neurolucida reconstruction indicated that they were spiny non-pyramidal neurons. These results lead us to suggest that the propensity for slow rhythmic bursting of this set of L6b neurons could be directly impeded by hcrt

  1. Depolarization-dependent 45Ca uptake by synaptosomes of rat cerebral cortex is enhanced by L-triiodothyronine

    International Nuclear Information System (INIS)

    Mason, G.A.; Walker, C.H.; Prange, A.J. Jr.

    1990-01-01

    Depolarization-induced release of neurotransmitters and other secretions from nerve endings is triggered by the rapid entry of Ca++ through voltage-sensitive channels. Calcium entry is thought to occur in two distinct phases or processes: a fast-phase response to an action potential, which initiates release; and a slow phase associated with extended stimulation of the neuron. Thyroid hormones are sequestered by nerve terminals and can produce changes in behaviour and mood. They may therefore be involved in modulating central synaptic transmission. We studied the effects of L-triiodothyronine (T3), L-thyroxine (T4), reverse T3 (rT3) and D-T3 on depolarization-induced uptake of 45Ca by synaptosomes from euthyroid and hypothyroid rats. T3, but not T4, rT3, or D-T3 significantly enhanced depolarization-induced 45Ca uptake at physiologically relevant (1 to 10 nmol/L) concentrations. The stimulatory effect of 10 nmol/L T3 on depolarization-induced uptake after 2 seconds (21%) was greater than after 5 (10%) or 30 (8%) seconds, indicating that T3 enhanced primarily the fast-phase process. There was no effect of T3 or other hormones tested on nondepolarization-induced 45Ca uptake. Preincubation of synaptosomes with T3 prior to depolarization did not enhance the effect of T3; in fact, preincubations of 30 seconds or more resulted in diminished T3 effects. Preincubation of synaptosomes for 15 seconds with D-T3 or the addition of D-T3 and T3 together reduced the effect of T3. We found no difference in the effect of T3 on 45Ca uptake by synaptosomes from euthyroid and hypothyroid rats. These results suggest a novel mechanism of action of thyroid hormones in the brain

  2. Depolarization-dependent sup 45 Ca uptake by synaptosomes of rat cerebral cortex is enhanced by L-triiodothyronine

    Energy Technology Data Exchange (ETDEWEB)

    Mason, G.A.; Walker, C.H.; Prange, A.J. Jr. (Univ. of North Carolina, Chapel Hill (USA))

    1990-08-01

    Depolarization-induced release of neurotransmitters and other secretions from nerve endings is triggered by the rapid entry of Ca++ through voltage-sensitive channels. Calcium entry is thought to occur in two distinct phases or processes: a fast-phase response to an action potential, which initiates release; and a slow phase associated with extended stimulation of the neuron. Thyroid hormones are sequestered by nerve terminals and can produce changes in behaviour and mood. They may therefore be involved in modulating central synaptic transmission. We studied the effects of L-triiodothyronine (T3), L-thyroxine (T4), reverse T3 (rT3) and D-T3 on depolarization-induced uptake of 45Ca by synaptosomes from euthyroid and hypothyroid rats. T3, but not T4, rT3, or D-T3 significantly enhanced depolarization-induced 45Ca uptake at physiologically relevant (1 to 10 nmol/L) concentrations. The stimulatory effect of 10 nmol/L T3 on depolarization-induced uptake after 2 seconds (21%) was greater than after 5 (10%) or 30 (8%) seconds, indicating that T3 enhanced primarily the fast-phase process. There was no effect of T3 or other hormones tested on nondepolarization-induced 45Ca uptake. Preincubation of synaptosomes with T3 prior to depolarization did not enhance the effect of T3; in fact, preincubations of 30 seconds or more resulted in diminished T3 effects. Preincubation of synaptosomes for 15 seconds with D-T3 or the addition of D-T3 and T3 together reduced the effect of T3. We found no difference in the effect of T3 on 45Ca uptake by synaptosomes from euthyroid and hypothyroid rats. These results suggest a novel mechanism of action of thyroid hormones in the brain.

  3. Electrolyze radioactive contamination away

    International Nuclear Information System (INIS)

    Wedman, D.E.; Martinez, H.E.; Nelson, T.O.

    1996-01-01

    The Los Alamos National Laboratory Plutonium Facility is using electrolysis to clean the surfaces of hazardous materials. In the past, contaminated metals were cleaned with concentrated acids. Although these treatments make the surfaces safer, they produce other radioactive and toxic wastes in turn. Anodic current passes through a piece of stainless steel submersed in a sodium nitrate solution, and steel dissolves at the surfaces. Surface contamination strips away along with the surface layers. The authors are using this electrolysis approach to remove plutonium and americium from stainless steel and uranium. Unlike acid washing processes, electrolytic decontamination can be accomplished quickly. Little waste is generated regardless of how much material has to be removed from the surface. Material removal is proportional to the applied current, which gives the operator control over the rate and extent of decontamination

  4. Polar winter cloud depolarization measurements with the CANDAC Rayleigh-Mie-Raman Lidar

    Science.gov (United States)

    McCullough, E. M.; Nott, G. J.; Duck, T. J.; Sica, R. J.; Doyle, J. G.; Pike-thackray, C.; Drummond, J. R.

    2011-12-01

    Clouds introduce a significant positive forcing to the Arctic radiation budget and this is strongest during the polar winter when shortwave radiation is absent (Intrieri et al., 2002). The amount of forcing depends on the occurrence probability and optical depth of the clouds as well as the cloud particle phase (Ebert and Curry 1992). Mixed-phase clouds are particularly complex as they involve interactions between three phases of water (vapour, liquid and ice) coexisting in the same cloud. Although significant progress has been made in characterizing wintertime Arctic clouds (de Boer et al., 2009 and 2011), there is considerable variability in the relative abundance of particles of each phase, in the morphology of solid particles, and in precipitation rates depending on the meteorology at the time. The Canadian Network for the Detection of Atmospheric Change (CANDAC) Rayleigh-Mie-Raman Lidar (CRL) was installed in the Canadian High Arctic at Eureka, Nunavut (80°N, 86°W) in 2008-2009. The remotely-operated system began with measurement capabilities for multi-wavelength aerosol extinction, water vapour mixing ratio, and tropospheric temperature profiles, as well as backscatter cross section coefficient and colour ratio. In 2010, a new depolarization channel was added. The capability to measure the polarization state of the return signal allows the characterization of the cloud in terms of liquid and ice water content, enabling the lidar to probe all three phases of water in these clouds. Lidar depolarization results from 2010 and 2011 winter clouds at Eureka will be presented, with a focus on differences in downwelling radiation between mixed phase clouds and ice clouds. de Boer, G., E.W. Eloranta, and M.D. Shupe (2009), Arctic mixed-phase stratiform cloud properties from multiple years of surface-based measurements at two high-latitude locations, Journal of Atmospheric Sciences, 66 (9), 2874-2887. de Boer, G., H. Morrison, M. D. Shupe, and R. Hildner (2011

  5. A model predictive control strategy for the space heating of a smart building including cogeneration of a fuel cell-electrolyzer system

    DEFF Research Database (Denmark)

    Sossan, Fabrizio; Bindner, Henrik W.; Madsen, Henrik

    2014-01-01

    The objective of this paper is to analyze the value of energy replacement in the context of demand response. Energy replacement is dened as the possibility of the consumer to choose the most convenient source for providing space heating to a smart building according to a dynamic electricity price....... In the proposed setup, heat is provided by conventional electric radiators and a combined heat and power generation system, composed by a fuel cell and an electrolyzer. The energy replacement strategy is formulated using model predictive control and mathematical models of the components involved. Simulations show...... that the predictive energy replacement strategy reduces the operating costs of the system and is able to provide a larger amount of regulating power to the grid. In the paper, we also develop a novel dynamic model of a PEM fuel cell suitable for micro-grid applications. The model is realized applying a grey...

  6. Pacemaker rate and depolarization block in nigral dopamine neurons: a somatic sodium channel balancing act

    Science.gov (United States)

    Tucker, Kristal R.; Huertas, Marco A.; Horn, John P.; Canavier, Carmen C.; Levitan, Edwin S.

    2012-01-01

    Midbrain dopamine (DA) neurons are slow intrinsic pacemakers that undergo depolarization (DP) block upon moderate stimulation. Understanding DP block is important because it has been correlated with the clinical efficacy of chronic antipsychotic drug treatment. Here we describe how voltage-gated sodium (NaV) channels regulate DP block and pacemaker activity in DA neurons of the substantia nigra using rat brain slices. The distribution, density and gating of NaV currents were manipulated by blocking native channels with tetrodotoxin and by creating virtual channels and anti-channels with dynamic clamp. Although action potentials initiate in the axon initial segment (AIS) and NaV channels are distributed in multiple dendrites, selective reduction of NaV channel activity in the soma was sufficient to decrease pacemaker frequency and increase susceptibility to DP block. Conversely, increasing somatic NaV current density raised pacemaker frequency and lowered susceptibility to DP block. Finally, when NaV currents were restricted to the soma, pacemaker activity occurred at abnormally high rates due to excessive local subthreshold NaV current. Together with computational simulations, these data show that both the slow pacemaker rate and the sensitivity to DP block that characterizes DA neurons result from the low density of somatic NaV channels. More generally, we conclude that the somatodendritic distribution of NaV channels is a major determinant of repetitive spiking frequency. PMID:23077037

  7. Magnetic particles studied with neutron depolarization and small-angle neutron scattering

    International Nuclear Information System (INIS)

    Rosman, R.

    1991-01-01

    Materials containing magnetic single-domain particles, referred to as 'particulate media', have been studied using neutron depolarization (ND) and small-angle neutron scattering (SANS). In a ND experiment the polarization vector of a polarized neutron beam is analyzed after transmission through a magnetic medium. Such an analysis in general yields the correlation length of variations in magnetic induction along the neutron path (denoted 'magnetic correlation length'), mean orientation of these variations and mean magnetic induction. In a SANS experiment, information about nuclear and magnetic inhomogeneities in the medium is derived from the broadening of a generally unpolarized neutron beam due to scattering by these inhomogeneities. Spatial and magnetic microstructure of a variety of particulate media have been studied using ND and/or SANS, by determination of the magnetic or nuclear correlation length in these media in various magnetic states. This thesis deals with the ND theory and its application to particulate media. ND and SANS experiments on a variety of particulate media are discussed. (author). 178 refs., 97 figs., 8 tabs

  8. T-matrix modeling of linear depolarization by morphologically complex soot and soot-containing aerosols

    Science.gov (United States)

    Mishchenko, Michael I.; Liu, Li; Mackowski, Daniel W.

    2013-07-01

    We use state-of-the-art public-domain Fortran codes based on the T-matrix method to calculate orientation and ensemble averaged scattering matrix elements for a variety of morphologically complex black carbon (BC) and BC-containing aerosol particles, with a special emphasis on the linear depolarization ratio (LDR). We explain theoretically the quasi-Rayleigh LDR peak at side-scattering angles typical of low-density soot fractals and conclude that the measurement of this feature enables one to evaluate the compactness state of BC clusters and trace the evolution of low-density fluffy fractals into densely packed aggregates. We show that small backscattering LDRs measured with ground-based, airborne, and spaceborne lidars for fresh smoke generally agree with the values predicted theoretically for fluffy BC fractals and densely packed near-spheroidal BC aggregates. To reproduce higher lidar LDRs observed for aged smoke, one needs alternative particle models such as shape mixtures of BC spheroids or cylinders.

  9. Apricot melanoidins prevent oxidative endothelial cell death by counteracting mitochondrial oxidation and membrane depolarization.

    Directory of Open Access Journals (Sweden)

    Annalisa Cossu

    Full Text Available The cardiovascular benefits associated with diets rich in fruit and vegetables are thought to be due to phytochemicals contained in fresh plant material. However, whether processed plant foods provide the same benefits as unprocessed ones is an open question. Melanoidins from heat-processed apricots were isolated and their presence confirmed by colorimetric analysis and browning index. Oxidative injury of endothelial cells (ECs is the key step for the onset and progression of cardiovascular diseases (CVD, therefore the potential protective effect of apricot melanoidins on hydrogen peroxide-induced oxidative mitochondrial damage and cell death was explored in human ECs. The redox state of cytoplasmic and mitochondrial compartments was detected by using the redox-sensitive, fluorescent protein (roGFP, while the mitochondrial membrane potential (MMP was assessed with the fluorescent dye, JC-1. ECs exposure to hydrogen peroxide, dose-dependently induced mitochondrial and cytoplasmic oxidation. Additionally detected hydrogen peroxide-induced phenomena were MMP dissipation and ECs death. Pretreatment of ECs with apricot melanoidins, significantly counteracted and ultimately abolished hydrogen peroxide-induced intracellular oxidation, mitochondrial depolarization and cell death. In this regard, our current results clearly indicate that melanoidins derived from heat-processed apricots, protect human ECs against oxidative stress.

  10. Study of the cathodic depolarization theory with hydrogen permeation and the bacteria Desulfovibrio desulfuricans

    International Nuclear Information System (INIS)

    Romero, M. F. de; Duque, Z.; Rinco, O. T. de; Perez, O.; Araujo, I.

    2003-01-01

    A Desulfovibrio desulfuricans ssp. desulfuricans (SRB) was used to study the permeation of hydrogen, using a Devanatan and Stachurski cell and a palladium sheet. The aim was to evaluate cathodic depolarization as a Sulfate-Reducing Bacteria action mechanisms in Microbiologically Induced Corrosion. The permeation tests were run with and without cathodic polarization, using a sterile deaerated culture medium inoculated with 10% SRB concentrated at 10''8 cell/ml. the results indicate bacterial growth in the order of 10''9-10''10 cel/ml after 18 h both in the polarized and non-polarized, tests, indicating that SRB developed regardless of the surface polarized as a source of H''0, generating H 2 S as a product of the anaerobic respiration. It was also determined that, without cathodic polarization, the conditions are not enough to reduce the H* generated by the H 2 S dissociation (pd is not susceptible to corrosion at this condition). On the other hand, cathodic polarization increased the permeation current, which was associated with the maximum enzymatic activity phase of the bacteria. (Author) 8 refs

  11. Dynamic neutron depolarization system for the investigation of time dependent magnetic effects

    International Nuclear Information System (INIS)

    Hammer, J.; Badurek, G.; Rauch, H.

    1978-01-01

    To study magnetic after-effects in ferro- and superparamagnetic materials within a range of about 100 μs - 10s a so-called dynamic neutron depolarization system has been developed that is currently installed at the polarized beam facility of the TRIGA Mark II reactor, Vienna. It allows to measure the time dependence of the polarization change of an initially fully polarized neutron beam on its transmission through a sample exposed to a pulsed magnetic field. A split-pair coil mounted directly on the nitrogen shield of a specially designed helium/nitrogen bath cryostat can be energized up to a maximal induction of 0.25T at a slope of about 10 3 Ts -1 . Sample temperatures in the ranges of 4.2-15K and 77-120K can be established. In order to minimize eddy currents the coil suspension as well as the sample holder are sliced radially. The maximal repetition frequency of the field pulses is 100 Hz which is the upper limit of the multiscaler system we use for a synchronized registration of the beam polarization. First measurements are dealing with the superparamagnetic system Cu-1%Co where single domain cobalt precipitations are expected to give rise to relaxation phenomena well observable with this method. (author)

  12. Escherichia coli and Cronobacter sakazakii in 'Tommy Atkins' minimally processed mangos: Survival, growth and effect of UV-C and electrolyzed water.

    Science.gov (United States)

    Santo, David; Graça, Ana; Nunes, Carla; Quintas, Célia

    2018-04-01

    These studies were aimed at assessing the growing capacity of Escherichia coli and Cronobacter sakazakii and the effectiveness of Ultraviolet-C (UV-C) radiation, acidic electrolyzed (AEW) and neutral electrolyzed (NEW) waters in the inhibition of these bacteria on minimally processed 'Tommy Atkins' mangoes (MPM). The fruits were contaminated by dip inoculation and kept 10 days at 4, 8, 12 and 20 °C while enumerating bacteria. Contaminated mangoes were disinfected using UV-C (2.5, 5, 7.5 and 10 kJ/m 2 ), AEW, NEW and sodium hypochlorite (SH) and the microorganisms were monitored. None of the enterobacteria grew at 4, 8 and 12 °C regardless of having persisted during the 10-day period. At 20 °C, E. coli and C. sakazakii grew, after adaption phases of 48 h and 24 h, to values of 8.7 and 8.5 log cfu/g at day eight, respectively. E. coli showed the highest reduction counts on the MPM washed with NEW and SH (2.2 log cfu/g). UV-C was more effective in reducing C. sakazakii (2.4-2.6 log cfu/g), when compared to AEW, NEW and SH (1.2-1.8 log cfu/g). The efficacy of decontamination technologies depends on microorganisms, highlighting the importance of preventing contamination at the primary production and of combining different methods to increase the safety of fresh-cut fruits. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Efficacy of chlorine, acidic electrolyzed water and aqueous chlorine dioxide solutions to decontaminate Escherichia coli O157:H7 from lettuce leaves.

    Science.gov (United States)

    Keskinen, Lindsey A; Burke, Angela; Annous, Bassam A

    2009-06-30

    This study compared the efficacy of chlorine (20-200 ppm), acidic electrolyzed water (50 ppm chlorine, pH 2.6), acidified sodium chlorite (20-200 ppm chlorite ion concentration, Sanova), and aqueous chlorine dioxide (20-200 ppm chlorite ion concentration, TriNova) washes in reducing populations of Escherichia coli O157:H7 on artificially inoculated lettuce. Fresh-cut leaves of Romaine or Iceberg lettuce were inoculated by immersion in water containing E. coli O157:H7 (8 log CFU/ml) for 5 min and dried in a salad spinner. Leaves (25 g) were then washed for 2 min, immediately or following 24 h of storage at 4 degrees C. The washing treatments containing chlorite ion concentrations of 100 and 200 ppm were the most effective against E. coli O157:H7 populations on Iceberg lettuce, with log reductions as high as 1.25 log CFU/g and 1.05 log CFU/g for TriNova and Sanova wash treatments, respectively. All other wash treatments resulted in population reductions of less than 1 log CFU/g. Chlorine (200 ppm), TriNova, Sanova, and acidic electrolyzed water were all equally effective against E. coli O157:H7 on Romaine, with log reductions of approximately 1 log CFU/g. The 20 ppm chlorine wash was as effective as the deionized water wash in reducing populations of E. coli O157:H7 on Romaine and Iceberg lettuce. Scanning electron microscopy indicated that E. coli O157:H7 that was incorporated into biofilms or located in damage lettuce tissue remained on the lettuce leaf, while individual cells on undamaged leaf surfaces were more likely to be washed away.

  14. A role for CaV1 and calcineurin signaling in depolarization-induced changes in neuronal DNA methylation.

    Science.gov (United States)

    Hannon, Eilis; Chand, Annisa N; Evans, Mark D; Wong, Chloe C Y; Grubb, Matthew S; Mill, Jonathan

    2015-07-01

    Direct manipulations of neuronal activity have been shown to induce changes in DNA methylation (DNAm), although little is known about the cellular signaling pathways involved. Using reduced representation bisulfite sequencing, we identify DNAm changes associated with moderate chronic depolarization in dissociated rat hippocampal cultures. Consistent with previous findings, these changes occurred primarily in the vicinity of loci implicated in neuronal function, being enriched in intergenic regions and underrepresented in CpG-rich promoter regulatory regions. We subsequently used 2 pharmacological interventions (nifedipine and FK-506) to test whether the identified changes depended on 2 interrelated signaling pathways known to mediate multiple forms of neuronal plasticity. Both pharmacological manipulations had notable effects on the extent and magnitude of depolarization-induced DNAm changes indicating that a high proportion of activity-induced changes are likely to be mediated by calcium entry through L-type Ca V 1 channels and/or downstream signaling via the calcium-dependent phosphatase calcineurin.

  15. Depolarization-induced release of [(3)H]D-aspartate from GABAergic neurons caused by reversal of glutamate transporters

    DEFF Research Database (Denmark)

    Jensen, J B; Pickering, D S; Schousboe, A

    2000-01-01

    if glutamate in addition to gamma-aminobutyric acid (GABA) could be released from these cultures. The neurons were preloaded with [(3)H]D-aspartate and subsequently its release was followed during depolarization induced by a high potassium concentration or the alpha-amino-3-hydroxy-5-methyl-4......-isoxazolepropionic acid (AMPA) receptor agonists, AMPA and kainate. Depolarization of the neurons with 55 mM potassium increased the release of [(3)H]D-aspartate by more than 10-fold. When the non-specific calcium-channel blockers cobalt or lanthanum were included in the stimulation buffer with potassium......, the release of [(3)H]D-aspartate was decreased by about 40%. These results indicated that some of the released [(3)H]D-aspartate might originate from a vesicular pool. When AMPA was applied to the neurons, the release of [(3)H]D-aspartate was increased 2-fold and could not be prevented or decreased...

  16. Intercellular K⁺ accumulation depolarizes Type I vestibular hair cells and their associated afferent nerve calyx.

    Science.gov (United States)

    Contini, D; Zampini, V; Tavazzani, E; Magistretti, J; Russo, G; Prigioni, I; Masetto, S

    2012-12-27

    Mammalian vestibular organs contain two types of sensory receptors, named Type I and Type II hair cells. While Type II hair cells are contacted by several small afferent nerve terminals, the basolateral surface of Type I hair cells is almost entirely enveloped by a single large afferent nerve terminal, called calyx. Moreover Type I, but not Type II hair cells, express a low-voltage-activated outward K(+) current, I(K,L), which is responsible for their much lower input resistance (Rm) at rest as compared to Type II hair cells. The functional meaning of I(K,L) and associated calyx is still enigmatic. By combining the patch-clamp whole-cell technique with the mouse whole crista preparation, we have recorded the current- and voltage responses of in situ hair cells. Outward K(+) current activation resulted in K(+) accumulation around Type I hair cells, since it induced a rightward shift of the K(+) reversal potential the magnitude of which depended on the amplitude and duration of K(+) current flow. Since this phenomenon was never observed for Type II hair cells, we ascribed it to the presence of a residual calyx limiting K(+) efflux from the synaptic cleft. Intercellular K(+) accumulation added a slow (τ>100ms) depolarizing component to the cell voltage response. In a few cases we were able to record from the calyx and found evidence for intercellular K(+) accumulation as well. The resulting depolarization could trigger a discharge of action potentials in the afferent nerve fiber. Present results support a model where pre- and postsynaptic depolarization produced by intercellular K(+) accumulation cooperates with neurotransmitter exocytosis in sustaining afferent transmission arising from Type I hair cells. While vesicular transmission together with the low Rm of Type I hair cells appears best suited for signaling fast head movements, depolarization produced by intercellular K(+) accumulation could enhance signal transmission during slow head movements. Copyright

  17. Contribution of α-adrenoceptors to depolarization and contraction evoked by continuous asynchronous sympathetic nerve activity in rat tail artery

    Science.gov (United States)

    Brock, J A; McLachlan, E M; Rayner, S E

    1997-01-01

    The effects of continuous but asynchronous nerve activity induced by ciguatoxin (CTX-1) on the membrane potential and contraction of smooth muscle cells have been investigated in rat proximal tail arteries isolated in vitro. These effects have been compared with those produced by the continuous application of phenylephrine (PE).CTX-1 (0.4 nM) and PE (10 μM) produced a maintained depolarization of the arterial smooth muscle that was almost completely blocked by α-adrenoceptor blockade. In both cases, the depolarization was more sensitive to the selective α2-adrenoceptor antagonist, idazoxan (0.1 μM), than to the selective α1-adrenoceptor antagonist, prazosin (0.01 μM).In contrast, the maintained contraction of the tail artery induced by CTX-1 (0.2 nM) and PE (2 and 10 μM) was more sensitive to prazosin (0.01) μM, than to idazoxan (0.01 μM). In combination, these antagonists almost completely inhibited contraction to both agents.Application of the calcium channel antagonist, nifedipine (1 μM), had no effect on the depolarization induced by either CTX-1 or PE but maximally reduced the force of the maintained contraction to both agents by about 50%.We conclude that the constriction of the tail artery induced by CTX-1, which mimics the natural discharge of postganglionic perivascular axons, is due almost entirely to α-adrenoceptor activation. The results indicate that neuronally released noradrenaline activates more than one α-adrenoceptor subtype. The depolarization is dependent primarily on α2-adrenoceptor activation whereas the contraction is dependent primarily on α1-adrenoceptor activation. The links between α-adrenoceptor activation and the voltage-dependent and voltage-independent mechanisms that deliver Ca2+ to the contractile apparatus appear to be complex. PMID:9113373

  18. Strong dependence of rain-induced lidar depolarization on the illumination angle: experimental evidence and geometrical-optics interpretation.

    Science.gov (United States)

    Roy, G; Bissonnette, L R

    2001-09-20

    Backscatter and depolarization lidar measurements from clouds and precipitation are reported as functions of the elevation angle of the pointing lidar direction. We recorded the data by scanning the lidar beam (Nd:YAG) at a constant angular speed of ~3.5 degrees /s while operating at a repetition rate of 10 Hz. We show that in rain there is an evident and at times spectacular dependence on the elevation angle. That dependence appears to be sensitive to raindrop size. We have developed a three-dimensional polarization-dependent ray-tracing algorithm to calculate the backscatter and the depolarization ratio by large nonspherical droplets. We have applied it to raindrop shapes derived from existing static and dynamic (oscillating) models. We show that many of the observed complex backscatter and depolarization features can be interpreted to a good extent by geometrical optics. These results suggest that there is a definite need for more extensive calculations of the scattering phase matrix elements for large deformed raindrops as functions of the direction of illumination. Obvious applications are retrieval of information on the liquid-solid phase of precipitation and on the size and the vibration state of raindrops.

  19. Activity-associated miRNA are packaged in Map1b-enriched exosomes released from depolarized neurons.

    Science.gov (United States)

    Goldie, Belinda J; Dun, Matthew D; Lin, Minjie; Smith, Nathan D; Verrills, Nicole M; Dayas, Christopher V; Cairns, Murray J

    2014-08-01

    Rapid input-restricted change in gene expression is an important aspect of synaptic plasticity requiring complex mechanisms of post-transcriptional mRNA trafficking and regulation. Small non-coding miRNA are uniquely poised to support these functions by providing a nucleic-acid-based specificity component for universal-sequence-dependent RNA binding complexes. We investigated the subcellular distribution of these molecules in resting and potassium chloride depolarized human neuroblasts, and found both selective enrichment and depletion in neurites. Depolarization was associated with a neurite-restricted decrease in miRNA expression; a subset of these molecules was recovered from the depolarization medium in nuclease resistant extracellular exosomes. These vesicles were enriched with primate specific miRNA and the synaptic-plasticity-associated protein MAP1b. These findings further support a role for miRNA as neural plasticity regulators, as they are compartmentalized in neurons and undergo activity-associated redistribution or release into the extracellular matrix. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  20. The role of glutamate in neuronal ion homeostasis: A case study of spreading depolarization.

    Directory of Open Access Journals (Sweden)

    Niklas Hübel

    2017-10-01

    Full Text Available Simultaneous changes in ion concentrations, glutamate, and cell volume together with exchange of matter between cell network and vasculature are ubiquitous in numerous brain pathologies. A complete understanding of pathological conditions as well as normal brain function, therefore, hinges on elucidating the molecular and cellular pathways involved in these mostly interdependent variations. In this paper, we develop the first computational framework that combines the Hodgkin-Huxley type spiking dynamics, dynamic ion concentrations and glutamate homeostasis, neuronal and astroglial volume changes, and ion exchange with vasculature into a comprehensive model to elucidate the role of glutamate uptake in the dynamics of spreading depolarization (SD-the electrophysiological event underlying numerous pathologies including migraine, ischemic stroke, aneurysmal subarachnoid hemorrhage, intracerebral hematoma, and trauma. We are particularly interested in investigating the role of glutamate in the duration and termination of SD caused by K+ perfusion and oxygen-glucose deprivation. Our results demonstrate that glutamate signaling plays a key role in the dynamics of SD, and that impaired glutamate uptake leads to recovery failure of neurons from SD. We confirm predictions from our model experimentally by showing that inhibiting astrocytic glutamate uptake using TFB-TBOA nearly quadruples the duration of SD in layers 2-3 of visual cortical slices from juvenile rats. The model equations are either derived purely from first physical principles of electroneutrality, osmosis, and conservation of particles or a combination of these principles and known physiological facts. Accordingly, we claim that our approach can be used as a future guide to investigate the role of glutamate, ion concentrations, and dynamics cell volume in other brain pathologies and normal brain function.

  1. Comparative effectiveness of Calabadion and sugammadex to reverse non-depolarizing neuromuscular blocking agents

    Science.gov (United States)

    Haerter, Friederike; Simons, Jeroen Cedric Peter; Foerster, Urs; Duarte, Ingrid Moreno; Diaz-Gil, Daniel; Ganapati, Shweta; Eikermann-Haerter, Katharina; Ayata, Cenk; Zhang, Ben; Blobner, Manfred; Isaacs, Lyle; Eikermann, Matthias

    2015-01-01

    Background We evaluated the comparative effectiveness of calabadion 2 to reverse non-depolarizing neuromuscular blocking agents (NMBAs) by binding and inactivation. Methods The dose-response relationship of drugs to reverse vecuronium, rocuronium, and cisatracurium-induced neuromuscular block (NMB) was evaluated in vitro (competition binding assays and urine analysis), ex vivo (n=34; phrenic nerve hemidiaphragm preparation) and in vivo (n=108; quadriceps femoris muscle of the rat). Cumulative dose-response curves of calabadions, neostigmine, or sugammadex were created ex vivo at steady-state deep NMB. In living rats, we studied the dose-response relationship of the test drugs to reverse deep block under physiological conditions and we measured the amount of calabadion 2 excreted in the urine. Results In vitro experiments showed that calabadion 2 binds rocuronium with 89 times the affinity of sugammadex (Ka = 3.4 × 109 M−1 and Ka = 3.8 × 107 M−1). Urine analysis (proton nuclear magnetic resonance), competition binding assays and ex vivo study results obtained in the absence of metabolic deactivation are in accordance with an 1:1 binding ratio of sugammadex and calabadion 2 toward rocuronium. In living rats, calabadion 2 dose-dependently and rapidly reversed all NMBAs tested. The molar potency of calabadion 2 to reverse vecuronium and rocuronium was higher compared to sugammadex. Calabadion 2 was eliminated renally, and did not affect blood pressure or heart rate. Conclusion Calabadion 2 reverses NMB-induced by benzylisoquinolines and steroidal NMBAs in rats more effectively, i.e. faster, than sugammadex. Calabadion 2 is eliminated in the urine and well tolerated in rats. PMID:26418697

  2. Thermally stimulated depolarization currents in the natural fluorite; Correntes de despolarizacao termicamente estimuladas na fluorita natural

    Energy Technology Data Exchange (ETDEWEB)

    Valerio, Mario Ernesto Giroldo

    1986-12-31

    The present work deals with natural calcium fluoride from Criciuma, Santa Catarina. Thermally Stimulated Depolarization Currents (TSDC) can be used to determine the properties of dipole defects present in this crystal. The TSDC spectrum of this material shows three bands in the temperature range of 80 to 450 K. The first one, at 130 K, is due the dipoles formed by a trivalent impurity and an interstitial fluorine ion in the next nearest position of an impurity ion (nn R{sub s}{sup 3+} -F{sub i}{sup -}). The second one, at 102 k, is due to the presence of small aggregates of dipoles (like a dimer). The last band, at 360 k is due to the formation of Large Clusters. The continuous distribution model gave the best fit for these bands with mean activation energies of 0.41 eV, 0.595 eV and 1.02 eV for the first, second and third band respectively. Thermal treatments can modify the number of dipoles, dimers and clusters present in the crystal. The variation in the areas under each band can be used to measure this effect. In this work we used thermal treatments between 15 minutes and 10 hours and temperatures between 200 deg C and 500 deg C. For thermal treatments at 300 deg C, the dipoles and dimers are created and the clusters are destroyed as the time of thermal treatment increases. At 400 deg C the clusters are created and the dipoles and dimers and 350 deg C for the clusters. (author) 60 refs., 41 figs., 1 tab.

  3. Reduction in Cortical Gamma Synchrony during Depolarized State of Slow Wave Activity in Mice

    Directory of Open Access Journals (Sweden)

    EUNJIN eHWANG

    2013-12-01

    Full Text Available EEG gamma band oscillations have been proposed to account for the neural synchronization crucial for perceptual integration. While increased gamma power and synchronization is generally observed during cognitive tasks performed during wake, several studies have additionally reported increased gamma power during sleep or anesthesia, raising questions about the characteristics of gamma oscillation during impaired consciousness and its role in conscious processing. Phase-amplitude modulation has been observed between slow wave activity (SWA, 0.5–4 Hz and gamma oscillations during ketamine/xylazine anesthesia or sleep, showing increased gamma activity corresponding to the depolarized (ON state of SWA. Here we divided gamma activity into its ON and OFF (hyperpolarized state components based on the phase of SWA induced by ketamine/xylazine anesthesia and compared their power and synchrony with wake state levels in mice. We further investigated the state-dependent changes in both gamma power and synchrony across primary motor and primary somatosensory cortical regions and their interconnected thalamic regions throughout anesthesia and recovery. As observed previously, gamma power was as high as during wake specifically during the ON state of SWA. However, the synchrony of this gamma activity between somatosensory-motor cortical regions was significantly reduced compared to the baseline wake state. In addition, the somatosensory-motor cortical synchrony of gamma oscillations was reduced and restored in an anesthetic state-dependent manner, reflecting the changing depth of anesthesia. Our results provide evidence that during anesthesia changes in long-range information integration between cortical regions might be more critical for changes in consciousness than changes in local gamma oscillatory power.

  4. Thermally stimulated depolarization currents in the natural fluorite; Correntes de despolarizacao termicamente estimuladas na fluorita natural

    Energy Technology Data Exchange (ETDEWEB)

    Valerio, Mario Ernesto Giroldo

    1987-12-31

    The present work deals with natural calcium fluoride from Criciuma, Santa Catarina. Thermally Stimulated Depolarization Currents (TSDC) can be used to determine the properties of dipole defects present in this crystal. The TSDC spectrum of this material shows three bands in the temperature range of 80 to 450 K. The first one, at 130 K, is due the dipoles formed by a trivalent impurity and an interstitial fluorine ion in the next nearest position of an impurity ion (nn R{sub s}{sup 3+} -F{sub i}{sup -}). The second one, at 102 k, is due to the presence of small aggregates of dipoles (like a dimer). The last band, at 360 k is due to the formation of Large Clusters. The continuous distribution model gave the best fit for these bands with mean activation energies of 0.41 eV, 0.595 eV and 1.02 eV for the first, second and third band respectively. Thermal treatments can modify the number of dipoles, dimers and clusters present in the crystal. The variation in the areas under each band can be used to measure this effect. In this work we used thermal treatments between 15 minutes and 10 hours and temperatures between 200 deg C and 500 deg C. For thermal treatments at 300 deg C, the dipoles and dimers are created and the clusters are destroyed as the time of thermal treatment increases. At 400 deg C the clusters are created and the dipoles and dimers and 350 deg C for the clusters. (author) 60 refs., 41 figs., 1 tab.

  5. The role of glutamate in neuronal ion homeostasis: A case study of spreading depolarization.

    Science.gov (United States)

    Hübel, Niklas; Hosseini-Zare, Mahshid S; Žiburkus, Jokūbas; Ullah, Ghanim

    2017-10-01

    Simultaneous changes in ion concentrations, glutamate, and cell volume together with exchange of matter between cell network and vasculature are ubiquitous in numerous brain pathologies. A complete understanding of pathological conditions as well as normal brain function, therefore, hinges on elucidating the molecular and cellular pathways involved in these mostly interdependent variations. In this paper, we develop the first computational framework that combines the Hodgkin-Huxley type spiking dynamics, dynamic ion concentrations and glutamate homeostasis, neuronal and astroglial volume changes, and ion exchange with vasculature into a comprehensive model to elucidate the role of glutamate uptake in the dynamics of spreading depolarization (SD)-the electrophysiological event underlying numerous pathologies including migraine, ischemic stroke, aneurysmal subarachnoid hemorrhage, intracerebral hematoma, and trauma. We are particularly interested in investigating the role of glutamate in the duration and termination of SD caused by K+ perfusion and oxygen-glucose deprivation. Our results demonstrate that glutamate signaling plays a key role in the dynamics of SD, and that impaired glutamate uptake leads to recovery failure of neurons from SD. We confirm predictions from our model experimentally by showing that inhibiting astrocytic glutamate uptake using TFB-TBOA nearly quadruples the duration of SD in layers 2-3 of visual cortical slices from juvenile rats. The model equations are either derived purely from first physical principles of electroneutrality, osmosis, and conservation of particles or a combination of these principles and known physiological facts. Accordingly, we claim that our approach can be used as a future guide to investigate the role of glutamate, ion concentrations, and dynamics cell volume in other brain pathologies and normal brain function.

  6. Electrical characterization of polymer matrix — TiO2 filler composites through isothermal polarization / depolarization currents and I-V tests

    Science.gov (United States)

    Stavrakas, Ilias; Triantis, Dimos; Hloupis, George; Moutzouris, Konstantinos

    2014-04-01

    Specimens of polymer matrix — ceramic TiO2 filler composites were prepared. The contribution of the filler content on the electrical conductivity and energy storage properties of the samples was examined. I-V and Isothermal Polarization/Depolarization Current (IPC/IDC) measurements were conducted. Dc conductivity values directly calculated from the I-V curves exhibited excellent agreement with corresponding values derived from the IPC/IDC recordings. Standard models were employed for fitting the IPC/IDC data. In specific, the short and the very long depolarization times were fitted by use of power laws of different slopes, while the intermediate depolarization times were fitted as a sum of three exponential decays. The present study reveals a strong dependence of the depolarization and polarization processes, as well as of the dc conductivity, on the filler concentration.

  7. About Multi-Heston SDE Discretization

    Directory of Open Access Journals (Sweden)

    Tiberiu Socaciu

    2013-07-01

    Full Text Available Abstract: in this paper we show how can estimate a financial derivative based on a support if assume for the support a Multi-Heston model.Keywords: Euler Maruyama discretization method, Monte Carlo simulation, Heston model, Double-Heston model, Multi-Heston model.

  8. A new and specific non-NMDA receptor antagonist, FG 9065, blocks L-AP4-evoked depolarization in rat cerebral cortex.

    Science.gov (United States)

    Sheardown, M J

    1988-04-13

    L(+)-AP4 (2-amino-4-phosphonobutyrate) depolarized slices of rat cerebral cortex, when applied following a 2 min priming application of quisqualate. This response diminishes with time and is not seen after NMDA application. A new selective non-N-methyl-D-aspartate (NMDA) antagonist, 6-cyano-7-nitro-2,3-dihydroxyquinoxaline (FG 9065), inhibits the L(+)-AP4 depolarization. It is argued that the response is mediated indirectly by postsynaptic quisqualate receptors.

  9. Activation of cathepsin L contributes to the irreversible depolarization induced by oxygen and glucose deprivation in rat hippocampal CA1 neurons.

    Science.gov (United States)

    Kikuta, Shogo; Murai, Yoshinaka; Tanaka, Eiichiro

    2017-01-01

    Oxygen and glucose deprivation (OGD) elicits a rapid and irreversible depolarization with a latency of ∼5min in intracellular recordings of hippocampal CA1 neurons in rat slice preparations. In the present study, we examined the role of cathepsin L in the OGD-induced depolarization. OGD-induced depolarizations were irreversible as no recovery of membrane potential was observed. The membrane potential reached 0mV when oxygen and glucose were reintroduced immediately after the onset of the OGD-induced rapid depolarization. The OGD-induced depolarizations became reversible when the slice preparations were pre-incubated with cathepsin L inhibitors (types I and IV at 0.3-2nM and 0.3-30nM, respectively). Moreover, pre-incubation with these cathepsin inhibitors prevented the morphological changes, including swelling of the cell soma and fragmentation of dendrites, observed in control neurons after OGD. These findings suggest that the activation of cathepsin L contributes to the irreversible depolarization produced by OGD. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  10. Retinal ganglion cells: mechanisms underlying depolarization block and differential responses to high frequency electrical stimulation of ON and OFF cells

    Science.gov (United States)

    Kameneva, T.; Maturana, M. I.; Hadjinicolaou, A. E.; Cloherty, S. L.; Ibbotson, M. R.; Grayden, D. B.; Burkitt, A. N.; Meffin, H.

    2016-02-01

    Objective. ON and OFF retinal ganglion cells (RGCs) are known to have non-monotonic responses to increasing amplitudes of high frequency (2 kHz) biphasic electrical stimulation. That is, an increase in stimulation amplitude causes an increase in the cell’s spike rate up to a peak value above which further increases in stimulation amplitude cause the cell to decrease its activity. The peak response for ON and OFF cells occurs at different stimulation amplitudes, which allows differential stimulation of these functional cell types. In this study, we investigate the mechanisms underlying the non-monotonic responses of ON and OFF brisk-transient RGCs and the mechanisms underlying their differential responses. Approach. Using in vitro patch-clamp recordings from rat RGCs, together with simulations of single and multiple compartment Hodgkin-Huxley models, we show that the non-monotonic response to increasing amplitudes of stimulation is due to depolarization block, a change in the membrane potential that prevents the cell from generating action potentials. Main results. We show that the onset for depolarization block depends on the amplitude and frequency of stimulation and reveal the biophysical mechanisms that lead to depolarization block during high frequency stimulation. Our results indicate that differences in transmembrane potassium conductance lead to shifts of the stimulus currents that generate peak spike rates, suggesting that the differential responses of ON and OFF cells may be due to differences in the expression of this current type. We also show that the length of the axon’s high sodium channel band (SOCB) affects non-monotonic responses and the stimulation amplitude that leads to the peak spike rate, suggesting that the length of the SOCB is shorter in ON cells. Significance. This may have important implications for stimulation strategies in visual prostheses.

  11. Lactoferricin B causes depolarization of the cytoplasmic membrane of Escherichia coli ATCC 25922 and fusion of negatively charged liposomes.

    Science.gov (United States)

    Ulvatne, H; Haukland, H H; Olsvik, O; Vorland, L H

    2001-03-09

    Antimicrobial peptides have been extensively studied in order to elucidate their mode of action. Most of these peptides have been shown to exert a bactericidal effect on the cytoplasmic membrane of bacteria. Lactoferricin is an antimicrobial peptide with a net positive charge and an amphipatic structure. In this study we examine the effect of bovine lactoferricin (lactoferricin B; Lfcin B) on bacterial membranes. We show that Lfcin B neither lyses bacteria, nor causes a major leakage from liposomes. Lfcin B depolarizes the membrane of susceptible bacteria, and induces fusion of negatively charged liposomes. Hence, Lfcin B may have additional targets responsible for the antibacterial effect.

  12. Depolarized inactivation overcomes impaired activation to produce DRG neuron hyperexcitability in a Nav1.7 mutation in a patient with distal limb pain.

    Science.gov (United States)

    Huang, Jianying; Yang, Yang; Dib-Hajj, Sulayman D; van Es, Michael; Zhao, Peng; Salomon, Jody; Drenth, Joost P H; Waxman, Stephen G

    2014-09-10

    Sodium channel Nav1.7, encoded by SCN9A, is expressed in DRG neurons and regulates their excitability. Genetic and functional studies have established a critical contribution of Nav1.7 to human pain disorders. We have now characterized a novel Nav1.7 mutation (R1279P) from a female human subject with distal limb pain, in which depolarized fast inactivation overrides impaired activation to produce hyperexcitability and spontaneous firing in DRG neurons. Whole-cell voltage-clamp recordings in human embryonic kidney (HEK) 293 cells demonstrated that R1279P significantly depolarizes steady-state fast-, slow-, and closed-state inactivation. It accelerates deactivation, decelerates inactivation, and facilitates repriming. The mutation increases ramp currents in response to slow depolarizations. Our voltage-clamp analysis showed that R1279P depolarizes channel activation, a change that was supported by our multistate structural modeling. Because this mutation confers both gain-of-function and loss-of-function attributes on the Nav1.7 channel, we tested the impact of R1279P expression on DRG neuron excitability. Current-clamp studies reveal that R1279P depolarizes resting membrane potential, decreases current threshold, and increases firing frequency of evoked action potentials within small DRG neurons. The populations of spontaneously firing and repetitively firing neurons were increased by expressing R1279P. These observations indicate that the dominant proexcitatory gating changes associated with this mutation, including depolarized steady-state fast-, slow-, and closed-state inactivation, faster repriming, and larger ramp currents, override the depolarizing shift of activation, to produce hyperexcitability and spontaneous firing of nociceptive neurons that underlie pain. Copyright © 2014 the authors 0270-6474/14/3412328-13$15.00/0.

  13. Effect of Electrolyzed Water on the Disinfection of Bacillus cereus Biofilms: The Mechanism of Enhanced Resistance of Sessile Cells in the Biofilm Matrix.

    Science.gov (United States)

    Hussain, Mohammad Shakhawat; Kwon, Minyeong; Tango, Charles Nkufi; Oh, Deog Hwan

    2018-05-01

    This study examined the disinfection efficacy and mechanism of electrolyzed water (EW) on Bacillus cereus biofilms. B. cereus strains, ATCC 14579 and Korean Collection for Type Cultures (KCTC) 13153 biofilms, were formed on stainless steel (SS) and plastic slide (PS) coupons. Mature biofilms were treated with slightly acidic EW (SAEW), acidic EW (AEW), and basic EW (BEW). SAEW (available chlorine concentration, 25 ± 1.31 mg L -1 ; pH 5.71 ± 0.16; and oxidation reduction potential, 818 to 855 mV) reduced ATCC 14579 biofilms on plastic slides to below the detection limit within 30 s. However, biofilms on SS coupons showed a higher resistance to the SAEW treatment. When the disinfection activities of three types of EW on biofilms were compared, AEW showed a higher bactericidal activity, followed by SAEW and BEW. In contrast, BEW showed a significantly ( P biofilm dispersal activity than AEW and SAEW. SAEW disinfection of the B. cereus biofilms was due to the disruption of the B. cereus plasma membrane. The higher resistance of biofilms formed on the SS coupon might be due to the higher number of attached cells and extracellular polymeric substances formation that reacts with the active chlorine ions, such as hypochlorous acid and hypochlorite ion of SAEW, which decreased the disinfection efficacy of SAEW. This study showed that the EW treatment effectively disinfected B. cereus biofilms, providing insight into the potential use of EW in the food processing industry to control the biofilm formation of B. cereus.

  14. Control of Listeria innocua Biofilms on Food Contact Surfaces with Slightly Acidic Electrolyzed Water and the Risk of Biofilm Cells Transfer to Duck Meat.

    Science.gov (United States)

    Jeon, Hye Ri; Kwon, Mi Jin; Yoon, Ki Sun

    2018-04-01

    Biofilm formation on food contact surfaces is a potential hazard leading to cross-contamination during food processing. We investigated Listeria innocua biofilm formation on various food contact surfaces and compared the washing effect of slightly acidic electrolyzed water (SAEW) at 30, 50, 70, and 120 ppm with that of 200 ppm of sodium hypochlorite (NaClO) on biofilm cells. The risk of L. innocua biofilm transfer and growth on food at retail markets was also investigated. The viability of biofilms that formed on food contact surfaces and then transferred cells to duck meat was confirmed by fluorescence microscopy. L. innocua biofilm formation was greatest on rubber, followed by polypropylene, glass, and stainless steel. Regardless of sanitizer type, washing removed biofilms from polypropylene and stainless steel better than from rubber and glass. Among the various SAEW concentrations, washing with 70 ppm of SAEW for 5 min significantly reduced L. innocua biofilms on food contact surfaces during food processing. Efficiency of transfer of L. innocua biofilm cells was the highest on polypropylene and lowest on stainless steel. The transferred biofilm cells grew to the maximum population density, and the lag time of transferred biofilm cells was longer than that of planktonic cells. The biofilm cells that transferred to duck meat coexisted with live, injured, and dead cells, which indicates that effective washing is essential to remove biofilm on food contact surfaces during food processing to reduce the risk of foodborne disease outbreaks.

  15. New Approach in Translational Medicine: Effects of Electrolyzed Reduced Water (ERW on NF-κB/iNOS Pathway in U937 Cell Line under Altered Redox State

    Directory of Open Access Journals (Sweden)

    Sara Franceschelli

    2016-09-01

    Full Text Available It is known that increased levels of reactive oxygen species (ROS and reactive nitrogen species (RNS can exert harmful effects, altering the cellular redox state. Electrolyzed Reduced Water (ERW produced near the cathode during water electrolysis exhibits high pH, high concentration of dissolved hydrogen and an extremely negative redox potential. Several findings indicate that ERW had the ability of a scavenger free radical, which results from hydrogen molecules with a high reducing ability and may participate in the redox regulation of cellular function. We investigated the effect of ERW on H2O2-induced U937 damage by evaluating the modulation of redox cellular state. Western blotting and spectrophotometrical analysis showed that ERW inhibited oxidative stress by restoring the antioxidant capacity of superoxide dismutase, catalase and glutathione peroxidase. Consequently, ERW restores the ability of the glutathione reductase to supply the cell of an important endogenous antioxidant, such as GSH, reversing the inhibitory effect of H2O2 on redox balance of U937 cells. Therefore, this means a reduction of cytotoxicity induced by peroxynitrite via a downregulation of the NF-κB/iNOS pathway and could be used as an antioxidant for preventive and therapeutic application. In conclusion, ERW can protect the cellular redox balance, reducing the risk of several diseases with altered cellular homeostasis such as inflammation.

  16. The depolarizing action of GABA in cultured hippocampal neurons is not due to the absence of ketone bodies.

    Science.gov (United States)

    Waddell, Jaylyn; Kim, Jimok; Alger, Bradley E; McCarthy, Margaret M

    2011-01-01

    Two recent reports propose that the depolarizing action of GABA in the immature brain is an artifact of in vitro preparations in which glucose is the only energy source. The authors argue that this does not mimic the physiological environment because the suckling rats use ketone bodies and pyruvate as major sources of metabolic energy. Here, we show that availability of physiologically relevant levels of ketone bodies has no impact on the excitatory action of GABA in immature cultured hippocampal neurons. Addition of β-hydroxybutyrate (BHB), the primary ketone body in the neonate rat, affected neither intracellular calcium elevation nor membrane depolarizations induced by the GABA-A receptor agonist muscimol, when assessed with calcium imaging or perforated patch-clamp recording, respectively. These results confirm that the addition of ketone bodies to the extracellular environment to mimic conditions in the neonatal brain does not reverse the chloride gradient and therefore render GABA hyperpolarizing. Our data are consistent with the existence of a genuine "developmental switch" mechanism in which GABA goes from having a predominantly excitatory role in immature cells to a predominantly inhibitory one in adults.

  17. Simulation of spreading depolarization trajectories in cerebral cortex: Correlation of velocity and susceptibility in patients with aneurysmal subarachnoid hemorrhage

    Directory of Open Access Journals (Sweden)

    Denny Milakara

    2017-01-01

    Full Text Available In many cerebral grey matter structures including the neocortex, spreading depolarization (SD is the principal mechanism of the near-complete breakdown of the transcellular ion gradients with abrupt water influx into neurons. Accordingly, SDs are abundantly recorded in patients with traumatic brain injury, spontaneous intracerebral hemorrhage, aneurysmal subarachnoid hemorrhage (aSAH and malignant hemispheric stroke using subdural electrode strips. SD is observed as a large slow potential change, spreading in the cortex at velocities between 2 and 9 mm/min. Velocity and SD susceptibility typically correlate positively in various animal models. In patients monitored in neurocritical care, the Co-Operative Studies on Brain Injury Depolarizations (COSBID recommends several variables to quantify SD occurrence and susceptibility, although accurate measures of SD velocity have not been possible. Therefore, we developed an algorithm to estimate SD velocities based on reconstructing SD trajectories of the wave-front's curvature center from magnetic resonance imaging scans and time-of-SD-arrival-differences between subdural electrode pairs. We then correlated variables indicating SD susceptibility with algorithm-estimated SD velocities in twelve aSAH patients. Highly significant correlations supported the algorithm's validity. The trajectory search failed significantly more often for SDs recorded directly over emerging focal brain lesions suggesting in humans similar to animals that the complexity of SD propagation paths increase in tissue undergoing injury.

  18. A role for CaV1 and calcineurin signaling in depolarization-induced changes in neuronal DNA methylation

    Directory of Open Access Journals (Sweden)

    Eilis Hannon

    2015-07-01

    Full Text Available Direct manipulations of neuronal activity have been shown to induce changes in DNA methylation (DNAm, although little is known about the cellular signaling pathways involved. Using reduced representation bisulfite sequencing, we identify DNAm changes associated with moderate chronic depolarization in dissociated rat hippocampal cultures. Consistent with previous findings, these changes occurred primarily in the vicinity of loci implicated in neuronal function, being enriched in intergenic regions and underrepresented in CpG-rich promoter regulatory regions. We subsequently used 2 pharmacological interventions (nifedipine and FK-506 to test whether the identified changes depended on 2 interrelated signaling pathways known to mediate multiple forms of neuronal plasticity. Both pharmacological manipulations had notable effects on the extent and magnitude of depolarization-induced DNAm changes indicating that a high proportion of activity-induced changes are likely to be mediated by calcium entry through L-type CaV1 channels and/or downstream signaling via the calcium-dependent phosphatase calcineurin.

  19. Right precordial-directed electrocardiographical markers identify arrhythmogenic right ventricular cardiomyopathy in the absence of conventional depolarization or repolarization abnormalities.

    Science.gov (United States)

    Cortez, Daniel; Svensson, Anneli; Carlson, Jonas; Graw, Sharon; Sharma, Nandita; Brun, Francesca; Spezzacatene, Anita; Mestroni, Luisa; Platonov, Pyotr G

    2017-10-13

    Arrhythmogenic right ventricular dysplasia/cardiomyopathy (ARVD/C) carries a risk of sudden death. We aimed to assess whether vectorcardiographic (VCG) parameters directed toward the right heart and a measured angle of the S-wave would help differentiate ARVD/C with otherwise normal electrocardiograms from controls. Task Force 2010 definite ARVD/C criteria were met for all patients. Those who did not fulfill Task Force depolarization or repolarization criteria (-ECG) were compared with age and gender-matched control subjects. Electrocardiogram measures of a 3-dimentional spatial QRS-T angle, a right-precordial-directed orthogonal QRS-T (RPD) angle, a root mean square of the right sided depolarizing forces (RtRMS-QRS), QRS duration (QRSd) and the corrected QT interval (QTc), and a measured angle including the upslope and downslope of the S-wave (S-wave angle) were assessed. Definite ARVD/C was present in 155 patients by 2010 Task Force criteria (41.7 ± 17.6 years, 65.2% male). -ECG ARVD/C patients (66 patients) were compared to 66 control patients (41.7 ± 17.6 years, 65.2% male). All parameters tested except the QRSd and QTc significantly differentiated -ECG ARVD/C from control patients (p right-sided VCG or measured angle markers better than the spatial QRS-T angle, the QRSd or QTc, in the absence of Taskforce ECG criteria.

  20. Nicotine-evoked cytosolic Ca2+ increase and cell depolarization in capillary endothelial cells of the bovine adrenal medulla

    Directory of Open Access Journals (Sweden)

    RAÚL VINET

    2009-01-01

    Full Text Available Endothelial cells are directly involved in many functions of the cardiovascular system by regulating blood flow and blood pressure through Ca2+ dependent exocitosis of vasoactive compounds. Using the Ca2+ indicator Fluo-3 and the patch-clamp technique, we show that bovine adrenal medulla capillary endothelial cells (B AMCECs respond to acetylcholine (ACh with a cytosolic Ca2+ increase and depolarization of the membrane potential (20.3±0.9 mV; n=23. The increase in cytosolic Ca2+ induced by 10µM ACh was mimicked by the same concentration of nicotine but not by muscarine and was blocked by 100 µM of hexamethonium. On the other hand, the increase in cytosolic Ca2+ could be depressed by nifedipine (0.01 -100 µM or withdrawal of extracellular Ca2+. Taken together, these results give evidence for functional nicotinic receptors (nAChRs in capillary endothelial cells of the adrenal medulla. It suggests that nAChRs in B AMCECs may be involved in the regulation of the adrenal gland's microcirculation by depolarizing the membrane potential, leading to the opening of voltage-activated Ca2+ channels, influx of external Ca2+ and liberation of vasoactive compounds.

  1. Rising Intracellular Zinc by Membrane Depolarization and Glucose in Insulin-Secreting Clonal HIT-T15 Beta Cells

    Directory of Open Access Journals (Sweden)

    Kira G. Slepchenko

    2012-01-01

    Full Text Available Zinc (Zn2+ appears to be intimately involved in insulin metabolism since insulin secretion is correlated with zinc secretion in response to glucose stimulation, but little is known about the regulation of zinc homeostasis in pancreatic beta-cells. This study set out to identify the intracellular zinc transient by imaging free cytosolic zinc in HIT-T15 beta-cells with fluorescent zinc indicators. We observed that membrane depolarization by KCl (30–60 mM was able to induce a rapid increase in cytosolic concentration of zinc. Multiple zinc transients of similar magnitude were elicited during repeated stimulations. The amplitude of zinc responses was not affected by the removal of extracellular calcium or zinc. However, the half-time of the rising slope was significantly slower after removing extracellular zinc with zinc chelator CaEDTA, suggesting that extracellular zinc affect the initial rising phase of zinc response. Glucose (10 mM induced substantial and progressive increases in intracellular zinc concentration in a similar way as KCl, with variation in the onset and the duration of zinc mobilization. It is known that the depolarization of beta-cell membrane is coupled with the secretion of insulin. Rising intracellular zinc concentration may act as a critical signaling factor in insulin metabolism of pancreatic beta-cells.

  2. Rising intracellular zinc by membrane depolarization and glucose in insulin-secreting clonal HIT-T15 beta cells.

    Science.gov (United States)

    Slepchenko, Kira G; Li, Yang V

    2012-01-01

    Zinc (Zn(2+)) appears to be intimately involved in insulin metabolism since insulin secretion is correlated with zinc secretion in response to glucose stimulation, but little is known about the regulation of zinc homeostasis in pancreatic beta-cells. This study set out to identify the intracellular zinc transient by imaging free cytosolic zinc in HIT-T15 beta-cells with fluorescent zinc indicators. We observed that membrane depolarization by KCl (30-60 mM) was able to induce a rapid increase in cytosolic concentration of zinc. Multiple zinc transients of similar magnitude were elicited during repeated stimulations. The amplitude of zinc responses was not affected by the removal of extracellular calcium or zinc. However, the half-time of the rising slope was significantly slower after removing extracellular zinc with zinc chelator CaEDTA, suggesting that extracellular zinc affect the initial rising phase of zinc response. Glucose (10 mM) induced substantial and progressive increases in intracellular zinc concentration in a similar way as KCl, with variation in the onset and the duration of zinc mobilization. It is known that the depolarization of beta-cell membrane is coupled with the secretion of insulin. Rising intracellular zinc concentration may act as a critical signaling factor in insulin metabolism of pancreatic beta-cells.

  3. Thermal-induced structural transition and depolarization behavior in (Bi0.5Na0.5)TiO3-BiAlO3 ceramics

    Science.gov (United States)

    Peng, Ping; Nie, Hengchang; Cheng, Guofeng; Liu, Zhen; Wang, Genshui; Dong, Xianlin

    2018-03-01

    The depolarization temperature Td determines the upper temperature limit for the application of piezoelectric materials. However, the origin of depolarization behavior for Bi-based materials still remains controversial and the mechanism is intricate for different (Bi0.5Na0.5)TiO3-based systems. In this work, the structure and depolarization behavior of (1-x)(Bi0.5Na0.5)TiO3-xBiAlO3 (BNT-BA, x = 0, 0.02, 0.04, 0.06, 0.07) ceramics were investigated using a combination of X-ray diffraction and electrical measurements. It was found that as temperature increased, the induced long-range ferroelectric phase irreversibly transformed to the relaxor phase as evidenced by the temperature-dependent ferroelectric and dielectric properties, which corresponded to a gradual structural change from the rhombohedral to the pseudocubic phase. Therefore, the thermal depolarization behavior of BNT-BA ceramics was proposed to be directly related to the rhombohedral-pseudocubic transition. Furthermore, Td (obtained from thermally stimulated depolarization currents curves) was higher than the induced ferroelectric-relaxor phase transition temperature TFR (measured from dielectric curves). The phenomenon was quite different from other reported BNT-based systems, which may suggest the formation of polar nanoregions (PNRs) within macrodomains prior to the detexturation of short-range ferroelectric domains with PNRs or nanodomains.

  4. Profiles of cortical tissue depolarization in cat focal cerebral ischemia in relation to calcium ion homeostasis and nitric oxide production.

    Science.gov (United States)

    Ohta, K; Graf, R; Rosner, G; Heiss, W D

    1997-11-01

    Cortical depolarization was investigated in a topographic gradient of ischemic density after 1-hour transient middle cerebral artery occlusion in halothane-anesthetized cats. A laser Doppler flow probe, an ion-selective microelectrode, and a nitric oxide (NO) electrode measured regional CBF (rCBF), direct current (DC) potential, extracellular Ca2+ concentration ([Ca2+]o), and NO concentration in ectosylvian and suprasylvian gyri of nine animals. Recordings revealed 12 of 18 sites with persistent negative shifts of the DC potential, severe rCBF reduction, and a drop of [Ca2+]o characteristic for core regions of focal ischemia. Among these sites, two types were distinguished by further analysis. In Type 1 (n = 5), rapid, negative DC shifts resembled anoxic depolarization as described for complete global ischemia. In this type, ischemia was most severe (8.9 +/- 2.5% of control rCBF), [Ca2+]o dropped fast and deepest (0.48 +/- 0.20 mmol/L), and NO concentration increased transiently (36.1 +/- 24.0 nmol/L at 2.5 minutes), and decreased thereafter. In Type 2 (n = 7), the DC potential fell gradually over the first half of the ischemic episode, rCBF and [Ca2+]o reductions were smaller than in Type 1 (16.2 +/- 8.2%; 0.77 +/- 0.41 mmol/L), and NO increased continuously during ischemia (53.1 +/- 60.4 nmol/L at 60 minutes) suggesting that in this type NO most likely exerts its diverse actions on ischemia-threatened tissue. In the remaining six recording sites, a third type (Type 3) attributable to the ischemic periphery was characterized by minimal DC shifts, mild ischemia (37.2 +/- 13.3%), nonsignificant alterations of [Ca2+]o, but decreased NO concentrations during middle cerebral artery occlusion. Reperfusion returned the various parameters to baseline levels within 1 hour, the recovery of [Ca2+]o and NO concentration being delayed in Type 1. An NO synthase inhibitor (N(G)-nitro-L-arginine, 50 mg/kg intravenously; four animals) abolished NO elevation during ischemia. In

  5. Fast-switching optically isotropic liquid crystal nano-droplets with improved depolarization and Kerr effect by doping high k nanoparticles.

    Science.gov (United States)

    Kim, Byeonggon; Kim, Hyun Gyu; Shim, Gyu-Yeop; Park, Ji-Sub; Joo, Kyung-Il; Lee, Dong-Jin; Lee, Joun-Ho; Baek, Ji-Ho; Kim, Byeong Koo; Choi, Yoonseuk; Kim, Hak-Rin

    2018-01-10

    We proposed and analyzed an optically isotropic nano-droplet liquid crystal (LC) doped with high k nanoparticles (NPs), exhibiting enhanced Kerr effects, which could be operated with reduced driving voltages. For enhancing the contrast ratio together with the light efficiencies, the LC droplet sizes were adjusted to be shorter than the wavelength of visible light to reduce depolarization effects by optical scattering of the LC droplets. Based on the optical analysis of the depolarization effects, the influence of the relationship between the LC droplet size and the NP doping ratio on the Kerr effect change was investigated.

  6. Novel thin/tunable gas diffusion electrodes with ultra-low catalyst loading for hydrogen evolution reactions in proton exchange membrane electrolyzer cells

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Zhenye; Yang, Gaoqiang; Mo, Jingke; Li, Yifan; Yu, Shule; Cullen, David A.; Retterer, Scott T.; Toops, Todd J.; Bender, Guido; Pivovar, Bryan S.; Green, Johney B.; Zhang, Feng-Yuan

    2018-05-01

    Proton exchange membrane electrolyzer cells (PEMECs) have received great attention for hydrogen/oxygen production due to their high efficiencies even at low-temperature operation. Because of the high cost of noble platinum-group metal (PGM) catalysts (Ir, Ru, Pt, etc.) that are widely used in water splitting, a PEMEC with low catalyst loadings and high catalyst utilizations is strongly desired for its wide commercialization. In this study, the ultrafast and multiscale hydrogen evolution reaction (HER) phenomena in an operating PEMEC is in-situ observed for the first time. The visualization results reveal that the HER and hydrogen bubble nucleation mainly occur on catalyst layers at the rim of the pores of the thin/tunable liquid/gas diffusion layers (TT-LGDLs). This indicates that the catalyst material of the conventional catalyst-coated membrane (CCM) that is located in the middle area of the LGDL pore is underutilized/inactive. Based on this discovery, a novel thin and tunable gas diffusion electrode (GDE) with a Pt catalyst thickness of 15 nm and a total thickness of about 25 um has been proposed and developed by taking advantage of advanced micro/nano manufacturing. The novel thin GDEs are comprehensively characterized both ex-situ and in-situ, and exhibit excellent PEMEC performance. More importantly, they achieve catalyst mass activity of up to 58 times higher than conventional CCM at 1.6 V under the operating conditions of 80 degrees C and 1 atm. This study demonstrates a promising concept for PEMEC electrode development, and provides a direction of future catalyst designs and fabrications for electrochemical devices.

  7. Combined Effect of Thermosonication and Slightly Acidic Electrolyzed Water to Reduce Foodborne Pathogens and Spoilage Microorganisms on Fresh-cut Kale.

    Science.gov (United States)

    Mansur, Ahmad Rois; Oh, Deog-Hwan

    2015-06-01

    This study evaluated the efficacy of individual treatments (thermosonication [TS+DW] and slightly acidic electrolyzed water [SAcEW]) and their combination on reducing Escherichia coli O157:H7, Listeria monocytogenes, and spoilage microorganisms (total bacterial counts [TBC], Enterobacteriaceae, Pseudomonas spp., and yeast and mold counts [YMC]) on fresh-cut kale. For comparison, the antimicrobial efficacies of sodium chlorite (SC; 100 mg/L) and sodium hypochlorite (SH; 100 mg/L) were also evaluated. Each 10 g sample of kale leaves was inoculated to contain approximately 6 log CFU/g of E. coli O157:H7 or L. monocytogenes. Each inoculated or uninoculated samples was then dip treated with deionized water (DW; control), TS+DW, and SAcEW at various treatment conditions (temperature, physicochemical properties, and time) to assess the efficacy of each individual treatment. The efficacy of TS+DW or SAcEW was enhanced at 40 °C for 3 min, with an acoustic energy density of 400 W/L for TS+DW and available chlorine concentration of 5 mg/L for SAcEW. At 40 °C for 3 min, combined treatment of thermosonication 400 W/L and SAcEW 5 mg/L (TS+SAcEW) was more effective in reducing microorganisms compared to the individual treatments (SAcEW, SC, SH, and TS+DW) and combined treatments (TS+SC and TS+SH), which significantly (P 3.24 log CFU/g, respectively. The results suggest that the combined treatment of TS+SAcEW has the potential as a decontamination process in fresh-cut industry. © 2015 Institute of Food Technologists®

  8. Combined effects of thermosonication and slightly acidic electrolyzed water on the microbial quality and shelf life extension of fresh-cut kale during refrigeration storage.

    Science.gov (United States)

    Mansur, Ahmad Rois; Oh, Deog-Hwan

    2015-10-01

    This study evaluated the efficacy of thermosonication combined with slightly acidic electrolyzed water (SAcEW) on the shelf life extension of fresh-cut kale during storage at 4 and 7 °C. Each kale (10 ± 0.2 g) was inoculated to contain approximately 6 log CFU/g of Listeria monocytogenes. Each inoculated or uninoculated samples was dip treated at 40 °C for 3 min with deionized water, thermosonication (400 W/L), SAcEW (5 mg/L), sodium chlorite (SC; 100 mg/L), sodium hypochlorite (SH; 100 mg/L), and thermosonication combined with SAcEW, SC, and SH (TS + SAcEW, TS + SC, and TS + SH, respectively). Growths of L. monocytogenes and spoilage microorganisms and changes in sensory (overall visual quality, browning, and off-odour) were evaluated. The results show that lag time and specific growth rate of each microorganism were not significantly (P > 0.05) affected by treatment and storage temperature. Exceeding the unacceptable counts of spoilage microorganisms did not always result in adverse effects on sensory attributes. This study suggests that TS + SAcEW was the most effective method to prolong the shelf life of kale with an extension of around 4 and 6 days at 4 and 7 °C, respectively, and seems to be a promising method for the shelf life extension of fresh produce. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Linear Polarization, Circular Polarization, and Depolarization of Gamma-ray Bursts: A Simple Case of Jitter Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Mao, Jirong; Wang, Jiancheng, E-mail: jirongmao@mail.ynao.ac.cn [Yunnan Observatories, Chinese Academy of Sciences, 650011 Kunming, Yunnan Province (China)

    2017-04-01

    Linear and circular polarizations of gamma-ray bursts (GRBs) have been detected recently. We adopt a simplified model to investigate GRB polarization characteristics in this paper. A compressed two-dimensional turbulent slab containing stochastic magnetic fields is considered, and jitter radiation can produce the linear polarization under this special magnetic field topology. Turbulent Faraday rotation measure (RM) of this slab makes strong wavelength-dependent depolarization. The jitter photons can also scatter with those magnetic clumps inside the turbulent slab, and a nonzero variance of the Stokes parameter V can be generated. Furthermore, the linearly and circularly polarized photons in the optical and radio bands may suffer heavy absorptions from the slab. Thus we consider the polarized jitter radiation transfer processes. Finally, we compare our model results with the optical detections of GRB 091018, GRB 121024A, and GRB 131030A. We suggest simultaneous observations of GRB multi-wavelength polarization in the future.

  10. Determination of proton-nucleon analyzing powers and spin-rotation-depolarization parameters at 500 MeV

    International Nuclear Information System (INIS)

    Marshall, J.A.; Barlett, M.L.; Fergerson, R.W.; Hoffmann, G.W.; Milner, E.C.; Ray, L.; Amann, J.F.; Bonner, B.E.; McClelland, J.B.

    1986-01-01

    500 MeV p-arrow-right+p elastic and quasielastic, and p-arrow-right+n quasielastic, analyzing powers (A/sub y/) and spin-rotation-depolarization parameters (D/sub S//sub S/, D/sub S//sub L/, D/sub L//sub S/, D/sub L//sub L/, D/sub N//sub N/) were determined for center-of-momentum angular ranges 6.8 0 -55.4 0 (elastic) and 22.4 0 -55.4 0 (quasielastic); liquid hydrogen and deuterium targets were used. The p-arrow-right+p elastic and quasielastic results are in good agreement; both the p-arrow-right+p and p-arrow-right+n parameters are well described by current phase shift solutions

  11. PKA Phosphorylation of NCLX Reverses Mitochondrial Calcium Overload and Depolarization, Promoting Survival of PINK1-Deficient Dopaminergic Neurons

    Directory of Open Access Journals (Sweden)

    Marko Kostic

    2015-10-01

    Full Text Available Mitochondrial Ca2+ overload is a critical, preceding event in neuronal damage encountered during neurodegenerative and ischemic insults. We found that loss of PTEN-induced putative kinase 1 (PINK1 function, implicated in Parkinson disease, inhibits the mitochondrial Na+/Ca2+ exchanger (NCLX, leading to impaired mitochondrial Ca2+ extrusion. NCLX activity was, however, fully rescued by activation of the protein kinase A (PKA pathway. We further show that PKA rescues NCLX activity by phosphorylating serine 258, a putative regulatory NCLX site. Remarkably, a constitutively active phosphomimetic mutant of NCLX (NCLXS258D prevents mitochondrial Ca2+ overload and mitochondrial depolarization in PINK1 knockout neurons, thereby enhancing neuronal survival. Our results identify an mitochondrial Ca2+ transport regulatory pathway that protects against mitochondrial Ca2+ overload. Because mitochondrial Ca2+ dyshomeostasis is a prominent feature of multiple disorders, the link between NCLX and PKA may offer a therapeutic target.

  12. Oxytocin Depolarizes Fast-Spiking Hilar Interneurons and Induces GABA Release onto Mossy Cells of the Rat Dentate Gyrus

    Science.gov (United States)

    Harden, Scott W.; Frazier, Charles J.

    2016-01-01

    Delivery of exogenous oxytocin (OXT) to central oxytocin receptors (OXT-Rs) is currently being investigated as a potential treatment for conditions such as post-traumatic stress disorder (PTSD), depression, social anxiety, and autism spectrum disorder (ASD). Despite significant research implicating central OXT signaling in modulation of mood, affect, social behavior, and stress response, relatively little is known about the cellular and synaptic mechanisms underlying these complex actions, particularly in brain regions which express the OXT-R but lie outside of the hypothalamus (where OXT-synthesizing neurons reside). We report that bath application of low concentrations of the selective OXT-R agonist Thr4,Gly7-OXT (TGOT) reliably and robustly drives GABA release in the dentate gyrus in an action potential dependent manner. Additional experiments led to identification of a small subset of small hilar interneurons that are directly depolarized by acute application of TGOT. From a physiological perspective, TGOT-responsive hilar interneurons have high input resistance, rapid repolarization velocity during an action potential, and a robust afterhyperpolarization. Further, they fire irregularly (or stutter) in response to moderate depolarization, and fire quickly with minimal spike frequency accommodation in response to large current injections. From an anatomical perspective, TGOT responsive hilar interneurons have dense axonal arborizations in the hilus that were found close proximity with mossy cell somata and/or proximal dendrites, and also invade the granule cell layer. Further, they have primary dendrites that always extend into the granule cell layer, and sometimes have clear arborizations in the molecular layer. Overall, these data reveal a novel site of action for OXT in an important limbic circuit, and represent a significant step towards better understanding how endogenous OXT may modulate flow of information in hippocampal networks. PMID:27068005

  13. Further insights into blood pressure induced premature beats: Transient depolarizations are associated with fast myocardial deformation upon pressure decline.

    Science.gov (United States)

    Haemers, Peter; Sutherland, George; Cikes, Maja; Jakus, Nina; Holemans, Patricia; Sipido, Karin R; Willems, Rik; Claus, Piet

    2015-11-01

    An acute increase in blood pressure is associated with the occurrence of premature ventricular complexes (PVCs). We aimed to study the timing of these PVCs with respect to afterload-induced changes in myocardial deformation in a controlled, preclinically relevant, novel closed-chest pig model. An acute left ventricular (LV) afterload challenge was induced by partial balloon inflation in the descending aorta, lasting 5-10 heartbeats (8 pigs; 396 inflations). Balloon inflation enhanced the reflected wave (augmentation index 30% ± 8% vs 59% ± 6%; P blood pressure by 35% ± 4%. This challenge resulted in a more abrupt LV pressure decline, which was delayed beyond ventricular repolarization (rate of pressure decline 0.16 ± 0.01 mm Hg/s vs 0.27 ± 0.04 mm Hg/ms; P pressure 1 ± 12 ms vs 36 ± 9 ms; P = .008), during which the velocity of myocardial shortening at the basal septum increased abruptly (ie, postsystolic shortening) (peak strain rate -0.6 ± 0.5 s(-1) vs -2.5 ± 0.8 s(-1); P pressure decline, with increased postsystolic shortening, and not at peak pressure, that PVCs occur (22% of inflations). These PVCs preferentially occurred at the basal and apical segments. In the same regions, monophasic action potentials demonstrated the appearance of delayed afterdepolarization-like transient depolarizations as origin of PVCs. An acute blood pressure increase results in a more abrupt LV pressure decline, which is delayed after ventricular repolarization. This has a profound effect on myocardial mechanics with enhanced postsystolic shortening. Coincidence with induced transient depolarizations and PVCs provides support for the mechanoelectrical origin of pressure-induced premature beats. Copyright © 2015 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.

  14. Depolarization in Delivering Public Services? Impacts of Minimum Service Standards (MSS on the Quality of Health Services in Indonesia

    Directory of Open Access Journals (Sweden)

    Mohammad Roudo

    2016-03-01

    Full Text Available Abstract. Some scholars argue that decentralization policy tends to create polarization, i.e. an increase of inequality/disparity among districts. To deal with this problem, Minimum Service Standards (MSS were introduced as a key strategy in decentralizing Indonesia. In this research, we tried to find out through MSS performance measurements whether imposing standards can be effective in a decentralized system by seeking its impacts on polarization/depolarization in the delivery of public services, specifically in the health sector. This question is basically a response to the common criticism that decentralization is good to create equality between central government and local governments but often does not work to achieve equality among local governments. Using self-assessment data from a sample of 54 districts from 534 districts in Indonesia, from 2010 to 2013, we found that the existence of depolarization in the delivery of public services could potentially occur among regions by reducing the gap between their public service performance and the targets of MSS. We acknowledge that there are weaknesses in the validity of the self-assessment data, caused by a lack of knowledge and skills to execute the self-assessment according to the official guidelines, by the overrating of target achievements, as well as the lack of data from independent sources to confirm the self-assessment outcomes. We also acknowledge that differences in financial capacity are still the main determinant why one district is more successful in achieving the MSS targets compared to other districts. Keywords. Decentralization, Public Service, Minimum Standard Service

  15. Depolarization and electrical stimulation enhance in vitro and in vivo sensory axon growth after spinal cord injury.

    Science.gov (United States)

    Goganau, Ioana; Sandner, Beatrice; Weidner, Norbert; Fouad, Karim; Blesch, Armin

    2018-02-01

    Activity dependent plasticity is a key mechanism for the central nervous system (CNS) to adapt to its environment. Whether neuronal activity also influences axonal regeneration in the injured CNS, and whether electrical stimulation (ES) can activate regenerative programs in the injured CNS remains incompletely understood. Using KCl-induced depolarization, in vivo ES followed by ex-vivo neurite growth assays and ES after spinal cord lesions and cell grafting, we aimed to identify parameters important for ES-enhanced neurite growth and axonal regeneration. Using cultures of sensory neurons, neurite growth was analyzed after KCl-induced depolarization for 1-72h. Increased neurite growth was detected after short-term stimulation and after longer stimulation if a sufficient delay between stimulation and growth measurements was provided. After in vivo ES (20Hz, 2× motor threshold, 0.2ms, 1h) of the intact sciatic nerve in adult Fischer344 rats, sensory neurons showed a 2-fold increase in in vitro neurite length one week later compared to sham animals, an effect not observed one day after ES. Longer ES (7h) and repeated ES (7days, 1h each) also increased growth by 56-67% one week later, but provided no additional benefit. In vivo growth of dorsal column sensory axons into a graft of bone marrow stromal cells 4weeks after a cervical spinal cord lesion was also enhanced with a single post-injury 1h ES of the intact sciatic nerve and was also observed after repeated ES without inducing pain-like behavior. While ES did not result in sensory functional recovery, our data indicate that ES has time-dependent influences on the regenerative capacity of sensory neurons and might further enhance axonal regeneration in combinatorial approaches after SCI. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Acute stress increases depolarization-evoked glutamate release in the rat prefrontal/frontal cortex: the dampening action of antidepressants.

    Directory of Open Access Journals (Sweden)

    Laura Musazzi

    2010-01-01

    Full Text Available Behavioral stress is recognized as a main risk factor for neuropsychiatric diseases. Converging evidence suggested that acute stress is associated with increase of excitatory transmission in certain forebrain areas. Aim of this work was to investigate the mechanism whereby acute stress increases glutamate release, and if therapeutic drugs prevent the effect of stress on glutamate release.Rats were chronically treated with vehicle or drugs employed for therapy of mood/anxiety disorders (fluoxetine, desipramine, venlafaxine, agomelatine and then subjected to unpredictable footshock stress. Acute stress induced marked increase in depolarization-evoked release of glutamate from synaptosomes of prefrontal/frontal cortex in superfusion, and the chronic drug treatments prevented the increase of glutamate release. Stress induced rapid increase in the circulating levels of corticosterone in all rats (both vehicle- and drug-treated, and glutamate release increase was blocked by previous administration of selective antagonist of glucocorticoid receptor (RU 486. On the molecular level, stress induced accumulation of presynaptic SNARE complexes in synaptic membranes (both in vehicle- and drug-treated rats. Patch-clamp recordings of pyramidal neurons in the prefrontal cortex revealed that stress increased glutamatergic transmission through both pre- and postsynaptic mechanisms, and that antidepressants may normalize it by reducing release probability.Acute footshock stress up-regulated depolarization-evoked release of glutamate from synaptosomes of prefrontal/frontal cortex. Stress-induced increase of glutamate release was dependent on stimulation of glucocorticoid receptor by corticosterone. Because all drugs employed did not block either elevation of corticosterone or accumulation of SNARE complexes, the dampening action of the drugs on glutamate release must be downstream of these processes. This novel effect of antidepressants on the response to stress

  17. Effect of ouabain on the gamma-[3H]aminobutyric acid uptake and release in the absence of Ca(+)+ and K(+)-depolarization

    International Nuclear Information System (INIS)

    Santos, M.S.; Goncalves, P.P.; Carvalho, A.P.

    1990-01-01

    The effect of ouabain on the uptake of tritiated [ 3 H]GABA and on its release in the absence of Ca(+)+ was studied in brain cortex synaptosomes. Ouabain, in the absence of Ca(+)+ and K(+)-depolarization, induces the release of [ 3 H]GABA with half-maximal effect occurring at a concentration of about 7 X 10(-6) M. Parallel measurements of the effects of ouabain on the [ 3 H]GABA uptake and the Na+,K(+)-adenosine triphosphatase activity show that ouabain inhibits both mechanisms and that the half-maximal effect also occurs at about the same ouabain concentration. Although [ 3 H]GABA release is stimulated by ouabain, it appears that the inhibition of [ 3 H]GABA uptake is due to a direct effect on the uptake mechanism, inasmuch as the initial velocity of the process is inhibited by ouabain. Ouabain requires extracellular Na+ for [ 3 H]GABA release and for membrane depolarization and, in the absence of Na+, ouabain does not cause either [ 3 H]GABA release or membrane depolarization. No significant changes in the Na+ gradients occur under conditions which permit release of [ 3 H]GABA, but the Na+,K(+)-adenosine triphosphatase activity is inhibited, which may be responsible for membrane depolarization, which in turn may cause [ 3 H]GABA release or inhibit its uptake

  18. Electric quadrupole interactions on /sup 12/B and /sup 12/N implanted in Mg studied by nuclear depolarization due to level mixing

    Energy Technology Data Exchange (ETDEWEB)

    Tanihata, I; Kogo, S; Sugimoto, K [Osaka Univ., Toyonaka (Japan). Lab. of Nuclear Studies

    1977-04-25

    Electric quadrupole interactions on polarized /sup 12/B and /sup 12/N implanted in a Mg single crystal have been studied by a new method in which the nuclear depolarization due to level mixing caused by an external magnetic field is detected.

  19. Influence of Solid Target Reflectivity and Incident Angle on Depolarization Ratio and Reflected Energy from Polarized Lights: Experimental Results of the May 2008 Field Trial

    Science.gov (United States)

    2009-11-01

    enviromental targets . . . . . . . . . . . . 45 Figure 25: Relative reectivity of environmental targets . . . . . . . . . . . . 46 Figure 26: Relationship...Environmental targets and position of the center . . . . . . . . . . 41 Table 11: Depolarization ratio of enviromental targets...42 Table 12: Relative reectivity results of enviromental targets . . . . . . . . . 42 Table 13: Sand papers and position of the center

  20. Optimal shifting of Photovoltaic and load fluctuations from fuel cell and electrolyzer to lead acid battery in a Photovoltaic/hydrogen standalone power system for improved performance and life time

    Science.gov (United States)

    Tesfahunegn, S. G.; Ulleberg, Ø.; Vie, P. J. S.; Undeland, T. M.

    Cost reduction is very critical in the pursuit of realizing more competitive clean and sustainable energy systems. In line with this goal a control method that enables minimization of the cost associated with performance and life time degradation of fuel cell and electrolyzer, and cost of battery replacement in PV/hydrogen standalone power systems is developed. The method uses the advantage of existing peak shaving battery to suppress short-term PV and load fluctuations while reducing impact on the cycle life of the battery itself. This is realized by diverting short-term cyclic charge/discharge events induced by PV/load power fluctuations to the upper band of the battery state of charge regime while operating the fuel cell and electrolyzer systems along stable (smooth) power curves. Comparative studies of the developed method with two other reference cases demonstrate that the proposed method fares better with respect to defined performance indices as fluctuation suppression rate and mean state of charge. Modeling of power electronics and design of controllers used in the study are also briefly discussed in Appendix A.

  1. Free chlorine loss during spraying of membraneless acidic electrolyzed water and its antimicrobial effect on airborne bacteria from poultry house

    Directory of Open Access Journals (Sweden)

    Yang Zhao

    2014-06-01

    Full Text Available introduction. Spray-application of membraneless acidic electrolyzed water (MLAEW is a novel technique for disinfection in livestock houses. This study investigated the loss of free chlorine (FC – the major germicidal component in MLAEW over distance during spraying, as affected by air temperature and initial FC concentration. The anti-microbial effect of MLAEW on airborne bacteria from an aviary laying-hen house was examined. materials and methods. MLAEW was prepared at two FC concentrations: app. 15 and 60 mg L -1 , and sprayed at three air temperatures (18, 25, 32 °C. The original MLAEW solution and MLAEW aerosols collected at 0, 25, and 50 cm from the spray nozzle were analyzed for FC concentrations. Bacteria were immersed into these MLAEW samples and numerated for viable count after 0.5, 2 and 5-min treatments. results. MLAEW aerosols collected at 0 cm lost 11.7–13.2% FC, compared with the original MLAEW solution. This initial loss was affected neither by the initial FC concentration (P = 0.13 nor by air temperature (P = 0.57. The rate of FC loss during travelling was 0.79–0.87 % per cm of aerosol travel distance (% cm -1 at 18 °C, 1.08–1.15 % cm -1 at 25 °C, and 1.35–1.49% cm -1 at 32 °C. This travelling loss was affected by air temperature (P = 0.02, but not by initial FC concentration (P = 0.38. Bacteria were completely inactivated at 0.5 min when treated with MLAEW samples with FC > 16.8 mg L -1 , in 2 min when FC > 13.8 mg L -1 , and in 5 min when FC > 7.2 mg L -1 . conclusion. Airborne bacteria from aviary hen house can be effectively inactivated by MLAEW with adequate FC concentration and contact time. During spraying, the anti-microbial efficacy of MLAEW aerosols decreased over distance due to FC loss which exacerbated at higher air temperatures.

  2. Experimental and thermodynamic study on the performance of water electrolysis by solid oxide electrolyzer cells with Nb-doped Co-based perovskite anode

    International Nuclear Information System (INIS)

    Pan, Zehua; Liu, Qinglin; Zhang, Lan; Zhou, Juan; Zhang, Caizhi; Chan, Siew Hwa

    2017-01-01

    Highlights: • BCFN was applied on traditional YSZ electrolyte with GDC interlayer. • Dense YSZ-GDC bilayer electrolyte was obtained by co-sintering at 1300 °C. • Area specific resistance of full cell is 0.195 Ω cm"2 at 800 °C with 60% water vapor. • Cell voltage is 1.13 V at 1 A cm"−"2 at 800 °C with feedstock of 60% H_2O-40% H_2. • The electricity to hydrogen efficiency is 73% with generation rate of 4180 L h"−"1 m"−"2. - Abstract: In this work, Solid Oxide Electrolyzer Cell (SOEC) based on Ba_0_._9Co_0_._7Fe_0_._2Nb_0_._1O_3_-_δ (BCFN) air electrode and YSZ-GDC bilayer electrolyte was systematically investigated and the efficiency of high-temperature water electrolysis by such a cell was analyzed. Firstly, chemical compatibility test between BCFN and YSZ showed that BaZrO_3 formed after heat treatment at 1000 °C for 5 h, which adversely influenced the performance of BCFN dramatically. A fully dense GDC interlayer was thus developed by co-sintering GDC layer, with addition of 0.5 at.% Fe_2O_3, with YSZ electrolyte at only 1300 °C. The as-prepared fuel electrode-supported eletrolyzer cell consisting of Ni-YSZ fuel electrode, YSZ-GDC bilayer electrolyte and BCFN air electrode was evaluated for water electrolysis. Specifically, at 800 °C using a feedstock of 60% H_2O-40% H_2, the cell showed total area specific resistance of 0.195 Ω cm"2 and the cell voltage was 1.13 V with an electrolysis current of 1 A cm"−"2. After short-term stability test for 120 h with 1 A cm"−"2 electrolysis current at 800 °C, the cell showed no microstructural changes as observed by scanning electron microscopy. At last, a high-temperature water electrolysis system based on the cell studied was proposed and the system analysis shows that the overall electricity to hydrogen efficiency can reach 73% based on lower heating value of hydrogen, with a hydrogen generation rate of 4180 L h"−"1 m"−"2.

  3. An efficient hybrid sulfur process using PEM electrolysis with a bayonet decomposition reactor - HTR2008-58207

    International Nuclear Information System (INIS)

    Gorensek, M. B.; Summers, W. A.; Lahoda, E. J.; Bolthrunis, C. O.; Greyvenstein, R.

    2008-01-01

    The Hybrid Sulfur (HyS) Process is being developed to produce hydrogen by water-splitting using heat from advanced nuclear reactors. It has the potential for high efficiency and competitive hydrogen production cost, and has been demonstrated at a laboratory scale. As a two-step process, the HyS is one of the simplest thermochemical cycles. The sulfuric acid decomposition reaction is common to all sulfur cycles, including the Sulfur-Iodine (SI) cycle. What distinguishes the HyS Process from the other sulfur cycles is the use of sulfur dioxide (SO 2 ) to depolarize the anode of a water electrolyzer. The two critical HyS Process components are the SO 2 - depolarized electrolyzer (SDE), and the high-temperature decomposition reactor. A proton exchange membrane (PEM)- type SDE and a silicon carbide bayonet-type high-temperature decomposition reactor are being developed for DOE's Nuclear Hydrogen Initiative (NHI) by Savannah River National Laboratory (SRNL) and by Sandia National Laboratories (SNL), respectively. The ultimate goal of the NHI-sponsored work is to couple the SDE and the reactor in an integrated laboratory scale experiment to prove the technical readiness of the HyS cycle for the NGNP demonstration. This paper describes the flowsheet that is being prepared to combine these two components into a viable process and presents the latest performance projections and economics for a HyS Process coupled to a PBMR heat source. The basic flowsheet for this process has been described elsewhere [4]. It requires an acid concentration section because the SDE product, which is limited to no more than 50% H 2 SO 4 by cell voltage considerations, is too dilute to be fed directly to the bayonet, which needs at least 65% H 2 SO 4 in the feed for acceptable performance. Optimization involved trade-offs between decomposition reaction and acid concentration heat requirements. The PBMR heat source can split its heat output between the decomposition reaction and either steam

  4. Transitory endolymph leakage induced hearing loss and tinnitus: depolarization, biphasic shortening and loss of electromotility of outer hair cells

    Science.gov (United States)

    Zenner, H. P.; Reuter, G.; Zimmermann, U.; Gitter, A. H.; Fermin, C.; LePage, E. L.

    1994-01-01

    There are types of deafness and tinnitus in which ruptures or massive changes in the ionic permeability of the membranes lining the endolymphatic space [e.g., of the reticular lamina (RL)] are believed to allow potassium-rich endolymph to deluge the low [K+] perilymphatic fluid (e.g., in the small spaces of Nuel). This would result in a K+ intoxication of sensory and neural structures. Acute attacks of Meniere's disease have been suggested to be an important example for this event. The present study investigated the effects of transiently elevated [K+] due to the addition of artificial endolymph to the basolateral cell surface of outer hair cells (OHC) in replicating endolymph-induced K+ intoxication of the perilymph in the small spaces of Nuel. The influence of K+ intoxication of the basolateral OHC cell surface on the transduction was then examined. Intoxication resulted in an inhibition of the physiological repolarizing K+ efflux from hair cells. This induced unwanted depolarizations of the hair cells, interfering with mechanoelectrical transduction. A pathological longitudinal OHC shortening was also found, with subsequent compression of the organ of Corti possibly influencing the micromechanics of the mechanically active OHC. Both micromechanical and electrophysiological alterations are proposed to contribute to endolymph leakage induced attacks of deafness and possibly also to tinnitus. Moreover, repeated or long-lasting K+ intoxications of OHC resulted in a chronic and complete loss of OHC motility. This is suggested to be a pathophysiological basis in some patients with chronic hearing loss resulting from Meniere's syndrome.

  5. Achiral Mannich-Base Curcumin Analogs Induce Unfolded Protein Response and Mitochondrial Membrane Depolarization in PANC-1 Cells

    Directory of Open Access Journals (Sweden)

    Gábor J. Szebeni

    2017-10-01

    Full Text Available Achiral Mannich-type curcumin analogs have been synthetized and assayed for their cytotoxic activity. The anti-proliferative and cytotoxic activity of curcuminoids has been tested on human non-small-cell lung carcinoma (A549, hepatocellular carcinoma (HepG2 and pancreatic cancer cell line (PANC-1. Based on the highest anti-proliferative activity nine drug candidates were further tested and proved to cause phosphatidylserine exposure as an early sign of apoptosis. Curcumin analogs with the highest apoptotic activity were selected for mechanistic studies in the most sensitive PANC-1 cells. Cytotoxic activity was accompanied by cytostatic effect since curcumin and analogs treatment led to G0/G1 cell cycle arrest. Moreover, cytotoxic effect could be also detected via the accumulation of curcuminoids in the endoplasmic reticulum (ER and the up-regulation of ER stress-related unfolded protein response (UPR genes: HSPA5, ATF4, XBP1, and DDIT3. The activated UPR induced mitochondrial membrane depolarization, caspase-3 activation and subsequent DNA breakdown in PANC-1 cells. Achiral curcumin analogs, C509, C521 and C524 possessed superior, 40-times more potent cytotoxic activity compared to natural dihydroxy-dimetoxycurcumin in PANC-1 cells.

  6. Achiral Mannich-Base Curcumin Analogs Induce Unfolded Protein Response and Mitochondrial Membrane Depolarization in PANC-1 Cells.

    Science.gov (United States)

    Szebeni, Gábor J; Balázs, Árpád; Madarász, Ildikó; Pócz, Gábor; Ayaydin, Ferhan; Kanizsai, Iván; Fajka-Boja, Roberta; Alföldi, Róbert; Hackler, László; Puskás, László G

    2017-10-07

    Achiral Mannich-type curcumin analogs have been synthetized and assayed for their cytotoxic activity. The anti-proliferative and cytotoxic activity of curcuminoids has been tested on human non-small-cell lung carcinoma (A549), hepatocellular carcinoma (HepG2) and pancreatic cancer cell line (PANC-1). Based on the highest anti-proliferative activity nine drug candidates were further tested and proved to cause phosphatidylserine exposure as an early sign of apoptosis. Curcumin analogs with the highest apoptotic activity were selected for mechanistic studies in the most sensitive PANC-1 cells. Cytotoxic activity was accompanied by cytostatic effect since curcumin and analogs treatment led to G₀/G₁ cell cycle arrest. Moreover, cytotoxic effect could be also detected via the accumulation of curcuminoids in the endoplasmic reticulum (ER) and the up-regulation of ER stress-related unfolded protein response (UPR) genes: HSPA5 , ATF4, XBP1 , and DDIT3 . The activated UPR induced mitochondrial membrane depolarization, caspase-3 activation and subsequent DNA breakdown in PANC-1 cells. Achiral curcumin analogs, C509, C521 and C524 possessed superior, 40-times more potent cytotoxic activity compared to natural dihydroxy-dimetoxycurcumin in PANC-1 cells.

  7. The schizophrenia-associated Kv11.1-3.1 isoform results in reduced current accumulation during repetitive brief depolarizations.

    Directory of Open Access Journals (Sweden)

    Juliane Heide

    Full Text Available Recent genome wide association studies identified a brain and primate specific isoform of a voltage-gated potassium channel, referred to as Kv11.1-3.1, which is significantly associated with schizophrenia. The 3.1 isoform replaces the first 102 amino acids of the most abundant isoform (referred to as Kv11.1-1A with six unique amino acids. Here we show that the Kv11.1-3.1 isoform has faster rates of channel deactivation but a slowing of the rates of inactivation compared to the Kv11.1-1A isoform. The Kv11.1-3.1 isoform also has a significant depolarizing shift in the voltage-dependence of steady-state inactivation. The consequence of the altered gating kinetics is that there is lower current accumulation for Kv11.1-3.1 expressing cells during repetitive action potential firing compared to Kv11.1-1A expressing cells, which in turn will result in longer lasting trains of action potentials. Increased expression of Kv11.1-3.1 channels in the brain of schizophrenia patients might therefore contribute to disorganized neuronal firing.

  8. Hydrogen peroxide increases depolarization-induced contraction of mechanically skinned slow twitch fibres from rat skeletal muscles.

    Science.gov (United States)

    Plant, David R; Lynch, Gordon S; Williams, David A

    2002-03-15

    The effect of exogenous hydrogen peroxide (H(2)O(2)) on excitation-contraction (E-C) coupling and sarcoplasmic reticulum (SR) function was compared in mechanically skinned slow twitch fibres (prepared from the soleus muscles) and fast twitch fibres (prepared from the extensor digitorum longus; EDL muscles) of adult rats. Equilibration (5 min) with 1 mM H(2)O(2) diminished the ability of the Ca(2+)-depleted SR to reload Ca(2+) in both slow (P fast twitch fibres (P fast twitch fibres by 24 +/- 5 % (P slow twitch fibres. Treatment with 1 mM H(2)O(2) also increased the peak force of low [caffeine] contracture by approximately 45% in both fibre types compared to control (P slow twitch fibres, compared to control (no H(2)O(2); P fast twitch fibres was not altered by 1 mM H(2)O(2) treatment. Equilibration with 5 mM H(2)O(2) induced a spontaneous force response in both slow and fast twitch fibres, which could be partly reversed by 2 min treatment with 10 mM DTT. Peak DICR was also increased approximately 40% by 5 mM H(2)O(2) in slow twitch fibres compared to control (no H(2)O(2); P slow but not fast twitch fibres. The increase in depolarization-induced contraction in slow twitch fibres might be mediated by an increased SR Ca(2+) release during contraction and/or an increase in Ca(2+) sensitivity.

  9. Multiple relaxation processes in high-energy ion irradiated kapton-H polyimide: Thermally stimulated depolarization current study

    International Nuclear Information System (INIS)

    Garg, Maneesha; Quamara, J.K.

    2006-01-01

    High-energy ion irradiation effects on the thermally stimulated depolarization current (Tdc) behaviour of kapton-H samples (12.5 μm) irradiated with 50 MeV Li ion (fluence 5 x 10 4 , 10 5 and 5 x 10 5 ions/cm 2 ) have been investigated. The TSDC spectra of the irradiated samples reveal that the β-peak (appearing around 80-110 deg. C) associated with dipolar relaxation has been significantly affected owing to the demerization of carbonyl groups due to irradiation. The TSDC spectra also reveal a new relaxation process (termed as γ-relaxation) around 30 deg. C, due to increased water absorptivity in irradiated samples. The peak around 200 deg. C (α-peak) associated with space charge relaxation process also shows a behavioural change with ion irradiation. The peak not only shifts towards the higher temperature with increasing fluence but also show an increase in its activation energy (0.33-0.99 eV) with increasing polarizing field. The creation of new deep energy trap centers due to the formation of conjugated bonds after irradiation is responsible for this modification. The Cole-Cole distribution curves show the formation of new sub-polar group with different characteristic relaxation time

  10. Quinuclidine compounds differently act as agonists of Kenyon cell nicotinic acetylcholine receptors and induced distinct effect on insect ganglionic depolarizations.

    Science.gov (United States)

    Mathé-Allainmat, Monique; Swale, Daniel; Leray, Xavier; Benzidane, Yassine; Lebreton, Jacques; Bloomquist, Jeffrey R; Thany, Steeve H

    2013-12-01

    We have recently demonstrated that a new quinuclidine benzamide compound named LMA10203 acted as an agonist of insect nicotinic acetylcholine receptors. Its specific pharmacological profile on cockroach dorsal unpaired median neurons (DUM) helped to identify alpha-bungarotoxin-insensitive nAChR2 receptors. In the present study, we tested its effect on cockroach Kenyon cells. We found that it induced an inward current demonstrating that it bounds to nicotinic acetylcholine receptors expressed on Kenyon cells. Interestingly, LMA10203-induced currents were completely blocked by the nicotinic antagonist α-bungarotoxin. We suggested that LMA10203 effect occurred through the activation of α-bungarotoxin-sensitive receptors and did not involve α-bungarotoxin-insensitive nAChR2, previously identified in DUM neurons. In addition, we have synthesized two new compounds, LMA10210 and LMA10211, and compared their effects on Kenyon cells. These compounds were members of the 3-quinuclidinyl benzamide or benzoate families. Interestingly, 1 mM LMA10210 was not able to induce an inward current on Kenyon cells compared to LMA10211. Similarly, we did not find any significant effect of LMA10210 on cockroach ganglionic depolarization, whereas these three compounds were able to induce an effect on the central nervous system of the third instar M. domestica larvae. Our data suggested that these three compounds could bind to distinct cockroach nicotinic acetylcholine receptors.

  11. Domain wall motion and magnetization reversal processes in a FeSi picture frame single crystal studied by the time-dependent neutron depolarization technique

    International Nuclear Information System (INIS)

    Schaik, F.J. van.

    1979-01-01

    The three dimensional neutron depolarization technique, which gives detailed information about the static properties of ferromagnetic materials, has been extended to a method by means of which the time dependence of magnetic phenomena can be studied. The measurement of the neutron depolarization against time is made possible by applying a periodical magnetic field on the investigated specimen and by continuous sampling of the transmitted neutron intensity in time channels, which are started synchronously with the applied field. The technique has been used in the study of the magnetic domain structure at room temperature of a (010) [001] picture frame FeSi single crystal (3.5 wt.% Si) with outer dimensions of (15 x 10 x 0.26) mm and a frame width of 2.78 mm. (Auth.)

  12. Depolarization by K+ and glutamate activates different neurotransmitter release mechanisms in GABAergic neurons: vesicular versus non-vesicular release of GABA

    DEFF Research Database (Denmark)

    Belhage, B; Hansen, Gert Helge; Schousboe, A

    1993-01-01

    differences in the mode of action of the two depolarizing stimuli were reflected in the properties of the increase in [Ca++]i elicited by 55 mM K+ and 100 microM glutamate, respectively. The K(+)-induced increase in [Ca++]i was reduced by both verapamil and Ca(++)-free media whereas the corresponding...... neurotransmitter glutamate (100 microM). Both depolarizing stimuli exerted prompt increases in the release of preloaded [3H]GABA as well as in [Ca++]i. However, the basic properties of transmitter release and the increase in [Ca++]i under a variety of conditions were different during stimulation with K...... was also reduced by organic (verapamil) and inorganic (Co++) Ca++ channel blockers but was insensitive to the GABA transport inhibitor SKF 89976A. In contrast, the second phase was less sensitive to nocodazole and Ca++ channel antagonists but could be inhibited by SKF 89976A. The glutamate-induced [3H...

  13. Membrane depolarization increases ryanodine sensitivity to Ca2+ release to the cytosol in L6 skeletal muscle cells: Implications for excitation-contraction coupling.

    Science.gov (United States)

    Pitake, Saumitra; Ochs, Raymond S

    2016-04-01

    The dihydropyridine receptor in the plasma membrane and the ryanodine receptor in the sarcoplasmic reticulum are known to physically interact in the process of excitation-contraction coupling. However, the mechanism for subsequent Ca(2+) release through the ryanodine receptor is unknown. Our lab has previously presented evidence that the dihydropyridine receptor and ryanodine receptor combine as a channel for the entry of Ca(2+) under resting conditions, known as store operated calcium entry. Here, we provide evidence that depolarization during excitation-contraction coupling causes the dihydropyridine receptor to disengage from the ryanodine receptor. The newly freed ryanodine receptor can then transport Ca(2+) from the sarcoplasmic reticulum to the cytosol. Experimentally, this should more greatly expose the ryanodine receptor to exogenous ryanodine. To examine this hypothesis, we titrated L6 skeletal muscle cells with ryanodine in resting and excited (depolarized) states. When L6 muscle cells were depolarized with high potassium or exposed to the dihydropyridine receptor agonist BAYK-8644, known to induce dihydropyridine receptor movement within the membrane, ryanodine sensitivity was enhanced. However, ryanodine sensitivity was unaffected when Ca(2+) was elevated without depolarization by the ryanodine receptor agonist chloromethylcresol, or by increasing Ca(2+) concentration in the media. Ca(2+) entry currents (from the extracellular space) during excitation were strongly inhibited by ryanodine, but Ca(2+) entry currents in the resting state were not. We conclude that excitation releases the ryanodine receptor from occlusion by the dihydropyridine receptor, enabling Ca(2+) release from the ryanodine receptor to the cytosol. © 2015 by the Society for Experimental Biology and Medicine.

  14. Plasma membrane potential depolarization and cytosolic calcium flux are early events involved in tomato (Solanum lycopersicon) plant-to-plant communication.

    Science.gov (United States)

    Zebelo, Simon A; Matsui, Kenji; Ozawa, Rika; Maffei, Massimo E

    2012-11-01

    Tomato plants respond to herbivory by emitting volatile organic compounds (VOCs), which are released into the surrounding atmosphere. We analyzed the tomato herbivore-induced VOCs and tested the ability of tomato receiver plants to detect tomato donor volatiles by analyzing early responses, including plasma membrane potential (V(m)) variations and cytosolic calcium ([Ca²⁺](cyt)) fluxes. Receiver tomato plants responded within seconds to herbivore-induced VOCs with a strong V(m) depolarization, which was only partly recovered by fluxing receiver plants with clean air. Among emitted volatiles, we identified by GC-MS some green leaf volatiles (GLVs) such as (E)-2-hexenal, (Z)-3-hexenal, (Z)-3-hexenyl acetate, the monoterpene α-pinene, and the sesquiterpene β-caryophyllene. GLVs were found to exert the stronger V(m) depolarization, when compared to α-pinene and β-caryophyllene. Furthermore, V(m) depolarization was found to increase with increasing GLVs concentration. GLVs were also found to induce a strong [Ca²⁺](cyt) increase, particularly when (Z)-3-hexenyl acetate was tested both in solution and with a gas. On the other hand, α-pinene and β-caryophyllene, which also induced a significant V(m) depolarization with respect to controls, did not exert any significant effect on [Ca²⁺](cyt) homeostasis. Our results show for the first time that plant perception of volatile cues (especially GLVs) from the surrounding environment is mediated by early events, occurring within seconds and involving the alteration of the plasma membrane potential and the [Ca²⁺](cyt) flux. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  15. The relationship between the apparent diffusion coefficient measured by magnetic resonance imaging, anoxic depolarization, and glutamate efflux during experimental cerebral ischemia.

    Science.gov (United States)

    Harris, N G; Zilkha, E; Houseman, J; Symms, M R; Obrenovitch, T P; Williams, S R

    2000-01-01

    A reduction in the apparent diffusion coefficient (ADC) of water measured by magnetic resonance imaging (MRI) has been shown to occur early after cerebrovascular occlusion. This change may be a useful indicator of brain tissue adversely affected by inadequate blood supply. The objective of this study was to test the hypothesis that loss of membrane ion homeostasis and depolarization can occur simultaneously with the drop in ADC. Also investigated was whether elevation of extracellular glutamate ([GLU]e) would occur before ADC changes. High-speed MRI of the trace of the diffusion tensor (15-second time resolution) was combined with simultaneous recording of the extracellular direct current (DC) potential and on-line [GLU]e from the striatum of the anesthetized rat. After a control period, data were acquired during remote middle cerebral artery occlusion for 60 minutes, followed by 30 minutes of reperfusion, and cardiac arrest-induced global ischemia. After either focal or global ischemia, the ADC was reduced by 10 to 25% before anoxic depolarization occurred. After either insult, the time for half the maximum change in ADC was significantly shorter than the corresponding DC potential parameter (P potential and did not peak until much later after either ischemic insult. This study demonstrates that ADC changes can occur before membrane depolarization and that high [GLU]e has no involvement in the early rapid ADC decrease.

  16. Depolarization of the conductance-voltage relationship in the NaV1.5 mutant, E1784K, is due to altered fast inactivation

    Science.gov (United States)

    Yu, Alec; Zhu, Wandi; Silva, Jonathan R.; Ruben, Peter C.

    2017-01-01

    E1784K is the most common mixed long QT syndrome/Brugada syndrome mutant in the cardiac voltage-gated sodium channel NaV1.5. E1784K shifts the midpoint of the channel conductance-voltage relationship to more depolarized membrane potentials and accelerates the rate of channel fast inactivation. The depolarizing shift in the midpoint of the conductance curve in E1784K is exacerbated by low extracellular pH. We tested whether the E1784K mutant shifts the channel conductance curve to more depolarized membrane potentials by affecting the channel voltage-sensors. We measured ionic currents and gating currents at pH 7.4 and pH 6.0 in Xenopus laevis oocytes. Contrary to our expectation, the movement of gating charges is shifted to more hyperpolarized membrane potentials by E1784K. Voltage-clamp fluorimetry experiments show that this gating charge shift is due to the movement of the DIVS4 voltage-sensor being shifted to more hyperpolarized membrane potentials. Using a model and experiments on fast inactivation-deficient channels, we show that changes to the rate and voltage-dependence of fast inactivation are sufficient to shift the conductance curve in E1784K. Our results localize the effects of E1784K to DIVS4, and provide novel insight into the role of the DIV-VSD in regulating the voltage-dependencies of activation and fast inactivation. PMID:28898267

  17. Measurement of the depolarization in the elastic proton scattering on 1H, 27Al, and 89Y in the low energy range

    International Nuclear Information System (INIS)

    Schmitt, R.

    1986-01-01

    With the Erlangen QDQ magnetic spectrometer angular distributions of the depolarization in the elastic scattering of protons on 27 Al, 89 Y at 11 MeV and 1 H at 12 MeV were measured. The evaluation was performed for yttrium and aluminium by adding of additional terms in the optical model which regard the spin-spin interaction. The optical-model parameter without spin-spin potentials were stated by measurements of the cross section and the analyzing power in the 4π scattering chamber in Erlangen at several energies. The calculation of the depolarization which emerges because of the spin-spin interaction was performed by means of DWBA. The depolarization of the proton-proton scattering was evaluated by scattering-phase analysis. The fits were thereby performed on analyzing-power data. The electrical P-wave scattering phases resulted to δ 10 = 4.442±0.121, δ 11 = -2.515±0.026, and δ 12 = 0.937±0.038 (all in degrees). (orig./HSI) [de

  18. Depolarization of the conductance-voltage relationship in the NaV1.5 mutant, E1784K, is due to altered fast inactivation.

    Directory of Open Access Journals (Sweden)

    Colin H Peters

    Full Text Available E1784K is the most common mixed long QT syndrome/Brugada syndrome mutant in the cardiac voltage-gated sodium channel NaV1.5. E1784K shifts the midpoint of the channel conductance-voltage relationship to more depolarized membrane potentials and accelerates the rate of channel fast inactivation. The depolarizing shift in the midpoint of the conductance curve in E1784K is exacerbated by low extracellular pH. We tested whether the E1784K mutant shifts the channel conductance curve to more depolarized membrane potentials by affecting the channel voltage-sensors. We measured ionic currents and gating currents at pH 7.4 and pH 6.0 in Xenopus laevis oocytes. Contrary to our expectation, the movement of gating charges is shifted to more hyperpolarized membrane potentials by E1784K. Voltage-clamp fluorimetry experiments show that this gating charge shift is due to the movement of the DIVS4 voltage-sensor being shifted to more hyperpolarized membrane potentials. Using a model and experiments on fast inactivation-deficient channels, we show that changes to the rate and voltage-dependence of fast inactivation are sufficient to shift the conductance curve in E1784K. Our results localize the effects of E1784K to DIVS4, and provide novel insight into the role of the DIV-VSD in regulating the voltage-dependencies of activation and fast inactivation.

  19. Therapeutic Targeting of the Mitochondria Initiates Excessive Superoxide Production and Mitochondrial Depolarization Causing Decreased mtDNA Integrity.

    Science.gov (United States)

    Pokrzywinski, Kaytee L; Biel, Thomas G; Kryndushkin, Dmitry; Rao, V Ashutosh

    2016-01-01

    Mitochondrial dysregulation is closely associated with excessive reactive oxygen species (ROS) production. Altered redox homeostasis has been implicated in the onset of several diseases including cancer. Mitochondrial DNA (mtDNA) and proteins are particularly sensitive to ROS as they are in close proximity to the respiratory chain (RC). Mitoquinone (MitoQ), a mitochondria-targeted redox agent, selectively damages breast cancer cells possibly through damage induced via enhanced ROS production. However, the effects of MitoQ and other triphenylphosphonium (TPP+) conjugated agents on cancer mitochondrial homeostasis remain unknown. The primary objective of this study was to determine the impact of mitochondria-targeted agent [(MTAs) conjugated to TPP+: mitoTEMPOL, mitoquinone and mitochromanol-acetate] on mitochondrial physiology and mtDNA integrity in breast (MDA-MB-231) and lung (H23) cancer cells. The integrity of the mtDNA was assessed by quantifying the degree of mtDNA fragmentation and copy number, as well as by measuring mitochondrial proteins essential to mtDNA stability and maintenance (TFAM, SSBP1, TWINKLE, POLG and POLRMT). Mitochondrial status was evaluated by measuring superoxide production, mitochondrial membrane depolarization, oxygen consumption, extracellular acidification and mRNA or protein levels of the RC complexes along with TCA cycle activity. In this study, we demonstrated that all investigated MTAs impair mitochondrial health and decrease mtDNA integrity in MDA-MB-231 and H23 cells. However, differences in the degree of mitochondrial damage and mtDNA degradation suggest unique properties among each MTA that may be cell line, dose and time dependent. Collectively, our study indicates the potential for TPP+ conjugated molecules to impair breast and lung cancer cells by targeting mitochondrial homeostasis.

  20. Imaging rapid redistribution of sensory-evoked depolarization through existing cortical pathways after targeted stroke in mice.

    Science.gov (United States)

    Sigler, Albrecht; Mohajerani, Majid H; Murphy, Timothy H

    2009-07-14

    Evidence suggests that recovery from stroke damage results from the production of new synaptic pathways within surviving brain regions over weeks. To address whether brain function might redistribute more rapidly through preexisting pathways, we examined patterns of sensory-evoked depolarization in mouse somatosensory cortex within hours after targeted stroke to a subset of the forelimb sensory map. Brain activity was mapped with voltage-sensitive dye imaging allowing millisecond time resolution over 9 mm(2) of brain. Before targeted stroke, we report rapid activation of the forelimb area within 10 ms of contralateral forelimb stimulation and more delayed activation of related areas of cortex such as the hindlimb sensory and motor cortices. After stroke to a subset of the forelimb somatosensory cortex map, function was lost in ischemic areas within the forelimb map center, but maintained in regions 200-500 microm blood flow deficits indicating the size of a perfused, but nonfunctional, penumbra. In many cases, stroke led to only partial loss of the forelimb map, indicating that a subset of a somatosensory domain can function on its own. Within the forelimb map spared by stroke, forelimb-stimulated responses became delayed in kinetics, and their center of activity shifted into adjacent hindlimb and posterior-lateral sensory areas. We conclude that the focus of forelimb-specific somatosensory cortex activity can be rapidly redistributed after ischemic damage. Given that redistribution occurs within an hour, the effect is likely to involve surviving accessory pathways and could potentially contribute to rapid behavioral compensation or direct future circuit rewiring.

  1. Efficacy of slightly acidic electrolyzed water in killing or reducing Escherichia coli O157:H7 on iceberg lettuce and tomatoes under simulated food service operation conditions.

    Science.gov (United States)

    Pangloli, Philipus; Hung, Yen-Con

    2011-08-01

    The objective of this study was to evaluate the efficacy of slightly acidic electrolyzed (SAEO) water in killing or removing Escherichia coli O157:H7 on iceberg lettuce and tomatoes by washing and chilling treatment simulating protocols used in food service kitchens. Whole lettuce leaves and tomatoes were spot-inoculated with 100 μL of a mixture of 5 strains of E. coli O157:H7. Washing lettuce with SAEO water for 15 s reduced the pathogen by 1.4 to 1.6 log CFU/leaf, but the treatments did not completely inactivate the pathogen in the wash solution. Increasing the washing time to 30 s increased the reductions to 1.7 to 2.3 log CFU/leaf. Sequential washing in SAEO water for 15 s and then chilling in SAEO water for 15 min also increased the reductions to 2.0 to 2.4 log CFU/leaf, and no cell survived in chilling solution after treatment. Washing tomatoes with SAEO water for 8 s reduced E. coli O157:H7 by 5.4 to 6.3 log CFU/tomato. The reductions were increased to 6.6 to 7.6 log CFU/tomato by increasing the washing time to 15 s. Results suggested that application of SAEO water to wash and chill lettuce and tomatoes in food service kitchens could minimize cross-contamination and reduce the risk of E. coli O157:H7 present on the produce. SAEO water is equally or slightly better than acidic electrolyzed (AEO) water for inactivation of bacteria on lettuce and tomato surfaces. In addition, SAEO water may have the advantages over AEO water on its stability, no chlorine smell, and low corrosiveness. Therefore, SAEO water may have potential for produce wash to enhance food safety. © 2011 Institute of Food Technologists®

  2. Depolarization ratio of polar stratospheric clouds in coastal Antarctica: comparison analysis between ground-based Micro Pulse Lidar and space-borne CALIOP observations

    Directory of Open Access Journals (Sweden)

    C. Córdoba-Jabonero

    2013-03-01

    Full Text Available Polar stratospheric clouds (PSCs play an important role in polar ozone depletion, since they are involved in diverse ozone destruction processes (chlorine activation, denitrification. The degree of that ozone reduction is depending on the type of PSCs, and hence on their occurrence. Therefore PSC characterization, mainly focused on PSC-type discrimination, is widely demanded. The backscattering (R and volume linear depolarization (δV ratios are the parameters usually used in lidar measurements for PSC detection and identification. In this work, an improved version of the standard NASA/Micro Pulse Lidar (MPL-4, which includes a built-in depolarization detection module, has been used for PSC observations above the coastal Antarctic Belgrano II station (Argentina, 77.9° S 34.6° W, 256 m a.s.l. since 2009. Examination of the MPL-4 δV feature as a suitable index for PSC-type discrimination is based on the analysis of the two-channel data, i.e., the parallel (p- and perpendicular (s- polarized MPL signals. This study focuses on the comparison of coincident δV-profiles as obtained from ground-based MPL-4 measurements during three Antarctic winters with those reported from the space-borne lidar CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization aboard the CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation satellite in the same period (83 simultaneous cases are analysed for 2009–2011 austral winter times. Three different approaches are considered for the comparison analysis between both lidar profile data sets in order to test the degree of agreement: the correlation coefficient (CC, as a measure of the relationship between both PSC vertical structures; the mean differences together with their root mean square (RMS values found between data sets; and the percentage differences (BIAS, parameter also used in profiling comparisons between CALIOP and other ground-based lidar systems. All of them are examined as a function

  3. β-Hydroxybutyrate is the preferred substrate for GABA and glutamate synthesis while glucose is indispensable during depolarization in cultured GABAergic neurons.

    Science.gov (United States)

    Lund, Trine M; Obel, Linea F; Risa, Øystein; Sonnewald, Ursula

    2011-08-01

    The ketogenic diet has multiple beneficial effects not only in treatment of epilepsy, but also in that of glucose transporter 1 deficiency, cancer, Parkinson's disease, obesity and pain. Thus, there is an increasing interest in understanding the mechanism behind this metabolic therapy. Patients on a ketogenic diet reach high plasma levels of ketone bodies, which are used by the brain as energy substrates. The interaction between glucose and ketone bodies is complex and there is still controversy as to what extent it affects the homeostasis of the neurotransmitters glutamate, aspartate and GABA. The present study was conducted to study this metabolic interaction in cultured GABAergic neurons exposed to different combinations of (13)C-labeled and unlabeled glucose and β-hydroxybutyrate. Depolarization was induced and the incorporation of (13)C into glutamate, GABA and aspartate was analyzed. The presence of β-hydroxybutyrate together with glucose did not affect the total GABA content but did, however, decrease the aspartate content to a lower value than when either glucose or β-hydroxybutyrate was employed alone. When combinations of the two substrates were used (13)C-atoms from β-hydroxybutyrate were found in all three amino acids to a greater extent than (13)C-atoms from glucose, but only the (13)C contribution from [1,6-(13)C]glucose increased upon depolarization. In conclusion, β-hydroxybutyrate was preferred over glucose as substrate for amino acid synthesis but the total content of aspartate decreased when both substrates were present. Furthermore only the use of glucose increased upon depolarization. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Real-time optical diagnosis of the rat brain exposed to a laser-induced shock wave: observation of spreading depolarization, vasoconstriction and hypoxemia-oligemia.

    Directory of Open Access Journals (Sweden)

    Shunichi Sato

    Full Text Available Despite many efforts, the pathophysiology and mechanism of blast-induced traumatic brain injury (bTBI have not yet been elucidated, partially due to the difficulty of real-time diagnosis and extremely complex factors determining the outcome. In this study, we topically applied a laser-induced shock wave (LISW to the rat brain through the skull, for which real-time measurements of optical diffuse reflectance and electroencephalogram (EEG were performed. Even under conditions showing no clear changes in systemic physiological parameters, the brain showed a drastic light scattering change accompanied by EEG suppression, which indicated the occurrence of spreading depression, long-lasting hypoxemia and signal change indicating mitochondrial energy impairment. Under the standard LISW conditions examined, hemorrhage and contusion were not apparent in the cortex. To investigate events associated with spreading depression, measurement of direct current (DC potential, light scattering imaging and stereomicroscopic observation of blood vessels were also conducted for the brain. After LISW application, we observed a distinct negative shift in the DC potential, which temporally coincided with the transit of a light scattering wave, showing the occurrence of spreading depolarization and concomitant change in light scattering. Blood vessels in the brain surface initially showed vasodilatation for 3-4 min, which was followed by long-lasting vasoconstriction, corresponding to hypoxemia. Computer simulation based on the inverse Monte Carlo method showed that hemoglobin oxygen saturation declined to as low as ∼35% in the long-term hypoxemic phase. Overall, we found that topical application of a shock wave to the brain caused spreading depolarization/depression and prolonged severe hypoxemia-oligemia, which might lead to pathological conditions in the brain. Although further study is needed, our findings suggest that spreading depolarization/depression is one of

  5. Measurement of the depolarization of the reaction 27Al (p vector, p vector.) 27Al for the study of the spin-spin potential

    International Nuclear Information System (INIS)

    Loeh, H.

    1981-01-01

    For the study of the spin-spin interactions in the optical potential the depolarization in the elastic scattering of polarized protons was measured. The double-scattering experiments were performed in the angular range 40 0 -110 0 at an incident energy of 10.35 MeV at the Erlangen QD magnetic spectrometer. The determination of the optical model parameters independent from the spin-spin potentials resulted by the fit of those to the observables and sigmasup(di). These were obtained from a measurement of the angular distribution of the analyzing power and the differential cross section in the 4π-scattering chamber for the reaction 27 Al (p vector,psub(o)) at the same energy. The compound contributions present at this energy, which can also influence the depolarization, were regarded by the calculation of the compound-elastic non-spin-flip respectively spin-flip subcross sections by means of the formalism of Hofmann, Richard, Tepel, and Weidenmueller. Because of the target nucleus 27 Al posesses in the ground state a spin I=5/2 also the possible quadrupole spin flip had to be included in the analysis. This was performed by coupled channel calculations. The depolarization data corrected according to compound contributions and quadrupole effects could now be applied to the study of the spin-spin potentials by means of DWBA calculations. As result it turned out that for the description of the experimental data a spherical spin-spin potential of the strength Vsub(SS)=1.5+-0.3 MeV had to be assumed. For the addition of a tensor term however no necessity resulted. (orig.) [de

  6. Biophysical Insights into How Spike Threshold Depends on the Rate of Membrane Potential Depolarization in Type I and Type II Neurons.

    Directory of Open Access Journals (Sweden)

    Guo-Sheng Yi

    Full Text Available Dynamic spike threshold plays a critical role in neuronal input-output relations. In many neurons, the threshold potential depends on the rate of membrane potential depolarization (dV/dt preceding a spike. There are two basic classes of neural excitability, i.e., Type I and Type II, according to input-output properties. Although the dynamical and biophysical basis of their spike initiation has been established, the spike threshold dynamic for each cell type has not been well described. Here, we use a biophysical model to investigate how spike threshold depends on dV/dt in two types of neuron. It is observed that Type II spike threshold is more depolarized and more sensitive to dV/dt than Type I. With phase plane analysis, we show that each threshold dynamic arises from the different separatrix and K+ current kinetics. By analyzing subthreshold properties of membrane currents, we find the activation of hyperpolarizing current prior to spike initiation is a major factor that regulates the threshold dynamics. The outward K+ current in Type I neuron does not activate at the perithresholds, which makes its spike threshold insensitive to dV/dt. The Type II K+ current activates prior to spike initiation and there is a large net hyperpolarizing current at the perithresholds, which results in a depolarized threshold as well as a pronounced threshold dynamic. These predictions are further attested in several other functionally equivalent cases of neural excitability. Our study provides a fundamental description about how intrinsic biophysical properties contribute to the threshold dynamics in Type I and Type II neurons, which could decipher their significant functions in neural coding.

  7. Near-infrared diffuse reflectance imaging of infarct core and peri-infarct depolarization in a rat middle cerebral artery occlusion model

    Science.gov (United States)

    Kawauchi, Satoko; Nishidate, Izumi; Nawashiro, Hiroshi; Sato, Shunichi

    2014-03-01

    To understand the pathophysiology of ischemic stroke, in vivo imaging of the brain tissue viability and related spreading depolarization is crucial. In the infarct core, impairment of energy metabolism causes anoxic depolarization (AD), which considerably increases energy consumption, accelerating irreversible neuronal damage. In the peri-infarct penumbra region, where tissue is still reversible despite limited blood flow, peri-infarct depolarization (PID) occurs, exacerbating energy deficit and hence expanding the infarct area. We previously showed that light-scattering signal, which is sensitive to cellular/subcellular structural integrity, was correlated with AD and brain tissue viability in a rat hypoxia-reoxygenation model. In the present study, we performed transcranial NIR diffuse reflectance imaging of the rat brain during middle cerebral artery (MCA) occlusion and examined whether the infarct core and PIDs can be detected. Immediately after occluding the left MCA, light scattering started to increase focally in the occlusion site and a bright region was generated near the occlusion site and spread over the left entire cortex, which was followed by a dark region, showing the occurrence of PID. The PID was generated repetitively and the number of times of occurrence in a rat ranged from four to ten within 1 hour after occlusion (n=4). The scattering increase in the occlusion site was irreversible and the area with increased scattering expanded with increasing the number of PIDs, indicating an expansion of the infarct core. These results suggest the usefulness of NIR diffuse reflectance signal to visualize spatiotemporal changes in the infarct area and PIDs.

  8. Glucose stimulates neurotensin secretion from the rat small intestine by mechanisms involving SGLT1 and GLUT2 leading to cell depolarization and calcium influx

    DEFF Research Database (Denmark)

    Kuhre, Rune Ehrenreich; Bechmann, Louise Ellegaard; Hartmann, Bolette

    2015-01-01

    of secretion. Luminal glucose (20% wt/vol) stimulated secretion but vascular glucose (5, 10, or 15 mmol/l) was without effect. The underlying mechanisms depend on membrane depolarization and calcium influx, since the voltage-gated calcium channel inhibitor nifedipine and the KATP channel opener diazoxide......, suggesting that glucose stimulates secretion by initial uptake by this transporter. However, secretion was also sensitive to GLUT2 inhibition (by phloretin) and blockage of oxidative phosphorylation (2-4-dinitrophenol). Direct KATP channel closure by sulfonylureas stimulated secretion. Therefore, glucose...

  9. A neutron depolarization study of magnetic inhomogeneities in weak-link superconductors. Issledovanie magnitnykh neodnorodnostej v sverkhprovodnikakh so slabymi svyazyami metodom depolyarizatsii nejtronov

    Energy Technology Data Exchange (ETDEWEB)

    Zhuchenko, N K; Yagud, R Z [AN SSSR, Leningrad (Russian Federation). Inst. Yadernoj Fiziki

    1993-09-01

    Neutron depolarization measurements in the mixed state of both high-T[sub c] and low-T[sub c] weak-link superconductors have been carried out. Samples of YBCO, BSCCO, SnMo[sub 6]S[sub 8] and 0.5 Nb-0.5 Ti of different magnetic prehistory were analyzed at temperatures T 4.2 K under applied magnetic fields II <= 16.5 kOe. We ascribe the appearance of magnetic inhomogeneities and their hysteresis behaviour to the interaction between dipole magnetic fields (diamagnetic and paramagnetic ones) and applied magnetic fields.

  10. Elevated hydrostatic pressures induce apoptosis and oxidative stress through mitochondrial membrane depolarization in PC12 neuronal cells: A cell culture model of glaucoma.

    Science.gov (United States)

    Tök, Levent; Nazıroğlu, Mustafa; Uğuz, Abdülhadi Cihangir; Tök, Ozlem

    2014-10-01

    Despite the importance of oxidative stress and apoptosis through mitochondrial depolarization in neurodegenerative diseases, their roles in etiology of glaucoma are poorly understood. We aimed to investigate whether oxidative stress and apoptosis formation are altered in rat pheochromocytoma-derived cell line-12 (PC12) neuronal cell cultures exposed to elevated different hydrostatic pressures as a cell culture model of glaucoma. Cultured PC12 cells were subjected to 0, 15 and 70 mmHg hydrostatic pressure for 1 and 24 h. Then, the following values were analyzed: (a) cell viability; (b) lipid peroxidation and intracellular reactive oxygen species production; (c) mitochondrial membrane depolarization; (d) cell apoptosis; (e) caspase-3 and caspase-9 activities; (f) reduced glutathione (GSH) and glutathione peroxidase (GSH-Px). The hydrostatic pressures (15 and 70 mmHg) increased oxidative cell damage through a decrease of GSH and GSH-Px values, and increasing mitochondrial membrane potential. Additionally, 70 mmHg hydrostatic pressure for 24 h indicated highest apoptotic effects, as demonstrated by plate reader analyses of apoptosis, caspase-3 and -9 values. The present data indicated oxidative stress, apoptosis and mitochondrial changes in PC12 cell line during different hydrostatic pressure as a cell culture model of glaucoma. This findings support the view that mitochondrial oxidative injury contributes early to glaucomatous optic neuropathy.

  11. Primary afferent depolarization and changes in extracellular potassium concentration induced by L-glutamate and L-proline in the isolated spinal cord of the frog.

    Science.gov (United States)

    Vyklický, L; Vyskocil, F; Kolaj, M; Jastreboff, P

    1982-10-08

    To test the hypothesis that L-proline acts as an antagonist on glutamate receptors [17, 18], the interaction between L-glutamate and L-proline was studied in the isolated spinal cord of the frog. Glutamate at concentrations of 10(-6) -5 x 10(-3) mol/l depolarized the primary afferent fibres and increased extracellular potassium concentration, [K+]e, by 0.3-4 mmol/l. Repeated applications lead to inactivation of the response. L-Proline at 5 x 10(-3) -10(-2) mol/l, also depolarized the primary afferents and increased [K+]e by 0.5-2 mmol/l, but there was only a slight decrease of the effects after repeated application. The effects were additive when the amino acids were applied simultaneously. The effect of L-proline was still present when it was applied during inactivation of the glutamate receptors. This suggests that L-glutamate and L-proline act on different receptors.

  12. Oxygen and Glucose Deprivation Induces Bergmann Glia Membrane Depolarization and Ca2+ Rises Mainly Mediated by K+ and ATP Increases in the Extracellular Space

    Directory of Open Access Journals (Sweden)

    Romain Helleringer

    2017-11-01

    Full Text Available During brain ischemia, intense energy deficiency induces a complex succession of events including pump failure, acidosis and exacerbated glutamate release. In the cerebellum, glutamate is the principal mediator of Purkinje neuron anoxic depolarization during episodes of oxygen and glucose deprivation (OGD. Here, the impact of OGD is studied in Bergmann glia, specialized astrocytes closely associated to Purkinje neurons. Patch clamp experiments reveal that during OGD Bergmann glial cells develop a large depolarizing current that is not mediated by glutamate and purinergic receptors but is mainly due to the accumulation of K+ in the extracellular space. Furthermore, we also found that increases in the intracellular Ca2+ concentration appear in Bergmann glia processes several minutes following OGD. These elevations require, in an early phase, Ca2+ mobilization from internal stores via P2Y receptor activation, and, over longer periods, Ca2+ entry through store-operated calcium channels. Our results suggest that increases of K+ and ATP concentrations in the extracellular space are primordial mediators of the OGD effects on Bergmann glia. In the cerebellum, glial responses to energy deprivation-triggering events are therefore highly likely to follow largely distinct rules from those of their neuronal counterparts.

  13. Quantitative immuno-electron microscopic analysis of depolarization-induced expression of PGC-1alpha in cultured rat visual cortical neurons.

    Science.gov (United States)

    Meng, Hui; Liang, Huan Ling; Wong-Riley, Margaret

    2007-10-17

    Peroxisome proliferator-activated receptor-gamma coactivator 1alpha (PGC- 1alpha) is a coactivator of nuclear receptors and other transcription factors that regulate several metabolic processes, including mitochondrial biogenesis, energy homeostasis, respiration, and gluconeogenesis. PGC-1alpha plays a vital role in stimulating genes that are important to oxidative metabolism and other mitochondrial functions in brown adipose tissue and skeleton muscles, but the significance of PGC-1alpha in the brain remains elusive. The goal of our present study was to determine by means of quantitative immuno-electron microscopy the expression of PGC-1alpha in cultured rat visual cortical neurons under normal conditions as well as after depolarizing stimulation for varying periods of time. Our results showed that: (a) PGC-1alpha was normally located in both the nucleus and the cytoplasm. In the nucleus, PGC-1alpha was associated mainly with euchromatin rather than heterochromatin, consistent with active involvement in transcription. In the cytoplasm, it was associated mainly with free ribosomes. (b) Neuronal depolarization by KCl for 0.5 h induced a significant increase in PGC-1alpha labeling density in both the nucleus and the cytoplasm (Pneuronal activity by synthesizing more proteins in the cytoplasm and translocating them to the nucleus for gene activation. PGC-1alpha level in neurons is, therefore, tightly regulated by neuronal activity.

  14. Efficacy of Neutral pH Electrolyzed Water in Reducing Escherichia coli O157:H7 and Salmonella Typhimurium DT 104 on Fresh Produce Items using an Automated Washer at Simulated Food Service Conditions.

    Science.gov (United States)

    Afari, George K; Hung, Yen-Con; King, Christopher H

    2015-08-01

    The objective of this study was to determine the efficacy of neutral pH electrolyzed (NEO) water (155 mg/L free chlorine, pH 7.5) in reducing Escherichia coli O157:H7 and Salmonella Typhimurium DT 104 on romaine lettuce, iceberg lettuce, and tomatoes washed in an automated produce washer for different times and washing speeds. Tomatoes and lettuce leaves were spot inoculated with 100 μL of a 5 strain cocktail mixture of either pathogen and washed with 10 or 8 L of NEO water, respectively. Washing lettuce for 30 min at 65 rpm led to the greatest reductions, with 4.2 and 5.9 log CFU/g reductions achieved for E. coli O157:H7 and S. Typhimurium respectively on romaine, whereas iceberg lettuce reductions were 3.2 and 4.6 log CFU/g for E. coli O157:H7 and S. Typhimurium respectively. Washing tomatoes for 10 min at 65 rpm achieved reductions greater than 8 and 6 log CFU/tomato on S. Typhimurium and E. coli O157:H7 respectively. All pathogens were completely inactivated in NEO water wash solutions. No detrimental effects on the visual quality of the produce studied were observed under all treatment conditions. Results show the adoption of this washing procedure in food service operations could be useful in ensuring produce safety. © 2015 Institute of Food Technologists®

  15. Coulometric titrations of bases in propylene carbonate and g-butyrolactone using hydroquinone as the depolarizer and a quinhydrone indicator electrode

    Directory of Open Access Journals (Sweden)

    Z. D. STANIC

    2000-08-01

    Full Text Available The application of hydroquinone for the coulometric generation of hydrogen ions in propylene carbonate (PC and g-butyrolactone (GBL is described. The current-potential curves recorded for theid sepolarizer, titrated bases, indicator and the solvents used showed that the investigated depolarizer is oxidized at lower potentials than the oxidation potentials of other components in the solution. the hydrogen ions generated by the oxidation of hydroquinone were used for the titration of organic bases (triethylamine, n-butylamine, pyridine, quinoline, aniline, N,N’-diphenylguanidine, piperidine, and 2,2’-bipiridine in PC and GBL with visual (Crystal Violet as indicator and potentiometric end-point detection using a quinhydrone electrode as the indicator electrode. The quinhydrone added to the to be analyzed solution served both as a source of hydrogen ions and, together with the immersed platinum electrode, as a quinhydrone electrode. The relative error of the determination of the bases was about 1 %.

  16. The free radical spin-trap alpha-PBN attenuates periinfarct depolarizations following permanent middle cerebral artery occlusion in rats without reducing infarct volume

    DEFF Research Database (Denmark)

    Christensen, Thomas; Bruhn, Torben; Diemer, Nils Henrik

    2003-01-01

    (control: 28.3+/-16.3 mm3 vs. alpha-PBN 23.7+/-7.4 mm3). In the second series of experiments, periinfarct depolarizations (PIDs) were recorded with an extracellular DC electrode at two locations in the ischemic penumbra for the initial 3 h following MCAO. alpha-PBN (100 mg/kg, single dose in conjunction...... with occlusion) significantly reduced the total number (median value of 3 PIDs in the control groups vs. 1 PID in alpha-PBN groups, p...... with a single dose of alpha-PBN (100 mg/kg) or saline. Body temperature was measured and controlled for the first 24 h to obtain identical temperature curves in the two groups. Cortical infarct volumes were determined on histological sections 7 days later. alpha-PBN did not significantly reduce infarct volume...

  17. Thermally stimulated depolarization currents and dielectric properties of Mg0.95Ca0.05TiO3 filled HDPE composites

    Science.gov (United States)

    Shi, Yunzhou; Zhang, Li; Zhang, Jie; Yue, Zhenxing

    2017-12-01

    Mg0.95Ca0.05TiO3 (MCT) filled high density polyethylene (HDPE) composites were prepared by twin-screw extrusion followed by hot pressing technique. The thermally stimulated depolarization current (TSDC) measurement was performed to analyze the contribution of charge distribution and interfacial characteristics to the dielectric loss. TSDC spectra under different polarization conditions show that the introduction of ceramic fillers engenders shallow traps in the vicinity of ceramic-polymer interface, which hinders the injection of space charge from the electrode into the polymer matrix. In the composite materials applied to an external field, charges tend to be captured by these traps. The temperature dependence of relative permittivity and dielectric loss of the composites was measured, and a strong reliance of dielectric loss on temperature was observed. In the heating process, the release of charges accumulating at interfacial region is considered to contribute to the rise in dielectric loss with the increase of temperature.

  18. Depolarization of sperm membrane potential is a common feature of men with subfertility and is associated with low fertilization rate at IVF.

    Science.gov (United States)

    Brown, Sean G; Publicover, Stephen J; Mansell, Steven A; Lishko, Polina V; Williams, Hannah L; Ramalingam, Mythili; Wilson, Stuart M; Barratt, Christopher L R; Sutton, Keith A; Da Silva, Sarah Martins

    2016-06-01

    Are significant abnormalities in outward (K(+)) conductance and resting membrane potential (Vm) present in the spermatozoa of patients undertaking IVF and ICSI and if so, what is their functional effect on fertilization success? Negligible outward conductance (≈5% of patients) or an enhanced inward conductance (≈4% of patients), both of which caused depolarization of Vm, were associated with a low rate of fertilization following IVF. Sperm-specific potassium channel knockout mice are infertile with defects in sperm function, suggesting that these channels are essential for fertility. These observations suggest that malfunction of K(+) channels in human spermatozoa might contribute significantly to the occurrence of subfertility in men. However, remarkably little is known of the nature of K(+) channels in human spermatozoa or the incidence and functional consequences of K(+) channel defects. Spermatozoa were obtained from healthy volunteer research donors and subfertile IVF and ICSI patients attending a hospital assisted reproductive techniques clinic between May 2013 and December 2015. In total, 40 IVF patients, 41 ICSI patients and 26 normozoospermic donors took part in the study. Samples were examined using electrophysiology (whole-cell patch clamping). Where abnormal electrophysiological characteristics were identified, spermatozoa were further examined for Ca(2+) influx induced by progesterone and penetration into viscous media if sufficient sample was available. Full exome sequencing was performed to specifically evaluate potassium calcium-activated channel subfamily M α 1 (KCNMA1), potassium calcium-activated channel subfamily U member 1 (KCNU1) and leucine-rich repeat containing 52 (LRRC52) genes and others associated with K(+) signalling. In IVF patients, comparison with fertilization rates was done to assess the functional significance of the electrophysiological abnormalities. Patch clamp electrophysiology was used to assess outward (K

  19. Induction of necrosis and apoptosis to KB cancer cells by sanguinarine is associated with reactive oxygen species production and mitochondrial membrane depolarization

    International Nuclear Information System (INIS)

    Chang, M.-C.; Chan, C.-P.; Wang, Y.-J.; Lee, P.-H.; Chen, L.-I; Tsai, Y.-L.; Lin, B.-R.; Wang, Y.-L.; Jeng, J.-H.

    2007-01-01

    Sanguinarine is a benzopheanthridine alkaloid present in the root of Sanguinaria canadensis L. and Chellidonium majus L. In this study, sanguinarine (2 and 3 μM) exhibited cytotoxicity to KB cancer cells by decreasing MTT reduction to 83% and 52% of control after 24-h of exposure. Sanguinarine also inhibited the colony forming capacity (> 52-58%) and growth of KB cancer cells at concentrations higher than 0.5-1 μM. Short-term exposure to sanguinarine (> 0.5 μM) effectively suppressed the adhesion of KB cells to collagen and fibronectin (FN). Sanguinarine (2 and 3 μM) induced evident apoptosis as indicated by an increase in sub-G0/G1 populations, which was detected after 6-h of exposure. Only a slight increase in cells arresting in S-phase and G2/M was noted. Induction of KB cell apoptosis and necrosis by sanguinarine (2 and 3 μM) was further confirmed by Annexin V-PI dual staining flow cytometry and the presence of DNA fragmentation. The cytotoxicity by sanguinarine was accompanied by an increase in production of reactive oxygen species (ROS) and depolarization of mitochondrial membrane potential as indicated by single cell flow cytometric analysis of DCF and rhodamine fluorescence. NAC (1 and 3 mM) and catalase (2000 U/ml) prevented the sanguinarine-induced ROS production and cytotoxicity, whereas dimethylthiourea (DMT) showed no marked preventive effect. These results suggest that sanguinarine has anticarcinogenic properties with induction of ROS production and mitochondrial membrane depolarization, which mediate cancer cell death

  20. Measurement of the depolarization of the reaction 27Al(p vector,p vector.)27Al for the study of the spin-spin potential

    International Nuclear Information System (INIS)

    Loeh, H.

    1981-01-01

    For the study of the spin-spin interaction in the optical potential the depolarisation in the elastic scattering of polarized protons was measured. The double-scattering experiments were performed in the angular range 40 0 -110 0 at an incident energy of 10.35 MeV at the Erlangen QD-magnetic spectrometer. The determination of the optical model parameters independent from the spin-spin potentials was performed by the fitting of these to the observables and sigmasup(di). These were obtained from a measurement of the angular distribution of the analyzing power and the differential cross section in the 4π-scattering chamber for the reaction 27 Al(p vector,p 0 ) at the same energy. The compound contributions present at this energy, which can also influence the depolarization, were regarded by the calculation of the compound-elastic non-spin-flip respectively spin-flip subcross sections by means of the formalism of Hofmann, Richert, Tepel and Weidenmueller. Because the target nucleus 27 Al possesses in the ground state a spin I=5/2, also the possible quadrupole spin flip had to be included. This was performed by coupled-channel calculations. The respecting compound contributions and quadrupole effects corrected depolarization data could by used for the study of the spin-spin potentials by means of DWBA calculations. As result it was shown that for the description of the experimental data a spherical spin-spin potential of the strength Vsub(SS)=1.5+-0.3 MeV had to be assumed. (orig.) [de

  1. Characterization of depolarization-coupled release of glutamate from cultured mouse cerebellar granule cells using DL-threo-beta-benzyloxyaspartate (DL-TBOA) to distinguish between the vesicular and cytoplasmic pools

    DEFF Research Database (Denmark)

    Bak, Lasse K; Schousboe, Arne; Waagepetersen, Helle S

    2003-01-01

    Release of preloaded [3H]D-aspartate in response to depolarization induced by N-methyl-D-aspartate (NMDA) or the endogenous agonist glutamate was characterized using cultured glutamatergic cerebellar granule neurons. Release from the vesicular and the cytoplasmic glutamate pools, respectively, wa...

  2. Calculation of the hydrogen produced by a PEM electrolyzer based on solar radiation in Zacatecas; Estimacion del hidrogeno producido por un electrolizador PEM a partir de la radiacion solar en Zacatecas

    Energy Technology Data Exchange (ETDEWEB)

    Duron-Torres, S. M.; Villagrana-Munoz, L.E.; Garcia-Saldivar, V.M. [Universidad Autonoma de Zacatecas, Zacatecas (Mexico)]. E-mail: duronsm@prodigy.net.mx; Arriaga-Hurtado, L.G. [Centro de Investigacion y Desarrollo Tecnologico en Electroquimica, Pedro Escobedo, Queretaro (Mexico)

    2009-09-15

    This work presents the calculation of the amount of hydrogen obtained from the use of a proton exchange membrane electrolysis cell. Measurements performed at the solarimeter station of the Campus Siglo XXI at the Zacatecas Autonomous University were used as a basis. Solar radiation was analyzed for the period November 2007 to April 2008, corresponding to when there is less solar radiation. The amount of average irradiation measured was de 6.6 kW-h/ m{sup 2}. The evaluation of the solar-hydrogen system was conducted with linear regressions of the behavior of the hydrogen flow in LN/min versus the solar irradiance in W/m{sup 2} for a PEM electrolyzer. The results obtained indicate that the maximum amount of hydrogen produced occurred in the month of April, with 9LN/min produced with a radiation intensity of roughly 900 W/m{sup 2}; a minimum of 6 LN/min was produced with a radiation of roughly 600 W/m{sup 2} during the month of December. Based on these results, we can foresee a minimum amount of hydrogen generated of 6 to 9 LN/min in the state of Zacatecas during an entire year, since the months evaluated are those with the least solar radiation. The measurements performed by the Siglo XXI station show that the solar radiation power measured is higher than the national and worldwide means, making Zacatecas a strategic state for the use of this renewable energy. The amounts calculated of hydrogen produced would indicate that it is feasible to establish solar-hydrogen systems in this region in order to obtain this energy using PEM electrolyzers. [Spanish] En este trabajo se presenta el calculo de la cantidad de hidrogeno que se obtendria, empleando un electrolizador de membrana de intercambio de protones tipo, tomando como base las medidas realizadas en la Estacion Solarimetrica del Campus Siglo XXI en la Universidad Autonoma de Zacatecas. El analisis de la radiacion solar se realizo en el periodo de noviembre de 2007 a abril de 2008 correspondiendo a la epoca de menor

  3. Development and characterization of glass-ceramic sealants in the (CaO-Al2O3-SiO2-B2O3) system for Solid Oxide Electrolyzer Cells

    International Nuclear Information System (INIS)

    Khedim, Hichem; Nonnet, Helene; Mear, Francois O.

    2012-01-01

    The efficiency of glass-ceramic sealants plays a crucial role in Solid Oxide Electrolyzer Cell performance and durability. In order to develop suitable sealants, operating around 800 degrees C, two parent glass compositions, CAS1B and CAS2B, from the CaO-Al 2 O 3 -SiO 2 -B 2 O 3 system were prepared and explored. The thermal and physicochemical properties of the glass ceramics and their crystallization behavior were investigated by HSM. DTA and XRD analyses. The microstructure and chemical compositions of the crystalline phases were investigated by microprobe analysis. Bonding characteristic as well as chemical interactions of the parent glass with yttria-stabilized zirconia (YSZ) electrolyte and ferritic steel-based interconnect (Crofere (R)) were also investigated. The preliminary results revealed the superiority of CAS2B glass for sealing application in SOECs. The effect of minor additions of V 2 O 5 , K 2 O and TiO 2 on the thermal properties was also studied and again demonstrated the advantages of the CAS2B glass composition. Examining the influence of heat treatment on the seal behavior showed that the choice of the heating rate is a compromise between delaying the crystallization process and delaying the viscosity drop. The thermal Expansion Coefficients (TEC) obtained for the selected glass ceramic are within the desired range after the heat treatment of crystallization. The crystallization kinetic parameters of the selected glass composition were also determined under non-isothermal conditions by means of differential thermal analysis (DTA) and using the formal theory of transformations for heterogeneous nucleation. (authors)

  4. Application of fuel cell and electrolyzer as hydrogen energy storage system in energy management of electricity energy retailer in the presence of the renewable energy sources and plug-in electric vehicles

    International Nuclear Information System (INIS)

    Nojavan, Sayyad; Zare, Kazem; Mohammadi-Ivatloo, Behnam

    2017-01-01

    Highlights: • Electricity retailer determines selling price to consumers in the smart grids. • Real-time pricing is determined in comparison with fixed and time-of-use pricing. • Hydrogen storage systems and plug-in electric vehicles are used for energy sources. • Optimal charging and discharging power of electrolyser and fuel cell is determined. • Optimal charging and discharging power of plug-in electric vehicles is determined. - Abstract: The plug-in electric vehicles and hydrogen storage systems containing electrolyzer, stored hydrogen tanks and fuel cell as energy storage systems can bring various flexibilities to the energy management problem. In this paper, selling price determination and energy management problem of an electricity retailer in the smart grid under uncertainties have been proposed. Multiple energy procurement sources containing pool market, bilateral contracts, distributed generation units, renewable energy sources (photovoltaic system and wind turbine), plug-in electric vehicles and hydrogen storage systems are considered. The scenario-based stochastic method is used for uncertainty modeling of pool market prices, consumer demand, temperature, irradiation and wind speed. In the proposed model, the selling price is determined and compared by the retailer in the smart grid in three cases containing fixed pricing, time-of-use pricing and real-time pricing. It is shown that the selling price determination based on real-time pricing and flexibilities of plug-in electric vehicles and hydrogen storage systems leads to higher expected profit. The proposed model is formulated as mixed-integer linear programming that can be solved under General Algebraic Modeling System. To validate the proposed model, three types of selling price determination under four case studies are utilized and the results are compared.

  5. Copper-induced activation of TRP channels promotes extracellular calcium entry and activation of CaMs and CDPKs leading to copper entry and membrane depolarization in Ulva compressa

    Directory of Open Access Journals (Sweden)

    Melissa eGómez

    2015-03-01

    Full Text Available In order to identify channels involved in membrane depolarization, Ulva compressa was incubated with agonists of TRP channels C5, A1 and V1 and the level of intracellular calcium was detected. Agonists of TRPC5, A1 and V1 induced increases in intracellular calcium at 4, 9 and 12 min of exposure, respectively, and antagonists of TRPC5, A1 and V1 corresponding to SKF-96365 (SKF, HC-030031 (HC and capsazepin (CPZ, respectively, inhibited calcium increases indicating that functional TRPs exist in U. compressa. In addition, copper excess induced increases in intracellular calcium at 4, 9 and 12 min which were inhibited by SKF, HC and CPZ, respectively, indicating that copper activate TRPC5, A1 and V1 channels. Moreover, copper-induced calcium increases were inhibited by EGTA, a non-permeable calcium chelating agent, but not by thapsigargin, an inhibitor of endoplasmic reticulum (ER calcium ATPase, indicating that activation of TRPs leads to extracellular calcium entry. Furthermore, copper-induced calcium increases were not inhibited by W-7, an inhibitor of CaMs, and staurosporine, an inhibitor of CDPKs, indicating that extracellular calcium entry did not require CaMs and CDPKs activation. In addition, copper induced membrane depolarization events at 4, 8 and 11 min and these events were inhibited by SKF, HC, CPZ and bathocuproine, a specific copper chelating agent, indicating copper entry through TRP channels leading to membrane depolarization. Moreover, membrane depolarization events were inhibited by W-7 and staurosporine, indicating that CaMs and CDPKs are required in order to activate TRPs to allow copper entry. Thus, light-dependent copper-induced activation TRPC5, A1 and V1 promotes extracellular calcium entry leading to activation of CaMs and CDPKs which, in turn, promotes copper entry through these TRP channels leading to membrane depolarization.

  6. Characterizing the Vertical Profile of Aerosol Particle Extinction and Linear Depolarization over Southeast Asia and the Maritime Continent: The 2007-2009 View from CALIOP

    Science.gov (United States)

    Campbell, James R.; Reid, Jeffrey S.; Westphal, Douglas L.; Zhang, Jianglong; Tackett, Jason L.; Chew, Boon Ning; Welton, Ellsworth J.; Shimizu, Atsushi; Sugimoto, Nobuo; Aoki, Kazuma; hide

    2012-01-01

    Vertical profiles of 0.532 µm aerosol particle extinction coefficient and linear volume depolarization ratio are described for Southeast Asia and the Maritime Continent. Quality-screened and cloud-cleared Version 3.01 Level 2 NASA Cloud Aerosol Lidar with Orthogonal Polarization (CALIOP) 5-km Aerosol Profile datasets are analyzed from 2007 to 2009. Numerical simulations from the U.S. Naval Aerosol Analysis and Predictive System (NAAPS), featuring two-dimensional variational assimilation of NASA Moderate Resolution Imaging Spectroradiometer and Multi-angle Imaging Spectro- Radiometer quality-assured datasets, combined with regional ground-based lidar measurements, are considered for assessing CALIOP retrieval performance, identifying bias, and evaluating regional representativeness. CALIOP retrievals of aerosol particle extinction coefficient and aerosol optical depth (AOD) are high over land and low over open waters relative to NAAPS (0.412/0.312 over land for all data points inclusive, 0.310/0.235 when the per bin average is used and each is treated as single data points; 0.102/0.151 and 0.086/0.124, respectively, over ocean). Regional means, however, are very similar (0.180/0.193 for all data points and 0.155/0.159 when averaged per normalized bin), as the two factors offset one another. The land/ocean offset is investigated, and discrepancies attributed to interpretation of particle composition and a-priori assignment of the extinction-to-backscatter ratio ("lidar ratio") necessary for retrieving the extinction coefficient from CALIOP signals. Over land, NAAPS indicates more dust present than CALIOP algorithms are identifying, indicating a likely assignment of a higher lidar ratio representative of more absorptive particles. NAAPS resolvesmore smoke overwater than identified with CALIOP, indicating likely usage of a lidar ratio characteristic of less absorptive particles to be applied that biases low AOD there. Over open waters except within the Bay of Bengal

  7. Structural features and functional properties of water in model DMPC membranes: thermally stimulated depolarization currents (TSDCs) and Fourier transform infrared (FTIR) studies

    Science.gov (United States)

    Bridelli, M. G.; Capelletti, R.; Mora, C.

    2013-12-01

    Thermally stimulated depolarization currents (TSDCs) and Fourier transform infrared (FTIR) spectroscopies were employed to investigate the state of water incorporated in a model DMPC (dimyristoyl-phosphatidylcholine) membrane. The lipid multilayers, highly inhomogeneous from the dielectric point of view, originate complex TSDC spectra critically dependent on the sample water content and thermal history. Different temperature ranges were chosen to polarize the sample, i.e. 100-300 K (type I) and 100-285 K (type II). The purpose of the latter choice was to avoid any sample heating above the DMPC phase transition temperature (295 K) along the sample polarization. According to the results, water in a fully hydrated system (aw = 0.92) (1) is ordered around the hydrophilic head molecular groups, (2) is layered in the interbilayer space and (3) penetrates among the hydrocarbon chains. It can assume different local structural configurations depending on the lipid packing. Irreversible conformational transitions in the lipid array system were monitored as a consequence of different dehydration treatments. FTIR absorption measurements were performed to study the water sorption kinetics into a DMPC thin film. The water related OH band was decomposed into three components, describing three water states, with different propensity to the H-bond formation. The changes of the lipid characteristic groups (CH2/CH3, PO_{2}^{-} and C=O) absorption bands as a function of increasing hydration level were monitored and discussed.

  8. Structural features and functional properties of water in model DMPC membranes: thermally stimulated depolarization currents (TSDCs) and Fourier transform infrared (FTIR) studies

    International Nuclear Information System (INIS)

    Bridelli, M G; Capelletti, R; Mora, C

    2013-01-01

    Thermally stimulated depolarization currents (TSDCs) and Fourier transform infrared (FTIR) spectroscopies were employed to investigate the state of water incorporated in a model DMPC (dimyristoyl-phosphatidylcholine) membrane. The lipid multilayers, highly inhomogeneous from the dielectric point of view, originate complex TSDC spectra critically dependent on the sample water content and thermal history. Different temperature ranges were chosen to polarize the sample, i.e. 100–300 K (type I) and 100–285 K (type II). The purpose of the latter choice was to avoid any sample heating above the DMPC phase transition temperature (295 K) along the sample polarization. According to the results, water in a fully hydrated system (a w  = 0.92) (1) is ordered around the hydrophilic head molecular groups, (2) is layered in the interbilayer space and (3) penetrates among the hydrocarbon chains. It can assume different local structural configurations depending on the lipid packing. Irreversible conformational transitions in the lipid array system were monitored as a consequence of different dehydration treatments. FTIR absorption measurements were performed to study the water sorption kinetics into a DMPC thin film. The water related OH band was decomposed into three components, describing three water states, with different propensity to the H-bond formation. The changes of the lipid characteristic groups (CH 2 /CH 3 , PO 2 − and C=O) absorption bands as a function of increasing hydration level were monitored and discussed. (paper)

  9. Interface depolarization field as common denominator of fatigue and size effect in Pb(Zr0.54Ti0.46)O3 ferroelectric thin film capacitors

    Science.gov (United States)

    Bouregba, R.; Sama, N.; Soyer, C.; Poullain, G.; Remiens, D.

    2010-05-01

    Dielectric, hysteresis and fatigue measurements are performed on Pb(Zr0.54Ti0.46)O3 (PZT) thin film capacitors with different thicknesses and different electrode configurations, using platinum and LaNiO3 conducting oxide. The data are compared with those collected in a previous work devoted to study of size effect by R. Bouregba et al., [J. Appl. Phys. 106, 044101 (2009)]. Deterioration of the ferroelectric properties, consecutive to fatigue cycling and thickness downscaling, presents very similar characteristics and allows drawing up a direct correlation between the two phenomena. Namely, interface depolarization field (Edep) resulting from interface chemistry is found to be the common denominator, fatigue phenomena is manifestation of strengthen of Edep in the course of time. Change in dielectric permittivity, in remnant and coercive values as well as in the shape of hysteresis loops are mediated by competition between degradation of dielectric properties of the interfaces and possible accumulation of interface space charge. It is proposed that presence in the band gap of trap energy levels with large time constant due to defects in small nonferroelectric regions at the electrode—PZT film interfaces ultimately governs the aging process. Size effect and aging process may be seen as two facets of the same underlying mechanism, the only difference lies in the observation time of the phenomena.

  10. Structural stability and depolarization of manganese-doped (Bi₀.₅Na₀.₅){sub 1−x}Ba{sub x}TiO₃ relaxor ferroelectrics

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Sheng-Fen [Department of Physics, Fu Jen Catholic University, New Taipei City 24205, Taiwan (China); Tu, Chi-Shun, E-mail: 039611@mail.fju.edu.tw [Department of Physics, Fu Jen Catholic University, New Taipei City 24205, Taiwan (China); Graduate Institute of Applied Science and Engineering, Fu Jen Catholic University, New Taipei City 24205, Taiwan (China); Chang, Ting-Lun; Chen, Pin-Yi [Department of Mechanical Engineering, Ming-Chi University of Technology, New Taipei City 24301, Taiwan (China); Chen, Cheng-Sao [Department of Mechanical Engineering, Hwa-Hsia University of Technology, New Taipei City 23567, Taiwan (China); Hugo Schmidt, V. [Department of Physics, Montana State University, Bozeman, Montana 59717 (United States); Anthoniappen, J. [Graduate Institute of Applied Science and Engineering, Fu Jen Catholic University, New Taipei City 24205, Taiwan (China)

    2014-10-21

    This work reveals that 0.5 mol. % manganese (Mn) doping in (Bi₀.₅Na₀.₅){sub 1−x}Ba{sub x}TiO₃ (x = 0 and 0.075) solid solutions can increase structural thermal stability, depolarization temperature (T{sub d}), piezoelectric coefficient (d₃₃), and electromechanical coupling factor (kₜ). High-resolution X-ray diffraction and transmission electron microscopy reveal coexistence of rhombohedral (R) R3c and tetragonal (T) P4bm phases in (Bi₀.₅Na₀.₅)₀.₉₂₅Ba₀.₀₇₅TiO₃ (BN7.5BT) and 0.5 mol. % Mn-doped BN7.5BT (BN7.5BT-0.5Mn). (Bi₀.₅Na₀.₅)TiO₃ (BNT) and BN7.5BT show an R − R + T phase transition, which does not occur in 0.5 mol. % Mn-doped BNT (BNT-0.5Mn) and BN7.5BT-0.5Mn. Dielectric permittivity (ε′) follows the Curie-Weiss equation, ε′ = C/(T − T{sub o}), above the Burns temperature (TB), below which polar nanoregions begin to develop. The direct piezoelectric coefficient (d₃₃) and electromechanical coupling factor (kₜ) of BN7.5BT-0.5Mn reach 190 pC/N and 47%.

  11. Nanosecond pulsed electric fields depolarize transmembrane potential via voltage-gated K+, Ca2+ and TRPM8 channels in U87 glioblastoma cells.

    Science.gov (United States)

    Burke, Ryan C; Bardet, Sylvia M; Carr, Lynn; Romanenko, Sergii; Arnaud-Cormos, Delia; Leveque, Philippe; O'Connor, Rodney P

    2017-10-01

    Nanosecond pulsed electric fields (nsPEFs) have a variety of applications in the biomedical and biotechnology industries. Cancer treatment has been at the forefront of investigations thus far as nsPEFs permeabilize cellular and intracellular membranes leading to apoptosis and necrosis. nsPEFs may also influence ion channel gating and have the potential to modulate cell physiology without poration of the membrane. This phenomenon was explored using live cell imaging and a sensitive fluorescent probe of transmembrane voltage in the human glioblastoma cell line, U87 MG, known to express a number of voltage-gated ion channels. The specific ion channels involved in the nsPEF response were screened using a membrane potential imaging approach and a combination of pharmacological antagonists and ion substitutions. It was found that a single 10ns pulsed electric field of 34kV/cm depolarizes the transmembrane potential of cells by acting on specific voltage-sensitive ion channels; namely the voltage and Ca2 + gated BK potassium channel, L- and T-type calcium channels, and the TRPM8 transient receptor potential channel. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Hydrogen bond dynamics and water structure in glucose-water solutions by depolarized Rayleigh scattering and low-frequency Raman spectroscopy

    Science.gov (United States)

    Paolantoni, Marco; Sassi, Paola; Morresi, Assunta; Santini, Sergio

    2007-07-01

    The effect of glucose on the relaxation process of water at picosecond time scales has been investigated by depolarized Rayleigh scattering (DRS) experiments. The process is assigned to the fast hydrogen bonding dynamics of the water network. In DRS spectra this contribution can be safely separated from the slower relaxation process due to the sugar. The detected relaxation time is studied at different glucose concentrations and modeled considering bulk and hydrating water contributions. As a result, it is found that in diluted conditions the hydrogen bond lifetime of proximal water molecules becomes about three times slower than that of the bulk. The effect of the sugar on the hydrogen bond water structure is investigated by analyzing the low-frequency Raman (LFR) spectrum sensitive to intermolecular modes. The addition of glucose strongly reduces the intensity of the band at 170cm-1 assigned to a collective stretching mode of water molecules arranged in cooperative tetrahedral domains. These findings indicate that proximal water molecules partially lose the tetrahedral ordering typical of the bulk leading to the formation of high density environments around the sugar. Thus the glucose imposes a new local order among water molecules localized in its hydration shell in which the hydrogen bond breaking dynamics is sensitively retarded. This work provides new experimental evidences that support recent molecular dynamics simulation and thermodynamics results.

  13. Soft-contact conductive carbon enabling depolarization of LiFePO4 cathodes to enhance both capacity and rate performances of lithium ion batteries

    Science.gov (United States)

    Ren, Wenju; Wang, Kai; Yang, Jinlong; Tan, Rui; Hu, Jiangtao; Guo, Hua; Duan, Yandong; Zheng, Jiaxin; Lin, Yuan; Pan, Feng

    2016-11-01

    Conductive nanocarbons generally are used as the electronic conductive additives to contact with active materials to generate conductive network for electrodes of commercial Li-ion batteries (LIBs). A typical of LiFePO4 (LFP), which has been widely used as cathode material for LIBs with low electronic conductivity, needs higher quantity of conductive nanocarbons to enhance the performance for cathode electrodes. In this work, we systematically studied three types of conductive nanocarbons and related performances in the LFP electrodes, and classify them as hard/soft-contact conductive carbon (named as H/SCC), respectively, according to their crystallite size, surface graphite-defect, specific surface area and porous structure, in which SCC can generate much larger contact area with active nano-particles of cathode materials than that of HCC. It is found that LFP nanocrystals wrapped in SCC networks perform significantly enhanced both capacity and rate performance than that in HCC. Combined experiments with multiphysics simulation, the mechanism is that LFP nanoparticles embedded in SCC with large contact area enable to generate higher depolarized effects with a relatively uniform current density vector (is) and lithium flux vector (NLi) than that in HCC. This discovery will guide us to how to design LIBs by selective using conductive carbon for high-performance LIBs.

  14. Currents of thermally stimulated depolarization in CaIn{sub 2}S{sub 4} single crystals; Toki termostimulirovannoj depolyarizatsii v monokristallakh CaIN{sub 2}S{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Tagiev, B G; Tagiev, O B; Dzhabbarov, R B; Musaeva, N N [AN Azerbajdzhanskoj SSR, Baku (Azerbaijan). Inst. Fiziki

    1996-10-01

    The results of investigation into currents of thermally stimulated depolarization in CaIn{sub 2}S{sub 4} monocrystals are presented for the first time. Spectra of thermally stimulated depolarization for In-CaIn{sub S4}-In structures are measured under T=99 K at various rates of heat, times of polarization and times of expectation following switching off of electrical field up to beginning of measurements of shorting. The main parameters of capture cross section, partial factor, concentration of traps, are determined. It is determined that one may observed a biomolecular mechanism with a strong secondary capture in CaIn{sub 2}S{sub 4} monocrystals. 9 refs.; 4 figs.

  15. Spin rotation and depolarization of high-energy particles in crystals at Hadron Collider (LHC) and Future Circular Collider (FCC) energies and the possibility to measure the anomalous magnetic moments of short-lived particles

    CERN Document Server

    Baryshevsky, V.G.

    2015-01-01

    We study the phenomena of spin rotation and depolarization of high-energy particles in crystals in the range of high energies that will be available at Hadron Collider (LHC) and Future Circular Collider (FCC). It is shown that these phenomena can be used to measure the anomalous magnetic moments of short-lived particles in this range of energies. We also demonstrate that the phenomenon of particle spin depolarization in crystals provides a unique possibility of measuring the anomalous magnetic moment of negatively-charged particles (e.g., beauty baryons), for which the channeling effect is hampered due to far more rapid dechanneling as compared to that for positively-charged particles. Channeling of particles in either straight or bent crystals with polarized nuclei could be used for polarization and the analysis thereof of high-energy particles.

  16. Characterization of deep level defects and thermally stimulated depolarization phenomena in La-doped TlInS{sub 2} layered semiconductor

    Energy Technology Data Exchange (ETDEWEB)

    Seyidov, MirHasan Yu., E-mail: smirhasan@gyte.edu.tr; Suleymanov, Rauf A.; Mikailzade, Faik A. [Department of Physics, Gebze Technical University, Gebze, Kocaeli 41400 (Turkey); Institute of Physics of NAS of Azerbaijan, H. Javid ave. 33, Baku AZ-1143 (Azerbaijan); Kargın, Elif Orhan [Department of Physics, Gebze Technical University, Gebze, Kocaeli 41400 (Turkey); Odrinsky, Andrei P. [Institute of Technical Acoustics, National Academy of Sciences of Belarus, Lyudnikov ave. 13, Vitebsk 210717 (Belarus)

    2015-06-14

    Lanthanum-doped high quality TlInS{sub 2} (TlInS{sub 2}:La) ferroelectric-semiconductor was characterized by photo-induced current transient spectroscopy (PICTS). Different impurity centers are resolved and identified. Analyses of the experimental data were performed in order to determine the characteristic parameters of the extrinsic and intrinsic defects. The energies and capturing cross section of deep traps were obtained by using the heating rate method. The observed changes in the Thermally Stimulated Depolarization Currents (TSDC) near the phase transition points in TlInS{sub 2}:La ferroelectric-semiconductor are interpreted as a result of self-polarization of the crystal due to the internal electric field caused by charged defects. The TSDC spectra show the depolarization peaks, which are attributed to defects of dipolar origin. These peaks provide important information on the defect structure and localized energy states in TlInS{sub 2}:La. Thermal treatments of TlInS{sub 2}:La under an external electric field, which was applied at different temperatures, allowed us to identify a peak in TSDC which was originated from La-dopant. It was established that deep energy level trap BTE43, which are active at low temperature (T ≤ 156 K) and have activation energy 0.29 eV and the capture cross section 2.2 × 10{sup −14} cm{sup 2}, corresponds to the La dopant. According to the PICTS results, the deep level trap center B5 is activated in the temperature region of incommensurate (IC) phases of TlInS{sub 2}:La, having the giant static dielectric constant due to the structural disorders. From the PICTS simulation results for B5, native deep level trap having an activation energy of 0.3 eV and the capture cross section of 1.8 × 10{sup −16} cm{sup 2} were established. A substantial amount of residual space charges is trapped by the deep level localized energy states of B5 in IC-phase. While the external electric field is applied, permanent dipoles

  17. Characterization of deep level defects and thermally stimulated depolarization phenomena in La-doped TlInS2 layered semiconductor

    International Nuclear Information System (INIS)

    Seyidov, MirHasan Yu.; Suleymanov, Rauf A.; Mikailzade, Faik A.; Kargın, Elif Orhan; Odrinsky, Andrei P.

    2015-01-01

    Lanthanum-doped high quality TlInS 2 (TlInS 2 :La) ferroelectric-semiconductor was characterized by photo-induced current transient spectroscopy (PICTS). Different impurity centers are resolved and identified. Analyses of the experimental data were performed in order to determine the characteristic parameters of the extrinsic and intrinsic defects. The energies and capturing cross section of deep traps were obtained by using the heating rate method. The observed changes in the Thermally Stimulated Depolarization Currents (TSDC) near the phase transition points in TlInS 2 :La ferroelectric-semiconductor are interpreted as a result of self-polarization of the crystal due to the internal electric field caused by charged defects. The TSDC spectra show the depolarization peaks, which are attributed to defects of dipolar origin. These peaks provide important information on the defect structure and localized energy states in TlInS 2 :La. Thermal treatments of TlInS 2 :La under an external electric field, which was applied at different temperatures, allowed us to identify a peak in TSDC which was originated from La-dopant. It was established that deep energy level trap BTE43, which are active at low temperature (T ≤ 156 K) and have activation energy 0.29 eV and the capture cross section 2.2 × 10 −14 cm 2 , corresponds to the La dopant. According to the PICTS results, the deep level trap center B5 is activated in the temperature region of incommensurate (IC) phases of TlInS 2 :La, having the giant static dielectric constant due to the structural disorders. From the PICTS simulation results for B5, native deep level trap having an activation energy of 0.3 eV and the capture cross section of 1.8 × 10 −16 cm 2 were established. A substantial amount of residual space charges is trapped by the deep level localized energy states of B5 in IC-phase. While the external electric field is applied, permanent dipoles, which are originated from the charged B5

  18. Multiple scattering effects on the Linear Depolarization Ratio (LDR) measured during CaPE by a Ka-band air-borne radar

    Science.gov (United States)

    Iguchi, Toshio; Meneghini, Robert

    1993-01-01

    Air-borne radar measurements of thunderstorms were made as part of the CaPE (Convection and Precipitation/Electrification) experiment in Florida in July 1991. The radar has two channels, X-band (10 GHz) and Ka-band (34.5 GHz), and is capable of measuring cross-polarized returns as well as co-polarized returns. In stratiform rain, the cross-polarized components can be observed only at the bright band region and from the surface reflection. The linear depolarization ratios (LDR's) measured at X-band and Ka-band at the bright band are nearly equal. In convective rain, however, the LDR in Ka-band often exceeds the X-band LDR by several dB, and sometimes by more than 10 dB, reaching LDR values of up to -5 dB over heavy convective rain. For randomly oriented hydrometeors, such high LDR values cannot be explained by single scattering from non-spherical scattering particles alone. Because the LDR by single backscatter depends weakly on the wavelength, the difference between the Ka-band and X-band LDR's suggests that multiple scattering effects prevail in the Ka-band LDR. In order to test this inference, the magnitude of the cross-polarized component created by double scattering was calculated using the parameters of the airborne radar, which for both frequencies has beamwidths of 5.1 degrees and pulse widths of 0.5 microsecond. Uniform rain beyond the range of 3 km is assumed.

  19. Membrane depolarization-induced RhoA/Rho-associated kinase activation and sustained contraction of rat caudal arterial smooth muscle involves genistein-sensitive tyrosine phosphorylation

    Science.gov (United States)

    Mita, Mitsuo; Tanaka, Hitoshi; Yanagihara, Hayato; Nakagawa, Jun-ichi; Hishinuma, Shigeru; Sutherland, Cindy; Walsh, Michael P.; Shoji, Masaru

    2013-01-01

    Rho-associated kinase (ROK) activation plays an important role in K+-induced contraction of rat caudal arterial smooth muscle (Mita et al., Biochem J. 2002; 364: 431–40). The present study investigated a potential role for tyrosine kinase activity in K+-induced RhoA activation and contraction. The non-selective tyrosine kinase inhibitor genistein, but not the src family tyrosine kinase inhibitor PP2, inhibited K+-induced sustained contraction (IC50 = 11.3 ± 2.4 µM). Genistein (10 µM) inhibited the K+-induced increase in myosin light chain (LC20) phosphorylation without affecting the Ca2+ transient. The tyrosine phosphatase inhibitor vanadate induced contraction that was reversed by genistein (IC50 = 6.5 ± 2.3 µM) and the ROK inhibitor Y-27632 (IC50 = 0.27 ± 0.04 µM). Vanadate also increased LC20 phosphorylation in a genistein- and Y-27632-dependent manner. K+ stimulation induced translocation of RhoA to the membrane, which was inhibited by genistein. Phosphorylation of MYPT1 (myosin-targeting subunit of myosin light chain phosphatase) was significantly increased at Thr855 and Thr697 by K+ stimulation in a genistein- and Y-27632-sensitive manner. Finally, K+ stimulation induced genistein-sensitive tyrosine phosphorylation of proteins of ∼55, 70 and 113 kDa. We conclude that a genistein-sensitive tyrosine kinase, activated by the membrane depolarization-induced increase in [Ca2+]i, is involved in the RhoA/ROK activation and sustained contraction induced by K+. Ca2+ sensitization, myosin light chain phosphatase, RhoA, Rho-associated kinase, tyrosine kinase PMID:24133693

  20. A missense mutation in Grm6 reduces but does not eliminate mGluR6 expression or rod depolarizing bipolar cell function.

    Science.gov (United States)

    Peachey, Neal S; Hasan, Nazarul; FitzMaurice, Bernard; Burrill, Samantha; Pangeni, Gobinda; Karst, Son Yong; Reinholdt, Laura; Berry, Melissa L; Strobel, Marge; Gregg, Ronald G; McCall, Maureen A; Chang, Bo

    2017-08-01

    GRM6 encodes the metabotropic glutamate receptor 6 (mGluR6) used by retinal depolarizing bipolar cells (DBCs). Mutations in GRM6 lead to DBC dysfunction and underlie the human condition autosomal recessive complete congenital stationary night blindness. Mouse mutants for Grm6 are important models for this condition. Here we report a new Grm6 mutant, identified in an electroretinogram (ERG) screen of mice maintained at The Jackson Laboratory. The Grm6 nob8 mouse has a reduced-amplitude b-wave component of the ERG, which reflects light-evoked DBC activity. Sequencing identified a missense mutation that converts a highly conserved methionine within the ligand binding domain to leucine (p.Met66Leu). Consistent with prior studies of Grm6 mutant mice, the laminar size and structure in the Grm6 nob8 retina were comparable to control. The Grm6 nob8 phenotype is distinguished from other Grm6 mutants that carry a null allele by a reduced but not absent ERG b-wave, decreased but present expression of mGluR6 at DBC dendritic tips, and mislocalization of mGluR6 to DBC somas. Consistent with a reduced but not absent b-wave, there were a subset of retinal ganglion cells whose responses to light onset have times to peak within the range of those in control retinas. These data indicate that the p.Met66Leu mutant mGluR6 is trafficked less than control. However, the mGluR6 that is localized to the DBC dendritic tips is able to initiate DBC signal transduction. The Grm6 nob8 mouse extends the Grm6 allelic series and will be useful for elucidating the role of mGluR6 in DBC signal transduction and in human disease. NEW & NOTEWORTHY This article describes a mouse model of the human disease complete congenital stationary night blindness in which the mutation reduces but does not eliminate GRM6 expression and bipolar cell function, a distinct phenotype from that seen in other Grm6 mouse models.

  1. Hurricanes Harvey and Irma - High-Resolution Flood Mapping and Monitoring from Sentinel SAR with the Depolarization Reduction Algorithm for Global Observations of InundatioN (DRAGON)

    Science.gov (United States)

    Nghiem, S. V.; Brakenridge, G. R.; Nguyen, D. T.

    2017-12-01

    Hurricane Harvey inflicted historical catastrophic flooding across extensive regions around Houston and southeast Texas after making landfall on 25 August 2017. The Federal Emergency Management Agency (FEMA) requested urgent supports for flood mapping and monitoring in an emergency response to the extreme flood situation. An innovative satellite remote sensing method, called the Depolarization Reduction Algorithm for Global Observations of inundatioN (DRAGON), has been developed and implemented for use with Sentinel synthetic aperture radar (SAR) satellite data at a resolution of 10 meters to identify, map, and monitor inundation including pre-existing water bodies and newly flooded areas. Results from this new method are hydrologically consistent and have been verified with known surface waters (e.g., coastal ocean, rivers, lakes, reservoirs, etc.), with clear-sky high-resolution WorldView images (where waves can be seen on surface water in inundated areas within a small spatial coverage), and with other flood maps from the consortium of Global Flood Partnership derived from multiple satellite datasets (including clear-sky Landsat and MODIS at lower resolutions). Figure 1 is a high-resolution (4K UHD) image of a composite inundation map for the region around Rosharon (in Brazoria County, south of Houston, Texas). This composite inundation map reveals extensive flooding on 29 August 2017 (four days after Hurricane Harvey made landfall), and the inundation was still persistent in most of the west and south of Rosharon one week later (5 September 2017) while flooding was reduced in the east of Rosharon. Hurricane Irma brought flooding to a number of areas in Florida. As of 10 September 2017, Sentinel SAR flood maps reveal inundation in the Florida Panhandle and over lowland surfaces on several islands in the Florida Keys. However, Sentinel SAR results indicate that flooding along the Florida coast was not extreme despite Irma was a Category-5 hurricane that might

  2. Tenuifolide B from Cinnamomum tenuifolium Stem Selectively Inhibits Proliferation of Oral Cancer Cells via Apoptosis, ROS Generation, Mitochondrial Depolarization, and DNA Damage.

    Science.gov (United States)

    Chen, Chung-Yi; Yen, Ching-Yu; Wang, Hui-Ru; Yang, Hui-Ping; Tang, Jen-Yang; Huang, Hurng-Wern; Hsu, Shih-Hsien; Chang, Hsueh-Wei

    2016-11-05

    oral cancer cells through apoptosis, ROS generation, mitochondrial membrane depolarization, and DNA damage.

  3. Histamine H3 receptor activation selectively inhibits dopamine D1 receptor-dependent [3H]GABA release from depolarization-stimulated slices of rat substantia nigra pars reticulata

    International Nuclear Information System (INIS)

    Aceves, J.; Young, J.M.; Arias-Montano, J.A.; Floran, B.; Garcia, M.

    1997-01-01

    The release of [ 3 H]GABA from slices of rat substantia nigra pars reticulata induced by increasing extracellular K + from 6 to 15 mM in the presence of 10 μM sulpiride was inhibited by 73±3% by 1 μM SCH 23390, consistent with a large component of release dependent upon D 1 receptor activation. The histamine H 3 receptor-selective agonist immepip (1 μM) and the non-selective agonist histamine (100 μM) inhibited [ 3 H]GABA release by 78±2 and 80±2%, respectively. The inhibition by both agonists was reversed by the H 3 receptor antagonist thioperamide (1 μM). However, in the presence of 1 μM SCH 23390 depolarization-induced release of [ 3 H]GABA was not significantly decreased by 1 μM immepip. In rats depleted of dopamine by pretreatment with reserpine, immepip no longer inhibited control release of [ 3 H]GABA, but in the presence of 1 μM SKF 38393, which produced a 7±1-fold stimulation of release, immepip reduced the release to a level not statistically different from that in the presence of immepip alone. Immepip (1 μM) also inhibited the depolarization-induced release of [ 3 H]dopamine from substantia nigra pars reticulata slices, by 38±3%.The evidence is consistent with the proposition that activation of histamine H 3 receptors leads to the selective inhibition of the component of depolarization-induced [ 3 H]GABA release in substantia nigra pars reticulata slices which is dependent upon D 1 receptor activation. This appears to be largely an action at the terminals of the striatonigral GABA projection neurons, which may be enhanced by a partial inhibition of dendritic [ 3 H]dopamine release. (Copyright (c) 1997 Elsevier Science B.V., Amsterdam. All rights reserved.)

  4. The depolarization performances of 0.97PbZrO3-0.03Ba(Mg1/3Nb2/3)O3 ceramics under hydrostatic pressure

    Science.gov (United States)

    Su, Rigu; Nie, Hengchang; Liu, Zhen; Peng, Ping; Cao, Fei; Dong, Xianlin; Wang, Genshui

    2018-02-01

    Several 0.97PbZrO3-0.03Ba(Mg1/3Nb2/3)O3 (0.97PZ-0.03BMN) ceramics were prepared via the columbite precursor method. Their microstructures and pressure-dependent ferroelectric and depolarization performances were then studied. The X-ray diffraction patterns of ground and fresh samples indicate that a main rhombohedral symmetry crystal structure is present in the bulk and that it sits alongside a trace quantity of an orthorhombic antiferroelectric phase that results from the effect of grinding on the surface. The remanent polarization (Pr) of the 0.97PZ-0.03BMN reached 32.4 μC/cm2 at 4.5 kV/mm and ambient pressure. In an in situ pressure-induced current measurement, more than 91% of the retained Pr of the pre-poled sample was released when the pressure was increased from 194 MPa to 238 MPa. That this pressure-driven depolarization should be attributed to the pressure-induced ferroelectric-antiferroelectric phase transition is supported by the emergence of double P-E loops at high hydrostatic pressures. Moreover, the 0.97PZ-0.03BMN ceramics exhibit no temperature-induced phase transitions and little related polarization loss up to 125 °C, which suggests that Pr has excellent thermal stability. The sharp depolarization behavior at low pressures and excellent temperature stability reveal that our 0.97PZ-0.03BMN ceramics exhibit superior performances in mechanical-electrical energy conversion applications.

  5. Lidar measurements of boundary layer depolarization and CCSEM-EDX compositional analysis of airborne particles on collocated passive samplers throughout the forest canopy during the 2016 airborne pollen season at UMBS, Pellston, MI

    Science.gov (United States)

    Wozniak, M. C.; Steiner, A.; Ault, A. P.; Kort, E. A.; Lersch, T.; Casuccio, G.

    2017-12-01

    Observations of airborne pollen are typically made with volumetric samplers that obtain a time-averaged pollen concentration at a single point. While spatial variations in surface pollen concentrations may be known with these samplers given multiple sampling sites, real-time boundary layer transport of pollen grains cannot be determined except by particle dispersion or tracer transport models. Recently, light detection and ranging (lidar) techniques, such as depolarization, have been used to measure pollen transport and optical properties throughout the boundary layer over time. Here, we use a ground-based micro-pulse lidar (MPL) to observe boundary layer vertical profiles before, during and after the peak anemophilous (wind-driven) pollen season. The lidar depolarization ratio is measured in tandem with the normalized R-squared backscatter (NRB) intensity to determine the contribution of aspherical particles to the scatterers present throughout the boundary layer. Measurements are taken from April 15 - July 12, 2016 at the University of Michigan Biological Station (UMBS) PROPHET outdoor research lab and tower within a largely forested region. UMBS is dominated by Acer rubrum, Betula papyrifera, Pinus resinosa, Quercus rubra and Pinus strobus, all of which began flowering on 4/19, 5/3, 5/25, 5/25 and 6/14, respectively. Temperature, relative humidity and wind speed measured on site determine daytime conditions conducive to pollen dispersion from flowers. Lidar depolarization ratios between 0.08-0.14 and higher are observed in the daytime boundary layer on days shortly after the flowering dates of the aforementioned species, elevated above the background level of 0.06 or less. Lidar observations are supplemented with aerosol compositional analysis determined by computer-controlled scanning electron microscopy and energy-dispersive X-ray spectroscopy (CCSEM-EDX) on passive sampler data from below, within and above the forest canopy at PROPHET tower. Particles are

  6. Cyanidin-3-glucoside inhibits glutamate-induced Zn2+ signaling and neuronal cell death in cultured rat hippocampal neurons by inhibiting Ca2+-induced mitochondrial depolarization and formation of reactive oxygen species.

    Science.gov (United States)

    Yang, Ji Seon; Perveen, Shazia; Ha, Tae Joung; Kim, Seong Yun; Yoon, Shin Hee

    2015-05-05

    Cyanidin-3-glucoside (C3G), a member of the anthocyanin family, is a potent natural antioxidant. However, effects of C3G on glutamate-induced [Zn(2+)]i increase and neuronal cell death remain unknown. We studied the effects of C3G on glutamate-induced [Zn(2+)]i increase and cell death in cultured rat hippocampal neurons from embryonic day 17 maternal Sprague-Dawley rats using digital imaging methods for Zn(2+), Ca(2+), reactive oxygen species (ROS), mitochondrial membrane potential and a MTT assay for cell survival. Treatment with glutamate (100 µM) for 7 min induces reproducible [Zn(2+)]i increase at 35 min interval in cultured rat hippocampal neurons. The intracellular Zn(2+)-chelator TPEN markedly blocked glutamate-induced [Zn(2+)]i increase, but the extracellular Zn(2+) chelator CaEDTA did not affect glutamate-induced [Zn(2+)]i increase. C3G inhibited the glutamate-induced [Zn(2+)]i response in a concentration-dependent manner (IC50 of 14.1 ± 1.1 µg/ml). C3G also significantly inhibited glutamate-induced [Ca(2+)]i increase. Two antioxidants such as Trolox and DTT significantly inhibited the glutamate-induced [Zn(2+)]i response, but they did not affect the [Ca(2+)]i responses. C3G blocked glutamate-induced formation of ROS. Trolox and DTT also inhibited the formation of ROS. C3G significantly inhibited glutamate-induced mitochondrial depolarization. However, TPEN, Trolox and DTT did not affect the mitochondrial depolarization. C3G, Trolox and DTT attenuated glutamate-induced neuronal cell death in cultured rat hippocampal neurons, respectively. Taken together, all these results suggest that cyanidin-3-glucoside inhibits glutamate-induced [Zn(2+)]i increase through a release of Zn(2+) from intracellular sources in cultured rat hippocampal neurons by inhibiting Ca(2+)-induced mitochondrial depolarization and formation of ROS, which is involved in neuroprotection against glutamate-induced cell death. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Measurement and microscopic analysis of the 11B(p,p) reaction at Ep = 150 MeV. Part II: Depolarization of elastic scattering on an odd-A nucleus

    International Nuclear Information System (INIS)

    Hannen, V.M.; Van den Berg, A.M.; Bieber, R.K.; Harakeh, M.N.; De Huu, M.A.; Kruesemann, B.A.M.; Van der Werf, S.Y.; Woertche, H.J.; Amos, K.; Deb, P.K.; Ellinghaus, F.; Frekers, D.; Rakers, S.; Schmidt, R.; Hayse, J.

    2001-01-01

    The depolarization parameter D nn ' in elastic proton scattering off 11 B at an energy of 150 MeV has been measured in the angular range 5 deg nn ' from unity were observed starting around a center-of-mass angle of 23 deg. The observed angular distribution of D nn ' will be described in the framework of a fully microscopic distorted-wave analysis using a folding potential to generate distorted waves from the nuclear ground-state density and from a recent density-dependent parameterization of the effective nucleon-nucleon interaction. The same kind of analysis has been applied to datasets of D nn ' in elastic scattering off 13 C and off 15 N which are available in the literature. The agreement of the fully microscopic analysis with the data is comparable or, in the case of 11 B, slightly better than what is achieved with the conventional calculations

  8. Bursting response to current-evoked depolarization in rat CA1 pyramidal neurons is correlated with lucifer yellow dye coupling but not with the presence of calbindin-D28k

    International Nuclear Information System (INIS)

    Baimbridge, K.G.; Peet, M.J.; McLennan, H.; Church, J.

    1991-01-01

    Calbindin-D28k (CaBP) immunohistochemistry has been combined with electrophysiological recording and Lucifer Yellow (LY) cell identification in the CA1 region of the rat hippocampal formation. CaBP is shown to be contained within a distinct sub-population of CA1 pyramidal cells which is equivalent to the superficial layer described by Lorente de No (1934). The neurogenesis of these CaBP-positive neurons occurs 1-2 days later than the CaBP-negative neurons in the deep pyramidal cell layer, as shown by 3H-thymidine autoradiography. No correlation could be found between the presence or absence of CaBP and the type of electrophysiological response to current-evoked depolarizing pulses. The latter could be separated into bursting or non-bursting types, and the bursting-type response was nearly always found to be associated with the presence of LY dye coupling. Furthermore, when dye coupling involved three neurons, a characteristic pattern was observed which may represent the coupling of phenotypically identical neurons into distinct functional units within the CA1 pyramidal cell layer. In this particular case the three neurons were all likely to be CaBP-positive

  9. Impact induced depolarization of ferroelectric materials

    Science.gov (United States)

    Agrawal, Vinamra; Bhattacharya, Kaushik

    2018-06-01

    We study the large deformation dynamic behavior and the associated nonlinear electro-thermo-mechanical coupling exhibited by ferroelectric materials in adiabatic environments. This is motivated by a ferroelectric generator which involves pulsed power generation by loading the ferroelectric material with a shock, either by impact or a blast. Upon impact, a shock wave travels through the material inducing a ferroelectric to nonpolar phase transition giving rise to a large voltage difference in an open circuit situation or a large current in a closed circuit situation. In the first part of this paper, we provide a general continuum mechanical treatment of the situation assuming a sharp phase boundary that is possibly charged. We derive the governing laws, as well as the driving force acting on the phase boundary. In the second part, we use the derived equations and a particular constitutive relation that describes the ferroelectric to nonpolar phase transition to study a uniaxial plate impact problem. We develop a numerical method where the phase boundary is tracked but other discontinuities are captured using a finite volume method. We compare our results with experimental observations to find good agreement. Specifically, our model reproduces the observed exponential rise of charge as well as the resistance dependent Hugoniot. We conclude with a parameter study that provides detailed insight into various aspects of the problem.

  10. Depolarization-mediated regulation of alternative splicing

    Directory of Open Access Journals (Sweden)

    Alok eSharma

    2011-12-01

    Full Text Available Alternative splicing in eukaryotes plays an important role in regulating gene expression by selectively including alternative exons. A wealth of information has been accumulated that explains how alternative exons are selected in a developmental stage- or tissue-specific fashion. However, our knowledge of how cells respond to environmental changes to alter alternative splicing is very limited. For example, although a number of alternative exons have been shown to be regulated by calcium level alterations, the underlying mechanisms are not well understood. As calcium signaling in neurons plays a crucial role in essential neuronal functions such as learning and memory formation, it is important to understand how this process is regulated at every level in gene expression. The significance of the dynamic control of alternative splicing in response to changes of calcium levels has been largely unappreciated. In this communication, we will summarize the recent advances in calcium signaling-mediated alternative splicing that have provided some insights into the important regulatory mechanisms. In addition to describing the cis-acting RNA elements on the pre-mRNA molecules that respond to changes of intracellular calcium levels, we will summarize how splicing regulators change and affect alternative splicing in this process. We will also discuss a novel mode of calcium-mediated splicing regulation at the level of chromatin structure and transcription.

  11. Optical theorem, depolarization and vector tomography

    International Nuclear Information System (INIS)

    Toperverg, B.P.

    2003-01-01

    A law of the total flux conservation is formulated in the form of the optical theorem. It is employed to explicitly derive equations for the description of the neutron polarization within the range of the direct beam defined by its angular divergence. General considerations are illustrated by calculations using the Born and Eikonal approximations. Results are briefly discussed as applied to Larmor-Fourier tomography

  12. Isomerization and fluorescence depolarization of merocyanine 540 ...

    Indian Academy of Sciences (India)

    , ... polymers resemble globular proteins and can encapsulate hydrophobic solutes. ... PAA opens up due to electrostatic repulsion, the fluorescent probe becomes exposed to ... conformational transition of such polymers have been studied by ...

  13. Confined gluon from Minkowski space continuation of the PT-BFM SDE solution

    Czech Academy of Sciences Publication Activity Database

    Šauli, Vladimír

    2012-01-01

    Roč. 39, č. 3 (2012), 035003/1-035003/16 ISSN 0954-3899 Institutional support: RVO:61389005 Keywords : Minkowski pace * effective QCD * gluon mass generation Subject RIV: BE - Theoretical Physics Impact factor: 5.326, year: 2012

  14. Stochastic differential equation (SDE) model of opening gold share price of bursa saham malaysia

    Science.gov (United States)

    Hussin, F. N.; Rahman, H. A.; Bahar, A.

    2017-09-01

    Black and Scholes option pricing model is one of the most recognized stochastic differential equation model in mathematical finance. Two parameter estimation methods have been utilized for the Geometric Brownian model (GBM); historical and discrete method. The historical method is a statistical method which uses the property of independence and normality logarithmic return, giving out the simplest parameter estimation. Meanwhile, discrete method considers the function of density of transition from the process of diffusion normal log which has been derived from maximum likelihood method. These two methods are used to find the parameter estimates samples of Malaysians Gold Share Price data such as: Financial Times and Stock Exchange (FTSE) Bursa Malaysia Emas, and Financial Times and Stock Exchange (FTSE) Bursa Malaysia Emas Shariah. Modelling of gold share price is essential since fluctuation of gold affects worldwide economy nowadays, including Malaysia. It is found that discrete method gives the best parameter estimates than historical method due to the smallest Root Mean Square Error (RMSE) value.

  15. Wind energy scenarios up to 2020, Developments in the Netherlands in the frameworkof the SDE regulation

    NARCIS (Netherlands)

    Hoving, Peter

    2009-01-01

    The European Union has set targets and obliged its member states to generate twenty percent of the energy consumption in 2020 by renewable energy resources. The contribution of the Netherlands is limited to a share of fourteen percent in 2020, but the Dut

  16. Advanced Numerical Integration Techniques for HighFidelity SDE Spacecraft Simulation

    Data.gov (United States)

    National Aeronautics and Space Administration — Classic numerical integration techniques, such as the ones at the heart of several NASA GSFC analysis tools, are known to work well for deterministic differential...

  17. When Policy Is Practice: SDE Effort to Help/Transform/Label Low-Performing Schools

    Science.gov (United States)

    Phillips, April J.

    2017-01-01

    Policymakers have long been infatuated with education reform (Berliner & Biddle, 1995; Stein, 2004), including at the state level (Lusi, 1997). Consistent with this longer tradition, the Nebraska State Legislature (a.k.a. the "Unicameral') passed Legislative Bill 438 (LB 438) in 2014, providing a statutory outline for a new education…

  18. The ArcSDE GIS Dynamic Population Model Tool for Savannah River Site Emergency Response

    International Nuclear Information System (INIS)

    MCLANE, TRACY; JONES, DWIGHT

    2005-01-01

    The Savannah River Site (SRS) is a 310-square-mile Department of Energy site located near Aiken, South Carolina. With a workforce of over 10,000 employees and subcontractors, SRS emergency personnel must be able to respond to an emergency event in a timely and effective manner, in order to ensure the safety and security of the Site. Geographic Information Systems (GIS) provides the technology needed to give managers and emergency personnel the information they need to make quick and effective decisions. In the event of a site evacuation, knowing the number of on-site personnel to evacuate from a given area is an essential piece of information for emergency staff. SRS has developed a GIS Dynamic Population Model Tool to quickly communicate real-time information that summarizes employee populations by facility area and building and then generates dynamic maps that illustrate output statistics

  19. Market consultation for the subsidy base of the SDE (Dutch Renewable Energy Scheme) 2010 and 2011

    International Nuclear Information System (INIS)

    Lensink, S.M.; Luxembourg, S.L.; Faasen, C.J.

    2011-05-01

    ECN and KEMA have advised the Ministry of Economic Affairs, Agriculture and Innovation on the costs of renewable electricity production and green gas. Stakeholders have been consulted about the findings. This document summarizes the main comments received by ECN and KEMA and their responses. [nl

  20. ODE, RDE and SDE models of cell cycle dynamics and clustering in yeast.

    Science.gov (United States)

    Boczko, Erik M; Gedeon, Tomas; Stowers, Chris C; Young, Todd R

    2010-07-01

    Biologists have long observed periodic-like oxygen consumption oscillations in yeast populations under certain conditions, and several unsatisfactory explanations for this phenomenon have been proposed. These ‘autonomous oscillations’ have often appeared with periods that are nearly integer divisors of the calculated doubling time of the culture. We hypothesize that these oscillations could be caused by a form of cell cycle synchronization that we call clustering. We develop some novel ordinary differential equation models of the cell cycle. For these models, and for random and stochastic perturbations, we give both rigorous proofs and simulations showing that both positive and negative growth rate feedback within the cell cycle are possible agents that can cause clustering of populations within the cell cycle. It occurs for a variety of models and for a broad selection of parameter values. These results suggest that the clustering phenomenon is robust and is likely to be observed in nature. Since there are necessarily an integer number of clusters, clustering would lead to periodic-like behaviour with periods that are nearly integer divisors of the period of the cell cycle. Related experiments have shown conclusively that cell cycle clustering occurs in some oscillating yeast cultures.

  1. Compact Water Electrolyzer for Low-Gravity Environments, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA uses a number of water electrolysis units for generating oxygen and hydrogen gas for space applications. These missions range from generating propellants to...

  2. Advanced Manifolds for Improved Solid Oxide Electrolyzer Performance

    Data.gov (United States)

    National Aeronautics and Space Administration — In late 2013 NASA GRC proposed an in-situ resource utilization (ISRU) experiment on the Mars 2020 rover mission. This proposal was one of the two highest‐rated...

  3. Development of highly efficient solid oxide electrolyzer cell systems

    DEFF Research Database (Denmark)

    Duhn, Jakob Dragsbæk

    on the allowed average (exit) CO concentration was quite high (from 22 to 32 %). The effective diffusion in the fuel electrode was investigated with a Wicke-Kallenbach set up. Combined with measurements of the thickness, porosity and pore size, the tortuosity of the material was calculated. This made it possible...... in the future energy system. The overall objective of the thesis was to investigate the limits for the allowed CO concentration during electrolysis of CO2 in SOECs and how the limit could be increased. A high CO concentration is desired because it lowers the strain on the separation unit and amount of recycle......, when SOECs are used in systems like Haldor Topsoe A/S’s “eCOs”. In this way, the overall eÿciency of SOEC systems are increased. The CO concentration was limited by carbon formation via the Boudouard reaction, a non-uniform flow in the fuel channels over the fuel electrode, and the di˙usion in the fuel...

  4. Anti-glycophorin C induces mitochondrial membrane depolarization and a loss of extracellular regulated kinase 1/2 protein kinase activity that is prevented by pretreatment with cytochalasin D: implications for hemolytic disease of the fetus and newborn caused by anti-Ge3.

    Science.gov (United States)

    Micieli, Jonathan A; Wang, Duncheng; Denomme, Gregory A

    2010-08-01

    Anti-glycophorin C (GPC), blood group antibodies of which cause hemolytic disease of the fetus and newborn (HDFN), is a potent inhibitor of erythroid progenitor cell growth. The cellular mechanism for growth inhibition has not been characterized. K562 cells were incubated in the presence of either anti-GPC, an immunoglobulin G isotype control, an inhibitor of actin polymerization called cytochalasin D with anti-GPC, or cytochalasin D alone. The JC-1 cationic dye was used to detect mitochondrial depolarization and the activity of the mitogen-activated protein kinases was assessed by Western blotting. Anti-GPC inhibits the activity of extracellular regulated kinase (ERK)1/2 within 10 minutes but does not alter the activity of p38 or c-Jun N-terminal kinase. After 24 hours there was a significant loss of mitochondrial membrane potential compared to isotype control–treated cells. Both the ERK1/2 inhibition and the loss of mitochondrial potential were prevented by pretreatment with cytochalasin D. A cell surface antibody can cause anemia by altering the signaling pathways in erythroid cells by promoting depolarization of mitochondria via cytoskeletal rearrangement. The observation that neonates with anti-GPC HDFN are unresponsive to erythropoietin can be explained by the antibody inhibiting a protein kinase through which this hematopoietic growth factor achieves its effects.

  5. Theoretical Design of a Depolarized Interferometric Fiber-Optic Gyroscope (IFOG on SMF-28 Single-Mode Standard Optical Fiber Based on Closed-Loop Sinusoidal Phase Modulation with Serrodyne Feedback Phase Modulation Using Simulation Tools for Tactical and Industrial Grade Applications

    Directory of Open Access Journals (Sweden)

    Ramón José Pérez

    2016-04-01

    Full Text Available This article presents, by means of computational simulation tools, a full analysis and design of an Interferometric Fiber-Optic Gyroscope (IFOG prototype based on a closed-loop configuration with sinusoidal bias phase- modulation. The complete design of the different blocks, optical and electronic, is presented, including some novelties as the sinusoidal bias phase-modulation and the use of an integrator to generate the serrodyne phase-modulation signal. The paper includes detailed calculation of most parameter values, and the plots of the resulting signals obtained from simulation tools. The design is focused in the use of a standard single-mode optical fiber, allowing a cost competitive implementation compared to commercial IFOG, at the expense of reduced sensitivity. The design contains an IFOG model that accomplishes tactical and industrial grade applications (sensitivity ≤ 0.055 °/h. This design presents two important properties: (1 an optical subsystem with advanced conception: depolarization of the optical wave by means of Lyot depolarizers, which allows to use a sensing coil made by standard optical fiber, instead by polarization maintaining fiber, which supposes consequent cost savings and (2 a novel and simple electronic design that incorporates a linear analog integrator with reset in feedback chain, this integrator generating a serrodyne voltage-wave to apply to Phase-Modulator (PM, so that it will be obtained the interferometric phase cancellation. This particular feedback design with sawtooth-wave generated signal for a closed-loop configuration with sinusoidal bias phase modulation has not been reported till now in the scientific literature and supposes a considerable simplification with regard to previous designs based on similar configurations. The sensing coil consists of an 8 cm average diameter spool that contains 300 m of standard single-mode optical-fiber (SMF-28 type realized by quadrupolar winding. The working

  6. Theoretical Design of a Depolarized Interferometric Fiber-Optic Gyroscope (IFOG) on SMF-28 Single-Mode Standard Optical Fiber Based on Closed-Loop Sinusoidal Phase Modulation with Serrodyne Feedback Phase Modulation Using Simulation Tools for Tactical and Industrial Grade Applications.

    Science.gov (United States)

    Pérez, Ramón José; Álvarez, Ignacio; Enguita, José María

    2016-04-27

    This article presents, by means of computational simulation tools, a full analysis and design of an Interferometric Fiber-Optic Gyroscope (IFOG) prototype based on a closed-loop configuration with sinusoidal bias phase- modulation. The complete design of the different blocks, optical and electronic, is presented, including some novelties as the sinusoidal bias phase-modulation and the use of an integrator to generate the serrodyne phase-modulation signal. The paper includes detailed calculation of most parameter values, and the plots of the resulting signals obtained from simulation tools. The design is focused in the use of a standard single-mode optical fiber, allowing a cost competitive implementation compared to commercial IFOG, at the expense of reduced sensitivity. The design contains an IFOG model that accomplishes tactical and industrial grade applications (sensitivity ≤ 0.055 °/h). This design presents two important properties: (1) an optical subsystem with advanced conception: depolarization of the optical wave by means of Lyot depolarizers, which allows to use a sensing coil made by standard optical fiber, instead by polarization maintaining fiber, which supposes consequent cost savings and (2) a novel and simple electronic design that incorporates a linear analog integrator with reset in feedback chain, this integrator generating a serrodyne voltage-wave to apply to Phase-Modulator (PM), so that it will be obtained the interferometric phase cancellation. This particular feedback design with sawtooth-wave generated signal for a closed-loop configuration with sinusoidal bias phase modulation has not been reported till now in the scientific literature and supposes a considerable simplification with regard to previous designs based on similar configurations. The sensing coil consists of an 8 cm average diameter spool that contains 300 m of standard single-mode optical-fiber (SMF-28 type) realized by quadrupolar winding. The working wavelength will be

  7. Eurosotside juht: usun, et SDE kuulub järgmisse valitsusse / Martin Schulz ; intervjueerinud Inga Höglund

    Index Scriptorium Estoniae

    Schulz, Martin, 1955-

    2011-01-01

    Intervjuu Euroopa Parlamendi sotsiaaldemokraatliku fraktsiooni juhiga sotsiaaldemokraatide võimalustest parempoolsete parteide kõrval, Eesti Sotsiaaldemokraatliku Erakonna võimalustest parlamendivalimistel, tööst Euroopa Parlamendis

  8. Protective effect of the poly(ADP-ribose polymerase inhibitor PJ34 on mitochondrial depolarization-mediated cell death in hepatocellular carcinoma cells involves attenuation of c-Jun N-terminal kinase-2 and protein kinase B/Akt activation

    Directory of Open Access Journals (Sweden)

    Radnai Balazs

    2012-05-01

    Full Text Available Abstract Background 2,4-Dimethoxyphenyl-E-4-arylidene-3-isochromanone (IK11 was previously described to induce apoptotic death of A431 tumor cells. In this report, we investigated the molecular action of IK11 in the HepG2 human hepatocellular carcinoma cell line to increase our knowledge of the role of poly (ADP-ribose-polymerase (PARP, protein kinase B/Akt and mitogen activated protein kinase (MAPK activation in the survival and death of tumor cells and to highlight the possible role of PARP-inhibitors in co-treatments with different cytotoxic agents in cancer therapy. Results We found that sublethal concentrations of IK11 prevented proliferation, migration and entry of the cells into their G2 phase. At higher concentrations, IK11 induced reactive oxygen species (ROS production, mitochondrial membrane depolarization, activation of c-Jun N-terminal kinase 2 (JNK2, and substantial loss of HepG2 cells. ROS production appeared marginal in mediating the cytotoxicity of IK11 since N-acetyl cysteine was unable to prevent it. However, the PARP inhibitor PJ34, although not a ROS scavenger, strongly inhibited both IK11-induced ROS production and cell death. JNK2 activation seemed to be a major mediator of the effect of IK11 since inhibition of JNK resulted in a substantial cytoprotection while inhibitors of the other kinases failed to do so. Inhibition of Akt slightly diminished the effect of IK11, while the JNK and Akt inhibitor and ROS scavenger trans-resveratrol completely protected against it. Conclusions These results indicate significant involvement of PARP, a marginal role of ROS and a pro-apoptotic role of Akt in this system, and raise attention to a novel mechanism that should be considered when cancer therapy is augmented with PARP-inhibition, namely the cytoprotection by inhibition of JNK2.

  9. Depolarization affects lateral microdomain structure of yeast plasma membrane

    Czech Academy of Sciences Publication Activity Database

    Herman, P.; Večeř, J.; Opekarová, Miroslava; Veselá, Petra; Jančíková, I.; Zahumenský, J.; Malínský, Jan

    2015-01-01

    Roč. 282, č. 3 (2015), s. 419-434 ISSN 1742-464X R&D Projects: GA ČR GAP205/12/0720 Institutional support: RVO:68378041 Keywords : gel microdomains * lipid order * transmembrane potential Subject RIV: EA - Cell Biology Impact factor: 4.237, year: 2015

  10. Depolarizing channel as a completely positive map with memory

    International Nuclear Information System (INIS)

    Daffer, Sonja; McIver, John K.; Wodkiewicz, Krzysztof; Cresser, James D.

    2004-01-01

    The prevailing description for dissipative quantum dynamics is given by the Lindblad form of a Markovian master equation, used under the assumption that memory effects are negligible. However, in certain physical situations, the master equation is essentially of a non-Markovian nature. In this paper we examine master equations that possess a memory kernel, leading to a replacement of white noise by colored noise. The conditions under which this leads to a completely positive, trace-preserving map are discussed for an exponential memory kernel

  11. Spreading depolarizations in patients with spontaneous intracerebral hemorrhage

    DEFF Research Database (Denmark)

    Helbok, Raimund; Schiefecker, Alois Josef; Friberg, Christian

    2017-01-01

    , subarachnoid hemorrhage and traumatic brain injury patients. Its role in intracerebral hemorrhage patients and in particular the association with perihematomal-edema is not known. A total of 27 comatose intracerebral hemorrhage patients in whom hematoma evacuation and subdural electrocorticography...... was performed were studied prospectively. Hematoma evacuation and subdural strip electrode placement was performed within the first 24 h in 18 patients (67%). Electrocorticography recordings started 3 h after surgery (IQR, 3-5 h) and lasted 157 h (median) per patient and 4876 h in all 27 patients. In 18...

  12. Enhanced ORCA and CLARREO Depolarizers Using AR Microstructures, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Next generation Earth Science Satellites ORCA and CLARREO are designed to measure our planet's ocean and climate health. Using hyper-spectral imaging at wavelengths...

  13. Depolarization of neutron spin echo by magnetic fluid

    International Nuclear Information System (INIS)

    Achiwa, N.; Sirozu, G.; Nishioka, T.; Ebisawa, T.; Hino, M.; Tasaki, S.; Kawai, T.; Yamazaki, D.

    2001-01-01

    A new method to study the fluctuations of magnetization in magnetic fluids by measuring relations between the phase shift of Larmor precession and the visibility of the neutron spin echo caused by the change of flight path length is studied. Magnetic fluid in which fine particles of magnetite of about 10 nm diameters coated with oleic acid and suspended in water was used. Thickness of the sample was 2 mm. In the dynamics of magnetic fluids, Brownian motions of colloids and the thermal fluctuations of magnetization known as the superparamagnetism are dominant. Isolated ferromagnetic particles of the present size are superparamagnetic but they aggregate to form clusters in a weak magnetic field in the sample of 40% weight density. When neutrons pass the sample, spins process in the magnetic flux density of the clusters fluctuating in time and space. Consequently the Larmor precession phases become distributed and the quantization axes are fluctuated. The result is observed as a decrease of the visibility of the spin echo signals. The change of magnetic flux density in the magnetic fluid is measured from the change of echo visibility of the neutrons, vice versa. In the present experiment, echo was measured at q=0. It is observed that the phase shift changes as a quadratic function of the sample angle reflecting the change of the path length through the sample. Since the number of Larmor precession is proportional to the product of the magnetic field and the length of the flight path, mean flux density in the magnetic fluid is calculated from the phase shift. On the other hand, the decrease of the spin echo amplitude as the function of the sample angle reflects the time and space fluctuations of the flux density in the sample. If the direction of the magnetic flux density vector (quantization axis) changes slowly enough compared to the Larmor precession period while a neutron passes one magnetic domain, the neutron spin rotation in the domain is given by the spin rotation matrix. When the quitization axis changes abruptly as the neutron enters the next domain, the spin rotation is multiplied by the next spin rotation matrix. This process is successively applied to the domains in the sample. The mean magnetic field is obtained from the mean Larmor precession number through the magnetic fluid. Relation between the phase shift and the visibility is obtained. Effects of spatial fluctuations of the magnetic flux density parallel and perpendicular to the quantization axis are discussed. (Funahashi, S.)

  14. Role of ERK signaling pathway in up-regulation of γ-AChR during development of resistance to non-depolarizing muscular relaxants in skeletal muscles of burned rats%ERK信号通路在烧伤大鼠骨骼肌对非去极化肌松药抵抗形成时γ-AChR上调中的作用

    Institute of Scientific and Technical Information of China (English)

    靳天; 王宏; 吴进; 李士通

    2016-01-01

    Objective To evaluate the role of ERK signaling pathway in up-regulation of fetal gamma-acetylcholine receptor (μ-AChR) during the development of resistance to non-depolarizing muscular relaxants in skeletal muscles of burned rats.Methods Thirty adult male SPF Sprague-Dawley rats,weighing 230-250 g,aged 9-10 weeks,were randomly divided into 3 groups (n=10 each) using a random number table:control group (C group),burn group (B group) and ERK1/2 inhibitor U0126 group (U group).The surface area of bilateral hindlimbs was shaved,and the tibialis anterior muscle of the right hiudlimb was exposed to 95 ℃ copper for 12 s in anesthetized rats.At 1.5 h after burn,15 mg/kg U0126 was injected intraperitoneally in group U,and the equal volume of dimethyl sulfoxide was given in C and B groups.The tibialis anterior muscle was obtained on 7th day after establishment of the model for determination of the expression of μ-AChR and adult epsilon-AChR (ε-AChR) mRNA in skeletal muscle cells using real-time polymerase chain reaction.The concentration-effect curve of rocuronium was drawn using muscular tension experiment,and the half inhibitory concentration (IC50) and 95% confidence interval were calculated.Resuits Compared with group C,the expression of μ-AChR mRNA in skeletal muscle cells was significantly up-regulated,and the IC50 was significantly increased in group B (P<0.05).Compared with group B,the expression of γ-AChR mRNA in skeletal muscle cells was significantly down-regulated,and the IC50 was significantly decreased in group U (P<0.05).There was no significant difference in the expression of ε-AChR in skeletal muscle cells between the three groups (P>0.05).Conclusion Up-regulation of μ,-AChR is dependent on activation of ERK signaling pathway during the development of resistance to non-depolarizing muscular relaxants in skeletal muscles of burned rats.%目的 评价细胞外信号调节激酶(ERK)信号通路在烧伤大鼠骨骼肌对非去极化肌松药

  15. Room-temperature aqueous plasma electrolyzing Al2O3 nano-coating on carbon fiber

    Science.gov (United States)

    Zhang, Yuping; Meng, Yang; Shen, Yonghua; Chen, Weiwei; Cheng, Huanwu; Wang, Lu

    2017-10-01

    A novel room-temperature aqueous plasma electrolysis technique has been developed in order to prepared Al2O3 nano-coating on each fiber within a carbon fiber bundle. The microstructure and formation mechanism of the Al2O3 nano-coating were systematically investigated. The oxidation resistance and tensile strength of the Al2O3-coated carbon fiber was measured at elevated temperatures. It showed that the dense Al2O3 nano-coating was relatively uniformly deposited with 80-120 nm in thickness. The Al2O3 nano-coating effectively protected the carbon fiber, evidenced by the slower oxidation rate and significant increase of the burn-out temperature from 800 °C to 950 °C. Although the bare carbon fiber remained ∼25 wt.% after oxidation at 700 °C for 20 min, a full destruction was observed, evidenced by the ∼0 GPa of the tensile strength, compared to ∼1.3 GPa of the Al2O3-coated carbon fiber due to the effective protection from the Al2O3 nano-coating. The formation mechanism of the Al2O3 nano-coating on carbon fiber was schematically established mainly based on the physic-chemical effect in the cathodic plasma arc zone.

  16. Suitability of electrolyzed oxidizing water for the disinfection of hard surfaces and equipment in radiology

    OpenAIRE

    Pintaric, Robert; Matela, Joze; Pintaric, Stefan

    2015-01-01

    Background Hospitals are faced with increasingly resistant strains of micro-organisms. When it comes to disinfection, individual parts of electronic equipment of angiology diagnostics such as patient couches of computer tomography (CT) and magnetic resonance imaging (MRI) scanners prove to be very hard to disinfect. Disinfectants of choice are therefore expected to possess properties such as rapid, residue-free action without any damaging effect on the sensitive electronic equipment. This pap...

  17. NASA fuel cell applications for space: Endurance test results on alkaline fuel cell electrolyzer components

    International Nuclear Information System (INIS)

    Sheibley, D.W.

    1984-01-01

    Fuel cells continue to play a major role in manned spacecraft power generation. The Gemini and Apollo programs used fuel cell power plants as the primary source of mission electrical power, with batteries as the backup. The current NASA use for fuel cells is in the Orbiter program. Here, low temperature alkaline fuel cells provide all of the on-board power with no backup power source. Three power plants per shipset are utilized; the original power plant contained 32-cell substacks connected in parallel. For extended life and better power performance, each power plant now contains three 32-cell substacks connected in parallel. One of the possible future applications for fuel cells will be for the proposed manned Space Station in low earth orbit (LEO)(1, 2, 3). By integrating a water electrolysis capability with a fuel cell (a regenerative fuel cell system), a multikilowatt energy storage capability ranging from 35 kW to 250 kW can be achieved. Previous development work on fuel cell and electrolysis systems would tend to minimize the development cost of this energy storage system. Trade studies supporting initial Space Station concept development clearly show regenerative fuel cell (RFC) storage to be superior to nickel-cadmium and nickel-hydrogen batteries with regard to subsystem weight, flexibility in design, and integration with other spacecraft systems when compared for an initial station power level ranging from 60 kW to 75 kW. The possibility of scavenging residual O 2 and H 2 from the Shuttle external tank for use in fuel cells for producing power also exists

  18. Redox?Reversible Iron Orthovanadate Cathode for Solid Oxide Steam Electrolyzer

    OpenAIRE

    Gan, Lizhen; Ye, Lingting; Ruan, Cong; Chen, Shigang; Xie, Kui

    2015-01-01

    A redox?reversible iron orthovanadate cathode is demonstrated for a solid oxide electrolyser with up to 100% current efficiency for steam electrolysis. The iron catalyst is grown on spinel?type electronic conductor FeV2O4 by in situ tailoring the reversible phase change of FeVO4 to Fe+FeV2O4 in a reducing atmosphere. Promising electrode performances have been obtained for a solid oxide steam electrolyser based on this composite cathode.

  19. Use of Fuel Cells and Electrolyzers In Space Applications: From Energy Storage To Propulsion/Deorbitation

    Directory of Open Access Journals (Sweden)

    Brey Javier

    2017-01-01

    In the conclusion, two applications scales are presented: one for power generation depending of the level of power generated, and another one for gases generation depending of the gases production rate.

  20. A study on antifouling technique through seawater electrolyzing reaction on ship hull surface 【Article】

    OpenAIRE

    Huang, Yi; Saito, Kimio; Usami, Masahiro

    2003-01-01

    The antifouling technique through seawater electrolysis for ship hulls may be realized by an antifoul-ing system consisting of a power unit and the electro-conductive film. In the electric field formed bysuch an antifouling system, besides that both the electro-conductive film layer sub-region and the sea-water sub-region are included, polarization occurs on the interface between electro-conductive film layerand seawater. Therefore, based on the Interface Electro-Double Layer theory, a numeri...

  1. Investigation of phosphate compounds for use in medium temperature fuel cells and electrolyzers

    DEFF Research Database (Denmark)

    Risskov Sørensen, Daniel

    ledningsevne. Ved opvarmning til 200 °C udviste kompositterne ringe tegn på dehydrering, men ved opvarmning til 300 og 400 °C fandtes tydelige tegn på dehydrering af orthofosforsyre til pyrofosforsyre. Der blev påvist nogen grad af rehydrering efter afkøling til stuetemperatur. Resultaterne fra dette studie...

  2. Elucidating oxygen electrocatalysis with synchrotron X-rays: PEM fuel cells and electrolyzers

    DEFF Research Database (Denmark)

    Pedersen, Anders Filsøe

    In this thesis electrocatalysts for the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER) have been investigated using synchrotron based X-ray diffraction and X-ray absorption spectroscopy methods. The catalysts are based on Pt alloys and RuO2 for ORR and OER, respectively...... stability measurements showed that the in-plane compression relaxes during the first 2000-3000 cycles, explaining the loss of activity primarily in this range of cycling. For OER mass-selected nanoparticles of metallic Ru and thermally oxidized RuO2 were fabricated. Both materials are highly active for OER......, although the metallic Ru nanoparticles exceptionally so. However this comes as a trade-off in stability, as the metallic particles dissolves rapidly at OER conditions. In an in-situ XAS experiment the oxidation state of the nanoparticles were tracked as a function of potential. It was found...

  3. Polysulfone-based anion exchange polymers for catalyst binders in alkaline electrolyzers

    Czech Academy of Sciences Publication Activity Database

    Schauer, Jan; Žitka, Jan; Pientka, Zbyněk; Křivčík, J.; Hnát, J.; Bouzek, K.

    2015-01-01

    Roč. 132, č. 40 (2015), 42581_1-42581_7 ISSN 0021-8995 Institutional support: RVO:61389013 Keywords : degradation * electrochemistry * membranes Subject RIV: JI - Composite Materials Impact factor: 1.866, year: 2015

  4. Contact Resistance of Tantalum Coatings in Fuel Cells and Electrolyzers using Acidic Electrolytes at Elevated Temperatures

    DEFF Research Database (Denmark)

    Jensen, Annemette Hindhede; Christensen, Erik; Barner, Jens H. Von

    2014-01-01

    stainless steel were found to be far below the US Department of Energy target value of 10mcm2. The good contact resistance of tantalum was demonstrated by simulating high temperature polymer electrolyte membrane electrolysis conditions by anodization performed in 85% phosphoric acid at 130◦C, followed...

  5. Preparation and Characterization of Components for Intermediate Temperature Fuel Cells And Electrolyzers

    DEFF Research Database (Denmark)

    Jensen, Annemette Hindhede

    and other materials must be sought for. It was attempted to use stainless steel (316L), this however corroded and therefore a protective tantalum coating was applied. The tantalum coatings were found to be corrosion resistant and furthermore provided extremely low interfacial contact resistances of only 1...... 10−2 S cm−1 at 233°C this is called superprotonic. This electrolyte as well as other electrolytes for this temperature range, however, suffers from poor mechanical properties, and stable fuel cell performance had only been achieved by use of thick electrolytes. Furthermore to maintain high....... From this screening niobium and bismuth phosphates were found to have high conductivities (>10−2 S cm−1 ) with reasonable stability, and it was therefore attempted to fabricate electrochemical cells from these. The pure phosphates were however suffering from poor mechanical stability and therefore...

  6. Application of Highly Purified Electrolyzed Chlorine Dioxide for Tilapia Fillet Disinfection

    Directory of Open Access Journals (Sweden)

    Chen-Hsing Yu

    2014-01-01

    Full Text Available This research aimed to develop an electrolysis method to generate high-concentration chlorine dioxide (ClO2 for tilapia fillet disinfection. The designed generator produced up to 3500 ppm of ClO2 at up to 99% purity. Tilapia fillets were soaked in a 400 ppm ClO2 solution for 5, 10, and 25 min. Results show that total plate counts of tilapia, respectively, decreased by 5.72 to 3.23, 2.10, and 1.09 log CFU/g. In addition, a 200 ppm ClO2 solution eliminated coliform bacteria and Escherichia coli in 5 min with shaking treatment. Furthermore, ClO2 and trihalomethanes (THMs residuals on tilapia fillets were analyzed by GC/MS and were nondetectable (GC-MS detection limit was 0.12 ppb. The results conform to Taiwan’s environmental protection regulations and act governing food sanitation.

  7. Design of electrolyzer for carbon dioxide conversion to fuels and chemicals

    Science.gov (United States)

    Rosen, Jonathan S.

    The stabilization of global atmospheric CO2 levels requires a transition towards a renewable energy based economy as well as methods for handling current CO2 output from fossil fuels. Challenges with renewable energy intermittency have thus far limited the use of these alternative energy sources to only a fraction of the current energy portfolio. To enable more widespread use of renewable energy systems, methods of large scale energy storage must be developed to store excess renewable energy when demand is low and allow for combined use of energy storage and renewable systems when demand is high. To date, no one technique has demonstrated energy storage methods on the gigawatt scale needed for integration with renewable sources; therefore the development of suitable energy storage technologies, such as CO2 electrolysis to fuels is needed. In this work, research efforts have focused on two major thrusts related to electrochemical methods of CO 2 conversion to fuels. The first thrust focuses on the synthesis and design of highly efficient anode and cathode catalysts with emphasis on understanding structure-property relationships. A second thrust focuses on the design of novel electrochemical devices for CO2 conversion and integration of synthesized materials into flow cell systems. On the anode side, the synthesis of highly active catalysts using abundant transition metals is crucial to reducing capital costs and enabling widespread use of electrochemical CO2 conversion devices. Highly active mesoporous Co3O4 and metal-substituted Co3O4 water oxidation catalysts were designed to investigate the role of the spinel structure on water oxidation activity. Further analysis of metal substituted samples reveal the importance of the octahedral sites in the spinel structure, which was later used to design an Mg-Co3O4 sample with improved water oxidation activity. The design of efficient cathode materials which can selectivity reduce CO2 to fuels and chemicals is critical to the widespread use of CO2 electrolysis. A nanoporous Ag material was synthesized through a dealloying technique able to operate with less than 0.5 V overpotential and high selectivity towards CO. CO is a valuable intermediate chemical which can used in Fischer-Tropsch or Gas-to-liquids technologies to produce liquids fuels. A detailed investigation of nanostructured Ag catalysts found stepped sites to be responsible for enhanced CO2 reduction activity due to improved stabilization of the COOH intermediate on the catalyst surface. In addition, an low-cost Zn dendrite electrocatalyst was developed using an electroplating technique. Low coordinated sites formed through electrodeposition demonstrated the suppression of hydrogen evolution while maintaining CO activity. The Zn dendrite electrocatalyst was further examined using a newly developed in situ X-ray absorption technique able to probe catalyst stability and crystalline structure under CO2 reduction operating conditions. A final hurdle in the realization of CO2 electrolysis technologies is the integration of catalysts into working flow cell devices. To address this issue and enable testing in a practical system, a highly efficient and robust CO2 electrolysis flow cell was designed including the scale up of the previous nanoporous Ag synthesis procedure. Using the modified porous Ag catalyst, currents in the Amp regime were demonstrated approaching rates needed for energy storage applications. Stability on the order of days was successfully demonstrated due to use of robust system components and conditions suitable for process scale up.

  8. Physico-Chemical, Biological and Therapeutic Characteristics of Electrolyzed Reduced Alkaline Water (ERAW

    Directory of Open Access Journals (Sweden)

    Marc Henry

    2013-12-01

    Full Text Available The consumption of alkaline reduced water produced by domestic electrolysis devices was approved in Japan in 1965 by the Ministry of Health, Labour and Welfare for the cure of gastro-intestinal disorders. Today, these devices are freely available in several countries and can be easily purchased without reserve. The commercial information included with the device recommends the consumption of 1–1.5 L of water per day, not only for gastro-intestinal disorders but also for numerous other illnesses such as diabetes, cancer, inflammation, etc. Academic research in Japan on this subject has been undergoing since 1990 only but has established that the active ingredient is dissolved dihydrogen that eliminates the free radical HO• in vivo. In addition, it was demonstrated that degradation of the electrodes during functioning of the device releases very reactive nanoparticles of platinum, the toxicity of which has not yet been clearly proven. This report recommends alerting health authorities of the uncontrolled availability of these devices used as health products, but which generate drug substances and should therefore be sold according to regulatory requirements.

  9. Thermodynamics and Efficiency of a CuCl(aq)/HCl(aq) Electrolyzer

    International Nuclear Information System (INIS)

    Hall, Derek M.; Akinfiev, Nikolay N.; LaRow, Eric G.; Schatz, Richard S.; Lvov, Serguei N.

    2014-01-01

    The high ionic strength and complex speciation of the anolyte solution within the CuCl(aq)/HCl(aq) electrolytic cell have impeded predictions of the energy requirements for the cell's electrolytic reaction at 25 °C and 1 bar. After collecting experimental open circuit potential (OCP) data and comparing the values obtained with predictions from prospective thermodynamic models, an approach to predict thermodynamic values and the overall efficiency was formulated. The compositions of the experimental measurements ranged from 2-2.5 mol of CuCl(aq) with 8-9 mol of HCl(aq) per kilogram of water in anolyte solution and 8-9 mol of HCl(aq) per kilogram of water in catholyte solution. From the OCP data, it was found that activity coefficient and speciation effects were critical in predicting the Gibbs energy, entropy and thermodynamic (intrinsic maximum) efficiency of the electrolytic cell. At equilibrium, all thermodynamic functions of the anolyte redox reactions were the same after activity coefficients and speciation effects were taken into account. The electrochemical reactions’ Gibbs energy and entropy were found to be 9700 J/mol and 2.18 J/(mol K) at 25 °C and 1 bar, which indicated that the reactions required a small amount of electrical and thermal energy to proceed. With thermodynamic values for the electrolytic reaction and experimental data from a CuCl(aq)/HCl(aq) electrolytic cell, the voltage, current, thermodynamic and overall efficiency were calculated. The overall efficiency ranged from 15 to 95% depending on the current density

  10. Sandwich-type electrode

    Science.gov (United States)

    Lu, Wen-Tong P.; Garcia, Earl R.

    1983-01-01

    Disclosed is an improvement on a method of making an electrode wherein a suspension in a liquid is prepared of a powdered catalyst containing a noble metal, carbon powder and a binder, and the suspension is poured over a carbon substrate dried, compressed and sintered to form a solid catalyst layer bonded to the carbon substrate. The improvement is placing a carbon paper on the catalyst layer prior to compressing. The improved electrode can be used as either a cathode or an anode in a sulfur dioxide depolarized electrolyzer in a process for producing hydrogen from water.

  11. Minor Civil Divisions from Teleatlas, NA for Regions 1, 2 and 3 in EPA Region 2 Oracle/Spatial/SDE Database [TANA.MCD

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Dynamap(R)/2000 MCD Boundary layer represents all MCD boundaries that are included in the U.S. Census Bureau's 2002 TIGER/Line(R) files. These boundaries have...

  12. HySDeP: a computational platform for on-board hydrogen storage systems – hybrid high-pressure solid-state and gaseous storage

    DEFF Research Database (Denmark)

    Mazzucco, Andrea; Rokni, Masoud

    2016-01-01

    A computational platform is developed in the Modelica® language within the DymolaTM environment to provide a tool for the design and performance comparison of on-board hydrogen storage systems. The platform has been coupled with an open source library for hydrogen fueling stations to investigate...

  13. County Boundaries clipped to shoreline from Teleatlas, NA for Regions 1, 2 and 3 in EPA Region 2 Oracle/Spatial/SDE Database [TANA.COUNTY

    Data.gov (United States)

    U.S. Environmental Protection Agency — R2GIS Combined county boundary data from TANA, Navteq and Census: TANA county boundaries.(static.R2GIS.TANA_BOUNDARY_COUNTY) for all of Region 2 except the Virgin...

  14. Experimental study on the influence of clamping pressure on proton exchange membrane water electrolyzer (PEMWE) cell’s characteristics

    DEFF Research Database (Denmark)

    Al Shakhshir, Saher; Cui, Xiaoti; Kær, Søren Knudsen

    Energy transition can be led by more hydrogen production. Hydrogen offers a clean, sustainable, and flexible option for overcoming different obstacles that face the low-carbon economy [1]. PEMWE is one of the most promising candidate technologies to produce hydrogen from renewable energy sources...... with the circulating water. In the recent few years, PEMWE’s R&D has inched towards; operating conditions; such as increased operating temperature and cathode-anode high differential pressure operation, flow field design, stack development, and numerical modelling [2,3]. In this work the effect of clamping pressure...... on the PEMWE cell characteristics’; performance, conductivity, hydrogen and water cross-over through the membrane electrode assembly (MEA) is studied. A 50 cm2 active area PEMWE cell with double serpentine flow field channels for the anode and cathode side is used. Measurements are carried out at constant cell...

  15. Develop High Efficiency Liquid-Feed PEM Electrolyzer Based on Integrated Flow Field (IFF) Structure, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Polymer electrolyte membrane water electrolysis units are currently designed to require active water flow and phase separation, or are based on a passive vapor...

  16. Adiabatic partial Siberian snake turn-on with no beam depolarization

    International Nuclear Information System (INIS)

    Phelps, R.A.; Anferov, V.A.; Chu, C.M.; Courant, E.D.; Crandell, D.A.; Derbenev, Y.S.; Kaufman, W.A.; Koulsha, A.V.; Krisch, A.D.; Nurushev, T.S.; Raczkowksi, D.B.; Sund, S.E.; Wong, V.K.; Caussyn, D.D.; Ellison, T.J.P.; Lee, S.Y.; Sperisen, F.; Stephenson, E.J.; von Przewoski, B.; Baiod, R.; Khiari, F.Z.; Ratner, L.G.; Sato, H.

    1994-01-01

    A recent experiment in the IUCF cooler ring studied the adiabatic turn-on of a partial Siberian snake at 370 MeV, where the spin tune, ν s is 21/2 for all snake strengths. The snake consisted of two rampable warm solenoid magnets in series with a superconducting solenoid; this combination allowed varying the snake strength between about 0 and 25% at 370 MeV. We measured the beam polaraization after varying the snake either 1, 2, or 10 times; we found with good precision that no polarization was lost. This supports the conjecture that a Siberian snake can be ramped adiabatically at an energy where the spin tune is a half integer

  17. Depolarization of an Ultrashort Pulse in a Disordered Ensemble of Mie Particles

    Science.gov (United States)

    Gorodnichev, E. E.; Ivliev, S. V.; Kuzovlev, A. I.; Rogozkin, D. B.

    2017-12-01

    We study propagation of an ultrashort pulse of polarized light through a turbid medium with the Reynolds-McCormick phase function. Within the basic mode approach to the vector radiative transfer equation, the temporal profile of the degree of polarization is calculated analytically with the use of the small-angle approximation. The degree of polarization is shown to be described by the self-similar dependence on some combination of the transport scattering coefficient, the temporal delay and the sample thickness. Our results are in excellent agreement with the data of numerical simulations carried out previously for aqueous suspension of polystyrene microspheres.

  18. Delayed-action battery with an improved depolarizer. Einen verbesserten Depolarisator enthaltende Batterie mit verzoegerter Wirkung

    Energy Technology Data Exchange (ETDEWEB)

    Koontz, R.F.; Klein, L.E.

    1978-11-27

    The invention refers to a delayed action battery, which has an anode made of magnesium, aluminium or zinc, and whose cathode consists of a conducting metal grid, and is coated with a depolarising material. The depolarising material consists of caprothio cyanate, carbon sulphur and a binder such as PTFE (polytetrafluoroethylene). This mixture is heated to a certain temperature, in order to melt the sulphur contained in it, before it is applied to the metal grid, in order to melt the sulphur contained in it, before it is applied to the metal grid, in order to form the cathode depolariser. The metal grid is also used as current terminal. The delayed action battery is activated by normal seawater or any other suitable aquaeous solution.

  19. Muon spin depolarization in Gd- and EuBa1Cu3O/sub x/

    International Nuclear Information System (INIS)

    Cooke, D.W.; Hutson, R.L.; Kwok, R.S.

    1988-01-01

    Positive muon spin rotation (μSR) measurements on Gd- and EuBa 2 Cu 3 O/sub x/ (x ∼ 7) have been conducted in the temperature interval 4-300K. For each sample, muons stop both at grain boundaries and within the superconducting grains. Measured magnetic field penetration depths are 1550 and 1900/angstrom/ for two specimens of GdBa 2 Cu 3 O/sub x/, and 1350/angstrom/ for EuBa 2 Cu 3 O/sub x/. 2 refs., 5 figs

  20. The nature of surround-induced depolarizing responses in goldfish cones

    NARCIS (Netherlands)

    Kraaij, D. A.; Spekreijse, H.; Kamermans, M.

    2000-01-01

    Cones in the vertebrate retina project to horizontal and bipolar cells and the horizontal cells feedback negatively to cones. This organization forms the basis for the center/surround organization of the bipolar cells, a fundamental step in the visual signal processing. Although the surround

  1. Characterization of Rain Attenuation and Depolarization at W/V Bands

    Science.gov (United States)

    2015-07-30

    and Louisiana Boulevard. The AR227 weather station is located near the intersection of Tramway Boulevard and Tramway Terrace Street. The distance...low and under-damped resonance frequency. Therefore, the structure was stiffened with braces that were secured to the roof of the building as shown

  2. Coupling between electroosmotically driven flow and bipolar faradaic depolarization processes in electron-conducting microchannels

    NARCIS (Netherlands)

    Qian, S.Z.; Duval, J.F.L.

    2006-01-01

    A quantitative theory is proposed for the analysis of steady electroosmotically driven flows within conducting cylindrical microchannels. Beyond a threshold value of the electric field applied in the electrolyte Solution and parallel to the conducting surface, electrochemical oxidation and reduction

  3. Impedance/thermally stimulated depolarization current and microstructural relations at interfaces in degraded perovskite dielectrics

    Science.gov (United States)

    Liu, Wei-En

    In this work, a detailed investigation of electrical degradation has been performed on a model perovskite dielectric, Fe-doped SrTiO3 in both single and polycrystalline forms. In the single crystals, three different types of relaxation process were identified by TSDC, namely dipolar orientation of Fe'Ti-VÖ complexes, trap charges of FexTi-VÖ , and ionic space charge with the mobile VÖ . The energetics and concentrations of these are monitored as a function of the degradation process. Furthermore, IS is used to model the mechanisms that are spatially redistributed owning to the migration of VÖ towards the cathodic region of the crystal. Through modeling all the complex impedance Z*, modulus M*, admittance Y* and capacitance C*, an equivalent circuit model can be developed and key contributors to the IS can be identified. From this it is considered that the cathodic region changes to a conduction mechanism that is both band electron and polaron controlled. The major change during the degradation is to the polaron conduction pathways. Due to the nature of low polaron hopping mobility in this model system, the conductivity from both conductions become comparable providing that the calculated polaron concentration is around 5 order greater than that of band electron. The spatial dimension of the distributed conduction mechanisms is also modeled through the I.S. analysis. Excellent agreement is obtained between the IS data and the EELS data, where ≈30 microm of conducting region is developed at the cathode, and a corresponding high oxygen vacancy concentration on the order of 10 19/cm3 is obtained after degradation. Other than those relaxation mechanisms identified in the Fe-doped SrTiO 3 single crystal system, an extra relaxation mechanism was found in the polycrystalline systems and was attributed to the relaxation of oxygen vacancies across grain boundaries. Using the initial rise method of TSDC, the activation energies estimated for the relaxation of defect dipoles, the in-grain oxygen vacancies pile up at grain boundaries, and relaxation of oxygen vacancies across grain boundaries are 0.73+/-0.03, 0.86+/-0.07, and 1.1+/-0.09 eV, respectively. An ionic demixing model is applied to account for the evolution of TSDC spectra and to explain changes to the leakage behavior of the degraded samples. In the case of the polycrystalline system, it is suggested that a strong degradation to the insulation resistance occurs when oxygen vacancies migrate across grain boundaries and start to pile up at the cathode region of metallic electrodes. Prior to that point, the vacancies accumulate at partial blocking grain boundaries in each of the crystallites. For the TSDC studies in Ni-BaTiO3 MLCCs, besides two pyroelectric peaks released from the ferroelectric core and shell phase regions, an additional two peaks above the core Curie temperature were ascribed to the relaxation of two types of oxygen vacancy motions, in grain and across grain boundary oxygen vacancy transportation. Activation energies calculated for in grain and across grain boundary oxygen vacancy peaks are 1.06+/-0.05 and 1.24+/-0.08 eV, respectively. Another important multi-layer capacitive device is the so-called COG capacitor. In designing COG capacitors, high field break down properties are required at elevated temperatures above 85°C. A source of the electrical breakdown could be the depopulation of trapped charge. Therefore the trapped charge energies and concentrations in COG capacitors were investigated. The capacitor's MnO content was found to strongly influence the trapped charge concentration as measured by TSDC. TSDC to electrolytic capacitors was also demonstrated. It is shown that TSDC technique can be a powerful tool to understand underlying defect properties which are not manifested in traditional electrical measurements such as I-V measurement. Electrolytic capacitors based on tantalum oxide are often limited in their performance at high fields and high temperatures due to trapped charges. It is known that leakage is often controlled by Poole-Frankel conduction mechanisms in Ta2O5 electrolytic capacitors. It is determined through I-V measurements that the leakage current indeed follows the Poole-Frenkel conduction characteristic under high field. A parallel TSDC study also confirms at high field and high temperature trapped charge phenomenon. Through the use of TSDC, a new high voltage Poole--Frenkel mechanism at highest field range, >64V, in this study was discovered. It is concluded that TSDC is one of best techniques for capacitor characterization, and recommended other TSDC methods that could be extended to enhance our understanding of structure-property-processing relations in capacitor characterization. (Abstract shortened by UMI.)

  4. Essential roles of mitochondrial depolarization in neuron loss through microglial activation and attraction toward neurons.

    Science.gov (United States)

    Nam, Min-Kyung; Shin, Hyun-Ah; Han, Ji-Hye; Park, Dae-Wook; Rhim, Hyangshuk

    2013-04-10

    As life spans increased, neurodegenerative disorders that affect aging populations have also increased. Progressive neuronal loss in specific brain regions is the most common cause of neurodegenerative disease; however, key determinants mediating neuron loss are not fully understood. Using a model of mitochondrial membrane potential (ΔΨm) loss, we found only 25% cell loss in SH-SY5Y (SH) neuronal mono-cultures, but interestingly, 85% neuronal loss occurred when neurons were co-cultured with BV2 microglia. SH neurons overexpressing uncoupling protein 2 exhibited an increase in neuron-microglia interactions, which represent an early step in microglial phagocytosis of neurons. This result indicates that ΔΨm loss in SH neurons is an important contributor to recruitment of BV2 microglia. Notably, we show that ΔΨm loss in BV2 microglia plays a crucial role in microglial activation and phagocytosis of damaged SH neurons. Thus, our study demonstrates that ΔΨm loss in both neurons and microglia is a critical determinant of neuron loss. These findings also offer new insights into neuroimmunological and bioenergetical aspects of neurodegenerative disease. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Endogenous Cannabinoids Trigger the Depolarization-Induced Suppression of Excitation in the Lateral Amygdala

    Science.gov (United States)

    Kodirov, Sodikdjon A.; Jasiewicz, Julia; Amirmahani, Parisa; Psyrakis, Dimitrios; Bonni, Kathrin; Wehrmeister, Michael; Lutz, Beat

    2010-01-01

    The amygdala is a key area of the brain where the emotional memories are stored throughout the lifespan. It is well established that synapses in the lateral nucleus of amygdala (LA) can undergo long-term potentiation, a putative cellular correlate of learning and memory. However, a type of short-term synaptic plasticity, known as…

  6. Bacterial Membrane Depolarization-Linked Fuel Cell Potential Burst as Signal for Selective Detection of Alcohol.

    Science.gov (United States)

    Kaushik, Sharbani; Goswami, Pranab

    2018-06-06

    The biosensing application of microbial fuel cell (MFC) is hampered by its long response time, poor selectivity, and technical difficulty in developing portable devices. Herein, a novel signal form for rapid detection of ethanol was generated in a photosynthetic MFC (PMFC). First, a dual chambered (100 mL each) PMFC was fabricated by using cyanobacteria-based anode and abiotic cathode, and its performance was examined for detection of alcohols. A graphene-based nanobiocomposite matrix was layered over graphite anode to support cyanobacterial biofilm growth and to facilitate electron transfer. Injection of alcohols into the anodic chamber caused a transient potential burst of the PMFC within 60 s (load 1000 Ω), and the magnitude of potential could be correlated to the ethanol concentrations in the range 0.001-20% with a limit of detection (LOD) of 0.13% ( R 2 = 0.96). The device exhibited higher selectivity toward ethanol than methanol as discerned from the corresponding cell-alcohol interaction constant ( K i ) of 780 and 1250 mM. The concept was then translated to a paper-based PMFC (p-PMFC) (size ∼20 cm 2 ) wherein, the cells were merely immobilized over the anode. The device with a shelf life of ∼3 months detected ethanol within 10 s with a dynamic range of 0.005-10% and LOD of 0.02% ( R 2 = 0.99). The fast response time was attributed to the higher wettability of ethanol on the immobilized cell surface as validated by the contact angle data. Alcohols degraded the cell membrane on the order of ethanol > methanol, enhanced the redox current of the membrane-bound electron carrier proteins, and pushed the anodic band gap toward more negative value. The consequence was the potential burst, the magnitude of which was correlated to the ethanol concentrations. This novel approach has a great application potential for selective, sensitive, rapid, and portable detection of ethanol.

  7. Depolarization current relaxation process of insulating dielectrics after corona poling under different charging conditions

    Directory of Open Access Journals (Sweden)

    J. W. Zhang

    2017-10-01

    Full Text Available As an insulating dielectric, polyimide is favorable for the application of optoelectronics, electrical insulation system in electric power industry, insulating, and packaging materials in space aircraft, due to its excellent thermal, mechanical and electrical insulating stability. The charge storage profile of such insulating dielectric is utmost important to its application, when it is exposed to electron irradiation, high voltage corona discharge or other treatments. These treatments could induce changes in physical and chemical properties of treated samples. To investigate the charge storage mechanism of the insulating dielectrics after high-voltage corona discharge, the relaxation processes responsible for corona charged polyimide films under different poling conditions were analyzed by the Thermally Stimulated Discharge Currents method (TSDC. In the results of thermal relaxation process, the appearance of various peaks in TSDC spectra provided a deep insight into the molecular status in the dielectric material and reflected stored space charge relaxation process in the insulating polymers after corona discharge treatments. Furthermore, the different space charge distribution status under various poling temperature and different discharge voltage level were also investigated, which could partly reflect the influence of the ambiance condition on the functional dielectrics after corona poling.

  8. Depolarization current relaxation process of insulating dielectrics after corona poling under different charging conditions

    Science.gov (United States)

    Zhang, J. W.; Zhou, T. C.; Wang, J. X.; Yang, X. F.; Zhu, F.; Tian, L. M.; Liu, R. T.

    2017-10-01

    As an insulating dielectric, polyimide is favorable for the application of optoelectronics, electrical insulation system in electric power industry, insulating, and packaging materials in space aircraft, due to its excellent thermal, mechanical and electrical insulating stability. The charge storage profile of such insulating dielectric is utmost important to its application, when it is exposed to electron irradiation, high voltage corona discharge or other treatments. These treatments could induce changes in physical and chemical properties of treated samples. To investigate the charge storage mechanism of the insulating dielectrics after high-voltage corona discharge, the relaxation processes responsible for corona charged polyimide films under different poling conditions were analyzed by the Thermally Stimulated Discharge Currents method (TSDC). In the results of thermal relaxation process, the appearance of various peaks in TSDC spectra provided a deep insight into the molecular status in the dielectric material and reflected stored space charge relaxation process in the insulating polymers after corona discharge treatments. Furthermore, the different space charge distribution status under various poling temperature and different discharge voltage level were also investigated, which could partly reflect the influence of the ambiance condition on the functional dielectrics after corona poling.

  9. Hyperfine-Structure-Induced Depolarization of Impulsively Aligned I2 Molecules

    Science.gov (United States)

    Thomas, Esben F.; Søndergaard, Anders A.; Shepperson, Benjamin; Henriksen, Niels E.; Stapelfeldt, Henrik

    2018-04-01

    A moderately intense 450 fs laser pulse is used to create rotational wave packets in gas phase I2 molecules. The ensuing time-dependent alignment, measured by Coulomb explosion imaging with a delayed probe pulse, exhibits the characteristic revival structures expected for rotational wave packets but also a complex nonperiodic substructure and decreasing mean alignment not observed before. A quantum mechanical model attributes the phenomena to coupling between the rotational angular momenta and the nuclear spins through the electric quadrupole interaction. The calculated alignment trace agrees very well with the experimental results.

  10. Depolarization of a photoelectret under depth-nonuniform excitation of the sample

    International Nuclear Information System (INIS)

    Vavrek, A.F.; Khristova, K.K.

    1988-01-01

    A simple theoretical model is given and explaination is made of the experimental observations of the recently carried out destroying the photoelectret state (PES) in Bi 1 2SiO 2 0 (BSO) by X-ray irradiation. It is assumed that during the irradiatoin two regions are formed divided by a sharp boundary - an excited region I with mobile non-equilibrium carriers and non-excited region II without mobile carriers. According to the experimental conditions, the isolating layers are between the sample and the electrodes, the total photoelectret charge is zero and the PE charge before the irradiation have a barrier distribution. For the determination of a PE charge the method of photodepolarization is used. When the photoelectret is irradiated in region I, mobile carriers are generated which move under the influence of the electrical field in this region and begin to accumulate on the boundary plane between the excited and non-excited regions, thus forming a 'shifted' charge layer. There is no movement of charges in region II. The distribution of the charges and the electric field in such a multilayer system is described by a system of equations. It is established that during the X-ray irradiation the PE charge gradually decreases. However, the maximum charge which can be destroyed is found to be a function of the thickness of the excited region and becomes equal to the initial charge when an excitation of the whole sample takes place. The consideration done explains the experimentally observed seeming loss of sensitivity of the BSO to the X radiation

  11. Hypothermia for Patients Requiring Evacuation of Subdural Hematoma: Effect on Spreading Depolarizations

    Science.gov (United States)

    2017-10-01

    into HOPES protocols and databases. Subaward contracts were established and local ethical study approvals were obtained at three of four proposed... Ethical approvals at all sites and DOD/OHRP  Open enrollment CY18-19 Goals – Patient enrollment  Patient enrollment and data collection...SD in relation to patient outcomes Comments/Challenges/ Issues /Concerns: 1) EFIC trial requires SecArm approval. 2) Enrollment expected to be slow

  12. Characterization of Rain Attenuation and Depolarization at W/V Bands

    Science.gov (United States)

    2017-03-22

    waveguide. ..................................... 5  Figure 3. a) Straight arm slot, b) Z arm slot...raindrops. As rainfall affects the propagation of the wave, rainfall itself is also affected by several other factors, such as wind velocity and...x, on the broad-wall, where circular polarization can be achieved. The two positions are symmetrical with respect to the center line of the broad

  13. Muon spin depolarization in Gd- and EuBa2Cu3Ox

    International Nuclear Information System (INIS)

    Cooke, D.W.; Hutson, R.L.; Kwok, R.S.; Maez, M.; Rempp, H.; Schillaci, M.E.; Smith, J.L.; Willis, J.O.; Lichti, R.L.; Chan, K.C.; Boekema, C.; Weathersby, S.; Oostens, J.

    1989-01-01

    Positive muon spin rotation (μSR) measurements on Gd- and EuBa 2 Cu 3 O x (x ∼ 7) have been conducted in the temperature interval 4 - 300 K. For each sample, muons stop both at grain boundaries and within the superconducting grains. Measured magnetic field penetration depths are 1550 and 1900 Angstrom for two specimens of GdBa 2 Cu 3 O x , and 1350 Angstrom for EuBa 2 Cu 3 O x

  14. Faradaic double layer depolarization in electrokinetics: Onsager relations and substrate limitations

    NARCIS (Netherlands)

    Leeuwen, van H.P.; Duval, J.F.L.

    2007-01-01

    More often than not, the measurement of interfacial potentials by means of electrokinetic techniques is affected by interfering processes that may relax or even annihilate their primary response function. Among these processes are faradaic ones, provided that the substrate is sufficiently conducting

  15. Development of once-through hybrid sulfur process for nuclear hydrogen production

    International Nuclear Information System (INIS)

    Jung, Yong Hun

    2010-02-01

    Humanity has been facing major energy challenges such as the severe climate change, threat of energy security and global energy shortage especially for the developing world. Particularly, growing awareness of the global warming has led to efforts to develop the sustainable energy technologies for the harmony of the economy, social welfare and environment. Water-splitting nuclear hydrogen production is expected to help to resolve those challenges, when high energy efficiency and low cost for hydrogen production become possible. Once-through Hybrid Sulfur process (Ot-HyS), proposed in this work, produces hydrogen using the same SO 2 Depolarized water Electrolysis (SDE) process found in the original Hybrid Sulfur cycle (HyS) proposed by Westinghouse, which has the sulfuric acid decomposition (SAD) process using high temperature heat source in order to recover sulfur dioxide for the SDE process. But Ot-HyS eliminated this technical hurdle by replacing it with well-established sulfur combustion process to feed sulfur dioxide to the SDE process. Because Ot-HyS has less technical challenges, Ot-HyS is expected to advance the realization of the large-scale nuclear hydrogen production by feeding an initial nuclear hydrogen stock. Most of the elemental sulfur, at present, is supplied by desulfurization process for environmental reasons during the processing of natural gas and petroleum refining and expected to increase significantly. This recovered sulfur will be burned with oxygen in the sulfur combustion process so that produced sulfur dioxide could be supplied to the SDE process to produce hydrogen. Because the sulfur combustion is a highly exothermic reaction releasing 297 kJ/mol of combustion heat resulting in a large temperature rise, efficiency of the Ot-HyS is expected to be high by recovering this great amount of high grade excess heat with nuclear energy. Sulfuric acid, which is a byproduct of the SDE process, could be sent to the neighboring consumers with or even

  16. Causal interpretation of stochastic differential equations

    DEFF Research Database (Denmark)

    Sokol, Alexander; Hansen, Niels Richard

    2014-01-01

    We give a causal interpretation of stochastic differential equations (SDEs) by defining the postintervention SDE resulting from an intervention in an SDE. We show that under Lipschitz conditions, the solution to the postintervention SDE is equal to a uniform limit in probability of postintervention...... structural equation models based on the Euler scheme of the original SDE, thus relating our definition to mainstream causal concepts. We prove that when the driving noise in the SDE is a Lévy process, the postintervention distribution is identifiable from the generator of the SDE....

  17. Electrochemical preconcentration and hydride generation methods for trace determination of selenium by atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Bye, R.

    1986-01-01

    The use of atomic absorption spectrometry in combination with two different preconcentration/separation techniques for the determination of trace concentrations of selenium is described. Electrochemical preconcentration onto a platinum electrode with a subsequent atomization of selenium is discussed briefly. Several parameters are considered such as the presence of depolarizers, and the temperature of the electrolyzed solutions. Special attention is payed to the efficiency of the atomization step, and a method to improve this is proposed. Applications of the technique to real samples are also reported. Secondly, the separation of the selenium as the volatile selenium hydride from the sample solution is considered. Several papers in this thesis deal with commonly occurring interferants as nickel and copper and with ways of minimizing or avoiding the interferring effects, whereas other papers relate to more theoretical aspects of the hydride generation process. New methods for the determination of selenium in technical samples with high contents of nickel and copper are also presented

  18. Res Publica presidendikandidaatide nimed selguvad neljapäevaks / Rauno Veri, Urmo Kübar

    Index Scriptorium Estoniae

    Veri, Rauno, 1978-

    2006-01-01

    Res Publica, Isamaaliit, Reformierakond, SDE ja Keskerakond otsivad ühist presidendikandidaati, ainsa parlamendierakonnana ei osale läbirääkimistel Rahvaliit. Reformierakonna, SDE presidendikandidaatidest; Res Publica naiskogu ja Väärikate Kogu ühisavaldusest

  19. Glucose, Lactate and Glutamine but not Glutamate Support Depolarization-Induced Increased Respiration in Isolated Nerve Terminals

    DEFF Research Database (Denmark)

    Hohnholt, Michaela C; Andersen, Vibe H; Bak, Lasse K

    2017-01-01

    Synaptosomes prepared from various aged and gene modified experimental animals constitute a valuable model system to study pre-synaptic mechanisms. Synaptosomes were isolated from whole brain and the XFe96 extracellular flux analyzer (Seahorse Bioscience) was used to study mitochondrial respiration...... and antimycin A. The synaptosomes exhibited intense respiratory activity using glucose as substrate. The FCCP-dependent respiration was significantly higher with 10 mM glucose compared to 1 mM glucose. Synaptosomes also readily used pyruvate as substrate, which elevated basal respiration, activity......-dependent respiration induced by veratridine and the respiratory response to uncoupling compared to that obtained with glucose as substrate. Also lactate was used as substrate by synaptosomes but in contrast to pyruvate, mitochondrial lactate mediated respiration was comparable to respiration using glucose as substrate...

  20. Identifiability analysis of rotational diffusion tensor and electronic transition moments measured in time-resolved fluorescence depolarization experiment

    International Nuclear Information System (INIS)

    Szubiakowski, Jacek P.

    2014-01-01

    The subject of this paper is studies of the deterministic identifiability of molecular parameters, such as rotational diffusion tensor components and orientation of electronic transition moments, resulting from the time-resolved fluorescence anisotropy experiment. In the most general case considered, a pair of perpendicularly polarized emissions enables the unique determination of all the rotational diffusion tensor's principal components. The influence of the tensor's symmetry and the associated degeneration of its eigenvalues on the identifiability of the electronic transitions moments is systematically investigated. The analysis reveals that independently of the rotational diffusion tensor's symmetry, the transition moments involved in photoselection and emission processes cannot be uniquely identified without a priori information about their mutual orientation or their orientation with respect to the principal axes of the tensor. Moreover, it is shown that increasing the symmetry of the rotational diffusion tensor deteriorates the degree of the transition moments identifiability. To obtain these results analytically, a novel approach to solve bilinear system of equations for Markov parameters is applied. The effect of the additional information, obtained from fluorescence measurements for different molecular mobilities, to improve the identifiability at various levels of analysis is shown. The effectiveness and reliability of the target analysis method for experimental determination of the molecular parameters is also discussed

  1. Obg and Membrane Depolarization Are Part of a Microbial Bet-Hedging Strategy that Leads to Antibiotic Tolerance.

    Science.gov (United States)

    Verstraeten, Natalie; Knapen, Wouter Joris; Kint, Cyrielle Ines; Liebens, Veerle; Van den Bergh, Bram; Dewachter, Liselot; Michiels, Joran Elie; Fu, Qiang; David, Charlotte Claudia; Fierro, Ana Carolina; Marchal, Kathleen; Beirlant, Jan; Versées, Wim; Hofkens, Johan; Jansen, Maarten; Fauvart, Maarten; Michiels, Jan

    2015-07-02

    Within bacterial populations, a small fraction of persister cells is transiently capable of surviving exposure to lethal doses of antibiotics. As a bet-hedging strategy, persistence levels are determined both by stochastic induction and by environmental stimuli called responsive diversification. Little is known about the mechanisms that link the low frequency of persisters to environmental signals. Our results support a central role for the conserved GTPase Obg in determining persistence in Escherichia coli in response to nutrient starvation. Obg-mediated persistence requires the stringent response alarmone (p)ppGpp and proceeds through transcriptional control of the hokB-sokB type I toxin-antitoxin module. In individual cells, increased Obg levels induce HokB expression, which in turn results in a collapse of the membrane potential, leading to dormancy. Obg also controls persistence in Pseudomonas aeruginosa and thus constitutes a conserved regulator of antibiotic tolerance. Combined, our findings signify an important step toward unraveling shared genetic mechanisms underlying persistence. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Dynamics and rate-dependence of the spatial angle between ventricular depolarization and repolarization wave fronts during exercise ECG.

    Science.gov (United States)

    Kenttä, Tuomas; Karsikas, Mari; Kiviniemi, Antti; Tulppo, Mikko; Seppänen, Tapio; Huikuri, Heikki V

    2010-07-01

    QRS/T angle and the cosine of the angle between QRS and T-wave vectors (TCRT), measured from standard 12-lead electrocardiogram (ECG), have been used in risk stratification of patients. This study assessed the possible rate dependence of these variables during exercise ECG in healthy subjects. Forty healthy volunteers, 20 men and 20 women, aged 34.6 +/- 3.4, underwent an exercise ECG testing. Twelve-lead ECG was recorded from each test subject and the spatial QRS/T angle and TCRT were automatically analyzed in a beat-to-beat manner with custom-made software. The individual TCRT/RR and QRST/RR patterns were fitted with seven different regression models, including a linear model and six nonlinear models. TCRT and QRS/T angle showed a significant rate dependence, with decreased values at higher heart rates (HR). In individual subjects, the second-degree polynomic model was the best regression model for TCRT/RR and QRST/RR slopes. It provided the best fit for both exercise and recovery. The overall TCRT/RR and QRST/RR slopes were similar between men and women during exercise and recovery. However, women had predominantly higher TCRT and QRS/T values. With respect to time, the dynamics of TCRT differed significantly between men and women; with a steeper exercise slope in women (women, -0.04/min vs -0.02/min in men, P exercise. The individual patterns of TCRT and QRS/T angle are affected by HR and gender. Delayed rate adaptation creates hysteresis in the TCRT/RR slopes.

  3. Thyrotropin-releasing hormone (TRH) depolarizes a subset of inspiratory neurons in the newborn mouse brain stem in vitro

    DEFF Research Database (Denmark)

    Rekling, J C; Champagnat, J; Denavit-Saubié, M

    1996-01-01

    neurons located in the rostral ventrolateral part of the slice. 2. Bath-applied TRH (1 microM) decreased the time between inspiratory discharges recorded on the XII nerve from 12.3 +/- 3.3 s to 4.9 +/- 1.1 s (n = 28; means +/- SD), i.e., caused an approximate threefold increase in the respiratory...... frequency. The coefficient of variation of the time between the inspiratory discharges decreased by one-half. Thus the respiratory output became more stable in response to TRH. The duration of the inspiratory discharges increased from 474 +/- 108 ms to 679 +/- 114 ms, and the amplitude decreased by 24...... in a thick brain stem slice preparation from the newborn mouse. The action of TRH on the respiratory output from the slice was investigated by recordings from the XII nerve. Cellular responses to TRH were investigated using whole cell recordings from hypoglossal motoneurons and three types of inspiratory...

  4. Altered contractile responses of arteries from spontaneously hypertensive rat: The role of endogenous mediators and membrane depolarization

    Czech Academy of Sciences Publication Activity Database

    Bencze, Michal; Behuliak, Michal; Vavřínová, Anna; Zicha, Josef

    2016-01-01

    Roč. 166, Dec 1 (2016), s. 46-53 ISSN 0024-3205 R&D Projects: GA ČR(CZ) GAP304/12/0259; GA MZd(CZ) NV15-25396A Institutional support: RVO:67985823 Keywords : femoral artery * SHR * vascular contractility * adrenergic contraction * tyramine * propranolol * neuropeptide Y Subject RIV: FA - Cardiovascular Diseases incl. Cardiotharic Surgery Impact factor: 2.936, year: 2016

  5. Collisional redistribution of the Na-D lines in a Ne, Xe filled vapour cell and depolarization in a flame

    International Nuclear Information System (INIS)

    Nieuwesteeg, K.J.B.M.

    1986-01-01

    1. Measurements of collisionally perturbed, 'complete' spectral profiles, i.e. core plus line wings of the Na-D lines, at the highest possible temperature in a fluorescence cell are reported. Both the shape of the profiles obtained in these experiments and the temperature dependence give information about the internuclear forces. Neon and xenon are chosen as perturbing atoms in order to extend and test potential shapes that have emerged from earlier beam experiments. 2. Possible ways are discussed of accurately calculating the cross sections of all elastic and inelastic processes in a Na- noble-gas system for any likely shape of the potentials involved. The main purpose of this discussion is to test these potentials by comparing the calculated cross sections with experimental data. Also a detailed comparison is made of the measured far-wing profile and the quasi-static profile calculated using these potentials. 3. In order to assess the validity of the approximations made in the theoretical model that was used for calculating the fluorescence-excitation profiles, the predictions of this model are compared with measurements of the polarization and the intensity ratio of the collision-induced Na-D fluorescence and Rayleigh scattering in an N 2 -diluted flame at 1 atm pressure. Using the Utrecht High-resolution Fourier Interferometer in the visible range, the Rayleigh peak and the collision-induced fluorescence were separated for the first time at laser detunings within the absorption line width. (Auth.)

  6. Sub-wavelength imaging by depolarization in a reflection near-field optical microscope using an uncoated fiber probe

    DEFF Research Database (Denmark)

    Madsen, Steen; Bozhevolnyi, Sergey I.; Hvam, Jørn Märcher

    1998-01-01

    We present a reflection scanning near-field optical microscope utilizing counter-directional light propagation in an uncoated fiber probe, cross-polarized detection and shear-force feedback. Topographical and near-field optical imaging with a scanning speed of up to 10 mu m/s and a lateral...... resolution better than 40 nm are demonstrated with a latex projection test sample. Determination of the optical resolution as well as correlation between topographical and near-field optical images are discussed. (C) 1998 Elsevier Science B.V....

  7. Methods and means of 3D diffuse Mueller-matrix tomography of depolarizing optically anisotropic biological layers

    Science.gov (United States)

    Dubolazov, O. V.; Ushenko, V. O.; Trifoniuk, L.; Ushenko, Yu. O.; Zhytaryuk, V. G.; Prydiy, O. G.; Grytsyuk, M.; Kushnerik, L.; Meglinskiy, I.

    2017-09-01

    A new technique of Mueller-matrix mapping of polycrystalline structure of histological sections of biological tissues is suggested. The algorithms of reconstruction of distribution of parameters of linear and circular birefringence of prostate histological sections are found. The interconnections between such distributions and parameters of linear and circular birefringence of prostate tissue histological sections are defined. The comparative investigations of coordinate distributions of phase anisotropy parameters formed by fibrillar networks of prostate tissues of different pathological states (adenoma and carcinoma) are performed. The values and ranges of change of the statistical (moments of the 1st - 4th order) parameters of coordinate distributions of the value of linear and circular birefringence are defined. The objective criteria of cause of Benign and malignant conditions differentiation are determined.

  8. Dopamine release in organotypic cultures of foetal mouse mesencephalon: effects of depolarizing agents, pargyline, nomifensine, tetrodotoxin and calcium

    DEFF Research Database (Denmark)

    Larsen, Trine R; Rossen, Sine; Gramsbergen, Jan B

    2008-01-01

    Organotypic mesencephalic cultures provide an attractive in vitro alternative to study development of the nigrostriatal system and pathophysiological mechanisms related to Parkinson's disease. However, dopamine (DA) release mechanisms have been poorly characterized in such cultures. We report her...

  9. Broadband Radio Polarimetry of Fornax A. I. Depolarized Patches Generated by Advected Thermal Material from NGC 1316

    Science.gov (United States)

    Anderson, C. S.; Gaensler, B. M.; Heald, G. H.; O’Sullivan, S. P.; Kaczmarek, J. F.; Feain, I. J.

    2018-03-01

    We present observations and analysis of the polarized radio emission from the nearby radio galaxy Fornax A over 1.28–3.1 GHz, using data from the Australia Telescope Compact Array. In this, the first of two associated papers, we use modern broadband polarimetric techniques to examine the nature and origin of conspicuous low-polarization (low-p) patches in the lobes. We resolve the (low-p) patches and find that their low fractional polarization is associated with complicated frequency-dependent interference in the polarized signal generated by Faraday effects along the line of sight (LOS). The low-p patches are spatially correlated with interfaces in the magnetic structure of the lobe, across which the LOS-projected magnetic field changes direction. Spatial correlations with the sky-projected magnetic field orientation and structure in total intensity are also identified and discussed. We argue that the (low-p) patches, along with associated reversals in the LOS magnetic field and other related phenomena, are best explained by the presence of { \\mathcal O }({10}9) {M}ȯ of magnetized thermal plasma in the lobes, structured in shells or filaments, and likely advected from the interstellar medium of NCG 1316 or its surrounding intracluster medium. Our study underscores the power and utility of spatially resolved, broadband, full-polarization radio observations to reveal new facets of flow behaviors and magneto-ionic structure in radio lobes and their interplay with the surrounding environment.

  10. Imaging of a glucose analog, calcium and NADH in neurons and astrocytes: dynamic responses to depolarization and sensitivity to pioglitazone

    Science.gov (United States)

    Pancani, Tristano; Anderson, Katie L.; Porter, Nada M.; Thibault, Olivier

    2011-01-01

    Neuronal Ca2+ dyshomeostasis associated with cognitive impairment and mediated by changes in several Ca2+ sources has been seen in animal models of both aging and diabetes. In the periphery, dysregulation of intracellular Ca2+ signals may contribute to the development of insulin resistance. In the brain, while it is well-established that type 2 diabetes mellitus is a risk factor for the development of dementia in the elderly, it is not clear whether Ca2+ dysregulation might also affect insulin sensitivity and glucose utilization. Here we present a combination of imaging techniques testing the disappearance of the fluorescent glucose analog 2-(N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)-2-deoxyglucose (2-NBDG) as an indication of glycolytic activity in neurons and astrocytes. Our work shows that glucose utilization at rest is greater in neurons compared to astrocytes, and ceases upon activation in neurons with little change in astrocytes. Pretreatment of hippocampal cultures with pioglitazone, a drug used in the treatment of type 2 diabetes, significantly reduced glycolytic activity in neurons and enhanced it in astrocytes. This series of experiments, including FURA-2 and NADH imaging, provides results that are consistent with the idea that Ca2+ levels may rapidly alter glycolytic activity, and that downstream events beyond Ca2+ dysregulation with aging, may alter cellular metabolism in the brain. PMID:21978418

  11. Implementation of a photovoltaic/electrolyzer/fuel cell autonomous system; Implementacao de um sistema autonomo fotovoltaico/eletrolisador/celula a combustivel

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Ennio Peres da; Apolinario, Fernando Rezende; Furlan, Andre Luis [Universidade Estadual de Campinas (IFGW/UNICAMP), SP (Brazil). Inst. de Fisica Gleb Wataghin. Lab. de Hidrogenio], Emails: lh2ennio@ifi.unicamp.br, rezende@ifi.unicamp.br; Souza, Rubem Cesar Rodrigues [Universidade Federal do Amazonas (UFAM), Manaus, AM (Brazil). Centro de Desenvolvimento Energetico Amazonico], Email: rubem_souza@yahoo.com.br; Pinto, Adailton de Souza [Centrais Eletricas do Norte do Brasil S.A. (ELETRONORTE), Brasilia, DF (Brazil)], Email: adailton@eln.gov.br

    2006-07-01

    This article presents a project whose main objective is to analyze the technical feasibility of using a system based on the production of hydrogen (H{sub 2}) for storing the energy generated for photovoltaic systems. The work involves the design, physical implementation and the performance evaluation of a system for hydrogen electrolytic generation with solar-photovoltaic energy, the treatment os gas, its storage and it use in fuel cell systems. This work will be performed in cooperation between researchers from the Laboratorio de Hidrogenio (LH2) of the UNICAMP and of the Centro de Desenvolvimento Energetico Amazonico (CDEAM) of the UFAM, and is financing by ELETRONORTE.

  12. Overcoming the Instability of Nanoparticle-Based Catalyst Films in Alkaline Electrolyzers by using Self-Assembling and Self-Healing Films

    NARCIS (Netherlands)

    Barwe, Stefan; Masa, Justus; Andronescu, Corina; Mei, Bastian; Schuhmann, Wolfgang; Ventosa, Edgar

    2017-01-01

    Engineering stable electrodes using highly active catalyst nanopowders for electrochemical water splitting remains a challenge. We report an innovative and general approach for attaining highly stable catalyst films with self-healing capability based on the in situ self-assembly of catalyst

  13. Anionic catalyst binders based on trimethylamine-quaternized poly(2,6-dimethyl-1,4-phenylene oxide) for alkaline electrolyzers

    Czech Academy of Sciences Publication Activity Database

    Schauer, Jan; Hnát, J.; Brožová, Libuše; Žitka, Jan; Bouzek, K.

    2015-01-01

    Roč. 473, 1 January (2015), s. 267-273 ISSN 0376-7388 Institutional support: RVO:61389013 Keywords : poly(2,6-dimethyl-1,4-phenylene oxide) * bromination * trimethylamine Subject RIV: CD - Macromolecular Chemistry Impact factor: 5.557, year: 2015

  14. Modeling the Growth of Epiphytic Bacteria on Kale Treated by Thermosonication Combined with Slightly Acidic Electrolyzed Water and Stored under Dynamic Temperature Conditions.

    Science.gov (United States)

    Mansur, Ahmad Rois; Oh, Deog-Hwan

    2016-08-01

    The growth of epiphytic bacteria (aerobic mesophilic bacteria or Pseudomonas spp.) on kale was modeled isothermally and validated under dynamic storage temperatures. Each bacterial count on kale stored at isothermal conditions (4 to 25 °C) was recorded. The results show that maximum growth rate (μmax ) of both epiphytic bacteria increased and lag time (λ) decreased with increasing temperature (P 0.97), whereas lower R(2) > 0.86 and R(2) > 0.87 was observed for the λ and Nmax , respectively. The overall predictions of both epiphytic bacterial growths under nonisothermal conditions with temperature abuse of 15 °C agreed with the observed data, whereas those with temperature abuse of 25 °C were greatly overestimated. The appropriate parameter q0 (physiological state of cells), therefore, was adjusted by a trial and error to fit the model. This study demonstrates that the developed model was able to predict accurately epiphytic bacterial growth on kale stored under nonisothermal conditions particularly those with low temperature abuse of 15 °C. © 2016 Institute of Food Technologists®

  15. Dosimetric reevaluation of exposure at working stations of the Mafelec Society. Presence on the production site of elevators push-buttons containing cobalt 60 between the 21. august and the 7. october 2008. Amendment to the report DRPH/SDE 2008-648; Reevaluation dosimetrique des expositions aux postes de travail de la Societe Mafelec. Presence sur le site de production de poussoirs de boutons d'ascenseur contenant du cobalt 60 entre le 21 aout et le 7 octobre 2008. Avenant au rapport DRPH/SDE 2008-64

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-01

    On the 7. october 2008, the public authorities were alerted by the Mafelec society of the detection by their customs services of unusual levels of radioactivity during controls on packages containing elevators push-buttons sent by this society. The first measures made on that very day on the site of the Mafelec society at Chimilin (38) by the mobile cell of radiological intervention of Isere department firemen enlightened the presence of radioactivity in elevators the push-buttons in stainless steel and in complete push-buttons delivered to Mafelec by one or several Indian suppliers. After having made an inspection on the site on the 8. october, the nuclear safety authority requested the help of I.R.S.N. to evaluate the doses received by the facility personnel exposed to these radioactive pieces. The Asn also asked I.R.S.N. to evaluate the public exposure if someone used an elevator equipped with such buttons. The first evaluations showed that 22 persons had received a maximal dose between 1.4 and 2.7 mSv. A second report (on the 27 october 2008) gave a revaluation of the dosimetry. The conclusions were: with the information known at the date of 22 october 2008, it can estimated that only one person received between the 21. august and the 7. october a maximal efficient dose superior to 1 mSv that is the annual limit regulatory value for the public. The details of the revaluation are given and the results are as follow: 1 person received at the most an efficient dose of 1.4 mSv, 8 persons received at the most an efficient dose of 0.9 mSv, 11 persons received at the most an efficient dose between 0.2 and 0.7 mSv, 15 persons received at the most an efficient dose between 0.1 and 0.2 mSv included. (N.C.)

  16. Country policy profile - The Netherlands. December 2015

    International Nuclear Information System (INIS)

    2015-12-01

    Main support scheme for renewable energy in the Netherlands is the SDE+, opened in 2011. It is a technology-neutral scheme, promoting the cheapest technologies and allocating the available budget on the basis of competition between renewable electricity, renewable heat and green gas projects. Other measures described in the Dutch Progress Report are: SDE, MEP, EIA (as of 2014 not anymore combined with SDE+), Green Projects Scheme, the Investment subsidy renewable energy (ISDE), Energy Top Sector and Green Deals

  17. Country policy profile - The Netherlands. August 2015

    International Nuclear Information System (INIS)

    2015-08-01

    Main support scheme for renewable energy in the Netherlands is the SDE+, opened in 2011. It is a technology-neutral scheme, promoting the cheapest technologies and allocating the available budget on the basis of competition between renewable electricity, renewable heat and green gas projects. Other measures described in the Dutch Progress Report are: SDE, MEP, EIA (as of 2014 not anymore combined with SDE+), Green Projects Scheme, Solar Panels Subsidy Scheme, Energy Top Sector and Green Deals

  18. EXISTENCE AND UNIQUENESS OF SOLUTIONS TO STOCHASTIC DIFFERENTIAL EQUATION WITH RANDOM COEFFICIENTS

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    This paper mainly deals with a stochastic differential equation (SDE) with random coefficients. Sufficient conditions which guarantee the existence and uniqueness of solutions to the equation are given.

  19. Püha Jüri võitlus kapitalistliku hüdraga / Priit Hõbemägi, Andrei Hvostov

    Index Scriptorium Estoniae

    Hõbemägi, Priit, 1957-

    2009-01-01

    SDE uus esimees Jüri Pihl teatas, et sotsiaaldemokraatidel on alternatiiv seni valitsenud neoliberaalsele ideoloogiale. Autorite hinnangul hakkab J. Pihli vastasseis Reformierakonnaga olema hoopis teistsugune kui Keskerakonnaga

  20. Битва с гигантами

    Index Scriptorium Estoniae

    2009-01-01

    SDE uus esimees Jüri Pihl teatas, et sotsiaaldemokraatidel on alternatiiv seni valitsenud neoliberaalsele ideoloogiale, Pihli vastasseis hakkab Reformierakonnaga olema hoopis teistsugune kui Keskerakonnaga